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Summary 

Finite element (FE) method has become extremely popular numerical method 

in geotechnical engineering. Soil is the main material in geotechnical 

engineering and very often shows nonlinear and plastic behaviour. Mohr-

Coulomb model is a simple, popular and effective constitutive model to 

simulate the plastic behaviour of soil. When the Mohr-Coulomb model is used 

in numerical simulation, it is essential to adopt a non-associated flow rule to 

obtain realistic results. The global stiffness matrix in FE analysis, which is 

often large in size and highly sparse, becomes nonsymmetric. Little discussion 

has been focused on the preconditioners for this class of nonsymmetric linear 

system. 

This thesis applies the Induced Dimension Reduction Method (IDR(s)) to 

solve the large-scale nonsymmetric linear system. This IDR(s) method is 

shown to be more effective than the current default method, Bi-CGSTAB. In 

drained analysis, the global stiffness matrix is in form of 1-by-1 block matrix. 

Incomplete LU factorization with zero fill-in (ILU0) is shown numerically to 

be the most efficient preconditioner for this matrix among Jacobi, SSOR and 

ILUT(ρ, τ). In consolidation analysis, the global stiffness matrix is in form of 

2-by-2 block matrix. A diagonal block preconditioner is shown to be the most 

efficient block preconditioner. This diagonal block preconditioner uses ILU0 

as the approximation of the soil stiffness matrix and a simple diagonal matrix 

as the approximation of the Schur complement of the 2-by-2 block matrix  

For non-associated MC, nonlinear FE analysis is required and a sequence of 

large-scale nonsymmetric linear systems has to be solved continuoustly. Two 

techniques to save the total simulation time in dealing with sequence of 

nonsymmetric linear systems are recommended for both 1-by-1 and 2-by-2 

block matrix as following: 1) Forming the elastoplastic global stiffness matrix 

implicitly by forming the elastic global stiffness matrix once and update the 

low-rank matrix at every NR iteration; 2) Updating the preconditioner one 

time at the beginning of the simulation or updating preconditioners at the 

beginning of each load steps. When these two techniques are used 
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concurrently, the total simulation time of 1-by-1 block matrix can be reduced 

60 percent compared with the default procedure.  
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

1.1.1 Three-dimensional finite element analysis and iterative 

methods 

Finite element method (FEM) is an extremely popular numerical method in 

geotechnical engineering for the last thirty years (Potts & Zdravkovic
137

, 

1999). Analyses of geotechnical problems using FEM are performed 

countlessly in research and practice (Migliazza et al.
112

, 2009; Almeida e 

Sousa et al.
5
, 2011; Hashash et al.

77
, 2011; Lee et al.

99
, 2011; Hata et al.

78
, 

2012). Several finite element (FE) packages are developed for research 

purpose such as ICFEP (Potts & Zdravkovic
137

, 1999), PECPLAS 

(Shahrour
153

, 1992), SNAC (Abbo & Sloan
4
, 2000) and commercial purpose 

such as GeoFEA
67

 (2006), GeoStudio
68

 (2012), PLAXIS 2D
133

 and 3D
134

 

(2012).  

With the development of underground construction and the computational 

ability of modern computers, three-dimensional (3D) FE analyses are in great 

demand to simulate realistic soil structure interactions. Although real 

geotechnical problems are three-dimensional (3D) in nature, simplified two-

dimensional (2D) plane strain or axisymmetric models are preferable in the 

past due to the lack of graphical interpretation for 3D models and slow 

computational ability (Augarde & Burd
10

, 1995). Now even personal 

computers (PC) can process 3D models smoothly hence graphical 

interpretation is not a hindrance. Moreover, certain geotechnical problems 

cannot be simplified into plane strain or axisymmetric models and require full 

3D analyses such as pile-soil interaction (Kahyaoglu et al.
91

, 2009; Peng et 

al.
127

, 2010; Kelesoglu & Springman
93

, 2011), deep excavation (Faheem et 

al.
56

, 2004; Zdravkovic et al.
186

, 2005; Hashash et al.
77

, 2011; Lee et al.
99

, 

2011), and tunneling process (Mroueh & Shahrour
116, 117

, 2003, 2008; 

Migliazza et al.
112

, 2009).  

FE discretization results in a linear system of the form, 
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FKu   (1.1) 

  

with N is the number of unknown degrees of freedom, K 
N×N

 is the 

stiffness matrix, u 
N
 is the unknown vector, F 

N
 is the applied force 

vector. 3D models are well-known for containing hundreds of thousand 

unknowns (Lee et al.
99

, 2011; Hata et al.
78

, 2012) and the stiffness matrix K is 

normally large but highly sparse. The large number of unknowns results in 

long computation time and this is the very hindrance of 3D FEM analysis. 

This thesis is motivated to reduce this computation time by certain 

computational techniques. 

Theoretically, the exact solution of Eq.(1.1) is 

FKu 1  (1.2) 

 

with K
-1

 denotes the inverse matrix of K. Direct methods can find this exact 

solution after a fixed number of operations in exact arithmetic (Quarteroni et 

al.
139

, 2007). Preferable direct methods are Gauss elimination and its modified 

forms, which require O(N
3
) flops (Isaacson & Keller

84
, 1994; Quarteroni et 

al.
139

, 2007). When N is in the order of hundreds of thousand as in 3D FE 

model of geotechnical problems, direct methods are not suitable for solving 

Eq.(1.2) due to prohibitively expensive computational cost and memory 

requirement.  

Iterative methods and specifically Krylov subspace iterative methods are 

recommended to efficiently solve large and sparse linear systems (Barrett et 

al.
16

, 1994; Saad
144

, 2003).  Iterative methods aim to generate a series of 

approximate solution, x
(i)

, that converges to the exact solution (1.2) with any 

initial guess,  x
(0)

. Iterative methods access the linear system through matrix-

vector multiplication (matvec) and this operation can be done efficiently when 

the matrix K is highly sparse as in the case of Eq.(1.1). The iteration process 

can be stopped when the approximate solution is within some desired accuracy 

level. This feature is very useful in geotechnical engineering  since the system 

need not be solved to high accuracy because soil is inherently variable hence 
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there are uncertainties in soil properties and soil models (Whitman
176

, 2000; 

Phoon
129

, 2008). 

Krylov subspace iterative methods are the most popular choice in the 20
th

 

century (Saad & Vorst
146

, 2000; Gutknecht
75

, 2007). Commercial FE 

softwares like PLAXIS
134

 (2012) and ABAQUS
1
 (2010) use Krylov iterative 

methods as linear system solvers. The advantage of Krylov iterative methods 

over classical stationary methods is that Krylov iterative methods converge to 

the exact solution in at most N iterations in exact arithmetic (Gurknecht
75

, 

2007) and normally converge earlier than that. However, N iterations are still 

expensive when N is in order of hundreds of thousands and with the presence 

of rounding errors, Krylov methods may require more than N iterations to 

converge.  

Preconditioning is the main technique to accelerate the convergence of Krylov 

iterative methods (Freund et al.
63

, 1992; Saad & Vorst
146

, 2000; Ferronato
58

, 

2012). Preconditioning technique is the process of modifying the matrix K to a 

new matrix K
~

such that the later possesses spectral properties for faster 

convergence of Krylov iterative methods. It is well known that preconditioners 

are important in improving the convergence and efficiency of Krylov iterative 

methods. In geotechnical engineering, preconditioners have only been 

developed recently for specific geotechnical problems like Biot’s 

consolidation (Chan et al.
36

, 2001; Phoon et al.
130

, 2004; Chen et al.
42

, 2006; 

Bergamaschi et al.
22

, 2007; Ferronato et al.
59

, 2010) and soil-structure 

interactions (Chauhary
37

, 2010). These discussions have been focused on 

linear elastic material and symmetric linear systems. However, from the 

practical point of view, linear elastic model is not sufficient to simulate the full 

range of realistic behaviour of soil. For example, in deep excavations with 

wall in cantilever mode, many discussions highlight that plastic strain of the 

soil is generated at very small wall displacement (Jardine et al.
85

, 1986; 

Whittle et al.
177

, 1993; Ou & Kung
122

, 2004; Plumey et al.
135

, 2010). Another 

example is laterally loaded piles in which plastic zones form at the top of the 

piles even at relatively low working loads (Liu & Meyerhof
104

, 1987; Brown 

& Shie
31

, 1990; Yang & Jeremic
183

, 2002; Motta
114

, 2013). Besides, it is well-
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known that soil does fail under certain stress states (Terzaghi
164

, 1948; 

Schofield & Wroth
151

, 1968) and this failure definitely cannot be modelled 

with linear elastic material (Duncan
51

, 1994). Hence, it is critical to be aware 

that the deformation pattern from linear elastic model may not only be 

“quantitatively but also qualitatively incorrect” (Schweiger
152

, 2008).  

1.1.2 Non-associated plasticity in geotechnical engineering 

Linear elastic model gives acceptable solutions only when the strain is small 

or the safety factor of the system is large enough (Jardine et al.
85

, 1986; 

Hicher
82

, 1996; Pott & Zdravkovic
138

, 2001, p. 169; Leung et al.
101

, 2010). 

Nevertheless, soil does not always behave elastically at small strain. Based on 

the Cam-clay theoretical framework (Roscoe et al.
143

, 1963; Roscoe & 

Burland
142

, 1968), loading and unloading (swelling) lines of clay are not the 

same (Figure 1.1) therefore there is plastic strain (irrecoverable deformation) 

generated during the loading procedure.  

 

Figure 1.1: Isotropic Consolidation (loading) and Swelling Curves for London 

Clay (Henkel
79

, 1959) 

For normally consolidated (NC) clay of which initial stress state lies on 

normally consolidated line (NCL), Roscoe and others
143

 (1963) show that it 

yields immediately at the initial stress state and does not generate elastic strain 

during further loading (Figure 1.2). For lightly over-consolidated (LOC) clay, 

Loading curve 

Swelling curve 
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Figure 1.3 shows there is elastic part in its stress-strain curve but this part is 

very minor and the elastic strain is very small. Figure 1.4 shows that when the 

overconsolidation ratio increases, elastic part in the stress-strain curve 

increases but overall, the elastic strain is very minimal compared to plastic 

strain.  

 
 

Figure 1.2: Conventional undrained triaxial compression test on NC soil: (a) p’: q 

effective stress plane; (b) q: εq stress: strain plot. (Wood
179

, 1991, p.131) 

 
 

Figure 1.3: Conventional undrained triaxial compression test on LOC soil: (a) p’: q 

effective stress plane; (b) q: εq stress: strain plot. (Wood
179

, 1991, p. 132) 

 

Figure 1.4: Numerical result of Cam clay model: q: εq stress:strain in drained 

triaxial compression tests with constant mean stress (δp0 = 0) (κ = 0.05, G = 

1500kPa, λ = 0.25, M = 1.2) (overconsolidation ratio p’0/p’i in range 1-5, p0 = 

100kPa (Wood
180

, 2004, p. 160) 

Elastic behavior 
Elastic behavior 

(a) (b) 

(a) (b

) 

Elastic behavior 
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To get more realistic behaviour of soil, models other than linear elastic should 

be used and Mohr-Coulomb (MC) model is one of the most popular choices. 

Terzaghi
164

 (1948) proposed the use of MC model with two parameters: 

cohesion and friction angle, to predict the shear resistance of soil. Several 

experiments were performed to support MC model (Bishop
25

, 1966; Parry
125

, 

1968). MC model is able to give reasonably close results to experimental data 

or field data for geotechnical problems like piles (Gose et al.
72

, 1997; Johnson 

et al.
89

, 2001; Kahyaoglu et al.
91

, 2009), deep excavation (Yong et al.
185

, 1989; 

Smith & Ho
159

, 1992; Bruyn et al.
34

, 1994; Pakbaz & Zolfagharian
124

, 2005; 

Zvanut et al.
188

, 2005), and tunnelling (Lee & Rowe
100

, 1990; Oettl et al.
120

, 

1998). This model is also used to postulate the failure mechanism of 

geotechnical systems (Yong et al.
185

, 1989; Schweiger
152

, 2008). Although 

there are limitations in the model, MC model is popular due to its simplicity 

and the ease in determining its parameters. 

Non-associated flow rule is often used and actually is essential for MC model. 

This implies that the dilation angle which controls the change in soil volume 

during shearing is different from the friction angle. Non-associated MC model 

has been used to re-evaluate failure loads for classic problems like bearing 

capacity of footing (Manoharan & Dasgupta
107, 108

, 1995 1997; Yin et al.
184

, 

2001; Erickson & Drescher
55

, 2002; Loukidis & Salgado
105

, 2009) and slope 

stability (Griffiths & Lane
74

, 1999; Manzari & Nour
110

, 2000; Kumar
97

, 2004; 

Conte et al.
45

, 2010).  For dense sands and overly-consolidated clays which 

tend to increase volume during shearing (Figure 1.5), experimental data show 

that their dilation angles are much smaller than the friction angles (Hettler & 

Vardoulakis
81

, 1984; Vermeer & De Borst
168

, 1984; Bolton
27

, 1986; Houlsby
83

, 

1991; Schanz & Vermeer
149

, 1996). For loose sands which tend to contract 

during shearing (Figure 1.6), associated flow rule would predict an increase of 

volumetric strain, which is completely opposite to that produced by real soil 

behaviour. Besides, Nova
119

 (2004) argued that associated flow rule is not 

suitable for MC due to thermodynamic reasons e.g. no plastic work is 

dissipated during shearing of soil wedge behind retaining walls. To sum up, 

non-associated flow rule should be applied when MC model is used to 

simulate soil behaviour.  
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Figure 1.5: Results of triaxial drained test 

on dense sand (Hettler & Vardoulakis
81

, 

1984) 

 

Figure 1.6: Results of triaxial drained 

tests on saturated Ham River loose 

sand (Bishop
25

, 1966) 

1.1.3 Iterative solvers for nonsymmetric linear systems 

When the non-associated flow rule is applied, the tangent global stiffness 

matrix in nonlinear FE analysis, nested within full Newton-Raphson (NR) 

method, becomes non-symmetric (Owen & Hinton
123

, 1980; Potts & 

Zdravkovic
137

, 1999) since the continuum stress-strain matrix Dep in Eq.(1.3) 

below is nonsymmetric,  
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in which De is the elastic stress-strain matrix,  
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are the gradients to the plastic potential g and the yield surface f, respectively, 

and  T

xzyzxyzyx   is a vector of stress component. 

This leads to a non-symmetric global stiffness matrix Kep with the dimension 

of N×N in finite element analysis and Eq.(1.1) becomes the following non-

symmetric linear system 

FuKep   
(1.4) 

in which with u 
N
 is an unknown vector and F

N
 is the applied force 

vector. 

This nonsymmetric system can be avoided by switching to a modified NR 

method (or initial stress method in engineering term). This method uses the 

same symmetric stiffness matrix for every NR iteration and therefore the 

global stiffness matrix is only computed once. However, such a modified NR 

method has convergence difficulty for strongly non-linear problems (Bathe & 

Cimento
17

, 1980; Bonet & Wood
28

, 2008; Crisfield
47

, 1998; Lewis & 

Schrefler
102

, 1998; Wriggers
181

, 2008; ABAQUS theory manual
1
, 2010) which 

appear frequently in geotechnical engineering (Jardine et al.
85

, 1986; 

Zdravkovic et al.
186

, 2005).  Hence, full NR is still a recommended method for 

nonlinear FE (Bonet & Wood
28

, 2008; Lewis & Schrefler
102

, 1998). Since the 

non-associated flow rule is essential in MC model, solving the sparse 

nonsymmetric linear system is unavoidable.  

As mentioned in Section 1.1.1, recent discussions all have focused on solving 

sparse symmetric linear system using Krylov subspace iterative methods. 

When the linear system is nonsymmetric, the difficulty is not only that the 

storage memory is doubled but more critically, current iterative solvers and 

preconditioners that are developed for symmetric systems are no longer 

optimal or – worst – no longer suitable. The apparent impact of the 
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nonsymmetry on iterative solvers is two matrix-vector multiplications are 

required in each iteration because the symmetry can no longer be exploited. 

This leads to the total iteration time is at least doubled because matrix-vector 

multiplication is the most time-consuming operation. The impact of the 

nonsymmetry on preconditioners is rather less apparent. Preconditioners aim 

to accelerate the convergence of iterative solvers hence aim to modify the 

convergence governing parameters. The convergence of iterative solvers 

depends on the eigenvalue distribution of the coefficient matrix. When the 

coefficient matrix is symmetric, the eigenvalues are all real numbers and the 

convergence is mostly governed by the spectral radius which is the ratio of the 

maximum eigenvalue over the minimum eigenvalue. The available 

preconditioners were designed to minimize this spectral radius. However when 

the coefficient matrix is nonsymmetric, some eigenvalues are complex 

numbers and the spectral radius becomes less meaningful. This point will be 

re-establish in Section 1.1.4 and Section 2.4.1. 

Preconditioned conjugate gradient (PCG) is one of the most effective iterative 

solvers for symmetric positive-definite (SPD) linear system. This method can 

be used to solve the non-symmetric system Kepu = F by solving Kep
T
Kepu = 

Kep
T
F instead (Eisenstat et al.

54
, 1983; Barrett et al.

16
, 1994). However, this 

technique is memory and computational expensive since not only the matrix-

vector multiplication (matvec), Kepv but also the transpose –vector 

multiplication, Kep
T
v is required at each iteration. Moreover, the convergence 

of PCG can be very slow (Eisenstat et al.
54

, 1983; Barrett et al.
16

, 1994; 

Kelley
94

, 1995) since the condition number of the matrix Kep
T
Kep is the square 

of the condition number of Kep (Kelley
94

, 1995) and the eigenvalues of Kep
T
Kep 

can be more scattered than those of Kep (Weiss
173

, 1995). Nevertheless, Freund 

and others
63

 (1992) noted that solving Kep
T
Kepu = Kep

T
F is optimal for skew-

symmetric or shifted skew-symmetric matrices but Kep matrix from FE 

discretization does not belong to these classes. Hence this method is not 

optimal and is not considered in this thesis. Besides, it may be tempted to use 

PCG to solve Kepu = F directly when Kep is a weakly non-symmetric matrix. 

Borja
29

 (1991) applied this technique and achieved convergence on his 

systems. However PCG is strictly developed for SPD linear system and there 
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is no theoretical guarantee that it will converge for weakly non-symmetric 

matrix. 

There are Krylov iterative methods specifically developed to solve 

nonsymmetric linear systems. The popular ones are GMRES (Saad & 

Schultz
145

, 1986), Bi-CG (Fletcher
61

, 1976), CGS (Sonneveld
160

, 1989), QMR 

(Freund & Nachtigal
62

, 1991) and Bi-CGSTAB (Vorst
170

, 1992). Among these, 

GMRES and Bi-CGSTAB are the most prominent methods (Pillis
132

, 1998; 

Sonneveld & Gijzen
162

, 2008; Ferronato
58

, 2012). GMRES is a very efficient 

method which finds the minimum residual norm over the Krylov subspace 

spanned, and hence it offers the “lower bound” solution for all Krylov iterative 

methods (Kelley
94

, 1995). Although GMRES is mathematically elegant, it is 

practically expensive since a new set of orthogonal vectors has to be formed 

and stored at every iteration (Barrett et al.
16

, 1994; Saad
144

, 2003).  Therefore 

GMRES is not suitable for large-scale problems. Currently, Bi-CGSTAB is 

the most practical method to solve large sparse nonsymmetric linear systems.  

Induced Dimension Reduction (IDR(s)) is a recently developed method based 

on IDR theorem and is consider competitive with Bi-CGSTAB on some 

simple test problems done by Sonneveld and Gijzen
162, 70 

(2008, 2010). The 

parameter s is the number of columns of the shadow matrix P
N×s

 and the upper 

bound of dimension reduction (refer to Section 2.1.1for the detail elaboration). 

It is known that in exact arithmetic, IDR(1) and Bi-CGSTAB are 

mathematically equivalent while IDR(s) with s > 1 often converges faster than 

Bi-CGSTAB does.  Bi-CGSTAB has been shown to be related to IDR(s) 

method and actually its algorithm can be expressed in the way similar to 

IDR(s) (Sleijpen et al.
170

, 2010). More importantly, in exact arithmetic, IDR(s) 

can compute the solution of an N × N nonsymmetric linear system in 











s
N

1
1

 

matvec (at the expense of forming and solving an s × s linear 

system in each iteration) in contrast to the 2N matrix-vector multiplications 

required by the Bi-CGSTAB method. Comparisons of IDR(s) versus Bi-

CGSTAB and GMRES have been done on some large-scale nonsymmetric 

linear systems resulted from finite difference discretization of quantum 

mechanics equation (Jing et al.
88

, 2010), of Helmholtz equations (Umetani et 
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al.
167

, 2009; Knibbe et al.
95

, 2011), and boundary element (BE) discretization 

of elastodynamics (Xiao et al.
182

, 2012). These comparisons conclude that: a) 

the convergence behavior of IDR(s) is similar to that of GMRES while the 

former requires less memory; b) with effective preconditioner like incomplete 

LU (ILU), IDR (s  > 1) converges faster than Bi-CGSTAB; and c) more 

importantly, there are cases where IDR converges well while Bi-CGSTAB 

does not converge. From all the above, it is of interest for us to investigate 

whether the IDR(s) method has any substantial competitive advantage over the 

default Bi-CGSTAB solver on large-scale geotechnical problems. 

