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SUMMARY 

In the construction industry, feasible schedules are crucial for good project 

performance since they provide an appropriate basis for project execution and 

cooperation among different project parties. Construction knowledge which is often 

abstracted in the form of construction methods and requirements is the key element for 

generating and controlling schedules. Therefore, sufficient incorporation of 

construction methods and requirements into schedule generation and management is 

decisive to improve the feasibility of construction schedules. Moreover, scheduling is 

generally an intricate process and demands highly experienced personnel. Especially, 

in today’s construction industry where construction projects are more complex, manual 

scheduling is found to be inefficient and inadequate. Accordingly, automated 

scheduling has become a dominant approach to improve the efficiency and adequacy 

of this process. 

 The main purpose of this research is to develop necessary methodologies and 

concepts for automated schedule generation and analysis from the perspective of 

construction requirements to improve the efficiency and feasibility of construction 

schedules. For this purpose, this dissertation proposes an overarching framework to 

integrate, interpret, and analyze construction requirements for schedule auto-

generation and change management. 

The outline of the overarching framework follows the structure of this 

dissertation. It includes a generalized framework for automated generation of 

alternative schedules from construction methods and requirements. This scheduling 
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framework is built upon four core knowledge models, which allow the explicit 

representation and integration of construction requirements and multiple methods for 

automated construction sequence reasoning and scheduling. Moreover, it involves four 

scheduling procedures, which generalize the process of automated BIM-based 

scheduling from construction requirements. With the incorporation of sequencing 

knowledge for different types of construction requirements, namely functional 

requirements, key resource requirements, spatial constraints and temporal constraints, 

the proposed scheduling framework enhances the capability and efficiency of current 

BIM-based schedulers, and can be applied to different project types. 

A generalized functional requirement model for automated construction 

sequencing (FReMAS) is then developed to provide the necessary modeling tools and 

sequence reasoning knowledge to formalize and convert complex functional 

requirements into temporal constraints. This is achieved through a representation 

format to capture and a reasoning procedure to transform complex functional 

requirements into temporal constraints. By this, this model can support the integration 

of product and process perspectives of scheduling and facilitate the adequate 

identification of multiple construction sequences implicitly defined by functional 

requirements, so that all possible alternative schedules can be determined. 

To further improve the efficiency and feasibility of scheduling from complex 

requirements, a preemptive constraint analysis framework which aims to identify basic 

constraints redundancies/inconsistencies prior to performing scheduling is developed. 

This framework provides planners with a deeper insight into the role of constraints for 

the feasibility of the schedule, and thus appropriate resolution strategies can be applied 

earlier in the pre-scheduling stage. 
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Finally, for better schedule management, an innovative concept for criticality 

analysis in construction schedule, which is based on the criticality of constraints and 

construction requirements with the consideration of multiple alternative schedules, is 

developed. In particular, this research presents an extended classification and a 

systematic approach for identifying the criticality of schedule constraints and 

construction requirements. This approach advocates a new concept for schedule 

management which is set from the perspective of constraint variation and criticality. 

Keywords: Construction Scheduling; Construction Requirements; Schedule 

Change Analysis; Constraint Criticality; Alternative Schedules 
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CHAPTER 1. INTRODUCTION 

1.1. Research Motivations and Background 

A construction schedule is an important tool for project planning and control. It 

provides a basis for project execution and cooperation among the project parties. 

Improper or infeasible schedules have been found to be a crucial factor in causing 

project delays, over-budgeted cost and unsatisfied quality (Chan and Kumaraswamy, 

1997; Chua et al., 1999). Therefore, proper generation and management feasible pre-

construction schedules are key prerequisites for the success of construction projects. 

Scheduling involves the integration and interpretation of construction knowledge 

and building data to determine construction activities required to create the facility and 

the sequence among them. It is thus an intricate process and demands highly 

experienced personnel. In today’s construction industry where construction projects 

are more complex, manual scheduling is found to be inefficient and inadequate to 

incorporate multiple construction methods and to produce alternative schedules 

(Mikulakova et al., 2010). Improving the efficiency and adequacy of schedules is 

thereby a current need in the construction industry. 

Recently, Building Information Modeling (BIM) has become a centerpiece for 

Architecture, Engineering and Construction (AEC) technology. BIM concept has been 

applied to different areas of project management such as constructability analysis, 

collaboration or visualization. For schedule generation, BIM enhances model-based 

scheduling techniques by enabling rapid integration of product and process 

information. Beyond that, in many scheduling systems, preliminary schedules can be 
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automatically generated through the incorporation of BIM models and construction 

knowledge to reason about the construction sequence of building components from 

their topological relationships. However, since construction schedules are governed by 

various factors such as construction methods, contractors’ experiences, site conditions, 

as well as project’s specific characteristics, schedules generated from only topological 

relationships are possibly inadequate and infeasible for implementation. Accordingly, 

there is a need for improved scheduling approaches which make good use of major 

construction knowledge so that more reliable schedules can be obtained. 

Construction knowledge can be abstracted as construction requirements, which 

are the key prerequisites for construction processes (Yeoh, 2012). Similar to function 

analysis in software engineering, in the Architecture, Engineering, and Construction 

(AEC) community, construction requirements can be modeled as functional and non-

functional (Song and Chua, 2006). Functional requirements represent functional 

dependencies among components in both construction and completion stages. In other 

words, they impose constraints on the functionality behavior of product components. 

On the other hand, non-functional requirements are related to other construction 

aspects, such as temporal constraints between construction processes, availability of 

key resource/work space, or constraints on measurable features of product 

components. 

Functional requirements often arise from alternative choices of construction 

technology, collaboration scenarios or engineering solutions for the project. Hence, 

they could imply multiple alternative construction sequences which are represented by 

complex disjunctive combinations of temporal constraints between construction 

processes. However, such alternative construction sequences defined by functional 
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requirements are often inadequately determined. Reasons for this inadequacy include 

the lack of available tools to represent complex functional requirements, as well as the 

lack of reasoning mechanism to identify and capture all alternative construction 

sequences resulting from functional requirements. 

For good project management, appropriate schedule analysis should be carried 

out early in the pre-construction stage. A schedule is controlled by its constraints 

which are derived from construction requirements. Therefore, constraints and 

construction requirements should be analyzed directly to identify the critical ones 

driving the entire schedule (Chua and Shen, 2005). Specifically, the emphasis of 

identifying criticality from the perspective of activities for better project management 

should be changed to studying and classifying the criticality from the perspective of 

constraints and requirements. Furthermore, criticality analysis of construction 

requirements should take into account the existence of multiple alternative schedules. 

Despite this, analyzing the criticality of constraints and construction requirements for 

schedule management has not been well addressed by the research community due to 

the lack of a systematic approach. 

In summary, construction knowledge involves primary factors determining the 

feasibility of construction schedules through both planning and management stages. 

Therefore, crucial construction knowledge should be sufficiently considered in 

schedule generation and management processes. Moreover, the efficiency of 

scheduling depends greatly on scheduling techniques, and automation in construction 

scheduling is thereby a necessity in current practice. In this regard, this dissertation 

proposes an overarching framework to integrate, interpret, and analyze construction 

knowledge for schedule auto-generation and change management. 
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1.2. Research Opportunities 

This section describes the gaps and research opportunities with regard to 

approaches for schedule generation and analysis in the AEC research community. 

1.2.1. Incorporation of Construction Knowledge in Scheduling Systems 

Construction knowledge can be described as construction requirements, which 

are the capabilities and conditions to which the construction processes and the in-

progress facility product must conform. If not, the construction processes may be 

delayed or temporary stability of the in-progress structure may not be sustained during 

construction (Song and Chua, 2006). Construction requirements generally have 

different natures. They represent a wide range of project constraints including 

technical constraints, design requirements, resource/space requirements, budget limits, 

safety regulations, precedence constraints among project parts, contractual milestones, 

and so on. However, in most scheduling systems they are often represented in a 

derived form as precedence relationships among activities. Such an unambiguous 

representation may not enable good traceability of changes for better project 

management (Yeoh, 2012). 

In order to achieve feasible schedules, major construction requirements should 

be adequately and explicitly incorporated into scheduling. Despite this, most existing 

automated scheduling systems focus only on individual elements such as topological 

relationships, resource constraints, or space constraints (Chua et al., 2013). In 

particular, a large number of model-based and knowledge-based systems only center 

on physical relationships among components (Chevallier and Russell, 1998). Similarly, 

recent BIM-based scheduling systems can enable rapid integration of 3D design 
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models with commercial scheduler applications (like Microsoft Project or Primavera) 

for schedule computation and visualization, yet the knowledge embedded in these 

systems is still restrained to topological relationships and technical constraints 

(Hartmann et al., 2012).  

Construction methods are also the key planning knowledge that need to be 

considered for scheduling. Since hundreds of methods available as options for a project 

and new methods are being developed all the time, consideration of multiple methods 

in the planning stage has become an essential need for planners to attain the best 

schedules (Kataoka, 2008). Nevertheless, existing scheduling systems do not provide 

planners with such a function. In current practice, planners with their own knowledge 

and experience have to manually decide which construction method can be used for the 

project prior to scheduling, and only one method can be implicitly incorporated into 

the scheduling process. Consequently, the feasibility of schedules is greatly dependent 

on planners’ knowledge and experience which may not be sufficient and available for 

new methods. Moreover, while best schedules can probably be obtained by combining 

different methods for different parts of a project, manually analyzing all method 

combinations may be impossible for large projects. 

In summary, construction methods and requirements are two primary elements of 

construction knowledge which determine the feasibility of construction schedules. The 

aforementioned drawbacks raise the need for improved scheduling frameworks which 

provide modeling mechanisms to adequately integrate and analyze different types of 

construction requirements as well as multiple construction methods, so that more 

appropriate and reliable schedules can be achieved. 
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1.2.2. Automated Sequence Reasoning from Functional Requirements 

Functional requirements are among the key sequencing logic of a construction 

schedule. They refer to the functional dependencies among components in both 

construction and completion phases, which are respectively referred to as intermediate 

and final functional requirements in the context of this research. In order to incorporate 

such requirements into scheduling, they need to be formalized, and converted into 

temporal constraints between the associated construction processes (Chua et al., 2013).  

Researchers and practitioners have developed different methods to automate the 

sequence reasoning process from functional requirements. However, the major focus 

of the proposed models is restricted to reasoning from the final functional requirements 

perspective, and thus is limited to the physical relationships among permanent 

components. Intermediate functional requirements often involve both permanent and 

temporary components, and probably represent different engineering solutions for the 

project. They possibly lead to complex combinations of temporal constraints such as 

work/resource continuity or process concurrency/overlap/disjunction which may 

induce multiple construction sequences. In current practice such complex requirements 

are often treated as technical constraints, and are manually interpreted into precedence 

constraints (equivalently addressed as simple temporal constraints in this thesis). 

Consequently, planners may not adequately determine all possible construction 

sequences that satisfy the requirements and thus could not guarantee to obtain the best 

sequencing solutions. 

Most existing scheduling systems are built on Critical Path Method (CPM) or 

Precedence Diagram Method (PDM) models, which do not capture complex temporal 

constraints containing conjunction and disjunction conditions and dictate only one 
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predefined sequence (El-Bibany, 1997). They therefore cannot represent complex 

temporal constraints and all possible sequences resulting from complex functional 

requirements. Especially, they do not provide a mechanism to reason and generate 

schedules from functional requirements. Recently, a number of advanced scheduling 

approaches based on Artificial Intelligence (AI) techniques, such as PDM++ (Chua 

and Yeoh, 2011) or constraint-based scheduling (Lorterapong and Ussavadilokrit, 

2013), have been developed to overcome the limitations of CPM/PDM in handling 

complex temporal constraints. Yet, they still lack the reasoning knowledge for deriving 

temporal constraints from functional requirements. 

In summary, construction sequence reasoning from functional requirements is 

generally intricate due to their complexity nature and need to be automated for more 

efficient and sufficient scheduling. This requires a generalized modeling and sequence 

reasoning framework with knowledge embedded to represent and automatically 

transform complex functional requirements into temporal constraints for scheduling. 

1.2.3. Constraint Analysis to Improve Feasibility and Efficiency of Alternative 

Scheduling Approaches 

A number of advanced scheduling approaches using Constraint Programming 

(CP) or Constraint Logic Programming (CLP) techniques have been developed to 

overcome the limitations of CPM/PDM in processing complex temporal constraints. 

With the ability to handle precedence and disjunctive constraints, these approaches are 

capable of generating all feasible schedule solutions.  

There are two major problems with CSP/CLP schedulers: solution feasibility and 

computational efficiency, which are greatly influenced by the relationships among the 
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imposed constraints. Solution feasibility, which refers to the capability of producing a 

feasible solution, is defined by the consistency of the constraint set. Computational 

efficiency is governed by the total number of constraints, especially the number of 

backtrackings which increases exponentially with the number of disjunctive 

constraints. In other words, conflicting constraints obstruct the scheduling solver to 

generate a feasible solution, while redundant constraints produce unnecessary search 

spaces, and decrease the efficiency of the scheduling process. Therefore, redundant 

and inconsistent constraints should be identified and removed in the pre-scheduling 

stage to improve scheduling feasibility and efficiency. 

Preemptive constraint analysis in scheduling problems has, however, received 

little research attention. Redundant constraints are often manually identified and 

completely eliminated from the schedule problem. However, completely deleting 

redundant constraints could distort the structure of the scheduling problem. Moreover, 

in many CP/CLP-based schedule solvers, constraint inconsistencies are identified and 

probably resolved along the scheduling process using constraint propagation, and thus 

dependent on constraint ordering. From a management perspective, this approach does 

not guarantee the best (or optimal) set of constraints. In addition, since activity 

durations and lag times often play a significant role for the relationships among 

constraints, constraints should be analyzed in accordance with activity durations to 

provide planners with better management strategies.  

In brief, CP/CLP techniques are promising approaches to alternative scheduling 

in construction. To improve the solution feasibility and computational efficiency of 

CP/CLP-based schedulers, the constraint set should be preemptively analyzed in the 

pre-scheduling stage so that basic redundant and conflicting constraints can be 
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identified and removed. In addition, constraint analysis should be conducted in relation 

with activity durations and lag requirements to provide planners with more useful 

information for appropriate resolution strategies. 

1.2.4. Criticality analysis for schedule management 

If generating constructible schedules is the necessary condition of good schedule 

performance, schedule management could be considered as the sufficient condition. 

Essentially, schedule management has been found to be the most crucial process for 

schedule performance (Chua et al., 1999; Iyer and Jha, 2006). For good schedule 

management, it is necessary to identify the crucial parts of the schedule which need to 

receive more management attention than others, and criticality analysis is thus a crucial 

schedule management task.  

Traditionally, criticality analysis is carried out from the activity perspective. In 

CPM networks, the criticality of an activity is identified using its float times. However, 

researchers have indicated that using floats to study criticality of an activity is 

inadequate in PDM networks due to the existence of non-finish-to-start relationships, 

and that understanding the nature of constraints associated with it is a necessity 

(Moder et al., 1983; Valls and Lino, 2001). In addition, since activity criticality is set 

within the scope of a specific schedule, it could not be applicable to circumstances 

where multiple alternative schedules exist (Bowers, 2000; Rivera and Duran, 2004).  

Theory of constraint (TOC) also advocates the need for identifying the key 

constraints driving the entire schedule, and the key constraint analysis approach 

developed by Shen and Chua (2005) is one of the primary research in this area. 

However, as it is from the production viewpoint, this approach addressed only simple 
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precedence relationships and enabling constraints (resource and information), and it 

analyzed only a single schedule.  

The feasibility of a schedule is governed by its requirements which possibly 

result in multiple schedules. It is therefore necessary to identify key requirements, and 

criticality analysis should be carried out in the relation with multiple alternatives. 

Furthermore, since requirements represent construction knowledge and practice from 

which schedule constraints are derived, this research proposes that schedule 

management should be carried out from the perspective of construction requirements. 

To achieve this requires novel approaches for analysing the criticality of constraints 

and construction requirements with regards to multiple alternative schedules, as well as 

the impact of constraint variations on schedule performance. 

1.3. Research Objectives 

The primary purpose of this research is to improve the efficiency and feasibility 

of construction schedules via the adequate incorporation of primary construction 

knowledge into schedule auto-generation and analysis processes.  For this goal, this 

dissertation will provide the necessary frameworks, concepts and methodologies for 

formalizing integrating, reasoning and analyzing construction requirements for 

automated generation and analysis of alternative construction schedules.  

 In particular, the specific research objectives include: 

1. To develop a generalized framework for automated scheduling from 

alternative construction methods and requirements. This framework will 

provide modeling tools to represent and integrate primary construction 
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knowledge for scheduling, and develop generalized procedures for BIM-based 

scheduling. With these features, the framework will allow the explicit 

representation and integration of construction requirements and multiple 

methods into automated construction sequencing and scheduling processes. 

2. To develop a generalized model for automated construction sequencing from 

functional requirements by providing a representation format to capture and a 

reasoning procedure to transform complex functional requirements into 

temporal constraints. This model aims to support the integration of product 

and process perspectives of scheduling and to facilitate the adequate 

identification of multiple construction sequences which may lead to 

alternative schedules.  

3. To propose a reasoning framework to preemptively identify basic constraint 

redundancies and inconsistencies in the pre-scheduling stage from a project 

management perspective. The framework will form the foundation for the 

development of a preemptive constraint analyzer which aims to improve the 

solution feasibility and computational efficiency of advanced scheduling 

approaches. It will also provide planners with a deeper insight into the impact 

of lag and activity durations upon the relationship between constraints, so that 

appropriate strategies can be implemented to resolve constraint conflicts. 

4. To develop a systematic methodology for analyzing the criticality of 

constraints and construction requirements in construction schedules in regards 

to multiple alternative schedules. In particular, this research presents an 

extended classification and a systematic approach for identifying the 

criticality of schedule constraints and construction requirements using 
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constraint criticality indicators. This approach will advocate a new set of 

indicators for constraint-based schedule management. 

1.4. Research Scopes 

The feasibility of construction schedules is probably affected by various 

requirements and project constraints. This research however focuses only on primary 

requirements captured in the form of functional requirements, temporal constraints, 

key resource and work space requirements, which directly govern construction 

sequence and/or the start/finish of construction operations. Dissatisfaction of such 

requirements, construction processes cannot be started or the stability of structural 

systems is not maintained, causing infeasible schedules. Productivity-related 

requirements such as pool resource availability, inventory, crew’s productivity, or site 

congestion are not explicitly addressed in this research. The proposed frameworks can 

be extended to incorporate these requirements in future development. 

Although topological dependencies among components can often be derived 

from a 3D model using existing approaches such as Nguyen et al (2005), Khalili and 

Chua (2012), the deriving process is not presented in this dissertation. Instead, a 

generalized functional requirement model is developed to represent both topological 

dependencies and intermediate function requirements, and to derive the temporal 

constraints among the associated construction processes. Incorporating these 

approaches into the frameworks proposed in this research will be considered in the 

future prototype extension. 

As a consequence of dynamic construction environment, construction projects 

often are subjected to a variety of changes originated from different sources. For 
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schedule management, this research focuses on variations directly affecting the 

existence and/or temporal attributes of the constraints (lag and process times) which 

have direct impacts on schedules and project completion time. Changes related to the 

removal or introduction of activities can be elaborated or transformed into variations of 

associated constraints and thus are not directly addressed in this research. 

1.5. Research Methodology 

The research methodology is illustrated in the flow chart shown in Figure 1.1. 

The research methodology consists of three main steps: (a) Developing Research 

Objectives and Scopes, (b) Generating Research Outputs, and (c) Analyzing and 

Validating Research Outputs through Illustrative Case Studies. 

 

Figure 1.1. Flow chart of research methodology  
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The Research Objectives and Scopes were iteratively developed through various 

sources of data. First of all, an extensive study of academic literature has been 

conducted throughout the project for a deep insight into concepts and techniques of 

construction schedule generation and analysis. Concurrently, practical construction 

knowledge and experiences were collected from project reports, construction drawings 

and schedules, and expert interviews. 

Research Outputs were subsequently generated to achieve the defined objectives. 

In particular, a generalized framework automated scheduling from construction 

requirements (ASCoRE) was first developed. A functional requirement model 

(FReMAS) was then developed for automatically reasoning construction sequences 

from functional requirements. Also, a constraint preemptive analysis framework was 

developed to identify basic constraint redundancies and inconsistencies in the pre-

scheduling stage, so that the solution feasibility and computational efficiency of 

scheduling can be further enhanced. These models form the input for the system 

architecture design of the ASCoRE scheduler. Finally, an approach for analyzing the 

criticality of construction requirements to schedules is developed in order to provide 

better understanding of the schedule so that good schedule management could be 

achieved. The methodologies developed were validated with illustrative examples, and 

finally with industrial case studies. 

1.6. Organization of Thesis 

This thesis is organized into eight chapters including this introduction as shown 

in Figure 1.2. Each chapter explicitly illustrates the steps taken to achieve the research 

objectives. Chapter Two presents a detailed review on research related to concepts and 
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techniques for schedule generation and management. It contains reviews and existing 

approaches for identifying and capturing requirements in construction, existing 

automated scheduling systems and the current research on schedule analysis for change 

management. From this, major research gaps have been identified, shaping the 

direction of this research. 

 

Figure 1.2. Organization of the thesis 
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Chapter Three presents a generalized framework for automated scheduling from 

construction requirements (ASCoRe). It is facilitated by four core knowledge models 

representing construction knowledge and building data necessary for the identification 

of construction processes and the sequences among them. The ASCoRe framework 

consists of four main processes to capture, represent and convert major construction 

requirements into temporal constraints from which alternative schedules are generated. 

Chapter Four describes a functional requirement model called FReMAS for 

representing and converting functional requirements into temporal constraints. This 

modeling framework contains three main subcomponents: (a) a Representation to 

provide a generalized representation format of functional requirements, (b) a Temporal 

Model to explicitly define temporal attributes of functional requirements and (c) a 

Sequence Reasoning Framework to automatically convert functional requirements into 

temporal constraints from which construction sequences and schedules can be derived. 

Chapter Five documents the system architecture and the necessary reasoning and 

solving algorithms of the ASCoRE scheduler. Especially, a preemptive constraint 

analyzer is developed to identify redundant and conflicting constraints in the pre-

scheduling stage to improve scheduling feasibility and efficiency. 

Chapter Six introduces a new concept for analyzing the criticality of construction 

requirements in the context of multiple alternative schedules. It includes a 

classification of criticality, a systematic methodology to identify criticality and the 

application of the proposed concept for schedule management. 
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Chapter Seven presents three industrial case studies to demonstrate the 

application of the concepts and methods proposed in Chapters 3, 4, 5, and 6. Each case 

study is analyzed with management implications presented herein.  

Chapter Eight concludes the thesis, summarizing the research contributions 

derived from this dissertation. Further suggestions for future research and development 

directions are also presented in this chapter. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

This literature review presents the current state of the art with regard to 

improving the feasibility and efficiency of construction scheduling from two aspects: 

the sufficient incorporation of major construction requirements into automated 

schedule generation and the systematic identification of crucial construction 

requirements for schedule management. For the former aspect, to provide the readers 

with a fundamental understanding of the origins and natures of construction 

requirements, the literature presents an overview of classification schemas and 

methods to formalize construction requirements for scheduling. It then describes the 

advanced scheduling techniques for sequence reasoning and schedule generation from 

construction requirements. From this, the major limitations of automated sequence 

reasoning and scheduling from complex construction requirements of existing auto-

planning systems and scheduling techniques are identified. For the latter aspect, the 

literature describes relevant studies on criticality analysis for schedule evaluation and 

change management from two main perspectives: activity and constraint, and pinpoint 

key their key drawbacks for understanding the criticality of construction requirements 

with the existence of multiple alternative schedules. 

2.2. Construction Requirements in Schedules 

Construction requirements are the abstract form of construction knowledge and 

play a key role in determining the feasibility of construction schedules. They arise 

from various aspects of construction and have different characteristics. In order to 
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provide readers a background understanding of construction requirements, this section 

will first summarize the existing classification schemes of construction requirements 

from different perspectives. It will then present key research on formalizing 

construction requirements in general and functional requirements in particular. This 

section will also discuss the existing methods for integrating construction requirements 

for scheduling. The final part of this section will address the major drawbacks of 

existing research on modeling and integrating construction requirements for automated 

sequencing and scheduling which set major directions of this research.  

2.2.1. Classification of Construction Requirements 

Construction requirements can be classified from two main perspectives: origin 

and nature (Koo et al., 2007). According to their origin, construction requirements are 

commonly referred to as sequencing knowledge. Physical building component 

dependencies were identified as a common sequencing knowledge in early studies, 

such as Gray (1986), Navinchandra (1988), Zozaya-Gorostiza et al. (1989), and 

Kartam and Levitt (1990). Echeverry et al. (1991) identified sequencing knowledge 

with respect to physical relationships among building components, trade interaction, 

path interference, and code regulations. Sripraset and Dawood (2002) described 

construction requirements as constraints which can obstruct commencement or 

progress of construction processes to achieve successful project performance. 

Accordingly, they classified schedule constraints into three main groups, including 

physical constraints (technological dependencies, space, safety, and environment), 

contract (time, cost, quality, and special agreement), and enabler constraints (resource 

and information). Failure to fulfilling these constraints could lead to infeasible 

schedule and project delay. Yeoh (2012) introduced a broader definition of 
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construction requirements. According to his description of the requirement evolution 

process, construction requirements are the collection of project requirements at all 

stages. They exist as a form of derived requirements and are the abstraction of the 

client’s intention and design specifications. Construction activities and their 

corresponding relationships may be derived from the requirements arising from 

different perspectives, including: topological precedence, intermediate function 

requirements, space, key resources, safety, contracts, site/environment and 

logistic/procurement.  

For constructability analysis, Song (2006) described construction requirements 

as the concerns and constraints that should be fulfilled for conducting procurement, 

construction and logistic processes. According to their nature, construction 

requirements are classified into two categories: functional and nonfunctional 

requirements. Functional requirements refer to construction intentions for supporting a 

construction process. As such, functional requirements are narrowly defined as 

intermediate function requirements, which are temporary functions that are required 

for supporting the construction of a facility project. On the contrary, nonfunctional 

requirements refer to performance constraints such as capacity, productivity and 

inventory. To this extent, construction requirements could be understood as requisites 

during the construction phase but not those in other project phases. In addition, it can 

be inferred that functional requirements relate to the engineering behaviors of product 

components and thus they are product-based. In this context, non-functional 

requirements can be considered as process-based requirements.  

The above literature provides an insight into requirements in construction. In 

general, construction requirements arise from different project aspects including 
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clients’ intentions, design codes and regulations, and construction technologies and 

practices. They can be product- or process-related, and sequence- or performance-

governing constraints. A key advantage of origin-oriented classification schemas could 

enable planners to determine the party in charge of a particular requirement for better 

project management (Yeoh, 2012). However, since the impact of a construction 

requirement on schedules is governed by its nature, the nature-oriented classification 

schema is found more suitable for sequence reasoning and scheduling purpose.  

2.2.2. Formalization of Construction Requirements 

Construction requirements are the rationale driving construction schedules. 

Therefore, an unambiguous and systematic formalization of construction requirements 

at the planning stage is crucial for integrating them into schedule generation and 

management. Yet, this issue has received quite little research attention (Yeoh, 2012). 

Existing approaches for representing construction requirements mainly aim for 

constructability analysis or knowledge management. For constructability analysis, 

some of construction requirements were established in the form of constructability 

rules. Fischer (1993) developed a rule-based format for representing geometrical and 

topological design-relevant constructability requirements. Song (2006) proposed a 

modeling methodology for capturing and analyzing intermediate functional 

requirements for constructability assessment of construction schedules. This model 

captures an intermediate function from three perspectives: function user, function 

provider, and their temporal and spatial relationships. Based on this model, designers 

and constructors can explicitly describe and incorporate intermediate functional 

requirements into construction schedules for constructability verification. 
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For knowledge management, many ontological modeling frameworks have been 

developed for capturing knowledge in construction as requirements. Domain 

ontologies (El-Diraby and Kashif, 2005; El-Gohary and El-Diraby, 2010) often involve 

a set of high-level core ontology with logical rules to allow additional inferences in the 

specific domains. However, these researches focus mainly on representing knowledge 

yet not providing knowledge for sequence reasoning from construction requirements. 

They were still centered on specific requirement types such as physical relationships, 

precedence activity constraints, or resource requirements, and were centered at specific 

project types such as highway or infrastructure projects. Consequently, they were 

found inflexible for different types of construction requirements and projects.  

In order to improve the flexibility of the aforementioned domain ontological 

models, Yeoh (2012) proposed a generalized ontology model for construction 

requirement by establishing core characteristics and flexible taxonomies. In particular, 

this model comprises three core characteristics: spatial, temporal, and abstract, and 

three flexible taxonomies: Purposive, Operational, and Necessity Conditions to allow 

the representation of a requirement of any type from any construction projects. In brief, 

any construction requirement can be generally represented by one or all of three 

constraints: spatial, temporal, and abstract. Such generality allows the model to be 

applied to any requirement and project type. However, the generality characteristic of 

this model also results in its major drawbacks for being applied to automated 

sequencing and scheduling. Firstly, it lacks a syntactical structure to support automated 

sequencing so that temporal constraints can be automatically generated. Consequently, 

planners have to manually specify the temporal constraint defined by a requirement if 

it is not explicitly defined. Secondly, the lack of syntactical structure specific for 



Chapter Two: Literature Review 

23 

 

common requirement types also obstructs the integration of construction requirements 

into project data model which is essential for automated sequencing and scheduling. 

Therefore, for scheduling purpose, this model should be modified to improve the 

representation and sequence reasoning of common specific requirement types. 

From the above literature review, it is found that existing methods for 

formalizing construction requirements are still restricted for specific types of 

requirements. The more generalized models on the other hand lack the necessary 

syntactical structure for automated sequencing. These limitations raise the need for an 

improved formalization framework which is sufficiently general to capture 

requirements of different types and efficiently support automated sequence reasoning. 

2.2.3. Modeling functional requirements for automated sequencing 

Functional requirements are primary elements of construction requirements. 

They represent the functional dependencies among components in both construction 

and completion stages, which are respectively referred to as intermediate and final 

functional requirements in the context of this research. In general, functional 

requirements may involve both permanent and temporary components. For example, a 

beam may require the support of a scaffolding-formwork system while it is being 

constructed, and later it needs to be supported by two columns at its ends after it has 

been constructed. By this definition, functional requirements encompass the 

topological precedence constraints in common context and the intermediate functions 

proposed by Song and Chua (2006). 

 As discussed in the previous section, functional requirements are product-

oriented. For scheduling purposes, they need to be converted into temporal constraints 
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from which construction sequences are derived (Chua et al., 2013). Researchers and 

practitioners have developed different methods to automate the sequence reasoning 

process from functional requirements. Some of these can be found in Shaked and 

Warszawski (1995), Vries and Harink (2007), and Kataoka (2008). However, the 

major focus of the proposed models is restricted to reasoning from the final functional 

requirements perspective, and thus is limited to the physical relationships among 

permanent components. Intermediate functional requirements are usually treated as 

technological constraints, and are still manually interpreted into precedence 

constraints. These requirements often involve both permanent and temporary 

components, and may result in complex temporal constraints such as work/resource 

continuity or process concurrency/overlap/disjunction. They could also result in 

multiple feasible construction sequences which may not be adequately identified using 

manual techniques. Consequently, a modeling approach allowing for representing and 

reasoning complex functional requirements is necessary to improve the adequacy and 

efficiency of automated sequencing and scheduling. 

2.2.4. Integrating Construction Requirements for Scheduling 

Data integration is fundamental for automated schedule generation. Several 

pieces of research have been carried out for effective information integration in 

construction. Especially, a variety of core models for modeling process information in 

construction have been developed (Froese, 1996). Yamazaki (1995), Stumpf, et al. 

(1996), and Bouchlaghem, et al. (2004) developed object-oriented modeling 

approaches for product-process information integration. Staub-French, et al (2003) 

focused on feature-based process and product modeling for cost estimation. Halfawy 

and Froese (2007) developed a multitier component-based framework to facilitate the 
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implementation of modular and distributed integrated project systems for 

multidisciplinary project processes throughout the project life cycle. Since the major 

emphasis of these approaches is the integration of product and process models, they 

may not be applicable to incorporate construction requirements existing in different 

formats like functional requirements, temporal constraints or resource/spatial 

requirements. Consequently, these models could not support automated sequence 

reasoning and scheduling. 

Recently, BIM (Building Information Modeling) technology has become a new 

approach to design, construction and facilitate management (Vozzola et al., 2009). 

Researchers have developed different BIM-based frameworks to integrate a wide range 

of information such as product, process, resource, or safety (Goedert and Meadati, 

2008; Babic et al., 2010; Jung and Joo, 2011; Singh et al., 2011; Zhang et al., 2012). 

The major emphasis of these researches is to create a digital representation of the 

building information for better documentation, collaboration and project management. 

Consequently, construction requirements are not explicitly represented as a core 

knowledge component in these models. This ambiguity does not allow planners to 

efficiently manage and exploit construction knowledge for automated scheduling. 

In summary, the identified limitations raise the need for an improve data 

integration framework which allows construction knowledge to be explicitly 

represented and integrated with other project data for automated sequencing. 

2.3. Advancements of Planning and Scheduling Approaches 

Planning and scheduling in construction demands considerable time, knowledge 

and experience. The AEC research community has thereby put much effort into 
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improving the feasibility and efficiency of this complex process. This section first 

provides an overview of CPM/PDM and their major limitations for construction 

scheduling which motivate various research in this area. The next three subsections 

describe existing approaches in automated scheduling. The last two subsections review 

the development of advanced scheduling techniques which provides fundamental 

knowledge and methodology for this research. 

2.3.1. CPM/PDM: Overview and Limitations for Construction Scheduling  

The critical path method (CPM) is a widely used and important tool for planning 

and control of construction projects. It is facilitated by an activity on arrow (AOA) 

diagram which represents project with activity nodes linked by precedence 

relationships (Lu and Lam, 2009). As such, CPM can only handle strict precedence 

constraints, i.e. Finish-to-Start (FS), and requires the use of artificial dummy activities. 

In addition to this strict precedence constraint, Precedence diagram method (PDM) 

involves three other relationships, Start-to-Start (SS), Finish-to-Finish (FF), and Start-

to-Finish (SF) and positive/negative lags to depict partially concurring or overlapped 

working progress between activities (Moder et al., 1983). Accordingly, compared with 

CPM featuring FS logic only, PDM networks with “smart” relationships are more 

compact, flexible, and realistic to represent construction projects (Harris, 1978; Valls 

and Lino, 2001; Lock, 2003). In addition, CPM/PDM calculations are generally simple 

and straightforward. Therefore, they have been used intensively in the AEC industry. 

Popular commercial scheduling software systems (such as Primavera Project Planner, 

and Microsoft Project) also incorporate these methods.  
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The suitability and effectiveness of these models have been widely criticized. 

Firstly, CPM/PDM only provide mathematical models to simulate the construction 

process and manipulate the data provided by the planners but not the knowledge used 

to generate the plan (Morad and Beliveau, 1994). In other words, they lack a 

mechanism to capture and reason construction requirements for automated schedule 

generation. Secondly, CPM/PDM perform scheduling only from the process 

perspective. Component-based schedule constraints are therefore cannot be captured 

and processed using the models. Thirdly, since they handle only precedence constraints 

among activities, CPM/PDM have been found to be inadequate to cope with complex 

temporal constrains such as process concurrency/overlap/disjunction and 

work/resource continuity (Jaafari, 1984; El-Bibany, 1997). Lastly, CPM/PDM dictate 

only one predefined sequence (Chua and Yeoh, 2011) and lack the flexibility and 

expressiveness to cope with multiple alternative sequences and the varied patterns of 

construction methods (Jaafari, 1996; Choo et al., 1999).  

The above limitations of CPM/PDM for construction scheduling have directed 

various research in this area, the key of which will be reviewed in the following 

sections. In particular, model-based, knowledge-based and case-based reasoning 

scheduling (described in sections 2.3.2 to 2.3.4) are three major paradigms to 

overcome the first two limitations of CPM/PDM, while other advanced techniques 

addressing the other two limitations are summarized in sections 2.3.4 and 2.3.5. 

