ITERATIVE SOLUTIONS OF LARGE-SCALE SOIL STRUCTURE PROBLEMS

TRAN HUU HUYEN TRAN

ITERATIVE SOLUTIONS OF LARGE-SCALE SOIL STRUCTURE PROBLEMS

TRAN HUU HUYEN TRAN
(B.Eng., NUS, Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE

Declaration page

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

ACKNOWLEGEMENTS

First of all, I would like to thank my supervisor, Professor Phoon Kok Kwang. Without his encouragement, his guidance, his advices on several topics, I would not be able to finish this thesis. I, too, greatly appreciate my cosupervisor, Professor Toh Kim Chuan for his patience and gentle guidance. . I am also thankful to the members of my thesis committee, Dr. Chew Soon Hoe, Professor Lee Fook Hou and Associate Professor Tan Sew Ann, for their valuable reviews and advices on my thesis.

I thank my parents, my sister and my big extended family for always supporting and trusting me. A lot of thanks to my close friends Thi, Liên, Bằng, Khôi, Hải, for keep updating me with your travelling activities while I locked myself in the office writing thesis, for cheering me up with all kinds of gossip. Finally I sincerely thank my boyfriend, Chek Khoon, simply for your presence.

My four years of Ph.D would be insufferable and miserable without friends in Geotech Research group. It is the first time in my life I have the feeling of belonging to a group in school. So yes, thanks a lot for your presence, for discussing with me, chatting with me, giving peer pressure to me (well!). So here you are, thanks to: Dr. Cheng Yonggang, Dr. Chen Xi, Dr. Anastiasia Santoso, Dr. Krishna Bahdur Chauhary, Dr. Sindhu Tjahyono, Mr. Lu Yitan, Mr. Tang Chong, Miss Ho Jiahui, Miss Cheng Zongrui, Mr. Zhang Lei, Mr. Chin Bo, Dr. Sun Jie, Ms Ji Jiaming, Dr. Andy Tan, Dr. Tan Chzia Ykaw, Miss Thiri Su, Dr. Ye Feijian, Dr. Chen Jian, Mr. Zhao Ben, Dr. Wu Jun, Miss Li Yuping, Mr. Liu Yong, Mr. Yang Yu.

Table of Contents

DECLARATION PAGE. I
ACKNOWLEGEMENTS II
TABLE OF CONTENTS III
SUMMARY VI
LIST OF TABLES VIII
LIST OF FIGURES X
LIST OF SYMBOLS XV
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.1.1 Three-dimensional finite element analysis and iterative methods 1
1.1.2 Non-associated plasticity in geotechnical engineering 4
1.1.3 Iterative solvers for nonsymmetric linear systems.7
1.1.4 Preconditioners for nonsymmetric linear systems 11
1.2 Objective and Scope of the study 13
1.3 Computer hardware and software 14
1.4 Thesis outline 14
CHAPTER 2 LITERATURE REVIEW 16
2.1 Induced Dimension Reduction (IDR) method 16
2.1.1 Overview of $\operatorname{IDR}(s)$ method 16
2.1.2 Implementation of $\operatorname{IDR}(s)$ 19
2.2 Preconditioners for 1-by-1 nonsymmetric block matrix 20
2.2.1 Nonsymmetric linear systems resulted from drained and undrained analysis 20
2.2.2 Jacobi and SSOR Preconditioners 21
2.2.3 Incomplete factorization preconditioners 23
2.3 Preconditioners for 2-by-2 nonsymmetric block matrix 27
2.3.1 Nonsymmetric linear systems resulted from Biot's consolidation equations 27
2.3.2 ILU and MSSOR preconditioner 29
2.3.3 Block preconditioners 30
2.4 Convergence criteria 35
2.4.1 Effect of spectral properties 35
2.4.2 Stopping criteria and tolerance of error 36
2.5 Summary 39
CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS 40
3.1 Introduction 40
3.2 Problem description and theoretical background 40
3.3 Computational procedure 43
3.4 Comparison of $\operatorname{IDR}(s)$ and Bi-CGSTAB 46
3.5 Comparison of ILU0 and $\operatorname{ILU}(\rho, \tau)$ 70
3.6 Effect of convergence criteria and iteration tolerance 74
3.6.1 Effect of the variation of iteration tolerance, i_tol 74
3.6.2 More discussion on the interaction of $i _$tol, $N R _t o l$ and load increment. 78
3.7 Eigenvalue distribution of nonsymmetric linear systems 83
3.8 Summary 85
CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS 87
4.1 Introduction 87
4.2 Efficient preconditioning for a sequence of linear systems in drained analysis 87
4.2.1 By forming the global stiffness matrix implicitly 89
4.2.2 By freezing the preconditioner 94
4.3 Effect of penalty method for prescribed degrees of freedom and undrained analysis on $\operatorname{IDR}(s)$ and ILU0 preconditioner. 106
4.3.1 Undrained analysis of the strip footing using effective stress method 111
4.3.2 Problem with ILU0 factorization 112
4.3.3 Recommendation for remedy 116
4.4 Summary 116
CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS 119
5.1 Introduction 119
5.2 Problem description 119
5.3 Comparison of preconditioners and effect of node ordering 123
5.3.1 Preconditioners derived from the 2-by-2 block ordering 123
5.3.2 Preconditioners derived from the natural ordering 137
5.3.3 Eigenvalue distribution 139
5.4 Undrained analysis with 2-by-2 block matrix 141
5.5 Applying the preconditioner updating schemes in Section 4.2.2 144
5.6 Summary 147
CHAPTER 6 APPLICATION OF PRECONDITIONERS ON
PRACTICAL GEOTECHNICAL PROBLEMS 149
6.1 Introduction 149
6.2 GeoFEA implementation 149
6.3 Drained analysis 150
6.3.1 Problem descriptions 150
6.3.2 Implementation of preconditioner updating schemes 152
6.4 Summary 154
CHAPTER 7 CONCLUSION AND RECOMMENDATION 156
7.1 Summary and conclusions 156
7.2 Limitations and recommendations 157
REFERENCE 159
APPENDIX A: NONLINEAR FINITE ELEMENT ANALYSIS 174
A. 1 Pseudo-code for conventional and modified nonlinear FE analysis 174
A. 2 Formulation of continuum tangent stiffness stress-strain matrix for Mohr- Coulomb model. 175
A.2.1 Rounding of Mohr-Coulomb yield surface 175
A.2.2 Return mapping method and continuum tangent stiffness stress-strain matrix for Mohr-Coulomb model 176
APPENDIX B: SOURCE CODE IN FORTRAN 90 179
B. 1 Subroutine for preconditioned $\operatorname{IDR}(s)$ to solve 1-by-1 block nonsymmetric linear system 179
B. 2 Subroutine for preconditioned $\operatorname{IDR}(s)$ to solve 2-by- 2 block nonsymmetric linear system 189

Summary

Finite element (FE) method has become extremely popular numerical method in geotechnical engineering. Soil is the main material in geotechnical engineering and very often shows nonlinear and plastic behaviour. MohrCoulomb model is a simple, popular and effective constitutive model to simulate the plastic behaviour of soil. When the Mohr-Coulomb model is used in numerical simulation, it is essential to adopt a non-associated flow rule to obtain realistic results. The global stiffness matrix in FE analysis, which is often large in size and highly sparse, becomes nonsymmetric. Little discussion has been focused on the preconditioners for this class of nonsymmetric linear system.

This thesis applies the Induced Dimension Reduction Method (IDR(s)) to solve the large-scale nonsymmetric linear system. This $\operatorname{IDR}(s)$ method is shown to be more effective than the current default method, Bi-CGSTAB. In drained analysis, the global stiffness matrix is in form of 1-by-1 block matrix. Incomplete LU factorization with zero fill-in (ILU0) is shown numerically to be the most efficient preconditioner for this matrix among Jacobi, SSOR and $\operatorname{ILUT}(\rho, \tau)$. In consolidation analysis, the global stiffness matrix is in form of 2-by-2 block matrix. A diagonal block preconditioner is shown to be the most efficient block preconditioner. This diagonal block preconditioner uses ILU0 as the approximation of the soil stiffness matrix and a simple diagonal matrix as the approximation of the Schur complement of the 2-by-2 block matrix

For non-associated MC, nonlinear FE analysis is required and a sequence of large-scale nonsymmetric linear systems has to be solved continuoustly. Two techniques to save the total simulation time in dealing with sequence of nonsymmetric linear systems are recommended for both 1-by-1 and 2-by-2 block matrix as following: 1) Forming the elastoplastic global stiffness matrix implicitly by forming the elastic global stiffness matrix once and update the low-rank matrix at every NR iteration; 2) Updating the preconditioner one time at the beginning of the simulation or updating preconditioners at the beginning of each load steps. When these two techniques are used
concurrently, the total simulation time of 1-by-1 block matrix can be reduced 60 percent compared with the default procedure.

List of tables

Table 2.1 Statistics that can be used to evaluate an incomplete factorization (Chow \& Saad ${ }^{43}$, 1997)26

Table 2.2: Tolerance values for various iterative methods used in literatures. 39
Table 3.1: Parameters of Mohr-Coulomb yield criterion 41

Table 3.2: Ultimate bearing capacity of the strip footing and square footing on the homogenous soil layer and the maximum applied pressure used in numerical experiments 42

Table 3.3: 3D finite element meshes of the strip footing................................ 47
Table 3.4: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 1 is used. Matvec and time in second are reported at the last load step, 280 kPa . 48

Table 3.5: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 2 is used. Matvec and time in second are reported at the last load step, 26 kPa . 49

Table 3.6: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 3 is used. Matvec and time in second are reported at the last load step, 40 kPa . 50

Table 3.7: $12 \times 3 \times 12$ mesh - Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used. 80

Table 3.8: $24 \times 6 \times 24$ mesh - Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used. 81

Table 3.9: $32 \times 8 \times 32$ mesh - Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used................................. 82

Table 4.1: 3D FE meshes of the square footing resting on soil profile 1 and 2 88

Table 4.2: Ultimate bearing capacity of the strip footing and square footing on the homogenous soil layer and the maximum applied pressure used in numerical experiments 89

Table 4.3: Different schemes to update ILU0 preconditioner during the
\qquadTable 4.4: Properties of Mohr-Coulomb soil107
Table 4.5: Total passive resistance on the 1 m height smooth vertical wall 107
Table 4.6: Total stress parameters of Mohr-Coulomb yield criterion 111
Table 4.7: Ultimate bearing capacity of strip footing on homogenous soillayers111
Table 4.8: ILU statistics and possible reasons of failure for soil profile $1-$ Stiff clay. 114
Table 4.9: ILU statistics and possible reasons of failure for soil profile $2-$ Dense sand 115
Table 5.1: 3D finite element meshes of the square footing 121
Table 5.2: Effective parameters of the soil following a non-associated MCmodel.121
Table 5.3: Loading information 122

Table 5.4: Comparison of diagonal block preconditioner M_{d} and constrained block preconditioner M_{c}. Time presented in brackets is overhead time including time required to form preconditioners and extracting required block matrices. Soil profile 1 is used. Results are reported at the last load step. 125

Table 5.5: Comparison of diagonal block preconditioner M_{d} and constrained block preconditioner M_{c}. Time presented in brackets is overhead time including time required to form preconditioners and extracting required block matrices. Soil profile 2 is used. Results are reported at the last load step. 126

Table 5.6: Matrix-vector multiplications required by $\operatorname{IDR}(s)$ preconditioned with $M_{c}\left(\hat{K}_{1}, \hat{S}_{3}\right)$. Soil profile 2 is used. The applied pressure is 3 kPa when yielded Gauss points first appear and the linear system becomes nonsymmetric. .128
Table 5.7: Ultimate bearing capacity of square footing $q_{f}(\mathrm{kPa})$ 141
Table 5.8: Different schemes to update ILU0 preconditioner during the simulation 144
Table 6.1: Geomaterials used in the laterally loaded pile and the tunnelling excavation problems 151

List of figures

Figure 1.1: Isotropic Consolidation (loading) and Swelling Curves for London Clay (Henkel ${ }^{79}$, 1959) .4

Figure 1.2: Conventional undrained triaxial compression test on NC soil: (a) p ': q effective stress plane; (b) $q: \varepsilon_{q}$ stress: strain plot. (Wood ${ }^{179}, 1991$, p.131)..... 5

Figure 1.3: Conventional undrained triaxial compression test on LOC soil: (a) $p^{\prime}: q$ effective stress plane; (b) $q: \varepsilon_{q}$ stress: strain plot. (Wood ${ }^{179}, 1991$, p. 132)
.5
Figure 1.4: Numerical result of Cam clay model: $q: \varepsilon_{q}$ stress:strain in drained triaxial compression tests with constant mean stress $\left(\delta p_{0}=0\right)(\kappa=0.05, G=$ $1500 \mathrm{kPa}, \lambda=0.25, M=1.2$) (overconsolidation ratio $p^{\prime}{ }_{0} / p^{\prime}{ }_{i}$ in range $1-5, p_{0}=$ $100 \mathrm{kPa}\left(\mathrm{Wood}^{180}, 2004\right.$, p. 160)
.5
Figure 1.5: Results of triaxial drained test on dense sand (Hettler \& Vardoulakis ${ }^{81}$, 1984)
..

Figure 1.6: Results of triaxial drained tests on saturated Ham River loose sand (Bishop ${ }^{25}$, 1966)
.7
Figure 2.1: IDR theorem (Sonneveld \& Gijzen ${ }^{162}$, 2008)................................ 16
Figure 2.2: Preconditioned IDR(s)-biortho with preconditioner M (Gijzen \& Sonneveld ${ }^{70}$, 2010) 18

Figure 2.3: Preconditioned BiCGSTAB method with preconditioner M (Barrett et al. ${ }^{16}$, 1994) .. 19

Figure 2.4: Sparsity pattern of 1-by-1 block matrix 21
Figure 2.5: Pseudo-code for ILUT (Saad ${ }^{144}$, 2003, pp. 307) 25
Figure 2.6: Pseudo-code to compute condest of ILU preconditioner 27
Figure 2.7: Sparsity pattern of 2-by-2 block matrix 29
Figure 2.8: Pseudo-code to compute preconditioning step $M_{d}{ }^{-1}[u ; v]$ (Toh et al. ${ }^{166}$, 2004) .. 32

Figure 2.9: Pseudo-code to compute preconditioning step $M_{c}{ }^{-1}[u ; v]$ (Toh et al. ${ }^{166}$, 2004) 33

Figure 2.10: Pseudo-code to compute preconditioning step $M_{t-L}{ }^{-1}[u ; v]$ and $M_{t-R}-{ }^{1}[u ; v]$ (Toh et al. $\left.{ }^{166}, 2004\right) \ldots . ~$.
Figure 2.11: Ellipses containing the spectrum of A. (A): real eigenvalues; (B)
Purely imaginary eigenvalues (Saad ${ }^{144}$, 2003, pp. 195)
36

Abstract

Figure 2.12: Comparison of stopping criteria when GMRES is used to solve the linear system from FE discretization of 2D advection-diffusion problem. v is the diffusion parameter. (Arioli et al. ${ }^{9}$, 2005) 38

Figure 3.1: (a) 3D FE mesh of strip footing; (b) Soil profile 3: Heterogenous soil consisting of alternate dense sand and stiff clay 41

Figure 3.2: Pseudo-code to compute matrix-vector multiplication with a preconditioned matrix 43

Figure 3.3: Comparison of $\operatorname{Bi}-\operatorname{CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $12 \times 3 \times 12$. Soil profile 1 is used. 54

Figure 3.4: Comparison of $\operatorname{Bi-CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $24 \times 6 \times 24$. Soil profile 1 is used 56

Figure 3.5: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 Mesh size $32 \times 8 \times 32$. Soil profile 1 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here. 58

Figure 3.6: Comparison of $\operatorname{Bi-CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $12 \times 3 \times 12$. Soil profile 2 is used 60

Figure 3.7: Comparison of $\operatorname{Bi}-\operatorname{CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $24 \times 6 \times 24$. Soil profile 2 is used. 62

Figure 3.8: Comparison of $\operatorname{Bi-CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $32 \times 8 \times 32$. Soil profile 2 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here. 64

Figure 3.9: Comparison of $\operatorname{Bi-CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $16 \times 3 \times 16$. Soil profile 3 is used.

Figure 3.10: Comparison of $\operatorname{Bi}-\operatorname{CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $24 \times 6 \times 24$. Soil profile 3 is used.68

Figure 3.11: Comparison of $\operatorname{Bi}-\operatorname{CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $32 \times 8 \times 32$. Soil profile 3 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here. 70

Figure 3.12: Comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$. Soil profile 1 is used with problem size of $12 \times 3 \times 12$.

Figure 3.13: Comparison of ILU0 and ILUT (ρ, τ). Soil profile 1 is used with problem size of $24 \times 6 \times 24$ 72

Figure 3.14: Comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$. Soil profile 1 is used with problem size of $32 \times 8 \times 32$ 73

Figure 3.15: Comparison of different $i _$_tol. Soil profile 1 is used................... 75
Figure 3.16: Comparison of different i_tol. Soil profile 2 is used. 76
Figure 3.17: Interaction of $i _t o l, N R _t o l$ and load increment 83
Figure 3.18: Eigenspectra of matrix (a) K_{e}; (b) Unpreconditioned $K_{e p}$; (c) $K_{e p}$ preconditioned with ILU0. Problem size $12 \times 3 \times 12$ with soil profile 1 84
Figure 3.19: Characteristics of eigenspectrum: (a) Maximum and minimum eigenvalue; (b) Maximum imaginary part of eigenvalues; (c) Condition number of matrix X (Eq.(2.30)). Problem size $12 \times 3 \times 12$ with soil profile 1 is used. 85
Figure 4.1: 3D finite element mesh of the square footing 88
Figure 4.2: Ratio of applied pressure q over the bearing capacity q_{f} versus percentage of yielded Gauss points in the 3D mesh of: (a)(c) Strip footing, (b)(d)Square footing 91
Figure 4.3: (a) (b) Ratio of time to form Δ and $K_{e p}$ over time to form K_{e}; (c)(d)Ratio of time to form Δ and $K_{e p}$ over total time consumed in each NRiteration when $\operatorname{IDR}(6)$ with ILU0 is used to solve the linear systems.92
Figure 4.4: Comparison of efficiency of ILU0- K_{e} and ILU0- $K_{e p}$. Soil profile 1 is used. 95
Figure 4.5: Comparison of efficiency of ILU0- K_{e} and ILU0- $K_{e p}$. Soil profile 2 is used. 96
Figure 4.6: Ratio of total time consumed in each NR iteration by method (1):using $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e}$ and forming Δ over method (2): using Bi-CGSTAB with ILU0- K_{e} and forming $K_{e p .}$.(a)(c) Strip footing. (b)(d) Squarefooting97
Figure 4.7: Typical trend of variation of N_{y} and matvec required by $\operatorname{IDR}(6)$ with ILU0- $K_{e p}$ within each load step 98
Figure 4.8: Comparison of different schemes of updating ILU0 preconditioner. Strip footing resting on Soil profile 1 is considered. 100
Figure 4.9: Comparison of different schemes of updating ILU0 preconditioner. Strip footing resting on Soil profile 2 is considered. 101
Figure 4.10: Comparison of different schemes of updating ILU0 preconditioner. Square footing resting on Soil profile 1 is considered. 102
Figure 4.11: Comparison of different schemes of updating ILU0 preconditioner. Square footing resting on Soil profile 2 is considered. 102
Figure 4.12: Comparison of cumulative solution time of $\operatorname{IDR}(6)$ versus Bi - CGSTAB 105
Figure 4.13: 3D FE mesh for the passive pressure analysis 106

Abstract

Figure 4.14: Matrix-vector multiplications of IDR(6) with ILU0- $K_{e p}$ when solving the retaining wall subjected to prescribed horizontal displacements. Soil profile 1 is used. 109

Figure 4.15: Matrix-vector multiplications of $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ when solving the retaining wall subjected to prescribed horizontal displacements. Soil profile 2 is used. 110

Figure 4.16: Typical relative residual norm of an unstable ILU0 preconditioner: (a) IDR(6) method; (b) Bi-CGSTAB method... 112

Figure 5.1: (a) 3D mesh of the square footing; (b) Ramp loading................. 120
Figure 5.2: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $16 \times 16 \times 16$ and soil profile 1 is used.............................. 129

Figure 5.3: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $20 \times 20 \times 20$ and soil profile 1 is used.............................. 130

Figure 5.4: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $24 \times 24 \times 24$ and soil profile 1 is used.............................. 131

Figure 5.5: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $16 \times 16 \times 16$ and soil profile 2 is used.............................. 132

Figure 5.6: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $20 \times 20 \times 20$ and soil profile 2 is used.............................. 133

Figure 5.7: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $24 \times 24 \times 24$ and soil profile 2 is used.............................. 134

Figure 5.8: Comparison of $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ versus MSSOR and ILU0. Soil profile 1 is used 135

Figure 5.9: Comparison of $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ versus MSSOR and ILU0. Soil profile 2 is used 136

Figure 5.10: The effect of node ordering in the global stiffness matrix on ILU0 and MSSOR preconditioner 138

Figure 5.11: Typical relative residual norm of an unstable ILU0 preconditioner when the global stiffness matrix is in natural ordering and soil profile 1 is used. 139

Figure 5.12: Eigenspectrum of: (a) the elastic global stiffness matrix; (b) the elastoplastic global stiffness matrix the final load step of 130 kPa ; (c) the elastoplastic global stiffness matrix preconditioned with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. Soil profile 1 is used with the $8 \times 8 \times 8 \mathrm{FE}$ mesh 140

Figure 5.13: Characteristics of eigenspectrum: (a) Maximum and minimum eigenvalue; (c) Condition number of matrix X (Eq.(2.30)). Soil profile 1 is used with the $8 \times 8 \times 8$ FE mesh. 140

Figure 5.14: Effect of $k \Delta t$ on the convergence of $\operatorname{IDR}(6)+M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right) \ldots . . .142$
Figure 5.15: Excess pore pressure at the point right below the square footing
\qquad
Figure 5.16: Comparison of different schemes of updating block preconditioners. Square footing resting on Soil profile 1 is considered. 146

Figure 5.17: Comparison of different schemes of updating block preconditioners. Square footing resting on Soil profile 2 is considered. 147

Figure 6.1: 3D FE mesh of: (a) Laterally loaded pile; (b) Tunnelling excavation 151

Figure 6.2: (a) Dimension and boundary condition of the tunnelling problem; (b) Method used for the tunnel construction using TBM (Mroueh \& Shahrour ${ }^{117}$, 2008) 152

Figure 6.3: Comparison of preconditioner updating scheme in drained analysis of: (a)(b) Laterally loaded pile; (c)(d) Tunnelling problem 153

Figure 6.4: Comparison of cumulative solution time of $\operatorname{IDR}(6)$ versus Bi CGSTAB

Figure 6.5: Ratio of the time to form $K_{e p}$ over total time consumed in each NR iteration when $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ is used to solve the linear systems in: (a) Laterally loaded pile; (b) Tunnelling excavation. 154

Figure 1: Mohr-Coulomb yield surface space in (Abbo ${ }^{2}$, 1997): (a) Octahedral
plane; (b) Principal stress space ... 178
Figure 2: Backward Euler return mapping method (Crisfield ${ }^{46}$,1987): (a) Onevector return; (b) Two-vectored return 178

List of symbols

(.) ${ }^{\text {T }}$	transpose of a function	
\|. 1	absolute value or modulus of a number	
\\|.\|	norm of a function	
1D	one-dimensional	
2D	two-dimensional	
3D	three-dimensional	
a	real variable	
$a_{i j}$	entry of matrix A	
A	general matrix; matrix variable	
\tilde{A}	preconditioned matrix A	
b	right hand side vector	
\tilde{b}	preconditioned right hand side vector	
B	element strain-displacement matrix (Eq.(2.1)); or displacement-pore pressure coupling matrix (Eq.(2.8)); or the width of the shallow foundation	
BE	boundary element	
Bi-CG	biconjugate gradient	
Bi-CGSTAB	biconjugate gradient stabilized	
c	effective cohesion	
c_{u}	Undrained/total cohesion	
C	fluid stiffness matrix	
CG	conjugate gradient	
CGS	conjugate gradient square	
CPU	central processing unit	
CSC	compressed sparse column	
CSR	compressed sparse row	

$\operatorname{det}($.	determinant of a function
diag(.)	diagonal matrix consisting of leading diagonal entries in argument
D	embedment depth of shallow foundation
D_{e}	elastic effective stress-strain matrix
$D_{e p}$	elastoplastic effective stress-strain matrix
D	diagonal matrix variable
DOFs	degrees of freedom
E'	effective Young's modulus
E_{u}	total Young's modulus
f	yield surface function
F	applied load, righ-hand-side of the linear system
\tilde{F}	righ-hand-side vector modified by preconditioner
FE	finite element
FEM	finite element
g	plastic potential function
G	shear modulus
G_{j}	nested Krylov subspaces in $\operatorname{IDR}(s)$ method
GMRES	generalized minimal residual
H	matrix variable
i, j, k	integer variables
i_tol	tolerance for relative residual
I	identity matrix
I(.)	identity matrix of the size of the argument
I_{1}	first stress invariant
$\operatorname{IDR}(s)$	induced dimension reduction method
ILU	incomplete LU decomposition

ILU0	incomplete LU factorization with no fill-in
ILU0(.)	ILU0 factorization of the matrix in the argument
$\operatorname{ILUT}(\rho, \tau)$	incomplete LU factorization with dual control parameters for fill-in
J_{2}	second stress invariant
K	global stiffness matrix
\hat{K}	approximation of $K_{e p}$
K_{e}	elastic global stiffness matrix
$K_{\text {ep }}$	elastoplastic global stiffness matrix
K_{w}	bulk modulus of water
\tilde{K}	preconditioned matrix K
$K(u)$	stress stiffness matrix as a function of u
LOC	lightly over-consolidated
$\mathrm{L}_{\text {A }}$	strictly lower triangular part of A
$\max ($.	maximum value of a function
$\min ($.	minimum value of the function
M	(in Figure 1.4) slope of the critical state line
M	preconditioner
M_{c}	block constrained preconditioner
M_{d}	diagonal block preconditioner
M_{J}	Jacobi preconditioner
M_{L}	left preconditioner
M_{R}	right preconditioner
M_{t-L}	triangular block preconditioner for left preconditioning
M_{t-R}	triangular block preconditioner for right preconditioning
matvec	matrix-vector multiplication
MC	Mohr-Coulomb model

n	porosity of soil
N	the dimension of total linear system, e.g. the dimension of matrix A
N_{γ}, N_{c}, N_{q}	bearing capacity factors
NC	normally consolidated clay
NCL	normally consolidated line
NK	Newton-Krylov method
NR	Newton-Raphson iterative method
NR_tol	excess pore pressure vector
P	reference size of yield locus of Cam-clay model

t_{0}	maximum loading time
u	displacement vector
\tilde{u}	displacement vector modified by preconditioner
u_{0}	trial displacement vector
x	local spatial coordinate; vector variable
$x^{(0)}$	initial guess of solution
$x^{(\mathrm{i})}$	solution vector at i-th iteration
X	matrix variable
U_{A}	strictly upper triangular part of A
v	vector variable
w_{p}	penalty number
y	vector variable
z	integer variable
α	scaling parameter in GJ preconditioner or the increment of percentage of yielded Gauss point
Δ	low-rank matrix
$\Delta($.	incremental form of the argument
Δt	time step
$\Delta \lambda$	plastic multiplier
$\Delta \lambda_{1}$	plastic multiplier from first yield surface in twovectored return method
$\Delta \lambda_{2}$	plastic multiplier from second yield surface in twovectored return method
ε_{q}	deviator strain
θ	Lode angle or time stepping factor
κ	the swelling or recompression index
$\kappa($.	condition number of the argument matrix
λ	(in Figure 1.4) slope of normal compression line in v :

	$\ln p$ ' plane
λ	eigenvalue
$\lambda_{\text {max }}$	maximum eigenvalue
$\lambda_{\text {min }}$	minimum eigenvalue
$\|\lambda\|$	modulus of eigenvalue
$\|\lambda\|$ max	maximum modulus of eigenvalue
$\|\lambda\|_{\text {min }}$	minimum modulus of eigenvalue
$\sigma_{x}, \sigma_{y}, \sigma_{z}$	normal stress in X-, Y- and Z-directions, respectively
$\tau_{x y}, \tau_{y z}, \tau_{x z}$	shear stress in XY-, YZ-, and XZ-directions, respectively
ϕ	friction angle
ψ	dilation angle
ω	input parameter in $\operatorname{IDR}(s)$ or relaxation parameter in SSOR
$\partial($.	partial derivative of a function
\sum_{i}^{n}.	summation of a function over the range of index i to n
\mathbb{C}	set of complex numbers
\mathbb{R}	set of real numbers
\mathbb{R}^{N}	vector space of real N -vectors
$\mathbb{R}^{N \times N}$	vector space of real N -by-N matrices

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.1.1 Three-dimensional finite element analysis and iterative methods

Finite element method (FEM) is an extremely popular numerical method in geotechnical engineering for the last thirty years (Potts \& Zdravkovic ${ }^{137}$, 1999). Analyses of geotechnical problems using FEM are performed countlessly in research and practice (Migliazza et al. ${ }^{112}$, 2009; Almeida e Sousa et al. ${ }^{5}$, 2011; Hashash et al..77, 2011; Lee et al. ${ }^{99}$, 2011; Hata et al. ${ }^{78}$, 2012). Several finite element (FE) packages are developed for research purpose such as ICFEP (Potts \& Zdravkovic ${ }^{137}$, 1999), PECPLAS (Shahrour ${ }^{153}$, 1992), SNAC (Abbo \& Sloan ${ }^{4}$, 2000) and commercial purpose such as GeoFEA ${ }^{67}$ (2006), GeoStudio ${ }^{68}$ (2012), PLAXIS 2D ${ }^{133}$ and 3D ${ }^{134}$ (2012).

With the development of underground construction and the computational ability of modern computers, three-dimensional (3D) FE analyses are in great demand to simulate realistic soil structure interactions. Although real geotechnical problems are three-dimensional (3D) in nature, simplified twodimensional (2D) plane strain or axisymmetric models are preferable in the past due to the lack of graphical interpretation for 3D models and slow computational ability (Augarde \& Burd ${ }^{10}$, 1995). Now even personal computers (PC) can process 3D models smoothly hence graphical interpretation is not a hindrance. Moreover, certain geotechnical problems cannot be simplified into plane strain or axisymmetric models and require full 3D analyses such as pile-soil interaction (Kahyaoglu et al. ${ }^{91}$, 2009; Peng et al. ${ }^{127}$, 2010; Kelesoglu \& Springman ${ }^{93}$, 2011), deep excavation (Faheem et al. ${ }^{56}$, 2004; Zdravkovic et al. ${ }^{186}$, 2005; Hashash et al. ${ }^{77}$, 2011; Lee et al. ${ }^{99}$, 2011), and tunneling process (Mroueh \& Shahrour ${ }^{116, ~ 117, ~ 2003, ~ 2008 ; ~}$ Migliazza et al. ${ }^{112}$, 2009).

FE discretization results in a linear system of the form,

$$
\begin{equation*}
K u=F \tag{1.1}
\end{equation*}
$$

with N is the number of unknown degrees of freedom, $K \in \mathfrak{R}^{N \times N}$ is the stiffness matrix, $u \in \mathfrak{R}^{N}$ is the unknown vector, $F \in \mathfrak{R}^{N}$ is the applied force vector. 3D models are well-known for containing hundreds of thousand unknowns (Lee et al. ${ }^{99}$, 2011; Hata et al. ${ }^{78}$, 2012) and the stiffness matrix K is normally large but highly sparse. The large number of unknowns results in long computation time and this is the very hindrance of 3D FEM analysis. This thesis is motivated to reduce this computation time by certain computational techniques.

Theoretically, the exact solution of Eq.(1.1) is

$$
\begin{equation*}
u=K^{-1} F \tag{1.2}
\end{equation*}
$$

with K^{-1} denotes the inverse matrix of K. Direct methods can find this exact solution after a fixed number of operations in exact arithmetic (Quarteroni et al. ${ }^{139}, 2007$). Preferable direct methods are Gauss elimination and its modified forms, which require $O\left(N^{3}\right)$ flops (Isaacson \& Keller ${ }^{84}$, 1994; Quarteroni et al. ${ }^{139}$, 2007). When N is in the order of hundreds of thousand as in 3D FE model of geotechnical problems, direct methods are not suitable for solving Eq.(1.2) due to prohibitively expensive computational cost and memory requirement.

Iterative methods and specifically Krylov subspace iterative methods are recommended to efficiently solve large and sparse linear systems (Barrett et al. ${ }^{16}$, 1994; Saad ${ }^{144}$, 2003). Iterative methods aim to generate a series of approximate solution, $x^{(i)}$, that converges to the exact solution (1.2) with any initial guess, $x^{(0)}$. Iterative methods access the linear system through matrixvector multiplication (matvec) and this operation can be done efficiently when the matrix K is highly sparse as in the case of Eq.(1.1). The iteration process can be stopped when the approximate solution is within some desired accuracy level. This feature is very useful in geotechnical engineering since the system need not be solved to high accuracy because soil is inherently variable hence
there are uncertainties in soil properties and soil models (Whitman ${ }^{176}$, 2000; Phoon ${ }^{129}$, 2008).

Krylov subspace iterative methods are the most popular choice in the $20^{\text {th }}$ century (Saad \& Vorst ${ }^{146}$, 2000; Gutknecht ${ }^{75}$, 2007). Commercial FE softwares like PLAXIS ${ }^{134}$ (2012) and ABAQUS ${ }^{1}$ (2010) use Krylov iterative methods as linear system solvers. The advantage of Krylov iterative methods over classical stationary methods is that Krylov iterative methods converge to the exact solution in at most N iterations in exact arithmetic (Gurknecht ${ }^{75}$, 2007) and normally converge earlier than that. However, N iterations are still expensive when N is in order of hundreds of thousands and with the presence of rounding errors, Krylov methods may require more than N iterations to converge.

Preconditioning is the main technique to accelerate the convergence of Krylov iterative methods (Freund et al. ${ }^{63}$, 1992; Saad \& Vorst ${ }^{146}$, 2000; Ferronato ${ }^{58}$, 2012). Preconditioning technique is the process of modifying the matrix K to a new matrix \tilde{K} such that the later possesses spectral properties for faster convergence of Krylov iterative methods. It is well known that preconditioners are important in improving the convergence and efficiency of Krylov iterative methods. In geotechnical engineering, preconditioners have only been developed recently for specific geotechnical problems like Biot's consolidation (Chan et al. ${ }^{36}$, 2001; Phoon et al. ${ }^{130}$, 2004; Chen et al. ${ }^{42}$, 2006; Bergamaschi et al. ${ }^{22}$, 2007; Ferronato et al. ${ }^{59}$, 2010) and soil-structure interactions (Chauhary ${ }^{37}$, 2010). These discussions have been focused on linear elastic material and symmetric linear systems. However, from the practical point of view, linear elastic model is not sufficient to simulate the full range of realistic behaviour of soil. For example, in deep excavations with wall in cantilever mode, many discussions highlight that plastic strain of the soil is generated at very small wall displacement (Jardine et al. ${ }^{85}$, 1986; Whittle et al. ${ }^{177}$, 1993; Ou \& Kung ${ }^{122}$, 2004; Plumey et al. ${ }^{135}$, 2010). Another example is laterally loaded piles in which plastic zones form at the top of the piles even at relatively low working loads (Liu \& Meyerhof ${ }^{104}$, 1987; Brown \& Shie ${ }^{31}$, 1990; Yang \& Jeremic ${ }^{183}$, 2002; Motta ${ }^{114}$, 2013). Besides, it is well-
known that soil does fail under certain stress states (Terzaghi ${ }^{164}$, 1948; Schofield \& Wroth ${ }^{151}$, 1968) and this failure definitely cannot be modelled with linear elastic material (Duncan ${ }^{51}$, 1994). Hence, it is critical to be aware that the deformation pattern from linear elastic model may not only be "quantitatively but also qualitatively incorrect" $\left(\mathrm{Schweiger}^{152}, 2008\right)$.

1.1.2 Non-associated plasticity in geotechnical engineering

Linear elastic model gives acceptable solutions only when the strain is small or the safety factor of the system is large enough (Jardine et al. ${ }^{85}$, 1986; Hicher ${ }^{82}$, 1996; Pott \& Zdravkovic ${ }^{138}$, 2001, p. 169; Leung et al. ${ }^{101}$, 2010). Nevertheless, soil does not always behave elastically at small strain. Based on the Cam-clay theoretical framework (Roscoe et al. ${ }^{143}$, 1963; Roscoe \& Burland ${ }^{142}$, 1968), loading and unloading (swelling) lines of clay are not the same (Figure 1.1) therefore there is plastic strain (irrecoverable deformation) generated during the loading procedure.

Figure 1.1: Isotropic Consolidation (loading) and Swelling Curves for London Clay (Henkel ${ }^{79}$, 1959)

For normally consolidated (NC) clay of which initial stress state lies on normally consolidated line (NCL), Roscoe and others ${ }^{143}$ (1963) show that it yields immediately at the initial stress state and does not generate elastic strain during further loading (Figure 1.2). For lightly over-consolidated (LOC) clay,

Figure 1.3 shows there is elastic part in its stress-strain curve but this part is very minor and the elastic strain is very small. Figure 1.4 shows that when the overconsolidation ratio increases, elastic part in the stress-strain curve increases but overall, the elastic strain is very minimal compared to plastic strain.

Figure 1.2: Conventional undrained triaxial compression test on NC soil: (a) p ': q effective stress plane; (b) $q: \varepsilon_{q}$ stress: strain plot. (Wood ${ }^{179}, 1991, \mathrm{p} .131$)

(a)

(b

Figure 1.3: Conventional undrained triaxial compression test on LOC soil: (a) p ': q effective stress plane; (b) $q: \varepsilon_{q}$ stress: strain plot. (Wood ${ }^{179}, 1991$, p. 132)

Figure 1.4: Numerical result of Cam clay model: $q: \varepsilon_{q}$ stress:strain in drained triaxial compression tests with constant mean stress $\left(\delta p_{0}=0\right)(\kappa=0.05, G=$ $1500 \mathrm{kPa}, \lambda=0.25, M=1.2$) (overconsolidation ratio $p^{\prime}{ }^{\prime} / p^{\prime}{ }_{i}$ in range $1-5, p_{0}=$ $100 \mathrm{kPa}\left(\right.$ Wood $^{180}, 2004$, p. 160)

To get more realistic behaviour of soil, models other than linear elastic should be used and Mohr-Coulomb (MC) model is one of the most popular choices. Terzaghi ${ }^{164}$ (1948) proposed the use of MC model with two parameters: cohesion and friction angle, to predict the shear resistance of soil. Several experiments were performed to support MC model (Bishop ${ }^{25}$, 1966; Parry ${ }^{125}$, 1968). MC model is able to give reasonably close results to experimental data or field data for geotechnical problems like piles (Gose et al. ${ }^{72}$, 1997; Johnson et al. ${ }^{89}$, 2001; Kahyaoglu et al. ${ }^{91}$, 2009), deep excavation (Yong et al. ${ }^{185}$, 1989; Smith \& Ho^{159}, 1992; Bruyn et al. ${ }^{34}$, 1994; Pakbaz \& Zolfagharian ${ }^{124}$, 2005; Zvanut et al. ${ }^{188}, 2005$), and tunnelling (Lee \& Rowe ${ }^{100}$, 1990; Oettl et al. ${ }^{120}$, 1998). This model is also used to postulate the failure mechanism of geotechnical systems (Yong et al. ${ }^{185}$, 1989; Schweiger ${ }^{152}$, 2008). Although there are limitations in the model, MC model is popular due to its simplicity and the ease in determining its parameters.

Non-associated flow rule is often used and actually is essential for MC model. This implies that the dilation angle which controls the change in soil volume during shearing is different from the friction angle. Non-associated MC model has been used to re-evaluate failure loads for classic problems like bearing capacity of footing (Manoharan \& Dasgupta ${ }^{107,108}, 1995$ 1997; Yin et al. ${ }^{184}$, 2001; Erickson \& Drescher ${ }^{55}$, 2002; Loukidis \& Salgado ${ }^{105}$, 2009) and slope stability (Griffiths \& Lane ${ }^{74}$, 1999; Manzari \& Nour ${ }^{110}$, 2000; Kumar 97, 2004; Conte et al. ${ }^{45}, 2010$). For dense sands and overly-consolidated clays which tend to increase volume during shearing (Figure 1.5), experimental data show that their dilation angles are much smaller than the friction angles (Hettler \& Vardoulakis ${ }^{81}$, 1984; Vermeer \& De Borst ${ }^{168}$, 1984; Bolton ${ }^{27}$, 1986; Houlsby ${ }^{83}$, 1991; Schanz \& Vermeer ${ }^{149}$, 1996). For loose sands which tend to contract during shearing (Figure 1.6), associated flow rule would predict an increase of volumetric strain, which is completely opposite to that produced by real soil behaviour. Besides, Nova ${ }^{119}$ (2004) argued that associated flow rule is not suitable for MC due to thermodynamic reasons e.g. no plastic work is dissipated during shearing of soil wedge behind retaining walls. To sum up, non-associated flow rule should be applied when MC model is used to simulate soil behaviour.

Figure 1.5: Results of triaxial drained test on dense sand (Hettler \& Vardoulakis ${ }^{81}$, 1984)

Figure 1.6: Results of triaxial drained tests on saturated Ham River loose sand (Bishop ${ }^{25}$, 1966)

1.1.3 Iterative solvers for nonsymmetric linear systems

When the non-associated flow rule is applied, the tangent global stiffness matrix in nonlinear FE analysis, nested within full Newton-Raphson (NR) method, becomes non-symmetric (Owen \& Hinton ${ }^{123}$, 1980; Potts \& Zdravkovic ${ }^{137}$, 1999) since the continuum stress-strain matrix $D_{e p}$ in Eq.(1.3) below is nonsymmetric,

$$
\begin{equation*}
D_{e p}=D_{e}-\frac{D_{e}\left(\frac{\partial g}{\partial \sigma}\right)\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}}{\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}\left(\frac{\partial g}{\partial \sigma}\right)} \tag{1.3}
\end{equation*}
$$

in which D_{e} is the elastic stress-strain matrix,

$$
\begin{aligned}
& \frac{\partial g}{\partial \sigma}=\left\{\begin{array}{llllll}
\frac{\partial g}{\partial \sigma_{x}} & \frac{\partial g}{\partial \sigma_{y}} & \frac{\partial g}{\partial \sigma_{z}} & \frac{\partial g}{\partial \tau_{x y}} & \frac{\partial g}{\partial \tau_{y z}} & \frac{\partial g}{\partial \tau_{z x}}
\end{array}\right\}^{T} \\
& \frac{\partial f}{\partial \sigma}=\left\{\begin{array}{llllll}
\frac{\partial f}{\partial \sigma_{x}} & \frac{\partial f}{\partial \sigma_{y}} & \frac{\partial f}{\partial \sigma_{z}} & \frac{\partial f}{\partial \tau_{x y}} & \frac{\partial f}{\partial \tau_{y z}} & \frac{\partial f}{\partial \tau_{z x}}
\end{array}\right\}^{T}
\end{aligned}
$$

are the gradients to the plastic potential g and the yield surface f, respectively, and $\sigma=\left\{\begin{array}{llllll}\sigma_{x} & \sigma_{y} & \sigma_{z} & \tau_{x y} & \tau_{y z} & \tau_{x z}\end{array}\right\}^{T}$ is a vector of stress component.