1.1.4 Preconditioners for nonsymmetric linear systems 

Section 1.1.1 has noted that preconditioning is the crucial technique to keep 

Krylov iterative methods converge in a practical span of time. Preconditioners 

transform the linear system (1.4) into (1.5),  

FuK
~~~

  (1.5) 

 

in which K
~

is the preconditioned Kep, u
~  and F

~
are modified versions u and F 

respectively by the preconditioner M. With M = MLMR, there are three 

different ways to precondition Kep: left preconditioning, right preconditioning 

and left-right preconditioning as presented in Eq.(1.6), (1.7), and (1.8) 

respectively. Right preconditioning, Eq. (1.7), is often preferred because the 

right-hand-side F does not require modification. 

  FMuKM ep

11    (1.6)  

   FMuMKep 1  (1.7) 

   FMuMMKM LRRepL

111    (1.8) 

Solving Eq.(1.5) with Krylov iterative methods involves the matrix-vector 

multiplication vK
~

hence, involves solving Mu = ũ. An efficient preconditioner 

is a balance between the two conflicting criteria: it should, first, approximate 

matrix Kep well enough so that Krylov iterative methods converge in less 

iterations, and second, be simple enough so that Mu = ũ can be solve quickly 

(Freund et al.
63

, 1992). This makes the search for an efficient preconditioner 

challenging especially with the lack of theoretical results (Ferronato
58

, 2012).  
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Section 1.1.1 also noted that current available preconditioners for geotechnical 

problems are developed from the symmetric linear system arising when the 

soil follows a linear elastic model. Preconditioners are also developed for the 

2-by-2 block symmetric linear system from Biot’s consolidation analysis. 

Phoon and co-workers
131, 130

 (2002, 2004) exploited the structure of this block 

matrix and introduced several preconditioners like Generalized Jacobi (GJ), 

Modified Symmetric Successive Over-Relaxation (MSSOR) and block 

preconditioners (Toh et al.
166

, 2004; Chauhary
37

, 2010). While Gambolati and 

co-workers
64, 65, 66

 (2001, 2002, 2003) discussed the use of incomplete LU 

decomposition (ILU) and incomplete Cholesky decomposition (IC) type 

preconditioners. However, the optimal ILU or IC preconditioners depend on 

fill-in parameters while these parameters are not known a priori. Nevertheless, 

it is of interest to apply ILU preconditioners on the nonsymmetric linear 

systems Eq.(1.3). 

The convergence of Krylov iterative methods for symmetric positive definite 

linear systems is primarily governed by the condition number, which is equal 

to the ratio of the maximum eigenvalue λmax over the minimum eigenvalue λmin, 

of the symmetric matrix (Saad
144

, 2003). Hence the objective of 

preconditioning is only to reduce the condition number by making the 

eigenvalues cluster at some points. Whereas the convergence of Krylov 

iterative methods for nonsymmetric linear systems is more complicated and 

governed by quantities that cannot be computed explicitly for general case 

(Freund et al.
63

, 1992; Driscoll et al.
50

, 1998; Saad
144

, 2003). Therefore the 

process of developing an efficient preconditioner for nonsymmetric linear 

systems is rather empirical (Ferronato
58

, 2012). When the soil follows a linear 

elastic model, the symmetric global stiffness matrix is constant, and hence the 

preconditioner can be fixed for a certain problem. But when the soil follows 

the non-associated MC model, the nonsymmetric global stiffness matrix 

changes with the increase of the number of yielded Gauss points and 

preconditioners have to be redesigned to accommodate these changes. 

Discussion of preconditioners for nonsymmetric linear system in geotechnical 

problems is mostly limited to 1-by-1 block matrix from drained analysis. 

Traditional preconditioners like Jacobi, SSOR and ILU are often used 
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(Almeida & Paiva
6
, 2004; Wieners et al.

178
, 2005; Ribeiro & Ferreira

141
, 2007; 

Jeremic & Jie
86

, 2008). Mroueh and Sharour
115

 (1999) did survey on BiCG, 

Bi-CGSTAB and QMR-CGSTAB methods to solve non-symmetric linear 

systems arising from shallow foundation, laterally loaded pile and tunnelling 

process when the soil follows a non-associated MC model.  The study used 

Jacobi and SSOR preconditioners and recommends the use of SSOR as a left 

preconditioner. Payer and Mang
126

 (1997) used CGS, GMRES, and Bi-

CGSTAB method with SSOR and ILU preconditioners for the coupling 3D 

BE-FE analysis of tunnel driving problem. The soil followed a hardening 

capped model developed from Druker-Prager model. Numerical experiments 

showed that GMRES and BiCGSTAB are competitive solvers.  

White and Borja
175

 (2011) have recently applied the block preconditioner 

proposed by Toh et al.
166

(2004) in solving the nonsymmetric 2-by-2 block 

linear system resulted from the study of fluid flow through porous media. The 

nonsymmetry is due to the non-associated Drucker-Prager model of the porous 

media.  Chen and Phoon
41

 (2012) have also given an extended discussion on 

the application of MSSOR preconditioner to Biot’s consolidation problem 

when the soil follows a non-associated MC model. 

1.2 Objective and Scope of the study 

The specific objectives of this study can be summarized as follows. 

1. To compare the efficiency of IDR(s) and Bi-CGSTAB method with 

different preconditioners in solving the drained shallow foundation. 

2. To investigate the efficiency of preconditioners on drained analysis 

and show that the total solution time can be greatly reduced by forming 

the global stiffness matrix implicitly, where Ke is formed only once, 

and the second term (denoted as Δ) is computed and stored separately 

from Ke in each NR iteration. 

3. To investigate the efficiency of block preconditioners on Biot’s 

consolidation analysis. 

4. To evaluate the effectiveness of the proposed preconditioners in the 

context of realistic large-scale soil-structure interaction problems. 
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This thesis only discusses the preconditioner related to the assembled global 

stiffness matrix, often known as “global preconditioner”. There is a class of 

preconditioner call element-by-element (EBE) preconditioner which 

preconditions the matrix-free analysis. This type of preconditioner is more 

suitable to parallel simulation while this thesis focuses on PC simulation hence 

EBE is not discussed in this thesis. Sparse approximate inverse is another type 

of preconditioner which has recently been popular. This preconditioner is 

designed and often used with GMRES method, which is not a very practical 

method for 3D geotechnical problems as discussed in Section 1.1.3, hence is 

also not discussed here. 

1.3 Computer hardware and software 

All the numerical experiments in this report are carried out on a DELL Intel 

Core i7 CPU, 3.4GHz PC with 16GB of RAM running on a Windows 7 

operating systems. 

The FORTRAN source codes for 3D FEM drained problem with Mohr-

Coulomb soil model are based on the 2D version given by Smith and 

Griffiths
158

 (2004).  The FORTRAN source codes for 3D FEM Biot’s 

consolidation problems are based on research work by Chen
39

 (2005) and 

Chauhary
37

 (2010). The FORTRAN codes are programmed with Intel Visual 

FORTRAN Compiler 10.1, Professional Edition. 

1.4 Thesis outline 

This thesis is divided into following chapters. Chapter 2 provides a brief 

overview of iterative methods used in this thesis and review of various 

preconditioners for 1-by-1 block matrix and 2-by-2 block matrix as well as the 

convergence criteria of Krylov iterative methods. Chapter 3 compares the 

performance of recently developed IDR(s) and Bi-CGSTAB method with 

various traditional preconditioners to recommend the most optimal 

preconditioner for the 1-by-1 block nonsymmetric linear system coming from 

the non-associated MC model. Chapter 4 discusses the techniques to exploit 

the structure of the elastoplastic stiffness Kep and scheme to update 

preconditioners for 1-by-1 block matrix with examples from drained analysis 
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and undrained analysis. Chapter 5 compares the performance of existing block 

preconditioners on Biot’s consolidation analysis of which elastoplastic 

stiffness matrix is a 2-by-2 block matrix. The application of these 

preconditioners on practical examples is demonstrated in Chapter 6. Finally, 

Chapter 7 offers some general conclusion with recommendations for the 

further study. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Induced Dimension Reduction (IDR) method 

2.1.1 Overview of IDR(s) method 

IDR(s) method was proposed by Sonneveld and Gijzen
162

 in 2008 based on 

IDR theorem (Wesseling & Sonneveld
174

, 1980). IDR theorem is given in 

Figure 2.1 and its proof can be found in the paper by Sonneveld and Gijzen
162

 

(2008). This theorem defines a sequence of subspaces  N

jjG
0

with two 

properties: (i) these subspaces are nested; and (ii) when j increases, there is 

either a reduction in dimension of Gj or Gj = {0}. 

Let A be any matrix in C
N×N

, let v0 be any nonzero vector in C
N
, and let G0 

be the full Krylov space K
N
(A, v0). Let S denote any (proper) subspace of C

N
 

such that S and G0 do not share a nontrivial invariant subspace of A, and 

define the sequence Gj, j = 1, 2, …, as 

  SGAIG jjj  1  

where the ωj’s are nonzero scalers. Then the following hold: 

(i) Gj  Gj-1 j

(ii) Gj = {0} for some j ≤ N

Figure 2.1: IDR theorem (Sonneveld & Gijzen
162

, 2008) 

For solving a linear system of equations Ax = b with an N × N coefficient 

matrix A, the IDR(s) method works by projecting residuals into a sequence of 

nested subspaces  N

jjG
0
of reducing dimensions, with G0 = span(r0, Ar0, …, 

A
N
r0) being the full dimensional Krylov subspace associated with the initial 

residual r0. According to IDR theorem, these nested subspaces are constructed 

as Gj = (I – wjA)(Gj-1  P

) where P


 is the orthogonal complement of the 

range of a fixed N×s matrix P, often known as shadow space, and wj is a 

nonzero scalar. Sonneveld and Gijzen
162

 (2008) proved that s is the upper 

bound of the dimension reduction of Gj when j increases. This leads to the 

observation that in exact arithmetic, IDR(s) can compute the solution of an N 
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× N nonsymmetric linear system in 









s
N

1
1

 

matvec (at the expense of 

forming and solving an s × s linear system in each iteration). Figure 2.2 

presents the pseudo-code of the preconditioned IDR(s) method following 

Gijzen and Sonneveld
70

 (2010).  

IDR(1) is mathematically equivalent to Bi-CGSTAB of which pseudo-code is 

presented in Figure 2.3 (Sleijpen et al.
156

, 2010). IDR(s) with s > 1 is more 

efficient than Bi-CGSTAB in some examples shown by Sonneveld and 

Gijzen
162, 70

 (2008, 2010) when comparing both matvec count and total 

iteration time. Jing and others
88

 (2010) performed detailed comparisons of 

IDR(s) with s = 1, 2, 4, 6, 8 and other Krylov iterative methods: CGS, Bi-

CGSTAB, full GMRES, restarted GMRES(m) with m = 50, 100, 200. These 

methods were used to solve the nonsymmetric linear system resulted from 

finite difference discretization of a three-body problem in quantum mechanics. 

IDR(4) was shown to require the least time to converge. Umetani et al.
167

 

(2009) and Knibbe et al.
95

 (2011) compared IDR(2), IDR(4) and Bi-CGSTAB 

in solving the nonsymmetric linear system resulted from finite difference 

discretization of the two-dimensional (2D) Helmholtz equation. Multigrid 

preconditioner was used with IDR(4) and Bi-CGSTAB. Both discussions 

found that the time IDR(4) requires to converge is marginally less than that 

required by Bi-CGSTAB. Xiao and other
182

 (2012) compared IDR(s) with s = 

8, 10, 20 with full GMRES and restarted GMRES(50) in solving the 

nonsymmetric linear system resulted from boundary element (BE) 

discretization of elastodynamics problem. The numerical results shown that 

IDR(s) required less storing memory but more iterations to converge than full 

GMRES and restarted GMRES did. Because more iterations were required, 

IDR(s) consumed more time than full GMRES in the tested problems but the 

differences were marginal. This may be because the linear system resulted 

from BEM is dense so it is time consuming to compute one matvec, which 

may not be the case for FE discretization considered in this thesis. 
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Compute    00 Axbr   

P  C
N×s

; gi = ui = 0  C
N
, i = 1,… s; B = I  C

s×s
; ω = 1 

while tolr   

  frPf
T

s

H   ,,, 1   

for k = 1, …,s 

Solve   cfBc
T

s   ,,, 1   

 


s

ki iigr   

 1 M  

 


s

ki iik uu   

kk Aug   

for i = 1,…,k-1 

iik

H

i gp ,   

ikk ggg   

ikk uuu   

end for 

skiBgp kikik

H

iki ,,, ,,,    

kkk ,   

kgrr   

kgxx   

if k + 1 ≤ s 

kii ,1,0   

skikiii ,1,,    

end if 

end for 

rMv 1  

Avt   

Calculation of ω using “maintaining the convergence” strategy 

ttrt HH  

 rtrtH  

if    

   

end if 
trr   

txx   

end while  

Figure 2.2: Preconditioned IDR(s)-biortho with preconditioner M (Gijzen & 

Sonneveld
70

, 2010) 
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Compute    00 Axbr   

Choose    00~ rr   

for maxiti 2,1  
 1

1
~ 

  iT

i rr  

if ρi-1 = 0 method fails 

if i = 1 
   1 ii rp  

else 

  11211   iiiii   
        1

1

1

1

1 







  i

i

i

i

ii prp   

end if 

Solve 
 ippM ˆ  

  pAi ˆ  
 iT

ii r  ~
1  

   i
i

irs  1  

Check norm of s; if small enough: set     pxx i

ii ˆ1   and STOP 

Solve ssM ˆ  

sAt ˆ  
ttst TT

i   
    spxx ii

ii ˆˆ1     
  tsr i

i   

Check convergence; continue if necessary 

For continuation it is necessary that ωi ≠ 0 

end for 

Figure 2.3: Preconditioned BiCGSTAB method with preconditioner M 

(Barrett et al.
16

, 1994) 

2.1.2 Implementation of IDR(s) 

From Figure 2.2, an important input of IDR(s) is the shadow matrix P
N×s

 

containing s shadow vectors. Sonneveld and Gijzen
162

 (2008) recommended 

the use of random matrix with orthorgonalized columns. They noted that using 

matrix P in relation to the problem does not improve the convergence of 

IDR(s) but even worsen its performance. The better choice of P besides 

random matrix has not yet been found as noted by Sonneveld
161

 in 2012. This 

thesis follows this recommendation and employs the random matrix P of 

which entries are random number uniformly distributed from 0 to 1. However, 

the orthogonalization process such as Gram-Schmidt (Saad
144

, 2003, pp. 10-15) 

is time consuming and numerical experiments in this thesis show that with an 

efficient preconditioner, IDR(s) converges well without this extra process. 

Sonneveld and Gijzen
162

 (2008) noticed that a random matrix P with complex 

numbers is a good mitigation when IDR(s) convergence is poor. This option is 



CHAPTER 2  LITERATURE REVIEW 

20 

 

expensive for the problems studied in this thesis where all data are real 

numbers hence is not implemented and the convergence of IDR(s) is 

accelerated by preconditioners, which is the main objective of this thesis. 

Note that the dimension (s) of P certainly affects the convergence of IDR(s). 

As mentioned in Section 2.1.1, in exact arithmetic, IDR(s) converges to the 

exact solution in at most 









s
N

1
1  matvec. Thus IDR(s) is expected to 

converge faster when s increases but at the cost of solving a larger s × s linear 

system in each iteration. Hence, the optimal value of s should compromise 

both the convergence rate and the overhead time. Sonneveld and Gijzen
162, 70

 

(2008, 2010) recommended s = 4 based on their numerical experiments. 

However numerical experiments in this thesis show that s = 6 is more optimal 

for the nonsymmetric linear system arising from the non-associated MC model. 

2.2 Preconditioners for 1-by-1 nonsymmetric block 

matrix 

2.2.1 Nonsymmetric linear systems resulted from drained and 

undrained analysis 

Section 1.1.2 has introduced that this thesis considers the nonsymmetric linear 

system arising from geotechnical problems where the soil following the non-

associated Mohr-Coulomb model. The linear systems due to FE discretization 

in drained and undrained analysis are often handled as a 1-by-1 block matrix, 

in contrast with the 2-by-2 block matrix in Biot’s consolidation discussed in 

Section 2.3. The FE discretization of drained analysis is 

  









element

FuBdVDBuK
V

ep

T

ep  (2.1) 

 

in which V is the elementary volume body, B is the element strain-

displacement matrix, and Dep is the elastoplastic stress-strain matrix given in 

Eq.(1.3).  While the FE discretization of undrained analysis using effective 

stress parameters is 
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element

FuBdVmm
n

K
DBuK

V

Tw
ep

T

ep  (2.2) 

 

in which Kw is the bulk modulus of water, n is the porosity of soil and 

 000111Tm  for 3D analysis. Figure 2.4 plots the sparsity pattern 

of these matrixes. In geotechnical engineering, few discussions are available 

on preconditioners for the nonsymmetric linear systems in Eq.(2.1) and (2.2). 

When preconditioner is required, Jacobi or SSOR or sometimes ILU is used. 

In general discussion about preconditioner, Jacobi, SSOR and ILU are still the 

most popular preconditioners for the 1-by-1 block matrix. 

 
Figure 2.4: Sparsity pattern of 1-by-1 block matrix 

2.2.2 Jacobi and SSOR Preconditioners 

Jacobi preconditioner is the diagonal matrix containing diagonal entries of Kep 

(Eq.(2.3)). This is the cheapest preconditioner because it is easy to form, 

requires less memory and MJu = ũ is easy to solve. 

KJ DM   (2.3) 

 

Jacobi preconditioner performs diagonal scaling of the original matrix which 

is often quite effective in reducing the condition number κ(M
-1

Kep). Jacobi 

preconditioner is the cheapest but also the crudest approximation of the matrix, 

hence possesses the lowest efficiency. Jacobi preconditioner is often resorted 

as a quick and cheap tool to accelerate as well as, hopefully, preserve 

convergence of Krylov iterative methods when solving the nonsymmetric 
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linear systems is not the main but an unavoidable process, or when 

preconditioner is not the main objective of discussion (Jiang  et al.
87

, 1994; 

Sheu et al.
154

, 1999; Almeida & Paiva
6
, 2004; Araujo et al.

7
, 2004; Pontaza & 

Reddy
136

, 2004) 

Jacobi preconditioner is an acceptable approximation when the matrix is 

diagonally dominant. There is a scaling form of Jacobi preconditioner when 

the matrix is not diagonally dominant or the diagonal entries are of different 

scale such as the case of Biot’s consolidation equations. Scaling is introduced 

for this case and called Generalized Jacobi (GJ) preconditioner, which is 

discussed in detailed in Section 2.3.3. 

SSOR preconditioner is a better approximation of Kep than Jacobi 

preconditioner and takes the following form,  

































KKKKKSSOR UDDLDM


111

2

1
1

 (2.4) 

 

in which DK is the diagonal matrix containing diagonal entry of Kep, LK is the 

strictly lower triangular matrix of Kep and UK is the strictly upper triangular 

matrix of Kep and ω is the relaxation parameter which is real a number 

between (0; 2). SSOR is also regarded as an incomplete LU factorization 

(Eisenstat
53

, 1981; Bank & Douglas
15

, 1985; Saad
144

, 2003, pp. 285-287) but it 

is not as efficient as the incomplete LU factorization, ILU (arising from 

Gaussian elimination), discussed in Section 2.2.3. This is because SSOR does 

not approximate Kep as well as ILU: the error matrix Kep – MSSOR is generally 

larger than Kep – MILU.  

Being a better approximation of Kep, SSOR is often more efficient than Jacobi 

preconditioner. SSOR is popular because it is easy and fast to apply and 

consumes little memory when compared with the ILU preconditioner. Chen 

and others
38

 (2004) recommended the use of SSOR for GMRES to solve the 

nonsymmetric linear system from FE discretization of waveguide 

discontinuities with anisotropic dielectric. Stute and others
163

 (2013) recently 

have used SSOR with GMRES and Bi-CGSTAB to demonstrate the 

superiority of Krylov iterative methods over the direct solvers. 
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There is an optimal value of ω with which SSOR works best but this optimal 

value depends on the eigenspectrum of Kep, which is expensive to compute in 

advance (Barrett et al.
16

, 1994). Hence the optimal value of ω is practically 

unknown at the start of the simulation. Payer and Mang
126

 (1997) used SSOR 

as a quick-to-use preconditioner to demonstrate the application of Krylov 

iterative methods in solving the nonsymmetric linear system from 3D FE-BE 

analysis. Their numerical experiments showed that the convergence of Krylov 

iterative methods was rather insensitive to the value of ω in the SSOR 

preconditioner. Bruaset
33

 (1997) also noted that SSOR as a preconditioner is 

not as sensitively affected by the value of ω as SSOR as an iterative method. 

For all the above reasons, this thesis chooses ω = 1 for SSOR preconditioner, 

often known as simple SSOR.  

SSOR is often exploited with Eisenstat’s trick (Eisenstat
53

, 1981) as a left-

right preconditioning technique and denoted as SSOR-LR (Eq.(2.5)) in this 

thesis. Procedure to compute t = vK
~

for SSOR-LR is presented in Eq.(2.6). 

ML = (LK + DK); MR = DK
-1

(UK + DK) 

    KKKKK DUDKDLK
11~ 

  
(2.5) 

f = (UK + DK)
-1

w where w = DKv 

g = DKf + w 

h = (LK + DK)
-1

g 

t = f + h 

(2.6) 

SSOR is sometimes used as a left preconditioner (Mroueh & Shahrouh
115

, 

1999), denoted as SSOR-L in Eq.(2.7). 

ML = (LK + DK)DK
-1

(UK + DK) 

    KDLDUDK KKKKK

11~ 
  (2.7) 

2.2.3 Incomplete factorization preconditioners 

Section 2.2.2 has mentioned that the incomplete LU factorization 

preconditioner, ILU, arising from Gaussian elimination is more efficient than 

SSOR because the error matrix Kep – MILU is generally smaller than Kep – 

MSSOR. ILU is considered the most popular class of preconditioners (Saad & 

Vorst
146

, 2000; Benzi
18

, 2002; Vorst
171

, 2002). But ILU is sometimes 

impractical because the preconditioner can be expensive to construct: it 

required more forming time and more storing memory than Jacobi and SSOR 
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preconditioner (Fischer et al.
60

, 1996; Payer & Mang
126

, 1997; Chen et al.
38

, 

2004). However, storing memory has become a less critical problem with the 

memory capacity of modern computers. Though ILU indeed may require 

substantially more time to form than Jacobi and SSOR, the total iteration time 

(including the time to form ILU and the iteration time of Krylov iterative 

methods) is quite often less than that required by Jacobi and SSOR due to the 

reduction in the number of iterations needed for convergence. ILU has been 

successfully applied in large-scale nonsymmetric linear systems resulted from 

popular problems such as Navier-Stokes equations, in which ILU is often 

involved in block preconditioners discussed later in Section 2.3.3 (Dahl & 

Wille
48

, 1992; Persson & Peraire
128

, 2008; Rehman et al.
140

, 2008; Diosady & 

Darmofal
49

, 2009), Helmholtz equation (Schneider & Marburg
150

, 2003; 

Kechroud et al.
92

, 2004; Osei-Kuffuor & Saad
121

, 2010), and BE discretization 

(Fata & Gray
57

, 2010; Kacimi & Laghrouche
90

, 2011). 

The lower and upper triangular matrices computed from Gaussian elimination 

of a sparse matrix are often less sparse than the original matrix because of fill-

ins. ILU preconditioner is formed by dropping off some or all of these fill-ins 

based on some drop-off criteria. Figure 2.5 shows the pseudo-code of this 

process. There are two dropping criteria often imposed on ILU factorization: 

dropping off by the level of fill or when the number of fill-ins exceeds the 

tolerance value, and dropping off when the absolute numerical values of fill-

ins are smaller than the tolerance value (Saad
169

, 2003, pp. 288-320). 
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for i = 1,…, n 

w = ai*  

for k = 1,…, i – 1 and when wk ≠ 0 

wk = wk/akk 

Apply a dropping rule to wk 

if wk ≠ 0 then 

w = w – wkuk*  

end if 

end for 

Apply a dropping rule to row w 

li,j = wj for j = 1,…, i – 1 

ui,j = wj for j = i,…, n 

w = 0 

end for 

Figure 2.5: Pseudo-code for ILUT (Saad
144

, 2003, pp. 307) 

ILU0 is a popular special case of ILU for which the first dropping criterion is 

imposed: all the fill-ins are dropped off and ILU0 contains the same number of 

nonzero entries as the original matrix. Hence the storing memory of ILU0 is 

quantified before the factorization, unlike the ILUT discussed in the following 

paragraph. Benzi
18

 (2002) and Chow and Saad
43

 (1997) noted that ILU0 is 

effective when the matrix is M-matrix or diagonally dominant matrix. 

Nevertheless, ILU0 has found its use in other classes of matrices because it is 

simple and inexpensive to implement (Lan & Liang
98

, 1997; Dutto & 

Habashi
52

, 1999; Malas & Gurel
106

, 2007; Diosady & Darmofal
49

, 2009). 

Saad
169

 (2003) proposed the ILUT(ρ, τ) preconditioner based on the dual 

threshold strategy at each step of the factorization: fill-ins are dropped off 

when their absolute values are smaller than τ times the 2-norm of the current 

row, and at most ρ largest fill-ins are kept in the current row. Both of the 

dropping criteria mentioned above are used to form this ILU. Benzi
18

 (2002) 

commented that ILUT(ρ, τ) is an powerful preconditioner. The storing 

memory for ILUT(ρ, τ) is limited by the upper bound of fill-ins in each row, ρ 

but is still undetermined before the factorization. The main practical drawback 

of ILUT(ρ, τ) is the optimal values of ρ and τ are priorly unknown and are 

problem dependent. Saad
169

 (2003) and Benzi
18

 (2002) observed that ILUT(ρ, 

τ) worked well with the choice of small τ (from 10
-5

 to 10
-2

) and/or large ρ 

(from 20). ILUT(ρ, τ) is more expensive than ILU0 but is expected to be more 

efficient than ILU0 because fill-ins are allows hence it approximates the 

original matrix better and the error matrix is smaller. In comparison with ILU0, 



CHAPTER 2  LITERATURE REVIEW 

26 

 

ILUT(ρ, τ) often requires more time to factorize and the preconditioning step 

Mu = ũ requires more time to solve as well; however the reduction in matvec 

count due to ILUT(ρ, τ) (with the proper choice of ρ and τ!) can help to reduce 

the total iteration time. Benzi
18

 (2002) demonstrated through the convection-

diffusion problem that the total iteration time can be reduced by half when 

ILUT(ρ, τ) is used. Gambolati and co-workers
64, 65, 66

 (2001, 2002, 2003) have 

successfully used ILUT(ρ, τ) as preconditioner for the nonsymmetric form of 

FE discretization of Biot’s consolidation equations. This is elaborated more in 

Section 2.3.2. 

However, ILUT is not as time efficient as ILU0 for the nonsymmetric linear 

system arising from the non-associated MC model for the examples examined 

in this thesis (detailed discussion can be found in Section 3.5). Chauhary
161

 

(2010) found that ILUT did not perform well for the symmetric linear system 

arising from FE discretization when soil follows a linear elastic model. The 

reduction in iteration time cannot make up for the time spent to form ILUT(ρ, 

τ)  and to solve the preconditioning step Mu = ũ.  ILU0 has been found to be 

more reliable and time efficient than ILUT(ρ, τ) in several other problems 

such as coupled structural-acoustic problems (Lin & Grosh
103

, 2003), DPN 

acceleration equation in transport scheme (Santandrea & Sanchez
148

,2005), 

wave scattering phenomena in computational electromagnetics (Malas & 

Gurel
106

, 2007). 

In spite of the popularity of ILU preconditioner, researchers in the scientific 

computing community often caution that ILU should not be used as a black-

box especially for nonsymmetric matrices (Chow & Saad
43

, 1997; Benzi
18

, 

2002). Chow and Saad
43

 (1997) were aware that ILU could be unstable due to 

the four main reasons: inaccuracy due to very small pivots, unstable triangular 

solves, inaccuracy due to dropping and zero pivots.  

Table 2.1 Statistics that can be used to evaluate an incomplete factorization 

(Chow & Saad
43

, 1997) 
Statistic Meaning 

condest ‖(L̅U̅)-1
e‖∞, e = (1,1,…,1)

T
. 

1/pivot Size of reciprocal of the smallest pivot 

max(L̅  U̅) Size of the largest element in  ̅ and  ̅ factors 

 



CHAPTER 2  LITERATURE REVIEW 

27 

 

With e = (1,1,…,1)
T 

Solve L̅U̅u = e 

condest = max(ui),  i = 1,…N 

Figure 2.6: Pseudo-code to compute condest of ILU preconditioner 

They recommended three statistics: condest, 1/pivot and max( L̅ U̅ ) 

presented in Table 2.1 to evaluate an ILU preconditioner. When the values of 

these three statistics are very large, on the order of 10
15

 recommended by 

Chow and Saad
43

 (1997), ILU is considered unstable and can fail if the values 

are extremely large. If condest and 1/pivot are about the same size, the 

instability of ILU comes from very small pivot. If condest is much larger than 

1/pivot, the instability comes from the triangular solves. Large max(L̅  U̅) 

indicates the inaccurate factorization.  

Chow and Saad
43

 (1997) were aware that there were cases when these values 

are small but ILU still fail and they commented that the failure may come 

from the inaccuracy due to dropping. When ILU does not help or even fail the 

iteration, Benzi and others
20

 (1999) recommended ordering the original matrix 

with reverse Cuthill-McKee (RCM) before performing ILU factorization 

especially when the original matrix is strongly nonsymmetric. 

2.3 Preconditioners for 2-by-2 nonsymmetric block 

matrix 

2.3.1 Nonsymmetric linear systems resulted from Biot’s 

consolidation equations 

The 2-by-2 block global stiffness matrix in this thesis comes from FE 

discretization Biot’s consolidation equations. The increment form of this 

discretization with fully implicit Crank-Nicolson time stepping (θ =1) is given 

in Eq.(2.8) (Smith & Griffith
158

, 2004), 
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in which Kep 
nd×nd

 is the soil stiffness matrix and is nonsymmetric when 

the non-associated MC model is applied, C 
np×np

 is the fluid stiffness 



CHAPTER 2  LITERATURE REVIEW 

28 

 

matrix (symmetric positive semi-definite) and B 
nd×np

 is the displacement-

pore pressure coupling matrix. These submatrices are given in Eq. (2.9), (2.10) 

and (2.11) respectively. In these equations, V is the volume of the considered 

body; Bu is the soil element strain-displacement matrix; Np is the fluid element 

shape function vector; Bp is the gradient matrix of Np; [k] is the permeability 

matrix; and γw is the unit weight of pore water taken as 10 kN/m
3
 in this thesis. 

The 2-by2 block matrix in Eq.(2.8) is nonsymmetric solely because Kep is 