2.3.2. Model-based Planning and Scheduling 

Model-based scheduling is about linking the information from three domains: 

architectural design, construction scheduling and quantity take-off. Due to its popular 

use in the construction industry, CAD (Computer-Aided Design) models have been 
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widely employed to assist the planning and scheduling process. In particular, Cherneff 

et al. (1991) developed a system that interpret a CAD model into declarative 

presentation from which a list of activities and an associated activity network are 

generated. Relationships between components in CAD models have also been a 

primary source for generating and sequencing construction activities in other early 

research, such as Winstanley et al. (1993), McKinney and Fischer (1998), and de Vries 

and Harink (2007). In these models, predefined rules are used to generate activities and 

their precedence relationships. Recently, CAD models have been further exploited for 

both schedule generation and quantity take-off, or time-cost trade off planning. 

Kataoka (2008) proposed a method to automatically generate construction plans and 

quantity take-off from primitive architectural information and predefined construction 

method templates. On the other hand, Feng et al. (2010) used CAD models to develop 

a time-cost integrated scheduling approach, in which activities were sequenced based 

on physical constraints and genetic algorithms were used for time-cost tradeoff. 

With the development of BIM commercial applications like Bently, Tekla or 

Revit, generating construction schedules from BIM and/or IFC (Industry Foundation 

Classes) models has recently become a new trench of model-based scheduling. 

Tauscher et al. (2009) proposed schedule generation approach using case-based 

reasoning technique based on historical data extracted from IFC models. Weise and 

Liebich (2009) developed a 4D Simulation package which allowed to import IFC 

models and link with Microsoft Project. Kim et al. (2013) proposed a framework for 

automating the generation of construction schedules by using data (e.g. spatial, 

geometric, quantity, relationship and material layer set information) stored in BIM. 

Since IFC can represent design data created in most of existing modeling tools, 
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BIM/IFC-based scheduling approaches have no restriction on input design models. By 

this, generating construction schedules from design/IFC models could improve the 

scheduling efficiency and data accuracy (Porkka and Kähkönen, 2007).  

Despite their benefits for visualization and simulation, the aforementioned 

model-based scheduling approaches retain two major drawbacks. Firstly, they lack a 

mechanism for capturing complex construction requirements and thus consider only 

atomic topological relationships and simple temporal constraints. Secondly, they 

incorporate CPM/PDM methods thus the construction sequences have to be predefined 

by planners based on only one construction method. Consequently, they still do not 

support the consideration and incorporation of multiple construction methods for 

alternative scheduling.  

2.3.3. Knowledge-Based Planning Systems 

While model-based scheduling systems normally comprise a predefined set of 

rules for generating and sequencing activities, knowledge-based planning systems 

(KBPS) often consist of a knowledge representation/acquisition facility, inference 

engine and a knowledge base of domain rules and facts to capture some of key 

requirements and determine the construction sequence.  

There is a large library of KBSPs in the AEC industry. Most early systems such 

as PLATFORM (Levitt and Kunz, 1985), IKBS9 (Gray, 1986), GHOST 

(Navinchandra et al., 1988), ACP (Waugh, 1989), SIPE (Kartam and Levitt, 1990), 

ESCHEDULER (Moselhi and Nicholas, 1990), or MIRCI (Alshawi and Jagger, 1991) 

were only developed at the level of proof of concept or prototype. On the other hand, 

Construction Planex (Hendrickson et al., 1987) was one of the first working-model 
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systems. In Planex, design components are represented in a hierarchical structure and 

elementary components are a representation of the project at the lowest level. 

Predefined element activities are assigned to components and then aggregated into 

project activities. The element activities form the basis for rules which are based on 

physical and resource relationships to determine the construction sequence. In 

addition, Planex could demonstrate the feasibility of KBS for construction planning in 

specific domains; yet, the construction knowledge is implicitly stored in the knowledge 

database. This made it applicable only to specific project types.  

In OARPLAN (Winstanley et al., 1993) developed by the Centre for Integrated 

Facility Engineering (CIFE) from Stanford University, the component hierarchy is one 

element of the generic model, which comprises component/object, action, and resource 

hierarchies. Activities are defined as an action applied to an object and requires 

resources and are represented as a hierarchical structure. This allows greater 

granularity for plan control. The dependencies and precedencies among activities are 

inferred from the relationship between sub-activities, other activities, and the physical 

constraints among components. Although OARPLAN did not explicitly consider 

construction methods, the OAR structure developed in this system forms the 

foundation for the development of CMD Scheduler (Fischer and Aalami, 1996) in 

which construction methods are treated as the basic knowledge concept for automated 

model-based scheduling. However, although they can capture resource requirement, 

the sequencing knowledge in these two models is based only on topological constraints 

among permanent building components yet does not address complex functional 

requirements occurring in the construction process.  
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KNOW-PLAN (Morad and Beliveau, 1994) utilizes an object oriented 

representation to capture building components with their geometric attributes and the 

type of their inter-connections. Different from previous system, activity sequences are 

determined based on predefined sequence templates which are based on continuity of 

employment, repetition location and the relationships between tasks rather than 

components. The knowledge base of KNOW-PLAN contains a database storing data 

extracted from CAD model and the dynamic sequencer with rules and explanations. 

Especially, the system allows the sequence to be interactively modified based on user-

defined rules which can subsequently be added to the knowledge base. 

CONSCHED (Shaked and Warszawski, 1992) and HISCHED (Shaked and 

Warszawski, 1995) were designed for automated planning of high-rise buildings. 

These systems also utilize object-oriented representation to capture building 

components under zones, systems and their attributes. Activities are generated from 

predefined list of tasks associated with categories of components, and the sequencing 

of activities is based on the start/end attributes of activities rather than physical 

relationships. As such, they could allow flexibility in construction technology. 

Taking into account both resource and spatial requirements, ScaRC (Thabet and 

Beliveau, 1997) is more developed than the aforementioned systems in terms of 

complexity of sequencing knowledge. The scheduling knowledge of ScaRC contains 

data of four constraint types: horizontal construction logic, vertical construction logic, 

resource and space. Incorporating different types of major constraints would result in 

more feasible schedules. However, ScaRC is developed at prototype level only. In 

addition, it neither automates the activity generation nor reasons the logics. Thus, it 

requires a large amount of manual work by the planners. 
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The above review shows that the use of KBS technique to automated 

construction planning has bloomed in the recent decades. One of the major advantages 

of this approach is that generic construction knowledge is systematically defined, 

represented and applied to produce schedules. However, similar to model-based 

scheduling systems, the existing KBSPs have two common shortcomings. Firstly, most 

of them only consider atomic topological constraints, and lack a means to capture and 

reason complex functional requirements. Secondly, they are built on CPM/PDM and 

thus, cannot generate multiple alternative schedules which possibly happen from 

different choices of construction methods or technologies. 

2.3.4. Construction Planning using Case-based Reasoning 

In recent years, it has been common to use case-based reasoning (CBR) for 

automated planning. The main emphasis of this approach is to reuse construction 

knowledge and historical project data for schedule generation in order to save time and 

effort and reduce errors (Faris, 1991). Various techniques may be applied to assigning 

importance weights, measuring similarity, and adapting cases so that past experience 

can be exploited. Most CBR planning systems use similar concepts and approaches, 

but differ in their combination and modification of techniques thereof to suit their 

domain of application. 

In the approach proposed by Chevallier and Russell (1998), historical projects 

with similar basic features are grouped together so that recurring project information 

and sequencing logic can be adapted to future projects through the use of standard 

structures and rules contained in project templates. The combination of rules and 

project templates could reduce some reasoning work which has already been 
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performed by the user in defining the template. Tah et al. (1999) developed CBRidge 

Planner for highway bridge projects. In this system, projects are defined as hierarchical 

structures with single components. Afterwards, these components are coupled with 

defined activities, grouped into cases and stored in a database for reuse. Similar 

construction processes are identified in terms of project specifications and using 

similarities of predefined sections of the structure. Dzeng and Tommelein (2004) 

presented CasePlan, a case-based system that automates the generation of construction 

schedules for power plant boiler erection. CasePlan uses a generic product model to 

establish the basis for project comparison so that existing schedules can be retrieved 

and reused for similar projects. A further research approach, CONPLA-CBR (Ryu et 

al., 2007), uses crude descriptions of project properties, such as subsoil specification, 

costs of construction, or floor-count to determine similar schedules.  

Some researchers also used IFC models as the basis for project description and 

comparison in CBR-planning. Mikulakova et al. (2010) use IFC data and IFC-based 

constraints to compute structural and content similarity measures. These similarity 

indicators are incorporated with weightings to retrieve the schedule of similar projects. 

Tauscher et al. (2009) and Hartmann et al. (2012) also used IFC models to find design 

similarity among projects. 

In general, CBR-based planning could help reduce some laborious and repetitive 

scheduling steps and exploit existing knowledge and experience so that the scheduling 

efficiency can be improved. However, while construction projects are commonly 

unique with different contract agreements, site conditions, or applied code and 

regulations, the similarity among projects which is the core concept of this approach 

may not sufficient to obtain a proper or feasible schedule.  
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2.3.5. Advanced Scheduling Techniques 

Previous research has attempted to improve the practical application of 

CPM/PDM to construction. Various analytical and heuristic methods were developed 

to resolve the resource allocation problems in construction planning, including Chan et 

al. (1996), Hegazy (1999), Leu and Yang (1999), Abeyasinghe et al. (2001) or Liu and 

Wang (2008). The proposed approaches aimed to incorporate resource capacity 

constraint into CPM and to identify a schedule solution with good project makespan 

while fulfilling this constraint. However, these approaches still lack a mechanism to 

explicitly capture and represent complex temporal constraints.  

Plotnick (2006) developed a Relationship Diagramming Method (RDM) as an 

extension of the traditional PDM with programmatically added “reason” codes so that  

planners can have a better understanding of the reasons for a relationship or an activity. 

By this, important data could be included in the representation of activities, and the 

semantic description of activities and relationships could thereby be enhanced. 

However, this extended feature of RDM is still sufficient to represent construction 

requirements systematically for automated sequencing and scheduling. On the other 

hand, Tamimi and Diekmann (1988) and Fan and Tserng (2006) aimed to generate 

alternative schedules using soft logic. Accordingly, a heuristic algorithm called 

SOFTCPM was developed to sequence the activities under the impacts of soft and 

fixed logics. Nevertheless, the scope of soft logic is still limited and unsuitable for 

construction requirements. 

Recently, Constraint Logic Programming (CLP) has emerged as a common 

planning and scheduling tool to overcome the limitations of CPM/PDM in processing 

complex temporal constraints and generating multiple alternatives (Van Hentenryck, 
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1989; Zweben and Fox, 1994). This is due to its ability to use constraints actively to 

reduce the computational effort to solve the combinatorial nature of scheduling 

problems (Caseau and Laburthe, 1994; Goltz, 1995).  Baptiste and Le Pape (2000) also 

noted that the performance of CLP schedulers is comparable to traditional operational 

research approaches, if not better for most problem instances, while offering greater 

model flexibility. Readers may wish to refer to Jaffar and Maher (1994), (Wallace, 

2002), or Apt (2007) for a more in-depth discussion on the basic concepts of CLP in 

Prolog and its extension to CLP. With the ability to process both precedence and 

disjunctive constraints, CLP has been widely used for resource-constrained scheduling 

problems. Some existing methodologies may be found in (Beck and Fox, 2000; 

Dorndorf et al., 2000; Fromherz, 2001; Cesta et al., 2002; Laborie, 2003; Lorterapong 

and Ussavadilokrit, 2012). For construction scheduling, these methods still cannot 

capture complex combinations of temporal constraints which possibly result from 

conditional constraints or inter-dependencies between construction requirements. In 

addition, they are not able to reason construction requirements into feasible schedules 

due to the lack of a modeling syntax and embedded reasoning knowledge. 

2.3.6. PDM++ Modeling Framework 

The PDM++ model (Chua and Yeoh, 2011) which has been adopted for this 

research, is one attempt to improve the application of CLP to construction scheduling. 

It extends the traditional PDM model by incorporating two basic logical operators 

“AND” and “OR” with the enriched syntax inspired by the Artificial Intelligence 

developed by Allen (1984). Accordingly, PDM++ not only maintains the capability of 

Allen’s representation but also subsumes the PDM model by allowing both minimum 

and maximum lag time requirements to be explicitly described.  
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Figure 2.1. PDM++ Temporal Relationships from Chua and Yeoh (2011) 

PDM++ generally consists of two different types of relationships: Unary and 

Binary. Unary relationships are defined as constraints affecting the start/finish time of 

a single activity while binary relationships specify the temporal constraints between 

two activities. For easy reference, a brief summary of PDM++ model is presented in 
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Figure 2.1 where m and ~m respectively denote minimal and maximal lag types. The 

third column shows the respective short form formats of PDM++ constraints which 

will be used throughout the next chapters. 

Based on mathematic definitions, PDM++ temporal constraints can be classified 

into two groups: simple and complex. Simple temporal constraints are those 

represented by only one mathematical inequality constraint. This group includes 4 

unary constraints and 8 binary constraints (with minimal and maximal lag 

requirements), forming the basic constructs used to represent complex constraints. In 

contrast, complex constraints are mathematically represented by either a conjunctive or 

disjunctive combination of inequality constraints. For example, constraint X Contains 

Y is represented by two inequality constraints  X Y and ( )
   Y XY d X d , 

which respectively refer to constraints (X SS(0) Y) and (Y FF(0) X). In other words, a 

complex temporal constraint is a conjunctive/disjunctive combination of at least two 

simple temporal constraints. 

Of various advanced scheduling techniques that have been developed to 

overcome the limitations of CPM/PDM in capturing and processing construction 

requirements, PDM++ could be the most effective in representing complex temporal 

constraints for generating alternative schedules. This attribute makes PDM++ 

employed as the background modeling tool to represent complex temporal constraints 

derived from construction requirements. However, similar to the traditional 

CPM/PDM, PDM++ does not include the necessary knowledge and reasoning tools to 

represent construction requirements and convert them into temporal constraints, which 

are vital for automated sequencing and scheduling. Hence, this research will overcome 
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this limitation by proposing construction requirement formalization tools and sequence 

reasoning frameworks which will be presented in the following chapters. 

2.4. Criticality Analysis in Construction Schedules 

If generating constructible schedules is the necessary condition of good schedule 

performance, schedule management could be considered as the sufficiency condition. 

Essentially, schedule management has been found to be the most crucial for schedule 

performance (Chua et al., 1999; Iyer and Jha, 2006). For good schedule management, 

it is necessary to identify the crucial parts of the schedule which need to receive more 

management attention than others, and criticality analysis is thus a crucial schedule 

management task. Currently, the concept of criticality could be examined from both 

activity and constraint viewpoints. This section therefore reviews the key research on 

criticality analysis in construction schedules from two perspectives of criticality: 

activity and constraint. 

2.4.1. Criticality Analysis from Activity Perspective 

The concept of criticality already has been introduced since the formation of the 

CPM. CPM (Kelley, 1961) allows planners to identify critical paths as a series of 

critical activities from beginning to the end of the project network (Wiest and Levy, 

1977). Accordingly, total and free floats are used to demonstrate the impact of 

delaying an activity on project makespan and on the early starts of subsequent 

activities, respectively. In particular, a critical activity has zero floats and any delay of 

its start time or any increase in its duration will delay its successor activities and 

prolong project makespan. 
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Criticality concept with float times has been used effectively in anticipating 

schedule changes arising from activity changes in CPM networks. However, it has 

been indicated in previous research that using floats to study the impact of changing 

the duration of a critical activity on schedule makespan is inadequate in PDM models 

due to the existence of non-finish-to-start relationships. Further information – critical 

arcs or constraints incident with a critical activity – need to be taken into account for 

the analysis. Various methodologies have been proposed to address this issue. Wiest 

(1981) suggested that there should be four types of critical activities, namely normal, 

reserve, neutral and perverse. A critical activity is classified as normal if a critical path 

passes through it from its start to finish, while it is called reserve if a critical path 

passes through it from finish to start. When a critical path enters and exists from the 

starting or finish point of an activity, changes in duration of this activity does not affect 

schedule duration and thus this activity is defined as neutral. Finally, if an activity has 

both normal and reserve impacts on project duration, it is called a perverse activity. 

The classification proposed by Wiest (1981) forms the background for various 

later research. A similar classification was also proposed by Moder et al. (1983). 

However, when incorporating activity splitting the authors further divided neutral class 

activities into two groups: start-critical and finish-critical. Elmaghraby and 

Kamburowski (1992) examined the criticality in activity networks with generalized 

precedence relations, and proposed that an activity is critical if at least its start- or 

finish- node belongs to a critical path. Accordingly, they classified critical activities 

into five groups: forward-critical, backward-critical, bi-critical, start-critical, and 

finish-critical. Valls and Lino (2001) developed a more detailed classification of 
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critical activities including six classes: normal, reserve, neutral, perverse, increasing 

normal, and decreasing reserve.  

From the above review, the proposed criticality classifications provide a deeper 

insight into how changes of critical activities influence project duration. These 

classifications were developed commonly by analyzing the nature of the critical arcs or 

constraints linking the critical activities. This implies that constraints play a key role in 

defining the way a critical activity affects project makespan, and analyzing the 

characteristics of constraints is thereby essential for criticality and change analysis in 

construction schedules. 

2.4.2. Criticality Analysis from Constraint Perspective 

Theory of constraint (TOC) advocates that most crucial constraints should be 

identified and resolved with the highest priority to enhance the overall system 

performance (Rahman, 1998). In traditional CPM networks, critical constraints are the 

critical precedence relationships linking critical activities and are often inferred from 

critical paths. In resource-constrained CPM models, the concept of critical path is 

extended to critical sequence to comprise critical activities linked by both 

technological and resource precedence relationships (Wiest, 1964). Various analytical 

approaches for identifying critical sequences have been developed, including those 

proposed by Wiest (1964); Woodworth and Shanahan (1988); Bowers (1995); Lu and 

Li (2003); Kim and de la Garza (2005); (Lu and Lam, 2008) and Liu and Shih (2009). 

However, as highlighted in Bowers (2000) and Rivera and Duran (2004), critical 

sequences might be different for different schedules, and might depend on the specific 

method being applied. Hence, critical constraints inferred from critical sequences 

might not be identical in different schedules or with different methods. 
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Chua and Shen (2005) developed an analytical methodology to identify key 

resource and information (RI) constraints causing project delays. The impacts of these 

enabling constraints on the overall project performance are represented by their floats. 

More specifically, a RI constraint is critical to project delays when it has zero floats 

since any delay in its Estimated Availability Time (EAT) will push back the latest time 

of the associated activity and consequently delay the overall project. It was found from 

their analysis that constraints related to non-critical activities could be critical and 

cause project delays when they are delayed. Therefore, in addition to normal critical 

constraints associated with critical activities, these constraints should also be well-

managed to reduce and prevent project delays. As such, this theoretical methodology 

has opened a novel perspective for schedule management from the viewpoint of 

constraint criticality. However, since this approach was built upon the traditional CPM, 

its application is still restricted to single constraints and from the perspective of a 

single schedule  (Nguyen and Chua, 2012). Consequently, it is found inadequate to 

handle construction requirements which may result in complex temporal constraints 

and multiple alternative schedules. 

It is found from the above review that a constraint is identified critical if it is 

involved in a critical path or sequence. In other words, only constraints linking critical 

activities and governing the project duration are critical. Hence, those governing non-

critical activities’ times are sometimes intuitively considered non-critical or 

unimportant. However, in construction stage, besides project duration, the start/ finish 

times of non-critical activities and activity sequence are also important to contractors 

as they may affect the overall work plan among related parties or different projects. In 

addition, existing approaches still focused on a single constraint and from a single 
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schedule perspective. Consequently, they are found insufficient for analyzing the 

criticality of construction requirements which usually comprise multiple temporal 

constraints and possibly lead to multiple alternative schedules. 

2.5. Identified Research Gaps 

The above literature review shows that numerous researches have attempted to 

improve the adequacy and efficiency of schedule generation and analysis using 

different approaches and perspectives. Schedules are controlled by construction 

requirements which arise from different construction aspects with various natures and 

often lead multiple temporal constraints. Thus, systematically formalizing construction 

requirements, automatically converting them into temporal constraints, and 

analytically analyzing them are necessary for automated scheduling. Nevertheless, 

these issues are not fully addressed in the current research, and the literature has 

prompted the following research gaps. 

Firstly, there is a lack of scheduling framework that allows the incorporation of 

multiple construction methods and complex construction requirements per se. 

Generally, construction requirements can exist in such different forms as functional 

dependencies between product components, temporal constraints on a single or 

between construction processes, and requirements of key resources and work space 

availability. Integrating these complex requirements for automated sequencing and 

scheduling requires an extended information modeling framework. Unfortunately, the 

present information modeling approaches focused mostly on elements of requirements 

such as atomic physical relationships, resource or spatial constraints. Hence, an 

extended framework is a necessity for automated scheduling from key construction 

requirements. 
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Secondly, there is a need for a generalized model to capture functional 

requirements and convert them into temporal constraints. Functional requirements, 

which encompass topological dependencies and intermediate function requirements, 

are among the most complex construction requirements. Generally, functional 

requirements are product-oriented and involved both permanent and temporary 

components. They could also result in complex combinations of temporal constraints 

which could lead to multiple alternative schedules. Despite this, existing sequencing 

approaches are found insufficient in automatically derive temporal constraints from 

such requirements. Hence, a more adequate sequencing framework from functional 

requirements is necessary for automated sequencing and alternative scheduling. 

Finally, there is a lack of a methodology for identifying critical construction 

requirements. Construction requirements are the governing factors of the feasibility of 

schedules; hence, identifying crucial requirements is necessary for good schedule 

management. Despite this, present criticality analysis approaches emphasis mainly on 

activities or single constraints. Besides, they are still carried out from the perspective 

of a single schedule. Since complex construction requirements normally involve many 

temporal constraints and possibly lead to multiple alternative schedules, these 

approaches are found inadequate to handle complex requirements. Therefore, a 

systematic approach for analyzing the criticality of constraints and construction 

requirements from the perspective of multiple alternative schedules is necessary so that 

crucial requirements can be identified and managed. 

2.6. Summary 

This chapter has presented a literature review on approaches for generating and 

analyzing construction schedules. The detail review shows that key construction 
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requirements have been inadequately captured and analyzed for schedule generation 

and management. This is due to the lack of representation and integration frameworks 

which allow for identifying, interpreting and integrating key requirements for 

automated sequencing and scheduling. The literature also depicts that a systematic 

approach for analyzing the criticality of construction requirements is needed for 

schedule analysis to achieve better schedule management.  

Subsequent chapters of this dissertation presents the research attempts to 

overcome the identified research gaps. In particular, a generalized framework for 

automated scheduling from construction requirements will be presented in the next 

chapter. This framework aims to improve the formalization and integration of complex 

construction requirements into the scheduling process. A generalized functional 

requirement model for representing and reasoning complex functional requirements 

into temporal constraints will be described in chapter four. A system architectural 

framework and necessary reasoning algorithms for implementing the proposed models 

will be presented in chapter five. Especially, to further enhance the efficiency of 

scheduling with complex constraints, a pre-emptive constraint analysis framework will 

also be developed in this chapter. Finally, chapter six will present an innovative 

approach for analyzing and managing construction requirements based on the impact 

of construction requirements on schedules. Altogether, these research results will form 

a generalized framework for automated schedule generation and analysis from the 

perspective of construction requirements, which allows the consideration, 

incorporation, pre- and post-analysis of construction requirements to achieve better 

schedule feasibility and efficiency. 
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CHAPTER 3. GENERALIZED FRAMEWORK FOR 

AUTOMATED SCHEDULING FROM 

CONSTRUCTION METHODS AND 

REQUIREMENTS 

3.1. Introduction 

Construction methods and requirements are key construction knowledge that 

should be explicitly represented and sufficiently incorporated into scheduling for good 

schedule generation and analysis. This chapter attempts to address these issues by 

developing a generalized framework for automated generation of schedules with 

consideration of alternative methods and major requirements. The development of this 

framework starts by defining core knowledge models for representing key project 

information originated from product, process, and construction knowledge 

perspectives. Four fundamental scheduling processes are then developed to 

automatically generate activities and temporal constraints from building models and 

the imposed construction requirements, and compute for alternative schedules. In 

combination, the proposed approach will help improve the current practice of schedule 

generation by allowing for the explicit representation and incorporation of construction 

knowledge in the form of construction methods and requirements, by automating the 

sequence reasoning and schedule computation processes, and by producing all feasible 

alternative schedules.   

3.2. Core Knowledge Models for Automated Scheduling 

This research proposes four core knowledge models: Extended Product, 

Construction Method, Construction Requirement, and Schedule to formalize the 
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project information as well as construction knowledge necessary for automated 

scheduling from construction requirements. 

3.2.1. Extended Product Model 

Product models are conceptual structures that represent the project-specific 

components. In many planning systems, product decomposition models are normally 

directly derived from design models, and describe only permanent components. This 

research employs an extended product model which includes both temporary structures 

and site works required for the construction of the permanent facility into the product 

hierarchy similar to Song (2006) as shown in Figure 3.1. Since temporary structures 

and site works are the main elements describing construction methods, such an 

augmentation enables an explicit description of the lifecycle, and functional behaviors 

of all components, as well as construction requirements associated with them. 

 Permanent component: Permanent components represent the permanent 

structures that will be delivered to the project owner after the construction. Once 

a permanent component enters the product system, it will remain there until the 

facility is demolished.  

 Temporary component: Temporary components refer to temporary facilities 

whose existence is governed by the applied construction method to maintain the 

stability of other components or support construction processes. As such, 

temporary component will be removed when the need for its functionality no 

longer exists.  

 Site work component: Site work components represent the site components that 

depict the site environment of the permanent facility, but do not belong to the 
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permanent facility. Example of site work components can be earth works and 

temporary accesses, which provide construction spaces or accesses to support 

construction processes. 

 

Figure 3.1. Extended product model 

Similar to traditional product models, components in each category are arranged 

in decomposition (i.e. part-of) hierarchies. In particular, the entire facility model is 

gradually decomposed into systems and subsystems (or zones and subzones if the 

decomposition is area-oriented), and components with no subcomponents are the 

lowest level of detail. By this, most of the facility components in the engineering 

design like beams, columns, or piles can be represented as product components in the 

extended product model. When large-size building elements like long shear walls or 
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wide slabs are divided into multiple segments, each segment is defined as a 

component. The decomposition levels of each component system can be determined by 

planners to a granulation degree suitable for describing construction requirements and 

planning intention. A product component comprises a set of main attributes as follows: 

 Geometry: Components have geometries, i.e. height, length, width or diameter. 

 Location: Components have locations in a 3D space. 

 Decomposition: Components can have constituting components.  

 Functionality: Components can have functional behaviors according to design 

intentions (for permanent components) or technological purposes (for temporary 

and site work components). Typical functions that a component can provide to 

another component are: support, suspend, contain, protect, and balance.  

 State chain: Each component has a state chain defined by the applied 

construction methods and depicting its transitive engineering behavior along its 

construction lifecycle. A state chain consists of a sequence of states, each of 

which describes an intermediate status of a component in the construction 

process. This research adopts and extends the component state concept proposed 

by Song (2006) in which a component state is divided into an active phase and a 

quiescent phase to distinguish the transitive engineering characteristics that 

determine the behavior of the in-progress component. Active phases are 

associated with construction processes while quiescent phases are the duration 

when no process happens to the component. Especially, in order to further 

distinguish the construction and completion stages, this research has augmented 

Song’s component state chain with a final quiescent state (Complete.Q) which 

represent the duration in which the component has been already constructed and 
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can perform its designed engineering behavior. This extension is necessary for 

representing construction requirements occurring in the service stage of a 

component like final functional dependencies. 

As shown in Figure 3.1, the construction lifecycle of the “RC Beam” has three 

consecutive processes: “Installing Rebar”, “Casting Concrete”, and “Natural 

Hydration”. The entire state chain representing this construction lifecycle is divided 

into four sequential states named: Rebar, Concrete, Strength Development, and 

Completion. Among these, state “Concrete” only contains an active phase as the beam 

the Natural Hydration starts right after Casting Concrete is finished, leading to an 

immediate change from states “Concrete” to “Strength Development”. The 

construction phase ends at the end of state “Strength Development” when the RC 

Beam meets its designed status, starting the completion phase, and thus the completion 

state has only quiescent phase. The final state of this component is “Completion” 

indicating the time period in which the beam has been fully constructed and can 

provide all functionalities or performances as design intention. 

Syntactically, a product component can be represented as follows: 

product_component(name, category, type, (geometries), (location), [decomposition], 

[functionalities], [state chain]). 

3.2.2. Construction Method Model 

Construction method model abstracts the knowledge of construction technology 

in terms of generic construction processes, resources and temporary structures required 

to facilitate the processes. To this extent, the following attributes are defined to 

represent a construction method. 
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 Type: A construction method can have either type: elementary indicating that the 

method refers to only one construction process, or aggregation defining a 

method as a combination of multiple elementary methods and thus involving 

multiple construction processes.  

 Construction Process: Construction process represents generic construction 

work that needs to take place with respect to the method. One process can be 

involved in different construction methods. In this case, the methods differ in 

other attributes. 

 Component Type: This attribute specifies the type or class of product component 

to which the method can be applied. 

 Temporary Structures: A method may require one or a set of temporary 

structures to support the process.  

 Key Resources: A method may also need one or more types of key resource to 

facilitate the process. 

 Quiescent Phase Allowed: This Boolean attribute describes whether the process 

allows for any gap between it and the subsequent process when two methods are 

sequentially applied to one component. In other words, it specifies if a 

component state associated with the process has a quiescent phase. A “Yes” 

value for this attribute indicates that the construction method does not require the 

method subsequently applied to the component to be carried out right after it. 

Consequently, the component state associated with this method has two phases: 

active and quiescent. In contrast, a “No” attribute requires the subsequent 

method to be carried out immediately after the method, and thus the associated 

component state has only active phase.  
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Figure 3.2 presents two examples of construction method: (a) elementary, and 

(b) aggregated methods. In case (a), the elementary construction method involves only 

one process, and allows a quiescent phase after the process has been finished. This 

means that when this method is applied to a beam component, the state “Rebar” can 

have both active and quiescent phases. On the other hand, in case (b), the aggregated 

construction method “Cast-in-situ” involves three construction processes. 

 

Figure 3.2. Examples of construction method 

Syntactically, a construction method can be represented as follows: 

construction_method(name, type, construction process, [component types], [temporary 

structures] , [key resource types], quiescent phase allowed). 

3.2.3. Construction Requirement Model 

A construction schedule is controlled by its constraints derived from construction 

requirements. The satisfaction of these requirements determines the appropriateness of 

the schedule. Therefore, to complete the representation of planning knowledge, 

construction requirements should be modeled as a fundamental data class in addition to 

products and construction methods.  

Construction requirements are grouped into two main categories (as shown in 

Figure 3.3): functional and non-functional. Functional requirements are classified 
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respectively as intermediate and final functional requirements. Non-functional 

requirements can be categorized into four sub-classes: temporal, key resource, work 

space, and value requirements. Temporal requirements refer to constraints imposed on 

the start/finish or the sequence among construction processes. Resource and space 

requirements respectively represent the needs of resource and space availability for 

constructing a product component and/or carrying out a construction process. Value 

requirements refer to constraints on measurable features of product components such 

as weight or geometries.  

 

Figure 3.3. Classification of construction requirements 

In general, a construction requirement implicitly imposes one or many 

functional, temporal, topological or measurable constraints on a single or some 

components, construction processes, resources and space entities. This research 

extends the generalized ontological model developed by (Yeoh, 2012) to describe a 

requirement  using three attributes: Purpose, Operator and the Necessary Condition 

that need to be satisfied for the fulfillment of the requirement. 

 Purpose: The purpose refers the agent that drives the requirement. The purpose 

attribute of a functional requirement is called “Function User” which is the 
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requester for the functionality behaviors of other product components to sustain 

its stability or construction. For a non-functional requirement, the purpose 

attribute refers to a construction process or a key resource or work space entity 

whose execution/performance is enabled by the fulfillment of the requirement. 

 Operator: The operator of a requirement depicts the product components, 

construction process, resource, or space entity whose behaviors, inter-

relationships or attributes need to meet some constraints  for the fulfillment of 

the requirement. In particular, the operator of a functional requirement is called 

“Function Provider” which involves a set of product components whose 

functionality behaviors provide the required functionality from the function user. 

The operator of a non-functional requirement is the resolution of the requirement 

and can involve a single or a combination of component states, construction 

processes, space or key resource entities, and measureable attributes of product 

components or construction processes. 

 Necessary Condition: The necessary condition involves the constraint(s) which 

must be fulfilled before the requirement is available for proceeding. It may be 

represented as functional dependencies, topological relationships between 

product components, temporal relationships among construction processes, or 

constraints of measureable features like the clearance between objects, weight of 

loads, or number of key resources. Measurable constraints can be defined in the 

form of arithmetic comparative relationships. Essentially, the necessary 

condition of a functional requirement normally comprises a functional 

relationship between function user and function provider. The temporal 

relationship between these two parties needs to be derived from the relationship 
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between the components involved in the function provider. For this purpose, a 

generalized framework for modeling and reasoning from functional requirements 

built upon this basic requirement model will be presented in the next chapter. On 

the other hand, the necessary condition of a non-functional requirement can 

comprises one or many constraints of other types (temporal, topological or 

quantitative). Typical taxonomies for functional dependencies are: support, 

suspend, contain, protect, and balance. Taxonomies for topological, temporal 

relationships and measurable constraints follow those defined in previous studies 

such as Nguyen and Oloufa (2002) and Chua et al. (2010) and are summarized in 

Figures 3.6 – 3.8. Necessary conditions having impact upon construction 

sequences need to be converted into temporal constraints for scheduling.  

 

Figure 3.4. Temporal relationships based on PDM++ model 
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Figure 3.5. Topological relationships 

 

Figure 3.6. Comparative relationships 

Figure 3.7a describes a functional requirement “R1: Beam B2 needs to be 

supported by two columns C1 and C2”. The purpose of R1 is represented by a function 

user which comprises of an individual or a set of components requesting for the 

functionality (B2). The operator of R1 is represented a set of component states of 

product components performing the required function (C1 and C2). The necessary 

conditions of R1 are the functional dependency between function user and provider. In 

Figure 3.7b, requirement R2 defines a dependency between the erection of beam B4 

and the construction sequence of beams B2 and B3. The purpose attribute of R2 is the 

erection process of beam B4 (B4-Erection). The operator comprises the two erection 

processes of beam B2 and B3 (B2-Erection and B3-Erection). The necessary condition 

involves a conditional temporal constraint among three processes.  
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Figure 3.7. Examples of construction requirement 

Syntactically, a construction requirement can be represented as follows: 

construction_requirement(description, [purpose], [operator], [functional relationships], 

[topological relationships], [temporal constraints],[measurable constraints]). 

3.2.4. Construction Schedule Model 

Construction schedule model formalizes the construction processes, and their 

temporal dependencies involved in the project. The schedule model is described in a 

hierarchical structure. Each hierarchy represents the construction of a system or 

subsystem of the product model. The decomposition attribute of a schedule can assist 

planners with rapid and concise representation of temporal constraints among groups 

of activities. It also allows for elaborating the schedule to a desired level of detail. 

Elementary activity is the lowest detail level of the schedule model. Each elementary 

activity has a one-to-one relationship with an active component state phase and 

involves  the following attributes: 

 Decomposition: Schedules can contain other constituting sub-schedules. 

 Temporal Constraint Set: Temporal constraint set contains all the temporal 

relationships between their constituting schedules (activities). Temporal 
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constraints or relationships are represented using relationships defined in 

PDM++ Model. 

 Start Time: Each schedule has a time range indicating its earliest and latest time 

of its commencement. 

 Finish Time: Each schedule has a time range indicating its earliest and latest 

time of its completion. 