This leads to a non-symmetric global stiffness matrix $K_{e p}$ with the dimension of $N \times N$ in finite element analysis and Eq.(1.1) becomes the following nonsymmetric linear system

$$
\begin{equation*}
K_{e p} u=F \tag{1.4}
\end{equation*}
$$

in which with $u \in \mathfrak{R}^{N}$ is an unknown vector and $F \in \mathfrak{R}^{N}$ is the applied force vector.

This nonsymmetric system can be avoided by switching to a modified NR method (or initial stress method in engineering term). This method uses the same symmetric stiffness matrix for every NR iteration and therefore the global stiffness matrix is only computed once. However, such a modified NR method has convergence difficulty for strongly non-linear problems (Bathe \& Cimento ${ }^{17}$, 1980; Bonet \& Wood ${ }^{28}$, 2008; Crisfield ${ }^{47}$, 1998; Lewis \& Schrefler ${ }^{102}$, 1998; Wriggers ${ }^{181}$, 2008; ABAQUS theory manual ${ }^{1}$, 2010) which appear frequently in geotechnical engineering (Jardine et al. ${ }^{85}$, 1986; Zdravkovic et al. ${ }^{186}$, 2005). Hence, full NR is still a recommended method for nonlinear FE (Bonet \& Wood 28, 2008; Lewis \& Schrefler ${ }^{102}$, 1998). Since the non-associated flow rule is essential in MC model, solving the sparse nonsymmetric linear system is unavoidable.

As mentioned in Section 1.1.1, recent discussions all have focused on solving sparse symmetric linear system using Krylov subspace iterative methods. When the linear system is nonsymmetric, the difficulty is not only that the storage memory is doubled but more critically, current iterative solvers and preconditioners that are developed for symmetric systems are no longer optimal or - worst - no longer suitable. The apparent impact of the
nonsymmetry on iterative solvers is two matrix-vector multiplications are required in each iteration because the symmetry can no longer be exploited. This leads to the total iteration time is at least doubled because matrix-vector multiplication is the most time-consuming operation. The impact of the nonsymmetry on preconditioners is rather less apparent. Preconditioners aim to accelerate the convergence of iterative solvers hence aim to modify the convergence governing parameters. The convergence of iterative solvers depends on the eigenvalue distribution of the coefficient matrix. When the coefficient matrix is symmetric, the eigenvalues are all real numbers and the convergence is mostly governed by the spectral radius which is the ratio of the maximum eigenvalue over the minimum eigenvalue. The available preconditioners were designed to minimize this spectral radius. However when the coefficient matrix is nonsymmetric, some eigenvalues are complex numbers and the spectral radius becomes less meaningful. This point will be re-establish in Section 1.1.4 and Section 2.4.1.

Preconditioned conjugate gradient (PCG) is one of the most effective iterative solvers for symmetric positive-definite (SPD) linear system. This method can be used to solve the non-symmetric system $K_{e p} u=F$ by solving $K_{e p}{ }^{T} K_{e p} u=$ $K_{e p}{ }^{T} F$ instead (Eisenstat et al. ${ }^{54}$, 1983; Barrett et al. ${ }^{16}$, 1994). However, this technique is memory and computational expensive since not only the matrixvector multiplication (matvec), $K_{e p} v$ but also the transpose -vector multiplication, $K_{e p}{ }^{T} v$ is required at each iteration. Moreover, the convergence of PCG can be very slow (Eisenstat et al..54, 1983; Barrett et al. ${ }^{16}$, 1994; Kelley ${ }^{94}$, 1995) since the condition number of the matrix $K_{e p}{ }^{T} K_{e p}$ is the square of the condition number of $K_{e p}\left(\right.$ Kelley ${ }^{94}$, 1995) and the eigenvalues of $K_{e p}{ }^{T} K_{e p}$ can be more scattered than those of $K_{e p}$ (Weiss $\left.{ }^{173}, 1995\right)$. Nevertheless, Freund and others ${ }^{63}$ (1992) noted that solving $K_{e p}{ }^{T} K_{e p} u=K_{e p}{ }^{T} F$ is optimal for skewsymmetric or shifted skew-symmetric matrices but $K_{e p}$ matrix from FE discretization does not belong to these classes. Hence this method is not optimal and is not considered in this thesis. Besides, it may be tempted to use PCG to solve $K_{e p} u=F$ directly when $K_{e p}$ is a weakly non-symmetric matrix. Borja ${ }^{29}$ (1991) applied this technique and achieved convergence on his systems. However PCG is strictly developed for SPD linear system and there
is no theoretical guarantee that it will converge for weakly non-symmetric matrix.

There are Krylov iterative methods specifically developed to solve nonsymmetric linear systems. The popular ones are GMRES (Saad \& Schultz ${ }^{145}$, 1986), Bi-CG (Fletcher ${ }^{61}$, 1976), CGS (Sonneveld ${ }^{160}$, 1989), QMR (Freund \& Nachtigal ${ }^{62}$, 1991) and Bi-CGSTAB (Vorst ${ }^{170}$, 1992). Among these, GMRES and Bi-CGSTAB are the most prominent methods (Pillis ${ }^{132}$, 1998; Sonneveld \& Gijzen ${ }^{162}$, 2008; Ferronato ${ }^{58}$, 2012). GMRES is a very efficient method which finds the minimum residual norm over the Krylov subspace spanned, and hence it offers the "lower bound" solution for all Krylov iterative methods (Kelley ${ }^{94}$, 1995). Although GMRES is mathematically elegant, it is practically expensive since a new set of orthogonal vectors has to be formed and stored at every iteration (Barrett et al. ${ }^{16}, 1994$; Saad ${ }^{144}$, 2003). Therefore GMRES is not suitable for large-scale problems. Currently, Bi-CGSTAB is the most practical method to solve large sparse nonsymmetric linear systems.

Induced Dimension Reduction $(\operatorname{IDR}(s))$ is a recently developed method based on IDR theorem and is consider competitive with Bi-CGSTAB on some simple test problems done by Sonneveld and Gijzen ${ }^{162,70}$ (2008, 2010). The parameter s is the number of columns of the shadow matrix $P^{N \times s}$ and the upper bound of dimension reduction (refer to Section 2.1.1for the detail elaboration). It is known that in exact arithmetic, $\operatorname{IDR}(1)$ and Bi-CGSTAB are mathematically equivalent while $\operatorname{IDR}(s)$ with $s>1$ often converges faster than Bi-CGSTAB does. Bi-CGSTAB has been shown to be related to $\operatorname{IDR}(s)$ method and actually its algorithm can be expressed in the way similar to $\operatorname{IDR}(s)$ (Sleijpen et al. $\left.{ }^{170}, 2010\right)$. More importantly, in exact arithmetic, $\operatorname{IDR}(s)$ can compute the solution of an $N \times N$ nonsymmetric linear system in $N\left(1+\frac{1}{s}\right)$ matvec (at the expense of forming and solving an $s \times s$ linear system in each iteration) in contrast to the $2 N$ matrix-vector multiplications required by the Bi-CGSTAB method. Comparisons of $\operatorname{IDR}(s)$ versus $\mathrm{Bi}-$ CGSTAB and GMRES have been done on some large-scale nonsymmetric linear systems resulted from finite difference discretization of quantum mechanics equation (Jing et al. ${ }^{88}$, 2010), of Helmholtz equations (Umetani et
al. ${ }^{167}$, 2009; Knibbe et al. ${ }^{95}$, 2011), and boundary element (BE) discretization of elastodynamics (Xiao et al. ${ }^{182}$, 2012). These comparisons conclude that: a) the convergence behavior of $\operatorname{IDR}(s)$ is similar to that of GMRES while the former requires less memory; b) with effective preconditioner like incomplete LU (ILU), IDR ($s>1$) converges faster than Bi-CGSTAB; and c) more importantly, there are cases where IDR converges well while Bi-CGSTAB does not converge. From all the above, it is of interest for us to investigate whether the $\operatorname{IDR}(s)$ method has any substantial competitive advantage over the default Bi-CGSTAB solver on large-scale geotechnical problems.

1.1.4 Preconditioners for nonsymmetric linear systems

Section 1.1.1 has noted that preconditioning is the crucial technique to keep Krylov iterative methods converge in a practical span of time. Preconditioners transform the linear system (1.4) into (1.5),

$$
\begin{equation*}
\tilde{K} \tilde{u}=\tilde{F} \tag{1.5}
\end{equation*}
$$

in which \tilde{K} is the preconditioned $K_{e p}, \tilde{u}$ and \tilde{F} are modified versions u and F respectively by the preconditioner M. With $M=M_{\mathrm{L}} M_{\mathrm{R}}$, there are three different ways to precondition $K_{e p}$: left preconditioning, right preconditioning and left-right preconditioning as presented in Eq.(1.6), (1.7), and (1.8) respectively. Right preconditioning, Eq. (1.7), is often preferred because the right-hand-side F does not require modification.

$$
\begin{gather*}
\left(M^{-1} K_{e p}\right) u=M^{-1} F \tag{1.6}\\
\left(K_{e p} M^{-1}\right)(M u)=F \tag{1.7}\\
\left(M_{L}^{-1} K_{e p} M_{R}^{-1}\right)\left(M_{R} u\right)=M_{L}^{-1} F \tag{1.8}
\end{gather*}
$$

Solving Eq.(1.5) with Krylov iterative methods involves the matrix-vector multiplication $\widetilde{K} v$ hence, involves solving $M u=\tilde{u}$. An efficient preconditioner is a balance between the two conflicting criteria: it should, first, approximate matrix $K_{e p}$ well enough so that Krylov iterative methods converge in less iterations, and second, be simple enough so that $M u=\tilde{u}$ can be solve quickly (Freund et al. ${ }^{63}$, 1992). This makes the search for an efficient preconditioner challenging especially with the lack of theoretical results (Ferronato ${ }^{58}$, 2012).

Section 1.1.1 also noted that current available preconditioners for geotechnical problems are developed from the symmetric linear system arising when the soil follows a linear elastic model. Preconditioners are also developed for the 2-by-2 block symmetric linear system from Biot's consolidation analysis. Phoon and co-workers ${ }^{131,130}(2002,2004)$ exploited the structure of this block matrix and introduced several preconditioners like Generalized Jacobi (GJ), Modified Symmetric Successive Over-Relaxation (MSSOR) and block preconditioners (Toh et al. ${ }^{166}$, 2004; Chauhary ${ }^{37}$, 2010). While Gambolati and co-workers ${ }^{64,65,66}$ (2001, 2002, 2003) discussed the use of incomplete LU decomposition (ILU) and incomplete Cholesky decomposition (IC) type preconditioners. However, the optimal ILU or IC preconditioners depend on fill-in parameters while these parameters are not known a priori. Nevertheless, it is of interest to apply ILU preconditioners on the nonsymmetric linear systems Eq.(1.3).

The convergence of Krylov iterative methods for symmetric positive definite linear systems is primarily governed by the condition number, which is equal to the ratio of the maximum eigenvalue $\lambda_{\max }$ over the minimum eigenvalue $\lambda_{\text {min }}$, of the symmetric matrix (Saad ${ }^{144}$, 2003). Hence the objective of preconditioning is only to reduce the condition number by making the eigenvalues cluster at some points. Whereas the convergence of Krylov iterative methods for nonsymmetric linear systems is more complicated and governed by quantities that cannot be computed explicitly for general case (Freund et al. ${ }^{63}$, 1992; Driscoll et al. ${ }^{50}$, 1998; Saad ${ }^{144}$, 2003). Therefore the process of developing an efficient preconditioner for nonsymmetric linear systems is rather empirical (Ferronato ${ }^{58}$, 2012). When the soil follows a linear elastic model, the symmetric global stiffness matrix is constant, and hence the preconditioner can be fixed for a certain problem. But when the soil follows the non-associated MC model, the nonsymmetric global stiffness matrix changes with the increase of the number of yielded Gauss points and preconditioners have to be redesigned to accommodate these changes.

Discussion of preconditioners for nonsymmetric linear system in geotechnical problems is mostly limited to 1 -by-1 block matrix from drained analysis. Traditional preconditioners like Jacobi, SSOR and ILU are often used
(Almeida \& Paiva ${ }^{6}$, 2004; Wieners et al. ${ }^{178}$, 2005; Ribeiro \& Ferreira ${ }^{141}$, 2007; Jeremic \& Jie ${ }^{86}$, 2008). Mroueh and Sharour ${ }^{115}$ (1999) did survey on BiCG, Bi-CGSTAB and QMR-CGSTAB methods to solve non-symmetric linear systems arising from shallow foundation, laterally loaded pile and tunnelling process when the soil follows a non-associated MC model. The study used Jacobi and SSOR preconditioners and recommends the use of SSOR as a left preconditioner. Payer and Mang ${ }^{126}$ (1997) used CGS, GMRES, and BiCGSTAB method with SSOR and ILU preconditioners for the coupling 3D BE-FE analysis of tunnel driving problem. The soil followed a hardening capped model developed from Druker-Prager model. Numerical experiments showed that GMRES and BiCGSTAB are competitive solvers.

White and Borja ${ }^{175}$ (2011) have recently applied the block preconditioner proposed by Toh et al. ${ }^{166}(2004)$ in solving the nonsymmetric 2-by-2 block linear system resulted from the study of fluid flow through porous media. The nonsymmetry is due to the non-associated Drucker-Prager model of the porous media. Chen and Phoon ${ }^{41}$ (2012) have also given an extended discussion on the application of MSSOR preconditioner to Biot's consolidation problem when the soil follows a non-associated MC model.

1.2 Objective and Scope of the study

The specific objectives of this study can be summarized as follows.

1. To compare the efficiency of $\operatorname{IDR}(s)$ and Bi-CGSTAB method with different preconditioners in solving the drained shallow foundation.
2. To investigate the efficiency of preconditioners on drained analysis and show that the total solution time can be greatly reduced by forming the global stiffness matrix implicitly, where K_{e} is formed only once, and the second term (denoted as Δ) is computed and stored separately from K_{e} in each NR iteration.
3. To investigate the efficiency of block preconditioners on Biot's consolidation analysis.
4. To evaluate the effectiveness of the proposed preconditioners in the context of realistic large-scale soil-structure interaction problems.

This thesis only discusses the preconditioner related to the assembled global stiffness matrix, often known as "global preconditioner". There is a class of preconditioner call element-by-element (EBE) preconditioner which preconditions the matrix-free analysis. This type of preconditioner is more suitable to parallel simulation while this thesis focuses on PC simulation hence EBE is not discussed in this thesis. Sparse approximate inverse is another type of preconditioner which has recently been popular. This preconditioner is designed and often used with GMRES method, which is not a very practical method for 3D geotechnical problems as discussed in Section 1.1.3, hence is also not discussed here.

1.3 Computer hardware and software

All the numerical experiments in this report are carried out on a DELL Intel Core i7 CPU, 3.4 GHz PC with 16 GB of RAM running on a Windows 7 operating systems.

The FORTRAN source codes for 3D FEM drained problem with MohrCoulomb soil model are based on the 2D version given by Smith and Griffiths ${ }^{158}$ (2004). The FORTRAN source codes for 3D FEM Biot's consolidation problems are based on research work by Chen ${ }^{39}$ (2005) and Chauhary ${ }^{37}$ (2010). The FORTRAN codes are programmed with Intel Visual FORTRAN Compiler 10.1, Professional Edition.

1.4 Thesis outline

This thesis is divided into following chapters. Chapter 2 provides a brief overview of iterative methods used in this thesis and review of various preconditioners for 1-by-1 block matrix and 2-by-2 block matrix as well as the convergence criteria of Krylov iterative methods. Chapter 3 compares the performance of recently developed $\operatorname{IDR}(s)$ and Bi-CGSTAB method with various traditional preconditioners to recommend the most optimal preconditioner for the 1-by-1 block nonsymmetric linear system coming from the non-associated MC model. Chapter 4 discusses the techniques to exploit the structure of the elastoplastic stiffness $K_{e p}$ and scheme to update preconditioners for 1-by-1 block matrix with examples from drained analysis
and undrained analysis. Chapter 5 compares the performance of existing block preconditioners on Biot's consolidation analysis of which elastoplastic stiffness matrix is a 2-by-2 block matrix. The application of these preconditioners on practical examples is demonstrated in Chapter 6. Finally, Chapter 7 offers some general conclusion with recommendations for the further study.

CHAPTER 2 LITERATURE REVIEW

2.1 Induced Dimension Reduction (IDR) method

2.1.1 Overview of $\operatorname{IDR}(s)$ method

$\operatorname{IDR}(s)$ method was proposed by Sonneveld and Gijzen ${ }^{162}$ in 2008 based on IDR theorem (Wesseling \& Sonneveld ${ }^{174}$, 1980). IDR theorem is given in Figure 2.1 and its proof can be found in the paper by Sonneveld and Gijzen ${ }^{162}$ (2008). This theorem defines a sequence of subspaces $\left\{G_{j}\right\}_{j=0}^{N}$ with two properties: (i) these subspaces are nested; and (ii) when j increases, there is either a reduction in dimension of G_{j} or $\mathrm{G}_{\mathrm{j}}=\{0\}$.

Let A be any matrix in $C^{N \times N}$, let v_{0} be any nonzero vector in C^{N}, and let G_{0} be the full Krylov space $K^{N}\left(A, v_{0}\right)$. Let S denote any (proper) subspace of C^{N} such that S and G_{0} do not share a nontrivial invariant subspace of A, and define the sequence $G_{j}, j=1,2, \ldots$, as

$$
G_{j}=\left(I-\omega_{j} A\right)\left(G_{j-1} \cap S\right)
$$

where the ω_{j} 's are nonzero scalers. Then the following hold:
(i) $G_{j} \subset G_{j-1} \forall j>0$
(ii) $G_{j}=\{0\}$ for some $j \leq N$

Figure 2.1: IDR theorem (Sonneveld \& Gijzen ${ }^{162}$, 2008)
For solving a linear system of equations $A x=b$ with an $N \times N$ coefficient matrix A, the $\operatorname{IDR}(s)$ method works by projecting residuals into a sequence of nested subspaces $\left\{G_{j}\right\}_{j=0}^{N}$ of reducing dimensions, with $\mathrm{G}_{0}=\operatorname{span}\left(r_{0}, A r_{0}, \ldots\right.$, $A^{N} r_{0}$) being the full dimensional Krylov subspace associated with the initial residual r_{0}. According to IDR theorem, these nested subspaces are constructed as $G_{\mathrm{j}}=\left(I-w_{j} A\right)\left(G_{j-1} \cap P^{\perp}\right)$ where P^{\perp} is the orthogonal complement of the range of a fixed $N \times s$ matrix P, often known as shadow space, and w_{j} is a nonzero scalar. Sonneveld and Gijzen ${ }^{162}$ (2008) proved that s is the upper bound of the dimension reduction of $\mathrm{G} j$ when j increases. This leads to the observation that in exact arithmetic, $\operatorname{IDR}(s)$ can compute the solution of an N
$\times N$ nonsymmetric linear system in $N\left(1+\frac{1}{S}\right)$ matvec (at the expense of forming and solving an $s \times s$ linear system in each iteration). Figure 2.2 presents the pseudo-code of the preconditioned $\operatorname{IDR}(s)$ method following Gijzen and Sonneveld ${ }^{70}$ (2010).
$\operatorname{IDR}(1)$ is mathematically equivalent to Bi-CGSTAB of which pseudo-code is presented in Figure 2.3 (Sleijpen et al. ${ }^{156}, 2010$). $\operatorname{IDR}(s)$ with $s>1$ is more efficient than Bi-CGSTAB in some examples shown by Sonneveld and Gijzen ${ }^{162,70}(2008,2010)$ when comparing both matvec count and total iteration time. Jing and others ${ }^{88}$ (2010) performed detailed comparisons of $\operatorname{IDR}(s)$ with $s=1,2,4,6,8$ and other Krylov iterative methods: CGS, BiCGSTAB, full GMRES, restarted $\operatorname{GMRES}(m)$ with $m=50,100,200$. These methods were used to solve the nonsymmetric linear system resulted from finite difference discretization of a three-body problem in quantum mechanics. $\operatorname{IDR}(4)$ was shown to require the least time to converge. Umetani et al. ${ }^{167}$ (2009) and Knibbe et al. ${ }^{95}$ (2011) compared IDR(2), IDR(4) and Bi-CGSTAB in solving the nonsymmetric linear system resulted from finite difference discretization of the two-dimensional (2D) Helmholtz equation. Multigrid preconditioner was used with $\operatorname{IDR}(4)$ and Bi-CGSTAB. Both discussions found that the time $\operatorname{IDR}(4)$ requires to converge is marginally less than that required by Bi-CGSTAB. Xiao and other ${ }^{182}$ (2012) compared $\operatorname{IDR}(s)$ with $s=$ 8, 10, 20 with full GMRES and restarted GMRES(50) in solving the nonsymmetric linear system resulted from boundary element (BE) discretization of elastodynamics problem. The numerical results shown that $\operatorname{IDR}(s)$ required less storing memory but more iterations to converge than full GMRES and restarted GMRES did. Because more iterations were required, $\operatorname{IDR}(s)$ consumed more time than full GMRES in the tested problems but the differences were marginal. This may be because the linear system resulted from BEM is dense so it is time consuming to compute one matvec, which may not be the case for FE discretization considered in this thesis.

```
Compute \(r^{(0)}=b-A x^{(0)}\)
\(P \in \mathrm{C}^{N \times s} ; g_{i}=u_{i}=0 \in \mathrm{C}^{N}, i=1, \ldots s ; B=I \in \mathrm{C}^{s \times s} ; \omega=1\)
while \(\|r\|>\) tol
    \(f=P^{H} r,\left(\phi_{1}, \ldots, \phi_{s}\right)^{T}=f\)
    for \(k=1, \ldots, s\)
        Solve \(B c=f,\left(\gamma_{1}, \ldots, \gamma_{s}\right)^{T}=c\)
        \(v=r-\sum_{i=k}^{s} \gamma_{i} g_{i}\)
        \(v=M^{-1} v\)
        \(u_{k}=\omega v+\sum_{i=k}^{s} \gamma_{i} u_{i}\)
        \(g_{k}=A u_{k}\)
        for \(i=1, \ldots, k-1\)
            \(\alpha=p_{i}^{H} g_{k} / \mu_{i, i}\)
            \(g_{k}=g_{k}-\alpha g_{i}\)
            \(u_{k}=u_{k}-\alpha u_{i}\)
        end for
            \(\mu_{i, k}=p_{i}^{H} g_{k}, B_{i, k}=\mu_{i, k}, i=\overline{k, s}\)
            \(\beta=\phi_{k} / \mu_{k, k}\)
            \(r=r-\beta g_{k}\)
            \(x=x+\beta g_{k}\)
            if \(k+1 \leq s\)
                \(\phi_{i}=0, i=\overline{1, k}\)
                \(\phi_{i}=\phi_{i}-\beta \mu_{i, k}, i=\overline{k+1, s}\)
            end if
end for
\(v=M^{-1} r\)
\(t=A v\)
Calculation of \(\omega\) using "maintaining the convergence" strategy
\(\omega=t^{H} r / t^{H} t\)
\(\rho=t^{H} r /(| | t\|r\|)\)
if \(|\rho| \leq \kappa\)
    \(\omega=\omega \kappa /|\rho|\)
end if
\(r=r-\omega t\)
\(x=x+\omega t\)
end while
```

Figure 2.2: Preconditioned IDR(s)-biortho with preconditioner M (Gijzen \& Sonneveld ${ }^{70}$, 2010)

```
Compute \(r^{(0)}=b-A x^{(0)}\)
Choose \(\tilde{r}^{(0)}=r^{(0)}\)
for \(i=1,2 \ldots\) maxit
    \(\rho_{i-1}=\tilde{r}^{T} r^{(i-1)}\)
    if \(\rho_{i-1}=0\) method fails
    if \(i=1\)
        \(p^{(i)}=r^{(i-1)}\)
    else
        \(\beta_{i-1}=\left(\rho_{i-1} / \rho_{i-2}\right)\left(\alpha_{i-1} / \omega_{i-1}\right)\)
        \(p^{(i)}=r^{(i-1)}+\beta_{i-1}\left(p^{(i-1)}-\omega_{i-1} \nu^{(i-1)}\right)\)
    end if
    Solve \(M \hat{p}=p^{(i)}\)
    \(v^{(i)}=A \hat{p}\)
    \(\alpha_{i}=\rho_{i-1} / \widetilde{r}^{T} v^{(i)}\)
    \(s=r^{(i-1)}-\alpha_{i} \nu^{(i)}\)
```

 Check norm of \(s\); if small enough: set \(x^{(i)}=x^{(i-1)}+\alpha_{i} \hat{p}\) and STOP
 Solve \(M \hat{s}=s\)
 \(t=A \hat{s}\)
 \(\omega_{i}=t^{T} s / t^{T} t\)
 \(x^{(i)}=x^{(i-1)}+\alpha_{i} \hat{p}+\omega_{i} \hat{s}\)
 \(r^{(i)}=s-\omega_{i} t\)
 Check convergence; continue if necessary
 For continuation it is necessary that \(\omega_{i} \neq 0\)
 end for

Figure 2.3: Preconditioned BiCGSTAB method with preconditioner M
(Barrett et al. ${ }^{16}$, 1994)

2.1.2 Implementation of $\operatorname{IDR}(s)$

From Figure 2.2, an important input of $\operatorname{IDR}(s)$ is the shadow matrix $P^{N \times s}$ containing s shadow vectors. Sonneveld and Gijzen ${ }^{162}$ (2008) recommended the use of random matrix with orthorgonalized columns. They noted that using matrix P in relation to the problem does not improve the convergence of $\operatorname{IDR}(s)$ but even worsen its performance. The better choice of P besides random matrix has not yet been found as noted by Sonneveld ${ }^{161}$ in 2012. This thesis follows this recommendation and employs the random matrix P of which entries are random number uniformly distributed from 0 to 1 . However, the orthogonalization process such as Gram-Schmidt (Saad ${ }^{144}, 2003$, pp. 10-15) is time consuming and numerical experiments in this thesis show that with an efficient preconditioner, $\operatorname{IDR}(s)$ converges well without this extra process. Sonneveld and Gijzen ${ }^{162}$ (2008) noticed that a random matrix P with complex numbers is a good mitigation when $\operatorname{IDR}(s)$ convergence is poor. This option is
expensive for the problems studied in this thesis where all data are real numbers hence is not implemented and the convergence of $\operatorname{IDR}(s)$ is accelerated by preconditioners, which is the main objective of this thesis.

Note that the dimension (s) of P certainly affects the convergence of $\operatorname{IDR}(s)$. As mentioned in Section 2.1.1, in exact arithmetic, $\operatorname{IDR}(s)$ converges to the exact solution in at most $N\left(1+\frac{1}{s}\right)$ matvec. Thus $\operatorname{IDR}(s)$ is expected to converge faster when s increases but at the cost of solving a larger $s \times s$ linear system in each iteration. Hence, the optimal value of s should compromise both the convergence rate and the overhead time. Sonneveld and Gijzen ${ }^{162,70}$ (2008, 2010) recommended $s=4$ based on their numerical experiments. However numerical experiments in this thesis show that $s=6$ is more optimal for the nonsymmetric linear system arising from the non-associated MC model.

2.2 Preconditioners for 1-by-1 nonsymmetric block matrix

2.2.1 Nonsymmetric linear systems resulted from drained and undrained analysis

Section 1.1.2 has introduced that this thesis considers the nonsymmetric linear system arising from geotechnical problems where the soil following the nonassociated Mohr-Coulomb model. The linear systems due to FE discretization in drained and undrained analysis are often handled as a 1-by-1 block matrix, in contrast with the 2-by-2 block matrix in Biot's consolidation discussed in Section 2.3. The FE discretization of drained analysis is

$$
\begin{equation*}
K_{e p} u=\sum_{\text {element }}\left[\int_{V} B^{T} D_{e p} B d V\right] u=F \tag{2.1}
\end{equation*}
$$

in which V is the elementary volume body, B is the element straindisplacement matrix, and $D_{e p}$ is the elastoplastic stress-strain matrix given in Eq.(1.3). While the FE discretization of undrained analysis using effective stress parameters is

$$
\begin{equation*}
K_{e p} u=\sum_{\text {element }}\left[\int_{V} B^{T}\left(D_{e p}+\frac{K_{w}}{n} m m^{T}\right) B d V\right] u=F \tag{2.2}
\end{equation*}
$$

in which K_{w} is the bulk modulus of water, n is the porosity of soil and $m^{T}=\left\{\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\right\}$ for 3D analysis. Figure 2.4 plots the sparsity pattern of these matrixes. In geotechnical engineering, few discussions are available on preconditioners for the nonsymmetric linear systems in Eq.(2.1) and (2.2). When preconditioner is required, Jacobi or SSOR or sometimes ILU is used. In general discussion about preconditioner, Jacobi, SSOR and ILU are still the most popular preconditioners for the 1-by-1 block matrix.

Figure 2.4: Sparsity pattern of 1-by-1 block matrix

2.2.2 Jacobi and SSOR Preconditioners

Jacobi preconditioner is the diagonal matrix containing diagonal entries of $K_{e p}$ (Eq.(2.3)). This is the cheapest preconditioner because it is easy to form, requires less memory and $M_{J} u=\tilde{u}$ is easy to solve.

$$
\begin{equation*}
M_{J}=D_{K} \tag{2.3}
\end{equation*}
$$

Jacobi preconditioner performs diagonal scaling of the original matrix which is often quite effective in reducing the condition number $\kappa\left(M^{-1} K_{e p}\right)$. Jacobi preconditioner is the cheapest but also the crudest approximation of the matrix, hence possesses the lowest efficiency. Jacobi preconditioner is often resorted as a quick and cheap tool to accelerate as well as, hopefully, preserve convergence of Krylov iterative methods when solving the nonsymmetric
linear systems is not the main but an unavoidable process, or when preconditioner is not the main objective of discussion (Jiang et al. ${ }^{87}$, 1994; Sheu et al. ${ }^{154}$, 1999; Almeida \& Paiva ${ }^{6}, 2004$; Araujo et al. ${ }^{7}, 2004$; Pontaza \& Reddy ${ }^{136}$, 2004)

Jacobi preconditioner is an acceptable approximation when the matrix is diagonally dominant. There is a scaling form of Jacobi preconditioner when the matrix is not diagonally dominant or the diagonal entries are of different scale such as the case of Biot's consolidation equations. Scaling is introduced for this case and called Generalized Jacobi (GJ) preconditioner, which is discussed in detailed in Section 2.3.3.

SSOR preconditioner is a better approximation of $K_{e p}$ than Jacobi preconditioner and takes the following form,

$$
\begin{equation*}
M_{S S O R}=\frac{1}{2-\omega}\left(\frac{1}{\omega} D_{K}+L_{K}\right)\left(\frac{1}{\omega} D_{K}\right)^{-1}\left(\frac{1}{\omega} D_{K}+U_{K}\right) \tag{2.4}
\end{equation*}
$$

in which D_{K} is the diagonal matrix containing diagonal entry of $K_{e p}, L_{K}$ is the strictly lower triangular matrix of $K_{e p}$ and U_{K} is the strictly upper triangular matrix of $K_{e p}$ and ω is the relaxation parameter which is real a number between ($0 ; 2$). SSOR is also regarded as an incomplete LU factorization (Eisenstat ${ }^{53}$, 1981; Bank \& Douglas ${ }^{15}, 1985$; Saad ${ }^{144}, 2003$, pp. 285-287) but it is not as efficient as the incomplete LU factorization, ILU (arising from Gaussian elimination), discussed in Section 2.2.3. This is because SSOR does not approximate $K_{e p}$ as well as ILU: the error matrix $K_{e p}-M_{S S O R}$ is generally larger than $K_{e p}-M_{I L U}$.

Being a better approximation of $K_{e p}$, SSOR is often more efficient than Jacobi preconditioner. SSOR is popular because it is easy and fast to apply and consumes little memory when compared with the ILU preconditioner. Chen and others ${ }^{38}$ (2004) recommended the use of SSOR for GMRES to solve the nonsymmetric linear system from FE discretization of waveguide discontinuities with anisotropic dielectric. Stute and others ${ }^{163}$ (2013) recently have used SSOR with GMRES and Bi-CGSTAB to demonstrate the superiority of Krylov iterative methods over the direct solvers.

There is an optimal value of ω with which SSOR works best but this optimal value depends on the eigenspectrum of $K_{e p}$, which is expensive to compute in advance (Barrett et al. ${ }^{16}$, 1994). Hence the optimal value of ω is practically unknown at the start of the simulation. Payer and Mang ${ }^{126}$ (1997) used SSOR as a quick-to-use preconditioner to demonstrate the application of Krylov iterative methods in solving the nonsymmetric linear system from 3D FE-BE analysis. Their numerical experiments showed that the convergence of Krylov iterative methods was rather insensitive to the value of ω in the SSOR preconditioner. Bruaset ${ }^{33}$ (1997) also noted that SSOR as a preconditioner is not as sensitively affected by the value of ω as SSOR as an iterative method. For all the above reasons, this thesis chooses $\omega=1$ for SSOR preconditioner, often known as simple SSOR.

SSOR is often exploited with Eisenstat's trick (Eisenstat ${ }^{53}$, 1981) as a leftright preconditioning technique and denoted as SSOR-LR (Eq.(2.5)) in this thesis. Procedure to compute $t=\widetilde{K} v$ for SSOR-LR is presented in Eq.(2.6).

$$
\begin{align*}
M_{L}= & \left(L_{K}+D_{K}\right) ; M_{R}=D_{K}^{-1}\left(U_{K}+D_{K}\right) \\
\tilde{K}= & \left(L_{K}+D_{K}\right)^{-1} K\left(D_{K}+U_{K}\right)^{-1} D_{K} \tag{2.5}\\
& f=\left(U_{K}+D_{K}\right)^{-1} w \text { where } w=D_{K} v \\
& g=D_{K} f+w \tag{2.6}\\
& h=\left(L_{K}+D_{K}\right)^{-1} g \\
& t=f+h
\end{align*}
$$

SSOR is sometimes used as a left preconditioner (Mroueh \& Shahrouh ${ }^{115}$, 1999), denoted as SSOR-L in Eq.(2.7).

$$
\begin{gather*}
M_{L}=\left(L_{K}+D_{K}\right) D_{K}^{-1}\left(U_{K}+D_{K}\right) \\
\tilde{K}=\left(D_{K}+U_{K}\right)^{-1} D_{K}\left(L_{K}+D_{K}\right)^{-1} K \tag{2.7}
\end{gather*}
$$

2.2.3 Incomplete factorization preconditioners

Section 2.2.2 has mentioned that the incomplete LU factorization preconditioner, ILU, arising from Gaussian elimination is more efficient than SSOR because the error matrix $K_{e p}-M_{I L U}$ is generally smaller than $K_{e p}-$ $M_{\text {SSOR }}$. ILU is considered the most popular class of preconditioners (Saad \& Vorst ${ }^{146}$, 2000; Benzi ${ }^{18}$, 2002; Vorst ${ }^{171}$, 2002). But ILU is sometimes impractical because the preconditioner can be expensive to construct: it required more forming time and more storing memory than Jacobi and SSOR
preconditioner (Fischer et al. ${ }^{60}$, 1996; Payer \& Mang ${ }^{126}$, 1997; Chen et al. ${ }^{38}$, 2004). However, storing memory has become a less critical problem with the memory capacity of modern computers. Though ILU indeed may require substantially more time to form than Jacobi and SSOR, the total iteration time (including the time to form ILU and the iteration time of Krylov iterative methods) is quite often less than that required by Jacobi and SSOR due to the reduction in the number of iterations needed for convergence. ILU has been successfully applied in large-scale nonsymmetric linear systems resulted from popular problems such as Navier-Stokes equations, in which ILU is often involved in block preconditioners discussed later in Section 2.3.3 (Dahl \& Wille ${ }^{48}$, 1992; Persson \& Peraire ${ }^{128}$, 2008; Rehman et al. ${ }^{140}$, 2008; Diosady \& Darmofal ${ }^{49}$, 2009), Helmholtz equation (Schneider \& Marburg ${ }^{150}$, 2003; Kechroud et al..92, 2004; Osei-Kuffuor \& Saad ${ }^{121}$, 2010), and BE discretization (Fata \& Gray ${ }^{57}$, 2010; Kacimi \& Laghrouche ${ }^{90}$, 2011).

The lower and upper triangular matrices computed from Gaussian elimination of a sparse matrix are often less sparse than the original matrix because of fillins. ILU preconditioner is formed by dropping off some or all of these fill-ins based on some drop-off criteria. Figure 2.5 shows the pseudo-code of this process. There are two dropping criteria often imposed on ILU factorization: dropping off by the level of fill or when the number of fill-ins exceeds the tolerance value, and dropping off when the absolute numerical values of fillins are smaller than the tolerance value ($\mathrm{Saad}^{169}, 2003$, pp. 288-320).

```
for \(i=1, \ldots, n\)
    \(w=a_{i^{*}}\)
    for \(k=1, \ldots, i-1\) and when \(w_{k} \neq 0\)
        \(w_{k}=w_{k} / a_{k k}\)
        Apply a dropping rule to \(w_{k}\)
        if \(w_{k} \neq 0\) then
            \(w=w-w_{k} u_{k^{*}}\)
        end if
    end for
    Apply a dropping rule to row w
    \(l_{i, j}=w_{j}\) for \(j=1, \ldots, i-1\)
    \(u_{i, j}=w_{j}\) for \(j=\mathrm{i}, \ldots, n\)
    \(w=0\)
end for
```

Figure 2.5: Pseudo-code for ILUT (Saad ${ }^{144}$, 2003, pp. 307)
ILU0 is a popular special case of ILU for which the first dropping criterion is imposed: all the fill-ins are dropped off and ILU0 contains the same number of nonzero entries as the original matrix. Hence the storing memory of ILU0 is quantified before the factorization, unlike the ILUT discussed in the following paragraph. Benzi ${ }^{18}$ (2002) and Chow and Saad^{43} (1997) noted that ILU0 is effective when the matrix is M-matrix or diagonally dominant matrix. Nevertheless, ILU0 has found its use in other classes of matrices because it is simple and inexpensive to implement (Lan \& Liang ${ }^{98}$, 1997; Dutto \& Habashi ${ }^{52}$, 1999; Malas \& Gurel ${ }^{106}$, 2007; Diosady \& Darmofal ${ }^{49}$, 2009).
$\operatorname{Saad}^{169}$ (2003) proposed the $\operatorname{ILUT}(\rho, \tau)$ preconditioner based on the dual threshold strategy at each step of the factorization: fill-ins are dropped off when their absolute values are smaller than τ times the 2 -norm of the current row, and at most ρ largest fill-ins are kept in the current row. Both of the dropping criteria mentioned above are used to form this ILU. Benzi ${ }^{18}$ (2002) commented that $\operatorname{ILUT}(\rho, \tau)$ is an powerful preconditioner. The storing memory for $\operatorname{ILUT}(\rho, \tau)$ is limited by the upper bound of fill-ins in each row, ρ but is still undetermined before the factorization. The main practical drawback of $\operatorname{ILUT}(\rho, \tau)$ is the optimal values of ρ and τ are priorly unknown and are problem dependent. Saad ${ }^{169}$ (2003) and Benzi ${ }^{18}$ (2002) observed that ILUT(ρ, τ) worked well with the choice of small τ (from 10^{-5} to 10^{-2}) and/or large ρ (from 20). $\operatorname{ILUT}(\rho, \tau)$ is more expensive than ILU0 but is expected to be more efficient than ILU0 because fill-ins are allows hence it approximates the original matrix better and the error matrix is smaller. In comparison with ILU0,
$\operatorname{ILUT}(\rho, \tau)$ often requires more time to factorize and the preconditioning step $M u=\tilde{u}$ requires more time to solve as well; however the reduction in matvec count due to $\operatorname{ILUT}(\rho, \tau)$ (with the proper choice of ρ and $\tau!$) can help to reduce the total iteration time. Benzi ${ }^{18}$ (2002) demonstrated through the convectiondiffusion problem that the total iteration time can be reduced by half when $\operatorname{ILUT}(\rho, \tau)$ is used. Gambolati and co-workers ${ }^{64,65,66}(2001,2002,2003)$ have successfully used ILUT (ρ, τ) as preconditioner for the nonsymmetric form of FE discretization of Biot's consolidation equations. This is elaborated more in Section 2.3.2.

However, ILUT is not as time efficient as ILU0 for the nonsymmetric linear system arising from the non-associated MC model for the examples examined in this thesis (detailed discussion can be found in Section 3.5). Chauhary ${ }^{161}$ (2010) found that ILUT did not perform well for the symmetric linear system arising from FE discretization when soil follows a linear elastic model. The reduction in iteration time cannot make up for the time spent to form $\operatorname{ILUT}(\rho$, τ) and to solve the preconditioning step $M u=\tilde{u}$. ILU0 has been found to be more reliable and time efficient than $\operatorname{ILUT}(\rho, \tau)$ in several other problems such as coupled structural-acoustic problems (Lin \& Grosh ${ }^{103}$, 2003), DP $_{\mathrm{N}}$ acceleration equation in transport scheme (Santandrea \& Sanchez ${ }^{148}$, 2005), wave scattering phenomena in computational electromagnetics (Malas \& Gurel ${ }^{106}, 2007$).

In spite of the popularity of ILU preconditioner, researchers in the scientific computing community often caution that ILU should not be used as a blackbox especially for nonsymmetric matrices (Chow \& Saad ${ }^{43}$, 1997; Benzi ${ }^{18}$, 2002). Chow and Saad^{43} (1997) were aware that ILU could be unstable due to the four main reasons: inaccuracy due to very small pivots, unstable triangular solves, inaccuracy due to dropping and zero pivots.

Table 2.1 Statistics that can be used to evaluate an incomplete factorization
(Chow \& Saad ${ }^{43}$, 1997)

Statistic	Meaning	
condest	$\\|(\overline{\mathrm{L}} \overline{\mathrm{U}})^{-1} e_{\infty}, e=(1,1, \ldots, 1)^{\mathrm{T}}$.	
$1 /$ pivot	Size of reciprocal of the smallest pivot	
$\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$	Size of the largest element in $\overline{\mathrm{L}}$ and $\overline{\mathrm{U}}$ factors	

$$
\begin{aligned}
& \text { With } e=(1,1, \ldots, 1)^{\mathrm{T}} \\
& \text { Solve } \overline{\mathrm{L}} \overline{\mathrm{U}} u=e \\
& \text { condest }=\max \left(u_{i}\right), i=1, \ldots \mathrm{~N} \\
& \hline
\end{aligned}
$$

Figure 2.6: Pseudo-code to compute condest of ILU preconditioner
They recommended three statistics: condest, 1/pivot and $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$ presented in Table 2.1 to evaluate an ILU preconditioner. When the values of these three statistics are very large, on the order of 10^{15} recommended by Chow and Saad ${ }^{43}$ (1997), ILU is considered unstable and can fail if the values are extremely large. If condest and $1 /$ pivot are about the same size, the instability of ILU comes from very small pivot. If condest is much larger than $1 /$ pivot, the instability comes from the triangular solves. Large $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$ indicates the inaccurate factorization.