nonsymmetric. Figure 2.7 plots the sparsity pattern of this 2-by-2 block matrix. 
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From Eq. (2.12), the submatrix C is a function of time step Δt and matrix H, 

the 2-by-2 block global stiffness matrix in Eq.(2.8) can be written in the 

following form (Toh & Phoon
165

, 2007)  
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When the soil follows the linear elastic model, Eq.(2.8) is symmetric but 

Eq.(2.12) is nonsymmetric. Toh and Phoon
165

 (2007) compared these two 

forms and concluded that the symmetric form was preferable because the 

symmetry can be taken advantage of. However when the soil follows the non-

associated MC model, both forms are nonsymmetric hence it is interesting to 

review this conclusion in this new context. 
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Figure 2.7: Sparsity pattern of 2-by-2 block matrix 

This 2-by-2 block matrix can be treated as a 1-by-1 block matrix and the 

preconditioners in Section 2.2 are applicable for this nonsymmetric linear 

system, especially the ILU preconditioner. Block preconditioners are more 

popular for this 2-by-2 block matrix because they can exploit the block 

structure and the spectral properties of the block matrix. The 2-by-2 block 

matrix arising from Biot’s consolidation equations belongs to the class of 

saddle point problems hence preconditioners developed for this class are also 

suitable to this special case.  

2.3.2 ILU and MSSOR preconditioner 

As noted in Section 2.3.1, the preconditioners discussed in Section 2.2 are still 

applicable when the 2-by-2 block matrix in Eq.(2.8) is considered as a 1-by-1 

block matrix. When the soil follows the linear elastic model, ILU and MSSOR 

are popular preconditioners for Biot’s consolidation analysis. Chen
39

 (2005) 

proposed the Modified SSOR (MSSOR) preconditioner in Eq.(2.13) which is 

derived from the standard SSOR preconditioner by using the Generalized 

Jacobi (GJ) preconditioner, which will be discussed in detail in Section 2.3.3, 

instead of Jacobi preconditioner as SSOR in Eq.(2.4).  
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in which LA is the strictly lower triangular matrix of A, UA is the strictly upper 

triangular matrix of A, and D̂ = MGJ. Chen and Phoon
41

 have recently applied 
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this MSSOR to Eq.(2.8) when the soil followed the non-associated MC model. 

They compared the efficiency in solving this nonsymmetric linear system by 

QMR against solving the equivalent symmetrized linear system by SQMR and 

found that the latter was preferred because the symmetry could be exploited.  

Chauhary
37

 (2010) performed comparison of ILU0 and MSSOR when the soil 

follows a linear elastic model. He found that MSSOR is more robust than 

ILU0 because SQMR with MSSOR converged over a wide range of parameter 

values while SQMR with ILU0 did not. He noted that nodal ordering 

significantly affects the performance of ILU0. With a suitable nodal ordering 

of the global stiffness matrix, SQMR with ILU0 converges faster than SQMR 

with MSSOR. 

Gambolati and co-workers
64, 65, 66

 (2001, 2002, 2003) have long been 

interested in the use of ILUT(ρ, τ) in solving the nonsymmetric form Eq.(2.12) 

of Biot’s consolidation equation. They concluded that ILUT(ρ, τ) could be 

very efficient if the proper values of ρ and τ were used. However they did not 

recommend the range of proper values of ρ and τ for Biot’s consolidation 

problem, which is justifiable because ρ and τ are significantly problem 

dependent as noted in Section 2.2.3. 

2.3.3 Block preconditioners 

Similar to preconditioners for 1-by-1 block matrices, block preconditioners 

should approximate the 2-by-2 block matrices as close as possible. Block 

preconditioners for Eq.(2.8) are often derived from the following block 

factorization including the lower triangular block, diagonal block and upper 

triangular block, 
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in which S is the Schur complement for A. Block preconditioners are often 

categorized into three types: diagonal block, triangular block and constrained 

block preconditioner. The efficiency of block preconditioners based on this 
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block factorization relies on how close Kep and S are approximated. Axelsson 

and co-workers
12, 13

 (2010, 2012) have analysed theoretically the spectral 

properties of the preconditioned system to determine the efficiency of block 

preconditioners. However their recommended parameters are still too 

expensive to compute before the iteration process especially when large-scale 

linear systems are considered. Numerical experiments are still required to 

determine the optimal block preconditioners for each problem. 

2.3.3.1 Diagonal block preconditioner 

Diagonal block preconditioner approximates the diagonal block in the 

factorization of Eq.(2.14). As mentioned in section 2.2, diagonal 

preconditioner, Jacobi, is the cheapest preconditioner and scaling is often 

introduced when the diagonal entries are of significantly different scales. This 

is the case for Biot’s consolidation equations in Eq.(2.8) where Kep is a 

function of Young’s modulus E’, having order as large as 10
6
 and C is a 

function of permeability k, having order as small as 10
-10

. Phoon and co-

workers
131

 (2002) proposed the following scaling form of Jacobi 

preconditioner called Generalized Jacobi (GJ),  
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in which Ŝ = C + B
T
diag(Kep)

-1
B, a cheap approximation of S, and α is a real 

scaling factor. Toh and others
171

 (2004) commented that this preconditioner 

was memory efficient but did not always possess good convergence time. MGJ 

is the special form of the diagonal block preconditioner in Eq.(2.17),  
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with K̂  is an approximation of Kep, α is a real scalar and has the same 

meaning as in GJ, and Ŝ = C + B
T

K̂
-1

B is an approximation of S. Figure 2.8 

shows the pseudo-code to compute the preconditioning step Md
-1

[u;v]. 
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Compute uKw 1ˆ   

Compute vSz 1ˆ   

Set  zwvuM d ;];[1   

Figure 2.8: Pseudo-code to compute preconditioning step Md
-1

[u;v] (Toh et 

al.
166

, 2004) 

Phoon and co-workers
131

 (2002) have proved the following theorem. They 

also showed numerically that α = –4 is optimal for many cases and 

recommended that α should be a negative scalar in general. Although the 

symmetric 2-by-2 block matrix A was used in their discussion, the theorem 

and the proof does not require the submatrix block (1,1) in A to be symmetric. 

Hence when block (1, 1) is nonsymmetric, the recommendations from Phoon 

et al.
 131

 (2002) on the range of α are still applicable. This thesis first uses α = 

–4 in the numerical experiments to compare the efficiency of several 

approximations of Kep and S. 

Theorem Let 
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where  CSO 1  denotes a matrix whose norm is of order CS 1 . Thus if A is 

non-singular (hence W is non-singular), then W has three distinct clusters of 

eigenvalues at 1 and   2411  , each with a diameter of the order 

CS 1 . In particular, when α = -4, W only has two distinct clusters of 

eigenvalues at ½ and 1. 

Proof: From Phoon et al.
131

 (2002), 
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Thus 

 CSOWWWW 1222 )(
1

)( 


 (2.21) 

2.3.3.2 Block constrained preconditioners 

Block constrained preconditioners in Eq.(2.22) are better approximations of 

Eq.(2.14) than the block diagonal preconditioners in Section 2.3.3.1 and is 

expected to be more efficient than block diagonal preconditioners. However 

because this preconditioner is more complicated than block diagonal 

preconditioners, more time is expected to spent on forming this preconditioner 

as well as on the preconditioning step. Figure 2.9 shows the pseudo-code to 

compute the preconditioning step Mc
-1

[u;v].  













CB

BK
M

TC

ˆ
 (2.22) 




















111

111111
1

ˆˆˆ

ˆˆˆˆˆˆ

SKBS

SBKKBSBKK
M

T

T

C  (2.23) 

 

This class of preconditioners is called ‘constrained’ because they have the 

same block structure as the native coefficient matrix, but one or more blocks 

are approximated or ‘constrained’.  

Compute uKw 1ˆ   

Compute  vwBSz T  1ˆ  

Compute   zBzuKvuM c ;ˆ];[ 11  
 

Figure 2.9: Pseudo-code to compute preconditioning step Mc
-1

[u;v] (Toh et 

al.
166

, 2004) 

When soil follows a linear elastic model and Eq.(2.8) is symmetric, K̂  is 

often taken as Incomplete Cholesky (IC) factorization with different levels of 
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fill-ins and Ŝ = C + B
T

K̂
-1

B is also factorized into an IC form. Toh and 

others
171

 (2004) showed that the finest approximation of S, was not always 

useful because the computational time was mostly spent to form that 

approximation. Bergamaschi and others
22, 23, 59 

(2007, 2008, Ferronato et al., 

2010) concluded that block constrained preconditioners were better than ILU-

based preconditioner especially when the time step Δt was small. However, 

the efficiency of the IC factorization relies much on the level of fill-ins and 

this parameter is often determined through trial-and error. 

When Eq.(2.8) is nonsymmetric, Botchev and Golub
30

 (2006) recommended 

the use of SSOR (Eq.(2.4)) for K̂ and discussed theoretically the optimal 

value of ω. They applied this preconditioner on the Navier-Stokes equation 

and noted that the preconditioner was still robust when ω was not optimal. 

This thesis implements this preconditioner for the square footing problem in 

Section 5.3.1.  

2.3.3.3 Block triangular preconditioners 

When Eq.(2.8) is symmetric, Toh and others
171

 (2004) studied the block 

triangular preconditioners taking the following forms:  
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Figure 2.10 shows the pseudo-code to compute preconditioning step Mt-L
-1

[u;v] 

and Mt-R
-1

[u;v]. Their numerical experiments showed that this preconditioner 

did not offer better convergence time than diagonal block and constrained 

block preconditioner. 
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Compute uKw 1ˆ   

Compute  vwBSz T  1ˆ  

Compute  zwvuM Lt ;];[1 

  

Compute uSw 1ˆ   

Compute  BwuKz  1ˆ  

Compute  wzvuM Rt ;];[1 

  

Figure 2.10: Pseudo-code to compute preconditioning step Mt-L
-1

[u;v] and Mt-R
-

1
[u;v] (Toh et al.

166
, 2004)  

2.4 Convergence criteria  

2.4.1 Effect of spectral properties 

The convergence properties of Krylov iterative methods depend on spectral 

properties of the coefficient matrix of the linear system (Freund et al.
63

, 1992; 

Barrett et al.
16

, 1994; Saad & Vorst
146

, 2000; Golub & Vorst
71

, 2001; Saad
144

, 

2003). Section 1.1.1 has introduced that Krylov iterative methods converge to 

the exact solution in at most N iterations in exact arithmetic but they normally 

converge earlier than that although there are cases of breakdown and 

divergence due to rounding errors. If Kep is diagonalizable so that  

1 XXKep  (2.27) 

 

in which X is a non-singular matrix containing eigenvectors of Kep and Λ = 

diag(λ1,…, λn) is a diagonal matrix containing corresponding eigenvalues of 

Kep, the residual r
(i)

 at the i iteration step has the following upper bound 

   i
ep

i uKFr   (2.28) 

     0

,,1

1 max rpXXr ki
nk

i 


  (2.29) 

 

in which pi(λk) is a polynomial of degree at most i with p(0) = 1. 

For GMRES, a special case of Krylov iterative methods, which minimizes the 

2-norm of the residual, the bound in Eq.(2.29) is further narrowed as 

     0

,,1

1 maxmin rpXXr ki
nkPp

i

ii




  (2.30) 

  

Eq.(2.29) and (2.30) show that the convergence is mainly governed by the 

condition number of X matrix and the polynomial of the eigenvalues of Kep. 

The polynomial of the eigenvalues is not easy to determine explicitly so the 

convergence criteria can only be observed qualitatively through the 
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distribution of eigenvalues. Graphically speaking, the smaller the ellipse (with 

suitable normalization) circumscribes all the eigenvalues is, the faster Krylov 

iterative methods converge. This ellipse is demonstrated in Figure 2.11. 

 
Figure 2.11: Ellipses containing the spectrum of A. (A): real eigenvalues; (B) 

Purely imaginary eigenvalues (Saad
144

, 2003, pp. 195) 

Eq.(2.29) and (2.30) are inequality equations and indicate the maximum bound. 

The maximum bound is the worst approximation of residual at step i. The real 

residual r
(i)

 can be much smaller from the maximum bound because the 

condition number of matrix X can be large for highly non-normal matrices. It 

is a good situation when r
(i)

 is much smaller than the maximum bound because 

the Krylov iterative methods will converge faster than expected. But on the 

other hand, it shows that the bound is too crude to predict the convergence of 

the methods. However, for the general linear system, Eq.(2.29) is the best 

convergence criterion for Krylov iterative methods in the current state of the 

art. This criterion applies to both Bi-CGSTAB and IDR(s) method. 

2.4.2 Stopping criteria and tolerance of error 

Section 1.1.1 has mentioned the advantage of iterative solvers is that they can 

be stopped whenever the error satisfies a desired tolerance. The exact error is 

the difference of exact solution and iterative solution (Eq.(2.31)) and is 

impractical to compute explicitly hence residual r
(i)

 in Eq.(2.28) is used in 

most of the cases (Barrett et al.
16

, 1994).  
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   ii xxe   (2.31) 

 

Relative residual related to 2-norm of the residual vector in Eq. (2.32) is often 

used in numerical experiments with i_tol is the user-defined tolerance. This 

relative residual is used in this thesis. 

 

toli
r

r i
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2

)0(

2   (2.32) 

 

This i_tol is problem dependent: the results can be unreliable if i_tol is too 

large, but a too stringent i_tol can require much resource for little 

improvement in the results. Section 1.1.1 has argued that i_tol is generally 

large for geotechnical problem because there are uncertainties in soil 

properties and soil models. The tolerance i_tol = 10
-6

, which is used 

throughout this thesis, is often considered too stringent for geotechnical 

problem. However, the definition of “relaxed tolerance” and “stringent 

tolerance” is rather subjective and in this thesis, it mostly depends in the FE 

discretization. This point is elaborated in Section 3.6. The influence of FE 

discretization has been demonstrated in the discussion of Arioli and others
9
 

(2005). Figure 2.12 extracts the numerical results of Arioli et al.
9
 (2005).  
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Figure 2.12: Comparison of stopping criteria when GMRES is used to solve 

the linear system from FE discretization of 2D advection-diffusion problem. ν 

is the diffusion parameter. (Arioli et al.
9
, 2005) 

This figure shows the comparison of stopping criteria when GMRES is used to 

solve the linear system from FE discretization of 2D advection-diffusion 

problem. The exact solution of this problem was known hence the exact 

relative error of FE could be determined and indicated in Figure 2.12. This 

error reaches a stable level while GMRES iteration count increases and the 

relative residual error of GMRES reduces. Arioli et al.
9
 (2005) recommended 

that GMRES should be stopped at the start of this stable level because the 

solution could not be improved. This recommendation is useful but 

impractical since the finite element error, which is unknown at the beginning 

of the analysis, is required as an input. From Figure 2.12, it can be seen that if 

FE error is smaller (i.e. the mesh is denser), the tolerance of relative residual 

of iterative solvers should be smaller to obtain meaningful and reliable results. 

Table 2.2 presents the i_tol values for various numerical experiments in 

literatures. Small i_tol is often used when the discussion on numerical 

methods while larger i_tol is used for practical problems. i_tol = 10
-6

 is quite 

popularly chosen regardless of problems. 
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Table 2.2: Tolerance values for various iterative methods used in literatures 

Author(s) 
Max 

problem size 

Tolerance 

value i_tol 
Problem description 

Almeida & Paiva
6
 

(2004) 
4431 10

-9
 

Layered soil-

supperstructure interaction 

Soil follows linear elastic 

model 

Araujo et al.
8
 (2006) 10,383 10

-5
 

Rigid foundation (BE 

analysis) 

Soil follows linear elastic 

model  

Benzi & Golub
19

 (2004) 1,362,480 10
-10

 Navier-Stokes equations 

Bergamaschi et al.
21

 

(2012) 
145,114 10

-4
 

Two phase flow equations 

in porous media 

Birken et al.
24

 (2013) 2,912,000 10
-3

 Navier-Stokes equations 

Chaillat et al.
35

 (2009) 215,058 10
-3

 

Seismic wave propagation 

and amplification in 

complex geological 

structures 

Chen & Phoon
41

 (2012) 107,180 10
-3

 

Shallow foundation and 

pile raft system 

Soil follows non-

associated MC model 

Hartmann et al.
76

 (2009) 100,520 10
-6

 

3D plate with hole 

Material follows a 

viscoplasticity model 

Kechroud et al.
92

 (2004) 113,060 10
-8

 Helmholtz equations 

Lin & Grosh
103

 (2003) 25,012 10
-8

 

3D high frequency 

response of fluid-loaded 

structures 

Mroueh & Shahrour
115

 

(1999) 
39,526 10

-5
 

Shallow foundation and 

laterally loaded pile 

Soil follows non-

associated MC model 

Osei-Kuffuor & Saad
121

 

(2010) 
29,241 10

-8
 Helmholtz equations 

Rehman et al.
140

 (2008) 47,468 10
-6

 Navier-Stokes equations 

White & Borja
175

 (2011) 
455.3 

million 
10

-8
 

Fully coupled flow and 

Geomechanics 

Soil follows non-

associated MC model 

2.5 Summary 

This chapter review the characteristic of IDR(s), the preconditioners for 1-by-

1 block matrix coming from drained/undrained analysis, 2-by-2 block matrix 

coming from Biot’s consolidation analysis. IDR(s) is a promising Krylov 

iterative solver for nonsymmetric linear systems and will be used in this thesis. 

The discussed preconditioners will be implemented with IDR(s) to inspect 

their performance. 
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CHAPTER 3 ITERATIVE SOLVERS FOR 

NONSYMMETRIC LINEAR SYSTEMS 

3.1 Introduction 

This chapter performs the comparison between IDR(s) and Bi-CGSTAB 

method. Matrix vector multiplication (matvec) and total iteration time (time 

spent by the Krylov iterative methods plus overhead time required to form 

preconditioners) are used as comparison indicators. Matvec pertains to the 

theoretical efficiency of the Krylov iterative methods and preconditioners 

while total iteration time pertains to the practical efficiency. The overall 

objective of this thesis is to optimize the solution time of the nonsymmetric 

linear system hence the practical efficiency is the most concerned goal. 

As mentioned in Section 1.1.3 and Section 2.1.1, IDR(1) is mathematically 

equivalent to Bi-CGSTAB and the efficiency of IDR(s) improves when s 

increases but up to certain limit value. Numerical experiments in this section 

aim at the following four objectives: first, IDR(1) and Bi-CGSTAB are 

compared to prove that they are more or less equivalent in the presence of 

rounding errors; second, various values of s are used to find the optimal value; 

third, IDR(s) with optimal value of s is compared with Bi-CGSTAB to show 

that IDR(s) is more efficient than Bi-CGSTAB in term of matvec and total 

iteration time. Jacobi and ILU0 are used as right preconditioners. SSOR is 

used as left-right preconditioner and left preconditioner respectively denoted 

as SSOR-S and SSOR-L. 

3.2 Problem description and theoretical background 

All the numerical experiments in this chapter are performed with the plane 

strain strip footing example. Drained analysis is considered. Figure 3.1a shows 

the 3D mesh of the strip footing subjected to uniform vertical pressure, q. The 

base of the mesh is fixed in all directions. Side faces are fixed in transverse 

direction and free in in-plane directions. Top surface is free in all directions. 

The mesh spans 10 meters in X- and Z-directions, 1 meter in Y-direction. 

Three cases of soil profile are considered: soil profile 1 is a homogeneous stiff 
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clay layer; soil profile 2 is a homogeneous dense sand layer; and soil profile 3 

is a heterogenous soil layer consisting of alternate dense sand and stiff clay as 

shown in Figure 3.1b. The soil is assumed to be weightless and to follow the 

non-associated Mohr-Coulomb model with the properties in Table 3.1. 

 

 
(a) (b) 

Figure 3.1: (a) 3D FE mesh of strip footing; (b) Soil profile 3: Heterogenous 

soil consisting of alternate dense sand and stiff clay 

Table 3.1: Parameters of Mohr-Coulomb yield criterion 

 

 

Young’s 

modulus, 

E’ (MPa) 

Poisson’s 

ratio, ν’  

Cohesion, 

c’ (kPa) 

Friction 

angle, ϕ’ 

(degree) 

Dilation 

angle, ψ 

(degree) 

Stiff clay 60 0.3 20 20 0 

Dense sand 105 0.3 1 30 5 

 

Ultimate bearing capacity of the strip footing resting on the homogeneous soil 

profile 1 and 2 can be estimated with Terzaghi’s formula as Eq. (3.1), 

qcf DNcNBNq   
2

1
 (3.1) 

 

in which γ is the unit weight of soil, B is the width of the shallow foundation,  

c is the cohesion, D is the embedment depth, Nγ, Nc and Nq are bearing 

capacity factors and are function of the friction angle ϕ. In this chapter, the 

soil is assumed weightless and the strip footing rests on the ground surface so 

the first and third term in Eq.(3.1) are zero and Nc is the main governing 

parameter. Nc is calculated by Eq.(3.2) and (3.3).  The weightless soil is used 

 

X 

Y 

Z 

10m 

10m 

1m 
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in this section so that the applied load can be increased closed to the 

theoretical failure load predicted by Eq.(3.1) and so that a wide range of 

physical behaviour of the problem can be observed. 

  cot1 qc NN  (3.2) 

 245tan2tan   o

q eN  (3.3) 

 

The predicted failure load of soil profile 1 and 2 and the maximum applied 

load for each soil profile are reported in Table 3.2. It is worth to note that 

Eq.(3.1) does not take into account the non-associated flow rule, which is 

considered in this whole thesis, hence the predicted values are only used for 

reference. 

Table 3.2: Ultimate bearing capacity of the strip footing and square footing on 

the homogenous soil layer and the maximum applied pressure used in 

numerical experiments 
 

 
Nq Nc 

qf-strip  = c’Nc 

(kPa) 
qmax-strip (kPa) 

Soil profile 1 6.4 14.83 296.69 280 (= 94%qf-strip) 

Soil profile 2 18.40 30.14 30.14 27 (= 90%qf-strip) 

Soil profile 3 – – – 40 

 

It is known there is numerical difficulty to compute collapse load using FE 

analysis when the friction angle of the MC model is high (Vermeer & 

Langen
169

, 1989; Manoharan & Dasgupta
109

, 1997). Besides, this thesis 

encounters a numerical difficulty caused by the fact that many Gauss points 

are forced to lie on the apex of the MC surface (refer to the return mapping 

procedure in A.2), which is spurious and can be slightly mitigated by 

increasing the number of load steps. This numerical difficulty was also 

observed by Clausen and Krabbenhoft
44

 (2008) when they studied 2D meshes 

of footing and bi-axial test problem. The author is not clear if these two 

numerical difficulties are related or caused by the same reason. For dense sand 

with friction angle of 30 degree, although increasing the number of load steps 

helps to load the system close to the theoretical failure load, the number of 

load steps required grows larger when the mesh is denser (there are more 

Gauss points hence there are more chance for Gauss points to be returned to 

the apex).  Because the objective of this thesis is to study the performance of 
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preconditioners rather than to address numerical limitation of the MC model, 

the above difficulties are circumvented by applying the following expedien 

strategies. The dense sand systems are only loaded to certain percentage of the 

ultimate failure load and when the mesh is denser, smaller value of load is 

used. 

3.3 Computational procedure 

The nonlinear system resulting from FE analysis is solved by the full NR 

method. In each NR iteration, the linear system is solved by Krylov iterative 

methods. IDR(s) and Bi-CGSTAB are used in this thesis. IDR(s) and Bi-

CGSTAB are stopped when the relative residual norm or the number of 

matrix-vector multiplications (matvec) satisfies Eq.(3.4),  

     10

5000)2(or 

_)1(    6

20

2

)(







i

toli
r

r i

 (3.4) 

with r
(i)

 = Kepu
(i)

 – F and r0 = F.  

The first stopping criterion is to ensure the results are within the tolerable 

accuracy and the second is to ensure the iteration process is within a practical 

length of time. The first stopping criterion is naturally indispensable while the 

second is used in this thesis for the practical purpose: to prevent the iterative 

solvers from running “forever” in cases of slow convergence or no 

convergence of the iteration process” 

Besides, the second criterion also effectively put a limit on the total iteration 

time. With the presence of preconditioner M, the matrix-vector multiplication 

is performed as followings, 

Compute vAMu 1  

(1) Solve vMw   

(2) Compute Awu   

Figure 3.2: Pseudo-code to compute matrix-vector multiplication with a 

preconditioned matrix 

From Figure 3.2, the time spent in one matvec is the sum of the time spent in 

step (1) and (2). The time spent in step (2) depends on the size of the matrix 

and in step (1) depends on both the size of the matrix and the preconditioner M. 



CHAPTER 3  ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR 

SYSTEMS 

44 

 

So for a certain matrix A and preconditioner M, the time spent in one matvec is 

ideally a predetermined number only depending on the computer configuration. 

Matrix-vector multiplication is the most time- consuming operation in one 

iteration hence limiting the number of matvec is limiting the total iteration 

time and this amount of time is ideally fixed for a certain A and M. 5000 

matvec is chosen in this thesis and this limit appears to be appropriate for the 

sizes of studied matrices, meaning the recommended preconditioners always 

converge with less than 5000 matvecs. For the practical examples in Chapter 6, 

the limit of matvec is chosen to be 50,000 because the size of the matrix A is 

significantly larger. 

It is desirable when both of the above stopping criteria are satisfied such that a 

preconditioner is able to accelerate the Krylov solver to obtain the acceptable 

results within acceptable span of time. However, limiting the number of 

matvec can raise the question on disfavouring the cheap preconditioners 

because cheap preconditioners takes less time to form, more matvec to 

converge but the total iteration time can still be within the practical range. 

Table 3.4 to Table 3.6  in the following section show that this is not the case in 

this chapter because the number of matvecs to converge is often so huge that 

the total iteration time becomes absurdly large. For instance, Krylov solvers 

with Jacobi preconditioner converge in several times more than 5000 matvecs 

and always consumes much more time than other preconditioners. In Table 5.4 

and Table 5.5 at Chapter 5, there are cases that the cheap preconditioners 

converge with more matvecs and less time than those more expensive 

preconditioners but they all converge within 5000 matvecs. When more than 

5000 matvecs are required, the iteration process either consumes much more 

time or does not converge at all. 

The values of matvec and total iteration time, which includes the time spent to 

form preconditioner and the time spent by Krylov iterative methods are 

average values over all the NR iterations in each load step. At each load step, 

the NR iteration is stopped when the relative residual norm satisfies Eq.(3.5). 
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2
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F

uKF ep

 (3.5) 

For Bi-CGSTAB following the pseudo-code in Figure 2.3, the input vector 

 0~r  is chosen as the initial residual, r0. For IDR(s), as discussed in Section 

2.1.2, the shadow matrix P
N×s 

is a random matrix containing uniformly 

distributed random number from 0 to 1. In the FORTRAN code, constant 

seeds for generating random number are used so that with the same N and s, 

the same random matrix P is generated every time P is required. Exception is 

set for the case of s = 1 when IDR(1) is used to compared with Bi-CGSTAB to 

show numerically that IDR(1) is equivalent to Bi-CGSTAB. When s = 1, 

matrix P reduces to a vector of dimension N and is set to be equal to the initial 

residual r0. IDR(s) pseudo-code in Figure 2.2 also requires the input of 

limiting value of ω to “maintain the convergence.” This limiting value is set to 

the default value of 0.7 as recommended by Sonneveld and Gijzen
162

 (2008) 

when s > 1. For s = 1, this limiting value is taken as 0 to get equivalent 

parameter in Bi-CGSTAB pseudo-code. 

Preconditioners used are: Jacobi, Symmetric Successive Over Relaxation 

(SSOR) and ILU0. Jacobi and ILU0 are used as right preconditioner. SSOR-L 

is left preconditioner and SSOR-LR is left-right preconditioner as presented in 

Section 2.2.2. For SSOR-L and SSOR-LR, only the diagonal DK is required to 

form explicitly and this is the Jacobi preconditioner hence the time required to 

form the preconditioner is reported the same for Jacobi, SSOR-LR and SSOR-

L preconditioner. 
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3.4 Comparison of IDR(s) and Bi-CGSTAB 

The characteristics of the 3D meshes are presented in Table 3.3. Three 

problem sizes 12×3×12, 24×6×24 and 32×8×32 are adopted. These three 

meshes produce the small, medium and large-scale stiffness matrices 

respectively. When the mesh is denser, not only the number of unknowns 

increases but the elastic matrix also becomes sparser. When the number of 

yielded Gauss points increases, the number of non-zero entries in the 

elastoplastic matrix increases. However, this increase is insignificant and the 

ratios nnz/N
2
 in Table 3.3 remains unchanged.  
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Table 3.3: 3D finite element meshes of the strip footing 

 Mesh size*   

 12×3×12 24×6×24 32×8×32 

Number of elements 432 3,456 8,192 

Number of nodes 2,431 16,525 37,521 

Number of unknowns (N) 5,700 43,584 102,080 

Number of Gauss points (Nip) 11,664 93,312 2,211,184 

Number of nonzero (nnz)    

 Soil profile 1    

Elastic system 715,515 6,475,800 15,738,341 