 Duration: Each schedule has duration, which is the difference between 

earliest/latest finish and earliest/latest start times. 

 Resource Use: Resource use attribute is a list of key resources and amount 

required to support any activities in the schedule. At the activity level, this 

attribute is useful for estimating activity durations, while at a higher level, it 

provides information for resource management. 

 Space Use: Similar to resource use, this attribute is a list of work space entities 

used by all activities in the schedule. 

 

Figure 3.8. Example of schedule model 
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Figure 3.8 shows an example schedule model of a construction project with six 

levels of detail. The schedule model differs from a work breakdown structure (WBS) 

in that it contains temporal constraints between high-level schedules. For example, 

Super Structure Schedule must be at least 5 days after Basement Schedule (described 

as constraint B(5)). These constraints can be further elaborated into a set of constraints 

between their constituting schedules when schedules at a lower detail level are needed.  

3.2.5. Schedule Data Integration Framework 

Although a construction project may involve a variety of information and data, 

this research specify seven types of data which are indispensable for a construction 

requirement oriented automated scheduling system. The conceptual integration 

framework of these core data based on the proposed knowledge models is depicted in 

Figure 3.9Error! Reference source not found.. It is based on an object-oriented 

paradigm that defines the relationships between product components, construction 

methods, construction requirements, activities and temporal constraints.  

The Product Component class is devised to implement the proposed Extended 

Product Model. A product component object has a Name for identification. Its 

Geometries define its physical dimension such as height, length, or width. The 

Location attribute is defined in the form of (x, y, z) coordination in 3D space. The 

Category attribute takes one of three default values: Permanent, Temporary, and Site 

Work. The Type attribute defines the structural function, such as column, beam, and so 

on. The Decomposition attribute specify the direct subcomponents constituting the 

component. The Functionality attribute is used to capture the designed final 

functionality behaviors of the component. Finally and most especially, the State Chain 
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attribute describes the transitive engineering behavior along the component’s 

construction lifecycle. It contains a series of component state, each of which is defined 

by a construction method. 

 

Figure 3.9.  Integrated construction information framework 

The Component State object describes an intermediate status of a component in 

the construction process. It is defined by three core attributes: a Name or a unique ID, a 

Type with two default values: active and quiescent, and a Construction Process 

associated with the state. The value of construction process attribute is extracted from 
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the construction method defining the component state. Component state objects are 

also the key elements for representing construction requirements. 

The Construction Method object represents the core construction process and its 

corresponding requirements. It is defined by a unique Name, and a Construction 

Process. The Component Type attribute indicates the type of product component to 

which the method can be applied. The value of this attribute is presented in a set 

format. The Temporary Structures attribute define the set of temporary component 

types required for executing the method. Finally, the boolean Quiescent Phase Allowed 

attribute describes whether the process allows for any time gap between it and the 

subsequent process when two methods are sequentially applied to one component. The 

relationship between Construction Method and Product Component objects is many-

to-many, meaning that a construction method can be applied to many product 

components, and at the same time, a product component can be constructed using 

many construction methods. On the other hand, the association relationship between 

Construction Method and Component State objects is one-to-many, since a Component 

State is defined by only one Construction Method. 

The Construction Requirement class abstracts construction knowledge and 

project constraints imposed on the project. Construction requirement objects have three 

main attributes: Purpose, Operator, and Necessary Condition as defined in the 

construction requirement model.  Construction requirement class has two sub-classes: 

Functional Requirement class for representing functional requirements and Non-

functional Requirement class for non-functional requirements. Accordingly, the 

Purpose and Operator attributes are inherited as Function User and Function Provider 

in the functional requirement sub-class. The Necessary Condition attribute is 
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elaborated into Function Type and Provider Co-functionality in the former, while as 

Temporal, Topological and Measurable constraints in the later. In essence, the 

Functional Requirement objects have a Provider Co-functionality attributes to capture 

the relationship among the providers involved in the requirement. More detailed 

description on formalizing functional requirements will be provided in chapter four. In 

general, a Construction Requirement object can be associated with one or many 

Component States and/or Activities, forming a many-to-many association relationship 

between Construction Requirement and Component State and Activity classes. 

Moreover, since a construction requirement can be converted into a set of temporal 

constraints, the relationship between Construction Requirement and Temporal 

Constraint objects is one-to-many. 

The Activity class represents the construction processes required for the project. 

An Activity object is distinguished by its Name, and has three core temporal attributes: 

Duration, Start, and Finish. Especially, an Activity object can be constituted by other 

Activity objects, which are captured using the Decomposition attribute. The temporal 

relationships among activities are captured by the Temporal Constraint class. 

Generally, a Temporal Constraint object defines an interval-to-interval relationship 

between two time intervals. Accordingly, it is abstracted with five key attributes: 

Relationship Type specifying the constraint type (such as Before, Start, Finish, etc.), 

Preceding Interval, Succeeding Interval, Lag, and Lag Type (minimal or maximal). 

Finally, the Schedule class incorporates activities and temporal constraints for schedule 

computation. A Schedule object consists of an Activity List, a Constraint List, a Start 

Date and a Makespan. 
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Overall, the integrated information framework proposed in this section allows for 

the unambiguous formalization and incorporation of construction knowledge in the 

form of construction methods and requirements. The association relationship among 

the core seven data classes also forms the foundation for linking three main 

perspectives: product, construction knowledge, and process, so that inference and 

reasoning mechanisms for automated sequencing and scheduling based on construction 

knowledge can be performed. 

3.3. Generalized Framework for Automated Scheduling from 

Construction Requirement (ASCoRe) 

 

Figure 3.10. IDEF representation of the ASCoRe framework 

Figure 3.10 depicts a generalized framework for Automated Scheduling from 

Construction Requirements (ASCoRe). This framework comprises four kernel 

inference and reasoning processes necessary for an automated scheduling system. The 
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scheduling process begins with process “P” (for product) which aims to create an 

extended hierarchy of product components using 3D design models and construction 

methods defined in a method library. Output of this process is a product component list 

organized in a hierarchical structure using the extended product model. 

The product component collection obtained from process “P” is used by process 

“R” (for requirement) to identify construction requirements imposed on the project. 

Common construction requirements can be inferred from basic requirements stored in 

a library, and represented using the construction requirement model. Subsequently, the 

list of requirements obtained from process “R”, the product component list, defined 

work packages and production estimates are input to process “S” (for schedule) to 

create the schedule model. This network contains a list of activities with associated 

durations and a list of temporal constraints defining the precedence relationships 

among activities. Finally, activity and constraint lists are input to process “A” (for 

alternative scheduling) to compute for alternative schedules. This process is facilitated 

by a set of inference and computation algorithms embedded in a schedule generator. 

The output of the entire scheduling is a set of alternative schedules fulfilling the 

imposed construction requirements while also optimizing the project makespan if such 

a schedule exists. 

3.3.1. Process P: Generating Extended Product Hierarchy 

This process transforms graphical project description to data representation. 

Figure 3.11 depicts its three main procedures which sequentially refine an arbitrary 3D 

design model into a standard structure, incorporate the refined design with construction 

method, and generate an extended collection of product components. 
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Figure 3.11. Procedure for creating an extended product hierarchy 

3.3.1.1. Normalizing Design Model 

A standard 3D design model is an important input for model-based scheduling. 

However, 3D design models do not have a clear definition of components due to 

different modeling practices. A building element may be modeled as a combination of 

multiple standard components. For instance, a designer may draw a column from 

ground slab to roof, while another may draw columns for each floor only. Similarly, in 

some designs, a multi-span beam is modeled as one beam from the first supporting 

column to the last one, or it can be divided into multiple beams, each of which 

corresponds to one span. Such differences will lead to ambiguous recognition of 

components and their functionality behaviors. Therefore, design elements need to be 

decomposed into a standard granularity level. For a clear and accurate functionality 

representation and analysis, this research adopts the component definition from the 

structural analysis perspective, in which components are defined based on their 

structural joints. For example, beams must be decomposed into single-span beams, 

slabs are defined by its supporting beams, and so on. Besides, design mistakes such as 

wrong connections, and design elements that are not necessary for planning such as 

annotations or comments can also be removed in this process. 

The normalization procedure also facilitates the reasoning about functional 

relationships among components. Especially, the most common functional dependency 
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“support” can be inferred based on topological relationships and component type. For 

example, a column supports a beam if it is connected to the beam at its upper end. 

Other types of functional relationships like “suspend”, “protect” or “balance” need to 

be specified directly by engineers or planners. 

3.3.1.2. Creating Design-Construction Integrated Model 

Construction knowledge is incorporated into normalized design models by 

assigning construction methods to product components. This assignment enables the 

automated generation of component state chains. For instance, if column is linked with 

an aggregate construction method “Cast-in-situ” = [Rebar, Concrete, Curing], its state 

chain is defined by the elementary methods constituted in the aggregate method and 

can be derived as [Rebar.A, Rebar.Q, Concrete.A, Curing.A, Completed.Q]. When 

multiple methods are assigned to a component for considering choice of methods, their 

corresponding state chains will be generated accordingly. Moreover, multiple methods 

can be assigned to one component. In this case, a component may have multiple state 

chains, each of which is corresponding to one method. 

The requirement of temporary structure defined in construction methods is used 

as a guideline for planners to identify temporary structures for the project, and they can 

decide if it is necessary to add these structures into the 3D model. Especially, 

temporary components will be automatically added to the product collection after a 

construction method is assigned to a permanent product, and a functional relationship 

between it and the permanent product is also set up. When different methods applied to 

a permanent component require a same type of temporary structure, only one 

temporary component of the common type will be added to the product collection to 

avoid generating unnecessary components. The state chain of temporary components 
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can also be defined through the methods applied to the components. However, a 

default state chain of [Erect.A, Erect.Q, Dismantle.A] can be assigned to a temporary 

component if no construction method is explicitly assigned to it. Pre-emptively 

generating temporary components from method assignment helps to ensure temporary 

components are adequately defined. If visualizing temporary is required for spatial or 

structural analysis, planners have to manually insert them into the design model, and 

then link them to pre-generated temporary components so that functional relationships 

between the temporary and permanent components are retained.  

In addition, key resource requirements defined in construction methods can be 

linked to the associated component states through the assignment of construction 

methods to components. In particular, key resource requirement is defined as an 

attribute of component states. The value of this attribute can be automatically derived 

from the associated construction methods. 

3.3.1.3. Generating Extended Product Hierarchy 

In this step, product data are extracted from normalized construction-design 

integrated models and structured into a hierarchical format. Data extracted should be 

sufficient to set up major attributes of product components as defined in the previous 

section, including: component category, component class, decomposition, geometry, 

location, functionality, and state chain.  

The detailed structure of the product hierarchy can vary for different projects and 

should be specified by planners. By manually defining the structure of the product 

hierarchy, planners can control the level of detail for any part of the project based on 

their management strategies. For instance, they may want to elaborate the beams into 
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individual components at every floor level, and at the same time represent all columns 

in one story as one component only. However, standard structures can be predefined 

for basic project types. For building projects, a standard product hierarchy can be 

predefined according to functional component systems like piles, footings, beams, 

columns, etc. and floor levels. Similarly, a generic product hierarchy for bridge 

projects may include basic component systems such as piles, piers, beams, decks, 

tendons and so on. 

3.3.1.4. Generating Space Entities and Spatial Interference Matrix 

When spatial requirement is considered for planning, key space elements can be 

included into 3D models, and a collection of space entities also can be generated 

within this process. Space requirements may also be automatically defined using 

existing approaches such as Akinci et al. (2002), Gominuka and Sadeghpour (2008), or 

Shih-Chung and Miranda (2008). Space entities have types which are categorized 

following the space utilization hierarchy model developed by Chua et al. (2010) (see 

Figure 2-7) which defined four major space types: Interdiction Space Element (type I), 

Dead Space Element  (type D), Work Space Element  (type W),  and Path Space 

Element  (type P). Interdiction Spaces are spaces where no product, process or 

resource is allowed to occupy, and typically specified for reasons of hazards or 

protection. Dead Spaces are generally occupied by a “permanent” physical product 

component such as slabs and walls. Work spaces are defined as space entities where 

processes are carried out, and are typically adjacent to work faces, while Path spaces 

are defined as entities where movement of workers, equipment and/or physical 

materials from an initial designated origin to the final destination takes place.  
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A spatial interference matrix contains information of pair-wise topological 

relationships is also created in this process. Topological relationships follow the 

classification described in Error! Reference source not found.. They play a key role 

for planners to reason for a proper sequence when a spatial conflict occurs between 

construction processes.  

3.3.2. Process R: Identifying Construction Requirements for Scheduling 

Basic requirements can be automatically derived from product model or 

modified from generic requirements stored in libraries, while complex or project-

specific ones need to be determined by planners.  

3.3.2.1. Representing Functional Requirements 

Final functional requirements describe the functional relationships between 

permanent components in their completion stage according to the design intentions, 

and are equivalent to physical relationships in other planning systems. These 

requirements normally include completed states of permanent components. Such 

simplicity enables them to be automatically derived from functionality attributes of 

permanent components. Figure 3.12 presents simple reasoning rule for automatically 

generating final functional requirements from the product model. 

 

Figure 3.12. Example rule for generating final functional requirements 
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Similarly, simple intermediate functional requirements like those defined in 

construction methods can be obtained from the functionality attributes of temporary 

components. However, complex intermediate functional requirements may involve all 

component categories. The function provider of these requirements normally 

represents the engineering solution for the requirement which could be derived from 

different construction methods, and thus they are often project-specific and generally 

are specified directly by planners. For instance, in a basement construction, the 

retaining wall requires a support function to maintain its stability. There are two 

possible solutions for this requirement resulting from two construction methods: a steel 

shoring system and a ground anchor system, and the function provider of this 

requirement refers to multiple component systems.  

3.3.2.2. Representing Non-functional Requirements 

For easy and rapid generation, generic non-functional requirements can also be 

predefined in libraries. For example, a generic safety requirement can be predefined as 

shown in Figure 3.13a, in which purpose refers to a generic safety requirement, and 

performance attributes are defined by generic construction process, and the necessary 

condition is represented as a temporal constraint. When this requirement is added to 

the project, it will be applied to all welding and painting activities, and a set of 

requirements can be automatically generated from this pattern. Similarly, Figure 3.13b 

presents an example of resource requirement. In this case, the performance attribute 

refers to a key resource requirement of a construction process while the performance to 

a generic construction process and resource type. The necessary condition is defined as 

a key resource requirement with an abstract constraint defining the number of 

resources required by the excavation process. 
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Figure 3.13. Generic non-functional requirement 

3.3.3. Process S: Generating Schedule Model 

Activities and temporal constraints are key elements of a schedule. This section 

describes the generalized procedure for generating them from a product hierarchy and 

construction requirements. 

3.3.3.1. Generating Activity Hierarchy 

An activity refers to a construction or management process that facilitates the 

production of product components. Accordingly at the lowest level of detail, an 

elementary activity is equivalent to an active component state phase. In this 

framework, the term “elementary activity” is used to indicate a construction process 

happening on one product component. They are the core entities from which activities 

(in normal context) are created. Based on this equivalence, the collection of elementary 

activities can be directly derived from component state chains in the product model. 

As illustrated in Figure 3.14, component B1 has a state chain of three active state 

phases Rebar.A, Concrete.A, and Curing.A linked with three construction processes 

Rebar, Concrete and Curing extracted from the applied methods. These processes are 

associated with three elementary activities, and thus the associated active state phase 
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can be intuitively converted into elementary activities. Especially, a quiescent state 

phase are converted into a B(0) relationship between its immediate precedent and 

succeeding active state phases. The relationship between two consecutive active state 

phases in a component state chain is converted into a Meets relationship to maintain 

the continuity nature of the state chain. 

 

Figure 3.14. Conversion from component state chain to elementary activities 

The one-to-one transformation from component states to elementary activities 

provides a clear link between product and process models. It also allows flexibility for 

updating the process model when any change occurs in the product model. For 

example, if a planner wants component B1 to be precast instead of cast-in-situ, the 
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state chain of this component will be replaced with a new state chain [Erect.A, 

Completed.A] describing the precast method. The elementary activities associated with 

the old state chain will correspondingly be replaced by new ones.  

Activities at higher levels in the hierarchy are defined as combinations of those 

in the lower levels. Since an activity represents a construction process happening on a 

group of components, it is formed by the aggregation of elementary activities 

associated with the same construction process. By this, an activity can be considered as 

a work package – the amount of work produced by a construction process. Moreover, 

this definition of activities does not require their constituting elementary activities to 

be associated with components at the same level of detail. Hence, planners can have 

more flexibility in defining scope of work for construction processes as well as 

choosing different level if details for different parts of project when necessary.  

As shown in Figure 3.15, the constituting elementary activities of activity 

Level1-Rebar refer to component states of components at different levels of detail. In 

particular, component B1 is a component system comprising all beams in level 1, 

while S11 is an individual slab belonging to a slab system Level 1. Moreover, when 

unnecessary for schedule computation, elementary activities can be replaced by their 

activities to simplify the schedule model and reduce computational effort. 

A meta-activity, which is equivalent to a “meta-interval” used by Yeoh (2012) or 

the “summary activity” in Microsoft Project, is a contains a collection of activities of 

similar or different construction processes. Meta-activities are necessary for 

hierarchical planning through higher level abstractions of a group of activities. With 

this construct planner can also divide the project into sub-projects according to any 
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intention for better management. In addition, temporal, key resource and work space 

requirements can be represented at this level. 

 

Figure 3.15. Three detail levels of a typical activity hierarchy 

3.3.3.2. Deriving Temporal Constraints between Activities 

Generating sequencing constraints could be the most difficult scheduling task, 

especially in this framework as they are derived from various types of construction 

requirement. In general, construction requirements can be defined at three levels: 

component states, activities, and meta-activities, and refer to four main requirements: 

functional dependencies, temporal relationships, space, and key resource constraints. 

They are converted into temporal constraints at the activity level. 

Figure 3.16 depicts the approach for generating temporal constraints between 

activities used in this framework. Each requirement type is converted throughout three 

levels: component state, elementary and activity, and finally reasoned into temporal 

constraints. Firstly, requirements defined at component state level are converted into 
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those at elementary activity level. In particular, functional necessary conditions of 

functional requirements are transformed into temporal constraints among component 

states. This transformation process is facilitated by a reasoning framework called 

FReMAS described in chapter 4. 

 

Figure 3.16. Approach for generating temporal constraints 

Component state-based temporal constraints are converted into those between 

elementary activities based on the one-to-one relationship between an elementary 

activity and the active phase of a component state (as illustrated in Figure 3.17). In 

other words, this step will remove all quiescent state phases from the scheduling 

model, and transfer key resource and workspace requirements related to a component 

state to those of associated elementary activities. The quiescent phase between two 

active phases in a state chain is represented by a Before relationship between the 

elementary activities corresponding to the active phases, and the continuity constraint 

between two active phases is captured by relationship Meets between their associated 

elementary activities. 
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Figure 3.17. Convert requirements from component state to elementary activities 

Requirements at activity level are generated by aggregating those in their 

constituting elementary activities. Since an activity has identical temporal attributes 

(duration, start and finish times) to those of its constituting elementary activities, it will 

“inherit” all temporal constraints in which they are involved. In other words, any 

temporal constraints between two elementary activities involved in two different 

activities will be maintained as a temporal constraint between the two activities. This 

conversion is supported by the assumption in which the start and finish times of all 

elementary activities are the same as those of their activity. Since this one-to-one 

conversion could result in some duplicate constraints, a constraint refining process will 

be applied to remove such duplications. Similarly, resource and workspace 

requirements are also transferred from its constituting elementary activities, and 

duplicate requirements will then be removed using a refining process.  

As illustrated in Figure 3.18, the temporal constraints between activities A1 and 

A2 are derived from those among their constituting elementary activities [a11, a12, 

a13] and [a21, a22]. In particular, four B(0) constraints a11-a21, a12-a21, a12-a22, and 
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a13-a22 are combined into one, and two constraints SS(2) and FF(1) are also 

maintained between A1 and A2. In a similar way, the resource and space requirements 

of A1 and A2 are the combination of all required in their elementary activities. In 

addition, all resource requirements of the same resource type will be aggregated into 

one with maximal required value as this will subsume all requirements with smaller 

required numbers. 

 

Figure 3.18. Convert requirements from elementary activity to activity levels 

The obtained key resources and space requirements will then be reasoned into 

temporal constraints. The reasoning rules are respectively based on the number of 

available resources and topological relationships between space entities. For example, 

a typical resource reasoning rule can be defined as: “If two activities require the same 

resource type, and the total required amount exceeds the available amount then they 

must be taken place disjunctively.” If, for instance in Figure 3.18, only 2 items of 

resource R1 are available, then an additional Disjoint constraint between activities A1 

and A2 will be added to the constraint collection. Similarly, a Disjoint constraint will 
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occur between two activities if their required space entities have a conflict relationship. 

The syntax and procedure of the inference mechanisms for reasoning key resource and 

work space requirements will be described in more detail in Chapter 5. 

Requirements can also be assigned to a project at a meta-activity level, or in 

other words, between meta-activities. They are also need to be elaborated into 

requirements at activity level. Resource and spatial requirements among meta-

activities are first reasoned into temporal constraints among them using the similar 

reasoning rules for activity level. Subsequently, temporal constraints between meta-

activities are elaborated into those between their constituting activities. In brief, if a 

meta-activity MA1 has a simple temporal constraint C (such as B, SS, FF, and SF) 

with another meta-activity MA2, then there will be a constraint C between each 

activity constituting MA1 and every activity in MA2. This inference rule is supported 

by the implicit temporal constraints between a meta-activity and its activities as well as 

the transitive attribute of temporal relationships.  In fact, meta-activities are equivalent 

to the meta-interval concept in the PDM++ model developed by Yeoh (2012). Readers 

may need to refer to this reference for a more discussion on elaborating constraints at 

meta-activity level to those at activity level. 

 

Figure 3.19. Convert temporal constraints from meta-activity to activity level 
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As illustrated in Figure 3.19, the precedence relationship (B(0))  between two 

meta-activities representing two groups of activities can be equivalently represented by 

six B(0) constraints, each of which is between one activity in one meta-activity and 

another from the other meta-activity.   

3.3.4. Process A: Computing for Alternative Schedules 

This final process in the ASCoRe framework is to generate all alternative 

schedules for the project. Inputs for this process include a list of activities and a list of 

temporal constraints between them. Due to the reasoning process, there may be 

multiple constraints between a pair of activities, some of which may be redundant 

while some conflicts each other. In addition, there may be many disjunctive constraints 

resulting from key resource requirements or alternative methods, and this could 

increase the problem size. Therefore, a constraint pre-analyzing process is developed 

to determine redundant and conflicting constraints between any pair of activities. This 

process will help to resolve some constraint inconsistencies and remove unnecessary 

disjunctive constraints, reducing computational effort. A detail description of this 

preemptive constraint analysis approach is presented in chapter 5. 
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3.4. The scheduling problem is formulated as a constraint satisfaction 

problem (CSP) and constraint logic programming (CLP) is used 

for schedule computation. This method is selected so that a 

complete solution (all alternative schedules) of scheduling 

problems can be obtained. The outcome generated can be either 

types: First, if the constraint set are still inconsistent, no result is 

obtained. Second, when there is no conflict in the constraint set, a 

collection of all alternative schedules with minimal makespan are 

returned as output. These schedules represent alternative 

construction sequences leading to similar project completion 

time. Concluding Remarks 

This chapter has proposed a generalized framework for automated scheduling 

from construction methods and requirements (ASCoRe). This scheduling approach is 

built upon four core knowledge models: product, construction method, construction 

requirement and schedule. The significant advantage of these core knowledge models 

is that they allow construction requirements to be flexibly and explicitly captured and 

incorporated into scheduling. Such a clear and unambiguous elicitation of construction 

requirements is also essential for schedule analysis and management. Especially, it 

allows for the identification of critical requirements and their impact upon schedules 

when changes happen. 

The ASCoRe approach, which generalizes model-based scheduling techniques, 

consists of four fundamental processes: (P) to generate an extended product hierarchy, 

(R) to identify main construction requirements, (S) to create a schedule model by 

generating activities and temporal constraints, and finally (A) to compute for 

alternative schedules. With these processes, the ASCoRe framework determines all 

necessary procedures for automated scheduling. Therefore, it can be applied any 

project types such as building, bridge or highway projects. Moreover, by using 

component state as the elementary construct linking the product and process 
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perspectives, ASCoRe facilitates both product- and process-based planning, and at 

different levels of detail. 

Background concepts for generating activities and deriving temporal constraints 

from project descriptions – product model and construction requirements are also 

presenting in this chapter, providing the foundation for the development of reasoning 

and inference methodologies in the succeeding chapters. In particular, a generalized 

model for representing complex functional requirements and transforming them into 

temporal constraints is described in chapter four. This framework plays a key role for 

the ASCoRe framework by facilitating the adequate identification of possible 

construction sequences. Chapter five describes a system architectural framework and 

reasoning algorithms for implementing the ASCoRe approach.  
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CHAPTER 4. AUTOMATED CONSTRUCTION 

SEQUENCING FROM FUNCTIONAL 

REQUIREMENTS 

4.1. Introduction 

 Functional requirements are a special class of construction requirements. They 

relate to the engineering behavior of product components. In order to incorporate 

functional requirements into schedule, they have to be captured and converted into 

temporal constraints for schedule computation.  

To address the above issue, this chapter proposes a generalized Functional 

Requirement Model for Automated Sequencing (FReMAS). FReMAS extends the 

requirement model introduced in Chapter 3 and the Intermediate Function concept 

proposed by Song and Chua (2006) for modeling and interpreting complex functional 

requirements. In essence, it contains three main components: a Representation Model 

to formalize a functional requirement, a Temporal Model to systematically define 

temporal attributes of a functional requirement, and a Construction Sequence 

Reasoning Framework to convert its temporal attributes into temporal constraints. One 

primary advantage of this modeling framework is its ability to derive all construction 

sequences from complex functional requirements, thus efficiently facilitating the 

ASCoRe framework.  

This chapter starts with a brief overview of the Intermediate Function concept to 

provide readers with necessary understanding of the background of FReMAS. It then 

proceeds with the descriptions on three main components of FReMAS and ends with 

case study demonstrating its application into automated scheduling. 
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4.2. Modeling Perspectives of a Functional Requirement 

The present research employs and modify the concept of Intermediate Function 

proposed by Song (2006) to produce a more generic and flexible representation 

schema, facilitating the generating, updating, and reasoning both intermediate and final 

functional requirements for scheduling purpose.  

The Intermediate Function concept captures an intermediate functional 

requirement from three perspectives: user (purpose), provider (operation), and the 

interaction relationship between them. From a purposive aspect, a functional 

requirement refers to a “functionality demand” of a product component or a structure 

system to sustain its existing status. As such, the term “purpose” is described from a 

viewpoint of the user, who can select different engineering solutions to achieve his 

demands. Generally, functionality demands can occur during any period of time along 

the lifecycle of a product component, in both construction and service stages. In 

construction stage, a product component may demands various intermediate 

functionalities to sustain its status changing along with the construction progress. 

These intermediate functionality demands also vary accordingly. For example, in 

addition to demanding of a supporting functionality through its construction period, a 

cast-in-situ concrete beam also requires a containing functionality when concrete is 

cast to retain its shape. In the service stage, a product component can also require 

certain functionalities to maintain the design intention. These requirements are defined 

as final functionality demand.  

On the other hand, described from a provider viewpoint, the “operation” or 

“behavior” is inherent to the product, and is independent of the purposes of the 

potential user. In other words, as an “operation”, a functional requirement refers to the 
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functionality performance or behavior of a product component. Similar to functionality 

demand, functionality performance also varies along the lifecycle of a product 

component. It is also distinguished since intermediate and final functionality 

operations respectively refer to those performed in construction and service periods. A 

precast column, for instance, generally could not perform any functionality during 

erection; yet when erected (in the service stage), it can provide a support functionality 

to the connected beams. 

Interaction relationship between user and provider is represented by temporal 

and spatial interactions. The temporal interaction is described by the requirement time 

window and availability time window from the user and provider perspectives 

respectively, while the spatial interaction is evaluated based on the spatial-temporal 

relationship between user space and provider space. These interactions allow 

constructability conflicts in a schedule solution to be identified. 

The concept of Intermediate Function provides a systematic approach to examine 

the fulfillment of intermediate functional requirements for constructability analysis. 

However, there remain three major drawbacks making it inadequate for schedule 

generation. Firstly, the Intermediate Function concept defines a one to one relationship 

between the user and provider. In other words, a functional requirement comprises one 

user and one provider. This is inadequate to capture multiple complex requirements 

which involve multiple engineering solutions. Secondly, the temporal attributes of 

function user and provider are defined at an aggregated level and cannot be applied for 

sequence reasoning at individual user and provider level. Finally, this concept does not 

provide any reasoning knowledge for translating complex functional requirements into 

temporal constraints at component state level, the key constraints for schedule 
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generation. The generalized functional requirement model presented in this chapter 

aims to overcome these limitations by providing a generalized representation model, a 

detailed temporal model and a systematic sequence reasoning framework for 

formalizing and converting complex functional requirements into temporal constraints 

for schedule generation. 

4.3. Representing Complex Functional Requirements 

Generally, the user and provider of a functional requirement may involve 

multiple product components. Function provider represents the engineering solution 

for a functional requirement. The engineering solution can possibly be derived from 

the applied construction method or resource usage. Practically, when multiple 

construction methods or resources are utilized, there are probably more than one 

engineering solution for a functional requirement. For example, in a basement 

construction, the retaining wall requires a support function to maintain its stability. 

There are two possible solutions for this requirement resulting from two construction 

methods: a steel shoring system and a ground anchor system. Thus, to capture these 

situations, the definition of function provider is extended to contain multiple providers, 

each of which refers to an engineering solution for the requirement. In other words, 

each provider represents one producer of the required functionality. A provider may 

involve a set of components sharing their performance to jointly produce the 

functionality. Each component is also specified by a set of component states during 

which the functionality exists.  

In order to capture these special characteristics, this chapter extends the 

construction model presented in chapter three with two more attributes to better 
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describe a complex functional requirement. By this, a functional requirement is 

captured with four basic modeling entities, termed as: function user, function provider, 

function type, and provider co-functionality, as shown in Figure 4.1. The “dot” 

notation is used to define component state as : “Component.State.StatePhase”. 

 

 Figure 4.1. Core entities representing a functional requirement 

Function user (U) and function provider (P) entities respectively refer the 

requester (or the p) and the supplier of the required functionality. The function type (T) 

entity is employed to define the nature of the required functionality, such as “support”, 

“protect” or “balance”. The final entity – provider co-functionality (C) refer to the 

interactions among the providers in the function provider. Syntactically, a functional 

requirement F is defined as relation of the corresponding entities as follows: 

 ( , , ) F F F FF T U P C    (4.1) 

4.3.1. Function User 

Function user refers to all requesters which demand a similar functionality 

performance from the providers. As such function user may involve one or more 
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components, each of which is called a user and specified by a set of component states. 

Accordingly, a functional requirement with multiple users is the aggregate of the 

similar functional requirements of all individual users.  

In Figure 4.1, the function user of the requirement F consists of two users, uF,1 

and uF,2, representing two product components PC1 and PC2 respectively. PC1 

requires for the functionality during three state phases from PC1.SP3 to PC1.SP5 

while PC2 requires that functionality during its PC2.SP3 phase. The representation 

format of individual users and the function user in this example is described as: 

,1 [ 1. 3. , 1. 4. , 1. 5. ]Fu PC S A PC S Q PC S A  

,2 [ 2. 3. ]Fu PC S A  

[[ 1. 3. , 1. 4. , 1. 5. ],[ 2. 3. ]]FU PC S A PC S Q PC S A PC S A  

4.3.2. Function Provider 

Function provider represents the engineering solution for a functional 

requirement. The engineering solution could be derived from construction method or 

resource usage. Practically, when multiple construction methods or temporal structures 

are utilized, there are probably more than one engineering solutions for a functional 

requirement. A function provider consists of one or many providers, each of which 

represents one engineering solution that could resolve the functionality required by 

function user. A provider may involve a set of components sharing their performance 

to jointly produce the functionality. Each component is also specified by a set of 

component states during which the functionality exists. 

For the example shown in Figure 4.1, there are two providers, pF,1 and pF,2 

available for the functional requirement F. pF,1 refers to the functionality performed by 
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component PC3 from states PC3.SP2 to PC3.SP3, while pF,2 refers to the engineering 

solution resulting from the simultaneous functionality behaviors of component PC4 

during PC4.SP3 and component PC5 during phases PC5.SP1 to PC5.SP3. These 

providers are represented as follows: 

,1 [[ 3. 2. , 3. 3. ]]Fp PC S Q PC S A  

,2 [[ 4. 3. ],[ 5. 1. , 5. 2. , 5. 2. ]]Fp PC S A PC S A PC S A PC S Q  

[[[ 3. 2. , 3. 3. ]],[[ 4. 3. ],[ 5. 1. , 5. 2. , 5. 2. ]]]FP PC S Q PC S A PC S A PC S A PC S A PC S Q  

4.3.3. Function Type 

The Function Type entity is used to capture descriptive information about the 

nature of the required functionality. As such, its major use is for distinguishing the 

nature of the required function. Some examples of function type taken from literature 

are: support, suspend, hold, contain, protect, balance and generate. 

4.3.4. Provider Co-Functionality  

The interaction among different engineering solutions presented by providers in 

a functional requirement is termed provider co-functionality in the context of this 

research. When only one construction method or resource can be used for the 

requirement, only one engineering solution can be applicable at any time. This leads to 

a mutually exclusive relationship among them. Consequently, the associated providers 

are also mutually exclusive. In this case, the functioning interaction is classified as type 

E. For the above basement construction example, the two methods are mutually 

exclusive, and thus the co-functionality between the related providers is defined as 

type E. On the other hand, if the construction methods can be used regardless of the 

existence of the others, all engineering solutions can be jointly used for the required 
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functionality. As such, all providers can share their performance for joint functionality. 

In this case, the functioning interaction is classified as type C where all the providers 

are compatible and can be jointly applied for the requirement. 

Examining the co-functionality of providers is necessary for scheduling since it 

can impact the schedule results. When mutually exclusive, only one engineering 

solution or provider can be used at one time to satisfy the requirement. In contrast, 

when mutually compatible, all engineering solution could be combined to jointly 

perform the required functionality so that the project completion time can be enhanced. 

4.3.5. Illustrative Example 

Figure 4.2 presents the state chains of six components: Cast-in-situ walls W1 and 

W2, precast beams B1 and B2, scaffolding system SC1 used for beam installation and 

the earthwork component TR1.  

 

Figure 4.2. Example component state chains and functional requirements 

Some functional requirements among these components are captured using the 

representation model and shown as follows: 
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 Requirement F1: Beams B1 and B2 need a function support from walls W1 and 

W2 after they are erected. This final functional requirement consists of two users – 

B1 and B2, both during their Erect.Q phases. The support function is provided by 

one provider comprising two components W1 and W2 during their Curing.Q 

phases. The [·] is used as a list notation. In addition, the provider co-functionality 

of a single-provider requirement is defined as type E. Accordingly, this 

requirement is shown as: 

F1 = support([B1.Erect.Q, B2.Erect.Q], [[W1.Curing.Q,W2.Curing.Q]],E) 

 Requirement F2: Scaffold SC1 needs a support function during all its construction 

lifecycle. This supporting function is provided by the trench TR1 in its either 

Original.Q or Backfill.Q states. Consequently, this requirement is formalized as: 

F2 = support([SC1.Erect.A,SC1.Erect.Q,SC1.Remove.A], [[TR1.Original.Q],[TR1.Backfill.Q]],E) 

 Requirement F3: B1 and B2 need to be supported during their Erect.A states by 

scaffold SC1 within its Erect.Q state, and/or by walls W1 and W2 during their 

Curing.Q states. As such, this requirement involves two providers of type C, 

expressed as: 

F3 = support([B1.Erect.A,B2.Erect.A], [[SC1.Erect.Q],[W1.Curing.Q,W2.Curing.Q]],C) 

4.4. Modeling Temporal Attributes of a Functional Requirement 

Temporal attributes of a functional requirement are described by the temporal 

attributes of the function user and provider. They are formed from the temporal 

interval of the component states phases involved. Determining these attributes is 

necessary for sequence reasoning as they are the link between product and process 
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perspectives. Subsequently, the present study develops a framework for a systematic 

presentation of these attributes. The framework is built on two levels: (1) 

User/Provider Level to capture the temporal attributes of individual user/provider, and 

(2) Function Level to derive the aggregate temporal attributes of multiple 

users/providers. 

