
AUTOMATED SCHEDULE GENERATION AND

ANALYSIS FROM A CONSTRUCTION REQUIREMENT

PERSPECTIVE

NGUYEN THI QUI

(B.Eng. (Hons.), M.Eng,

Hochiminh City University of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CIVIL AND

ENVIRONMENTAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

DECI,ARATION

I hereby declare that the thesis is my original work

and it has been written by me in its entirely.

I have duly acknowledged all the sour@s of information

which have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

NGUYENTIII QUI

7 AugustzLlS

ii

This page is intentionally left blank.

iii

ACKNOWLEDGEMENTS

It would not have been possible to write this thesis without the help of numerous

people, and only some of whom it is possible to give particular mention here.

First and foremost, I would like to express my deepest thanks to my parents, my

parents-in-law and especially my husband, who are always by my side to rigidly

support me over the past five years. Without their understanding and encouragement, I

would not have sustained through the stress and frustration of the research work.

I also would like to express my utmost gratitude to my supervisor, Prof David Chua,

for his wisdom, knowledge and enthusiasm in guiding me so that I can complete my

thesis. His instruction and constant motivating power have helped me to overcome the

difficulties and challenges throughout the research. To me, he is not only a great

supervisor but also a great teacher who has helped me in various ways, both

academically and professionally.

I wish to thank many industry people, especially Ms Zhao Yu from House

Development Board (HDB), who has helped me to gather practical knowledge on

construction planning and scheduling, and provided me with valuable information for

the case studies.

I would like to extend my warmest thanks to all my lab mates in NUS, namely Wang

Yueying, Shen Lijun, Liu Zhuo, Md. Aslam Hossain, Zhu Lei, Alireza Khalili, and

Meghdad Attarzadeh for their helps and companionship while performing this

research. Also, a special note of appreciation is directed to Mr Ernest L. S. Abbott for

teaching me my first programming lessons and proof-reading some parts of the thesis.

Let me also accord my wholehearted thanks to my senior fellow, Dr Yeoh Ker-Wei, for

his generous helps, valuable discussions, and constructive comments for my research.

Lastly, I wish to thanks my best friends, Hung and Duong, for their friendship,

encouragement and sharing throughout my PhD life.

My sincere appreciation also goes to members of my PhD committee, Prof Chan Weng

Tat and Prof Meng Qiang, for their valuable comments during the qualification

examination.

I would like to acknowledge National University of Singapore (NUS) for the award of

this research scholarship throughout the four years period.

I dedicate this thesis to my beloved husband, Duong Khanh, for his unconditional love

and unwavering support.

iv

This page is intentionally left blank.

v

TABLE OF CONTENTS

SUMMARY ... x

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

NOMENCLATURE ... xvi

CHAPTER 1. INTRODUCTION .. 1

1.1. Research Motivations and Background .. 1

1.2. Research Opportunities .. 4

1.2.1. Incorporation of Construction Knowledge in Scheduling Systems 4

1.2.2. Automated Sequence Reasoning from Functional Requirements 6

1.2.3. Constraint Analysis to Improve Feasibility and Efficiency of Alternative

Scheduling Approaches ... 7

1.2.4. Criticality analysis for schedule management ... 9

1.3. Research Objectives ... 10

1.4. Research Scopes ... 12

1.5. Research Methodology ... 13

1.6. Organization of Thesis ... 14

CHAPTER 2. LITERATURE REVIEW .. 18

2.1. Introduction .. 18

2.2. Construction Requirements in Schedules ... 18

2.2.1. Classification of Construction Requirements .. 19

2.2.2. Formalization of Construction Requirements ... 21

2.2.3. Modeling functional requirements for automated sequencing 23

2.2.4. Integrating Construction Requirements for Scheduling 24

2.3. Advancements of Planning and Scheduling Approaches 25

2.3.1. CPM/PDM: Overview and Limitations for Construction Scheduling 26

2.3.2. Model-based Planning and Scheduling ... 27

2.3.3. Knowledge-Based Planning Systems .. 29

2.3.4. Construction Planning using Case-based Reasoning 32

2.3.5. Advanced Scheduling Techniques .. 34

2.3.6. PDM++ Modeling Framework .. 35

2.4. Criticality Analysis in Construction Schedules .. 38

2.4.1. Criticality Analysis from Activity Perspective.. 38

vi

2.4.2. Criticality Analysis from Constraint Perspective .. 40

2.5. Identified Research Gaps .. 42

2.6. Summary ... 43

CHAPTER 3. GENERALIZED FRAMEWORK FOR AUTOMATED

SCHEDULING FROM CONSTRUCTION METHODS AND REQUIREMENTS

 ... 45

3.1. Introduction .. 45

3.2. Core Knowledge Models for Automated Scheduling ... 45

3.2.1. Extended Product Model ... 46

3.2.2. Construction Method Model .. 49

3.2.3. Construction Requirement Model .. 51

3.2.4. Construction Schedule Model .. 56

3.2.5. Schedule Data Integration Framework .. 58

3.3. Generalized Framework for Automated Scheduling from Construction

Requirement (ASCoRe) ... 62

3.3.1. Process P: Generating Extended Product Hierarchy.................................... 63

3.3.2. Process R: Identifying Construction Requirements for Scheduling 68

3.3.3. Process S: Generating Schedule Model ... 70

3.3.4. Process A: Computing for Alternative Schedules 78

3.4. The scheduling problem is formulated as a constraint satisfaction problem

(CSP) and constraint logic programming (CLP) is used for schedule computation.

This method is selected so that a complete solution (all alternative schedules) of

scheduling problems can be obtained. The outcome generated can be either types:

First, if the constraint set are still inconsistent, no result is obtained. Second, when

there is no conflict in the constraint set, a collection of all alternative schedules with

minimal makespan are returned as output. These schedules represent alternative

construction sequences leading to similar project completion time. Concluding

Remarks ... 79

CHAPTER 4. AUTOMATED CONSTRUCTION SEQUENCING FROM

FUNCTIONAL REQUIREMENTS .. 81

4.1. Introduction .. 81

4.2. Modeling Perspectives of a Functional Requirement ... 82

4.3. Representing Complex Functional Requirements .. 84

4.3.1. Function User ... 85

4.3.2. Function Provider .. 86

4.3.3. Function Type .. 87

4.3.4. Provider Co-Functionality ... 87

4.3.5. Illustrative Example ... 88

vii

4.4. Modeling Temporal Attributes of a Functional Requirement 89

4.4.1. Temporal Attributes of User and Provider .. 90

4.4.2. Temporal attributes of Function User and Function Provider 92

4.5. Sequence Reasoning Framework from Functional Requirement 96

4.5.1. Necessary Condition at Requirement Level .. 97

4.5.2. Necessary Conditions at Function Level ... 98

4.5.3. Necessary Conditions at User/Provider Level ... 98

4.6. Implementation of the FReMAS model ... 100

4.7. Case Study .. 102

4.7.1. Product Components and State Chains.. 102

4.7.2. Formalizing Construction Requirements ... 105

4.7.3. Construction Sequence Reasoning and Schedule Computation 107

4.8. Concluding Remarks .. 114

CHAPTER 5. ASCoRe SCHEDULER: SYSTEM ARCHITECTURE AND

SEQUENCE REASONING ALGORITHMS .. 116

5.1. Introduction .. 116

5.2. Relevant Background ... 116

5.2.1. Overview of Constraint Satisfaction Problem ... 117

5.2.2. Overview of Constraint Logic Programming .. 118

5.2.3. Constraint Analysis in CP/CLP-based Schedulers 119

5.3. Overview of System Architectural Framework for Implementing ASCoRe

Framework .. 121

5.4. Construction Knowledge Modeling Module .. 123

5.4.1. Product Component Hierarchy Template .. 124

5.4.2. Construction Method Templates ... 125

5.4.3. Construction Requirement Templates ... 126

5.4.4. Work Packaging Template .. 129

5.5. Inference and Sequence Reasoning Kernel .. 130

5.5.1. Activity Generation Mechanism.. 132

5.5.2. Functional Requirement Sequence Reasoning Mechanism 134

5.5.3. Constraint Transformation Mechanism ... 134

5.5.4. Key Resource Requirement Sequence Reasoning Mechanism 138

5.5.5. Work Space Requirement Sequence Reasoning Mechanism 141

5.6. Preemptive Constraint Analyzer .. 142

5.6.1. Definition and Classification of Constraint Redundancies and Conflicts . 143

viii

5.6.2. Pre-emptive Constraint Analysis Framework .. 147

5.6.3. Identifying Feasible Duration Range ... 156

5.6.4. Preemptive Constraint Analyzer .. 159

5.7. Schedule Generator ... 161

5.8. Concluding Remarks .. 164

CHAPTER 6. CRITICALITY ANALYSIS OF CONSTRUCTION

REQUIREMENTS FOR SCHEDULE CHANGE MANAGEMENT 166

6.1. Introduction .. 166

6.2. Constraint Criticality .. 167

6.2.1. Definition and Classification ... 167

6.2.2. Order of Constraint Criticality ... 171

6.3. Identifying Constraint Criticality .. 172

6.3.1. Determining Constraint Relaxation Times .. 173

6.3.2. Interpreting Constraint Relaxation Times.. 177

6.4. Criticality of Construction Requirements ... 179

6.5. Schedule Change Analysis from the Perspective of Construction Requirements

 ... 184

6.5.1. Schedule Makespan Change by Variations of Relaxation Times 184

6.5.2. Change in Schedule Makespan through Adding/Removing a Constraint . 191

6.6. Illustrative Example .. 192

6.7. Concluding Remarks .. 196

CHAPTER 7. CASE STUDIES .. 198

7.1. Introduction .. 198

7.2. Case Study 1: Schedule Generation and Analysis of a Covered Walkway Project

 ... 198

7.2.1. Product Hierarchy and Component State Chain .. 199

7.2.2. Construction Requirements and Constraint Network 200

7.2.3. Schedule Generation .. 202

7.2.4. Criticality Analysis .. 203

7.2.5. Analyzing Schedule Changes .. 209

7.3. Case Study 2: Application of the Preemptive Constraint Analysis Framework to

a Pipeline Installation Project .. 211

7.3.1. Construction Requirements.. 211

7.3.2. Preemptive Constraint Analysis and Schedule Generation 214

7.4. Concluding Remarks .. 218

ix

CHAPTER 8. CONCLUSION AND RECOMMENDATIONS 220

8.1. Introduction .. 220

8.2. Conclusion and Research Contributions .. 221

8.2.1. Generalized Framework for Automated Scheduling from Construction

Requirement (ASCoRe)... 221

8.2.2. Functional Requirement Model for Automated Sequencing (FReMAS) .. 222

8.2.3. Preemptive Constraint Analysis Framework ... 224

8.2.4. Criticality Concept and Schedule Change Analysis Methodology from the

Perspective of Constraints and Construction Requirements 226

8.3. Limitations ... 228

8.3.1. Incorporating Practice Considerations into Automated Scheduling 228

8.3.2. Modeling and Reasoning Nonstandard Complex Functional Requirements

 ... 229

8.3.3. Analyzing Non-Temporal Constraints in the Pre-Scheduling Stage 229

8.4. Recommendations for Future Work ... 230

8.4.1. Time-cost Tradeoff Using ASCoRe .. 230

8.4.2. Using Constraint Criticality and Alternative Schedules for Dynamic

Schedule Management... 230

8.4.3. Prototyping a BIM-based System for Automated Project Planning and

Dynamic Control ... 231

REFERENCES .. 233

APPENDIX .. 240

CURRICULUM VITAE ... 243

x

SUMMARY

In the construction industry, feasible schedules are crucial for good project

performance since they provide an appropriate basis for project execution and

cooperation among different project parties. Construction knowledge which is often

abstracted in the form of construction methods and requirements is the key element for

generating and controlling schedules. Therefore, sufficient incorporation of

construction methods and requirements into schedule generation and management is

decisive to improve the feasibility of construction schedules. Moreover, scheduling is

generally an intricate process and demands highly experienced personnel. Especially,

in today’s construction industry where construction projects are more complex, manual

scheduling is found to be inefficient and inadequate. Accordingly, automated

scheduling has become a dominant approach to improve the efficiency and adequacy

of this process.

 The main purpose of this research is to develop necessary methodologies and

concepts for automated schedule generation and analysis from the perspective of

construction requirements to improve the efficiency and feasibility of construction

schedules. For this purpose, this dissertation proposes an overarching framework to

integrate, interpret, and analyze construction requirements for schedule auto-

generation and change management.

The outline of the overarching framework follows the structure of this

dissertation. It includes a generalized framework for automated generation of

alternative schedules from construction methods and requirements. This scheduling

xi

framework is built upon four core knowledge models, which allow the explicit

representation and integration of construction requirements and multiple methods for

automated construction sequence reasoning and scheduling. Moreover, it involves four

scheduling procedures, which generalize the process of automated BIM-based

scheduling from construction requirements. With the incorporation of sequencing

knowledge for different types of construction requirements, namely functional

requirements, key resource requirements, spatial constraints and temporal constraints,

the proposed scheduling framework enhances the capability and efficiency of current

BIM-based schedulers, and can be applied to different project types.

A generalized functional requirement model for automated construction

sequencing (FReMAS) is then developed to provide the necessary modeling tools and

sequence reasoning knowledge to formalize and convert complex functional

requirements into temporal constraints. This is achieved through a representation

format to capture and a reasoning procedure to transform complex functional

requirements into temporal constraints. By this, this model can support the integration

of product and process perspectives of scheduling and facilitate the adequate

identification of multiple construction sequences implicitly defined by functional

requirements, so that all possible alternative schedules can be determined.

To further improve the efficiency and feasibility of scheduling from complex

requirements, a preemptive constraint analysis framework which aims to identify basic

constraints redundancies/inconsistencies prior to performing scheduling is developed.

This framework provides planners with a deeper insight into the role of constraints for

the feasibility of the schedule, and thus appropriate resolution strategies can be applied

earlier in the pre-scheduling stage.

xii

Finally, for better schedule management, an innovative concept for criticality

analysis in construction schedule, which is based on the criticality of constraints and

construction requirements with the consideration of multiple alternative schedules, is

developed. In particular, this research presents an extended classification and a

systematic approach for identifying the criticality of schedule constraints and

construction requirements. This approach advocates a new concept for schedule

management which is set from the perspective of constraint variation and criticality.

Keywords: Construction Scheduling; Construction Requirements; Schedule

Change Analysis; Constraint Criticality; Alternative Schedules

xiii

LIST OF TABLES

Table 4.1. Schedule solutions under Scenario 1 ... 109

Table 4.2. Schedule solutions under Scenario 2 ... 111

Table 5.1. Rules for converting constraints from quiescent states to active states 135

Table 5.2. Constraint relationships in according with  and f 152

Table 6.1. Relationship of criticality and relaxation times ... 173

Table 6.2. Criticality of complex and simple construction requirements 182

Table 6.3. Changes of lag and activities’ time leading to constraint tightening 185

Table 6.4. Impact of variation of project-critical constraint on schedule makespan .. 186

Table 6.5. Result from criticality analysis .. 192

Table 7.1. Alternative schedules ... 203

Table 7.2. Criticality of simple constraints in four alternative schedules 204

Table 7.3. Temporal constraints constituting the imposed requirements 213

Table 7.4. Conflicting constraints ... 215

Table 7.5. Redundant constraints .. 216

Table A.1. Pairwise integration of unary constraints .. 240

Table A.2. Pairwise integration of non-lag type binary constraints 241

Table A.3. Pairwise Integration of Lag Type and Non-lag Type Binary Constraints 241

Table A.4. Pairwise Integration of Lag Type Binary Constraints 242

xiv

LIST OF FIGURES

Figure 1.1. Flow chart of research methodology .. 13

Figure 1.2. Organization of the thesis ... 15

Figure 2.1. PDM++ Temporal Relationships from Chua and Yeoh (2011) 36

Figure 3.1. Extended product model ... 47

Figure 3.2. Examples of construction method ... 51

Figure 3.3. Classification of construction requirements ... 52

Figure 3.4. Temporal relationships based on PDM++ model 54

Figure 3.5. Topological relationships .. 55

Figure 3.6. Comparative relationships .. 55

Figure 3.7. Examples of construction requirement ... 56

Figure 3.8. Example of schedule model .. 57

Figure 3.9. Integrated construction information framework .. 59

Figure 3.10. IDEF representation of the ASCoRe framework 62

Figure 3.11. Procedure for creating an extended product hierarchy 64

Figure 3.12. Example rule for generating final functional requirements 68

Figure 3.13. Generic non-functional requirement ... 70

Figure 3.14. Conversion from component state chain to elementary activities 71

Figure 3.15. Three detail levels of a typical activity hierarchy 73

Figure 3.16. Approach for generating temporal constraints .. 74

Figure 3.17. Convert requirements from component state to elementary activities 75

Figure 3.18. Convert requirements from elementary activity to activity levels 76

Figure 3.19. Convert temporal constraints from meta-activity to activity level 77

Figure 4.1. Core entities representing a functional requirement 85

Figure 4.2. Example component state chains and functional requirements 88

Figure 4.3. Time windows of individual User and Provider ... 90

Figure 4.4. Time windows of function user and function provider 92

Figure 4.5. Flowchart for implementing FReMAS ... 100

Figure 4.6. ECL
i
PS

e
 code for implementing FReMAS for automated scheduling 101

Figure 4.7. 3D model of nursing house showing main entrance 102

Figure 4.8. State Chains with Durations of Components Involving in the Analysis .. 103

Figure 4.9. Alternative 1.1 - Scenario 1 with RTWs and ATWs 108

Figure 4.10. Early Schedule of Alternative 2.1 - Scenario 2 with RTWs and ATWs .. 112

xv

Figure 5.1. ASCoRe system architectural framework .. 122

Figure 5.2. Template of product component hierarchy ... 125

Figure 5.3. Construction method template .. 126

Figure 5.4. Template for defining functional requirement ... 127

Figure 5.5. Template for defining non-functional requirement 128

Figure 5.6. Template for defining work package .. 130

Figure 5.7. Workflow of the inference and sequence reasoning kernel 131

Figure 5.8. Pseudo code for the activity generation mechanism 132

Figure 5.9. Illustrative example for activity generation mechanism 133

Figure 5.10. Converting quiescent state constraint to active state constraint 136

Figure 5.11. Converting state-based constraints to activity-based constraints 137

Figure 5.12. Pseudo code spatial requirement sequence reasoning mechanism 142

Figure 5.13. Example redundant and inconsistent constraints 144

Figure 5.14. Examples redundancy and inconsistency rules for simple constraints ... 150

Figure 5.15. Examples of redundancy rules of conjunction constraints 154

Figure 5.16. Flowchart for implementing preemptive constraint analysis 160

Figure 5.17. Flowchart of scheduling process .. 162

Figure 6.1. Example schedule network ... 168

Figure 6.2. Example of sequence-critical constraint ... 171

Figure 6.3. Example constraint network showing relaxation times 178

Figure 6.4. Example schedule for analyzing schedule change 187

Figure 6.5. Schedule change analysis under constraint relaxation 189

Figure 6.6. Illustrative example for criticality analysis .. 192

Figure 6.7. Alternative schedules demonstrating constraint criticality 194

Figure 6.8. Best alternative schedule when constraint c2 is removed 195

Figure 7.1. 3D perspectives of the covered walkway structure 199

Figure 7.2. Product hierarchy and component state chain .. 199

Figure 7.3. Schedule network of covered walkway project .. 202

Figure 7.4. Alternative schedules indicating critical constraints 205

Figure 7.5. Pipeline installation layout ... 211

Figure 7.6. Constraint network of pipeline installation project 213

Figure 7.7. Alternative schedules .. 217

xvi

NOMENCLATURE

Symbol Description

F An arbitrary functional requirement F

TF Function type of functional requirement F

CF Provider co-functionality type of functional requirement F

UF Function user of functional requirement F

uF,i A user i of functional requirement F

PF Function provider of functional requirement F

pF,j A provider j of functional requirement F

,F mMP Meta-provider m of functional requirement F

,
U
F iRTW Requirement Time Window of user i of functional requirement F

,
P

F jATW Availability Time Window of provider j of functional requirement F

, ,F j kFTW Function Time Window of component k constituting provider j of

functional requirement F

FRTW Requirement Time Window of functional requirement F

ATWF Availability Time Window of functional requirement F

E
FATW Availability Time Window of functional requirement F of type E

C
FATW Availability Time Window of functional requirement F of type C

,
M

F mATW Availability Time Window of meta-provider m of functional

requirement F

xvii

XFD Feasible Duration Range of Activity X

L
XFD

Lower Bound of Feasible Duration Range of Activity X

U
XFD Upper Bound of Feasible Duration Range of Activity X

ARTC Aggregate Relaxation Time of constraint c

IRTC Intrinsic Relaxation Time of constraint c

,
FW

k cAFT Forward Aggregation Flexibility Time of activity k w.s.t constraint c

,
BW

k cAFT Backward Aggregation Flexibility Time of activity k w.s.t constraint c

,
FW

k cIFT Forward Intrinsic Flexibility Time of activity k w.s.t constraint c

,
BW

k cIFT Backward Intrinsic Flexibility Time of activity k w.s.t constraint c

i Criticality of a constraint/construction requirement i

 iT Tightening/Relaxation Amount in Time constraint i

 PT Schedule Makespan Increase/Decrease Amount in Time

i Controlling Constraint Set when Constraint i is relaxed/removed

()AP Power set of the set A

xviii

This page is intentionally left blank.

1

CHAPTER 1. INTRODUCTION

1.1. Research Motivations and Background

A construction schedule is an important tool for project planning and control. It

provides a basis for project execution and cooperation among the project parties.

Improper or infeasible schedules have been found to be a crucial factor in causing

project delays, over-budgeted cost and unsatisfied quality (Chan and Kumaraswamy,

1997; Chua et al., 1999). Therefore, proper generation and management feasible pre-

construction schedules are key prerequisites for the success of construction projects.

Scheduling involves the integration and interpretation of construction knowledge

and building data to determine construction activities required to create the facility and

the sequence among them. It is thus an intricate process and demands highly

experienced personnel. In today’s construction industry where construction projects

are more complex, manual scheduling is found to be inefficient and inadequate to

incorporate multiple construction methods and to produce alternative schedules

(Mikulakova et al., 2010). Improving the efficiency and adequacy of schedules is

thereby a current need in the construction industry.

Recently, Building Information Modeling (BIM) has become a centerpiece for

Architecture, Engineering and Construction (AEC) technology. BIM concept has been

applied to different areas of project management such as constructability analysis,

collaboration or visualization. For schedule generation, BIM enhances model-based

scheduling techniques by enabling rapid integration of product and process

information. Beyond that, in many scheduling systems, preliminary schedules can be

Chapter One: Introduction

2

automatically generated through the incorporation of BIM models and construction

knowledge to reason about the construction sequence of building components from

their topological relationships. However, since construction schedules are governed by

various factors such as construction methods, contractors’ experiences, site conditions,

as well as project’s specific characteristics, schedules generated from only topological

relationships are possibly inadequate and infeasible for implementation. Accordingly,

there is a need for improved scheduling approaches which make good use of major

construction knowledge so that more reliable schedules can be obtained.

Construction knowledge can be abstracted as construction requirements, which

are the key prerequisites for construction processes (Yeoh, 2012). Similar to function

analysis in software engineering, in the Architecture, Engineering, and Construction

(AEC) community, construction requirements can be modeled as functional and non-

functional (Song and Chua, 2006). Functional requirements represent functional

dependencies among components in both construction and completion stages. In other

words, they impose constraints on the functionality behavior of product components.

On the other hand, non-functional requirements are related to other construction

aspects, such as temporal constraints between construction processes, availability of

key resource/work space, or constraints on measurable features of product

components.

Functional requirements often arise from alternative choices of construction

technology, collaboration scenarios or engineering solutions for the project. Hence,

they could imply multiple alternative construction sequences which are represented by

complex disjunctive combinations of temporal constraints between construction

processes. However, such alternative construction sequences defined by functional

Chapter One: Introduction

3

requirements are often inadequately determined. Reasons for this inadequacy include

the lack of available tools to represent complex functional requirements, as well as the

lack of reasoning mechanism to identify and capture all alternative construction

sequences resulting from functional requirements.

For good project management, appropriate schedule analysis should be carried

out early in the pre-construction stage. A schedule is controlled by its constraints

which are derived from construction requirements. Therefore, constraints and

construction requirements should be analyzed directly to identify the critical ones

driving the entire schedule (Chua and Shen, 2005). Specifically, the emphasis of

identifying criticality from the perspective of activities for better project management

should be changed to studying and classifying the criticality from the perspective of

constraints and requirements. Furthermore, criticality analysis of construction

requirements should take into account the existence of multiple alternative schedules.

Despite this, analyzing the criticality of constraints and construction requirements for

schedule management has not been well addressed by the research community due to

the lack of a systematic approach.

In summary, construction knowledge involves primary factors determining the

feasibility of construction schedules through both planning and management stages.

Therefore, crucial construction knowledge should be sufficiently considered in

schedule generation and management processes. Moreover, the efficiency of

scheduling depends greatly on scheduling techniques, and automation in construction

scheduling is thereby a necessity in current practice. In this regard, this dissertation

proposes an overarching framework to integrate, interpret, and analyze construction

knowledge for schedule auto-generation and change management.

Chapter One: Introduction

4

1.2. Research Opportunities

This section describes the gaps and research opportunities with regard to

approaches for schedule generation and analysis in the AEC research community.

1.2.1. Incorporation of Construction Knowledge in Scheduling Systems

Construction knowledge can be described as construction requirements, which

are the capabilities and conditions to which the construction processes and the in-

progress facility product must conform. If not, the construction processes may be

delayed or temporary stability of the in-progress structure may not be sustained during

construction (Song and Chua, 2006). Construction requirements generally have

different natures. They represent a wide range of project constraints including

technical constraints, design requirements, resource/space requirements, budget limits,

safety regulations, precedence constraints among project parts, contractual milestones,

and so on. However, in most scheduling systems they are often represented in a

derived form as precedence relationships among activities. Such an unambiguous

representation may not enable good traceability of changes for better project

management (Yeoh, 2012).

In order to achieve feasible schedules, major construction requirements should

be adequately and explicitly incorporated into scheduling. Despite this, most existing

automated scheduling systems focus only on individual elements such as topological

relationships, resource constraints, or space constraints (Chua et al., 2013). In

particular, a large number of model-based and knowledge-based systems only center

on physical relationships among components (Chevallier and Russell, 1998). Similarly,

recent BIM-based scheduling systems can enable rapid integration of 3D design

Chapter One: Introduction

5

models with commercial scheduler applications (like Microsoft Project or Primavera)

for schedule computation and visualization, yet the knowledge embedded in these

systems is still restrained to topological relationships and technical constraints

(Hartmann et al., 2012).

Construction methods are also the key planning knowledge that need to be

considered for scheduling. Since hundreds of methods available as options for a project

and new methods are being developed all the time, consideration of multiple methods

in the planning stage has become an essential need for planners to attain the best

schedules (Kataoka, 2008). Nevertheless, existing scheduling systems do not provide

planners with such a function. In current practice, planners with their own knowledge

and experience have to manually decide which construction method can be used for the

project prior to scheduling, and only one method can be implicitly incorporated into

the scheduling process. Consequently, the feasibility of schedules is greatly dependent

on planners’ knowledge and experience which may not be sufficient and available for

new methods. Moreover, while best schedules can probably be obtained by combining

different methods for different parts of a project, manually analyzing all method

combinations may be impossible for large projects.

In summary, construction methods and requirements are two primary elements of

construction knowledge which determine the feasibility of construction schedules. The

aforementioned drawbacks raise the need for improved scheduling frameworks which

provide modeling mechanisms to adequately integrate and analyze different types of

construction requirements as well as multiple construction methods, so that more

appropriate and reliable schedules can be achieved.

Chapter One: Introduction

6

1.2.2. Automated Sequence Reasoning from Functional Requirements

Functional requirements are among the key sequencing logic of a construction

schedule. They refer to the functional dependencies among components in both

construction and completion phases, which are respectively referred to as intermediate

and final functional requirements in the context of this research. In order to incorporate

such requirements into scheduling, they need to be formalized, and converted into

temporal constraints between the associated construction processes (Chua et al., 2013).

Researchers and practitioners have developed different methods to automate the

sequence reasoning process from functional requirements. However, the major focus

of the proposed models is restricted to reasoning from the final functional requirements

perspective, and thus is limited to the physical relationships among permanent

components. Intermediate functional requirements often involve both permanent and

temporary components, and probably represent different engineering solutions for the

project. They possibly lead to complex combinations of temporal constraints such as

work/resource continuity or process concurrency/overlap/disjunction which may

induce multiple construction sequences. In current practice such complex requirements

are often treated as technical constraints, and are manually interpreted into precedence

constraints (equivalently addressed as simple temporal constraints in this thesis).

Consequently, planners may not adequately determine all possible construction

sequences that satisfy the requirements and thus could not guarantee to obtain the best

sequencing solutions.

Most existing scheduling systems are built on Critical Path Method (CPM) or

Precedence Diagram Method (PDM) models, which do not capture complex temporal

constraints containing conjunction and disjunction conditions and dictate only one

Chapter One: Introduction

7

predefined sequence (El-Bibany, 1997). They therefore cannot represent complex

temporal constraints and all possible sequences resulting from complex functional

requirements. Especially, they do not provide a mechanism to reason and generate

schedules from functional requirements. Recently, a number of advanced scheduling

approaches based on Artificial Intelligence (AI) techniques, such as PDM++ (Chua

and Yeoh, 2011) or constraint-based scheduling (Lorterapong and Ussavadilokrit,

2013), have been developed to overcome the limitations of CPM/PDM in handling

complex temporal constraints. Yet, they still lack the reasoning knowledge for deriving

temporal constraints from functional requirements.

In summary, construction sequence reasoning from functional requirements is

generally intricate due to their complexity nature and need to be automated for more

efficient and sufficient scheduling. This requires a generalized modeling and sequence

reasoning framework with knowledge embedded to represent and automatically

transform complex functional requirements into temporal constraints for scheduling.

1.2.3. Constraint Analysis to Improve Feasibility and Efficiency of Alternative

Scheduling Approaches

A number of advanced scheduling approaches using Constraint Programming

(CP) or Constraint Logic Programming (CLP) techniques have been developed to

overcome the limitations of CPM/PDM in processing complex temporal constraints.

With the ability to handle precedence and disjunctive constraints, these approaches are

capable of generating all feasible schedule solutions.

There are two major problems with CSP/CLP schedulers: solution feasibility and

computational efficiency, which are greatly influenced by the relationships among the

Chapter One: Introduction

8

imposed constraints. Solution feasibility, which refers to the capability of producing a

feasible solution, is defined by the consistency of the constraint set. Computational

efficiency is governed by the total number of constraints, especially the number of

backtrackings which increases exponentially with the number of disjunctive

constraints. In other words, conflicting constraints obstruct the scheduling solver to

generate a feasible solution, while redundant constraints produce unnecessary search

spaces, and decrease the efficiency of the scheduling process. Therefore, redundant

and inconsistent constraints should be identified and removed in the pre-scheduling

stage to improve scheduling feasibility and efficiency.

Preemptive constraint analysis in scheduling problems has, however, received

little research attention. Redundant constraints are often manually identified and

completely eliminated from the schedule problem. However, completely deleting

redundant constraints could distort the structure of the scheduling problem. Moreover,

in many CP/CLP-based schedule solvers, constraint inconsistencies are identified and

probably resolved along the scheduling process using constraint propagation, and thus

dependent on constraint ordering. From a management perspective, this approach does

not guarantee the best (or optimal) set of constraints. In addition, since activity

durations and lag times often play a significant role for the relationships among

constraints, constraints should be analyzed in accordance with activity durations to

provide planners with better management strategies.

In brief, CP/CLP techniques are promising approaches to alternative scheduling

in construction. To improve the solution feasibility and computational efficiency of

CP/CLP-based schedulers, the constraint set should be preemptively analyzed in the

pre-scheduling stage so that basic redundant and conflicting constraints can be

Chapter One: Introduction

9

identified and removed. In addition, constraint analysis should be conducted in relation

with activity durations and lag requirements to provide planners with more useful

information for appropriate resolution strategies.

1.2.4. Criticality analysis for schedule management

If generating constructible schedules is the necessary condition of good schedule

performance, schedule management could be considered as the sufficient condition.

Essentially, schedule management has been found to be the most crucial process for

schedule performance (Chua et al., 1999; Iyer and Jha, 2006). For good schedule

management, it is necessary to identify the crucial parts of the schedule which need to

receive more management attention than others, and criticality analysis is thus a crucial

schedule management task.

Traditionally, criticality analysis is carried out from the activity perspective. In

CPM networks, the criticality of an activity is identified using its float times. However,

researchers have indicated that using floats to study criticality of an activity is

inadequate in PDM networks due to the existence of non-finish-to-start relationships,

and that understanding the nature of constraints associated with it is a necessity

(Moder et al., 1983; Valls and Lino, 2001). In addition, since activity criticality is set

within the scope of a specific schedule, it could not be applicable to circumstances

where multiple alternative schedules exist (Bowers, 2000; Rivera and Duran, 2004).

Theory of constraint (TOC) also advocates the need for identifying the key

constraints driving the entire schedule, and the key constraint analysis approach

developed by Shen and Chua (2005) is one of the primary research in this area.

However, as it is from the production viewpoint, this approach addressed only simple

Chapter One: Introduction

10

precedence relationships and enabling constraints (resource and information), and it

analyzed only a single schedule.

The feasibility of a schedule is governed by its requirements which possibly

result in multiple schedules. It is therefore necessary to identify key requirements, and

criticality analysis should be carried out in the relation with multiple alternatives.

Furthermore, since requirements represent construction knowledge and practice from

which schedule constraints are derived, this research proposes that schedule

management should be carried out from the perspective of construction requirements.

To achieve this requires novel approaches for analysing the criticality of constraints

and construction requirements with regards to multiple alternative schedules, as well as

the impact of constraint variations on schedule performance.

1.3. Research Objectives

The primary purpose of this research is to improve the efficiency and feasibility

of construction schedules via the adequate incorporation of primary construction

knowledge into schedule auto-generation and analysis processes. For this goal, this

dissertation will provide the necessary frameworks, concepts and methodologies for

formalizing integrating, reasoning and analyzing construction requirements for

automated generation and analysis of alternative construction schedules.

 In particular, the specific research objectives include:

1. To develop a generalized framework for automated scheduling from

alternative construction methods and requirements. This framework will

provide modeling tools to represent and integrate primary construction

Chapter One: Introduction

11

knowledge for scheduling, and develop generalized procedures for BIM-based

scheduling. With these features, the framework will allow the explicit

representation and integration of construction requirements and multiple

methods into automated construction sequencing and scheduling processes.

2. To develop a generalized model for automated construction sequencing from

functional requirements by providing a representation format to capture and a

reasoning procedure to transform complex functional requirements into

temporal constraints. This model aims to support the integration of product

and process perspectives of scheduling and to facilitate the adequate

identification of multiple construction sequences which may lead to

alternative schedules.

3. To propose a reasoning framework to preemptively identify basic constraint

redundancies and inconsistencies in the pre-scheduling stage from a project

management perspective. The framework will form the foundation for the

development of a preemptive constraint analyzer which aims to improve the

solution feasibility and computational efficiency of advanced scheduling

approaches. It will also provide planners with a deeper insight into the impact

of lag and activity durations upon the relationship between constraints, so that

appropriate strategies can be implemented to resolve constraint conflicts.

4. To develop a systematic methodology for analyzing the criticality of

constraints and construction requirements in construction schedules in regards

to multiple alternative schedules. In particular, this research presents an

extended classification and a systematic approach for identifying the

criticality of schedule constraints and construction requirements using

Chapter One: Introduction

12

constraint criticality indicators. This approach will advocate a new set of

indicators for constraint-based schedule management.

1.4. Research Scopes

The feasibility of construction schedules is probably affected by various

requirements and project constraints. This research however focuses only on primary

requirements captured in the form of functional requirements, temporal constraints,

key resource and work space requirements, which directly govern construction

sequence and/or the start/finish of construction operations. Dissatisfaction of such

requirements, construction processes cannot be started or the stability of structural

systems is not maintained, causing infeasible schedules. Productivity-related

requirements such as pool resource availability, inventory, crew’s productivity, or site

congestion are not explicitly addressed in this research. The proposed frameworks can

be extended to incorporate these requirements in future development.

Although topological dependencies among components can often be derived

from a 3D model using existing approaches such as Nguyen et al (2005), Khalili and

Chua (2012), the deriving process is not presented in this dissertation. Instead, a

generalized functional requirement model is developed to represent both topological

dependencies and intermediate function requirements, and to derive the temporal

constraints among the associated construction processes. Incorporating these

approaches into the frameworks proposed in this research will be considered in the

future prototype extension.

As a consequence of dynamic construction environment, construction projects

often are subjected to a variety of changes originated from different sources. For

Chapter One: Introduction

13

schedule management, this research focuses on variations directly affecting the

existence and/or temporal attributes of the constraints (lag and process times) which

have direct impacts on schedules and project completion time. Changes related to the

removal or introduction of activities can be elaborated or transformed into variations of

associated constraints and thus are not directly addressed in this research.

1.5. Research Methodology

The research methodology is illustrated in the flow chart shown in Figure 1.1.

The research methodology consists of three main steps: (a) Developing Research

Objectives and Scopes, (b) Generating Research Outputs, and (c) Analyzing and

Validating Research Outputs through Illustrative Case Studies.

Figure 1.1. Flow chart of research methodology

Chapter One: Introduction

14

The Research Objectives and Scopes were iteratively developed through various

sources of data. First of all, an extensive study of academic literature has been

conducted throughout the project for a deep insight into concepts and techniques of

construction schedule generation and analysis. Concurrently, practical construction

knowledge and experiences were collected from project reports, construction drawings

and schedules, and expert interviews.

Research Outputs were subsequently generated to achieve the defined objectives.

In particular, a generalized framework automated scheduling from construction

requirements (ASCoRE) was first developed. A functional requirement model

(FReMAS) was then developed for automatically reasoning construction sequences

from functional requirements. Also, a constraint preemptive analysis framework was

developed to identify basic constraint redundancies and inconsistencies in the pre-

scheduling stage, so that the solution feasibility and computational efficiency of

scheduling can be further enhanced. These models form the input for the system

architecture design of the ASCoRE scheduler. Finally, an approach for analyzing the

criticality of construction requirements to schedules is developed in order to provide

better understanding of the schedule so that good schedule management could be

achieved. The methodologies developed were validated with illustrative examples, and

finally with industrial case studies.

1.6. Organization of Thesis

This thesis is organized into eight chapters including this introduction as shown

in Figure 1.2. Each chapter explicitly illustrates the steps taken to achieve the research

objectives. Chapter Two presents a detailed review on research related to concepts and

Chapter One: Introduction

15

techniques for schedule generation and management. It contains reviews and existing

approaches for identifying and capturing requirements in construction, existing

automated scheduling systems and the current research on schedule analysis for change

management. From this, major research gaps have been identified, shaping the

direction of this research.

Figure 1.2. Organization of the thesis

Chapter One: Introduction

16

Chapter Three presents a generalized framework for automated scheduling from

construction requirements (ASCoRe). It is facilitated by four core knowledge models

representing construction knowledge and building data necessary for the identification

of construction processes and the sequences among them. The ASCoRe framework

consists of four main processes to capture, represent and convert major construction

requirements into temporal constraints from which alternative schedules are generated.

Chapter Four describes a functional requirement model called FReMAS for

representing and converting functional requirements into temporal constraints. This

modeling framework contains three main subcomponents: (a) a Representation to

provide a generalized representation format of functional requirements, (b) a Temporal

Model to explicitly define temporal attributes of functional requirements and (c) a

Sequence Reasoning Framework to automatically convert functional requirements into

temporal constraints from which construction sequences and schedules can be derived.

Chapter Five documents the system architecture and the necessary reasoning and

solving algorithms of the ASCoRE scheduler. Especially, a preemptive constraint

analyzer is developed to identify redundant and conflicting constraints in the pre-

scheduling stage to improve scheduling feasibility and efficiency.