Elastoplastic system at 295kPa 717,405 6,493,019 15,828,212 

    

 Soil profile 2 

Elastic system 715,528 6,477,348 15,744,688 

Elastoplastic system at 27kPa 717,714 8,547,672 15,835,064 

    

Soil profile 3 

Elastic system 715,701 6,475,903 15,744,149 

Elastoplastic system at 40kPa 716,902 6,484,670 15,792,981 

    

nnz/N
2
 (%)

 
   

 Soil profile 1    

Elastic system 2.20 0.34 0.15 

Elastoplastic system at 295kPa 2.21 0.34 0.15 

 

 Soil profile 2 

Elastic system 2.20 0.34 0.15 

Elastoplastic system at 27kPa 2.21 0.34 0.15 

    

Soil profile 3    

Elastic system 2.20 0.34 0.15 

Elastoplastic system at 40kPa 2.21 0.34 0.15 

* Mesh size x×y×z means x element in x direction, y element in y direction and z 

element in z direction 

 

Table 3.4, Table 3.5, and Table 3.6 report the number of matvec and total 

iteration time required by Bi-CGSTAB and IDR(s) with s consequently taken 

the value of 1, 4, 6, 10, and 20 when combined with different preconditioners. 

The nonsymmetric linear system solved is at the last load step for soil profile 1, 

2 and 3. The linear systems at the last load step are chosen because this system 

requires the most matvec and time to solve. This point will be elaborate later 

in the discussion of Figure 3.3 to Figure 3.11 and Section 3.7. 
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Table 3.4: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 1 is used. Matvec and time in second are reported 

at the last load step, 280 kPa. 

12×3×12 Bi-CGSTAB IDR(1) IDR(4) IDR(6) IDR(10) IDR(20) 

No preconditioner 2801 6.2 (0.0) 2948 7.8 (0.0) 3149 8.6 (0.0) 2360 6.0 (0.0) 1762 5.1 (0.0) 1277 3.8 (0.0) 

Jacobi 888 2.0 (0.0) 953 2.4 (0.0) 810 2.6 (0.0) 769 2.4 (0.0) 673 1.8 (0.0) 622 2.2 (0.0) 

SSOR-LR 191 1.3 (0.0) 193 1.4 (0.0) 174 1.4 (0.0) 164 1.2 (0.0) 159 1.1 (0.0) 158 1.3 (0.0) 

SSOR-L 197 2.3 (0.0) 208 2.5 (0.0) 185 2.1 (0.0) 167 1.9 (0.0) 163 1.9 (0.0) 162 1.9 (0.0) 

ILU0 92 0.6 (0.1) 96 0.6 (0.1) 73 0.5 (0.1) 70 0.5 (0.1) 70 0.5 (0.1) 67 0.5 (0.1) 

24×6×24             

No preconditioner 7973 83.3 (0.0) 5573 70.1 (0.0) 34,164 382.7 (0.0) 14,4478 166.1 (0.0) 12,106 145.0 (0.0) 5705 77.8 (0.0) 

Jacobi 2794 32.6 (0.1) 2604 30.0 (0.1) 3012 36.3 (0.1) 2555 31.5 (0.1) 2160 27.7 (0.1) 1670 23.5 (0.1) 

SSOR-LR 527 20.5 (0.1) 522 20.4 (0.1) 492 19.4 (0.1) 443 17.7 (0.1) 409 16.6 (0.1) 397 16.7 (0.1) 

SSOR-L 527 30.9 (0.1) 519 30.5 (0.1) 485 28.7 (0.1) 477 28.4 (0.1) 427 25.6 (0.1) 407 25.0 (0.1) 

ILU0 398 12.3 (0.5) 401 12.5 (0.5) 222 7.3 (0.5) 207 6.7 (0.5) 198 6.7 (0.5) 192 6.8 (0.5) 

32×8×32             

No preconditioner 12,956 314.5 14,389 
338.6 

(0.0) 
41,753 1057.5 41,320 

1,058,9 

(0.0) 
39,463 

1,116.4 

(0.0) 
20,355 668.8 (0.0) 

Jacobi 2979 
145.1 

(0.1) 
2951 

146.4 

(0.1) 
3593 183.9 (0.1) 3712 211.1 (0.1) 3158 183.2 (0.1) 2292 151.2 (0.1) 

SSOR-LR 528 69.8 (0.1) 531 77.1 (0.1) 562 67.0 (0.1) 491 62.8 (0.1) 460 57.6 (0.1) 422 59.1 (0.1) 

SSOR-L 528 83.2 (0.1) 575 84.5 (0.1) 523 90.6 (0.1) 471 80.1 (0.1) 425 76.4 (0.1) 427 74.0 (0.1) 

ILU0 275 42.5 (2.5) 273 42.4 (2.5) 205 32.7 (2.5) 202 32.7 (2.5) 196 32.7 (2.5) 192 34.2 (2.5) 

 

 



 

 

 

C
H

A
P

T
E

R
 3

 I
T

E
R

A
T

IV
E

 S
O

L
V

E
R

S
 F

O
R

 N
O

N
S

Y
M

M
E

T
R

IC
 L

IN
E

A
R

 

S
Y

S
T

E
M

S
 

4
9
 

Table 3.5: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 2 is used. Matvec and time in second are reported 

at the last load step, 26 kPa. 

12×3×12 Bi-CGSTAB IDR(1) IDR(4) IDR(6) IDR(10) IDR(20) 

No preconditioner 4422 11.7 (0.0) 3967 12.3 (0.0) 4800 15.6 (0.0) 3933 12.7 (0.0) 2662 10.0 (0.0) 1951 7.0 (0.0) 

Jacobi 1141 2.6 (0.0) 1161 2.9 (0.0) 1602 5.1 (0.0) 1005 3.4 (0.0) 450 2.7 (0.0) 771 2.7 (0.0) 

SSOR-LR 265 2.3 (0.0) 249 2.3 (0.0) 266 2.3 (0.0) 255 2.1 (0.1) 256 2.2 (0.0) 209 1.8 (0.0) 

SSOR-L 259 1.4 (0.0) 291 1.6 (0.0) 306 1.9 (0.0) 274 1.5 (0.0) 235 1.3 (0.0) 229 1.4 (0.0) 

ILU0 111 0.7 (0.1) 111 0.7 (0.1) 85 0.6 (0.1) 81 0.6 (0.1) 77 0.6 (0.1) 77 0.6 (0.1) 

24×6×24             

No preconditioner 7011 65.0 (0.0) 6085 56.9 (0.0) 89,362 871.9 (0.0) 22,760 227.4 (0.0) 34,100 357.8 (0.0) 7608 89.1 (0.0) 

Jacobi 3043 36.7 (0.1) 3087 36.7 (0.1) Fail – 3942 51.3 (0.1) 3590 48.6 (0.1) 2783 41.1 (0.1) 

SSOR-LR 541 33.5 (0.1) 500 31.0 (0.1) 616 37.4 (0.1) 551 33.3 (0.1) 484 30.0 (0.1) 451 28.6 (0.1) 

SSOR-L 553 33.2 (0.1) 573 34.6 (0.1) 645 39.1 (0.1) 650 39.1 (0.1) 645 39.9 (0.1) 523 33.0 (0.1) 

ILU0 265 7.1 (0.5) 259 7.0 (0.5) 193 5.5 (0.5) 177 5.1 (0.5) 171 5.1 (0.5) 165 5.1 (0.5) 

32×8×32             

No preconditioner 17,110 
400.2 

(0.0) 
17,255 

429.1 

(0.0) 
304,511 

8969.3 

(0.0) 
297,384 

8020.6 

(0.0) 
155,668 

4353.6 

(0.0) 
106,538 

3350.0 

(0.0) 

Jacobi 4,406 
103.0 

(0.1) 
4,611 

118.8 

(0.1) 
19,989 533.4 (0.1) 9,712 265.7 (0.1) 7,049 200.9 (0.1) 3,558 112.1 (0.1) 

SSOR-LR 398 36.7 (0.1) 406 37.8 (0.1) 394 38.1 (0.1) 475 46.4 (0.1) 381 37.9 (0.1) 336 35.2 (0.1) 

SSOR-L 412 57.1 (0.1) 421 58.4 (0.1) 428 60.1 (0.1) 329 45.1 (0.1) 294 34.2 (0.1) 290 34.0 (0.1) 

ILU0 454 29.5 (1.3) 466 30.6 (1.3) 265 17.6 (1.3) 250 16.8 (1.3) 235 16.9 (1.3) 231 16.8 (1.3) 
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Table 3.6: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 3 is used. Matvec and time in second are reported 

at the last load step, 40 kPa. 

12×3×12 Bi-CGSTAB IDR(1) IDR(4) IDR(6) IDR(10) IDR(20) 

No preconditioner 2131 4.1 (0.0) 2243 5.3 (0.0) 2430 5.7 (0.0) 2008 4.4 (0.0) 1330 3.1 (0.0) 980 2.6 (0.0) 

Jacobi 846 1.7 (0.0) 861 1.8 (0.0) 674 1.9 (0.0) 638 1.7 (0.0) 577 1.4 (0.0) 548 1.7 (0.0) 

SSOR-LR 189 2.0 (0.0) 191 2.0 (0.0) 184 2.1 (0.0) 168 1.8 (0.0) 149 1.6 (0.0) 145 1.7 (0.0) 

SSOR-L 178 1.2 (0.0) 187 1.3 (0.0) 186 1.3 (0.0) 160 1.1 (0.0) 153 1.1 (0.0) 140 1.2 (0.0) 

ILU0 83 0.5 (0.1) 83 0.5 (0.1) 60 0.4 (0.1) 58 0.4 (0.1) 57 0.4 (0.1) 56 0.4 (0.1) 

24×6×24             

No preconditioner 10,300 
146.0 

(0.0) 
10,307 

147.1 

(0.0) 
103,019 

1539.1 

(0.0) 
25,409 385.1 (0.0)  13,768 221.3 (0.0) 10,201 184.2 (0.0) 

Jacobi 2965 91.1 (0.1) 3021 95.0 (0.1) 3252 106.0 (0.1) 2568 86.3 (0.1) 2068 72.6 (0.1) 1454 57.3 (0.1) 

SSOR-LR 512 32.4 (0.1) 517 33.1 (0.1) 584 37.9 (0.1) 623 40.6 (0.1) 441 29.4 (0.1) 369 25.7 (0.1) 

SSOR-L 555 71.7 (0.1) 537 69.8 (0.1) 536 70.3 (0.1) 468 61.7 (0.1) 416 55.7 (0.1) 339 47.1 (0.1) 

ILU0 325 16.3 (0.9) 335 16.9 (0.9) 138 7.6 (0.9) 134 7.3 (0.9) 128 7.3 (0.9) 124 7.5 (0.9) 

32×8×32             

No preconditioner 20,210 
450.2 

(0.0) 
20,320 

469.1 

(0.0) 
235,611 

7869.3 

(0.0) 
10,738 

2520.6 

(0.0) 
16,666 

3353.6 

(0.0) 
10,664 

2350.0 

(0.0) 

Jacobi 3764 
182.1 

(0.1) 
3746 

187.3 

(0.1) 
4747 250.1 (0.1) 4582 244.8 (0.1) 3921 221.7 (0.1) 2801 195.1 (0.1) 

SSOR-LR 672 
103.3 

(0.1) 
679 

105.3 

(0.1) 
760 119.6 (0.10 759 120.6 (0.1) 633 102.7 (0.1) 541 92.8 (0.1) 

SSOR-L 742 
173.8 

(0.1) 
719 

169.0 

(0.1) 
733 174.2 (0.1) 684 163.7 (0.1) 595 144.4 (0.1) 566 142.5 (0.1) 

ILU0 3565 
461.1 

(2.5) 
3429 

436.7 

(2.5) 
398 54.1 (2.5) 349 50.4 (2.5) 306 44.7 (2.5) 289 44.1 (2.5) 
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The general trend in these tables is: the matvec count reduces from left to right 

and from top to bottom for each problem size. Hence the matvec count is 

minimum at the bottom right corner and maximum at the top left corner. The 

number of matvec required by Bi-CGSTAB and IDR(1) is very close in all the 

cases with less than 10 percent differences. These differences in matvec count 

between Bi-CGSTAB and IDR(1) is due to the round-off error. Figure 3.3 to 

Figure 3.11 also show that Bi-CGSTAB and IDR(1) do behave almost 

identically in all the cases as expected from the theory of IDR method. 

The matvec count and the total iteration time reduce when s increases, which 

shows that IDR is more efficient than Bi-CGSTAB. There are cases, the boxed 

numbers in Table 3.4, Table 3.5, and Table 3.6, that IDR(s > 1) requires more 

matvec than IDR(1) and Bi-CGSTAB. This could be due to the choice of 

shadow matrix P as random matrix. When s = 1, P is set to the initial residual 

vector and this choice has shown to be a good choice. However, for s > 1, as 

discussed in Section 2.1.2, currently there is no similar recommendation for P 

hence random matrix is recommended. Random matrix P is not a bad choice 

either because it works well when ILU0 preconditioner is used and ILU0 

performs better than other preconditioner tested. Sonneveld and Gijzen
162

 

(2008) recommended the use of s = 4 for short recurrence of IDR method. 

However for the linear systems tested here, IDR(4) is not the optimal in both 

matvec count and total iteration time. As discuss in Section 2.1.2, when s 

increases, the matvec count reduces but the storage of matrix P
N×s

 increases 

and the time spent to solve the linear system s × s increases. This is reflected 

in the tables, IDR(20) has the least matvec count but longer total iteration time 

especially for denser meshes. IDR(6) and IDR(10) are competitive in total 

iteration time. IDR(10) requires less matvec but about the same time as 

IDR(6). In this study, IDR(6) is chosen and is used in further discussion 

because smaller s is preferred when taking into account of the generation and 

storing the random matrix P
N×s

. 

As discussed in the previous paragraph, the matvec count reduces from top to 

bottom for each problem size. This reflects the efficiency of the preconditioner. 

When no preconditioner is used, all the Krylov solvers do not converge within 

5000 matvec for the medium (24×6×24 mesh) and large (32×8×32 mesh) 
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problem sizes. Jacobi is the cheapest preconditioner because it is trivial to 

form but is also the least efficient preconditioner. The total iterationt time is 

dominated by the iteration time due to large amount of matvec required. 

SSOR-L is just as efficient as SSOR-LR and Bi-CGSTAB with SSOR-L does 

not show outstanding performance as shown by Mroueh, and Shahrour
115

 

(1999). Moreover, with the same matvec, total iteration time from SSOR-L is 

often more than from SSOR-LR because the matvec step requires more 

operations. ILU0 is the most expensive preconditioner here: the time to form 

this preconditioner is 25 times more than time to form Jacobi preconditioner. 

Nevertheless, the reduction in matvec count pays off and the total iteration 

time is the least among all the preconditioners tested. These numerical results 

agree with review in Section 2.2. Discussions in later parts will adopt ILU0 as 

the default preconditioner for the nonsymmetric linear system due to non-

associated MC model. 

Figure 3.3 to Figure 3.11 plot the number of matvec and total iteration time 

required by Bi-CGSTAB and IDR(s) with s consequently taking the value of 1, 

4, 6, 10, 20 when the applied pressure increase to the maximum value in Table 

3.2. The matvec counts increase when the applied pressure increases, makes 

the linear system at the last load step the hardest to solve as mentioned earlier 

in this section. These figures agree with the conclusion from previous tables: 

IDR(1) is equivalent to Bi-CGSTAB; IDR(20) is the most efficient in term of 

matvec count, even converges when other methods fail but is not the most 

efficient in term of total iteration time; IDR(6) is the most optimal in total 

iteration time and memory storage; ILU0 is the most efficient preconditioner 

among those tested. 
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Figure 3.3: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 12×3×12. Soil profile 1 is used. 
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Figure 3.4: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 24×6×24. Soil profile 1 is used. 
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(h) 

Figure 3.5: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20 Mesh size 32×8×32. Soil profile 1 is used. All the methods do not converge 

when there is no preconditioner hence this case is not plotted here. 
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Figure 3.6: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 12×3×12. Soil profile 2 is used. 
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Figure 3.7: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 24×6×24. Soil profile 2 is used. 
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Figure 3.8: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 32×8×32. Soil profile 2 is used. All the methods do not 

converge when there is no preconditioner hence this case is not plotted here. 
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Figure 3.9: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 16×3×16. Soil profile 3 is used. 
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Figure 3.10: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 24×6×24. Soil profile 3 is used. 
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Figure 3.11: Comparison of Bi-CGSTAB and IDR(s) with s = 1, 4, 6, 10, and 

20. Mesh size 32×8×32. Soil profile 3 is used. All the methods do not 

converge when there is no preconditioner hence this case is not plotted here. 

3.5 Comparison of ILU0 and ILU(ρ, τ) 

Section 3.4 has shown that ILU0 is a better preconditioner than Jacobi, SSOR-

LR and SSOR-L hence implies that ILU0 is a better approximation of the 

nonsymmetric stiffness matrix Kep. Section 2.2.3 has mentioned that ILUT can 

be more efficient and a competitor to ILU0 in the current problem. This 

section shows the comparison of ILU0 and ILUT(ρ, τ) for their practical 

application.  

Figure 3.12, Figure 3.13 and Figure 3.14 show the comparison of ILU0 and 

ILUT(ρ, τ) with different values of ρ and τ. Due to the dropping scheme, not 

all ILUT are more efficient than ILU0. When ρ is less than 50, ILUT requires 

more matvec than ILU0. When ρ is equal to 50 or 100, ILUT requires less 

matvec than ILU0 but the differences are marginal. With the proper choice of 

ρ and τ, ILUT performs better than ILU0 but this choice of ρ and τ is not 

known in advance but through a trial and error process as this study has done. 

Hence, even from the matvec count aspect, ILUT is not a better preconditioner 

than ILU0. 
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Figure 3.12: Comparison of ILU0 and ILUT(ρ, τ). Soil profile 1 is used with 

problem size of 12×3×12.  
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Figure 3.13: Comparison of ILU0 and ILUT(ρ, τ). Soil profile 1 is used with 

problem size of 24×6×24  
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Figure 3.14: Comparison of ILU0 and ILUT(ρ, τ). Soil profile 1 is used with 

problem size of 32×8×32 
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Moreover, in the practical aspect – total iteration time, in all the tested cases, 

ILUT is not more efficient than ILU0. The time to form ILUT is at least 10 

times more than it is to form ILU0 but the iteration time does not reduce 

accordingly to pay off for this amount of time because one matvec with ILUT 

also takes more time than with ILU0. Hence the total iteration time of IDR(6) 

with ILUT is always at least 10 times more than with ILU0. Although ILUT is 

recommended by many researchers, this preconditioner is not a good choice 

for this study. Hence, ILU0 is still chosen as the default preconditioner of Kep 

in later parts. 

3.6 Effect of convergence criteria and iteration 

tolerance 

3.6.1 Effect of the variation of iteration tolerance, i_tol 

This section discusses the effect of the tolerance of IDR(6), i_tol, on the 

accuracy of the FE analysis of the strip footing. Figure 3.15 and Figure 3.16 

plot the vertical displacement of the center of the strip footing resting on soil 

profile 1 and 2 respectively when the applied load increases up to the 

predicted failure loads in Table 3.2.  
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Figure 3.15: Comparison of different i_tol. Soil profile 1 is used. 
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Figure 3.16: Comparison of different i_tol. Soil profile 2 is used. 
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The nonlinear FE analysis of the strip footing resting on the layer of 

homogeneous soil includes three numerical approximations with reducing 

level of influence on the accuracy of the analysis: FE approximation of the 

partial differential equations, NR iteration to solve the nonlinear system 

resulted from FE approximation, and Krylov iteration – IDR(6) with ILU0 

preconditioner – to solve the linear system resulted from each NR iteration. 

The influence of FE approximation is shown in Figure 3.16(a1) and Figure 

3.15(a1) which show the convergence of FE analysis when the mesh is denser. 

The tolerance of NR is 10
-6

. i_tol is 10
-6

 which is the strictest tolerance tested. 

When the systems are far from failure (q/qf < 50%), the vertical displacement 

resulted from the coarse mesh (12×3×12) is as good as from the densest mesh 

(32×8×32). However when the applied load is closed to the predicted failure 

load, denser meshes (24×6×24 and 32×8×32) show the failure phenomenon: 

there is large increase in vertical displacement and the load-displacement 

curve becomes steeper. This shows that the influence of FE approximation is 

the strongest among the three. The tolerance of NR iteration certainly affects 

the accuracy of the simulation. This thesis discusses the application of Krylov 

iteration methods and preconditioner hence the tolerance of NR is kept 

constant in all the analyses. The effect of NR tolerance is ignored because with 

the tolerance of 10
-6

 and the stopping criteria shown in Eq.(3.5), the FE 

analysis produces acceptable results when compared with the predicted 

theoretical failure as shown in Figure 3.16(a1) and Figure 3.15(a1).  

It is worth to note that the load-displacement curves in Figure 3.16(a1) and 

Figure 3.15(a1) are not smooth because there are abrupt changes in vertical 

displacement, which may not be ideal. This may lie on the return mapping 

method (refer to Appendix A.2). The numerical model is not stable when the 

systems are close to failure hence more Gauss points are forced to lie on the 

apex of MC envelope (as mentioned in Section 3.3), which is spurious. The 

load step was reduced as a remedy but much smaller load step implies that 

much more simulation time will be required to produce a perfectly smooth 

load-displacement curve. Moreover, the current non-ideal load-displacement 

curve is not physically wrong hence this thesis continues using its current 
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loading scheme for further discussion on the main objective: preconditioners 

and tolerance of IDR(s) method. 

The rest of figures in Figure 3.16 and Figure 3.15 show the effects of i_tol on 

the vertical displacement of the strip footing. When q/qf is less than 60%, the 

system is far from failure, the vertical displacement can be predicted well with 

i_tol as large as 10
-1

. When the applied load is close to the predicted failure 

load, i_tol affects greatly on the failure prediction of FE analysis when the 

failure phenomenon is shown through the analysis. The coarse mesh (12×3×12) 

fails to predict the failure hence i_tol does not change the trend except making 

the vertical displacement fluctuate in a small range, while it affects the denser 

meshes (24×6×24 and 32×8×32). Hence for coarse mesh, i_tol = 10
-6

 can be 

consider ‘stringent’ because it does not offer better solution than i_tol = 10
-1

. 

For denser meshes, it should be highlighted first that the failure phenomenon 

is only shown with i_tol = 10
-6

. When i_tol is increased to 10
-5

 and 10
-4

, there 

is large increase in the vertical displacement but the failure phenomenon is not 

clearly shown, except in Figure 3.16(c2). When i_tol is as large as 10
-1

, no 

sign of failure is shown at all and the load-displacement curve of the densest 

mesh (32×8×32) is similar to that of the coarse mesh (12×3×12) and the 

investment on the denser mesh with the purpose of getting better prediction 

does not pay off. Hence i_tol = 10
-6

 is not too ‘stringent’ for dense mesh and 

will be continued using throughout this thesis to predict as accurate physical 

phenomena as possible. In practice, if one finds i_tol = 10
-6

 to be too stringent, 

i_tol = 10
-5 

and 10
-4

 can be recommended with the condition that denser mesh 

should be used, and the value of i_tol less than 10
-4

 is not recommended. But it 

is worth to highlight that in complicated and realistic geotechnical problem, 

failure loads are not priorly known so too relaxed tolerance can lead to wrong 

impression about the physical behavior of the problems. 

3.6.2 More discussion on the interaction of i_tol, NR_tol and 

load increment 

This section only discusses the interaction of i_tol, NR_tol and load increment 

so that accurate results can be produced. Their interaction so that the optimal 
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NR iteration, Krylov iterations and total solution time can be achieved has not 

yet researched in-depth and is left for further study. 

Table 3.7 to Table 3.9 present the number of NR iterations and average Krylov 

matvecs at each load increment. The reason that large i_tol cannot provide 

reasonable results is the unbalanced force due to the material non-linearity 

cannot be fully captured. This is shown by the reduction of the number of 

yielded Gauss points in the mesh caused by the applied load when i_tol 

increases. When there are few yielded Gauss points in the mesh, the mesh is 

considered “far from failure” although the load is close to the theoretical 

failure load.  
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Table 3.7: 12×3×12 mesh – Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used. 
Number Load i_tol = 10

-6
 i_tol = 10

-5
 i_tol = 10

-4
 i_tol = 10

-3
 i_tol = 10

-2
 i_tol = 10

-1
 

1 20 1 / 46 0 1 / 42 0 1 / 41 0 1 / 36 0 1 / 27 0 1 / 21 0 

2 40 1 / 46 0 1 / 42 0 1 / 41 0 1 / 36 0 1 / 27 0 1 / 21 0 

3 60 1 / 46 0 1 / 42 0 1 / 41 0 1 / 36 0 1 / 27 0 1 / 21 0 

4 80 1 / 46 0 1 / 42 0 1 / 41 0 1 / 36 0 1 / 27 0 1 / 21 0 

5 100 3 / 46 384 4 / 41 389 4 / 36 389 4 / 29 389 4 / 18 383 4 / 13 782 

6 120 4 / 47 1175 5 / 43 1183 5 / 38 1183 5 / 30 1183 5 / 24 1165 5 / 15 1441 

7 140 4 / 48 1708 4 / 46 1708 4 / 41 1708 4 / 36 1708 4 / 26 1694 4 / 17 1895 

8 160 4 / 54 2117 4 / 47 2115 4 / 44 2117 4 / 38 2117 5 / 33 2106 4 / 19 2246 

9 180 4 / 55 2507 4 / 51 2430 4 / 46 2507 5 / 41 2509 4 / 30 2493 4 / 18 2556 

10 200 4 / 58 2835 4 / 52 2835 4 / 46 2835 4 / 38 2835 4 / 26 2797 5 / 14 2896 

11 220 4 / 60 3301 4 / 54 3301 4 / 49 3301 5 / 40 3308 6 / 32 3303 5 / 17 3562 

12 240 5 / 62 3897 5 / 57 3897 5 / 51 3897 5 / 45 3897 6 / 35 3886 6 / 18 4201 

13 260 5 / 67 4543 5 / 60 4543 5 / 53 4543 5 / 45 4543 9 / 35 4517 6 / 21 4751 

14 280 7 / 70 5172 8 / 61 5176 8 / 57 5176 11 / 44 5192 10 / 32 5174 7 / 20 5435 



 

 

 

C
H

A
P

T
E

R
 3

 IT
E

R
A

T
IV

E
 S

O
L

V
E

R
S

 F
O

R
 N

O
N

S
Y

M
M

E
T

R
IC

 L
IN

E
A

R
 

S
Y

S
T

E
M

S
 

8
1
 

Table 3.8: 24×6×24 mesh – Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used. 
Number Load i_tol = 10

-6
 i_tol = 10

-5
 i_tol = 10

-4
 i_tol = 10

-3
 i_tol = 10

-2
 i_tol = 10

-1
 

1 20 1 / 92 0 1 / 85 0 1 / 75 0 1 / 66 0 1 / 54 0 1 / 33 0 

2 40 1 / 92 0 1 / 85 0 1 / 75 0 1 / 66 0 1 / 54 0 1 / 33 0 

3 60 1 / 92 0 1 / 85 0 1 / 75 0 1 / 66 0 1 / 54 0 1 / 33 0 

4 80 1 / 92 0 1 / 85 0 1 / 75 0 1 / 66 0 1 / 54 0 1 / 33 0 

5 100 4 / 92 3132 4 / 89 3132 4 / 74 3132 4 / 52 3114 4 / 35 3313 5 / 20 5487 

6 120 7 / 97 9591 7 / 97 9591 6 / 81 9552 7 / 65 9589 7 / 50 9559 6 / 30 10333 

7 140 14 / 106 13647 14 / 101 13647 13 / 86 13618 12 / 70 13972 10 / 50 13567 14 / 24 13610 

8 160 18 /106 17047 20 / 110 19345 9 / 87 16725 20 / 71 20175 12 / 45 16996 9 / 34 17190 

9 180 17 / 114 19747 10 / 112 22270 5 / 91 18831 20 / 81 23044 10 / 49 18923 7 / 34 18722 

10 200 17 / 216 25317 10 / 114 25028 17 / 97 23108 18 / 82 25503 7 / 62 21390 8 / 30 22622 

11 220 10 / 231 27284 12 / 108 28240 7 /94 25928 16 / 87 30012 7 / 64 24860 8 / 33 24621 

12 240 7 / 296 31285 12 / 139 33630 10 / 101 31618 10 / 89 38142 16 / 50 30998 11 / 27 28521 

13 260 9 / 344 37011 16 / 155 41256 12 / 95 35739 12 / 81 43382 17 / 67 35469 10 / 39 34062 

14 280 25 / 207 59799 20 / 170 48707 13 / 109 43397 12 / 101 48450 10 / 65 41900 12 / 39 38490 
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Table 3.9: 32×8×32 mesh – Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used. 
Number Load i_tol = 10

-6
 i_tol = 10

-5
 i_tol = 10

-4
 i_tol = 10

-3
 i_tol = 10

-2
 i_tol = 10

-1
 

1 20 1 / 120 0 1 / 113 0 1 / 100 0 1 / 84 0 1 / 70 0 1 / 50 0 

2 40 1 / 120 0 1 / 113 0 1 / 100 0 1 / 84 0 1 / 70 0 1 / 50 0 

3 60 1 / 120 0 1 / 113 0 1 / 100 0 1 / 84 0 1 / 70 0 1 / 50 0 

4 80 1 / 120 0 1 / 113 0 1 / 100 0 1 / 84 0 1 / 70 0 1 / 50 0 

5 100 4 / 119 7290 4 / 107 7290 4 / 90 7302 4 / 65 7242 4 / 45 7059 1 / 50 0 

6 120 14 / 131 25002 11 / 122 24286 11 / 113 32161 11 / 84 24373 14 / 53 24928 8 / 33 17454 

7 140 13 / 139 31926 10 / 128 30794 10 / 117 40900 10 / 91 30825 10 / 68 30353 17 / 32 28969 

8 160 9 / 147 38515 9 / 142 37525 10 / 136 43503 8 / 104 37538 10 / 76 36788 14 / 25 36821 

9 180 12 / 157 44282 11 / 136 45709 12 / 133 47791 14 / 104 44250 10 / 59 43316 20 / 15 42899 

10 200 10 / 163 52127 11 / 141 52972 12 / 135 53976 14 / 85 65402 13 / 71 50268 11 / 36 50716 

11 220 13 / 161 60740 18 / 135 67502 19 / 127 64913 9 / 117 69722 10 / 90 58523 8 / 41 55168 

12 240 13 / 171 71646 12 / 149 73139 13 / 140 74581 14 / 123 76283 14 / 83 70055 12 / 17 64473 

13 260 19 / 184 84364 20 / 152 86241 19 / 149 88913 21 / 129 92414 21 / 49 86427 11 / 38 68535 

14 280 29 / 196 106109 15 / 180 104734 20 / 166 103900 22 / 169 109382 16 / 84 92460 11 / 26 75823 



CHAPTER 3  ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR 

SYSTEMS 

83 

 

The results and discussion in Section 3.6.1 are based on the condition that 

NR_tol and load increment are constant when i_tol varies. When the 

unbalanced force is not fully captured, the analysis is closed to the explicit 

increment method which requires sufficiently small load increment to obtain 

accurate results (Abbo
2
, 2007; Krenk

96
, 2009 pp7-14). Hence, the cause of 

unreasonable results in this case is not because i_tol is larger than NR_tol (so 

less NR iterations are performed) but because the load increment is too large. 

The same unreasonable results would occur when NR_tol is too large and i_tol 

is small. Figure 3.17 below shows that when i_tol = 10
-2

, NR_tol = 10
-6

 and 

the load increment is very small, the results are as good as when i_tol = 10
-6

, 

NR_tol = 10
-6

 and the load increment is large. 

Besides, the FE algorithm used in this thesis belongs to the class of Newton-

Krylov method, also known as inexact Newton method. Blaheta
26

 (1997), 

Axelsson and others
14

 (1997) showed theoretically that the inexact Newton 

method used in elastoplastic problems converges to the right solution when the 

load increment is sufficiently small relative to the state of the structure at the 

computing point and the convergence rate depends on the choice of i_tol, e.g. 

constant value or series of reducing values. 

 
(a) 

 
(b) 

Figure 3.17: Interaction of i_tol, NR_tol and load increment 

3.7 Eigenvalue distribution of nonsymmetric linear 

systems 

This section shows qualitatively the theoretical reason for the increase of 

matvec when applied pressure increase as observed in Section 3.4. Section 

2.4.1 has discussed the effects of spectral properties on the convergence of 
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Krylov iterative methods. Qualitatively, the iterative solvers require less 

matvec to converge if the ellipse (under suitable normalization) in the complex 

plane circumscribing all the eigenvalues is small. Figure 3.18 shows the 

eigenvalue distributions of the elastic stiffness matrix Ke and the un-

preconditioned and preconditioned global stiffness matrix Kep.   

 
Figure 3.18: Eigenspectra of matrix (a) Ke; (b) Unpreconditioned Kep; (c) Kep 

preconditioned with ILU0. Problem size 12×3×12 with soil profile 1 

When there are no yielded Gauss points in the mesh, the global stiffness 

matrix is Ke, which is symmetric and all the eigenvalues are positive and real 

numbers as shown in Figure 3.18a. When there are yielded Gauss points, Kep 

applies and the global stiffness matrix becomes nonsymmetric hence the some 

of the eigenvalues are complex number (Figure 3.18b). Figure 3.19a and  

Figure 3.19b show that when the applied load increases, the maximum and 

minimum real parts of eigenvalues are almost unchanged while the maximum 

imaginary parts of these complex eigenvalues increase, which enlarge the 

circumscribing ellipse. Section 2.4.1 also mentioned that the condition number 

of the matrix X in Eq.(2.30) is involved in the convergence of Krylov iterative 

methods. Figure 3.19c shows that this condition number increases when the 

applied load increases. All these observations imply that the nonsymmetric 

linear system is harder to solve when the applied load increases and explains 

the reason of the increase in matvec of IDR(s) in Section 3.4. ILU(0) is the 

most efficient preconditioner shown in Section 3.4. This efficiency is reflected 
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in the clustering of the eigenspectrum. Figure 3.18c shows the eigenvalues 

distributions of Kep preconditioned by ILU(0). The eigenvalues distribute over 

a much smaller range than those from the un-preconditioned Kep, which 

explains the efficiency gained when solving the preconditioned linear system 

iteratively. 

 

(a) 

 

(b) 

 

(c) 

Figure 3.19: Characteristics of eigenspectrum: (a) Maximum and minimum 

eigenvalue; (b) Maximum imaginary part of eigenvalues; (c) Condition 

number of matrix X (Eq.(2.30)). Problem size 12×3×12 with soil profile 1 is 

used. 

3.8 Summary 

This chapter performs numerical experiments on the strip footing problem 

resting on three soil profiles, of which properties have typical values of soil as 

well as have wide range of input values. The key findings from the numerical 

results are: 
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1. IDR(1) is theoretically equivalent to Bi-CGSTAB, which has been 

validated numerically. Bi-CGSTAB or IDR(1) with P = r0 is a good 

choice and can sometimes perform better than IDR(s > 1) with P as a 

random matrix. However, with good preconditioner like ILU0, a 

random matrix P is not a bad choice because IDR(s > 1) performs 

better than Bi-CGSTAB. 

2. When s is larger, IDR requires less matvec as expected but more time 

is spent on solving the s×s linear system and more memory is used to 

store P
N×s

. IDR(6) and IDR(10) show competitive performance in 

iteration time. IDR(6) is chosen for further implementation because 

this will limit the memory required to store P
N×s

 especially when N 

grows large in practical problems. 