4.4.1. Temporal Attributes of User and Provider 

At the User/Provider level, the temporal attributes of a functional requirement 

are represented by those of individual users and providers. These attributes refer to the 

duration during which a user requires the functionality, or a provider can provide the 

required functionality. 

4.4.1.1. Temporal Attribute of a User 

The temporal attribute of a user is defined by a time window called User 

Requirement Time Window (RTW
U
). It is the time window during which the 

functionality is required by the user.  

 

Figure 4.3. Time windows of individual User and Provider 
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As shown in Figure 4.3a, user uF,1 contains three component states. As the 

functionality is needed throughout three states, the RTW
U
 of u1 contains the 

combination of these three state intervals. Mathematically, the RTW
U
 of a user i of a 

functional requirement R denoted as ,
U
F iRTW  is the union of all component state 

intervals (Ii,j) shown as: 

 , , , , ,( )      ,    U
F i i j i j F i F i F

i

RTW I I u u U   (4.2) 

4.4.1.2. Temporal Attribute of a Provider 

The temporal attribute of a provider is also represented by a time window during 

which the provider can produce the required functionality. It is called Provider 

Availability Time Window (ATW
P
). As a provider may contain multiple components, 

its ATW
P
 is defined by the time windows during which the constituting components 

perform the required functionality. These time windows are called Function Time 

Window (FTW) and are specified by the involved component state intervals. For the 

example in Figure 4.3b, component PCF,1,1 of provider pF,1 can perform the 

functionality during 2 states I1, and I2. Hence, its FTW is the combination of these state 

intervals. In terms of set operation, with regards to a requirement F, the FTW of a 

component PCF,j,k constituting a provider pF,j is the union of all the component state 

intervals (Il), expressed as:  

 , , , ,( )       F j k l l F j k
l

l

FTW I I PC   (4.3) 

To produce the required functionality, all components in a provider have to share 

their functionality performances. Thus, their FTWs must simultaneously coexist so that 

the ATW
P
 of a provider results from the joint existence of all FTWs. As shown in 
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Figure 4.3c, provider pF,1 contains two components PCF,1,1 and PCF,1,2 with two FTWs: 

FTWF,1,1 and FTWF,1,2 respectively, and the time window during which the required 

functionality is available is the intersection of FTWR,1,1 and FTWR,1,2. Therefore, the 

ATW
P

 of a provider j of a functional requirement F (
,F j

PATW ) must be the intersection 

of all FTWs of the constituting components, shown as: 

 
, , , , , , ,        ,      

F j

k
P

F j k F j k F j F j F
k

ATW (PC ) PC p p P   (4.4) 

4.4.2. Temporal attributes of Function User and Function Provider 

 

Figure 4.4. Time windows of function user and function provider 
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At the function level, the temporal attributes of a functional requirement are 

described by those of its two parties: function user and function provider. When there 

are multiple users/providers, the temporal attributes of the function user/provider are 

represented by the aggregate time windows of all users/providers. They are called 

Function Requirement Time Window (RTW) and Function Availability Time Window 

(ATW) respectively.  

4.4.2.1. Temporal Attribute of the Function User 

RTWF is the time window during which the function F is required by any one of 

its users. For example, the function user shown in Figure 4.4a contains three users with 

three RTW
U

 intervals. RTWF is the combination of all 
F

URTW  intervals, given by the 

union of all 
F

URTW as: 

 
, ,( )        

F i

U
F F i F

i

RTW RTW u U   (4.5) 

4.4.2.2. Temporal Attribute of the Function Provider 

ATWF (denoted as 
E

FATW  and 
C
FATW  for functioning interaction types E and C 

correspondingly) is the time window during which the required function F can be 

provided by the providers. This attribute is determined by the co-functionality nature 

among providers. 

a) Provider Co-functionality Type E 

When all providers are mutually exclusive, only one provider can be used 

provide the required functionality at any time. As such, although multiple providers 

can perform the functionality, only one of them is the engineering solution for the 
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requirement. Consequently, 
E

FATW  is equal to any time window of an individual 

provider 
P

FATW . Figure 4.4b shows a functional requirement R with two providers 

pF,1 with ,1
P

FATW  and pF,2 with ,2
P

FATW . When these two providers are mutually 

exclusive, they cannot share their time windows to jointly produce the functionality. 

Thus, the time window of the function user can be formed from either pF,1 or pF,2, 

showing as: ,1E P
F FATW ATW  or ,2E P

F FATW ATW . This aggregation rule is generally 

expressed as follows: 

 , ,( )     
j

E P
F F j F j FATW ATW p P   (4.6) 

The relation  
j

 in Equation (4.6), in the context of this study, represents the 

mutually exclusive equality, defined as: 

 1 2 1 2( )  [ , ,..., ]   ( ) ( ) ... ( )         
j

j j n na b b b b b a b a b a b  (4.7) 

b) Provider Co-functionality Type C 

In the case of co-functionality type C, providers can share their functionalities or 

time windows to jointly provide the required functionality. They can be combined in 

various ways to form new providers which can possibly fulfill the requirement. The 

combination of providers is called a meta-provider. From construction perspective, 

meta-providers represent different patterns of combining engineering solutions being 

considered. Since only one combination can be applied in a planning scheme, all meta-

providers are mutually exclusive. 
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The temporal attribute of a meta-provider is represented by its time window 

called meta-Availability Time Window (ATW
M

). As each meta-provider is a 

combination some providers, its time window is also the combination of the time 

windows of all constituting providers. For the example in Figure 4.4c, meta-provider 

MPF,1 includes only provider pF,1; thus its ,1
M

FATW  is equal to ,1
P

FATW . MPF,3 however 

involves both pF,1 and pF,2; therefore ,3
M

FATW is the joint of two time windows ,1
P

FATW

and ,2
P

FATW . Generally, ,
P

F mATW is the union of all ATW
P 

of providers given by 

 , , , , ,( )    ,       M P
F m F n F n F m F m F

n m
n

ATW ATW p MP MP MPS  (4.8) 

where MPSF refers to the meta-provider collection of the functional requirement F. 

In addition, since each meta-provider represents a combination of providers, the 

collection of all meta-providers refers to all possible provider combinations that can be 

generated from the function provider. In other words, MPSF is the power set of PF 

excluding the empty set, given by:  

 ( )F FMPS PP  (4.9) 

where P(S) represents the power set of set S excluding the empty set (denoted as []). 

Moreover, as all meta-providers are mutually exclusive, similar to the case of 

mutually exclusive providers, the aggregate time window of the function provider, 

ATW
C
, equals to only one ATW

M
 at any time. The mathematical definition of ATW

C
 is 

shown in Equation (4.10), where MSPF refers to the collection of all possible meta-

providers of the functional requirement F.  
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 , ,( )         
m

C M
F F m F m FATW ATW MP MPS   (4.10) 

It can be further noted that 
E

FATW  is a special case of 
C
FATW  in which all meta-

providers only involve one provider. The difference between two cases is the 

collection of meta-providers. Under the scenario of provider co-functionality type E, 

each meta-provider has only one provider. As such, the meta-provider collection in this 

case is defined as:  

 [1]( )F FMPS PP   (4.11) 

with P [n](S) denoting the set of all subsets of S consisting of n elements.  

In fact, the meta-provider collection of a type E requirement is exactly similar to 

the provider collection. Consequently, the definition of ATW can be generalized for 

both provider co-functionality type E and C as: 

 , ,( )         
m

M
F F m F m FATW ATW MP MPS   (4.12) 

4.5. Sequence Reasoning Framework from Functional Requirement 

For scheduling, functional requirements must be converted into temporal 

constraints. The sequence reasoning framework presents a method to automate this 

conversion. It incorporates reasoning knowledge to translate the necessary condition 

from functional to temporal constraints using the proposed RTW/ATW. These 

constraints which are often represented as disjunctive constraints among mutually 

exclusive providers/meta-providers cannot be modeled using traditional CPM/PDM 

models. Thus, the PDM++ Framework developed by Chua and Yeoh (2011) is 
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employed to represent the complex temporal constraints. The reasoning framework 

comprises three levels: (1) Requirement Level, (2) Function Level, and (3) 

User/Provider Level, demonstrating the necessity conditions between user and 

provider so that the requirement is fulfilled. 

4.5.1. Necessary Condition at Requirement Level 

Generally, a functional requirement is satisfied if and only if the required 

functionality is available at any time during the requirement period of all users. It can 

be inferred that, to ensure a functional requirement fulfilled, its ATW must subsume its 

RTW. In terms of temporal interval relationship, this satisfaction condition can be 

modeled using the Contains, expressed as: 

        F FATW Contains RTW   (4.13) 

In a general case, the ATWF is exclusively equal to only one of ,
M

F mATW  at any 

time. By applying Equation (4.12) to (4.13), the following constraints are obtained: 

 , ,(     )    M
F m F F m F

m m
ATW Contains RTW MP MPS   (4.14) 

Consequently, the original necessary satisfaction condition is elaborated into a 

set of temporal constraints, each of which represents a constraint between each meta-

provider (or each provider in the case of functioning interaction type E) and the 

function user. As such, the mutually exclusive interactions among meta-providers have 

been translated into disjunctive relationships among these sets of constraints using the 

logic operator OR ( ). Since each meta-provider represents an engineering solution 

option for the requirement, this reasoning process allows all alternative schedules 

resulting from these engineering solutions to be examined. 



Chapter Four: Automated Construction Sequencing from Functional Requirements 

98 

 

4.5.2.  Necessary Conditions at Function Level 

The necessary conditions at the Function Level refer to the temporal constraints 

between the function user and its constituting user, as well as those between function 

provider and individual providers. These constraints are essential for the reasoning 

process as they link high-level constraints defined at the requirement level to the basic 

ones determined in the User/Provider Level. 

By definition, the RTW of a functional requirement must cover the time window 

of all constituting users. Following this, as shown in equation (4.5), RTW is defined as 

the union of all RTW
U
. From the scheduling perspective, RTW must contain all 

constituting RTW
U
, shown as: 

 , ,(        )    U
F F i F i F

i i
RTW Contains RTW u U   (4.15) 

The ATW is exclusively presented by each ATW
M

; thus the relationship between 

ATW and ATW
P
 is equivalent to that of ATW

M
 and ATW

P
. As each meta-provider 

represents a combination of providers, its availability time window must incorporate 

that of all providers involved in it. Therefore, similar to function user, the time window 

of a meta-provider, ATW
M

 is defined as the union of all ATW
P
 as shown in equation 

(4.8). This relationship is converted to a set of Contains constraints between ATW
M

 

and all ATW
P
 as follows: 

 , , , ,(        )]    M P
F m F i F i F m

i i
ATW Contains ATW p MP   (4.16) 

4.5.3. Necessary Conditions at User/Provider Level 

The necessary conditions specified in this lowest level define the constraints 

between each user/provider and its constituting component state intervals. By this, the 
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overall necessary condition can eventually be calibrated into constraints among basic 

schedule elements – component state intervals. The time window of a user – RTW
U
 – 

must subsume all constituting component state intervals. This relationship is 

represented by a Contains constraint, expressed as: 

 , , , ,(        )    U
F i i j i j F i

i j
RTW Contains I I u   (4.17) 

The time window of a provider is also constrained to that of its constituting 

product components. However, since the functionality can only be generated when all 

the product components involved simultaneously perform it, ATW
P
 of a provider is the 

joint of all FTW, and represented by a constraint Contained-By as shown in (4.18). 

Subsequently, the relationship between each FTW and its constituting component state 

intervals are captured by a constraint Contains as defined in (4.19). 

 , , , , , ,(       )]     P
F j F j k F j k F j

k k
ATW Contained By FTW PC p   (4.18) 

 ,, , , , , , , , , ,(      )]  ,    
l k

F jR j k F k l F k l F j k F j k
l

FTW Contains I I PC PC p   (4.19) 

In summary, the reasoning process proposed in this framework allows the 

original functional dependency to be converted into temporal constraint between two 

time windows: RTW and ATW which represents the necessary condition of fulfilling a 

functional requirement. In addition, the mutually exclusive relationship between 

providers and meta-providers are captured using the logic operator “OR” (  ). By this, 

all possible sequencing options can be examined in the scheduling process, facilitating 

the generation of all feasible schedule alternatives. 
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4.6. Implementation of the FReMAS model 

The implementation of FReMAS in ECL
i
PS

e
 as an automatic sequence reasoning 

mechanism consists of two main procedures (as described in Figure 4.5): a Pre-

processing Procedure (1) to normalize complex requirements into a list of simple 

constraint, and a Sequence Reasoning Procedure (2) to convert each normalized 

requirement into a set of temporal constraints. 

 

Figure 4.5. Flowchart for implementing FReMAS 
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In brief, the pre-processing procedure will first generate the meta-provider list of 

a complex requirement based on the co-functionality type. Then, if the requirement 

consists of multiple users, it will be replaced by a list of simple requirements, each of 

which comprises one user of the requirement. The final requirement list is then input to 

the main sequence reasoning procedure which subsequently generates a list of 

temporal constraint between the user(s) and provider/meta-provider(s). Finally, the 

temporal constraint list is normalized to become a list of disjunctive combination of 

conjunction constraints. The final output TC is a disjunctive combination of multiple 

groups of constraints ( ( ) )   i i
i

TC C C TC , represented as a nested constraint set:

1 2[ , ,..., ,..., ] i nTC C C C C , where each constraint subset ,1 ,2 , ,[ , ,..., ,..., ]i i i i j i mC c c c c

denotes a conjunction combination of temporal constraint cj , ,( ( ) )   i i j i j i
j

C c c C . 

The example code for implementing FReMAS in ECL
i
PS

e
, a Constraint Logic 

Programming language is described in Figure 4.6.  

 

Figure 4.6. ECL
i
PS

e
 code for implementing FReMAS for automated scheduling 
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4.7. Case Study 

 

Figure 4.7. 3D model of nursing house showing main entrance 

A case project is presented in this section to demonstrate how the proposed 

model (FReMAS) can be implemented for automated sequencing and scheduling. It 

involves the construction of the main entrance of a nursing house (shown in Figure 

4.7) which consists of three major tasks performed by three different contractors: (1) 

design and construction of glass work of the curtain wall by subcontractor 

“SubCon_1”, (2) design and construction of pre-fabricated steel beam by subcontractor 

“SubCon_2”, and (3) laying of cable pipe by the main contractor (MainCon). 

4.7.1. Product Components and State Chains  

The components associated with the work are arranged into three groups as 

shown in Figure 4.8. The “PC” group contains all permanent product components that 

are involved in the project. The “TC” group includes temporary components, the “SC” 

contains the site work components, and the “IC” group refers to special components 

which are not product-related but information-related. Information-related components 

provide the necessary information for construction processes. The active phase of each 

state is denoted by “.A”, and any hatched phase refers to the quiescent phase of the 
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previous active phase. Note that the length of the states is only for presentation 

purpose and not related to state durations. The component state chains are generated 

from the construction methods applied to the components. 

 

Figure 4.8. State Chains with Durations of Components Involving in the Analysis 
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In the “PC” group, the Steel Beam component (SB) is first fabricated offsite, 

transported to site, then erected and finally inspected before completion. The Glass 

Spider component (GS) is a part of glass work. It is also prefabricated offsite, shipped 

to site and erected on site. Similarly, the Glass Parts component (GP) is also 

fabricated, transported to site and erected. Then they are inspected before sealant is 

applied. The Cable Pipes component (CP) is embedded in the excavated trench. 

In the “TC” group, Scaffolding_S (SS) and Scaffolding_G (SG) are used for the 

steel and glass works, respectively. They have the same state chain type corresponding 

to two processes: erection and removal. As these two components will leave the 

component system after dismantled, their final states – Remove – only contain the 

active phase.  

The earthwork component named as Trench (TR) belongs to the “SC” group. It is 

firstly in its original status, then excavated for pipe installation, and finally backfilled. 

The Original state has only quiescent phase since it is not associated with any 

construction process. 

There are three components belonging to the “IC” group. The Steel Beam Shop 

Drawing (S_SD) and Glass Work Shop Drawing (G_SD) are designed and approved 

before being used on site. These two processes are reflected by states Designed.A and 

Approved.A in the state chain. The Glass Work Site Survey (G_SS) has only one state 

– Survey during which SubCon_2 measures the as-built information of the completed 

steel beam for the completion of glass work shop drawing. 
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4.7.2. Formalizing Construction Requirements 

In this project, there are various construction requirements governing the 

schedule. For illustration purpose, only the major construction requirements are 

described in the following subsections. 

4.7.2.1. Functional Requirements 

The following major functional requirements were identified. The (a,…,b) 

notation represents a group of consecutive states from phase a to phase b. These 

requirements are captured using the construction knowledge templates built upon on 

FReMAS described in chapter five, and summarized as follows: 

FR1. Glass Parts need to be supported by the Glass Spider during its construction and 

service phases, specified as 

FR1 = support([(GP.Erect.A,..., GP.Seal.A)], [[(GS.Erect.Q)]],E) 

FR2. Scaffodling_S and Scaffolding_G need a supporting base provided by Trench 

component during its original status or after the Trench is backfilled, specified as 

FR2 = support([(SS.Erect.A,...,SS.Remove.A), (SG.Erect.A,...,SG.Remove.A)], 

[[TR.Original.Q],[TR.Backfill.Q]],C) 

FR3. The design work of Steel Beam Shop Drawing needs a support function from 

Scaffolding_S to collect site information for design work, and construction of Steel 

Beam also needs to be supported by Scaffolding_S, specified as 

FR3 = support([(SB.Erect.A,...,SB.Inspect.A),(SSD.Design.A], [[SS.Erect.Q]],E) 

FR4. Erection of Glass Parts and Glass Spider need to be supported by Scaffolding_G. 

FR4 = support([GS.Erected.A,(GP.Erect.A,...,GP.Seal.A)], [[SG.Erect.Q]],E) 
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FR5. Survey work of Glass Work Site Survey requires a support function from 

Scaffolding_G to collect site information, specified as 

FR5 = support([SS_G.Conduct.A],[[SG.Erect.Q]],E) 

FR6. Cable Pipe needs to be enclosed by the excavated Trench, specified as 

FR6 = enclose([CP.Embed.A],[[TR.Excavat.Q]],E) 

4.7.2.2. Non-functional Requirements 

Besides the above functional requirements, major non-functional requirements 

for the construction of these works are also identified and captured in the form of 

temporal constraints. These requirements refer to managerial constraints such as 

procurement, material inventory or information availability. 

NR1. Fabrication of Steel Beam must start at least 3 days after steel beam shop 

drawing is done due to material procurement process, specified as 

NR1: S_SD.Approve.A    B(3)   SB.Fabricate.A 

NR2. Fabrication of Glass Parts and Glass Spider must start at least 4 days after Glass 

Work shop drawing due to material procurement process, specified as 

NR2: G_SD.Approve.A     B(4)    GS.Fabricate.A 

NR3. Glass Work Site Survey must finish at least 5 days before design of Glass Work 

Shop Drawing finishes to ensure sufficient as-built information acquired, specified as 

NR3: G_SS.Conduct.A     FF(5)    G_SS.Design.A 

NR4. Site survey must be done after the steel beam is fully constructed, specified as 

NR4: SB.Inspect.A     B(0)    GSS.Conduct.A 
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NR5. Scaffolding_G must be erected after Scaffolding_S is removed due to space 

constraint, specified as 

NR5: SB.Inspect.A     B(0)    GSS.Conduct.A 

NR6. Steel Beam Shop Drawing must be designed after erection of Scaffolding_S so 

that site information can be collected, specified as 

NR6: SS.Erect.A     B(0)     SSD.Design.A 

4.7.3. Construction Sequence Reasoning and Schedule Computation 

The functional requirements are modeled and reasoned into temporal constraints 

using FReMAS implemented in the Functional Requirement Sequence Reasoning 

Mechanism. Component state chains are transformed into precedence constraints 

between component states using the Constraint Transformation Mechanism. All 

generated and imposed temporal constraints are finally input to the schedule generator 

for schedule computation at component state level. This level of detail is chosen since 

each construction activity is associated with one component. The scheduling problem 

of the project portion is solved under two scenarios. Scenario 1 is the original case 

situation where the subcontractors do not have any collaboration. Scenario 2 examines 

the schedule results where collaboration in terms of resource sharing between two 

subcontractors is allowed. 

4.7.3.1. Scenario 1 – No Collaboration between Two Subcontractors 

By minimizing the project makespan with no collaboration applied, 3 schedule 

solutions with similar makespans of 68 days are generated. The result of the first 

solution named Alternative 1.1 is shown in Figure 4.9 in the form of a Gantt chart. In 

this solution, the site is first used by SubCon_1 to do the Steel Beam work (Day 1 to 
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Day 24), then it is occupied by SubCon_2 for the Glass work (Day 24 to Day 58), and 

finally it is used by MainCon for the Pipe laying work (Day 58 to Day 68). The work 

sequence determined here ensures no site clashing among contractors. 

The RTW and ATW of 6 functional requirements are also presented in Figure 4.9, 

showing that this schedule solution satisfies all requirements imposed. For the example 

of functional requirement FR4, its RTW and ATW are computed as follows: 

4 4,1 4,2

4

( , ) ([47..48],[51..56]) [47..48],[51..56]

[26..56]

  



U URTW RTW RTW

ATW
 

Since ATW4 Contains RTW4, FR4 is fulfilled. The other functional requirements 

can be similarly verified to be satisfied. 

 

Figure 4.9. Alternative 1.1 - Scenario 1 with RTWs and ATWs 
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 Table 4.1. Schedule solutions under Scenario 1 

 

The summary of all 3 schedule solutions with active phase times of each 

component state is presented in Table 4.1. Similar to Alternative 1, the other two 

solutions (Alternative 1.2 and Alternative 1.3) can be verified to fulfill all identified 

requirements. In addition, the schedule solutions obtained represent 3 different work 

sequences among the contractors. The sequence in Alternative 1.1 is SubCon_1 (Day 1 

– Day 24)  SubCon_2 (Day 24 – Day 58)  MainCon (Day 58 – Day 68). In 

Alternative 1.2, work sequence also starts with SubCon_1 (Day 1 – Day 24) first, 

followed by MainCon (Day 24 – Day 34), and finally ends with SubCon_2 (Day 34 – 

Day 68). Alternative 1.3 defines another work sequence which is started by MainCon 

Start Finish Start Finish Start Finish

SS.Erected.A 3 0 3 0 3 10 13

SS.Removed.A 2 22 24 22 24 32 34

S_SD.Designed.A 3 3 6 3 6 13 16

S_SD.Approved.A 5 6 11 6 11 16 21

SB.Fabricated.A 5 14 19 14 19 24 29

SB.Shipped.A 1 19 20 19 20 29 30

SB.Erected.A 1 20 21 20 21 30 31

SB.Inspected.A 1 21 22 21 22 31 32

SG.Erected.A 2 24 26 34 36 34 36

SG.Removed.A 2 56 58 66 68 66 68

 Site Survey (G_SD) G_SS.Conducted.A 1 26 27 36 37 36 37

G_SD.Designed.A 10 22 32 32 42 32 42

G_SD.Approved.A 5 32 37 42 47 42 47

GS.Fabricated.A 5 41 46 51 56 51 56

GS.Shipped.A 1 46 47 56 57 56 57

GS.Erected.A 1 47 48 57 58 57 58

GP.Fabricated.A 7 41 48 51 58 51 58

GP.Shipped.A 3 48 51 58 61 58 61

GP.Erected.A 3 51 54 61 64 61 64

GP.Inspected.A 1 54 55 65 65 64 65

GP.Sealed.A 1 55 56 65 66 65 66

Cable Pipe (CP) CP.Embeded.A 5 61 66 27 32 3 8

TR.Excavated.A 3 58 61 24 27 0 3

TR.Backfil led.A 2 66 68 32 34 8 10

Trench (TR)

Glass Spider (GS)

Steel Beam (SB)

Scaffolding_G (SG)

Glass Work  Shop 

Drawing (SSD)

Scaffolding_S (SS)

Steel Beam Shop 

Drawing (SSD)

Glass Parts (GP)

Alternative 1.3
Component

Component State 

(Active Phase)

Duration 

(days)

Alternative 1.1 Alternative 1.2
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(Day 1 – Day 10), followed by SubCon_1 (Day 10 – Day 34) and ended by SubCon_2 

(Day 34 – Day 68). These results also show that there is no site clashing among the 

contractors following these work sequences.  

Furthermore, from management perspective, these schedule alternatives provide 

planners with different choices for a planning scheme that most suits their conditions. 

For example, the main contractor has 3 options to conduct his work which is at the 

beginning (Day 0 to Day 10), in the middle (Day 24 to Day 34) or at the end (Day 58 

to Day 68) of the project portion with Alternative 1.1, 1.2, and 1.3, respectively. 

4.7.3.2. Scenario 2 – Collaboration between Two Subcontractors  

In this scenario, the original project data is modified to capture the collaborative 

situation between the subcontractors. It is assumed that SubCon_1 and SubCon_2 can 

share their scaffolding resources with each other. This means that any functional 

requirements provided by either Scaffolding_S or Scaffolding_G can now be 

combined. In other words, they become compatible providers in functional 

requirements FR3, FR4 and FR5 so that they are modified as follows: 

FR3 = support([(SB.Erect.A,..., SB.Inspect.A),SSD.Design.A], [[SS.Erect.Q],[SG.Erected.Q]],C) 

FR4 = support([GS.Erect.A,(GP.Erect.A,...,GP.Seal.A)], [[SS.Erect.Q],[SG.Erect.Q]],C) 

FR5 = support([ms(SS_G.Conduct.A], [[ms(SS.Erect.Q)],[ms(SG.Erect.Q)]],C) 

With these changes, two schedule solutions with duration of 54 days are obtained 

as summarized in 2 showing active phase times of each component state. The domain 

values in the columns refer to the feasible start/finish time for each state. For example, 

in Alternative 2.1, the removal of Scaffolding_S has a start interval of [25..31], 

meaning that this state has an early start on Day 25 and late start on Day 31. In terms 
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of float time, the process associated with this state has a total float of 6 days. The states 

with one value for start/finish time do not have float and are critical. 

Table 4.2. Schedule solutions under Scenario 2 

 

The early schedule of Alternative 2.1 is presented Figure 4.10  in the form of a 

Gantt chart. The time windows of functional requirements are also presented, 

demonstrating that condition ATWF Contains RTWF is fulfilled for all functional 

requirements. It is also interesting to note that the collaboration helps reduce the 

project duration by 14 days (from 68 days to 54 days) compared with Scenario 1. By 

enlarging the ATW of related functional requirements, it allows some construction 

Component
Component State 

(Active Phase)

Duration 

(days)

SS.Erect.A 3 0 3 0 3

SS.Remove.A 2 23 ..29 25 .. 31 6 8

S_SD.Design.A 3 3 6 3 6

S_SD.Approve.A 5 6 11 6 11

SB.Fabricate.A 5 14 19 14 19

SB.Ship.A 1 19 20 19 20

SB.Erect.A 1 20 21 20 21

SB.Inspectd.A 1 21 22 21 22

SG.Erect.A 2 35 .. 41 37 .. 43 18 20

SG.Remove.A 2 52 54 52 54

 Site Survey (G_SD) G_SS.Conduct.A 1 22 23 22 23

G_SD.Design.A 10 18 28 18 28

G_SD.Approve.A 5 28 33 28 33

GS.Fabricate.A 5 37 42 37 42

GS.Ship.A 1 42 43 42 43

GS.Erect.A 1 43 44 43 44

GP.Fabricate.A 7 37 44 37 44

GP.Ship.A 3 44 47 44 47

GP.Erect.A 3 47 50 47 50

GP.Inspect.A 1 50 51 50 51

GP.Seal.A 1 51 52 51 52

Cable Pipe (CP) CP.Embed.A 5 28 .. 34 33 .. 39 11 16

TR.Excavate.A 3 25 .. 31 28 .. 34 8 11

TR.Backfil l .A 2 33 .. 39 35 .. 41 16 18

Trench (TR)

Glass Spider (GS)

Glass Parts (GP)

Scaffolding_G (SG)

Glass Work  Shop 

Drawing (SSD)

Steel Beam Shop 

Drawing (SSD)

Alternative 2.1 Alternative 2.2

Scaffolding_S (SS)

Steel Beam (SB)
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processes of SubCon_1 and SubCon_2 to be re-sequenced for better resource usage; 

thereby shortening project duration.  

 

Figure 4.10. Early Schedule of Alternative 2.1 - Scenario 2 with RTWs and ATWs 

For an example, consider FR5. 5
CATW  contains two intervals [3..23] and 

[35..52] with a total duration of 37 days, longer than ATW
FC

(FR5) in Scenario 1 with 

32 days. With this extension, Glass Work Site Survey can be done (from Day 22 to 

Day 23) before the erection of Scaffolding_G (Day 35) as it is supported by 

SS.Erect.A

SS.Remove.A

S_SD.Design.A

S_SD.Approve.A

SB.Fabricate.A

SB.Ship.A

SB.Erect.A

SB.Inspectd.A

SG.Erect.A

SG.Remove.A

G_SS.Conduct.A

G_SD.Design.A

G_SD.Approve.A

GS.Fabricate.A

GS.Ship.A

GS.Erect.A

GP.Fabricate.A

GP.Ship.A

GP.Erect.A
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CP.Embed.A
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TR.Backfil l .A
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Scaffolding_S of SubCon_1 which is available from Day 3 to Day 23. The time 

windows of this requirement are calculated as follows: 

5

5 5,1 5,2

[22..23]

( , ) [3..23],[35..52]



  C P P

RTW

ATW ATW ATW
 

Alternative 2 can be easily verified to fulfill all imposed construction requirements 

using a similar method. The effect of collaboration in re-sequencing the works is also 

found in this solution. For an example, consider FR3. Although Scaffolding_S is 

dismantled from Day 6, the construction of Steel Beam of SubCon_1 (from Day 20 to 

Day 22) can still be done with the support from Scaffoling_G of SubCon_2 which is 

available from Day 20 to Day 47. 

Similar to Scenario 1, two schedule solutions obtained in this scenario also 

present different work sequences among the contractors. In the early schedule of 

Alternative 2.1, the site is first used by SubCon_1 and SubCon_2 for Steel Beam work 

and Glass Work Site Survey (from Day 0 to Day 25). It is then transferred to MainCon 

for the Cable Pipe work (from Day 25 to Day 35) and finally returned to SubCon_2 for 

the Glass Work (from Day 35 to Day 54). In Alternative 2.2, the site is first used by 

SubCon_1 to get information for the design of steel beam shop drawing (from Day 1 to 

Day 8). It is subsequently occupied by the MainCon (from Day 8 to Day 18) and 

finally by SubCon_1 and SubCon_2 for the remaining work (from Day 18 to Day 54). 

Comparing with scenario 1 where the two subcontractors have separate work 

sequences, their work sequences are now integrated in this scenario due to resource 

sharing. However, despite the work sequence integration, both alternative schedules do 

not impose any site clashes between the contractors.  
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From management perspective, the schedules obtained also provide alternative 

planning schemes for the planners. Alternative 2.1 is more flexible than Alternative 2.2 

as it contains more states having float time. In addition, Scaffolding_S is more 

effectively used in this case as it supports more processes than in Alternative 2. The 

results of this scenario show that collaboration does help reduce project duration as it 

allows resource to be allocated to the works of all involved parties, leading to shorter 

project duration. 

4.8. Concluding Remarks 

This chapter presents a modeling framework called FReMAS for automated 

construction sequence reasoning from functional requirements. One advantage of 

FReMAS is that it can capture complex functional requirements with multiple users 

and multiple providers and different provider co-functionality types. This capability 

facilitates the generation of alternative schedules possibly resulting from different 

engineering solutions for the required function during planning phase. 

In summary, FReMAS consists of three components: a Representation Model, a 

Temporal Model, and a Construction Sequence Reasoning Framework. The 

Representation Model identifies a functional requirement from four perspectives: 

function user, function provider, function type, and provider co-functionality. The 

generality of this model makes it surpass the Intermediate Function Concept. In 

essence, it provides a generalized format for representing both final and intermediate 

requirements with multiple users and providers, and capturing alternative engineering 

solutions which often result from alternative construction methods or collaborations. 
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A two-level Temporal Model is then developed to define the time window of an 

individual user/provider (RTW
U
/ATW

P
), and of the aggregate function user/provider 

(RTW/ATW).  Especially, a concept of meta-provider is introduced to represent a group 

of providers which can share their functionalities or time windows to jointly provide 

the required functionality. With this vital construct, different combinations of 

engineering solutions can be systematically captured during the planning phase.  

Finally, the Construction Sequence Reasoning Framework converts the 

necessary condition in the form of functional dependency between function user and 

function provider into temporal constraints between their time windows. The final 

disjunctive constraint set represents alternative construction sequences fulfilling the 

requirement, which could lead to multiple schedule solutions. Accordingly, this 

framework can help enhance the adequacy and efficiency of alternative construction 

scheduling techniques.  
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CHAPTER 5. ASCoRe SCHEDULER: SYSTEM 

ARCHITECTURE AND SEQUENCE 

REASONING ALGORITHMS  

5.1. Introduction 

This chapter describes a system architectural framework, knowledge modeling 

templates and reasoning and inference algorithms for implementing the ASCoRe 

framework and FReMAS model proposed in previous chapters. For easy reading, this 

chapter first presents a brief overview of relevant backgrounds about constraint 

satisfaction problem (CSP), constraint logic programming (CLP) and the limitations of 

CLP-based solvers in constraint analysis from a construction management perspective. 

It then provides a general description on the proposed system architectural framework, 

followed by more detailed discussions and explanations on the necessary knowledge 

modeling tools, inference and sequence reasoning algorithms and the solving engine 

for generating alternative schedules. In particular, a pre-emptive constraint reasoning 

framework is developed for identifying basic redundant and conflicting constraints in 

the pre-scheduling stage to enhance the feasibility and efficiency of scheduling.   

5.2. Relevant Background 

This section presents a brief review of Constraint Satisfaction Problem (CSP) 

and Constraint Logic Programming (CLP). These concepts are the key background 

knowledge on which reasoning algorithms are developed. This section also 

summarizes major gaps of CLP-based solving engine in constraint analysis, which 

provide the impetus for the development of a new preemptive constraint analysis 

approach for construction scheduling. 
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5.2.1. Overview of Constraint Satisfaction Problem 

A constraint satisfaction problem (CSP) can be formulated as comprising a set of 

n variables 1 2{ , ,..., } nX x x x , each of which has a finite set Di of possible values (its 

domain), and a set of constraints C restricting the values that the variables can 

simultaneously take. A typical scheduling problem can be modeled as a CSP with 

activity start/finish times as variables, and temporal constraints. A feasible solution to 

a CSP is an assignment of a value from its domain to every variable in such a way that 

the imposed constraints are satisfied.  

A variety of approaches can be used to tackle CSPs. The algorithms for solving 

CSPs can be grouped under two broad categories: inference and search, and various 

combinations of those two approaches. In inference techniques, local constraint 

propagation can eliminate values from the domains which do not take part in any 

solution. The procedure of a typical constraint propagation algorithm proceeds can be 

described as follows. When a given variable is assigned a value, either directly by the 

user or by the system, the algorithm re-computes the possible value sets and assigned 

values of all its dependent variables. This process continues recursively until there are 

no more changes in the network. Accordingly, the effectiveness of CSPs depends on 

how well the constraints are represented and the techniques used to propagate them. 

More detailed descriptions of constraint propagation algorithms are available in the 

literature (Dechter, 2003; Bessiere, 2006; Lecoutre, 2009). 