Chapter Six introduces a new concept for analyzing the criticality of construction

requirements in the context of multiple alternative schedules. It includes a

classification of criticality, a systematic methodology to identify criticality and the

application of the proposed concept for schedule management.

Chapter One: Introduction

17

Chapter Seven presents three industrial case studies to demonstrate the

application of the concepts and methods proposed in Chapters 3, 4, 5, and 6. Each case

study is analyzed with management implications presented herein.

Chapter Eight concludes the thesis, summarizing the research contributions

derived from this dissertation. Further suggestions for future research and development

directions are also presented in this chapter.

18

CHAPTER 2. LITERATURE REVIEW

2.1. Introduction

This literature review presents the current state of the art with regard to

improving the feasibility and efficiency of construction scheduling from two aspects:

the sufficient incorporation of major construction requirements into automated

schedule generation and the systematic identification of crucial construction

requirements for schedule management. For the former aspect, to provide the readers

with a fundamental understanding of the origins and natures of construction

requirements, the literature presents an overview of classification schemas and

methods to formalize construction requirements for scheduling. It then describes the

advanced scheduling techniques for sequence reasoning and schedule generation from

construction requirements. From this, the major limitations of automated sequence

reasoning and scheduling from complex construction requirements of existing auto-

planning systems and scheduling techniques are identified. For the latter aspect, the

literature describes relevant studies on criticality analysis for schedule evaluation and

change management from two main perspectives: activity and constraint, and pinpoint

key their key drawbacks for understanding the criticality of construction requirements

with the existence of multiple alternative schedules.

2.2. Construction Requirements in Schedules

Construction requirements are the abstract form of construction knowledge and

play a key role in determining the feasibility of construction schedules. They arise

from various aspects of construction and have different characteristics. In order to

Chapter Two: Literature Review

19

provide readers a background understanding of construction requirements, this section

will first summarize the existing classification schemes of construction requirements

from different perspectives. It will then present key research on formalizing

construction requirements in general and functional requirements in particular. This

section will also discuss the existing methods for integrating construction requirements

for scheduling. The final part of this section will address the major drawbacks of

existing research on modeling and integrating construction requirements for automated

sequencing and scheduling which set major directions of this research.

2.2.1. Classification of Construction Requirements

Construction requirements can be classified from two main perspectives: origin

and nature (Koo et al., 2007). According to their origin, construction requirements are

commonly referred to as sequencing knowledge. Physical building component

dependencies were identified as a common sequencing knowledge in early studies,

such as Gray (1986), Navinchandra (1988), Zozaya-Gorostiza et al. (1989), and

Kartam and Levitt (1990). Echeverry et al. (1991) identified sequencing knowledge

with respect to physical relationships among building components, trade interaction,

path interference, and code regulations. Sripraset and Dawood (2002) described

construction requirements as constraints which can obstruct commencement or

progress of construction processes to achieve successful project performance.

Accordingly, they classified schedule constraints into three main groups, including

physical constraints (technological dependencies, space, safety, and environment),

contract (time, cost, quality, and special agreement), and enabler constraints (resource

and information). Failure to fulfilling these constraints could lead to infeasible

schedule and project delay. Yeoh (2012) introduced a broader definition of

Chapter Two: Literature Review

20

construction requirements. According to his description of the requirement evolution

process, construction requirements are the collection of project requirements at all

stages. They exist as a form of derived requirements and are the abstraction of the

client’s intention and design specifications. Construction activities and their

corresponding relationships may be derived from the requirements arising from

different perspectives, including: topological precedence, intermediate function

requirements, space, key resources, safety, contracts, site/environment and

logistic/procurement.

For constructability analysis, Song (2006) described construction requirements

as the concerns and constraints that should be fulfilled for conducting procurement,

construction and logistic processes. According to their nature, construction

requirements are classified into two categories: functional and nonfunctional

requirements. Functional requirements refer to construction intentions for supporting a

construction process. As such, functional requirements are narrowly defined as

intermediate function requirements, which are temporary functions that are required

for supporting the construction of a facility project. On the contrary, nonfunctional

requirements refer to performance constraints such as capacity, productivity and

inventory. To this extent, construction requirements could be understood as requisites

during the construction phase but not those in other project phases. In addition, it can

be inferred that functional requirements relate to the engineering behaviors of product

components and thus they are product-based. In this context, non-functional

requirements can be considered as process-based requirements.

The above literature provides an insight into requirements in construction. In

general, construction requirements arise from different project aspects including

Chapter Two: Literature Review

21

clients’ intentions, design codes and regulations, and construction technologies and

practices. They can be product- or process-related, and sequence- or performance-

governing constraints. A key advantage of origin-oriented classification schemas could

enable planners to determine the party in charge of a particular requirement for better

project management (Yeoh, 2012). However, since the impact of a construction

requirement on schedules is governed by its nature, the nature-oriented classification

schema is found more suitable for sequence reasoning and scheduling purpose.

2.2.2. Formalization of Construction Requirements

Construction requirements are the rationale driving construction schedules.

Therefore, an unambiguous and systematic formalization of construction requirements

at the planning stage is crucial for integrating them into schedule generation and

management. Yet, this issue has received quite little research attention (Yeoh, 2012).

Existing approaches for representing construction requirements mainly aim for

constructability analysis or knowledge management. For constructability analysis,

some of construction requirements were established in the form of constructability

rules. Fischer (1993) developed a rule-based format for representing geometrical and

topological design-relevant constructability requirements. Song (2006) proposed a

modeling methodology for capturing and analyzing intermediate functional

requirements for constructability assessment of construction schedules. This model

captures an intermediate function from three perspectives: function user, function

provider, and their temporal and spatial relationships. Based on this model, designers

and constructors can explicitly describe and incorporate intermediate functional

requirements into construction schedules for constructability verification.

Chapter Two: Literature Review

22

For knowledge management, many ontological modeling frameworks have been

developed for capturing knowledge in construction as requirements. Domain

ontologies (El-Diraby and Kashif, 2005; El-Gohary and El-Diraby, 2010) often involve

a set of high-level core ontology with logical rules to allow additional inferences in the

specific domains. However, these researches focus mainly on representing knowledge

yet not providing knowledge for sequence reasoning from construction requirements.

They were still centered on specific requirement types such as physical relationships,

precedence activity constraints, or resource requirements, and were centered at specific

project types such as highway or infrastructure projects. Consequently, they were

found inflexible for different types of construction requirements and projects.

In order to improve the flexibility of the aforementioned domain ontological

models, Yeoh (2012) proposed a generalized ontology model for construction

requirement by establishing core characteristics and flexible taxonomies. In particular,

this model comprises three core characteristics: spatial, temporal, and abstract, and

three flexible taxonomies: Purposive, Operational, and Necessity Conditions to allow

the representation of a requirement of any type from any construction projects. In brief,

any construction requirement can be generally represented by one or all of three

constraints: spatial, temporal, and abstract. Such generality allows the model to be

applied to any requirement and project type. However, the generality characteristic of

this model also results in its major drawbacks for being applied to automated

sequencing and scheduling. Firstly, it lacks a syntactical structure to support automated

sequencing so that temporal constraints can be automatically generated. Consequently,

planners have to manually specify the temporal constraint defined by a requirement if

it is not explicitly defined. Secondly, the lack of syntactical structure specific for

Chapter Two: Literature Review

23

common requirement types also obstructs the integration of construction requirements

into project data model which is essential for automated sequencing and scheduling.

Therefore, for scheduling purpose, this model should be modified to improve the

representation and sequence reasoning of common specific requirement types.

From the above literature review, it is found that existing methods for

formalizing construction requirements are still restricted for specific types of

requirements. The more generalized models on the other hand lack the necessary

syntactical structure for automated sequencing. These limitations raise the need for an

improved formalization framework which is sufficiently general to capture

requirements of different types and efficiently support automated sequence reasoning.

2.2.3. Modeling functional requirements for automated sequencing

Functional requirements are primary elements of construction requirements.

They represent the functional dependencies among components in both construction

and completion stages, which are respectively referred to as intermediate and final

functional requirements in the context of this research. In general, functional

requirements may involve both permanent and temporary components. For example, a

beam may require the support of a scaffolding-formwork system while it is being

constructed, and later it needs to be supported by two columns at its ends after it has

been constructed. By this definition, functional requirements encompass the

topological precedence constraints in common context and the intermediate functions

proposed by Song and Chua (2006).

 As discussed in the previous section, functional requirements are product-

oriented. For scheduling purposes, they need to be converted into temporal constraints

Chapter Two: Literature Review

24

from which construction sequences are derived (Chua et al., 2013). Researchers and

practitioners have developed different methods to automate the sequence reasoning

process from functional requirements. Some of these can be found in Shaked and

Warszawski (1995), Vries and Harink (2007), and Kataoka (2008). However, the

major focus of the proposed models is restricted to reasoning from the final functional

requirements perspective, and thus is limited to the physical relationships among

permanent components. Intermediate functional requirements are usually treated as

technological constraints, and are still manually interpreted into precedence

constraints. These requirements often involve both permanent and temporary

components, and may result in complex temporal constraints such as work/resource

continuity or process concurrency/overlap/disjunction. They could also result in

multiple feasible construction sequences which may not be adequately identified using

manual techniques. Consequently, a modeling approach allowing for representing and

reasoning complex functional requirements is necessary to improve the adequacy and

efficiency of automated sequencing and scheduling.

2.2.4. Integrating Construction Requirements for Scheduling

Data integration is fundamental for automated schedule generation. Several

pieces of research have been carried out for effective information integration in

construction. Especially, a variety of core models for modeling process information in

construction have been developed (Froese, 1996). Yamazaki (1995), Stumpf, et al.

(1996), and Bouchlaghem, et al. (2004) developed object-oriented modeling

approaches for product-process information integration. Staub-French, et al (2003)

focused on feature-based process and product modeling for cost estimation. Halfawy

and Froese (2007) developed a multitier component-based framework to facilitate the

Chapter Two: Literature Review

25

implementation of modular and distributed integrated project systems for

multidisciplinary project processes throughout the project life cycle. Since the major

emphasis of these approaches is the integration of product and process models, they

may not be applicable to incorporate construction requirements existing in different

formats like functional requirements, temporal constraints or resource/spatial

requirements. Consequently, these models could not support automated sequence

reasoning and scheduling.

Recently, BIM (Building Information Modeling) technology has become a new

approach to design, construction and facilitate management (Vozzola et al., 2009).

Researchers have developed different BIM-based frameworks to integrate a wide range

of information such as product, process, resource, or safety (Goedert and Meadati,

2008; Babic et al., 2010; Jung and Joo, 2011; Singh et al., 2011; Zhang et al., 2012).

The major emphasis of these researches is to create a digital representation of the

building information for better documentation, collaboration and project management.

Consequently, construction requirements are not explicitly represented as a core

knowledge component in these models. This ambiguity does not allow planners to

efficiently manage and exploit construction knowledge for automated scheduling.

In summary, the identified limitations raise the need for an improve data

integration framework which allows construction knowledge to be explicitly

represented and integrated with other project data for automated sequencing.

2.3. Advancements of Planning and Scheduling Approaches

Planning and scheduling in construction demands considerable time, knowledge

and experience. The AEC research community has thereby put much effort into

Chapter Two: Literature Review

26

improving the feasibility and efficiency of this complex process. This section first

provides an overview of CPM/PDM and their major limitations for construction

scheduling which motivate various research in this area. The next three subsections

describe existing approaches in automated scheduling. The last two subsections review

the development of advanced scheduling techniques which provides fundamental

knowledge and methodology for this research.

2.3.1. CPM/PDM: Overview and Limitations for Construction Scheduling

The critical path method (CPM) is a widely used and important tool for planning

and control of construction projects. It is facilitated by an activity on arrow (AOA)

diagram which represents project with activity nodes linked by precedence

relationships (Lu and Lam, 2009). As such, CPM can only handle strict precedence

constraints, i.e. Finish-to-Start (FS), and requires the use of artificial dummy activities.

In addition to this strict precedence constraint, Precedence diagram method (PDM)

involves three other relationships, Start-to-Start (SS), Finish-to-Finish (FF), and Start-

to-Finish (SF) and positive/negative lags to depict partially concurring or overlapped

working progress between activities (Moder et al., 1983). Accordingly, compared with

CPM featuring FS logic only, PDM networks with “smart” relationships are more

compact, flexible, and realistic to represent construction projects (Harris, 1978; Valls

and Lino, 2001; Lock, 2003). In addition, CPM/PDM calculations are generally simple

and straightforward. Therefore, they have been used intensively in the AEC industry.

Popular commercial scheduling software systems (such as Primavera Project Planner,

and Microsoft Project) also incorporate these methods.

Chapter Two: Literature Review

27

The suitability and effectiveness of these models have been widely criticized.

Firstly, CPM/PDM only provide mathematical models to simulate the construction

process and manipulate the data provided by the planners but not the knowledge used

to generate the plan (Morad and Beliveau, 1994). In other words, they lack a

mechanism to capture and reason construction requirements for automated schedule

generation. Secondly, CPM/PDM perform scheduling only from the process

perspective. Component-based schedule constraints are therefore cannot be captured

and processed using the models. Thirdly, since they handle only precedence constraints

among activities, CPM/PDM have been found to be inadequate to cope with complex

temporal constrains such as process concurrency/overlap/disjunction and

work/resource continuity (Jaafari, 1984; El-Bibany, 1997). Lastly, CPM/PDM dictate

only one predefined sequence (Chua and Yeoh, 2011) and lack the flexibility and

expressiveness to cope with multiple alternative sequences and the varied patterns of

construction methods (Jaafari, 1996; Choo et al., 1999).

The above limitations of CPM/PDM for construction scheduling have directed

various research in this area, the key of which will be reviewed in the following

sections. In particular, model-based, knowledge-based and case-based reasoning

scheduling (described in sections 2.3.2 to 2.3.4) are three major paradigms to

overcome the first two limitations of CPM/PDM, while other advanced techniques

addressing the other two limitations are summarized in sections 2.3.4 and 2.3.5.

2.3.2. Model-based Planning and Scheduling

Model-based scheduling is about linking the information from three domains:

architectural design, construction scheduling and quantity take-off. Due to its popular

use in the construction industry, CAD (Computer-Aided Design) models have been

Chapter Two: Literature Review

28

widely employed to assist the planning and scheduling process. In particular, Cherneff

et al. (1991) developed a system that interpret a CAD model into declarative

presentation from which a list of activities and an associated activity network are

generated. Relationships between components in CAD models have also been a

primary source for generating and sequencing construction activities in other early

research, such as Winstanley et al. (1993), McKinney and Fischer (1998), and de Vries

and Harink (2007). In these models, predefined rules are used to generate activities and

their precedence relationships. Recently, CAD models have been further exploited for

both schedule generation and quantity take-off, or time-cost trade off planning.

Kataoka (2008) proposed a method to automatically generate construction plans and

quantity take-off from primitive architectural information and predefined construction

method templates. On the other hand, Feng et al. (2010) used CAD models to develop

a time-cost integrated scheduling approach, in which activities were sequenced based

on physical constraints and genetic algorithms were used for time-cost tradeoff.

With the development of BIM commercial applications like Bently, Tekla or

Revit, generating construction schedules from BIM and/or IFC (Industry Foundation

Classes) models has recently become a new trench of model-based scheduling.

Tauscher et al. (2009) proposed schedule generation approach using case-based

reasoning technique based on historical data extracted from IFC models. Weise and

Liebich (2009) developed a 4D Simulation package which allowed to import IFC

models and link with Microsoft Project. Kim et al. (2013) proposed a framework for

automating the generation of construction schedules by using data (e.g. spatial,

geometric, quantity, relationship and material layer set information) stored in BIM.

Since IFC can represent design data created in most of existing modeling tools,

Chapter Two: Literature Review

29

BIM/IFC-based scheduling approaches have no restriction on input design models. By

this, generating construction schedules from design/IFC models could improve the

scheduling efficiency and data accuracy (Porkka and Kähkönen, 2007).

Despite their benefits for visualization and simulation, the aforementioned

model-based scheduling approaches retain two major drawbacks. Firstly, they lack a

mechanism for capturing complex construction requirements and thus consider only

atomic topological relationships and simple temporal constraints. Secondly, they

incorporate CPM/PDM methods thus the construction sequences have to be predefined

by planners based on only one construction method. Consequently, they still do not

support the consideration and incorporation of multiple construction methods for

alternative scheduling.

2.3.3. Knowledge-Based Planning Systems

While model-based scheduling systems normally comprise a predefined set of

rules for generating and sequencing activities, knowledge-based planning systems

(KBPS) often consist of a knowledge representation/acquisition facility, inference

engine and a knowledge base of domain rules and facts to capture some of key

requirements and determine the construction sequence.

There is a large library of KBSPs in the AEC industry. Most early systems such

as PLATFORM (Levitt and Kunz, 1985), IKBS9 (Gray, 1986), GHOST

(Navinchandra et al., 1988), ACP (Waugh, 1989), SIPE (Kartam and Levitt, 1990),

ESCHEDULER (Moselhi and Nicholas, 1990), or MIRCI (Alshawi and Jagger, 1991)

were only developed at the level of proof of concept or prototype. On the other hand,

Construction Planex (Hendrickson et al., 1987) was one of the first working-model

Chapter Two: Literature Review

30

systems. In Planex, design components are represented in a hierarchical structure and

elementary components are a representation of the project at the lowest level.

Predefined element activities are assigned to components and then aggregated into

project activities. The element activities form the basis for rules which are based on

physical and resource relationships to determine the construction sequence. In

addition, Planex could demonstrate the feasibility of KBS for construction planning in

specific domains; yet, the construction knowledge is implicitly stored in the knowledge

database. This made it applicable only to specific project types.

In OARPLAN (Winstanley et al., 1993) developed by the Centre for Integrated

Facility Engineering (CIFE) from Stanford University, the component hierarchy is one

element of the generic model, which comprises component/object, action, and resource

hierarchies. Activities are defined as an action applied to an object and requires

resources and are represented as a hierarchical structure. This allows greater

granularity for plan control. The dependencies and precedencies among activities are

inferred from the relationship between sub-activities, other activities, and the physical

constraints among components. Although OARPLAN did not explicitly consider

construction methods, the OAR structure developed in this system forms the

foundation for the development of CMD Scheduler (Fischer and Aalami, 1996) in

which construction methods are treated as the basic knowledge concept for automated

model-based scheduling. However, although they can capture resource requirement,

the sequencing knowledge in these two models is based only on topological constraints

among permanent building components yet does not address complex functional

requirements occurring in the construction process.

Chapter Two: Literature Review

31

KNOW-PLAN (Morad and Beliveau, 1994) utilizes an object oriented

representation to capture building components with their geometric attributes and the

type of their inter-connections. Different from previous system, activity sequences are

determined based on predefined sequence templates which are based on continuity of

employment, repetition location and the relationships between tasks rather than

components. The knowledge base of KNOW-PLAN contains a database storing data

extracted from CAD model and the dynamic sequencer with rules and explanations.

Especially, the system allows the sequence to be interactively modified based on user-

defined rules which can subsequently be added to the knowledge base.

CONSCHED (Shaked and Warszawski, 1992) and HISCHED (Shaked and

Warszawski, 1995) were designed for automated planning of high-rise buildings.

These systems also utilize object-oriented representation to capture building

components under zones, systems and their attributes. Activities are generated from

predefined list of tasks associated with categories of components, and the sequencing

of activities is based on the start/end attributes of activities rather than physical

relationships. As such, they could allow flexibility in construction technology.

Taking into account both resource and spatial requirements, ScaRC (Thabet and

Beliveau, 1997) is more developed than the aforementioned systems in terms of

complexity of sequencing knowledge. The scheduling knowledge of ScaRC contains

data of four constraint types: horizontal construction logic, vertical construction logic,

resource and space. Incorporating different types of major constraints would result in

more feasible schedules. However, ScaRC is developed at prototype level only. In

addition, it neither automates the activity generation nor reasons the logics. Thus, it

requires a large amount of manual work by the planners.

Chapter Two: Literature Review

32

The above review shows that the use of KBS technique to automated

construction planning has bloomed in the recent decades. One of the major advantages

of this approach is that generic construction knowledge is systematically defined,

represented and applied to produce schedules. However, similar to model-based

scheduling systems, the existing KBSPs have two common shortcomings. Firstly, most

of them only consider atomic topological constraints, and lack a means to capture and

reason complex functional requirements. Secondly, they are built on CPM/PDM and

thus, cannot generate multiple alternative schedules which possibly happen from

different choices of construction methods or technologies.

2.3.4. Construction Planning using Case-based Reasoning

In recent years, it has been common to use case-based reasoning (CBR) for

automated planning. The main emphasis of this approach is to reuse construction

knowledge and historical project data for schedule generation in order to save time and

effort and reduce errors (Faris, 1991). Various techniques may be applied to assigning

importance weights, measuring similarity, and adapting cases so that past experience

can be exploited. Most CBR planning systems use similar concepts and approaches,

but differ in their combination and modification of techniques thereof to suit their

domain of application.

In the approach proposed by Chevallier and Russell (1998), historical projects

with similar basic features are grouped together so that recurring project information

and sequencing logic can be adapted to future projects through the use of standard

structures and rules contained in project templates. The combination of rules and

project templates could reduce some reasoning work which has already been

Chapter Two: Literature Review

33

performed by the user in defining the template. Tah et al. (1999) developed CBRidge

Planner for highway bridge projects. In this system, projects are defined as hierarchical

structures with single components. Afterwards, these components are coupled with

defined activities, grouped into cases and stored in a database for reuse. Similar

construction processes are identified in terms of project specifications and using

similarities of predefined sections of the structure. Dzeng and Tommelein (2004)

presented CasePlan, a case-based system that automates the generation of construction

schedules for power plant boiler erection. CasePlan uses a generic product model to

establish the basis for project comparison so that existing schedules can be retrieved

and reused for similar projects. A further research approach, CONPLA-CBR (Ryu et

al., 2007), uses crude descriptions of project properties, such as subsoil specification,

costs of construction, or floor-count to determine similar schedules.

Some researchers also used IFC models as the basis for project description and

comparison in CBR-planning. Mikulakova et al. (2010) use IFC data and IFC-based

constraints to compute structural and content similarity measures. These similarity

indicators are incorporated with weightings to retrieve the schedule of similar projects.

Tauscher et al. (2009) and Hartmann et al. (2012) also used IFC models to find design

similarity among projects.

In general, CBR-based planning could help reduce some laborious and repetitive

scheduling steps and exploit existing knowledge and experience so that the scheduling

efficiency can be improved. However, while construction projects are commonly

unique with different contract agreements, site conditions, or applied code and

regulations, the similarity among projects which is the core concept of this approach

may not sufficient to obtain a proper or feasible schedule.

Chapter Two: Literature Review

34

2.3.5. Advanced Scheduling Techniques

Previous research has attempted to improve the practical application of

CPM/PDM to construction. Various analytical and heuristic methods were developed

to resolve the resource allocation problems in construction planning, including Chan et

al. (1996), Hegazy (1999), Leu and Yang (1999), Abeyasinghe et al. (2001) or Liu and

Wang (2008). The proposed approaches aimed to incorporate resource capacity

constraint into CPM and to identify a schedule solution with good project makespan

while fulfilling this constraint. However, these approaches still lack a mechanism to

explicitly capture and represent complex temporal constraints.

Plotnick (2006) developed a Relationship Diagramming Method (RDM) as an

extension of the traditional PDM with programmatically added “reason” codes so that

planners can have a better understanding of the reasons for a relationship or an activity.

By this, important data could be included in the representation of activities, and the

semantic description of activities and relationships could thereby be enhanced.

However, this extended feature of RDM is still sufficient to represent construction

requirements systematically for automated sequencing and scheduling. On the other

hand, Tamimi and Diekmann (1988) and Fan and Tserng (2006) aimed to generate

alternative schedules using soft logic. Accordingly, a heuristic algorithm called

SOFTCPM was developed to sequence the activities under the impacts of soft and

fixed logics. Nevertheless, the scope of soft logic is still limited and unsuitable for

construction requirements.

Recently, Constraint Logic Programming (CLP) has emerged as a common

planning and scheduling tool to overcome the limitations of CPM/PDM in processing

complex temporal constraints and generating multiple alternatives (Van Hentenryck,

Chapter Two: Literature Review

35

1989; Zweben and Fox, 1994). This is due to its ability to use constraints actively to

reduce the computational effort to solve the combinatorial nature of scheduling

problems (Caseau and Laburthe, 1994; Goltz, 1995). Baptiste and Le Pape (2000) also

noted that the performance of CLP schedulers is comparable to traditional operational

research approaches, if not better for most problem instances, while offering greater

model flexibility. Readers may wish to refer to Jaffar and Maher (1994), (Wallace,

2002), or Apt (2007) for a more in-depth discussion on the basic concepts of CLP in

Prolog and its extension to CLP. With the ability to process both precedence and

disjunctive constraints, CLP has been widely used for resource-constrained scheduling

problems. Some existing methodologies may be found in (Beck and Fox, 2000;

Dorndorf et al., 2000; Fromherz, 2001; Cesta et al., 2002; Laborie, 2003; Lorterapong

and Ussavadilokrit, 2012). For construction scheduling, these methods still cannot

capture complex combinations of temporal constraints which possibly result from

conditional constraints or inter-dependencies between construction requirements. In

addition, they are not able to reason construction requirements into feasible schedules

due to the lack of a modeling syntax and embedded reasoning knowledge.

2.3.6. PDM++ Modeling Framework

The PDM++ model (Chua and Yeoh, 2011) which has been adopted for this

research, is one attempt to improve the application of CLP to construction scheduling.

It extends the traditional PDM model by incorporating two basic logical operators

“AND” and “OR” with the enriched syntax inspired by the Artificial Intelligence

developed by Allen (1984). Accordingly, PDM++ not only maintains the capability of

Allen’s representation but also subsumes the PDM model by allowing both minimum

and maximum lag time requirements to be explicitly described.

Chapter Two: Literature Review

36

Figure 2.1. PDM++ Temporal Relationships from Chua and Yeoh (2011)

PDM++ generally consists of two different types of relationships: Unary and

Binary. Unary relationships are defined as constraints affecting the start/finish time of

a single activity while binary relationships specify the temporal constraints between

two activities. For easy reference, a brief summary of PDM++ model is presented in

Chapter Two: Literature Review

37

Figure 2.1 where m and ~m respectively denote minimal and maximal lag types. The

third column shows the respective short form formats of PDM++ constraints which

will be used throughout the next chapters.

Based on mathematic definitions, PDM++ temporal constraints can be classified

into two groups: simple and complex. Simple temporal constraints are those

represented by only one mathematical inequality constraint. This group includes 4

unary constraints and 8 binary constraints (with minimal and maximal lag

requirements), forming the basic constructs used to represent complex constraints. In

contrast, complex constraints are mathematically represented by either a conjunctive or

disjunctive combination of inequality constraints. For example, constraint X Contains

Y is represented by two inequality constraints  X Y and ()
   Y XY d X d ,

which respectively refer to constraints (X SS(0) Y) and (Y FF(0) X). In other words, a

complex temporal constraint is a conjunctive/disjunctive combination of at least two

simple temporal constraints.

Of various advanced scheduling techniques that have been developed to

overcome the limitations of CPM/PDM in capturing and processing construction

requirements, PDM++ could be the most effective in representing complex temporal

constraints for generating alternative schedules. This attribute makes PDM++

employed as the background modeling tool to represent complex temporal constraints

derived from construction requirements. However, similar to the traditional

CPM/PDM, PDM++ does not include the necessary knowledge and reasoning tools to

represent construction requirements and convert them into temporal constraints, which

are vital for automated sequencing and scheduling. Hence, this research will overcome

Chapter Two: Literature Review

38

this limitation by proposing construction requirement formalization tools and sequence

reasoning frameworks which will be presented in the following chapters.

2.4. Criticality Analysis in Construction Schedules

If generating constructible schedules is the necessary condition of good schedule

performance, schedule management could be considered as the sufficiency condition.

Essentially, schedule management has been found to be the most crucial for schedule

performance (Chua et al., 1999; Iyer and Jha, 2006). For good schedule management,

it is necessary to identify the crucial parts of the schedule which need to receive more

management attention than others, and criticality analysis is thus a crucial schedule

management task. Currently, the concept of criticality could be examined from both

activity and constraint viewpoints. This section therefore reviews the key research on

criticality analysis in construction schedules from two perspectives of criticality:

activity and constraint.

2.4.1. Criticality Analysis from Activity Perspective

The concept of criticality already has been introduced since the formation of the

CPM. CPM (Kelley, 1961) allows planners to identify critical paths as a series of

critical activities from beginning to the end of the project network (Wiest and Levy,

1977). Accordingly, total and free floats are used to demonstrate the impact of

delaying an activity on project makespan and on the early starts of subsequent

activities, respectively. In particular, a critical activity has zero floats and any delay of

its start time or any increase in its duration will delay its successor activities and

prolong project makespan.

Chapter Two: Literature Review

39

Criticality concept with float times has been used effectively in anticipating

schedule changes arising from activity changes in CPM networks. However, it has

been indicated in previous research that using floats to study the impact of changing

the duration of a critical activity on schedule makespan is inadequate in PDM models

due to the existence of non-finish-to-start relationships. Further information – critical

arcs or constraints incident with a critical activity – need to be taken into account for

the analysis. Various methodologies have been proposed to address this issue. Wiest

(1981) suggested that there should be four types of critical activities, namely normal,

reserve, neutral and perverse. A critical activity is classified as normal if a critical path

passes through it from its start to finish, while it is called reserve if a critical path

passes through it from finish to start. When a critical path enters and exists from the

starting or finish point of an activity, changes in duration of this activity does not affect

schedule duration and thus this activity is defined as neutral. Finally, if an activity has

both normal and reserve impacts on project duration, it is called a perverse activity.

The classification proposed by Wiest (1981) forms the background for various

later research. A similar classification was also proposed by Moder et al. (1983).

However, when incorporating activity splitting the authors further divided neutral class

activities into two groups: start-critical and finish-critical. Elmaghraby and

Kamburowski (1992) examined the criticality in activity networks with generalized

precedence relations, and proposed that an activity is critical if at least its start- or

finish- node belongs to a critical path. Accordingly, they classified critical activities

into five groups: forward-critical, backward-critical, bi-critical, start-critical, and

finish-critical. Valls and Lino (2001) developed a more detailed classification of

Chapter Two: Literature Review

40

critical activities including six classes: normal, reserve, neutral, perverse, increasing

normal, and decreasing reserve.

From the above review, the proposed criticality classifications provide a deeper

insight into how changes of critical activities influence project duration. These

classifications were developed commonly by analyzing the nature of the critical arcs or

constraints linking the critical activities. This implies that constraints play a key role in

defining the way a critical activity affects project makespan, and analyzing the

characteristics of constraints is thereby essential for criticality and change analysis in

construction schedules.

2.4.2. Criticality Analysis from Constraint Perspective

Theory of constraint (TOC) advocates that most crucial constraints should be

identified and resolved with the highest priority to enhance the overall system

performance (Rahman, 1998). In traditional CPM networks, critical constraints are the

critical precedence relationships linking critical activities and are often inferred from

critical paths. In resource-constrained CPM models, the concept of critical path is

extended to critical sequence to comprise critical activities linked by both

technological and resource precedence relationships (Wiest, 1964). Various analytical

approaches for identifying critical sequences have been developed, including those

proposed by Wiest (1964); Woodworth and Shanahan (1988); Bowers (1995); Lu and

Li (2003); Kim and de la Garza (2005); (Lu and Lam, 2008) and Liu and Shih (2009).

However, as highlighted in Bowers (2000) and Rivera and Duran (2004), critical

sequences might be different for different schedules, and might depend on the specific

method being applied. Hence, critical constraints inferred from critical sequences

might not be identical in different schedules or with different methods.

Chapter Two: Literature Review

41

Chua and Shen (2005) developed an analytical methodology to identify key

resource and information (RI) constraints causing project delays. The impacts of these

enabling constraints on the overall project performance are represented by their floats.

More specifically, a RI constraint is critical to project delays when it has zero floats

since any delay in its Estimated Availability Time (EAT) will push back the latest time

of the associated activity and consequently delay the overall project. It was found from

their analysis that constraints related to non-critical activities could be critical and

cause project delays when they are delayed. Therefore, in addition to normal critical

constraints associated with critical activities, these constraints should also be well-

managed to reduce and prevent project delays. As such, this theoretical methodology

has opened a novel perspective for schedule management from the viewpoint of

constraint criticality. However, since this approach was built upon the traditional CPM,

its application is still restricted to single constraints and from the perspective of a

single schedule (Nguyen and Chua, 2012). Consequently, it is found inadequate to

handle construction requirements which may result in complex temporal constraints

and multiple alternative schedules.

It is found from the above review that a constraint is identified critical if it is

involved in a critical path or sequence. In other words, only constraints linking critical

activities and governing the project duration are critical. Hence, those governing non-

critical activities’ times are sometimes intuitively considered non-critical or

unimportant. However, in construction stage, besides project duration, the start/ finish

times of non-critical activities and activity sequence are also important to contractors

as they may affect the overall work plan among related parties or different projects. In

addition, existing approaches still focused on a single constraint and from a single

Chapter Two: Literature Review

42

schedule perspective. Consequently, they are found insufficient for analyzing the

criticality of construction requirements which usually comprise multiple temporal

constraints and possibly lead to multiple alternative schedules.

2.5. Identified Research Gaps

The above literature review shows that numerous researches have attempted to

improve the adequacy and efficiency of schedule generation and analysis using

different approaches and perspectives. Schedules are controlled by construction

requirements which arise from different construction aspects with various natures and

often lead multiple temporal constraints. Thus, systematically formalizing construction

requirements, automatically converting them into temporal constraints, and

analytically analyzing them are necessary for automated scheduling. Nevertheless,

these issues are not fully addressed in the current research, and the literature has

prompted the following research gaps.

Firstly, there is a lack of scheduling framework that allows the incorporation of

multiple construction methods and complex construction requirements per se.

Generally, construction requirements can exist in such different forms as functional

dependencies between product components, temporal constraints on a single or

between construction processes, and requirements of key resources and work space

availability. Integrating these complex requirements for automated sequencing and

scheduling requires an extended information modeling framework. Unfortunately, the

present information modeling approaches focused mostly on elements of requirements

such as atomic physical relationships, resource or spatial constraints. Hence, an

extended framework is a necessity for automated scheduling from key construction

requirements.

Chapter Two: Literature Review

43

Secondly, there is a need for a generalized model to capture functional

requirements and convert them into temporal constraints. Functional requirements,

which encompass topological dependencies and intermediate function requirements,

are among the most complex construction requirements. Generally, functional

requirements are product-oriented and involved both permanent and temporary

components. They could also result in complex combinations of temporal constraints

which could lead to multiple alternative schedules. Despite this, existing sequencing

approaches are found insufficient in automatically derive temporal constraints from

such requirements. Hence, a more adequate sequencing framework from functional

requirements is necessary for automated sequencing and alternative scheduling.

Finally, there is a lack of a methodology for identifying critical construction

requirements. Construction requirements are the governing factors of the feasibility of

schedules; hence, identifying crucial requirements is necessary for good schedule

management. Despite this, present criticality analysis approaches emphasis mainly on

activities or single constraints. Besides, they are still carried out from the perspective

of a single schedule. Since complex construction requirements normally involve many

temporal constraints and possibly lead to multiple alternative schedules, these

approaches are found inadequate to handle complex requirements. Therefore, a

systematic approach for analyzing the criticality of constraints and construction

requirements from the perspective of multiple alternative schedules is necessary so that

crucial requirements can be identified and managed.

2.6. Summary

This chapter has presented a literature review on approaches for generating and

analyzing construction schedules. The detail review shows that key construction

Chapter Two: Literature Review

44

requirements have been inadequately captured and analyzed for schedule generation

and management. This is due to the lack of representation and integration frameworks

which allow for identifying, interpreting and integrating key requirements for

automated sequencing and scheduling. The literature also depicts that a systematic

approach for analyzing the criticality of construction requirements is needed for

schedule analysis to achieve better schedule management.

Subsequent chapters of this dissertation presents the research attempts to

overcome the identified research gaps. In particular, a generalized framework for

automated scheduling from construction requirements will be presented in the next

chapter. This framework aims to improve the formalization and integration of complex

construction requirements into the scheduling process. A generalized functional

requirement model for representing and reasoning complex functional requirements

into temporal constraints will be described in chapter four. A system architectural

framework and necessary reasoning algorithms for implementing the proposed models

will be presented in chapter five. Especially, to further enhance the efficiency of

scheduling with complex constraints, a pre-emptive constraint analysis framework will

also be developed in this chapter. Finally, chapter six will present an innovative

approach for analyzing and managing construction requirements based on the impact

of construction requirements on schedules. Altogether, these research results will form

a generalized framework for automated schedule generation and analysis from the

perspective of construction requirements, which allows the consideration,

incorporation, pre- and post-analysis of construction requirements to achieve better

schedule feasibility and efficiency.

45

CHAPTER 3. GENERALIZED FRAMEWORK FOR

AUTOMATED SCHEDULING FROM

CONSTRUCTION METHODS AND

REQUIREMENTS

3.1. Introduction

Construction methods and requirements are key construction knowledge that

should be explicitly represented and sufficiently incorporated into scheduling for good

schedule generation and analysis. This chapter attempts to address these issues by

developing a generalized framework for automated generation of schedules with

consideration of alternative methods and major requirements. The development of this

framework starts by defining core knowledge models for representing key project

information originated from product, process, and construction knowledge

perspectives. Four fundamental scheduling processes are then developed to

automatically generate activities and temporal constraints from building models and

the imposed construction requirements, and compute for alternative schedules. In

combination, the proposed approach will help improve the current practice of schedule

generation by allowing for the explicit representation and incorporation of construction

knowledge in the form of construction methods and requirements, by automating the

sequence reasoning and schedule computation processes, and by producing all feasible

alternative schedules.

3.2. Core Knowledge Models for Automated Scheduling

This research proposes four core knowledge models: Extended Product,

Construction Method, Construction Requirement, and Schedule to formalize the

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

46

project information as well as construction knowledge necessary for automated

scheduling from construction requirements.

3.2.1. Extended Product Model

Product models are conceptual structures that represent the project-specific

components. In many planning systems, product decomposition models are normally

directly derived from design models, and describe only permanent components. This

research employs an extended product model which includes both temporary structures

and site works required for the construction of the permanent facility into the product

hierarchy similar to Song (2006) as shown in Figure 3.1. Since temporary structures

and site works are the main elements describing construction methods, such an

augmentation enables an explicit description of the lifecycle, and functional behaviors

of all components, as well as construction requirements associated with them.

 Permanent component: Permanent components represent the permanent

structures that will be delivered to the project owner after the construction. Once

a permanent component enters the product system, it will remain there until the

facility is demolished.

 Temporary component: Temporary components refer to temporary facilities

whose existence is governed by the applied construction method to maintain the

stability of other components or support construction processes. As such,

temporary component will be removed when the need for its functionality no

longer exists.

 Site work component: Site work components represent the site components that

depict the site environment of the permanent facility, but do not belong to the

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

47

permanent facility. Example of site work components can be earth works and

temporary accesses, which provide construction spaces or accesses to support

construction processes.

Figure 3.1. Extended product model

Similar to traditional product models, components in each category are arranged

in decomposition (i.e. part-of) hierarchies. In particular, the entire facility model is

gradually decomposed into systems and subsystems (or zones and subzones if the

decomposition is area-oriented), and components with no subcomponents are the

lowest level of detail. By this, most of the facility components in the engineering

design like beams, columns, or piles can be represented as product components in the

extended product model. When large-size building elements like long shear walls or

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

48

wide slabs are divided into multiple segments, each segment is defined as a

component. The decomposition levels of each component system can be determined by

planners to a granulation degree suitable for describing construction requirements and

planning intention. A product component comprises a set of main attributes as follows:

 Geometry: Components have geometries, i.e. height, length, width or diameter.

 Location: Components have locations in a 3D space.

 Decomposition: Components can have constituting components.

 Functionality: Components can have functional behaviors according to design

intentions (for permanent components) or technological purposes (for temporary

and site work components). Typical functions that a component can provide to

another component are: support, suspend, contain, protect, and balance.