3. ILU0 is the most efficient preconditioner for the Kep matrix among 

Jacobi, SSOR-LR, SSOR-L and ILUT(ρ, τ). ILUT(ρ, τ) can be 

competitive in term of matvec but less competitive in term of solution 

time. Moreover, the fill-in number is not known priorly and also 

problem dependent.   

4. Eigenvalue distribution shows that when there are more yielded Gauss 

points in the mesh, Kep is harder to solve because there are more 

complex eigenvalue making the ellipse circumscribing them bigger 

and the eigenspectrum characteristic more complicated. 
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CHAPTER 4 PRECONDITIONERS FOR 1-

BY-1 BLOCK MATRICES: 

DRAINED/UNDRAINED ANALYSIS 

4.1 Introduction 

This chapter aims to discuss two issues on preconditioning the 1-by-1 block 

matrix: Section 4.2 discusses techniques to precondition effectively a sequence 

of linear systems which occurs in the nonlinear FE analysis; and Section 4.3 

discusses effects of the penalty method, which will be elaborated in the section, 

on IDR(s) and preconditioners. Chapter 3 has concluded that IDR(6) 

preconditioned with ILU0 requires the least time to solve the nonsymmetric 

linear system due to the non-associated MC model, hence this chapter 

continues to use IDR(6) and ILU0. Geotechnical problems considered in the 

numerical experiments are: flexible strip footing (Figure 3.1a) and square 

footing (Figure 4.1a) resting on homogenous soil layer, and vertical smooth 

wall (Figure 4.1b) subjected to horizontal prescribed displacements. 

Theoretical results are available for these problems and are used as the 

reference for numerical predictions. 

4.2 Efficient preconditioning for a sequence of linear 

systems in drained analysis 

This section considers a flexible strip footing (Figure 3.1a) and a flexible 

square footing (Figure 4.1a) resting on the homogenous soil profile 1 and 2 

which have been described in Section 3.2.  The boundary conditions of the 

square footing are similar to those of the strip footing described in Section 3.2. 

The characteristics of the 3D meshes of the square footing are presented in 

Table 4.1. The properties of the soil following the non-associated MC model 

are given in Table 3.1. 
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Figure 4.1: 3D finite element mesh of the square footing 

Table 4.1: 3D FE meshes of the square footing resting on soil profile 1 and 2 

 Mesh size  

 16×16×16 24×24×24 

Number of elements 4,096 13,824 

Number of nodes 18,785 60,625 

Number of unknowns (N) 50,656 169,296 

Number of Gauss points (Nip) 110,592 373,248 

Number of nonzero (nnz)   

  Soil profile 1   

Elastic system 7,809,113 27,355,315 

Elastoplastic system at 380kPa 7,831,757 27,373,538 

   

  Soil profile 2   

Elastic system 7,814,366 27,360,464 

Elastoplastic system at 47kPa 7,847,086 27,391,751 

nnz/N
2
 (%)

 
  

  Soil profile 1   

Elastic system 0.3 0.095 

Elastoplastic system at 380kPa 0.31 0.096 

   

  Soil profile 2   

Elastic system 0.30 0.095 

Elastoplastic system at 47kPa 0.31 0.096 

 

The prediction of failure load of the strip footing has been presented in Section 

3.2. When the foundation is a rectangle, the shape factors are multiplied to the 

Terzaghi’s formula in Eq.(3.1) to get Eq.(4.1). The shape factor ξcs for the 

rectangular footing is given in Eq.(4.2).  
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2

1
 (4.1) 

  
cqcs NNLB1  (4.2) 

 

The predicted failure load of the square footing resting on the soil profile 1 

and 2 and the maximum applied load for each soil profile are tabulated in 

Table 4.2. Similar to the point noted in Section 3.2, the predicted failure load 

in Eq.(4.1) does not take into account the non-associated flow rule, which is 

considered in this whole thesis, hence the actual failure load may be 10 or 20 

percent different from the predicted values. 

Table 4.2: Ultimate bearing capacity of the strip footing and square footing on 

the homogenous soil layer and the maximum applied pressure used in 

numerical experiments 

 

 
Nq Nc 

ξcs with 

B/L = 1 
qf-square  = ξcs c’Nc (kPa) qmax-square (kPa) 

Soil profile 1 6.4 14.83 1.43 424.68 380 (= 90%qf-square) 

Soil profile 2 18.40 30.14 1.61 48.54 47 (= 97%qf-square) 

 

4.2.1 By forming the global stiffness matrix implicitly 

From the elastoplastic stress-strain matrix in Eq.(1.3), the global stiffness 

matrix in drained analysis in Eq.(2.1) can be written as summation of two 

matrices Ke and Δ as in Eq.(4.3).  
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The integral in Eq.(4.3) to assemble Δ is evaluated with Gauss quadrature 

formula given below 
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in which ny is the number of yielded Gauss points in each element, ||Ji|| is 

determinant of the Jacobian matrix and Wi is the Gauss quadrature weighting 

coefficient at each Gauss point. 

From Eq. (4.3) and Eq.(4.4), the upper bound on the rank of Δ is evaluated in 

Eq.(4.5) and Eq.(4.6),  
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(4.5) 

   yNN,minrank   (4.6) 

 

in which Ny is the total number of yielded Gauss points in the mesh and N is 

the dimension of both Ke and Kep. 

When geotechnical systems are far from failure, Ny is much smaller than N. 

Hence, the rank of Δ is much smaller than N. On the contrary, when 

geotechnical systems approach failure, Ny is larger than N. However, 

numerical results show that the rank of Δ is still much smaller than N.  In this 

sense, Δ can be considered as a perturbation of Ke. In Section 4.2.2, ILU0-Kep 

denotes the ILU0 derived from the Kep matrix while ILU0-Ke denotes the 

ILU0 derived from the Ke  matrix. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4.2:  Ratio of applied pressure q over the bearing capacity qf versus 

percentage of yielded Gauss points in the 3D mesh of: (a)(c) Strip footing, 

(b)(d)Square footing. 

When full NR is used, Kep has to be formed at each NR iteration. This 

formation can be done explicitly as in Eq.(2.1) or implicitly as in Eq.(4.3). In 

Eq. (4.3), only the Δ matrix has to be formed at each NR iteration. Figure 4.3 

shows the comparison of time to form Kep and time to form Δ. The figures are 

plotted against the percentage of yielded Gauss points in the mesh (Ny/Nip). 
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(a) 

 (b) 

(c) 

 (d) 

Figure 4.3: (a) (b) Ratio of time to form Δ and Kep over time to form Ke; (c) 

(d)Ratio of time to form Δ and Kep over total time consumed in each NR 

iteration when IDR( 6) with ILU0 is used to solve the linear systems. 
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The time to form Kep is always several times more than the time to form Ke 

because of the stress returning procedure in nonlinear FE analysis (Appendix 

A.2). In Figure 4.3a and Figure 4.3b, the time to form Kep does not vary 

significantly regardless of the increases of yielded Gauss points. Hence, in 

each NR iteration, the same length of time has to be spent to form Kep. On the 

contrary, the time to form Δ only increases when the number of yielded Gauss 

points increases. This time is smaller than the time to form Kep even at the final 

load stage, where 50 (in soil profile 1) to 65 (in soil profile 2) percent of the 

Gauss points have yielded. In practice, the FE analysis is performed at the 

working load stage, which is typically less than 50 percent of the bearing 

capacity. At this stage, 15 percent of the Gauss points have yielded when soil 

profile 1 is considered (Figure 4.2a) and the time to form Δ is 30 percent of the 

time to form Kep for the largest problem size tested; while 25 percent of the 

Gauss points have yielded when soil profile 2 is considered (Figure 4.2c) and 

the time to form Δ is 50 percent of the time to form Kep for the largest problem 

size tested.  

Section 3.4 has shown that IDR(6) with ILU0-Kep preconditioner requires the 

least time to solve the non-symmetric linear system in each NR iteration. 

Figure 4.3c and Figure 4.3d show that when this preconditioner is used, the 

time to form Kep takes more than 75 percent of total time consumed in each 

NR iteration for small and medium problem sizes, meaning forming Kep is a 

much more critical procedure than solving the large-scale linear system and 

minimizing the linear system solving time is not tackling the more time 

consuming part of the solution process. Although this ratio reduces to 50 to 65 

percent for the largest problem size tested, this figure is still considered 

significantly large. 

Similar to Figure 4.3(a)(b), Figure 4.3(c)(d) show that the ratio of the time to 

form Δ over the total time consumed in each NR iteration increases with the 

increase of yielded Gauss points. For small problem size, this ratio is as large 

as it is for Kep while it is greatly reduced when the problem size increases. For 

the largest problem size tested, this ratio is up to 40 percent. At the working 

load, this ratio is 30 percent when soil profile 1 is used and 36 percent when 

soil profile 2 is used while it is 60 percent for forming Kep. Hence, computing 
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just Δ accrues significant time saving compared with the ratio of 60 percent 

for the baseline case of forming Kep 
afresh. 

4.2.2 By freezing the preconditioner 

4.2.2.1 Use preconditioner from the elastic global stiffness matrix Ke 

Since   is a low-rank matrix, a preconditioner derived from the dominant 

component Ke may be as effective as a similar one derived from Kep. Figure 

4.4(a)(c) and Figure 4.5(a)(c) show the comparison of ILU0-Ke preconditioner 

derived from Ke and ILU0-Kep derived from Kep when the strip footing 

problem is considered. For all the problem sizes of the strip footing, IDR( 6) 

with ILU0-Ke requires more matvec to converge than with ILU0-Kep. This 

agrees with results of Augarde and others
11

 (2007) which discusses element-

by-element (EBE) preconditioners. ILU0-Ke is only formed once at the 

beginning of the solution process, there are differences in the total iteration 

time to solve the linear system. However, the time saved from forming the 

preconditioner is dominated by the increasing time to perform more matvec 

when there are more yielded Gauss points. Moreover, the efficiency of ILU0-

Ke reduces when the problem size increases because for large–scale problems, 

the time to form the preconditioner becomes less significant compared with 

the time to solve the linear system. However, for all the problem sizes, ILU0-

Ke is more time effective than ILU0-Kep when the percentage of yielded Gauss 

points is less than 15 percent.  
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 (a)  (b) 

 (c)  (d) 

Figure 4.4: Comparison of efficiency of ILU0-Ke and ILU0-Kep . Soil profile 1 

is used. 

For the current strip footing example, 50 to 60 percent of the Gauss points 

have yielded at 90 percent of the bearing capacity. A more practical 

geotechnical problem – square footing – is tested and shows that only 14 to 25 

percent of the Gauss points yield at 90 percent of the bearing capacity (Figure 

4.2b and Figure 4.2d). Figure 4.4(b)(d) and Figure 4.5(b)(d) compare the 

matvec and total iteration time of IDR(6) when ILU0-Ke and ILU0-Kep are 

used. Similar to the case of strip footing, the number of matvec required by 

ILU0-Ke is more than that required by ILU0-Kep. However, the total iteration 

time required by ILU0-Ke is less than by ILU0-Kep when the percentage of 

yielded Gauss point is less than 15 percent. This agrees with the conclusion 

made for the strip footing problem. Geotechnical problems tend to fail locally 

so the percentage of yielded Gauss points is not significantly large. When the 

percentage is less than 15, IDR(6) with ILU0-Ke is effective in reducing the 

iteration time. 
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(a) (b) 

(c) (d) 

Figure 4.5: Comparison of efficiency of ILU0-Ke and ILU0-Kep. Soil profile 2 

is used. 

As noted in Section 1.1.3, before the development of IDR(s) method, Bi-

CGSTAB is considered the most efficient method and its combination with 

ILU0-Kep preconditioner yields the shortest iteration time compared with other 

preconditioners (Section 3.4). Thus, by default, to attain practical length of 

simulation time, one would use Bi-CGSTAB with ILU0-Kep as well as a newly 

assembled global stiffness matrix Kep in each NR iteration. This section 

proposes the use of IDR(6) with ILU-Ke (when the percentage of yield points 

is less than 15) and assembling Δ at each NR iteration to form Kep. Figure 4.6 

plots the ratio of total iteration time used in each NR iteration by the latter 

method over total iteration time used by the former method. The latter method 

only requires at most 40 percent of time required by the former. Hence, by 

using the proposed method, the total simulation time can be reduced by 60 

percent. Besides, when the 24×24×24 mesh is used for the soil profile 1, Bi-

CGSTAB with ILU0-Kep fail to converge within 5000 matvec at every loading 

stage. This highlights the superior efficiency of IDR(6) over Bi-CGSTAB in 

solving the nonsymmetric linear system from non-associated MC model. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.6: Ratio of total time consumed in each NR iteration by method (1): 

using IDR(6) with ILU0-Ke and forming Δ over method (2): using Bi-

CGSTAB with ILU0-Ke and forming Kep.(a)(c) Strip footing. (b)(d) Square 

footing 

4.2.2.2 Update preconditioner after the new load increment is applied 

Section 4.2.2.1 has recommended the use of ILU0-Ke to reduce the total 

iteration time of IDR(6) when the percentage of yielded Gauss points (Ny/Nip) 

is less than 15 percent. ILU0-Ke loses its time efficiency when Ny/Nip is more 

than 15 because of the increase of matvec count. From Figure 4.4a and Figure 

4.5a , the matvec count required by ILU0-Ke can be up to three times of the 

matvec count required by ILU0-Kep, which makes the total iteration time 

consumed by the former to be up to 2.5 times of that consumed by the latter 

(Figure 4.4c and Figure 4.5c). The increase in matvec count required by ILU0-

Ke is because when the number of yielded Gauss points increases, the Δ matrix 

contributes more in forming Kep hence ILU0-Ke becomes less accurate in 

approximating Kep. This section proposes different schemes to update ILU0 

preconditioner during the nonlinear FE analysis to hopefully reduce the 
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matvec count of IDR(6) and hence reduce the total iteration time when the 

number of yielded Gauss points increases. 

The increase of matvec count lies in the increase of yielded Gauss points 

therefore this section first considers to update the ILU0 preconditioner at 

every α% 
1
 increment of Ny/Nip. Besides, the increase of yielded Gauss points, 

Ny, is caused by the increase of applied load. Figure 4.7 shows that in each 

load step, Ny often increase significantly right after the load increment is 

applied and reaches a stable value when the NR starts converging. Similarly, 

the matvec required by IDR(6) with ILU0-Kep also increases after the load 

increment is applied and reduces when the NR iteration converges. Therefore 

updating the ILU0 preconditioner once every load step right after the load 

increment is applied may tackle the most difficult case to solve Kep among all 

the NR iterations within that load step. Table 4.3 summarizes all the 

preconditioner updating schemes discussed in this section. Different notations 

of ILU0 preconditioner are also proposed in Table 4.3 to distinguish these 

updating schemes. 

 

Figure 4.7: Typical trend of variation of Ny and matvec required by IDR(6) 

with ILU0-Kep within each load step 

 

  

                                                 
1
 It should be noted that this α (%) has no relation with the α in the block preconditioners in 

Section 2.3.3. 
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Table 4.3: Different schemes to update ILU0 preconditioner during the 

simulation 

Number Description Preconditioner notation 

1 
The default scheme which updates 

preconditioner at every NR iteration. 
ILU0-Kep 

2 

The scheme discussed in Section 4.2.2.1 which 

forms the preconditioner from Ke once at the 

beginning of the simulation. 

ILU0-Ke 

3 
Update the preconditioner at every α% 

increment of Ny/Nip. 

ILU0, α = 5% 

ILU0, α = 25% 

4 
Update the preconditioner once in each load 

step right after the load increment is applied. 
ILU0-NR 

 

Figure 4.8 to Figure 4.11 show the comparison of these proposed 

preconditioner updating schemes. The matvec reported is the average value 

over all the NR iterations in each load step. The time reported for scheme 2, 3, 

and 4 is the cumulative solution time during the simulation normalized by the 

corresponding cumulative solution time of the default scheme 1. Cumulative 

solution time is a better parameter to analyze than the average time in each 

load step, which has been used in Chapter 3 and Section 4.2.2, because the 

preconditioner is updated at different points in time during the simulation. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 4.8: Comparison of different schemes of updating ILU0 preconditioner. 

Strip footing resting on Soil profile 1 is considered. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

Figure 4.9: Comparison of different schemes of updating ILU0 preconditioner. 

Strip footing resting on Soil profile 2 is considered. 
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Figure 4.10: Comparison of different schemes of updating ILU0 

preconditioner. Square footing resting on Soil profile 1 is considered. 

  

  
Figure 4.11: Comparison of different schemes of updating ILU0 

preconditioner. Square footing resting on Soil profile 2 is considered. 

 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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As stated in previous paragraph, the objective of these preconditioner updating 

schemes is to reduce the matvec count and the total iteration time of IDR(6). 

Scheme 1 and 2 are expected to produce the lower bound and upper bound of 

matvec count respectively because at any time during the simulation, ILU0-

Kep in scheme 1 approximates Kep the closest and ILU0-Ke in scheme 2 

approximates Kep the crudest. This explanation is partly valid in Figure 4.8a 

and Figure 4.9a when the smallest problem size is used. However it does not 

apply for larger problem sizes in the rest of the figures from Figure 4.8 to 

Figure 4.11. In particular, scheme 2 does not provide the upper bound of 

matvec count. The matvec of scheme 3 are often larger than of scheme 2 

although the preconditioner is updated more frequently. This can be because 

the ILU0 formed at that NR step is unstable and IDR(6) requires more matvec 

to converge. Section 4.3.2 will show that there are cases that unstable ILU0 

can make IDR(s) fail to converge within the maximum number of matvec. In 

the current case, the unstable ILU0 only causes IDR(6) to take significantly 

more matvec. In scheme 3, when the ILU0 is updated at every α% increment 

of Ny/Nip, the updated ILU0 could be unstable at that NR iteration but is kept 

unchanged until the next α% increment of Ny/Nip, hence IDR(6) 

preconditioned by this unstable ILU0 requires large amount of matvec to 

converge. This is reflected in Figure 4.9e and Figure 4.11(a)(c). In constrast 

with scheme 3, the ILU0-NR in scheme 4 does not show unstable behavior 

during the simulation although it is also updated after certain amount of NR 

iterations. Moreover, the average matvec count of IDR(6) using ILU0-NR in 

scheme 4 is as small as the lower bound set by ILU0-Kep in scheme 1.  

Observation on matvec count is strongly relatived to the observation of 

cumulative solution time. Because the time to form ILU0 preconditioner is 

minimal compared to the iteration time, when there is the rise in the matvec 

count, there is the rise in the cumulative solution time. The plots on the 

cumulative solution time of scheme 2 in Figure 4.8(d)(f) and Figure 

4.9(b)(d)(f), agree with conclusion from Section 4.2.2.1:  this scheme requires 

less cumulative solution time than the default scheme 1 when Ny/Nip is less 

than 15%. Scheme 3 can be better than scheme 2 when the matvec required by 

scheme 3 is less than it is required by scheme 2. This is the case when α = 5%. 
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ILU0-α = 5% gives the best performance of all the choices of α. The 

cumulative solution time of this case is even less than the cumulative time of 

scheme 1 in several cases (Figure 4.8(b)(d) and Figure 4.9(b)(f)). With other 

choices of α, in Figure 4.8f, Figure 4.9(d)(f), and Figure 4.11(b)(f), the 

cumulative solution time grows large at some point of the simulation because 

of the rise in matvec count due to the unstable ILU0 preconditioner as 

explained in the previous paragraph. 

In all the figures from Figure 4.8 to Figure 4.11, the cumulative solution time 

of scheme 4 is always the smallest even when Ny/Nip grows up to 60 percent.  

Exception is seen in Figure 4.8f and Figure 4.9d but the cumulative time of 

scheme 4 in these case is asymptotic to that of scheme 1 so scheme 4 is still 

considered the most time efficient. Scheme 3 with α = 5% is competitive with 

scheme 3 for other cases in the strip footing problem (Figure 4.8(b)(d) and 

Figure 4.9b) but not in the square footing problem. For square footing, 

although scheme 2 has been shown to be more time efficient than scheme 1 in 

Section 4.2.2.1, Figure 4.10 and Figure 4.11 show that scheme 4 can achieve 

even smaller cumulative solution time. From all of the above observations, 

this section recommends the preconditioner updating scheme 4, which updates 

the preconditioner after the load increment is applied, to solve the sequence of 

nonsymmetric linear system from non-associated MC model. This scheme can 

help to reduce up to 20 percent of total simulation time compared with using 

ILU0-Kep (Figure 4.9f). 

Finally, to make the numerical experiment complete, the cumulative solution 

time of scheme 1, 2 and 3 are compared with the cumulative solution time by 

using Bi-CGSTAB with ILU0-Kep, which is the default approach before the 

development of IDR(s) method. This comparison is shown in Figure 4.12. 

Section 4.2.2.1 has noted that when soil profile 2 is considered, Bi-CGSTAB 

does not converge within 5000 matvec when the 24×24×24 mesh is used 

hence the results are not plotted in Figure 4.12d. The updating scheme 4 still 

gives the smallest cumulative solution time athough the differences with 

scheme 1 and 2 are marginal. The most striking difference can be seen in 

Figure 4.12c. For both the strip footing and square footing, scheme 4 can save 

at least 40 percent of total simulation time compared with using Bi-CGSTAB.  
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Figure 4.12: Comparison of cumulative solution time of IDR(6) versus Bi-

CGSTAB 

 

(a) 

(b) 

(c) 

(d) 
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4.3 Effect of penalty method for prescribed degrees of 

freedom and undrained analysis on IDR(s) and 

ILU0 preconditioner  

This section considers two popular cases of imposed constraints in 

geotechnical problems: 1) prescribed degrees of freedom (d.o.f) in passive 

pressure analysis, and 2) prescribed volumetric strain in undrained analysis 

using effective stress approach. Penalty method is a way to impose constraints. 

Zienkiewicz and others
187

 (2005) have discussed the use of penalty functions 

and penalty method in FE analysis to impose constraints on the solutions. 

Penalty method involves a positive ‘penalty number’, wp, of which the larger 

the value the better the constraints are achieved.  

 

Figure 4.13: 3D FE mesh for the passive pressure analysis 

The first case involves a vertical smooth wall (Figure 4.13) subjected to 

horizontal prescribed displacements to push the wall toward the soil behind it. 

The theoretical passive resistance of the soil is given in Table 4.5. 

 

  

 

X 
Y 

Z 
10m 

10m 

1m 

 

Vertical smooth wall 
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Table 4.4: Properties of Mohr-Coulomb soil 

 

Effective 

Young’s 

modulus 

E’ (kPa) 

Poisson’s 

ratio ν’ 

Effective 

cohesion 

c’ (kPa) 

Effective 

friction 

angle ϕ’ 

(
o
) 

Dilation 

angle ψ 

(
o
) 

Self-

weight 

γ 

(kN/m
3
) 

“At rest” 

earth 

pressure 

coefficient 

Ko 

 Stiff 

clay 
60000 0.3 20 20 0 20 1 

Dense 

sand 
105000 0.3 1 30 5 20 1 

 

Table 4.5: Total passive resistance on the 1m height smooth vertical wall 

 

 
Kp H (m) Pp  (kN) 

Soil profile 1 2.04 1 77.52 

Soil profile 2 3 1 33.46 

 

For each row of Kep corresponding with the prescribed d.o.fs, the penalty 

method is applied by adding the penalty number, wp, the diagonal entries and 

replacing the right-hand-side entries with the product of wp and the prescribed 

value. This formation of Kep is denoted as “unscaled Kep” and is demonstrated 

in Eq.(4.7) when ui is the prescribed degree of freedom. Very minimal amount 

of d.o.fs is constrained in this case hence the value of wp does not affect the 

convergence of IDR(6) as shown in Figure 4.15 and Figure 4.14. Chen and 

Phoon
40

 (2009) recommended scaling the rows and columns containing the 

penalty number so that the values of the corresponding diagonal entries are 

close to 1. By this way, the global stiffness matrix is better conditioned. 

Eq.(4.8) demonstrates this scaling process when ui is the prescribed degree of 

freedom. The Kep modified by this scaling process is denoted as “scaled Kep”. 

This recommendation is useful and essential for the problems tested in this 

section. 
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In Figure 4.14 and Figure 4.15, without scaling, although IDR(6) with ILU0-

Kep preconditioner do not require more matvec to converge, the iterative solver 

often fails when wp becomes too large. IDR(s) fails due to μk,k in Figure 2.2 

becomes zero and the set of basic vectors of the new subspace Gj cannot be 

formed. Varying the shadow matrix P and increasing s do not help with the 

convergence. This failure may be due to the round-off error because wp is 

much larger than the matrix entries. 

The second case considers the same flexible strip footing resting on the 

homogenous soil layer. In this case, the footing is under undrained loading, in 

which the volumetric strain is zero – or there is no change in volume of the 

soil mass considered. Penalty number affects the global stiffness matrix 

significantly in this case. In the global stiffness matrix given in Eq.(2.2), the 

penalty number is the term Kw/n, which involves in each element stress-strain 

matrix. The rest of this section focuses on the behavior of ILU0 in solving this 

undrained analysis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(d) 

Figure 4.14: Matrix-vector multiplications of IDR(6) with ILU0-Kep when 

solving the retaining wall subjected to prescribed horizontal displacements. 

Soil profile 1 is used. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.15: Matrix-vector multiplications of IDR(6) with ILU0-Kep when 

solving the retaining wall subjected to prescribed horizontal displacements. 

Soil profile 2 is used. 
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4.3.1 Undrained analysis of the strip footing using effective 

stress method 

The failure load of the strip footing in undrained analysis can be calculated 

with Eq.(3.1) with equivalent undrained parameters derived from the drained 

parameters by Eq.(4.9), (4.10), and (4.11). The total friction angle is zero. 

 '12

'3




E
Eu  (4.9) 





N
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cu




1

'2
 (4.10) 
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One shortcoming of the MC model is that the geotechnical systems do not fail 

when the dilation angle ψ is different from zero. Theoretical  results of triaxial 

test show that the volumetric strain keeps increasing when the applied load 

increases. One rectification recommended is to manually set the dilation angle 

to zero to control the volumetric strain. Hence in this section, the dilation 

angle is set to zero for both dense sand and stiff clay, which still satisfies the 

non-associated flow rule. 

Table 4.6: Total stress parameters of Mohr-Coulomb yield criterion  

 

 

Young’s modulus, 

Eu (MPa) 

Poisson’s 

ratio, νu 

Cohesion, 

cu (kPa) 

Friction 

angle, ϕu 

(degree) 

Dilation 

angle, ψ 

(degree) 

Stiff clay 69.23 0.5 18.79 0 0 

Dense sand 121.15 0.5 0.8660 0 0 

 

Table 4.7: Ultimate bearing capacity of strip footing on homogenous soil 

layers 

 

 
Nc qf-strip  = cuNc (kPa) qmax (kPa) 

Soil profile 1 5.14 96.58 90 (= 93% qf-strip)   
Soil profile 2 5.14 4.45 4.4(= 99% qf-strip) 

 

The following section will show that IDR(6) with ILU0-Kep does not converge 

when solving Eq. (2.2). Hence IDR(6) was preconditioned with SSOR-LR to 
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carry on the analysis and obtain Kep, of which ILU0 factorization is 

investigated. IDR(6) with SSOR-LR did converge but SSOR-LR is not an 

efficient remedy because the iterative solver always requires more than 5000 

matvec to converge and often shows stagnant behaviour when the footing is 

close to failure. 

4.3.2 Problem with ILU0 factorization 

Figure 4.16 shows the relative residual norm when solving the undrained 

problem with IDR(6) and Bi-CGSTAB preconditioned with ILU0-Kep. Both of 

the methods do not converge within the prescribed matvec but Bi-CGSTAB 

behaviour is worse because the relative residual norm keeps increasing and 

finally break down while it is stagnant in IDR(6). Increasing s in IDR(s) does 

not help the convergence hence the problems may lie in ILU0-Kep 

preconditioner. 

 
(a) 

 
(b) 

Figure 4.16: Typical relative residual norm of an unstable ILU0 preconditioner: 

(a) IDR(6) method; (b) Bi-CGSTAB method 

Table 4.8 and Table 4.9 presents the statistics of ILU0-Kep according to the 

recommendation of Chow and Saad
43

 (1997) with the variation of penalty 

number, Kw/n. These statistics include condest, 1/pivot, and max(L̅ U̅), of 

which meanings and computing procedure have been presented in Table 2.1 

and Figure 2.6. 

When  Kw/n = 0, the problem is returned to drained analysis and all the 

statistics are small, which proves the stability and efficiency of ILU0-Kep in 

drained analysis as shown in Chapter 3 and Section 4.2. When Kw/n increases, 

condest and max(L̅  U̅) grow extremely large: on the order of 10
15

 following 
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the guideline from Chow and Saad
43

 (1997) while 1/pivot is still as small as 

when Kw/n = 0. The extremely large values are highlighted in Table 4.8 and 

Table 4.9. Although Chow and Saad
43

 (1997) reported that they did not 

observed any system that has large max(L̅ U̅) and small 1/pivot, the small 

1/pivot and large max(L̅ U̅) are found in this undrained system. 1/pivot is 