Search algorithms explore the search space either systematically or locally, often 

eliminating subspaces with a single failure. Backtracking is the most common 

systematic search algorithm, which incrementally attempts to extend a partial 
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assignment, which specifies consistent values for some of the variables, towards a 

complete assignment (Barták, 2008). It is the fundamental ‘complete’ search method 

for CSPs, in the sense that one is guaranteed to find a solution if one exists. On the 

other hand, local search approaches, such as simulated annealing, tabu search or 

genetic algorithms, provide an approximation solution (Brailsford et al., 1999). 

Constraint propagation and backtracking are usually combined in most 

applications and many constraint solvers to maximize the solving efficiency (Marriott 

et al., 2006). In this research, the scheduling problem is also modeled as a CSP, and 

both constraint propagation and backtracking algorithms are combined to generate all 

alternative schedules. 

5.2.2. Overview of Constraint Logic Programming 

Constraint logic programming (CLP) is a merger of two paradigms: constraint 

solving and logic programming. The CLP methodology extends the initial Prolog 

language by incorporating several types of constraint solvers, where each constraint 

solver is particularly suited for a specific domain. One important characteristic of 

CLPs is that they allow succinct, natural conceptual modeling of CSPs. In addition, 

CLP languages allow the programmer to define search strategies for solving their 

model. Modern CLP languages, such as Prolog or ECL
i
PS

e
, also allow programmers to 

define how the constraint solver processes the constraints for solving their models.  

This research employs CLP approach and ECL
i
PS

e
 is chosen as the main 

platform for developing sequence reasoning and scheduling algorithms. Since PDM++ 

is used as the background model for representing temporal constraints, utilizing 

ECL
i
PS

e
 will ease the integration of PDM++ language with the proposed reasoning 
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and inference mechanisms in the system. In addition, its high-level language provides 

support for object-oriented modeling which allows for rapid software prototyping. It is 

also assumed that the reader has a certain level of familiarity with some of the basic 

programming concepts in Prolog and/or ECL
i
PS

e
. Readers may wish to refer to 

(Wallace, 2002; Apt, 2007) for a more in-depth discussion on the basic concepts of 

CLP and ECL
i
PS

e
. 

5.2.3. Constraint Analysis in CP/CLP-based Schedulers 

 There are two major problems with CLP-based schedulers: solution feasibility 

and computational efficiency, which are greatly influenced by the relationships among 

the imposed constraints. Solution feasibility refers to the capability of producing a 

feasible solution and is defined by the consistency of the constraint set. In order to 

improve solution feasibility, conflicting constraints should be identified and resolved 

in the pre-scheduling stage. On the other hand, computational efficiency is governed 

by the total number of constraints, especially the number of backtrackings which 

increases exponentially with the number of disjunctive constraints. In addition, among 

the constraints, some could be subsumed by others and be redundant (Nguyen and 

Chua, 2012). Ignoring such constraints thus, while not affecting the schedule result, 

will reduce computation time. Especially, removing redundant disjunctive constraints 

eliminates unnecessary backtrackings, improving overall scheduling efficiency. 

In many CLP-based schedule solvers, constraints are sequentially called in the 

propagation to reduce the feasible domains of activities’ start times. Constraint 

inconsistencies are reactively identified along the constraint propagation process 

(Lorterapong and Ussavadilokrit, 2013), and thus dependent on constraint ordering. 
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From a management perspective, there remain three major drawbacks. Firstly, a 

constraint may contradict with multiple constraints. Such constraints should be 

identified so that multiple conflicts can be simultaneously resolved. The propagation 

methodologies do not facilitate such resolution strategy. Secondly, sequentially 

resolving local inconsistencies could lead, after many changes, to a final schedule that 

may not be executable, since the modified constraints may deviate from original 

construction intention or represent an impractical method. Moreover, sequentially 

resolving conflicts does not guarantee the best (or optimal) set of constraints. Finally, 

activity durations often impact the relationships among constraints but propagation 

methods do not provide information about how durations can be modified to resolve 

conflicts without causing new conflicts. 

In summary, to enhance the feasibility and efficiency of construction scheduling, 

conflicting and redundant constraints, especially disjunctive constraint combinations 

should be preemptively identified and resolved in the pre-scheduling stage, and should 

be analyzed in accordance with activity durations. Determining all redundant and 

conflicting constraints in an initial stage would require a complete constraint 

propagation procedure. Instead, this research focuses only on those existing within one 

activity or between two activities using a Constraint Integration Reasoning Framework 

without constraint propagation. Detailed description of this framework will be 

presented in section 5.6. 
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5.3. Overview of System Architectural Framework for Implementing 

ASCoRe Framework 

The system architectural framework in Figure 5.1 describes a hybrid knowledge-

based system (KBS) for implementing the proposed ASCoRe framework. The hybrid 

KBS approach is employed to better exploit construction knowledge for efficient data 

generation and sequence reasoning, and at the same time provide the flexibility in 

defining specific data for a project schedule. Essentially, the framework is designed to 

combine the strengths offered by a construction knowledge modeling module, 

inference and a sequence reasoning kernel, and a schedule generation engine for 

automated scheduling.  
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Figure 5.1. ASCoRe system architectural framework 

The construction knowledge modeling module includes templates to capture 

standard product component hierarchies, construction methods, requirements and 

define work packages. The inference and sequence reasoning kernel consists of five 

main mechanisms to automatically generate activities from component states and work 

packages, and convert construction requirements into temporal constraints at both 

component state and activity levels. The other core solving engine of the framework is 

the schedule generation engine, which comprises a preemptive constraint analyzer to 
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identify basic redundant and conflicting constraints in the pre-scheduling stage, and a 

schedule generator to compute all alternative schedules for the project. These will be 

covered in the following sections. 

A user interface module is developed on .NET framework platform providing 

planners with different input/output (I/O) tools. Project data are stored in an Access 

database. Scheduling input can be generated automatically from 3D design models and 

knowledge libraries or manually specified by planners using I/O tools. The main input 

for reasoning mechanisms includes a list of components with component state chains 

defined by construction methods, lists of construction requirements including 

functional requirements, key resource requirements, spatial requirements and other 

requirements defined in the form of temporal constraints, project data about key 

resource capacities, a spatial interference matrix, and defined work packages. The 

inference kernel and scheduling engine are mainly developed on ECL
i
PS

e
 platform to 

generate all possible construction sequences and determine best schedules with 

minimal makespan. The scheduling output is a collection of all best alternative 

schedules with activities’ times and floats, if a feasible solution exists. 

5.4. Construction Knowledge Modeling Module 

This section describes typical templates for capturing construction knowledge 

including product models, construction methods, and construction requirements during 

two processes P and C of the ASCoRe framework. The development of these templates 

is based on the core knowledge models presented in Chapter 3, and is facilitated by 

different project data built in the form of libraries, including but not limited to 

component category, component type, resource type, space type, construction process, 
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functional relationships, temporal relationships, topological relationships, and 

comparative relationships. These templates will help planners to pre-define some 

construction knowledge in the form of libraries as well as automate some data entry 

process to improve the efficiency. 

5.4.1. Product Component Hierarchy Template 

Standard hierarchy templates can be pre-designed to assist the generation of 

product model (process P of the ASCoRe framewok) and thus accelerating the 

planning process. A typical template of product component hierarchy for a building 

project is depicted in Figure 5.2a. In this template, components are first arranged by 

their category type, i.e. permanent, temporary or site work, then by the functioning 

system to which they belong such as structural, architectural or MEP, next by floor 

level, subsequently by type, i.e. column, beam, etc. and finally by component name. 

The application of this template is presented in Figure 5.2b. A building structure 

can be elaborated into different hierarchical format with different levels of detail 

dependent on the project’s nature and planning objectives. With this template, planner 

can flexibly modify the number of levels as well as the criterion for organizing product 

components to attain the most suitable hierarchy for their own intentions. 
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Figure 5.2. Template of product component hierarchy  

5.4.2. Construction Method Templates 

Construction method template is established on the construction method model 

described in section 3.2.2 to assist users with building a construction method library. 

Figure 5.3a presents the template for defining an elementary method in which a 

method is represented by a generic construction process, the component types which it 

can be applied to, and temporary structure types and key resource types required for 

the construction process. In this example, a “Formwork Installation” method is defined 

with a construction process “Install”. This method can be applied to formwork 

components and requires a scaffolding temporary structure. It also requires a mobile 

crane to carry out the work and allows for quiescent phase after its completion. In 

addition, as show in the figure, the attributes Component Type, Temporary Structure, 

and Key Resource are defined in the list format. 
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Figure 5.3. Construction method template 

Figure 5.3b presents the template for defining an aggregated method which 

consists of a sequence of construction processes. When an aggregated method is 

applied to a product component, the corresponding sequence of construction processes 

involved in the elementary methods helps define the state chain of the component 

accordingly. The aggregated “Cast-in Site Concrete” defined in Figure 5.3b includes 

three elementary methods: Rebar, Concrete, and Curing, which altogether describe the 

necessary processes for constructing a concrete beam/slab/column on site.  

5.4.3. Construction Requirement Templates 

Two templates are designed for defining functional and non-functional 

requirements to assist the identification of requirements for scheduling (process R in 

the ARSCoRe framework). The former is built on FReMAS model presented in 

chapter four (section 4.3), while the latter is established on the generic construction 

requirement described in section 3.2.3. These templates allows planner to create 

libraries of generic requirements or manually define project-specific requirements. The 
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template for defining functional requirements is depicted in Figure 5.4. The 

registration of functional requirement may be tedious for large projects. Final 

functional requirements can be automatically acquired from the functionality analysis 

of the 3D design model. Simple intermediate functional requirements can also be 

defined through the same process. By this, this template can be used for defining 

complex functional requirements which are probably project-specific.  

 

Figure 5.4. Template for defining functional requirement 

As described previously in chapter four, the function user of a functional 

requirement can comprise multiple users, each of which is represented as a set of 

component states (using the [  ] notation). The function user consists of two users from 

two components [B1.Erect.A] and [B2.Erect.A]. The function provider of the example 

requirement in Figure 5.4 consists of two providers, the first of which involves two 

component states from two walls W1 and W2, and is defined as [W1.Complete.Q, 

W2.Complete.Q], while the second of which contains a component states from a 

scaffolding structure SB1 and is defined as [SC1.Erect.Q]. Since beam erection can be 
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supported by either individual or both providers, the provider co-functionality is 

defined as “C” (Mutually Compatible” in the last field.  

The template for defining non-functional requirements is presented in Figure 5.5. 

It is designed to formalize of three major requirement types: resource, work space and 

temporal constraints. The necessary condition is elaborated into temporal, topological 

and comparative relationships as described in section 3.2.3.  

 

Figure 5.5. Template for defining non-functional requirement 

Figure 5.5a illustrates the use of the template to define a precedence requirement 

between excavation and site inspection processes. The temporal relationship “B(1)” is 

the short form of the PDM++ constraint Before(1). Readers can refer to Figure 2.1 for 

the short form formats of all PDM++ constructs used in this dissertation. Figure 5.5b 

describes a resource requirement in which two excavators must be provided for the 

excavation. In this template, “=” is a comparative relationship for measurable 

condition. Other relationships for measurable condition are presented in Figure 3.6. 
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5.4.4. Work Packaging Template 

Work package is the concept of breaking down a project into smaller sub-project 

for better planning and management. Different work package definitions have been 

proposed in the ACE community. According to Halpin (1985),  “a work package is a 

sub-element of a construction project on which both cost and time data are collected 

for project status reporting. All work packages combined constitute a project’s work 

breakdown structure”. Song (2006) defined a work package to include a group of 

component states (active phases) of the product components that are concurrently 

transited by the associated process. As such, a work package serves as a link between 

an activity and component states. This research extends this definition by recognizing a 

work package as a group of components that are constructed using the same method. In 

other words, components involved in a work package will be created by same 

processes. In this way, a work package is used as a construct to link product 

(components) and process data (activities) with a many-to-many relationship.  

A work package template is design for manual/automatic generation of work 

packages using some grouping rules. AND and OR logic operators can be used to 

combine the defined rules and provide more flexibility in defining a work package. In 

the example shown in Figure 5.6, with the specified rules, a work package WP1 

comprising all precast beam in Level 1 will be automatically created. With this design, 

the template allows new rules to be easily added.  
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Figure 5.6. Template for defining work package 

The relationship between work packages and product components is one-to-

many, requiring that one work package can comprise one or many product components 

but one component can belong to only one work package.  

5.5. Inference and Sequence Reasoning Kernel 

The inference and reasoning kernel is to facilitate process S of the ASCoRe 

framework by automatically generating an activity list from the product model and 

work packages, and converting the imposed construction requirements into temporal 

constraints. As described in section 3.3.3.2, four major construction requirements are 

examined in the ASCoRe framework, including: functional, key resource, work space 

and temporal requirements. While functional requirements are generally defined at 

component state level, key resource, work space, and temporal constraints can be 

represented at both component state and activity levels. Thus, all construction 

requirements have to be converted into temporal constraints at activity level for 

schedule computation. 
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Figure 5.7. Workflow of the inference and sequence reasoning kernel 

Figure 5.7 presents the general workflow of the inference and sequence 

reasoning kernel developed in this research. The reasoning process starts by generating 

an activity list from the defined work packages and component states using the 

Activity Generation Mechanism. Next, the Functional Requirement Reasoning 

Mechanism is employed to convert functional requirements into state-based temporal 

constraints. Subsequently, all state-based constraints, including key resource, spatial 

and temporal constraints are transformed into corresponding activity-based constraints 

using the Constraint Transformation Mechanism. Finally, activity-based resource and 

spatial constraints are converted into activity-based temporal constraints using the 

Resource and Space Requirement Reasoning Mechanisms. The final output of the 

sequence reasoning process is a combined list of activity-based temporal constraints 
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derived from functional, resource, and space requirements and an activity list, which 

are then transferred to the Schedule Generation Engine for schedule computation. 

5.5.1. Activity Generation Mechanism 

The purpose of this inference mechanism is to obtain the activity list from 

component states and work packages. The inference process of this mechanism is 

illustrated in Figure 5.8. To summarize, for each work package wp(i), the mechanism 

first generates the collection of all component states of the components belonging to 

wp(i). Then all component states which are defined by the same elementary 

construction method are grouped into one activity. The final output of this mechanism 

is a list of activities, each of which has two important attributes: the associated 

elementary construction method, and a list of constituting component states.  

 

Figure 5.8. Pseudo code for the activity generation mechanism 
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Figure 5.9. Illustrative example for activity generation mechanism 

Figure 5.9 presents the application of this inference mechanism to a work 

package WP1 involving six product components:  two cast-in-situ walls (W1 and W2), 

two precast beams (B1 and B2), one scaffold for erecting the beams (SC) and a trench 

(TC). There are altogether eight elementary construction methods defining 12 active 

component states. Hence, eight activities are generated in this case, each of which is 
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associated with one elementary construction method and consists of one or many 

component states. For example, activity WP1-Wall Rebar corresponds to the “Wall 

Rebar” method and comprises two component states: W1.Rebar.A and W2.Rebar.A. 

Similarly, activity WP1-Beam Erection involves two component states: B1.Erect.A 

and B2.Erect.A, which are both defined by the same elementary construction method 

“Beam Erection”.  

5.5.2. Functional Requirement Sequence Reasoning Mechanism 

This mechanism is built upon the FReMAS model to convert functional 

requirements into temporal constraints between component states. Readers may wish 

to refer to Chapter 4 for a detailed description of the implementation of FReMAS. 

5.5.3. Constraint Transformation Mechanism 

The purpose of the constraint transformation mechanism is to aggregate 

temporal, resource and work space requirements at component state level to those at 

activity level. This reasoning mechanism is supported by the one-to-one equivalence 

between component states and elementary activities, so that the reasoning can be 

carried out directly from component states to activities. It also works under the 

assumption that key resource and work space requirements are associated with 

construction processes and thus related to only active component states. Without active 

states, there resources are not required.  

To achieve the above purpose, the reasoning mechanism converts all temporal 

constraints related to quiescent state phases, into those of the associated active state 

phases based on the continuity nature of component state chains. Table 5.1 presents 

rules for converting twelve basic temporal constraints from quiescent states to active 
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states. In particular, a unary constraint of a quiescent state X can be converted into an 

equivalent unary constraint of its preceding or succeeding active state X1/X2. In this 

section, the subscript “1” denotes the active state phase immediately preceding a 

quiescent stage phase, and “2” denotes the active state phase immediately succeeding a 

quiescent stage phase. Similarly, a binary constraint between quiescent states X and an 

active phase Y can be represented by a binary constraint between X1/X2 and Y. Finally, 

a binary constraint between two quiescent states X and Z can be transformed into a 

binary constraint between their preceding/ succeeding active states X1/X2 and Z1/Z2.  

Table 5.1. Rules for converting constraints from quiescent states to active states 
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Furthermore, since any complex constraint like Contains, Disjoint, or Overlaps 

is represented by a conjunctive/ disjunctive combination of these basic constraints, the 

conversion rules presented in Table 5.1 can be applied for all complex constraints. For 

example, the complex constraint Contains between state Excavate.Q of TR1 and 

Erect.Q of SC1 (see Figure 5.10) can be elaborated into two constraints: (Excavate.Q  

SS(0)  Erect.Q), and (Erect.Q  FF(0)  Excavate.Q). According to the rules in Table 5.1, 

these constraints are respectively converted to (Excavate.A FF(0) Erect.A), and 

(Remove.A  SS(0)  Backfill.A) respectively. In addition, as described in chapter three, 

quiescent states in a state chain can be expressed as a precedent relationship between 

its two consecutive active phases. In this example, quiescent state Erect.Q of SC1 is 

expressed in the form of temporal constrain as (Erect.A B(0)  Remove.A). 

 

Figure 5.10. Converting quiescent state constraint to active state constraint 

When all constraints related to quiescent states are removed, the constraint 

transformation mechanism proceeds by transferring all constraints (temporal, key 

resource, and work space) of active phases to the activity which they constitute. This 
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inference process (as illustrated Figure 5.11) in consists of two procedures: a One-to-

One Mapping Procedure, and a Refining Procedure. 

 

Figure 5.11. Converting state-based constraints to activity-based constraints 

Initially, the One-to-One Mapping Procedure converts all constraints/ 

requirements at state level to those at activity level using a one-to-one mapping rule. In 

detail, any constraint or requirement related to an active component state is converted 

into a similar constraint of its associated activity. For the example in Figure 5.11, the 
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constraints of components states (a11, a12, a13) constituting activity A1 and (a21, a22) 

constituting activity A2 are converted into constraints between A1 and A2 using a one-

to-one mapping rule. This process eventually generates five temporal constraints 

between A1 and A2, two resource requirements (R1/1 and R2/1 from states a11 and 

a13 respectively) and two work space requirements (WS1 and WS2 from states a11 

and a12 respectively) related to activity A1, and two resource requirements (R1/1 and 

R1/2) and two same work space requirements (WS3) of activity A2.   

Then, the Refining Procedure is performed to remove replicated temporal/spatial 

constraints and to aggregate key resource requirements of the same type. The final 

output of this constraint transforming procedure lists of activity-based temporal 

constraints, key resource and space requirements. The resource and space requirements 

obtained in this step are then passed to the next reasoning mechanisms to reason into 

temporal constraints. In the above example, after the refining process, three precedence 

constraints (B(0)) between A1 and A2 is refined to one constraint. In a similar way, the 

resource requirement R1/1 of activity A2 is subsumed by R1/2 and is removed, and the 

two work space requirements of WS3 are also refined into one. Ultimately, the 

constraint transformation mechanism transforms 13 state-based requirements into 9 

equivalent constraints between the corresponding activities. 

5.5.4. Key Resource Requirement Sequence Reasoning Mechanism 

In the context of this research, key resource refers to important equipment or 

specialized crews which must be available for the construction process to be carried 

out. In other to obtain the construction sequence providing the best project makespan, 

all possible sequences defined by this requirement type should be determined. In this 
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regards, this sequencing mechanism provides a general procedure to generate temporal 

constraints from key resource requirements. 

Initially, all resource requirements of the same resource type are combined into 

one group. Each resource requirement group R is represented by two elements: a 

capacity limit (LR) and a list of activities with required numbers (ai/ri), expressed as:  

 1 1 2 2( ,[ / , / ,..., / ])R n nR L a r a r a r   (4.20) 

 The sequence reasoning procedure of a resource requirement group R consists of 

five main steps: 

 Step 1: Generate all activity combinations, ( ) ( )AC A AP where 

1 2[ , ,..., ] nA a a a . In fact, AC(A) is the powerset of the activity list A (denoted as 

( )AP ) which comprises all non-empty subsets of A.  

 Step 2: Identify all activity combinations that violate the capacity constraint,

1 2( ) [ , ,..., ] mVC A VC VC VC .These activity combinations are called violating 

activity sets, each containing a set of activities that cannot be altogether carried 

out concurrently due to resource capacity.  

 Step 3: Identify the minimal violating activity sets by removing all violated 

combinations that have subset in the collection. For example, among two 

violated combinations VC1 = [a1, a2] and VC2 = [a1, a2, a3], VC2 can be removed 

from analysis since VC1 = [a1, a2] defines a stricter disjunctive constraint. 

 Step 4: Convert capacity constraints into temporal constraints. In order to avoid 

the capacity violation, at least one activity of each violating combination iVC  

must not be carried out concurrently with the another in iVC . Tis reasoning 
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knowledge is represented by a disjunctive list of disjunctive constraints 

(Disjoint) between each pair of activities in the combination, shown as: 

  
,

         k l k
l

li i
k

TC a Disjoin a a a VCt   (4.21) 

 Step 5: Combine the constraints of all group TCi to form final constraint list: 

 ( )  i
i

TC TC   (4.22) 

For illustration, consider the crane requirement of four activities [a1, a2, a3, a4], 

in which activity a1 requires 2 cranes, activity a2 requires 1 crane, activity a3 requires 1 

crane, and activity a4 requires 2 cranes. The crane availability is limited at 2 cranes. 

These requirements are presented as: crane(2, [a1/2, a2/1, a3/1, a4/2]). In other to 

incorporate them into the scheduling process, the proposed sequence reasoning 

mechanism is performed to convert them into a set of temporal constraints which 

equivalently ensures that the availability is fulfilled. The sequence reasoning results 

using the proposed mechanism are described as follows: 

 Step 1: Generate all activity combinations (the powerset of the activity set) 

 
1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4

( ) [[ , ],[ , ],[ , ],[ , ],[ , ],[ , ],

                 [ , , ],  [ , , ],  [ , , ],  [ , , ],[ , , , ]]

AC A a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
 

 Step 2: Identify all violating activity sets 

1 2 1 3 1 4 2 4 3 4

1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4

[[ , ],[ , ],[ , ],[ , ],[ , ],

                 [ , , ],  [ , , ],  [ , , ],  [ , , ],[ , , , ]]

VC a a a a a a a a a a

a a a a a a a a a a a a a a a a
 

 Step 3: Identify minimal violating activity sets 

1 2 1 3 1 4 2 4 3 4[[ , ],[ , ],[ , ],[ , ],[ , ]]VC a a a a a a a a a a  

 Step 4: Determine capacity constraints in the form of temporal constraints 
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TC1 = [(a1 Disjoint a2)], TC2 = [(a1 Disjoint a3)], TC3 = [(a1 Disjoint a4)],  

TC4 = [(a2 Disjoint a4)], TC5 = [(a3 Disjoint a4)] 

 Step 5: Combine all temporal constraints into one set 

TC = [(a1 Disjoint a2) (a1 Disjoint a3) (a1 Disjoint a4) (a2 Disjoint a4) 

 (a3 Disjoint a4)] 

The final temporal constraints reasoned from this resource constraint are five 

disjunctive constraints (Disjoint) represented five pairs of activities that cannot be 

carried out concurrently. The simultaneous satisfaction of these constraints can ensure 

that the resource availability constraint of this resource is always fulfilled. 

5.5.5. Work Space Requirement Sequence Reasoning Mechanism 

Many researchers have agreed that spatial conflicts can also obstruct the 

concurrency of the construction processes using the space entities. This research only 

focus on the conflicts between work space entities since this conflict type can be 

avoided through sequencing and scheduling the related construction processes. Other 

types of spatial conflict between Interdiction Space and Dead Space Elements (Chua et 

al., 2010) are related to space assignment and cannot be resolved through scheduling, 

thus not being taken into account in this research. Reader may refer to Error! 

Reference source not found. for a complete set of topological relationships between 

two space entities. Moreover, although space is a special type of resource, the 

proposed reasoning mechanism for resource requirements cannot be applied to space 

constraints since the crucial element that defining the relationship between activities is 

not the availability but the spatial interference between space entities. Therefore, the 
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sequence reasoning mechanism for space requirements is built on the spatial 

interference, and stated in a rule form as:  

“If the topological relationship between two work space entities ws1 and 

ws2 which are respectively required by two activities a1 and a2 is intersection-

conflict, then a1 and a2 must be carried out disjunctively”. 

 

Figure 5.12. Pseudo code spatial requirement sequence reasoning mechanism 

The procedure of the spatial requirement sequence reasoning mechanism based 

on the above rule is depicted in Figure 5.12. The final output of this reasoning process 

is a collection of disjunctive constraints (Disjoint) between activities requiring 

spatially conflicting work space entities. 

5.6. Preemptive Constraint Analyzer 

The outputs from the inference and reasoning kernel include two main 

elementary inputs for scheduling: list of activities and a list of temporal constraints. 

Since ASCoRe scheduler is a CLP-based scheduling system, its feasibility and 



Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms 

143 

 

efficiency is thus affected by the redundancy/inconsistency relationships among 

temporal constraints. Therefore, constraint collection set should be pre-analyzed so 

that redundant and conflicting constraints can be identified and resolved before 

scheduling. In this regards, this section presents a reasoning framework for identifying 

redundant and conflicting constraints within single or pairs of activities in the pre-

scheduling stage. The framework is implemented as a preemptive constraint analyzer 

which is performed prior to the schedule generation process to improve the feasibility 

and efficiency of scheduling. 

5.6.1. Definition and Classification of Constraint Redundancies and Conflicts  

5.6.1.1. Definition 

In the context of this research, a constraint is called redundant if it is overruled or 

subsumed by another constraint. A constraint is the subsumption of another constraint 

if any value of activity start times fulfilling it also satisfies the latter. Without loss of 

generality, the subsumption relationship between two binary constraint c1 and c2 

involving activities X and Y where c2 subsumes c1 can be represented in the form of 

first order logic as shown Equation (4.23). This definition can be elaborated as: For 

any value of 
X and Y making c2 true also makes c1 true; consequently, c1 is 

subsumed by c2 and is a redundant constraint. 

 2 1, ( )   X Y c c   (4.23) 

In terms of feasible values, constraint c1 is redundant when compared with c2 if 

the feasible ranges of 
X and Y  defined by c2 is contained by that defined by c1. It 

also means that every values of 
X and Y feasible for c2 is also feasible for c1. 
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Consider, for example, two constraints between activities X (dX = 3) and Y (dY = 2): 

1 : 1  c X Y referring to a constraint X SS(1) Y, and 2 : 3 3 2    c X Y  

representing a constraint X FF(3) Y. The feasible ranges of X defined by c1 and c2 are 

1 ( , 1]   X Y  and 2 ( , 4]   X Y  respectively, and the feasible ranges of Y

are 1 [ 1, )   Y X  and 2 [ 4, )   Y X . As illustrated in Figure 5.13, 2
X is 

contained by 1
X , and 2

Y is contained by 1
Y . Consequently, c1 is subsumed by c2. 

 

Figure 5.13. Example redundant and inconsistent constraints 

In contrast, two constraints are called conflicting if they impose contradicting 

conditions on the activities involved. More specifically, two binary constraint c1 and c2 

involving activities X and Y are conflicting if every value of activity start times 

fulfilling c1 makes c2 violated and vice versa. Alternatively, there is no value of either 

X or Y  feasible for both c1 and c2, and the feasible ranges of X (or Y ) defined by 

the two constraints do not overlap each other. Conflicting constraints are logically 

defined in the form of equation (4.24). 
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 1 2 2 1, [( ) ( )]     X Y c c c c   (4.24) 

For ease of notation, the definition of conflicting constraints is represented in a 

short form as shown in Equation (4.25) 

 1 2, ( )   X Y c c   (4.25) 

An example of conflicting constraints is between constraints: 1 : 1  c X Y

taken from the previous example and 3 : 2 1 3    c Y X  referring to the 

relationship Y FF(1) X, with the same dX = 3 and dY = 2. The feasible ranges of X and 

Y are illustrated in Figure 5.13, where 1 ( , 1]   X Y  and 3 [ , )  X Y . Since 

1
X  and 3

X  have no common value with any value of Y , there exist no value of X  

that simultaneously satisfies both constraints c1 and c3. Hence, these constraints are 

inconsistent with each other. 

5.6.1.2. Classification  

In general, each temporal constraint involves two key parameters: lag time 

(denoted by m) and activity durations. Together they define the feasible values of the 

associated activities’ start times and the relationships between constraints. In terms of 

variation, there is a difference between lag time and activity duration. Since lag time is 

often dependent on construction technologies, codes and regulations, collaboration or 

contract issues, they are normally invariant with respect to a dynamic construction 

environment. For example in the construction of a cast-in-situ wall, a minimal lag time 

of 2 days is required between the finish of the concrete work and the start of the 

formwork removal for development of concrete strength. This lag time often remains 
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unchanged during construction unless there is some modification in the construction 

method like using concrete additives that allow rapid strength development. In 

contrast, activity durations are highly dependent on construction conditions such as 

productivity, resource adequacy, or weather condition. Hence, activity durations are 

more variant to changes in construction environment.  

 Due to the above distinction between lag times and activity durations, 

constraint redundancies and conflicts are divided into two categories: primary and 

secondary. Primary conflicts and redundancies are those dependent only on lag times 

and independent of activity durations. With any activity duration, the existence of a 

primary conflict or redundancy remains unchanged, and their respective logic 

definitions are presented in Equations (4.26) and (4.27). Without loss of generality, 

activity durations and lag time are assumed to have non-negative values in all cases (

0,  0,  0  X Yd d m ). 

 2 1, , , ( )     X YX Y d d c c   (4.26) 

 1 2, , , ( )     X YX Y d d c c   (4.27) 

 In contrast, secondary conflicts and redundancies, as defined in Equations 

(4.28)and (4.29), depend on both lag times and activity durations. 

 2 1, , , ( )     X YX Y d d c c   (4.28) 

 1 2, , , ( )     X YX Y d d c c   (4.29) 

Although primary and secondary constraint redundancies/conflicts have similar 

impacts to a schedule solution, they have different significance to planners and project 



Chapter Five: ASCoRe Scheduler: System Architecture and Sequence Reasoning Algorithms 

147 

 

managers. Primary redundancies are invariant with activity durations and could be 

“completely” ignored if lag time remains unchanged. On the other hand, under some 

conditions of activity duration, secondary redundancies may no longer exist. This 

commonly happens when activities are prolonged due to productivity issues or 

shortened to expedite. Consequently, project managers still need to pay special 

attention to secondary redundant constraints as they may become significant to the 

schedule. Primary conflicts are independent of activity durations and thus, can only be 

resolved when either of the constraints is removed or the lag times are modified. This 

will require some change in construction method, collaboration with related parties, or 

contractual agreements. In contrast, secondary conflict can be resolved by changing 

activity durations. Since changing activity durations are normally easier than 

modifying lag time values, primary conflicts can be considered more “severe”, and 

need more management attention than secondary ones. 

5.6.2. Pre-emptive Constraint Analysis Framework 

The preemptive constraint analysis framework identifies the primary and 

secondary redundancy and inconsistency constraints occurring in one activity or 

between two activities. The reasoning basis is represented in the form of comparison 

rules between two temporal constraints. Temporal constraints can be classified into 

two groups: simple and complex. Simple constraints are represented by only one 

mathematical inequality constraint. This group includes 4 unary constraints and 8 

binary constraints (with minimal and maximal lag requirements), forming the basic 

constructs which can be used to represent complex constraints. In contrast, complex 

constraints are mathematically represented by either a combination of inequality 

constraints. Accordingly, set of basic rules to compare simple constraints is first 
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developed as the foundation of the whole framework and the development of rules for 

comparing complex constraints.  

In addition, since definitions of temporal constraints relate to early starts of X 

and Y, X  and  Y , it is better to transform them to the form of Equation (4.30) as 

  : (    ( , , )) ,     ,     X Yc Y X f d d m   (4.30) 

where   ( , , ) X Yf d d m is a time function of the durations of X and Y, and associated 

lag time m. In addition,   represents the nature of the lag time, with “ ” referring to 

a minimal lag constraint, and “ ” to a maximal lag constraint. This representation 

format essentially recasts a binary constraint in terms of its feasible range of (  Y X ) 

as a relation of two main parameters  and f, so that two constraints can be directly 

compared. Specifically, the redundancy/inconsistency relationship between a pair of 

constraints associated with two same activities can be inferred from a comparison of 

 and f as established in the rules presented in the next section. 

5.6.2.1. Redundancy Rules of Simple Constraints 

Two rules are developed to identify the primary and secondary redundant 

constraint (if one exists) between two simple constraints c1 and c2 associated with lag 

types 1 , 2 and functions 1f  and 2f  respectively. Redundancies can only exist 

when 1  and 2 are of the same lag type. 

Primary Redundancy Rule (PR): If  1 2{ , }    and if 2 1(  , )  X Yf f d d  then c1 

is a primary redundant constraint; else if 1 2(  , )  X Yf f d d  then c2 is a primary 

redundant constraint; or conversely, if  1 2{ , }     and if 2 1(  , )  X Yf f d d  
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then c2 is a primary redundant constraint; else if 1 2(  , )  X Yf f d d  then c1 is a 

primary redundant constraint. 

As an example, consider two constraints c1: A FF(2) B and c2: A FF(3) B. 

Thus, 1 :  2    B Ac B A d d  and 2 :  3    B Ac B A d d . It is apparent that with 

any value of dA and dB, the condition 2 1f f  is always satisfied. Consequently, as 

illustrated in Figure 5.14a, the feasible range of 
 B A defined by c1 contains the one 

defined by c2, showing that c1 is subsumed by c2 with any value of activity durations 

and thus, identified as a primary redundant constraint.  
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Figure 5.14. Examples redundancy and inconsistency rules for simple constraints 

Similarly, consider two other constraints with maximal lags c3: A FF(~2) B (or 

3 :  2    B Ac B A d d ) and c4: A FF(~3) B (or 4 :  3    B Ac B A d d ). The 

feasible ranges of 
 B A are described in Figure 5.14a, showing that c4 is subsumed 

by c3 regardless of the values of dA and dB and thus, is a primary redundant constraint. 
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Secondary Redundancy Rule (SR): If  1 2{ , }    and if 2 1( )f f  then c1 is a 

secondary redundant constraint; else if 1 2( )f f  then c2 is a secondary redundant 

constraint; or conversely, if  1 2{ , }    and if 2 1( )f f  then c2 is a secondary 

redundant constraint; else if 1 2( )f f  then c1 a secondary redundant constraint. 

For example, consider two constraints c5: A SS(3) B and c6: A B(1) B, with 

5 :  3  c B A  and 6 : 1     Ac B A d . With dA = 3, as shown in Figure 5.14b, any 

values of 
A  and 

B  satisfying c6 also fulfill c5. Consequently, c5 is redundant when 

compared with c6. However, with dA < 2, 2 11 2   Af d f , so that c6 now becomes 

redundant. Thus they are secondary redundant constraints being contingent on the 

activity duration. 

5.6.2.2. Conflict Rules for Simple Constraints 

The potential of a conflict occurs when the constraints are of a different nature, 

i.e. 1 2   . A primary/secondary conflict occurs under two scenarios as defined in 

the following rules. 

Primary Conflict Rule (PC): If    1 2 1 2( , , ) ,       X Yf f d d  or 

   1 2 1 2( , , ) ,       X Yf f d d  then a primary conflict is detected. 

An example of a conflict arises between two constraints involving A and B, c7: 

B B(3) A (or 7 :   3   Bc B A d ) and c8: A SS(1) B (or 8 : 1   c B A ). Regardless 

of the durations of A and B, it is evident that 1 2f f , resulting in the scenario shown in 

Figure 5.14(c). This is the condition given by the first part of the rule thus defining a 

primary conflict between c7 and c8.  
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Secondary Conflict Rule (SC): If    1 2 1 2( , , )      f f  or 

   1 2 1 2( , , )      f f then a secondary conflict is detected. 