 State chain: Each component has a state chain defined by the applied

construction methods and depicting its transitive engineering behavior along its

construction lifecycle. A state chain consists of a sequence of states, each of

which describes an intermediate status of a component in the construction

process. This research adopts and extends the component state concept proposed

by Song (2006) in which a component state is divided into an active phase and a

quiescent phase to distinguish the transitive engineering characteristics that

determine the behavior of the in-progress component. Active phases are

associated with construction processes while quiescent phases are the duration

when no process happens to the component. Especially, in order to further

distinguish the construction and completion stages, this research has augmented

Song’s component state chain with a final quiescent state (Complete.Q) which

represent the duration in which the component has been already constructed and

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

49

can perform its designed engineering behavior. This extension is necessary for

representing construction requirements occurring in the service stage of a

component like final functional dependencies.

As shown in Figure 3.1, the construction lifecycle of the “RC Beam” has three

consecutive processes: “Installing Rebar”, “Casting Concrete”, and “Natural

Hydration”. The entire state chain representing this construction lifecycle is divided

into four sequential states named: Rebar, Concrete, Strength Development, and

Completion. Among these, state “Concrete” only contains an active phase as the beam

the Natural Hydration starts right after Casting Concrete is finished, leading to an

immediate change from states “Concrete” to “Strength Development”. The

construction phase ends at the end of state “Strength Development” when the RC

Beam meets its designed status, starting the completion phase, and thus the completion

state has only quiescent phase. The final state of this component is “Completion”

indicating the time period in which the beam has been fully constructed and can

provide all functionalities or performances as design intention.

Syntactically, a product component can be represented as follows:

product_component(name, category, type, (geometries), (location), [decomposition],

[functionalities], [state chain]).

3.2.2. Construction Method Model

Construction method model abstracts the knowledge of construction technology

in terms of generic construction processes, resources and temporary structures required

to facilitate the processes. To this extent, the following attributes are defined to

represent a construction method.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

50

 Type: A construction method can have either type: elementary indicating that the

method refers to only one construction process, or aggregation defining a

method as a combination of multiple elementary methods and thus involving

multiple construction processes.

 Construction Process: Construction process represents generic construction

work that needs to take place with respect to the method. One process can be

involved in different construction methods. In this case, the methods differ in

other attributes.

 Component Type: This attribute specifies the type or class of product component

to which the method can be applied.

 Temporary Structures: A method may require one or a set of temporary

structures to support the process.

 Key Resources: A method may also need one or more types of key resource to

facilitate the process.

 Quiescent Phase Allowed: This Boolean attribute describes whether the process

allows for any gap between it and the subsequent process when two methods are

sequentially applied to one component. In other words, it specifies if a

component state associated with the process has a quiescent phase. A “Yes”

value for this attribute indicates that the construction method does not require the

method subsequently applied to the component to be carried out right after it.

Consequently, the component state associated with this method has two phases:

active and quiescent. In contrast, a “No” attribute requires the subsequent

method to be carried out immediately after the method, and thus the associated

component state has only active phase.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

51

Figure 3.2 presents two examples of construction method: (a) elementary, and

(b) aggregated methods. In case (a), the elementary construction method involves only

one process, and allows a quiescent phase after the process has been finished. This

means that when this method is applied to a beam component, the state “Rebar” can

have both active and quiescent phases. On the other hand, in case (b), the aggregated

construction method “Cast-in-situ” involves three construction processes.

Figure 3.2. Examples of construction method

Syntactically, a construction method can be represented as follows:

construction_method(name, type, construction process, [component types], [temporary

structures] , [key resource types], quiescent phase allowed).

3.2.3. Construction Requirement Model

A construction schedule is controlled by its constraints derived from construction

requirements. The satisfaction of these requirements determines the appropriateness of

the schedule. Therefore, to complete the representation of planning knowledge,

construction requirements should be modeled as a fundamental data class in addition to

products and construction methods.

Construction requirements are grouped into two main categories (as shown in

Figure 3.3): functional and non-functional. Functional requirements are classified

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

52

respectively as intermediate and final functional requirements. Non-functional

requirements can be categorized into four sub-classes: temporal, key resource, work

space, and value requirements. Temporal requirements refer to constraints imposed on

the start/finish or the sequence among construction processes. Resource and space

requirements respectively represent the needs of resource and space availability for

constructing a product component and/or carrying out a construction process. Value

requirements refer to constraints on measurable features of product components such

as weight or geometries.

Figure 3.3. Classification of construction requirements

In general, a construction requirement implicitly imposes one or many

functional, temporal, topological or measurable constraints on a single or some

components, construction processes, resources and space entities. This research

extends the generalized ontological model developed by (Yeoh, 2012) to describe a

requirement using three attributes: Purpose, Operator and the Necessary Condition

that need to be satisfied for the fulfillment of the requirement.

 Purpose: The purpose refers the agent that drives the requirement. The purpose

attribute of a functional requirement is called “Function User” which is the

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

53

requester for the functionality behaviors of other product components to sustain

its stability or construction. For a non-functional requirement, the purpose

attribute refers to a construction process or a key resource or work space entity

whose execution/performance is enabled by the fulfillment of the requirement.

 Operator: The operator of a requirement depicts the product components,

construction process, resource, or space entity whose behaviors, inter-

relationships or attributes need to meet some constraints for the fulfillment of

the requirement. In particular, the operator of a functional requirement is called

“Function Provider” which involves a set of product components whose

functionality behaviors provide the required functionality from the function user.

The operator of a non-functional requirement is the resolution of the requirement

and can involve a single or a combination of component states, construction

processes, space or key resource entities, and measureable attributes of product

components or construction processes.

 Necessary Condition: The necessary condition involves the constraint(s) which

must be fulfilled before the requirement is available for proceeding. It may be

represented as functional dependencies, topological relationships between

product components, temporal relationships among construction processes, or

constraints of measureable features like the clearance between objects, weight of

loads, or number of key resources. Measurable constraints can be defined in the

form of arithmetic comparative relationships. Essentially, the necessary

condition of a functional requirement normally comprises a functional

relationship between function user and function provider. The temporal

relationship between these two parties needs to be derived from the relationship

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

54

between the components involved in the function provider. For this purpose, a

generalized framework for modeling and reasoning from functional requirements

built upon this basic requirement model will be presented in the next chapter. On

the other hand, the necessary condition of a non-functional requirement can

comprises one or many constraints of other types (temporal, topological or

quantitative). Typical taxonomies for functional dependencies are: support,

suspend, contain, protect, and balance. Taxonomies for topological, temporal

relationships and measurable constraints follow those defined in previous studies

such as Nguyen and Oloufa (2002) and Chua et al. (2010) and are summarized in

Figures 3.6 – 3.8. Necessary conditions having impact upon construction

sequences need to be converted into temporal constraints for scheduling.

Figure 3.4. Temporal relationships based on PDM++ model

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

55

Figure 3.5. Topological relationships

Figure 3.6. Comparative relationships

Figure 3.7a describes a functional requirement “R1: Beam B2 needs to be

supported by two columns C1 and C2”. The purpose of R1 is represented by a function

user which comprises of an individual or a set of components requesting for the

functionality (B2). The operator of R1 is represented a set of component states of

product components performing the required function (C1 and C2). The necessary

conditions of R1 are the functional dependency between function user and provider. In

Figure 3.7b, requirement R2 defines a dependency between the erection of beam B4

and the construction sequence of beams B2 and B3. The purpose attribute of R2 is the

erection process of beam B4 (B4-Erection). The operator comprises the two erection

processes of beam B2 and B3 (B2-Erection and B3-Erection). The necessary condition

involves a conditional temporal constraint among three processes.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

56

Figure 3.7. Examples of construction requirement

Syntactically, a construction requirement can be represented as follows:

construction_requirement(description, [purpose], [operator], [functional relationships],

[topological relationships], [temporal constraints],[measurable constraints]).

3.2.4. Construction Schedule Model

Construction schedule model formalizes the construction processes, and their

temporal dependencies involved in the project. The schedule model is described in a

hierarchical structure. Each hierarchy represents the construction of a system or

subsystem of the product model. The decomposition attribute of a schedule can assist

planners with rapid and concise representation of temporal constraints among groups

of activities. It also allows for elaborating the schedule to a desired level of detail.

Elementary activity is the lowest detail level of the schedule model. Each elementary

activity has a one-to-one relationship with an active component state phase and

involves the following attributes:

 Decomposition: Schedules can contain other constituting sub-schedules.

 Temporal Constraint Set: Temporal constraint set contains all the temporal

relationships between their constituting schedules (activities). Temporal

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

57

constraints or relationships are represented using relationships defined in

PDM++ Model.

 Start Time: Each schedule has a time range indicating its earliest and latest time

of its commencement.

 Finish Time: Each schedule has a time range indicating its earliest and latest

time of its completion.

 Duration: Each schedule has duration, which is the difference between

earliest/latest finish and earliest/latest start times.

 Resource Use: Resource use attribute is a list of key resources and amount

required to support any activities in the schedule. At the activity level, this

attribute is useful for estimating activity durations, while at a higher level, it

provides information for resource management.

 Space Use: Similar to resource use, this attribute is a list of work space entities

used by all activities in the schedule.

Figure 3.8. Example of schedule model

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

58

Figure 3.8 shows an example schedule model of a construction project with six

levels of detail. The schedule model differs from a work breakdown structure (WBS)

in that it contains temporal constraints between high-level schedules. For example,

Super Structure Schedule must be at least 5 days after Basement Schedule (described

as constraint B(5)). These constraints can be further elaborated into a set of constraints

between their constituting schedules when schedules at a lower detail level are needed.

3.2.5. Schedule Data Integration Framework

Although a construction project may involve a variety of information and data,

this research specify seven types of data which are indispensable for a construction

requirement oriented automated scheduling system. The conceptual integration

framework of these core data based on the proposed knowledge models is depicted in

Figure 3.9Error! Reference source not found.. It is based on an object-oriented

paradigm that defines the relationships between product components, construction

methods, construction requirements, activities and temporal constraints.

The Product Component class is devised to implement the proposed Extended

Product Model. A product component object has a Name for identification. Its

Geometries define its physical dimension such as height, length, or width. The

Location attribute is defined in the form of (x, y, z) coordination in 3D space. The

Category attribute takes one of three default values: Permanent, Temporary, and Site

Work. The Type attribute defines the structural function, such as column, beam, and so

on. The Decomposition attribute specify the direct subcomponents constituting the

component. The Functionality attribute is used to capture the designed final

functionality behaviors of the component. Finally and most especially, the State Chain

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

59

attribute describes the transitive engineering behavior along the component’s

construction lifecycle. It contains a series of component state, each of which is defined

by a construction method.

Figure 3.9. Integrated construction information framework

The Component State object describes an intermediate status of a component in

the construction process. It is defined by three core attributes: a Name or a unique ID, a

Type with two default values: active and quiescent, and a Construction Process

associated with the state. The value of construction process attribute is extracted from

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

60

the construction method defining the component state. Component state objects are

also the key elements for representing construction requirements.

The Construction Method object represents the core construction process and its

corresponding requirements. It is defined by a unique Name, and a Construction

Process. The Component Type attribute indicates the type of product component to

which the method can be applied. The value of this attribute is presented in a set

format. The Temporary Structures attribute define the set of temporary component

types required for executing the method. Finally, the boolean Quiescent Phase Allowed

attribute describes whether the process allows for any time gap between it and the

subsequent process when two methods are sequentially applied to one component. The

relationship between Construction Method and Product Component objects is many-

to-many, meaning that a construction method can be applied to many product

components, and at the same time, a product component can be constructed using

many construction methods. On the other hand, the association relationship between

Construction Method and Component State objects is one-to-many, since a Component

State is defined by only one Construction Method.

The Construction Requirement class abstracts construction knowledge and

project constraints imposed on the project. Construction requirement objects have three

main attributes: Purpose, Operator, and Necessary Condition as defined in the

construction requirement model. Construction requirement class has two sub-classes:

Functional Requirement class for representing functional requirements and Non-

functional Requirement class for non-functional requirements. Accordingly, the

Purpose and Operator attributes are inherited as Function User and Function Provider

in the functional requirement sub-class. The Necessary Condition attribute is

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

61

elaborated into Function Type and Provider Co-functionality in the former, while as

Temporal, Topological and Measurable constraints in the later. In essence, the

Functional Requirement objects have a Provider Co-functionality attributes to capture

the relationship among the providers involved in the requirement. More detailed

description on formalizing functional requirements will be provided in chapter four. In

general, a Construction Requirement object can be associated with one or many

Component States and/or Activities, forming a many-to-many association relationship

between Construction Requirement and Component State and Activity classes.

Moreover, since a construction requirement can be converted into a set of temporal

constraints, the relationship between Construction Requirement and Temporal

Constraint objects is one-to-many.

The Activity class represents the construction processes required for the project.

An Activity object is distinguished by its Name, and has three core temporal attributes:

Duration, Start, and Finish. Especially, an Activity object can be constituted by other

Activity objects, which are captured using the Decomposition attribute. The temporal

relationships among activities are captured by the Temporal Constraint class.

Generally, a Temporal Constraint object defines an interval-to-interval relationship

between two time intervals. Accordingly, it is abstracted with five key attributes:

Relationship Type specifying the constraint type (such as Before, Start, Finish, etc.),

Preceding Interval, Succeeding Interval, Lag, and Lag Type (minimal or maximal).

Finally, the Schedule class incorporates activities and temporal constraints for schedule

computation. A Schedule object consists of an Activity List, a Constraint List, a Start

Date and a Makespan.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

62

Overall, the integrated information framework proposed in this section allows for

the unambiguous formalization and incorporation of construction knowledge in the

form of construction methods and requirements. The association relationship among

the core seven data classes also forms the foundation for linking three main

perspectives: product, construction knowledge, and process, so that inference and

reasoning mechanisms for automated sequencing and scheduling based on construction

knowledge can be performed.

3.3. Generalized Framework for Automated Scheduling from

Construction Requirement (ASCoRe)

Figure 3.10. IDEF representation of the ASCoRe framework

Figure 3.10 depicts a generalized framework for Automated Scheduling from

Construction Requirements (ASCoRe). This framework comprises four kernel

inference and reasoning processes necessary for an automated scheduling system. The

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

63

scheduling process begins with process “P” (for product) which aims to create an

extended hierarchy of product components using 3D design models and construction

methods defined in a method library. Output of this process is a product component list

organized in a hierarchical structure using the extended product model.

The product component collection obtained from process “P” is used by process

“R” (for requirement) to identify construction requirements imposed on the project.

Common construction requirements can be inferred from basic requirements stored in

a library, and represented using the construction requirement model. Subsequently, the

list of requirements obtained from process “R”, the product component list, defined

work packages and production estimates are input to process “S” (for schedule) to

create the schedule model. This network contains a list of activities with associated

durations and a list of temporal constraints defining the precedence relationships

among activities. Finally, activity and constraint lists are input to process “A” (for

alternative scheduling) to compute for alternative schedules. This process is facilitated

by a set of inference and computation algorithms embedded in a schedule generator.

The output of the entire scheduling is a set of alternative schedules fulfilling the

imposed construction requirements while also optimizing the project makespan if such

a schedule exists.

3.3.1. Process P: Generating Extended Product Hierarchy

This process transforms graphical project description to data representation.

Figure 3.11 depicts its three main procedures which sequentially refine an arbitrary 3D

design model into a standard structure, incorporate the refined design with construction

method, and generate an extended collection of product components.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

64

Figure 3.11. Procedure for creating an extended product hierarchy

3.3.1.1. Normalizing Design Model

A standard 3D design model is an important input for model-based scheduling.

However, 3D design models do not have a clear definition of components due to

different modeling practices. A building element may be modeled as a combination of

multiple standard components. For instance, a designer may draw a column from

ground slab to roof, while another may draw columns for each floor only. Similarly, in

some designs, a multi-span beam is modeled as one beam from the first supporting

column to the last one, or it can be divided into multiple beams, each of which

corresponds to one span. Such differences will lead to ambiguous recognition of

components and their functionality behaviors. Therefore, design elements need to be

decomposed into a standard granularity level. For a clear and accurate functionality

representation and analysis, this research adopts the component definition from the

structural analysis perspective, in which components are defined based on their

structural joints. For example, beams must be decomposed into single-span beams,

slabs are defined by its supporting beams, and so on. Besides, design mistakes such as

wrong connections, and design elements that are not necessary for planning such as

annotations or comments can also be removed in this process.

The normalization procedure also facilitates the reasoning about functional

relationships among components. Especially, the most common functional dependency

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

65

“support” can be inferred based on topological relationships and component type. For

example, a column supports a beam if it is connected to the beam at its upper end.

Other types of functional relationships like “suspend”, “protect” or “balance” need to

be specified directly by engineers or planners.

3.3.1.2. Creating Design-Construction Integrated Model

Construction knowledge is incorporated into normalized design models by

assigning construction methods to product components. This assignment enables the

automated generation of component state chains. For instance, if column is linked with

an aggregate construction method “Cast-in-situ” = [Rebar, Concrete, Curing], its state

chain is defined by the elementary methods constituted in the aggregate method and

can be derived as [Rebar.A, Rebar.Q, Concrete.A, Curing.A, Completed.Q]. When

multiple methods are assigned to a component for considering choice of methods, their

corresponding state chains will be generated accordingly. Moreover, multiple methods

can be assigned to one component. In this case, a component may have multiple state

chains, each of which is corresponding to one method.

The requirement of temporary structure defined in construction methods is used

as a guideline for planners to identify temporary structures for the project, and they can

decide if it is necessary to add these structures into the 3D model. Especially,

temporary components will be automatically added to the product collection after a

construction method is assigned to a permanent product, and a functional relationship

between it and the permanent product is also set up. When different methods applied to

a permanent component require a same type of temporary structure, only one

temporary component of the common type will be added to the product collection to

avoid generating unnecessary components. The state chain of temporary components

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

66

can also be defined through the methods applied to the components. However, a

default state chain of [Erect.A, Erect.Q, Dismantle.A] can be assigned to a temporary

component if no construction method is explicitly assigned to it. Pre-emptively

generating temporary components from method assignment helps to ensure temporary

components are adequately defined. If visualizing temporary is required for spatial or

structural analysis, planners have to manually insert them into the design model, and

then link them to pre-generated temporary components so that functional relationships

between the temporary and permanent components are retained.

In addition, key resource requirements defined in construction methods can be

linked to the associated component states through the assignment of construction

methods to components. In particular, key resource requirement is defined as an

attribute of component states. The value of this attribute can be automatically derived

from the associated construction methods.

3.3.1.3. Generating Extended Product Hierarchy

In this step, product data are extracted from normalized construction-design

integrated models and structured into a hierarchical format. Data extracted should be

sufficient to set up major attributes of product components as defined in the previous

section, including: component category, component class, decomposition, geometry,

location, functionality, and state chain.

The detailed structure of the product hierarchy can vary for different projects and

should be specified by planners. By manually defining the structure of the product

hierarchy, planners can control the level of detail for any part of the project based on

their management strategies. For instance, they may want to elaborate the beams into

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

67

individual components at every floor level, and at the same time represent all columns

in one story as one component only. However, standard structures can be predefined

for basic project types. For building projects, a standard product hierarchy can be

predefined according to functional component systems like piles, footings, beams,

columns, etc. and floor levels. Similarly, a generic product hierarchy for bridge

projects may include basic component systems such as piles, piers, beams, decks,

tendons and so on.

3.3.1.4. Generating Space Entities and Spatial Interference Matrix

When spatial requirement is considered for planning, key space elements can be

included into 3D models, and a collection of space entities also can be generated

within this process. Space requirements may also be automatically defined using

existing approaches such as Akinci et al. (2002), Gominuka and Sadeghpour (2008), or

Shih-Chung and Miranda (2008). Space entities have types which are categorized

following the space utilization hierarchy model developed by Chua et al. (2010) (see

Figure 2-7) which defined four major space types: Interdiction Space Element (type I),

Dead Space Element (type D), Work Space Element (type W), and Path Space

Element (type P). Interdiction Spaces are spaces where no product, process or

resource is allowed to occupy, and typically specified for reasons of hazards or

protection. Dead Spaces are generally occupied by a “permanent” physical product

component such as slabs and walls. Work spaces are defined as space entities where

processes are carried out, and are typically adjacent to work faces, while Path spaces

are defined as entities where movement of workers, equipment and/or physical

materials from an initial designated origin to the final destination takes place.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

68

A spatial interference matrix contains information of pair-wise topological

relationships is also created in this process. Topological relationships follow the

classification described in Error! Reference source not found.. They play a key role

for planners to reason for a proper sequence when a spatial conflict occurs between

construction processes.

3.3.2. Process R: Identifying Construction Requirements for Scheduling

Basic requirements can be automatically derived from product model or

modified from generic requirements stored in libraries, while complex or project-

specific ones need to be determined by planners.

3.3.2.1. Representing Functional Requirements

Final functional requirements describe the functional relationships between

permanent components in their completion stage according to the design intentions,

and are equivalent to physical relationships in other planning systems. These

requirements normally include completed states of permanent components. Such

simplicity enables them to be automatically derived from functionality attributes of

permanent components. Figure 3.12 presents simple reasoning rule for automatically

generating final functional requirements from the product model.

Figure 3.12. Example rule for generating final functional requirements

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

69

Similarly, simple intermediate functional requirements like those defined in

construction methods can be obtained from the functionality attributes of temporary

components. However, complex intermediate functional requirements may involve all

component categories. The function provider of these requirements normally

represents the engineering solution for the requirement which could be derived from

different construction methods, and thus they are often project-specific and generally

are specified directly by planners. For instance, in a basement construction, the

retaining wall requires a support function to maintain its stability. There are two

possible solutions for this requirement resulting from two construction methods: a steel

shoring system and a ground anchor system, and the function provider of this

requirement refers to multiple component systems.

3.3.2.2. Representing Non-functional Requirements

For easy and rapid generation, generic non-functional requirements can also be

predefined in libraries. For example, a generic safety requirement can be predefined as

shown in Figure 3.13a, in which purpose refers to a generic safety requirement, and

performance attributes are defined by generic construction process, and the necessary

condition is represented as a temporal constraint. When this requirement is added to

the project, it will be applied to all welding and painting activities, and a set of

requirements can be automatically generated from this pattern. Similarly, Figure 3.13b

presents an example of resource requirement. In this case, the performance attribute

refers to a key resource requirement of a construction process while the performance to

a generic construction process and resource type. The necessary condition is defined as

a key resource requirement with an abstract constraint defining the number of

resources required by the excavation process.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

70

Figure 3.13. Generic non-functional requirement

3.3.3. Process S: Generating Schedule Model

Activities and temporal constraints are key elements of a schedule. This section

describes the generalized procedure for generating them from a product hierarchy and

construction requirements.

3.3.3.1. Generating Activity Hierarchy

An activity refers to a construction or management process that facilitates the

production of product components. Accordingly at the lowest level of detail, an

elementary activity is equivalent to an active component state phase. In this

framework, the term “elementary activity” is used to indicate a construction process

happening on one product component. They are the core entities from which activities

(in normal context) are created. Based on this equivalence, the collection of elementary

activities can be directly derived from component state chains in the product model.

As illustrated in Figure 3.14, component B1 has a state chain of three active state

phases Rebar.A, Concrete.A, and Curing.A linked with three construction processes

Rebar, Concrete and Curing extracted from the applied methods. These processes are

associated with three elementary activities, and thus the associated active state phase

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

71

can be intuitively converted into elementary activities. Especially, a quiescent state

phase are converted into a B(0) relationship between its immediate precedent and

succeeding active state phases. The relationship between two consecutive active state

phases in a component state chain is converted into a Meets relationship to maintain

the continuity nature of the state chain.

Figure 3.14. Conversion from component state chain to elementary activities

The one-to-one transformation from component states to elementary activities

provides a clear link between product and process models. It also allows flexibility for

updating the process model when any change occurs in the product model. For

example, if a planner wants component B1 to be precast instead of cast-in-situ, the

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

72

state chain of this component will be replaced with a new state chain [Erect.A,

Completed.A] describing the precast method. The elementary activities associated with

the old state chain will correspondingly be replaced by new ones.

Activities at higher levels in the hierarchy are defined as combinations of those

in the lower levels. Since an activity represents a construction process happening on a

group of components, it is formed by the aggregation of elementary activities

associated with the same construction process. By this, an activity can be considered as

a work package – the amount of work produced by a construction process. Moreover,

this definition of activities does not require their constituting elementary activities to

be associated with components at the same level of detail. Hence, planners can have

more flexibility in defining scope of work for construction processes as well as

choosing different level if details for different parts of project when necessary.

As shown in Figure 3.15, the constituting elementary activities of activity

Level1-Rebar refer to component states of components at different levels of detail. In

particular, component B1 is a component system comprising all beams in level 1,

while S11 is an individual slab belonging to a slab system Level 1. Moreover, when

unnecessary for schedule computation, elementary activities can be replaced by their

activities to simplify the schedule model and reduce computational effort.

A meta-activity, which is equivalent to a “meta-interval” used by Yeoh (2012) or

the “summary activity” in Microsoft Project, is a contains a collection of activities of

similar or different construction processes. Meta-activities are necessary for

hierarchical planning through higher level abstractions of a group of activities. With

this construct planner can also divide the project into sub-projects according to any

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

73

intention for better management. In addition, temporal, key resource and work space

requirements can be represented at this level.

Figure 3.15. Three detail levels of a typical activity hierarchy

3.3.3.2. Deriving Temporal Constraints between Activities

Generating sequencing constraints could be the most difficult scheduling task,

especially in this framework as they are derived from various types of construction

requirement. In general, construction requirements can be defined at three levels:

component states, activities, and meta-activities, and refer to four main requirements:

functional dependencies, temporal relationships, space, and key resource constraints.

They are converted into temporal constraints at the activity level.

Figure 3.16 depicts the approach for generating temporal constraints between

activities used in this framework. Each requirement type is converted throughout three

levels: component state, elementary and activity, and finally reasoned into temporal

constraints. Firstly, requirements defined at component state level are converted into

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

74

those at elementary activity level. In particular, functional necessary conditions of

functional requirements are transformed into temporal constraints among component

states. This transformation process is facilitated by a reasoning framework called

FReMAS described in chapter 4.

Figure 3.16. Approach for generating temporal constraints

Component state-based temporal constraints are converted into those between

elementary activities based on the one-to-one relationship between an elementary

activity and the active phase of a component state (as illustrated in Figure 3.17). In

other words, this step will remove all quiescent state phases from the scheduling

model, and transfer key resource and workspace requirements related to a component

state to those of associated elementary activities. The quiescent phase between two

active phases in a state chain is represented by a Before relationship between the

elementary activities corresponding to the active phases, and the continuity constraint

between two active phases is captured by relationship Meets between their associated

elementary activities.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

75

Figure 3.17. Convert requirements from component state to elementary activities

Requirements at activity level are generated by aggregating those in their

constituting elementary activities. Since an activity has identical temporal attributes

(duration, start and finish times) to those of its constituting elementary activities, it will

“inherit” all temporal constraints in which they are involved. In other words, any

temporal constraints between two elementary activities involved in two different

activities will be maintained as a temporal constraint between the two activities. This

conversion is supported by the assumption in which the start and finish times of all

elementary activities are the same as those of their activity. Since this one-to-one

conversion could result in some duplicate constraints, a constraint refining process will

be applied to remove such duplications. Similarly, resource and workspace

requirements are also transferred from its constituting elementary activities, and

duplicate requirements will then be removed using a refining process.

As illustrated in Figure 3.18, the temporal constraints between activities A1 and

A2 are derived from those among their constituting elementary activities [a11, a12,

a13] and [a21, a22]. In particular, four B(0) constraints a11-a21, a12-a21, a12-a22, and

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

76

a13-a22 are combined into one, and two constraints SS(2) and FF(1) are also

maintained between A1 and A2. In a similar way, the resource and space requirements

of A1 and A2 are the combination of all required in their elementary activities. In

addition, all resource requirements of the same resource type will be aggregated into

one with maximal required value as this will subsume all requirements with smaller

required numbers.

Figure 3.18. Convert requirements from elementary activity to activity levels

The obtained key resources and space requirements will then be reasoned into

temporal constraints. The reasoning rules are respectively based on the number of

available resources and topological relationships between space entities. For example,

a typical resource reasoning rule can be defined as: “If two activities require the same

resource type, and the total required amount exceeds the available amount then they

must be taken place disjunctively.” If, for instance in Figure 3.18, only 2 items of

resource R1 are available, then an additional Disjoint constraint between activities A1

and A2 will be added to the constraint collection. Similarly, a Disjoint constraint will

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

77

occur between two activities if their required space entities have a conflict relationship.

The syntax and procedure of the inference mechanisms for reasoning key resource and

work space requirements will be described in more detail in Chapter 5.

Requirements can also be assigned to a project at a meta-activity level, or in

other words, between meta-activities. They are also need to be elaborated into

requirements at activity level. Resource and spatial requirements among meta-

activities are first reasoned into temporal constraints among them using the similar

reasoning rules for activity level. Subsequently, temporal constraints between meta-

activities are elaborated into those between their constituting activities. In brief, if a

meta-activity MA1 has a simple temporal constraint C (such as B, SS, FF, and SF)

with another meta-activity MA2, then there will be a constraint C between each

activity constituting MA1 and every activity in MA2. This inference rule is supported

by the implicit temporal constraints between a meta-activity and its activities as well as

the transitive attribute of temporal relationships. In fact, meta-activities are equivalent

to the meta-interval concept in the PDM++ model developed by Yeoh (2012). Readers

may need to refer to this reference for a more discussion on elaborating constraints at

meta-activity level to those at activity level.

Figure 3.19. Convert temporal constraints from meta-activity to activity level

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

78

As illustrated in Figure 3.19, the precedence relationship (B(0)) between two

meta-activities representing two groups of activities can be equivalently represented by

six B(0) constraints, each of which is between one activity in one meta-activity and

another from the other meta-activity.

3.3.4. Process A: Computing for Alternative Schedules

This final process in the ASCoRe framework is to generate all alternative

schedules for the project. Inputs for this process include a list of activities and a list of

temporal constraints between them. Due to the reasoning process, there may be

multiple constraints between a pair of activities, some of which may be redundant

while some conflicts each other. In addition, there may be many disjunctive constraints

resulting from key resource requirements or alternative methods, and this could

increase the problem size. Therefore, a constraint pre-analyzing process is developed

to determine redundant and conflicting constraints between any pair of activities. This

process will help to resolve some constraint inconsistencies and remove unnecessary

disjunctive constraints, reducing computational effort. A detail description of this

preemptive constraint analysis approach is presented in chapter 5.

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

79

3.4. The scheduling problem is formulated as a constraint satisfaction

problem (CSP) and constraint logic programming (CLP) is used

for schedule computation. This method is selected so that a

complete solution (all alternative schedules) of scheduling

problems can be obtained. The outcome generated can be either

types: First, if the constraint set are still inconsistent, no result is

obtained. Second, when there is no conflict in the constraint set, a

collection of all alternative schedules with minimal makespan are

returned as output. These schedules represent alternative

construction sequences leading to similar project completion

time. Concluding Remarks

This chapter has proposed a generalized framework for automated scheduling

from construction methods and requirements (ASCoRe). This scheduling approach is

built upon four core knowledge models: product, construction method, construction

requirement and schedule. The significant advantage of these core knowledge models

is that they allow construction requirements to be flexibly and explicitly captured and

incorporated into scheduling. Such a clear and unambiguous elicitation of construction

requirements is also essential for schedule analysis and management. Especially, it

allows for the identification of critical requirements and their impact upon schedules

when changes happen.

The ASCoRe approach, which generalizes model-based scheduling techniques,

consists of four fundamental processes: (P) to generate an extended product hierarchy,

(R) to identify main construction requirements, (S) to create a schedule model by

generating activities and temporal constraints, and finally (A) to compute for

alternative schedules. With these processes, the ASCoRe framework determines all

necessary procedures for automated scheduling. Therefore, it can be applied any

project types such as building, bridge or highway projects. Moreover, by using

component state as the elementary construct linking the product and process

Chapter Three: Generalized Framework for Automated Scheduling from Construction Methods and

Requirements

80

perspectives, ASCoRe facilitates both product- and process-based planning, and at

different levels of detail.

Background concepts for generating activities and deriving temporal constraints

from project descriptions – product model and construction requirements are also

presenting in this chapter, providing the foundation for the development of reasoning

and inference methodologies in the succeeding chapters. In particular, a generalized

model for representing complex functional requirements and transforming them into

temporal constraints is described in chapter four. This framework plays a key role for

the ASCoRe framework by facilitating the adequate identification of possible

construction sequences. Chapter five describes a system architectural framework and

reasoning algorithms for implementing the ASCoRe approach.

81

CHAPTER 4. AUTOMATED CONSTRUCTION

SEQUENCING FROM FUNCTIONAL

REQUIREMENTS

4.1. Introduction

 Functional requirements are a special class of construction requirements. They

relate to the engineering behavior of product components. In order to incorporate

functional requirements into schedule, they have to be captured and converted into

temporal constraints for schedule computation.

To address the above issue, this chapter proposes a generalized Functional

Requirement Model for Automated Sequencing (FReMAS). FReMAS extends the

requirement model introduced in Chapter 3 and the Intermediate Function concept

proposed by Song and Chua (2006) for modeling and interpreting complex functional

requirements. In essence, it contains three main components: a Representation Model

to formalize a functional requirement, a Temporal Model to systematically define

temporal attributes of a functional requirement, and a Construction Sequence

Reasoning Framework to convert its temporal attributes into temporal constraints. One

primary advantage of this modeling framework is its ability to derive all construction

sequences from complex functional requirements, thus efficiently facilitating the

ASCoRe framework.

This chapter starts with a brief overview of the Intermediate Function concept to

provide readers with necessary understanding of the background of FReMAS. It then

proceeds with the descriptions on three main components of FReMAS and ends with

case study demonstrating its application into automated scheduling.

Chapter Four: Automated Construction Sequencing from Functional Requirements

82

4.2. Modeling Perspectives of a Functional Requirement

The present research employs and modify the concept of Intermediate Function

proposed by Song (2006) to produce a more generic and flexible representation

schema, facilitating the generating, updating, and reasoning both intermediate and final

functional requirements for scheduling purpose.

The Intermediate Function concept captures an intermediate functional

requirement from three perspectives: user (purpose), provider (operation), and the

interaction relationship between them. From a purposive aspect, a functional

requirement refers to a “functionality demand” of a product component or a structure

system to sustain its existing status. As such, the term “purpose” is described from a

viewpoint of the user, who can select different engineering solutions to achieve his

demands. Generally, functionality demands can occur during any period of time along

the lifecycle of a product component, in both construction and service stages. In

construction stage, a product component may demands various intermediate

functionalities to sustain its status changing along with the construction progress.

These intermediate functionality demands also vary accordingly. For example, in

addition to demanding of a supporting functionality through its construction period, a

cast-in-situ concrete beam also requires a containing functionality when concrete is

cast to retain its shape. In the service stage, a product component can also require

certain functionalities to maintain the design intention. These requirements are defined

as final functionality demand.

On the other hand, described from a provider viewpoint, the “operation” or

“behavior” is inherent to the product, and is independent of the purposes of the

potential user. In other words, as an “operation”, a functional requirement refers to the

Chapter Four: Automated Construction Sequencing from Functional Requirements

83

functionality performance or behavior of a product component. Similar to functionality

demand, functionality performance also varies along the lifecycle of a product

component. It is also distinguished since intermediate and final functionality

operations respectively refer to those performed in construction and service periods. A

precast column, for instance, generally could not perform any functionality during

erection; yet when erected (in the service stage), it can provide a support functionality

to the connected beams.

Interaction relationship between user and provider is represented by temporal

and spatial interactions. The temporal interaction is described by the requirement time

window and availability time window from the user and provider perspectives

respectively, while the spatial interaction is evaluated based on the spatial-temporal

relationship between user space and provider space. These interactions allow

constructability conflicts in a schedule solution to be identified.

The concept of Intermediate Function provides a systematic approach to examine

the fulfillment of intermediate functional requirements for constructability analysis.

However, there remain three major drawbacks making it inadequate for schedule

generation. Firstly, the Intermediate Function concept defines a one to one relationship

between the user and provider. In other words, a functional requirement comprises one

user and one provider. This is inadequate to capture multiple complex requirements

which involve multiple engineering solutions. Secondly, the temporal attributes of

function user and provider are defined at an aggregated level and cannot be applied for

sequence reasoning at individual user and provider level. Finally, this concept does not

provide any reasoning knowledge for translating complex functional requirements into

temporal constraints at component state level, the key constraints for schedule

Chapter Four: Automated Construction Sequencing from Functional Requirements

84

generation. The generalized functional requirement model presented in this chapter

aims to overcome these limitations by providing a generalized representation model, a

detailed temporal model and a systematic sequence reasoning framework for

formalizing and converting complex functional requirements into temporal constraints

for schedule generation.

4.3. Representing Complex Functional Requirements

Generally, the user and provider of a functional requirement may involve

multiple product components. Function provider represents the engineering solution

for a functional requirement. The engineering solution can possibly be derived from

the applied construction method or resource usage. Practically, when multiple

construction methods or resources are utilized, there are probably more than one

engineering solution for a functional requirement. For example, in a basement

construction, the retaining wall requires a support function to maintain its stability.

There are two possible solutions for this requirement resulting from two construction

methods: a steel shoring system and a ground anchor system. Thus, to capture these

situations, the definition of function provider is extended to contain multiple providers,

each of which refers to an engineering solution for the requirement. In other words,

each provider represents one producer of the required functionality. A provider may

involve a set of components sharing their performance to jointly produce the

functionality. Each component is also specified by a set of component states during

which the functionality exists.

In order to capture these special characteristics, this chapter extends the

construction model presented in chapter three with two more attributes to better

Chapter Four: Automated Construction Sequencing from Functional Requirements

85

describe a complex functional requirement. By this, a functional requirement is

captured with four basic modeling entities, termed as: function user, function provider,

function type, and provider co-functionality, as shown in Figure 4.1. The “dot”

notation is used to define component state as : “Component.State.StatePhase”.

 Figure 4.1. Core entities representing a functional requirement

Function user (U) and function provider (P) entities respectively refer the

requester (or the p) and the supplier of the required functionality. The function type (T)

entity is employed to define the nature of the required functionality, such as “support”,

“protect” or “balance”. The final entity – provider co-functionality (C) refer to the

interactions among the providers in the function provider. Syntactically, a functional

requirement F is defined as relation of the corresponding entities as follows:

 (, ,) F F F FF T U P C (4.1)

4.3.1. Function User

Function user refers to all requesters which demand a similar functionality

performance from the providers. As such function user may involve one or more

Chapter Four: Automated Construction Sequencing from Functional Requirements

86

components, each of which is called a user and specified by a set of component states.

Accordingly, a functional requirement with multiple users is the aggregate of the

similar functional requirements of all individual users.

In Figure 4.1, the function user of the requirement F consists of two users, uF,1

and uF,2, representing two product components PC1 and PC2 respectively. PC1

requires for the functionality during three state phases from PC1.SP3 to PC1.SP5

while PC2 requires that functionality during its PC2.SP3 phase. The representation

format of individual users and the function user in this example is described as:

,1 [1. 3. , 1. 4. , 1. 5.]Fu PC S A PC S Q PC S A

,2 [2. 3.]Fu PC S A

[[1. 3. , 1. 4. , 1. 5.],[2. 3.]]FU PC S A PC S Q PC S A PC S A

4.3.2. Function Provider

Function provider represents the engineering solution for a functional

requirement. The engineering solution could be derived from construction method or

resource usage. Practically, when multiple construction methods or temporal structures

are utilized, there are probably more than one engineering solutions for a functional

requirement. A function provider consists of one or many providers, each of which

represents one engineering solution that could resolve the functionality required by

function user. A provider may involve a set of components sharing their performance

to jointly produce the functionality. Each component is also specified by a set of

component states during which the functionality exists.