Chow and Saad ${ }^{43}$ (1997) were aware that there were cases when these values are small but ILU still fail and they commented that the failure may come from the inaccuracy due to dropping. When ILU does not help or even fail the iteration, Benzi and others ${ }^{20}$ (1999) recommended ordering the original matrix with reverse Cuthill-McKee (RCM) before performing ILU factorization especially when the original matrix is strongly nonsymmetric.

2.3 Preconditioners for 2-by-2 nonsymmetric block matrix

2.3.1 Nonsymmetric linear systems resulted from Biot's consolidation equations

The 2-by-2 block global stiffness matrix in this thesis comes from FE discretization Biot's consolidation equations. The increment form of this discretization with fully implicit Crank-Nicolson time stepping $(\theta=1)$ is given in Eq.(2.8) (Smith \& Griffith ${ }^{158}$, 2004),

$$
A=\left[\begin{array}{cc}
K_{e p} & B \tag{2.8}\\
B^{T} & -C
\end{array}\right]\left\{\begin{array}{c}
\Delta u \\
\Delta p^{e x}
\end{array}\right\}=\left\{\begin{array}{c}
\Delta f \\
C p^{e x}
\end{array}\right\}
$$

in which $K_{e p} \in \mathfrak{R}^{n d \times n d}$ is the soil stiffness matrix and is nonsymmetric when the non-associated MC model is applied, $C \in \mathfrak{R}^{n p \times n p}$ is the fluid stiffness
matrix (symmetric positive semi-definite) and $B \in \mathfrak{R}^{n d \times n p}$ is the displacementpore pressure coupling matrix. These submatrices are given in Eq. (2.9), (2.10) and (2.11) respectively. In these equations, V is the volume of the considered body; B_{u} is the soil element strain-displacement matrix; N_{p} is the fluid element shape function vector; B_{p} is the gradient matrix of $N_{p} ;[k]$ is the permeability matrix; and γ_{w} is the unit weight of pore water taken as $10 \mathrm{kN} / \mathrm{m}^{3}$ in this thesis. The 2-by2 block matrix in Eq.(2.8) is nonsymmetric solely because $K_{e p}$ is nonsymmetric. Figure 2.7 plots the sparsity pattern of this 2-by-2 block matrix.

$$
\begin{gather*}
K_{e p}=\sum_{\text {element }}\left[\int_{V} B_{u}^{T} D_{e p} B_{u} d V\right] \tag{2.9}\\
B=\sum_{\text {element }}\left[\int_{V} B_{u}^{T} 1 N_{p} d V\right] \tag{2.10}\\
C=\theta \Delta t H=\theta \Delta t \sum_{\text {element }}\left[\int_{V} B_{u}^{T} \frac{[k]}{\gamma_{w}} B_{p} d V\right] \tag{2.11}
\end{gather*}
$$

From Eq. (2.12), the submatrix C is a function of time step Δt and matrix H, the 2-by-2 block global stiffness matrix in Eq.(2.8) can be written in the following form (Toh \& Phoon ${ }^{165}$, 2007)

$$
\left[\begin{array}{cc}
K_{e p} & B \tag{2.12}\\
-\frac{B^{T}}{\Delta t} & \frac{C}{\Delta t}
\end{array}\right]\left\{\begin{array}{c}
\Delta u \\
\Delta p^{e x}
\end{array}\right\}=\left\{\begin{array}{c}
\Delta f \\
-\frac{C p^{e x}}{\Delta t}
\end{array}\right\}
$$

When the soil follows the linear elastic model, Eq.(2.8) is symmetric but Eq.(2.12) is nonsymmetric. Toh and Phoon ${ }^{165}$ (2007) compared these two forms and concluded that the symmetric form was preferable because the symmetry can be taken advantage of. However when the soil follows the nonassociated MC model, both forms are nonsymmetric hence it is interesting to review this conclusion in this new context.

Figure 2.7: Sparsity pattern of 2-by-2 block matrix
This 2-by-2 block matrix can be treated as a 1-by-1 block matrix and the preconditioners in Section 2.2 are applicable for this nonsymmetric linear system, especially the ILU preconditioner. Block preconditioners are more popular for this 2-by-2 block matrix because they can exploit the block structure and the spectral properties of the block matrix. The 2-by-2 block matrix arising from Biot's consolidation equations belongs to the class of saddle point problems hence preconditioners developed for this class are also suitable to this special case.

2.3.2 ILU and MSSOR preconditioner

As noted in Section 2.3.1, the preconditioners discussed in Section 2.2 are still applicable when the 2-by-2 block matrix in Eq.(2.8) is considered as a 1-by-1 block matrix. When the soil follows the linear elastic model, ILU and MSSOR are popular preconditioners for Biot's consolidation analysis. Chen ${ }^{39}$ (2005) proposed the Modified SSOR (MSSOR) preconditioner in Eq.(2.13) which is derived from the standard SSOR preconditioner by using the Generalized Jacobi (GJ) preconditioner, which will be discussed in detail in Section 2.3.3, instead of Jacobi preconditioner as SSOR in Eq.(2.4).

$$
\begin{equation*}
M_{M S S O R}=\left(L_{A}+\frac{\hat{D}}{\omega}\right)\left(\frac{\hat{D}}{\omega}\right)^{-1}\left(U_{A}+\frac{\hat{D}}{\omega}\right) \tag{2.13}
\end{equation*}
$$

in which L_{A} is the strictly lower triangular matrix of A, U_{A} is the strictly upper triangular matrix of A, and $\hat{D}=M_{G J}$. Chen and Phoon ${ }^{41}$ have recently applied
this MSSOR to Eq.(2.8) when the soil followed the non-associated MC model. They compared the efficiency in solving this nonsymmetric linear system by QMR against solving the equivalent symmetrized linear system by SQMR and found that the latter was preferred because the symmetry could be exploited.

Chauhary ${ }^{37}$ (2010) performed comparison of ILU0 and MSSOR when the soil follows a linear elastic model. He found that MSSOR is more robust than ILU0 because SQMR with MSSOR converged over a wide range of parameter values while SQMR with ILU0 did not. He noted that nodal ordering significantly affects the performance of ILU0. With a suitable nodal ordering of the global stiffness matrix, SQMR with ILU0 converges faster than SQMR with MSSOR.

Gambolati and co-workers ${ }^{64,} 65,66$ (2001, 2002, 2003) have long been interested in the use of $\operatorname{ILUT}(\rho, \tau)$ in solving the nonsymmetric form Eq.(2.12) of Biot's consolidation equation. They concluded that $\operatorname{ILUT}(\rho, \tau)$ could be very efficient if the proper values of ρ and τ were used. However they did not recommend the range of proper values of ρ and τ for Biot's consolidation problem, which is justifiable because ρ and τ are significantly problem dependent as noted in Section 2.2.3.

2.3.3 Block preconditioners

Similar to preconditioners for 1-by-1 block matrices, block preconditioners should approximate the 2-by-2 block matrices as close as possible. Block preconditioners for Eq.(2.8) are often derived from the following block factorization including the lower triangular block, diagonal block and upper triangular block,

$$
\begin{gather*}
A=\left[\begin{array}{cc}
K_{e p} & B \\
B^{T} & -C
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
B^{T} K_{e p}{ }^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
K_{e p} & 0 \\
0 & -S
\end{array}\right]\left[\begin{array}{cc}
I & K_{e p}{ }^{-1} B \\
0 & I
\end{array}\right] \tag{2.14}\\
S=B^{T} K_{e p}^{-1} B+C \tag{2.15}
\end{gather*}
$$

in which S is the Schur complement for A. Block preconditioners are often categorized into three types: diagonal block, triangular block and constrained block preconditioner. The efficiency of block preconditioners based on this
block factorization relies on how close $K_{e p}$ and S are approximated. Axelsson and co-workers ${ }^{12,13}$ (2010, 2012) have analysed theoretically the spectral properties of the preconditioned system to determine the efficiency of block preconditioners. However their recommended parameters are still too expensive to compute before the iteration process especially when large-scale linear systems are considered. Numerical experiments are still required to determine the optimal block preconditioners for each problem.

2.3.3.1 Diagonal block preconditioner

Diagonal block preconditioner approximates the diagonal block in the factorization of Eq.(2.14). As mentioned in section 2.2, diagonal preconditioner, Jacobi, is the cheapest preconditioner and scaling is often introduced when the diagonal entries are of significantly different scales. This is the case for Biot's consolidation equations in Eq.(2.8) where $K_{e p}$ is a function of Young's modulus E ', having order as large as 10^{6} and C is a function of permeability k, having order as small as 10^{-10}. Phoon and coworkers ${ }^{131}$ (2002) proposed the following scaling form of Jacobi preconditioner called Generalized Jacobi (GJ),

$$
M_{G J}=\left[\begin{array}{cc}
\operatorname{diag}\left(K_{e p}\right) & 0 \tag{2.16}\\
0 & \alpha \operatorname{diag}(\hat{S})
\end{array}\right]
$$

in which $\hat{S}=C+B^{T} \operatorname{diag}\left(K_{e p}\right)^{-1} B$, a cheap approximation of S, and α is a real scaling factor. Toh and others ${ }^{171}$ (2004) commented that this preconditioner was memory efficient but did not always possess good convergence time. $M_{G J}$ is the special form of the diagonal block preconditioner in Eq.(2.17),

$$
\begin{gather*}
M_{d}=\left[\begin{array}{cc}
\hat{K} & 0 \\
0 & \alpha \hat{S}
\end{array}\right] \tag{2.17}\\
M_{d}^{-1}=\left[\begin{array}{cc}
\hat{K}^{-1} & 0 \\
0 & (1 / \alpha) \hat{S}^{-1}
\end{array}\right] \tag{2.18}
\end{gather*}
$$

with \hat{K} is an approximation of $K_{e p}, \alpha$ is a real scalar and has the same meaning as in GJ, and $\hat{S}=C+B^{T} \hat{K}^{-1} B$ is an approximation of S. Figure 2.8 shows the pseudo-code to compute the preconditioning step $M_{d}{ }^{-1}[u ; v]$.

> | Compute $w=\hat{K}^{-1} u$ |
| :--- |
| Compute $z=\hat{S}^{-1} v$ |
| Set $M_{d}^{-1}[u ; v]=[w ; z]$ |

Figure 2.8: Pseudo-code to compute preconditioning step $M_{d}{ }^{-1}[u ; v]$ (Toh et

$$
\text { al. } \left.{ }^{166}, 2004\right)
$$

Phoon and co-workers ${ }^{131}$ (2002) have proved the following theorem. They also showed numerically that $\alpha=-4$ is optimal for many cases and recommended that α should be a negative scalar in general. Although the symmetric 2-by-2 block matrix A was used in their discussion, the theorem and the proof does not require the submatrix block $(1,1)$ in A to be symmetric. Hence when block $(1,1)$ is nonsymmetric, the recommendations from Phoon et al. ${ }^{131}$ (2002) on the range of α are still applicable. This thesis first uses $\alpha=$ -4 in the numerical experiments to compare the efficiency of several approximations of $K_{e p}$ and S.

Theorem Let $M=\left[\begin{array}{cc}K_{e p} & 0 \\ 0 & \alpha S\end{array}\right]$ and $W=M^{-1} A$. Then

$$
\begin{equation*}
W(W-I)\left(W^{2}-W-\frac{1}{\alpha} I\right)=O\left(\left\|S^{-1} C\right\|\right) \tag{2.19}
\end{equation*}
$$

where $O\left(\left\|S^{-1} C\right\|\right)$ denotes a matrix whose norm is of order $\left\|S^{-1} C\right\|$. Thus if A is non-singular (hence W is non-singular), then W has three distinct clusters of eigenvalues at 1 and $(1 \pm \sqrt{1+4 / \alpha}) / 2$, each with a diameter of the order $\left\|S^{-1} C\right\|$. In particular, when $\alpha=-4, W$ only has two distinct clusters of eigenvalues at $1 / 2$ and 1 .

Proof: From Phoon et al. ${ }^{131}$ (2002),

$$
W^{2}-W=\frac{1}{\alpha}\left[\begin{array}{cc}
K_{e p}^{-1} B S^{-1} B^{T} & 0 \tag{2.19a}\\
0 & I
\end{array}\right]+F
$$

where

$$
F=\frac{1}{\alpha^{2}}\left[\begin{array}{cc}
0 & -\alpha K_{e p}^{-1} B S^{-1} C \tag{2.19b}\\
-S^{-1} C S^{-1} B^{T} & \left(S^{-1} C\right)^{2}
\end{array}\right]
$$

With $\left(K_{e p}^{-1} B S^{-1} B^{T}\right)^{2}=K_{e p}^{-1} B S^{-1}(S-C) S^{-1} B^{T}=K_{e p}^{-1} B S^{-1} B^{T}-K_{e p}^{-1} B S^{-1} C S^{-1} B^{T}$, we have

$$
\left(W^{2}-W\right)^{2}=\frac{1}{\alpha}\left(W^{2}-W\right)+F^{2}-\frac{1}{\alpha^{3}}\left[\begin{array}{cc}
\alpha K_{e p}^{-1} B S^{-1} C S^{-1} B^{T} & \alpha K_{e p}^{-1} B S^{-1} C\left(2 I-S^{-1} C\right) \tag{2.20}\\
\left(2 I-S^{-1} C\right) S^{-1} C S^{-1} B^{T} & -2\left(S^{-1} C\right)^{2}
\end{array}\right]
$$

Thus

$$
\begin{equation*}
\left(W^{2}-W\right)^{2}=\frac{1}{\alpha}\left(W^{2}-W\right)+O\left(\left\|S^{-1} C\right\|\right) \tag{2.21}
\end{equation*}
$$

2.3.3.2 Block constrained preconditioners

Block constrained preconditioners in Eq.(2.22) are better approximations of Eq.(2.14) than the block diagonal preconditioners in Section 2.3.3.1 and is expected to be more efficient than block diagonal preconditioners. However because this preconditioner is more complicated than block diagonal preconditioners, more time is expected to spent on forming this preconditioner as well as on the preconditioning step. Figure 2.9 shows the pseudo-code to compute the preconditioning step $M_{c}^{-1}[u ; v]$.

$$
\begin{gather*}
M_{C}=\left[\begin{array}{cc}
\hat{K} & B \\
B^{T} & -C
\end{array}\right] \tag{2.22}\\
M_{C}^{-1}=\left[\begin{array}{cc}
\hat{K}^{-1}-\hat{K}^{-1} B \hat{S}^{-1} B^{T} \hat{K}^{-1} & \hat{K}^{-1} B \hat{S}^{-1} \\
\hat{S}^{-1} B^{T} \hat{K}^{-1} & -\hat{S}^{-1}
\end{array}\right] \tag{2.23}
\end{gather*}
$$

This class of preconditioners is called 'constrained' because they have the same block structure as the native coefficient matrix, but one or more blocks are approximated or 'constrained'.

> Compute $w=\hat{K}^{-1} u$
> Compute $z=\hat{S}^{-1}\left(B^{T} w-v\right)$
> Compute $M_{c}^{-1}[u ; v]=\left[\hat{K}^{-1}(u-B z) ; z\right]$

Figure 2.9: Pseudo-code to compute preconditioning step $M_{c}{ }^{-1}[u ; v]$ (Toh et al. ${ }^{166}, 2004$)

When soil follows a linear elastic model and Eq.(2.8) is symmetric, \hat{K} is often taken as Incomplete Cholesky (IC) factorization with different levels of
fill-ins and $\hat{S}=C+B^{T} \hat{K}^{-1} B$ is also factorized into an IC form. Toh and others ${ }^{171}$ (2004) showed that the finest approximation of S, was not always useful because the computational time was mostly spent to form that approximation. Bergamaschi and others ${ }^{22,23,59}$ (2007, 2008, Ferronato et al., 2010) concluded that block constrained preconditioners were better than ILUbased preconditioner especially when the time step Δt was small. However, the efficiency of the IC factorization relies much on the level of fill-ins and this parameter is often determined through trial-and error.

When Eq.(2.8) is nonsymmetric, Botchev and Golub ${ }^{30}$ (2006) recommended the use of SSOR (Eq.(2.4)) for \hat{K} and discussed theoretically the optimal value of ω. They applied this preconditioner on the Navier-Stokes equation and noted that the preconditioner was still robust when ω was not optimal. This thesis implements this preconditioner for the square footing problem in Section 5.3.1.

2.3.3.3 Block triangular preconditioners

When Eq.(2.8) is symmetric, Toh and others ${ }^{171}$ (2004) studied the block triangular preconditioners taking the following forms:

$$
\begin{gather*}
M_{t-L}=\left[\begin{array}{cc}
\hat{K} & 0 \\
B^{T} & -\hat{S}
\end{array}\right] \text { for left preconditioning } \tag{2.24}\\
M_{t-R}=\left[\begin{array}{cc}
\hat{K} & B \\
0 & -\hat{S}
\end{array}\right] \text { for right preconditioning } \tag{2.25}\\
M_{t-L}^{-1}=\left[\begin{array}{cc}
\hat{K}^{-1} & 0 \\
\hat{S}^{-1} B^{T} \hat{K}^{-1} & -\hat{S}^{-1}
\end{array}\right] ; M_{t-R}^{-1}=\left[\begin{array}{cc}
\hat{K}^{-1} & \hat{K}^{-1} B \hat{S}^{-1} \\
0 & -\hat{S}^{-1}
\end{array}\right] \tag{2.26}
\end{gather*}
$$

Figure 2.10 shows the pseudo-code to compute preconditioning step $M_{t-L}{ }^{-1}[u ; v]$ and $M_{t-R}{ }^{-1}[u ; v]$. Their numerical experiments showed that this preconditioner did not offer better convergence time than diagonal block and constrained block preconditioner.

Compute $w=\hat{K}^{-1} u$	Compute $w=-\hat{S}^{-1} u$
Compute $z=\hat{S}^{-1}\left(B^{T} w-v\right)$	Compute $z=\hat{K}^{-1}(u-B w)$
Compute $M_{t-L}^{-1}[u ; v]=[w ; z]$	Compute $M_{t-R}^{-1}[u ; v]=[z ; w]$

Figure 2.10: Pseudo-code to compute preconditioning step $M_{t-L}^{-1}[u ; v]$ and $M_{t-R}{ }^{-}$
${ }^{1}[u ; v]\left(\right.$ Toh et al. $\left.{ }^{166}, 2004\right)$

2.4 Convergence criteria

2.4.1 Effect of spectral properties

The convergence properties of Krylov iterative methods depend on spectral properties of the coefficient matrix of the linear system (Freund et al. ${ }^{63}$, 1992; Barrett et al. ${ }^{16}$, 1994; Saad \& Vorst ${ }^{146}, 2000 ;$ Golub \& Vorst ${ }^{71}$, 2001; Saad ${ }^{144}$, 2003). Section 1.1.1 has introduced that Krylov iterative methods converge to the exact solution in at most N iterations in exact arithmetic but they normally converge earlier than that although there are cases of breakdown and divergence due to rounding errors. If $K_{e p}$ is diagonalizable so that

$$
\begin{equation*}
K_{e p}=X \Lambda X^{-1} \tag{2.27}
\end{equation*}
$$

in which X is a non-singular matrix containing eigenvectors of $K_{e p}$ and $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix containing corresponding eigenvalues of $K_{e p}$, the residual $r^{(i)}$ at the i iteration step has the following upper bound

$$
\begin{gather*}
r^{(i)}=F-K_{e p} u^{(i)} \tag{2.28}\\
\left\|r^{(i)}\right\| \leq\|X\| X^{-1}\left\|\max _{k=1, \ldots, n} \mid p_{i}\left(\lambda_{k}\right)\right\| r^{(0)} \| \tag{2.29}
\end{gather*}
$$

in which $p_{i}\left(\lambda_{k}\right)$ is a polynomial of degree at most i with $p(0)=1$.
For GMRES, a special case of Krylov iterative methods, which minimizes the 2-norm of the residual, the bound in Eq.(2.29) is further narrowed as

$$
\begin{equation*}
\left\|r^{(i)}\right\| \leq\|X\| X^{-1}\left\|\min _{p_{i} \in P_{i}} \max _{k=1, \ldots, n} \mid p_{i}\left(\lambda_{k}\right)\right\| r^{(0)} \| \tag{2.30}
\end{equation*}
$$

Eq.(2.29) and (2.30) show that the convergence is mainly governed by the condition number of X matrix and the polynomial of the eigenvalues of $K_{e p}$. The polynomial of the eigenvalues is not easy to determine explicitly so the convergence criteria can only be observed qualitatively through the
distribution of eigenvalues. Graphically speaking, the smaller the ellipse (with suitable normalization) circumscribes all the eigenvalues is, the faster Krylov iterative methods converge. This ellipse is demonstrated in Figure 2.11.

Figure 2.11: Ellipses containing the spectrum of A. (A): real eigenvalues; (B) Purely imaginary eigenvalues (Saad $^{144}, 2003$, pp. 195)

Eq.(2.29) and (2.30) are inequality equations and indicate the maximum bound. The maximum bound is the worst approximation of residual at step i. The real residual $r^{(i)}$ can be much smaller from the maximum bound because the condition number of matrix X can be large for highly non-normal matrices. It is a good situation when $r^{(i)}$ is much smaller than the maximum bound because the Krylov iterative methods will converge faster than expected. But on the other hand, it shows that the bound is too crude to predict the convergence of the methods. However, for the general linear system, Eq.(2.29) is the best convergence criterion for Krylov iterative methods in the current state of the art. This criterion applies to both Bi-CGSTAB and $\operatorname{IDR}(s)$ method.

2.4.2 Stopping criteria and tolerance of error

Section 1.1.1 has mentioned the advantage of iterative solvers is that they can be stopped whenever the error satisfies a desired tolerance. The exact error is the difference of exact solution and iterative solution (Eq.(2.31)) and is impractical to compute explicitly hence residual $r^{(i)}$ in Eq.(2.28) is used in most of the cases (Barrett et al. ${ }^{16}, 1994$).

$$
\begin{equation*}
e^{(i)}=x-x^{(i)} \tag{2.31}
\end{equation*}
$$

Relative residual related to 2-norm of the residual vector in Eq. (2.32) is often used in numerical experiments with $i_{-} t o l$ is the user-defined tolerance. This relative residual is used in this thesis.

$$
\begin{equation*}
\frac{\left\|r^{(i)}\right\|_{2}}{\left\|r^{(0)}\right\|_{2}} \leq i_{-} t o l \tag{2.32}
\end{equation*}
$$

This $i_{-} t o l$ is problem dependent: the results can be unreliable if $i_{-} t o l$ is too large, but a too stringent i_{-}tol can require much resource for little improvement in the results. Section 1.1.1 has argued that $i_{-} t o l$ is generally large for geotechnical problem because there are uncertainties in soil properties and soil models. The tolerance $i_{-} t o l=10^{-6}$, which is used throughout this thesis, is often considered too stringent for geotechnical problem. However, the definition of "relaxed tolerance" and "stringent tolerance" is rather subjective and in this thesis, it mostly depends in the FE discretization. This point is elaborated in Section 3.6. The influence of FE discretization has been demonstrated in the discussion of Arioli and others ${ }^{9}$ (2005). Figure 2.12 extracts the numerical results of Arioli et al. ${ }^{9}$ (2005).

(a) $v=1$

Figure 2.12: Comparison of stopping criteria when GMRES is used to solve the linear system from FE discretization of 2D advection-diffusion problem. v is the diffusion parameter. (Arioli et al. ${ }^{9}$, 2005)

This figure shows the comparison of stopping criteria when GMRES is used to solve the linear system from FE discretization of 2D advection-diffusion problem. The exact solution of this problem was known hence the exact relative error of FE could be determined and indicated in Figure 2.12. This error reaches a stable level while GMRES iteration count increases and the relative residual error of GMRES reduces. Arioli et al. ${ }^{9}$ (2005) recommended that GMRES should be stopped at the start of this stable level because the solution could not be improved. This recommendation is useful but impractical since the finite element error, which is unknown at the beginning of the analysis, is required as an input. From Figure 2.12, it can be seen that if FE error is smaller (i.e. the mesh is denser), the tolerance of relative residual of iterative solvers should be smaller to obtain meaningful and reliable results. Table 2.2 presents the i_tol values for various numerical experiments in literatures. Small i_tol is often used when the discussion on numerical methods while larger $i _t o l$ is used for practical problems. $i _t o l=10^{-6}$ is quite popularly chosen regardless of problems.

Table 2.2: Tolerance values for various iterative methods used in literatures

Author(s)	Max problem size	Tolerance value i _tol	Problem description
$\begin{aligned} & \text { Almeida \& Paiva }{ }^{6} \\ & \text { (2004) } \end{aligned}$	4431	10^{-9}	Layered soilsupperstructure interaction Soil follows linear elastic model
Araujo et al. ${ }^{8}$ (2006)	10,383	10^{-5}	Rigid foundation (BE analysis) Soil follows linear elastic model
Benzi \& Golub ${ }^{19}$ (2004)	1,362,480	10^{-10}	Navier-Stokes equations
$\begin{aligned} & \text { Bergamaschi } \text { et al. }{ }^{21} \\ & \text { (2012) } \end{aligned}$	145,114	10^{-4}	Two phase flow equations in porous media
Birken et al. ${ }^{24}$ (2013)	2,912,000	10^{-3}	Navier-Stokes equations
Chaillat et al. ${ }^{35}$ (2009)	215,058	10^{-3}	Seismic wave propagation and amplification in complex geological structures
Chen \& Phoon ${ }^{41}$ (2012)	107,180	10^{-3}	Shallow foundation and pile raft system Soil follows nonassociated MC model
Hartmann et al. ${ }^{76}$ (2009)	100,520	10^{-6}	3D plate with hole Material follows a viscoplasticity model
Kechroud et al. ${ }^{92}$ (2004)	113,060	10^{-8}	Helmholtz equations
Lin \& Grosh ${ }^{103}$ (2003)	25,012	10^{-8}	3D high frequency response of fluid-loaded structures
Mroueh \& Shahrour ${ }^{115}$ (1999)	39,526	10^{-5}	Shallow foundation and laterally loaded pile Soil follows nonassociated MC model
$\begin{aligned} & \text { Osei-Kuffuor \& Saad }{ }^{121} \\ & (2010) \end{aligned}$	29,241	10^{-8}	Helmholtz equations
Rehman et al. ${ }^{140}$ (2008)	47,468	10^{-6}	Navier-Stokes equations
White \& Borja ${ }^{175}$ (2011)	$\begin{gathered} 455.3 \\ \text { million } \end{gathered}$	10^{-8}	Fully coupled flow and Geomechanics Soil follows nonassociated MC model

2.5 Summary

This chapter review the characteristic of $\operatorname{IDR}(s)$, the preconditioners for 1-by1 block matrix coming from drained/undrained analysis, 2-by-2 block matrix coming from Biot's consolidation analysis. $\operatorname{IDR}(s)$ is a promising Krylov iterative solver for nonsymmetric linear systems and will be used in this thesis. The discussed preconditioners will be implemented with $\operatorname{IDR}(s)$ to inspect their performance.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

3.1 Introduction

This chapter performs the comparison between $\operatorname{IDR}(s)$ and $\operatorname{Bi}-C G S T A B$ method. Matrix vector multiplication (matvec) and total iteration time (time spent by the Krylov iterative methods plus overhead time required to form preconditioners) are used as comparison indicators. Matvec pertains to the theoretical efficiency of the Krylov iterative methods and preconditioners while total iteration time pertains to the practical efficiency. The overall objective of this thesis is to optimize the solution time of the nonsymmetric linear system hence the practical efficiency is the most concerned goal.

As mentioned in Section 1.1.3 and Section 2.1.1, $\operatorname{IDR}(1)$ is mathematically equivalent to $\operatorname{Bi}-C G S T A B$ and the efficiency of $\operatorname{IDR}(s)$ improves when s increases but up to certain limit value. Numerical experiments in this section aim at the following four objectives: first, $\operatorname{IDR}(1)$ and Bi-CGSTAB are compared to prove that they are more or less equivalent in the presence of rounding errors; second, various values of s are used to find the optimal value; third, $\operatorname{IDR}(s)$ with optimal value of s is compared with Bi-CGSTAB to show that $\operatorname{IDR}(s)$ is more efficient than Bi-CGSTAB in term of matvec and total iteration time. Jacobi and ILU0 are used as right preconditioners. SSOR is used as left-right preconditioner and left preconditioner respectively denoted as SSOR-S and SSOR-L.

3.2 Problem description and theoretical background

All the numerical experiments in this chapter are performed with the plane strain strip footing example. Drained analysis is considered. Figure 3.1a shows the 3D mesh of the strip footing subjected to uniform vertical pressure, q. The base of the mesh is fixed in all directions. Side faces are fixed in transverse direction and free in in-plane directions. Top surface is free in all directions. The mesh spans 10 meters in X- and Z-directions, 1 meter in Y-direction. Three cases of soil profile are considered: soil profile 1 is a homogeneous stiff

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS
clay layer; soil profile 2 is a homogeneous dense sand layer; and soil profile 3 is a heterogenous soil layer consisting of alternate dense sand and stiff clay as shown in Figure 3.1b. The soil is assumed to be weightless and to follow the non-associated Mohr-Coulomb model with the properties in Table 3.1.

Figure 3.1: (a) 3D FE mesh of strip footing; (b) Soil profile 3: Heterogenous soil consisting of alternate dense sand and stiff clay

Table 3.1: Parameters of Mohr-Coulomb yield criterion

	Young's modulus, $E^{\prime}(\mathrm{MPa})$	Poisson's ratio, v^{\prime}	Cohesion, $c^{\prime}(\mathrm{kPa})$	Friction angle, ϕ^{\prime} (degree)	Dilation angle, ψ (degree)
Stiff clay	60	0.3	20	20	0
Dense sand	105	0.3	1	30	5

Ultimate bearing capacity of the strip footing resting on the homogeneous soil profile 1 and 2 can be estimated with Terzaghi's formula as Eq. (3.1),

$$
\begin{equation*}
q_{f}=\frac{1}{2} \gamma B N_{\gamma}+c N_{c}+\gamma D N_{q} \tag{3.1}
\end{equation*}
$$

in which γ is the unit weight of soil, B is the width of the shallow foundation, c is the cohesion, D is the embedment depth, N_{γ}, N_{c} and N_{q} are bearing capacity factors and are function of the friction angle ϕ. In this chapter, the soil is assumed weightless and the strip footing rests on the ground surface so the first and third term in Eq.(3.1) are zero and N_{c} is the main governing parameter. N_{c} is calculated by Eq.(3.2) and (3.3). The weightless soil is used

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS
in this section so that the applied load can be increased closed to the theoretical failure load predicted by Eq.(3.1) and so that a wide range of physical behaviour of the problem can be observed.

$$
\begin{gather*}
N_{c}=\left(N_{q}-1\right) \cot \phi \tag{3.2}\\
N_{q}=e^{\pi \tan \phi} \tan ^{2}\left(45^{\circ}+\phi / 2\right) \tag{3.3}
\end{gather*}
$$

The predicted failure load of soil profile 1 and 2 and the maximum applied load for each soil profile are reported in Table 3.2. It is worth to note that Eq.(3.1) does not take into account the non-associated flow rule, which is considered in this whole thesis, hence the predicted values are only used for reference.

Table 3.2: Ultimate bearing capacity of the strip footing and square footing on the homogenous soil layer and the maximum applied pressure used in numerical experiments

	N_{q}	N_{c}	$q_{f \text { strip }}=c^{\prime} N_{c}$	$q_{\text {max-strip }}(\mathrm{kPa})$
Soil profile 1	6.4	14.83	296.69	$280\left(=94 \% q_{f \text { strip }}\right)$
Soil profile 2	18.40	30.14	30.14	$27\left(=90 \% q_{f \text { strip }}\right)$
Soil profile 3	-	-	-	40

It is known there is numerical difficulty to compute collapse load using FE analysis when the friction angle of the MC model is high (Vermeer \& Langen ${ }^{169}$, 1989; Manoharan \& Dasgupta ${ }^{109}$, 1997). Besides, this thesis encounters a numerical difficulty caused by the fact that many Gauss points are forced to lie on the apex of the MC surface (refer to the return mapping procedure in A.2), which is spurious and can be slightly mitigated by increasing the number of load steps. This numerical difficulty was also observed by Clausen and Krabbenhoft ${ }^{44}$ (2008) when they studied 2D meshes of footing and bi-axial test problem. The author is not clear if these two numerical difficulties are related or caused by the same reason. For dense sand with friction angle of 30 degree, although increasing the number of load steps helps to load the system close to the theoretical failure load, the number of load steps required grows larger when the mesh is denser (there are more Gauss points hence there are more chance for Gauss points to be returned to the apex). Because the objective of this thesis is to study the performance of

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

preconditioners rather than to address numerical limitation of the MC model, the above difficulties are circumvented by applying the following expedien strategies. The dense sand systems are only loaded to certain percentage of the ultimate failure load and when the mesh is denser, smaller value of load is used.

3.3 Computational procedure

The nonlinear system resulting from FE analysis is solved by the full NR method. In each NR iteration, the linear system is solved by Krylov iterative methods. $\operatorname{IDR}(s)$ and $\mathrm{Bi}-\mathrm{CGSTAB}$ are used in this thesis. $\operatorname{IDR}(s)$ and $\mathrm{Bi}-$ CGSTAB are stopped when the relative residual norm or the number of matrix-vector multiplications (matvec) satisfies Eq.(3.4),

$$
\begin{aligned}
& \text { (1) } \frac{\left\|r^{(i)}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq i_{-} \text {tol }=10^{-6} \\
& \text { or (2) } i \geq 5000
\end{aligned}
$$

with $r^{(i)}=K_{e p} u^{(i)}-F$ and $r_{0}=F$.
The first stopping criterion is to ensure the results are within the tolerable accuracy and the second is to ensure the iteration process is within a practical length of time. The first stopping criterion is naturally indispensable while the second is used in this thesis for the practical purpose: to prevent the iterative solvers from running "forever" in cases of slow convergence or no convergence of the iteration process"

Besides, the second criterion also effectively put a limit on the total iteration time. With the presence of preconditioner M, the matrix-vector multiplication is performed as followings,

Compute $u=A M^{-1} v$
(1) Solve $M w=v$
(2) Compute $u=A w$

Figure 3.2: Pseudo-code to compute matrix-vector multiplication with a preconditioned matrix

From Figure 3.2, the time spent in one matvec is the sum of the time spent in step (1) and (2). The time spent in step (2) depends on the size of the matrix and in step (1) depends on both the size of the matrix and the preconditioner M.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

So for a certain matrix A and preconditioner M, the time spent in one matvec is ideally a predetermined number only depending on the computer configuration. Matrix-vector multiplication is the most time- consuming operation in one iteration hence limiting the number of matvec is limiting the total iteration time and this amount of time is ideally fixed for a certain A and $M .5000$ matvec is chosen in this thesis and this limit appears to be appropriate for the sizes of studied matrices, meaning the recommended preconditioners always converge with less than 5000 matvecs. For the practical examples in Chapter 6, the limit of matvec is chosen to be 50,000 because the size of the matrix A is significantly larger.

It is desirable when both of the above stopping criteria are satisfied such that a preconditioner is able to accelerate the Krylov solver to obtain the acceptable results within acceptable span of time. However, limiting the number of matvec can raise the question on disfavouring the cheap preconditioners because cheap preconditioners takes less time to form, more matvec to converge but the total iteration time can still be within the practical range. Table 3.4 to Table 3.6 in the following section show that this is not the case in this chapter because the number of matvecs to converge is often so huge that the total iteration time becomes absurdly large. For instance, Krylov solvers with Jacobi preconditioner converge in several times more than 5000 matvecs and always consumes much more time than other preconditioners. In Table 5.4 and Table 5.5 at Chapter 5, there are cases that the cheap preconditioners converge with more matvecs and less time than those more expensive preconditioners but they all converge within 5000 matvecs. When more than 5000 matvecs are required, the iteration process either consumes much more time or does not converge at all.

The values of matvec and total iteration time, which includes the time spent to form preconditioner and the time spent by Krylov iterative methods are average values over all the NR iterations in each load step. At each load step, the NR iteration is stopped when the relative residual norm satisfies Eq.(3.5).

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

$$
\begin{equation*}
\frac{\left\|F-K_{e p} u\right\|_{2}}{\|F\|_{2}} \leq 10^{-6} \tag{3.5}
\end{equation*}
$$

For Bi-CGSTAB following the pseudo-code in Figure 2.3, the input vector $\tilde{r}^{(0)}$ is chosen as the initial residual, r_{0}. For $\operatorname{IDR}(s)$, as discussed in Section 2.1.2, the shadow matrix $P^{N \times s}$ is a random matrix containing uniformly distributed random number from 0 to 1 . In the FORTRAN code, constant seeds for generating random number are used so that with the same N and s, the same random matrix P is generated every time P is required. Exception is set for the case of $s=1$ when $\operatorname{IDR}(1)$ is used to compared with Bi-CGSTAB to show numerically that $\operatorname{IDR}(1)$ is equivalent to Bi-CGSTAB. When $s=1$, matrix P reduces to a vector of dimension N and is set to be equal to the initial residual r_{0}. $\operatorname{IDR}(s)$ pseudo-code in Figure 2.2 also requires the input of limiting value of ω to "maintain the convergence." This limiting value is set to the default value of 0.7 as recommended by Sonneveld and Gijzen ${ }^{162}$ (2008) when $\mathrm{s}>1$. For $s=1$, this limiting value is taken as 0 to get equivalent parameter in Bi-CGSTAB pseudo-code.

Preconditioners used are: Jacobi, Symmetric Successive Over Relaxation (SSOR) and ILU0. Jacobi and ILU0 are used as right preconditioner. SSOR-L is left preconditioner and SSOR-LR is left-right preconditioner as presented in Section 2.2.2. For SSOR-L and SSOR-LR, only the diagonal D_{K} is required to form explicitly and this is the Jacobi preconditioner hence the time required to form the preconditioner is reported the same for Jacobi, SSOR-LR and SSORL preconditioner.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

3.4 Comparison of IDR(s) and Bi-CGSTAB

The characteristics of the 3D meshes are presented in Table 3.3. Three problem sizes $12 \times 3 \times 12,24 \times 6 \times 24$ and $32 \times 8 \times 32$ are adopted. These three meshes produce the small, medium and large-scale stiffness matrices respectively. When the mesh is denser, not only the number of unknowns increases but the elastic matrix also becomes sparser. When the number of yielded Gauss points increases, the number of non-zero entries in the elastoplastic matrix increases. However, this increase is insignificant and the ratios $n n z / N^{2}$ in Table 3.3 remains unchanged.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Table 3.3: 3D finite element meshes of the strip footing

	Mesh size*		
	$12 \times 3 \times 12$	$24 \times 6 \times 24$	$32 \times 8 \times 32$
Number of elements	432	3,456	8,192
Number of nodes	2,431	16,525	37,521
Number of unknowns (N)	5,700	43,584	102,080
Number of Gauss points ($N_{i p}$)	11,664	93,312	2,211,184
Number of nonzero (nnz)			
Soil profile 1			
Elastic system	715,515	6,475,800	15,738,341
Elastoplastic system at 295 kPa	717,405	6,493,019	15,828,212
Soil profile 2			
Elastic system	715,528	6,477,348	15,744,688
Elastoplastic system at 27 kPa	717,714	8,547,672	15,835,064
Soil profile 3			
Elastic system	715,701	6,475,903	15,744,149
Elastoplastic system at 40 kPa	716,902	6,484,670	15,792,981
$n n z / N^{2}$ (\%)			
Soil profile 1			
Elastic system	2.20	0.34	0.15
Elastoplastic system at 295 kPa	2.21	0.34	0.15
Soil profile 2			
Elastic system	2.20	0.34	0.15
Elastoplastic system at 27 kPa	2.21	0.34	0.15
Soil profile 3			
Elastic system	2.20	0.34	0.15
Elastoplastic system at 40 kPa	2.21	0.34	0.15

* Mesh size $x \times y \times z$ means x element in x direction, y element in y direction and z
element in z direction

Table 3.4, Table 3.5, and Table 3.6 report the number of matvec and total iteration time required by Bi-CGSTAB and $\operatorname{IDR}(\mathrm{s})$ with s consequently taken the value of $1,4,6,10$, and 20 when combined with different preconditioners. The nonsymmetric linear system solved is at the last load step for soil profile 1 , 2 and 3. The linear systems at the last load step are chosen because this system requires the most matvec and time to solve. This point will be elaborate later in the discussion of Figure 3.3 to Figure 3.11 and Section 3.7.

Table 3.4: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 1 is used. Matvec and time in second are reported at the last load step, 280 kPa .

$12 \times 3 \times 12$	Bi-CGSTAB		IDR(1)		IDR(4)		IDR(6)		IDR(10)		IDR(20)	
No preconditioner	2801	6.2 (0.0)	2948	7.8 (0.0)	3149	8.6 (0.0)	2360	6.0 (0.0)	1762	5.1 (0.0)	1277	3.8 (0.0)
Jacobi	888	2.0 (0.0)	953	2.4 (0.0)	810	2.6 (0.0)	769	2.4 (0.0)	673	1.8 (0.0)	622	2.2 (0.0)
SSOR-LR	191	1.3 (0.0)	193	1.4 (0.0)	174	1.4 (0.0)	164	1.2 (0.0)	159	1.1 (0.0)	158	1.3 (0.0)
SSOR-L	197	2.3 (0.0)	208	2.5 (0.0)	185	2.1 (0.0)	167	1.9 (0.0)	163	1.9 (0.0)	162	1.9 (0.0)
ILU0	92	0.6 (0.1)	96	0.6 (0.1)	73	0.5 (0.1)	70	0.5 (0.1)	70	0.5 (0.1)	67	0.5 (0.1)
$24 \times 6 \times 24$												
No preconditioner	7973	83.3 (0.0)	5573	70.1 (0.0)	34,164	382.7 (0.0)	14,4478	166.1 (0.0)	12,106	145.0 (0.0)	5705	77.8 (0.0)
Jacobi	2794	32.6 (0.1)	2604	30.0 (0.1)	3012	36.3 (0.1)	2555	31.5 (0.1)	2160	27.7 (0.1)	1670	23.5 (0.1)
SSOR-LR	527	20.5 (0.1)	522	20.4 (0.1)	492	19.4 (0.1)	443	17.7 (0.1)	409	16.6 (0.1)	397	16.7 (0.1)
SSOR-L	527	30.9 (0.1)	519	30.5 (0.1)	485	28.7 (0.1)	477	28.4 (0.1)	427	25.6 (0.1)	407	25.0 (0.1)
ILU0	398	12.3 (0.5)	401	12.5 (0.5)	222	7.3 (0.5)	207	6.7 (0.5)	198	6.7 (0.5)	192	6.8 (0.5)
$32 \times 8 \times 32$												
No preconditioner	12,956	314.5	14,389	$\begin{gathered} 338.6 \\ (0.0) \end{gathered}$	41,753	1057.5	41,320	$\begin{gathered} \hline 1,058,9 \\ (0.0) \end{gathered}$	39,463	$\begin{gathered} \hline 1,116.4 \\ (0.0) \end{gathered}$	20,355	668.8 (0.0)
Jacobi	2979	$\begin{aligned} & 145.1 \\ & (0.1) \end{aligned}$	2951	$\begin{gathered} 146.4 \\ (0.1) \end{gathered}$	3593	183.9 (0.1)	3712	211.1 (0.1)	3158	183.2 (0.1)	2292	151.2 (0.1)
SSOR-LR	528	69.8 (0.1)	531	77.1 (0.1)	562	67.0 (0.1)	491	62.8 (0.1)	460	57.6 (0.1)	422	59.1 (0.1)
SSOR-L	528	83.2 (0.1)	575	84.5 (0.1)	523	90.6 (0.1)	471	80.1 (0.1)	425	76.4 (0.1)	427	74.0 (0.1)
ILU0	275	42.5 (2.5)	273	42.4 (2.5)	205	32.7 (2.5)	202	32.7 (2.5)	196	32.7 (2.5)	192	34.2 (2.5)

Table 3.5: Comparison of Bi-CGSTAB and IDR(s) with different preconditioners. Soil profile 2 is used. Matvec and time in second are reported at the last load step, 26 kPa .