A potential conflict also exists for another two constraints c9: A SS(1) B (or 

9 : 1   c B A ) and c10: FF(1) A (or 10 :   1    A Bc B A d d ) with  dA = 3 and dB = 

4. However, it is a secondary conflict because the conflict no longer occurs for any 

durations fulfilling 2 A Bd d . 

In summary, there are three possible outcomes when comparing two constraints: 

(1) a constraint is subsumed by the other, resulting in a redundancy relationship, (2) 

they contradict each other, indicating an inconsistency relationship, and (3) neither of 

the constraints subsumes the other and they do not impose contradicting conditions. In 

the first scenario, the redundant constraint can be removed from the scheduling 

process. In contrast, the conflict in the second case must be resolved in order to 

achieve a feasible solution, while in the last scenario, both constraints need to be 

considered for scheduling and no special action is required. 

Mathematically, these scenarios are identified through the relationships of two 

basic parameters 1 1( , )f and 2 2( , )f  as summarized in Table 5.2. The redundancy 

rules PR and SR handle 6 scenarios (green) where either of the constraints is subsumed 

by the other. Inconsistency rules PC and SC on the other hand represent 2 scenarios 

(red) of conflict in which the constraints contradict each other. The final 4 scenarios 

(grey) refer to the situation to the last case. 

Table 5.2. Constraint relationships in according with   and f 
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5.6.2.3. Redundancy and Inconsistency Rules of Complex Constraints 

The rules described in the previous section for simple constraints form the 

fundamental constructs for the reasoning of conjunctive/disjunctive constraints. These 

constraints are necessary for capturing complex construction requirements such as 

work concurrency, continuity or disjunction. The redundancy and inconsistency 

relationship among such constraints are also more intricate, and prone to error with 

manually reasoning.  

For this section, consider two complex constraints 1 1,1 1,2 1,( ... )    pC c c c  

and 2 2,1 2,2 2,( ... )    qC c c c , and a simple constraint c3. cj,k is a simple constituent 

constraint of a complex constraint Cj. Note that capital notation is used for complex 

constraints and the lower case notation for simple constraints. The interaction of 

complex constraints is built upon the following rule which defines the subsumption 

relationship of a conjunctive constraint C1 over a simple constraint c3. In addition, 

although the following rules are developed for basic complex constraints which 

involve only simple constraints, they can still be applied to more complex constraints 

by either decomposing the constraints using distribution laws or performing the 

comparison in a hierarchy procedure. 
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a) Redundancy and Inconsistency Rules of Conjunctive Constraints 

Rule C1: If 1, 1 1, 3,  k kc C c c  then 1 3C c  

Essentially, if there is at least one constituent constraint Ci,k that subsumes c3, 

then C1 also subsumes c3. Consider for example two constraints involving A and B, C1: 

A Overlaps(3) B comprising two simple constraints: 1,1 : 3   Ac B A d  and 

1,2 : 3    Bc B A d ), and c3: A SF(2) B or 3 : 2    Bc B A d , with dA = 4 and dB 

= 5. It can be evaluated that I,2 2 f , and 3 3 f . Thus c1,2 subsumes c3 following 

rule SR and c3 is redundant when compared with C1. In other words, as illustrated in 

Figure 5.15a, any value of A  and B  fulfilling C1 automatically satisfies c3.  

 

Figure 5.15. Examples of redundancy rules of conjunction constraints 

In the case of two conjunctive constraints C1 and C2, the subsumption 

relationship may be determined using the following rule. 

Rule C2. If 2, 2 1 2,,  j jc C C c then 1 2C C  
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Essentially, if every constituent constraint of C2 is subsumed by C1, then C1 

subsumes C2 so that C2 is redundant. Extending the example in Figure 4(a) to consider 

C1 with C2: A SO(2) B, comprising two simple constraints 2,1 :  0  c B A  and 

2,2 : 2    Bc B A d . Figure 5.15b shows the relevant 1,1f  , 1,2f  of CI and 2,1f , 2,2f  

of C2 , and that C2 is redundant when compared with C1. 

 On the other hand, two complex constraint C1 and C2 are conflicting when any 

constituent constraint c1,k of C1 contradicts any c2,k of C2 as represented in Rule C3. 

Rule C3. If  1, 1 2, 2 1, 2,, , ( )    k j k jc C c C c c  then 1 2C C  

As an example, consider two constraints C1: A Meets B and C2: A O(3) B. 

Constraint C1 is a combination of two constraints: 1,1 :  0  c B A  and 

1,2 : 0  c B A , and constraint C2 is described as 2,1 :   3   Ac B A d , and 

2,2 : 3    Bc B A d . With dA = 4 and B dB = 5, 2,1 1f  and 2,2 2 f . Thus, c1,2 

contradicts c2,1 according to rule SC, showing that C1 and C2 cannot be simultaneously 

satisfied, and are conflicting constraints. 

b) Redundancy and Inconsistency Rules of Disjunctive Constraints 

In construction schedules, disjunctive constraints represent construction 

requirements that could be fulfilled by different ways of sequencing construction 

processes. They therefore result in different alternative schedules, providing planners 

with multiple planning options. With a large number of disjunctive constraints, the 

number of backtrackings or branches is commonly huge and a scheduling problem 
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may become computationally intractable. The following rules can be used to reduce 

the number of disjunctive constraints as well as identify inconsistent constraints. 

 If any disjunct c1,k of  a disjunctive constraint C1 contradicts a simple or 

conjunctive constraint C2, then c1,k can be removed without affecting the schedule 

solution. This could be depicted in Rule D1. 

Rule D1. If 1, 1 1, 2, ( )  k kc C c C then remove c1,k from C1. 

This is possible because in a disjunctive constraint, each disjunct refers to one 

alternative branch which may lead to a feasible solution. When a disjunct contradicts 

any other constraint, the associated branch becomes infeasible and thus ignored.  

On the other hand, a conflict occurs when all disjunct c1,k constituting a 

disjunctive constraint C1 is inconsistent with a simple or conjunctive constraint C2 as 

stated in Rule D2. 

Rule D2. If 1, 1 1, 2, ( )  k kc C c C  then 1 2C C  

Essentially, the existence of such a conflict means that no feasible branch can be 

found, and thus an infeasible schedule ensues. 

5.6.3. Identifying Feasible Duration Range 

Variations of activity durations are common in construction schedules. They 

could happen incidentally due to variations of different construction factors such as 

weather conditions, productivity, or resource availability. Activity duration could also 

be modified for different management aims like expediting delays or resolving 

schedule inconsistencies. As each activity is possibly involved in many constraints, 
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changing the duration of one activity may resolve one inconsistency but at the same 

time cause new conflicts. In addition, in the execution stage, changes in activity 

durations can result in conflicts and make the baseline plan infeasible. Due to 

constraints, there is a range of values for the duration of an activity, beyond which the 

schedule will be infeasible. Therefore, identifying the feasible duration range of an 

activity would provide planners with opportunities for modifying activity durations as 

required in both planning and control stages. 

The feasible duration range of an activity is defined as the range of values that 

the activity duration can take without causing any conflict among all the constraints 

associated with it while maintaining the duration of other activities and lag times. The 

feasible duration range of an activity X is denoted by [ , ] L U
X X XFD FD FD , where 

L
XFD  and 

U
XFD are the lower and upper bounds of the range respectively.  

 When both constraints are of the same lag type, there exist a redundancy 

between two constraints as in Rules PR and SR, and no value of activity durations 

could lead to a conflict between them. Therefore, there is no bounds to dX and dY and 

their feasible duration ranges with regard to constraints c1 and c2 are specified as 

1,2 1,2 [0, )  X YFD FD . 

 A conflict may occur when two constraints are of different lag types. Without 

loss of generality, assume that   1    and  2   . From rules PC and SC, in 

order to ensure there is no conflict between them, the condition 1 2f f needs to be 

satisfied. From this, the feasible duration ranges of activities X and Y may be derived. 
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Consider two constraints c1: B FF(1) A or 1 : 1    A Bc B A d d  and c2: A 

SS(2) B or  2  B A . By applying condition 1 2f f  , the feasible duration ranges of 

A and B are determined as 3 A Bd d  and 3 B Ad d  respectively. Thus, with 

predefined dA = 7 and dB = 3, their respective feasible duration ranges in regard to 

constraints c1 and c2 are identified as dA ≥ 6 or 
1,2 [6, ) AFD , and dB ≤ 4 or 

1,2 [0,4]BFD . 

The overall feasible duration range of an activity X (denoted as FDX) is the 

combination of the intervals computed from the pair-wise comparisons of all 

constraints involving that activity, as shown in Equation (4.31) where (i, j) refer to any 

pair of constraints i and j involving X. 

 
,

,( )
i j

i j
X XFD FD   (4.31) 

The feasible duration range could also be employed to analyze the consistency of 

all constraints related to an activity. If the feasible range of an activity X become 

empty ( XFD ), there is no feasible value of dX that simultaneously satisfies all 

constraints related to X. In other words, there exists an inconsistency within the 

associated constraints which cannot be resolved with any value of dX. Hence, in order 

to remove such a conflict, planners have to choose other strategies such as removing 

conflicting constraints or modifying the duration of other related activities. 

The application of the framework to PDM++ constraints is presented in 

Appendix 1 so that readers and planners can directly and manually apply the outcomes 
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of the rules without resorting to complex computing (albeit computing will automate 

the process and enable the conflicts and redundancies to be readily identified).  

5.6.4. Preemptive Constraint Analyzer 

The preemptive constraint analyzer is built upon the Constraint Integration 

Reasoning Framework as depicted in Figure 5.16. The analysis starts with an 

initialization process, which essentially elaborates complex constraints into 

combinations of simple constraints and generates a constraint pair collection  and 

finally, initializes all outputs.  

The reasoning process is divided into two main parts. The first handles simple 

constraints by sequentially examining every constraint pair (Ci, Cj) in  using rules 

PR, SR, PC, and SC, and determining the feasible duration ranges of the associated 

activities. The second part analyzes the complex constraints. Based on the 

redundancies and conflicts found in the first part, the relationship between each 

complex constraint and simple constraints are identified using rules C1 and D1. The 

comparison of complex constraints then proceeds using rules C2, C3 and D2. In 

general, in a worst-case scenario, the reasoning of simple constraints runs in 
2(|{ }| )O S

polynomial time where |{ }|S  is the number of simple constraints, while the run time 

complexity for complex constraints is
2 2((2 |{ }|) ||{ }| |{ }| )O S C j  where |{ }|C is the 

number of complex constraints, and { }j  the maximum number of constituting simple 

constraint of a complex constraint. 
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Figure 5.16. Flowchart for implementing preemptive constraint analysis 

The output of the preemptive constraint analyzer are sets of primary and 

secondary redundant constraints, primary and secondary conflicting constraint pairs, 

and the corresponding feasible duration ranges of all associated activities. Planners 
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need to take suitable actions to resolve the identified conflicts. Common strategies 

include: (1) Change the duration of one or some activities within their feasible ranges, 

(2) Examine to see if a conflicting constraint can be removed, or (3) Examine to see if 

construction method can be changed so that the lag time of a conflicting constraint can 

be modified. When conflicting constraints are resolved within the feasible ranges, no 

new conflicts would arise. The objective, therefore, of the preemptive constraint 

analyzer is to obtain a refined constraint set without redundant constraints (although 

remaining in the database) for efficient scheduling using the scheduler. 

In summary, with the existence of disjunctive constraints, the scheduling 

problem is generally a NP problem. For n activities and m constraints with k disjuncts 

each, the worst case run-time complexity of this scheduler is of an exponential order as 

O(n
2
mk

m
) (Tsamardinos and Pollack, 2003), so that by removing the redundant 

disjuncts via the preemptive constraint analyzer, the computational time of the solver 

can be significantly reduced. The benefit of applying the proposed framework in the 

pre-scheduling stage is twofold. The scheduling process will not start until all basic 

conflicts are resolved since it is known that no solution is obtained if such a conflict 

still exists, and redundant constraints are removed from the constraint set to improve 

computational efficiency. 

5.7. Schedule Generator 

The scheduling problem is modeled as a CSP with activity start times as 

variables and a set of constraints containing both conjunctive and disjunctive 

constraints, including the Makespan constraints. It is solved using the Schedule 

Generator which is built on PDM++ model. The major goal of this scheduler is to 
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generate all feasible schedule solutions based on the refined constraint set obtained 

from the preemptive constraint analysis process using constraint propagation and 

backtracking search techniques provided by ECL
i
PS

e
. The computation procedure 

(depicted in Figure 5.16) consist of four stages: (1) Initialization, (2) Constraint 

Propagation, (3) Backtracking Search, and (4) Output Finalization. 

 

Figure 5.17. Flowchart of scheduling process 
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 Stage 1 (Initialization): Input activities and constraints are added to pre-defined 

data structures. The domain of all variables (activities’ start times) is initialized. 

Then, activities are mapped the relevant constraints for constraint propagation. 

 Stage 2 (Constraint Propagation): The constraint propagation is facilitated by the 

BCSolver Algorithm developed by Yeoh (2012), which has been adapted from the 

Bounds Consistency Algorithm (Jaffar et al., 1994). In particular, the definition for 

Bounds Consistency proposed by Choi et al. (2006) stating “A constraint is Bounds 

Consistent if for each bound of the domain of a variable there is an integer support 

for the values of the domain of the other variables occurring in the same constraint.” 

is adopted in BCSolver Algorithm. When all constraints are visited and satisfied, 

the domain of makespan is bound to the lower bound and one more propagation 

process is performed to get the final domains variables. The lower and upper 

bounds of a domain respectively represent the early and late start time of the 

corresponding activity. 

 Stage 3 (Backtracking Search): When a path is fully explored or an inconsistency 

occurs, backtracking search is perform to the nearest non-explored path to examine 

new constraint combinations. The constraint propagation is then performed to 

identify a feasible solution. The backtracking process is iterated until the search 

space is entirely explored. 

 Stage 4 (Output Finalization): When the backtracking search process is finished, 

the identified feasible schedule solutions (if any exists) are compared to find and 

output the best solutions with the minimal makespan. If there is no feasible solution, 

a “NO” result is returned. 
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5.8. Concluding Remarks 

This chapter introduces the foundational knowledge necessary for implementing 

the ASCoRe framework. To summarize, the system architecture for implementing 

ASCoRe based on .NET framework and ECL
i
PS

e
 platforms integrates the 

advantageous features of three modules for alternative auto-scheduling from 

construction methods and requirements. As a whole, the proposed system architectural 

framework contains necessary tools and mechanisms for auto-scheduling from both 

product and process perspectives, and also allows for more flexibility in representing 

construction methods and requirements as well as updating their changes to schedules.  

In particular, the construction knowledge modeling module provides templates 

for systematically formalizing basic construction methods and requirements. These 

templates support rapid gathering and unambiguous representation of construction 

knowledge, so that major construction knowledge can be passed on through the 

scheduling generation and analysis phases for better traceability of changes and project 

management. Secondly, the inference and reasoning kernel incorporates inference 

algorithms for automatically deriving activities and temporal constraints from project 

data. Especially, activities are not pre-defined as in existing planning systems, but 

generated from directly construction methods and product components. By this, 

changes in construction methods and/or the design model can be steadily updated to 

activities and schedules.  Finally, the schedule generation engine based on the PDM++ 

model provides a computational model for generating all best alternative schedules. In 

addition to the extensional features inherited from the PDM++ model, it contains a 

preemptive constraint analysis module to further improve the scheduling efficiency.  
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Another vital contribution of this chapter is the preemptive constraint analysis 

framework. By identifying redundant and conflicting constraints between single or 

pairs of activities in the pre-scheduling stage, this framework helps identify the 

infeasibility and/or eliminate unnecessary searching space of the scheduling problem, 

thus improving schedule efficiency. In essence, the classification of constraint 

redundancies/inconsistencies based on the impact of activity durations and lags 

provide planners with better understandings of the nature of the redundancies/conflicts 

and useful strategies for resolving conflicts. Moreover, the feasible range of an activity 

duration computed from the framework provides planners with useful guidelines for 

solving conflicts, and also allows them to verify the validity of an activity duration 

when changes happen. 

Due to the existence of disjunctive constraints, the scheduling problem is 

generally NP-hard. The proposed schedule generation algorithm which is currently 

based on basic constraint propagation and branch and bound techniques can be 

incorporated with more efficient search approaches, such as the hybrid conflict-

directed backjumping, semanic branching and no-good based reasoning (Tsamardinos 

and Pollack, 2003) to further improve the scheduling efficiency.  
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CHAPTER 6. CRITICALITY ANALYSIS OF 

CONSTRUCTION REQUIREMENTS FOR 

SCHEDULE CHANGE MANAGEMENT 

6.1. Introduction 

As discussed in chapter three, construction requirements represent construction 

knowledge and practice from which schedule constraints and alternative schedules are 

derived. Therefore, this research highlights their governing role for schedule and 

proposes that construction schedules should be analysed and managed from the 

perspective of construction requirements. In this regard, this chapter presents an 

innovative concept for analysing the criticality of constraints and construction 

requirements with respect to multiple alternative schedules. The proposed concept will 

provide the fundamental basis for constraint-based methodology for schedule change 

analysis and management.  

A qualitative classification of constraint criticality to a single schedule is 

proposed to provide a broader definition of criticality. This classification schema forms 

the basis for identifying the criticality of complex requirements over multiple 

alternative schedules. Subsequently, a systematic procedure to identify constraint 

criticality is developed using two constraint criticality indicators. These indicators are 

further employed for analysing the impact of constraint variations on schedule 

makespan. The concept of constraint criticality also allows for developing a new 

approach to schedule management which is based on constraints and construction 

requirements. The application of the proposed concept and methodology is 

demonstrated via an illustrative example. 
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6.2. Constraint Criticality 

Generally, construction requirement is represented by one single or a set of 

simple constraints, and its criticality can be determined from that of its constituent 

constraints. Therefore, identifying the criticality of individual simple constraint in a 

schedule is fundamental for identifying the overall criticality of complex construction 

requirements. In addition, constraints constituting disjunctive requirements may not be 

involved or active in some schedules. Thus, from the perspective of a single schedule, 

a constraint can be characterized from two aspects: Existence and Criticality. The 

existence of a constraint refers to its presence within a specific schedule, while its non-

existence means that the constraint is not involved in the solution of that schedule. As 

such, the criticality of a constraint is always determined with its existence condition. 

6.2.1. Definition and Classification 

Due to the complex nature of some constraints, a critical constraint may affect 

not only project duration or the start/finish times of activities but also the sequence of 

activities in a project plan. In contrast, non-critical constraints are redundant ones, 

which can be removed without causing any change to the schedule. From this 

perspective, constraints can be classified into four groups: project-critical, activity-

critical, sequence-critical, and redundant, described as follows. 

6.2.1.1. Project-critical Constraint 

A constraint is project-critical if it controls the start/finish times of a critical 

activity and thus governs the project duration. As such, a project-critical constraint 

path implies a critical activity path and vice versa. More precisely, any critical activity 
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path has an associated project-critical constraint path, which links all constraints 

governing the start/finish times of the critical activities involved. 

 

Figure 6.1. Example schedule network 
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For illustration, Figure 6.1 presents two alternative schedules of a schedule 

network resulting from the disjunction requirement between activities D and E (C8: D 

Disjoint E) so that D is scheduled before E as in Figure 6.1a, or D is schedule after E 

as in Figure 6.1(b). This requirement is captured by the disjunctive combination of two 

constraints c8a and c8b, expressed as 8 8 8: ( )a bC c c . The concurrent relationship 

between B and C (C4: B Contains C) is represented by a conjunctive combination of 

two constraints c4a and c4b, as 4 4 4( ) a bC c c . Similarly, the overlapping relationship 

between C and F (C9: C Overlaps(3) F) is a conjunction of c9a and c9b as 9 9 9: ( )a bC c c . 

The respective durations of Schedules 1 and 2 are 20 and 22 days. It is also noted that 

short-form notation will be used for simple constraints while long-form notation for 

complex constraints for easy reading and consistency with previous chapters. Readers 

may wish to refer to Figure 2.1 for a full description of PDM++ constraints in both 

long and short form notations. 

In Schedule 1, constraints c2, c6, c8a, and c13 are project-critical, since they define 

the times of the critical activities A, C, D, E and G, as well as the schedule makespan. 

If for example constraint c6 is modified to SS(5), the start time of activity D is delayed 

by 1 day, and the schedule makespan is prolonged to 21 days accordingly. 

6.2.1.2. Activity-critical Constraint 

Similar to critical activities, the start/finish times of every non-critical activity 

are also controlled by at least one constraint which is classified as activity-critical. Any 

change or deletion of such a constraint can cause activity times to be changed while the 

schedule makespan remains unchanged. An activity-critical constraint becomes 

project-critical when its associated activities become critical.  
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In Schedule 1 (Figure 6.1a), activity B is non-critical and its start/finish times are 

controlled by two constraints c1 and c4a. In detail, c1 defines its early start/finish times 

while c4a governs its late start/finish times. If c1 is changed to SS(3), early start/finish 

times of B will change to 3 and 9 respectively, whereas the project duration remains 

unchanged as 20 days. When c1 is changed to SS(5), activity B turns to be critical and 

c1 becomes project-critical.  

6.2.1.3. Sequence-critical Constraint 

When a constraint does not control start/finish times if any activity, it is 

intuitively considered redundant, and removal of such a constraint may seem not to 

cause any change to project makespan. Yet under some scenarios, removing a “non-

critical” constraint allows for the re-sequencing of some activities so that a better 

project duration is achieved. These sequences may be originally infeasible and only 

made feasible by the removal of such a constraint. Due to this distinctive characteristic, 

this type of constraints is classified as “sequence-critical” in this paper. It refers to 

those constraints whose existence has no impact on the schedule but affects the 

sequence which defines the best project duration. 

As shown in Figure 6.1, the project duration is 20 days following the sequence 

defined in Schedule 1 where D is before E. In this schedule, constraint c11 is found to 

be non-critical. However, if this constraint is deleted, the makespan of Schedule 2 

where E is before D is reduced to 18 days thus improving the overall project duration, 

while that of Schedule 1 remains at 20 days. In another example shown in Figure 6.2, 

with the existence of constraint c4, there is only one feasible sequence in which activity 

B is before activity C, giving the project makespan of 20 days (Figure 6.2a). However, 

when this constraint is removed, the alternative sequence in which activity C is before 
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activity B become feasible, producing a shorter project duration of 17 days (Figure 

6.2b) while the makespan of the original sequence remains unchanged. 

 

Figure 6.2. Example of sequence-critical constraint 

Due to their special nature, sequence-critical constraints should be carefully 

examined to see if they can be removed to achieve better project makespan. 

6.2.1.4. Redundant Constraint 

The last category of constraint is named “redundant”, which refers to constraints 

whose change and existence have no impact on start/finish time of any activity, project 

duration and the activity sequence defining the overall project duration.  

6.2.2. Order of Constraint Criticality 

Constraint criticality in a schedule can be ordered as follows: 

Project-critical    Activity-critical    Sequence-critical    Redundant 
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Project-critical constraints are apparently the most crucial since not satisfying 

them can prolong the schedule makespan. Secondly, activity-critical constraints also 

need to be well-managed in order to maintain activity’s times as planned. Although not 

crucial to the schedule times, sequence-critical constraints cannot be ignored since 

their removal can allow for project improvement. 

6.3. Identifying Constraint Criticality 

Similar to activity criticality, constraint criticality may be determined based on 

criticality indicators. The criticality of a constraint is closely related to whether it may 

prolong schedule makespan or may reduce the feasible ranges of activities’ start times 

when the constraint becomes more obstructive to project performance or more 

tightened. In other words, if a constraint has less room by being tightened or 

conversely, less relaxed, it yields a higher degree of criticality. Accordingly, two types 

of relaxation time are proposed to characterize the criticality of a constraint, defined as 

follows: 

 Aggregate Relaxation Time: The Aggregate Relaxation Time (ART) of a 

constraint c, denoted as cART , is the total amount of time that its lag time and/or 

associated activities’ times (start time and/or duration) can be varied without 

violating the constraint, and thus without increasing schedule makespan. 

 Intrinsic Relaxation Time: The Intrinsic Relaxation Time (IRT) of a constraint 

c, denoted as cIRT , is the total amount of time that its lag time can be varied 

without reducing the feasible start time ranges of all activities involved while 

activity durations remain unchanged. 
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Table 6.1. Relationship of criticality and relaxation times 

Criticality Relaxation Times 

Project-critical ART = IRT = 0 

Activity-critical 
ART  > 0 

IRT = 0 

Sequence-critical 

ART > 0 

IRT > 0 

Removal provides better project duration 

Non-critical 

ART > 0 

IRT > 0 

Removal has no impact on project duration 

 

The distinction of the two relaxation times is in two aspects. The first refers to 

the impact of change: on makespan for ART and activity times for IRT. The second is 

directed to the scope of change: both lag and activity times for ART while merely lag 

time for IRT. The relationship between ART and IRT and the criticality of a constraint 

is shown in Table 6.1. A project-critical constraint will cause project delay if it is 

further tightened, and thus its relaxation times are zero. On the other hand, an activity-

critical constraint still can be tightened without affecting schedule makespan, yet 

affecting the feasible time range of the activities involved. Hence, an activity-critical 

constraint has zero IRT and non-zero ART. 

6.3.1. Determining Constraint Relaxation Times 

The ART and IRT of a constraint may be computed by the introduction of 

flexibility measures of the activities involved. The flexibility of an activity with regard 

to a constraint can be measured based on the amount of time that its start time can be 

changed (pushed forward or pulled backward) from the original start time range 

without violating the constraint while the times (duration and start time) of its 
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successor/predecessor involved in the constraint, lag time and its duration remain 

unchanged. Similar to relaxation times, two types of flexibility times are introduced as 

follows: 

 Aggregate Forward/Backward Flexibility Time: The Aggregate Forward/ 

Backward Flexibility Time of an activity k with regarding to a constraint c, 

denoted as ,
FW

k cAFT / ,
BW

k cAFT , is the amount of time that k can be moved 

forward/backward without violating c, while its duration, the feasible time range 

of its successor/predecessor involved in c and lag time remain unchanged. 

 Intrinsic Forward/Backward Flexibility Time: The Intrinsic Forward/ 

Backward Flexibility Time of an activity k with regarding to a constraint c, 

denoted as ,
FW

k cIFT / ,
BW

k cIFT , is the amount of time that k can be moved 

forward/backward beyond its original feasible range without violating c, while 

its duration, the feasible time range of its successor/predecessor involved in c 

and lag time remain unchanged. 

Flexibility times of an activity with respect to a constraint show how flexible the 

activity can be scheduled without affecting the constraint’s satisfaction. As such, less 

flexibility times indicate that the activity is less flexible or more constrained. In 

addition, AFT refers to the flexibility of an activity taking into account its total float 

time while IRT does not involve float time. 

Let [  .. ]  k kk L U  denote the original feasible start time of activity k obtained 

from schedule computation result where Lk and Uk are early and late start time of k, 

and , ,[  .. ] c k c k ck L U the start time range of k governed only by constraint c. The 
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intrinsic and aggregate flexibility times of activity k with respect to constraint c can be 

determined from the difference between 


ck  and k  as described in equations (4.32) 

and (4.33) respectively. 

 
, ,

, ,

 

 

FW
k c k c k

BW
k c k k c

IFT U U

IFT L L
  (4.32) 

 
, ,

, ,

 

 

FW
k c k c k

BW
k c k k c

AFT U L

AFT U L
  (4.33) 

It can be inferred from the above definitions that ,
BW

k cIFT and ,
FW

k cIFT respectively 

refer to the flexibility of early and late times of activity k with respect to constraint c. 

Hence, zero ,
BW

k cIFT / ,
FW

k cIFT indicates that c defines the early/late time of k. Moreover, 

the relationship between IFT and AFT can be described as 

 
, ,

, ,

 

 

FW FW
k c k c k

BW BW
k c k c k

AFT IFT TF

AFT IFT TF
  (4.34) 

where  k k kTF U L  is the total float of activity k.  

Since the criticality of a constraint corresponds to how flexibly its associated 

activities can be changed without violating it, the relaxation time of a constraint is then 

defined as the minimal flexibility time of all associated activities, given by: 

 
, ,

, ,

( , )    activity  involved in 

( , )       activity  involved in 

 

 

FW BW
c k c k c

k

FW BW
c k c k c

k

ART Min AFT AFT k c

IRT Min IFT IFT k c
  (4.35) 
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For illustration, consider constraint c5: B FF(2) D, or 5 : 2    B Dc B d D d  

in Figure 6.1a, with dB = 8, dD = 7, [2..5] B  (or 2BL , 5BU ) and [9] D  (or 

9 D DL U ). Note that D is a critical activity. The start times of B and D as defined 

by only c5 are 5 ( ..6]  B  (or ,5  BL , ,5 6BU ), and 5 [5.. )  D (or 
,5 5DL , 

,5  DU ). Accordingly, the flexibility times of B and D can be determined as 

follows: 

,5 ,5 6 5 1    FW
B B BIFT U U , ,5 ,5 6 2 4    FW

B B BAFT U L , 

,5 ,5  BW
B B BIFT L L , ,5 ,5  BW

B B BAFT U L , and similarly 

,5 ,5 9 5 4   BW BW
D DIFT AFT , 5, 5, FW FW

D DIFT AFT .  

Consequently, the relaxation times of constraint c5 are determined as   

5 ,5 ,5 ,5 ,5( , , , ) 1 FW BW FW BW
B B D DIRT Min IFT IFT IFT IFT  determined by ,5

FW
BIFT , and

5 ,5 ,5 ,5 ,5( , , , ) 4 FW BW FW BW
B B D DART Min AFT AFT AFT AFT  by ,5

BW
BAFT and ,5

FW
DAFT . 

The significance of these relaxation times can be perceived in this way. With 

IRT5 = 1, the lag time of c5 (m5 =2) could be increased by 5 1 T  to m5 = 3 without 

affecting the start times and floats (i.e. time ranges) of activities B and D. However, if 

m5 is increased by 5 2 T  to from m5 = 2 to m5 = 4, the feasible time range of activity 

B is reduced to [2..4] B  to satisfy c5 since this change exceeds the forward intrinsic 

flexibility time of active B, ( ,5 1FW
BIFT ). On the other hand, ART5 = 4 indicates that 

the 5 2 T  change does not affect project duration. Specifically, it can accommodate 



Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management 

177 

 

changes in lag time or activity times (start time and/or duration) not totaling more than 

4 days without affecting project completion. In particular, at the extremities, it is still 

satisfied if its m5 can be increased by 5 4 T  to m5 = 6 and activity B is carried out on 

Day 2 ( 2 B ), or if activity B can be delayed by 5 4 T  days ( 6 B  ) and its lag 

remains as m5 = 2. However, if lag time is increased to m5 = 7, constraint c5 is violated 

and the schedule makespan needs to be increased to resolve the violation. The impact 

of constraint variation on schedule makespan will be examined in section 6.4. 

6.3.2. Interpreting Constraint Relaxation Times 

Each constraint comprises two principle elements: lag time and activities’ 

temporal attributes (start times and durations). Relaxation times of a constraint indicate 

the temporal magnitude in which these two elements can be varied while maintaining 

the satisfaction of the constraint. As illustrated in the previous example, the IRT of a 

constraint represents the maximal time amount that its lag time can be increased (for 

minimal lag) or decreased (for maximal lag) without causing any change to the feasible 

time ranges of the associated activities when activity durations are unchanged. If lag 

time change exceeds IRT, activities’ feasible time ranges will be reduced accordingly. 

The ART of a constraint on the other hand refers to the maximal total time amount that 

its lag time and activities could be changed without affecting its satisfaction, and thus 

not delaying the schedule makespan. 

IRT could be considered as “free” relaxation time of a constraint to be analogous 

to the free float from the activity perspective. Since any change within IRT does not 

reduce the feasible time range of activities or their total float, such a variation only 

happens within the constraint and does not affect the IRT of other constraints. ART on 
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the other hand represents the relaxation time of both lag time and activities’ times. 

Thus, it is shared among the constraints involving the same activities and could be 

considered as “total” relaxation time to be analogous to the total float from the activity 

perspective. Changes in the ART of one constraint will lead to variations in the ART of 

other constraints, while changes in the IRT will not lead to variations in other 

constraints. Accordingly, IRT and ART are used to capture the inherent and aggregated 

changes of a constraint. 

 

Figure 6.3. Example constraint network showing relaxation times 
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Figure 6.3 depicts an equivalent constraint network of the schedule shown in 

Figure 6.1a where nodes represent constraints and the edges denotes activities. With 

this representation from the constraint perspective, the relationship between the 

relaxation times of associated constraints can be better conveyed. In essence, changes 

in both activity and lag times can be reflected as changes of the ART and IRT of the 

associated constraint(s), and then propagated throughout the downstream network. For 

example, the ART of constraint c1 (ART1 = 3) is shared among all non-project-critical 

constraints involving non-critical activities. Consequently, if the start time of activity B 

is delayed by 2 days ( 1 2 T  ) from [2..5] B  to [4..5] B , ART1 is reduced from 

ART1 = 3 to ART1 = 1 correspondingly, and the ARTs of the constraints related to 

activity B also decreased similarly, shown as: ART4a = 1, ART4b = 2, and ART5 = 3. 

Especially, the IRT of these constraints remains unchanged (as IRT5 = 2 and IRT4b = 1) 

since they original change is from an activity (activity B). 

6.4. Criticality of Construction Requirements 

Construction requirements can be seen as conjunctive and disjunctive 

combinations of one or many simple constraints. For generality, a construction 

requirement comprising only one simple constraint is considered as a conjunctive 

combination. The criticality of a construction requirement is therefore derived from 

that of its constituent constraints. In addition, since some constraints may not be 

involved in some schedules due to some disjunctive requirements, the existence aspect 

must be taken into account for identifying the criticality of construction requirements. 
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From the perspective of a single alternative schedule, the criticality of a 

conjunctive group of active constraints is characterized by the highest degree of 

criticality of its constituent constrains, expressed as: 

 
1 2( ... ) 1 2sup( , ,..., )   

nc c c n   (4.36) 

where i denotes the criticality of constraint ci. 

For instance, consider C4: B Contains C in Figure 6.1a comprising a conjunctive 

combination of two simple constraint as 4 4 4: ( )a bC c c . Constraint c4a defining the 

start time of activity B is activity-critical while constraint c4b is non-critical. 

Consequently, according to the characterization given by Equation (4.36), C4 is 

identified as activity-critical. 

On the other hand, the criticality of a disjunctive requirement with respect to an 

alternative schedule is defined by the criticality of its constituent constraints which are 

active or existent in that schedule. Consider the disjunctive requirement 8 8 8: ( )a bC c c  

in Figure 6.1, for example. In Schedule 1, constraint c8a exists while c8b is not active. 

Therefore, the criticality of requirement C8 in Schedule 1 is determined by the 

criticality of constraint c8a as project-critical. 

From the perspective of multiple alternatives, the criticality of construction 

requirements overall multiple schedules can be characterized as follows: 

 Super-critical Requirement: A construction requirement is classified as “Super-

critical” if it is project-critical in all alternative schedules. This class of 

requirements should receive more attention from managers since their delays or 
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violations will invariably affect project duration. As an example, requirement C8 

shown in Figure 6.1 is super-critical since it is identified as project-critical in 

both alternative schedules. Consequently, no matter which alternative schedule is 

selected for execution, this requirement requires careful attention. 

 Alternative-critical Requirement: A construction requirement is classified as 

“alternative-critical” if it is project-critical in at least one alternative schedules. 

Identifying them allows for plan flexibility when unforeseen circumstances occur 

which perturb the plan. Hence, when an “alternative-critical” requirement is 

perturbed, a possible mitigation may be to proceed with an alternative schedule 

where the affected constraint is no longer critical to the schedule duration. For 

example, in Figure 6.1, the start requirement between activities C and D, 

represented by constraint c4 is alternative-critical since it is identified as project-

critical in Schedule 1 but not in Schedule 2. If Schedule 1 is chosen for execution 

and if this requirement is subsequently perturbed, alternative Schedule 2 could 

be considered and put into action. 