For the example shown in Figure 4.1, there are two providers, pF,1 and pF,2

available for the functional requirement F. pF,1 refers to the functionality performed by

Chapter Four: Automated Construction Sequencing from Functional Requirements

87

component PC3 from states PC3.SP2 to PC3.SP3, while pF,2 refers to the engineering

solution resulting from the simultaneous functionality behaviors of component PC4

during PC4.SP3 and component PC5 during phases PC5.SP1 to PC5.SP3. These

providers are represented as follows:

,1 [[3. 2. , 3. 3.]]Fp PC S Q PC S A

,2 [[4. 3.],[5. 1. , 5. 2. , 5. 2.]]Fp PC S A PC S A PC S A PC S Q

[[[3. 2. , 3. 3.]],[[4. 3.],[5. 1. , 5. 2. , 5. 2.]]]FP PC S Q PC S A PC S A PC S A PC S A PC S Q

4.3.3. Function Type

The Function Type entity is used to capture descriptive information about the

nature of the required functionality. As such, its major use is for distinguishing the

nature of the required function. Some examples of function type taken from literature

are: support, suspend, hold, contain, protect, balance and generate.

4.3.4. Provider Co-Functionality

The interaction among different engineering solutions presented by providers in

a functional requirement is termed provider co-functionality in the context of this

research. When only one construction method or resource can be used for the

requirement, only one engineering solution can be applicable at any time. This leads to

a mutually exclusive relationship among them. Consequently, the associated providers

are also mutually exclusive. In this case, the functioning interaction is classified as type

E. For the above basement construction example, the two methods are mutually

exclusive, and thus the co-functionality between the related providers is defined as

type E. On the other hand, if the construction methods can be used regardless of the

existence of the others, all engineering solutions can be jointly used for the required

Chapter Four: Automated Construction Sequencing from Functional Requirements

88

functionality. As such, all providers can share their performance for joint functionality.

In this case, the functioning interaction is classified as type C where all the providers

are compatible and can be jointly applied for the requirement.

Examining the co-functionality of providers is necessary for scheduling since it

can impact the schedule results. When mutually exclusive, only one engineering

solution or provider can be used at one time to satisfy the requirement. In contrast,

when mutually compatible, all engineering solution could be combined to jointly

perform the required functionality so that the project completion time can be enhanced.

4.3.5. Illustrative Example

Figure 4.2 presents the state chains of six components: Cast-in-situ walls W1 and

W2, precast beams B1 and B2, scaffolding system SC1 used for beam installation and

the earthwork component TR1.

Figure 4.2. Example component state chains and functional requirements

Some functional requirements among these components are captured using the

representation model and shown as follows:

Chapter Four: Automated Construction Sequencing from Functional Requirements

89

 Requirement F1: Beams B1 and B2 need a function support from walls W1 and

W2 after they are erected. This final functional requirement consists of two users –

B1 and B2, both during their Erect.Q phases. The support function is provided by

one provider comprising two components W1 and W2 during their Curing.Q

phases. The [·] is used as a list notation. In addition, the provider co-functionality

of a single-provider requirement is defined as type E. Accordingly, this

requirement is shown as:

F1 = support([B1.Erect.Q, B2.Erect.Q], [[W1.Curing.Q,W2.Curing.Q]],E)

 Requirement F2: Scaffold SC1 needs a support function during all its construction

lifecycle. This supporting function is provided by the trench TR1 in its either

Original.Q or Backfill.Q states. Consequently, this requirement is formalized as:

F2 = support([SC1.Erect.A,SC1.Erect.Q,SC1.Remove.A], [[TR1.Original.Q],[TR1.Backfill.Q]],E)

 Requirement F3: B1 and B2 need to be supported during their Erect.A states by

scaffold SC1 within its Erect.Q state, and/or by walls W1 and W2 during their

Curing.Q states. As such, this requirement involves two providers of type C,

expressed as:

F3 = support([B1.Erect.A,B2.Erect.A], [[SC1.Erect.Q],[W1.Curing.Q,W2.Curing.Q]],C)

4.4. Modeling Temporal Attributes of a Functional Requirement

Temporal attributes of a functional requirement are described by the temporal

attributes of the function user and provider. They are formed from the temporal

interval of the component states phases involved. Determining these attributes is

necessary for sequence reasoning as they are the link between product and process

Chapter Four: Automated Construction Sequencing from Functional Requirements

90

perspectives. Subsequently, the present study develops a framework for a systematic

presentation of these attributes. The framework is built on two levels: (1)

User/Provider Level to capture the temporal attributes of individual user/provider, and

(2) Function Level to derive the aggregate temporal attributes of multiple

users/providers.

4.4.1. Temporal Attributes of User and Provider

At the User/Provider level, the temporal attributes of a functional requirement

are represented by those of individual users and providers. These attributes refer to the

duration during which a user requires the functionality, or a provider can provide the

required functionality.

4.4.1.1. Temporal Attribute of a User

The temporal attribute of a user is defined by a time window called User

Requirement Time Window (RTW
U
). It is the time window during which the

functionality is required by the user.

Figure 4.3. Time windows of individual User and Provider

Chapter Four: Automated Construction Sequencing from Functional Requirements

91

As shown in Figure 4.3a, user uF,1 contains three component states. As the

functionality is needed throughout three states, the RTW
U
 of u1 contains the

combination of these three state intervals. Mathematically, the RTW
U
 of a user i of a

functional requirement R denoted as ,
U
F iRTW is the union of all component state

intervals (Ii,j) shown as:

 , , , , ,() ,    U
F i i j i j F i F i F

i

RTW I I u u U (4.2)

4.4.1.2. Temporal Attribute of a Provider

The temporal attribute of a provider is also represented by a time window during

which the provider can produce the required functionality. It is called Provider

Availability Time Window (ATW
P
). As a provider may contain multiple components,

its ATW
P
 is defined by the time windows during which the constituting components

perform the required functionality. These time windows are called Function Time

Window (FTW) and are specified by the involved component state intervals. For the

example in Figure 4.3b, component PCF,1,1 of provider pF,1 can perform the

functionality during 2 states I1, and I2. Hence, its FTW is the combination of these state

intervals. In terms of set operation, with regards to a requirement F, the FTW of a

component PCF,j,k constituting a provider pF,j is the union of all the component state

intervals (Il), expressed as:

 , , , ,()   F j k l l F j k
l

l

FTW I I PC (4.3)

To produce the required functionality, all components in a provider have to share

their functionality performances. Thus, their FTWs must simultaneously coexist so that

the ATW
P
 of a provider results from the joint existence of all FTWs. As shown in

Chapter Four: Automated Construction Sequencing from Functional Requirements

92

Figure 4.3c, provider pF,1 contains two components PCF,1,1 and PCF,1,2 with two FTWs:

FTWF,1,1 and FTWF,1,2 respectively, and the time window during which the required

functionality is available is the intersection of FTWR,1,1 and FTWR,1,2. Therefore, the

ATW
P

 of a provider j of a functional requirement F (
,F j

PATW) must be the intersection

of all FTWs of the constituting components, shown as:

, , , , , , , ,     

F j

k
P

F j k F j k F j F j F
k

ATW (PC) PC p p P (4.4)

4.4.2. Temporal attributes of Function User and Function Provider

Figure 4.4. Time windows of function user and function provider

Chapter Four: Automated Construction Sequencing from Functional Requirements

93

At the function level, the temporal attributes of a functional requirement are

described by those of its two parties: function user and function provider. When there

are multiple users/providers, the temporal attributes of the function user/provider are

represented by the aggregate time windows of all users/providers. They are called

Function Requirement Time Window (RTW) and Function Availability Time Window

(ATW) respectively.

4.4.2.1. Temporal Attribute of the Function User

RTWF is the time window during which the function F is required by any one of

its users. For example, the function user shown in Figure 4.4a contains three users with

three RTW
U

 intervals. RTWF is the combination of all
F

URTW intervals, given by the

union of all
F

URTW as:

, ,()   

F i

U
F F i F

i

RTW RTW u U (4.5)

4.4.2.2. Temporal Attribute of the Function Provider

ATWF (denoted as
E

FATW and
C
FATW for functioning interaction types E and C

correspondingly) is the time window during which the required function F can be

provided by the providers. This attribute is determined by the co-functionality nature

among providers.

a) Provider Co-functionality Type E

When all providers are mutually exclusive, only one provider can be used

provide the required functionality at any time. As such, although multiple providers

can perform the functionality, only one of them is the engineering solution for the

Chapter Four: Automated Construction Sequencing from Functional Requirements

94

requirement. Consequently,
E

FATW is equal to any time window of an individual

provider
P

FATW . Figure 4.4b shows a functional requirement R with two providers

pF,1 with ,1
P

FATW and pF,2 with ,2
P

FATW . When these two providers are mutually

exclusive, they cannot share their time windows to jointly produce the functionality.

Thus, the time window of the function user can be formed from either pF,1 or pF,2,

showing as: ,1E P
F FATW ATW or ,2E P

F FATW ATW . This aggregation rule is generally

expressed as follows:

 , ,()   
j

E P
F F j F j FATW ATW p P (4.6)

The relation  
j

 in Equation (4.6), in the context of this study, represents the

mutually exclusive equality, defined as:

 1 2 1 2() [, ,...,] () () ... ()         
j

j j n na b b b b b a b a b a b (4.7)

b) Provider Co-functionality Type C

In the case of co-functionality type C, providers can share their functionalities or

time windows to jointly provide the required functionality. They can be combined in

various ways to form new providers which can possibly fulfill the requirement. The

combination of providers is called a meta-provider. From construction perspective,

meta-providers represent different patterns of combining engineering solutions being

considered. Since only one combination can be applied in a planning scheme, all meta-

providers are mutually exclusive.

Chapter Four: Automated Construction Sequencing from Functional Requirements

95

The temporal attribute of a meta-provider is represented by its time window

called meta-Availability Time Window (ATW
M

). As each meta-provider is a

combination some providers, its time window is also the combination of the time

windows of all constituting providers. For the example in Figure 4.4c, meta-provider

MPF,1 includes only provider pF,1; thus its ,1
M

FATW is equal to ,1
P

FATW . MPF,3 however

involves both pF,1 and pF,2; therefore ,3
M

FATW is the joint of two time windows ,1
P

FATW

and ,2
P

FATW . Generally, ,
P

F mATW is the union of all ATW
P

of providers given by

 , , , , ,() ,     M P
F m F n F n F m F m F

n m
n

ATW ATW p MP MP MPS (4.8)

where MPSF refers to the meta-provider collection of the functional requirement F.

In addition, since each meta-provider represents a combination of providers, the

collection of all meta-providers refers to all possible provider combinations that can be

generated from the function provider. In other words, MPSF is the power set of PF

excluding the empty set, given by:

 ()F FMPS PP (4.9)

where P(S) represents the power set of set S excluding the empty set (denoted as []).

Moreover, as all meta-providers are mutually exclusive, similar to the case of

mutually exclusive providers, the aggregate time window of the function provider,

ATW
C
, equals to only one ATW

M
 at any time. The mathematical definition of ATW

C
 is

shown in Equation (4.10), where MSPF refers to the collection of all possible meta-

providers of the functional requirement F.

Chapter Four: Automated Construction Sequencing from Functional Requirements

96

 , ,()   
m

C M
F F m F m FATW ATW MP MPS (4.10)

It can be further noted that
E

FATW is a special case of
C
FATW in which all meta-

providers only involve one provider. The difference between two cases is the

collection of meta-providers. Under the scenario of provider co-functionality type E,

each meta-provider has only one provider. As such, the meta-provider collection in this

case is defined as:

 [1]()F FMPS PP (4.11)

with P [n](S) denoting the set of all subsets of S consisting of n elements.

In fact, the meta-provider collection of a type E requirement is exactly similar to

the provider collection. Consequently, the definition of ATW can be generalized for

both provider co-functionality type E and C as:

 , ,()   
m

M
F F m F m FATW ATW MP MPS (4.12)

4.5. Sequence Reasoning Framework from Functional Requirement

For scheduling, functional requirements must be converted into temporal

constraints. The sequence reasoning framework presents a method to automate this

conversion. It incorporates reasoning knowledge to translate the necessary condition

from functional to temporal constraints using the proposed RTW/ATW. These

constraints which are often represented as disjunctive constraints among mutually

exclusive providers/meta-providers cannot be modeled using traditional CPM/PDM

models. Thus, the PDM++ Framework developed by Chua and Yeoh (2011) is

Chapter Four: Automated Construction Sequencing from Functional Requirements

97

employed to represent the complex temporal constraints. The reasoning framework

comprises three levels: (1) Requirement Level, (2) Function Level, and (3)

User/Provider Level, demonstrating the necessity conditions between user and

provider so that the requirement is fulfilled.

4.5.1. Necessary Condition at Requirement Level

Generally, a functional requirement is satisfied if and only if the required

functionality is available at any time during the requirement period of all users. It can

be inferred that, to ensure a functional requirement fulfilled, its ATW must subsume its

RTW. In terms of temporal interval relationship, this satisfaction condition can be

modeled using the Contains, expressed as:

 F FATW Contains RTW (4.13)

In a general case, the ATWF is exclusively equal to only one of ,
M

F mATW at any

time. By applying Equation (4.12) to (4.13), the following constraints are obtained:

 , ,()   M
F m F F m F

m m
ATW Contains RTW MP MPS (4.14)

Consequently, the original necessary satisfaction condition is elaborated into a

set of temporal constraints, each of which represents a constraint between each meta-

provider (or each provider in the case of functioning interaction type E) and the

function user. As such, the mutually exclusive interactions among meta-providers have

been translated into disjunctive relationships among these sets of constraints using the

logic operator OR (). Since each meta-provider represents an engineering solution

option for the requirement, this reasoning process allows all alternative schedules

resulting from these engineering solutions to be examined.

Chapter Four: Automated Construction Sequencing from Functional Requirements

98

4.5.2. Necessary Conditions at Function Level

The necessary conditions at the Function Level refer to the temporal constraints

between the function user and its constituting user, as well as those between function

provider and individual providers. These constraints are essential for the reasoning

process as they link high-level constraints defined at the requirement level to the basic

ones determined in the User/Provider Level.

By definition, the RTW of a functional requirement must cover the time window

of all constituting users. Following this, as shown in equation (4.5), RTW is defined as

the union of all RTW
U
. From the scheduling perspective, RTW must contain all

constituting RTW
U
, shown as:

 , ,()   U
F F i F i F

i i
RTW Contains RTW u U (4.15)

The ATW is exclusively presented by each ATW
M

; thus the relationship between

ATW and ATW
P
 is equivalent to that of ATW

M
 and ATW

P
. As each meta-provider

represents a combination of providers, its availability time window must incorporate

that of all providers involved in it. Therefore, similar to function user, the time window

of a meta-provider, ATW
M

 is defined as the union of all ATW
P
 as shown in equation

(4.8). This relationship is converted to a set of Contains constraints between ATW
M

and all ATW
P
 as follows:

 , , , ,()]   M P
F m F i F i F m

i i
ATW Contains ATW p MP (4.16)

4.5.3. Necessary Conditions at User/Provider Level

The necessary conditions specified in this lowest level define the constraints

between each user/provider and its constituting component state intervals. By this, the

Chapter Four: Automated Construction Sequencing from Functional Requirements

99

overall necessary condition can eventually be calibrated into constraints among basic

schedule elements – component state intervals. The time window of a user – RTW
U
 –

must subsume all constituting component state intervals. This relationship is

represented by a Contains constraint, expressed as:

 , , , ,()   U
F i i j i j F i

i j
RTW Contains I I u (4.17)

The time window of a provider is also constrained to that of its constituting

product components. However, since the functionality can only be generated when all

the product components involved simultaneously perform it, ATW
P
 of a provider is the

joint of all FTW, and represented by a constraint Contained-By as shown in (4.18).

Subsequently, the relationship between each FTW and its constituting component state

intervals are captured by a constraint Contains as defined in (4.19).

 , , , , , ,()]    P
F j F j k F j k F j

k k
ATW Contained By FTW PC p (4.18)

 ,, , , , , , , , , ,()] ,    
l k

F jR j k F k l F k l F j k F j k
l

FTW Contains I I PC PC p (4.19)

In summary, the reasoning process proposed in this framework allows the

original functional dependency to be converted into temporal constraint between two

time windows: RTW and ATW which represents the necessary condition of fulfilling a

functional requirement. In addition, the mutually exclusive relationship between

providers and meta-providers are captured using the logic operator “OR” (). By this,

all possible sequencing options can be examined in the scheduling process, facilitating

the generation of all feasible schedule alternatives.

Chapter Four: Automated Construction Sequencing from Functional Requirements

100

4.6. Implementation of the FReMAS model

The implementation of FReMAS in ECL
i
PS

e
 as an automatic sequence reasoning

mechanism consists of two main procedures (as described in Figure 4.5): a Pre-

processing Procedure (1) to normalize complex requirements into a list of simple

constraint, and a Sequence Reasoning Procedure (2) to convert each normalized

requirement into a set of temporal constraints.

Figure 4.5. Flowchart for implementing FReMAS

Chapter Four: Automated Construction Sequencing from Functional Requirements

101

In brief, the pre-processing procedure will first generate the meta-provider list of

a complex requirement based on the co-functionality type. Then, if the requirement

consists of multiple users, it will be replaced by a list of simple requirements, each of

which comprises one user of the requirement. The final requirement list is then input to

the main sequence reasoning procedure which subsequently generates a list of

temporal constraint between the user(s) and provider/meta-provider(s). Finally, the

temporal constraint list is normalized to become a list of disjunctive combination of

conjunction constraints. The final output TC is a disjunctive combination of multiple

groups of constraints (())   i i
i

TC C C TC , represented as a nested constraint set:

1 2[, ,..., ,...,] i nTC C C C C , where each constraint subset ,1 ,2 , ,[, ,..., ,...,]i i i i j i mC c c c c

denotes a conjunction combination of temporal constraint cj , ,(())   i i j i j i
j

C c c C .

The example code for implementing FReMAS in ECL
i
PS

e
, a Constraint Logic

Programming language is described in Figure 4.6.

Figure 4.6. ECL
i
PS

e
 code for implementing FReMAS for automated scheduling

Chapter Four: Automated Construction Sequencing from Functional Requirements

102

4.7. Case Study

Figure 4.7. 3D model of nursing house showing main entrance

A case project is presented in this section to demonstrate how the proposed

model (FReMAS) can be implemented for automated sequencing and scheduling. It

involves the construction of the main entrance of a nursing house (shown in Figure

4.7) which consists of three major tasks performed by three different contractors: (1)

design and construction of glass work of the curtain wall by subcontractor

“SubCon_1”, (2) design and construction of pre-fabricated steel beam by subcontractor

“SubCon_2”, and (3) laying of cable pipe by the main contractor (MainCon).

4.7.1. Product Components and State Chains

The components associated with the work are arranged into three groups as

shown in Figure 4.8. The “PC” group contains all permanent product components that

are involved in the project. The “TC” group includes temporary components, the “SC”

contains the site work components, and the “IC” group refers to special components

which are not product-related but information-related. Information-related components

provide the necessary information for construction processes. The active phase of each

state is denoted by “.A”, and any hatched phase refers to the quiescent phase of the

Chapter Four: Automated Construction Sequencing from Functional Requirements

103

previous active phase. Note that the length of the states is only for presentation

purpose and not related to state durations. The component state chains are generated

from the construction methods applied to the components.

Figure 4.8. State Chains with Durations of Components Involving in the Analysis

Chapter Four: Automated Construction Sequencing from Functional Requirements

104

In the “PC” group, the Steel Beam component (SB) is first fabricated offsite,

transported to site, then erected and finally inspected before completion. The Glass

Spider component (GS) is a part of glass work. It is also prefabricated offsite, shipped

to site and erected on site. Similarly, the Glass Parts component (GP) is also

fabricated, transported to site and erected. Then they are inspected before sealant is

applied. The Cable Pipes component (CP) is embedded in the excavated trench.

In the “TC” group, Scaffolding_S (SS) and Scaffolding_G (SG) are used for the

steel and glass works, respectively. They have the same state chain type corresponding

to two processes: erection and removal. As these two components will leave the

component system after dismantled, their final states – Remove – only contain the

active phase.

The earthwork component named as Trench (TR) belongs to the “SC” group. It is

firstly in its original status, then excavated for pipe installation, and finally backfilled.

The Original state has only quiescent phase since it is not associated with any

construction process.

There are three components belonging to the “IC” group. The Steel Beam Shop

Drawing (S_SD) and Glass Work Shop Drawing (G_SD) are designed and approved

before being used on site. These two processes are reflected by states Designed.A and

Approved.A in the state chain. The Glass Work Site Survey (G_SS) has only one state

– Survey during which SubCon_2 measures the as-built information of the completed

steel beam for the completion of glass work shop drawing.

Chapter Four: Automated Construction Sequencing from Functional Requirements

105

4.7.2. Formalizing Construction Requirements

In this project, there are various construction requirements governing the

schedule. For illustration purpose, only the major construction requirements are

described in the following subsections.

4.7.2.1. Functional Requirements

The following major functional requirements were identified. The (a,…,b)

notation represents a group of consecutive states from phase a to phase b. These

requirements are captured using the construction knowledge templates built upon on

FReMAS described in chapter five, and summarized as follows:

FR1. Glass Parts need to be supported by the Glass Spider during its construction and

service phases, specified as

FR1 = support([(GP.Erect.A,..., GP.Seal.A)], [[(GS.Erect.Q)]],E)

FR2. Scaffodling_S and Scaffolding_G need a supporting base provided by Trench

component during its original status or after the Trench is backfilled, specified as

FR2 = support([(SS.Erect.A,...,SS.Remove.A), (SG.Erect.A,...,SG.Remove.A)],

[[TR.Original.Q],[TR.Backfill.Q]],C)

FR3. The design work of Steel Beam Shop Drawing needs a support function from

Scaffolding_S to collect site information for design work, and construction of Steel

Beam also needs to be supported by Scaffolding_S, specified as

FR3 = support([(SB.Erect.A,...,SB.Inspect.A),(SSD.Design.A], [[SS.Erect.Q]],E)

FR4. Erection of Glass Parts and Glass Spider need to be supported by Scaffolding_G.

FR4 = support([GS.Erected.A,(GP.Erect.A,...,GP.Seal.A)], [[SG.Erect.Q]],E)

Chapter Four: Automated Construction Sequencing from Functional Requirements

106

FR5. Survey work of Glass Work Site Survey requires a support function from

Scaffolding_G to collect site information, specified as

FR5 = support([SS_G.Conduct.A],[[SG.Erect.Q]],E)

FR6. Cable Pipe needs to be enclosed by the excavated Trench, specified as

FR6 = enclose([CP.Embed.A],[[TR.Excavat.Q]],E)

4.7.2.2. Non-functional Requirements

Besides the above functional requirements, major non-functional requirements

for the construction of these works are also identified and captured in the form of

temporal constraints. These requirements refer to managerial constraints such as

procurement, material inventory or information availability.

NR1. Fabrication of Steel Beam must start at least 3 days after steel beam shop

drawing is done due to material procurement process, specified as

NR1: S_SD.Approve.A B(3) SB.Fabricate.A

NR2. Fabrication of Glass Parts and Glass Spider must start at least 4 days after Glass

Work shop drawing due to material procurement process, specified as

NR2: G_SD.Approve.A B(4) GS.Fabricate.A

NR3. Glass Work Site Survey must finish at least 5 days before design of Glass Work

Shop Drawing finishes to ensure sufficient as-built information acquired, specified as

NR3: G_SS.Conduct.A FF(5) G_SS.Design.A

NR4. Site survey must be done after the steel beam is fully constructed, specified as

NR4: SB.Inspect.A B(0) GSS.Conduct.A

Chapter Four: Automated Construction Sequencing from Functional Requirements

107

NR5. Scaffolding_G must be erected after Scaffolding_S is removed due to space

constraint, specified as

NR5: SB.Inspect.A B(0) GSS.Conduct.A

NR6. Steel Beam Shop Drawing must be designed after erection of Scaffolding_S so

that site information can be collected, specified as

NR6: SS.Erect.A B(0) SSD.Design.A

4.7.3. Construction Sequence Reasoning and Schedule Computation

The functional requirements are modeled and reasoned into temporal constraints

using FReMAS implemented in the Functional Requirement Sequence Reasoning

Mechanism. Component state chains are transformed into precedence constraints

between component states using the Constraint Transformation Mechanism. All

generated and imposed temporal constraints are finally input to the schedule generator

for schedule computation at component state level. This level of detail is chosen since

each construction activity is associated with one component. The scheduling problem

of the project portion is solved under two scenarios. Scenario 1 is the original case

situation where the subcontractors do not have any collaboration. Scenario 2 examines

the schedule results where collaboration in terms of resource sharing between two

subcontractors is allowed.

4.7.3.1. Scenario 1 – No Collaboration between Two Subcontractors

By minimizing the project makespan with no collaboration applied, 3 schedule

solutions with similar makespans of 68 days are generated. The result of the first

solution named Alternative 1.1 is shown in Figure 4.9 in the form of a Gantt chart. In

this solution, the site is first used by SubCon_1 to do the Steel Beam work (Day 1 to

Chapter Four: Automated Construction Sequencing from Functional Requirements

108

Day 24), then it is occupied by SubCon_2 for the Glass work (Day 24 to Day 58), and

finally it is used by MainCon for the Pipe laying work (Day 58 to Day 68). The work

sequence determined here ensures no site clashing among contractors.

The RTW and ATW of 6 functional requirements are also presented in Figure 4.9,

showing that this schedule solution satisfies all requirements imposed. For the example

of functional requirement FR4, its RTW and ATW are computed as follows:

4 4,1 4,2

4

(,) ([47..48],[51..56]) [47..48],[51..56]

[26..56]

  



U URTW RTW RTW

ATW

Since ATW4 Contains RTW4, FR4 is fulfilled. The other functional requirements

can be similarly verified to be satisfied.

Figure 4.9. Alternative 1.1 - Scenario 1 with RTWs and ATWs

Chapter Four: Automated Construction Sequencing from Functional Requirements

109

 Table 4.1. Schedule solutions under Scenario 1

The summary of all 3 schedule solutions with active phase times of each

component state is presented in Table 4.1. Similar to Alternative 1, the other two

solutions (Alternative 1.2 and Alternative 1.3) can be verified to fulfill all identified

requirements. In addition, the schedule solutions obtained represent 3 different work

sequences among the contractors. The sequence in Alternative 1.1 is SubCon_1 (Day 1

– Day 24)  SubCon_2 (Day 24 – Day 58)  MainCon (Day 58 – Day 68). In

Alternative 1.2, work sequence also starts with SubCon_1 (Day 1 – Day 24) first,

followed by MainCon (Day 24 – Day 34), and finally ends with SubCon_2 (Day 34 –

Day 68). Alternative 1.3 defines another work sequence which is started by MainCon

Start Finish Start Finish Start Finish

SS.Erected.A 3 0 3 0 3 10 13

SS.Removed.A 2 22 24 22 24 32 34

S_SD.Designed.A 3 3 6 3 6 13 16

S_SD.Approved.A 5 6 11 6 11 16 21

SB.Fabricated.A 5 14 19 14 19 24 29

SB.Shipped.A 1 19 20 19 20 29 30

SB.Erected.A 1 20 21 20 21 30 31

SB.Inspected.A 1 21 22 21 22 31 32

SG.Erected.A 2 24 26 34 36 34 36

SG.Removed.A 2 56 58 66 68 66 68

 Site Survey (G_SD) G_SS.Conducted.A 1 26 27 36 37 36 37

G_SD.Designed.A 10 22 32 32 42 32 42

G_SD.Approved.A 5 32 37 42 47 42 47

GS.Fabricated.A 5 41 46 51 56 51 56

GS.Shipped.A 1 46 47 56 57 56 57

GS.Erected.A 1 47 48 57 58 57 58

GP.Fabricated.A 7 41 48 51 58 51 58

GP.Shipped.A 3 48 51 58 61 58 61

GP.Erected.A 3 51 54 61 64 61 64

GP.Inspected.A 1 54 55 65 65 64 65

GP.Sealed.A 1 55 56 65 66 65 66

Cable Pipe (CP) CP.Embeded.A 5 61 66 27 32 3 8

TR.Excavated.A 3 58 61 24 27 0 3

TR.Backfil led.A 2 66 68 32 34 8 10

Trench (TR)

Glass Spider (GS)

Steel Beam (SB)

Scaffolding_G (SG)

Glass Work Shop

Drawing (SSD)

Scaffolding_S (SS)

Steel Beam Shop

Drawing (SSD)

Glass Parts (GP)

Alternative 1.3
Component

Component State

(Active Phase)

Duration

(days)

Alternative 1.1 Alternative 1.2

Chapter Four: Automated Construction Sequencing from Functional Requirements

110

(Day 1 – Day 10), followed by SubCon_1 (Day 10 – Day 34) and ended by SubCon_2

(Day 34 – Day 68). These results also show that there is no site clashing among the

contractors following these work sequences.

Furthermore, from management perspective, these schedule alternatives provide

planners with different choices for a planning scheme that most suits their conditions.

For example, the main contractor has 3 options to conduct his work which is at the

beginning (Day 0 to Day 10), in the middle (Day 24 to Day 34) or at the end (Day 58

to Day 68) of the project portion with Alternative 1.1, 1.2, and 1.3, respectively.

4.7.3.2. Scenario 2 – Collaboration between Two Subcontractors

In this scenario, the original project data is modified to capture the collaborative

situation between the subcontractors. It is assumed that SubCon_1 and SubCon_2 can

share their scaffolding resources with each other. This means that any functional

requirements provided by either Scaffolding_S or Scaffolding_G can now be

combined. In other words, they become compatible providers in functional

requirements FR3, FR4 and FR5 so that they are modified as follows:

FR3 = support([(SB.Erect.A,..., SB.Inspect.A),SSD.Design.A], [[SS.Erect.Q],[SG.Erected.Q]],C)

FR4 = support([GS.Erect.A,(GP.Erect.A,...,GP.Seal.A)], [[SS.Erect.Q],[SG.Erect.Q]],C)

FR5 = support([ms(SS_G.Conduct.A], [[ms(SS.Erect.Q)],[ms(SG.Erect.Q)]],C)

With these changes, two schedule solutions with duration of 54 days are obtained

as summarized in 2 showing active phase times of each component state. The domain

values in the columns refer to the feasible start/finish time for each state. For example,

in Alternative 2.1, the removal of Scaffolding_S has a start interval of [25..31],

meaning that this state has an early start on Day 25 and late start on Day 31. In terms

Chapter Four: Automated Construction Sequencing from Functional Requirements

111

of float time, the process associated with this state has a total float of 6 days. The states

with one value for start/finish time do not have float and are critical.

Table 4.2. Schedule solutions under Scenario 2

The early schedule of Alternative 2.1 is presented Figure 4.10 in the form of a

Gantt chart. The time windows of functional requirements are also presented,

demonstrating that condition ATWF Contains RTWF is fulfilled for all functional

requirements. It is also interesting to note that the collaboration helps reduce the

project duration by 14 days (from 68 days to 54 days) compared with Scenario 1. By

enlarging the ATW of related functional requirements, it allows some construction

Component
Component State

(Active Phase)

Duration

(days)

SS.Erect.A 3 0 3 0 3

SS.Remove.A 2 23 ..29 25 .. 31 6 8

S_SD.Design.A 3 3 6 3 6

S_SD.Approve.A 5 6 11 6 11

SB.Fabricate.A 5 14 19 14 19

SB.Ship.A 1 19 20 19 20

SB.Erect.A 1 20 21 20 21

SB.Inspectd.A 1 21 22 21 22

SG.Erect.A 2 35 .. 41 37 .. 43 18 20

SG.Remove.A 2 52 54 52 54

 Site Survey (G_SD) G_SS.Conduct.A 1 22 23 22 23

G_SD.Design.A 10 18 28 18 28

G_SD.Approve.A 5 28 33 28 33

GS.Fabricate.A 5 37 42 37 42

GS.Ship.A 1 42 43 42 43

GS.Erect.A 1 43 44 43 44

GP.Fabricate.A 7 37 44 37 44

GP.Ship.A 3 44 47 44 47

GP.Erect.A 3 47 50 47 50

GP.Inspect.A 1 50 51 50 51

GP.Seal.A 1 51 52 51 52

Cable Pipe (CP) CP.Embed.A 5 28 .. 34 33 .. 39 11 16

TR.Excavate.A 3 25 .. 31 28 .. 34 8 11

TR.Backfil l .A 2 33 .. 39 35 .. 41 16 18

Trench (TR)

Glass Spider (GS)

Glass Parts (GP)

Scaffolding_G (SG)

Glass Work Shop

Drawing (SSD)

Steel Beam Shop

Drawing (SSD)

Alternative 2.1 Alternative 2.2

Scaffolding_S (SS)

Steel Beam (SB)

Chapter Four: Automated Construction Sequencing from Functional Requirements

112

processes of SubCon_1 and SubCon_2 to be re-sequenced for better resource usage;

thereby shortening project duration.

Figure 4.10. Early Schedule of Alternative 2.1 - Scenario 2 with RTWs and ATWs

For an example, consider FR5. 5
CATW contains two intervals [3..23] and

[35..52] with a total duration of 37 days, longer than ATW
FC

(FR5) in Scenario 1 with

32 days. With this extension, Glass Work Site Survey can be done (from Day 22 to

Day 23) before the erection of Scaffolding_G (Day 35) as it is supported by

SS.Erect.A

SS.Remove.A

S_SD.Design.A

S_SD.Approve.A

SB.Fabricate.A

SB.Ship.A

SB.Erect.A

SB.Inspectd.A

SG.Erect.A

SG.Remove.A

G_SS.Conduct.A

G_SD.Design.A

G_SD.Approve.A

GS.Fabricate.A

GS.Ship.A

GS.Erect.A

GP.Fabricate.A

GP.Ship.A

GP.Erect.A

GP.Inspect.A

GP.Seal.A

CP.Embed.A

TR.Excavate.A

TR.Backfil l .A

Time Line

Active State Phase Quiescent State Phase

5 10 15 20 25 30 35 40 45 500

SubCon_1

SubCon_2

MainCon

2,1
URTW

3 4 5, ,C C CATW ATW ATW 2,2
URTW

3,1
URTW

3,2
URTW 3 4 5, ,C C CATW ATW ATW

1ATW

2
CATW6 6,RTW ATW2

CATW

Chapter Four: Automated Construction Sequencing from Functional Requirements

113

Scaffolding_S of SubCon_1 which is available from Day 3 to Day 23. The time

windows of this requirement are calculated as follows:

5

5 5,1 5,2

[22..23]

(,) [3..23],[35..52]



  C P P

RTW

ATW ATW ATW

Alternative 2 can be easily verified to fulfill all imposed construction requirements

using a similar method. The effect of collaboration in re-sequencing the works is also

found in this solution. For an example, consider FR3. Although Scaffolding_S is

dismantled from Day 6, the construction of Steel Beam of SubCon_1 (from Day 20 to

Day 22) can still be done with the support from Scaffoling_G of SubCon_2 which is

available from Day 20 to Day 47.

Similar to Scenario 1, two schedule solutions obtained in this scenario also

present different work sequences among the contractors. In the early schedule of

Alternative 2.1, the site is first used by SubCon_1 and SubCon_2 for Steel Beam work

and Glass Work Site Survey (from Day 0 to Day 25). It is then transferred to MainCon

for the Cable Pipe work (from Day 25 to Day 35) and finally returned to SubCon_2 for

the Glass Work (from Day 35 to Day 54). In Alternative 2.2, the site is first used by

SubCon_1 to get information for the design of steel beam shop drawing (from Day 1 to

Day 8). It is subsequently occupied by the MainCon (from Day 8 to Day 18) and

finally by SubCon_1 and SubCon_2 for the remaining work (from Day 18 to Day 54).

Comparing with scenario 1 where the two subcontractors have separate work

sequences, their work sequences are now integrated in this scenario due to resource

sharing. However, despite the work sequence integration, both alternative schedules do

not impose any site clashes between the contractors.

Chapter Four: Automated Construction Sequencing from Functional Requirements

114

From management perspective, the schedules obtained also provide alternative

planning schemes for the planners. Alternative 2.1 is more flexible than Alternative 2.2

as it contains more states having float time. In addition, Scaffolding_S is more

effectively used in this case as it supports more processes than in Alternative 2. The

results of this scenario show that collaboration does help reduce project duration as it

allows resource to be allocated to the works of all involved parties, leading to shorter

project duration.

4.8. Concluding Remarks

This chapter presents a modeling framework called FReMAS for automated

construction sequence reasoning from functional requirements. One advantage of

FReMAS is that it can capture complex functional requirements with multiple users

and multiple providers and different provider co-functionality types. This capability

facilitates the generation of alternative schedules possibly resulting from different

engineering solutions for the required function during planning phase.

In summary, FReMAS consists of three components: a Representation Model, a

Temporal Model, and a Construction Sequence Reasoning Framework. The

Representation Model identifies a functional requirement from four perspectives:

function user, function provider, function type, and provider co-functionality. The

generality of this model makes it surpass the Intermediate Function Concept. In

essence, it provides a generalized format for representing both final and intermediate

requirements with multiple users and providers, and capturing alternative engineering

solutions which often result from alternative construction methods or collaborations.

Chapter Four: Automated Construction Sequencing from Functional Requirements

115

A two-level Temporal Model is then developed to define the time window of an

individual user/provider (RTW
U
/ATW

P
), and of the aggregate function user/provider

(RTW/ATW). Especially, a concept of meta-provider is introduced to represent a group

of providers which can share their functionalities or time windows to jointly provide

the required functionality. With this vital construct, different combinations of

engineering solutions can be systematically captured during the planning phase.

Finally, the Construction Sequence Reasoning Framework converts the

necessary condition in the form of functional dependency between function user and

function provider into temporal constraints between their time windows. The final

disjunctive constraint set represents alternative construction sequences fulfilling the

requirement, which could lead to multiple schedule solutions. Accordingly, this

framework can help enhance the adequacy and efficiency of alternative construction

scheduling techniques.

116

CHAPTER 5. ASCoRe SCHEDULER: SYSTEM

ARCHITECTURE AND SEQUENCE

REASONING ALGORITHMS

5.1. Introduction

This chapter describes a system architectural framework, knowledge modeling

templates and reasoning and inference algorithms for implementing the ASCoRe

framework and FReMAS model proposed in previous chapters. For easy reading, this

chapter first presents a brief overview of relevant backgrounds about constraint

satisfaction problem (CSP), constraint logic programming (CLP) and the limitations of

CLP-based solvers in constraint analysis from a construction management perspective.

It then provides a general description on the proposed system architectural framework,

followed by more detailed discussions and explanations on the necessary knowledge

modeling tools, inference and sequence reasoning algorithms and the solving engine

for generating alternative schedules. In particular, a pre-emptive constraint reasoning

framework is developed for identifying basic redundant and conflicting constraints in

the pre-scheduling stage to enhance the feasibility and efficiency of scheduling.

5.2. Relevant Background

This section presents a brief review of Constraint Satisfaction Problem (CSP)

and Constraint Logic Programming (CLP). These concepts are the key background

knowledge on which reasoning algorithms are developed. This section also

summarizes major gaps of CLP-based solving engine in constraint analysis, which

provide the impetus for the development of a new preemptive constraint analysis

approach for construction scheduling.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

117

5.2.1. Overview of Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) can be formulated as comprising a set of

n variables 1 2{ , ,..., } nX x x x , each of which has a finite set Di of possible values (its

domain), and a set of constraints C restricting the values that the variables can

simultaneously take. A typical scheduling problem can be modeled as a CSP with

activity start/finish times as variables, and temporal constraints. A feasible solution to

a CSP is an assignment of a value from its domain to every variable in such a way that

the imposed constraints are satisfied.

A variety of approaches can be used to tackle CSPs. The algorithms for solving

CSPs can be grouped under two broad categories: inference and search, and various

combinations of those two approaches. In inference techniques, local constraint

propagation can eliminate values from the domains which do not take part in any

solution. The procedure of a typical constraint propagation algorithm proceeds can be

described as follows. When a given variable is assigned a value, either directly by the

user or by the system, the algorithm re-computes the possible value sets and assigned

values of all its dependent variables. This process continues recursively until there are

no more changes in the network. Accordingly, the effectiveness of CSPs depends on

how well the constraints are represented and the techniques used to propagate them.

More detailed descriptions of constraint propagation algorithms are available in the

literature (Dechter, 2003; Bessiere, 2006; Lecoutre, 2009).