small or pivot value is reasonable large can be because the large penalty 

number Kw/n is added to the system. Chow and Saad recommended that when 

ILU preconditioner has small 1/pivot and large condest, the iterative solver 

fails to converge due to unstable triangular solves. Stabilizing ILU0 by adding 

the threshold is irrelevant because the pivot values are large enough. ILUT(50, 

10
-6

) was used to precondition IDR(6) and Bi-CGSTAB and the same trend of 

relative residual norm with Figure 4.16 was found. Benzi and others
20

 (1999) 

also noticed that when the problem does not lie in the accuracy of ILU0 

factorization, allowing more fill-ins does not help with the convergence. They 

recommended reordering the original matrix to improve the ILU factorization 

and RCM is recommended in general. The statistics of ILU0 of the RCM 

reordering Kep are presented in Table 4.8 and Table 4.9. Condest of this ILU0 

are 10
2
 – 10

30
 times larger than of ILU0-Kep from the original Kep and IDR(6) 

does not converge when preconditioned with this ILU0. Hence RCM ordering 

is not useful in this case. 
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Table 4.8: ILU statistics and possible reasons of failure for soil profile 1 – 

Stiff clay  

 condest 1/pivot max(L̅  U̅) 

Mesh size 16×3×16    

Kw/n = 0K’ = 0    

Elastic 2.27×10
-3

 1.86×10
-4

 8.68×10
5
 

Elastic (90kPa) 2.27×10
-3

 1.86×10
-4

 8.68×10
5
 

Kw/n = 50K’    

Elastic 5.83×10
25

 3.11×10
-3

 2.82×10
11

 

Elastoplastic (90kPa) 3.66×10
23

 1.56×10
-2

 1.35×10
12

 

Kw/n = 50K’– RCM (Kep)    

Elastic 5.36×10
22

 1.25×10
-2

 2.00×10
12

 

Elastoplastic (90kPa) 4.76×10
24

 4.38×10
-2

 4.36×10
12

 

Kw/n = 500K’    

Elastic 7.32×10
22

 3.67×10
-4

 6.19×10
13

 

Elastoplastic (90kPa) 1.66×10
23

 3.05×10
-3

 1.75×10
13

 

Kw/n = 500K’– RCM (Kep)    

Elastic 2.24×10
23

 2.35×10
-3

 1.44×10
13

 

Elastoplastic (90kPa) 4.07×10
24

 8.02×10
-4

 5.60×10
13

 

Mesh size 24×6×24    

Kw/n = 0K’ = 0    

Elastic 6.46×10
-3

 3.72×10
-4

 4.35×10
5
 

Elastic (90kPa) 6.46×10
-3

 3.72×10
-4

 4.35×10
5
 

Kw/n = 50K’    

Elastic 2.47×10
63

 1.27×10
-2

 1.12×10
15

 

Elastoplastic (90kPa) 3.96×10
63

 8.04×10
-2

 3.06×10
17

 

Kw/n = 50K’– RCM (Kep)    

Elastic 2.02×10
78

 6.82×10
-2

 3.90×10
14

 

Elastoplastic (90kPa) 2.30×10
80

 1.12×10
0
 1.46×10

17
 

Kw/n = 500K’    

Elastic 6.61×10
61

 3.28×10
-2

 4.67×10
13

 

Elastoplastic (90kPa) 2.94×10
64

 1.17×10
-2

 2.67×10
16

 

Kw/n = 500K’– RCM (Kep)    

Elastic 3.62×10
75

 2.72×10
-2

 7.75×10
17

 

Elastoplastic (90kPa) 2.28×10
78

 8.20×10
-3

 7.75×10
17

 

Mesh size 32×8×32    

Kw/n = 0K’ = 0    

Elastic 9.35×10
-3

 4.96×10
-4

 3.26×10
5
 

Elastic (90kPa) 9.35×10
-3

 4.96×10
-4

 3.26×10
5
 

Kw/n = 50K’    

Elastic 3.94×10
95

 8.32×10
-2

 1.62×10
14

 

Elastoplastic (90kPa) 9.08×10
95

 1.05×10
0
 4.10×10

16
 

Kw/n = 50K’– RCM (Kep)    

Elastic 8.78×10
127

 5.91×10
0
 6.89×10

19
 

Elastoplastic (90kPa) 2.10×10
128

 7.00×10
1
 8.53×10

26
 

Kw/n = 500K’    

Elastic 5.85×10
95

 1.82×10
-2

 7.18×10
15

 

Elastoplastic (90kPa) 4.32×10
95

 7.41×10
-2

 1.49×10
16

 

Kw/n = 500K’– RCM (Kep)    

Elastic 4.32×10
124

 2.07×10
-2

 3.85×10
21

 

Elastoplastic (90kPa) 2.97×10
129

 4.19×10
-2

 3.06×10
21
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Table 4.9: ILU statistics and possible reasons of failure for soil profile 2 – 

Dense sand  

 condest 1/pivot max(L̅  U̅) 

Mesh size 16×3×16    

Kw/n = 0K’ = 0    

Elastic 1.35×10
-3

 1.06×10
-4

 1.52×10
6
 

Elastic (4.4kPa) 1.35×10
-3

 1.06×10
-4

 1.52×10
6
 

Kw/n = 50K’    

Elastic 1.11×10
24

 2.07×10
-3

 1.37×10
12

 

Elastoplastic (4.4kPa) 6.32×10
21

 5.83×10
-3

 5.07×10
11

 

Kw/n = 50K’ – RCM (Kep)    

Elastic 4.07×10
21

 3.11×10
-3

 8.03×10
11

 

Elastoplastic (4.4kPa) 6.08×10
21

 1.62×10
-3

 3.35×10
12

 

Kw/n = 500K’    

Elastic 2.26×10
21

 8.72×10
-4

 2.71×10
14

 

Elastoplastic (4.4kPa) 6.58×10
21

 2.26×10
-2

 1.47×10
17

 

Kw/n = 500K’ – RCM (Kep)    

Elastic 5.37×10
21

 2.00×10
-4

 2.88×10
15

 

Elastoplastic (4.4kPa) 1.68×10
22

 5.69×10
-3

 1.94×10
16

 

Mesh size 24×6×24    

Kw/n = 0K’ = 0    

Elastic 3.56×10
-3

 2.13×10
-4

 7.61×10
5
 

Elastic (4.4kPa) 3.56×10
-3

 2.13×10
-4

 7.61×10
5
 

Kw/n = 50K’    

Elastic 5.97×10
60

 3.10×10
-2

 1.05×10
13

 

Elastoplastic (4.4kPa) 7.41×10
59

 1.04×10
-1

 1.13×10
14

 

Kw/n = 50K’– RCM (Kep)    

Elastic 9.19×10
77

 9.26×10
-2

 8.86×10
14

 

Elastoplastic (4.4kPa) 2.25×10
76

 2.35×10
-2

 5.29×10
14

 

Kw/n = 500K’    

Elastic 4.92×10
61

 8.59×10
-3

 2.04×10
16

 

Elastoplastic 2.48×10
59

 1.12×10
-3

 3.68×10
14

 

Kw/n = 500K’– RCM (Kep)    

Elastic 4.44×10
75

 5.70×10
-3

 9.10×10
16

 

Elastoplastic 5.23×10
79

 2.88×10
-3

 9.10×10
16

 

Mesh size 32×8×32    

Kw/n = 0K’ = 0    

Elastic 5.25×10
-3

 2.84×10
-4

 5.71×10
5
 

Elastic (4.4kPa) 5.25×10
-3

 2.84×10
-4

 5.71×10
5
 

Kw/n = 50K’    

Elastic 6.05×10
93

 3.07×10
-2

 1.33×10
15

 

Elastoplastic (4.4kPa) 6.48×10
91

 1.67×10
-1

 1.19×10
15

 

Kw/n = 50K’– RCM (Kep)    

Elastic 2.94×10
125

 5.69×10
-2

 2.66×10
22

 

Elastoplastic (4.4kPa) 4.03×10
125

 2.38×10
-2

 1.30×10
19

 

Kw/n = 500K’    

Elastic 6.52×10
98

 4.94×10
-3

 7.09×10
22

 

Elastoplastic (4.4kPa) 1.96×10
92

 1.09×10
-1

 3.83×10
17

 

Kw/n = 500K’– RCM (Kep)    

Elastic 2.52×10
130

 1.46×10
-2

 2.61×10
21

 

Elastoplastic 2.00×10
129

 1.92×10
-2

 2.61×10
21
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It is worth to note that undrained problem can be solved by total stress 

approach, meaning to use the total stress parameters in Table 4.6 and solve the 

1-by-1 block linear system as usual. The shortcoming of this approach is the 

pore pressure is unavailable in the solution. In this case, both the friction angle 

and dilation angle have to be set to zero, implying associated flow rule and 

symmetric global stiffness matrix Kep. The Poisson’s ratio is set to 0.499. 

Although this Kep is symmetric and possesses better eigenspectrum (i.e. no 

complex eigenvalues), IDR(6) with ILU0-Kep does not converge and the 

relative residual norm shows the stagnant behavior as in  Figure 4.16. Hence 

ILU0 is not suitable to precondition the linear system of undrained analysis in 

Eq.(2.2). 

4.3.3 Recommendation for remedy 

The last paragraph in Section 4.3.1 has mentioned that the undrained analysis 

in this chapter was performed with SSOR-LR preconditioner. Hence one easy 

and cheap remedy is to use Jacobi or SSOR-L/SSOR-LR preconditioner 

instead of ILU0. However Section 4.3.1 also shown that IDR(6) with these 

preconditioners always requires more than 5000 matvec to converge and does 

not converge when the system is close to failure. Hence unless Eq.(2.2) is 

demanded to obtain the undrained behavior of the geotechnical problems, this 

remedy is not recommended. 

A better remedy is using Biot’s consolidation analysis to simulate undrained 

behavior of soil by tuning either the permeability [k] or the time step Δt to 

small values. Phoon and others
131

 compared this approach with the analysis 

using Eq. (2.2) when the soil is linear elastic and concluded that this approach 

is more advantageous. Chapter 5 will show that IDR(s) and ILU0 

preconditioner can solve Biot’s consolidation equations, Eq.(2.8), efficiently 

when the soil follow the non-associated MC model, and  undrained behavior 

can be obtained by tuning [k] and Δt without difficulty. 

4.4 Summary 

This chapter performs numerical experiments to observe the behavior of 

IDR(6) preconditioned with ILU0 preconditioner when solving sequence of 
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linear systems and when penalty method is applied. The key recommendations 

and observations are summarized below: 

1. The techniques to save the total simulation time in dealing with 

sequence of nonsymmetric linear systems are recommended as: 

a. Forming the elastoplastic global stiffness matrix Kep = Ke + Δ 

implicitly by forming the elastic global stiffness matrix Ke once 

and update the Δ matrix at every NR iteration. Forming Δ 

matrix only takes up to 40 percent of the time consumed in 

each NR iteration while forming the complete Kep will take at 

least 60 percent. 

b. Using ILU0-Ke to save the time to form preconditioner when 

the percentage of yielded Gauss points Ny/Nip is less than 15 

percent. 

c. Using the preconditioner updating scheme 4 in Table 4.3 to 

update ILU0-NR preconditioner after the load increment is 

applied. ILU0-NR is more time efficient than ILU0-Ke and is 

still effective when Ny/Nip  is more than 15. When this updating 

scheme is combined with technique (a), the total simulation 

time can be reduced by 60 percent (Figure 4.12). 

2. Penalty method involves adding a large penalty number to the global 

stiffness matrix to impose some constraints on the system. The passive 

pressure problem demonstrates the prescribed displacements as 

constraints and penalty number has minimal effects on IDR(6) and 

ILU0-Kep because the number of constrained d.o.fs is minimal 

compared with the total number of d.o.f. On the contrary, the penalty 

number greatly affects the undrained analysis using Eq.(2.2) because 

this case has the constraint such that the volumetric strain is zero over 

the whole domain. ILU0-Kep has been shown to be unstable and both 

IDR(6) and Bi-CGSTAB fail to converge when ILU0-Kep is used. 

Increasing the fill-ins by using ILUT(50, 10
-6

) and reordering Kep with 

RCM method do not mitigate the situation. Jacobi and SSOR-L/SSOR-

LR are recommended when Eq.(2.2) is demanded and the linear system 

is small. A more practical remedy for large-scale problems is using 
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Biot’s consolidation analysis in Eq.(2.8) to simulate the undrained 

behavior by tuning the permeability and time step. This 

recommendation is discussed in detail in Chapter 5. 

Part of this chapter has been accepted for publication in: 

Tran, H.H.T., Toh, K.C. and Phoon, K.K. (2013), Preconditioned IDR(s) 

iterative solver for non-symmetric linear system associated with FEM analysis 

of shallow foundation. Int. J. Numer. Anal. Meth. Geomech.. 

doi: 10.1002/nag.2171  
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CHAPTER 5 PRECONDITIONERS FOR 2-

BY-2 BLOCK MATRICES: 

CONSOLIDATION ANALYSIS 

5.1 Introduction 

This chapter discusses the application of preconditioners in Section 2.3 to the 

Biot’s consolidation analysis when the soil follows the non-associated MC 

model. These preconditioners include diagonal block preconditioner Md, 

constrained block preconditioner Mc, MSSOR and ILU0. From Section 2.3, 

block preconditioners mainly approximates the elastoplastic global stiffness 

matrix by varying K̂ and Ŝ , which are approximations of Kep and Schur 

complement S respectively. This chapter will first perform numerical 

experiments to compare the efficiency of diagonal block preconditioner Md 

and constrained block preconditioner Mc with different K̂ and Ŝ . Then the 

most efficient block preconditioner will be compared with MSSOR and ILU0, 

which treat the 2-by-2 block global stiffness matrix as a 1-by-1 block matrix. 

Secondly, this chapter will adopt the preconditioner updating scheme proposed 

in Section 4.2.2.2 to investigate its efficiency in saving the simulation time to 

solve the Biot’s consolidation problem. Thirdly, the eigenvalue distribution of 

the global stiffness matrix is presented to explain the convergence of IDR(s) 

and the efficiency of the block preconditioner. Finally, this chapter will show 

that undrained analysis can be simulated using Biot’s consolidation equation 

and the block preconditioner can be used to speed up the simulation time 

hence resolve the difficulty observed in Section 4.3.2. 

5.2 Problem description 

All the numerical experiments in this chapter are performed on the flexible 

square footing problem. Figure 5.1a shows the 3D FE mesh of the flexible 

square footing resting on a layer of homogenous soil and subjected to uniform 

pressure, q. Table 5.1 summaries the characteristics of the three FE meshes 

(16×16×16, 20×20×20, 24×24×24) used in this section. The water table is set 

at the ground surface and is in hydrostatic condition at the initial stage; the soil 
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is assumed to be fully saturated. The base is fixed in all directions and 

impermeable. The side faces are fixed in transversed directions and free in in-

plane directions for both displacement and water flux. The top surface is free 

in all direction and free-draining with pore pressure assumed to be zero. Two 

cases of soil profile are considered: soil profile 1 is a homogeneous stiff clay 

layer; soil profile 2 is a homogeneous dense sand layer. The soil follows a 

non-associated MC model and the effective parameters are presented in Table 

5.2.  

 

 

(a) (b) 

Figure 5.1: (a) 3D mesh of the square footing; (b) Ramp loading 
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Table 5.1: 3D finite element meshes of the square footing 

  Mesh size*   

 8×8×8 16×16×16 20×20×20 24×24×24 

Number of elements 512 4,096 8,000 13,824 

Number of nodes 2673 18,785 35,721 60,625 

Number of unknowns (N) 7160 55,280 107,180 184,296 

Displacement DOFs, nd 6512 50,626 98,360 169,296 

Pore pressure DOFs, np 648 4,624 8,820 15,000 

np/N (%) 9.05 8.36 8.23 8.14 

Number of Gauss points (Nip) 13,824 110,592 216,000 373,248 

Number of nonzero (nnz)     

  Soil profile 1 

Elastic system  9,751,246 19,428,239 34,122,447 

Elastoplastic system at 130kPa  9,765,468 19,443,665 34,131,365 

     

 Soil profile 2 

Elastic system  9,757,406 19,434,819 34,121,660 

Elastoplastic system at 20kPa  9,781,416 19,467,142 34,143,209 

     

nnz/N
2
 (%)

 
    

  Soil profile 1 

Elastic system  0.32 0.17 0.1 

Elastoplastic system at 130kPa  0.32 0.17 0.1 

  

 Soil profile 2 

Elastic system  0.32 0.17 0.1 

Elastoplastic system at 20kPa  0.32 0.17 0.1 

* Mesh size x×y×z means x element in x direction, y element in y direction and z element in 

z direction 

 

Table 5.2: Effective parameters of the soil following a non-associated MC 

model 
 

Young’s 

modulus 

E’ (MPa) 

Poisson’s 

ratio v 

Cohesion 

c’ (kPa) 

Friction 

angle Φ’ 

(degree) 

Dilation 

angle ψ 

(degree) 

Saturated 

unit 

weight γsat 

(kN/m
3
) 

Permeability 

kx/γw = kx/γw 

with γw = 

10kN/m
3
, 

Unit of kx,ky = 

m/s 

Stiff clay 60 0.3 20 20 0 10 10
-10

 

Dense sand 105 0.3 1 30 5 10 10
-6

 

 

A uniformly distributed load is applied to the square footing. The applied load 

is a function of time and follows the ramp loading diagram in Figure 5.1b, in 

which qmax is the maximum applied load and t0 is the maximum loading time. 

When the consolidation time t is less than t0, the load increment Δf in Eq.(2.8) 

is added to the system every time step, Δt. When the consolidation time t 

exceeds t0, the maximum assigned load has been reached and the load 
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increment Δf in Eq.(2.8) is set to zero. The system is considered in the 

consolidation stage. The loading informations for soil profile 1 and 2 are 

summarized in Table 5.3. In this table, Δt is the time step in Eq.(2.11), incs 

denotes the number of load increments, and nstep denotes the number of time 

steps. nstep should be always greater or equal to incs. 

Table 5.3: Loading information 

 

t0 (s) qmax 

Number of 

load increment, 

incs 

Time step Δt 

Number of 

time step, 

nstep 

Soil profile 1 1 130 20 0.05 20 

Soil profile 2 1 20 20 0.05 20 

 

Similar to the 1-by-1 block matrix in Section 4.2.1, the elastoplastic global 

stiffness matrix of Biot’s consolidation analysis can be written as the 

summation of the elastic global stiffness matrix and a low-rank matrix as 

shown in Eq.(5.1). The changes of the global stiffness matrix in each NR 

iteration purely come from the changes of Kep. This chapter will apply the 

recommendation in Section 4.2.1 to form the global elastoplastic stiffness 

matrix implicitly by forming the elastic global stiffness matrix once and 

update the Δ matrix at every NR iteration.  
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In previous chapters, the degree of freedoms (d.o.fs) in the elastoplastic global 

stiffness matrix Kep have always been ordered in natural order which results 

directly from FE formulation. For Biot’s consolidation, when the d.o.fs are in 

natural order, the global stiffness matrix has the same pattern in 1-by-1 block 

matrix in Figure 2.4a. This chapter aims to exploit the block structure in Eq. 

(2.8) so the d.o.fs are re-ordered to obtain the pattern of 2-by-2 block matrix in 

Figure 2.4b. Natural ordering will also be used in the later part of this chapter 

when MSSOR and ILU0 preconditioner are compared with block 

preconditioners. This numerical experiment will show that the natural ordering 

is not as convenient as the block ordering when preconditioners are taken into 

account. 
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This chapter continues to use IDR(s) with s = 6, which has been shown in 

Chapter 3 to be the optimal value of s. The stopping criteria of IDR(6) and NR 

iteration are similar to previous chapters and are presented again in Eq.(5.2) 

and (5.3) respectively, 

  5000or   10_ 6

20

2

)(

  itoli
r

r i

 (5.2) 

  10 6

2
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F

uKF ep

 

(5.3) 

 

with r
(i)

 = Kepu
(i)

 – F and r0 = F. IDR(6) is considered “Fail” when the number 

of matvec exceeding 5000. The values of matvec and total iteration time 

reported are average values over all the NR iterations in each load step. Total 

iteration time includes the time spent to form preconditioner and the time 

spent by iterative solver. 

5.3 Comparison of preconditioners and effect of node 

ordering 

5.3.1 Preconditioners derived from the 2-by-2 block ordering 

The approximations of K̂ and Ŝ in Eq.(5.4) and (5.5) are used in diagonal block 

preconditioner, Md, and block constrained preconditioner Mc. The 

approximations are numbered from the crudest to the finest. The finer the 

approximation is, the more time it takes to form that approximation. The soil 

stiffness matrix Kep in Eq.(2.8) is the same as the Kep in drained analysis in 

Eq.(2.1). Hence the approximations of Kep are taken as preconditioner for 1-

by-1 block matrix discussed in Chapter 3 and Chapter 4. Section 3.4 and 3.5 

have shown numerically that ILU0-Kep is the most time efficient to 

precondition Kep hence this section uses )(0ILUˆ
3 epKK   as the finest 

approximation of Kep. The notation ‘ILU0(A)’ in this case denotes the 

incomplete LU factorization with zero fill-in of the matrix A inside the 

brackets. The notation ‘SSOR(A)’ denotes the SSOR preconditioner in Eq.(2.4) 
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extracted from the matrix A with ω =1. The GJ preconditioner in Section 

2.3.3.1 is termed here as Md( 11
ˆ,ˆ SK ). 

)(diagˆ
1 epKK  ; )(SSORˆ

2 epKK  ; )(0ILUˆ
3 epKK   (5.4) 

))diag((diagˆ 1

1 CBKBS ep

T  
 

 CBKBS ep

T  1

2 )diag(0ILUˆ  

 CBKBS ep

T  1

3 )ILU0(0ILUˆ  

(5.5) 

 

Section 2.3.3.1 has presented the theorem from Phoon et al.
131

 (2002) about 

the effect of α on the eigenvalue distribution of the 2-by-2 block matrix 

preconditioned by a diagonal block preconditioner. This section first will use α 

= –4 to compare Md and Mc when K̂ and Ŝ vary.   

Table 5.4 and Table 5.5 present the matvec and total iteration time to solve the 

Biot’s consolidation equation using Md and Mc preconditioner at the final load 

step, qmax. The time presented in bracket is the overhead time to extract the 

nessecary block matrices (such as block B in Eq.(2.8) for Mc preconditioner) 

and to form the preconditioner. Section 2.3.3 has reviewed that Mc is a better 

approximation of Eq.(2.8) than Md hence IDR(6) preconditioned with Mc is 

expected to converge faster than when preconditioned with Md. However more 

time may be required to form Mc as well as to perform the preconditioning 

step.  

In Table 5.4 and Table 5.5, for each problem size, the matvec reduces from 

left to right and from top to bottom when the approximations K̂ and Ŝ change 

from the crudest to the finest. Among all the combination of K̂ and Ŝ , 

Md( 11
ˆ,ˆ SK ) is the crudest approximation of A hence requires the most matvec 

while Mc( 33
ˆ,ˆ SK ) is the finest approximation of A hence requires the least 

matvec. Botchev and Golub
30

 (2006) recommended the use of 
2K̂ in Mc 

preconditioner when Kep in the 2-by-2 block matrix A is nonsymmetric. 

However the numerical results show that even with the finest approximation 

of S, Mc( 32
ˆ,ˆ SK ) does not achieve less matvec than Mc( 33

ˆ,ˆ SK ) or less total 

iteration time than Md( 13
ˆ,ˆ SK ). With the same Ŝ , the matvec count reduces 
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greatly when K̂ changes from 
1K̂  to 3K̂ . While with the same K̂ , the matvec 

count only reduces minimally when Ŝ changes from 
1Ŝ  to 3Ŝ . This shows that 

a good approximation of Kep is more crucial to the efficiency of a 

preconditioner than a good approximation of S. The reason may be because 

Kep is a major block in the 2-by-2 block matrix A. Table 5.1 shows that the 

size of Kep submatrix is more than 90 percent of the matrix A. 

Table 5.4: Comparison of diagonal block preconditioner Md and constrained 

block preconditioner Mc. Time presented in brackets is overhead time 

including time required to form preconditioners and extracting required block 

matrices. Soil profile 1 is used. Results are reported at the last load step.  

16×16×16 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 1291 32.1 (0.1) 274 17.5 (1.3) 201 12.8 (1.9) 

Mc 1370 39.5 (0.1) 216 23.2 (1.3) 255 25.2 (2.0) 

2Ŝ  
Md 1273 30.8 (6.5) 303 27.3 (9.4) 173 21.3 (10.9) 

Mc 712 29.1 (8.5) 210 19.2 (5.7) 177 27.5 (10.6) 

3Ŝ  
Md 1173 235.9 (177.3) 264 156.3 (139.9) 168 243.5 (227.1) 

Mc Fail  –  199 159.7 (142.1) 105 280.5 (272.5) 

20×20×20 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 1896 63.4 (0.1) 346 43.2 (2.8) 262 22.7 (3.7) 

Mc 1835 106.9 (0.2) 275 38.2 (2.2) 336 67.8 (4.6) 

2Ŝ  
Md 1606 83.0 (23.1) 428 83.1 (33.0) 223 59.0 (34.1) 

Mc 909 88.5 (32.9) 272 68.9 (25.4) 313 94.1 (36.4) 

3Ŝ  
Md 1542 1379.3 (1083.3) 344 773.7 (716.8) 250 904.3 (857.1) 

Mc Fail  –  234 1196.8 (1117.4) 129 1170.8 (1127.5) 

24×24×24 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 2708 221.6 (0.2) 493 113.9 (4.5) 338 79.8 (7.4) 

Mc 2769 229.0 (0.2) 376 130.3 (4.6) 315 106.7 (7.6) 

2Ŝ  
Md 2275 229.3 (72.6) 554 231.7 (94.6) 322 123.6 (76.2) 

Mc 1367 241.1 (95.8) 388 222.2 (105.4) 410 226.1 (94.5) 

3Ŝ  
Md 2095 3934.4 (3198.1) 438 3670.2 (2569.6) 311 3649.9 (2561.7) 

Mc Fail  –  348 3208.7 (3034.9) 197 3164.3 (3074.7) 
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Table 5.5: Comparison of diagonal block preconditioner Md and constrained 

block preconditioner Mc. Time presented in brackets is overhead time 

including time required to form preconditioners and extracting required block 

matrices. Soil profile 2 is used. Results are reported at the last load step. 

16×16×16 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 1155 26.3 (0.0) 276 13.3 (1.1) 174 10.4 (2.0) 

Mc 1145 30.5 (0.0) 218 20.8 (1.2) 179 17.8 (2.0) 

2Ŝ  
Md 1113 35.3 (8.6) 309 20.7 (7.0) 145 17.0 (9.6) 

Mc 630 17.8 (5.7) 215 28.6 (8.9) 114 21.4 (10.7) 

3Ŝ  
Md 1051 296.7 (228.8) 252 190.6 (171.8) 125 190.0 (180.6) 

Mc Fail  –  200 243.7 (217.9) 73 229.6 (220.7) 

20×20×20 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 1771 73.0 (0.1) 371 32.2 (2.2) 282 24.6 (3.7) 

Mc 1879 99.6 (0.2) 282 40.9 (2.2) 208 30.2 (3.7) 

2Ŝ  
Md 1597 57.0 (16.8) 437 59.7 (23.4) 267 46.9 (26.2) 

Mc 885 79.3 (30.9) 294 58.2 (20.5) 209 51.8 (25.9) 

3Ŝ  
Md 1493 1121.0 (892.2) 341 705.16 (760.5) 250 867.4 (821.7) 

Mc Fail  –  260 881.5 (817.7) 108 860.3 (835.4) 

24×24×24 1K̂  
2K̂  

3K̂  

1Ŝ  
Md 2377 193.3 (0.1) 490 73.7 (4.0) 274 53.4 (6.8) 

Mc 2445 241.2 (0.3) 341 116.4 (4.5) 262 80.5 (6.8) 

2Ŝ  
Md 2068 285.7 (99.7) 559 229.7 (106.9) 299 109.1 (70.9) 

Mc 1154 195.0 (88.1) 535 200.8 (69.6) 290 177.9 (94.2) 

3Ŝ  
Md 1810 4654.3 (3829.9) 454 3874.2 (3645.4) 272 4516.8 (3318.4) 

Mc Fail  –  355 5017.0 (4742.6) 130 3727.7 (3650.2) 

 

With the same combination of K̂ and Ŝ , the matvec required by Mc is smaller 

than that required by Md, which agrees with the prediction. There are cases – 

numbers in box – that Mc requires more matvec than Md. The differences in 

matvec count, which are marginal, can be due to round-off error. Although Mc 

requires less matvec than Md, the total iteration time required by Mc is often 

more than that required by Md. This is expected because the forming process 

and the preconditioning step of Mc take more time than that of Md. There are 

cases that the total iteration time required by Mc is less than that required by 

Md. These cases are marked as boxed numbers in the total iteration time 

columns in Table 5.4 and Table 5.5. This happens because there is significant 

reduction of matvec when Mc is used in compared with when Md is used, 

which leads to the reduction in total iteration time. This reduction of matvec 

often occurs with Mc( 22
ˆ,ˆ SK ), which belongs to the class of preconditioner 

recommended by Botchev and Golub
30

 (2006). Although in general the use of 
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2K̂ does not offer the least matvec count or the least total iteration time, the 

use of Mc( 22
ˆ,ˆ SK ) is more efficient than other combinations of K̂ and Ŝ  

because Mc( 22
ˆ,ˆ SK ) succeeds in reducing the matvec count and the total 

iteration time when compared with Md( 22
ˆ,ˆ SK ). 

While the iteration time is controlled by the preconditioner, which Md has 

been shown to be more time efficient than Mc, the time to form the 

preconditioner depends greatly on K̂ and Ŝ . With the same Ŝ , the time to form 

Md or Mc increases when K̂ varies from 
1K̂  to 3K̂ as expected but the increase 

is minimal. On the contrary, with the same K̂ , the time to form Md or Mc  

increases drastically when Ŝ varies from 
1Ŝ to 3Ŝ . 3Ŝ  is the closet to S and the 

time to form preconditioners involving 3Ŝ requires more than 400 times the 

time to form those involving 
1Ŝ . Previous paragraph in this section has 

discussed that a better K̂ is more crucial than a better Ŝ because the reduction 

in matvec due to a better Ŝ is very minimal. Hence a fine approximation of S 

reduces the iteration time minimally but requires an extensive time to form. 

Among all of the combination of K̂ and Ŝ , Md( 13
ˆ,ˆ SK ) requires the least total 

iteration time hence with a good approximation of Kep like 3K̂ , a simple 

approximation of S like
1Ŝ is sufficient. 

Besides, Table 5.4 and Table 5.5 show that Mc( 31
ˆ,ˆ SK ) fails to converge for all 

the tested cases. The reason for this problem is still unknown.  Table 5.6 

shows that this problem can be mitigated by increasing the value of s. 

However, there are two issues with this mitigation. First, although IDR(s) 

converges with large value of s, the matvec and the total iteration time are 

large as well. The matvec reduces minimally with a large increase of s 

therefore it is actually not beneficial to increase s. Second, this minimum value 

of s to obtain convergence grows when the size of the linear system increases 

and cannot be predicted in general case. Nevertheless, the problem associated 

with Mc( 31
ˆ,ˆ SK ) is not relevant to this study because previous paragraph has 
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discussed that 3Ŝ is not practical to use hence Mc( 31
ˆ,ˆ SK ) is not used in further 

discussion.  

Table 5.6: Matrix-vector multiplications required by IDR(s) preconditioned 

with Mc( 31
ˆ,ˆ SK ). Soil profile 2 is used. The applied pressure is 3kPa when 

yielded Gauss points first appear and the linear system becomes nonsymmetric. 

 Mesh size   

 16×16×16 20×20×20 24×24×24 

s = 100 Fail Fail Fail 

s = 200 2506 Fail Fail 

s = 400 2205 Fail Fail 

s = 500 – 2876 Fail 

s = 600 – – 4635 

 

Figure 5.2 to Figure 5.7 plot the comparison of Md and Mc at every time step. 

These figures agree with conclusions from Table 5.4 and Table 5.5. Whenever 

3Ŝ is involved, the total iteration time always increases significantly. Among 

all the cases tested and at every time step, Md( 13
ˆ,ˆ SK ) requires the least total 

iteration time. Hence Md( 13
ˆ,ˆ SK ) is the most efficient block preconditioner for 

the nonsymmetric 2-by-2 block matrix from Biot’s consolidation analysis. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5.2: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 16×16×16 and soil profile 1 is used.  
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(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5.3: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 20×20×20 and soil profile 1 is used. 
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(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5.4: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 24×24×24 and soil profile 1 is used. 
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(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5.5: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 16×16×16 and soil profile 2 is used. 
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(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5.6: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 20×20×20 and soil profile 2 is used. 
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(e) 

 
(f) 

Figure 5.7: Comparison of Md and Mc with variation of approximations of Kep 

and S. Mesh size of 24×24×24 and soil profile 2 is used. 
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(b) 
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(d) 

 

 
(e) 

 
(f) 

Figure 5.8: Comparison of Md( 13
ˆ,ˆ SK ) versus MSSOR and ILU0. Soil profile 

1 is used. 
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(e) 

 
(f) 

Figure 5.9: Comparison of Md( 13
ˆ,ˆ SK ) versus MSSOR and ILU0. Soil profile 

2 is used. 
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Md( 13
ˆ,ˆ SK ) is compared with MSSOR and ILU0 in Figure 5.8 and Figure 5.9. 

MSSOR and ILU0 in these cases are formed when the global stiffness matrix 

A is in the 2-by-2 block form. MSSOR is a cheap preconditioner but always 

require more matvec and total iteration time than ILU0 and Md( 13
ˆ,ˆ SK ). ILU0 

shows competitive performance with Md( 13
ˆ,ˆ SK ) especially when the soil 

profile 1 is used. However in general, Md( 13
ˆ,ˆ SK )  requires either less or equal 

total iteration time than ILU0 hence this section concludes that Md( 13
ˆ,ˆ SK ) is 

the most efficient preconditioner for the nonsymmetric 2-by-2 block matrix 

from Biot’s consolidation analysis. We note that 3K̂ is ILU0 of Kep. 