The identification of “super-critical” and “alternative-critical” requirements 

allows managers to determine the driving construction requirements of the project, so 

that appropriate managerial action may be taken when necessary. From the alternative-

critical requirements, managers can then identify those requirements which if violated 

could allow for alternative schedules to be considered. For completeness, the criticality 

classification of requirement also includes another two following types. 

 Quasi-critical Requirement: A requirement is classified as “quasi-critical” if it 

is not project-critical in any alternative schedules and there is at least one 

alternative schedule in which it is not identified as non-critical. By this, the 
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quasi-criticality is a mixture of activity-criticality, sequence-criticality, and 

redundancy. When the criticality of a construction requirement are “activity-

critical” or “sequence-critical” in all alternative schedules, it will be classified as 

“quasi-activity-critical” and “quasi-sequence-critical” respectively.  

 Redundant Requirement: A construction requirement is classified as “non-

critical” if it is identified as non-critical in all alternative schedules. Changes in 

such requirements will have no impact on project completion time. 

Some complex requirements may be made up of hierarchical (or nested) 

disjunctive and conjunctive operators. Under these circumstances, the criticality of 

requirements is evaluated hierarchically as illustrated in Table 6.2. In this example for 

an arbitrary problem with four alternative schedules, the criticality of requirement R1 in 

each alternative schedule is defined by the criticality of either a conjunctive 

combination ( 1 2c c ) or c3. In Schedule 1, the criticality of ( 1 2c c ) is project-critical 

given by the supreme of that of c1 and c2 following Equation (4.36), while c3 is non-

existent. As a result, the criticality of requirement R1 in Schedule 1 is project-critical. 

On the other hand in Schedule 2 in which only c3 is active, the criticality of R1 is 

defined by that of c3 to be activity-critical. On the whole, requirement R1 is classified 

as alternative-critical since it is not project-critical in all alternative schedules. 

Table 6.2. Criticality of complex and simple construction requirements 
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This classification approach can also be applied to simple construction 

requirements which comprise only one constraint. As shown in the last column of 

Table 6.2, the overall criticality of constraint c4 can be defined from its criticality in all 

alternative schedules as quasi-critical. 

Similar to constraint criticality, the criticality of construction requirements from 

the perspective of multiple alternative schedules can be ordered as follows: 

Super-critical    Alternative-critical    Quasi-critical    Non-critical 

Super-critical requirements are the most important since they are project-critical 

in all alternative schedules and thus invariantly govern project completion time. 

Secondly, alternative-critical requirements also govern project makespan but not in all 

alternatives; hence, they allow for plan flexibility and should also receive special 

attention. Thirdly, although not defining project duration, quasi-critical requirements 

cannot be simply considered redundant as they have impact on activities’ time or 

sequence in some alternative schedules. Finally, redundant requirements govern 

neither activities’ time nor construction sequence in all alternative schedules.  
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6.5. Schedule Change Analysis from the Perspective of Construction 

Requirements 

This section presents an approach for analyzing schedule change from the 

perspective of construction requirements. Due to the dynamic environment, 

construction projects are subjected to numerous changes from different sources and by 

various causes. Project changes have apparent impacts on different aspects of 

construction process including schedule, cost, and project’s performance (Hanna et al., 

1999; Ibbs et al., 2001). Change is also a major cause of delay, disruption and disputes 

among construction parties (Motawa et al., 2007; Zhao et al., 2010). Therefore, 

analysing impact of project changes is necessary for project management. 

From the viewpoint of scheduling, project changes can be reflected in variations 

of schedule constraints which can be categorized in two groups: (1) variation 

(decrease/increase) of relaxation times caused by changes in activity times (start/finish 

time or duration) and lag time, and (2) introduction of a new or removal of an existing 

constraint. In general, constraint variations could have beneficial, neutral or disruptive 

impact on schedule makespan. They may also lead to an inconsistency in the constraint 

set, which cannot be resolved by changing the schedule makespan. The inconsistent 

constraint group can be identified using the preemptive constraint analysis approach 

presented in chapter five. Accordingly, the proposed approach aims at analyzing the 

impact of a constraint variation on the makespan of a schedule when any inconsistency 

caused by such a variation can be resolved with a new schedule makespan. 

6.5.1. Schedule Makespan Change by Variations of Relaxation Times 

The ART of a constraint is increased when the constraint is relaxed and 

conversely decreased if the constraint is tightened. Table 6.3 depicts the causes of 
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constraint tightening of 4 unary and 4 simple minimal-lag binary constraints. 

Variations can originate from changes in lag time (m), activities’ start times (
X and 

Y ) and durations (dX and dY). Up and down arrows respectively denote value increase 

and decrease, while a dash sign refers to an invariant relationship between lag/activity 

times and ART. Conversely, changes in the opposite direction will lead to constraint 

relaxation. The impact of changes of lag and activities’ times on ART of maximal-lag 

constraints is converse to that of the corresponding minimal-lag constraints. 

Table 6.3. Changes of lag and activities’ time leading to constraint tightening 

 

A constraint that is not project critical becomes project-critical when its ART is 

reduced to zero, while relaxing such a constraint has no impact on schedule makespan. 

On the other hand, the relaxing or tightening of a project-critical constraint can directly 

affect schedule makespan, and this depends on the lag type as depicted in Table 6.4. 

For minimal-lag type, relaxing a project-critical constraint can relax the entire schedule 

and allow the makespan to be shortened while tightening a project-critical constraint 

will make it violated and the makespan must be prolonged to resolve the constraint 
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violation. Conversely, for a maximal-lag type, relaxing a project-critical constraint 

causes no change to schedule makespan while tightening it can lead to inconsistency, 

and thus an infeasible schedule.  

Table 6.4. Impact of variation of project-critical constraint on schedule makespan 

Lag type 
Change of project-critical constraint 

Relaxed (ART ) Tightened (ART ) 

Minimal-lag Shortened makespan Lengthened makespan 

Maximal-lag Unchanged makespan Infeasible schedule 

6.5.1.1.  Change in Schedule Makespan through Constraint Tightening 

In general, tightening a minimal-lag constraint beyond its ART will violate the 

constraint and lead to schedule delay. Besides, the underlying requirements in which 

all activities must be carried out within the project timespan, from project start time 

(PS) to project end time (PT) are explicitly expressed by assigning two constraints, 

Start-After(PS) and Due-Before(PT) (or in short form as SA(PS) and DB(PT)) to all 

activities, so that the analysis method can be applied to all activity changes without 

checking if the activity is the first or the last in the network. The delay amount  PT  is 

dependent on how much a constraint say ci is tightened beyond its ART, and is 

determined by the difference between its total amount of tightening in time unit 

(denoted by  iT ) and its ART, given as: 

 max{0,( )}   P i iT T ART   (4.37) 

Consider the simple network with three constraints and an original makespan of 

14 days (see Figure 6.4) for example. ck,s and ck,f denote two implied constraints k 

SA(0) and k DB(14) the added to every activity k. The relaxation times ART and IRT of 
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all constraints are also presented in the figure for easy reading. When the duration of 

activity B is reduced by 2 days (dB = 6), constraint c1 is violated according to Table 

6.3, and thus the schedule is delayed by 1 1    PT T ART  2 0 2  days. The same 

value is obtained by re-computing the schedule with the new value of dB.  

Similarly, if the duration of activity C is increased from dC = 10 to dC = 13, none 

of the original constraints are violated yet the underlying constraint cC,f is violated, and 

consequently the makespan is prolonged by  PT , ,  C f C fT ART 3 0 3    days. In 

another scenario, although c2 is non-critical with ART2 = 2, if its lag time is increased 

from m2 = 0 to m2 = 4, c2 is violated and consequently the makespan is increased by 

 PT  2 2  T ART  4 2 2   days. 

 

Figure 6.4. Example schedule for analyzing schedule change 

6.5.1.2. Change in Schedule Makespan through Constraint Relaxation 

Relaxing a project-critical constraint will allow schedule shortening if the 

constraint is involved in all critical paths. Let N be the entire activity network, NC = 
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(X1, X2, …, Xk, …, Xn) be the sub-network of critical activities. When a project-critical 

constraint ci between two critical activities (Xk, Xl), expressed as ci(Xk, Xl), is relaxed, 

the relaxation is propagated throughout downstream sub-network (called relaxed sub-

network and denoted as NR) which includes all critical activities in (Xl, …, Xn) and 

their successors as illustrated in Figure 6.5. Then, schedule can be shortened, and the 

shortening amount is defined by the relaxation amount ( iT ) and the following ARTs: 

(i) ART(I) of constraint cl,s: Xl  SA(PS), which requires Xl to start on or after 

project start time under any condition. This constraint is taken into 

account to ensure that the relaxed sub-network ND stars on or after project 

start time after being shortening.  

(ii) ART(II) of all non-project-critical constraints cj(Xp, Xl) linking to Xl,  pX  

be the precedent of Xl.  

(iii) ART(III) of all constraints cj(Xp, Xq)  involving at least one non-critical 

activity not belonging to the relaxed sub-network, expressed as:  

 

,or

( , ) with ,or

,

 





 

p R

j p q q R

p R q R

X N

c X X X N

X N X N

  (4.38) 



Chapter Six: Criticality Analysis of Construction Requirements for Schedule Change Management 

189 

 

 

Figure 6.5. Schedule change analysis under constraint relaxation 

The makespan shortening time ( PT ) by relaxing a constraint ci is determined as 

the minimal among the relaxation in time unit ( iT ) and the original ARTs of 

constraints belonging to three groups above, given by: 

 (I) (II) (III)( , , , )  P iT Min T ART ART ART   (4.39) 

The collection of all constraints belonging to groups (i), (ii), and (iii) when 

relaxing a constraint ci is called controlling constraint set and denoted as i as: 

 ,

,

{( , ( , ), ( , )} i l s i p q j p l

p q

c c X X c X X   (4.40) 
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Then,  PT  can be alternatively expressed as: 

 ( , )        P i j j iT Min T ART c   (4.41) 

When the shortening amount of the makespan is not defined by  iT  (  P iT T

), the critical constraint path is changed to another. New project-critical constraints can 

be identified through the new relaxation time of those in the controlling constraint set (

'
jART ), given by: 

 '      j j P j iART ART T c   (4.42) 

The originally project-critical constraints in the sub-network (NR) will no longer 

be project-critical. In general, the updated relaxation time of all constraints ck in the 

sub-network NR is increased an amount of ( ) i PT T , given by: 

 
' ( - )      k k i P k RART ART T T c N   (4.43) 

For example, when the duration of activity B in Figure 6.4 is increased by 1 day 

(dB = 9), constraint c1: A FF(5) B is relaxed according to Table 6.3. Controlling 

constraint set 1 includes two constraints ,B fc  and c2 belonging to groups (2) and (3), 

respectively. The schedule makespan is reduced by 1 day, determined as 

1 2 ,( , , ) (1,2,2) 1    P B sT Min T ART ART Min  

Similarly, if constraint c1 is relaxed from FF(5) to FF(2), the schedule can be 

shortened by only 2 days due to constraints c2 and cB,s, shown as: 

1 2 ,( , , ) (3,2,2) 2    P B sT Min T ART ART Min  
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The new relaxation times of these constraints are identified as:  

'
2 2

'
, ,

'
1 1 1

2 2 0,

 2 2 0,

( ) 0 (3 2) 1

    

    

       

P

B s B s P

P

ART ART T

ART ART T

ART ART T T

 

Therefore, constraint c2 and the implicit constraint cB,s become project-critical 

while c1 becomes non-critical. 

6.5.2. Change in Schedule Makespan through Adding/Removing a Constraint 

New requirements may arise along the project’s lifecycle, resulting in new 

schedule constraints. If the new constraint ci is violated (ARTi <0) based on the original 

schedule, the schedule makespan will be prolonged to accommodate the new constraint 

by  PT  determined as: 

  | | P iT ART   (4.44) 

If a new constraint c4: A B(2) C (or 4 : 5 2   c A C  ) is added to the schedule 

network in Figure 6.4. With the original start times of A ( [0] A  ) and C ( [4] C ), 

c4 is violated with ART4 = -3. Hence, the schedule is delayed by | 3 |  3   PT days. 

In contrast, removing a project-critical constraint will shorten the schedule 

makespan if the constraint belongs to all critical paths. Similar to the case of constraint 

relaxation, the shortening amount ( PT ) when a constraint ci(Xk, Xl) is removed is 

governed by the ARTs of non-project-critical constraints cp related to activities in the 

downstream sub-network (as characterized in section 6.5.1.2) and given by 
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 ( )    P j j i
j

T Min ART c   (4.45) 

For example, when constraint c1 in the example schedule (shown in Figure 6.4) is 

removed, the schedule makespan can easily be recalculated as 12 days as 

2 ,( , ) (2,4) 2   P B sT Min ART ART Min  

6.6. Illustrative Example 

An example schedule project (depicted in Figure 6.6) is used to demonstrate 

application of the proposed concepts. This example project consists of 7 activities and 

16 simple constraints. Four construction requirements (denoted as R1 to R4 in the 

figure) have been identified for the project. Requirement R1 defines conjunctive 

relationships between constraints (c2 and c3). Requirements R2 to R4 are disjunctive 

combinations of constraints (c5a and c5b), (c8a and c8b) and (c9a and c9b) respectively.  

 

Figure 6.6. Illustrative example for criticality analysis 

Table 6.5. Result from criticality analysis 
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Four alternative schedules (named S1 to S4) are obtained, in which S2 is the best 

schedule with the shortest makespan of 24 days. The result from criticality analysis is 

presented in Table 6.5 with shaded columns representing the best schedule (S2), and 

all alternatives are graphically demonstrated in Figure 6.7.  
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Figure 6.7. Alternative schedules demonstrating constraint criticality 

The criticality analysis shows that constraints c3 and c4 are redundant in all 

alternative schedules. Constraints c5a and c9b are super-critical as they are project-

critical in all alternative schedules in which they exist. Especially, constraint c2 is 

found to be sequence-critical in all alternatives. Removing it makes the originally 

infeasible schedules (in which constraint c5b is active and allows activity C to be 

scheduled before activity B) become feasible, providing a shorter project makespan of 

20 days (see Figure 6.8). 
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Figure 6.8. Best alternative schedule when constraint c2 is removed 

The criticality of requirements is determined from that of their constituent simple 

constraints. Requirement R1 is identified as sequence-critical in all schedules and thus 

is quasi-sequence-critical. Requirement R2 is super-critical due to the project-

criticality of constraint c5a while the alternate constraint c5b is not active in all 

alternative schedules. The rest two requirements R3 and R4 are alternative-critical, 

since they are not project-critical in all alternatives. 

From the criticality analysis of construction requirements, some interesting 

observations can be made about the change of the preferable alternative schedule when 

variations happen. Firstly, the super-criticality of constraint c5a does not allow for any 

plan flexibility when this constraint is violated. In other words, violating this constraint 

will increase the makespan of all alternative schedules accordingly and the 

construction sequence option defined in schedule S2 remains the most preferable.  

Secondly, the preference of alternative schedule S2 may be impacted when a 

change happens to a constraint which is not super-critical. Two scenarios are presented 

for illustration. The first scenario demonstrates a change impacting all schedule 

makespans but schedule S2 remains as the most preferable. Consider for example a 
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change of 6 7 T (from SF(8) to SF(15)) of constraint c6: B SF(8) B. Since tightening 

is greater than the ART of c6 in schedules S1 and S2, the makespan of these schedules 

will be prolonged by 6 6 T ART , and become 34 and 25 days respectively. Hence, 

schedule S2 remains as the best schedule in this case. 

The second scenario demonstrates a change impacting the preference among the 

alternatives. Consider constraint c12: E SS(2) G which is project-critical to S2 but not 

to other alternative schedules for example. If due to some site condition the lag time 

requirement of c12 is increased from m12 = 2 to m12 = 8, constraint c12 is tightened by 

12 6 T  days, and thus the makespan of schedule S2 will be increased by 6 PT  

days into 30 days accordingly. However, this tightening of c12 does not prolong the 

makespan of other alternative schedules since the tightening amount is less than the 

relaxation time of this constraint in the other alternatives (ART12(S1) = 9, ART12(S3) = 

10, and ART12(S4) = 10). In this scenario schedule S1 with a makespan of 29 days 

becomes the most preferable alternative. 

6.7. Concluding Remarks 

This chapter presents a criticality analysis approach for schedule constraints and 

construction requirements. A detailed criticality classification was developed to 

provide a better understanding of the role of constraints to a schedule. In particular, a 

constraint could be project-critical, activity-critical, sequence-critical or non-critical 

depending on how it could affect activities’ start/finishes times and/or project duration. 

This classification forms the foundation to classify the behavior of criticality of a set of 

constraints under the effects of combinations of conjunction and disjunction. This also 
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allows the criticality of complex construction requirements under the context of 

alternative schedules to be classified.  

Constraint criticality analysis is achieved through two new concepts, Aggregate 

Relaxation Time (ART) and Intrinsic Relaxation Time (IRT). These relaxation times 

refer to the maximal temporal magnitude a constraint can be varied without affecting 

schedule makespan or activities’ times. They are devised as criticality indicators and 

provide the basis for analyzing schedule changes from the requirement perspective. 

From these ART and IRT, the impact of changes can be determined. 

Accordingly, this chapter presents a constraint-based method for schedule 

change analysis using constraint relaxation times. The analysis is based on and the 

nature of change and the impact of change on the ART of the associated constraint to 

identify the impact on schedule makespan. In particular, schedule delay could result 

from constraint tightening or introduction while schedule shortening can be achieved 

when relaxing or removing a project-critical constraint. By this, construction schedules 

can be analyzed and managed from a constraint perspective including changes from 

both activity’s times and lag times. With the capability of handling a larger scope of 

changes from a broader perspective, the proposed concept allows project management 

to be raised from the process (as activity) level in traditional approaches to a higher 

level of construction knowledge. 

 



 

198 

 

CHAPTER 7. CASE STUDIES 

7.1. Introduction 

This chapter presents two case studies to demonstrate the application of the 

schedule generation approaches concepts and the criticality analysis concept from 

previous chapters. The first case study demonstrates the application of  the ASCoRe 

framework and criticality concept for  schedule generation and analysis. The second 

case study describes the application of the preemptive constraint analyzer to improve 

the feasibility and efficiency of CLP-based scheduling approach.  

7.2. Case Study 1: Schedule Generation and Analysis of a Covered 

Walkway Project 

A simplified example based on the construction of the covering structure of a 

covered walkway project is presented to demonstrate the proposed scheduling 

frameworks and schedule analysis methodology described in previous chapters. The 

covering structure is divided into 3 sections for construction with Sections 1 and 3 

spanning a length of 20m and a height of 2.5m, and Section 2 spanning 20m with a 

slope of 0.25 as shown in Figure 7.1. All footings are precast concrete while beams, 

columns, and roof structures are steel. 
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Figure 7.1. 3D perspectives of the covered walkway structure 

7.2.1. Product Hierarchy and Component State Chain 

 

Figure 7.2. Product hierarchy and component state chain 
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The entire structure is decomposed into systems and subsystems as shown in 

Figure 7.2 (a). Components in the lowest subsystems are grouped into work packages. 

For instance, work package “Footing Section 1” includes 12 footing elements (F1 to 

F12). Similarly, work package “Column Section 1” involves 12 columns (C1 to C12); 

work package “Beam Section 1” contains 16 beams (B1 to B16), while work packages 

“Roof Section 1” and “Scaffold Section 1” consists of only one element, R1 and S1 

respectively. 

The state chain of typical component is depicted in Figure 7.2 (b). Since all 

permanent components are either steel or precast concrete, their construction state 

chain only consists of one state representing the installation process. On the other 

hand, the state chain of scaffold components consists of two states related to the 

erection and removal processes respectively. 

With the defined work packages and component state chains, construction 

activities of the project are generated as depicted in Figure 7.3. 

7.2.2. Construction Requirements and Constraint Network 

7.2.2.1. Functional Requirements 

Typical functional requirements applied to this project are defined at the section 

level as follows: 

 F1: Footing structure support column structure 

support([[Column.Installed.A]], [[Footing.Installed.Q]],E) 

 F2: Column structure support beam structure 

support([[Column.Installed.Q]], [[Beam.Installed.Q]],E) 

 F3: Scaffold structure support the erection of beam and roof structures 
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support([[Beam.Installed.A],[Roof.Installed.A]], 

[[Scaffold.Erected.Q]],E) 

7.2.2.2. Non-functional Requirements 

Six major non-functional requirements have been identified for this project: 

 R1. The foundation of sections 1 and 3 cannot be done concurrently due to 

routing condition, expressed as: 1 21: ( )R C C . 

 R2. The foundation of section 2 must be carried out after either that of sections 

1 or 3 due to site restriction, shown as: 3 42: ( )R C C . 

 R3. The foundation of section 2 must be start before day 15, shown as: 293:R C  

 R4. The column of section 2 must be installed after that of section 1, 

represented by one precedence constraint as: 84 :R C  

 R5. Due to a design requirement, there must be overlap time of at least 1 day 

between the beam installation of sections 1 and 2, and sections 2 and 3. This 

requirement requires two complex constraints, (BES1 Overlaps(1) BES2) and 

(BES2 Overlaps(1) BES3), and is represented by a conjunctive combination of 

four simple constraints as: 16 17 18 195: ( )  R C C C C . 

 R6. Due to routing issues, the roof must be installed sequentially from either 

section 1 or 3, expressed as: 22 23 24 256:[( ) ( )]  R C C C C . 

The identified construction requirements are reasoning into temporal constraints 

between activities and resulted schedule network of this project is depicted in Figure 

7.3. The temporal constraints are indicated on the directed arcs.  
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Figure 7.3. Schedule network of covered walkway project 

7.2.3. Schedule Generation 

By applying the proposed scheduling approach, four alternative schedules with a 

minimal makespan of 44 days (as summarized in Table 7.1) have been generated for 

this project. These schedules refer to different construction sequence options of footing 

and roof structures that the contractor can be implemented to achieve the best project 

completion time. In particular, in Schedule 1 and 2, the footing of Section 1 is done 

before Section 3, while in Schedule 3 and 4, the footing of Section 3 is done before 

Section 1. Similarly, in Schedule 1 and 3, the roof structure is installed sequentially 

from Section 1 to Section 3, while it is done from Section 3 to Section 1 in Schedule 2 

and 4. In addition, it is found from four alternatives that besides the traditional 
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sequence (which is sequentially done from Section 1 to Section 3 for all structures), 

other sequences can also lead to the same best makespan. Therefore, applying 

alternative scheduling can provide contractor with more planning flexibility. 

Table 7.1. Alternative schedules 

 

7.2.4. Criticality Analysis 

The criticality analysis results of constraints and requirements with respect to 

individual and all alternative schedules are presented in Table 7.2, and demonstrated in 

Figure 7.4. 

Start Finish Start Finish Start Finish Start Finish

Footing Section 1 FDS1 9 0 9 0 9 8 17 8 17

Footing Section 2 FDS2 9 9 18 9 18 8..9 17..18 8..9 17..18

Footing Section 3 FDS3 8 9..16 17..24 9 18 0 8 0 8

Column Section 1 CLS1 2 11..19 13..21 11..19 13..21 19 21 19 21

Column Section 2 CLS2 3 21 24 21 24 21 24 21 24

Column Section 3 CLS3 2 19..26 21..28 19 21 10..26 12..28 10..19 12..21

Scaffold Section 1 SCS1 1 13..21 24..22 13..18 14..19 21 22 21..28 22..29

Scaffold Section 2 SCS2 1 24 25 23 24 24 25 24 25

Scaffold Section 3 SCS3 1 21..28 22..29 21 22 12..28 13..29 12..21 13..22

Beam Section 1 BES1 4 22 26 22..29 26..33 22 26 22..29 26..33

Beam Section 2 BES2 5 25 30 25 30 25 30 25 30

Beam Section 3 BES3 4 22..29 26..33 22 26 22..29 26..33 22 26

Roof Section 1 RFS1 5 26 31 37 42 26 31 37 42

Roof Section 2 RFS2 6 31 37 31 37 31 37 31 37

Roof Section 3 RFS3 5 37 42 26 31 37 42 26 31

Dismantle Scaffold DS 2 42 44 42 44 42 44 42 44

Schedule 4Schedule 1
Activity

Short 

Form

Dura

tion

Schedule 2 Schedule 3
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Table 7.2. Criticality of simple constraints in four alternative schedules 
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Figure 7.4. Alternative schedules indicating critical constraints 
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7.2.4.1. Criticality Analysis of Single Constraints 

The use ART and IRT allows for a more effective method for identifying 

constraint criticality in all alternative schedules. These criticality indicators also 

provide useful information for planners to understand the role of constraints for all 

alternative schedules. Consider Schedule 1 (Figure 7.4a) for illustration. Firstly, 

constraints c3, c6, c10, c16, c19, c22, c23 and c28 are project-critical; hence tightening them 

will cause schedule delay. If for instance constraint c6 is tightened by 6 1 T  from B(3) 

to B(4), the makespan of this schedule will be increased by 1 day to 45 days. 

Constraints c1, c5, c7, c8, c11, c17, and c18 are activity-critical, and tightening them 

will reduce the feasible time ranges of the associated activities but not the schedule 

makespan. If for example, due to some site condition the columns at section 1 must be 

installed at least 3 days after the foundation is completed, constraint c5 is tightened by 

1 day (from B(2) to B(3)), decreasing its ART from ART5 = 8 to ART5 = 7, and 

consequently reducing the start time range of Column Installation Section 1 to 

[12..19], yet not impacting the schedule makespan.  The change in activity start time of 

Column Section 1 (CLS1) will be propagated to downstream network, and the ARTs of 

the related constraints c9 and c12 are decreased by a similar amount ( 1 T ). 

Constraints c21 and c26 are identified as sequence-critical in Schedule 1, 

indicating that a better project makespan can be obtained by removing these 

constraints. Although sequence-critical constraints are intuitively “redundant” to this 

alternative schedule, identifying them provide planners with useful strategies on 

sequence selection when these constraints can be eliminated. If the roof structure can 

be redesigned so that its erection does not require a scaffolding structure, constraint c26 

can be removed. Under such a scenario, the makespan of Schedule 1 remains 
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unchanged, yet that of Schedules 2 and 4 is improved from 44 days to 42 days. With 

this change, planners should proceed with either Schedule 2 or Schedule 4 for a better 

project completion time. 

Finally, constraints c6, c15, c20 and c27 are found to be redundant in Schedule 1. 

Tightening, relaxing or removing them will neither change activities’ feasible start 

times nor impact the schedule makespan. Although both sequence-critical and 

redundant constraints have non-zero IRTs, the key difference between them is the 

impact of their existence to the overall project makepan. For instance, if constraint c27 

is deleted, the makespan of all four schedules still remains at 44 days, while removing 

constraint c21 (a sequence-critical constraint) will allow the makespan of Schedules 2 

and 4 to be reduced to 42 days. 

7.2.4.2. Criticality Analysis from the Perspective of Construction Requirements 

The criticality of constraints lays the foundation to classify the criticality of 

construction requirements. For the simplest requirements R3 and R4 comprising only 

one constraint, their criticality in each schedule is similar to that of the constituent 

constraint. The criticality of a disjunction construction requirement in each schedule is 

defined by its active disjunct. For instance, R1 is identified as activity-critical in 

Schedule 1 due to constraint c1 while it is project-criticality in Schedules 2, 3, and 4 

due to c2. Similarly, requirement R2 is project-critical in Schedules 1 and 2 based on c3 

while activity-critical in Schedules 3 and 4 on c4. The criticality of a conjunction 

requirement is defined by all constituent constraints due to their co-existence in every 

schedule. As such, requirement R5 is identified as project-critical in all schedules, due 

to constraint c16 in Schedules 1 and 3, and c17 in Schedules 2 and 4.  
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For the complex requirement R6 with each disjunct comprising a conjunctive 

combination of constraints, its criticality in each alternative schedule is defined by that 

of the active disjunct, which in turn is specified by the criticality of all constraints 

constituting the disjunct. In detail, the project-criticality of R6 in Schedules 1 and 3 is 

defined by the conjunctive combination of c22 and c23, while in Schedules 2 and 4 by 

c24 and c25. 

From the perspective of multiple schedules, requirements R5 and R6 are super-

critical in all alternative schedules, implying that they dictate the project makespan. 

Changes in these requirements will affect all alternative schedules. Therefore, they 

should receive the highest management priority. Requirements R1, R2, and R3 are 

identified as alternative-critical, allowing planners to anticipate for switching among 

alternative schedules to mitigate their impact to schedule makespan when changes 

happen despite the super-criticality of some activities. For example, in this case 

example, the “Foundation Section 1” is critical under the consideration of all 

alternative schedules, and a Planner may choose to proceed with Schedule 2 with 

“Foundation Section 1” starting on the first day of the project. However, if this activity 

is anticipated not be delayed and not carried out on Day 1, then alternative Schedule 3 

or 4 may be chosen, with “Foundation Section 3” commencing first, and “Foundation 

Section 1” can be carried out on Day 8, thus not delaying the project. Finally, 

requirement R4 is redundant in all schedules, and hence the analysis of this 

requirement may not be necessary if changes are within the relaxation times of the 

constituent constraint. 

In addition, constraint criticality would provide a new perspective for evaluating 

alternative schedules. Evaluating alternative schedules is commonly based on some 



Chapter Seven: Case Studies 

209 

 

robustness indicators which are often functions of total free floats (Ghezail et al., 

2010); these slack-based criteria may however not be representative if a construction 

requirement is the major consideration. The requirement perspective may present 

deeper insight into the choice of alternative. For example, if the routing condition 

(defined in Requirement R1) is the major consideration, then Schedule 1, in which R1 

is not project-critical, the most is preferable, and should be chosen for execution. In 

contrast, with the total free float of the four alternative schedules respectively as 8, 8, 

9, and 9, Schedules 3 and 4 in which R1 is project-critical are more preferable than 

Schedules 1 and 2.  

7.2.5. Analyzing Schedule Changes 

From the criticality analysis of construction requirements, we can draw some 

interesting conclusions for schedule change management. Two scenarios are presented 

for illustration. The first scenario demonstrates schedule change resulting from 

constraint tightening while the second examines the impact of removing a construction 

requirement upon schedule makespan. 

Firstly, if the Foundation Section 2 is prolonged to from 9 to 11 days ( 6 2 T ), 

constraint c6 is violated in all alternative schedules but will cause different impacts to 

the schedule makespan due to its different ARTs. Specifically, the makespan of 

Schedules 1 and 2 with ART6 = 0 will be prolonged by 2 PT  days, while that of 

Schedules 3 and 4 with ART6 = 1 will be increased by only 1 day.  

Secondly, if the site condition can be modified so that the foundation at section 2 

can be carried out when the project starts, requirement R2 comprising both constraints 

c3 and c4 can be deleted. Since Schedule 1 only has one critical path, deleting the 
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project-critical constraint c3 will shorten the makespan of this schedule. However, 

removing this constraint does not improve the makespan of Schedule 2 since this 

schedule has two critical paths. According to section 6.5.1.2, the shortening time 

Schedule 1 is governed by the following ARTs: 

 ART(I) = [ARTFDS2,s] with cFDS2,s: FDS2 SA(0)  

 ART(II) = [ ART1 ], and 

 ART(III) = [ ART5,  ART7,  ART8,  ART9,  ART11,  ART12,  ART14,  ART18,  ART21] 

The shortening time is determined according to Equation  (4.45) as:  

(I) (II) (III)min( , , ) min(9,7,8,7,8,8,7,8,7,7,11) 7   PT ART ART ART   

With the impact of this makespan shortening, the ART of all constraints i  is 

correspondingly decreased by 7 PT . Consequently, constraints c1, c7, c11, c14, and 

c18 with zero updated ARTs become project-critical. In addition, since both c14 and c18 

become project-critical, activity BES3 also becomes critical with its updated start time 

ranges as BES3 [22]   , and consequently constraint c17 becoming project-critical. 

In summary, the case project has demonstrated the application of the proposed 

criticality concept to analyzing and managing construction schedules with the 

existence of multiple alternative schedules. The proposed criticality concept allows 

Planners to determine the super-critical construction requirements which always 

dictate the project makespan. The identification of alternative-critical requirements 

indicates some plan flexibility enables Planners to anticipate switching between 

alternative schedules when some changes happen. Furthermore, the relaxation times 

ART/IRT quantitatively represent the criticality of the constraints and provide the 
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fundamentals for an innovative approach to schedule change analysis, which is carried 

out from the construction requirement perspective. 

7.3. Case Study 2: Application of the Preemptive Constraint Analysis 

Framework to a Pipeline Installation Project 

An illustrative case example based on a simplified gas pipeline installation 

project is presented to demonstrate the application of the preemptive constraint 

analyzer in alternative scheduling. The piping structure stretches over 300 meters and 

is divided into 5 sections for construction as shown in . Sections 1 and 5 represent the 

construction of two concrete pipe bridges crossing existing water channels with their 

associated foundations followed by pipeline installation phases. Sections 2 to 4 refer to 

the main pipeline which is installed on steel pipe racks on shallow foundations. 

 

Figure 7.5. Pipeline installation layout 

7.3.1. Construction Requirements 

Major construction requirements have been considered for this project, described 

as follows: 
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 R1. The bridge foundation work of sections 1 and 5 shares one common 

micropiler. Consequently, they are must happen disjunctively. 

 R2. There is only one crew working on the foundation work of sections 2 to 4.  

 R3. The construction of shallow foundations must be sequentially started with a 

minimal lag time requirement of 3 day, and sequentially finished with a maximal 

lag time requirement of 1 day due to design requirement. 

 R4. There is only one crew working on the pipe installation of sections 1 to 5.  

 R5. The pipeline installation work at section 1 must be finished before that at 

other sections can start.  

 R6. Special technical constraints require that the pipeline installation must be 

continuous from sections 2 to 3 and from sections 4 to 5. 

 R7. Pipe installation of sections 4 and 5 have to be finished at least 2 days after 

the completion of sections 2 and 3 respectively. 

The identified construction requirements are converted into temporal constraints 

as shown in Figure 7.6. Since the major focus of this case example is the constraint 

preemptive analysis, the conversion from requirements into temporal constraints is not 

presented in this section. Temporal constraints are indicated on the directed arcs. 

Directed arcs without any indications are assumed to depict the B(0) constraint. The 

All-Disjoint constraint is used to model key resource requirement where only one key 

machine or crew available for the activities. It includes a set of disjunctive constraints 

(Disjoint) between every pair of activities sharing the resource, for example three 

constraints: PF2 Disjoint PF3, PF2 Disjoint PF4, and PF3 Disjoint PF4 representing 

Requirement R2. Constituting temporal constraints of the imposed requirements are 

summarized in Table 7.3. 
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Table 7.3. Temporal constraints constituting the imposed requirements 

Requirement Temporal constraints 

R1 (BF1 Disjoint BF5) 

R2 (PF2 Disjoint PF3)   (PF2 Disjoint PF4)   (PF3 Disjoint PF4) 

R3 (PF2 SS(3) PF3)  (PF2 FF(~1) PF3)   

(PF3 SS(3) PF4)  (PF3 FF(~1) PF4) 

R4 (PI1 Disjoint PI2)   (PI1 Disjoint PI3)   (PI1 Disjoint PI4)   

(PI1 Disjoint PI5)   (PI2 Disjoint PI3)   (PI2 Disjoint PI4)   

(PI2 Disjoint PI5)   (PI3 Disjoint PI4)   (PI3 Disjoint PI5)   

(PI4 Disjoint PI5) 

R5 (PI1 B(0) PI2)   (PI1 B(0) PI3)   (PI1 B(0) PI4)  (PI1 B(0) PI5) 

R6 (PI2 FF(2) PI4)   (PI3 FF(2) PI5) 

R7 (PI2 Meets PI3)   (PI4 Meets PI5) 

 

Figure 7.6. Constraint network of pipeline installation project 
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Together the 3 requirements R1, R2, and R4 result in 14 disjunctive constraints 

(Disjoint), resulting in 2
14

 backtrackings, which would not be possible to examine in 

total. In this case, planners often need to employ some priority rules in sequencing the 

related activities possibly leading to many infeasible solutions. The remaining 

constraints involve 31 simple constraints and 2 conjunctive constraints as a result of 

the Meets requirement in R6. 