Search algorithms explore the search space either systematically or locally, often

eliminating subspaces with a single failure. Backtracking is the most common

systematic search algorithm, which incrementally attempts to extend a partial

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

118

assignment, which specifies consistent values for some of the variables, towards a

complete assignment (Barták, 2008). It is the fundamental ‘complete’ search method

for CSPs, in the sense that one is guaranteed to find a solution if one exists. On the

other hand, local search approaches, such as simulated annealing, tabu search or

genetic algorithms, provide an approximation solution (Brailsford et al., 1999).

Constraint propagation and backtracking are usually combined in most

applications and many constraint solvers to maximize the solving efficiency (Marriott

et al., 2006). In this research, the scheduling problem is also modeled as a CSP, and

both constraint propagation and backtracking algorithms are combined to generate all

alternative schedules.

5.2.2. Overview of Constraint Logic Programming

Constraint logic programming (CLP) is a merger of two paradigms: constraint

solving and logic programming. The CLP methodology extends the initial Prolog

language by incorporating several types of constraint solvers, where each constraint

solver is particularly suited for a specific domain. One important characteristic of

CLPs is that they allow succinct, natural conceptual modeling of CSPs. In addition,

CLP languages allow the programmer to define search strategies for solving their

model. Modern CLP languages, such as Prolog or ECL
i
PS

e
, also allow programmers to

define how the constraint solver processes the constraints for solving their models.

This research employs CLP approach and ECL
i
PS

e
 is chosen as the main

platform for developing sequence reasoning and scheduling algorithms. Since PDM++

is used as the background model for representing temporal constraints, utilizing

ECL
i
PS

e
 will ease the integration of PDM++ language with the proposed reasoning

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

119

and inference mechanisms in the system. In addition, its high-level language provides

support for object-oriented modeling which allows for rapid software prototyping. It is

also assumed that the reader has a certain level of familiarity with some of the basic

programming concepts in Prolog and/or ECL
i
PS

e
. Readers may wish to refer to

(Wallace, 2002; Apt, 2007) for a more in-depth discussion on the basic concepts of

CLP and ECL
i
PS

e
.

5.2.3. Constraint Analysis in CP/CLP-based Schedulers

 There are two major problems with CLP-based schedulers: solution feasibility

and computational efficiency, which are greatly influenced by the relationships among

the imposed constraints. Solution feasibility refers to the capability of producing a

feasible solution and is defined by the consistency of the constraint set. In order to

improve solution feasibility, conflicting constraints should be identified and resolved

in the pre-scheduling stage. On the other hand, computational efficiency is governed

by the total number of constraints, especially the number of backtrackings which

increases exponentially with the number of disjunctive constraints. In addition, among

the constraints, some could be subsumed by others and be redundant (Nguyen and

Chua, 2012). Ignoring such constraints thus, while not affecting the schedule result,

will reduce computation time. Especially, removing redundant disjunctive constraints

eliminates unnecessary backtrackings, improving overall scheduling efficiency.

In many CLP-based schedule solvers, constraints are sequentially called in the

propagation to reduce the feasible domains of activities’ start times. Constraint

inconsistencies are reactively identified along the constraint propagation process

(Lorterapong and Ussavadilokrit, 2013), and thus dependent on constraint ordering.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

120

From a management perspective, there remain three major drawbacks. Firstly, a

constraint may contradict with multiple constraints. Such constraints should be

identified so that multiple conflicts can be simultaneously resolved. The propagation

methodologies do not facilitate such resolution strategy. Secondly, sequentially

resolving local inconsistencies could lead, after many changes, to a final schedule that

may not be executable, since the modified constraints may deviate from original

construction intention or represent an impractical method. Moreover, sequentially

resolving conflicts does not guarantee the best (or optimal) set of constraints. Finally,

activity durations often impact the relationships among constraints but propagation

methods do not provide information about how durations can be modified to resolve

conflicts without causing new conflicts.

In summary, to enhance the feasibility and efficiency of construction scheduling,

conflicting and redundant constraints, especially disjunctive constraint combinations

should be preemptively identified and resolved in the pre-scheduling stage, and should

be analyzed in accordance with activity durations. Determining all redundant and

conflicting constraints in an initial stage would require a complete constraint

propagation procedure. Instead, this research focuses only on those existing within one

activity or between two activities using a Constraint Integration Reasoning Framework

without constraint propagation. Detailed description of this framework will be

presented in section 5.6.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

121

5.3. Overview of System Architectural Framework for Implementing

ASCoRe Framework

The system architectural framework in Figure 5.1 describes a hybrid knowledge-

based system (KBS) for implementing the proposed ASCoRe framework. The hybrid

KBS approach is employed to better exploit construction knowledge for efficient data

generation and sequence reasoning, and at the same time provide the flexibility in

defining specific data for a project schedule. Essentially, the framework is designed to

combine the strengths offered by a construction knowledge modeling module,

inference and a sequence reasoning kernel, and a schedule generation engine for

automated scheduling.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

122

Figure 5.1. ASCoRe system architectural framework

The construction knowledge modeling module includes templates to capture

standard product component hierarchies, construction methods, requirements and

define work packages. The inference and sequence reasoning kernel consists of five

main mechanisms to automatically generate activities from component states and work

packages, and convert construction requirements into temporal constraints at both

component state and activity levels. The other core solving engine of the framework is

the schedule generation engine, which comprises a preemptive constraint analyzer to

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

123

identify basic redundant and conflicting constraints in the pre-scheduling stage, and a

schedule generator to compute all alternative schedules for the project. These will be

covered in the following sections.

A user interface module is developed on .NET framework platform providing

planners with different input/output (I/O) tools. Project data are stored in an Access

database. Scheduling input can be generated automatically from 3D design models and

knowledge libraries or manually specified by planners using I/O tools. The main input

for reasoning mechanisms includes a list of components with component state chains

defined by construction methods, lists of construction requirements including

functional requirements, key resource requirements, spatial requirements and other

requirements defined in the form of temporal constraints, project data about key

resource capacities, a spatial interference matrix, and defined work packages. The

inference kernel and scheduling engine are mainly developed on ECL
i
PS

e
 platform to

generate all possible construction sequences and determine best schedules with

minimal makespan. The scheduling output is a collection of all best alternative

schedules with activities’ times and floats, if a feasible solution exists.

5.4. Construction Knowledge Modeling Module

This section describes typical templates for capturing construction knowledge

including product models, construction methods, and construction requirements during

two processes P and C of the ASCoRe framework. The development of these templates

is based on the core knowledge models presented in Chapter 3, and is facilitated by

different project data built in the form of libraries, including but not limited to

component category, component type, resource type, space type, construction process,

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

124

functional relationships, temporal relationships, topological relationships, and

comparative relationships. These templates will help planners to pre-define some

construction knowledge in the form of libraries as well as automate some data entry

process to improve the efficiency.

5.4.1. Product Component Hierarchy Template

Standard hierarchy templates can be pre-designed to assist the generation of

product model (process P of the ASCoRe framewok) and thus accelerating the

planning process. A typical template of product component hierarchy for a building

project is depicted in Figure 5.2a. In this template, components are first arranged by

their category type, i.e. permanent, temporary or site work, then by the functioning

system to which they belong such as structural, architectural or MEP, next by floor

level, subsequently by type, i.e. column, beam, etc. and finally by component name.

The application of this template is presented in Figure 5.2b. A building structure

can be elaborated into different hierarchical format with different levels of detail

dependent on the project’s nature and planning objectives. With this template, planner

can flexibly modify the number of levels as well as the criterion for organizing product

components to attain the most suitable hierarchy for their own intentions.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

125

Figure 5.2. Template of product component hierarchy

5.4.2. Construction Method Templates

Construction method template is established on the construction method model

described in section 3.2.2 to assist users with building a construction method library.

Figure 5.3a presents the template for defining an elementary method in which a

method is represented by a generic construction process, the component types which it

can be applied to, and temporary structure types and key resource types required for

the construction process. In this example, a “Formwork Installation” method is defined

with a construction process “Install”. This method can be applied to formwork

components and requires a scaffolding temporary structure. It also requires a mobile

crane to carry out the work and allows for quiescent phase after its completion. In

addition, as show in the figure, the attributes Component Type, Temporary Structure,

and Key Resource are defined in the list format.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

126

Figure 5.3. Construction method template

Figure 5.3b presents the template for defining an aggregated method which

consists of a sequence of construction processes. When an aggregated method is

applied to a product component, the corresponding sequence of construction processes

involved in the elementary methods helps define the state chain of the component

accordingly. The aggregated “Cast-in Site Concrete” defined in Figure 5.3b includes

three elementary methods: Rebar, Concrete, and Curing, which altogether describe the

necessary processes for constructing a concrete beam/slab/column on site.

5.4.3. Construction Requirement Templates

Two templates are designed for defining functional and non-functional

requirements to assist the identification of requirements for scheduling (process R in

the ARSCoRe framework). The former is built on FReMAS model presented in

chapter four (section 4.3), while the latter is established on the generic construction

requirement described in section 3.2.3. These templates allows planner to create

libraries of generic requirements or manually define project-specific requirements. The

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

127

template for defining functional requirements is depicted in Figure 5.4. The

registration of functional requirement may be tedious for large projects. Final

functional requirements can be automatically acquired from the functionality analysis

of the 3D design model. Simple intermediate functional requirements can also be

defined through the same process. By this, this template can be used for defining

complex functional requirements which are probably project-specific.

Figure 5.4. Template for defining functional requirement

As described previously in chapter four, the function user of a functional

requirement can comprise multiple users, each of which is represented as a set of

component states (using the [] notation). The function user consists of two users from

two components [B1.Erect.A] and [B2.Erect.A]. The function provider of the example

requirement in Figure 5.4 consists of two providers, the first of which involves two

component states from two walls W1 and W2, and is defined as [W1.Complete.Q,

W2.Complete.Q], while the second of which contains a component states from a

scaffolding structure SB1 and is defined as [SC1.Erect.Q]. Since beam erection can be

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

128

supported by either individual or both providers, the provider co-functionality is

defined as “C” (Mutually Compatible” in the last field.

The template for defining non-functional requirements is presented in Figure 5.5.

It is designed to formalize of three major requirement types: resource, work space and

temporal constraints. The necessary condition is elaborated into temporal, topological

and comparative relationships as described in section 3.2.3.

Figure 5.5. Template for defining non-functional requirement

Figure 5.5a illustrates the use of the template to define a precedence requirement

between excavation and site inspection processes. The temporal relationship “B(1)” is

the short form of the PDM++ constraint Before(1). Readers can refer to Figure 2.1 for

the short form formats of all PDM++ constructs used in this dissertation. Figure 5.5b

describes a resource requirement in which two excavators must be provided for the

excavation. In this template, “=” is a comparative relationship for measurable

condition. Other relationships for measurable condition are presented in Figure 3.6.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

129

5.4.4. Work Packaging Template

Work package is the concept of breaking down a project into smaller sub-project

for better planning and management. Different work package definitions have been

proposed in the ACE community. According to Halpin (1985), “a work package is a

sub-element of a construction project on which both cost and time data are collected

for project status reporting. All work packages combined constitute a project’s work

breakdown structure”. Song (2006) defined a work package to include a group of

component states (active phases) of the product components that are concurrently

transited by the associated process. As such, a work package serves as a link between

an activity and component states. This research extends this definition by recognizing a

work package as a group of components that are constructed using the same method. In

other words, components involved in a work package will be created by same

processes. In this way, a work package is used as a construct to link product

(components) and process data (activities) with a many-to-many relationship.

A work package template is design for manual/automatic generation of work

packages using some grouping rules. AND and OR logic operators can be used to

combine the defined rules and provide more flexibility in defining a work package. In

the example shown in Figure 5.6, with the specified rules, a work package WP1

comprising all precast beam in Level 1 will be automatically created. With this design,

the template allows new rules to be easily added.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

130

Figure 5.6. Template for defining work package

The relationship between work packages and product components is one-to-

many, requiring that one work package can comprise one or many product components

but one component can belong to only one work package.

5.5. Inference and Sequence Reasoning Kernel

The inference and reasoning kernel is to facilitate process S of the ASCoRe

framework by automatically generating an activity list from the product model and

work packages, and converting the imposed construction requirements into temporal

constraints. As described in section 3.3.3.2, four major construction requirements are

examined in the ASCoRe framework, including: functional, key resource, work space

and temporal requirements. While functional requirements are generally defined at

component state level, key resource, work space, and temporal constraints can be

represented at both component state and activity levels. Thus, all construction

requirements have to be converted into temporal constraints at activity level for

schedule computation.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

131

Figure 5.7. Workflow of the inference and sequence reasoning kernel

Figure 5.7 presents the general workflow of the inference and sequence

reasoning kernel developed in this research. The reasoning process starts by generating

an activity list from the defined work packages and component states using the

Activity Generation Mechanism. Next, the Functional Requirement Reasoning

Mechanism is employed to convert functional requirements into state-based temporal

constraints. Subsequently, all state-based constraints, including key resource, spatial

and temporal constraints are transformed into corresponding activity-based constraints

using the Constraint Transformation Mechanism. Finally, activity-based resource and

spatial constraints are converted into activity-based temporal constraints using the

Resource and Space Requirement Reasoning Mechanisms. The final output of the

sequence reasoning process is a combined list of activity-based temporal constraints

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

132

derived from functional, resource, and space requirements and an activity list, which

are then transferred to the Schedule Generation Engine for schedule computation.

5.5.1. Activity Generation Mechanism

The purpose of this inference mechanism is to obtain the activity list from

component states and work packages. The inference process of this mechanism is

illustrated in Figure 5.8. To summarize, for each work package wp(i), the mechanism

first generates the collection of all component states of the components belonging to

wp(i). Then all component states which are defined by the same elementary

construction method are grouped into one activity. The final output of this mechanism

is a list of activities, each of which has two important attributes: the associated

elementary construction method, and a list of constituting component states.

Figure 5.8. Pseudo code for the activity generation mechanism

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

133

Figure 5.9. Illustrative example for activity generation mechanism

Figure 5.9 presents the application of this inference mechanism to a work

package WP1 involving six product components: two cast-in-situ walls (W1 and W2),

two precast beams (B1 and B2), one scaffold for erecting the beams (SC) and a trench

(TC). There are altogether eight elementary construction methods defining 12 active

component states. Hence, eight activities are generated in this case, each of which is

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

134

associated with one elementary construction method and consists of one or many

component states. For example, activity WP1-Wall Rebar corresponds to the “Wall

Rebar” method and comprises two component states: W1.Rebar.A and W2.Rebar.A.

Similarly, activity WP1-Beam Erection involves two component states: B1.Erect.A

and B2.Erect.A, which are both defined by the same elementary construction method

“Beam Erection”.

5.5.2. Functional Requirement Sequence Reasoning Mechanism

This mechanism is built upon the FReMAS model to convert functional

requirements into temporal constraints between component states. Readers may wish

to refer to Chapter 4 for a detailed description of the implementation of FReMAS.

5.5.3. Constraint Transformation Mechanism

The purpose of the constraint transformation mechanism is to aggregate

temporal, resource and work space requirements at component state level to those at

activity level. This reasoning mechanism is supported by the one-to-one equivalence

between component states and elementary activities, so that the reasoning can be

carried out directly from component states to activities. It also works under the

assumption that key resource and work space requirements are associated with

construction processes and thus related to only active component states. Without active

states, there resources are not required.

To achieve the above purpose, the reasoning mechanism converts all temporal

constraints related to quiescent state phases, into those of the associated active state

phases based on the continuity nature of component state chains. Table 5.1 presents

rules for converting twelve basic temporal constraints from quiescent states to active

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

135

states. In particular, a unary constraint of a quiescent state X can be converted into an

equivalent unary constraint of its preceding or succeeding active state X1/X2. In this

section, the subscript “1” denotes the active state phase immediately preceding a

quiescent stage phase, and “2” denotes the active state phase immediately succeeding a

quiescent stage phase. Similarly, a binary constraint between quiescent states X and an

active phase Y can be represented by a binary constraint between X1/X2 and Y. Finally,

a binary constraint between two quiescent states X and Z can be transformed into a

binary constraint between their preceding/ succeeding active states X1/X2 and Z1/Z2.

Table 5.1. Rules for converting constraints from quiescent states to active states

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

136

Furthermore, since any complex constraint like Contains, Disjoint, or Overlaps

is represented by a conjunctive/ disjunctive combination of these basic constraints, the

conversion rules presented in Table 5.1 can be applied for all complex constraints. For

example, the complex constraint Contains between state Excavate.Q of TR1 and

Erect.Q of SC1 (see Figure 5.10) can be elaborated into two constraints: (Excavate.Q

SS(0) Erect.Q), and (Erect.Q FF(0) Excavate.Q). According to the rules in Table 5.1,

these constraints are respectively converted to (Excavate.A FF(0) Erect.A), and

(Remove.A SS(0) Backfill.A) respectively. In addition, as described in chapter three,

quiescent states in a state chain can be expressed as a precedent relationship between

its two consecutive active phases. In this example, quiescent state Erect.Q of SC1 is

expressed in the form of temporal constrain as (Erect.A B(0) Remove.A).

Figure 5.10. Converting quiescent state constraint to active state constraint

When all constraints related to quiescent states are removed, the constraint

transformation mechanism proceeds by transferring all constraints (temporal, key

resource, and work space) of active phases to the activity which they constitute. This

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

137

inference process (as illustrated Figure 5.11) in consists of two procedures: a One-to-

One Mapping Procedure, and a Refining Procedure.

Figure 5.11. Converting state-based constraints to activity-based constraints

Initially, the One-to-One Mapping Procedure converts all constraints/

requirements at state level to those at activity level using a one-to-one mapping rule. In

detail, any constraint or requirement related to an active component state is converted

into a similar constraint of its associated activity. For the example in Figure 5.11, the

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

138

constraints of components states (a11, a12, a13) constituting activity A1 and (a21, a22)

constituting activity A2 are converted into constraints between A1 and A2 using a one-

to-one mapping rule. This process eventually generates five temporal constraints

between A1 and A2, two resource requirements (R1/1 and R2/1 from states a11 and

a13 respectively) and two work space requirements (WS1 and WS2 from states a11

and a12 respectively) related to activity A1, and two resource requirements (R1/1 and

R1/2) and two same work space requirements (WS3) of activity A2.

Then, the Refining Procedure is performed to remove replicated temporal/spatial

constraints and to aggregate key resource requirements of the same type. The final

output of this constraint transforming procedure lists of activity-based temporal

constraints, key resource and space requirements. The resource and space requirements

obtained in this step are then passed to the next reasoning mechanisms to reason into

temporal constraints. In the above example, after the refining process, three precedence

constraints (B(0)) between A1 and A2 is refined to one constraint. In a similar way, the

resource requirement R1/1 of activity A2 is subsumed by R1/2 and is removed, and the

two work space requirements of WS3 are also refined into one. Ultimately, the

constraint transformation mechanism transforms 13 state-based requirements into 9

equivalent constraints between the corresponding activities.

5.5.4. Key Resource Requirement Sequence Reasoning Mechanism

In the context of this research, key resource refers to important equipment or

specialized crews which must be available for the construction process to be carried

out. In other to obtain the construction sequence providing the best project makespan,

all possible sequences defined by this requirement type should be determined. In this

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

139

regards, this sequencing mechanism provides a general procedure to generate temporal

constraints from key resource requirements.

Initially, all resource requirements of the same resource type are combined into

one group. Each resource requirement group R is represented by two elements: a

capacity limit (LR) and a list of activities with required numbers (ai/ri), expressed as:

 1 1 2 2(,[/ , / ,..., /])R n nR L a r a r a r (4.20)

 The sequence reasoning procedure of a resource requirement group R consists of

five main steps:

 Step 1: Generate all activity combinations, () ()AC A AP where

1 2[, ,...,] nA a a a . In fact, AC(A) is the powerset of the activity list A (denoted as

()AP) which comprises all non-empty subsets of A.

 Step 2: Identify all activity combinations that violate the capacity constraint,

1 2() [, ,...,] mVC A VC VC VC .These activity combinations are called violating

activity sets, each containing a set of activities that cannot be altogether carried

out concurrently due to resource capacity.

 Step 3: Identify the minimal violating activity sets by removing all violated

combinations that have subset in the collection. For example, among two

violated combinations VC1 = [a1, a2] and VC2 = [a1, a2, a3], VC2 can be removed

from analysis since VC1 = [a1, a2] defines a stricter disjunctive constraint.

 Step 4: Convert capacity constraints into temporal constraints. In order to avoid

the capacity violation, at least one activity of each violating combination iVC

must not be carried out concurrently with the another in iVC . Tis reasoning

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

140

knowledge is represented by a disjunctive list of disjunctive constraints

(Disjoint) between each pair of activities in the combination, shown as:

  
,

       k l k
l

li i
k

TC a Disjoin a a a VCt (4.21)

 Step 5: Combine the constraints of all group TCi to form final constraint list:

 ()  i
i

TC TC (4.22)

For illustration, consider the crane requirement of four activities [a1, a2, a3, a4],

in which activity a1 requires 2 cranes, activity a2 requires 1 crane, activity a3 requires 1

crane, and activity a4 requires 2 cranes. The crane availability is limited at 2 cranes.

These requirements are presented as: crane(2, [a1/2, a2/1, a3/1, a4/2]). In other to

incorporate them into the scheduling process, the proposed sequence reasoning

mechanism is performed to convert them into a set of temporal constraints which

equivalently ensures that the availability is fulfilled. The sequence reasoning results

using the proposed mechanism are described as follows:

 Step 1: Generate all activity combinations (the powerset of the activity set)

1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4

() [[,],[,],[,],[,],[,],[,],

 [, ,], [, ,], [, ,], [, ,],[, , ,]]

AC A a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 Step 2: Identify all violating activity sets

1 2 1 3 1 4 2 4 3 4

1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4

[[,],[,],[,],[,],[,],

 [, ,], [, ,], [, ,], [, ,],[, , ,]]

VC a a a a a a a a a a

a a a a a a a a a a a a a a a a

 Step 3: Identify minimal violating activity sets

1 2 1 3 1 4 2 4 3 4[[,],[,],[,],[,],[,]]VC a a a a a a a a a a

 Step 4: Determine capacity constraints in the form of temporal constraints

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

141

TC1 = [(a1 Disjoint a2)], TC2 = [(a1 Disjoint a3)], TC3 = [(a1 Disjoint a4)],

TC4 = [(a2 Disjoint a4)], TC5 = [(a3 Disjoint a4)]

 Step 5: Combine all temporal constraints into one set

TC = [(a1 Disjoint a2) (a1 Disjoint a3) (a1 Disjoint a4) (a2 Disjoint a4)

 (a3 Disjoint a4)]

The final temporal constraints reasoned from this resource constraint are five

disjunctive constraints (Disjoint) represented five pairs of activities that cannot be

carried out concurrently. The simultaneous satisfaction of these constraints can ensure

that the resource availability constraint of this resource is always fulfilled.

5.5.5. Work Space Requirement Sequence Reasoning Mechanism

Many researchers have agreed that spatial conflicts can also obstruct the

concurrency of the construction processes using the space entities. This research only

focus on the conflicts between work space entities since this conflict type can be

avoided through sequencing and scheduling the related construction processes. Other

types of spatial conflict between Interdiction Space and Dead Space Elements (Chua et

al., 2010) are related to space assignment and cannot be resolved through scheduling,

thus not being taken into account in this research. Reader may refer to Error!

Reference source not found. for a complete set of topological relationships between

two space entities. Moreover, although space is a special type of resource, the

proposed reasoning mechanism for resource requirements cannot be applied to space

constraints since the crucial element that defining the relationship between activities is

not the availability but the spatial interference between space entities. Therefore, the

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

142

sequence reasoning mechanism for space requirements is built on the spatial

interference, and stated in a rule form as:

“If the topological relationship between two work space entities ws1 and

ws2 which are respectively required by two activities a1 and a2 is intersection-

conflict, then a1 and a2 must be carried out disjunctively”.

Figure 5.12. Pseudo code spatial requirement sequence reasoning mechanism

The procedure of the spatial requirement sequence reasoning mechanism based

on the above rule is depicted in Figure 5.12. The final output of this reasoning process

is a collection of disjunctive constraints (Disjoint) between activities requiring

spatially conflicting work space entities.

5.6. Preemptive Constraint Analyzer

The outputs from the inference and reasoning kernel include two main

elementary inputs for scheduling: list of activities and a list of temporal constraints.

Since ASCoRe scheduler is a CLP-based scheduling system, its feasibility and

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

143

efficiency is thus affected by the redundancy/inconsistency relationships among

temporal constraints. Therefore, constraint collection set should be pre-analyzed so

that redundant and conflicting constraints can be identified and resolved before

scheduling. In this regards, this section presents a reasoning framework for identifying

redundant and conflicting constraints within single or pairs of activities in the pre-

scheduling stage. The framework is implemented as a preemptive constraint analyzer

which is performed prior to the schedule generation process to improve the feasibility

and efficiency of scheduling.

5.6.1. Definition and Classification of Constraint Redundancies and Conflicts

5.6.1.1. Definition

In the context of this research, a constraint is called redundant if it is overruled or

subsumed by another constraint. A constraint is the subsumption of another constraint

if any value of activity start times fulfilling it also satisfies the latter. Without loss of

generality, the subsumption relationship between two binary constraint c1 and c2

involving activities X and Y where c2 subsumes c1 can be represented in the form of

first order logic as shown Equation (4.23). This definition can be elaborated as: For

any value of
X and Y making c2 true also makes c1 true; consequently, c1 is

subsumed by c2 and is a redundant constraint.

 2 1, ()   X Y c c (4.23)

In terms of feasible values, constraint c1 is redundant when compared with c2 if

the feasible ranges of
X and Y defined by c2 is contained by that defined by c1. It

also means that every values of
X and Y feasible for c2 is also feasible for c1.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

144

Consider, for example, two constraints between activities X (dX = 3) and Y (dY = 2):

1 : 1  c X Y referring to a constraint X SS(1) Y, and 2 : 3 3 2    c X Y

representing a constraint X FF(3) Y. The feasible ranges of X defined by c1 and c2 are

1 (, 1]   X Y and 2 (, 4]   X Y respectively, and the feasible ranges of Y

are 1 [1,)   Y X and 2 [4,)   Y X . As illustrated in Figure 5.13, 2
X is

contained by 1
X , and 2

Y is contained by 1
Y . Consequently, c1 is subsumed by c2.

Figure 5.13. Example redundant and inconsistent constraints

In contrast, two constraints are called conflicting if they impose contradicting

conditions on the activities involved. More specifically, two binary constraint c1 and c2

involving activities X and Y are conflicting if every value of activity start times

fulfilling c1 makes c2 violated and vice versa. Alternatively, there is no value of either

X or Y feasible for both c1 and c2, and the feasible ranges of X (or Y) defined by

the two constraints do not overlap each other. Conflicting constraints are logically

defined in the form of equation (4.24).

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

145

 1 2 2 1, [() ()]     X Y c c c c (4.24)

For ease of notation, the definition of conflicting constraints is represented in a

short form as shown in Equation (4.25)

 1 2, ()   X Y c c (4.25)

An example of conflicting constraints is between constraints: 1 : 1  c X Y

taken from the previous example and 3 : 2 1 3    c Y X referring to the

relationship Y FF(1) X, with the same dX = 3 and dY = 2. The feasible ranges of X and

Y are illustrated in Figure 5.13, where 1 (, 1]   X Y and 3 [,)  X Y . Since

1
X and 3

X have no common value with any value of Y , there exist no value of X

that simultaneously satisfies both constraints c1 and c3. Hence, these constraints are

inconsistent with each other.

5.6.1.2. Classification

In general, each temporal constraint involves two key parameters: lag time

(denoted by m) and activity durations. Together they define the feasible values of the

associated activities’ start times and the relationships between constraints. In terms of

variation, there is a difference between lag time and activity duration. Since lag time is

often dependent on construction technologies, codes and regulations, collaboration or

contract issues, they are normally invariant with respect to a dynamic construction

environment. For example in the construction of a cast-in-situ wall, a minimal lag time

of 2 days is required between the finish of the concrete work and the start of the

formwork removal for development of concrete strength. This lag time often remains

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

146

unchanged during construction unless there is some modification in the construction

method like using concrete additives that allow rapid strength development. In

contrast, activity durations are highly dependent on construction conditions such as

productivity, resource adequacy, or weather condition. Hence, activity durations are

more variant to changes in construction environment.

 Due to the above distinction between lag times and activity durations,

constraint redundancies and conflicts are divided into two categories: primary and

secondary. Primary conflicts and redundancies are those dependent only on lag times

and independent of activity durations. With any activity duration, the existence of a

primary conflict or redundancy remains unchanged, and their respective logic

definitions are presented in Equations (4.26) and (4.27). Without loss of generality,

activity durations and lag time are assumed to have non-negative values in all cases (

0, 0, 0  X Yd d m).

 2 1, , , ()     X YX Y d d c c (4.26)

 1 2, , , ()     X YX Y d d c c (4.27)

 In contrast, secondary conflicts and redundancies, as defined in Equations

(4.28)and (4.29), depend on both lag times and activity durations.

 2 1, , , ()     X YX Y d d c c (4.28)

 1 2, , , ()     X YX Y d d c c (4.29)

Although primary and secondary constraint redundancies/conflicts have similar

impacts to a schedule solution, they have different significance to planners and project

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

147

managers. Primary redundancies are invariant with activity durations and could be

“completely” ignored if lag time remains unchanged. On the other hand, under some

conditions of activity duration, secondary redundancies may no longer exist. This

commonly happens when activities are prolonged due to productivity issues or

shortened to expedite. Consequently, project managers still need to pay special

attention to secondary redundant constraints as they may become significant to the

schedule. Primary conflicts are independent of activity durations and thus, can only be

resolved when either of the constraints is removed or the lag times are modified. This

will require some change in construction method, collaboration with related parties, or

contractual agreements. In contrast, secondary conflict can be resolved by changing

activity durations. Since changing activity durations are normally easier than

modifying lag time values, primary conflicts can be considered more “severe”, and

need more management attention than secondary ones.

5.6.2. Pre-emptive Constraint Analysis Framework

The preemptive constraint analysis framework identifies the primary and

secondary redundancy and inconsistency constraints occurring in one activity or

between two activities. The reasoning basis is represented in the form of comparison

rules between two temporal constraints. Temporal constraints can be classified into

two groups: simple and complex. Simple constraints are represented by only one

mathematical inequality constraint. This group includes 4 unary constraints and 8

binary constraints (with minimal and maximal lag requirements), forming the basic

constructs which can be used to represent complex constraints. In contrast, complex

constraints are mathematically represented by either a combination of inequality

constraints. Accordingly, set of basic rules to compare simple constraints is first

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

148

developed as the foundation of the whole framework and the development of rules for

comparing complex constraints.

In addition, since definitions of temporal constraints relate to early starts of X

and Y, X and Y , it is better to transform them to the form of Equation (4.30) as

  : ((, ,)) , ,     X Yc Y X f d d m (4.30)

where (, ,) X Yf d d m is a time function of the durations of X and Y, and associated

lag time m. In addition,  represents the nature of the lag time, with “ ” referring to

a minimal lag constraint, and “ ” to a maximal lag constraint. This representation

format essentially recasts a binary constraint in terms of its feasible range of ( Y X)

as a relation of two main parameters  and f, so that two constraints can be directly

compared. Specifically, the redundancy/inconsistency relationship between a pair of

constraints associated with two same activities can be inferred from a comparison of

 and f as established in the rules presented in the next section.

5.6.2.1. Redundancy Rules of Simple Constraints

Two rules are developed to identify the primary and secondary redundant

constraint (if one exists) between two simple constraints c1 and c2 associated with lag

types 1 , 2 and functions 1f and 2f respectively. Redundancies can only exist

when 1 and 2 are of the same lag type.

Primary Redundancy Rule (PR): If  1 2{ , }    and if 2 1(,)  X Yf f d d then c1

is a primary redundant constraint; else if 1 2(,)  X Yf f d d then c2 is a primary

redundant constraint; or conversely, if  1 2{ , }    and if 2 1(,)  X Yf f d d

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

149

then c2 is a primary redundant constraint; else if 1 2(,)  X Yf f d d then c1 is a

primary redundant constraint.

As an example, consider two constraints c1: A FF(2) B and c2: A FF(3) B.

Thus, 1 : 2    B Ac B A d d and 2 : 3    B Ac B A d d . It is apparent that with

any value of dA and dB, the condition 2 1f f is always satisfied. Consequently, as

illustrated in Figure 5.14a, the feasible range of
 B A defined by c1 contains the one

defined by c2, showing that c1 is subsumed by c2 with any value of activity durations

and thus, identified as a primary redundant constraint.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

150

Figure 5.14. Examples redundancy and inconsistency rules for simple constraints

Similarly, consider two other constraints with maximal lags c3: A FF(~2) B (or

3 : 2    B Ac B A d d) and c4: A FF(~3) B (or 4 : 3    B Ac B A d d). The

feasible ranges of
 B A are described in Figure 5.14a, showing that c4 is subsumed

by c3 regardless of the values of dA and dB and thus, is a primary redundant constraint.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

151

Secondary Redundancy Rule (SR): If  1 2{ , }    and if 2 1()f f then c1 is a

secondary redundant constraint; else if 1 2()f f then c2 is a secondary redundant

constraint; or conversely, if  1 2{ , }    and if 2 1()f f then c2 is a secondary

redundant constraint; else if 1 2()f f then c1 a secondary redundant constraint.

For example, consider two constraints c5: A SS(3) B and c6: A B(1) B, with

5 : 3  c B A and 6 : 1     Ac B A d . With dA = 3, as shown in Figure 5.14b, any

values of
A and

B satisfying c6 also fulfill c5. Consequently, c5 is redundant when

compared with c6. However, with dA < 2, 2 11 2   Af d f , so that c6 now becomes

redundant. Thus they are secondary redundant constraints being contingent on the

activity duration.

5.6.2.2. Conflict Rules for Simple Constraints

The potential of a conflict occurs when the constraints are of a different nature,

i.e. 1 2   . A primary/secondary conflict occurs under two scenarios as defined in

the following rules.

Primary Conflict Rule (PC): If    1 2 1 2(, ,) ,       X Yf f d d or

   1 2 1 2(, ,) ,       X Yf f d d then a primary conflict is detected.

An example of a conflict arises between two constraints involving A and B, c7:

B B(3) A (or 7 : 3   Bc B A d) and c8: A SS(1) B (or 8 : 1   c B A). Regardless

of the durations of A and B, it is evident that 1 2f f , resulting in the scenario shown in

Figure 5.14(c). This is the condition given by the first part of the rule thus defining a

primary conflict between c7 and c8.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

152

Secondary Conflict Rule (SC): If    1 2 1 2(, ,)      f f or

   1 2 1 2(, ,)      f f then a secondary conflict is detected.

A potential conflict also exists for another two constraints c9: A SS(1) B (or

9 : 1   c B A) and c10: FF(1) A (or 10 : 1    A Bc B A d d) with dA = 3 and dB =

4. However, it is a secondary conflict because the conflict no longer occurs for any

durations fulfilling 2 A Bd d .

In summary, there are three possible outcomes when comparing two constraints:

(1) a constraint is subsumed by the other, resulting in a redundancy relationship, (2)

they contradict each other, indicating an inconsistency relationship, and (3) neither of

the constraints subsumes the other and they do not impose contradicting conditions. In

the first scenario, the redundant constraint can be removed from the scheduling

process. In contrast, the conflict in the second case must be resolved in order to

achieve a feasible solution, while in the last scenario, both constraints need to be

considered for scheduling and no special action is required.

Mathematically, these scenarios are identified through the relationships of two

basic parameters 1 1(,)f and 2 2(,)f as summarized in Table 5.2. The redundancy

rules PR and SR handle 6 scenarios (green) where either of the constraints is subsumed

by the other. Inconsistency rules PC and SC on the other hand represent 2 scenarios

(red) of conflict in which the constraints contradict each other. The final 4 scenarios

(grey) refer to the situation to the last case.

Table 5.2. Constraint relationships in according with  and f

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

153

5.6.2.3. Redundancy and Inconsistency Rules of Complex Constraints

The rules described in the previous section for simple constraints form the

fundamental constructs for the reasoning of conjunctive/disjunctive constraints. These

constraints are necessary for capturing complex construction requirements such as

work concurrency, continuity or disjunction. The redundancy and inconsistency

relationship among such constraints are also more intricate, and prone to error with

manually reasoning.

For this section, consider two complex constraints 1 1,1 1,2 1,(...)    pC c c c

and 2 2,1 2,2 2,(...)    qC c c c , and a simple constraint c3. cj,k is a simple constituent

constraint of a complex constraint Cj. Note that capital notation is used for complex

constraints and the lower case notation for simple constraints. The interaction of

complex constraints is built upon the following rule which defines the subsumption

relationship of a conjunctive constraint C1 over a simple constraint c3. In addition,

although the following rules are developed for basic complex constraints which

involve only simple constraints, they can still be applied to more complex constraints

by either decomposing the constraints using distribution laws or performing the

comparison in a hierarchy procedure.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

154

a) Redundancy and Inconsistency Rules of Conjunctive Constraints

Rule C1: If 1, 1 1, 3,  k kc C c c then 1 3C c

Essentially, if there is at least one constituent constraint Ci,k that subsumes c3,

then C1 also subsumes c3. Consider for example two constraints involving A and B, C1:

A Overlaps(3) B comprising two simple constraints: 1,1 : 3   Ac B A d and

1,2 : 3    Bc B A d), and c3: A SF(2) B or 3 : 2    Bc B A d , with dA = 4 and dB

= 5. It can be evaluated that I,2 2 f , and 3 3 f . Thus c1,2 subsumes c3 following

rule SR and c3 is redundant when compared with C1. In other words, as illustrated in

Figure 5.15a, any value of A and B fulfilling C1 automatically satisfies c3.

Figure 5.15. Examples of redundancy rules of conjunction constraints

In the case of two conjunctive constraints C1 and C2, the subsumption

relationship may be determined using the following rule.

Rule C2. If 2, 2 1 2,,  j jc C C c then 1 2C C

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

155

Essentially, if every constituent constraint of C2 is subsumed by C1, then C1

subsumes C2 so that C2 is redundant. Extending the example in Figure 4(a) to consider

C1 with C2: A SO(2) B, comprising two simple constraints 2,1 : 0  c B A and

2,2 : 2    Bc B A d . Figure 5.15b shows the relevant 1,1f , 1,2f of CI and 2,1f , 2,2f

of C2 , and that C2 is redundant when compared with C1.

 On the other hand, two complex constraint C1 and C2 are conflicting when any

constituent constraint c1,k of C1 contradicts any c2,k of C2 as represented in Rule C3.

Rule C3. If 1, 1 2, 2 1, 2,, , ()    k j k jc C c C c c then 1 2C C

As an example, consider two constraints C1: A Meets B and C2: A O(3) B.

Constraint C1 is a combination of two constraints: 1,1 : 0  c B A and

1,2 : 0  c B A , and constraint C2 is described as 2,1 : 3   Ac B A d , and

2,2 : 3    Bc B A d . With dA = 4 and B dB = 5, 2,1 1f and 2,2 2 f . Thus, c1,2

contradicts c2,1 according to rule SC, showing that C1 and C2 cannot be simultaneously

satisfied, and are conflicting constraints.

b) Redundancy and Inconsistency Rules of Disjunctive Constraints

In construction schedules, disjunctive constraints represent construction

requirements that could be fulfilled by different ways of sequencing construction

processes. They therefore result in different alternative schedules, providing planners

with multiple planning options. With a large number of disjunctive constraints, the

number of backtrackings or branches is commonly huge and a scheduling problem

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

156

may become computationally intractable. The following rules can be used to reduce

the number of disjunctive constraints as well as identify inconsistent constraints.

 If any disjunct c1,k of a disjunctive constraint C1 contradicts a simple or

conjunctive constraint C2, then c1,k can be removed without affecting the schedule

solution. This could be depicted in Rule D1.

Rule D1. If 1, 1 1, 2, ()  k kc C c C then remove c1,k from C1.

This is possible because in a disjunctive constraint, each disjunct refers to one

alternative branch which may lead to a feasible solution. When a disjunct contradicts

any other constraint, the associated branch becomes infeasible and thus ignored.

On the other hand, a conflict occurs when all disjunct c1,k constituting a

disjunctive constraint C1 is inconsistent with a simple or conjunctive constraint C2 as

stated in Rule D2.