$12 \times 3 \times 12$	Bi-CGSTAB		IDR(1)		IDR(4)		IDR(6)		IDR(10)		IDR(20)	
No preconditioner	4422	11.7 (0.0)	3967	12.3 (0.0)	4800	15.6 (0.0)	3933	12.7 (0.0)	2662	10.0 (0.0)	1951	7.0 (0.0)
Jacobi	1141	2.6 (0.0)	1161	2.9 (0.0)	1602	5.1 (0.0)	1005	3.4 (0.0)	450	2.7 (0.0)	771	2.7 (0.0)
SSOR-LR	265	2.3 (0.0)	249	2.3 (0.0)	266	2.3 (0.0)	255	2.1 (0.1)	256	2.2 (0.0)	209	1.8 (0.0)
SSOR-L	259	1.4 (0.0)	291	1.6 (0.0)	306	1.9 (0.0)	274	1.5 (0.0)	235	1.3 (0.0)	229	1.4 (0.0)
ILU0	111	0.7 (0.1)	111	0.7 (0.1)	85	0.6 (0.1)	81	0.6 (0.1)	77	0.6 (0.1)	77	0.6 (0.1)
$24 \times 6 \times 24$												
No preconditioner	7011	65.0 (0.0)	6085	56.9 (0.0)	89,362	871.9 (0.0)	22,760	227.4 (0.0)	34,100	357.8 (0.0)	7608	89.1 (0.0)
Jacobi	3043	36.7 (0.1)	3087	36.7 (0.1)	Fail	-	3942	51.3 (0.1)	3590	48.6 (0.1)	2783	41.1 (0.1)
SSOR-LR	541	33.5 (0.1)	500	31.0 (0.1)	616	37.4 (0.1)	551	33.3 (0.1)	484	30.0 (0.1)	451	28.6 (0.1)
SSOR-L	553	33.2 (0.1)	573	34.6 (0.1)	645	39.1 (0.1)	650	39.1 (0.1)	645	39.9 (0.1)	523	33.0 (0.1)
ILU0	265	7.1 (0.5)	259	7.0 (0.5)	193	5.5 (0.5)	177	5.1 (0.5)	171	5.1 (0.5)	165	5.1 (0.5)
$32 \times 8 \times 32$												
No preconditioner	17,110	$\begin{gathered} 400.2 \\ (0.0) \end{gathered}$	17,255	$\begin{gathered} 429.1 \\ (0.0) \end{gathered}$	304,511	$\begin{gathered} 8969.3 \\ (0.0) \end{gathered}$	297,384	$\begin{gathered} 8020.6 \\ (0.0) \end{gathered}$	155,668	$\begin{gathered} 4353.6 \\ (0.0) \end{gathered}$	106,538	$\begin{gathered} 3350.0 \\ (0.0) \end{gathered}$
Jacobi	4,406	$\begin{gathered} 103.0 \\ (0.1) \end{gathered}$	4,611	$\begin{gathered} 118.8 \\ (0.1) \end{gathered}$	19,989	533.4 (0.1)	9,712	265.7 (0.1)	7,049	200.9 (0.1)	3,558	112.1 (0.1)
SSOR-LR	398	36.7 (0.1)	406	37.8 (0.1)	394	38.1 (0.1)	475	46.4 (0.1)	381	37.9 (0.1)	336	35.2 (0.1)
SSOR-L	412	57.1 (0.1)	421	58.4 (0.1)	428	60.1 (0.1)	329	45.1 (0.1)	294	34.2 (0.1)	290	34.0 (0.1)
ILU0	454	29.5 (1.3)	466	30.6 (1.3)	265	17.6 (1.3)	250	16.8 (1.3)	235	16.9 (1.3)	231	16.8 (1.3)

Table 3.6: Comparison of Bi-CGSTAB and $\operatorname{IDR}(\mathrm{s})$ with different preconditioners. Soil profile 3 is used. Matvec and time in second are reported at the last load step, 40 kPa .

$12 \times 3 \times 12$	Bi-CGSTAB		IDR(1)		IDR(4)		IDR(6)		IDR(10)		IDR(20)	
No preconditioner	2131	4.1 (0.0)	2243	5.3 (0.0)	2430	5.7 (0.0)	2008	4.4 (0.0)	1330	3.1 (0.0)	980	2.6 (0.0)
Jacobi	846	1.7 (0.0)	861	1.8 (0.0)	674	1.9 (0.0)	638	1.7 (0.0)	577	1.4 (0.0)	548	1.7 (0.0)
SSOR-LR	189	2.0 (0.0)	191	2.0 (0.0)	184	2.1 (0.0)	168	1.8 (0.0)	149	1.6 (0.0)	145	1.7 (0.0)
SSOR-L	178	1.2 (0.0)	187	1.3 (0.0)	186	1.3 (0.0)	160	1.1 (0.0)	153	1.1 (0.0)	140	1.2 (0.0)
ILU0	83	0.5 (0.1)	83	0.5 (0.1)	60	0.4 (0.1)	58	0.4 (0.1)	57	0.4 (0.1)	56	0.4 (0.1)
$24 \times 6 \times 24$												
No preconditioner	10,300	$\begin{gathered} 146.0 \\ (0.0) \end{gathered}$	10,307	$\begin{gathered} 147.1 \\ (0.0) \end{gathered}$	103,019	$\begin{gathered} \hline 1539.1 \\ (0.0) \end{gathered}$	25,409	385.1 (0.0)	13,768	221.3 (0.0)	10,201	184.2 (0.0)
Jacobi	2965	91.1 (0.1)	3021	95.0 (0.1)	3252	106.0 (0.1)	2568	86.3 (0.1)	2068	72.6 (0.1)	1454	57.3 (0.1)
SSOR-LR	512	32.4 (0.1)	517	33.1 (0.1)	584	37.9 (0.1)	623	40.6 (0.1)	441	29.4 (0.1)	369	25.7 (0.1)
SSOR-L	555	71.7 (0.1)	537	69.8 (0.1)	536	70.3 (0.1)	468	61.7 (0.1)	416	55.7 (0.1)	339	47.1 (0.1)
ILU0	325	16.3 (0.9)	335	16.9 (0.9)	138	7.6 (0.9)	134	7.3 (0.9)	128	7.3 (0.9)	124	7.5 (0.9)
$32 \times 8 \times 32$												
No preconditioner	20,210	$\begin{gathered} 450.2 \\ (0.0) \end{gathered}$	20,320	$\begin{gathered} 469.1 \\ (0.0) \end{gathered}$	235,611	$\begin{gathered} 7869.3 \\ (0.0) \end{gathered}$	10,738	$\begin{gathered} 2520.6 \\ (0.0) \end{gathered}$	16,666	$\begin{gathered} 3353.6 \\ (0.0) \end{gathered}$	10,664	$\begin{gathered} 2350.0 \\ (0.0) \end{gathered}$
Jacobi	3764	$\begin{gathered} 182.1 \\ (0.1) \end{gathered}$	3746	$\begin{gathered} 187.3 \\ (0.1) \end{gathered}$	4747	250.1 (0.1)	4582	244.8 (0.1)	3921	221.7 (0.1)	2801	195.1 (0.1)
SSOR-LR	672	$\begin{gathered} 103.3 \\ (0.1) \end{gathered}$	679	$\begin{gathered} 105.3 \\ (0.1) \end{gathered}$	760	119.6 (0.10	759	120.6 (0.1)	633	102.7 (0.1)	541	92.8 (0.1)
SSOR-L	742	$\begin{gathered} 173.8 \\ (0.1) \end{gathered}$	719	$\begin{gathered} 169.0 \\ (0.1) \end{gathered}$	733	174.2 (0.1)	684	163.7 (0.1)	595	144.4 (0.1)	566	142.5 (0.1)
ILU0	3565	$\begin{gathered} 461.1 \\ (2.5) \end{gathered}$	3429	$\begin{gathered} 436.7 \\ (2.5) \end{gathered}$	398	54.1 (2.5)	349	50.4 (2.5)	306	44.7 (2.5)	289	44.1 (2.5)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

The general trend in these tables is: the matvec count reduces from left to right and from top to bottom for each problem size. Hence the matvec count is minimum at the bottom right corner and maximum at the top left corner. The number of matvec required by Bi-CGSTAB and $\operatorname{IDR}(1)$ is very close in all the cases with less than 10 percent differences. These differences in matvec count between Bi-CGSTAB and $\operatorname{IDR}(1)$ is due to the round-off error. Figure 3.3 to Figure 3.11 also show that Bi-CGSTAB and $\operatorname{IDR}(1)$ do behave almost identically in all the cases as expected from the theory of IDR method.

The matvec count and the total iteration time reduce when s increases, which shows that IDR is more efficient than Bi-CGSTAB. There are cases, the boxed numbers in Table 3.4, Table 3.5, and Table 3.6, that $\operatorname{IDR}(s>1)$ requires more matvec than $\operatorname{IDR}(1)$ and Bi-CGSTAB. This could be due to the choice of shadow matrix P as random matrix. When $s=1, P$ is set to the initial residual vector and this choice has shown to be a good choice. However, for $s>1$, as discussed in Section 2.1.2, currently there is no similar recommendation for P hence random matrix is recommended. Random matrix P is not a bad choice either because it works well when ILU0 preconditioner is used and ILU0 performs better than other preconditioner tested. Sonneveld and Gijzen ${ }^{162}$ (2008) recommended the use of $s=4$ for short recurrence of IDR method. However for the linear systems tested here, $\operatorname{IDR}(4)$ is not the optimal in both matvec count and total iteration time. As discuss in Section 2.1.2, when s increases, the matvec count reduces but the storage of matrix $P^{N \times s}$ increases and the time spent to solve the linear system $s \times s$ increases. This is reflected in the tables, $\operatorname{IDR}(20)$ has the least matvec count but longer total iteration time especially for denser meshes. $\operatorname{IDR}(6)$ and $\operatorname{IDR}(10)$ are competitive in total iteration time. $\operatorname{IDR}(10)$ requires less matvec but about the same time as $\operatorname{IDR}(6)$. In this study, $\operatorname{IDR}(6)$ is chosen and is used in further discussion because smaller s is preferred when taking into account of the generation and storing the random matrix $P^{N \times s}$.

As discussed in the previous paragraph, the matvec count reduces from top to bottom for each problem size. This reflects the efficiency of the preconditioner. When no preconditioner is used, all the Krylov solvers do not converge within 5000 matvec for the medium ($24 \times 6 \times 24$ mesh) and large ($32 \times 8 \times 32$ mesh)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS
problem sizes. Jacobi is the cheapest preconditioner because it is trivial to form but is also the least efficient preconditioner. The total iterationt time is dominated by the iteration time due to large amount of matvec required. SSOR-L is just as efficient as SSOR-LR and Bi-CGSTAB with SSOR-L does not show outstanding performance as shown by Mroueh, and Shahrour ${ }^{115}$ (1999). Moreover, with the same matvec, total iteration time from SSOR-L is often more than from SSOR-LR because the matvec step requires more operations. ILU0 is the most expensive preconditioner here: the time to form this preconditioner is 25 times more than time to form Jacobi preconditioner. Nevertheless, the reduction in matvec count pays off and the total iteration time is the least among all the preconditioners tested. These numerical results agree with review in Section 2.2. Discussions in later parts will adopt ILU0 as the default preconditioner for the nonsymmetric linear system due to nonassociated MC model.

Figure 3.3 to Figure 3.11 plot the number of matvec and total iteration time required by Bi-CGSTAB and $\operatorname{IDR}(s)$ with s consequently taking the value of 1 , $4,6,10,20$ when the applied pressure increase to the maximum value in Table 3.2. The matvec counts increase when the applied pressure increases, makes the linear system at the last load step the hardest to solve as mentioned earlier in this section. These figures agree with the conclusion from previous tables: $\operatorname{IDR}(1)$ is equivalent to $\operatorname{Bi}-\operatorname{CGSTAB}$; $\operatorname{IDR}(20)$ is the most efficient in term of matvec count, even converges when other methods fail but is not the most efficient in term of total iteration time; $\operatorname{IDR}(6)$ is the most optimal in total iteration time and memory storage; ILU0 is the most efficient preconditioner among those tested.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

(a)

Stiff clay - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(c)

Stiff clay - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$

(e)

Stiff clay - No preconditioner - Mesh size $12 \times 3 \times 12$

(b)

Stiff clay - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(d)

Stiff clay - SSOR-L preconditioner - Mesh size $12 \times 3 \times 12$

(f)

Stiff clay - SSOR-L preconditioner - Mesh size $12 \times 3 \times 12$

(g)

(i)

Stiff clay - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$

(h)

Stiff clay - ILU0 preconditioner - Mesh size $12 \times 3 \times 12$

(j)

Figure 3.3: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $12 \times 3 \times 12$. Soil profile 1 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

(a)

Stiff clay - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(c)

Stiff clay - SSOR-LR preconditioner - Mesh size $24 \times 6 \times 24$

(e)

(b)

Stiff clay - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(d)

Stiff clay - SSOR-LR preconditioner - Mesh size $24 \times 6 \times 24$

(f)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Figure 3.4: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $24 \times 6 \times 24$. Soil profile 1 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Stiff clay - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(a)

Stiff clay - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(c)

Stiff clay - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(e)

Stiff clay - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(b)

Stiff clay - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(d)

Stiff clay - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(f)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Stiff clay - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(g)

Stiff clay - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(h)

Figure 3.5: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 Mesh size $32 \times 8 \times 32$. Soil profile 1 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here.

Dense sand - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(c)

Dense sand - No preconditioner - Mesh size $12 \times 3 \times 12$

(b)

Dense sand - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(d)

Dense sand - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$ Dense sand - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$

(e)

(f)

Dense sand - SSOR-L preconditioner - Mesh size $12 \times 3 \times 12$

(g)

Dense sand - ILU0 preconditioner - Mesh size $12 \times 3 \times 12$

(i)

Dense sand - SSOR-L preconditioner - Mesh size $12 \times 3 \times 12$

(h)

Dense sand - ILU0 preconditioner - Mesh size $12 \times 3 \times 12$

Figure 3.6: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20 . Mesh size $12 \times 3 \times 12$. Soil profile 2 is used.

Dense sand - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(c)

Dense sand - No preconditioner - Mesh size $24 \times 6 \times 24$

(b)

Dense sand - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(d)

Dense sand - SSOR-LR preconditioner - Mesh size $24 \times 6 \times 24$

(e)

(f)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Dense sand - SSOR-L preconditioner - Mesh size $24 \times 6 \times 24$

(g)

Dense sand - ILU0 preconditioner - Mesh size $24 \times 6 \times 24$

(i)

Dense sand - SSOR-L preconditioner - Mesh size $24 \times 6 \times 24$

(h)

Dense sand - ILU0 preconditioner - Mesh size $24 \times 6 \times 24$

(j)

Figure 3.7: Comparison of $\operatorname{Bi}-\mathrm{CGSTAB}$ and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $24 \times 6 \times 24$. Soil profile 2 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Dense sand - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(a)

Dense sand - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(c)

Dense sand - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(e)

Dense sand - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(b)

Dense sand - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(d)

Dense sand - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(f)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Dense sand - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(g)

Dense sand - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(h)

Figure 3.8: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $32 \times 8 \times 32$. Soil profile 2 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Layered soil - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(c)

Layered soil - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$

(e)

Layered soil - No preconditioner - Mesh size $12 \times 3 \times 12$

(b)

Layered soil - Jacobi preconditioner - Mesh size $12 \times 3 \times 12$

(d)

Layered soil - SSOR-LR preconditioner - Mesh size $12 \times 3 \times 12$

(f)

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

(g)

Layered soil - ILU0 preconditioner - Mesh size $12 \times 3 \times 12$

(i)

Layered soil - SSOR-L preconditioner - Mesh size $12 \times 3 \times 12$

(h)

Layered soil - ILU0 preconditioner - Mesh size $12 \times 3 \times 12$

(j)

Figure 3.9: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $16 \times 3 \times 16$. Soil profile 3 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

(a)

Layered soil - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(c)

Layered soil - No preconditioner - Mesh size $24 \times 6 \times 24$

(b)

Layered soil - Jacobi preconditioner - Mesh size $24 \times 6 \times 24$

(d)

Layered soil - SSOR-LR preconditioner - Mesh size $24 \times 6 \times 24$

(e)

(f)

Layered soil - SSOR-L preconditioner - Mesh size $24 \times 6 \times 24$

(g)

Layered soil - ILU0 preconditioner - Mesh size $24 \times 6 \times 24$

(i)

Layered soil - SSOR-L preconditioner - Mesh size $24 \times 6 \times 24$

(h)

Layered soil - ILU0 preconditioner - Mesh size $24 \times 6 \times 24$

(j)

Figure 3.10: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and 20. Mesh size $24 \times 6 \times 24$. Soil profile 3 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Layered soil - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(a)

Layered soil - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(c)

Layered soil - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(e)

Layered soil - Jacobi preconditioner - Mesh size $32 \times 8 \times 32$

(b)

Layered soil - SSOR-LR preconditioner - Mesh size $32 \times 8 \times 32$

(d)

Layered soil - SSOR-L preconditioner - Mesh size $32 \times 8 \times 32$

(f)

Layered soil - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(g)

Layered soil - ILU0 preconditioner - Mesh size $32 \times 8 \times 32$

(h)

Figure 3.11: Comparison of Bi-CGSTAB and $\operatorname{IDR}(s)$ with $s=1,4,6,10$, and
20. Mesh size $32 \times 8 \times 32$. Soil profile 3 is used. All the methods do not converge when there is no preconditioner hence this case is not plotted here.

3.5 Comparison of ILU0 and ILU($\rho, \tau)$

Section 3.4 has shown that ILU0 is a better preconditioner than Jacobi, SSORLR and SSOR-L hence implies that ILU0 is a better approximation of the nonsymmetric stiffness matrix $K_{e p}$. Section 2.2.3 has mentioned that ILUT can be more efficient and a competitor to ILU0 in the current problem. This section shows the comparison of $\operatorname{ILU} 0$ and $\operatorname{ILUT}(\rho, \tau)$ for their practical application.

Figure 3.12, Figure 3.13 and Figure 3.14 show the comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$ with different values of ρ and τ. Due to the dropping scheme, not all ILUT are more efficient than ILU0. When ρ is less than 50, ILUT requires more matvec than ILU0. When ρ is equal to 50 or 100 , ILUT requires less matvec than ILU0 but the differences are marginal. With the proper choice of ρ and τ, ILUT performs better than ILU0 but this choice of ρ and τ is not known in advance but through a trial and error process as this study has done. Hence, even from the matvec count aspect, ILUT is not a better preconditioner than ILU0.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Figure 3.12: Comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$. Soil profile 1 is used with problem size of $12 \times 3 \times 12$.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Figure 3.13: Comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$. Soil profile 1 is used with problem size of $24 \times 6 \times 24$

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Figure 3.14: Comparison of ILU0 and $\operatorname{ILUT}(\rho, \tau)$. Soil profile 1 is used with problem size of $32 \times 8 \times 32$

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Moreover, in the practical aspect - total iteration time, in all the tested cases, ILUT is not more efficient than ILU0. The time to form ILUT is at least 10 times more than it is to form ILU0 but the iteration time does not reduce accordingly to pay off for this amount of time because one matvec with ILUT also takes more time than with ILU0. Hence the total iteration time of $\operatorname{IDR}(6)$ with ILUT is always at least 10 times more than with ILU0. Although ILUT is recommended by many researchers, this preconditioner is not a good choice for this study. Hence, ILU0 is still chosen as the default preconditioner of $K_{e p}$ in later parts.

3.6 Effect of convergence criteria and iteration tolerance

3.6.1 Effect of the variation of iteration tolerance, \boldsymbol{i} _tol

This section discusses the effect of the tolerance of $\operatorname{IDR}(6)$, i_{-}tol, on the accuracy of the FE analysis of the strip footing. Figure 3.15 and Figure 3.16 plot the vertical displacement of the center of the strip footing resting on soil profile 1 and 2 respectively when the applied load increases up to the predicted failure loads in Table 3.2.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Figure 3.15: Comparison of different $i _t o l$. Soil profile 1 is used.

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Dense sand - Mesh size $24 \times 6 \times 24$

Dense sand - Mesh size $24 \times 6 \times 24$

Figure 3.16: Comparison of different $i _t o l$. Soil profile 2 is used. SYSTEMS

The nonlinear FE analysis of the strip footing resting on the layer of homogeneous soil includes three numerical approximations with reducing level of influence on the accuracy of the analysis: FE approximation of the partial differential equations, NR iteration to solve the nonlinear system resulted from FE approximation, and Krylov iteration - IDR(6) with ILU0 preconditioner - to solve the linear system resulted from each NR iteration. The influence of FE approximation is shown in Figure 3.16(a1) and Figure 3.15(a1) which show the convergence of FE analysis when the mesh is denser. The tolerance of NR is 10^{-6}. i_tol is 10^{-6} which is the strictest tolerance tested. When the systems are far from failure $\left(q / q_{f}<50 \%\right)$, the vertical displacement resulted from the coarse mesh $(12 \times 3 \times 12)$ is as good as from the densest mesh ($32 \times 8 \times 32$). However when the applied load is closed to the predicted failure load, denser meshes $(24 \times 6 \times 24$ and $32 \times 8 \times 32)$ show the failure phenomenon: there is large increase in vertical displacement and the load-displacement curve becomes steeper. This shows that the influence of FE approximation is the strongest among the three. The tolerance of NR iteration certainly affects the accuracy of the simulation. This thesis discusses the application of Krylov iteration methods and preconditioner hence the tolerance of NR is kept constant in all the analyses. The effect of NR tolerance is ignored because with the tolerance of 10^{-6} and the stopping criteria shown in Eq.(3.5), the FE analysis produces acceptable results when compared with the predicted theoretical failure as shown in Figure 3.16(a1) and Figure 3.15(a1).

It is worth to note that the load-displacement curves in Figure 3.16(a1) and Figure 3.15(a1) are not smooth because there are abrupt changes in vertical displacement, which may not be ideal. This may lie on the return mapping method (refer to Appendix A.2). The numerical model is not stable when the systems are close to failure hence more Gauss points are forced to lie on the apex of MC envelope (as mentioned in Section 3.3), which is spurious. The load step was reduced as a remedy but much smaller load step implies that much more simulation time will be required to produce a perfectly smooth load-displacement curve. Moreover, the current non-ideal load-displacement curve is not physically wrong hence this thesis continues using its current

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS
loading scheme for further discussion on the main objective: preconditioners and tolerance of $\operatorname{IDR}(s)$ method.

The rest of figures in Figure 3.16 and Figure 3.15 show the effects of $i _t o l$ on the vertical displacement of the strip footing. When q / q_{f} is less than 60%, the system is far from failure, the vertical displacement can be predicted well with $i _t o l$ as large as 10^{-1}. When the applied load is close to the predicted failure load, i_tol affects greatly on the failure prediction of FE analysis when the failure phenomenon is shown through the analysis. The coarse mesh $(12 \times 3 \times 12)$ fails to predict the failure hence $i_{-} t o l$ does not change the trend except making the vertical displacement fluctuate in a small range, while it affects the denser meshes $(24 \times 6 \times 24$ and $32 \times 8 \times 32)$. Hence for coarse mesh, i_{-}tol $=10^{-6}$ can be consider 'stringent' because it does not offer better solution than i_tol $=10^{-1}$.

For denser meshes, it should be highlighted first that the failure phenomenon is only shown with $i_{-} t o l=10^{-6}$. When i_{-}tol is increased to 10^{-5} and 10^{-4}, there is large increase in the vertical displacement but the failure phenomenon is not clearly shown, except in Figure 3.16(c2). When i_tol is as large as 10^{-1}, no sign of failure is shown at all and the load-displacement curve of the densest mesh $(32 \times 8 \times 32)$ is similar to that of the coarse mesh $(12 \times 3 \times 12)$ and the investment on the denser mesh with the purpose of getting better prediction does not pay off. Hence i_{-}tol $=10^{-6}$ is not too 'stringent' for dense mesh and will be continued using throughout this thesis to predict as accurate physical phenomena as possible. In practice, if one finds i_{-}tol $=10^{-6}$ to be too stringent, i_tol $=10^{-5}$ and 10^{-4} can be recommended with the condition that denser mesh should be used, and the value of i_{-}tol less than 10^{-4} is not recommended. But it is worth to highlight that in complicated and realistic geotechnical problem, failure loads are not priorly known so too relaxed tolerance can lead to wrong impression about the physical behavior of the problems.

3.6.2 More discussion on the interaction of i_{-}tol, $N R _t o l$ and load increment

This section only discusses the interaction of i_{-}tol, $N R_{-}$tol and load increment so that accurate results can be produced. Their interaction so that the optimal

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

NR iteration, Krylov iterations and total solution time can be achieved has not yet researched in-depth and is left for further study.

Table 3.7 to Table 3.9 present the number of NR iterations and average Krylov matvecs at each load increment. The reason that large i_tol cannot provide reasonable results is the unbalanced force due to the material non-linearity cannot be fully captured. This is shown by the reduction of the number of yielded Gauss points in the mesh caused by the applied load when i_tol increases. When there are few yielded Gauss points in the mesh, the mesh is considered "far from failure" although the load is close to the theoretical failure load.

Table 3.7: $12 \times 3 \times 12$ mesh - Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used.

Number	Load	i_tol $=10^{-6}$		i_tol $=10^{-5}$		i_tol $=10^{-4}$		i_tol $=10^{-3}$		i_tol $=10^{-2}$		i_tol $=10^{-1}$	
1	20	1/46	0	1/42	0	1/41	0	1/36	0	1/27	0	1/21	0
2	40	1/46	0	1/42	0	1/41	0	$1 / 36$	0	1/27	0	1/21	0
3	60	$1 / 46$	0	$1 / 42$	0	1/41	0	$1 / 36$	0	$1 / 27$	0	$1 / 21$	0
4	80	1/46	0	$1 / 42$	0	1/41	0	$1 / 36$	0	1/27	0	$1 / 21$	0
5	100	3/46	384	4/41	389	4/36	389	4/29	389	4/18	383	4/13	782
6	120	4/47	1175	5/43	1183	$5 / 38$	1183	$5 / 30$	1183	5/24	1165	5/15	1441
7	140	4/48	1708	4/46	1708	4/41	1708	4/36	1708	4/26	1694	4 / 17	1895
8	160	$4 / 54$	2117	4/47	2115	4/44	2117	4/38	2117	5/33	2106	4/19	2246
9	180	$4 / 55$	2507	4/51	2430	4/46	2507	5/41	2509	4/30	2493	4/18	2556
10	200	4 / 58	2835	4 / 52	2835	$4 / 46$	2835	4/38	2835	4/26	2797	5/14	2896
11	220	4/60	3301	4/54	3301	4/49	3301	$5 / 40$	3308	6/32	3303	5/17	3562
12	240	5/62	3897	5/57	3897	$5 / 51$	3897	$5 / 45$	3897	6/35	3886	6/18	4201
13	260	$5 / 67$	4543	$5 / 60$	4543	$5 / 53$	4543	5/45	4543	9/35	4517	6/21	4751
14	280	7/70	5172	8/61	5176	$8 / 57$	5176	11/44	5192	10/32	5174	$7 / 20$	5435

Table 3.8: $24 \times 6 \times 24$ mesh - Summary of NR iteration, average Krylov iteration and yielded Gauss point. Soil profile 1 is used.

Number Load i_tol $=10^{-6}$				i_tol $=10^{-5}$		i_tol $=10^{-4}$		i_tol $=10^{-3}$		i_tol $=10^{-2}$		i_tol $=10^{-1}$	
1	20	1/92	0	$1 / 85$	0	$1 / 75$	0	$1 / 66$	0	$1 / 54$	0	1/33	0
2	40	$1 / 92$	0	$1 / 85$	0	$1 / 75$	0	$1 / 66$	0	$1 / 54$	0	1/33	0
3	60	$1 / 92$	0	$1 / 85$	0	$1 / 75$	0	$1 / 66$	0	$1 / 54$	0	1/33	0
4	80	1 / 92	0	$1 / 85$	0	$1 / 75$	0	$1 / 66$	0	$1 / 54$	0	1/33	0
5	100	4/92	3132	4 / 89	3132	$4 / 74$	3132	4 / 52	3114	$4 / 35$	3313	$5 / 20$	5487
6	120	7 / 97	9591	$7 / 97$	9591	6/81	9552	$7 / 65$	9589	$7 / 50$	9559	6 / 30	10333
7	140	14/106	13647	14/101	13647	13/86	13618	12/70	13972	10/50	13567	14/24	13610
8	160	18/106	17047	20/110	19345	9 / 87	16725	20/71	20175	12 / 45	16996	$9 / 34$	17190
9	180	17/114	19747	10/112	22270	5/91	18831	20/81	23044	10/49	18923	$7 / 34$	18722
10	200	$17 / 216$	25317	10/114	25028	17/97	23108	18/82	25503	$7 / 62$	21390	8/30	22622
11	220	10/231	27284	12 / 108	28240	$7 / 94$	25928	16/87	30012	$7 / 64$	24860	8/33	24621
12	240	$7 / 296$	31285	12/139	33630	10/101	31618	10/89	38142	16/50	30998	11/27	28521
13	260	9 / 344	37011	16/155	41256	12 / 95	35739	12 / 81	43382	17 / 67	35469	10/39	34062
14	280	25/207	59799	20/170	48707	13/109	43397	12/101	48450	10/65	41900	12/39	38490

Number	Load	i_tol	10^{-6}	i_tol	10^{-5}	i_tol	10^{-4}	i_tol	10^{-3}	i_to	10^{-2}	i_tol	10^{-1}
1	20	$1 / 120$	0	1/113	0	$1 / 100$	0	$1 / 84$	0	$1 / 70$	0	$1 / 50$	0
2	40	$1 / 120$	0	$1 / 113$	0	$1 / 100$	0	$1 / 84$	0	$1 / 70$	0	$1 / 50$	0
3	60	$1 / 120$	0	$1 / 113$	0	$1 / 100$	0	$1 / 84$	0	$1 / 70$	0	$1 / 50$	0
4	80	$1 / 120$	0	1/113	0	$1 / 100$	0	$1 / 84$	0	$1 / 70$	0	$1 / 50$	0
5	100	$4 / 119$	7290	$4 / 107$	7290	4 / 90	7302	4 / 65	7242	4 / 45	7059	$1 / 50$	0
6	120	14/131	25002	11/122	24286	11/113	32161	11 / 84	24373	$14 / 53$	24928	8/33	17454
7	140	13/139	31926	10/128	30794	10/117	40900	10 / 91	30825	10/68	30353	17/32	28969
8	160	9/147	38515	$9 / 142$	37525	10/136	43503	8/104	37538	10/76	36788	14/25	36821
9	180	12/157	44282	11/136	45709	12 / 133	47791	14/104	44250	10/59	43316	20/15	42899
10	200	10/163	52127	11/141	52972	12 / 135	53976	14 / 85	65402	13/71	50268	11/36	50716
11	220	13/161	60740	18/135	67502	19/127	64913	9/117	69722	10/90	58523	8/41	55168
12	240	13/171	71646	12/149	73139	13 / 140	74581	14 / 123	76283	14 / 83	70055	12/17	64473
13	260	19/184	84364	20/152	86241	19/149	88913	21/129	92414	21/49	86427	11/38	68535
14	280	29/196	106109	15/180	104734	20/166	103900	22 / 169	109382	16/84	92460	11/26	75823

The results and discussion in Section 3.6.1 are based on the condition that $N R _t o l$ and load increment are constant when i_tol varies. When the unbalanced force is not fully captured, the analysis is closed to the explicit increment method which requires sufficiently small load increment to obtain accurate results (Abbo ${ }^{2}$, 2007; Krenk 96, 2009 pp7-14). Hence, the cause of unreasonable results in this case is not because i_{-}tol is larger than $N R _t o l$ (so less NR iterations are performed) but because the load increment is too large. The same unreasonable results would occur when $N R_{-}$tol is too large and i_{-}tol is small. Figure 3.17 below shows that when $i _t o l=10^{-2}, N R_{-} t o l=10^{-6}$ and the load increment is very small, the results are as good as when $i_{-} t o l=10^{-6}$, $N R _t o l=10^{-6}$ and the load increment is large.

Besides, the FE algorithm used in this thesis belongs to the class of NewtonKrylov method, also known as inexact Newton method. Blaheta ${ }^{26}$ (1997), Axelsson and others ${ }^{14}$ (1997) showed theoretically that the inexact Newton method used in elastoplastic problems converges to the right solution when the load increment is sufficiently small relative to the state of the structure at the computing point and the convergence rate depends on the choice of $i _$tol, e.g. constant value or series of reducing values.

Figure 3.17: Interaction of $i _t o l, N R_{-} t o l$ and load increment

3.7 Eigenvalue distribution of nonsymmetric linear systems

This section shows qualitatively the theoretical reason for the increase of matvec when applied pressure increase as observed in Section 3.4. Section 2.4.1 has discussed the effects of spectral properties on the convergence of

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS

Krylov iterative methods. Qualitatively, the iterative solvers require less matvec to converge if the ellipse (under suitable normalization) in the complex plane circumscribing all the eigenvalues is small. Figure 3.18 shows the eigenvalue distributions of the elastic stiffness matrix K_{e} and the unpreconditioned and preconditioned global stiffness matrix $K_{e p}$.

Figure 3.18: Eigenspectra of matrix (a) K_{e}; (b) Unpreconditioned $K_{e p}$; (c) $K_{e p}$ preconditioned with ILU0. Problem size $12 \times 3 \times 12$ with soil profile 1

When there are no yielded Gauss points in the mesh, the global stiffness matrix is K_{e}, which is symmetric and all the eigenvalues are positive and real numbers as shown in Figure 3.18a. When there are yielded Gauss points, $K_{e p}$ applies and the global stiffness matrix becomes nonsymmetric hence the some of the eigenvalues are complex number (Figure 3.18b). Figure 3.19a and Figure 3.19 b show that when the applied load increases, the maximum and minimum real parts of eigenvalues are almost unchanged while the maximum imaginary parts of these complex eigenvalues increase, which enlarge the circumscribing ellipse. Section 2.4.1 also mentioned that the condition number of the matrix X in Eq.(2.30) is involved in the convergence of Krylov iterative methods. Figure 3.19 c shows that this condition number increases when the applied load increases. All these observations imply that the nonsymmetric linear system is harder to solve when the applied load increases and explains the reason of the increase in matvec of $\operatorname{IDR}(s)$ in $\operatorname{Section} 3.4 . \operatorname{ILU}(0)$ is the most efficient preconditioner shown in Section 3.4. This efficiency is reflected

CHAPTER 3 ITERATIVE SOLVERS FOR NONSYMMETRIC LINEAR SYSTEMS
in the clustering of the eigenspectrum. Figure 3.18c shows the eigenvalues distributions of $K_{e p}$ preconditioned by ILU(0). The eigenvalues distribute over a much smaller range than those from the un-preconditioned $K_{e p}$, which explains the efficiency gained when solving the preconditioned linear system iteratively.

Figure 3.19: Characteristics of eigenspectrum: (a) Maximum and minimum eigenvalue; (b) Maximum imaginary part of eigenvalues; (c) Condition number of matrix X (Eq.(2.30)). Problem size $12 \times 3 \times 12$ with soil profile 1 is used.

3.8 Summary

This chapter performs numerical experiments on the strip footing problem resting on three soil profiles, of which properties have typical values of soil as well as have wide range of input values. The key findings from the numerical results are:

1. $\operatorname{IDR}(1)$ is theoretically equivalent to Bi-CGSTAB, which has been validated numerically. Bi-CGSTAB or $\operatorname{IDR}(1)$ with $P=r_{0}$ is a good choice and can sometimes perform better than $\operatorname{IDR}(s>1)$ with P as a random matrix. However, with good preconditioner like ILU0, a random matrix P is not a bad choice because $\operatorname{IDR}(s>1)$ performs better than Bi-CGSTAB.
2. When s is larger, IDR requires less matvec as expected but more time is spent on solving the $s \times s$ linear system and more memory is used to store $P^{N \times s} . \operatorname{IDR}(6)$ and $\operatorname{IDR}(10)$ show competitive performance in iteration time. $\operatorname{IDR}(6)$ is chosen for further implementation because this will limit the memory required to store $P^{N \times s}$ especially when N grows large in practical problems.
3. ILU0 is the most efficient preconditioner for the $K_{e p}$ matrix among Jacobi, SSOR-LR, SSOR-L and $\operatorname{ILUT}(\rho, \tau) . \operatorname{ILUT}(\rho, \tau)$ can be competitive in term of matvec but less competitive in term of solution time. Moreover, the fill-in number is not known priorly and also problem dependent.
4. Eigenvalue distribution shows that when there are more yielded Gauss points in the mesh, $K_{e p}$ is harder to solve because there are more complex eigenvalue making the ellipse circumscribing them bigger and the eigenspectrum characteristic more complicated.

CHAPTER 4 PRECONDITIONERS FOR 1-
 BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

4.1 Introduction

This chapter aims to discuss two issues on preconditioning the 1-by-1 block matrix: Section 4.2 discusses techniques to precondition effectively a sequence of linear systems which occurs in the nonlinear FE analysis; and Section 4.3 discusses effects of the penalty method, which will be elaborated in the section, on $\operatorname{IDR}(s)$ and preconditioners. Chapter 3 has concluded that $\operatorname{IDR}(6)$ preconditioned with ILU0 requires the least time to solve the nonsymmetric linear system due to the non-associated MC model, hence this chapter continues to use IDR(6) and ILU0. Geotechnical problems considered in the numerical experiments are: flexible strip footing (Figure 3.1a) and square footing (Figure 4.1a) resting on homogenous soil layer, and vertical smooth wall (Figure 4.1b) subjected to horizontal prescribed displacements. Theoretical results are available for these problems and are used as the reference for numerical predictions.

4.2 Efficient preconditioning for a sequence of linear systems in drained analysis

This section considers a flexible strip footing (Figure 3.1a) and a flexible square footing (Figure 4.1a) resting on the homogenous soil profile 1 and 2 which have been described in Section 3.2. The boundary conditions of the square footing are similar to those of the strip footing described in Section 3.2. The characteristics of the 3D meshes of the square footing are presented in Table 4.1. The properties of the soil following the non-associated MC model are given in Table 3.1.

Figure 4.1: 3D finite element mesh of the square footing
Table 4.1: 3D FE meshes of the square footing resting on soil profile 1 and 2

	Mesh size	
	$16 \times 16 \times 16$	$24 \times 24 \times 24$
Number of elements	4,096	13,824
Number of nodes	18,785	60,625
Number of unknowns (N)	50,656	169,296
Number of Gauss points $\left(N_{i p}\right)$	110,592	373,248
Number of nonzero $($ nnz $)$		
Soil profile 1	$7,809,113$	$27,355,315$
Elastic system	$7,831,757$	$27,373,538$
Elastoplastic system at 380kPa		
Soil profile 2	$7,814,366$	$27,360,464$
Elastic system	$7,847,086$	$27,391,751$
Elastoplastic system at 47kPa		
nnz/N $N^{2}(\%)$		
Soil profile 1	0.3	0.095
Elastic system	0.31	0.096
Elastoplastic system at 380 kPa		
Soil profile 2	0.30	0.095
Elastic system	0.31	0.096
Elastoplastic system at 47 kPa		

The prediction of failure load of the strip footing has been presented in Section 3.2. When the foundation is a rectangle, the shape factors are multiplied to the Terzaghi's formula in Eq.(3.1) to get Eq.(4.1). The shape factor $\xi_{c s}$ for the rectangular footing is given in Eq.(4.2).

$$
\begin{gather*}
q_{f}=\xi_{\gamma s}\left(\frac{1}{2} \gamma B N_{\gamma}\right)+\xi_{c s}\left(c N_{c}\right)+\xi_{q s}\left(\gamma D N_{q}\right) \tag{4.1}\\
\xi_{c s}=1+(B / L)\left(N_{q} / N_{c}\right) \tag{4.2}
\end{gather*}
$$

The predicted failure load of the square footing resting on the soil profile 1 and 2 and the maximum applied load for each soil profile are tabulated in Table 4.2. Similar to the point noted in Section 3.2, the predicted failure load in Eq.(4.1) does not take into account the non-associated flow rule, which is considered in this whole thesis, hence the actual failure load may be 10 or 20 percent different from the predicted values.

Table 4.2: Ultimate bearing capacity of the strip footing and square footing on the homogenous soil layer and the maximum applied pressure used in numerical experiments

	N_{q}	N_{c}	$\xi_{c s}$ with $B / L=1$	$q_{f-\text { square }}=\xi_{c s} c^{\prime} N_{c}(\mathrm{kPa})$	$q_{\text {max-square }}(\mathrm{kPa})$
Soil profile 1	6.4	14.83	1.43	424.68	$380\left(=90 \% q_{f-\text { square }}\right)$
Soil profile 2	18.40	30.14	1.61	48.54	$47\left(=97 \% q_{f-\text { square }}\right)$

4.2.1 By forming the global stiffness matrix implicitly

From the elastoplastic stress-strain matrix in Eq.(1.3), the global stiffness matrix in drained analysis in Eq.(2.1) can be written as summation of two matrices K_{e} and Δ as in Eq.(4.3).

$$
\begin{equation*}
K_{e p}=\sum_{\text {element }}\left(\int_{V} B^{T} D_{e} B d V\right)+\sum_{\text {element }}\left[\int_{V} B^{T}\left(-\frac{D_{e}\left(\frac{\partial g}{\partial \sigma}\right)\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}}{\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}\left(\frac{\partial g}{\partial \sigma}\right)}\right) B d V\right]=K_{e}+\Delta \tag{4.3}
\end{equation*}
$$

The integral in Eq.(4.3) to assemble Δ is evaluated with Gauss quadrature formula given below

$$
\begin{equation*}
\Delta=\sum_{\text {element }} \sum_{i=1}^{n_{v}} B_{i}^{T}\left(-\frac{D_{e}\left(\frac{\partial g}{\partial \sigma}\right)\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}}{\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}\left(\frac{\partial g}{\partial \sigma}\right)}\right)_{i} B_{i}\left\|J_{i}\right\| W_{i} \tag{4.4}
\end{equation*}
$$

in which n_{y} is the number of yielded Gauss points in each element, $\left\|J_{i}\right\|$ is determinant of the Jacobian matrix and W_{i} is the Gauss quadrature weighting coefficient at each Gauss point.