7.3.2. Preemptive Constraint Analysis and Schedule Generation 

By applying the proposed constraints analyzer, 10 of the 14 disjunctive 

constraints (Disjoint) comprising conflicting constraints are identified as shown in . 

Column 2 of the Table indicates the constituent simple constraints of the disjunctive in 

column 1 while column 3 presents the conflicting constraints corresponding to the 

constraints in column 2. The identified constraint redundancies and inconsistencies are 

grouped into two groups: primary and secondary according to the classification 

presented in chapter five. In detail, primary conflicts/redundancies are those dependent 

only on lag times and independent of activity durations. In contrast, secondary 

conflicts/redundancies depend on both lag times and activity durations. Accordingly 

primary constraint redundancies are invariant with activity durations, while the 

secondary ones may no longer exist under some conditions of activity duration. 

Primary conflicts are independent of activity durations and thus, can only be resolved 

when the lag times are modified or either of the constraints is removed, while 

secondary conflict can be resolved by changing activity durations. 

Of these 10 are primary conflicting pairs which can be removed because of the 

existence of the other disjunct in the disjunctive constraint, for example, PI4 B(0) PI2 
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is ignored while PI2 B(0) PI4  remains so that the conflict with PI2 FF(2) PI4 can be 

resolved. As a result, the number of branches is dramatically reduced from 2
14

 to 2
4
. 

This huge reduction makes it possible to analyze all 16 remaining sequencing options 

to obtain the globally optimal solutions. 

Table 7.4. Conflicting constraints 

Disjunctive 

Constraints 

Disjunct/ 

Simple Constraint 

Conflicting 

Constraints 

Conflict 

Type 

PF2 Disjoint PF3 PF2 B(0) PF3 PF2 FF(~1) PF3 SC 

 PF3 B(0) PF2 PF2 SS(3) PF3 PC 

PF3 Disjoint PF4 PF3 B(0) PF4 PF3  FF(~1) PF4 SC 

 PF4 B(0) PF3 PF3 SS(3) PF4 PC 

PI1 Disjoint PI2 PI1 B(0) PI2   

 PI2 B(0) PI1 PI1 B(0) PI2 PC 

PI1 Disjoint PI3 PI1 B(0) PI3   

 PI3 B(0) PI1 PI1 B(0) PI3 PC 

PI1 Disjoint PI4 PI1 B(0) PI4   

 PI4 B(0) PI1 PI1 B(0) PI4 PC 

PI1 Disjoint PI5 PI1 B(0) PI5   

 PI5 B(0) PI1 PI1 B(0) PI5 PC 

PI2 Disjoint PI3 PI2 B(0) PI3   

 PI3 B(0) PI2 PI2 Meets PI3 PC 

PI2 Disjoint PI4 PI2 B(0) PI4   

 PI4 B(0) PI2 PI2 FF(2) PI4 PC 

PI3 Disjoint PI5 PI3 B(0) PI5   

 PI5 B(0) PI3 PI3 FF(2) PI5 PC 

PI4 Disjoint PI5 PI4 B(0) PI5   

  PI5 B(0) PI4 PI4 Meets PI5 PC 

 PF2 SS(3) PF3 PF2 FF(~1) PF3 SC 

  PF3 SS(3) PF4 PF3 FF(~1) PF4 SC 

Note: PC = Primary Conflict; SC = Secondary Conflict 

 

The remaining four conflicts are between two pairs of activities (PF2, PF3) and 

(PF3, PF4). Since they are secondary conflicts they can be resolved with another 

combination of activity durations, and the feasible duration ranges will provide some 
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useful references if such a resolution strategy can be applied. However, the feasible 

duration ranges of these activities corresponding to the secondary conflicts are 

determined as 2 [0, ) PFFD , 3 [0,1]PFFD , and 4 [0,1]PFFD . Changing activity 

durations of PF3 and PF3 may not be applicable since it is generally impossible to 

finish pipe installation in 1 day.  Instead the pipe design has to be revised so that the 

requirements on the finish times of installation work (PF2 FF(~1) PF3 and PF3 FF(~1) 

PF4) can be removed, simultaneously resolving all four conflicts. 

In addition, four constraints are found to be secondary redundant as shown in , 

and can be excluded from the scheduling process.  

Table 7.5. Redundant constraints 

Redundant Constraint Subsuming Constraint Redundancy Type 

PF2 SS(3) PF3 PF2 B(0) PF3 Secondary 

PF3 SS(3) PF4 PF3 B(0) PF4 Secondary 

PI2 FF(2) PI4 PI2 B(0) PI4 Secondary 

PI3 FF(2) PI5 PI3 B(0) PI5 Secondary 

 

With the refined constraint set the scheduler generates 2 best alternative 

solutions with a project makespan of 79 days as presented in . The two alternative 

schedules refer to two ways of sequencing the bridge foundation work of sections 1 

and 5 (BF1 and BF5), arising from the resource requirement constraint defined in R1. 

In Schedule 1, BF1 precedes BF5, while in Schedule 2 it succeeds BF5. From a 

management perspective, the construction of the bridge foundations has sequencing 

flexibility without affecting project duration. However, in both schedules, PF2, PF3 

and PF4 are carried out sequentially due to resource and the modified design 
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constraints defined in R2. Similarly, the pipe installation must be sequentially done 

from sections 1 to 5 to fulfill technical and resource constraints defined in R4 in either 

alternative schedules. 

 

Figure 7.7. Alternative schedules 

In summary, this example demonstrates how the proposed preemptive constraint 

analyzer can be applied to improve the efficiency of construction scheduling when 

multiple construction sequences are available. The framework is built on a set of 

comparison rules of constraints pairs, and is performed in the pre-scheduling stage 

without requiring complete constraint propagation and backtracking. The identified 

constraint redundancies and conflicts are thus independent of the constraint ordering. 

Moreover, the classification of constraint redundancy/inconsistency and the feasible 
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duration ranges also provide useful strategies for resolving the conflicts. By this, 

planners can have a deeper insight into the nature of the redundancies/inconsistencies 

so that more appropriate resolution approaches can be carried out. Beyond that, the 

framework helps eliminate unnecessary 10 unnecessary disjunctive constraints, and 

thus the search space can be dramatically reduced from 2
14

 to 2
4
 backtrackings. This 

reduction allows the application of a complete search technique to determine all 

feasible schedule solutions.  

7.4. Concluding Remarks 

In this chapter, three case studies are presented to demonstrate how the 

scheduling generation and analysis can be carried out from the perspective of 

construction requirements through the application of the proposed methodologies. The 

first case study is used to illustrate the application of the ASCoRe scheduling 

framework and the FReMAS model into automated construction sequencing and 

scheduling from construction requirements. This case study serves as a validation that 

FReMAS is capable of capturing multiple engineering solutions through the provider 

co-functionality attribute so that all alternative schedules can be obtained. Especially, 

the use of provider co-functionality provider attribute allows planners to examine 

different collaboration scenarios to improve project time. 

In the second case study, the application of the proposed preemptive constraint 

analysis framework described in chapter five is illustrated. The case study 

demonstrates the capability and usefulness of the proposed framework in identifying 

and removing redundant and conflicting constraints in the pre-scheduling stage. In 

particular, applying this framework helps remove 10 out of 14 disjunctive constraints 
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and thus reduces the search space from 2
14

 to 2
4
 backtrackings. The framework also 

classifies constraint redundancy/inconsistency into primary and secondary classes so 

that planners can have a better understanding of the role of these relationships to the 

schedules. In addition, the identified feasible duration ranges provide useful strategies 

for resolving the secondary conflicts. 

The final case study presents the application of the proposed concept and 

methodology for analyzing the criticality of construction requirements and their 

application to schedule change analysis. By considering multiple alternative schedules, 

the proposed method provides a deeper insight to the role of constraints and 

requirements for not only an individual schedule but for the entire project. It is also 

highlighted in this case study that despite the super-criticality of some activities, 

identifying alternative-critical requirements helps planner determine implicit 

sequencing flexibility which can be exploited to mitigate some anticipated variations. 

Especially, the criticality of constraint can be quantitatively represented using two new 

criticality indicators ART/IRT. These criticality indicators also allow the schedule to be 

analyzed and managed from a construction requirement perspective which 

encompasses both constraint and activity changes. 
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CHAPTER 8. CONCLUSION AND 

RECOMMENDATIONS 

8.1. Introduction 

The main purpose of this research is to develop the necessary methodologies and 

concepts for automated schedule generation and analysis from the perspective of 

construction requirements to improve the efficiency and feasibility of construction 

schedules. For this purpose, this dissertation proposes an overarching framework to 

integrate, interpret, and analyze construction requirements for schedule auto-

generation, criticality analysis and change management.  

The outline of the overarching framework follows the structure of this 

dissertation. It includes a generalized framework for automated scheduling from 

construction requirements (ASCoRe) which provides the core modeling tools for 

formalizing construction methods and requirements and the main scheduling processes 

for automatically generating alternative schedules from construction requirements. A 

generalized functional requirement model (FReMAS) is then developed to formalize 

and convert complex functional requirements into temporal constraints. To improve 

the efficiency and feasibility of scheduling from complex requirement, the framework 

utilizes a preemptive constraint analysis framework which allows basic constraints 

redundancies/inconsistencies to be identified and removed in the pre-scheduling stage. 

Finally, the framework proposes a new perspective for schedule analysis which is 

based on the criticality of constraints and construction requirements. Three industrial 

case projects are used to demonstrate key features of the overarching framework and 

verify the research findings.  
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This chapter summarizes the significant research results, discusses the key 

contributions of the research, identifies the main limitations and finally recommends 

directions for future studies. 

8.2. Conclusion and Research Contributions 

8.2.1. Generalized Framework for Automated Scheduling from Construction 

Requirement (ASCoRe) 

The ASCoRe approach proposed in this dissertation addresses the current 

limitations of incorporating construction methods and requirements into automated 

scheduling, which have been discussed earlier in section 1.2.1. In particular, ASCoRe 

develops four core knowledge models: Product, Construction Method, Construction 

Requirement and Schedule to describe the immutable core characteristics of building 

data and construction knowledge necessary for scheduling. In particular, construction 

requirement model allows construction requirements to be explicitly captured and 

managed in their original existence form from both product and process perspectives 

and at both component state and activity levels. Such a clear elicitation allows 

construction requirements to be passed on through the project phases, enhancing the 

traceability of changes for better schedule management.  

Another contribution of the ASCoRe approach is its generalized framework for 

automated BIM-based scheduling which comprises four main procedures: (P) to 

generate an extended product hierarchy, (R) to identify construction requirements, (S) 

to create a schedule model by generating activities and temporal constraints, and 

finally (A) to compute for alternative schedules. One key advantageous feature of this 

framework is the usage of component states as the key construct to integrate 
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construction method, product and activity perspectives. The product-process attribute 

of component states allows the direct generation of activity from construction method 

which enables the consideration of multiple construction methods. This allows changes 

in design and construction methods to be steadily updated to schedule. 

 A system architectural framework with sequence reasoning and scheduling 

algorithms for implementing ASCoRe is then proposed as part of this dissertation. The 

key extensions of this scheduling system from the existing model-based schedulers 

include the Construction Knowledge Modeling Module together with different 

knowledge templates to formalize necessary knowledge and data for scheduling, the 

Inference and Sequence Reasoning Kernel to automatically derive activities and 

temporal constraints from construction methods and requirements, and the Schedule 

Generation Engine to generate all alternative schedules. In essence, the knowledge 

templates facilitate the development of knowledge libraries, and further accelerate the 

scheduling. Furthermore, the developed sequence reasoning mechanisms allows 

construction requirements defined at different levels to be automatically converted into 

temporal constraints for scheduling at activity level. Such built-in generic sequence 

reasoning knowledge also enables the system to be applicable to different project types 

and from both product and process perspectives. 

8.2.2. Functional Requirement Model for Automated Sequencing (FReMAS) 

In order to overcome the research limitations on construction sequencing from 

functional requirements described in section 1.2.2, this research developed a 

generalized framework called FReMAS to capture functional requirements and convert 

them into temporal constraints. FReMAS overcomes the limitations through the 



Chapter Eight: Conclusion and Recommendations 

223 

 

extension of the Intermediate Function Concept (Song, 2006) via the use the provider 

co-functionality and meta-provider constructs to capture both intermediate and final 

functional requirements with multiple users and providers as well as different provider 

combinations. This not only allows for greater generality expression from the model to 

capture complex functional requirements but also allows the complete identification of 

all possible construction sequences for the fulfilment of the requirements. In particular, 

three key advantageous features of FReMAS are summarized as follows. 

Firstly, FReMAS provides a generalized format with four modeling elements: 

function user, function provider, function type, and provider co-functionality to 

determine any complex functional requirement with multiple users and providers. The 

key advantage of this representation format lies in the use of the provider co-

functionality construct to represent different functionality relationships between 

providers. As illustrated in the case study in section 7.2, this construct allows FReMAS 

to explicitly capture multiple engineering solutions for the requirement which are often 

resulting from different collaboration scenarios among project parties. 

Secondly, FReMAS provides a hierarchical structure to systematically define the 

temporal attributes of a functional requirement. In essence, the concept of 

Requirement/Availability Time Windows (RTW/ATW) proposed by (Song and Chua, 

2011) is redefined at two levels: the elementary RTW/ATW of an individual 

user/provider determined from the time intervals of their constituting component 

states, and the aggregate RTW/ATW of all users/providers determined from the 

elementary RTWs/ATWs. This hierarchical structure clearly depicts the time window of 

individual and the combined set of users/providers, and thus provides planners with a 

deeper insight to the temporal nature of each user/provider. In addition, a new 
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construct called “meta-provider” is introduced to define a group of providers which 

can share their functionalities to jointly satisfy the requirement. The concept of meta-

provider is necessary for alternative scheduling from functional requirements, as it 

enables all provider combinations – representing all possible engineering solutions for 

the requirement – to be simultaneously considered in the planning stage. 

Finally, FReMAS incorporates sequence reasoning knowledge in a three-level 

framework to convert the necessary condition in the form of a functional relationship 

between function user and function provider into a temporal constraint between the 

RTW/ART. This constraint is further elaborated into a disjunctive set of constraints 

between component state intervals based on the hierarchical relationships between the 

RTW/ART and the component state intervals captured in the temporal model. The 

resultant constraint set of this reasoning process represents all alternative construction 

sequences making the requirement satisfied. Especially, with the sequence reasoning 

knowledge built at component state level which is the key construct linking product 

and process data, FReMAS can be used for scheduling from both product and process 

perspectives at this lowest level of detail. 

8.2.3. Preemptive Constraint Analysis Framework 

To address the research needs of improving the solution feasibility and 

computational efficiency of CSP/CLP-based schedulers presented in section 1.2.3, this 

dissertation develops a preemptive constraint analysis framework to identify the 

primary and secondary conflicts and redundancies among the constraints in single and 

pairs of activities in the pre-scheduling stage. This framework surpasses the existing 

approaches with the following aspects. 



Chapter Eight: Conclusion and Recommendations 

225 

 

Firstly, the proposed framework can identify all redundancies/inconsistencies 

between constraints of a single or a pair of activities. Such a complete result is 

independent of the constraint ordering pattern and thus can help planners identify the 

optimal conflicting sets to resolve. Effectively, as described in the case study, by 

identifying redundant disjunctive constraints, the framework helps eliminates 

unnecessary search space, allowing for a complete search strategy.  

The second contribution of this preemptive constraint analysis framework is 

that the analysis is carried on from the construction management perspective by 

classifying constraint redundancies/inconsistencies into primary and secondary classes 

based on impact of activity durations and lags. In particular, to resolve primary 

constraint redundancy/inconsistency requires a change in lag or constraint type which 

involves construction method and technical considerations, while the latter can be 

resolved by a change in activity duration which often involves resource consideration. 

As such, the primary and secondary distinctions of redundancies/inconsistencies 

provide useful information for planners to resolve conflicts, and facilitate a more 

elaborate strategy to manage the constraints.  

Finally, to further support the planner in managing the constraints, a method for 

the computation of the feasible range of an activity duration is embedded in the 

framework to identify the feasible range of an activity duration considering all 

associated constraints. This parameter allows planners to verify the validity of an 

activity duration when changes happen. 

From a project management perspective, the framework can practically benefit 

planners in many ways. Firstly, since temporal constraints are derived from 
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construction requirements, conflicts among construction requirements can be inferred 

from any inconsistency among their associated temporal constraints. From this, 

resolution strategies can be carried out at a higher level. Secondly, when new 

constraints are introduced to the schedule, its conflicting/redundancy relationships with 

other constraints of the same activities can be readily identified, and its impact on the 

schedule can be predicted before implementation. As such, unnecessary rescheduling 

may be eliminated. Similarly, from the feasible duration ranges, planners can 

anticipate an inconsistency when an activity duration has to change. Effectively, the 

proposed approach helps planners and project managers gain a deeper insight on the 

rationale of the plan so that they may better control the project from the perspective of 

constraints or construction methods. 

8.2.4. Criticality Concept and Schedule Change Analysis Methodology from the 

Perspective of Constraints and Construction Requirements  

To overcome the research gaps in schedule analysis discussed in section 1.2.4, 

this dissertation introduces a new criticality concept which is built from the perspective 

of constraint and construction requirements. This new criticality concept provides a 

deeper understanding on the role of constraints and requirements to the schedule and 

forms the foundation for an innovative approach to schedule change analysis using 

constraint relaxation times. 

The first contribution of this concept is a detailed and complete classification of 

constraint criticality with four categories: project-critical, activity-critical, sequence-

critical and redundant. Accordingly, the traditional “non-critical” constraint class is 

distinguished into three different categories to concisely convey the role of a “non-
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critical” constraint to a schedule. Most importantly, the identification of sequence-

critical constraints is important for planners since their removal helps achieve a better 

project makespan. 

The second contribution of the proposed concept is the qualitative approach for 

analyzing the criticality of construction requirements as conjunctive and disjunctive 

combinations of simple constraints. With the capability to determine the criticality of 

high-level requirements, this qualitative approach provides project managers with a 

clearer understanding of the responsibility of associated parties to the overall project 

schedule, so that better collaboration and management strategies could be employed 

for good schedule performance. In addition, as illustrated in the case study, the 

criticality of construction requirements can present deeper insight into the choice of 

alternative, thus assisting planners in selecting the most suitable schedule from 

management intentions and/or anticipations for variation. 

The constraint criticality indicators, Aggregate Relaxation Time (ART) and 

Intrinsic Relaxation Time (IRT) are also key research contributions, and provide the 

mechanism to determine constraint criticality through activity times. Since changes in 

the IRT will not lead to variations in other constraints, IRT can be considered as “free” 

relaxation time of a constraint. On the other hand, ART is shared among the constraints 

involving the same activities and thus changes in the ART of one constraint will lead to 

variations in the ART of other related constraints. Therefore, ART could be considered 

as “total” relaxation time. These distinctions between ART and IRT clearly demonstrate 

the impacts of a change in a constraint to others as well as to the entire schedule. 
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Finally, an innovative approach for schedule change analysis is developed on the 

proposed constraint relaxation times, allowing schedules to be analyzed and managed 

from the constraint and requirement perspectives. One significant advantage of this 

approach is that it provides an insight into how constraint variations could affect 

schedule makespan including new constraints and removing of constraints, which may 

not be well conveyed from the activity perspective. Moreover, it can be applied to 

variations related to both activities times (durations and start times) and lag times, thus 

encompassing current activity-based analysis approaches. Essentially, this approach 

enables schedules to be analyzed and managed at different levels of management: 

activity (duration), constraint (lag), requirement (combination of constraints) and 

aspect of construction (origin of requirement). Accordingly, planners could choose the 

most appropriate management policy for each constraint and requirement to achieve 

better project performance.  

8.3. Limitations 

In the course of the present research, some limitations have been observed and 

the major limitations are summarized as follows. 

8.3.1. Incorporating Practice Considerations into Automated Scheduling 

The ASCoRe framework provides mechanisms to automatically generate 

alternative schedules from four basic types of construction requirements: functional 

requirements, key resource requirements, workspace constraints and temporal 

constraints. One basic assumption of this scheduling approach is that activities are 

continuous, and thus calendar constraints have been excluded from the scheduling. To 

improve the practical advantages of ASCoRe, the framework will have to be extended 



Chapter Eight: Conclusion and Recommendations 

229 

 

to handle activity spitting by implementing a new representation format for activities. 

This extension also allows for calendar consideration and progress-related constraints. 

8.3.2. Modeling and Reasoning Nonstandard Complex Functional Requirements 

Engineering solutions for functional requirements are represented as multiple 

providers in FReMAS. The co-functionality types used in FReMAS capture only 

standard relationships among providers, in which all providers are either mutually 

exclusive or compatible. From a practical perspective, the providers of a functional 

requirement can be combined in different ways to fulfill the requirement, i.e. some of 

the providers are mutually exclusive while others are compatible. Therefore, FReMAS 

should be extended to capture such nonstandard functional requirements. This would 

help improve the practical application of FReMAS to large scale and complex projects. 

8.3.3. Analyzing Non-Temporal Constraints in the Pre-Scheduling Stage 

The proposed preemptive constraint analysis framework has been demonstrated 

to be useful in identifying basic redundant constraints in the pre-scheduling stage. 

However, the major emphasis of the present framework is on conflicts and 

redundancies of temporal constraints. Future work could extend the framework to 

include non-temporal constraints such as resource or budget. This will further enhance 

the feasibility and efficiency of the scheduling. In addition, since activity splitting and 

calendar constraints are common in construction, the framework would be extended to 

incorporate these conditions so that its practical benefits could be enhanced. 



Chapter Eight: Conclusion and Recommendations 

230 

 

8.4. Recommendations for Future Work 

The methodologies and concepts proposed in this research have opened a new 

direction to project planning and management which is carried out from the 

perspective of construction requirements. Some of the potential extensions from this 

research are summarized as follows. 

8.4.1. Time-cost Tradeoff Using ASCoRe 

In addition to time, cost is a key indicator for project performance. Incorporating 

cost into the ASCoRe framework is thus a potential research extension. This multi-

objective optimization problem could be solved using a hybrid solving strategy 

combining the strength of both CLP and heuristic search approaches. In addition, since 

cost is greatly determined by applied construction methods, time-cost tradeoff analysis 

would allow planners to specify which method is more attractive in terms of both time 

and cost, and also analyze possible alternative combinations based on choice. 

8.4.2. Using Constraint Criticality and Alternative Schedules for Dynamic 

Schedule Management  

One key advantage of generating alternative schedules is to provide planners 

with more flexibility in planning and controlling the project. Accordingly, one 

potential direction for future research is the development of an approach for dynamic 

schedule control taking into account the existence and significance of multiple 

alternative schedules. The major emphasis of such an approach is on dynamically 

analyzing schedule changes to identify if any other alternative schedules would 

produce a shorter project makespan. Switching among alternative schedules could 

potentially be a good resolution strategy for mitigating project changes.   
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Moreover, the existence of some requirements may be uncertain under some 

scenarios. The criticality concept would be extended to consider this feature. For this 

purpose, a modeling tool based on fuzzy set theory to capture the uncertain existence 

of construction requirements along the project lifecycle would be developed. This 

extension would help improve the practical benefits of the proposed criticality concept. 

8.4.3. Prototyping a BIM-based System for Automated Project Planning and 

Dynamic Control 

The proposed frameworks and concepts for schedule generation and analysis 

proposed have been validated through proof of concept implementation and small scale 

case projects. One important future research task is thus to develop a more complex 

prototype for BIM-based automated planning and control to expand their applications 

to large scale projects so that the proposed concepts can benefits both researchers and 

practitioners. The extended prototype would include the following main features: 

 Incorporating structural knowledge to automatically derive functional 

requirements from topological relationships among components. Topological 

relationships can be extracted from BIM/IFC models and mapped in a graph data 

model (GDM) (Khalili and Chua, 2012).  GDM reorganizes building data in a 

systematic structure which will be able to run rule-based queries. As such, 

structural knowledge could be incorporated with GDM to performing structural 

analysis and deriving functional requirements from BIM models. This facilitates 

the effective generation of extended product model and spatial interference 

matrix proposed in process P as depicted in section 3.4.1. 
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 Improving the present knowledge modeling tools to capture more complex 

construction methods and requirements to create more comprehensive 

knowledge libraries. In particular, taxonomies for methods and requirements 

would be created, and a then a knowledge language would be developed. The 

interpretation of construction knowledge is facilitated by a language parser. 

These modeling tools can be built upon construction method and requirement 

models described in sections 3.3.2 and 3.3.3. Based on these, knowledge libraries 

would be easily created and maintained, allowing planning knowledge to be 

reused for different projects. These libraries also assist planners to rapidly 

generate scheduling input. 

 Integrating schedule generation and analysis functions into a dynamic project 

planning and controlling system. The core reasoning and solving engine of such 

a system is established on the proposed frameworks and algorithms. To support 

this integration, a comprehensive project database should be designed to enable 

easy tracing the status of construction requirements and their constituting 

temporal constraints as well as their impacts on project completion along the 

project life cycle. 

 Importing schedule data and results to Microsoft Project (MSP) application for 

printing and reporting. The friendly user interface in MSP would be useful for 

presenting the scheduling results in a familiar format. Special add-ons can be 

developed in MSP for displaying construction requirements, PDM++ 

relationships and analysis results such as criticality of constraints, and ART/IRT. 

The integration with MSP would also allow planners consider practical 

constraints such as calendar, pool resource constraints or activity splitting. 
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APPENDIX 

A1. Pairwise Constraint Integration Tableaux 

This appendix presents the application of the preemptive constraint analysis 

framework proposed in chapter five to PDM++ constraints. The result is described in 

in a table format. These tables are useful for planners to perform instant or manual 

constraint check. Moreover, primary conflicts (displayed as shaded cells) are further 

distinguished into “hard” and “soft”. A conflict is considered “hard” when it always 

happens regardless of the value of lag times, while a “soft” conflict can be removed in 

some very specific conditions of lag types. For example, constraints X DB(m) and X 

SA(n) are conflicting with any value of m and n; therefore this is a hard constraint. In 

contrast, constraints X SA(m) and X SA(n) are inconsistent with any value of m and n 

where m ≠ n. This conflict however will no longer exist when m is equal to n. 

Therefore, it is classified as a soft conflict. This differentiation provides planners with 

a deeper insight into primary constraint conflicts as well as alternative strategies to 

resolve such inconsistencies. 

Table A.1. Pairwise integration of unary constraints 

 

Due-Before(m ) DB DB(m ) m ≠n DB(m )

Due-After(m ) DA DA(n ) SA(n )

Start-Before(m ) SB d X  ≥  n - m SB(m ) m ≠n

Start-After(m ) SA d X  ≤  n - m SA(n )

DB(n ) DA(n ) SB(n ) SA(n )
Short 

Form

              C2

     C1     
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Table A.2. Pairwise integration of non-lag type binary constraints 

 

Table A.3. Pairwise Integration of Lag Type and Non-lag Type Binary Constraints 

Meets M M M

Met-By MB MB MB

Contains C C d X  = d Y

Contained -By CB d X  = d Y CB

Disjoint D M MB D

D
                 C2

  C1     
M MB C CB

Short 

Form

M m ≠0 M d X ≥ m d X ≤ m d Y ≥ m d Y ≤ m

MB m ≠0 MB d Y ≥ m d Y ≤ m d X ≥ m d X ≤ m

C
d X - d Y 

≥ m
m ≠0 m ≠0 m ≠0

d Y - d X

≤ m

d X - d Y 

≥ m

CB m ≠0
d X - d Y 

≤ m
m ≠0 m ≠0 m ≠0 m ≠0

d X - d Y 

≤ m

D B(m ) B(~m ) A(m ) A(~m )
S(m )

B(0 )

SB(m )

A(0 )

F(m )

B(0 )

FB(m )

A(0 )

M
d X + d Y 

≥ m

d X + d Y 

≤ m
m ≠0 M n ≠0 M m ≠0 m ≠0

MB
d X + d Y 

≥ m

d X + d Y 

≤ m
m ≠0 MB n ≠0 MB m ≠0 m ≠0

C d X ≥ m d Y ≤ m d X ≥ m d Y ≤ m C d Y ≤ m C d Y ≤ m d X ≥ m d X ≥ m d X ≥ m d X ≥ m

CB d Y ≥ m d X ≥ m d Y ≥ m d X ≥ m CB
d X - d Y 

≥ m
CB d X ≤ m d Y ≥ m d Y ≥ m d Y ≥ m d Y ≥ m

D m ≠0 D m ≠0 D m ≠0 m ≠0 m ≠0 m ≠0

       C2

  C1     

    C2

  C1     

OB(m ) OB(~m ) SO(m ) SOB(m )

SB(m ) SB (~m ) F(m ) F(~m )

EO (m ) EOB(m )SF (m ) SF (~m ) ISF(m ) ISF(~m ) O(m ) O(~m )

FB (m ) FB (~m )B(m ) B (~m ) A(m ) A(~m ) S(m ) S(~m )
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Table A.4. Pairwise Integration of Lag Type Binary Constraints 

Before (m ) B(n )
d X ≤  

n - m

d Y ≤  

n - m

d X +d Y 

≤ n-m
m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠n ≠0

Before (~m ) m ≠n B (~m )
d X  ≥ 

n - m

d Y ≥ 

n - m

d X +d Y ≥   

-m
n ≠0 M n ≠0 M n ≠0 n ≠0

After(m ) A (n )
d Y ≤  

n - m

d X ≤  

n - m

d X +d Y 

≤ n-m
m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠0 m ≠n ≠0 m ≠n ≠0

After(~m ) m ≠n A (~m )
d Y ≥ 

n - m

d X ≥   

n - m

d X +d Y ≥ 

n-m
n ≠0 MB n ≠0 MB n ≠0 n ≠0

Starts(m ) B(n ) S(n )
d Y -d X ≤ 

n-m

d X -d Y ≥ 

n+m

d Y ≤  

n - m

d X ≥   

n + m

d X ≥   

n + m

d X ≥   

n + m

d X ≥   

n + m

d X ≥   

n+m

Starts(~m ) m ≠n S (~m )
d X -d Y ≥ 

n-m

d X -d Y ≤ 

n+m

d Y ≥ 

n - m

d X ≤    

n + m

d Y ≥ 

n - m

d Y ≥ 

n - m

Started-By(m ) A(n ) SB(n )
d X -d Y ≥ 

n+m

d X -d Y 

≤n-m

d X ≥   

n + m

d X ≤    

n - m

d Y ≥   

n + m

d Y ≥   

n + m

d Y ≥ 

n +m

d Y ≥   

n + m

Started-By(~m ) m ≠n SB (~m )
d X -d Y ≤ 

n+m

d X -d Y ≥ 

n -m

d Y ≤  

n + m

d X ≥ 

n - m

d X ≥ 

n - m

d X ≥ 

n - m

Finishes (m ) B(n )
d X -d Y ≤ 

n-m

d X -d Y ≤

n-m
F(n )

d X ≤ 

n - m

d Y ≥   

n + m

d Y ≥   

n + m

d Y ≥   

n + m

d Y ≥   

n+m

d Y ≥   

n + m

Finishes (~m )
d X d Y ≥  

n-m

d X -d Y ≤ 

n+m
m ≠n F(~m )

d X ≥   

n - m

d X -d Y ≤ 

n+m

d Y -d X ≤ 

m

d Y -d X ≤ 

m

Finished-By(m ) A(n )
d X +d Y ≥ 

n+m

d Y -d X 

≥n-m
FB(n )

d X ≥   

n + m

d Y ≤  

n - m

d X ≥   

n + m

d X ≥   

n + m

d X ≥   

n + m

d X ≥   

n+m

Finished-By(~m )
d X -d Y ≤ 

n+m

d Y -d X ≥ 

n-m
m ≠n FB (~m )

d X ≤    

n + m

d Y ≥   

n - m

d Y ≥   

n - m

d Y ≥   

n - m

d X -d Y ≤ 

m

d X -d Y ≤ 

m

Start-Finish(m ) B(n ) S(n )
d Y  ≥   

n + m
F(n )

d X ≥   

n+m
SF (m ) SF(n )

d X +d Y ≥ 

n-m

d X +d Y ≥ 

n+m

d X +d Y ≥ 

n+m

d Y  ≥   

m

d X +d Y ≥ 

n+m

d X +d Y ≥ 

n+m

d X  ≥   

m

Start-Finish(~m )
d Y  ≤   

n + m
SF (~m )

d X ≤   

n+m
m ≠n SF (~m )

d X +d Y 

≤n+m
d Y ≤ m d X ≤ m

Inv_SF (m ) m ≠n≠0 m ≠0
d X  ≥   

n + m

d Y  ≥   

n + m

d X +d Y 

≥n+m
ISF (n )

d X +d Y ≥ 

n+m

d X +d Y 

≥n+m

d X +d Y ≥ 

n+m
d X  ≥ m d Y  ≥ m

d X +d Y ≥ 

n+m

Inv_SF (~m ) n ≠0 M
d X  ≤  

n + m

d Y  ≤  

n+m

d X +d Y ≤ 

n+m
m ≠n ISF (~m ) d X ≤ m d Y ≤ m

Overlaps (m ) m ≠n≠0 m ≠0 m ≠n≠0 m ≠0
d X  ≥   

n + m

d Y ≥   

n + m

d Y ≥   

n - m

d X ≥   

n+m

d X +d Y 

≥n+m

d Y -d X ≤ 

n-m

d X +d Y ≥ 

n-m
O(n ) OB (n ) SO (n ) SOB (n ) EO (n ) EOB (n )

Overlaps(~m ) n ≠0 M n ≠0 MB m ≠n O (~m ) m ≠n O (~m ) m ≠n m ≠n m ≠n m ≠n

Overlaped-

By(m )
m ≠n≠0 m ≠0 m ≠n≠0 m ≠0

d X  ≥   

n + m

d Y ≥   

n + m

d Y ≥   

n - m

d X ≥   

n+m

d X +d Y ≥ 

n+m

d Y -d X ≤ 

n-m

d X +d Y ≥ 

n-m
O(n) OB (n ) m ≠n m ≠n m ≠n m ≠n

Overlaped-

By(~m )
n ≠0 M n ≠0 MB m ≠n OB (~m ) m ≠n OB (~m ) m ≠n m ≠n m ≠n m ≠n

Start-

Overlap(m )
m ≠n≠0 m ≠0

d Y ≥   

n + m

d X ≥   

n+m

d X - d Y 

≤  n
d Y ≥ n 

d X +d Y ≥ 

n-m
d X ≤ n SO (n ) SO (n ) SO (n ) EOB (n )

Start-O-By (m ) m ≠n≠0 m ≠0 n ≠0
d Y ≥   

n + m

d Y -d X ≤ 

n

d X +d Y 

≥n+m
d Y ≤ n d X ≥ n SOB (n ) SOB (n ) SOB (n ) EOB (n )

End-Overlap(m ) m ≠n≠0 m ≠0
d X  ≥   

n + m

d X -d Y ≤  

n

d Y ≥   

n + m

d X +d Y ≥ 

n+m
d X ≤ n d Y ≥ n EO (n ) EO(n ) SO (n ) EO (n )

End-O-By (m ) m ≠n≠0 m ≠0
d -d X ≥ 

n

d X ≥   

n+m

d X - d Y 

≤ n
d X ≥ n 

d X +d Y ≥

 n-m
d X ≤ n EOB (n ) EOB (n ) SO (n ) EOB (n )

ISF(n ) ISF (~n ) EOB (n )O (~n ) OB (n ) OB (~n ) SO (n ) SOB (n ) EO (n )O(n )S(~n ) SB(n ) SB(~n ) F(n ) F(~n ) FB(n ) FB (~n ) SF(n ) SF (~n )             C2

   C1     

B(n ) B (~n ) A(n ) A (~n ) S(n )
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