5.3.2 Preconditioners derived from the natural ordering 

Section 5.3.1 has used the block ordering form of the global stiffness matrix to 

exploit the block preconditioners. However block ordering requires overhead 

time to order the unknowns. Natural ordering is the order resulting directly FE 

analysis and does not require any overhead time to form. ILU0 and MSSOR 

treat the matrix as 1-by-1 block matrix hence they are still applicable when the 

global stiffness matrix is in natural ordering. Figure 5.10 plots the comparison 

of ILU0 and MSSOR when the global stiffness matrix is in the block ordering 

and natural ordering. 

Figure 5.10 shows that ILU0 is more effective than MSSOR when the soil 

profile 2 is used. However ILU0 has difficulty to converge when soil profile 1, 

with low permeability, is used. Figure 5.11 shows the typical relative residual 

of IDR(6) preconditioned with ILU0 when the soil profile 1 is used. This can 

be because ILU0 is unstable when the permeability is low. This problem was 

also observed by Chauhary (2010) when the soil follows the linear elastic 

model. Although MSSOR is more robust than ILU0, its performance in natural 

ordering is not as stable as in block ordering. This is because when the matrix 

is in natural ordering, the stress returning process tends to return the Gauss 

points to the apex and forces the stress-strain matrix become zero, which 

makes the global stiffness matrix more ill-conditioned and MSSOR requires 
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more matvec to converge. Hence it is more convenient to arrange the stiffness 

matrix in block ordering and exploit the block preconditioner. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.10: The effect of node ordering in the global stiffness matrix on ILU0 

and MSSOR preconditioner 
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Figure 5.11: Typical relative residual norm of an unstable ILU0 preconditioner 

when the global stiffness matrix is in natural ordering and soil profile 1 is used. 

5.3.3 Eigenvalue distribution 

The eigenvalue distribution of the elastic global stiffness matrix and the 

elastoplastic global stiffness matrix are plotted in Figure 5.12 (a) and (b) 

respectively. The global stiffness matrix has the size of 7160 in which block 

Kep has the size of 6512 and block C has the size of 648. The elastic global 

stiffness matrix is indefinite symmetric hence all the eigenvalues are real 

numbers, in which 6512 are positive and 648 are negative. The global stiffness 

matrix is nonsymmetric hence there are complex eigenvalues, which makes 

the ellipse circumscribes this eigenspectrum bigger than that of the elastic 

stiffness matrix. Figure 5.13a shows that the maximum and minimum real part 

of the eigenvalues do not change when the number of yielded Gauss points 

increases. Hence the increase in the imaginary part alone makes the eigenvalue 

distribution larger. Figure 5.13b shows that the condition number of matrix X 

increases when the number of yielded Gauss points increases. This implies the 

global stiffness matrix becomes more nonsymmetric. This observation agrees 

with those seen in the drained analysis. 

  



CHAPTER 5  PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: 

CONSOLIDATION ANALYSIS 

140 

 

 

 

 
Figure 5.12: Eigenspectrum of: (a) the elastic global stiffness matrix; (b) the 

elastoplastic global stiffness matrix the final load step of 130kPa; (c) the 

elastoplastic global stiffness matrix preconditioned with Md( 13
ˆ,ˆ SK ). Soil 

profile 1 is used with the 8×8×8 FE mesh. 

 
(a) 

 
(b) 

Figure 5.13: Characteristics of eigenspectrum: (a) Maximum and minimum 

eigenvalue; (c) Condition number of matrix X (Eq.(2.30)). Soil profile 1 is 

used with the 8×8×8 FE mesh. 

(a) 

There are 7160 eigenvalues, in which 

6512 are positive and 648 are negative. 

There are 7160 eigenvalues, in which 

6512 have positive real parts and 648 

have negative real parts 

(b) 

(c) 

There are 7160 eigenvalues and all have 

positive real parts 
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Figure 5.12c shows the eigenvalue distribution of the elastoplastic global 

stiffness matrix when it is preconditioned with Md( 13
ˆ,ˆ SK ) with α = –4 . The 

theorem in Section 2.3.3.1 states that when α = –4, the eigenvalues will cluster 

around two point ½ and 1 with the radius of O( CS 1 ), which is reflected in 

Figure 5.12c. The soil profile 2 with kx/γw = 10
-6

 hence the radius O( CS 1 ) is 

small. The range of the eigenvalues has been reduced significantly when 

compared with the distribution in Figure 5.12b, which reflects the efficiency 

of the preconditioner Md( 13
ˆ,ˆ SK ).   

5.4 Undrained analysis with 2-by-2 block matrix 

Section 4.3.2 has shown that the ILU0 preconditioner is unstable to solve the 

undrained analysis in the conventional way. Biot’s consolidation is the general 

equation of soil-water interation hence undrained analysis can be simulated by 

tuning the product kwΔt to a very small value like 10
-14

. kw  is kept constant for 

soil profile 1 and 2 while Δt is varied. The theoretical undrained failure loads 

of the square footing are presented in Table 5.7. The numerical simulations 

load the square footing up to 90 percent of the theoretical failure. The dilation 

angles of both of the soil profiles are manually set to 0 as explained in Section 

4.3.1. 

Table 5.7: Ultimate bearing capacity of square footing qf (kPa) 

 Drained Undrained 

Soil 1 – Dense sand 48.54 7.17 

Soil 2 – Stiff clay 424.68 138.31 

 

When kwΔt  is small, the value of O( CS 1 ) in the theorem in Section 2.3.3.1 

is small and the eigenvalues will be clustered closer hence α = –4 is efficient 

in making the eigenvalues cluster at two points. This section will use α = –4 

for the preconditioner Md( 13
ˆ,ˆ SK ). Figure 5.14 plots the matvec required by 

IDR(6) preconditioned with Md( 13
ˆ,ˆ SK ). The matvec varies in small ranges 

when kwΔt changes. Figure 5.15 shows the the excess pore pressure right 

below the square footing when kwΔt and the mesh change. The excess pore 
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pressure is close to the applied load, which reflects the undrained behaviour of 

the system. However, the accuracy of the study does not only lie in the product 

of kwΔt but also in the mesh convergence. When the system is close to failure, 

there are fluctuations in excess pore pressure in the coarse mesh (16×16×16). 

Figure 5.14 and Figure 5.15 show that undrained analysis can be simulated 

with Biot’s consolidation equations and Md( 13
ˆ,ˆ SK ) is an efficient 

preconditioner for this nonsymmetric linear system. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.14: Effect of kΔt on the convergence of IDR(6) + Md( 13
ˆ,ˆ SK ) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.15: Excess pore pressure at the point right below the square footing 
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5.5 Applying the preconditioner updating schemes in 

Section 4.2.2 

Section 4.2.2 has presented several preconditioner updating schemes to reduce 

the total simulation time when solving the 1-by-1 nonsymmetric block matrix. 

Section 4.2.2 recommended either using the preconditioner which is extracted 

from the elastic global stiffness matrix or updating the preconditioner at the 

beginning of the new load step. This section applies these two schemes on the 

2-by-2 block matrix to observe their efficiency. Table 5.8 summarizes the 

preconditioner updating schemes and the notation of block preconditioners 

used in this section. 

Table 5.8: Different schemes to update ILU0 preconditioner during the 

simulation 

Number Description Preconditioner notation 

1 
The default scheme which updates 

preconditioner at every NR iteration. 

Md( K̂ , Ŝ )-EP 

Mc( K̂ , Ŝ )-EP 

2 

The scheme discussed in Section 4.2.2.1 

which forms the preconditioner from Ke once 

at the beginning of the simulation. 

Md( K̂ , Ŝ )-E 

Mc( K̂ , Ŝ )-E 

3 
Update the preconditioner once in each load 

step right after the load increment is applied. 

Md( K̂ , Ŝ )-NR 

Mc( K̂ , Ŝ )-NR 

 

Section 5.3.1 has shown numerically that Md( 13
ˆ,ˆ SK )  is the most time efficient 

in preconditioning the 2-by-2 block matrix resulted from Biot’s consolidation 

analysis. This conclusion is drawn when the first updating scheme, which 

updates Md( 13
ˆ,ˆ SK )–EP at every NR iteration. When the second or third 

updating sheme is applied, the same preconditioner is used for several NR 

iterations hence it may be more advantage to use a better preconditioner at the 

beginning. Hence Mc is used to compare with Md( 13
ˆ,ˆ SK )–EP. This section 

continues using 3K̂ as the approximation of Kep because 3K̂ has been shown 

many times in this thesis to be an efficient preconditioner for Kep. 3Ŝ  is not 

practical to use because it takes very long time to form hence 
1Ŝ and 

2Ŝ are 

considered in this section. 
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Figure 5.16 and Figure 5.17 show the comparison of the three updating 

schemes in Table 5.8. Section 5.3.1 has commented that Mc approximates the 

global stiffness matrix better hence it always requires less matvec than Md 

does but the reduction in matvec is minimal while the time to form Mc and the 

preconditioning step are more than those required by Md. Figure 5.16 and 

Figure 5.17 show the same trend: although the same Mc is used for the whole 

simulation or the whole load step, the preconditioning step is still more time 

comsuming hence the cumulative time using Mc is always larger than 

Md( 13
ˆ,ˆ SK )–EP. Hence Mc is not recommended in general to precondition the 

2-by-2 block matrix coming from Biot’s consolidation equations. Among all 

the case tested, Md( 13
ˆ,ˆ SK )–E is the most time efficient. The cumulative of 

simulation time can be reduced at least 20 percent when Md( 13
ˆ,ˆ SK )–E is used. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.16: Comparison of different schemes of updating block 

preconditioners. Square footing resting on Soil profile 1 is considered. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.17: Comparison of different schemes of updating block 

preconditioners. Square footing resting on Soil profile 2 is considered.   

5.6 Summary 

This chapter applies IDR(6) and block preconditioners to solve the 2-by-2 

block nonsymmetric linear system from Biot’s consolidation equations. The 

numerical experiments on the flexible square footing result the following 

observations and recommendation: 

1. The most optimal preconditioner for 2-by-2 block matrix is Md( 13
ˆ,ˆ SK ). 

To efficiently precondition the 2-by-2 block matrix, a better K̂ is more 

crucial than a better Ŝ because the reduction in matvec due to a better Ŝ
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is very minimal. Besides, the constrained block preconditioner Mc is 

not recommended for the block matrix from Biot’s consolidation 

equations. Mc does help IDR(6) to converge with less matvec but the 

reduction of matvec is not proportional with the reduction of total 

iteration time. The preconditioner updating scheme, Md( 13
ˆ,ˆ SK )–E, is 

recommended to save at least 20 percent of the total simulation time. 

2. The narural ordering is not recommended for the Biot’s consolidation 

analysis. This is first because block preconditioners cannot be 

exploited in this form. Second, the nonlinear FE analysis cannot be 

proceeded with large applied load because the stress-returning 

procedure tends to return the Gauss points to the apex of the MC 

evelope, which does not occur very often in block orering. Third, ILU0 

and MSSOR is less time efficient than Md( 13
ˆ,ˆ SK ) and ILU0 is unstable 

in natural ordering when the permeability is small. 

3. Undrained analysis can be simulated with Biot’s consolidation 

equations, and Md( 13
ˆ,ˆ SK ) is efficient in preconditioning this 

nonsymmetric linear system. Hence the problem on unstable 

preconditioner occuring in Section 4.3.2 has been solved.  
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CHAPTER 6 APPLICATION OF 

PRECONDITIONERS ON PRACTICAL 

GEOTECHNICAL PROBLEMS 

6.1 Introduction 

Chapter 3, Chapter 4, and Chapter 5 have discussed the application of IDR(s) 

on solving the nonsymmetric linear system arising from the FE analysis with 

the non-associated MC model. Preconditioners have been recommended for 

the 1-by-1 block matrix coming from drained analysis and 2-by-2 block matrix 

coming from Biot’s consolidation analaysis. Strip footing, square footing and 

retaining wall problems have been considered to demonstrate the efficiency of 

the proposed preconditioners. This chapter aims to validate the use of these 

preconditioners for other common geotechnical problems: 1) laterally loaded 

pile and 2) tunnelling. The geotechnical software package GeoFEA is used as 

pre-processor and post-processor of the nonlinear FE analysis. 

6.2 GeoFEA implementation 

GeoFEA is a commercial FE software which has implemented several popular 

iterative solvers such as SQMR to solve symmetric linear systems and Bi-

CGSTAB to solve nonsymmetric linear systems, together several 

preconditioners from Chen
39

 (2005) and Chauhary
37

 (2011) which are optimal 

for symmetric linear systems. An advantage of GeoFEA is that this software 

allows the use of user-defined solvers and preconditioners. This chapter takes 

advantage of this feature to implement IDR(s) and the proposed 

preconditioners to solve the large-scale practical problems. The steps to 

implement user-defined solver in GeoFEA are summarized as follows: 

1. Create the USOLV.DLL file with the FORTRAN code containing the 

user-defined solver and preconditioner. A sample FORTRAN code is 

provided with the software package and can be located at ‘C:\Program 

Files\GeoFEA\USOLV.F90’. 

2. Place the new USOLV.DLL file in the directory ‘C:\Program 

Files\GeoFEA’ 
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3. Create the finite element model with all assignments and boundary 

conditions as is for other inbuilt solvers. 

4. In the ‘SOLVE’ window, check the box beside ‘Generate input files 

only’ and click on ‘OK’ button. This will generate three input files 

(geosoil.gad, geosoil.gpd, and geosoil.cnn) at ‘C:\Program 

Files\GeoFEA’. 

5. Open the ‘geosoil.gad’ file using any text editor (such as 

Notepad/Wordpad) and change the very first integer to 99. This is the 

only change needed by the user to use the user interface solver. 

6. Go back to the ‘SOLVE’ window and check the box beside ‘Use 

existing input files (geosoil.gpd, geosoil.gad)’. Click on ‘OK’ to solve 

the problem using the user-define solver. 

6.3 Drained analysis 

6.3.1 Problem descriptions 

This section models two drained problems from literature: laterally loaded pile 

following Brown and Shie
31

 (1990) and tunnelling following Mroueh and 

Shahrour
117

 (2008). These two problems are geotechnical problems that cannot 

be simplified into 2D analysis and always require 3D modelling. 

Table 6.1 summarizes the properties of the soil and structural materials used in 

the two problems. The soil is considered to follow the non-associated MC 

model. The structural materials (pile and lining) are considered to follow the 

linear elastic mode. The laterally loaded pile has the diameter of 0.28m and 

the length of 4.8m. Figure 6.2 shows the dimension and the boundary 

conditions of the tunnelling problem. The outer diameter of the tunnel, Dtunnel, 

is 7.5m and the lining thickenss is 0.5m.  
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Table 6.1: Geomaterials used in the laterally loaded pile and the tunnelling 

excavation problems 

 

 

Young’s 

modulus, 

E’ (MPa) 

Poisson’s 

ratio, ν’  

Cohesion, 

c’ (kPa) 

Friction 

angle, ϕ’ 

(degree) 

Dilation 

angle, ψ 

(degree) 

Unit 

weight 

γ 

(kN/m
3
) 

Laterally loaded pile problem: Dpile = 0.28m; Lpile = 4.6m 

Soil 87+51z 0.3 13.8 23 0 18.9 

Pile 4.8×10
7
 0.3 - - - 18.9 

Tunnelling problem: Dtunnel = 4.5m; thickness = 0.5m 

Silty sand 30 0.3 0.005 27 5 20 

Lining 3.5×10
7
 0.25 - - - 25 

 

 
 

(a) (b) 

Figure 6.1: 3D FE mesh of: (a) Laterally loaded pile; (b) Tunnelling 

excavation 

The 3D meshes of the laterally loaded pile and the tunnelling problem are 

shown in Figure 6.1(a) and (b) respectively. The mesh of the laterally loaded 

piles includes 10,740 hexahedral elements and results a linear system of 

141,276 unknowns. This number of unknowns does not change during the 

simulation. The mesh of the tunnelling excavation includes 101,101 

hexahedral elements and results a linear system of 303,303 unknowns. This 

number of unknowns varies during the excavation and lining installing process. 

The excavation process follows the TBM method discussed in Mroueh & 

Shahrour
117

 (2008) and is shown in Figure 6.2. The face pressure and the wall 
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pressure are considered uniformed and equal to the initial axial stress at the 

tunnel axis. 

 

 
(a) (b) 

Figure 6.2: (a) Dimension and boundary condition of the tunnelling problem; 

(b) Method used for the tunnel construction using TBM (Mroueh & 

Shahrour
117

, 2008). 

Drained analysis is considered hence IDR(6) with ILU0 preconditioner are 

used as user-defined solver and preconditioner for GeoFEA. The dynamic 

libray USOLV.DLL forms the global stiffness matrix Kep explicitly following 

Eq.(2.1) therefore the technique to form Kep implicitly proposed in Section 4.2 

cannot be demonstrated in this section.  

6.3.2 Implementation of preconditioner updating schemes 

Figure 6.3 presents the implemetation of preconditioner updating schemes 

proposed in Section 4.2.2.2 (with the notations explained in Table 4.3) on the 

laterally loaded pile and tunnelling excavation problem. For the laterally 

loaded pile, the number of unknowns does not change hence ILU0-Ke is still 

applicable. For tunnelling excavation, the number of unknowns reduces during 

excavation process and increases during lining process. ILU0-Stage is denoted 

in this section as the scheme similar to ILU0-Ke. ILU0-Stage scheme updates 

ILU0 preconditioner at the beginning of a stage within which the number of 

unknowns does not change. The results in Figure 6.3 agree with the conclusion 

in Section 4.2 . Figure 6.3(b) and (d) show that ILU0-Ke and ILU0-Stage are 

only useful at the beginning of the simulation when the number of yielded 
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Gauss points is not significant. When there are more yielded Gauss points, 

ILU0-NR is recommended. This scheme can save up to 10 percent of the total 

simulation time in compared with ILU0-Kep scheme.  

 
(a)  

 
(b) 

 
(c)  

 
(d) 

Figure 6.3: Comparison of preconditioner updating scheme in drained analysis 

of: (a)(b) Laterally loaded pile; (c)(d) Tunnelling problem.  

IDR(6) method with ILU0 preconditioner is compared with the built-in Bi-

CGSTAB method with Jacobi preconditioner. The latter failed to converge in 

the laterally loaded pile problem and the analysis could not be carried on. 

Figure 6.4 shows the comparison of the two methods in solving the tunnelling 

excavation problem. IDR(6) with ILU0 is much faster than Bi-CGSTAB and 

this is expected because IDR(6) has been shown to be faster than Bi-CGSTAB 

and ILU0 is a much better preconditioner than Jacobi. Regardless of 

preconditioner updating schemes, IDR(6) with ILU0 can save at least 65 

percent of the total simulation time when compared with the built-in Bi-

CGSTAB with Jacobi. 

problem problem 
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Figure 6.4: Comparison of cumulative solution time of IDR(6) versus Bi-

CGSTAB 

Besides, the disadvantage of forming Kep matrix explicitly at every load step 

or NR step is highlighted in Figure 6.5. The average time in each NR step is 

reported. The time to form Kep consumes 60 percent of the total time spent in 

each NR iteration. There is a reduction of this percentage in tunnelling 

excavation problem because the IDR requires more matvec to converge but 

the absolute time to form Kep does not change. This means a same amount of 

time has to be spared in each NR iteration to form Kep, which is not necessary 

if the implicit way to form Kep proposed in Section 4.2.1 is used. 

 
(a) 

 
(b) 

Figure 6.5: Ratio of the time to form Kep over total time consumed in each NR 

iteration when IDR( 6) with ILU0-Kep is used to solve the linear systems in: (a) 

Laterally loaded pile; (b) Tunnelling excavation 

6.4 Summary 

GeoFEA is a convenient software that can be used as pre-processor and post-

processor to simulate complex geotechnical problems with user-defined 

solvers and preconditioners. The numerical results on the two practical 

examples show that IDR(6) with ILU0-NR is efficient in solving 

problem 

problem 
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nonsymmetric linear system coming from large-scale geotechnical problems. 

The implicit way to form Kep proposed in Section 4.2.1 is effective in reducing 

the total simulation time. 
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CHAPTER 7 CONCLUSION AND 

RECOMMENDATION 

7.1 Summary and conclusions 

The nonsymmetric linear system in this thesis comes from the FE 

discretization of the drained, undrained and Biot’s consolidation of the soil 

following the non-associated MC model. This linear system is large-scale and 

highly sparse. This thesis presented the application of IDR(s) method to solve 

this linear system iteratively with preconditioners as accelerator.  

The following findings and recommendations emerge from the numerical 

studies conducted in this thesis: 

1. IDR(1) is theoretically equivalent to Bi-CGSTAB and IDR(s >1) is 

more efficient than Bi-CGSTAB in both matvec count and total 

iteration time. The choice s = 6 has been shown numerically to be the 

most optimal for IDR(s) applied to nonsymmetric linear systems 

arising from the non-associated MC model. 

2. ILU0 is the most efficient preconditioner for Kep matrix among Jacobi, 

SSOR-LR, SSOR-L and ILUT(ρ, τ). ILUT(ρ, τ) can be competitive in 

term of matvec but less competitive in term of solution time. Moreover, 

the fill-in number is not known priorly and also problem dependent. 

3. Md( 13
ˆ,ˆ SK ) is the most efficient preconditioner for the 2-by-2 block 

stiffness matrix from Biot’s consolidation analysis. The constrained 

block preconditioner Mc is not recommended for the block matrix from 

Biot’s consolidation equations. Mc does help IDR(6) to converge with 

less matvec but the reduction of matvec is not proportional with the 

reduction of total iteration time. 

4. Two techniques to save the total simulation time in dealing with a 

sequence of nonsymmetric linear systems are recommended for both 1-

by-1 and 2-by-2 block matrix as follows: 
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a. Forming the elastoplastic global stiffness matrix implicitly by 

forming the elastic global stiffness matrix once and update the 

low-rank matrix at every NR iteration.  

b. Employing the preconditioner updating scheme. Two schemes 

are recommended: 1) using preconditioners from the elastic 

stiffness matrix for the whole simulation; 2) updating 

preconditioners at the beginning of each load steps.  

c. When these two techniques are used concurrently, the total 

simulation time of 1-by-1 block matrix can be reduced by 60 

percent compared with the default procedure.  

5. IDR(6) with ILU0-Kep has been applied in the laterally loaded pile and 

tunnelling excavation problem and shows more time efficient than the 

built-in Bi-CGSTAB with Jacobi preconditioner. At least 65 percent to 

the default total simulation time can be saved by using IDR(6) with 

ILU0-NR. 

7.2 Limitations and recommendations 

This thesis has presented a wide-range and somewhat in-depth study on 

preconditioners for the nonsymmetric linear system arising from the non-

associated MC model. However this thesis by no mean has taken into account 

and tackled all the problems. The followings list out the limitations of this 

thesis and recommendations for future works 

1. There are other preconditioners developed for 1-by-1 block matrix. 

Approximate inverse preconditioner is one of the available options. 

This class of preconditioner is a promising advancement instead of 

using traditional preconditioner like Jacobi, SSOR and ILU. Similarly, 

for 2-by-2 block matrix, there are several others discussions on 

nonsymmetric saddle points problem that this thesis did not explore. 

2. Consistent tangent stress-strain matrix has been shown to be able to 

preserve the quadratic convergence of NR iteration and is expected to 

be better than the continuum stress-strain matrix in this thesis. Hence it 

is promising to repeat the numerical experiments on this matrix and 

find the optimal preconditioners. 
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3. This thesis used the full NR iteration to solve the nonlinear FE 

equation. No acceleration technique for NR is applied in this thesis. If 

these techniques are applied, the total simulation time should be saved 

more.  

4. As discussed in the Introduction, MC model is used because it is 

popular and simple. However, MC model has drawbacks in modeling 

soil behavior (such as zero dilation angle has to be indicated for 

undrained analysis to control the volumetric strain). Cam-clay model is 

a better choice to tackle the nonlinear behaviour of soil. This model 

follows an associated flow rule but its consistent tangent stress-strain 

matrix is nonsymmetric. Hence, it is interesting to study the use of 

IDR(s) on these models. 
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APPENDIX A: NONLINEAR FINITE 

ELEMENT ANALYSIS  

A.1 Pseudo-code for conventional and modified 

nonlinear FE analysis 

Conventional nonlinear FE algorithm Modified nonlinear FE algorithm 

Read input file 

Set 00 u ,   00 uF , D = De 

Form    eKuK 0  

for i = 1,…, nload increment 

for j = 1, maxitNR 

 

Solve     
1 jiiijij uFFuuK  

  ijjii uuu  1
 

for all elements 

for all Gauss points 

Form elastic strain increment 

ijij uB   

Form elastic stress increment 

ijij D    

Total elastic trial stress 

 1 jiiji   

if   0if  then 

Return trial stress σi to the MC yield 

surface 

Set  D = Dep 

else 

Set D = De 

end if 

end for (all Gaussian points) 

end for (all elements) 

Form  
ijuK ,  

ijuF  

if 
 

tolNR
F

uFF

i

iji
_


then 

u = ui 

STOP NR_iteration 

end if 

end for (NR iteration) 

end for (load increment) 

Read input file 

Set 00 u ,   00 uF , D = De, Δ = 0 

Form    eKuK 0  

for i = 1,…, nload increment 

for j = 1, maxitNR 
   

ijeij uKuK   

Solve     
1 jiiijij uFFuuK  

  ijjii uuu  1
 

for all elements 

for all Gauss points 

Form elastic strain increment 

ijij uB   

Form elastic stress increment 

ijij D    

Total elastic trial stress 

 1 jiiji   

if   0if  then 

Return trial stress σi to the MC yield 

surface 

Set  M = Dep – De 

else 

Set M = 0  

end if 

end for (all Gaussian points) 

end for (all elements) 

Form  
iju ,  

ijuF  

if 
 

tolNR
F

uFF

i

iji
_


then 

u = ui 

STOP NR_iteration 

end if 

end for (NR iteration) 

end for (load increment) 
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A.2 Formulation of continuum tangent stiffness 

stress-strain matrix for Mohr-Coulomb model 

A.2.1 Rounding of Mohr-Coulomb yield surface 

 

With c and ϕ are cohesion and friction angle respectively, the Mohr Coulomb 

yield criterion can be expressed as Eq.(1). Figure 1a shows the Mohr-Coulomb 

yield surface at octahedral plane view.  

     cos
3

1
21 cAJIf f   (1) 

 
3

cossin
cos


 fA  (2) 

 

with stress component is    zxyzxyzyx

T
  ,   is Lode 

angle, and I1, J2 are stress invariants.  

With dilation angle ψ, the plastic potential of Mohr-Coulomb yield function is 

given as  

    0cos
3

1
21   cAJIg g

 (3) 

 
3

cossin
cos


 gA  (4) 

The non-associated flow rule applies when dilation angle ψ in Eq.(3) is 

different from the friction angle ϕ in Eq. (1). 

Figure 1b shows there are gradient discontinuities of MC yield surface at θ = 

±30 (the corners) and J2 = 0 (the apex). Sloan and Booker
157

 (1986) and Abbo 

and Sloan
3
 (1993) propose rounding function to remove these singularities as 

in Eq. (5) 

 

    0cossin
3

1 222

21   cAJIf f
 (5) 

 



APPENDIX A: NONLINEAR FINITE ELEMENT ANALYSIS 

176 

 

with α is an adjustable variable for rounding at the apex. The smaller α is, the 

closer the Eq. (5) is to Eq. (1). Abbo and Sloan
3
 (1993) recommend α = 

0.05ccotϕ. With θT is a specified transition angle, function Af(θ) is adjusted as 

followings 
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A.2.2 Return mapping method and continuum tangent stiffness 

stress-strain matrix for Mohr-Coulomb model 

When NR method is employed, the stress vectors of Gauss points deducted 

from the tangential linear system may be overestimated and lie outside the MC 

yield surface. This also implies the points have yielded. In that case, the yield 

function value f(σ) is greater than the stress relative error tolerance BE_tol 

(Abbo
2
, 1997) and the Gauss points have to be dragged back the yield surface. 

Hence, return mapping procedure is the process returning the stress vectors to 

the yield surface. 

The algorithm backward Euler method and forming of the tangent global 

stiffness matrix for MC model follows Crisfield
46

 (1987). All the derivatives 

are taken at the trial stress. When one vector return is applicable (Figure 2a), 

the stress returned to the yield surface is calculated as in Eq.(10). The 

continuum tangent stiffness matrix is formed as in Eq.(1).  









f
Detrialnew

 (10) 

 with  
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When two-vectored return is applicable (Figure 2b), the stress returned to the 

yield surface is calculated as in Eq.(12).  
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The continuum tangent stiffness is formed in Eq.(15) 
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There are cases that neither one-vectored return nor two-vectored return is 

applicable and Crisfield
46

 (1987) recommends that the stress is returned to the 

apex of the yield surface. However, the apex is a fixed point and the tangent 

stiffness matrix at that point is [O] which is not realistic and makes the global 

stiffness matrix ill-conditioned. The author recommends that if such case 
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occurs, the applied load should be reduced until either one or two-vectored 

return procedure is applicable. 

 

 

(a)  (b) 

Figure 1: Mohr-Coulomb yield surface space in (Abbo
2
, 1997): (a) Octahedral plane; (b) 

Principal stress space 

 

 

(a)  

 

(b)  
Figure 2: Backward Euler return mapping method (Crisfield

46
,1987): (a) One-

vector return; (b) Two-vectored return 
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APPENDIX B: SOURCE CODE IN FORTRAN 