Rule D2. If 1, 1 1, 2, ()  k kc C c C then 1 2C C

Essentially, the existence of such a conflict means that no feasible branch can be

found, and thus an infeasible schedule ensues.

5.6.3. Identifying Feasible Duration Range

Variations of activity durations are common in construction schedules. They

could happen incidentally due to variations of different construction factors such as

weather conditions, productivity, or resource availability. Activity duration could also

be modified for different management aims like expediting delays or resolving

schedule inconsistencies. As each activity is possibly involved in many constraints,

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

157

changing the duration of one activity may resolve one inconsistency but at the same

time cause new conflicts. In addition, in the execution stage, changes in activity

durations can result in conflicts and make the baseline plan infeasible. Due to

constraints, there is a range of values for the duration of an activity, beyond which the

schedule will be infeasible. Therefore, identifying the feasible duration range of an

activity would provide planners with opportunities for modifying activity durations as

required in both planning and control stages.

The feasible duration range of an activity is defined as the range of values that

the activity duration can take without causing any conflict among all the constraints

associated with it while maintaining the duration of other activities and lag times. The

feasible duration range of an activity X is denoted by [,] L U
X X XFD FD FD , where

L
XFD and

U
XFD are the lower and upper bounds of the range respectively.

 When both constraints are of the same lag type, there exist a redundancy

between two constraints as in Rules PR and SR, and no value of activity durations

could lead to a conflict between them. Therefore, there is no bounds to dX and dY and

their feasible duration ranges with regard to constraints c1 and c2 are specified as

1,2 1,2 [0,)  X YFD FD .

 A conflict may occur when two constraints are of different lag types. Without

loss of generality, assume that  1   and  2   . From rules PC and SC, in

order to ensure there is no conflict between them, the condition 1 2f f needs to be

satisfied. From this, the feasible duration ranges of activities X and Y may be derived.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

158

Consider two constraints c1: B FF(1) A or 1 : 1    A Bc B A d d and c2: A

SS(2) B or 2  B A . By applying condition 1 2f f , the feasible duration ranges of

A and B are determined as 3 A Bd d and 3 B Ad d respectively. Thus, with

predefined dA = 7 and dB = 3, their respective feasible duration ranges in regard to

constraints c1 and c2 are identified as dA ≥ 6 or
1,2 [6,) AFD , and dB ≤ 4 or

1,2 [0,4]BFD .

The overall feasible duration range of an activity X (denoted as FDX) is the

combination of the intervals computed from the pair-wise comparisons of all

constraints involving that activity, as shown in Equation (4.31) where (i, j) refer to any

pair of constraints i and j involving X.

,

,()
i j

i j
X XFD FD (4.31)

The feasible duration range could also be employed to analyze the consistency of

all constraints related to an activity. If the feasible range of an activity X become

empty (XFD), there is no feasible value of dX that simultaneously satisfies all

constraints related to X. In other words, there exists an inconsistency within the

associated constraints which cannot be resolved with any value of dX. Hence, in order

to remove such a conflict, planners have to choose other strategies such as removing

conflicting constraints or modifying the duration of other related activities.

The application of the framework to PDM++ constraints is presented in

Appendix 1 so that readers and planners can directly and manually apply the outcomes

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

159

of the rules without resorting to complex computing (albeit computing will automate

the process and enable the conflicts and redundancies to be readily identified).

5.6.4. Preemptive Constraint Analyzer

The preemptive constraint analyzer is built upon the Constraint Integration

Reasoning Framework as depicted in Figure 5.16. The analysis starts with an

initialization process, which essentially elaborates complex constraints into

combinations of simple constraints and generates a constraint pair collection and

finally, initializes all outputs.

The reasoning process is divided into two main parts. The first handles simple

constraints by sequentially examining every constraint pair (Ci, Cj) in using rules

PR, SR, PC, and SC, and determining the feasible duration ranges of the associated

activities. The second part analyzes the complex constraints. Based on the

redundancies and conflicts found in the first part, the relationship between each

complex constraint and simple constraints are identified using rules C1 and D1. The

comparison of complex constraints then proceeds using rules C2, C3 and D2. In

general, in a worst-case scenario, the reasoning of simple constraints runs in
2(|{ }|)O S

polynomial time where |{ }|S is the number of simple constraints, while the run time

complexity for complex constraints is
2 2((2 |{ }|) ||{ }| |{ }|)O S C j where |{ }|C is the

number of complex constraints, and { }j the maximum number of constituting simple

constraint of a complex constraint.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

160

Figure 5.16. Flowchart for implementing preemptive constraint analysis

The output of the preemptive constraint analyzer are sets of primary and

secondary redundant constraints, primary and secondary conflicting constraint pairs,

and the corresponding feasible duration ranges of all associated activities. Planners

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

161

need to take suitable actions to resolve the identified conflicts. Common strategies

include: (1) Change the duration of one or some activities within their feasible ranges,

(2) Examine to see if a conflicting constraint can be removed, or (3) Examine to see if

construction method can be changed so that the lag time of a conflicting constraint can

be modified. When conflicting constraints are resolved within the feasible ranges, no

new conflicts would arise. The objective, therefore, of the preemptive constraint

analyzer is to obtain a refined constraint set without redundant constraints (although

remaining in the database) for efficient scheduling using the scheduler.

In summary, with the existence of disjunctive constraints, the scheduling

problem is generally a NP problem. For n activities and m constraints with k disjuncts

each, the worst case run-time complexity of this scheduler is of an exponential order as

O(n
2
mk

m
) (Tsamardinos and Pollack, 2003), so that by removing the redundant

disjuncts via the preemptive constraint analyzer, the computational time of the solver

can be significantly reduced. The benefit of applying the proposed framework in the

pre-scheduling stage is twofold. The scheduling process will not start until all basic

conflicts are resolved since it is known that no solution is obtained if such a conflict

still exists, and redundant constraints are removed from the constraint set to improve

computational efficiency.

5.7. Schedule Generator

The scheduling problem is modeled as a CSP with activity start times as

variables and a set of constraints containing both conjunctive and disjunctive

constraints, including the Makespan constraints. It is solved using the Schedule

Generator which is built on PDM++ model. The major goal of this scheduler is to

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

162

generate all feasible schedule solutions based on the refined constraint set obtained

from the preemptive constraint analysis process using constraint propagation and

backtracking search techniques provided by ECL
i
PS

e
. The computation procedure

(depicted in Figure 5.16) consist of four stages: (1) Initialization, (2) Constraint

Propagation, (3) Backtracking Search, and (4) Output Finalization.

Figure 5.17. Flowchart of scheduling process

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

163

 Stage 1 (Initialization): Input activities and constraints are added to pre-defined

data structures. The domain of all variables (activities’ start times) is initialized.

Then, activities are mapped the relevant constraints for constraint propagation.

 Stage 2 (Constraint Propagation): The constraint propagation is facilitated by the

BCSolver Algorithm developed by Yeoh (2012), which has been adapted from the

Bounds Consistency Algorithm (Jaffar et al., 1994). In particular, the definition for

Bounds Consistency proposed by Choi et al. (2006) stating “A constraint is Bounds

Consistent if for each bound of the domain of a variable there is an integer support

for the values of the domain of the other variables occurring in the same constraint.”

is adopted in BCSolver Algorithm. When all constraints are visited and satisfied,

the domain of makespan is bound to the lower bound and one more propagation

process is performed to get the final domains variables. The lower and upper

bounds of a domain respectively represent the early and late start time of the

corresponding activity.

 Stage 3 (Backtracking Search): When a path is fully explored or an inconsistency

occurs, backtracking search is perform to the nearest non-explored path to examine

new constraint combinations. The constraint propagation is then performed to

identify a feasible solution. The backtracking process is iterated until the search

space is entirely explored.

 Stage 4 (Output Finalization): When the backtracking search process is finished,

the identified feasible schedule solutions (if any exists) are compared to find and

output the best solutions with the minimal makespan. If there is no feasible solution,

a “NO” result is returned.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

164

5.8. Concluding Remarks

This chapter introduces the foundational knowledge necessary for implementing

the ASCoRe framework. To summarize, the system architecture for implementing

ASCoRe based on .NET framework and ECL
i
PS

e
 platforms integrates the

advantageous features of three modules for alternative auto-scheduling from

construction methods and requirements. As a whole, the proposed system architectural

framework contains necessary tools and mechanisms for auto-scheduling from both

product and process perspectives, and also allows for more flexibility in representing

construction methods and requirements as well as updating their changes to schedules.

In particular, the construction knowledge modeling module provides templates

for systematically formalizing basic construction methods and requirements. These

templates support rapid gathering and unambiguous representation of construction

knowledge, so that major construction knowledge can be passed on through the

scheduling generation and analysis phases for better traceability of changes and project

management. Secondly, the inference and reasoning kernel incorporates inference

algorithms for automatically deriving activities and temporal constraints from project

data. Especially, activities are not pre-defined as in existing planning systems, but

generated from directly construction methods and product components. By this,

changes in construction methods and/or the design model can be steadily updated to

activities and schedules. Finally, the schedule generation engine based on the PDM++

model provides a computational model for generating all best alternative schedules. In

addition to the extensional features inherited from the PDM++ model, it contains a

preemptive constraint analysis module to further improve the scheduling efficiency.

Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms

165

Another vital contribution of this chapter is the preemptive constraint analysis

framework. By identifying redundant and conflicting constraints between single or

pairs of activities in the pre-scheduling stage, this framework helps identify the

infeasibility and/or eliminate unnecessary searching space of the scheduling problem,

thus improving schedule efficiency. In essence, the classification of constraint

redundancies/inconsistencies based on the impact of activity durations and lags

provide planners with better understandings of the nature of the redundancies/conflicts

and useful strategies for resolving conflicts. Moreover, the feasible range of an activity

duration computed from the framework provides planners with useful guidelines for

solving conflicts, and also allows them to verify the validity of an activity duration

when changes happen.

Due to the existence of disjunctive constraints, the scheduling problem is

generally NP-hard. The proposed schedule generation algorithm which is currently

based on basic constraint propagation and branch and bound techniques can be

incorporated with more efficient search approaches, such as the hybrid conflict-

directed backjumping, semanic branching and no-good based reasoning (Tsamardinos

and Pollack, 2003) to further improve the scheduling efficiency.

166

CHAPTER 6. CRITICALITY ANALYSIS OF

CONSTRUCTION REQUIREMENTS FOR

SCHEDULE CHANGE MANAGEMENT

6.1. Introduction

As discussed in chapter three, construction requirements represent construction

knowledge and practice from which schedule constraints and alternative schedules are

derived. Therefore, this research highlights their governing role for schedule and

proposes that construction schedules should be analysed and managed from the

perspective of construction requirements. In this regard, this chapter presents an

innovative concept for analysing the criticality of constraints and construction

requirements with respect to multiple alternative schedules. The proposed concept will

provide the fundamental basis for constraint-based methodology for schedule change

analysis and management.

A qualitative classification of constraint criticality to a single schedule is

proposed to provide a broader definition of criticality. This classification schema forms

the basis for identifying the criticality of complex requirements over multiple

alternative schedules. Subsequently, a systematic procedure to identify constraint

criticality is developed using two constraint criticality indicators. These indicators are

further employed for analysing the impact of constraint variations on schedule

makespan. The concept of constraint criticality also allows for developing a new

approach to schedule management which is based on constraints and construction

requirements. The application of the proposed concept and methodology is

demonstrated via an illustrative example.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

167

6.2. Constraint Criticality

Generally, construction requirement is represented by one single or a set of

simple constraints, and its criticality can be determined from that of its constituent

constraints. Therefore, identifying the criticality of individual simple constraint in a

schedule is fundamental for identifying the overall criticality of complex construction

requirements. In addition, constraints constituting disjunctive requirements may not be

involved or active in some schedules. Thus, from the perspective of a single schedule,

a constraint can be characterized from two aspects: Existence and Criticality. The

existence of a constraint refers to its presence within a specific schedule, while its non-

existence means that the constraint is not involved in the solution of that schedule. As

such, the criticality of a constraint is always determined with its existence condition.

6.2.1. Definition and Classification

Due to the complex nature of some constraints, a critical constraint may affect

not only project duration or the start/finish times of activities but also the sequence of

activities in a project plan. In contrast, non-critical constraints are redundant ones,

which can be removed without causing any change to the schedule. From this

perspective, constraints can be classified into four groups: project-critical, activity-

critical, sequence-critical, and redundant, described as follows.

6.2.1.1. Project-critical Constraint

A constraint is project-critical if it controls the start/finish times of a critical

activity and thus governs the project duration. As such, a project-critical constraint

path implies a critical activity path and vice versa. More precisely, any critical activity

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

168

path has an associated project-critical constraint path, which links all constraints

governing the start/finish times of the critical activities involved.

Figure 6.1. Example schedule network

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

169

For illustration, Figure 6.1 presents two alternative schedules of a schedule

network resulting from the disjunction requirement between activities D and E (C8: D

Disjoint E) so that D is scheduled before E as in Figure 6.1a, or D is schedule after E

as in Figure 6.1(b). This requirement is captured by the disjunctive combination of two

constraints c8a and c8b, expressed as 8 8 8: ()a bC c c . The concurrent relationship

between B and C (C4: B Contains C) is represented by a conjunctive combination of

two constraints c4a and c4b, as 4 4 4() a bC c c . Similarly, the overlapping relationship

between C and F (C9: C Overlaps(3) F) is a conjunction of c9a and c9b as 9 9 9: ()a bC c c .

The respective durations of Schedules 1 and 2 are 20 and 22 days. It is also noted that

short-form notation will be used for simple constraints while long-form notation for

complex constraints for easy reading and consistency with previous chapters. Readers

may wish to refer to Figure 2.1 for a full description of PDM++ constraints in both

long and short form notations.

In Schedule 1, constraints c2, c6, c8a, and c13 are project-critical, since they define

the times of the critical activities A, C, D, E and G, as well as the schedule makespan.

If for example constraint c6 is modified to SS(5), the start time of activity D is delayed

by 1 day, and the schedule makespan is prolonged to 21 days accordingly.

6.2.1.2. Activity-critical Constraint

Similar to critical activities, the start/finish times of every non-critical activity

are also controlled by at least one constraint which is classified as activity-critical. Any

change or deletion of such a constraint can cause activity times to be changed while the

schedule makespan remains unchanged. An activity-critical constraint becomes

project-critical when its associated activities become critical.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

170

In Schedule 1 (Figure 6.1a), activity B is non-critical and its start/finish times are

controlled by two constraints c1 and c4a. In detail, c1 defines its early start/finish times

while c4a governs its late start/finish times. If c1 is changed to SS(3), early start/finish

times of B will change to 3 and 9 respectively, whereas the project duration remains

unchanged as 20 days. When c1 is changed to SS(5), activity B turns to be critical and

c1 becomes project-critical.

6.2.1.3. Sequence-critical Constraint

When a constraint does not control start/finish times if any activity, it is

intuitively considered redundant, and removal of such a constraint may seem not to

cause any change to project makespan. Yet under some scenarios, removing a “non-

critical” constraint allows for the re-sequencing of some activities so that a better

project duration is achieved. These sequences may be originally infeasible and only

made feasible by the removal of such a constraint. Due to this distinctive characteristic,

this type of constraints is classified as “sequence-critical” in this paper. It refers to

those constraints whose existence has no impact on the schedule but affects the

sequence which defines the best project duration.

As shown in Figure 6.1, the project duration is 20 days following the sequence

defined in Schedule 1 where D is before E. In this schedule, constraint c11 is found to

be non-critical. However, if this constraint is deleted, the makespan of Schedule 2

where E is before D is reduced to 18 days thus improving the overall project duration,

while that of Schedule 1 remains at 20 days. In another example shown in Figure 6.2,

with the existence of constraint c4, there is only one feasible sequence in which activity

B is before activity C, giving the project makespan of 20 days (Figure 6.2a). However,

when this constraint is removed, the alternative sequence in which activity C is before

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

171

activity B become feasible, producing a shorter project duration of 17 days (Figure

6.2b) while the makespan of the original sequence remains unchanged.

Figure 6.2. Example of sequence-critical constraint

Due to their special nature, sequence-critical constraints should be carefully

examined to see if they can be removed to achieve better project makespan.

6.2.1.4. Redundant Constraint

The last category of constraint is named “redundant”, which refers to constraints

whose change and existence have no impact on start/finish time of any activity, project

duration and the activity sequence defining the overall project duration.

6.2.2. Order of Constraint Criticality

Constraint criticality in a schedule can be ordered as follows:

Project-critical Activity-critical Sequence-critical Redundant

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

172

Project-critical constraints are apparently the most crucial since not satisfying

them can prolong the schedule makespan. Secondly, activity-critical constraints also

need to be well-managed in order to maintain activity’s times as planned. Although not

crucial to the schedule times, sequence-critical constraints cannot be ignored since

their removal can allow for project improvement.

6.3. Identifying Constraint Criticality

Similar to activity criticality, constraint criticality may be determined based on

criticality indicators. The criticality of a constraint is closely related to whether it may

prolong schedule makespan or may reduce the feasible ranges of activities’ start times

when the constraint becomes more obstructive to project performance or more

tightened. In other words, if a constraint has less room by being tightened or

conversely, less relaxed, it yields a higher degree of criticality. Accordingly, two types

of relaxation time are proposed to characterize the criticality of a constraint, defined as

follows:

 Aggregate Relaxation Time: The Aggregate Relaxation Time (ART) of a

constraint c, denoted as cART , is the total amount of time that its lag time and/or

associated activities’ times (start time and/or duration) can be varied without

violating the constraint, and thus without increasing schedule makespan.

 Intrinsic Relaxation Time: The Intrinsic Relaxation Time (IRT) of a constraint

c, denoted as cIRT , is the total amount of time that its lag time can be varied

without reducing the feasible start time ranges of all activities involved while

activity durations remain unchanged.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

173

Table 6.1. Relationship of criticality and relaxation times

Criticality Relaxation Times

Project-critical ART = IRT = 0

Activity-critical
ART > 0

IRT = 0

Sequence-critical

ART > 0

IRT > 0

Removal provides better project duration

Non-critical

ART > 0

IRT > 0

Removal has no impact on project duration

The distinction of the two relaxation times is in two aspects. The first refers to

the impact of change: on makespan for ART and activity times for IRT. The second is

directed to the scope of change: both lag and activity times for ART while merely lag

time for IRT. The relationship between ART and IRT and the criticality of a constraint

is shown in Table 6.1. A project-critical constraint will cause project delay if it is

further tightened, and thus its relaxation times are zero. On the other hand, an activity-

critical constraint still can be tightened without affecting schedule makespan, yet

affecting the feasible time range of the activities involved. Hence, an activity-critical

constraint has zero IRT and non-zero ART.

6.3.1. Determining Constraint Relaxation Times

The ART and IRT of a constraint may be computed by the introduction of

flexibility measures of the activities involved. The flexibility of an activity with regard

to a constraint can be measured based on the amount of time that its start time can be

changed (pushed forward or pulled backward) from the original start time range

without violating the constraint while the times (duration and start time) of its

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

174

successor/predecessor involved in the constraint, lag time and its duration remain

unchanged. Similar to relaxation times, two types of flexibility times are introduced as

follows:

 Aggregate Forward/Backward Flexibility Time: The Aggregate Forward/

Backward Flexibility Time of an activity k with regarding to a constraint c,

denoted as ,
FW

k cAFT / ,
BW

k cAFT , is the amount of time that k can be moved

forward/backward without violating c, while its duration, the feasible time range

of its successor/predecessor involved in c and lag time remain unchanged.

 Intrinsic Forward/Backward Flexibility Time: The Intrinsic Forward/

Backward Flexibility Time of an activity k with regarding to a constraint c,

denoted as ,
FW

k cIFT / ,
BW

k cIFT , is the amount of time that k can be moved

forward/backward beyond its original feasible range without violating c, while

its duration, the feasible time range of its successor/predecessor involved in c

and lag time remain unchanged.

Flexibility times of an activity with respect to a constraint show how flexible the

activity can be scheduled without affecting the constraint’s satisfaction. As such, less

flexibility times indicate that the activity is less flexible or more constrained. In

addition, AFT refers to the flexibility of an activity taking into account its total float

time while IRT does not involve float time.

Let [..]  k kk L U denote the original feasible start time of activity k obtained

from schedule computation result where Lk and Uk are early and late start time of k,

and , ,[..] c k c k ck L U the start time range of k governed only by constraint c. The

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

175

intrinsic and aggregate flexibility times of activity k with respect to constraint c can be

determined from the difference between


ck and k as described in equations (4.32)

and (4.33) respectively.

, ,

, ,

 

 

FW
k c k c k

BW
k c k k c

IFT U U

IFT L L
 (4.32)

, ,

, ,

 

 

FW
k c k c k

BW
k c k k c

AFT U L

AFT U L
 (4.33)

It can be inferred from the above definitions that ,
BW

k cIFT and ,
FW

k cIFT respectively

refer to the flexibility of early and late times of activity k with respect to constraint c.

Hence, zero ,
BW

k cIFT / ,
FW

k cIFT indicates that c defines the early/late time of k. Moreover,

the relationship between IFT and AFT can be described as

, ,

, ,

 

 

FW FW
k c k c k

BW BW
k c k c k

AFT IFT TF

AFT IFT TF
 (4.34)

where  k k kTF U L is the total float of activity k.

Since the criticality of a constraint corresponds to how flexibly its associated

activities can be changed without violating it, the relaxation time of a constraint is then

defined as the minimal flexibility time of all associated activities, given by:

, ,

, ,

(,) activity involved in

(,) activity involved in

 

 

FW BW
c k c k c

k

FW BW
c k c k c

k

ART Min AFT AFT k c

IRT Min IFT IFT k c
 (4.35)

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

176

For illustration, consider constraint c5: B FF(2) D, or 5 : 2    B Dc B d D d

in Figure 6.1a, with dB = 8, dD = 7, [2..5] B (or 2BL , 5BU) and [9] D (or

9 D DL U). Note that D is a critical activity. The start times of B and D as defined

by only c5 are 5 (..6]  B (or ,5  BL , ,5 6BU), and 5 [5..)  D (or
,5 5DL ,

,5  DU). Accordingly, the flexibility times of B and D can be determined as

follows:

,5 ,5 6 5 1    FW
B B BIFT U U , ,5 ,5 6 2 4    FW

B B BAFT U L ,

,5 ,5  BW
B B BIFT L L , ,5 ,5  BW

B B BAFT U L , and similarly

,5 ,5 9 5 4   BW BW
D DIFT AFT , 5, 5, FW FW

D DIFT AFT .

Consequently, the relaxation times of constraint c5 are determined as

5 ,5 ,5 ,5 ,5(, , ,) 1 FW BW FW BW
B B D DIRT Min IFT IFT IFT IFT determined by ,5

FW
BIFT , and

5 ,5 ,5 ,5 ,5(, , ,) 4 FW BW FW BW
B B D DART Min AFT AFT AFT AFT by ,5

BW
BAFT and ,5

FW
DAFT .

The significance of these relaxation times can be perceived in this way. With

IRT5 = 1, the lag time of c5 (m5 =2) could be increased by 5 1 T to m5 = 3 without

affecting the start times and floats (i.e. time ranges) of activities B and D. However, if

m5 is increased by 5 2 T to from m5 = 2 to m5 = 4, the feasible time range of activity

B is reduced to [2..4] B to satisfy c5 since this change exceeds the forward intrinsic

flexibility time of active B, (,5 1FW
BIFT). On the other hand, ART5 = 4 indicates that

the 5 2 T change does not affect project duration. Specifically, it can accommodate

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

177

changes in lag time or activity times (start time and/or duration) not totaling more than

4 days without affecting project completion. In particular, at the extremities, it is still

satisfied if its m5 can be increased by 5 4 T to m5 = 6 and activity B is carried out on

Day 2 (2 B), or if activity B can be delayed by 5 4 T days (6 B) and its lag

remains as m5 = 2. However, if lag time is increased to m5 = 7, constraint c5 is violated

and the schedule makespan needs to be increased to resolve the violation. The impact

of constraint variation on schedule makespan will be examined in section 6.4.

6.3.2. Interpreting Constraint Relaxation Times

Each constraint comprises two principle elements: lag time and activities’

temporal attributes (start times and durations). Relaxation times of a constraint indicate

the temporal magnitude in which these two elements can be varied while maintaining

the satisfaction of the constraint. As illustrated in the previous example, the IRT of a

constraint represents the maximal time amount that its lag time can be increased (for

minimal lag) or decreased (for maximal lag) without causing any change to the feasible

time ranges of the associated activities when activity durations are unchanged. If lag

time change exceeds IRT, activities’ feasible time ranges will be reduced accordingly.

The ART of a constraint on the other hand refers to the maximal total time amount that

its lag time and activities could be changed without affecting its satisfaction, and thus

not delaying the schedule makespan.

IRT could be considered as “free” relaxation time of a constraint to be analogous

to the free float from the activity perspective. Since any change within IRT does not

reduce the feasible time range of activities or their total float, such a variation only

happens within the constraint and does not affect the IRT of other constraints. ART on

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

178

the other hand represents the relaxation time of both lag time and activities’ times.

Thus, it is shared among the constraints involving the same activities and could be

considered as “total” relaxation time to be analogous to the total float from the activity

perspective. Changes in the ART of one constraint will lead to variations in the ART of

other constraints, while changes in the IRT will not lead to variations in other

constraints. Accordingly, IRT and ART are used to capture the inherent and aggregated

changes of a constraint.

Figure 6.3. Example constraint network showing relaxation times

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

179

Figure 6.3 depicts an equivalent constraint network of the schedule shown in

Figure 6.1a where nodes represent constraints and the edges denotes activities. With

this representation from the constraint perspective, the relationship between the

relaxation times of associated constraints can be better conveyed. In essence, changes

in both activity and lag times can be reflected as changes of the ART and IRT of the

associated constraint(s), and then propagated throughout the downstream network. For

example, the ART of constraint c1 (ART1 = 3) is shared among all non-project-critical

constraints involving non-critical activities. Consequently, if the start time of activity B

is delayed by 2 days (1 2 T) from [2..5] B to [4..5] B , ART1 is reduced from

ART1 = 3 to ART1 = 1 correspondingly, and the ARTs of the constraints related to

activity B also decreased similarly, shown as: ART4a = 1, ART4b = 2, and ART5 = 3.

Especially, the IRT of these constraints remains unchanged (as IRT5 = 2 and IRT4b = 1)

since they original change is from an activity (activity B).

6.4. Criticality of Construction Requirements

Construction requirements can be seen as conjunctive and disjunctive

combinations of one or many simple constraints. For generality, a construction

requirement comprising only one simple constraint is considered as a conjunctive

combination. The criticality of a construction requirement is therefore derived from

that of its constituent constraints. In addition, since some constraints may not be

involved in some schedules due to some disjunctive requirements, the existence aspect

must be taken into account for identifying the criticality of construction requirements.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

180

From the perspective of a single alternative schedule, the criticality of a

conjunctive group of active constraints is characterized by the highest degree of

criticality of its constituent constrains, expressed as:

1 2(...) 1 2sup(, ,...,)   

nc c c n (4.36)

where i denotes the criticality of constraint ci.

For instance, consider C4: B Contains C in Figure 6.1a comprising a conjunctive

combination of two simple constraint as 4 4 4: ()a bC c c . Constraint c4a defining the

start time of activity B is activity-critical while constraint c4b is non-critical.

Consequently, according to the characterization given by Equation (4.36), C4 is

identified as activity-critical.

On the other hand, the criticality of a disjunctive requirement with respect to an

alternative schedule is defined by the criticality of its constituent constraints which are

active or existent in that schedule. Consider the disjunctive requirement 8 8 8: ()a bC c c

in Figure 6.1, for example. In Schedule 1, constraint c8a exists while c8b is not active.

Therefore, the criticality of requirement C8 in Schedule 1 is determined by the

criticality of constraint c8a as project-critical.

From the perspective of multiple alternatives, the criticality of construction

requirements overall multiple schedules can be characterized as follows:

 Super-critical Requirement: A construction requirement is classified as “Super-

critical” if it is project-critical in all alternative schedules. This class of

requirements should receive more attention from managers since their delays or

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

181

violations will invariably affect project duration. As an example, requirement C8

shown in Figure 6.1 is super-critical since it is identified as project-critical in

both alternative schedules. Consequently, no matter which alternative schedule is

selected for execution, this requirement requires careful attention.

 Alternative-critical Requirement: A construction requirement is classified as

“alternative-critical” if it is project-critical in at least one alternative schedules.

Identifying them allows for plan flexibility when unforeseen circumstances occur

which perturb the plan. Hence, when an “alternative-critical” requirement is

perturbed, a possible mitigation may be to proceed with an alternative schedule

where the affected constraint is no longer critical to the schedule duration. For

example, in Figure 6.1, the start requirement between activities C and D,

represented by constraint c4 is alternative-critical since it is identified as project-

critical in Schedule 1 but not in Schedule 2. If Schedule 1 is chosen for execution

and if this requirement is subsequently perturbed, alternative Schedule 2 could

be considered and put into action.

The identification of “super-critical” and “alternative-critical” requirements

allows managers to determine the driving construction requirements of the project, so

that appropriate managerial action may be taken when necessary. From the alternative-

critical requirements, managers can then identify those requirements which if violated

could allow for alternative schedules to be considered. For completeness, the criticality

classification of requirement also includes another two following types.

 Quasi-critical Requirement: A requirement is classified as “quasi-critical” if it

is not project-critical in any alternative schedules and there is at least one

alternative schedule in which it is not identified as non-critical. By this, the

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

182

quasi-criticality is a mixture of activity-criticality, sequence-criticality, and

redundancy. When the criticality of a construction requirement are “activity-

critical” or “sequence-critical” in all alternative schedules, it will be classified as

“quasi-activity-critical” and “quasi-sequence-critical” respectively.

 Redundant Requirement: A construction requirement is classified as “non-

critical” if it is identified as non-critical in all alternative schedules. Changes in

such requirements will have no impact on project completion time.

Some complex requirements may be made up of hierarchical (or nested)

disjunctive and conjunctive operators. Under these circumstances, the criticality of

requirements is evaluated hierarchically as illustrated in Table 6.2. In this example for

an arbitrary problem with four alternative schedules, the criticality of requirement R1 in

each alternative schedule is defined by the criticality of either a conjunctive

combination (1 2c c) or c3. In Schedule 1, the criticality of (1 2c c) is project-critical

given by the supreme of that of c1 and c2 following Equation (4.36), while c3 is non-

existent. As a result, the criticality of requirement R1 in Schedule 1 is project-critical.

On the other hand in Schedule 2 in which only c3 is active, the criticality of R1 is

defined by that of c3 to be activity-critical. On the whole, requirement R1 is classified

as alternative-critical since it is not project-critical in all alternative schedules.

Table 6.2. Criticality of complex and simple construction requirements

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

183

This classification approach can also be applied to simple construction

requirements which comprise only one constraint. As shown in the last column of

Table 6.2, the overall criticality of constraint c4 can be defined from its criticality in all

alternative schedules as quasi-critical.

Similar to constraint criticality, the criticality of construction requirements from

the perspective of multiple alternative schedules can be ordered as follows:

Super-critical Alternative-critical Quasi-critical Non-critical

Super-critical requirements are the most important since they are project-critical

in all alternative schedules and thus invariantly govern project completion time.

Secondly, alternative-critical requirements also govern project makespan but not in all

alternatives; hence, they allow for plan flexibility and should also receive special

attention. Thirdly, although not defining project duration, quasi-critical requirements

cannot be simply considered redundant as they have impact on activities’ time or

sequence in some alternative schedules. Finally, redundant requirements govern

neither activities’ time nor construction sequence in all alternative schedules.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

184

6.5. Schedule Change Analysis from the Perspective of Construction

Requirements

This section presents an approach for analyzing schedule change from the

perspective of construction requirements. Due to the dynamic environment,

construction projects are subjected to numerous changes from different sources and by

various causes. Project changes have apparent impacts on different aspects of

construction process including schedule, cost, and project’s performance (Hanna et al.,

1999; Ibbs et al., 2001). Change is also a major cause of delay, disruption and disputes

among construction parties (Motawa et al., 2007; Zhao et al., 2010). Therefore,

analysing impact of project changes is necessary for project management.

From the viewpoint of scheduling, project changes can be reflected in variations

of schedule constraints which can be categorized in two groups: (1) variation

(decrease/increase) of relaxation times caused by changes in activity times (start/finish

time or duration) and lag time, and (2) introduction of a new or removal of an existing

constraint. In general, constraint variations could have beneficial, neutral or disruptive

impact on schedule makespan. They may also lead to an inconsistency in the constraint

set, which cannot be resolved by changing the schedule makespan. The inconsistent

constraint group can be identified using the preemptive constraint analysis approach

presented in chapter five. Accordingly, the proposed approach aims at analyzing the

impact of a constraint variation on the makespan of a schedule when any inconsistency

caused by such a variation can be resolved with a new schedule makespan.

6.5.1. Schedule Makespan Change by Variations of Relaxation Times

The ART of a constraint is increased when the constraint is relaxed and

conversely decreased if the constraint is tightened. Table 6.3 depicts the causes of

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

185

constraint tightening of 4 unary and 4 simple minimal-lag binary constraints.

Variations can originate from changes in lag time (m), activities’ start times (
X and

Y) and durations (dX and dY). Up and down arrows respectively denote value increase

and decrease, while a dash sign refers to an invariant relationship between lag/activity

times and ART. Conversely, changes in the opposite direction will lead to constraint

relaxation. The impact of changes of lag and activities’ times on ART of maximal-lag

constraints is converse to that of the corresponding minimal-lag constraints.

Table 6.3. Changes of lag and activities’ time leading to constraint tightening

A constraint that is not project critical becomes project-critical when its ART is

reduced to zero, while relaxing such a constraint has no impact on schedule makespan.

On the other hand, the relaxing or tightening of a project-critical constraint can directly

affect schedule makespan, and this depends on the lag type as depicted in Table 6.4.

For minimal-lag type, relaxing a project-critical constraint can relax the entire schedule

and allow the makespan to be shortened while tightening a project-critical constraint

will make it violated and the makespan must be prolonged to resolve the constraint

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

186

violation. Conversely, for a maximal-lag type, relaxing a project-critical constraint

causes no change to schedule makespan while tightening it can lead to inconsistency,

and thus an infeasible schedule.

Table 6.4. Impact of variation of project-critical constraint on schedule makespan

Lag type
Change of project-critical constraint

Relaxed (ART ) Tightened (ART )

Minimal-lag Shortened makespan Lengthened makespan

Maximal-lag Unchanged makespan Infeasible schedule

6.5.1.1. Change in Schedule Makespan through Constraint Tightening

In general, tightening a minimal-lag constraint beyond its ART will violate the

constraint and lead to schedule delay. Besides, the underlying requirements in which

all activities must be carried out within the project timespan, from project start time

(PS) to project end time (PT) are explicitly expressed by assigning two constraints,

Start-After(PS) and Due-Before(PT) (or in short form as SA(PS) and DB(PT)) to all

activities, so that the analysis method can be applied to all activity changes without

checking if the activity is the first or the last in the network. The delay amount  PT is

dependent on how much a constraint say ci is tightened beyond its ART, and is

determined by the difference between its total amount of tightening in time unit

(denoted by  iT) and its ART, given as:

 max{0,()}   P i iT T ART (4.37)

Consider the simple network with three constraints and an original makespan of

14 days (see Figure 6.4) for example. ck,s and ck,f denote two implied constraints k

SA(0) and k DB(14) the added to every activity k. The relaxation times ART and IRT of

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

187

all constraints are also presented in the figure for easy reading. When the duration of

activity B is reduced by 2 days (dB = 6), constraint c1 is violated according to Table

6.3, and thus the schedule is delayed by 1 1    PT T ART 2 0 2  days. The same

value is obtained by re-computing the schedule with the new value of dB.

Similarly, if the duration of activity C is increased from dC = 10 to dC = 13, none

of the original constraints are violated yet the underlying constraint cC,f is violated, and

consequently the makespan is prolonged by  PT , ,  C f C fT ART 3 0 3   days. In

another scenario, although c2 is non-critical with ART2 = 2, if its lag time is increased

from m2 = 0 to m2 = 4, c2 is violated and consequently the makespan is increased by

 PT 2 2  T ART 4 2 2   days.

Figure 6.4. Example schedule for analyzing schedule change

6.5.1.2. Change in Schedule Makespan through Constraint Relaxation

Relaxing a project-critical constraint will allow schedule shortening if the

constraint is involved in all critical paths. Let N be the entire activity network, NC =

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

188

(X1, X2, …, Xk, …, Xn) be the sub-network of critical activities. When a project-critical

constraint ci between two critical activities (Xk, Xl), expressed as ci(Xk, Xl), is relaxed,

the relaxation is propagated throughout downstream sub-network (called relaxed sub-

network and denoted as NR) which includes all critical activities in (Xl, …, Xn) and

their successors as illustrated in Figure 6.5. Then, schedule can be shortened, and the

shortening amount is defined by the relaxation amount ( iT) and the following ARTs:

(i) ART(I) of constraint cl,s: Xl SA(PS), which requires Xl to start on or after

project start time under any condition. This constraint is taken into

account to ensure that the relaxed sub-network ND stars on or after project

start time after being shortening.

(ii) ART(II) of all non-project-critical constraints cj(Xp, Xl) linking to Xl,  pX

be the precedent of Xl.

(iii) ART(III) of all constraints cj(Xp, Xq) involving at least one non-critical

activity not belonging to the relaxed sub-network, expressed as:

,or

(,) with ,or

,

 





 

p R

j p q q R

p R q R

X N

c X X X N

X N X N

 (4.38)

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

189

Figure 6.5. Schedule change analysis under constraint relaxation

The makespan shortening time ( PT) by relaxing a constraint ci is determined as

the minimal among the relaxation in time unit ( iT) and the original ARTs of

constraints belonging to three groups above, given by:

 (I) (II) (III)(, , ,)  P iT Min T ART ART ART (4.39)

The collection of all constraints belonging to groups (i), (ii), and (iii) when

relaxing a constraint ci is called controlling constraint set and denoted as i as:

 ,

,

{(, (,), (,)} i l s i p q j p l

p q

c c X X c X X (4.40)

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

190

Then,  PT can be alternatively expressed as:

 (,)     P i j j iT Min T ART c (4.41)

When the shortening amount of the makespan is not defined by  iT (  P iT T

), the critical constraint path is changed to another. New project-critical constraints can

be identified through the new relaxation time of those in the controlling constraint set (

'
jART), given by:

 '    j j P j iART ART T c (4.42)

The originally project-critical constraints in the sub-network (NR) will no longer

be project-critical. In general, the updated relaxation time of all constraints ck in the

sub-network NR is increased an amount of () i PT T , given by:

' (-)      k k i P k RART ART T T c N (4.43)

For example, when the duration of activity B in Figure 6.4 is increased by 1 day

(dB = 9), constraint c1: A FF(5) B is relaxed according to Table 6.3. Controlling

constraint set 1 includes two constraints ,B fc and c2 belonging to groups (2) and (3),

respectively. The schedule makespan is reduced by 1 day, determined as

1 2 ,(, ,) (1,2,2) 1    P B sT Min T ART ART Min

Similarly, if constraint c1 is relaxed from FF(5) to FF(2), the schedule can be

shortened by only 2 days due to constraints c2 and cB,s, shown as:

1 2 ,(, ,) (3,2,2) 2    P B sT Min T ART ART Min

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

191

The new relaxation times of these constraints are identified as:

'
2 2

'
, ,

'
1 1 1

2 2 0,

 2 2 0,

() 0 (3 2) 1

    

    

       

P

B s B s P

P

ART ART T

ART ART T

ART ART T T

Therefore, constraint c2 and the implicit constraint cB,s become project-critical

while c1 becomes non-critical.

6.5.2. Change in Schedule Makespan through Adding/Removing a Constraint

New requirements may arise along the project’s lifecycle, resulting in new

schedule constraints. If the new constraint ci is violated (ARTi <0) based on the original

schedule, the schedule makespan will be prolonged to accommodate the new constraint

by  PT determined as:

 | | P iT ART (4.44)

If a new constraint c4: A B(2) C (or 4 : 5 2   c A C) is added to the schedule

network in Figure 6.4. With the original start times of A ([0] A) and C ([4] C),

c4 is violated with ART4 = -3. Hence, the schedule is delayed by | 3 | 3   PT days.

In contrast, removing a project-critical constraint will shorten the schedule

makespan if the constraint belongs to all critical paths. Similar to the case of constraint

relaxation, the shortening amount ( PT) when a constraint ci(Xk, Xl) is removed is

governed by the ARTs of non-project-critical constraints cp related to activities in the

downstream sub-network (as characterized in section 6.5.1.2) and given by

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

192

 ()    P j j i
j

T Min ART c (4.45)

For example, when constraint c1 in the example schedule (shown in Figure 6.4) is

removed, the schedule makespan can easily be recalculated as 12 days as

2 ,(,) (2,4) 2   P B sT Min ART ART Min

6.6. Illustrative Example

An example schedule project (depicted in Figure 6.6) is used to demonstrate

application of the proposed concepts. This example project consists of 7 activities and

16 simple constraints. Four construction requirements (denoted as R1 to R4 in the

figure) have been identified for the project. Requirement R1 defines conjunctive

relationships between constraints (c2 and c3). Requirements R2 to R4 are disjunctive

combinations of constraints (c5a and c5b), (c8a and c8b) and (c9a and c9b) respectively.

Figure 6.6. Illustrative example for criticality analysis

Table 6.5. Result from criticality analysis

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

193

Four alternative schedules (named S1 to S4) are obtained, in which S2 is the best

schedule with the shortest makespan of 24 days. The result from criticality analysis is

presented in Table 6.5 with shaded columns representing the best schedule (S2), and

all alternatives are graphically demonstrated in Figure 6.7.

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

194

Figure 6.7. Alternative schedules demonstrating constraint criticality

The criticality analysis shows that constraints c3 and c4 are redundant in all

alternative schedules. Constraints c5a and c9b are super-critical as they are project-

critical in all alternative schedules in which they exist. Especially, constraint c2 is

found to be sequence-critical in all alternatives. Removing it makes the originally

infeasible schedules (in which constraint c5b is active and allows activity C to be

scheduled before activity B) become feasible, providing a shorter project makespan of

20 days (see Figure 6.8).

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

195

Figure 6.8. Best alternative schedule when constraint c2 is removed

The criticality of requirements is determined from that of their constituent simple

constraints. Requirement R1 is identified as sequence-critical in all schedules and thus

is quasi-sequence-critical. Requirement R2 is super-critical due to the project-

criticality of constraint c5a while the alternate constraint c5b is not active in all

alternative schedules. The rest two requirements R3 and R4 are alternative-critical,

since they are not project-critical in all alternatives.

From the criticality analysis of construction requirements, some interesting

observations can be made about the change of the preferable alternative schedule when

variations happen. Firstly, the super-criticality of constraint c5a does not allow for any

plan flexibility when this constraint is violated. In other words, violating this constraint

will increase the makespan of all alternative schedules accordingly and the

construction sequence option defined in schedule S2 remains the most preferable.

Secondly, the preference of alternative schedule S2 may be impacted when a

change happens to a constraint which is not super-critical. Two scenarios are presented

for illustration. The first scenario demonstrates a change impacting all schedule

makespans but schedule S2 remains as the most preferable. Consider for example a

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

196

change of 6 7 T (from SF(8) to SF(15)) of constraint c6: B SF(8) B. Since tightening

is greater than the ART of c6 in schedules S1 and S2, the makespan of these schedules

will be prolonged by 6 6 T ART , and become 34 and 25 days respectively. Hence,

schedule S2 remains as the best schedule in this case.

The second scenario demonstrates a change impacting the preference among the

alternatives. Consider constraint c12: E SS(2) G which is project-critical to S2 but not

to other alternative schedules for example. If due to some site condition the lag time

requirement of c12 is increased from m12 = 2 to m12 = 8, constraint c12 is tightened by

12 6 T days, and thus the makespan of schedule S2 will be increased by 6 PT

days into 30 days accordingly. However, this tightening of c12 does not prolong the

makespan of other alternative schedules since the tightening amount is less than the

relaxation time of this constraint in the other alternatives (ART12(S1) = 9, ART12(S3) =

10, and ART12(S4) = 10). In this scenario schedule S1 with a makespan of 29 days

becomes the most preferable alternative.

6.7. Concluding Remarks

This chapter presents a criticality analysis approach for schedule constraints and

construction requirements. A detailed criticality classification was developed to

provide a better understanding of the role of constraints to a schedule. In particular, a

constraint could be project-critical, activity-critical, sequence-critical or non-critical

depending on how it could affect activities’ start/finishes times and/or project duration.

This classification forms the foundation to classify the behavior of criticality of a set of

constraints under the effects of combinations of conjunction and disjunction. This also

Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management

197

allows the criticality of complex construction requirements under the context of

alternative schedules to be classified.

Constraint criticality analysis is achieved through two new concepts, Aggregate

Relaxation Time (ART) and Intrinsic Relaxation Time (IRT). These relaxation times

refer to the maximal temporal magnitude a constraint can be varied without affecting

schedule makespan or activities’ times. They are devised as criticality indicators and

provide the basis for analyzing schedule changes from the requirement perspective.

From these ART and IRT, the impact of changes can be determined.

Accordingly, this chapter presents a constraint-based method for schedule

change analysis using constraint relaxation times. The analysis is based on and the

nature of change and the impact of change on the ART of the associated constraint to

identify the impact on schedule makespan. In particular, schedule delay could result

from constraint tightening or introduction while schedule shortening can be achieved

when relaxing or removing a project-critical constraint. By this, construction schedules

can be analyzed and managed from a constraint perspective including changes from

both activity’s times and lag times. With the capability of handling a larger scope of

changes from a broader perspective, the proposed concept allows project management

to be raised from the process (as activity) level in traditional approaches to a higher

level of construction knowledge.

198

CHAPTER 7. CASE STUDIES

7.1. Introduction

This chapter presents two case studies to demonstrate the application of the

schedule generation approaches concepts and the criticality analysis concept from

previous chapters. The first case study demonstrates the application of the ASCoRe

framework and criticality concept for schedule generation and analysis. The second

case study describes the application of the preemptive constraint analyzer to improve

the feasibility and efficiency of CLP-based scheduling approach.

7.2. Case Study 1: Schedule Generation and Analysis of a Covered

Walkway Project

A simplified example based on the construction of the covering structure of a

covered walkway project is presented to demonstrate the proposed scheduling

frameworks and schedule analysis methodology described in previous chapters. The

covering structure is divided into 3 sections for construction with Sections 1 and 3

spanning a length of 20m and a height of 2.5m, and Section 2 spanning 20m with a

slope of 0.25 as shown in Figure 7.1. All footings are precast concrete while beams,

columns, and roof structures are steel.

Chapter Seven: Case Studies

199

Figure 7.1. 3D perspectives of the covered walkway structure

7.2.1. Product Hierarchy and Component State Chain

Figure 7.2. Product hierarchy and component state chain

Chapter Seven: Case Studies

200

The entire structure is decomposed into systems and subsystems as shown in

Figure 7.2 (a). Components in the lowest subsystems are grouped into work packages.

For instance, work package “Footing Section 1” includes 12 footing elements (F1 to

F12). Similarly, work package “Column Section 1” involves 12 columns (C1 to C12);

work package “Beam Section 1” contains 16 beams (B1 to B16), while work packages

“Roof Section 1” and “Scaffold Section 1” consists of only one element, R1 and S1

respectively.

The state chain of typical component is depicted in Figure 7.2 (b). Since all

permanent components are either steel or precast concrete, their construction state

chain only consists of one state representing the installation process. On the other

hand, the state chain of scaffold components consists of two states related to the

erection and removal processes respectively.

With the defined work packages and component state chains, construction

activities of the project are generated as depicted in Figure 7.3.

7.2.2. Construction Requirements and Constraint Network

7.2.2.1. Functional Requirements

Typical functional requirements applied to this project are defined at the section

level as follows:

 F1: Footing structure support column structure

support([[Column.Installed.A]], [[Footing.Installed.Q]],E)

 F2: Column structure support beam structure

support([[Column.Installed.Q]], [[Beam.Installed.Q]],E)

 F3: Scaffold structure support the erection of beam and roof structures

Chapter Seven: Case Studies

201

support([[Beam.Installed.A],[Roof.Installed.A]],

[[Scaffold.Erected.Q]],E)

7.2.2.2. Non-functional Requirements

Six major non-functional requirements have been identified for this project:

 R1. The foundation of sections 1 and 3 cannot be done concurrently due to

routing condition, expressed as: 1 21: ()R C C .

 R2. The foundation of section 2 must be carried out after either that of sections

1 or 3 due to site restriction, shown as: 3 42: ()R C C .

 R3. The foundation of section 2 must be start before day 15, shown as: 293:R C

 R4. The column of section 2 must be installed after that of section 1,

represented by one precedence constraint as: 84 :R C

 R5. Due to a design requirement, there must be overlap time of at least 1 day

between the beam installation of sections 1 and 2, and sections 2 and 3. This

requirement requires two complex constraints, (BES1 Overlaps(1) BES2) and

(BES2 Overlaps(1) BES3), and is represented by a conjunctive combination of

four simple constraints as: 16 17 18 195: ()  R C C C C .

 R6. Due to routing issues, the roof must be installed sequentially from either

section 1 or 3, expressed as: 22 23 24 256:[() ()]  R C C C C .

The identified construction requirements are reasoning into temporal constraints

between activities and resulted schedule network of this project is depicted in Figure

7.3. The temporal constraints are indicated on the directed arcs.

Chapter Seven: Case Studies

202

Figure 7.3. Schedule network of covered walkway project

7.2.3. Schedule Generation

By applying the proposed scheduling approach, four alternative schedules with a

minimal makespan of 44 days (as summarized in Table 7.1) have been generated for

this project. These schedules refer to different construction sequence options of footing

and roof structures that the contractor can be implemented to achieve the best project

completion time. In particular, in Schedule 1 and 2, the footing of Section 1 is done

before Section 3, while in Schedule 3 and 4, the footing of Section 3 is done before

Section 1. Similarly, in Schedule 1 and 3, the roof structure is installed sequentially

from Section 1 to Section 3, while it is done from Section 3 to Section 1 in Schedule 2

and 4. In addition, it is found from four alternatives that besides the traditional

Chapter Seven: Case Studies

203

sequence (which is sequentially done from Section 1 to Section 3 for all structures),

other sequences can also lead to the same best makespan. Therefore, applying

alternative scheduling can provide contractor with more planning flexibility.

Table 7.1. Alternative schedules

7.2.4. Criticality Analysis

The criticality analysis results of constraints and requirements with respect to

individual and all alternative schedules are presented in Table 7.2, and demonstrated in

Figure 7.4.

Start Finish Start Finish Start Finish Start Finish

Footing Section 1 FDS1 9 0 9 0 9 8 17 8 17

Footing Section 2 FDS2 9 9 18 9 18 8..9 17..18 8..9 17..18

Footing Section 3 FDS3 8 9..16 17..24 9 18 0 8 0 8

Column Section 1 CLS1 2 11..19 13..21 11..19 13..21 19 21 19 21

Column Section 2 CLS2 3 21 24 21 24 21 24 21 24

Column Section 3 CLS3 2 19..26 21..28 19 21 10..26 12..28 10..19 12..21

Scaffold Section 1 SCS1 1 13..21 24..22 13..18 14..19 21 22 21..28 22..29

Scaffold Section 2 SCS2 1 24 25 23 24 24 25 24 25

Scaffold Section 3 SCS3 1 21..28 22..29 21 22 12..28 13..29 12..21 13..22

Beam Section 1 BES1 4 22 26 22..29 26..33 22 26 22..29 26..33

Beam Section 2 BES2 5 25 30 25 30 25 30 25 30

Beam Section 3 BES3 4 22..29 26..33 22 26 22..29 26..33 22 26

Roof Section 1 RFS1 5 26 31 37 42 26 31 37 42

Roof Section 2 RFS2 6 31 37 31 37 31 37 31 37

Roof Section 3 RFS3 5 37 42 26 31 37 42 26 31

Dismantle Scaffold DS 2 42 44 42 44 42 44 42 44

Schedule 4Schedule 1
Activity

Short

Form

Dura

tion

Schedule 2 Schedule 3

Chapter Seven: Case Studies

204

Table 7.2. Criticality of simple constraints in four alternative schedules

Chapter Seven: Case Studies

205

Figure 7.4. Alternative schedules indicating critical constraints

Chapter Seven: Case Studies

206

7.2.4.1. Criticality Analysis of Single Constraints

The use ART and IRT allows for a more effective method for identifying

constraint criticality in all alternative schedules. These criticality indicators also

provide useful information for planners to understand the role of constraints for all

alternative schedules. Consider Schedule 1 (Figure 7.4a) for illustration. Firstly,

constraints c3, c6, c10, c16, c19, c22, c23 and c28 are project-critical; hence tightening them

will cause schedule delay. If for instance constraint c6 is tightened by 6 1 T from B(3)

to B(4), the makespan of this schedule will be increased by 1 day to 45 days.

Constraints c1, c5, c7, c8, c11, c17, and c18 are activity-critical, and tightening them

will reduce the feasible time ranges of the associated activities but not the schedule

makespan. If for example, due to some site condition the columns at section 1 must be

installed at least 3 days after the foundation is completed, constraint c5 is tightened by

1 day (from B(2) to B(3)), decreasing its ART from ART5 = 8 to ART5 = 7, and

consequently reducing the start time range of Column Installation Section 1 to

[12..19], yet not impacting the schedule makespan. The change in activity start time of

Column Section 1 (CLS1) will be propagated to downstream network, and the ARTs of

the related constraints c9 and c12 are decreased by a similar amount (1 T).

Constraints c21 and c26 are identified as sequence-critical in Schedule 1,

indicating that a better project makespan can be obtained by removing these

constraints. Although sequence-critical constraints are intuitively “redundant” to this

alternative schedule, identifying them provide planners with useful strategies on

sequence selection when these constraints can be eliminated. If the roof structure can

be redesigned so that its erection does not require a scaffolding structure, constraint c26

can be removed. Under such a scenario, the makespan of Schedule 1 remains

Chapter Seven: Case Studies

207

unchanged, yet that of Schedules 2 and 4 is improved from 44 days to 42 days. With

this change, planners should proceed with either Schedule 2 or Schedule 4 for a better

project completion time.

Finally, constraints c6, c15, c20 and c27 are found to be redundant in Schedule 1.

Tightening, relaxing or removing them will neither change activities’ feasible start

times nor impact the schedule makespan. Although both sequence-critical and

redundant constraints have non-zero IRTs, the key difference between them is the

impact of their existence to the overall project makepan. For instance, if constraint c27

is deleted, the makespan of all four schedules still remains at 44 days, while removing

constraint c21 (a sequence-critical constraint) will allow the makespan of Schedules 2

and 4 to be reduced to 42 days.

7.2.4.2. Criticality Analysis from the Perspective of Construction Requirements

The criticality of constraints lays the foundation to classify the criticality of

construction requirements. For the simplest requirements R3 and R4 comprising only

one constraint, their criticality in each schedule is similar to that of the constituent

constraint. The criticality of a disjunction construction requirement in each schedule is

defined by its active disjunct. For instance, R1 is identified as activity-critical in

Schedule 1 due to constraint c1 while it is project-criticality in Schedules 2, 3, and 4

due to c2. Similarly, requirement R2 is project-critical in Schedules 1 and 2 based on c3

while activity-critical in Schedules 3 and 4 on c4. The criticality of a conjunction

requirement is defined by all constituent constraints due to their co-existence in every

schedule. As such, requirement R5 is identified as project-critical in all schedules, due

to constraint c16 in Schedules 1 and 3, and c17 in Schedules 2 and 4.

Chapter Seven: Case Studies

208

For the complex requirement R6 with each disjunct comprising a conjunctive

combination of constraints, its criticality in each alternative schedule is defined by that

of the active disjunct, which in turn is specified by the criticality of all constraints

constituting the disjunct. In detail, the project-criticality of R6 in Schedules 1 and 3 is

defined by the conjunctive combination of c22 and c23, while in Schedules 2 and 4 by

c24 and c25.

From the perspective of multiple schedules, requirements R5 and R6 are super-

critical in all alternative schedules, implying that they dictate the project makespan.

Changes in these requirements will affect all alternative schedules. Therefore, they

should receive the highest management priority. Requirements R1, R2, and R3 are

identified as alternative-critical, allowing planners to anticipate for switching among

alternative schedules to mitigate their impact to schedule makespan when changes

happen despite the super-criticality of some activities. For example, in this case

example, the “Foundation Section 1” is critical under the consideration of all

alternative schedules, and a Planner may choose to proceed with Schedule 2 with

“Foundation Section 1” starting on the first day of the project. However, if this activity

is anticipated not be delayed and not carried out on Day 1, then alternative Schedule 3

or 4 may be chosen, with “Foundation Section 3” commencing first, and “Foundation

Section 1” can be carried out on Day 8, thus not delaying the project. Finally,

requirement R4 is redundant in all schedules, and hence the analysis of this

requirement may not be necessary if changes are within the relaxation times of the

constituent constraint.

In addition, constraint criticality would provide a new perspective for evaluating

alternative schedules. Evaluating alternative schedules is commonly based on some

Chapter Seven: Case Studies

209

robustness indicators which are often functions of total free floats (Ghezail et al.,

2010); these slack-based criteria may however not be representative if a construction

requirement is the major consideration. The requirement perspective may present

deeper insight into the choice of alternative. For example, if the routing condition

(defined in Requirement R1) is the major consideration, then Schedule 1, in which R1

is not project-critical, the most is preferable, and should be chosen for execution. In

contrast, with the total free float of the four alternative schedules respectively as 8, 8,

9, and 9, Schedules 3 and 4 in which R1 is project-critical are more preferable than

Schedules 1 and 2.

7.2.5. Analyzing Schedule Changes

From the criticality analysis of construction requirements, we can draw some

interesting conclusions for schedule change management. Two scenarios are presented

for illustration. The first scenario demonstrates schedule change resulting from

constraint tightening while the second examines the impact of removing a construction

requirement upon schedule makespan.

Firstly, if the Foundation Section 2 is prolonged to from 9 to 11 days (6 2 T),

constraint c6 is violated in all alternative schedules but will cause different impacts to

the schedule makespan due to its different ARTs. Specifically, the makespan of

Schedules 1 and 2 with ART6 = 0 will be prolonged by 2 PT days, while that of

Schedules 3 and 4 with ART6 = 1 will be increased by only 1 day.

Secondly, if the site condition can be modified so that the foundation at section 2

can be carried out when the project starts, requirement R2 comprising both constraints

c3 and c4 can be deleted. Since Schedule 1 only has one critical path, deleting the

Chapter Seven: Case Studies

210

project-critical constraint c3 will shorten the makespan of this schedule. However,

removing this constraint does not improve the makespan of Schedule 2 since this

schedule has two critical paths. According to section 6.5.1.2, the shortening time

Schedule 1 is governed by the following ARTs:

 ART(I) = [ARTFDS2,s] with cFDS2,s: FDS2 SA(0)

 ART(II) = [ART1], and

 ART(III) = [ART5, ART7, ART8, ART9, ART11, ART12, ART14, ART18, ART21]

The shortening time is determined according to Equation (4.45) as:

(I) (II) (III)min(, ,) min(9,7,8,7,8,8,7,8,7,7,11) 7   PT ART ART ART

With the impact of this makespan shortening, the ART of all constraints i is

correspondingly decreased by 7 PT . Consequently, constraints c1, c7, c11, c14, and

c18 with zero updated ARTs become project-critical. In addition, since both c14 and c18

become project-critical, activity BES3 also becomes critical with its updated start time

ranges as BES3 [22]  , and consequently constraint c17 becoming project-critical.

In summary, the case project has demonstrated the application of the proposed

criticality concept to analyzing and managing construction schedules with the

existence of multiple alternative schedules. The proposed criticality concept allows

Planners to determine the super-critical construction requirements which always

dictate the project makespan. The identification of alternative-critical requirements

indicates some plan flexibility enables Planners to anticipate switching between

alternative schedules when some changes happen. Furthermore, the relaxation times

ART/IRT quantitatively represent the criticality of the constraints and provide the

Chapter Seven: Case Studies

211

fundamentals for an innovative approach to schedule change analysis, which is carried

out from the construction requirement perspective.

7.3. Case Study 2: Application of the Preemptive Constraint Analysis

Framework to a Pipeline Installation Project

An illustrative case example based on a simplified gas pipeline installation

project is presented to demonstrate the application of the preemptive constraint

analyzer in alternative scheduling. The piping structure stretches over 300 meters and

is divided into 5 sections for construction as shown in . Sections 1 and 5 represent the

construction of two concrete pipe bridges crossing existing water channels with their

associated foundations followed by pipeline installation phases. Sections 2 to 4 refer to

the main pipeline which is installed on steel pipe racks on shallow foundations.

Figure 7.5. Pipeline installation layout

7.3.1. Construction Requirements

Major construction requirements have been considered for this project, described

as follows:

Chapter Seven: Case Studies

212

 R1. The bridge foundation work of sections 1 and 5 shares one common

micropiler. Consequently, they are must happen disjunctively.

 R2. There is only one crew working on the foundation work of sections 2 to 4.

 R3. The construction of shallow foundations must be sequentially started with a

minimal lag time requirement of 3 day, and sequentially finished with a maximal

lag time requirement of 1 day due to design requirement.

 R4. There is only one crew working on the pipe installation of sections 1 to 5.

 R5. The pipeline installation work at section 1 must be finished before that at

other sections can start.

 R6. Special technical constraints require that the pipeline installation must be

continuous from sections 2 to 3 and from sections 4 to 5.

 R7. Pipe installation of sections 4 and 5 have to be finished at least 2 days after

the completion of sections 2 and 3 respectively.

The identified construction requirements are converted into temporal constraints

as shown in Figure 7.6. Since the major focus of this case example is the constraint

preemptive analysis, the conversion from requirements into temporal constraints is not

presented in this section. Temporal constraints are indicated on the directed arcs.

Directed arcs without any indications are assumed to depict the B(0) constraint. The

All-Disjoint constraint is used to model key resource requirement where only one key

machine or crew available for the activities. It includes a set of disjunctive constraints

(Disjoint) between every pair of activities sharing the resource, for example three

constraints: PF2 Disjoint PF3, PF2 Disjoint PF4, and PF3 Disjoint PF4 representing

Requirement R2. Constituting temporal constraints of the imposed requirements are

summarized in Table 7.3.

Chapter Seven: Case Studies

213

Table 7.3. Temporal constraints constituting the imposed requirements

Requirement Temporal constraints

R1 (BF1 Disjoint BF5)

R2 (PF2 Disjoint PF3)  (PF2 Disjoint PF4)  (PF3 Disjoint PF4)

R3 (PF2 SS(3) PF3)  (PF2 FF(~1) PF3) 

(PF3 SS(3) PF4)  (PF3 FF(~1) PF4)

R4 (PI1 Disjoint PI2)  (PI1 Disjoint PI3)  (PI1 Disjoint PI4) 

(PI1 Disjoint PI5)  (PI2 Disjoint PI3)  (PI2 Disjoint PI4) 

(PI2 Disjoint PI5)  (PI3 Disjoint PI4)  (PI3 Disjoint PI5) 

(PI4 Disjoint PI5)

R5 (PI1 B(0) PI2)  (PI1 B(0) PI3)  (PI1 B(0) PI4)  (PI1 B(0) PI5)

R6 (PI2 FF(2) PI4)  (PI3 FF(2) PI5)

R7 (PI2 Meets PI3)  (PI4 Meets PI5)

Figure 7.6. Constraint network of pipeline installation project

Chapter Seven: Case Studies

214

Together the 3 requirements R1, R2, and R4 result in 14 disjunctive constraints

(Disjoint), resulting in 2
14

 backtrackings, which would not be possible to examine in

total. In this case, planners often need to employ some priority rules in sequencing the

related activities possibly leading to many infeasible solutions. The remaining

constraints involve 31 simple constraints and 2 conjunctive constraints as a result of

the Meets requirement in R6.

7.3.2. Preemptive Constraint Analysis and Schedule Generation

By applying the proposed constraints analyzer, 10 of the 14 disjunctive

constraints (Disjoint) comprising conflicting constraints are identified as shown in .

Column 2 of the Table indicates the constituent simple constraints of the disjunctive in

column 1 while column 3 presents the conflicting constraints corresponding to the

constraints in column 2. The identified constraint redundancies and inconsistencies are

grouped into two groups: primary and secondary according to the classification

presented in chapter five. In detail, primary conflicts/redundancies are those dependent

only on lag times and independent of activity durations. In contrast, secondary

conflicts/redundancies depend on both lag times and activity durations. Accordingly

primary constraint redundancies are invariant with activity durations, while the

secondary ones may no longer exist under some conditions of activity duration.

Primary conflicts are independent of activity durations and thus, can only be resolved

when the lag times are modified or either of the constraints is removed, while

secondary conflict can be resolved by changing activity durations.

Of these 10 are primary conflicting pairs which can be removed because of the

existence of the other disjunct in the disjunctive constraint, for example, PI4 B(0) PI2

Chapter Seven: Case Studies

215

is ignored while PI2 B(0) PI4 remains so that the conflict with PI2 FF(2) PI4 can be

resolved. As a result, the number of branches is dramatically reduced from 2
14

 to 2
4
.

This huge reduction makes it possible to analyze all 16 remaining sequencing options

to obtain the globally optimal solutions.

Table 7.4. Conflicting constraints

Disjunctive

Constraints

Disjunct/

Simple Constraint

Conflicting

Constraints

Conflict

Type

PF2 Disjoint PF3 PF2 B(0) PF3 PF2 FF(~1) PF3 SC

 PF3 B(0) PF2 PF2 SS(3) PF3 PC

PF3 Disjoint PF4 PF3 B(0) PF4 PF3 FF(~1) PF4 SC

 PF4 B(0) PF3 PF3 SS(3) PF4 PC

PI1 Disjoint PI2 PI1 B(0) PI2

 PI2 B(0) PI1 PI1 B(0) PI2 PC

PI1 Disjoint PI3 PI1 B(0) PI3

 PI3 B(0) PI1 PI1 B(0) PI3 PC

PI1 Disjoint PI4 PI1 B(0) PI4

 PI4 B(0) PI1 PI1 B(0) PI4 PC

PI1 Disjoint PI5 PI1 B(0) PI5

 PI5 B(0) PI1 PI1 B(0) PI5 PC

PI2 Disjoint PI3 PI2 B(0) PI3

 PI3 B(0) PI2 PI2 Meets PI3 PC

PI2 Disjoint PI4 PI2 B(0) PI4

 PI4 B(0) PI2 PI2 FF(2) PI4 PC

PI3 Disjoint PI5 PI3 B(0) PI5

 PI5 B(0) PI3 PI3 FF(2) PI5 PC

PI4 Disjoint PI5 PI4 B(0) PI5

 PI5 B(0) PI4 PI4 Meets PI5 PC

 PF2 SS(3) PF3 PF2 FF(~1) PF3 SC

 PF3 SS(3) PF4 PF3 FF(~1) PF4 SC

Note: PC = Primary Conflict; SC = Secondary Conflict

The remaining four conflicts are between two pairs of activities (PF2, PF3) and

(PF3, PF4). Since they are secondary conflicts they can be resolved with another

combination of activity durations, and the feasible duration ranges will provide some

Chapter Seven: Case Studies

216

useful references if such a resolution strategy can be applied. However, the feasible

duration ranges of these activities corresponding to the secondary conflicts are

determined as 2 [0,) PFFD , 3 [0,1]PFFD , and 4 [0,1]PFFD . Changing activity

durations of PF3 and PF3 may not be applicable since it is generally impossible to

finish pipe installation in 1 day. Instead the pipe design has to be revised so that the

requirements on the finish times of installation work (PF2 FF(~1) PF3 and PF3 FF(~1)

PF4) can be removed, simultaneously resolving all four conflicts.

In addition, four constraints are found to be secondary redundant as shown in ,

and can be excluded from the scheduling process.

Table 7.5. Redundant constraints

Redundant Constraint Subsuming Constraint Redundancy Type

PF2 SS(3) PF3 PF2 B(0) PF3 Secondary

PF3 SS(3) PF4 PF3 B(0) PF4 Secondary

PI2 FF(2) PI4 PI2 B(0) PI4 Secondary

PI3 FF(2) PI5 PI3 B(0) PI5 Secondary

With the refined constraint set the scheduler generates 2 best alternative

solutions with a project makespan of 79 days as presented in . The two alternative

schedules refer to two ways of sequencing the bridge foundation work of sections 1

and 5 (BF1 and BF5), arising from the resource requirement constraint defined in R1.

In Schedule 1, BF1 precedes BF5, while in Schedule 2 it succeeds BF5. From a

management perspective, the construction of the bridge foundations has sequencing

flexibility without affecting project duration. However, in both schedules, PF2, PF3

and PF4 are carried out sequentially due to resource and the modified design

Chapter Seven: Case Studies

217

constraints defined in R2. Similarly, the pipe installation must be sequentially done

from sections 1 to 5 to fulfill technical and resource constraints defined in R4 in either

alternative schedules.

Figure 7.7. Alternative schedules

In summary, this example demonstrates how the proposed preemptive constraint

analyzer can be applied to improve the efficiency of construction scheduling when

multiple construction sequences are available. The framework is built on a set of

comparison rules of constraints pairs, and is performed in the pre-scheduling stage

without requiring complete constraint propagation and backtracking. The identified

constraint redundancies and conflicts are thus independent of the constraint ordering.

Moreover, the classification of constraint redundancy/inconsistency and the feasible

Chapter Seven: Case Studies

218

duration ranges also provide useful strategies for resolving the conflicts. By this,

planners can have a deeper insight into the nature of the redundancies/inconsistencies

so that more appropriate resolution approaches can be carried out. Beyond that, the

framework helps eliminate unnecessary 10 unnecessary disjunctive constraints, and

thus the search space can be dramatically reduced from 2
14

 to 2
4
 backtrackings. This

reduction allows the application of a complete search technique to determine all

feasible schedule solutions.

7.4. Concluding Remarks

In this chapter, three case studies are presented to demonstrate how the

scheduling generation and analysis can be carried out from the perspective of

construction requirements through the application of the proposed methodologies. The

first case study is used to illustrate the application of the ASCoRe scheduling

framework and the FReMAS model into automated construction sequencing and

scheduling from construction requirements. This case study serves as a validation that

FReMAS is capable of capturing multiple engineering solutions through the provider

co-functionality attribute so that all alternative schedules can be obtained. Especially,

the use of provider co-functionality provider attribute allows planners to examine

different collaboration scenarios to improve project time.

In the second case study, the application of the proposed preemptive constraint

analysis framework described in chapter five is illustrated. The case study

demonstrates the capability and usefulness of the proposed framework in identifying

and removing redundant and conflicting constraints in the pre-scheduling stage. In

particular, applying this framework helps remove 10 out of 14 disjunctive constraints

Chapter Seven: Case Studies

219

and thus reduces the search space from 2
14

 to 2
4
 backtrackings. The framework also

classifies constraint redundancy/inconsistency into primary and secondary classes so

that planners can have a better understanding of the role of these relationships to the

schedules. In addition, the identified feasible duration ranges provide useful strategies

for resolving the secondary conflicts.

The final case study presents the application of the proposed concept and

methodology for analyzing the criticality of construction requirements and their

application to schedule change analysis. By considering multiple alternative schedules,

the proposed method provides a deeper insight to the role of constraints and

requirements for not only an individual schedule but for the entire project. It is also

highlighted in this case study that despite the super-criticality of some activities,

identifying alternative-critical requirements helps planner determine implicit

sequencing flexibility which can be exploited to mitigate some anticipated variations.

Especially, the criticality of constraint can be quantitatively represented using two new

criticality indicators ART/IRT. These criticality indicators also allow the schedule to be

analyzed and managed from a construction requirement perspective which

encompasses both constraint and activity changes.

220

CHAPTER 8. CONCLUSION AND

RECOMMENDATIONS

8.1. Introduction

The main purpose of this research is to develop the necessary methodologies and

concepts for automated schedule generation and analysis from the perspective of

construction requirements to improve the efficiency and feasibility of construction

schedules. For this purpose, this dissertation proposes an overarching framework to

integrate, interpret, and analyze construction requirements for schedule auto-

generation, criticality analysis and change management.

The outline of the overarching framework follows the structure of this

dissertation. It includes a generalized framework for automated scheduling from

construction requirements (ASCoRe) which provides the core modeling tools for

formalizing construction methods and requirements and the main scheduling processes

for automatically generating alternative schedules from construction requirements. A

generalized functional requirement model (FReMAS) is then developed to formalize

and convert complex functional requirements into temporal constraints. To improve

the efficiency and feasibility of scheduling from complex requirement, the framework

utilizes a preemptive constraint analysis framework which allows basic constraints

redundancies/inconsistencies to be identified and removed in the pre-scheduling stage.

Finally, the framework proposes a new perspective for schedule analysis which is

based on the criticality of constraints and construction requirements. Three industrial

case projects are used to demonstrate key features of the overarching framework and

verify the research findings.

Chapter Eight: Conclusion and Recommendations

221

This chapter summarizes the significant research results, discusses the key

contributions of the research, identifies the main limitations and finally recommends

directions for future studies.

8.2. Conclusion and Research Contributions

8.2.1. Generalized Framework for Automated Scheduling from Construction

Requirement (ASCoRe)

The ASCoRe approach proposed in this dissertation addresses the current

limitations of incorporating construction methods and requirements into automated

scheduling, which have been discussed earlier in section 1.2.1. In particular, ASCoRe

develops four core knowledge models: Product, Construction Method, Construction

Requirement and Schedule to describe the immutable core characteristics of building

data and construction knowledge necessary for scheduling. In particular, construction

requirement model allows construction requirements to be explicitly captured and

managed in their original existence form from both product and process perspectives

and at both component state and activity levels. Such a clear elicitation allows

construction requirements to be passed on through the project phases, enhancing the

traceability of changes for better schedule management.

Another contribution of the ASCoRe approach is its generalized framework for

automated BIM-based scheduling which comprises four main procedures: (P) to

generate an extended product hierarchy, (R) to identify construction requirements, (S)

to create a schedule model by generating activities and temporal constraints, and

finally (A) to compute for alternative schedules. One key advantageous feature of this

framework is the usage of component states as the key construct to integrate

Chapter Eight: Conclusion and Recommendations

222

construction method, product and activity perspectives. The product-process attribute

of component states allows the direct generation of activity from construction method

which enables the consideration of multiple construction methods. This allows changes

in design and construction methods to be steadily updated to schedule.

 A system architectural framework with sequence reasoning and scheduling

algorithms for implementing ASCoRe is then proposed as part of this dissertation. The

key extensions of this scheduling system from the existing model-based schedulers

include the Construction Knowledge Modeling Module together with different

knowledge templates to formalize necessary knowledge and data for scheduling, the

Inference and Sequence Reasoning Kernel to automatically derive activities and

temporal constraints from construction methods and requirements, and the Schedule

Generation Engine to generate all alternative schedules. In essence, the knowledge

templates facilitate the development of knowledge libraries, and further accelerate the

scheduling. Furthermore, the developed sequence reasoning mechanisms allows

construction requirements defined at different levels to be automatically converted into

temporal constraints for scheduling at activity level. Such built-in generic sequence

reasoning knowledge also enables the system to be applicable to different project types

and from both product and process perspectives.

8.2.2. Functional Requirement Model for Automated Sequencing (FReMAS)

In order to overcome the research limitations on construction sequencing from

functional requirements described in section 1.2.2, this research developed a

generalized framework called FReMAS to capture functional requirements and convert

them into temporal constraints. FReMAS overcomes the limitations through the

Chapter Eight: Conclusion and Recommendations

223

extension of the Intermediate Function Concept (Song, 2006) via the use the provider

co-functionality and meta-provider constructs to capture both intermediate and final

functional requirements with multiple users and providers as well as different provider

combinations. This not only allows for greater generality expression from the model to

capture complex functional requirements but also allows the complete identification of

all possible construction sequences for the fulfilment of the requirements. In particular,

three key advantageous features of FReMAS are summarized as follows.

Firstly, FReMAS provides a generalized format with four modeling elements:

function user, function provider, function type, and provider co-functionality to

determine any complex functional requirement with multiple users and providers. The

key advantage of this representation format lies in the use of the provider co-

functionality construct to represent different functionality relationships between

providers. As illustrated in the case study in section 7.2, this construct allows FReMAS

to explicitly capture multiple engineering solutions for the requirement which are often

resulting from different collaboration scenarios among project parties.

Secondly, FReMAS provides a hierarchical structure to systematically define the

temporal attributes of a functional requirement. In essence, the concept of

Requirement/Availability Time Windows (RTW/ATW) proposed by (Song and Chua,

2011) is redefined at two levels: the elementary RTW/ATW of an individual

user/provider determined from the time intervals of their constituting component

states, and the aggregate RTW/ATW of all users/providers determined from the

elementary RTWs/ATWs. This hierarchical structure clearly depicts the time window of

individual and the combined set of users/providers, and thus provides planners with a

deeper insight to the temporal nature of each user/provider. In addition, a new

Chapter Eight: Conclusion and Recommendations

224

construct called “meta-provider” is introduced to define a group of providers which

can share their functionalities to jointly satisfy the requirement. The concept of meta-

provider is necessary for alternative scheduling from functional requirements, as it

enables all provider combinations – representing all possible engineering solutions for

the requirement – to be simultaneously considered in the planning stage.

Finally, FReMAS incorporates sequence reasoning knowledge in a three-level

framework to convert the necessary condition in the form of a functional relationship

between function user and function provider into a temporal constraint between the

RTW/ART. This constraint is further elaborated into a disjunctive set of constraints

between component state intervals based on the hierarchical relationships between the

RTW/ART and the component state intervals captured in the temporal model. The

resultant constraint set of this reasoning process represents all alternative construction

sequences making the requirement satisfied. Especially, with the sequence reasoning

knowledge built at component state level which is the key construct linking product

and process data, FReMAS can be used for scheduling from both product and process

perspectives at this lowest level of detail.

8.2.3. Preemptive Constraint Analysis Framework

To address the research needs of improving the solution feasibility and

computational efficiency of CSP/CLP-based schedulers presented in section 1.2.3, this

dissertation develops a preemptive constraint analysis framework to identify the

primary and secondary conflicts and redundancies among the constraints in single and

pairs of activities in the pre-scheduling stage. This framework surpasses the existing

approaches with the following aspects.

Chapter Eight: Conclusion and Recommendations

225

Firstly, the proposed framework can identify all redundancies/inconsistencies

between constraints of a single or a pair of activities. Such a complete result is

independent of the constraint ordering pattern and thus can help planners identify the

optimal conflicting sets to resolve. Effectively, as described in the case study, by

identifying redundant disjunctive constraints, the framework helps eliminates

unnecessary search space, allowing for a complete search strategy.

The second contribution of this preemptive constraint analysis framework is

that the analysis is carried on from the construction management perspective by

classifying constraint redundancies/inconsistencies into primary and secondary classes

based on impact of activity durations and lags. In particular, to resolve primary

constraint redundancy/inconsistency requires a change in lag or constraint type which

involves construction method and technical considerations, while the latter can be

resolved by a change in activity duration which often involves resource consideration.

As such, the primary and secondary distinctions of redundancies/inconsistencies

provide useful information for planners to resolve conflicts, and facilitate a more

elaborate strategy to manage the constraints.

Finally, to further support the planner in managing the constraints, a method for

the computation of the feasible range of an activity duration is embedded in the

framework to identify the feasible range of an activity duration considering all

associated constraints. This parameter allows planners to verify the validity of an

activity duration when changes happen.

From a project management perspective, the framework can practically benefit

planners in many ways. Firstly, since temporal constraints are derived from

Chapter Eight: Conclusion and Recommendations

226

construction requirements, conflicts among construction requirements can be inferred

from any inconsistency among their associated temporal constraints. From this,

resolution strategies can be carried out at a higher level. Secondly, when new

constraints are introduced to the schedule, its conflicting/redundancy relationships with

other constraints of the same activities can be readily identified, and its impact on the

schedule can be predicted before implementation. As such, unnecessary rescheduling

may be eliminated. Similarly, from the feasible duration ranges, planners can

anticipate an inconsistency when an activity duration has to change. Effectively, the

proposed approach helps planners and project managers gain a deeper insight on the

rationale of the plan so that they may better control the project from the perspective of

constraints or construction methods.