From Eq. (4.3) and Eq.(4.4), the upper bound on the rank of Δ is evaluated in Eq.(4.5) and Eq.(4.6),

$$
\begin{gather*}
\operatorname{rank}(\Delta) \leq \sum_{\text {element }} \sum_{i=1}^{n_{y}} \operatorname{rank}\left[B_{i}^{T}\left(-\frac{D_{e}\left(\frac{\partial g}{\partial \sigma}\right)\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}}{\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e}\left(\frac{\partial g}{\partial \sigma}\right)}\right)_{i} B_{i}\left\|J_{i}\right\| W_{i}\right] \leq \sum_{\text {element }} n_{y}=N_{y} \\
\operatorname{rank}(\Delta) \leq \min \left(N, N_{y}\right) \tag{4.5}
\end{gather*}
$$

in which N_{y} is the total number of yielded Gauss points in the mesh and N is the dimension of both K_{e} and $K_{e p}$.

When geotechnical systems are far from failure, N_{y} is much smaller than N. Hence, the rank of Δ is much smaller than N. On the contrary, when geotechnical systems approach failure, N_{y} is larger than N. However, numerical results show that the rank of Δ is still much smaller than N. In this sense, Δ can be considered as a perturbation of K_{e}. In Section 4.2.2, ILU0- $K_{e p}$ denotes the ILU0 derived from the $K_{e p}$ matrix while ILU0- K_{e} denotes the ILU0 derived from the K_{e} matrix.

Figure 4.2: Ratio of applied pressure q over the bearing capacity q_{f} versus percentage of yielded Gauss points in the 3D mesh of: (a)(c) Strip footing, (b)(d)Square footing.

When full NR is used, $K_{e p}$ has to be formed at each NR iteration. This formation can be done explicitly as in Eq.(2.1) or implicitly as in Eq.(4.3). In Eq. (4.3), only the Δ matrix has to be formed at each NR iteration. Figure 4.3 shows the comparison of time to form $K_{e p}$ and time to form Δ. The figures are plotted against the percentage of yielded Gauss points in the mesh $\left(N_{y} / N_{i p}\right)$.

Figure 4.3: (a) (b) Ratio of time to form Δ and $K_{e p}$ over time to form K_{e}; (c) (d)Ratio of time to form Δ and $K_{e p}$ over total time consumed in each NR iteration when $\operatorname{IDR}(6)$ with ILU0 is used to solve the linear systems.

The time to form $K_{e p}$ is always several times more than the time to form K_{e} because of the stress returning procedure in nonlinear FE analysis (Appendix A.2). In Figure 4.3a and Figure 4.3b, the time to form $K_{e p}$ does not vary significantly regardless of the increases of yielded Gauss points. Hence, in each NR iteration, the same length of time has to be spent to form $K_{e p}$. On the contrary, the time to form Δ only increases when the number of yielded Gauss points increases. This time is smaller than the time to form $K_{e p}$ even at the final load stage, where 50 (in soil profile 1) to 65 (in soil profile 2) percent of the Gauss points have yielded. In practice, the FE analysis is performed at the working load stage, which is typically less than 50 percent of the bearing capacity. At this stage, 15 percent of the Gauss points have yielded when soil profile 1 is considered (Figure 4.2a) and the time to form Δ is 30 percent of the time to form $K_{e p}$ for the largest problem size tested; while 25 percent of the Gauss points have yielded when soil profile 2 is considered (Figure 4.2c) and the time to form Δ is 50 percent of the time to form $K_{e p}$ for the largest problem size tested.

Section 3.4 has shown that $\operatorname{IDR}(6)$ with ILU0- $K_{e p}$ preconditioner requires the least time to solve the non-symmetric linear system in each NR iteration. Figure 4.3c and Figure 4.3d show that when this preconditioner is used, the time to form $K_{e p}$ takes more than 75 percent of total time consumed in each NR iteration for small and medium problem sizes, meaning forming $K_{e p}$ is a much more critical procedure than solving the large-scale linear system and minimizing the linear system solving time is not tackling the more time consuming part of the solution process. Although this ratio reduces to 50 to 65 percent for the largest problem size tested, this figure is still considered significantly large.

Similar to Figure 4.3(a)(b), Figure 4.3(c)(d) show that the ratio of the time to form Δ over the total time consumed in each NR iteration increases with the increase of yielded Gauss points. For small problem size, this ratio is as large as it is for $K_{e p}$ while it is greatly reduced when the problem size increases. For the largest problem size tested, this ratio is up to 40 percent. At the working load, this ratio is 30 percent when soil profile 1 is used and 36 percent when soil profile 2 is used while it is 60 percent for forming $K_{e p}$. Hence, computing
just Δ accrues significant time saving compared with the ratio of 60 percent for the baseline case of forming $K_{e p}$ afresh.

4.2.2 By freezing the preconditioner

4.2.2.1 Use preconditioner from the elastic global stiffness matrix $\boldsymbol{K}_{\boldsymbol{e}}$

Since Δ is a low-rank matrix, a preconditioner derived from the dominant component K_{e} may be as effective as a similar one derived from $K_{e p}$. Figure 4.4(a)(c) and Figure 4.5(a)(c) show the comparison of ILU0- K_{e} preconditioner derived from K_{e} and ILU0- $K_{e p}$ derived from $K_{e p}$ when the strip footing problem is considered. For all the problem sizes of the strip footing, $\operatorname{IDR}(6)$ with ILU0- K_{e} requires more matvec to converge than with ILU0- $K_{e p}$. This agrees with results of Augarde and others ${ }^{11}$ (2007) which discusses element-by-element (EBE) preconditioners. ILU0- K_{e} is only formed once at the beginning of the solution process, there are differences in the total iteration time to solve the linear system. However, the time saved from forming the preconditioner is dominated by the increasing time to perform more matvec when there are more yielded Gauss points. Moreover, the efficiency of ILU0K_{e} reduces when the problem size increases because for large-scale problems, the time to form the preconditioner becomes less significant compared with the time to solve the linear system. However, for all the problem sizes, ILU0K_{e} is more time effective than ILU0- $K_{e p}$ when the percentage of yielded Gauss points is less than 15 percent.

Figure 4.4: Comparison of efficiency of ILU0- K_{e} and ILU0- $K_{e p}$. Soil profile 1 is used.

For the current strip footing example, 50 to 60 percent of the Gauss points have yielded at 90 percent of the bearing capacity. A more practical geotechnical problem - square footing - is tested and shows that only 14 to 25 percent of the Gauss points yield at 90 percent of the bearing capacity (Figure 4.2b and Figure 4.2d). Figure 4.4(b)(d) and Figure 4.5(b)(d) compare the matvec and total iteration time of $\operatorname{IDR}(6)$ when $\operatorname{ILU} 0-K_{e}$ and $\operatorname{ILU} 0-K_{e p}$ are used. Similar to the case of strip footing, the number of matvec required by ILU0- K_{e} is more than that required by ILU0- $K_{e p}$. However, the total iteration time required by ILU0- K_{e} is less than by ILU0- $K_{e p}$ when the percentage of yielded Gauss point is less than 15 percent. This agrees with the conclusion made for the strip footing problem. Geotechnical problems tend to fail locally so the percentage of yielded Gauss points is not significantly large. When the percentage is less than $15, \operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e}$ is effective in reducing the iteration time.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Figure 4.5: Comparison of efficiency of ILU0- K_{e} and ILU0- $K_{e p}$. Soil profile 2 is used.

As noted in Section 1.1.3, before the development of $\operatorname{IDR}(s)$ method, BiCGSTAB is considered the most efficient method and its combination with ILU0- $K_{e p}$ preconditioner yields the shortest iteration time compared with other preconditioners (Section 3.4). Thus, by default, to attain practical length of simulation time, one would use Bi-CGSTAB with ILU0- $K_{e p}$ as well as a newly assembled global stiffness matrix $K_{e p}$ in each NR iteration. This section proposes the use of $\operatorname{IDR}(6)$ with $\operatorname{ILU}-K_{e}$ (when the percentage of yield points is less than 15) and assembling Δ at each NR iteration to form $K_{e p}$. Figure 4.6 plots the ratio of total iteration time used in each NR iteration by the latter method over total iteration time used by the former method. The latter method only requires at most 40 percent of time required by the former. Hence, by using the proposed method, the total simulation time can be reduced by 60 percent. Besides, when the $24 \times 24 \times 24$ mesh is used for the soil profile 1 , BiCGSTAB with ILU0- $K_{e p}$ fail to converge within 5000 matvec at every loading stage. This highlights the superior efficiency of IDR(6) over Bi-CGSTAB in solving the nonsymmetric linear system from non-associated MC model.

Figure 4.6: Ratio of total time consumed in each NR iteration by method (1): using IDR(6) with ILU0- K_{e} and forming Δ over method (2): using BiCGSTAB with ILU0- K_{e} and forming $K_{e p}$.(a)(c) Strip footing. (b)(d) Square footing

4.2.2.2 Update preconditioner after the new load increment is applied

Section 4.2.2.1 has recommended the use of $\operatorname{ILU} 0-K_{e}$ to reduce the total iteration time of $\operatorname{IDR}(6)$ when the percentage of yielded Gauss points $\left(N_{y} / N_{i p}\right)$ is less than 15 percent. ILU0- K_{e} loses its time efficiency when $N_{y} / N_{i p}$ is more than 15 because of the increase of matvec count. From Figure 4.4 a and Figure 4.5 a , the matvec count required by ILU0- K_{e} can be up to three times of the matvec count required by ILU0- $K_{e p}$, which makes the total iteration time consumed by the former to be up to 2.5 times of that consumed by the latter (Figure 4.4 c and Figure 4.5 c). The increase in matvec count required by ILU0K_{e} is because when the number of yielded Gauss points increases, the Δ matrix contributes more in forming $K_{e p}$ hence ILU0- K_{e} becomes less accurate in approximating $K_{e p}$. This section proposes different schemes to update ILU0 preconditioner during the nonlinear FE analysis to hopefully reduce the

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS
matvec count of $\operatorname{IDR}(6)$ and hence reduce the total iteration time when the number of yielded Gauss points increases.

The increase of matvec count lies in the increase of yielded Gauss points therefore this section first considers to update the ILU0 preconditioner at every $\alpha \%{ }^{1}$ increment of $N_{y} / N_{i p}$. Besides, the increase of yielded Gauss points, N_{y}, is caused by the increase of applied load. Figure 4.7 shows that in each load step, N_{y} often increase significantly right after the load increment is applied and reaches a stable value when the NR starts converging. Similarly, the matvec required by $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ also increases after the load increment is applied and reduces when the NR iteration converges. Therefore updating the ILU0 preconditioner once every load step right after the load increment is applied may tackle the most difficult case to solve $K_{e p}$ among all the NR iterations within that load step. Table 4.3 summarizes all the preconditioner updating schemes discussed in this section. Different notations of ILU0 preconditioner are also proposed in Table 4.3 to distinguish these updating schemes.

Figure 4.7: Typical trend of variation of N_{y} and matvec required by $\operatorname{IDR}(6)$ with ILU0- $K_{e p}$ within each load step

[^0]Table 4.3: Different schemes to update ILU0 preconditioner during the simulation

| Number | Description | Preconditioner notation |
| :---: | :--- | :--- | :---: |
| 1 | The default scheme which updates
 preconditioner at every NR iteration. | ILU0- $K_{e p}$ |

Figure 4.8 to Figure 4.11 show the comparison of these proposed preconditioner updating schemes. The matvec reported is the average value over all the NR iterations in each load step. The time reported for scheme 2,3 , and 4 is the cumulative solution time during the simulation normalized by the corresponding cumulative solution time of the default scheme 1 . Cumulative solution time is a better parameter to analyze than the average time in each load step, which has been used in Chapter 3 and Section 4.2.2, because the preconditioner is updated at different points in time during the simulation.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Figure 4.8: Comparison of different schemes of updating ILU0 preconditioner.
Strip footing resting on Soil profile 1 is considered.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Figure 4.9: Comparison of different schemes of updating ILU0 preconditioner.
Strip footing resting on Soil profile 2 is considered.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Figure 4.10: Comparison of different schemes of updating ILU0 preconditioner. Square footing resting on Soil profile 1 is considered.

Figure 4.11: Comparison of different schemes of updating ILU0 preconditioner. Square footing resting on Soil profile 2 is considered.

As stated in previous paragraph, the objective of these preconditioner updating schemes is to reduce the matvec count and the total iteration time of $\operatorname{IDR}(6)$. Scheme 1 and 2 are expected to produce the lower bound and upper bound of matvec count respectively because at any time during the simulation, ILU0$K_{e p}$ in scheme 1 approximates $K_{e p}$ the closest and ILU0- K_{e} in scheme 2 approximates $K_{e p}$ the crudest. This explanation is partly valid in Figure 4.8a and Figure 4.9a when the smallest problem size is used. However it does not apply for larger problem sizes in the rest of the figures from Figure 4.8 to Figure 4.11. In particular, scheme 2 does not provide the upper bound of matvec count. The matvec of scheme 3 are often larger than of scheme 2 although the preconditioner is updated more frequently. This can be because the ILU0 formed at that NR step is unstable and $\operatorname{IDR}(6)$ requires more matvec to converge. Section 4.3 .2 will show that there are cases that unstable ILU0 can make $\operatorname{IDR}(s)$ fail to converge within the maximum number of matvec. In the current case, the unstable ILU0 only causes IDR (6) to take significantly more matvec. In scheme 3 , when the ILU0 is updated at every $\alpha \%$ increment of $N_{y} / N_{i p}$, the updated ILU0 could be unstable at that NR iteration but is kept unchanged until the next $\alpha \%$ increment of $N_{y} / N_{i p}$, hence $\operatorname{IDR}(6)$ preconditioned by this unstable ILU0 requires large amount of matvec to converge. This is reflected in Figure 4.9e and Figure 4.11(a)(c). In constrast with scheme 3 , the ILU0-NR in scheme 4 does not show unstable behavior during the simulation although it is also updated after certain amount of NR iterations. Moreover, the average matvec count of $\operatorname{IDR}(6)$ using ILU0-NR in scheme 4 is as small as the lower bound set by ILU0- $K_{e p}$ in scheme 1 .

Observation on matvec count is strongly relatived to the observation of cumulative solution time. Because the time to form ILU0 preconditioner is minimal compared to the iteration time, when there is the rise in the matvec count, there is the rise in the cumulative solution time. The plots on the cumulative solution time of scheme 2 in Figure 4.8(d)(f) and Figure 4.9(b)(d)(f), agree with conclusion from Section 4.2.2.1: this scheme requires less cumulative solution time than the default scheme 1 when $N_{y} / N_{i p}$ is less than 15%. Scheme 3 can be better than scheme 2 when the matvec required by scheme 3 is less than it is required by scheme 2 . This is the case when $\alpha=5 \%$.

ILU $0-\alpha=5 \%$ gives the best performance of all the choices of α. The cumulative solution time of this case is even less than the cumulative time of scheme 1 in several cases (Figure 4.8(b)(d) and Figure 4.9(b)(f)). With other choices of α, in Figure 4.8f, Figure 4.9(d)(f), and Figure 4.11(b)(f), the cumulative solution time grows large at some point of the simulation because of the rise in matvec count due to the unstable ILU0 preconditioner as explained in the previous paragraph.

In all the figures from Figure 4.8 to Figure 4.11, the cumulative solution time of scheme 4 is always the smallest even when $N_{y} / N_{i p}$ grows up to 60 percent. Exception is seen in Figure 4.8 f and Figure 4.9d but the cumulative time of scheme 4 in these case is asymptotic to that of scheme 1 so scheme 4 is still considered the most time efficient. Scheme 3 with $\alpha=5 \%$ is competitive with scheme 3 for other cases in the strip footing problem (Figure 4.8(b)(d) and Figure 4.9 b) but not in the square footing problem. For square footing, although scheme 2 has been shown to be more time efficient than scheme 1 in Section 4.2.2.1, Figure 4.10 and Figure 4.11 show that scheme 4 can achieve even smaller cumulative solution time. From all of the above observations, this section recommends the preconditioner updating scheme 4 , which updates the preconditioner after the load increment is applied, to solve the sequence of nonsymmetric linear system from non-associated MC model. This scheme can help to reduce up to 20 percent of total simulation time compared with using ILU0- $K_{e p}$ (Figure 4.9f).

Finally, to make the numerical experiment complete, the cumulative solution time of scheme 1, 2 and 3 are compared with the cumulative solution time by using Bi-CGSTAB with ILU0- $K_{e p}$, which is the default approach before the development of $\operatorname{IDR}(s)$ method. This comparison is shown in Figure 4.12. Section 4.2.2.1 has noted that when soil profile 2 is considered, Bi-CGSTAB does not converge within 5000 matvec when the $24 \times 24 \times 24$ mesh is used hence the results are not plotted in Figure 4.12d. The updating scheme 4 still gives the smallest cumulative solution time athough the differences with scheme 1 and 2 are marginal. The most striking difference can be seen in Figure 4.12 c . For both the strip footing and square footing, scheme 4 can save at least 40 percent of total simulation time compared with using Bi-CGSTAB.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

$$
\begin{aligned}
& \rightarrow \text { Mesh size } 12 \times 3 \times 12, \text { ILU0-K } \\
& \text { ep } \\
& - \text { Mesh size } 12 \times 3 \times 12, \text { ILU0-K } \\
& \text { e } \\
& - \text { Mesh size } 12 \times 3 \times 12, \text { ILU0-NR } \\
& - \text { Mesh size } 24 \times 6 \times 24, \text { ILU0-K } \\
& \text { ep } \\
& - \text { Mesh size } 24 \times 6 \times 24, \text { ILU0-K } \\
& \rightarrow \text { Mesh size } 24 \times 6 \times 24, \text { ILU0-NR } \\
& \rightarrow \text { Mesh size } 32 \times 8 \times 32, \text { ILU0-K } \\
& \rightarrow \text { Mesh size } 32 \times 8 \times 32, \text { ILU0-K }
\end{aligned}
$$

(b)

(d)

Figure 4.12: Comparison of cumulative solution time of IDR(6) versus BiCGSTAB

4.3 Effect of penalty method for prescribed degrees of freedom and undrained analysis on $\operatorname{IDR}(s)$ and ILU0 preconditioner

This section considers two popular cases of imposed constraints in geotechnical problems: 1) prescribed degrees of freedom (d.o.f) in passive pressure analysis, and 2) prescribed volumetric strain in undrained analysis using effective stress approach. Penalty method is a way to impose constraints. Zienkiewicz and others ${ }^{187}$ (2005) have discussed the use of penalty functions and penalty method in FE analysis to impose constraints on the solutions. Penalty method involves a positive 'penalty number', w_{p}, of which the larger the value the better the constraints are achieved.

Figure 4.13: 3D FE mesh for the passive pressure analysis
The first case involves a vertical smooth wall (Figure 4.13) subjected to horizontal prescribed displacements to push the wall toward the soil behind it. The theoretical passive resistance of the soil is given in Table 4.5.

Table 4.4: Properties of Mohr-Coulomb soil

	Effective Young's modulu $E^{\prime}(\mathrm{kPa})$	Poisson's ratio v^{\prime},	Effective cohesion $c^{\prime}(\mathrm{kPa})$	Effective friction angle ϕ^{\prime} $\left({ }^{\circ}\right)$	Dilation angle ψ $\left({ }^{\circ}\right)$	Self- weight γ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	"At rest" earth pressure coefficient K_{0}
Stiff clay	60000	0.3	20	20	0	20	1
Dense sand	105000	0.3	1	30	5	20	1

Table 4.5: Total passive resistance on the 1 m height smooth vertical wall

	K_{p}	$H(\mathrm{~m})$	$P_{p}(\mathrm{kN})$
Soil profile 1	2.04	1	77.52
Soil profile 2	3	1	33.46

For each row of $K_{e p}$ corresponding with the prescribed d.o.fs, the penalty method is applied by adding the penalty number, w_{p}, the diagonal entries and replacing the right-hand-side entries with the product of w_{p} and the prescribed value. This formation of $K_{e p}$ is denoted as "unscaled $K_{e p}$ " and is demonstrated in Eq.(4.7) when u_{i} is the prescribed degree of freedom. Very minimal amount of d.o.fs is constrained in this case hence the value of w_{p} does not affect the convergence of $\operatorname{IDR}(6)$ as shown in Figure 4.15 and Figure 4.14. Chen and Phoon ${ }^{40}$ (2009) recommended scaling the rows and columns containing the penalty number so that the values of the corresponding diagonal entries are close to 1 . By this way, the global stiffness matrix is better conditioned. Eq.(4.8) demonstrates this scaling process when ui is the prescribed degree of freedom. The $K_{e p}$ modified by this scaling process is denoted as "scaled $K_{e p}$ ". This recommendation is useful and essential for the problems tested in this section.

$$
\begin{gather*}
{\left[\begin{array}{ccccc}
k_{11} & \ldots & k_{1 i} & \ldots & k_{1 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
k_{i 1} & \ldots & k_{i i}+w_{p} & \ldots & k_{i n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
k_{n 1} & \ldots & k_{n i} / \sqrt{w_{p}} & \ldots & k_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{i}=c_{i} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
c_{i} w_{p} \\
\vdots \\
0
\end{array}\right]} \tag{4.7}\\
{\left[\begin{array}{ccccc}
k_{11} & \ldots & k_{1 i} / \sqrt{w_{p}} & \ldots & k_{1 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
k_{i 1} / \sqrt{w_{p}} & \ldots & \left(k_{i i}+w_{p}\right) / w_{p} \approx 1 & \ldots & k_{i n} / \sqrt{w_{p}} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
k_{n 1} & \ldots & k_{n i} / \sqrt{w_{p}} & \ldots & k_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{i}=c_{i} \sqrt{w_{p}} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
c_{i} \sqrt{w_{p}} \\
\vdots \\
0
\end{array}\right]} \tag{4.8}
\end{gather*}
$$

In Figure 4.14 and Figure 4.15, without scaling, although IDR(6) with ILU0$K_{e p}$ preconditioner do not require more matvec to converge, the iterative solver often fails when w_{p} becomes too large. $\operatorname{IDR}(s)$ fails due to $\mu_{k, k}$ in Figure 2.2 becomes zero and the set of basic vectors of the new subspace G_{j} cannot be formed. Varying the shadow matrix P and increasing s do not help with the convergence. This failure may be due to the round-off error because w_{p} is much larger than the matrix entries.

The second case considers the same flexible strip footing resting on the homogenous soil layer. In this case, the footing is under undrained loading, in which the volumetric strain is zero - or there is no change in volume of the soil mass considered. Penalty number affects the global stiffness matrix significantly in this case. In the global stiffness matrix given in Eq.(2.2), the penalty number is the term K_{w} / n, which involves in each element stress-strain matrix. The rest of this section focuses on the behavior of ILU0 in solving this undrained analysis.

Figure 4.14: Matrix-vector multiplications of $\operatorname{IDR}(6)$ with ILU0- $K_{e p}$ when solving the retaining wall subjected to prescribed horizontal displacements.

Soil profile 1 is used.

Figure 4.15: Matrix-vector multiplications of $\operatorname{IDR}(6)$ with ILU0- $K_{e p}$ when solving the retaining wall subjected to prescribed horizontal displacements. Soil profile 2 is used.

4.3.1 Undrained analysis of the strip footing using effective stress method

The failure load of the strip footing in undrained analysis can be calculated with Eq.(3.1) with equivalent undrained parameters derived from the drained parameters by Eq.(4.9), (4.10), and (4.11). The total friction angle is zero.

$$
\begin{align*}
& E_{u}=\frac{3 E^{\prime}}{2\left(1+v^{\prime}\right)} \tag{4.9}\\
& c_{u}=\frac{2 c^{\prime} \sqrt{N_{\phi}}}{1+N_{\phi}} \tag{4.10}\\
& N_{\phi}=\frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}} \tag{4.11}
\end{align*}
$$

One shortcoming of the MC model is that the geotechnical systems do not fail when the dilation angle ψ is different from zero. Theoretical results of triaxial test show that the volumetric strain keeps increasing when the applied load increases. One rectification recommended is to manually set the dilation angle to zero to control the volumetric strain. Hence in this section, the dilation angle is set to zero for both dense sand and stiff clay, which still satisfies the non-associated flow rule.

Table 4.6: Total stress parameters of Mohr-Coulomb yield criterion

	Young's modulus, $E_{u}(\mathrm{MPa})$	Poisson's ratio, v_{u}	Cohesion, $c_{u}(\mathrm{kPa})$	Friction angle, ϕ_{u} $($ degree $)$	Dilation angle, ψ $($ degree $)$
Stiff clay	69.23	0.5	18.79	0	0
Dense sand	121.15	0.5	0.8660	0	0

Table 4.7: Ultimate bearing capacity of strip footing on homogenous soil layers

	N_{c}	$q_{f \text { sstip }}=c_{u} N_{c}(\mathrm{kPa})$	$q_{\max }(\mathrm{kPa})$
Soil profile 1	5.14	96.58	$90\left(=93 \% q_{f \text { sstrip }}\right)$
Soil profile 2	5.14	4.45	$4.4\left(=99 \% q_{f-\text { strip }}\right)$

The following section will show that IDR(6) with ILU0- $K_{e p}$ does not converge when solving Eq. (2.2). Hence $\operatorname{IDR}(6)$ was preconditioned with SSOR-LR to
carry on the analysis and obtain $K_{e p}$, of which ILU0 factorization is investigated. IDR(6) with SSOR-LR did converge but SSOR-LR is not an efficient remedy because the iterative solver always requires more than 5000 matvec to converge and often shows stagnant behaviour when the footing is close to failure.

4.3.2 Problem with ILU0 factorization

Figure 4.16 shows the relative residual norm when solving the undrained problem with $\operatorname{IDR}(6)$ and Bi -CGSTAB preconditioned with ILU0- $K_{e p}$. Both of the methods do not converge within the prescribed matvec but Bi-CGSTAB behaviour is worse because the relative residual norm keeps increasing and finally break down while it is stagnant in $\operatorname{IDR}(6)$. Increasing s in $\operatorname{IDR}(s)$ does not help the convergence hence the problems may lie in ILU0-K $K_{e p}$ preconditioner.

Figure 4.16: Typical relative residual norm of an unstable ILU0 preconditioner: (a) IDR(6) method; (b) Bi-CGSTAB method

Table 4.8 and Table 4.9 presents the statistics of ILU0- $K_{e p}$ according to the recommendation of Chow and Saad^{43} (1997) with the variation of penalty number, K_{w} / n. These statistics include condest, $1 /$ pivot, and $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$, of which meanings and computing procedure have been presented in Table 2.1 and Figure 2.6.

When $K_{w} / n=0$, the problem is returned to drained analysis and all the statistics are small, which proves the stability and efficiency of ILU0-K $K_{e p}$ in drained analysis as shown in Chapter 3 and Section 4.2. When K_{w} / n increases, condest and $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$ grow extremely large: on the order of 10^{15} following
the guideline from Chow and Saad^{43} (1997) while 1 /pivot is still as small as when $K_{w} / n=0$. The extremely large values are highlighted in Table 4.8 and Table 4.9. Although Chow and Saad^{43} (1997) reported that they did not observed any system that has large $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$ and small $1 /$ pivot, the small 1/pivot and large $\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$ are found in this undrained system. 1/pivot is small or pivot value is reasonable large can be because the large penalty number K_{w} / n is added to the system. Chow and Saad recommended that when ILU preconditioner has small $1 /$ pivot and large condest, the iterative solver fails to converge due to unstable triangular solves. Stabilizing ILU0 by adding the threshold is irrelevant because the pivot values are large enough. ILUT(50, 10^{-6}) was used to precondition $\operatorname{IDR}(6)$ and Bi-CGSTAB and the same trend of relative residual norm with Figure 4.16 was found. Benzi and others ${ }^{20}$ (1999) also noticed that when the problem does not lie in the accuracy of ILU0 factorization, allowing more fill-ins does not help with the convergence. They recommended reordering the original matrix to improve the ILU factorization and RCM is recommended in general. The statistics of ILU0 of the RCM reordering $K_{e p}$ are presented in Table 4.8 and Table 4.9. Condest of this ILU0 are $10^{2}-10^{30}$ times larger than of ILU0- $K_{e p}$ from the original $K_{e p}$ and $\operatorname{IDR}(6)$ does not converge when preconditioned with this ILU0. Hence RCM ordering is not useful in this case.

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Table 4.8: ILU statistics and possible reasons of failure for soil profile 1 Stiff clay

	condest	1/pivot	$\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$
Mesh size $16 \times 3 \times 16$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	2.27×10^{-3}	1.86×10^{-4}	8.68×10^{5}
Elastic (90kPa)	2.27×10^{-3}	1.86×10^{-4}	8.68×10^{5}
$K_{k} / n=50 K^{\prime}$			
Elastic	5.83×10^{25}	3.11×10^{-3}	2.82×10^{11}
Elastoplastic (90 kPa)	3.66×10^{23}	1.56×10^{-2}	1.35×10^{12}
$K_{W} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	5.36×10^{22}	1.25×10^{-2}	2.00×10^{12}
Elastoplastic (90kPa)	4.76×10^{24}	4.38×10^{-2}	4.36×10^{12}
$K_{W} / n=500 K^{\prime}$			
Elastic	7.32×10^{22}	3.67×10^{-4}	6.19×10^{13}
Elastoplastic (90 kPa)	1.66×10^{23}	3.05×10^{-3}	1.75×10^{13}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	2.24×10^{23}	2.35×10^{-3}	1.44×10^{13}
Elastoplastic (90kPa)	4.07×10^{24}	8.02×10^{-4}	5.60×10^{13}
Mesh size $24 \times 6 \times 24$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	6.46×10^{-3}	3.72×10^{-4}	4.35×10^{5}
Elastic (90kPa)	6.46×10^{-3}	3.72×10^{-4}	4.35×10^{5}
$K_{k} / n=50 K^{\prime}$			
Elastic	2.47×10^{63}	1.27×10^{-2}	1.12×10^{15}
Elastoplastic (90 kPa)	3.96×10^{63}	8.04×10^{-2}	3.06×10^{17}
$K_{w} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	2.02×10^{78}	6.82×10^{-2}	3.90×10^{14}
Elastoplastic (90kPa)	2.30×10^{80}	1.12×10^{0}	1.46×10^{17}
$K_{W} / n=500 K^{\prime}$			
Elastic	6.61×10^{61}	3.28×10^{-2}	4.67×10^{13}
Elastoplastic (90 kPa)	2.94×10^{64}	1.17×10^{-2}	2.67×10^{16}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	3.62×10^{75}	2.72×10^{-2}	7.75×10^{17}
Elastoplastic (90kPa)	2.28×10^{78}	8.20×10^{-3}	7.75×10^{17}
Mesh size $32 \times 8 \times 32$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	9.35×10^{-3}	4.96×10^{-4}	3.26×10^{5}
Elastic (90kPa)	9.35×10^{-3}	4.96×10^{-4}	3.26×10^{5}
$K_{w} / n=50 K^{\prime}$			
Elastic	3.94×10^{95}	8.32×10^{-2}	1.62×10^{14}
Elastoplastic (90 kPa)	9.08×10^{95}	1.05×10^{0}	4.10×10^{16}
$K_{w} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	8.78×10^{127}	5.91×10^{0}	6.89×10^{19}
Elastoplastic (90kPa)	2.10×10^{128}	7.00×10^{1}	8.53×10^{26}
$K_{w} / n=500 K^{\prime}$			
Elastic	5.85×10^{95}	1.82×10^{-2}	7.18×10^{15}
Elastoplastic (90 kPa)	4.32×10^{95}	7.41×10^{-2}	1.49×10^{16}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	4.32×10^{124}	2.07×10^{-2}	3.85×10^{21}
Elastoplastic (90kPa)	2.97×10^{129}	4.19×10^{-2}	3.06×10^{21}

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Table 4.9: ILU statistics and possible reasons of failure for soil profile 2 Dense sand

	condest	1/pivot	$\max (\overline{\mathrm{L}}+\overline{\mathrm{U}})$
Mesh size $16 \times 3 \times 16$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	1.35×10^{-3}	1.06×10^{-4}	1.52×10^{6}
Elastic (4.4 kPa)	1.35×10^{-3}	1.06×10^{-4}	1.52×10^{6}
$K_{n} / n=50 K^{\prime}$			
Elastic	1.11×10^{24}	2.07×10^{-3}	1.37×10^{12}
Elastoplastic (4.4 kPa)	6.32×10^{21}	5.83×10^{-3}	5.07×10^{11}
$K_{w} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	4.07×10^{21}	3.11×10^{-3}	8.03×10^{11}
Elastoplastic (4.4 kPa)	6.08×10^{21}	1.62×10^{-3}	3.35×10^{12}
$K_{W} / n=500 K^{\prime}$			
Elastic	2.26×10^{21}	8.72×10^{-4}	2.71×10^{14}
Elastoplastic (4.4 kPa)	6.58×10^{21}	2.26×10^{-2}	1.47×10^{17}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	5.37×10^{21}	2.00×10^{-4}	2.88×10^{15}
Elastoplastic (4.4 kPa)	1.68×10^{22}	5.69×10^{-3}	1.94×10^{16}
Mesh size $24 \times 6 \times 24$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	3.56×10^{-3}	2.13×10^{-4}	7.61×10^{5}
Elastic (4.4 kPa)	3.56×10^{-3}	2.13×10^{-4}	7.61×10^{5}
$K_{n} / n=50 K^{\prime}$			
Elastic	5.97×10^{60}	3.10×10^{-2}	1.05×10^{13}
Elastoplastic (4.4 kPa)	7.41×10^{59}	1.04×10^{-1}	1.13×10^{14}
$K_{w} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	9.19×10^{77}	9.26×10^{-2}	8.86×10^{14}
Elastoplastic (4.4 kPa)	2.25×10^{76}	2.35×10^{-2}	5.29×10^{14}
$K_{n} / n=500 K^{\prime}$			
Elastic	4.92×10^{61}	8.59×10^{-3}	2.04×10^{16}
Elastoplastic	2.48×10^{59}	1.12×10^{-3}	3.68×10^{14}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	4.44×10^{75}	5.70×10^{-3}	9.10×10^{16}
Elastoplastic	5.23×10^{79}	2.88×10^{-3}	9.10×10^{16}
Mesh size $32 \times 8 \times 32$			
$K_{w} / n=0 K^{\prime}=0$			
Elastic	5.25×10^{-3}	2.84×10^{-4}	5.71×10^{5}
Elastic (4.4 kPa)	5.25×10^{-3}	2.84×10^{-4}	5.71×10^{5}
$K_{n} / n=50 \mathrm{~K}$,			
Elastic	6.05×10^{93}	3.07×10^{-2}	1.33×10^{15}
Elastoplastic (4.4 kPa)	6.48×10^{91}	1.67×10^{-1}	1.19×10^{15}
$K_{w} / n=50 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	2.94×10^{125}	5.69×10^{-2}	2.66×10^{22}
Elastoplastic (4.4kPa)	4.03×10^{125}	2.38×10^{-2}	1.30×10^{19}
$K_{W} / n=500 K^{\prime}$			
Elastic	6.52×10^{98}	4.94×10^{-3}	7.09×10^{22}
Elastoplastic (4.4 kPa)	1.96×10^{92}	1.09×10^{-1}	3.83×10^{17}
$K_{w} / n=500 K^{\prime}-\mathrm{RCM}\left(K_{e p}\right)$			
Elastic	2.52×10^{130}	1.46×10^{-2}	2.61×10^{21}
Elastoplastic	2.00×10^{129}	1.92×10^{-2}	2.61×10^{21}

It is worth to note that undrained problem can be solved by total stress approach, meaning to use the total stress parameters in Table 4.6 and solve the 1-by-1 block linear system as usual. The shortcoming of this approach is the pore pressure is unavailable in the solution. In this case, both the friction angle and dilation angle have to be set to zero, implying associated flow rule and symmetric global stiffness matrix $K_{e p}$. The Poisson's ratio is set to 0.499 . Although this $K_{e p}$ is symmetric and possesses better eigenspectrum (i.e. no complex eigenvalues), $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ does not converge and the relative residual norm shows the stagnant behavior as in Figure 4.16. Hence ILU0 is not suitable to precondition the linear system of undrained analysis in Eq.(2.2).

4.3.3 Recommendation for remedy

The last paragraph in Section 4.3.1 has mentioned that the undrained analysis in this chapter was performed with SSOR-LR preconditioner. Hence one easy and cheap remedy is to use Jacobi or SSOR-L/SSOR-LR preconditioner instead of ILU0. However Section 4.3.1 also shown that IDR(6) with these preconditioners always requires more than 5000 matvec to converge and does not converge when the system is close to failure. Hence unless Eq.(2.2) is demanded to obtain the undrained behavior of the geotechnical problems, this remedy is not recommended.

A better remedy is using Biot's consolidation analysis to simulate undrained behavior of soil by tuning either the permeability $[k]$ or the time step Δt to small values. Phoon and others ${ }^{131}$ compared this approach with the analysis using Eq. (2.2) when the soil is linear elastic and concluded that this approach is more advantageous. Chapter 5 will show that $\operatorname{IDR}(s)$ and $\operatorname{ILU0}$ preconditioner can solve Biot's consolidation equations, Eq.(2.8), efficiently when the soil follow the non-associated MC model, and undrained behavior can be obtained by tuning $[k]$ and Δt without difficulty.

4.4 Summary

This chapter performs numerical experiments to observe the behavior of IDR(6) preconditioned with ILU0 preconditioner when solving sequence of
linear systems and when penalty method is applied. The key recommendations and observations are summarized below:

1. The techniques to save the total simulation time in dealing with sequence of nonsymmetric linear systems are recommended as:
a. Forming the elastoplastic global stiffness matrix $K_{e p}=K_{e}+\Delta$ implicitly by forming the elastic global stiffness matrix K_{e} once and update the Δ matrix at every NR iteration. Forming Δ matrix only takes up to 40 percent of the time consumed in each NR iteration while forming the complete $K_{e p}$ will take at least 60 percent.
b. Using ILU0- K_{e} to save the time to form preconditioner when the percentage of yielded Gauss points $N_{y} / N_{i p}$ is less than 15 percent.
c. Using the preconditioner updating scheme 4 in Table 4.3 to update ILU0-NR preconditioner after the load increment is applied. ILU0-NR is more time efficient than $\operatorname{ILU} 0-K_{e}$ and is still effective when $N_{y} / N_{i p}$ is more than 15 . When this updating scheme is combined with technique (a), the total simulation time can be reduced by 60 percent (Figure 4.12).
2. Penalty method involves adding a large penalty number to the global stiffness matrix to impose some constraints on the system. The passive pressure problem demonstrates the prescribed displacements as constraints and penalty number has minimal effects on $\operatorname{IDR}(6)$ and ILU0- $K_{e p}$ because the number of constrained d.o.fs is minimal compared with the total number of d.o.f. On the contrary, the penalty number greatly affects the undrained analysis using Eq.(2.2) because this case has the constraint such that the volumetric strain is zero over the whole domain. ILU0- $K_{e p}$ has been shown to be unstable and both $\operatorname{IDR}(6)$ and Bi-CGSTAB fail to converge when $\operatorname{ILU} 0-K_{e p}$ is used. Increasing the fill-ins by using $\operatorname{ILUT}\left(50,10^{-6}\right)$ and reordering $K_{e p}$ with RCM method do not mitigate the situation. Jacobi and SSOR-L/SSORLR are recommended when Eq.(2.2) is demanded and the linear system is small. A more practical remedy for large-scale problems is using

CHAPTER 4 PRECONDITIONERS FOR 1-BY-1 BLOCK MATRICES: DRAINED/UNDRAINED ANALYSIS

Biot's consolidation analysis in Eq.(2.8) to simulate the undrained behavior by tuning the permeability and time step. This recommendation is discussed in detail in Chapter 5.

Part of this chapter has been accepted for publication in:

Tran, H.H.T., Toh, K.C. and Phoon, K.K. (2013), Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation. Int. J. Numer. Anal. Meth. Geomech.. doi: 10.1002/nag. 2171

CHAPTER 5 PRECONDITIONERS FOR 2-
 BY-2 BLOCK MATRICES:
 CONSOLIDATION ANALYSIS

5.1 Introduction

This chapter discusses the application of preconditioners in Section 2.3 to the Biot's consolidation analysis when the soil follows the non-associated MC model. These preconditioners include diagonal block preconditioner M_{d}, constrained block preconditioner M_{c}, MSSOR and ILU0. From Section 2.3, block preconditioners mainly approximates the elastoplastic global stiffness matrix by varying \hat{K} and \hat{S}, which are approximations of $K_{e p}$ and Schur complement S respectively. This chapter will first perform numerical experiments to compare the efficiency of diagonal block preconditioner M_{d} and constrained block preconditioner M_{c} with different \hat{K} and \hat{S}. Then the most efficient block preconditioner will be compared with MSSOR and ILU0, which treat the 2-by-2 block global stiffness matrix as a 1-by-1 block matrix. Secondly, this chapter will adopt the preconditioner updating scheme proposed in Section 4.2.2.2 to investigate its efficiency in saving the simulation time to solve the Biot's consolidation problem. Thirdly, the eigenvalue distribution of the global stiffness matrix is presented to explain the convergence of IDR(s) and the efficiency of the block preconditioner. Finally, this chapter will show that undrained analysis can be simulated using Biot's consolidation equation and the block preconditioner can be used to speed up the simulation time hence resolve the difficulty observed in Section 4.3.2.

5.2 Problem description

All the numerical experiments in this chapter are performed on the flexible square footing problem. Figure 5.1a shows the 3D FE mesh of the flexible square footing resting on a layer of homogenous soil and subjected to uniform pressure, q. Table 5.1 summaries the characteristics of the three FE meshes $(16 \times 16 \times 16,20 \times 20 \times 20,24 \times 24 \times 24)$ used in this section. The water table is set at the ground surface and is in hydrostatic condition at the initial stage; the soil

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
is assumed to be fully saturated. The base is fixed in all directions and impermeable. The side faces are fixed in transversed directions and free in inplane directions for both displacement and water flux. The top surface is free in all direction and free-draining with pore pressure assumed to be zero. Two cases of soil profile are considered: soil profile 1 is a homogeneous stiff clay layer; soil profile 2 is a homogeneous dense sand layer. The soil follows a non-associated MC model and the effective parameters are presented in Table 5.2.