90 

B.1 Subroutine for preconditioned IDR(s) to solve 

1-by-1 block nonsymmetric linear system 

SUBROUTINE idrs_r (pindx, n, jcsra, icsra,csra, jdel, idel, del,  & 

  rhs, s, maxit,tol, matvec,relres,alu,jlu,ju,da) 

!------------------------------------------------------------------- 

! This subroutine uses preconditioned IDR method solve (A+delta)x=b  

! nonsymmetric linear system with a right preconditioner.  

! Preconditioners considered are: Jacobi, SSOR, ILU. 

!                  

! Parameters: 

!   On input: 

!          pindx: preconditioner type 

!                = 0: no preconditioner 

!                = 1: Jacobi preconditioner, input requires DA  

!                      vector, which is invert of diagonal entries  

!                      of A 

!                = 2: ILU preconditioner, input requires alu, jlu,  

!                      ju vectors, which stores incomplete LU  

!                      factorization of A. Refer to ILU0 or ILUT  

!                      subroutine for definition of each vector. 

!                = 3: SSOR preconditioner, input requires DA vector, 

!                      which is invert of diagonal entries of A 

!              n: dimension of coefficient matrix A 

!jcsra,icsra,csra: CSR storage of coefficient matrix Ke, elastic  

!                  stiffness 

!  jdel,idel,del: CSR storage of coefficient matrix Delta, A=Kep=  

!                 Ke+ Delta 

!            rhs: at input, it is right hand vector b 

!                 at output,it is returned approximate solution x 

!              s: input for IDR method, dimension of shadow space P.  

!                 Refer to IDR papers for more information 

!          maxit: user-defined maximum iteration count 

!            tol: user-defined stopping tolerance 

!                 relative residual norm criterion for convergence 

!   On output: 

!            rhs: approximate solution x 

!         matvec: matrix-vector multiplication count when IDR(s)  

!                 converges 

!         relres: relative residual when IDR(s) converges. 

!------------------------------------------------------------------- 

! Reference: 
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!   Sonneveld, P., & Gijzen, M. B. V. (2008). IDR(s): A family of  

!   simple and fast algorithms for solving large nonsymmetric  

!   systems of linear equations. SIAM Journal on Scientific  

!   Computing, 31(2), 1035-1062. 

!------------------------------------------------------------------- 

IMPLICIT NONE 

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

INTEGER,INTENT(IN):: pindx,n,jcsra(:),icsra(:),maxit,s 

INTEGER,OPTIONAL,INTENT(IN)::jdel(:),idel(:),jlu(:),ju(:) 

REAL(iwp),INTENT(IN):: csra(:),tol 

REAL(iwp),OPTIONAL,INTENT(IN)::del(:),alu(:),da(:) 

INTEGER,INTENT(OUT):: matvec 

REAL(iwp),INTENT(OUT):: relres 

REAL(iwp),INTENT(INOUT):: rhs(:) 

INTEGER::i,j,d,k1,k2,k,sd=2,seed(2),iters,err 

REAL(iwp),ALLOCATABLE::x(:),r(:),P(:,:),G(:,:),U(:,:),M(:,:),f(:),& 

  v(:),temp(:,:),p1(:),p2(:),c(:),t(:),q(:),qi(:),c1(:),v1(:),tt(:) 

REAL(iwp)::angle,normr,tolb,zero=0.0_iwp,omega,ns,nt,ts,rho,alpha,& 

  beta,one=1.0_iwp,normb 

 

ALLOCATE(x(n),r(n),P(n,s),G(n,s),U(n,s),M(s,s),f(s),v(n),t(n),   &    

  v1(n),tt(n),p1(n),p2(n),c(s),temp(s,s)) 

!--------------------- Generate Random Matrix P -------------------- 

IF(s == 1)THEN ! set parameter similar to Bi-CGSTAB for comparison 

  angle=zero 

  P(:,1) = rhs   

ELSE 

  angle=0.7_iwp 

  seed(1)=2147483562 

  seed(2)=1 

  CALL RANDOM_SEED (SIZE = sd) 

  CALL RANDOM_SEED(PUT=seed(1:sd)) 

  CALL RANDOM_NUMBER(P) 

END IF 

!----------------------- Compute initial residual ------------------ 

x=zero 

normb=SQRT(DOT_PRODUCT(rhs,rhs)) 

!---------------------------- Relative tolerance ------------------- 

tolb = tol*normb            

r=rhs 

normr=normb 

!------------------------------------------------------------------- 

IF (normr <= tolb) THEN    ! Initial guess is a good enough solution    

   rhs=x 

   iters = 0 

   matvec=0 

   relres = normr/normb 

   RETURN 
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END IF 

!------------------------------------------------------------------- 

G=zero 

U=zero 

M=zero 

DO i=1,s 

    M(i,i)=one 

END DO 

omega=one 

iters = 0 

matvec=0 

iteration:DO WHILE ( normr > tolb .AND. iters < maxit )   

  f=MATMUL(TRANSPOSE(P),r) 

  DO k = 1,s   

!------------------ Solve Mc=f using LU decomposition --------------       

    IF(s/=1)THEN                

      temp(1:s-k+1,1:s-k+1)=M(k:s,k:s)         

      c(k:s)=f(k:s)        

      CALL lubksb(temp(1:s-k+1,1:s-k+1),s-k+1,c(k:s))                 

    ELSE 

      c(1)=f(1)/M(1,1) 

    END IF 

!------------------------------------------------------------------- 

    v = r - MATMUL(G(:,k:s),c(k:s)) 

!-------------- Preconditioning: v=invert(preconditioner)*v -------- 

! If pindx = 0: no preconditioner so do nothing 

    SELECT CASE (pindx) 

      CASE(1) !Jacobi preconditioner 

        IF(PRESENT(da))THEN 

          v = da*v 

        ELSE 

          WRITE(*,'(A)')'Lack of DA vector' 

          EXIT 

        END IF 

      CASE(2) 

        IF(PRESENT(alu))THEN             

          CALL lusol(n,v,v,alu,jlu,ju) 

        ELSE 

          WRITE(*,'(A)')'Lack of ILU matrix' 

          EXIT 

        END IF 

      CASE(3) 

        IF(PRESENT(da))THEN 

!------------------ Solve v = (D+U)^-1*(D)*(D+L)^-1*v -------------- 

! v1 = (D+L)^-1*v --> Solve (D+L)*v1 = v 

! v1 = D*v1 

! v = (D+U)^-1*v1 --> Solve (D+U)*v = v1 

!------------------------------------------------------------------- 
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          CALL lsolve(n,da,icsra,jcsra,csra,v,v1) 

          v1 = v1/da 

          CALL usolve(n,da,icsra,jcsra,csra,v1,v) 

        ELSE 

          WRITE(*,'(A)')'Lack of DA vector' 

          EXIT 

        END IF 

    END SELECT 

!------------------------------------------------------------------- 

    U(:,k) = MATMUL(U(:,k:s),c(k:s)) + omega*v 

!------- G(:,k) = MATMUL(A,U(:,k)) -- matrix-vector multiplication - 

    CALL csrbx(icsra,jcsra,csra,U(:,k),G(:,k)) 

    IF (PRESENT(del))THEN 

      CALL csrbx(idel,jdel,del,U(:,k),tt) 

      G(:,k)=G(:,k)+tt 

    END IF 

    matvec=matvec+1     ! after matvec, then count 

!-------------------------------------------------------------------     

    DO i = 1,k-1 

      p1=P(:,i) 

      p2=G(:,k) 

      alpha=DOT_PRODUCT(p1,p2)/M(i,i) 

      G(:,k) = G(:,k) - alpha*G(:,i) 

      U(:,k) = U(:,k) - alpha*U(:,i) 

    END DO 

    M(k:s,k) = MATMUL(TRANSPOSE(P(:,k:s)),G(:,k)) 

    IF (M(k,k)==zero)THEN 

      WRITE (*,'(A)')"M(k,k) = 0. IDR fails!"            

      RETURN     !fail 

    END IF 

    beta = f(k)/M(k,k) 

    r = r - beta*G(:,k) 

    x = x + beta*U(:,k) 

    normr=SQRT(DOT_PRODUCT(r,r)) 

    iters=iters+1       ! update x then count iters 

    IF (normr < tolb.OR. iters == maxit)THEN 

      rhs=x             

      relres=normr/normb 

      RETURN 

    END IF 

    IF (k < s)f(k+1:s)=f(k+1:s)-beta*M(k+1:s,k) 

  END DO 

  IF (normr <tolb .OR. iters == maxit )THEN 

    rhs=x 

    relres=normr/normb 

    RETURN 

  END IF 

!-------------- Preconditioning: v=invert(preconditioner)*r -------- 
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! If pindx = 0: no preconditioner so do nothing      

  SELECT CASE (pindx) 

    CASE(0) 

      v = r 

    CASE(1) !Jacobi preconditioner 

      IF(PRESENT(da))THEN 

        v = da*r 

      ELSE 

        WRITE(*,'(A)')'Lack of DA vector' 

        EXIT 

      END IF 

    CASE(2) 

      IF(PRESENT(alu))THEN             

        CALL lusol(n,r,v,alu,jlu,ju) 

      ELSE 

        WRITE(*,'(A)')'Lack of ILU matrix' 

        EXIT 

      END IF 

    CASE(3) 

      IF(PRESENT(da))THEN 

!----------------- Solve v = (D+U)^-1*(D)*(D+L)^-1*r---------------- 

! v1 = (D+L)^-1*r --> Solve (D+L)*v1 = r 

! v1 = D*v1 

! v = (D+U)^-1*v1 --> Solve (D+U)*v = v1 

!-------------------------------------------------------------------     

        CALL lsolve(n,da,icsra,jcsra,csra,r,v1) 

        v1 = v1/da 

        CALL usolve(n,da,icsra,jcsra,csra,v1,v) 

      ELSE 

        WRITE(*,'(A)')'Lack of DA vector' 

        EXIT 

    END IF 

  END SELECT     

!------------ t=MATMUL(A,v)-- matrix vector multiplication --------- 

  CALL csrbx(icsra,jcsra,csra,v,t) 

  IF (PRESENT(del))THEN 

    CALL csrbx(idel,jdel,del,v,tt) 

    t=t+tt 

  END IF 

  matvec=matvec+1 

!----------------------- Computation of a new omega ---------------- 

    ns = SQRT(DOT_PRODUCT(r,r)) 

    nt = SQRT(DOT_PRODUCT(t,t)) 

    rho = DABS(DOT_PRODUCT(t,r)/(nt*ns)) 

    omega=DOT_PRODUCT(t,r)/(nt*nt) 

    IF(s/=1)THEN 

      IF ( rho < angle ) omega = omega*angle/rho 

    END IF 
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    IF (omega==zero)THEN 

      WRITE (*,'(A)')"omega = 0.IDR fails!"  

      RETURN     !fail 

    END IF 

!------------------------------------------------------------------- 

  r = r - omega*t 

  x = x + omega*v 

  normr = SQRT(DOT_PRODUCT(r,r)) 

  iters = iters + 1 

  IF (normr <tolb .OR. iters == maxit )THEN 

    rhs=x 

    relres=normr/normb 

    RETURN 

  END IF 

END DO iteration 

RETURN 

END SUBROUTINE idrs_r 

!-----------------DIRECT LU decomposition and solver---------------- 

SUBROUTINE ludcmp(a,n,indx,d) 

!------------------------------------------------------------------- 

! This subroutine form the LU decomposition of a square matrix 

! On input 

! a  : square matrix, output as LU decomposition 

! n   : dimension of [a] 

! On output 

! indx : vector recording the row permutation effected by 

!    the partial pivoting 

! d  = 1 if the number of row interchanges is even 

!   = -1 if the number of row interchanges is odd 

! Reference: Numerical recipes  

!    by w.h. press, b. p. flannery, s.a. teukolsky and  

!    w.t. vetterling, cambridge university press, 1986 

!-------------------------------------------------------------------  

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

REAL(iwp),INTENT(INOUT)::a(:,:) 

REAL(iwp)::amax,dum,sum,tiny=1.5e-16_iwp 

REAL(iwp),ALLOCATABLE::vv(:) 

INTEGER,INTENT(IN)::n 

INTEGER,INTENT(OUT)::indx(:),d 

INTEGER:: i,j,k,ii,ll,imax 

 

ALLOCATE(vv(n)) 

d=1 

 DO i=1,n 

   amax=0.0_iwp 

   DO j=1,n 

     IF (abs(a(i,j))>= amax) amax=abs(a(i,j)) 
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   END DO ! j loop 

   IF(amax .LT. 0.0_iwp) THEN 

     d = 1  !fail 

     RETURN 

   END IF 

   vv(i) = 1.0_iwp / amax 

 END DO ! i loop 

 

 DO j=1,n 

   DO i=1,j-1 

     sum = a(i,j) 

     DO k=1,i-1 

       sum = sum - a(i,k)*a(k,j)  

     END DO ! k loop 

     a(i,j) = sum 

   END DO ! i loop 

   amax = 0.0_iwp 

   DO i=j,n 

     sum = a(i,j) 

     DO k=1,j-1 

       sum = sum - a(i,k)*a(k,j)  

     END DO ! k loop 

     a(i,j) = sum 

     dum = vv(i)*dabs(sum) 

     IF(dum .ge. amax) THEN 

       imax = i 

       amax = dum 

     END IF 

   END DO ! i loop   

    

   IF(j .ne. imax) THEN 

     DO k=1,n 

       dum = a(imax,k) 

       a(imax,k) = a(j,k) 

       a(j,k) = dum 

     END DO ! k loop 

     d = -d 

     vv(imax) = vv(j) 

   END IF 

 

   indx(j) = imax 

   IF(dabs(a(j,j)) < tiny) a(j,j) = tiny 

 

   IF(j .ne. n) THEN 

     dum = 1.0_iwp / a(j,j) 

     DO i=j+1,n 

       a(i,j) = a(i,j)*dum 

     END DO ! i loop 
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   END IF  

 END DO ! j loop 

 RETURN 

 END SUBROUTINE ludcmp 

!------------------------------------------------------------------- 

SUBROUTINE lubksb(a,n,b) 

!-------------------------------------------------------------------  

! This subroutine solves the linear system [a]{x}={b} 

! On input 

! a : LU decomposition from the "ludcmp" subroutine 

! n : dimension of [a] 

! indx: permutation vector returned by "ludcmp" subroutine 

! b : right-hand-side vector 

! On output 

! b : solution {x} 

!------------------------------------------------------------------- 

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

REAL(iwp),INTENT(INOUT)::a(:,:),b(:) 

REAL(iwp)::sum 

INTEGER,ALLOCATABLE::indx(:) 

INTEGER,INTENT(IN):: n 

INTEGER::d,ii,i,ll,j 

! 

ALLOCATE(indx(n)) 

CALL ludcmp(a,n,indx,d) 

! 

ii = 0 

DO i=1,n 

 ll = indx(i) 

    sum = b(ll) 

    b(ll) = b(i) 

    IF(ii .NE. 0) THEN 

     DO j=ii,i-1 

         sum = sum - a(i,j)*b(j) 

      END DO ! j loop 

    ELSE IF(sum .NE. 0.0_iwp) THEN 

     ii = i 

    END IF 

    b(i) = sum 

END DO ! i loop 

DO i=n,1,-1 

 sum = b(i) 

    IF(i < n) THEN 

     DO j=i+1,n 

         sum = sum - a(i,j)*b(j) 

      END DO ! j loop 

    END IF 

    b(i) = sum / a(i,i) 
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END DO ! i loop 

RETURN 

END SUBROUTINE lubksb  

!--------------------- END OF DIRECT LU ---------------------------- 

!------------------------------------------------------------------- 

SUBROUTINE lusol(n, y, x, alu, jlu, ju) 

IMPLICIT NONE 

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

REAL(iwp),INTENT(IN)::y(:), alu(:) 

REAL(iwp),INTENT(OUT)::x(:) 

INTEGER,INTENT(IN):: n, jlu(:), ju(:) 

!------------------------------------------------------------------- 

! This routine solves the system (LU) x = y,  

! given an LU decomposition of a matrix stored in (alu, jlu, ju)  

! modified sparse row format  

!------------------------------------------------------------------- 

! on entry: 

! n   = dimension of system  

! y   = the right-hand-side vector 

! alu, jlu, ju  

!     = the LU matrix as provided from the ILU routines.  

! 

! on return 

! x   = solution of LU x = y.      

!------------------------------------------------------------------- 

! Note: routine is in place: call lusol (n, x, x, alu, jlu, ju)  

!       will solve the system with rhs x and overwrite the result on 

x .  

!------------------------------------------------------------------- 

! local variables 

! 

        integer:: i,k 

! 

! forward solve 

! 

        do i = 1, n 

           x(i) = y(i) 

           do k=jlu(i),ju(i)-1 

              x(i) = x(i) - alu(k)* x(jlu(k)) 

           end do 

        end do 

! 

!     backward solve. 

! 

 do i = n, 1, -1 

    do k=ju(i),jlu(i+1)-1 

              x(i) = x(i) - alu(k)*x(jlu(k)) 
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       end do 

           x(i) = alu(i)*x(i) 

    end do 

! 

RETURN 

END SUBROUTINE lusol 
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B.2 Subroutine for preconditioned IDR(s) to solve 

2-by-2 block nonsymmetric linear system 

!------------------------------------------------------------------- 

SUBROUTINE idrs_blkp(pindx,n,ns,jcsra,icsra,csra,jdel,idel,del,rhs,s,    

& 

  maxit,tol,matvec,relres,icsrs,jcsrs,csrs,slu,sjlu,sju,da1,schrlu,      

& 

  schrjlu,schrju,gjal,icsrbt,jcsrbt,csrbt) 

!------------------------------------------------------------------- 

! This subroutine uses preconditioned IDR method solve  

! (A + delta) x=b  

! nonsymmetric linear system with a right block preconditioner. 

! pindx = 4: Block diagonal preconditioner is of the form 

!          |K~       0|      |v1| 

!     M =  |0       S~|  v = |v2| 

!     Solve Mv = u by: v1 = invert(K~)*u1 

!                      v2 = invert(S~)*u2 

! pindx = 5: Block constrained preconditioner is of the form 

!          |K~       B|      |v1| 

!     M =  |B'      S~|  v = |v2| 

!     Solve Mv = u by: w = (K~)^-1*u1 

!                      z = (S~)^-1*(B'*w - u2) 

!                      v1 = (K~)^-1*(v1-B*z) 

!                      v2 = z 

! Parameters: 

!   On input: 

!          pindx: index indicating which block preconditioner is  

!                  used 

!          = 421: use K2 = ILU0 of K, S1 = diag(B'*diag(K)^-1*B + C) 

!          = 422: use K2 = ILU0 of K, S1 = ILU0(B'*diag(K)^-1*B + C) 

!          = 431: use K3 = SSOR of K, S1 = diag(B'*diag(K)^-1*B + C) 

!          = 432: use K3 = SSOR of K, S2 = ILU0(B'*diag(K)^-1*B + C) 

!              n: dimension of coefficient matrix A 

!             ns: number of soil dof, n-ns = number of fluid dof 

!   jcsra,icsra, 

!           csra: CSR storage of coefficient matrix A 

!   jdel,idel,del:CSR storage of matrix delta 

!            rhs: at input, it is right hand vector b 

!                 at output,it is returned approximate solution x 

!            pre: preconditioner, from "form_preconditioner" 

!              s: input for IDR method 

!          maxit: user-defined maximum iteration count; 

!            tol: it is the user-defined stopping tolerance; 

!                 relative residual norm criterion (x0=.0) for  

!                 convergence 

!       alu,jlu : matrix stored in Modified Sparse Row (MSR) format  

!                 containing the L and U factors together. The  
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!                 diagonal (stored in alu(1:n) ) is inverted. Each  

!                 i-th row of the alu,jlu matrix contains the i-th  

!                 row of L (excluding the diagonal entry=1) followed  

!                 by the i-th row of U. 

!            ju : pointer to the diagonal elements in alu, jlu.! 

!   On output: 

!            rhs: approximate solution x 

!          iters: the iterative count when PCG converges; 

!         relres: the relative residual when PCG converges. 

!------------------------------------------------------------------- 

! Reference: 

!   Sonneveld, P., & Gijzen, M. B. V. (2008). IDR(s): A family of  

!   simple and fast algorithms for solving large nonsymmetric  

!   systems of linear equations. SIAM Journal on Scientific  

!   Computing, 31(2), 1035-1062. 

!------------------------------------------------------------------- 

IMPLICIT NONE 

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

INTEGER,INTENT(IN):: n,ns,jcsra(:),icsra(:),maxit,s,pindx 

INTEGER,OPTIONAL,INTENT(IN)::jdel(:),idel(:),icsrs(:),jcsrs(:),   & 

  sjlu(:),sju(:),schrju(:),schrjlu(:),icsrbt(:),jcsrbt(:) 

REAL(iwp),INTENT(IN):: csra(:),tol 

REAL(iwp),OPTIONAL,INTENT(IN)::da1(:),del(:),csrs(:),slu(:),      & 

  schrlu(:),gjal,csrbt(:) 

INTEGER,INTENT(OUT):: matvec 

REAL(iwp),INTENT(OUT):: relres 

REAL(iwp),INTENT(IN OUT):: rhs(:) 

INTEGER::i,j,d,k1,k2,k,sd=2,seed(2),iters 

INTEGER,ALLOCATABLE::indx(:) 

REAL(iwp),ALLOCATABLE::x(:),r(:),P(:,:),G(:,:),U(:,:),M(:,:),f(:),&        

   v(:),temp(:,:),p1(:),p2(:),c(:),t(:),q(:),qi(:),c1(:),v1(:),   & 

   tt(:),v2(:),v3(:) 

REAL(iwp)::angle,normr,tolb,zero=0.0_iwp,omega,nr,nt,ts,rho,  & 

    alpha,beta,r0,one=1.0_iwp,normb 

!--------------------- Generate Random Matrix P -------------------- 

IF(s==1)THEN 

    angle=zero 

ELSE 

    angle=0.7_iwp 

END IF 

ALLOCATE(x(n),r(n),P(n,s),f(s),v(n),t(n),v1(n),v2(ns),v3(n),tt(n)) 

! generate random matrix P 

seed(1)=2147483560 

seed(2)=1 

CALL RANDOM_SEED (SIZE = sd) 

CALL RANDOM_SEED(PUT=seed(1:sd)) 

CALL RANDOM_NUMBER(P) 

IF(s==1)P(:,1)=rhs 
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!----------------------- Compute initial residual ------------------ 

x=zero 

normb=SQRT(DOT_PRODUCT(rhs,rhs)) 

!---------------------------- Relative tolerance ------------------- 

tolb = tol*normb            

r=rhs 

normr=normb 

!------------------------------------------------------------------- 

IF (normr <= tolb) THEN          ! Initial guess is a good enough 

solution    

   rhs=x 

   iters = 0 

   matvec=0 

   relres = normr/normb 

   RETURN 

END IF 

!------------------------------------------------------------------- 

ALLOCATE(G(n,s),U(n,s),M(s,s)) 

G=zero 

U=zero 

M=zero 

DO i=1,s 

    M(i,i)=one 

END DO 

omega=one 

iters = 0 

matvec=0 

ALLOCATE(p1(n),p2(n),c(s),c1(s)) 

k=1 

ALLOCATE(temp(s-k+1,s-k+1),indx(s-k+1))  

iteration:DO WHILE ( normr > tolb .AND. iters < maxit )   

    f=MATMUL(TRANSPOSE(P),r) 

    DO k = 1,s   

!------------------ Solve Mc=f using LU decomposition --------------             

        temp(1:s-k+1,1:s-k+1)=M(k:s,k:s)         

        ! Solve Mc=f using LU decomposition  

        c(k:s)=f(k:s)        

        CALL lubksb(temp(1:s-k+1,1:s-k+1),s-k+1,c(k:s)) 

!------------------------------------------------------------------- 

        v = r - MATMUL(G(:,k:s),c(k:s)) 

!-------------- Preconditioning: v=invert(preconditioner)*v -------- 

        SELECT CASE(pindx) 

          CASE(400:500) 

!--------------------- Compute v(1:ns)=invert(K~)*v ---------------- 

            SELECT CASE(MOD(pindx,100)-MOD(pindx,10)) 

              CASE(10)! K1 = diag(K) 

                v(1:ns)=da1(1:ns)*v(1:ns) 

              CASE(20)! K2 = ILU0(K) 
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                CALL lusol(ns,v(1:ns),v(1:ns),slu,sjlu,sju) 

              CASE(30)! K3 = SSOR(K) 

              ! Solve (L+D)*(D^-1)*(U+D)*v1(1:ns) = v(1:ns) 

              ! v1 = (D+L)^-1*v --> Solve (D+L)*v1 = v 

              ! v1 = D*v1 

              ! v = (D+U)^-1*v1 --> Solve (D+U)*v = v1 

                CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v(1:ns),v1(1:ns)) 

                v1(1:ns)=v1(1:ns)/da1(1:ns) 

                CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v(1:ns)) 

            END SELECT                  

!----------------- Compute v(ns+1:n)=invert(S~)*v(ns+1:n) ---------- 

            SELECT CASE(MOD(pindx,10)) 

              CASE(1)! S1 = diag(S)             

                v(ns+1:n)=da1(ns+1:n)*v(ns+1:n)           

              CASE(2,3)! S2 = ILU0(B'*diag(K)^-1*B + C) 

                CALL lusol(n-

ns,v(ns+1:n)/gjal,v(ns+1:n),schrlu,schrjlu, & 

                  schrju) 

            END SELECT 

!-------------------------------------------------------------------           

!     Solve Mv = v by: v1(1:ns) = (K~)^-1*v(1:ns) 

!                      z = (S~)^-1*(B'*v1(1:ns) - v(ns+1:n)) 

!                      v1(1:ns) = (K~)^-1*(v(1:ns)-B*z) 

!                      v(ns+1:n) = z 

          CASE(501:) 

!---------------------- v1(1:ns) = (K~)^-1*v(1:ns) ----------------- 

            SELECT CASE(MOD(pindx,100)-MOD(pindx,10)) 

              CASE(10)! K1 = diag(K) 

                v1(1:ns)=da1(1:ns)*v(1:ns) 

              CASE(20)! K2 = ILU0 

                CALL lusol(ns,v(1:ns),v1(1:ns),slu,sjlu,sju) 

              CASE(30)! K3 = SSOR(K) 

              ! Solve (L+D)*(D^-1)*(U+D)*v1(1:ns) = v(1:ns) 

              ! v2 = (D+L)^-1*v --> Solve (D+L)*v2 = v 

              ! v2 = D*v2 

              ! v1 = (D+U)^-1*v2 --> Solve (D+U)*v1 = v2 

                CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v(1:ns),v2(1:ns)) 

                v2(1:ns)=v2(1:ns)/da1(1:ns) 

                !CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v(1:ns)) 

                CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v2(1:ns),v1(1:ns)) 

                !v1(1:ns)=v(1:ns)              

            END SELECT 

!------------ v1(ns+1:n) = (S~)^-1*(B'*v1(1:ns) - v(ns+1:n)) ------- 
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            CALL 

csrbx(icsrbt,jcsrbt,csrbt,v1(1:ns),v1(ns+1:n)) !B'*v1(1:ns) 

            v1(ns+1:n)=v1(ns+1:n)-v(ns+1:n) 

            SELECT CASE(MOD(pindx,10)) 

              CASE(1) 

                v1(ns+1:n)=da1(ns+1:n)*v1(ns+1:n) 

              CASE(2,3)                 

                 CALL lusol(n-ns,v1(ns+1:n),v3(1:n-

ns),schrlu,schrjlu,    & 

                   schrju) 

                 v1(ns+1:n)=v3(1:n-ns) 

            END SELECT 

!--------------- v1(1:ns) = (K~)^-1*(v(1:ns)-B*v1(ns+1:n)) --------- 

            v(ns+1:n)=v1(ns+1:n) !final vector 

            CALL csrbtx(icsrbt,jcsrbt,csrbt,v1(ns+1:n),v1(1:ns))  

            v1(1:ns)=v(1:ns)-v1(1:ns) 

            SELECT CASE(MOD(pindx,100)-MOD(pindx,10)) 

              CASE(10) 

                v(1:ns)=da1(1:ns)*v1(1:ns) 

              CASE(20) 

                CALL lusol(ns,v1(1:ns),v(1:ns),slu,sjlu,sju) ! final 

vector 

              CASE(30)! K3 = SSOR(K) 

              ! Solve (L+D)*(D^-1)*(U+D)*v(1:ns) = v1(1:ns) 

              ! v = (D+L)^-1*v1 --> Solve (D+L)*v = v1 

              ! v = D*v 

              ! v1 = (D+U)^-1*v --> Solve (D+U)*v1 = v 

                CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v(1:ns)) 

                v(1:ns)=v(1:ns)/da1(1:ns) 

                CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v(1:ns),v1(1:ns)) 

                !CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v(1:ns),v(1:ns)) 

                v(1:ns)=v1(1:ns)                  

            END SELECT 

        END SELECT 

!------------------------------------------------------------------- 

        U(:,k) = MATMUL(U(:,k:s),c(k:s)) + omega*v 

!------- G(:,k) = MATMUL(A,U(:,k)) -- matrix-vector multiplication - 

        CALL csrbx(icsra,jcsra,csra,U(:,k),G(:,k)) 

        IF (PRESENT(del))THEN 

          CALL csrbx(idel,jdel,del,U(:,k),tt) 

          G(:,k)=G(:,k)+tt 

        END IF 

        matvec=matvec+1     ! after matvec, then count 

!-------------------------------------------------------------------

-------           
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        DO i = 1,k-1 

            p1=P(:,i) 

            p2=G(:,k) 

            alpha=DOT_PRODUCT(p1,p2)/M(i,i) 

            G(:,k) = G(:,k) - alpha*G(:,i) 

            U(:,k) = U(:,k) - alpha*U(:,i) 

        END DO 

        M(k:s,k) = MATMUL(TRANSPOSE(P   (:,k:s)),G(:,k)) 

        IF (M(k,k)==zero)THEN 

            WRITE (*,'(A)')"M(k,k) = 0. IDR fails!"            

            RETURN     !fail 

        END IF 

        beta = f(k)/M(k,k) 

        r = r - beta*G(:,k) 

        x = x + beta*U(:,k) 

        normr=SQRT(DOT_PRODUCT(r,r)) 

        iters=iters+1       ! update x then count iters 

        IF (normr < tolb.OR. iters == maxit)THEN 

            rhs=x             

            relres=normr/normb 

            RETURN 

        END IF 

        IF (k < s)f(k+1:s)=f(k+1:s)-beta*M(k+1:s,k) 

    END DO 

    IF (normr <tolb .OR. iters == maxit )THEN 

        rhs=x 

        relres=normr/normb 

        RETURN 

    END IF 

!-------------- Preconditioning: v=invert(preconditioner)*r -------- 

    SELECT CASE(pindx) 

      CASE(400:500) 

!--------------------- Compute v(1:ns)=invert(K~)*r ---------------- 

        SELECT CASE(MOD(pindx,100)-MOD(pindx,10))     

          CASE(10)! K1 = diag(K) 

            v(1:ns)=da1(1:ns)*r(1:ns) 

          CASE(20)! K2 = ILU0(K)  

            CALL lusol(ns,r(1:ns),v(1:ns),slu,sjlu,sju) 

          CASE(30)! K3 = SSOR(K) 

          ! Solve (L+D)*(D^-1)*(U+D)*v1(1:ns) = r(1:ns) 

          ! v1 = (D+L)^-1*r --> Solve (D+L)*v1 = r 

          ! v1 = D*v1 

          ! v = (D+U)^-1*v1 --> Solve (D+U)*v = v1     

            CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,r(1:ns),v1(1:ns)) 

            v1(1:ns)=v1(1:ns)/da1(1:ns) 

            CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v(1:ns))     
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        END SELECT 

!----------------- Compute v(ns+1:n)=invert(S~)*r(ns+1:n) ---------- 

        SELECT CASE(MOD(pindx,10)) 

          CASE(1)! S1 = diag(S) 

            v(ns+1:n)=da1(ns+1:n)*r(ns+1:n)          

          CASE(2,3)! S = ILU0 

            CALL lusol(n-

ns,r(ns+1:n)/gjal,v(ns+1:n),schrlu,schrjlu,schrju) 

        END SELECT 

!-------------------------------------------------------------------       

!     Solve Mv = r by: v1(1:ns) = (K~)^-1*r(1:ns) 

!                      v1(ns+1:n) = (S~)^-1*(B'*v1(ns+1:n) –  

!                                    r(ns+1:n)) 

!                      v(1:ns) = (K~)^-1*(r(1:ns)-B*v1(ns+1:n)) 

!                      v(ns+1:n) = v1(ns+1:n)       

      CASE(501:) 

!------------------ Compute v1(1:ns)=invert(K~)*r(1:ns) ------------ 

        SELECT CASE(MOD(pindx,100)-MOD(pindx,10)) 

          CASE(10) 

            v1(1:ns)=da1(1:ns)*r(1:ns) 

          CASE(20)           

            CALL lusol(ns,r(1:ns),v1(1:ns),slu,sjlu,sju) 

          CASE(30)! K3 = SSOR(K) 

          ! Solve (L+D)*(D^-1)*(U+D)*v1(1:ns) = r(1:ns) 

          ! v2 = (D+L)^-1*r --> Solve (D+L)*v2 = r 

          ! v2 = D*v2 

          ! v1 = (D+U)^-1*v2 --> Solve (D+U)*v1 = v2     

            CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,r(1:ns),v2(1:ns)) 

            v2(1:ns)=v2(1:ns)/da1(1:ns) 

            !CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v(1:ns)) 

            CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v2(1:ns),v1(1:ns)) 

        END SELECT 

! ----------- v1(ns+1:n) = (S~)^-1*(B'*v1(ns+1:n) - r(ns+1:n)) ----- 

        CALL csrbx(icsrbt,jcsrbt,csrbt,v1(1:ns),v1(ns+1:n)) 

        v1(ns+1:n)=v1(ns+1:n)-r(ns+1:n) 

        SELECT CASE(MOD(pindx,10)) 

          CASE(1) 

            !v1(ns+1:n)=da1(ns+1:n)*(v1(ns+1:n)-r(ns+1:n)) 

            v1(ns+1:n)=da1(ns+1:n)*v1(ns+1:n) 

          CASE(2,3) 

            !CALL lusol(n-

ns,v1(ns+1:n),v1(ns+1:n),schrlu,schrjlu,schrju)            

            CALL lusol(n-ns,v1(ns+1:n),v3(1:n-

ns),schrlu,schrjlu,schrju) 

            v1(ns+1:n)=v3(1:n-ns)           
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        END SELECT 

!--------------- v(1:ns) = (K~)^-1*(r(1:ns)-B*v1(ns+1:n))----------- 

        v(ns+1:n)=v1(ns+1:n) !final vector 

        CALL csrbtx(icsrbt,jcsrbt,csrbt,v1(ns+1:n),v1(1:ns))  

        v1(1:ns)=r(1:ns)-v1(1:ns) 

        SELECT CASE(MOD(pindx,100)-MOD(pindx,10)) 

          CASE(10) 

            v(1:ns)=da1(1:ns)*v1(1:ns) 

          CASE(20) 

            CALL lusol(ns,v1(1:ns),v(1:ns),slu,sjlu,sju) ! final 

vector 

          CASE(30)! K3 = SSOR(K) 

          ! Solve (L+D)*(D^-1)*(U+D)*v(1:ns) = v1(1:ns) 

          ! v2 = (D+L)^-1*v1 --> Solve (D+L)*v2 = v1 

          ! v2 = D*v2 

          ! v = (D+U)^-1*v2 --> Solve (D+U)*v = v2 

            CALL 

lsolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v1(1:ns),v2(1:ns)) 

            v2(1:ns)=v2(1:ns)/da1(1:ns) 

            CALL 

usolve(ns,da1(1:ns),icsrs,jcsrs,csrs,v2(1:ns),v(1:ns))             

        END SELECT 

    END SELECT 

!------------ t=MATMUL(A,v)-- matrix vector multiplication --------- 

    CALL csrbx(icsra,jcsra,csra,v,t) 

    IF (PRESENT(del))THEN 

      CALL csrbx(idel,jdel,del,v,tt) 

      t=t+tt 

    END IF 

    matvec=matvec+1 

!----------------------- Computation of a new omega ---------------- 

    nr = SQRT(DOT_PRODUCT(r,r)) 

    nt = SQRT(DOT_PRODUCT(t,t)) 

    !ts = DOT_PRODUCT(t,r) 

    rho = ABS(DOT_PRODUCT(t,r)/(nt*nr)) 

    !om=ts/(nt*nt) 

    omega=DOT_PRODUCT(t,r)/DOT_PRODUCT(t,t) 

    IF ( rho < angle ) omega = omega*angle/rho 

    IF (omega==zero)THEN 

        WRITE (*,'(A)')"omega = 0. IDR fails!"  

        RETURN     !fail 

    END IF 

!------------------------------------------------------------------- 

    r = r - omega*t 

    x = x + omega*v 

    normr = SQRT(DOT_PRODUCT(r,r)) 

    iters = iters + 1 

    WRITE(*,*)iters,"  ",normr/normb 



APPENDIX B: SOURCE CODE IN FORTRAN 90 

197 

 

    IF (normr <tolb .OR. iters == maxit )THEN 

        rhs=x 

        relres=normr/normb 

        RETURN 

    END IF 

END DO iteration 

RETURN 

END SUBROUTINE idrs_blkp 

 

 