8.2.4. Criticality Concept and Schedule Change Analysis Methodology from the

Perspective of Constraints and Construction Requirements

To overcome the research gaps in schedule analysis discussed in section 1.2.4,

this dissertation introduces a new criticality concept which is built from the perspective

of constraint and construction requirements. This new criticality concept provides a

deeper understanding on the role of constraints and requirements to the schedule and

forms the foundation for an innovative approach to schedule change analysis using

constraint relaxation times.

The first contribution of this concept is a detailed and complete classification of

constraint criticality with four categories: project-critical, activity-critical, sequence-

critical and redundant. Accordingly, the traditional “non-critical” constraint class is

distinguished into three different categories to concisely convey the role of a “non-

Chapter Eight: Conclusion and Recommendations

227

critical” constraint to a schedule. Most importantly, the identification of sequence-

critical constraints is important for planners since their removal helps achieve a better

project makespan.

The second contribution of the proposed concept is the qualitative approach for

analyzing the criticality of construction requirements as conjunctive and disjunctive

combinations of simple constraints. With the capability to determine the criticality of

high-level requirements, this qualitative approach provides project managers with a

clearer understanding of the responsibility of associated parties to the overall project

schedule, so that better collaboration and management strategies could be employed

for good schedule performance. In addition, as illustrated in the case study, the

criticality of construction requirements can present deeper insight into the choice of

alternative, thus assisting planners in selecting the most suitable schedule from

management intentions and/or anticipations for variation.

The constraint criticality indicators, Aggregate Relaxation Time (ART) and

Intrinsic Relaxation Time (IRT) are also key research contributions, and provide the

mechanism to determine constraint criticality through activity times. Since changes in

the IRT will not lead to variations in other constraints, IRT can be considered as “free”

relaxation time of a constraint. On the other hand, ART is shared among the constraints

involving the same activities and thus changes in the ART of one constraint will lead to

variations in the ART of other related constraints. Therefore, ART could be considered

as “total” relaxation time. These distinctions between ART and IRT clearly demonstrate

the impacts of a change in a constraint to others as well as to the entire schedule.

Chapter Eight: Conclusion and Recommendations

228

Finally, an innovative approach for schedule change analysis is developed on the

proposed constraint relaxation times, allowing schedules to be analyzed and managed

from the constraint and requirement perspectives. One significant advantage of this

approach is that it provides an insight into how constraint variations could affect

schedule makespan including new constraints and removing of constraints, which may

not be well conveyed from the activity perspective. Moreover, it can be applied to

variations related to both activities times (durations and start times) and lag times, thus

encompassing current activity-based analysis approaches. Essentially, this approach

enables schedules to be analyzed and managed at different levels of management:

activity (duration), constraint (lag), requirement (combination of constraints) and

aspect of construction (origin of requirement). Accordingly, planners could choose the

most appropriate management policy for each constraint and requirement to achieve

better project performance.

8.3. Limitations

In the course of the present research, some limitations have been observed and

the major limitations are summarized as follows.

8.3.1. Incorporating Practice Considerations into Automated Scheduling

The ASCoRe framework provides mechanisms to automatically generate

alternative schedules from four basic types of construction requirements: functional

requirements, key resource requirements, workspace constraints and temporal

constraints. One basic assumption of this scheduling approach is that activities are

continuous, and thus calendar constraints have been excluded from the scheduling. To

improve the practical advantages of ASCoRe, the framework will have to be extended

Chapter Eight: Conclusion and Recommendations

229

to handle activity spitting by implementing a new representation format for activities.

This extension also allows for calendar consideration and progress-related constraints.

8.3.2. Modeling and Reasoning Nonstandard Complex Functional Requirements

Engineering solutions for functional requirements are represented as multiple

providers in FReMAS. The co-functionality types used in FReMAS capture only

standard relationships among providers, in which all providers are either mutually

exclusive or compatible. From a practical perspective, the providers of a functional

requirement can be combined in different ways to fulfill the requirement, i.e. some of

the providers are mutually exclusive while others are compatible. Therefore, FReMAS

should be extended to capture such nonstandard functional requirements. This would

help improve the practical application of FReMAS to large scale and complex projects.

8.3.3. Analyzing Non-Temporal Constraints in the Pre-Scheduling Stage

The proposed preemptive constraint analysis framework has been demonstrated

to be useful in identifying basic redundant constraints in the pre-scheduling stage.

However, the major emphasis of the present framework is on conflicts and

redundancies of temporal constraints. Future work could extend the framework to

include non-temporal constraints such as resource or budget. This will further enhance

the feasibility and efficiency of the scheduling. In addition, since activity splitting and

calendar constraints are common in construction, the framework would be extended to

incorporate these conditions so that its practical benefits could be enhanced.

Chapter Eight: Conclusion and Recommendations

230

8.4. Recommendations for Future Work

The methodologies and concepts proposed in this research have opened a new

direction to project planning and management which is carried out from the

perspective of construction requirements. Some of the potential extensions from this

research are summarized as follows.

8.4.1. Time-cost Tradeoff Using ASCoRe

In addition to time, cost is a key indicator for project performance. Incorporating

cost into the ASCoRe framework is thus a potential research extension. This multi-

objective optimization problem could be solved using a hybrid solving strategy

combining the strength of both CLP and heuristic search approaches. In addition, since

cost is greatly determined by applied construction methods, time-cost tradeoff analysis

would allow planners to specify which method is more attractive in terms of both time

and cost, and also analyze possible alternative combinations based on choice.

8.4.2. Using Constraint Criticality and Alternative Schedules for Dynamic

Schedule Management

One key advantage of generating alternative schedules is to provide planners

with more flexibility in planning and controlling the project. Accordingly, one

potential direction for future research is the development of an approach for dynamic

schedule control taking into account the existence and significance of multiple

alternative schedules. The major emphasis of such an approach is on dynamically

analyzing schedule changes to identify if any other alternative schedules would

produce a shorter project makespan. Switching among alternative schedules could

potentially be a good resolution strategy for mitigating project changes.

Chapter Eight: Conclusion and Recommendations

231

Moreover, the existence of some requirements may be uncertain under some

scenarios. The criticality concept would be extended to consider this feature. For this

purpose, a modeling tool based on fuzzy set theory to capture the uncertain existence

of construction requirements along the project lifecycle would be developed. This

extension would help improve the practical benefits of the proposed criticality concept.

8.4.3. Prototyping a BIM-based System for Automated Project Planning and

Dynamic Control

The proposed frameworks and concepts for schedule generation and analysis

proposed have been validated through proof of concept implementation and small scale

case projects. One important future research task is thus to develop a more complex

prototype for BIM-based automated planning and control to expand their applications

to large scale projects so that the proposed concepts can benefits both researchers and

practitioners. The extended prototype would include the following main features:

 Incorporating structural knowledge to automatically derive functional

requirements from topological relationships among components. Topological

relationships can be extracted from BIM/IFC models and mapped in a graph data

model (GDM) (Khalili and Chua, 2012). GDM reorganizes building data in a

systematic structure which will be able to run rule-based queries. As such,

structural knowledge could be incorporated with GDM to performing structural

analysis and deriving functional requirements from BIM models. This facilitates

the effective generation of extended product model and spatial interference

matrix proposed in process P as depicted in section 3.4.1.

Chapter Eight: Conclusion and Recommendations

232

 Improving the present knowledge modeling tools to capture more complex

construction methods and requirements to create more comprehensive

knowledge libraries. In particular, taxonomies for methods and requirements

would be created, and a then a knowledge language would be developed. The

interpretation of construction knowledge is facilitated by a language parser.

These modeling tools can be built upon construction method and requirement

models described in sections 3.3.2 and 3.3.3. Based on these, knowledge libraries

would be easily created and maintained, allowing planning knowledge to be

reused for different projects. These libraries also assist planners to rapidly

generate scheduling input.

 Integrating schedule generation and analysis functions into a dynamic project

planning and controlling system. The core reasoning and solving engine of such

a system is established on the proposed frameworks and algorithms. To support

this integration, a comprehensive project database should be designed to enable

easy tracing the status of construction requirements and their constituting

temporal constraints as well as their impacts on project completion along the

project life cycle.

 Importing schedule data and results to Microsoft Project (MSP) application for

printing and reporting. The friendly user interface in MSP would be useful for

presenting the scheduling results in a familiar format. Special add-ons can be

developed in MSP for displaying construction requirements, PDM++

relationships and analysis results such as criticality of constraints, and ART/IRT.

The integration with MSP would also allow planners consider practical

constraints such as calendar, pool resource constraints or activity splitting.

233

REFERENCES

Abeyasinghe, M. C. L., et al. (2001). "An efficient method for scheduling construction

projects with resource constraints." International Journal of Project Management

19(1): 29-45.

Akinci, B., et al. (2002). "Automated generation of work spaces required by

construction activities." Journal of Construction Engineering and Management

128(4): 306-315.

Allen, J. F. (1984). "Towards a general theory of action and time." Artificial

Intelligence 23(2): 123-154.

Alshawi, M. and D. Jagger (1991). "Expert system to assist in generating and

scheduling construction activities." Computers and Structures 40(1): 53-58.

Apt, K. R. (2007). Constraint logic programming using eclipse. Cambridge,

Cambridge University Press.

Babic, N. C., et al. (2010). "Integrating resource production and construction using

BIM." Automation in Construction 19(5): 539-543.

Baptiste, P. and C. Le Pape (2000). Constraint propagation and decomposition

techniques for highly disjunctive and highly cumulative project scheduling

problems, Netherlands, Kluwer Academic Publishers.

Barták, R. (2008). Principles of Constraint processing. Artificial Intelligence for

Advanced Problem Solving Techniques. I. Vlahavas and V. Dimitris, IGI Global.

Beck, J. C. and M. S. Fox (2000). "Constraint-directed techniques for scheduling

alternative activities." Artificial Intelligence 121(1-2): 211-250.

Bessiere, C. (2006). Constraint Propagation. Handbook of Constraint Programming. F.

Rossiet al, Elsevier.

Bouchlaghem, D., et al. (2004). "Integrating product and process information in the

construction sector." Industrial Management and Data Systems 104(3): 218-233.

Bowers, J. A. (1995). "Criticality in resource constrained networks." The Journal of

Operational Research Society 46(1): 80.

Bowers, J. A. (2000). "Interpreting float in resource constrained projects."

International Journal of Project Management 18(6): 385-392.

Brailsford, S. C., et al. (1999). "Constraint satisfaction problems: Algorithms and

applications." European Journal of Operational research 119(3): 557-581.

Caseau, Y. and F. Laburthe (1994). Improved CLP scheduling with task intervals.

Proceedings of the eleventh international conference on Logic Programming, MIT

Press.

Cesta, A., et al. (2002). "A constraint-based method for project scheduling with time

windows." Journal of Heuristics 8(1): 109-136.

Chan, D. W. M. and M. M. Kumaraswamy (1997). "A comparative study of causes of

time overruns in Hong Kong construction projects." International Journal of

Project Management 15(1): 55-63.

Chan, W.-T., et al. (1996). "Construction resource scheduling with genetic

algorithms." Journal of Construction Engineering and Management 122(2): 125-

132.

References

234

Cherneff, J., et al. (1991). "Integrating CAD with construction-schedule generation."

Journal of Computing in Civil Engineering 5(1): 64-84.

Chevallier, N. and A. D. Russell (1998). "Automated schedule generation." Canadian

Journal of Civil Engineering 25: 1095-1123.

Choi, C., et al. (2006). Finite Domain Bounds Consistency Revisited. LNCS AI 2006:

Advances in Artificial Intelligence. a. B.-h. K. A. Sattar, eds., Springer Berlin /

Heidelberg: 49-58.

Choo, H. J., et al. (1999). "WorkPlan: Constraint-based database for work package

scheduling." Journal of Construction Engineering and Management 125(3): 151-

160.

Chua, D. K. H., et al. (1999). "Critical success factors for different project objectives."

Journal of Construction Engineering and Management 125(3): 142-150.

Chua, D. K. H., et al. (2013). "Automated construction sequencing and scheduling

from functional requirements." Automation in Construction (in press).

Chua, D. K. H. and L. J. Shen (2005). "Key constraints analysis with integrated

production scheduler." Journal of Construction Engineering and Management

131(7): 753-764.

Chua, D. K. H. and K. W. Yeoh (2011). "PDM++: Planning framework from a

construction requirements perspective." Journal of Construction Engineering and

Management 137(4): 266-274.

Chua, D. K. H., et al. (2010). "Quantification of spatial temporal congetion in four-

dimensional computer-aided design." Journal of Construction Engineering and

Management 136(6): 641-649.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann Publishers, San

Francisco.

Dorndorf, U., et al. (2000). "Constraint propagation techniques for the disjunctive

scheduling problem." Artificial Intelligence 122(1): 189-240.

Dzeng, R.-J. and I. D. Tommelein (2004). "Product modeling to support case-based

construction planning and scheduling." Automation in Construction 13(3): 341-

360.

Echeverry, D., et al. (1991). "Sequencing knowledge for construction scheduling."

Journal of Construction Engineering and Management 117(1): 118-130.

El-Bibany, H. (1997). "Parametric Constraint Management in Planning and

Scheduling: Computational Basis." Journal of Construction Engineering and

Management 123(3): 348-353.

El-Diraby, T. E. and K. F. Kashif (2005). "Distributed ontology architecture for

knowledge management in highway construction." Journal of Construction

Engineering and Management 131(5): 591-603.

El-Gohary, N. M. and T. E. El-Diraby (2010). "Domain ontology for processes in

infrastructure and construction." Journal of Construction Engineering and

Management 136(7): 730-744.

Elmaghraby, S. and J. Kamburowski (1992). "The analysis of activity networks under

generalized precedence relations (GPRs)." Management Science 38(9): 1245-1263.

Fan, S.-L. and H. P. Tserng (2006). "Object-oriented scheduling for repetitive projects

with soft logics." Journal of Construction Engineering and Management 132(1):

35-48.

References

235

Faris, R. K. (1991). Role of scheduling in computer integrated construction.

Construction Congress '91, April 13, 1991 - April 16, 1991, Cambridge, MA,

USA, Publ by ASCE.

Feng, C.-W., et al. (2010). "Using the MD CAD model to develop the time-cost

integrated schedule for construction projects." Automation in Construction 19(3):

347-356.

Fischer, M. and F. Aalami (1996). "Scheduling with computer-interpretable

construction method models." Journal of Construction Engineering and

Management 122(4): 337-347.

Fischer, M. A. (1993). "Automating constructibility reasoning with a geometrical and

topological project model." Computing Systems in Engineering 4(2-3): 179-192.

Froese, T. (1996). "Models of construction process information." Journal of

Computing in Civil Engineering 10(3): 183-193.

Fromherz, M. P. J. (2001). Constraint-based scheduling, Arlington, VA, United states,

Institute of Electrical and Electronics Engineers Inc.

Ghezail, F., et al. (2010). "Analysis of robustness in proactive scheduling: a graphical

approach." Computers & Industrial Engineering 58(2): 193-198.

Goedert, J. D. and P. Meadati (2008). "Integrating construction process documentation

into building information modeling." Journal of Construction Engineering and

Management 134(Compendex): 509-516.

Goltz, H. J. (1995). Reducing domains for search in CLP(FD) and its application to

job-shop scheduling. Proceedings of Principles and Practice of Constraint

Programming, 19-22 Sept. 1995, Berlin, Germany, Springer-Verlag.

Gominuka, T. and F. Sadeghpour (2008). A framework for activity-based

identification of space requirements for construction equipment, Quebec City, QC,

Canada, Canadian Society for Civil Engineering.

Gray, C. (1986). "Intelligent construction time and cost analysis." Construction

Management and Economics 4(2): 135-150.

Halfawy, M. M. R. and T. M. Froese (2007). "Component-based framework for

implementing integrated architectural/ engineering/construction project systems."

Journal of Computing in Civil Engineering 21(6): 441-452.

Halpin, D. W. (1985). Financial and cost concepts for construction management,

Wiley, Newyork.

Hanna, A., et al. (1999). "Impact of Change Orders on Labor Efficiency for

Mechanical Construction." Journal of Construction Engineering and Management

125(3): 176-184.

Harris, R. B. (1978). Precedence and arrow networking techniques for construction.

Wiley, New York.

Hartmann, V., et al. (2012). Model-based Scheduling for Construction Planning. 14th

International Conference on Computing in Civil and Building Engineering,

Moscow, Russia.

Hegazy, T. (1999). "Optimization of resource allocation and leveling using genetic

algorithms." Journal of Construction Engineering and Management 125(3): 167-

175.

Hendrickson, C., et al. (1987). An expert system architecture for construction planning,

Southampton, UK, Comput. Mech. Publications.

Ibbs, C., et al. (2001). "Project Change Management System." Journal of Management

in Engineering 17(3): 159-165.

References

236

Iyer, K. C. and K. N. Jha (2006). "Critical factors affecting schedule performance:

Evidence from indian construction projects." Journal of Construction Engineering

and Management 132(8): 871-881.

Jaafari, A. (1984). "Critism of CPM for project planning analysis." Journal of

Construction Engineering and Management 110(2): 222-233.

Jaafari, A. (1996). "Time and priority allocation scheduling technique for projects."

International Journal of Project Management 14(5): 289-299.

Jaffar, J. and M. J. Maher (1994). "Constraint logic programming: a survey." Journal

of Logic Programming 19-20(Copyright 1994, IEE): 503-581.

Jaffar, J., et al. (1994). Beyond finite domains. Proceedings of the Second Internation

Workshop on Principles and Practice of Constraint Programming, Springer-

Verlag, 86-94.

Jung, Y. and M. Joo (2011). "Building information modelling (BIM) framework for

practical implementation." Automation in Construction 20(2): 126-133.

Kartam, N. and R. E. Levitt (1990). "Intelligent planning of construction projects."

Journal of Computing in Civil Engineering 4(2): 155-175.

Kataoka, M. (2008). "Automated generation of construction plans from primitive

geometries." Journal of Construction Engineering and Management 134(8): 592-

600.

Kelley, J. E. J. (1961). "Critical-path planning and scheduling: Mathematical basis."

Operations Research 9(3): 296-320.

Khalili, A. and D. K. H. Chua (2012). "An IFC-based framework to move beyond

individual building elements towards configuring higher level prefabrication."

Journal of Computing in Civil Engineering 27(3): 243-253.

Kim, H., et al. (2013). "Generating construction schedules through automatic data

extraction using open BIM (building information modeling) technology."

Automation in Construction(0).

Kim, K. and J. M. d. l. Garza (2005). "Evaluation of the resource-constrained critical

path method algorithms." Journal of Construction Engineering and Management

131(5): 522-532.

Koo, B., et al. (2007). "Formalization of construction sequencing rationale and

classification mechanism to support rapid generation of sequencing alternatives."

Journal of Computing in Civil Engineering 21(Compendex): 423-433.

Laborie, P. (2003). "Algorithms for propagating resource constraints in AI planning

and scheduling: Existing approaches and new results." Artificial Intelligence

143(2): 151-188.

Lecoutre, C. (2009). Constraint Networks: Techniques and Algorithms. London : ISTE

; Hoboken, NJ : Wiley.

Leu, S.-S. and C.-H. Yang (1999). "GA-based multicriteria optimal model for

construction scheduling." Journal of Construction Engineering and Management

125(6): 420-427.

Levitt, R. E. and J. C. Kunz (1985). Knowledge-based system for updating engineering

project schedules, Miami Beach, FL, USA, ASME.

Liu, S.-S. and K.-C. Shih (2009). "A framework of critical resource chain for project

schedule analysis." Construction Management and Economics 27(9): 857-869.

Liu, S.-S. and C.-J. Wang (2008). "Resource-constrained construction project

scheduling model for profit maximization considering cash flow." Automation in

Construction 17(8): 966-974.

References

237

Lock, D. (2003). Project management. Gower Publishing Ltd., Hampshire, England.

Lorterapong, P. and M. Ussavadilokrit (2012). "Construction Scheduling Using the

Constraint Satisfaction Problem Method." Journal of Construction Engineering

and Management.

Lorterapong, P. and M. Ussavadilokrit (2013). "Construction Scheduling Using the

Constraint Satisfaction Problem Method." Journal of Construction Engineering

and Management 139(4): 414-422.

Lu, M. and H.-C. Lam (2008). "Critical path scheduling under resource calendar

constraints." Journal of Construction Engineering and Management 134(1): 25-31.

Lu, M. and H.-C. Lam (2009). "Transform schemes applied on non-finish-to-start

logical relationships in project network diagrams." Journal of Construction

Engineering and Management 135(9): 863-873.

Lu, M. and H. Li (2003). "Resource-activity critical-path method for construction

planning." Journal of Construction Engineering and Management 129(4): 412-420.

Marriott, K., et al. (2006). Constraint Logic Programming. Handbook of constraint

programming. F. Rossiet al. Amsterdam ; Boston, Elsevier: 409-452.

McKinney, K. and M. Fischer (1998). "Generating, evaluating and visualizing

construction schedules with CAD tools." Automation in Construction 7(6): 433-

447.

Mikulakova, E., et al. (2010). "Knowledge-based schedule generation and evaluation."

24: 389-403.

Moder, J. J., et al. (1983). Project management with CPM, PERT and precedence

diagramming. 3rd edition. Wokingham, Berks., UK, Van Nostrand Reinhold.

Morad, A. A. and Y. J. Beliveau (1994). "Geometric-based reasoning system for

project planning." Journal of Computing in Civil Engineering 8(1): 52-71.

Moselhi, O. and M. J. Nicholas (1990). "Hybrid expert system for construction

planning and scheduling." Journal of Construction Engineering and Management

116(2): 221-238.

Motawa, I. A., et al. (2007). "An integrated system for change management in

construction." Automation in Construction 16(3): 368-377.

Navinchandra, D., et al. (1988). "GHOST: Project network generator." Journal of

Computing in Civil Engineering 2(3): 239-254.

Nguyen, T.-H. and A. A. Oloufa (2002). "Spatial information: Classification and

applications in building design." Computer-Aided Civil and Infrastructure

Engineering 17(4): 246-255.

Nguyen, T.-H., et al. (2005). "Algorithms for automated deduction of topological

information." Automation in Construction 14(1): 59-70.

Nguyen, T. Q. and D. K. H. Chua (2012). Criticality of Schedule Constraints –

Classification and Identification. 3rd International Conference of Engineering,

Product and Project Management. Brighton, UK.

Plotnick, F. L. (2006). RDM - Relationship Diagramming Method. 2006 AACE

International Transactions - 50th Annual Meeting, Jun 19 - 22 2006, Las Vegas,

NV, United states, Association for the Advancement of Cost Engineering.

Porkka, J. and K. Kähkönen (2007). Software Development Approaches and

Challenges of 4D Product Models. Proceedings of the CIB-W78 Conference, 2007.

Rahman, S. U. (1998). "Theory of constraints: a review of the philosophy and its

applications." International Journal of Operations & Production Management

18(4): 336-355.

References

238

Rivera, F. A. and A. Duran (2004). "Critical clouds and critical sets in resource-

constrained projects." International Journal of Project Management 22(6): 489-

497.

Ryu, H.-G., et al. (2007). "Construction planning method using case-based reasoning

(CONPLA-CBR)." Journal of Computing in Civil Engineering 21(6): 410-422.

Shaked, O. and A. Warszawski (1992). "Consched: expert system for scheduling of

modular construction projects." Journal of Construction Engineering and

Management 118(3): 488-506.

Shaked, O. and A. Warszawski (1995). "Knowledge-based system for construction

planning of high-rise buildings." Journal of Construction Engineering and

Management 121(2): 172-182.

Shih-Chung, K. and E. Miranda (2008). "Computational methods for coordinating

multiple construction cranes." Journal of Computing in Civil Engineering 22(4):

252-263.

Singh, V., et al. (2011). "A theoretical framework of a BIM-based multi-disciplinary

collaboration platform." Automation in Construction 20(Compendex): 134-144.

Song, Y. (2006). Intermediate function analysis for improving constructability.

Doctoral Dissertation, National University of Singapore.

Song, Y. and D. K. H. Chua (2006). "Modeling of Functional Construction

Requirements for Constructability Analysis." Journal of Construction Engineering

and Management 132(12): 1314-1326.

Song, Y. and D. K. H. Chua (2011). "Requirement and availability time-window

analysis of intermediate function." Journal of Construction Engineering and

Management 137(11): 967-975.

Sriprasert, E. and N. Dawood (2002). Requirement Identification for 4D constraint-

based construction planning and control system. International Council for

Research and Innovation in Building and Construction.

Staub-French, S., et al. (2003). "An ontology for relating features with activities to

calculate costs." Journal of Computing in Civil Engineering 17(4): 243-254.

Stumpf, A. L., et al. (1996). "Object-oriented model for integrating construction

product and process information." Journal of Computing in Civil Engineering

10(3): 204-212.

Tah, J. H. M., et al. (1999). "Information modelling for case-based construction

planning of highway bridge projects." Advances in Engineering Software 30(7):

495-509.

Tamimi, S. and J. Diekmann (1988). "Soft logic in network analysis." Journal of

Computing in Civil Engineering 2(3): 289-300.

Tauscher, E., et al. (2009). Automated generation of construction schedules based on

the IFC object model, Austin, TX, United states, American Society of Civil

Engineers.

Thabet, W. Y. and Y. J. Beliveau (1997). "SCaRC: Space-Constrained Resource-

Constrained scheduling system." Journal of Computing in Civil Engineering 11(1):

48-59.

Tsamardinos, I. and M. E. Pollack (2003). "Efficient solution techniques for

disjunctive temporal reasoning problems." Artificial Intelligence 151(1-2): 43-89.

Valls, V. and P. Lino (2001). "Criticality analysis in activity-on-node networks with

minimal time lags." Annals of Operations Research 102: 17-37.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.

References

239

Vozzola, M., et al. (2009). BIM use in the construction process. 2009 International

Conference on Management and Service Science (MASS), 20-22 Sept. 2009,

Piscataway, NJ, USA, IEEE.

Vries, B. D. and J. M. J. Harink (2007). "Generation of a construction planning from a

3D CAD model." Automation in Construction 16(1): 13-18.

Wallace, M. (2002). Constraint Logic Programming. Computational Logic: Logic

Programming and Beyond. A. C. Kakas and F. Sadri. New York, Springer: 512-

532.

Waugh, L. M. (1989). Knowledge-based construction scheduling, New York, NY,

USA, Publ by ASCE.

Weise, M. and T. Liebich (2009). IFC support for model-based scheduling.

Managing It in Construction/Managing Construction for Tomorrow. A. Dikbaset

al, CRC Press, Taylor & Francis Group, Istanbul, Turkey. 26: 75-83.

Wiest, J. D. (1964). "Some properties of schedules for large projects with limited

resources." Operations Research 12: 395-418.

Wiest, J. D. (1981). "Precedence diagramming method: some unsual characteristics

and their implications for project managers." Journal of Operations Management

1(3): 121.

Wiest, J. D. and F. K. Levy (1977). A management guide to PERT/CPM with

GERT/PDM/DCPM and other networds. Printice-Hall.

Winstanley, G., et al. (1993). "An integrated project planning environment." Intelligent

Systems Engineering 2(2): 91-106.

Winstanley, G., et al. (1993). "Model-based planning: scaled-up construction

application." Journal of Computing in Civil Engineering 7(2): 199-217.

Woodworth, B. M. and S. Shanahan (1988). "Identifying the critical sequence in a

resource constrained project." International Journal of Project Management 6(2):

89-96.

Yamazaki, Y. (1995). "An integrated construction planning system using object-

oriented product and process modelling." Construction Management & Economics

13(5): 417:426.

Yeoh, K. W. (2012). Construction Requirements Driven Planning and Scheduling.

Doctoral Dissertation, National Universtity of Singpaore.

Zhang, S., et al. (2012). "Build information modeling (BIM) and safety: Automatic

safety checking of construction models and schedules."

Zhao, Z. Y., et al. (2010). "Prediction system for change management in construction

project." Journal of Construction Engineering and Management 136(6): 659-669.

Zozaya-Gorostiza, C., et al. (1989). Knowledge-based construction project planning,

New York, NY, USA, Publ by ASCE.

Zweben, M. and M. Fox (1994). Intelligent Scheduling, Morgan Kaufman.

240

APPENDIX

A1. Pairwise Constraint Integration Tableaux

This appendix presents the application of the preemptive constraint analysis

framework proposed in chapter five to PDM++ constraints. The result is described in

in a table format. These tables are useful for planners to perform instant or manual

constraint check. Moreover, primary conflicts (displayed as shaded cells) are further

distinguished into “hard” and “soft”. A conflict is considered “hard” when it always

happens regardless of the value of lag times, while a “soft” conflict can be removed in

some very specific conditions of lag types. For example, constraints X DB(m) and X

SA(n) are conflicting with any value of m and n; therefore this is a hard constraint. In

contrast, constraints X SA(m) and X SA(n) are inconsistent with any value of m and n

where m ≠ n. This conflict however will no longer exist when m is equal to n.

Therefore, it is classified as a soft conflict. This differentiation provides planners with

a deeper insight into primary constraint conflicts as well as alternative strategies to

resolve such inconsistencies.

Table A.1. Pairwise integration of unary constraints

Due-Before(m) DB DB(m) m ≠n DB(m)

Due-After(m) DA DA(n) SA(n)

Start-Before(m) SB d X ≥ n - m SB(m) m ≠n

Start-After(m) SA d X ≤ n - m SA(n)

DB(n) DA(n) SB(n) SA(n)
Short

Form

 C2

 C1

Appendix

241

Table A.2. Pairwise integration of non-lag type binary constraints

Table A.3. Pairwise Integration of Lag Type and Non-lag Type Binary Constraints

Meets M M M

Met-By MB MB MB

Contains C C d X = d Y

Contained -By CB d X = d Y CB

Disjoint D M MB D

D
 C2

 C1
M MB C CB

Short

Form

M m ≠0 M d X ≥ m d X ≤ m d Y ≥ m d Y ≤ m

MB m ≠0 MB d Y ≥ m d Y ≤ m d X ≥ m d X ≤ m

C
d X - d Y

≥ m
m ≠0 m ≠0 m ≠0

d Y - d X

≤ m

d X - d Y

≥ m

CB m ≠0
d X - d Y

≤ m
m ≠0 m ≠0 m ≠0 m ≠0

d X - d Y

≤ m

D B(m) B(~m) A(m) A(~m)
S(m)

B(0)

SB(m)

A(0)

F(m)

B(0)

FB(m)

A(0)

M
d X + d Y

≥ m

d X + d Y

≤ m
m ≠0 M n ≠0 M m ≠0 m ≠0

MB
d X + d Y

≥ m

d X + d Y

≤ m
m ≠0 MB n ≠0 MB m ≠0 m ≠0

C d X ≥ m d Y ≤ m d X ≥ m d Y ≤ m C d Y ≤ m C d Y ≤ m d X ≥ m d X ≥ m d X ≥ m d X ≥ m

CB d Y ≥ m d X ≥ m d Y ≥ m d X ≥ m CB
d X - d Y

≥ m
CB d X ≤ m d Y ≥ m d Y ≥ m d Y ≥ m d Y ≥ m

D m ≠0 D m ≠0 D m ≠0 m ≠0 m ≠0 m ≠0

 C2

 C1

 C2

 C1

OB(m) OB(~m) SO(m) SOB(m)

SB(m) SB (~m) F(m) F(~m)

EO (m) EOB(m)SF (m) SF (~m) ISF(m) ISF(~m) O(m) O(~m)

FB (m) FB (~m)B(m) B (~m) A(m) A(~m) S(m) S(~m)

Appendix

242

Table A.4. Pairwise Integration of Lag Type Binary Constraints

Before (m) B(n)
d X ≤

n - m

d Y ≤

n - m

d X +d Y

≤ n-m
m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠n ≠0

Before (~m) m ≠n B (~m)
d X ≥

n - m

d Y ≥

n - m

d X +d Y ≥

-m
n ≠0 M n ≠0 M n ≠0 n ≠0

After(m) A (n)
d Y ≤

n - m

d X ≤

n - m

d X +d Y

≤ n-m
m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠n ≠0

After(~m) m ≠n A (~m)
d Y ≥

n - m

d X ≥

n - m

d X +d Y ≥

n-m
n ≠0 MB n ≠0 MB n ≠0 n ≠0

Starts(m) B(n) S(n)
d Y -d X ≤

n-m

d X -d Y ≥

n+m

d Y ≤

n - m

d X ≥

n + m

d X ≥

n + m

d X ≥

n + m

d X ≥

n + m

d X ≥

n+m

Starts(~m) m ≠n S (~m)
d X -d Y ≥

n-m

d X -d Y ≤

n+m

d Y ≥

n - m

d X ≤

n + m

d Y ≥

n - m

d Y ≥

n - m

Started-By(m) A(n) SB(n)
d X -d Y ≥

n+m

d X -d Y

≤n-m

d X ≥

n + m

d X ≤

n - m

d Y ≥

n + m

d Y ≥

n + m

d Y ≥

n +m

d Y ≥

n + m

Started-By(~m) m ≠n SB (~m)
d X -d Y ≤

n+m

d X -d Y ≥

n -m

d Y ≤

n + m

d X ≥

n - m

d X ≥

n - m

d X ≥

n - m

Finishes (m) B(n)
d X -d Y ≤

n-m

d X -d Y ≤

n-m
F(n)

d X ≤

n - m

d Y ≥

n + m

d Y ≥

n + m

d Y ≥

n + m

d Y ≥

n+m

d Y ≥

n + m

Finishes (~m)
d X d Y ≥

n-m

d X -d Y ≤

n+m
m ≠n F(~m)

d X ≥

n - m

d X -d Y ≤

n+m

d Y -d X ≤

m

d Y -d X ≤

m

Finished-By(m) A(n)
d X +d Y ≥

n+m

d Y -d X

≥n-m
FB(n)

d X ≥

n + m

d Y ≤

n - m

d X ≥

n + m

d X ≥

n + m

d X ≥

n + m

d X ≥

n+m

Finished-By(~m)
d X -d Y ≤

n+m

d Y -d X ≥

n-m
m ≠n FB (~m)

d X ≤

n + m

d Y ≥

n - m

d Y ≥

n - m

d Y ≥

n - m

d X -d Y ≤

m

d X -d Y ≤

m

Start-Finish(m) B(n) S(n)
d Y ≥

n + m
F(n)

d X ≥

n+m
SF (m) SF(n)

d X +d Y ≥

n-m

d X +d Y ≥

n+m

d X +d Y ≥

n+m

d Y ≥

m

d X +d Y ≥

n+m

d X +d Y ≥

n+m

d X ≥

m

Start-Finish(~m)
d Y ≤

n + m
SF (~m)

d X ≤

n+m
m ≠n SF (~m)

d X +d Y

≤n+m
d Y ≤ m d X ≤ m

Inv_SF (m) m ≠n≠0 m ≠0
d X ≥

n + m

d Y ≥

n + m

d X +d Y

≥n+m
ISF (n)

d X +d Y ≥

n+m

d X +d Y

≥n+m

d X +d Y ≥

n+m
d X ≥ m d Y ≥ m

d X +d Y ≥

n+m

Inv_SF (~m) n ≠0 M
d X ≤

n + m

d Y ≤

n+m

d X +d Y ≤

n+m
m ≠n ISF (~m) d X ≤ m d Y ≤ m

Overlaps (m) m ≠n≠0 m ≠0 m ≠n≠0 m ≠0
d X ≥

n + m

d Y ≥

n + m

d Y ≥

n - m

d X ≥

n+m

d X +d Y

≥n+m

d Y -d X ≤

n-m

d X +d Y ≥

n-m
O(n) OB (n) SO (n) SOB (n) EO (n) EOB (n)

Overlaps(~m) n ≠0 M n ≠0 MB m ≠n O (~m) m ≠n O (~m) m ≠n m ≠n m ≠n m ≠n

Overlaped-

By(m)
m ≠n≠0 m ≠0 m ≠n≠0 m ≠0

d X ≥

n + m

d Y ≥

n + m

d Y ≥

n - m

d X ≥

n+m

d X +d Y ≥

n+m

d Y -d X ≤

n-m

d X +d Y ≥

n-m
O(n) OB (n) m ≠n m ≠n m ≠n m ≠n

Overlaped-

By(~m)
n ≠0 M n ≠0 MB m ≠n OB (~m) m ≠n OB (~m) m ≠n m ≠n m ≠n m ≠n

Start-

Overlap(m)
m ≠n≠0 m ≠0

d Y ≥

n + m

d X ≥

n+m

d X - d Y

≤ n
d Y ≥ n

d X +d Y ≥

n-m
d X ≤ n SO (n) SO (n) SO (n) EOB (n)

Start-O-By (m) m ≠n≠0 m ≠0 n ≠0
d Y ≥

n + m

d Y -d X ≤

n

d X +d Y

≥n+m
d Y ≤ n d X ≥ n SOB (n) SOB (n) SOB (n) EOB (n)

End-Overlap(m) m ≠n≠0 m ≠0
d X ≥

n + m

d X -d Y ≤

n

d Y ≥

n + m

d X +d Y ≥

n+m
d X ≤ n d Y ≥ n EO (n) EO(n) SO (n) EO (n)

End-O-By (m) m ≠n≠0 m ≠0
d -d X ≥

n

d X ≥

n+m

d X - d Y

≤ n
d X ≥ n

d X +d Y ≥

 n-m
d X ≤ n EOB (n) EOB (n) SO (n) EOB (n)

ISF(n) ISF (~n) EOB (n)O (~n) OB (n) OB (~n) SO (n) SOB (n) EO (n)O(n)S(~n) SB(n) SB(~n) F(n) F(~n) FB(n) FB (~n) SF(n) SF (~n) C2

 C1

B(n) B (~n) A(n) A (~n) S(n)

243

CURRICULUM VITAE

NGUYEN THI QUI

1. EDUCATION

2001-2006 B.Eng (Civil and Industrial Structures),

1
st
 Class Upper Honors,

Faculty of Civil Engineering

Hochiminh City University of Technology, Vietnam

2006-2008 M.Eng (Construction Technology and Management),

Hochiminh City University of Technology, Vietnam

2008-2013 Research Scholar, Infrastructure System Group (IS),

Department of Civil and Environmental Engineering,

National University of Singapore, Singapore

2. EXPERIENCE

Nov, 2005 –

Aug, 2006

Structural Engineer

Structures Vietnam, Vietnam

Aug, 2006 –

Aug, 2008

Lecturer

Division of Construction Engineering and Management

Faculty of Civil Engineering

Hochiminh City University of Technology, Vietnam

3. LIST OF PUBLICATIONS

3.1. Journal Papers

1. David K. H. Chua, T. Q. Nguyen, K. W. Yeoh, (2013) “Automated

construction sequencing and scheduling from functional requirements.”

Automation in Construction, 35, 79-88.

2. T. Q. Nguyen, David K. H. Chua, “Preemptive analysis of temporal

constraints in construction schedules.” Journal of Computing in Civil

Engineering, ASCE (in press).

244

3. T. Q. Nguyen, David K. H. Chua, “Criticality of schedule constraints –

classification and identification for project management.” Journal of

Engineering, Project, and Production Management, 4(1), 17-25.

3.2. Conference Papers

1. Nguyen Thi Qui, David K.H. Chua, and Ker-Wei, Yeoh (2010). Functional

Requirement Oriented Framework for Schedule Generation, 6
th

 International

conference on Innovation in Architecture, Engineering and Construction

(AEC), Pennsylvania, USA, June 2010.

2. T.Q. Nguyen, David K.H. Chua, and K.W. Yeoh (2010). Extended Functional

Requirement Model for Construction Schedule Computation, 23
rd

 KKCNN

Symposium on Civil Engineering, Taipei, Taiwan, November 2010.

3. Qui T. Nguyen and David K.H. Chua (2012), Criticality of Schedule

Constraints – Identification and Classification, 3
rd

 International Conference

on Engineering, Project and Production Management, Brighton, United

Kingdom, September 2012, (Best paper award).