Figure 5.1: (a) 3D mesh of the square footing; (b) Ramp loading

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Table 5.1: 3D finite element meshes of the square footing

	Mesh size*			
	$8 \times 8 \times 8$	$16 \times 16 \times 16$	$20 \times 20 \times 20$	$24 \times 24 \times 24$
Number of elements	512	4,096	8,000	13,824
Number of nodes	2673	18,785	35,721	60,625
Number of unknowns (N)	7160	55,280	107,180	184,296
Displacement DOFs, $n d$	6512	50,626	98,360	169,296
Pore pressure DOFs, $n p$	648	4,624	8,820	15,000
$n p / N$ (\%)	9.05	8.36	8.23	8.14
Number of Gauss points ($N_{i p}$)	13,824	110,592	216,000	373,248
Number of nonzero (nnz)				
Soil profile 1				
Elastic system		9,751,246	19,428,239	34,122,447
Elastoplastic system at 130 kPa		9,765,468	19,443,665	34,131,365
Soil profile 2				
Elastic system		$9,757,406$	$19,434,819$	$34,121,660$
Elastoplastic system at 20 kPa		$9,781,416$	$19,467,142$	$34,143,209$
$n n z / N^{2}$ (\%)				
Soil profile 1				
Elastic system		0.32	0.17	0.1
Elastoplastic system at 130 kPa		0.32	0.17	0.1
Soil profile 2				
Elastic system		0.32	0.17	0.1
Elastoplastic system at 20 kPa		0.32	0.17	0.1
* Mesh size $x \times y \times z$ means x element in x direction, y element in y direction and z element in z direction				

Table 5.2: Effective parameters of the soil following a non-associated MC model

A uniformly distributed load is applied to the square footing. The applied load is a function of time and follows the ramp loading diagram in Figure 5.1b, in which $q_{\max }$ is the maximum applied load and t_{0} is the maximum loading time. When the consolidation time t is less than t_{0}, the load increment Δf in Eq.(2.8) is added to the system every time step, Δt. When the consolidation time t exceeds t_{0}, the maximum assigned load has been reached and the load

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
increment Δf in Eq.(2.8) is set to zero. The system is considered in the consolidation stage. The loading informations for soil profile 1 and 2 are summarized in Table 5.3. In this table, Δt is the time step in Eq.(2.11), incs denotes the number of load increments, and nstep denotes the number of time steps. nstep should be always greater or equal to incs.

Table 5.3: Loading information

	$\mathrm{t}_{0}(\mathrm{~s})$	$q_{\max }$	Number of load increment, incs	Time step Δt	Number of time step, nstep
Soil profile 1	1	130	20	0.05	20
Soil profile 2	1	20	20	0.05	20

Similar to the 1-by-1 block matrix in Section 4.2.1, the elastoplastic global stiffness matrix of Biot's consolidation analysis can be written as the summation of the elastic global stiffness matrix and a low-rank matrix as shown in Eq.(5.1). The changes of the global stiffness matrix in each NR iteration purely come from the changes of $K_{e p}$. This chapter will apply the recommendation in Section 4.2.1 to form the global elastoplastic stiffness matrix implicitly by forming the elastic global stiffness matrix once and update the Δ matrix at every NR iteration.

$$
A=\left[\begin{array}{cc}
K_{e p} & B \tag{5.1}\\
B^{T} & -C
\end{array}\right]=\left[\begin{array}{cc}
K_{e} & B \\
B^{T} & -C
\end{array}\right]+\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right]
$$

In previous chapters, the degree of freedoms (d.o.fs) in the elastoplastic global stiffness matrix $K_{e p}$ have always been ordered in natural order which results directly from FE formulation. For Biot's consolidation, when the d.o.fs are in natural order, the global stiffness matrix has the same pattern in 1-by-1 block matrix in Figure 2.4a. This chapter aims to exploit the block structure in Eq. (2.8) so the d.o.fs are re-ordered to obtain the pattern of 2-by-2 block matrix in Figure 2.4b. Natural ordering will also be used in the later part of this chapter when MSSOR and ILU0 preconditioner are compared with block preconditioners. This numerical experiment will show that the natural ordering is not as convenient as the block ordering when preconditioners are taken into account.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

This chapter continues to use $\operatorname{IDR}(s)$ with $s=6$, which has been shown in Chapter 3 to be the optimal value of s. The stopping criteria of $\operatorname{IDR}(6)$ and NR iteration are similar to previous chapters and are presented again in Eq.(5.2) and (5.3) respectively,

$$
\begin{gather*}
\frac{\left\|r^{(i)}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq i _ \text {tol }=10^{-6} \text { or } i \geq 5000 \tag{5.2}\\
\frac{\left\|F-K_{e p} p\right\|_{2}}{\|F\|_{2}} \leq 10^{-6} \tag{5.3}
\end{gather*}
$$

with $r^{(i)}=K_{e p} u^{(i)}-F$ and $r_{0}=F$. $\operatorname{IDR}(6)$ is considered "Fail" when the number of matvec exceeding 5000. The values of matvec and total iteration time reported are average values over all the NR iterations in each load step. Total iteration time includes the time spent to form preconditioner and the time spent by iterative solver.

5.3 Comparison of preconditioners and effect of node ordering

5.3.1 Preconditioners derived from the 2-by-2 block ordering

The approximations of \hat{K} and \hat{s} in Eq.(5.4) and (5.5) are used in diagonal block preconditioner, M_{d}, and block constrained preconditioner M_{c}. The approximations are numbered from the crudest to the finest. The finer the approximation is, the more time it takes to form that approximation. The soil stiffness matrix $K_{e p}$ in Eq.(2.8) is the same as the $K_{e p}$ in drained analysis in Eq.(2.1). Hence the approximations of $K_{e p}$ are taken as preconditioner for 1-by-1 block matrix discussed in Chapter 3 and Chapter 4. Section 3.4 and 3.5 have shown numerically that $\operatorname{ILU} 0-K_{e p}$ is the most time efficient to precondition $K_{e p}$ hence this section uses $\hat{K}_{3}=\operatorname{ILU} 0\left(K_{e p}\right)$ as the finest approximation of $K_{e p}$. The notation 'ILU0(A)' in this case denotes the incomplete LU factorization with zero fill-in of the matrix A inside the brackets. The notation ' $\operatorname{SSOR}(A)$ ' denotes the SSOR preconditioner in Eq.(2.4)

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
extracted from the matrix A with $\omega=1$. The GJ preconditioner in Section 2.3.3.1 is termed here as $M_{d}\left(\hat{K}_{1}, \hat{S}_{1}\right)$.

$$
\begin{gather*}
\hat{K}_{1}=\operatorname{diag}\left(K_{e p}\right) ; \hat{K}_{2}=\operatorname{SSOR}\left(K_{e p}\right) ; \hat{K}_{3}=\operatorname{ILU} 0\left(K_{e p}\right) \tag{5.4}\\
\hat{S}_{1}=\operatorname{diag}\left(B^{T} \operatorname{diag}\left(K_{e p}\right)^{-1} B+C\right) \\
\hat{S}_{2}=\operatorname{ILU0}\left(B^{T} \operatorname{diag}\left(K_{e p}\right)^{-1} B+C\right) \tag{5.5}\\
\hat{S}_{3}=\operatorname{ILU} 0\left(B^{T} \operatorname{ILU} 0\left(K_{e p}\right)^{-1} B+C\right)
\end{gather*}
$$

Section 2.3.3.1 has presented the theorem from Phoon et al. ${ }^{131}$ (2002) about the effect of α on the eigenvalue distribution of the 2-by-2 block matrix preconditioned by a diagonal block preconditioner. This section first will use α $=-4$ to compare M_{d} and M_{c} when \hat{K} and \hat{s} vary.

Table 5.4 and Table 5.5 present the matvec and total iteration time to solve the Biot's consolidation equation using M_{d} and M_{c} preconditioner at the final load step, $q_{\text {max }}$. The time presented in bracket is the overhead time to extract the nessecary block matrices (such as block B in Eq.(2.8) for M_{c} preconditioner) and to form the preconditioner. Section 2.3.3 has reviewed that M_{c} is a better approximation of Eq.(2.8) than M_{d} hence $\operatorname{IDR}(6)$ preconditioned with M_{c} is expected to converge faster than when preconditioned with M_{d}. However more time may be required to form M_{c} as well as to perform the preconditioning step.

In Table 5.4 and Table 5.5, for each problem size, the matvec reduces from left to right and from top to bottom when the approximations \hat{K} and \hat{S} change from the crudest to the finest. Among all the combination of \hat{K} and \hat{s}, $M_{d}\left(\hat{K}_{1}, \hat{S}_{1}\right)$ is the crudest approximation of A hence requires the most matvec while $M_{c}\left(\hat{K}_{3}, \hat{S}_{3}\right)$ is the finest approximation of A hence requires the least matvec. Botchev and Golub ${ }^{30}$ (2006) recommended the use of $\hat{\boldsymbol{K}}_{2}$ in M_{c} preconditioner when $K_{e p}$ in the 2-by-2 block matrix A is nonsymmetric. However the numerical results show that even with the finest approximation of $S, M_{c}\left(\hat{K}_{2}, \hat{S}_{3}\right)$ does not achieve less matvec than $M_{c}\left(\hat{K}_{3}, \hat{S}_{3}\right)$ or less total iteration time than $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. With the same \hat{S}, the matvec count reduces

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
greatly when \hat{K} changes from \hat{K}_{1} to \hat{K}_{3}. While with the same \hat{K}, the matvec count only reduces minimally when \hat{S} changes from \hat{S}_{1} to \hat{S}_{3}. This shows that a good approximation of $K_{e p}$ is more crucial to the efficiency of a preconditioner than a good approximation of S. The reason may be because $K_{e p}$ is a major block in the 2 -by- 2 block matrix A. Table 5.1 shows that the size of $K_{e p}$ submatrix is more than 90 percent of the matrix A.

Table 5.4: Comparison of diagonal block preconditioner M_{d} and constrained block preconditioner M_{c}. Time presented in brackets is overhead time including time required to form preconditioners and extracting required block matrices. Soil profile 1 is used. Results are reported at the last load step.

$16 \times 16 \times 16$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	1291	32.1 (0.1)	274	17.5 (1.3)	201	12.8 (1.9)
	M_{c}	1370	39.5 (0.1)	216	23.2 (1.3)	255	25.2 (2.0)
\hat{S}_{2}	M_{d}	1273	30.8 (6.5)	303	27.3 (9.4)	173	21.3 (10.9)
	M_{c}	712	29.1 (8.5)	210	19.2 (5.7)	177	27.5 (10.6)
\hat{S}_{3}	M_{d}	1173	235.9 (177.3)	264	156.3 (139.9)	168	243.5 (227.1)
	M_{c}	Fail	-	199	159.7 (142.1)	105	280.5 (272.5)
$20 \times 20 \times 20$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	1896	63.4 (0.1)	346	43.2 (2.8)	262	$\begin{aligned} & \hline 22.7 \text { (3.7) } \\ & 67.8(4.6) \end{aligned}$
	M_{c}	1835	106.9 (0.2)	275	38.2 (2.2)	336	
\hat{S}_{2}	M_{d}	1606	83.0 (23.1)	428	83.1 (33.0)	223	59.0 (34.1)
	M_{c}	909	88.5 (32.9)	272	68.9 (25.4)	313	94.1 (36.4)
\hat{S}_{3}	M_{d}	1542	1379.3 (1083.3)	344	773.7 (716.8)	250	904.3 (857.1)
	M_{c}	Fail		234	1196.8 (1117.4)	129	1170.8 (1127.5)
$24 \times 24 \times 24$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	2708	221.6 (0.2)	493	113.9 (4.5)	338	79.8 (7.4)
	M_{c}	2769	229.0 (0.2)	376	130.3 (4.6)	315	106.7 (7.6)123.6 (76.2)
\hat{S}_{2}	M_{d}	2275	229.3 (72.6)	554	231.7 (94.6)	322	
	M_{c}	1367	241.1 (95.8)	388	222.2 (105.4)	410	226.1 (94.5)
\hat{S}	M_{d}	2095	3934.4 (3198.1)	438	3670.2 (2569.6)	311	3649.9 (2561.7)
S_{3}	M_{c}	Fail	-	348	3208.7 (3034.9)	197	3164.3 (3074.7)

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Table 5.5: Comparison of diagonal block preconditioner M_{d} and constrained block preconditioner M_{c}. Time presented in brackets is overhead time including time required to form preconditioners and extracting required block matrices. Soil profile 2 is used. Results are reported at the last load step.

$16 \times 16 \times 16$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	1155	26.3 (0.0)	276	13.3 (1.1)	174	10.4 (2.0)
	M_{c}	1145	30.5 (0.0)	218	20.8 (1.2)	179	17.8 (2.0)
\hat{S}_{2}	M_{d}	1113	35.3 (8.6)	309	20.7 (7.0)	145	17.0 (9.6)
	M_{c}	630	17.8 (5.7)	215	28.6 (8.9)	114	21.4 (10.7)
\hat{S}_{3}	M_{d}	1051	296.7 (228.8)	252	190.6 (171.8)	125	190.0 (180.6)
	M_{c}	Fail	-	200	243.7 (217.9)	73	229.6 (220.7)
$20 \times 20 \times 20$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	1771	73.0 (0.1)	371	32.2 (2.2)	282	24.6 (3.7)
	M_{c}	1879	99.6 (0.2)	282	40.9 (2.2)	208	30.2 (3.7)
\hat{S}_{2}	M_{d}	1597	57.0 (16.8)	437	59.7 (23.4)	267	46.9 (26.2)
	M_{c}	885	79.3 (30.9)	294	58.2 (20.5)	209	51.8 (25.9)
\hat{S}_{3}	M_{d}	1493	1121.0 (892.2)	341	705.16 (760.5)	250	867.4 (821.7)
	M_{c}	Fail	-	260	881.5 (817.7)	108	860.3 (835.4)
$24 \times 24 \times 24$		\hat{K}_{1}		\hat{K}_{2}		\hat{K}_{3}	
\hat{S}_{1}	M_{d}	2377	193.3 (0.1)	490	73.7 (4.0)	274	53.4 (6.8)
	M_{c}	2445	241.2 (0.3)	341	116.4 (4.5)	262	80.5 (6.8)
\hat{S}_{2}	M_{d}	2068	$285.7 \text { (99.7) }$	559		299	$109.1 \text { (70.9) }$
	M_{c}	1154	195.0 (88.1)	535	200.8 (69.6)	290	177.9 (94.2)
\hat{S}_{3}	M_{d}	1810	4654.3 (3829.9)	454	3874.2 (3645.4)	272	4516.8 (3318.4)
	M_{c}	Fail	(355	5017.0 (4742.6)	130	3727.7 (3650.2)

With the same combination of \hat{K} and \hat{s}, the matvec required by M_{c} is smaller than that required by M_{d}, which agrees with the prediction. There are cases numbers in box - that M_{c} requires more matvec than M_{d}. The differences in matvec count, which are marginal, can be due to round-off error. Although M_{c} requires less matvec than M_{d}, the total iteration time required by M_{c} is often more than that required by M_{d}. This is expected because the forming process and the preconditioning step of M_{c} take more time than that of M_{d}. There are cases that the total iteration time required by M_{c} is less than that required by M_{d}. These cases are marked as boxed numbers in the total iteration time columns in Table 5.4 and Table 5.5. This happens because there is significant reduction of matvec when M_{c} is used in compared with when M_{d} is used, which leads to the reduction in total iteration time. This reduction of matvec often occurs with $M_{c}\left(\hat{K}_{2}, \hat{S}_{2}\right)$, which belongs to the class of preconditioner recommended by Botchev and Golub ${ }^{30}$ (2006). Although in general the use of
$\hat{\boldsymbol{K}}_{2}$ does not offer the least matvec count or the least total iteration time, the use of $M_{c}\left(\hat{K}_{2}, \hat{S}_{2}\right)$ is more efficient than other combinations of \hat{K} and \hat{S} because $M_{c}\left(\hat{K}_{2}, \hat{S}_{2}\right)$ succeeds in reducing the matvec count and the total iteration time when compared with $M_{d}\left(\hat{K}_{2}, \hat{S}_{2}\right)$.

While the iteration time is controlled by the preconditioner, which M_{d} has been shown to be more time efficient than M_{c}, the time to form the preconditioner depends greatly on \hat{K} and \hat{s}. With the same \hat{S}, the time to form M_{d} or M_{c} increases when \hat{K} varies from \hat{K}_{1} to \hat{K}_{3} as expected but the increase is minimal. On the contrary, with the same \hat{K}, the time to form M_{d} or M_{c} increases drastically when \hat{S} varies from \hat{S}_{1} to $\hat{S}_{3} . \hat{S}_{3}$ is the closet to S and the time to form preconditioners involving \hat{S}_{3} requires more than 400 times the time to form those involving \hat{S}_{1}. Previous paragraph in this section has discussed that a better \hat{K} is more crucial than a better \hat{S} because the reduction in matvec due to a better \hat{S} is very minimal. Hence a fine approximation of S reduces the iteration time minimally but requires an extensive time to form. Among all of the combination of \hat{K} and $\hat{S}, M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ requires the least total iteration time hence with a good approximation of $K_{e p}$ like \hat{K}_{3}, a simple approximation of S like \hat{S}_{1} is sufficient.

Besides, Table 5.4 and Table 5.5 show that $M_{c}\left(\hat{K}_{1}, \hat{S}_{3}\right)$ fails to converge for all the tested cases. The reason for this problem is still unknown. Table 5.6 shows that this problem can be mitigated by increasing the value of s . However, there are two issues with this mitigation. First, although $\operatorname{IDR}(s)$ converges with large value of s, the matvec and the total iteration time are large as well. The matvec reduces minimally with a large increase of s therefore it is actually not beneficial to increase s. Second, this minimum value of s to obtain convergence grows when the size of the linear system increases and cannot be predicted in general case. Nevertheless, the problem associated with $M_{c}\left(\hat{K}_{1}, \hat{S}_{3}\right)$ is not relevant to this study because previous paragraph has

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
discussed that \hat{S}_{3} is not practical to use hence $M_{c}\left(\hat{K}_{1}, \hat{S}_{3}\right)$ is not used in further discussion.

Table 5.6: Matrix-vector multiplications required by $\operatorname{IDR}(s)$ preconditioned with $M_{c}\left(\hat{K}_{1}, \hat{S}_{3}\right)$. Soil profile 2 is used. The applied pressure is 3 kPa when yielded Gauss points first appear and the linear system becomes nonsymmetric.

	Mesh size		
	$16 \times 16 \times 16$	$20 \times 20 \times 20$	$24 \times 24 \times 24$
$s=100$	Fail	Fail	Fail
$s=200$	2506	Fail	Fail
$s=400$	2205	Fail	Fail
$s=500$	-	2876	Fail
$s=600$	-	-	4635

Figure 5.2 to Figure 5.7 plot the comparison of M_{d} and M_{c} at every time step. These figures agree with conclusions from Table 5.4 and Table 5.5. Whenever \hat{S}_{3} is involved, the total iteration time always increases significantly. Among all the cases tested and at every time step, $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ requires the least total iteration time. Hence $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is the most efficient block preconditioner for the nonsymmetric 2-by-2 block matrix from Biot's consolidation analysis.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.2: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $16 \times 16 \times 16$ and soil profile 1 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.3: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $20 \times 20 \times 20$ and soil profile 1 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.4: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $24 \times 24 \times 24$ and soil profile 1 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.5: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $16 \times 16 \times 16$ and soil profile 2 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.6: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $20 \times 20 \times 20$ and soil profile 2 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.7: Comparison of M_{d} and M_{c} with variation of approximations of $K_{e p}$ and S. Mesh size of $24 \times 24 \times 24$ and soil profile 2 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.8: Comparison of $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ versus MSSOR and ILU0. Soil profile 1 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.9: Comparison of $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ versus MSSOR and ILU0. Soil profile 2 is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
$M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is compared with MSSOR and ILU0 in Figure 5.8 and Figure 5.9. MSSOR and ILU0 in these cases are formed when the global stiffness matrix A is in the 2-by- 2 block form. MSSOR is a cheap preconditioner but always require more matvec and total iteration time than ILU0 and $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. ILU0 shows competitive performance with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ especially when the soil profile 1 is used. However in general, $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ requires either less or equal total iteration time than ILU0 hence this section concludes that $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is the most efficient preconditioner for the nonsymmetric 2-by-2 block matrix from Biot's consolidation analysis. We note that \hat{K}_{3} is ILU0 of $K_{e p}$.

5.3.2 Preconditioners derived from the natural ordering

Section 5.3.1 has used the block ordering form of the global stiffness matrix to exploit the block preconditioners. However block ordering requires overhead time to order the unknowns. Natural ordering is the order resulting directly FE analysis and does not require any overhead time to form. ILU0 and MSSOR treat the matrix as 1-by-1 block matrix hence they are still applicable when the global stiffness matrix is in natural ordering. Figure 5.10 plots the comparison of ILU0 and MSSOR when the global stiffness matrix is in the block ordering and natural ordering.

Figure 5.10 shows that ILU0 is more effective than MSSOR when the soil profile 2 is used. However ILU0 has difficulty to converge when soil profile 1, with low permeability, is used. Figure 5.11 shows the typical relative residual of $\operatorname{IDR}(6)$ preconditioned with ILU0 when the soil profile 1 is used. This can be because ILU0 is unstable when the permeability is low. This problem was also observed by Chauhary (2010) when the soil follows the linear elastic model. Although MSSOR is more robust than ILU0, its performance in natural ordering is not as stable as in block ordering. This is because when the matrix is in natural ordering, the stress returning process tends to return the Gauss points to the apex and forces the stress-strain matrix become zero, which makes the global stiffness matrix more ill-conditioned and MSSOR requires

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
more matvec to converge. Hence it is more convenient to arrange the stiffness matrix in block ordering and exploit the block preconditioner.

Figure 5.10: The effect of node ordering in the global stiffness matrix on ILU0 and MSSOR preconditioner

Figure 5.11: Typical relative residual norm of an unstable ILU0 preconditioner when the global stiffness matrix is in natural ordering and soil profile 1 is used.

5.3.3 Eigenvalue distribution

The eigenvalue distribution of the elastic global stiffness matrix and the elastoplastic global stiffness matrix are plotted in Figure 5.12 (a) and (b) respectively. The global stiffness matrix has the size of 7160 in which block $K_{e p}$ has the size of 6512 and block C has the size of 648 . The elastic global stiffness matrix is indefinite symmetric hence all the eigenvalues are real numbers, in which 6512 are positive and 648 are negative. The global stiffness matrix is nonsymmetric hence there are complex eigenvalues, which makes the ellipse circumscribes this eigenspectrum bigger than that of the elastic stiffness matrix. Figure 5.13a shows that the maximum and minimum real part of the eigenvalues do not change when the number of yielded Gauss points increases. Hence the increase in the imaginary part alone makes the eigenvalue distribution larger. Figure 5.13 b shows that the condition number of matrix X increases when the number of yielded Gauss points increases. This implies the global stiffness matrix becomes more nonsymmetric. This observation agrees with those seen in the drained analysis.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.12: Eigenspectrum of: (a) the elastic global stiffness matrix; (b) the elastoplastic global stiffness matrix the final load step of 130 kPa ; (c) the elastoplastic global stiffness matrix preconditioned with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. Soil profile 1 is used with the $8 \times 8 \times 8 \mathrm{FE}$ mesh.

Figure 5.13: Characteristics of eigenspectrum: (a) Maximum and minimum eigenvalue; (c) Condition number of matrix X (Eq.(2.30)). Soil profile 1 is used with the $8 \times 8 \times 8$ FE mesh.

Figure 5.12c shows the eigenvalue distribution of the elastoplastic global stiffness matrix when it is preconditioned with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ with $\alpha=-4$. The theorem in Section 2.3.3.1 states that when $\alpha=-4$, the eigenvalues will cluster around two point $1 / 2$ and 1 with the radius of $\mathrm{O}\left(\left\|S^{-1} C\right\|\right)$, which is reflected in Figure 5.12c. The soil profile 2 with $k_{x} / \gamma_{w}=10^{-6}$ hence the radius $\mathrm{O}\left(\left\|S^{-1} C\right\|\right)$ is small. The range of the eigenvalues has been reduced significantly when compared with the distribution in Figure 5.12b, which reflects the efficiency of the preconditioner $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$.

5.4 Undrained analysis with 2-by-2 block matrix

Section 4.3.2 has shown that the ILU0 preconditioner is unstable to solve the undrained analysis in the conventional way. Biot's consolidation is the general equation of soil-water interation hence undrained analysis can be simulated by tuning the product $k_{w} \Delta t$ to a very small value like $10^{-14} . k_{w}$ is kept constant for soil profile 1 and 2 while Δt is varied. The theoretical undrained failure loads of the square footing are presented in Table 5.7. The numerical simulations load the square footing up to 90 percent of the theoretical failure. The dilation angles of both of the soil profiles are manually set to 0 as explained in Section 4.3.1.

Table 5.7: Ultimate bearing capacity of square footing $q_{f}(\mathrm{kPa})$

	Drained	Undrained
Soil 1 - Dense sand	48.54	7.17
Soil 2 - Stiff clay	424.68	138.31

When $k_{w} \Delta t$ is small, the value of $\mathrm{O}\left(\left\|S^{-1} C\right\|\right)$ in the theorem in Section 2.3.3.1 is small and the eigenvalues will be clustered closer hence $\alpha=-4$ is efficient in making the eigenvalues cluster at two points. This section will use $\alpha=-4$ for the preconditioner $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. Figure 5.14 plots the matvec required by $\operatorname{IDR}(6)$ preconditioned with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. The matvec varies in small ranges when $k_{w} \Delta t$ changes. Figure 5.15 shows the the excess pore pressure right below the square footing when $k_{w} \Delta t$ and the mesh change. The excess pore

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS
pressure is close to the applied load, which reflects the undrained behaviour of the system. However, the accuracy of the study does not only lie in the product of $k_{w} \Delta t$ but also in the mesh convergence. When the system is close to failure, there are fluctuations in excess pore pressure in the coarse mesh $(16 \times 16 \times 16)$.
Figure 5.14 and Figure 5.15 show that undrained analysis can be simulated with Biot's consolidation equations and $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is an efficient preconditioner for this nonsymmetric linear system.

Figure 5.14: Effect of $k \Delta t$ on the convergence of $\operatorname{IDR}(6)+M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.15: Excess pore pressure at the point right below the square footing

5.5 Applying the preconditioner updating schemes in

Section 4.2.2

Section 4.2.2 has presented several preconditioner updating schemes to reduce the total simulation time when solving the 1-by-1 nonsymmetric block matrix. Section 4.2.2 recommended either using the preconditioner which is extracted from the elastic global stiffness matrix or updating the preconditioner at the beginning of the new load step. This section applies these two schemes on the 2-by-2 block matrix to observe their efficiency. Table 5.8 summarizes the preconditioner updating schemes and the notation of block preconditioners used in this section.

Table 5.8: Different schemes to update ILU0 preconditioner during the simulation

| Number | Description | Preconditioner notation |
| :---: | :--- | :---: | :---: |
| 1 | The default scheme which updates
 preconditioner at every NR iteration. | $M_{d}(\hat{K}, \hat{S})$-EP
 $M_{c}(\hat{K}, \hat{S})$-EP |
| | The scheme discussed in Section 4.2.2.1
 which forms the preconditioner from K_{e} once
 at the beginning of the simulation. | $M_{d}(\hat{K}, \hat{S})$-E |
| | $M_{c}(\hat{K}, \hat{S})$-E | |
| 3 | Update the preconditioner once in each load
 step right after the load increment is applied. | $M_{d}(\hat{K}, \hat{S})$-NR
 $M_{c}(\hat{K}, \hat{S})$-NR |

Section 5.3.1 has shown numerically that $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is the most time efficient in preconditioning the 2-by-2 block matrix resulted from Biot's consolidation analysis. This conclusion is drawn when the first updating scheme, which updates $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-EP at every NR iteration. When the second or third updating sheme is applied, the same preconditioner is used for several NR iterations hence it may be more advantage to use a better preconditioner at the beginning. Hence M_{c} is used to compare with $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-EP. This section continues using \hat{K}_{3} as the approximation of $K_{\text {ep }}$ because \hat{K}_{3} has been shown many times in this thesis to be an efficient preconditioner for $K_{e p} . \hat{S}_{3}$ is not practical to use because it takes very long time to form hence \hat{S}_{1} and \hat{S}_{2} are considered in this section.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.16 and Figure 5.17 show the comparison of the three updating schemes in Table 5.8. Section 5.3.1 has commented that M_{c} approximates the global stiffness matrix better hence it always requires less matvec than M_{d} does but the reduction in matvec is minimal while the time to form M_{c} and the preconditioning step are more than those required by M_{d}. Figure 5.16 and Figure 5.17 show the same trend: although the same M_{c} is used for the whole simulation or the whole load step, the preconditioning step is still more time comsuming hence the cumulative time using M_{c} is always larger than $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-EP. Hence M_{c} is not recommended in general to precondition the 2-by-2 block matrix coming from Biot's consolidation equations. Among all the case tested, $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-E is the most time efficient. The cumulative of simulation time can be reduced at least 20 percent when $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-E is used.

CHAPTER 5 PRECONDITIONERS FOR 2-BY-2 BLOCK MATRICES: CONSOLIDATION ANALYSIS

Figure 5.16: Comparison of different schemes of updating block preconditioners. Square footing resting on Soil profile 1 is considered.

Figure 5.17: Comparison of different schemes of updating block preconditioners. Square footing resting on Soil profile 2 is considered.

5.6 Summary

This chapter applies $\operatorname{IDR}(6)$ and block preconditioners to solve the 2 -by- 2 block nonsymmetric linear system from Biot's consolidation equations. The numerical experiments on the flexible square footing result the following observations and recommendation:

1. The most optimal preconditioner for 2-by-2 block matrix is $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$. To efficiently precondition the 2 -by- 2 block matrix, a better \hat{K} is more crucial than a better \hat{S} because the reduction in matvec due to a better \hat{S}
is very minimal. Besides, the constrained block preconditioner M_{c} is not recommended for the block matrix from Biot's consolidation equations. M_{c} does help $\operatorname{IDR}(6)$ to converge with less matvec but the reduction of matvec is not proportional with the reduction of total iteration time. The preconditioner updating scheme, $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$-E, is recommended to save at least 20 percent of the total simulation time.
2. The narural ordering is not recommended for the Biot's consolidation analysis. This is first because block preconditioners cannot be exploited in this form. Second, the nonlinear FE analysis cannot be proceeded with large applied load because the stress-returning procedure tends to return the Gauss points to the apex of the MC evelope, which does not occur very often in block orering. Third, ILU0 and MSSOR is less time efficient than $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ and ILU0 is unstable in natural ordering when the permeability is small.
3. Undrained analysis can be simulated with Biot's consolidation equations, and $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is efficient in preconditioning this nonsymmetric linear system. Hence the problem on unstable preconditioner occuring in Section 4.3.2 has been solved.

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS

6.1 Introduction

Chapter 3, Chapter 4, and Chapter 5 have discussed the application of $\operatorname{IDR}(s)$ on solving the nonsymmetric linear system arising from the FE analysis with the non-associated MC model. Preconditioners have been recommended for the 1-by-1 block matrix coming from drained analysis and 2-by-2 block matrix coming from Biot's consolidation analaysis. Strip footing, square footing and retaining wall problems have been considered to demonstrate the efficiency of the proposed preconditioners. This chapter aims to validate the use of these preconditioners for other common geotechnical problems: 1) laterally loaded pile and 2) tunnelling. The geotechnical software package GeoFEA is used as pre-processor and post-processor of the nonlinear FE analysis.

6.2 GeoFEA implementation

GeoFEA is a commercial FE software which has implemented several popular iterative solvers such as SQMR to solve symmetric linear systems and BiCGSTAB to solve nonsymmetric linear systems, together several preconditioners from Chen ${ }^{39}$ (2005) and Chauhary ${ }^{37}$ (2011) which are optimal for symmetric linear systems. An advantage of GeoFEA is that this software allows the use of user-defined solvers and preconditioners. This chapter takes advantage of this feature to implement $\operatorname{IDR}(s)$ and the proposed preconditioners to solve the large-scale practical problems. The steps to implement user-defined solver in GeoFEA are summarized as follows:

1. Create the USOLV.DLL file with the FORTRAN code containing the user-defined solver and preconditioner. A sample FORTRAN code is provided with the software package and can be located at ' C : Pr rogram Files\GeoFEA\USOLV.F90'.
2. Place the new USOLV.DLL file in the directory ' C : P Program Files $\backslash G e o F E A$ '
3. Create the finite element model with all assignments and boundary conditions as is for other inbuilt solvers.
4. In the 'SOLVE' window, check the box beside 'Generate input files only' and click on 'OK' button. This will generate three input files (geosoil.gad, geosoil.gpd, and geosoil.cnn) at 'C:\Program Files $\backslash G e o F E A$ '.
5. Open the 'geosoil.gad' file using any text editor (such as Notepad/Wordpad) and change the very first integer to 99 . This is the only change needed by the user to use the user interface solver.
6. Go back to the 'SOLVE' window and check the box beside 'Use existing input files (geosoil.gpd, geosoil.gad)'. Click on 'OK' to solve the problem using the user-define solver.

6.3 Drained analysis

6.3.1 Problem descriptions

This section models two drained problems from literature: laterally loaded pile following Brown and Shie ${ }^{31}$ (1990) and tunnelling following Mroueh and Shahrour ${ }^{117}$ (2008). These two problems are geotechnical problems that cannot be simplified into 2D analysis and always require 3D modelling.

Table 6.1 summarizes the properties of the soil and structural materials used in the two problems. The soil is considered to follow the non-associated MC model. The structural materials (pile and lining) are considered to follow the linear elastic mode. The laterally loaded pile has the diameter of 0.28 m and the length of 4.8 m . Figure 6.2 shows the dimension and the boundary conditions of the tunnelling problem. The outer diameter of the tunnel, $D_{\text {tunnel }}$, is 7.5 m and the lining thickenss is 0.5 m .

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS

Table 6.1: Geomaterials used in the laterally loaded pile and the tunnelling excavation problems

	Young's modulus, E^{\prime} (MPa)	Poisson's ratio, v '	Cohesion, $c^{\prime}(\mathrm{kPa})$	Friction angle, ϕ ' (degree)	Dilation angle, ψ (degree)	$\begin{gathered} \hline \text { Unit } \\ \text { weight } \\ \gamma \\ \gamma \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$
Laterally loaded pile problem: $D_{\text {pile }}=0.28 \mathrm{~m} ; L_{\text {pile }}=4.6 \mathrm{~m}$						
Soil	$87+51 \mathrm{z}$	0.3	13.8	23	0	18.9
Pile	4.8×10^{7}	0.3	-	-	-	18.9
Tunnelling problem: $D_{\text {tumnel }}=4.5 \mathrm{~m}$; thickness $=0.5 \mathrm{~m}$						
Silty sand	30	0.3	0.005	27	5	20
Lining	3.5×10^{7}	0.25	-	-	-	25

(a)

(b)

Figure 6.1: 3D FE mesh of: (a) Laterally loaded pile; (b) Tunnelling excavation

The 3D meshes of the laterally loaded pile and the tunnelling problem are shown in Figure 6.1(a) and (b) respectively. The mesh of the laterally loaded piles includes 10,740 hexahedral elements and results a linear system of 141,276 unknowns. This number of unknowns does not change during the simulation. The mesh of the tunnelling excavation includes 101,101 hexahedral elements and results a linear system of 303,303 unknowns. This number of unknowns varies during the excavation and lining installing process. The excavation process follows the TBM method discussed in Mroueh \& Shahrour ${ }^{117}$ (2008) and is shown in Figure 6.2. The face pressure and the wall

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS

pressure are considered uniformed and equal to the initial axial stress at the tunnel axis.

Figure 6.2: (a) Dimension and boundary condition of the tunnelling problem;
(b) Method used for the tunnel construction using TBM (Mroueh \& Shahrour ${ }^{117}$, 2008).

Drained analysis is considered hence IDR(6) with ILU0 preconditioner are used as user-defined solver and preconditioner for GeoFEA. The dynamic libray USOLV.DLL forms the global stiffness matrix $K_{e p}$ explicitly following Eq.(2.1) therefore the technique to form $K_{e p}$ implicitly proposed in Section 4.2 cannot be demonstrated in this section.

6.3.2 Implementation of preconditioner updating schemes

Figure 6.3 presents the implemetation of preconditioner updating schemes proposed in Section 4.2.2.2 (with the notations explained in Table 4.3) on the laterally loaded pile and tunnelling excavation problem. For the laterally loaded pile, the number of unknowns does not change hence ILU0- K_{e} is still applicable. For tunnelling excavation, the number of unknowns reduces during excavation process and increases during lining process. ILU0-Stage is denoted in this section as the scheme similar to ILU0- K_{e}. ILU0-Stage scheme updates ILU0 preconditioner at the beginning of a stage within which the number of unknowns does not change. The results in Figure 6.3 agree with the conclusion in Section 4.2 . Figure 6.3(b) and (d) show that ILU0- K_{e} and ILU0-Stage are only useful at the beginning of the simulation when the number of yielded

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS

Gauss points is not significant. When there are more yielded Gauss points, ILU0-NR is recommended. This scheme can save up to 10 percent of the total simulation time in compared with ILU0- $K_{e p}$ scheme.

Figure 6.3: Comparison of preconditioner updating scheme in drained analysis of: (a)(b) Laterally loaded pile; (c)(d) Tunnelling problem.
$\operatorname{IDR}(6)$ method with ILU0 preconditioner is compared with the built-in BiCGSTAB method with Jacobi preconditioner. The latter failed to converge in the laterally loaded pile problem and the analysis could not be carried on. Figure 6.4 shows the comparison of the two methods in solving the tunnelling excavation problem. IDR(6) with ILU0 is much faster than Bi-CGSTAB and this is expected because IDR(6) has been shown to be faster than Bi-CGSTAB and ILU0 is a much better preconditioner than Jacobi. Regardless of preconditioner updating schemes, $\operatorname{IDR}(6)$ with ILU0 can save at least 65 percent of the total simulation time when compared with the built-in BiCGSTAB with Jacobi.

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS

Figure 6.4: Comparison of cumulative solution time of IDR(6) versus BiCGSTAB

Besides, the disadvantage of forming $K_{e p}$ matrix explicitly at every load step or NR step is highlighted in Figure 6.5. The average time in each NR step is reported. The time to form $K_{e p}$ consumes 60 percent of the total time spent in each NR iteration. There is a reduction of this percentage in tunnelling excavation problem because the IDR requires more matvec to converge but the absolute time to form $K_{e p}$ does not change. This means a same amount of time has to be spared in each NR iteration to form $K_{e p}$, which is not necessary if the implicit way to form $K_{e p}$ proposed in Section 4.2.1 is used.

Figure 6.5: Ratio of the time to form $K_{e p}$ over total time consumed in each NR iteration when $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ is used to solve the linear systems in: (a) Laterally loaded pile; (b) Tunnelling excavation

6.4 Summary

GeoFEA is a convenient software that can be used as pre-processor and postprocessor to simulate complex geotechnical problems with user-defined solvers and preconditioners. The numerical results on the two practical examples show that $\operatorname{IDR}(6)$ with ILU0-NR is efficient in solving

CHAPTER 6 APPLICATION OF PRECONDITIONERS ON PRACTICAL GEOTECHNICAL PROBLEMS
nonsymmetric linear system coming from large-scale geotechnical problems. The implicit way to form $K_{e p}$ proposed in Section 4.2.1 is effective in reducing the total simulation time.

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1 Summary and conclusions

The nonsymmetric linear system in this thesis comes from the FE discretization of the drained, undrained and Biot's consolidation of the soil following the non-associated MC model. This linear system is large-scale and highly sparse. This thesis presented the application of IDR(s) method to solve this linear system iteratively with preconditioners as accelerator.

The following findings and recommendations emerge from the numerical studies conducted in this thesis:

1. $\operatorname{IDR}(1)$ is theoretically equivalent to $\mathrm{Bi}-\mathrm{CGSTAB}$ and $\operatorname{IDR}(\mathrm{s}>1)$ is more efficient than Bi-CGSTAB in both matvec count and total iteration time. The choice $s=6$ has been shown numerically to be the most optimal for IDR(s) applied to nonsymmetric linear systems arising from the non-associated MC model.
2. ILU0 is the most efficient preconditioner for $K_{e p}$ matrix among Jacobi, $\operatorname{SSOR}-L R, \operatorname{SSOR}-L$ and $\operatorname{ILUT}(\rho, \tau) . \operatorname{ILUT}(\rho, \tau)$ can be competitive in term of matvec but less competitive in term of solution time. Moreover, the fill-in number is not known priorly and also problem dependent.
3. $M_{d}\left(\hat{K}_{3}, \hat{S}_{1}\right)$ is the most efficient preconditioner for the 2-by-2 block stiffness matrix from Biot's consolidation analysis. The constrained block preconditioner M_{c} is not recommended for the block matrix from Biot's consolidation equations. M_{c} does help IDR(6) to converge with less matvec but the reduction of matvec is not proportional with the reduction of total iteration time.
4. Two techniques to save the total simulation time in dealing with a sequence of nonsymmetric linear systems are recommended for both 1-by-1 and 2-by- 2 block matrix as follows:
a. Forming the elastoplastic global stiffness matrix implicitly by forming the elastic global stiffness matrix once and update the low-rank matrix at every NR iteration.
b. Employing the preconditioner updating scheme. Two schemes are recommended: 1) using preconditioners from the elastic stiffness matrix for the whole simulation; 2) updating preconditioners at the beginning of each load steps.
c. When these two techniques are used concurrently, the total simulation time of 1-by-1 block matrix can be reduced by 60 percent compared with the default procedure.
5. $\operatorname{IDR}(6)$ with $\operatorname{ILU} 0-K_{e p}$ has been applied in the laterally loaded pile and tunnelling excavation problem and shows more time efficient than the built-in Bi-CGSTAB with Jacobi preconditioner. At least 65 percent to the default total simulation time can be saved by using $\operatorname{IDR}(6)$ with ILU0-NR.

7.2 Limitations and recommendations

This thesis has presented a wide-range and somewhat in-depth study on preconditioners for the nonsymmetric linear system arising from the nonassociated MC model. However this thesis by no mean has taken into account and tackled all the problems. The followings list out the limitations of this thesis and recommendations for future works

1. There are other preconditioners developed for 1-by-1 block matrix. Approximate inverse preconditioner is one of the available options. This class of preconditioner is a promising advancement instead of using traditional preconditioner like Jacobi, SSOR and ILU. Similarly, for 2-by-2 block matrix, there are several others discussions on nonsymmetric saddle points problem that this thesis did not explore.
2. Consistent tangent stress-strain matrix has been shown to be able to preserve the quadratic convergence of NR iteration and is expected to be better than the continuum stress-strain matrix in this thesis. Hence it is promising to repeat the numerical experiments on this matrix and find the optimal preconditioners.
3. This thesis used the full NR iteration to solve the nonlinear FE equation. No acceleration technique for NR is applied in this thesis. If these techniques are applied, the total simulation time should be saved more.
4. As discussed in the Introduction, MC model is used because it is popular and simple. However, MC model has drawbacks in modeling soil behavior (such as zero dilation angle has to be indicated for undrained analysis to control the volumetric strain). Cam-clay model is a better choice to tackle the nonlinear behaviour of soil. This model follows an associated flow rule but its consistent tangent stress-strain matrix is nonsymmetric. Hence, it is interesting to study the use of $\operatorname{IDR}(s)$ on these models.

REFERENCE

1. ABAQUS/CAE user's manual: version 6.9. (2010).
2. Abbo, A. J. (1997). Finite Element Algorithms for Elastoplasticity and Consolidation. Doctor of Philosophy, University of Newcastle.
3. Abbo, A. J., \& Sloan, S. W. (1995). A Smooth Hyperbolic Approximation To The Mohr-Coulomb Yield Criterion. Computers and Structures, 54(3), 427-441.
4. Abbo, A. J., Sloan, S. W. (2000). SNAC (User manual) (Version 2.0). Department of Civil, Surveying and Environmental Engineering. Callaghan: University of Newcastle.
5. Almeida e Sousa, J., Negro, A., Matos Fernandes, M., \& Cardoso, A. (2011). Three-dimensional nonlinear analyses of a metro tunnel in Sao Paulo Porous clay, Brazil. Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 376-384.
6. Almeida, V. S., \& Paiva, J. B. d. (2004). A mixed BEM-FEM formulation for layered soil-superstructure interaction. Engineering Analysis with Boundary Elements, 28, 1111-1121.
7. Araujo, F. C. d., Mansur, W. J., Dors, C., \& Martins, C. J. (2004). New developments on BE/BE multi-zone algorithms based on Krylov solvers Application to 3D frequency-dependent problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 231248.
8. Araujo, F. C., Silva, K. I., \& Telles, J. C. F. (2006). Generic domain decomposition and iterative solvers for 3D BEM problems. International Journal For Numerical Methods In Engineering, 68, 448-472.
9. Arioli, M., Loghin, D., \& J.Wathen, A. (2005). Stopping criteria for iterations in finite element methods. Numerische Mathematik, 99, 381410.
10. Augarde, C. E., \& Burd, H. J. (1995). A three-dimensional finite element model of tunnelling. In G. N. Pande \& S. Pietruszczak (Eds.), Numerical Models in Geomechanics - NUMOG V (pp. 457-462). Rotterdam: Balkema.
11. Augarde, C. E., Ramage, A., \& Staudacher, J. (2007). Element-based preconditioners for elasto-plastic problems in geotechnical engineering. International journal for numerical methods in engineering, 71(7), 757779.
12. Axelsson, O., \& Blaheta, R. (2010). Preconditioning of matrices partitioned in 2×2 block form: Eigenvalue estimates ans Schwarz DD for mixed FEm. Numerical Linear Algebra with Applications, 17, 787-810.
13. Axelsson, O., \& Neytcheva, M. (2012). A general approach to analyse preconditioners for two-by-two block matrices. Numerical linear algebra with applications, 19.
14. Axelsson, O., Blaheta, R., \& Kohut, R. (1997). Inexact Newton solvers in plasticity: Theory and Experiments. Numerical Linear Algebra with Applications, 4(3), 133-152.
15. Bank, R. E., \& Douglas, C. C. (1985). An efficient implementation for SSOR and incomplete factorization preconditionings. Applied Numerical Mathematics, 1, 489-492.
16. Barrett, R., Berry, M., F.Chan, T., Demmel, J., M.Donato, J., Dongarra, J., et al. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods: SIAM.
17. Bathe, K. J., \& Cimento, A. P. (1980). Some practical procedures for the solution of nonlinear finite element equations. Computer methods in applied mechanics and engineering, 22, 59-85.
18. Benzi, M. (2002). Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics, 182, 418-477.
19. Benzi, M., \& Golub, G. H. (2004). A preconditioner for generalized saddle point problems. SIAM Journal on Matrix Analysis and Applications, 26(1), 20-41.
20. Benzi, M., Szyld, D. B., \& Duin, A. V. (1999). Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM Journal on Scientific Computing, 20(5), 1652-1670.
21. Bergamaschi, L., Bru, R., Martinez, A., \& Putti, M. (2012). QuasiNewton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media. Advances in Engineering Software, 46, 63-68.
22. Bergamaschi, L., Ferronato, M., \& Gambolati, G. (2007). Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Computer methods in applied mechanics and engineering, 196, 2647-2656.
23. Bergamaschi, L., Ferronato, M., \& Gambolati, G. (2008). Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations. Journal of Computational Physics, 227, 98859897.
24. Birken, P., Gassner, G., Haas, M., \& Munz, C.-D. (2013). Preconditioning for model discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations. Journal of COmputational Physics, 240, 20-35.
25. Bishop, A. W. (1966). The strength of soils as engineering materials. Geotechnique, 16, 91-128.
26. Blaheta, R. (1997). Convergence of Newton-type methods in incremental return mapping analysis of elasto-plastic problems. Computational Methods in Applied Mechanics and Engineering, 147, 167-185.
27. Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65-78.
28. Bonet, J., \& D.Wood, R. (2008). Nonlinear continuum mechanics for finite element analysis. New York: Cambridge University Press.
29. Borja, R. I. (1991). Composite Newton-PCG and Quasi-Newton iterations for nonlinear consolidation. Computer methods in applied mechanics and engineering, 86, 27-60.
30. Botchev, M. A., \& Golub, G. H. (2006). A class of nonsymmetric preconditioners for saddle points problems. SIAM Journal on Matrix Analysis and Applications, 27(4), 1125-1149.
31. Brown, D. A., Shie, C-F. (1990). Three dimensional finite element model of laterally loaded piles. Computers and Geotechnics, 10, 59-79.
32. Bruaset, A. M. (1995). A survey of preconditioned iterative methods. New York: Longman Scientific \& Technical.
33. Bruaset, A. M. (1997). Krylov subspace iterations for sparse linear systems. In M. Dahlen \& A. Tveito (Eds.), Numerical methods and software tools in industrial mathematics (pp. 281-298). Birkhauser, Boston: Springer.
34. Bruyn, D. J. D., Ramaeckers, C. C., \& Huergo, P. J. (1994). Excavation of galleries in deep clay formations: An analytical tool for the control of finite element results. Computers and Geotechnics, 16, 247-260.
35. Chaillat, S., Bonnet, M., \& Semblat, J. F. (2009). A new fast multidomain BEM to model seismic wave propagation and amplification in 3D geological structures. Geophysical Journal International, 177(2), 509-531.
36. Chan, S. H., Phoon, K. K., \& Lee, F. H. (2001). A modified Jacobi preconditioner for solving ill-conditioned Biot's consolidation equations using symmetric quasi-minimal residual method. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10), 10011025.
37. Chauhary, K. B. (2010). Preconditioners for soil-structure interaction problems with significant material stiffness constrast. Doctor of Philosophy, National University of Singapore, Singapore.
38. Chen, R. S., Ping, X. W., Wang, D. X., \& Yung, E. K. N. (2004). SSOR preconditioned GMRES for the FEM analysis of waveguide discontinuities with anisotropic dielectric. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 17, 105118.
39. Chen, X. (2005). Preconditioner for iterative solutions of large-scale linear systems arising from Biot's consolidation equations. Doctor of Philosophy, National University of Singapore, Singapore.
40. Chen, X., \& Phoon, K. K. (2009). Some numerical experiences on convergence criteria for iterative finite element solvers. Computers and Geotechnics, 36, 1272-1284.
41. Chen, X., \& Phoon, K. K. (2012). Applications of Symmetric and Nonsymmetric MSSOR Preconditioners to Large-Scale Biot's Consolidation Problems with Nonassociated Plasticity. Journal of Applied Mathematics, 2012. doi: 10.1155/2012/352081
42. Chen, X., Toh, K. C., \& Phoon, K. K. (2006). A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations. International Journal for Numerical Methods In Engineering, 65, 785-807.
43. Chow, E., \& Saad, Y. (1997). Experimental study of ILU preconditioners for indefinite matrices. Journal of Computational and Applied Mathematics, 86(2), 387-414.
44. Clausen, J., \& Krabbenhoft, K. (2008). Existence and Uniqueness of Solutions in Nonassociated Mohr-coulomb Elastoplasticity. In Schrefler, B. A., \& Perego, U. (Eds.), 8th World Congress on Computational Mechanics WCCM8, 5th European Congress on Computational Methods in Applied Science and Engineering ECCOMAS 2008. Spain.
45. Conte, E., Silvestri, F., \& Troncone, A. (2010). Stability analysis of slopes in soils with strain-softening behaviour. Computers and Geotechnics, 37, 710-722.
46. Crisfield, M. A. (1987). Plasticity computations using the MohrCoulomb yield criterion. Engineering Computations, 4(4), 300-308.
47. Crisfield, M. A. (1998). Non-linear finite element analysis of solids and structures: Essentials (Vol. 1): John Wiley \& Sons.
48. Dahl, O., \& Wille, S. O. (1992). An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 15, 525-544.
49. Diosady, L. T., \& Darmofal, D. L. (2009). Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations. Journal of Computational Phyics, 228, 3917-3935.
50. Driscoll, T. A., Toh, K.-C., \& Trefethen, L. N. (1998). From potential theory to matrix iterations in six steps. SIAM Review, 40(3), 547-578.
51. Duncan, J. M. (1994). The role of advanced constitutive relations in practical applications Proceddings of the Thirteenth international conference on soil mechanics and foundation engineering (Vol. 5, pp. 3148). Rotterdam: A. A. Balkema.
52. Dutto, L. C., \& Habashi, W. G. (1999). Parallelization of the ILU(0) preconditioner for CFD problems on shared-memory computers. International Journal for Numerical Methods in Fluids, 30, 995-1008.
53. Eisenstat, S. C. (1981). Efficient implementation of a class of preconditioned conjugate gradient methods. SIAM Journal on Scientific and Statistical Computing, 2(1), 1-4.
54. Eisenstat, S. C., Elman, H. C., \& Schultz, M. H. (1983). Variational iterative methods for nonsymmetric systems of linear equations. SIAM Journal on Numerical Analysis, 20(2), 345-357.
55. Erickson, H. L., \& Drescher, A. (2002). Bearing capacity of circular footings. Journal of Geotechnical and Geoenvironmental Engineering, 128(1), 38-43.
56. Faheem, H., Cai, F., \& Ugai, K. (2004). Three-dimensional base stability of rectangular excavations in soft soils using FEM. Computers and Geotechnics, 31, 67-74.
57. Fata, S. N., \& Gray, L. J. (2010). On the implementation of 3D Galerkin boundary integral equations. Engineering Analysis with Boundary Elements, 34(1), 60-65.
58. Ferronato, M. (2012). Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century: History, Current Developments, and Future Perspectives. ISRN Applied Mathematics, 2012, 49. doi: 10.5402/2012/127647.
59. Ferronato, M., Bergamaschi, L., \& Gambolati, G. (2010). Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems. International Journal for Numerical Methods In Engineering, 81, 381-402.
60. Fischer, S., Frommer, A., Glassner, U., Lippert, T., Ritzenhofer, G., \& Schilling, K. (1996). A paralllel SSOR preconditioner for lattice QCD. Computer Physics Communications, 98, 20-34.
61. Fletcher, R. (1976). Conjugate gradient methods for indefinite systems Numerical Analysis (pp. 73-89). Berlin, Heidelberg, New York: SpringerVerlag.
62. Freund, R. W., \& Nachtigal, N. M. (1991). QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik, 60, 315-339.
63. Freund, R. W., Golub, G. H., \& Nachtigal, N. M. (1992). Iterative solution of linear systems. Acta Numerica, 1(57-100).
64. Gambolati, G., Pini, G., \& Ferronato, M. (2001). Numerical performance of projection methods in finite element consolidation models. International Journal for Numerical and Analytical Methods in Geomechanics, 25, 1429-1447.
65. Gambolati, G., Pini, G., \& Ferronato, M. (2002). Direct, partitioned and projected solution to finite element consolidtion models. International Journal for Numerical and Analytical Methods in Geomechanics, 26, 1371-1383.
66. Gambolati, G., Pini, G., \& Ferronato, M. (2003). Scaling improves stability of preconditioned CG-like solvers for FE consolidation equations. International Journal for Numerical and Analytical Methods in Geomechanics, 27, 1043-1056.
67. GeoFEA (Version 8.0) (Software). (2006). GeoSoft Pte. Ltd.
68. GeoStudio (Version 8.0.7.6129) (Software). (2012). GEO-SLOPE International.
69. Ghoussoub, N., \& Moradifam, A. (2010). A note on simultaneous preconditioning and symmetrization of non-symmetric linear systems. Numerical Linear Algebra with Application, 18, 343-349.
70. Gijzen, M. B. V., \& Sonneveld, P. (2010). An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties (D. o. A. M. Analysis, Trans.). Delft: Delft University of Technology.
71. Golub, G. H., \& Vorst, H. A. v. d. (2001). Closer to the solutions: iterative linear solvers The State of the Art in Numerical Analysis: Clarendon Press.
72. Gose, S., Ugai, K., \& Ochiai, H. (1997). The behavior of pile foundation using three-dimensional elasto-plastic FEM analysis. In S. Pietruszczak \& G. N. Pande (Eds.), Numerical models in geomechanics: proceedings of the Sixth International Symposium on Numerical Models in Geomechanics (pp. 539-544). Rotterdam: A. A. Balkema.
73. Greenbaum, A. (1997). Iterative methods for solving linear systems. Philadelphia: SIAM.
74. Griffiths, D. V., \& Lane, P. A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403.
75. Gutknecht, M. H. (2007). A brief introduction to Krylov space methods for solving linear systems. In Y. Kaneda, H. Kawamura \& M. Sasai (Eds.), Frontiers of Computational Science - Proceedings of the International Symposium on Frontiers of Computational Science 2005 (pp. 53-62). Berlin Heidelberg: Springer-Verlag.
76. Hartmann, S., Tebbens, J. D., Quint, K. J., \& Meister, A. (2009). Iterative solvers within sequences of large linear systems in non-linear structural mechanics. Journal of Applied Mathematics and Mechanics, 89(9), 711728.
77. Hashash, Y. M. A., Song, H., \& Osouli, A. (2011). Three-dimensional inverse analyses of a deep excavation in Chicago clays. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1059-1075.
78. Hata, Y., Ichii, K., \& Nozu, A. (2012). Three-dimensional non-linear FEM analysis of a seismic induced crack at an airport runway. Soil Dynamics and Earthquake Engineering, 42, 105-118.
79. Henkel, D. J. (1959). The relationships between the strength, pore-water pressure, and volume-change characteristics of saturated clays. Geotechnique, 9(3), 119-135.
80. Hestenes, M. R., \& Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards, 49(6), 409-436.
81. Hettler, A., \& Vardoulakis, I. (1984). Behaviour of dry sand tested in a large triaxial apparatus. Geotechnique, 34(2), 183-198.
82. Hicher, P.-Y. (1996). Elastic properties of soils. Journal of Geotechnical Engineering, 122(8), 641-648.
83. Houlsby, G. T. (1991). How the dilatancy of soils affects their behaviour (D. o. E. Science, Trans.). Oxford: University of Oxford.
84. Isaacson, E., \& Keller, H. B. (1994). Analysis of numerical methods. New York: Dover Publications.
85. Jardine, R. J., Potts, D. M., Fourie, A. B., \& Burland, J. B. (1986). Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction. Geotechnique, 36(3), 377-396.
86. Jeremic, B., \& Jie, G. (2008). Parallel finite element computations for soil-foundation-structure interaction problems (D. o. C. a. E. Engineering, Trans.): University of California.
87. Jiang, B.-n., Lin, T. L., \& Povinelli, L. A. (1994). Large-scale computation of incompressible viscous flow by least-squares finite element method. Computational Methods in Applied Mechanics and Engineering, 114(3-4), 213-231.
88. Jing, Y.-F., Huang, T.-Z., Duan, Y., \& Carpentieri, B. (2010). A comparative study of iterative solutions to linear systems arising in quantum mechanics. Journal of Computational Phyics, 229, 8511-8520.
89. Johnson, K., Karunasena, W., Guazzo, A., \& Sivakugan, N. (2001). Loaddeformation characteristics of axially loaded piles. In C. F. Lee, C. K. Lau, C. W. W. Ng, A. K. Kwong, P. L. R. Pang, J. H. Yin \& Z. Q. Yue (Eds.), Soft soil engineering: proceedings of the Third International Conference on Soft Soil Engineering (pp. 339-344): A. A. Balkema Publishers.
90. Kacimi, A. E., \& Laghrouche, O. (2011). Wavelet based ILU preconditioners for the numerical solution by PUFEM of high frequency elastic wave scattering. Journal of Computational Physics, 230(8), 31193134.
91. Kahyaoglu, M. R., Imancli, G., Ozturk, A. U., \& Kayalar, A. S. (2009). Computational 3D finite element analyses of model passive piles. Computational Materials Science, 46, 193-202.
92. Kechroud, R., Soulaimani, A., Saad, Y., \& Gowda, S. (2004). Preconditioning techniques for the solution of the Helmholtz equation by the finite element method. Mathematics and Computers in Simulations, 65, 303-321.
93. Kelesoglu, M. K., \& Springman, S. M. (2011). Analytical and 3D numerical modelling of full-height bridge abutments constructed on pile foundations through soft soils. Computers and Geotechnics, 38(8), 934948.
94. Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. Philadelphia: SIAM.
95. Knibbe, H., Oosterlee, C. W., \& Vuik, C. (2011). GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid method. Journal of Computational and Applied Mathematics, 236, 281293.
96. Krenk, S. (2009) Non-linear Modeling and Analysis of Solids and Structures (pp. 7-14). Cambridge: Cambridge University Press.
97. Kumar, J. (2004). Stability factors for slopes with nonassociated flow rule using energy consideration. Journal of Geotechnical and Geoenvironmental Engineering, 4(4), 264-272.
98. Lan, C. W., \& Liang, M. C. (1997). A three-dimensional finitevolume/Newton method for thermal-capillary problems. International Journal For Numerical Methods In Engineering, 40, 621-636.
99. Lee, F.-H., Hong, S.-H., Gu, Q., \& Zhao, P. (2011). Application of large three-dimensional finite-element analyses to practical problems. International Journal of Geomechanics, 11(Special Issue: Material and Computer Modeling), 529-539.
100.Lee, K. H., \& Rowe, R. K. (1990). Finite element modelling of the threedimensional ground deformations due to tunnelling in soft cohesive soils: Part I - Method of analysis. Computers and Geotechnics, 10, 87-109.
101.Leung, Y. F., Soga, K., Lehane, B., \& Klar, A. (2010). Role of linear elasticity in pile group analysis and load test intepretation. Journal of Geotechnical and Geoenvironmental Engineering, 12(136), 1686-1694.
102.Lewis, R. W., \& Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media: John Wiley \& Sons.
103.Lin, Y., \& Grosh, K. (2003). Effectiveness of iterative solution strategies for the high frequency response of fluid-loaded structures. Finite Elements in Analysis and Design, 39, 951-964.
104.Liu, Q.-F., \& Meyerhof, G. G. (1987). New method for non-linear analysis of laterally loaded flexible piles. Computers and Geotechnics, 4(3), 151-169.
105.Loukidis, D., \& Salgado, R. (2009). Bearing capacity of strip and circular footings in sand using finite elements. Computers and Geotechnics, 36, 871-879.
106.Malas, T., \& Gurel, L. (2007). Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering. SIAM Journal on Scientific Computing, 29(4), 1476-1494.
107.Manoharan, N., \& Dasgupta, S. P. (1995). Bearing capacity of surface footings by finite elements. Computers and Geotechnics, 54(4), 563-586.
108.Manoharan, N., \& Dasgupta, S. P. (1997). Collapse load computation for high friction soil. Computers and Geotechnics, 62(4), 681-684.
109.Manoharan, N., \& Dasgupta, S. P. (1997). Collapse load computation for high-friction soil. Computers and Structures, 62(4), 681-684.
110.Manzari, M. T., \& Nour, M. A. (2000). Significance of soil dilatancy in slope stability analysis. Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 75-80.
111.Meurant, G. (1998). Computer solution of large linear systems. North Holland: Elsevier.
112.Migliazza, M., Chiorboli, M., \& Giani, G. P. (2009). Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Computers and Geotechnics, 36, 113-124.
113.Morgan, R. B. (2000). Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM Journal on Matrix Analysis and Applications, 21(4), 1112-1135.
114.Motta, E. (2013). Lateral delfection of horizontally loaded rigid piles in elastoplastic medium. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 501-506.
115.Mroueh, H., \& Shahrour, I. (1999). Use of sparse iterative methods for the resolution of three-dimensional soil/structure interaction problems. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 1961-1975.
116.Mroueh, H., \& Shahrour, I. (2003). A full 3-D finite element analysis of tunneling-adjacent structures interactions. Computers and Geotechnics, 30, 245-253.
117.Mroueh, H., \& Shahrour, I. (2008). A simplified 3D model for tunnel construction using tunnel boring machines. Tunnelling and Underground Space Technology, 23, 38-45.
118.Nachtigal, N. M., Reddy, S. C., \& Trefethen, L. N. (1992). How fast are nonsymmetric matrix iterations? SIAM Journal on Matrix Analysis and Applications, 13(3), 778-795.
119.Nova, R. (2004). The role of non-normality in soil mechanics and some of its mathematical consequences. Computers and Geotechnics, 31, 185-191.
120.Oettl, G., Stark, R. F., \& Hofstetter, G. (1998). A comparison of elasticplastic soil models for 2D FE analyses of tunnelling. Computers and Geotechnics, 23, 19-38.
121.Osei-Kuffuor, D., \& Saad, Y. (2010). Preconditioning Helmholtz linear systems. Applied Numerical Mathematics, 60, 420-431.
122.Ou, C. Y., \& Kung, T. C. (2004). Analysis of ground surface settlement induced by excavation. In G. N. Pande \& S. Pietruszczak (Eds.), Numerical models in geomechanics: NUMOG IX: proceddings of the 9th Symposium on Numerical Models in Geomechanics. Leiden: A. A. Balkema Publishers.
123.Owen, D. R. J., \& Hinton, E. (1980). Finite elements in plasticity: theory and practices. Swansea: Pineridge Press.
124.Pakbaz, M., \& Zolfagharian, M. (2005). Evaluation of earth fill parameters from Gavoshan dam with back analysis during construction Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (Vol. 3, pp. 1901-1904). Rotterdam: Millpress.
125.Parry, R. H. G. (1968). Field and laboratory behaviour of a lightly overconsolidated clay. Geotechnique, 18, 151-171.
126.Payer, H. J., \& Mang, H. A. (1997). Iterative strategies for solving systems of linear, algebraic equations arising in 3D BE-FE analyses of tunnel drivings. Numerical Linear Algebra with Applications, 4(3), 239268.
127.Peng, J. R., Rouainia, M., \& Clarke, B. G. (2010). Finite element analysis of laterally loaded fin piles. Computers and Structures, 88, 1239-1247.
128.Persson, P. O., \& Peraire, J. (2008). Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM Journal on Scientific Computing, 30(6), 2709-2733.
129.Phoon, K. K. (2008). Numerical recipes for reliability analysis - a primer. In K. K. Phoon (Ed.), Reliability-based design in geotechnical engineering - Computations and applications (pp. 1-75). London, New York: Taylor \& Francis.
130.Phoon, K. K., Toh, K. C., \& Chen, X. (2004). Block constrained versus generalized Jacobi preconditioners for iterative solution of large-scale Biot's FEM equations. Computers and Structures, 82, 2401-2411.
131.Phoon, K. K., Toh, K. C., Chan, S. H., \& Lee, F. H. (2002). An efficient diagonal preconditioner for finite element solution of Biot's consolidation
equations. International Journal For Numerical Methods In Engineering, 55, 377-400.
132.Pillis, L. G. D. (1998). A comparison of iterative methods for solving nonsymmetric linear systems. Acta Applicandae Mathematicae, 51, 141159.
133.PLAXIS 2D (Version 2012) (Software). (2012). PLAXIS.
134.PLAXIS 3D (Version 2012) (Software). (2012). PLAXIS.
135.Plumey, S., Muttoni, A., Vulliet, L., \& Labiouse, V. (2010). Analytical and numerical analyses of the load-bearing capacity of retaining walls laterally supported at both ends. International Journal for Numerical and Analytical Methods in Geomechanics, 35(9), 1019-1033.
136.Pontaza, J. P., \& Reddy, J. N. (2004). Space-time coupled spectral/hp least-squares finite element formulation for the incompressible NavierStokes equations. Journal of Computational Physics, 197, 418-459.
137.Potts, D. M., \& Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering: Theory. London: Thomas Telford.
138.Potts, D. M., \& Zdravkovic, L. (2001). Finite element analysis in geotechnical engineering: Application. London: Thomas Telford.
139.Quarteroni, A., Sacco, R., \& Saleri, F. (2007). Numerical Mathematics (2 ed.). New York: Springer.
140.Rehman, M. u., Vuik, C., \& Segal, G. (2008). A comparison of preconditioners for incompressible Navier-Stokes solvers. International Journal for Numerical Methods in Fluids, 57, 1731-1751.
141.Ribeiro, F. L. B., \& Ferrerira, I. A. (2007). Parallel implementation of the finite element method using compressed data structures. Computational Mechanics, 41(1), 31-48.
142.Roscoe, K. H., \& Burland, J. B. (1968). On the generalised stress-strain behaviour of we clay. In J. Heyman \& F. A. Leckie (Eds.), Engineering plasticity: papers for a conference held in Cambridge (pp. 535-609). Cambridge: Cambridge University Press.
143.Roscoe, K. H., Schofield, A. N., \& Thuraurajahb, A. (1963). Yielding of clays in statees wetter than critical. Geotechnique, 13(3), 211-240.
144.Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM.
145.Saad, Y., \& Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856-869.
146.Saad, Y., \& Vorst, H. A. v. d. (2000). Iterative solution of linear systems in the 20th century. Journal of Computational and Applied Mathematics, 123(1-2), 1-33.
147.SAGE-CRISP. (2000). Software, Version 4.02b. Sage Consortium.
148.Santandrea, S., \& Sanchez, R. (2005). Analysis and improvements of the DPN acceleration technique for the method of characteristics in unstructured meshes. Anals of Nuclear Energy, 32, 163-193.
149.Schanz, T., \& Vermeet. (1996). Angles of friction and dilatancy of sand. Geotechnique, 46(1), 145-151.
150.Schneider, S., \& Marburg, S. (2003). Performance of iterative solvers for acoustic problems. Part II. Acceleration by ILU-type preconditioner. Engineering Analysis with Boundary Elements, 27, 751-757.
151.Schofield, A. N., \& Wroth, P. (1968). Critical state soil mechanics: McGraw-Hill.
152.Schweiger, H. F. (2008). The role of advanced constitutive models in geotechnical engineering. Geomechanics and Tunnelling, 1(5), 336-344.
153.Shahrour, I. (1992). PECPLAS: un programme de calcul par elements finis pour la resolution des problemes de geotechnique. Colloque International Geotechnique Informatique (pp. 327-334). Paris: Presses de l'ENPC.
154.Sheu, T. W. H., Fang, C. C., \& Tsai, S. F. (1999). Application of an element-by-element BiCGSTAB iterative solver to a monotonic finite element model. Computers and Mathematics with Applications, 37, 57-70.
155.Simoncini, V., \& Szyld, D. B. (2007). Recent computational developments in Krylov subspace methods for linear systems. Numerical Linear Algebra with Application, 14, 1-59.
156.Sleijpen, G. L. G., Sonneveld, P., \& Gijzen, M. B. v. (2010). Bi-CGSTAB as an induced dimension reduction method. Applied Numerical Mathematics, 60(11), 1100-1114.
157.Sloan, S. W., \& Booker, J. R. (1986). Removal Of Singularities In Tresca And Mohr-Coulomb Yield Functions. Communications In Applied Numerical Methods, 2, 173-179.
158.Smith, I. M., \& Griffiths, D. V. (2004). Programming the Finite Element Method. Chichester: John Wiley \& Sons.
159.Smith, I. M., \& Ho, D. K. H. (1992). Influence of construction technique on the performance of a braced excavation in marine clay. International Journal for Numerical and Analytical Methods in Geomechanics, 16, 845862.
160.Sonneveld, P. (1989). CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 10, 36-52.
161.Sonneveld, P. (2012). On the convergence behaviour of IDR(s) and related methods. SIAM Journal on Scientific Computing, 34(5), 25762598.
162.Sonneveld, P., \& Gijzen, M. B. V. (2008). IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific Computing, 31(2), 1035-1062.
163.Stute, B., Krupp, V., \& Lieres, E. v. (2013). Performance of iterative equation solvers for mass transfer problems in three dimensional sphere packings in COMSOL. Simulation Modelling Practice and Theory, 33, 115-131.
164.Terzaghi, K. (1948). Theoretical soil mechanics (4 ed.). New York: John Wiley and Sons.
165.Toh, K. C., \& Phoon, K. K. (2007). Comparison between iterative solution of symmetric and non-symmetric forms of Biot's FEM equations using the generalized Jacobi preconditioner. International Journal for Numerical and Analytical Methods in Geomechanics, 32(9), 1131-1146.
166.Toh, K.-C., Phoon, K. K., \& Chan, S.-H. (2004). Block preconditioners for symmetric indefinite systems. International Journal For Numerical Methods In Engineering, 60, 1361-1381.
167.Umetani, N., MacLachlan, S. P., \& Oosterlee, C. W. (2009). A multigridbased shifted Laplacian preconditioner for a fourth-order Helmholtz discretization. Numerical Linear Algebra with Applications, 16, 603-626.
168.Vermeer, P. A., \& De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. Heron, 29(3), 3-64.
169.Vermeer, P. A., \& Langen, H. v. (1989). Soil collapse computations with finite elements. Ingenieru-Archiv, 59, 221-236.
170.Vorst, H. A. v. d. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631-644.
171.Vorst, H. A. v. d. (2002). Efficient and reliable iterative methods for linear systems. Journal of Computational and Applied Mathematics, 149, 251-265.
172.Vorst, H. A. v. d. (2003). Iterative Krylov Methods for Large Linear Systems. New York: Cambridge University Press.
173.Weiss, R. (1995). A theoretical overview of Krylov subspace methods. Applied Numerical Mathematics, 19, 207-233.
174.Wesseling, P., \& Sonneveld, P. (1980). Numerical experiments with a multiple grid and a preconditioned Lanczos type method Approximation Methods for Navier-Stokes Problems (pp. 543-562). Berlin, Heidelberg, New York: Springer-Verlag.
175.White, J. A., \& Borja, R. I. (2011). Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics. Computational Geosciences, 15(4), 647-659.
176.Whitman, R. V. (2000). Organizing and evaluating uncertainty in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(7), 583-593.
177.Whittle, A. J., Hashash, Y. M. A., \& Whitman, R. V. (1993). Analysis of deep excavation in Boston. Journal of Geotechnical Engineering, 119(1), 69-90.
178.Wieners, C., Graf, T., Ammann, M., \& Ehlers, W. (2005). Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computational Mechanics, 36(6), 409420. doi: 10.1007/s00466-004-0654-1.
179.Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics: Cambridge University Press.
180.Wood, D. M. (2004). Geotechnical Modelling (2.2 ed.): Spon Press.
181.Wriggers, P. (2008). Nonlinear finite element methods. Berlin: SpringerVerlag.
182.Xiao, J., Ye, W., Cai, Y., \& Zhang, J. (2012). Precorrected FFT accelerated BEM for large-scale transient elastodynamic analysis using frequency-domain approach. International Journal for Numerical and Analytical Methods in Geomechanics, 90, 116-134.
183.Yang, Z., \& Jeremic, B. (2002). Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils. International Journal for Numerical and Analytical Methods in Geomechanics, 26(14), 13851406.
184.Yin, J. H., Wang, Y. J., \& Selvadurai, A. P. S. (2001). Influence of nonassociativity on the bearing capacity of a strip footing. Journal of Geotechnical and Geoenvironmental Engineering, 127(11), 985-989.
185.Yong, K. Y., Lee, F. H., Parnploy, U., \& Lee, S. L. (1989). Elasto-plastic consolidation analysis for strutted excavation in clay. Computers and Geotechnics, 8, 311-328
186.Zdravkovic, L., Potts, D. M., \& John, H. D. S. (2005). Modelling of a 3D excavation in finite element analysis. Geotechnique, 55(7), 497-513.
187.Zienkiewicz, O. C., Taylor, R. L., \& Zhu, J. Z. (2005) The finite element method: Its basis and fundamentals (6 ed., pp. 54-102). Oxford; Burlington: Elsevier Butterworth-Heinemann.
188.Zvanut, P., Logar, J., \& Majes, B. (2005). Back analyses of anchored bored-pile walls Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (Vol. 2, pp. 1001-1004). Rotterdam: Millpress.

APPENDIX A: NONLINEAR FINITE ELEMENT ANALYSIS

A. 1 Pseudo-code for conventional and modified nonlinear FE analysis

Conventional nonlinear FE algorithm

Read input file
Set $u_{0}=0, F\left(u_{0}\right)=0, D=D_{e}$
Form $K\left(u_{0}\right)=K_{e}$
for $i=1, \ldots, n_{\text {load increment }}$
for $j=1$, maxi $_{\mathrm{NR}}$

Solve $K\left(u_{i j}\right) \Delta u_{i j}=F_{i}-F\left(u_{i(j-1)}\right)$
$u_{i}=u_{i(j-1)}+\Delta u_{i j}$
for all elements
for all Gauss points
Form elastic strain increment $\Delta \varepsilon_{i j}=\boldsymbol{B} \Delta u_{i j}$
Form elastic stress increment $\Delta \sigma_{i j}=D \Delta \varepsilon_{i j}$ Total elastic trial stress $\sigma_{i}=\Delta \sigma_{i j}+\sigma_{i(j-1)}$
if $f\left(\sigma_{i}\right)>0$ then
Return trial stress σ_{i} to the MC yield surface Set $D=D_{e p}$
else
Set $D=D_{e}$
end if
end for (all Gaussian points)
end for (all elements)
Form $K\left(u_{i j}\right), F\left(u_{i j}\right)$
if $\frac{\| F_{i}-F\left(u_{i j}\right) \mid}{\left\|F_{i}\right\|} \leq N R_{-}$tol then
$u=u_{i}$
STOP NR_iteration
end if
end for (NR iteration)
end for (load increment)

Modified nonlinear FE algorithm
Read input file
Set $u_{0}=0, F\left(u_{0}\right)=0, D=D_{e}, \Delta=0$
Form $K\left(u_{0}\right)=K_{e}$
for $i=1, \ldots, n_{\text {load increment }}$
for $j=1$, maxit $_{\mathrm{NR}}$
$K\left(u_{i j}\right)=K_{e}+\Delta\left(u_{i j}\right)$
Solve $K\left(u_{i j}\right) \Delta u_{i j}=F_{i}-F\left(u_{i(j-1)}\right)$
$u_{i}=u_{i(j-1)}+\Delta u_{i j}$
for all elements
for all Gauss points
Form elastic strain increment $\Delta \varepsilon_{i j}=B \Delta u_{i j}$
Form elastic stress increment $\Delta \sigma_{i j}=D \Delta \varepsilon_{i j}$
Total elastic trial stress
$\sigma_{i}=\Delta \sigma_{i j}+\sigma_{i(j-1)}$
if $f\left(\sigma_{i}\right)>0$ then
Return trial stress σ_{i} to the MC yield surface
Set $M=D_{e p}-D_{e}$
else
Set $M=0$
end if
end for (all Gaussian points)
end for (all elements)
Form $\Delta\left(u_{i j}\right), F\left(u_{i j}\right)$
if $\frac{\left\|F_{i}-F\left(u_{i j}\right)\right\|}{\left\|F_{i}\right\|} \leq N R_{-}$tol then
$u=u_{i}$
STOP NR_iteration
end if
end for (NR iteration)
end for (load increment)

A. 2 Formulation of continuum tangent stiffness stress-strain matrix for Mohr-Coulomb model

A.2.1 Rounding of Mohr-Coulomb yield surface

With c and ϕ are cohesion and friction angle respectively, the Mohr Coulomb yield criterion can be expressed as Eq.(1). Figure 1a shows the Mohr-Coulomb yield surface at octahedral plane view.

$$
\begin{gather*}
f(\sigma)=\frac{1}{3} I_{1}+\sqrt{J_{2}} A_{f}(\theta)-c \cos \phi \tag{1}\\
A_{f}(\theta)=\cos \theta-\frac{\sin \theta \cos \phi}{\sqrt{3}} \tag{2}
\end{gather*}
$$

with stress component is $\{\sigma\}^{T}=\left[\begin{array}{llllll}\sigma_{x} & \sigma_{y} & \sigma_{z} & \tau_{x y} & \tau_{y z} & \tau_{z x}\end{array}\right], \theta$ is Lode angle, and I_{1}, J_{2} are stress invariants.

With dilation angle ψ, the plastic potential of Mohr-Coulomb yield function is given as

$$
\begin{gather*}
g(\sigma)=\frac{1}{3} I_{1}+\sqrt{J_{2}} A_{g}(\theta)-c \cos \psi=0 \tag{3}\\
A_{g}(\theta)=\cos \theta-\frac{\sin \theta \cos \psi}{\sqrt{3}} \tag{4}
\end{gather*}
$$

The non-associated flow rule applies when dilation angle ψ in Eq.(3) is different from the friction angle ϕ in Eq. (1).

Figure 1 b shows there are gradient discontinuities of MC yield surface at $\theta=$ ± 30 (the corners) and $J_{2}=0$ (the apex). Sloan and Booker ${ }^{157}$ (1986) and Abbo and Sloan ${ }^{3}$ (1993) propose rounding function to remove these singularities as in Eq. (5)

$$
\begin{equation*}
f(\sigma)=\frac{1}{3} I_{1}+\sqrt{J_{2} A_{f}^{2}(\theta)+\alpha^{2} \sin ^{2} \phi}-c \cos \phi=0 \tag{5}
\end{equation*}
$$

with α is an adjustable variable for rounding at the apex. The smaller α is, the closer the Eq. (5) is to Eq. (1). Abbo and Sloan ${ }^{3}$ (1993) recommend $\alpha=$ $0.05 c \cot \phi$. With θ_{T} is a specified transition angle, function $A_{f}(\theta)$ is adjusted as followings

$$
\begin{gather*}
A_{f}(\theta)=\left\{\begin{array}{cl}
A-B \sin 3 \theta & |\theta|>\theta_{T} \\
\cos \theta-\frac{\sin \theta \cos \phi}{\sqrt{3}} & |\theta| \leq \theta_{T}
\end{array}\right. \tag{6}\\
A=\frac{1}{3} \cos \theta_{T}\left(3+\tan \theta_{T} \tan 3 \theta_{T}+\frac{1}{\sqrt{3}} \operatorname{sign}(\theta)\left(\tan 3 \theta_{T}-3 \tan \theta_{T}\right) \sin \phi\right) \tag{7}\\
B=\frac{1}{3 \cos 3 \theta_{T}}\left(\operatorname{sign}(\theta) \sin \theta_{T}+\frac{1}{\sqrt{3}} \sin \phi \cos \theta_{T}\right) \tag{8}\\
\operatorname{sign}(\theta)= \begin{cases}+1 & \text { for } \theta \geq 0^{\circ} \\
-1 & \text { for } \theta<0^{\circ}\end{cases} \tag{9}
\end{gather*}
$$

A.2.2 Return mapping method and continuum tangent stiffness stress-strain matrix for Mohr-Coulomb model

When NR method is employed, the stress vectors of Gauss points deducted from the tangential linear system may be overestimated and lie outside the MC yield surface. This also implies the points have yielded. In that case, the yield function value $f(\sigma)$ is greater than the stress relative error tolerance BE_tol (Abbo ${ }^{2}$, 1997) and the Gauss points have to be dragged back the yield surface. Hence, return mapping procedure is the process returning the stress vectors to the yield surface.

The algorithm backward Euler method and forming of the tangent global stiffness matrix for MC model follows Crisfield ${ }^{46}$ (1987). All the derivatives are taken at the trial stress. When one vector return is applicable (Figure 2a), the stress returned to the yield surface is calculated as in Eq.(10). The continuum tangent stiffness matrix is formed as in Eq.(1).

$$
\begin{equation*}
\sigma_{\text {new }}=\sigma_{\text {trial }}-\Delta \lambda D_{e} \frac{\partial f}{\partial \sigma} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta \lambda=\frac{f\left(\sigma_{\text {trial }}\right)}{\left(\frac{\partial f}{\partial \sigma}\right)^{T} D_{e} \frac{\partial g}{\partial \sigma}} \tag{11}
\end{equation*}
$$

When two-vectored return is applicable (Figure 2b), the stress returned to the yield surface is calculated as in Eq.(12).

$$
\begin{equation*}
\sigma_{\text {new }}=\sigma_{\text {trial }}-\Delta \lambda_{1} D_{e} \frac{\partial f_{1}}{\partial \sigma}-\Delta \lambda_{2} D_{e} \frac{\partial f_{2}}{\partial \sigma} \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
& \Delta \lambda_{1}=\frac{b f_{1}\left(\sigma_{\text {trial }}\right)-d_{1} f_{2}\left(\sigma_{\text {trial }}\right)}{a b-d_{1} d_{2}} \tag{13}\\
& \Delta \lambda_{2}=\frac{a f_{2}\left(\sigma_{\text {trial }}\right)-d_{2} f_{1}\left(\sigma_{\text {trial }}\right)}{a b-d_{1} d_{2}} \tag{14}
\end{align*}
$$

The continuum tangent stiffness is formed in Eq.(15)

$$
D_{e p}=D_{e}-\frac{1}{a b-d_{1} d_{2}}\left(\begin{array}{l}
b D_{e} \frac{\partial g_{1}}{\partial \sigma} \frac{\partial f_{1}{ }^{T}}{\partial \sigma} D_{e}-d_{1} D_{e} \frac{\partial g_{1}}{\partial \sigma}{\frac{\partial f_{2}}{\partial \sigma}}^{T} D_{e} \tag{15}\\
-d_{2} D_{e} \frac{\partial g_{2}}{\partial \sigma} \frac{\partial f_{1}{ }^{T}}{\partial \sigma} D_{e}+a D_{e} \frac{\partial g_{2}}{\partial \sigma} \frac{\partial f_{2}}{\partial \sigma}
\end{array} D_{e}\right)
$$

with

$$
\begin{align*}
a & =\frac{\partial f_{1}^{T}}{\partial \sigma} \quad D_{e} \frac{\partial g_{1}}{\partial \sigma} \tag{16}\\
d_{1} & =\frac{\partial f_{1}^{T}}{\partial \sigma} \quad D_{e} \frac{\partial g_{2}}{\partial \sigma} \tag{17}\\
b & =\frac{\partial f_{2}^{T}}{\partial \sigma} \quad D_{e} \frac{\partial g_{2}}{\partial \sigma} \tag{18}\\
d_{2} & =\frac{\partial f_{2}^{T}}{\partial \sigma} \quad D_{e} \frac{\partial g_{1}}{\partial \sigma} \tag{19}
\end{align*}
$$

There are cases that neither one-vectored return nor two-vectored return is applicable and Crisfield ${ }^{46}$ (1987) recommends that the stress is returned to the apex of the yield surface. However, the apex is a fixed point and the tangent stiffness matrix at that point is [O] which is not realistic and makes the global stiffness matrix ill-conditioned. The author recommends that if such case

APPENDIX A: NONLINEAR FINITE ELEMENT ANALYSIS

occurs, the applied load should be reduced until either one or two-vectored return procedure is applicable.

Figure 1: Mohr-Coulomb yield surface space in (Abbo^{2}, 1997): (a) Octahedral plane; (b) Principal stress space

(a)

(b)

Figure 2: Backward Euler return mapping method (Crisfield ${ }^{46}$,1987): (a) Onevector return; (b) Two-vectored return

APPENDIX B: SOURCE CODE IN FORTRAN

B. 1 Subroutine for preconditioned $\operatorname{IDR}(s)$ to solve 1-by-1 block nonsymmetric linear system

SUBROUTINE idrs_r (pindx, n, jcsra, icsra, csra, jdel, idel, del, \& rhs, s, maxit, tol, matvec, relres, alu, jlu, ju, da)

```
! This subroutine uses preconditioned IDR method solve (A+delta)x=b
! nonsymmetric linear system with a right preconditioner.
! Preconditioners considered are: Jacobi, SSOR, ILU.
!
! Parameters:
! On input:
! pindx: preconditioner type
! = 0: no preconditioner
! = 1: Jacobi preconditioner, input requires DA
! vector, which is invert of diagonal entries
                    of A
                    = 2: ILU preconditioner, input requires alu, jlu,
                    ju vectors, which stores incomplete LU
                    factorization of A. Refer to ILU0 or ILUT
                    subroutine for definition of each vector.
                    = 3: SSOR preconditioner, input requires DA vector,
                    which is invert of diagonal entries of A
                    n: dimension of coefficient matrix A
!jcsra, icsra, csra: CSR storage of coefficient matrix Ke, elastic
            stiffness
    jdel,idel, del: CSR storage of coefficient matrix Delta, A=Kep=
                        Ke+ Delta
            rhs: at input, it is right hand vector b
                        at output,it is returned approximate solution x
                    s: input for IDR method, dimension of shadow space P.
                            Refer to IDR papers for more information
            maxit: user-defined maximum iteration count
            tol: user-defined stopping tolerance
            relative residual norm criterion for convergence
        On output:
            rhs: approximate solution x
        matvec: matrix-vector multiplication count when IDR(s)
            converges
                relres: relative residual when IDR(s) converges.
```

[^1]```
! Sonneveld, P., \& Gijzen, M. B. V. (2008). IDR(s) : A family of
! simple and fast algorithms for solving large nonsymmetric
! systems of linear equations. SIAM Journal on Scientific
! Computing, 31 (2), 1035-1062.
IMPLICIT NONE
INTEGER, PARAMETER: : iwp=SELECTED_REAL_KIND (15)
INTEGER, INTENT (IN) : : pindx, \(n\), jcsra(:), icsra(:), maxit, s
INTEGER, OPTIONAL, INTENT (IN) : : jdel (:), ide1 (:), jlu (:), ju (:)
REAL (iwp), INTENT (IN) : : csra (:), tol
REAL (iwp), OPTIONAL, INTENT (IN) : : del (:) , alu (:) , da (:)
INTEGER, INTENT (OUT) : : matvec
REAL (iwp), INTENT (OUT) : : relres
REAL (iwp), INTENT (INOUT) : : rhs (:)
INTEGER: : i, j, d, k1, k2, k, sd=2, seed (2), iters, err
REAL(iwp), ALLOCATABLE: :x (:), r(:), P(:, :), G(:, :), U(:, :), M(:, :), f(:), \&
 \(\mathrm{v}(:), \operatorname{temp}(:,:), \mathrm{p} 1(:), \mathrm{p} 2(:), \mathrm{c}(:), \mathrm{t}(:), \mathrm{q}(:), \mathrm{qi}(:), \mathrm{c} 1(:), \mathrm{v} 1(:), \mathrm{tt}(:)\)
REAL (iwp) : :angle, normr, tolb, zero=0.0_iwp, omega, ns, nt, ts, rho, alpha, \&
 beta, one=1. 0_iwp, normb
\(\operatorname{ALLOCATE}(x(n), r(n), P(n, s), G(n, s), U(n, s), M(s, s), f(s), v(n), t(n), \quad \&\)
 v1 (n) , tt (n) , p1 (n) , p2 (n) , c (s) , temp (\(\mathrm{s}, \mathrm{s}\)))
```



```
IF (s == 1) THEN ! set parameter similar to Bi-CGSTAB for comparison
 angle=zero
 \(P(:, 1)=r h s\)
ELSE
 ang1e=0. 7_iwp
 seed (1) \(=2147483562\)
 seed (2) \(=1\)
 CALL RANDOM_SEED (SIZE = sd)
 CALL RANDOM_SEED (PUT=seed (1:sd))
 CALL RANDOM_NUMBER (P)
END IF
!---------------------------Compute initial residual
x=zero
normb=SQRT (DOT_PRODUCT (rhs, rhs))
```



```
tolb \(=\) tol \(*\) normb
\(r=r h s\)
normr=normb
IF (normr <= tolb) THEN ! Initial guess is a good enough solution
 rhs=x
 iters \(=0\)
 matvec=0
 relres = normr/normb
 RETURN
```

END IF
! - =---
U=zero
M=zero
DO i=1,s
$M(i, i)=o n e$
END DO
omega=one
iters $=0$
matvec=0
iteration:DO WHILE ( normr > tolb .AND. iters < maxit )
$\mathrm{f}=\mathrm{MATMUL}$ (TRANSPOSE (P), r)
D0 $\mathrm{k}=1, \mathrm{~s}$
!------------------ Solve Mc=f using LU decomposition -
IF ( $\mathrm{s} /=1$ ) THEN
temp (1:s-k+1, $1: s-k+1)=\mathrm{M}(\mathrm{k}: \mathrm{s}, \mathrm{k}: \mathrm{s})$
$\mathrm{c}(\mathrm{k}: \mathrm{s})=\mathrm{f}(\mathrm{k}: \mathrm{s})$
CALL lubksb (temp (1:s-k+1, 1:s-k+1), s-k+1, c(k:s))
ELSE
$c(1)=f(1) / M(1,1)$
END IF
! $\quad \mathrm{v}=\mathrm{r}-\operatorname{MATMUL}(\mathrm{G}(:, \mathrm{k}: \mathrm{s}), \mathrm{c}(\mathrm{k}: \mathrm{s}))$
!-------------- Preconditioning: v=invert (preconditioner) *v
! If pindx $=0$ : no preconditioner so do nothing
SELECT CASE (pindx)
CASE (1) !Jacobi preconditioner
IF (PRESENT (da)) THEN
$\mathrm{v}=\mathrm{da} * \mathrm{v}$
ELSE
WRITE (*, ' (A)' )' Lack of DA vector'
EXIT
END IF
CASE (2)
IF (PRESENT (alu) ) THEN
CALL 1usol (n, v, v, alu, jlu, ju)
ELSE
WRITE (*, ' (A)')' Lack of ILU matrix'
EXIT
END IF
CASE (3)
IF (PRESENT (da)) THEN

! v1 $=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{v} \rightarrow$ Solve $(\mathrm{D}+\mathrm{L}) * \mathrm{v} 1=\mathrm{v}$
! v1 = D*v1
! v = (D+U) ${ }^{\wedge}-1 * v 1 ~-->$ Solve $(D+U) * v=~ v 1$


CALL 1solve (n, da, icsra, jcsra, csra, v, v1)
$\mathrm{v} 1=\mathrm{v} 1 / \mathrm{da}$
CALL usolve (n, da, icsra, jcsra, csra, v1, v)
ELSE
WRITE $(*$, ' (A)' )' Lack of DA vector'
EXIT
END IF
END SELECT
! $\mathrm{U}(:, \mathrm{k})=\operatorname{MATMUL}(\mathrm{U}(:, \mathrm{k}: \mathrm{s}), \mathrm{c}(\mathrm{k}: \mathrm{s}))+$ omega*v
!------- G(:, k) = MATMUL (A, U(:, k)) -- matrix-vector multiplication -
CALL csrbx (icsra, jcsra, csra, U(:, k), G(:, k))
IF (PRESENT (de1)) THEN
CALL csrbx (idel, jdel, del, $\mathrm{U}(:, \mathrm{k}), \mathrm{tt})$

$$
G(:, k)=G(:, k)+t t
$$

## END IF

matvec=matvec+1 ! after matvec, then count

D0 i $=1, k-1$
$\mathrm{p} 1=\mathrm{P}(:, \mathrm{i})$
$\mathrm{p} 2=\mathrm{G}(\mathrm{i}, \mathrm{k})$
alpha=DOT_PRODUCT (p1, p2)/M(i, i)
$G(:, k)=G(:, k)-\operatorname{alpha} * G(:, i)$
$\mathrm{U}(:, \mathrm{k})=\mathrm{U}(:, \mathrm{k})-\mathrm{alpha} * \mathrm{U}(:, \mathrm{i})$
END DO
M(k:s, k) $=\operatorname{MATMUL}(\operatorname{TRANSPOSE}(P(:, k: s)), G(:, k))$
IF ( $\mathrm{M}(\mathrm{k}, \mathrm{k})==$ zero) THEN
WRITE (*,' (A)' )"M(k, k) = 0. IDR fails!"
RETURN !fail
END IF
beta $=\mathrm{f}(\mathrm{k}) / \mathrm{M}(\mathrm{k}, \mathrm{k})$
$r=r-\operatorname{beta} * G(:, k)$
$\mathrm{x}=\mathrm{x}+\operatorname{beta} * \mathrm{U}(:, \mathrm{k})$
normr=SQRT (DOT_PRODUCT ( $\mathrm{r}, \mathrm{r}$ ))
iters=iters +1 ! update x then count iters
IF (normr < tolb. OR. iters == maxit) THEN
rhs $=x$
relres=normr/normb

## RETURN

END IF
IF (k<s)f(k+1:s)=f(k+1:s)-beta*M(k+1:s,k)
END DO
IF (normr <tolb.OR. iters == maxit) THEN
rhs $=x$
relres=normr/normb
RETURN
END IF

```
! If pindx = 0: no preconditioner so do nothing
 SELECT CASE (pindx)
 CASE (0)
 v = r
 CASE(1) !Jacobi preconditioner
 IF (PRESENT (da)) THEN
 v = da*r
 ELSE
 WRITE (*,'(A)')'Lack of DA vector'
 EXIT
 END IF
 CASE (2)
 IF (PRESENT (alu)) THEN
 CALL lusol (n, r, v, alu, jlu, ju)
 ELSE
 WRITE (*,'(A)')'Lack of ILU matrix'
 EXIT
 END IF
 CASE (3)
 IF (PRESENT (da)) THEN
!----------------------------------
! v1 = (D+L)^ - 1*r --> Solve (D+L)*v1 = r
! v1 = D*v1
! v = (D+U)^ -1*v1 --> Solve (D+U)*v = v1
 CALL 1solve (n, da, icsra, jcsra, csra, r, v1)
 v1 = v1/da
 CALL usolve(n, da, icsra, jcsra, csra, v1, v)
 ELSE
 WRITE (*,' (A)')'Lack of DA vector'
 EXIT
 END IF
 END SELECT
!------------ t=MATMUL(A, v) -- matrix vector multiplication ----------
 CALL csrbx(icsra, jcsra, csra, v, t)
 IF (PRESENT (del)) THEN
 CALL csrbx(ide1, jdel, de1, v, tt)
 t=t+tt
 END IF
 matvec=matvec+1
!---
 ns = SQRT (DOT_PRODUCT (r,r))
 nt = SQRT (DOT_PRODUCT (t, t))
 rho = DABS (DOT_PRODUCT (t,r)/(nt*ns))
 omega=DOT_PRODUCT (t,r) / (nt*nt)
 IF (s/=1) THEN
 IF (rho < angle) omega = omega*angle/rho
 END IF
```

```
IF (omega==zero) THEN
 WRITE (*, (A)')"omega \(=0\). IDR fails!"
 RETURN !fail
END IF
```

```
 r = r - omega*t
 x = x + omega*V
 normr = SQRT (DOT_PRODUCT (r, r))
 iters = iters + 1
 IF (normr <tolb .OR. iters == maxit) THEN
 rhs=x
 relres=normr/normb
 RETURN
 END IF
END DO iteration
RETURN
END SUBROUTINE idrs_r
```

```
!------------------DIRECT LU decomposition and solver---------------------
SUBROUTINE ludcmp (a, n, indx, d)
! This subroutine form the LU decomposition of a square matrix
! On input
! a : square matrix, output as LU decomposition
! n : dimension of [a]
! On output
! indx : vector recording the row permutation effected by
 the partial pivoting
 d = 1 if the number of row interchanges is even
! = -1 if the number of row interchanges is odd
! Reference: Numerical recipes
 by w.h. press, b. p. flannery, s.a. teukolsky and
 w. t. vetterling, cambridge university press, 1986
INTEGER, PARAMETER: : iwp=SELECTED_REAL_KIND (15)
REAL (iwp), INTENT (INOUT) : :a (:, :)
REAL (iwp) : :amax, dum, sum, tiny=1. 5e-16_iwp
REAL(iwp),ALLOCATABLE::vv (:)
INTEGER, INTENT (IN) : : n
INTEGER, INTENT (OUT) : : indx (:) , d
INTEGER:: i, j, k, ii, 11, imax
ALLOCATE (vv (n))
d=1
 D0 i=1,n
 amax=0.0_iwp
 D0 j=1,n
 IF (abs (a(i,j)) >= amax) amax=abs (a(i, j))
```

```
 END DO ! j loop
 IF (amax . LT. 0. 0_iwp) THEN
 d = 1 !fail
 RETURN
 END IF
 vv(i) = 1.0_iwp / amax
END DO ! i loop
D0 j=1,n
 D0 i=1, j-1
 sum = a(i, j)
 DO k=1, i-1
 sum = sum - a(i,k)*a(k,j)
 END DO ! k loop
 a(i,j) = sum
 END DO ! i loop
 amax = 0.0_iwp
 D0 i=j,n
 sum = a(i, j)
 DO k=1, j-1
 sum = sum - a(i,k)*a(k,j)
 END DO ! k loop
 a(i,j) = sum
 dum = vv(i)*dabs(sum)
 IF(dum . ge. amax) THEN
 imax = i
 amax = dum
 END IF
 END D0 ! i loop
 IF(j . ne. imax) THEN
 DO k=1,n
 dum = a(imax, k)
 a(imax, k) = a(j,k)
 a(j,k) = dum
 END DO ! k loop
 d = -d
 vv(imax) = vv (j)
 END IF
 indx(j) = imax
 IF(dabs(a(j, j)) < tiny) a(j, j) = tiny
 IF (j . ne. n) THEN
 dum = 1.0_iwp / a(j, j)
 DO i=j+1,n
 a(i, j) = a(i,j)*dum
 END DO ! i loop
```


## APPENDIX B: SOURCE CODE IN FORTRAN 90

END IF
END DO ! j loop
RETURN
END SUBROUTINE ludcmp

```
SUBROUTINE lubksb (a, n, b)
! This subroutine solves the linear system [a] {x}={b}
! On input
! a : LU decomposition from the "ludcmp" subroutine
! n : dimension of [a]
! indx: permutation vector returned by "ludcmp" subroutine
! b : right-hand-side vector
! On output
! b : solution {x}
INTEGER, PARAMETER: : iwp=SELECTED_REAL_KIND (15)
REAL (iwp), INTENT (INOUT) : :a(:, :), b (:)
REAL (iwp)::sum
INTEGER, ALLOCATABLE : : indx (:)
INTEGER, INTENT (IN) : : n
INTEGER::d, ii, i, 11, j
!
ALLOCATE(indx (n))
CALL ludcmp (a, n, indx, d)
!
ii = 0
DO i=1,n
 11 = indx(i)
 sum = b(11)
 b(11) = b(i)
 IF(ii . NE. 0) THEN
 D0 j=ii,i-1
 sum = sum - a(i, j)*b(j)
 END DO ! j loop
 ELSE IF(sum . NE. 0.0_iwp) THEN
 ii = i
 END IF
 b(i) = sum
END DO ! i loop
D0 i=n, 1, -1
 sum = b (i)
 IF (i < n) THEN
 D0 j=i+1,n
 sum = sum - a(i, j)*b (j)
 END D0 ! j loop
 END IF
 b(i) = sum / a(i,i)
```

END DO ! i loop
RETURN
END SUBROUTINE lubksb


SUBROUTINE lusol (n, y, x, alu, jlu, ju)
IMPLICIT NONE
INTEGER, PARAMETER: :iwp=SELECTED_REAL_KIND (15)
REAL(iwp), INTENT(IN)::y(:), alu(:)
REAL(iwp), INTENT (OUT): : x (:)
INTEGER, INTENT(IN) :: n, jlu(:), ju(:)

```
! This routine solves the system (LU) x = y,
! given an LU decomposition of a matrix stored in (alu, jlu, ju)
! modified sparse row format
!--
! on entry:
! n = dimension of system
! y = the right-hand-side vector
! alu, jlu, ju
! = the LU matrix as provided from the ILU routines.
!
! on return
! x = solution of LU x = y.
! Note: routine is in place: call lusol (n, x, x, alu, jlu, ju)
! will solve the system with rhs x and overwrite the result on
x .
```



```
! local variables
!
 integer:: i,k
!
! forward solve
!
 do i = 1, n
 x(i) = y(i)
 do k=jlu(i), ju(i)-1
 x(i) = x(i) - alu(k)*x(jlu(k))
 end do
 end do
!
! backward solve.
!
 do i = n, 1, -1
 do k=ju(i), jlu(i+1)-1
 x(i) = x(i) - alu(k)*x(jlu(k))
```

```
 end do
 x(i) = alu(i)*x(i)
 end do
!
RETURN
END SUBROUTINE lusol
```


## B. 2 Subroutine for preconditioned $\operatorname{IDR}(s)$ to solve 2-by-2 block nonsymmetric linear system

SUBROUTINE idrs_blkp (pindx, n, ns, jcsra, icsra, csra, jdel, idel, del, rhs, s, \&
maxit, tol, matvec, relres, icsrs, jcsrs, csrs, slu, sjlu, sju, da1, schrlu, \&
schrjlu, schrju, gjal, icsrbt, jcsrbt, csrbt)

This subroutine uses preconditioned IDR method solve
! (A + delta) $\mathrm{x}=\mathrm{b}$
! nonsymmetric linear system with a right block preconditioner.
! pindx $=4$ : Block diagonal preconditioner is of the form

$!\quad M=|$| $\mid K^{2}$ | 0 |
| :--- | :--- |
| 0 | $S^{\sim} \mid$ |
| 0 | $v=\|v 1\|$ |

! Solve Mv = u by: v1 = invert $\left(\mathrm{K}^{\sim}\right) * u 1$
! $\quad \mathrm{v} 2=$ invert $\left(\mathrm{S}^{\sim}\right)$ *u2
pindx = 5: Block constrained preconditioner is of the form

$M=|$| $\mid K^{\sim}$ | $B \mid$ |
| :--- | :--- |
| $B$ | $S^{\sim}\|\quad v=\|v 1\|$ |
| $v 2 \mid$ |  |

Solve $M v=u$ by: $w=\left(K^{\sim}\right)^{\wedge}-1 * u 1$
$z=\left(S^{\sim}\right)^{\wedge}-1 *\left(B^{\prime} *_{W}-\mathrm{u} 2\right)$
$\mathrm{v} 1=\left(\mathrm{K}^{\sim}\right)^{\wedge}-1 *(\mathrm{v} 1-\mathrm{B} * \mathrm{z})$
$\mathrm{v} 2=\mathrm{z}$
Parameters:
On input:
pindx: index indicating which block preconditioner is used
$=421:$ use $\mathrm{K} 2=$ ILU0 of $\mathrm{K}, \mathrm{S} 1=\operatorname{diag}\left(\mathrm{B}^{\prime} * \operatorname{diag}(\mathrm{~K})^{\wedge}-1 * \mathrm{~B}+\mathrm{C}\right)$
$=422$ : use K2 $=$ ILU0 of $\mathrm{K}, \mathrm{S} 1=\operatorname{ILU0}\left(\mathrm{B}^{\prime} * \operatorname{diag}(\mathrm{~K})^{\wedge}-1 * \mathrm{~B}+\mathrm{C}\right)$
$=431:$ use $\mathrm{K} 3=\mathrm{SSOR}$ of $\mathrm{K}, \mathrm{S} 1=\operatorname{diag}\left(\mathrm{B}^{\prime} * \operatorname{diag}(\mathrm{~K})^{\wedge}-1 * \mathrm{~B}+\mathrm{C}\right)$
$=432$ : use $\mathrm{K} 3=\mathrm{SSOR}$ of $\mathrm{K}, \mathrm{S} 2=\operatorname{ILU0}\left(\mathrm{B}^{\prime} * \operatorname{diag}(\mathrm{~K})^{\wedge}-1 * \mathrm{~B}+\mathrm{C}\right)$
n : dimension of coefficient matrix A
ns: number of soil dof, $n-n s=$ number of fluid dof jcsra, icsra,
csra: CSR storage of coefficient matrix A
jdel, idel, del:CSR storage of matrix delta
rhs: at input, it is right hand vector $b$
at output, it is returned approximate solution x
pre: preconditioner, from "form_preconditioner"
s: input for IDR method
maxit: user-defined maximum iteration count;
tol: it is the user-defined stopping tolerance;
relative residual norm criterion ( $x 0=0$ ) for
convergence
alu, jlu : matrix stored in Modified Sparse Row (MSR) format
containing the $L$ and $U$ factors together. The

```
! diagonal (stored in alu(1:n)) is inverted. Each
! i-th row of the alu, jlu matrix contains the i-th
! row of L (excluding the diagonal entry=1) followed
! by the i-th row of U.
ju: pointer to the diagonal elements in alu, jlu.!
On output:
 rhs: approximate solution x
 iters: the iterative count when PCG converges;
 relres: the relative residual when PCG converges.
! Reference:
! Sonneveld, P., & Gijzen, M. B. V. (2008). IDR(s): A family of
! simple and fast algorithms for solving large nonsymmetric
! systems of linear equations. SIAM Journal on Scientific
! Computing, 31(2), 1035-1062.
```

IMPLICIT NONE
INTEGER, PARAMETER: : iwp=SELECTED_REAL_KIND (15)
INTEGER, INTENT (IN) : : n, ns, jcsra(:), icsra(:), maxit, s, pindx
INTEGER, OPTIONAL, INTENT (IN) : : jdel (: ), ide1 (: ), icsrs (:), jcsrs (: ), \& sjlu(:), sju(:), schrju(:), schrjlu(:), icsrbt(:), jcsrbt (:)
REAL (iwp), INTENT (IN) : : csra (:), tol
REAL (iwp), OPTIONAL, INTENT (IN) : :da1 (:), del (:), csrs (:), slu(:), \& schrlu(:), gjal, csrbt (:)
INTEGER, INTENT (OUT) : : matvec
REAL (iwp), INTENT (OUT) : : relres
REAL (iwp), INTENT (IN OUT) : : rhs (: )
INTEGER: : i, j, d, k1, k2, k, sd=2, seed(2), iters
INTEGER, ALLOCATABLE: :indx (:)
REAL (iwp), ALLOCATABLE: : $\mathrm{x}(:), \mathrm{r}(:), \mathrm{P}(:,:), \mathrm{G}(:,:), \mathrm{U}(:,:), \mathrm{M}(:,:), \mathrm{f}(:), \&$
 tt (:) , v2 (: ) , v3 (: )
REAL (iwp) : :angle, normr, tolb, zero=0.0_iwp, omega, nr, nt, ts, rho, \& alpha, beta, r0, one=1.0_iwp, normb
!----------------------- Generate Random Matrix P
IF ( $s==1$ ) THEN
angle=zero
ELSE
angle=0.7_iwp
END IF
$\operatorname{ALLOCATE}(x(n), r(n), P(n, s), f(s), v(n), t(n), v 1(n), v 2(n s), v 3(n), t t(n))$
! generate random matrix $P$
seed (1) $=2147483560$
seed (2) $=1$
CALL RANDOM_SEED (SIZE = sd)
CALL RANDOM_SEED (PUT=seed (1:sd))
CALL RANDOM_NUMBER (P)
IF $(s==1) P(:, 1)=r h s$

```
\(\mathrm{x}=\) zero
normb=SQRT (DOT_PRODUCT (rhs, rhs))
!------------------------------- Relative tolerance
tolb \(=\) tol \(*\) normb
r=rhs
normr=normb
```



```
IF (normr <= tolb) THEN ! Initial guess is a good enough
solution
 rhs=x
 iters \(=0\)
 matvec=0
 relres \(=\) normr/normb
 RETURN
END IF
\(\operatorname{ALLOCATE}(\mathrm{G}(\mathrm{n}, \mathrm{s}), \mathrm{U}(\mathrm{n}, \mathrm{s}), \mathrm{M}(\mathrm{s}, \mathrm{s}))\)
\(\mathrm{G}=\) zero
U=zero
M=zero
DO i=1,s
 \(M(i, i)=o n e\)
END DO
omega=one
iters \(=0\)
matvec=0
\(\operatorname{ALLOCATE}(\mathrm{p} 1(\mathrm{n}), \mathrm{p} 2(\mathrm{n}), \mathrm{c}(\mathrm{s}), \mathrm{c} 1(\mathrm{~s}))\)
k=1
ALLOCATE (temp (\(\mathrm{s}-\mathrm{k}+1, \mathrm{~s}-\mathrm{k}+1\)), indx (\(\mathrm{s}-\mathrm{k}+1\)))
iteration:DO WHILE (normr > tolb .AND. iters < maxit)
 \(\mathrm{f}=\mathrm{MATMUL}(\) TRANSPOSE \((\mathrm{P}), \mathrm{r})\)
 D0 \(\mathrm{k}=1\), s
```



```
 temp (1:s-k+1, \(1: s-k+1)=\mathrm{M}(\mathrm{k}: \mathrm{s}, \mathrm{k}: \mathrm{s})\)
 ! Solve Mc=f using LU decomposition
 \(\mathrm{c}(\mathrm{k}: \mathrm{s})=\mathrm{f}(\mathrm{k}: \mathrm{s})\)
 CALL lubksb (temp (1: \(\mathrm{s}-\mathrm{k}+1,1: \mathrm{s}-\mathrm{k}+1), \mathrm{s}-\mathrm{k}+1, \mathrm{c}(\mathrm{k}: \mathrm{s})\))
```



```
 \(\mathrm{v}=\mathrm{r}-\operatorname{MATMUL}(\mathrm{G}(:, \mathrm{k}: \mathrm{s}), \mathrm{c}(\mathrm{k}: \mathrm{s}))\)
```



```
 SELECT CASE (pindx)
 CASE (400:500)
!-------------------Compute v(1:ns)=invert (K~) *V
 SELECT CASE (MOD (pindx, 100) -MOD (pindx, 10))
 CASE (10) ! K1 \(=\operatorname{diag}(\mathrm{K})\)
 \(\mathrm{v}(1: \mathrm{ns})=\mathrm{da1}(1: \mathrm{ns}) * \mathrm{v}(1: \mathrm{ns})\)
 CASE (20) ! K2 = ILU0 (K)
```

CALL lusol(ns, v(1:ns), v(1:ns), slu, sjlu, sju)
CASE (30) ! K3 = SSOR (K)
! Solve $(\mathrm{L}+\mathrm{D}) *\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) * \mathrm{v} 1(1: \mathrm{ns})=\mathrm{v}(1: \mathrm{ns})$
$!\mathrm{v} 1=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{v} \rightarrow->$ Solve $(\mathrm{D}+\mathrm{L}) * \mathrm{v} 1=\mathrm{v}$
! v1 = D*v1
! v = (D+U) ${ }^{\wedge}-1 * v 1 ~-->$ Solve $(\mathrm{D}+\mathrm{U}) * \mathrm{v}=\mathrm{v} 1$
CALL
1solve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v(1:ns), v1(1:ns))
$\mathrm{v} 1(1: \mathrm{ns})=\mathrm{v} 1(1: \mathrm{ns}) / \mathrm{da} 1(1: \mathrm{ns})$
CALL
usolve(ns, da1(1:ns), icsrs, jcsrs, csrs, v1(1:ns), v(1:ns))
END SELECT
!---------------Compute v(ns+1:n)=invert $\left(S^{\sim}\right) *_{v}(n s+1: n)$
SELECT CASE (MOD (pindx, 10))
$\operatorname{CASE}(1)!$ S1 $=\operatorname{diag}(S)$
$\mathrm{v}(\mathrm{ns}+1: \mathrm{n})=\operatorname{da} 1(\mathrm{~ns}+1: \mathrm{n}) *_{\mathrm{V}}(\mathrm{ns}+1: \mathrm{n})$
$\operatorname{CASE}(2,3)!\quad \mathrm{S} 2=\operatorname{ILU0}\left(\mathrm{B}^{\prime} * \operatorname{diag}(\mathrm{~K})^{\wedge}-1 * \mathrm{~B}+\mathrm{C}\right)$
CALL lusol ( $\mathrm{n}-$
$n s, v(n s+1: n) / g j a l, v(n s+1: n)$, schrlu, schrjlu, \& schrju)
END SELECT


SELECT CASE (MOD (pindx, 100) -MOD (pindx, 10))
CASE (10) ! K1 = diag (K) $\mathrm{v} 1(1: \mathrm{ns})=\mathrm{da} 1(1: \mathrm{ns}) * \mathrm{v}(1: \mathrm{ns})$
CASE (20) ! K2 = ILU0
CALL lusol(ns, v(1:ns), v1(1:ns), slu, sjlu, sju)
CASE (30) ! K3 = SSOR (K)
! Solve $(\mathrm{L}+\mathrm{D}) *\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) * \mathrm{v} 1(1: \mathrm{ns})=\mathrm{v}(1: \mathrm{ns})$
$!\mathrm{v} 2=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{v} \rightarrow->$ Solve $(\mathrm{D}+\mathrm{L}) * \mathrm{v} 2=\mathrm{v}$
$!\mathrm{v} 2=\mathrm{D} * \mathrm{v} 2$
$!\mathrm{v} 1=(\mathrm{D}+\mathrm{U})^{\wedge}-1 * \mathrm{v} 2 \rightarrow$ Solve $(\mathrm{D}+\mathrm{U}) * \mathrm{v} 1=\mathrm{v} 2$
CALL
1solve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v(1:ns), v2(1:ns))
$\mathrm{v} 2(1: \mathrm{ns})=\mathrm{v} 2(1: \mathrm{ns}) / \mathrm{da} 1(1: \mathrm{ns})$
!CALL
usolve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v1(1:ns), v(1:ns))

## CALL

usolve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v2 (1:ns), v1 (1:ns)) ! v1 ( $1: n s$ ) $=\mathrm{v}(1: n s)$
END SELECT


CALL
csrbx (icsrbt, jcsrbt, csrbt, v1 (1:ns), v1 (ns+1:n)) ! $B^{\prime} *_{v} 1(1: n s)$
$\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})=\mathrm{v} 1(\mathrm{~ns}+1: n)-\mathrm{v}(\mathrm{ns}+1: \mathrm{n})$
SELECT CASE (MOD (pindx, 10))

## CASE (1)

$$
\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})=\mathrm{da} 1(\mathrm{~ns}+1: \mathrm{n}) * \mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})
$$

## CASE $(2,3)$

CALL lusol (n-ns, v1 (ns+1:n), v3(1:n-
ns), schrlu, schrjlu, \&
schrju)
$\mathrm{v} 1(\mathrm{~ns}+1: n)=\mathrm{v} 3(1: n-\mathrm{ns})$

## END SELECT

!-------------n1(1:ns)=(K~$)^{\wedge}-1 *(v(1: n s)-B * v 1(n s+1: n))$
$\mathrm{v}(\mathrm{ns}+1: \mathrm{n})=\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})$ ! final vector
CALL csrbtx (icsrbt, jcsrbt, csrbt, v1 (ns+1:n), v1(1:ns))
$\mathrm{v} 1(1: \mathrm{ns})=\mathrm{v}(1: \mathrm{ns})-\mathrm{v} 1(1: \mathrm{ns})$
SELECT CASE (MOD (pindx, 100) -MOD (pindx, 10))

## CASE (10)

$\mathrm{v}(1: \mathrm{ns})=\mathrm{da} 1(1: \mathrm{ns}) *_{\mathrm{v}} 1(1: \mathrm{ns})$

## CASE (20)

CALL lusol(ns, v1 (1:ns), v(1:ns), slu, sjlu, sju) ! final
vector

$$
\operatorname{CASE}(30)!\mathrm{K} 3=\operatorname{SSOR}(\mathrm{K})
$$

! Solve $(\mathrm{L}+\mathrm{D}) *\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) * \mathrm{v}(1: \mathrm{ns})=\mathrm{v} 1(1: \mathrm{ns})$
$!\mathrm{v}=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{v} 1-->$ Solve $(\mathrm{D}+\mathrm{L}) * \mathrm{v}=\mathrm{v} 1$
! v = D*v
! $\mathrm{v} 1=(\mathrm{D}+\mathrm{U})^{\wedge}-1 *_{\mathrm{v}}-->$ Solve $(\mathrm{D}+\mathrm{U}) * \mathrm{v} 1=\mathrm{v}$
CALL
1solve(ns, da1(1:ns), icsrs, jcsrs, csrs, v1(1:ns), v(1:ns)) $\mathrm{v}(1: \mathrm{ns})=\mathrm{v}(1: \mathrm{ns}) / \mathrm{da} 1(1: \mathrm{ns})$

## CALL

usolve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v(1:ns), v1(1:ns))
!CALL
usolve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v(1:ns), v(1:ns))
$\mathrm{v}(1: \mathrm{ns})=\mathrm{v} 1(1: \mathrm{ns})$

## END SELECT

END SELECT


D0 i $=1, \mathrm{k}-1$
$\mathrm{p} 1=\mathrm{P}(:, \mathrm{i})$
p2 $=G(:, k)$
alpha=DOT_PRODUCT (p1, p2) /M (i, i)
$G(:, k)=G(:, k)-\operatorname{alpha*} G(:, i)$
$\mathrm{U}(:, \mathrm{k})=\mathrm{U}(:, \mathrm{k})-\mathrm{alpha} * \mathrm{U}(:, \mathrm{i})$
END DO
$\mathrm{M}(\mathrm{k}: \mathrm{s}, \mathrm{k})=\operatorname{MATMUL}(\operatorname{TRANSPOSE}(\mathrm{P} \quad(:, \mathrm{k}: \mathrm{s})), \mathrm{G}(:, \mathrm{k}))$
IF ( $\mathrm{M}(\mathrm{k}, \mathrm{k}$ ) ==zero) THEN
WRITE (*, (A)' $)^{\prime \prime} M(k, k)=0$. IDR fails!"
RETURN !fail
END IF
beta $=\mathrm{f}(\mathrm{k}) / \mathrm{M}(\mathrm{k}, \mathrm{k})$
$r=r-\operatorname{beta} * G(:, k)$
$\mathrm{x}=\mathrm{x}+\operatorname{beta} * \mathrm{U}(:, \mathrm{k})$
normr=SQRT (DOT_PRODUCT (r, r))
iters=iters +1 ! update $x$ then count iters
IF (normr < tolb. OR. iters == maxit) THEN
rhs=x
relres=normr/normb
RETURN
END IF
IF (k<s)f(k+1:s)=f(k+1:s)-beta*M(k+1:s,k)
END DO
IF (normr <tolb.OR. iters == maxit ) THEN
$r h s=x$
relres=normr/normb
RETURN
END IF
!-------------- Preconditioning: v=invert (preconditioner) *r
SELECT CASE (pindx)
CASE (400:500)

SELECT CASE (MOD (pindx, 100) -MOD (pindx, 10))
CASE (10)! K1 = diag (K)
$\mathrm{v}(1: \mathrm{ns})=\mathrm{da} 1(1: \mathrm{ns}) * \mathrm{r}(1: \mathrm{ns})$
CASE (20) ! K2 = ILU0 (K)
CALL lusol(ns, r(1:ns), v(1:ns), slu, sjlu, sju)
CASE (30) ! K3 $=\operatorname{SSOR}(\mathrm{K})$
! Solve $(\mathrm{L}+\mathrm{D}) *\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) * v 1(1: \mathrm{ns})=r(1: \mathrm{ns})$
! $\mathrm{v} 1=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{r}-->$ Solve $(\mathrm{D}+\mathrm{L}) * \mathrm{v} 1=\mathrm{r}$
! v1 = D*v1
$!\mathrm{v}=(\mathrm{D}+\mathrm{U})^{\wedge}-1 * \mathrm{v} 1 \rightarrow$ Solve $(\mathrm{D}+\mathrm{U}) * \mathrm{v}=\mathrm{v} 1$
CALL
1solve(ns, da1 (1:ns), icsrs, jcsrs, csrs, r(1:ns), v1(1:ns)) $\mathrm{v} 1(1: \mathrm{ns})=\mathrm{v} 1(1: \mathrm{ns}) / \mathrm{da} 1(1: \mathrm{ns})$
CALL
usolve(ns, da1(1:ns), icsrs, jcsrs, csrs, v1(1:ns), v(1:ns))

END SELECT

SELECT CASE (MOD (pindx, 10))
CASE (1) ! S1 = diag (S) $\mathrm{v}(\mathrm{ns}+1: \mathrm{n})=\mathrm{da} 1(\mathrm{~ns}+1: \mathrm{n}) * \mathrm{r}(\mathrm{ns}+1: \mathrm{n})$
$\operatorname{CASE}(2,3)!\mathrm{S}=\operatorname{ILU0}$
CALL lusol (n-
ns, $r(n s+1: n) / g j a l, v(n s+1: n)$, schrlu, schrjlu, schr ju)
END SELECT


SELECT CASE (MOD (pindx, 100)-MOD (pindx, 10))
CASE (10)
$\mathrm{v} 1(1: \mathrm{ns})=\mathrm{da} 1(1: \mathrm{ns}) * \mathrm{r}(1: \mathrm{ns})$
CASE (20)
CALL lusol(ns, r(1:ns), v1(1:ns), slu, sjlu, sju)
CASE (30)! K3 = SSOR (K)
! Solve ( $\mathrm{L}+\mathrm{D}$ ) $*\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) *$ v1 (1:ns) $=r(1: \mathrm{ns})$
! $\mathrm{v} 2=(\mathrm{D}+\mathrm{L})^{\wedge}-1 * \mathrm{r}-\mathrm{>}$ Solve ( $\left.\mathrm{D}+\mathrm{L}\right) * \mathrm{v} 2=r$
$!\mathrm{v} 2=\mathrm{D} * \mathrm{v} 2$
! v1 = (D+U) $)^{\wedge}-1 * v 2-->$ Solve $(D+U) * v 1=$ v2
CALL
1solve(ns, da1(1:ns), icsrs, jcsrs, csrs, r(1:ns), v2(1:ns))
v2(1:ns) $=\mathrm{v} 2(1: \mathrm{ns}) / \mathrm{da1}(1: \mathrm{ns})$
!CALL
usolve(ns, da1 (1:ns), icsrs, jcsrs, csrs, v1 (1:ns), v(1:ns))
CALL
usolve (ns, da1 (1:ns), icsrs, jcsrs, csrs, v2(1:ns), v1(1:ns))

## END SELECT

```
! ----------- v1(ns+1:n) = (SN)^-1*(B`*v1(ns+1:n) - r(ns+1:n))
```

CALL csrbx (icsrbt, jcsrbt, csrbt, v1(1:ns), v1 (ns+1:n))
$\mathrm{v} 1(\mathrm{~ns}+1: n)=\mathrm{v} 1(\mathrm{~ns}+1: n)-\mathrm{r}(\mathrm{ns}+1: \mathrm{n})$
SELECT CASE (MOD (pindx, 10))
CASE (1)
!v1(ns+1:n)=da1(ns+1:n)*(v1(ns+1:n)-r(ns+1:n))
$\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})=\mathrm{da} 1(\mathrm{~ns}+1: \mathrm{n}) * \mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})$
CASE (2, 3)
!CALL lusol ( n -
ns, v1 (ns+1:n), v1 (ns+1:n), schrlu, schrj1u, schr ju)
CALL lusol(n-ns, v1 (ns+1:n), v3(1:n-
ns), schrlu, schrjlu, schr ju)

$$
\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})=\mathrm{v} 3(1: \mathrm{n}-\mathrm{ns})
$$

END SELECT


```
 \(\mathrm{v}(\mathrm{ns}+1: \mathrm{n})=\mathrm{v} 1(\mathrm{~ns}+1: \mathrm{n})\) !final vector
 CALL csrbtx (icsrbt, jcsrbt, csrbt, v1 (ns+1:n), v1(1:ns))
 v1 (1:ns) \(=\mathrm{r}(1: \mathrm{ns})-\mathrm{v} 1\) (1:ns)
 SELECT CASE (MOD (pindx, 100) -MOD (pindx, 10))
 CASE (10)
 \(\mathrm{v}(1: \mathrm{ns})=\mathrm{da} 1(1: \mathrm{ns}) *_{\mathrm{v}} \mathrm{l}(1: \mathrm{ns})\)
 CASE (20)
 CALL lusol(ns, v1(1:ns), v(1:ns), slu, sjlu, sju) ! final
vector
 CASE (30)! K3 = SSOR (K)
 ! Solve (\(\mathrm{L}+\mathrm{D}\)) \(*\left(\mathrm{D}^{\wedge}-1\right) *(\mathrm{U}+\mathrm{D}) * \mathrm{v}(1: \mathrm{ns})=\mathrm{v} 1(1: \mathrm{ns})\)
 ! v2 = (D+L) ^-1*v1 --> Solve (D+L) *v2 = v1
 ! v2 = D*v2
 v = (D+U) ^-1*v2 --> Solve (D+U) *v = v2
 CALL
1solve (ns, da1 (1:ns), icsrs, jcsrs, csrs, v1(1:ns), v2(1:ns))
 v2(1:ns)=v2(1:ns)/da1(1:ns)
 CALL
usolve (ns, da1 (1:ns), icsrs, jcsrs, csrs, v2 (1:ns), v(1:ns))
 END SELECT
 END SELECT
!------------ t=MATMUL (A, v) -- matrix vector multiplication
 CALL csrbx (icsra, jcsra, csra, v, t)
 IF (PRESENT (del)) THEN
 CALL csrbx (idel, jdel, del, v, tt)
 \(\mathrm{t}=\mathrm{t}+\mathrm{tt}\)
 END IF
 matvec=matvec+1
```


$\mathrm{nr}=\operatorname{SQRT}($ DOT_PRODUCT $(\mathrm{r}, \mathrm{r}))$
$\mathrm{nt}=\operatorname{SQRT}($ DOT_PRODUCT $(\mathrm{t}, \mathrm{t}))$
! ts = DOT_PRODUCT ( $\mathrm{t}, \mathrm{r}$ )
rho $=\operatorname{ABS}($ DOT_PRODUCT $(t, r) /(n t * n r))$
! om=ts/ (nt*nt)
omega=DOT_PRODUCT ( $\mathrm{t}, \mathrm{r}$ )/DOT_PRODUCT ( $\mathrm{t}, \mathrm{t}$ )
IF ( rho < angle ) omega = omega*angle/rho
IF (omega==zero) THEN
WRITE (*,' (A)')"omega = 0. IDR fails!"
RETURN !fail
END IF
r = r - omega*t
$\mathrm{x}=\mathrm{x}+$ omega* $_{\mathrm{v}}$
normr $=\operatorname{SQRT}($ DOT_PRODUCT (r, r))
iters = iters + 1
WRITE $(*, *)$ iters," ", normr/normb

IF (normr <tolb .OR. iters == maxit ) THEN rhs=x
relres=normr/normb RETURN
END IF
END DO iteration
RETURN
END SUBROUTINE idrs_blkp


[^0]:    ${ }^{1}$ It should be noted that this $\alpha(\%)$ has no relation with the $\alpha$ in the block preconditioners in Section 2.3.3.

[^1]:    ! Reference:

