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Abstract

The day-ahead unit commitment (UC) problem is a nonlinear, high dimen-

sional, highly constrained, mixed-integer NP-hard power system scheduling

problem and is usually solved in the literature considering system opera-

tion cost as the single (economic) objective. However, the system operators

would prefer to obtain the trade-off optimal solutions considering emission

and reliability as the conflicting objectives along with system operation

cost for better decision making. The primary objective of the thesis is to

consider emission and reliability as objectives along with system operation

cost and solve the UC problem as a multi-objective optimization problem

using evolutionary algorithms (EAs).

Firstly, the UC problem in deterministic environment involving system

operation cost as the single objective is tackled. An evolutionary optimiza-

tion skeleton based on problem-specific: chromosome representation, ge-

netic operators, and knowledge is developed. Furthermore, a hybrid frame-

work synergizing genetic algorithm (GA) with differential evolution (DE)

algorithm is proposed to efficiently solve the UC problem. The experimen-

tal results reveal that the proposed hybrid EA is superior to some of the

best approaches proposed in the literature.

Subsequently, the bi-objective UC problem in deterministic environ-

ment considering system operation cost and emission as the conflicting

objectives is tackled. The optimization skeleton developed for the single-

objective UC problem is embedded within the domination and decomposi-



tion based multi-objective optimization frameworks. Non-dominated sort-

ing genetic algorithm II (NSGA-II) and multi-objective evolutionary al-

gorithm based on decomposition (MOEA/D-SBX and MOEA/D-DE) are

selected as the representative algorithms from the domination and decom-

position frameworks, respectively and efficiently customized. The pro-

posed multi-objective evolutionary algorithms (MOEAs) are comprehen-

sively compared among themselves and it is found that MOEA/D-DE sig-

nificantly outperforms the contender algorithms. Thereafter, a non-uniform

weight vector distribution (NUWD) strategy is proposed to bias the search

direction and its effect on the performance of MOEA/D-DE is investigated.

Finally, an ensemble optimizer based on combination of MOEA/D-DE with

uniform and NUWD strategy is presented. The experimental results reveal

that the proposed ensemble optimizer significantly outperforms the bench-

mark algorithms presented in the literature and returns a well-converged

and uniformly distributed set of trade-off optimal solutions.

Thereafter, the bi-objective UC problem formulation is extended to in-

clude reliability as an additional objective along with system operation

cost and emission. The uncertainties occurring due to thermal genera-

tor outage and load forecast error are captured using expected energy not

served (EENS) reliability index and EENS cost is used to reflect the relia-

bility objective. MOEA/D-DE developed for the bi-objective UC problem

is applied to solve the three-objective UC problem. Thereafter, a non-

uniform weight vector distribution (NUWD) strategy is proposed to en-

hance the performance of MOEA/D-DE. Furthermore, MOEA/D-DE with

ϵ-dominance based external archive is presented and is found to return a

well distributed set of trade-off optimal solutions.

Finally, the three-objective UC problem formulation (in uncertain envi-

ronment) is further extended to include significant levels of wind penetra-

x



tion. The additional uncertainty due to wind forecast error is incorporated

along with the uncertainties due to thermal generator outage and load fore-

cast error using EENS reliability index. MOEA/D-DE with ϵ-dominance

based external archive developed for the three-objective UC problem is

implemented to solve the three-objective wind-thermal UC problem. The

experimental results reveal that the proposed MOEA/D-DE is able to re-

turn a diverse set of trade-off optimal solutions for the wind-thermal UC

problem.

xi
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Chapter 1

Introduction

Load demand in electric power systems varies according to the consumer

behavior. The demand is generally higher during the daytime and early

evenings when loads are high. On the other hand, the demand is lower dur-

ing late nights and early mornings when most of the population is asleep.

A sufficient number of generating units need to be committed to meet this

variable demand. However, if enough generating units are committed to

meet the peak load demand and these units are kept on at all times, then

monetary losses may be incurred. Therefore, the load demands need to

be satisfied while operating the power system economically. This process

of determining optimal schedule of generating units over a particular time

horizon, meeting the objective of minimizing the system operation cost,

subject to unit and system operating constraints, is known as unit com-

mitment (UC) [1]. It is a nonlinear, mixed-integer, combinatorial, high-

dimensional and highly constrained optimization problem and belongs to

the set of NP-hard problems [1]. In the literature, various extensions of the

UC problem have been studied like security-constrained unit commitment

(SCUC) [2], profit-based unit commitment (PBUC) [3], etc. However, the

core of the problem remains to be unit commitment.
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Thus, unit commitment is one of the most important problems in power

system scheduling. Due to its economic importance, the UC problem has

for long been a matter of concern for power system companies. Over the

years, a lot of research has been conducted on developing efficient UC al-

gorithms which can be mainly grouped as a) numerical optimization tech-

niques and b) stochastic search based techniques. Numerical optimization

techniques such as priority list (PL) [4], dynamic programming (DP) [5],

mixed-integer linear programming (MILP) [6], branch and bound (BB) [7],

and Lagrangian relaxation (LR) [8] have been proposed for the UC problem.

These methods are simple and fast but most of them suffer from numer-

ical convergence and solution quality problems. Stochastic search based

techniques such as genetic algorithm (GA) [9, 10], evolutionary program-

ming (EP) [11], memetic algorithm (MA) [12], particle swarm optimization

(PSO) [13, 14], simulated annealing (SA) [15], quantum-inspired evolution-

ary algorithm (QEA) [16], differential evolution (DE) [17], artificial bee

colony algorithm [18], firefly algorithm [19], and gravitational search algo-

rithm [20] have been proposed for the UC problem. These stochastic search

based techniques have attracted wide recognition from researchers due to

their ease of implementation, capability of accommodating complex prob-

lem characteristics and attaining optimal/near-optimal solution. However,

the stochastic search based techniques have the disadvantage that they do

not guarantee convergence.

1.1 Motivation of Research

The UC problem is usually solved in the literature considering system oper-

ation cost as the single (economic) objective and the emission as well as re-

liability aspects are generally neglected. However, generation of electricity
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from fossil fuel releases several contaminants, such as sulfur dioxides, nitro-

gen oxides and carbon dioxide into the atmosphere. Due to the increasing

environmental concerns that arise from the emissions and increasing aware-

ness of environmental protection, the utilities have been pushed to improve

their design and operational strategies, for reducing the emissions from the

power plants. Thus, consideration of the environmental impacts of power

generation in the UC problem is receiving intensive focus [21–24].

Further, the UC problem is generally solved in the literature consid-

ering a deterministic environment. However, the generation scheduling

is subject to uncertainty due to deviations from load forecasts and out-

age of components such as generator, transmission line, etc. [25]. Thus,

the system operators would prefer to obtain trade-off optimal solutions by

incorporating various uncertainties and considering emission as well as reli-

ability as additional objectives along with system operation cost for better

decision making [23]. However, the UC problem considering system opera-

tion cost, emission and reliability as the multiple objectives is a nonlinear,

mixed-integer, combinatorial, high-dimensional, highly constrained multi-

objective optimization problem. Thus, it is a challenge to efficiently solve

the UC problem as a multi-objective optimization problem and obtain dif-

ferent trade-off optimal solutions [23].

Further, renewable energy resources are being increasingly deployed in

many countries to replace conventional generation due to concerns regard-

ing global warming and air pollution. Amongst renewable energy resources,

wind power generation has gained significant penetration in the power sys-

tem because of the fast development of economical, reliable and efficient

wind turbines [26]. However, the main challenge in integrating wind power

generation with conventional generation is the intermittent and variable

nature of wind [27]. Thus, in presence of wind generation, additional un-
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certainty due to wind forecast error needs to be considered. This makes

the consideration of reliability objective even more important in presence

of wind penetration [28].

The motivation of the research conducted in this thesis is to solve the

UC problem as a multi-objective optimization problem so that the emission

and reliability objectives can be simultaneously considered in the problem

formulation along with system operation cost. The advantage of presenting

a multi-objective approach to the UC problem is that a set of trade-off

optimal solutions can be obtained which the system operator can use for

enhanced decision making [23].

Several classical optimization methods like DP [5], MILP [6], LR [8],

etc. have been proposed for the UC problem in the literature. However,

the classical optimization methods are inherently single-objective optimiz-

ers and cannot be used to efficiently solve the problem as an ideal multi-

objective optimization problem and obtain the trade-off optimal solutions

[29]. On the other hand, in the last decade or so, evolutionary algorithms

(EAs) have gained lot of popularity for solving multi-objective optimization

problems [30]. Such EAs are called multi-objective evolutionary algorithms

(MOEAs). Because of their population based nature, EAs can be used to

efficiently obtain a set of trade-off optimal solutions for a complex multi-

objective optimization problem in a single simulation run [29, 30].

Scheduling problems are generally complex, highly constrained, large

scale and NP-hard in nature. EAs are ideal for solving scheduling prob-

lems because of their robustness in handling complex constraints, high-

dimensional search space and ability to produce near-optimal solutions (if

not exact optimal solution) [31]. Further, EAs are very flexible in na-

ture and problem-specific information can be easily integrated within the

EA framework in the form of heuristics. Generally, EAs enhanced with

4



1.2 Objectives of the Research

problem-specific heuristics are very efficient in solving complex scheduling

problems [32]. Thus, in the literature, EAs have been widely implemented

for solving several real-world scheduling problems.

EAs have found application in several single-objective real world schedul-

ing problems like project scheduling [33, 34], storage tank scheduling [35],

scheduling in steel making-continuous casting production [36], railway tim-

etabling [37], jobshop scheduling [38], traveling salesman problem [39, 40],

multiprocessor scheduling [41], etc.

Furthermore, MOEAs have been proposed for several multi-objective

real world scheduling problems like flowshop scheduling [42], jobshop schedul-

ing [43, 44], optimal energy consumption scheduling [45], traveling salesman

[46, 47], berth allocation [48], examination timetabling [49], vehicle routing

[50–52], resource investment project scheduling [53] etc.

This motivated us to choose EAs as the optimization tool to tackle

the multi-objective UC scheduling problem. Thus, the motivation of the

research conducted in this thesis is to design MOEAs for solving the UC

problem as a multi-objective optimization problem.

1.2 Objectives of the Research

The main objective of the thesis is to to consider emission and reliability as

objectives along with system operation cost and solve the UC problem as a

multi-objective optimization problem using evolutionary algorithms (EAs).

However, the main goal has been systematically split into different sub-

goals and the complexity of the problem has been progressively expanded.

1. Single-objective UC problem in deterministic environment -

In order to efficiently solve the multi-objective UC problem using EA,

the first aim was to develop an evolutionary framework to solve the
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UC problem considering system operation cost as the only objective.

This is because the multi-objective UC problem is an extension of the

single-objective UC problem.

2. Bi-objective UC problem in deterministic environment - The

second aim was to extend the single-objective UC problem to bi-

objective UC problem (in deterministic environment) and consider

minimizing emission as an additional objective along with minimiz-

ing system operation cost. The goal was to embed the optimization

skeleton developed for the single-objective UC problem within some

of the most popular MOEAs presented in the literature and suggest

enhancements in order to efficiently solve the bi-objective UC prob-

lem.

3. Three-objective UC problem in uncertain environment - The

third aim was to extend the bi-objective UC problem in deterministic

environment to three-objective UC problem in uncertain environment

and consider maximizing reliability as an additional objective along

with minimizing system operation cost and emission. The goal was to

apply the MOEAs proposed for the bi-objective UC problem (corre-

sponding to second goal discussed above) and develop variants of the

MOEA in order to efficiently obtain the trade-off optimal solutions

for the three-objective UC problem.

4. Three-objective wind-thermal UC problem in uncertain en-

vironment - The fourth aim was to extend the three-objective UC

problem (in uncertain environment) to include significant wind pen-

etration. The goal was to implement the MOEAs proposed for the

three-objective UC problem (corresponding to third goal discussed
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above) in order to efficiently obtain the trade-off optimal solutions

for the three-objective wind-thermal UC problem.

The specific goals are as summarized below:

• To design an evolutionary framework for solving the UC problem

considering system operation cost as the single objective.

• To consider emission as an additional objective in the UC problem

formulation along with system operation cost and propose MOEA for

solving the bi-objective UC problem.

• To include reliability as an additional objective in the UC problem for-

mulation along with system operation cost and emission and present

MOEA for solving the three-objective UC problem.

• To incorporate significant wind penetration in the UC problem and

suggest MOEA for solving the problem with system operation cost,

emission and reliability as the multiple objectives.

1.3 Organization of the Thesis

• Chapter 2 briefly presents the basics of single-objective optimization,

multi-objective optimization, evolutionary algorithms and multi-objective

evolutionary algorithms.

• Chapter 3 presents a hybrid framework based on combination of ge-

netic algorithm and differential evolution to solve the single-objective

unit commitment problem.

• Chapter 4 extends the single-objective UC problem addressed in Chap-

ter 3 to bi-objective UC problem by considering minimizing emis-
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sion as an additional objective along with minimizing system oper-

ation cost. Non-dominated sorting genetic algorithm II (NSGA-II)

and multi-objective evolutionary algorithms based on decomposition

(MOEA/D-SBX and MOEA/D-DE) are selected as the representa-

tive algorithms from the domination and decomposition frameworks,

respectively. The MOEAs are efficiently customized and applied

to the multi-objective economic/emission unit commitment (MOEE-

UC) problem. Further, variants of MOEA/D-DE are suggested to

effectively solve the bi-objective UC problem.

• Chapter 5 extends the bi-objective UC problem (in deterministic en-

vironment) addressed in Chapter 4 to three-objective UC problem

in uncertain environment by considering maximizing reliability as an

additional objective along with minimizing system operation cost and

(minimizing) emission. The MOEAs developed for the bi-objective

generation scheduling problem in deterministic environment in Chap-

ter 4 i.e., NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE are effi-

ciently extended in this Chapter to solve the three-objective UC prob-

lem in uncertain environment. Furthermore, variants of MOEA/D-

DE are presented to effectively solve the three-objective UC problem.

• Chapter 6 extends the three-objective UC problem (in uncertain en-

vironment) addressed in Chapter 5 to three-objective UC problem

in presence of significant wind penetration. The multiple objectives

considered remain the same as that in Chapter 5 i.e., minimizing

system operation cost, minimizing emission and maximizing reliabil-

ity. MOEA/D-DE and its variants proposed in Chapter 5 are imple-

mented to solve the three-objective wind-thermal UC problem.

• Finally, Chapter 7 presents the conclusions and the contributions of
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thesis and discusses future work.
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Chapter 2

Evolutionary Optimization

In this Chapter, the basics of single-objective optimization, multi-objective

optimization, evolutionary algorithms and multi-objective evolutionary al-

gorithms have been presented.

2.1 Single-Objective Optimization

When an optimization problem involves only one objective function, the

task of finding the optimal solution is called single-objective optimization.

Mathematically, a single-objective optimization problem (SOP) can be for-

mulated (in the minimization case) as follows:

Minimize f(x) (2.1)

subject to:

gi(x) ≥ 0; i = 1, 2, ..., m (2.2)

hj(x) = 0; j = 1, 2, ..., p (2.3)

where f(x) is the objective function, x = (x1, x2, ..., xn) is the vector
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of decision variables, x ∈ Rn, Rn is the decision space, n is the number of

decision variables, g is the set of m inequality constraints and h is the set

of p equality constraints.

2.2 Multi-Objective Optimization

When an optimization problem involves more than one objective func-

tion, the task of finding one or more optimal solutions is called multi-

objective optimization. Mathematically, a multi-objective optimization

problem (MOP) can be formulated (in the minimization case) as follows:

Minimize f(x) = [f1(x), f2(x), ..., fM(x)] (2.4)

gi(x) ≥ 0; i = 1, 2, ..., m (2.5)

hj(x) = 0; j = 1, 2, ..., p (2.6)

where f(x) is the set of objective functions, f(x) ∈ RM , RM is the

objective space, M is the number of objective functions, x = (x1, x2, ..., xn)

is the vector of decision variables, x ∈ Rn, Rn is the decision space, n is

the number of decision variables, g is the set of m inequality constraints

and h is the set of p equality constraints.

2.2.1 Fundamental Difference Between Single-Objective

Optimization and Multi-Objective Optimization

The fundamental difference between a single-objective and a multi-objective

optimization problem is that in single-objective optimization problem there
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exists a single optimum solution to the problem while in multi-objective

optimization problem there exists no single optimum solution but multiple

optimal (trade-off) solutions. In multi-objective optimization, no solution

from the set of optimal solutions can be said to be better than the other.

2.2.2 Main Approaches to Multi-Objective Optimiza-

tion

The two main approaches to solving a multi-objective optimization prob-

lem are weighted multi-objective optimization approach and ideal multi-

objective optimization approach. These approaches are briefly discussed as

follows:

1. Weighted multi-objective optimization approach: In this ap-

proach [29], at first weights are chosen for each objective based on

higher-level information (which requires problem information and ex-

perience). The multi-objective optimization problem is then con-

verted into a single-objective optimization problem by forming a

composite function as the weighted sum of objective functions. A

single trade-off optimal solution is then found by employing a single-

objective optimization algorithm. The schematic diagram of this ap-

proach is shown in Fig 2.1.

The advantages of this approach are that it is simple and adequate

when a reliable weight vector is known. However, the disadvantages

are that estimating a reliable weight vector is difficult without any

knowledge of possible consequences. Further, the trade-off solution

obtained is largely sensitive to the weight vector.

2. Ideal multi-objective optimization approach: In this approach

12
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Fig. 2.1 Weighted multi-objective optimization approach.

[29], a multi-objective optimization algorithm is first implemented to

find multiple trade-off solutions by considering all objectives to be

important. Thereafter, higher-level information is used to choose one

solution from the multiple trade-off solutions found. The schematic

diagram of this approach is shown in Fig 2.2.

The advantages of this approach are that it is more methodical, prac-

tical and less subjective as compared to the weighted multi-objective

optimization approach. Further, problem information is used in the

second step to evaluate and compare each of the obtained trade-off

solutions to choose one solution (unlike in weighted multi-objective

optimization approach where problem information is used in the first

step). However, this approach has its own challenges which are - a)

to find a set of solutions as close as possible to the optimal trade-off

front (known as Pareto-optimal front) and b) to find a set of solutions

as diverse as possible. These two challenges happen to be the two

goals of ideal multi-objective optimization.

13



Evolutionary Optimization

Fig. 2.2 Ideal multi-objective optimization approach.

2.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are algorithms which are inspired from na-

ture and used for search and optimization problems. Genetic algorithms

(GA) [54, 55], genetic programming (GP) [56], evolutionary programming

(EP) [57], evolutionary strategies (ES) [58, 59], differential evolution (DE)

[60, 61], ant colony optimization [62, 63], particle swarm optimization

(PSO) [64], estimation of distribution algorithms [65, 66], etc. are some

of the most popular evolutionary algorithms. Although ant colony opti-

mization and particle swarm optimization fall under the category of swarm

intelligence and differential evolution algorithms also do not exactly fall

under the EA category, yet they can be loosely put under the same cate-

gory as EAs. Interested readers are referred to [67] for a recent survey on

EAs.

The basic characteristics of all EAs are as follows:
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• Work with a population of solutions instead of a single solution.

• Do not require gradient or any auxiliary problem information except

the objective function values and constraint violation values.

• Use probabilistic transition rules to guide their search and can there-

fore escape local optima.

• Efficient even with non-differentiable and discontinuous problems.

Algorithm 1 presents the pseudo-code of a typical EA. An EA starts

with random initialization of the population. Thereafter, each solution in

the population undergoes fitness evaluation which comprises of constraint

violation evaluation and objective function evaluation. Subsequently, selec-

tion operation is invoked which selects only a set of fitter solutions which

undergo variation operation i.e., crossover and mutation operation to form

the offspring population. Next, the replacement operation takes place in

which the new population is formed by selecting solutions from the parent

population and the offspring population.

Algorithm 1: Pseudo-code of a typical EA
1 Begin
2 Initialization: Randomly initialize a population of solutions
3 Evaluation: Evaluate the fitness of each solution in the population
4 while ("Termination condition is not satisfied") do
5 while ("Offspring population is not created completely") do
6 Selection: Select a set of parent solutions
7 Variation operation: Perform crossover and mutation operation on

the parent solutions to create offspring solutions
8 end
9 Evaluation: Evaluate the fitness of each solution in the offspring population

10 Replacement: Form the next population by selecting solutions from parent
population and offspring population

11 end
12 End

In this thesis, two EAs which have been implemented for designing

different power system scheduling algorithms are GA and DE. GA was
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originally developed in the early 1970s at the University of Michigan by

John Holland and his students [54]. The basic GA is very generic and thus

depending upon the problem, the basic GA can be easily modified. The

strength of GA lies in the aspect that it can easily handle both binary

variables as well as continuous variables. A binary coded GA is suitable

for handling binary variables while a real-coded GA is more suitable for

handling continuous variables. On the other hand, DE is a relatively new

EA proposed by Price and Storn in 1995 [60] for real parameter optimiza-

tion. The strength of DE is that it one of the most powerful real parameter

optimizers [68] while the drawback is that it is inherently a real parameter

optimizer [68]. Since DE is a very powerful real parameter optimizer, it has

drawn the attention of many researchers over the last two decades result-

ing in many variants of the basic DE like - DE with self-adapting control

parameters (jDE) [69], DE with global and local neighborhoods (DEGL)

[70], adaptive DE with optional external archive (JADE) [71], self-adaptive

DE (SaDE) [72], composite DE (CoDE) [73], etc. The DE variants have

been applied to a plethora of real-world problems and classical benchmark

problems. Interested readers are referred to [68, 74] for comprehensive re-

view on DE including the major variants, and application of DE to different

optimization problems.

It is noted that the above discussion of a typical EA (corresponding

to Algorithm 1) matches more closely with the description of a GA. How-

ever, generally the exact steps of different EAs vary from each other. For

example, in DE the selection of parent solutions to undergo variation op-

eration is random whereas in GA only the fitter parent solutions undergo

variation operation. Furthermore, in GA the order of variation operation

is first crossover and then mutation while in DE the order is opposite i.e.,

first mutation and then crossover. DE is also different from traditional EAs
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in the sense that it perturbs the current generation population members

with the scaled differences of randomly selected and distinct population

members. Moreover, a GA generally involves combining the entire parent

and offspring population and selecting the best solutions from the combine

population to enter the next population. On the other hand, the replace-

ment operation in DE is one to one comparison between the parent solution

and the offspring solution and the fitter solution between the two enters

the next population.

2.4 Multi-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithms (MOEAs) are the EAs which are

designed to solve multi-objective optimization problems and obtain a set

of multiple trade-off solutions in one single simulation run. MOEAs are

based on ideal multi-objective optimization (discussed above) i.e., the goals

of MOEAs are the same as that of ideal multi-objective optimization:

• To find a set of solutions as close as possible to the optimal trade-off

front (known as Pareto-optimal front).

• To find a set of solutions as diverse as possible.

Because of the population based nature, EAs are ideal for multi-objective

optimization since an approximation to the Pareto-optimal front can be

obtained in a single simulation run. A MOEA shares a similar process

flow as a typical EA illustrated in Algorithm 1. However, as a MOP in-

volves multiple objectives, and the goals of a MOP are different from that

of single-objective optimization, the assignment of fitness to a solution as

well as selection is not straightforward as in single-objective optimization.

Different MOEAs have been presented in the literature and the main dis-
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tinction between different MOEAs lies in their basic framework. A recent

survey of the state-of-art MOEAs is presented in [75]. Some of the popu-

lar evolutionary multi-objective optimization frameworks and widely used

MOEAs are discussed below.

2.4.1 Domination-based framework

Domination based framework is one of the most widely employed framework

for multi-objective optimization. In this framework, a MOP is optimized

by simultaneously optimizing all the objectives. The assignment of fitness

to solutions is based on Pareto-dominance principle which plays a key role

in the convergence of domination-based MOEAs. Further, an explicit di-

versity preservation scheme is necessary in order to maintain a diverse set of

solutions. Some of the most remarkable MOEAs based on this framework

are multi-objective genetic algorithm (MOGA) [76], non-dominated sorting

genetic algorithm (NSGA) [77], niched Pareto genetic algorithm (NPGA)

[78], Pareto archived evolution strategy (PAES) [79], strength pareto evo-

lutionary algorithm (SPEA) [80], non-dominated sorting genetic algorithm

II (NSGA-II) [81], strength Pareto evolutionary algorithm 2 (SPEA2) [82],

etc.

In this thesis, NSGA-II has been selected from the domination-based

framework category and customized for solving different multi-objective UC

problems. Thus, the methodology of NSGA-II [81] is discussed in detail

below.

Brief Review of Non-Dominated Sorting Genetic Algorithm-II

The algorithm starts with a randomly generated population (of chro-

mosomes or solutions) followed by evaluation of constraint violation and

objective functions. Next, the constrained-domination principle is used to
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sort the population into non-dominated fronts and the constrained binary

tournament selection is employed to form the mating pool. Thereafter,

crossover and mutation operators are applied to form the offspring popula-

tion followed by evaluation of constraint violation and objective functions

(of the offspring population). The parent population and the offspring pop-

ulation are then combined and sorted into different non-dominated fronts.

The elitism principle is implemented in which the next (i.e., new) popula-

tion is filled with chromosomes of different non-dominated fronts, one at a

time. The filling starts with the best non-dominated front and continues

with chromosomes of the second non-dominated front, and so on. Since

the population size is fixed, not all fronts can be accommodated in the

next front. All fronts which cannot be accommodated are simply deleted.

When the last allowed front is being considered, there may exist more

chromosomes in the last front than the remaining slots in the next pop-

ulation. When such a situation happens, crowding distance is evaluated

for the chromosomes in the last allowed front. The remaining slots for the

next population are filled with chromosomes (from the last allowed front)

according to the descending order of their crowding distance. Once the

new population is formed, the above mentioned steps of population sort-

ing, selection, variation and replacement based on elitism continue until

the stopping criterion (as set by the user) is reached. When the algorithm

stops, the last population represents the non-dominated trade-off solutions

for the problem.

2.4.2 Decomposition-based framework

In this framework, a MOP is decomposed into several subproblems where a

subproblem is constructed by using any aggregation-based methods. There-
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after, all the subproblems are optimized simultaneously using an EA. Unlike

domination-based framework, it is not necessary to incorporate an explicit

diversity preservation mechanism as the diversity is preserved implicitly

because of pre-defined uniformly distributed weight vectors. The popular

MOEAs based on this framework are multi-objective genetic local search

(MOGLS) algorithm [83, 84] and multi-objective evolutionary algorithm

based on decomposition (MOEA/D) [85].

In this thesis, MOEA/D has been employed for solving different multi-

objective generation scheduling problems. Thus, the MOEA/D [85] method-

ology is discussed in detail below.

Brief Review of Multi-objective evolutionary algorithm based

on decomposition

The basic concept of MOEA/D is based on decomposition of the tar-

get MOP into a number of scalar optimization subproblems and optimiz-

ing the subproblems simultaneously using an EA. Several decomposition

approaches like weighted-sum approach, Tchebycheff approach, etc. have

been proposed in [85] and any decomposition approach can be employed

in the MOEA/D framework. Another concept at the core of MOEA/D

framework is the neighborhood relation among the subproblems which is

defined based on the distance between their aggregation coefficient weight

vectors. Thus, each subproblem is optimized by using information from its

neighboring subproblems only. The advantage of the MOEA/D framework

is that it is generic and any EA can be incorporated to optimize the sub-

problems. In 2009, Zhang and Li, proposed MOEA/D-DE [86] in which the

DE operators replaced the SBX operator earlier proposed in MOEA/D [85].

The basic principle of the decomposition concept involved in MOEA/D is

explained below.

Suppose the target MOP is an m-objective minimization problem: min-
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imize F (x) = {F1(x), ..., Fm(x)} where x is the decision variable. Let

λ1, λ2, ..., λN be a set of weight vectors where λj = (λ1
j , ..., λm

j ) and z =

{z1, ..., zm} be the reference point where zi is the best value found so far

for objective Fi. According to the Tchebycheff decomposition approach,

the solution to the target MOP is equivalent to optimizing N scalar opti-

mization subproblems where the objective function of the jth subproblem

is [85]

gte(x|λj, z) = max
1≤i≤m

{λi
j|Fi(x)− zi|} (2.7)

MOEA/D minimizes all these N objective functions simultaneously in a

single run.

Since, MOEA/D was proposed by Zhang and Li in 2007 [85], it has

drawn the attention of many researchers resulting in several studies on

decomposition based multi-objective optimization approach and different

variants of MOEA/D for improved performance [87–97].
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Chapter 3

A Hybrid Framework

Synergizing Genetic Algorithm

with Differential Evolution for

the Unit Commitment

Problem

3.1 Introduction

In this Chapter, the single-objective unit commitment (UC) problem con-

sidering system operation cost as the only objective is tackled. A hybrid

framework based on combination of genetic algorithm (GA) and differential

evolution (DE) is proposed in this Chapter to solve the UC problem.

In Chapter 1, it was discussed that several evolutionary algorithms

like genetic algorithm (GA) [9, 10], evolutionary programming (EP) [11],

memetic algorithm (MA) [12], particle swarm optimization (PSO) [13, 14],
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differential evolution (DE) [17], etc. have been proposed for the UC prob-

lem in literature. However, simple evolutionary algorithms (EAs) are gener-

ally outperformed by hybrid EAs at solving complex optimization problems

[98–100]. Hybridization, in context to EAs, essentially refers to the pro-

cedure of associating the best features of two or more algorithms together

to form a superior algorithm. One of the most widely employed strategies

to construct hybrid EA is by combining EA with local search algorithms.

The class of such hybrid EAs is known as memetic algorithms. A compre-

hensive review on memetic algorithms is presented in [101–103]. Another

strategy to construct hybrid EAs is by combining two or more EAs. In this

Chapter, a hybrid framework based on integration of two powerful EAs -

GA and DE is proposed to efficiently solve the UC problem.

The rest of the Chapter is organized as follows. The remainder of Sec-

tion 3.1 throws light on EA-EA hybridization instances in the literature and

discusses the motivation behind the research work. The background of the

UC problem including problem formulation and related work is presented

in Section 3.2. The description of the proposed hybrid evolutionary frame-

work is presented in Section 3.3 followed by classification of the hGADE

algorithm in Section 3.4. The experimental study is presented in Section

3.5 and the Chapter is summarized in Section 3.6.

3.1.1 Brief Review of EA-EA Hybrids for Solving

Different Optimization Problems

Over the last decade, EAs like GA, DE, PSO, etc. have been successfully

hybridized with other EAs for solving various complex optimization prob-

lems. Given below are some instances of EA-EA hybrids that have been

developed and tested on challenging real-world applications and numerical
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benchmark problems.

Hybridization instances of GA with other EAs

In [99], recurrent network design by a hybrid of GA and PSO, named

HGAPSO, is proposed in which (at each iteration) the top half best-

performing individuals are marked as elites and the rest are discarded. The

new population is then constituted by two parts: enhanced elites obtained

after PSO enhancement form the first part while the offspring obtained after

implementation of GA on enhanced elites form the other part. In [104], a

hybrid of PSO and GA, called HPSOGA, is investigated for multi-UAV (un-

manned aerial vehicle) formation reconfiguration problem. In HPSOGA,

GA and PSO are hybridized in every iteration at sub-population level i.e.,

the population is probabilistically divided into two sub-populations, one of

which is evolved using PSO and the other using GA. A hybrid of GA and

API (a special class of ant colony optimization for continuous domains),

termed GAAPI, is proposed in [105] for global continuous optimization. In

GAAPI, API is the main optimizer while GA provides the escape mecha-

nism from local optima when API is trapped.

Hybridization instances of DE with other EAs

A hybrid of DE and estimation of distribution algorithm (EDA), termed

DE/EDA, is introduced in [106] for global optimization. In DE/EDA, the

offspring generation scheme of DE is modified such that each component of

the trial solution is probabilistically created either using differential muta-

tion of DE or probability distribution model as in EDA. A hybrid of DE and

covariance matrix adaptation evolutionary strategy (CMA-ES), named as

differential covariance matrix adaptation evolutionary algorithm (DCMA-

EA), is proposed in [107] for real parameter optimization. In DCMA-EA,
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the mutation, crossover and selection strategy of DE are embedded into

the structure of a CMA-ES algorithm. In [108], a hybrid framework based

on combining PSO with DE is suggested for real parameter optimization.

In this framework, PSO is the main optimizer while after every iteration of

PSO, DE evolves the personal-best positions of the swarm particles to en-

hance the convergence of PSO. A hybrid of DE and quantum PSO (QPSO),

called DEQPSO, is presented for route planning of unmanned aerial vehicle

in [100]. In DEQPSO, QPSO and DE are hybridized in sequential order at

population level i.e., at every iteration, the population undergoes evolution

first using QPSO and then using DE. In the literature, numerous hybrids

based on DE and PSO have been proposed. A comprehensive review of

such hybrid EAs is presented in [109].

Hybridization instances of GA with DE

In [110], a multi-method self-adaptive approach, termed AMALGAM, is

proposed for multi-objective optimization problems. In AMALGAM, the

population at each generation is evolved using GA, PSO, DE and adaptive

metropolis search (AMS). The number of offspring an individual algorithm

contributes at each generation is determined using a self-adaptive learning

strategy which favor individual algorithms with highest reproductive suc-

cess. The authors of [110], later extended AMALGAM to single-objective

optimization and termed the algorithm as AMALGAM-SO [111]. An adap-

tive synergistic combination of multiple EAs, including GA, DE and EDA

is proposed for multi-objective optimization in [112]. The approach has

similar concept as AMALGAM [110] but differs in incorporating - progres-

sively control paradigm with respect to the number of offspring an individ-

ual algorithm contributes at each generation, local search algorithm, and
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both domination and decomposition based frameworks of multi-objective

optimization.

3.1.2 Motivation behind Proposing a Hybrid of GA

and DE for the UC Problem

The survey shows that various EA-EA hybrids have been proposed in the

literature for solving different optimization problems. However, rarely an

EA-EA hybrid has been proposed for solving mixed-integer optimization

problems. In order to efficiently solve a mixed-integer optimization prob-

lem, the algorithm employed should be able to effectively explore both

discrete as well as continuous search space. As already stated, the UC

problem is a mixed-integer optimization problem consisting of both binary

UC variables and continuous power dispatch variables. Thus, the basic

idea is to propose an EA-EA hybrid optimizer in which an EA which is

well known for handling binary variables is hybridized with another EA

which is popular for handling continuous variables. It is well known that

there is no universal optimizer existing for both discrete optimization as

well as continuous optimization. Thus, among the many powerful EAs ex-

isting in the literature for discrete and continuous optimization, two EAs

had to be selected for hybridization.

DE algorithm is superior to other EAs like GA and PSO in solving real

parameter optimization problems and has been shown to outperform the

latter algorithms on several numerical benchmark problems [113]. Further,

recently it was observed for real parameter multi-objective optimization

problems that if SBX operator [114] is replaced by differential mutation

operator of DE then the performance of NSGA-II [81] and MOEA/D [85]

can be enhanced [86]. However, the limitation of DE is that it is inherently

a real parameter optimizer and is yet to gain reputation in solving mixed-
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integer optimization problems [68]. On the other hand, among the existing

EAs, GA is quite popular in the literature for its robustness on discrete

optimization problems.

Motivated by the observation that GA and DE are capable of efficiently

handling binary variables and continuous variables, respectively, in this

Chapter, a hybrid framework based on integration of GA and DE, named

hGADE, is proposed to solve the mixed-integer UC problem. In hGADE,

at every generation, GA operates on the binary component of the solu-

tion (i.e., chromosome) while DE operates on the continuous component

of the solution so that the hybrid optimizer is able to efficiently explore

both binary search space and continuous search space. The fundamental

idea behind developing hGADE algorithm is to combine GA and DE in

such a way that they may complement the limitations of each other while

maintaining their strengths in solving the mixed-integer UC problem.

3.2 Background

3.2.1 Unit Commitment Problem Formulation

In this Section, the UC problem formulation is presented.

Objective Function: System Operation Cost

The objective function of the UC problem is to minimize the system

operation cost (SOC), where the SOC includes the fuel cost and the tran-

sition cost of all the generating units over the entire scheduling horizon

[13].

The fuel cost fi
t of unit i is expressed as the quadratic function of its

power output Pi
t during hour t.

fi
t = ai(P t

i )2 + bi(Pi
t) + ci (3.1)
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where ai, bi, ci are the fuel cost coefficients of unit i.

The transition cost is the sum of the start-up costs and the shut-down

costs. In this Chapter, the shut-down costs have not been taken into con-

sideration in accordance with the other approaches in literature [13, 14]

while the start-up cost is modeled as follows:

SU t
i =


HSCi, if MDTi ≤ T t

OF F,i ≤MDTi + Tcold,i

CSCi, if T t
OF F,i > MDTi + Tcold,i

(3.2)

where SU t
i is the start-up cost of unit i at hour t, HSCi and CSCi repre-

sents the hot start cost and cold start cost of unit i, respectively, MDTi

represents the minimum down time of unit i, T t
OF F,i is the continuous off

time of unit i up to hour t and Tcold,i is the cold start cost of unit i.

Subsequently, the objective function of the UC problem is given by

minimization of the following cost function [13].

F1 =
Tmax∑
t=1

N∑
i=1

(
f t

i ut
i + SU t

i (1− ut−1
i )ut

i

)
(3.3)

where ut
i represents the unit commitment status of unit i at hour t (1 = ON ,

0 = OFF ), Tmax is the number of hours in the scheduling horizon and N

is the number of thermal generating units in the system.

Constraints
1. System power balance: The total power generation at hour t must be

equal to the load demand Lt for that hour.

N∑
i=1

(P t
i .ut

i) = Lt, t = 1, 2, ....Tmax (3.4)

2. System spinning reserve requirements: For reliable operation, the sys-

tem must carry certain reserve capacity at every hour (SRt) in order

to meet unforeseen situations such as deviation in actual load demand
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from forecast load demand or generator outage.

N∑
i=1

(Pmax,i.u
t
i) ≥ Lt + SRt, t = 1, 2, ....Tmax (3.5)

where Pmax,i represents the rated upper limit generation of unit i.

3. Unit minimum up/down time: If a unit i is turned on/off, it must

remain on/off for at least its minimum up/down time (MUT i/MDT i)

duration.
T t

ON,i ≥MUT i

T t
OF F,i ≥MDT i

(3.6)

where T t
ON,i and T t

OF F,i represent the continuous on and off time of

unit i up to hour t, respectively.

4. Unit generation limits: For stable operation, the power output of each

generator is restricted within its limits as follows:

Pmin,i ≤ P t
i ≤ Pmax,i (3.7)

where Pmin,i and Pmax,i represent the rated lower and upper limit

generation of unit i, respectively.

3.2.2 Related Work

As mentioned earlier, the unit commitment problem consists of two tasks

- one is determining the on/off status of the thermal units and the other

is the power dispatch. In the literature, the stochastic search based UC

algorithms have been found to outperform the numerical optimization al-

gorithms. In the specialized literature, these algorithms can be further

classified into two categories.
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Category 1

The algorithms under this category employ stochastic algorithms for deter-

mining the best combination of on/off status of the thermal units while the

power dispatch is carried out using problem-specific techniques like lambda

iteration method or other economic dispatch methods.

A local search based binary GA, i.e., a memetic algorithm (MA) is

presented in [12] to solve the UC problem in which the GA evolves the

binary UC variables while the load dispatch is performed using the lambda

iteration method. This approach incorporated heuristic operator for re-

pairing minimum up/down time constraint and priority list (PL) based

swap mutation operator. Further, at every generation, two local search

operators are applied to improve the best solution. In [115], a quantum

inspired evolutionary algorithm (QEA) based on certain principles of quan-

tum computing such as quantum bits, quantum gates, etc. is proposed for

combinatorial optimization problems. A method based on employing QEA

for unit scheduling and lambda iteration for load dispatch is presented to

solve the UC problem in [16]. A repair operator is applied for satisfying

minimum up/down time constraint. Further, the approach employed PL

based repair operators for satisfying spinning reserve constraint and han-

dling over commitment. An enhanced PSO (EPSO) based on employing

binary PSO for evolving binary UC variables and lambda iteration method

for load dispatch is proposed in [14] to solve the UC problem. In [20], a

binary gravitational search algorithm (BGSA) is suggested to handle the

unit scheduling problem and lambda iteration method is applied for load

dispatch. In both EPSO [14] and BGSA [20], PL based repair operators are

used for satisfying spinning reserve constraint and decommitment of excess

units (just like in the QEA approach [16]). The BGSA approach addition-

ally employed local search based mutation strategies to prevent premature
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convergence. In [9], a binary GA is proposed to handle the unit schedul-

ing problem while economic dispatch method is employed for dispatching

power to the committed units. In this approach, problem-specific variation

operators like swap window mutation and window mutation are applied.

Additionally, two local search operators - swap mutation and swap-window

hill climb operator are applied to the best chromosome at every generation

in order to prevent premature convergence.

Category 2

The algorithms under this category employ stochastic algorithms for deter-

mining both the best combination of on/off status of the thermal units and

the power dispatch. Recently, hybrid of binary-coded and real-coded PSO

[13], hybrid of binary-coded and real-coded DE [17], hybrid of binary-coded

and real-coded GA [10], hybrid of binary-coded and real-coded firefly algo-

rithm [19], and hybrid of binary-coded and real-coded artificial bee colony

algorithm [18] have been proposed to solve the UC problem. In all of these

approaches, as discussed above in the category 1, heuristic based repair

operator for satisfying minimum up/down time constraint, and PL based

repair operators for satisfying spinning reserve constraint and decommit-

ment of excess units are adopted. Further, unlike the algorithms in the

category 1, the algorithms in this category additionally employ PL based

repair operator for satisfying load demand equality constraint as well.

3.2.3 Incorporation of Domain Specific Knowledge

The literature review shows that the algorithms proposed in the litera-

ture for solving the UC problem incorporate substantial domain specific

knowledge in the form of priority list (PL) for repairing load demand
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equality constraint, spinning reserve constraint and decommitment of ex-

cess units. Further, heuristic operators are also employed for repairing

minimum up/down time constraint violation. Additionally, some of the

approaches employ problem-specific variation operators and local search

operators. This is because UC problem is a nonlinear, high-dimensional,

highly constrained, NP-hard optimization problem. Thus, incorporation of

domain specific knowledge is essential to efficiently solve the UC problem.

The benefits of incorporating domain-specific knowledge in EAs for solving

real world optimization problems are discussed in detail in [32].

3.2.4 Similarity and Difference of the Proposed Hy-

brid Algorithm hGADE to other EA-EA Hy-

brids

The hGADE framework proposed in this Chapter for solving the UC prob-

lem belongs to aforementioned category 2 as GA is used to evolve the binary

UC variables while DE is used to evolve the continuous power dispatch vari-

ables. Thus, the proposed hGADE framework is similar to the framework

of other EA-EA hybrids in the sense that two EAs are synergized in or-

der to harmoniously boost up the strengths of each algorithm. Further,

the hGADE framework also incorporates domain-specific knowledge in the

form of problem-specific variation operators, PL based heuristic initializa-

tion and repair operation for satisfying load demand equality constraint.

However, hGADE is different from other EA-EA hybrids in the sense

that GA and DE are hybridized such that at every generation, GA which is

efficient in handling binary variables is employed to search the binary search

space while DE which is more efficient in handling continuous variables is

employed to search the continuous search space of the mixed-integer UC
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problem. To the best of our knowledge, this work presents a first attempt

to hybridize two powerful EAs - GA and DE in the aforementioned manner

to solve a challenging real-world mixed-integer optimization problem.

3.3 Proposed Hybrid Framework: hGADE
In this Section, the proposed hybrid framework hGADE is vividly outlined

in context of application to the UC problem. A flowchart representing

generic hGADE framework which can be applied to any single-objective

mixed-integer optimization problem is shown in Fig. 3.1.

3.3.1 Chromosome Representation

For every chromosome, a N×Tmax binary unit commitment matrix (UCM)

is used to represent the thermal generator on/off status and a N×Tmax real

power matrix (RPM) is used to represent the corresponding power dispatch.

The chromosome representation is depicted in Fig. 3.2. It is noted that

a chromosome’s actual generation schedule is represented by its resultant

power matrix (Res.PM) which is obtained by multiplying the corresponding

elements of UCM and RPM.

It is worthwhile noting that the on/off status of the thermal units and

the power dispatch can be represented by a single matrix as well. However,

in such a case, the variation of binary variables and continuous variables

can be a complicated task because both the binary operators and the real

parameter operators will be acting on a single matrix. Thus, for conve-

nience, the binary variables and the continuous variables are represented

by two separate matrices - unit commitment matrix (UCM) and real power

matrix (RPM), respectively. Further, such double matrix chromosome rep-

resentation has also been adopted by other researchers in the literature for

solving the UC problem [10, 17].
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Start

Initialization of population

Fitness evaluation of each 
chromosome

Find the best solution and 
record it

Perform (GA) crossover on binary 
components of chromosomes

Termination 
condition satisfied

Output the 
optimal solution

Perform (GA) mutation on binary 
components of chromosomes

Perform (DE) mutation on continuous 
components of chromosomes

Perform (DE) crossover on continuous 
components of chromosomes

Fitness evaluation of offspring 
population

Perform replacement to form
population of the next generation

GA acting on binary component of 
chromosomes 

DE acting on continuous component of 
chromosomes 

Hybridization of GA and DE in the 
variation operation

Y

N

Perform binary tournament selection 
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Fig. 3.1 Flowchart of the proposed hGADE framework.

3.3.2 Generation of Initial Population

The initial population is usually generated randomly. However, since UC

is a highly constrained optimization problem, the algorithm always starts

from the infeasible search space. A lot of time is wasted exploring the in-

feasible search space and the convergence is slow. Therefore, in this work,

to provide some direction to the algorithm and speed up the convergence, a
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Fig. 3.2 Structure of chromosome.

heuristic based initial population generation method is incorporated. In the

heuristic initialization method, the initial population (i.e., UCM and RPM

of chromosomes) is generated randomly except for one solution; UCM of

which is generated using Priority list (PL) based on FLAC (full load average

cost i.e., per MW cost at maximum power output of thermal units). Algo-

rithm 2 shows the pseudo-code for creating PL. The reason behind seeding

the initial random population with only one PL based solution is that one

solution is enough to guide the algorithm towards the feasible space and

our pilot experiments demonstrated that more PL based solutions were not

found to improve the performance of the proposed algorithm. Algorithm 3

shows the pseudo-code for creation of the UCM of single heuristic solution

in the initial population.

Algorithm 2: Pseudo-code for creating Priority List
input : Pmax and N
output : PriorityList

1 begin
2 for unit = 1 : N do
3 FLAC = (a(Pmax(unit))2 + b(Pmax(unit)) + c)/Pmax ;
4 end
5 Sort FLAC in ascending order and assign index (priority) starting from 1

and if two units have the same FLAC, then assign them the same priority;
6 end

Algorithm 3 shows that for the heuristic solution, corresponding to each

hour, the units are turned on according to the ascending order of the PL

(priority been ordered from 1 to 10 assuming there are 10 different units
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as in the base test system considered in this work) until the total capac-

ity of committed units for that hour (i.e., P total
max ) is not greater than equal

to summation of load demand and spinning reserve requirement. This

condition ensures that the spinning reserve requirement constraint is met

for the heuristic solution for each hour and the repair process (described

later) ensures that for each hour of the heuristic solution, the load de-

mand equality constraint is also satisfied. The UCM of the rest of the

chromosomes in the initial population are randomly generated binary unit

commitment matrices while the RPM of all the chromosomes in the ini-

tial population are generated as follows. Suppose the RPM of the kth

chromosome of the population at generation G is denoted by Xk,G (where

Xk,G = [x1,k,G, x2,k,G, ..., xD,k,G], D being the number of decision variables).

The jth decision variable of the kth chromosome is randomly initialized for

the initial population (at G = 1) as

xj,k,1 = xj,min + randk,j[0, 1].(xj,max − xj,min) (3.8)

where xj,min and xj,max are the minimum and maximum bounds of the jth

decision variable, respectively and randk,j[0, 1] is a uniformly distributed

random number lying between 0 and 1 and is generated independently for

each decision variable of the kth chromosome.

3.3.3 Fitness Evaluation

Since UC is a highly constrained optimization problem, the performance of

the algorithm depends on how the algorithm handles the constraints.

Boundary Constraint Handling - The generator limit constraints given

by (3.7) are handled according to the bound handling approach known as

set on boundary [116]. According to this approach, if a continuous variable
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Algorithm 3: Generation of UCM (Heuristic solution)
input : Pmax, LoadDemand, priority, N and Tmax

output : UCM
1 begin
2 Initialize the UCM : UCM ←− zeros(N, Tmax) ;
3 for time = 1 : Tmax do
4 P total

max ←− 0 ;
5 for p = 1 : 10 do
6 for unit = 1 : N do
7 if priority(unit) == p then
8 UCM(unit, time)←− 1 ;
9 P total

max ←− P total
max + Pmax(unit) ;

10 if P total
max > LoadDemand(time) + Reserve(time) then

11 Go to Step 16;
12 end
13 end
14 end
15 end
16 end
17 end

corresponding to power dispatch of a generator exceeds the bounds (during

variation operation), then the variable is set on the boundary.

Load Demand Equality Constraint Handling - In hGADE, the other con-

straints (i.e., minimum up/down time and minimum spinning reserve con-

straints) except for the load demand equality constraint get adequately han-

dled over the generations by the replacement mechanism based on pushing

the algorithm towards the feasible search space (described later). There-

fore, a repair operator is applied to repair chromosomes that violate the

load demand equality constraint [13]. In the repair procedure, the chro-

mosome is repaired for load demand equality constraint violation at hour

t using priority list (PL) of the thermal units. If the total power output of

the committed thermal units at hour t is less than the load demand on the

system at hour t than the power output of the committed thermal units is

increased in ascending order of the PL otherwise the power output of the

committed thermal units is decreased in descending order of the PL to meet

the load demand. It is always ensured that the power output of the thermal
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units does not violate the generation limits given by (3.7). Algorithm 5 in

the Appendix A shows the pseudo-code of the repair procedure.

Constraint Violation Evaluation

At first, all the constraints are normalized because different constraints

may take different orders of magnitude. An inequality constraint of the

form g(x) ≥ b is normalized using the following transformation:

(g(x))/b− 1 ≥ 0 (3.9)

Equality constraints are also normalized similarly [29]. Thereafter, all

normalized constraint violations are simply added to calculate the overall

constraint violation of a chromosome. A chromosome is considered feasible

if the overall constraint violation is less than the tolerance limit (10−6).

Objective Function Evaluation

The objective function system operation cost is calculated for each chro-

mosome using its Res.PM (which is obtained by multiplying the corre-

sponding elements of UCM and RPM as mentioned earlier).

3.3.4 Selection Operation

In the hGADE framework, the inherent structure of standard GA and

DE is maintained except for the replacement mechanism (discussed later).

Thus, the selection operation by GA acting on the binary component of

the chromosomes proceeds by binary tournament selection based on the

feasibility rules [117] to form the mating pool while no mating pool is

formed corresponding to DE acting on the continuous component of the

chromosomes (as per the classical DE algorithm).
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3.3.5 Variation Operation – Hybridization of GA with

DE

The variation operation is the step in which GA and DE are hybridized

at every generation. In the variation operation, the binary unit commit-

ment variables are evolved using GA operators while the continuous power

dispatch variables are evolved using DE operators as described below.

GA Operators on Binary Component (i.e., UCM) of the Parent Chro-

mosomes

Since, in the hGADE algorithm, the binary variables are encoded in the

form of matrix, problem-specific binary crossover and mutation operators

which have been found in the literature to work well on matrix encodings

have been adopted.

• Window crossover - A slightly modified version of the window crossover

operator as mentioned in [12] is used as the binary crossover. It works

by randomly selecting two parents and then randomly selecting a

window size. The entries within the window portion are exchanged

between the UCM of two parents to generate the UCM of two off-

spring. Fig. 3.3 (a) shows an example to illustrate how the window

crossover works on a 5× 5 UCM for a window size 2× 3.

• Swap window mutation - It works on the UCM of a chromosome

by randomly selecting: a) two units b) a time window of width w

between 1 and Tmax and c) a window position. The entries of the two

units included in the window are then exchanged. This acts like a

sophisticated mutation operator [9]. Fig. 3.3 (b) shows an example

to illustrate how the swap window mutation works on a 5× 5 UCM

for a window size 1× 3.
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• Window mutation - This operator works on the UCM of a chromo-

some by randomly selecting: a) a unit, b) a time window of width w

between 1 and Tmax and c) a window position. Thereafter, it mutates

all the bits included in the window, turning all of them to either 1’s

or 0’s with an equal probability [9].

It is noted that both swap window mutation and window mutation

operators are different from traditional binary flip GA mutation operator

in which probabilistically a “0” is changed to “1” and vice-versa because

the traditional GA mutation operator is not found to work well on matrix

encodings for the UC problem [9].
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After Swap Window mutation

(b) Swap window oper-
ator

Fig. 3.3 Pictorial depiction of GA Operators on UCM of Parent Chromosomes.

DE Operators on Continuous Component (i.e., RPM) of the Parent

Chromosomes

• Mutation - Corresponding to RPM of kth chromosome at genera-

tion G, Xk,G (called target chromosome in DE literature) in the

population, DE creates a mutant chromosome Vk,G (where Vk,G =
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[v1,k,G, v2,k,G, ..., vD,k,G], D being the number of decision variables)

through mutation. There are several DE variants in the literature

and they differ mainly in the way mutation operation is executed.

In this work, GA has been hybridized with 4 classical DE variants

and 2 state-of-the-art self-adaptive DE variants. The equations for

mutation operation corresponding to two of the classical DE variants

[68, 74] employed in this work are as follows

DE/rand/1 : Vk,G = Xrk
1 ,G + F (Xrk

2 ,G −Xrk
3 ,G) (3.10)

DE/current− to− rand/1 : Vk,G = Xk,G + F (Xrk
1 ,G −Xk,G) +

F (Xrk
2 ,G −Xrk

3 ,G)
(3.11)

where rk
1 , rk

2 and rk
3 are mutually exclusive and randomly chosen in-

dices from [1, NP ] and are also different from the base index k (where

NP is the population size). The scaling factor F is a control param-

eter for amplifying the difference of two chromosomes (for example

the difference (Xrk
2 ,G −Xrk

3 ,G) in a vector sense) and lies in the range

[0, 2]. A smaller value of F promotes exploitation while a larger value

of F promotes exploration [60].

• Crossover – After generating the mutant chromosome Vk,G through

mutation, a crossover operation comes into play to further enhance

the potential diversity of the population. In crossover, the mutant

chromosome Vk,G exchanges its components with the target chromo-

some Xk,G with a probability CR ∈ [0, 1] to form the trial chro-

mosome Uk,G (where Uk,G = [u1,k,G, u2,k,G, ..., uD,k,G], D being the

number of decision variables). Although two crossover methods –

exponential and binomial exist for the DE algorithm, the more pre-
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ferred one is binomial crossover which has been adopted in hGADE

algorithm as well. In binomial crossover, each component of the trial

chromosome Uk,G is inserted from either mutant chromosome or tar-

get chromosome according to the following condition:

uj,k,G =


vj,k,G if (randk,j[0, 1] ≤ CR or j = jrand)

xj,k,G otherwise
(3.12)

where randk,j[0, 1] is a uniformly distributed random number and

jrand ∈ [1, 2, ..., D] is a randomly chosen index which ensures that the

trial chromosome gets at least one component from the mutant chro-

mosome. It is noted that in DE/current-to-rand/1 and DE/current-

to-rand/2, CR is always set at 1.0 as in these DE variants, the mu-

tant chromosome becomes the offspring chromosome and there is no

crossover between target chromosome and mutant chromosome.

3.3.6 Replacement

It has been shown in the literature that preserving infeasible solutions in

the population of EAs can lead to an improved convergence as well as

an improved convergence rate [118] for both single-objective and multi-

objective constrained optimization problems. The need to preserve infea-

sible solutions in the population of EAs is also discussed in [119, 120] to

preserve diversity, decrease the selection pressure and prevent premature

convergence. Since, UC is a highly-constrained optimization problem, in

this work, a replacement strategy which is based on preservation of infea-

sible solutions is implemented. Algorithm 4 shows the pseudo-code of the

replacement procedure. According to this procedure:

• In the scenario when the number of feasible solutions in the combined

parent and offspring population is less than the population size - then
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all the feasible solutions and the best infeasible solutions (in terms

of lower total constraint violation) enter the next population. This

condition ensures that the algorithm is pushed towards the feasible

search space. In this manner, the replacement strategy is similar to

the strategy based on superiority of feasible solutions [117].

• However, in the scenario when the the number of feasible solutions

in the combined parent and offspring population is more than the

population size - then the solutions with the best objective function

values enter the next population. This condition ensures that fitter

infeasible solutions (i.e., with better objective function values) are

also preserved in the next population along with fitter feasible solu-

tions. In this manner, the replacement strategy is different from the

strategy based on superiority of feasible solutions [117].
Algorithm 4: Pseudocode of the replacement mechanism

input : Parent population, Offspring population, popsize
output : Population of next generation

1 begin
2 Combine the Parent population and Offspring population to form

Combined population;
3 Find the number of feasible solutions (Fnum) in Combined population;
4 if Fnum < popsize then
5 Preserve all the Fnum feasible solutions in the next population;
6 Sort the remaining infeasible solutions in ascending order of total

constraint violation values;
7 Preserve (popsize− Fnum) number of infeasible solutions with lowest

total constraint violation values.
8 else
9 Sort the Combined population in ascending order of objective

function values;
10 Select popsize number of solutions with lowest objective function values;
11 end
12 end

Further, the replacement strategy implemented is quite similar to the

replacement strategy presented in [118]. The only difference lies in the

aspect that the user is not required to set a parameter corresponding to

the infeasibility ratio to be maintained in the population. Thus, the re-

placement strategy implemented in hGADE algorithm is a parameter-less
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strategy unlike the one proposed in [118] and is more user-friendly. How-

ever, it is noted that the hGADE framework is flexible and other constraint

handling techniques like for example, superiority of feasible solutions [117],

ensemble of constraint handling techniques [121], may also be incorporated.
3.3.7 Termination Condition

For the hGADE algorithm, two termination conditions as shown below are

employed. The algorithm is terminated if any of the termination condition

is met.

• Condition 1 - If for 500 consecutive generations, the objective function

of the best solution found so far does not improve by $ 5.

• Condition 2 - If the maximum allowed generation as summarized in

Table 3.1 is reached.

Table 3.1 Maximum allowed generations for different test systems

Test
System

10 20 40 60 80 100

Maximum
Generations

3000 4000 6000 8000 8000 9000

3.4 Classification of the Proposed Hybrid

Optimizer

In this Section, the proposed hybrid optimizer hGADE is classified accord-

ing to a recently presented taxonomy [109] in which all the existing hybrid

DEPSO algorithms in the literature were reviewed and classified. In [109],

various hybridization factors were presented which can not only help the

readers to better understand the hybridization strategy but can also act as

reference for the interested researchers to design hybrid optimizers. The
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hGADE algorithm is classified according to various hybridization factors

below.

• Parent Relationship (PR) - The relationship between the parent op-

timizers (i.e., the optimizers hybridized) can be of three types: 1)

collaboration-based, 2) embedding-based, or 3) assistance-based. In

collaboration-based relationship, the parents optimizers co-operate

with each other in the search space, share or exchange accumulated

information and their own operating steps in generating new sam-

pling points in the search space are maintained. However, in the

embedding-based relationship, the operating steps of the parent op-

timizers are changed and cannot be separated explicitly. Further, in

the assistance-based relationship, one parent optimizer does not gen-

erate new sampling points in the search space and only acts as an

assistant to the other parent optimizer.

The relationship between GA and DE in hGADE is collaboration-

based because at every generation, GA and DE work independently

on binary (i.e., UCM) and continuous component (i.e., RPM) of the

chromosomes, respectively and thus their own operating manners are

maintained. Further, at every generation, once the variation oper-

ation of GA and DE are over, they share with each other the new

information i.e., UCM and RPM of offspring. Thus, cooperation ex-

ists between GA and DE in the search space to seek the optimum

solution.

• Hybridization Level (HL) - The hybridization level of a hybrid opti-

mizer is highly dependent on the operating level (OL) of the parent

optimizers. The OL of a parent optimizer refers to the level at which

the parent optimizer acts and can be of four types: 1) component
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level, 2) individual level, 3) sub-population level, or 4) population

level. If the parent optimizers work at the same OL, the hybridiza-

tion is termed as homogeneous-level hybridization (HOLH) and the

OL of the parent optimizers is termed as the HL of the hybrid opti-

mizer. In contrast, if the parent optimizers work at different OLs, the

hybridization is referred to as heterogeneous-level hybridization and

the hybridization level between two parent optimizers is determined

by the lower OL of parent optimizers.

Since, in hGADE, the binary component of the chromosomes are

evolved using GA and the continuous component of the chromosomes

are evolved using DE, the OL of both GA and DE is component level.

Thus, homogeneous level hybridization exists in hGADE and the HL

of hGADE is also component level.

• Operating Order (OO) - The operating order of the parents optimizers

can be either - 1) sequential (alternate) or 2) parallel. In sequential

OO type, the parent optimizers are applied one after another (i.e.,

sequentially), each working on the output of the previous. In contrast,

in parallel OO type, the parent optimizers can act in a parallel fashion

at their operating levels.

In hGADE, at every generation, GA and DE act independently at the

component level on binary component and continuous component of

the chromosomes, respectively. Thus, the operating order in hGADE

is parallel order. It is noted that although in this work GA and

DE haven’t been applied in parallel but the OO implies if parallel

implementation of hybrid optimizers is possible or not.

• Type of Information Transfer (TIT) - The type of information trans-

fer in a hybrid optimizer refers to the direction of information flow
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between two parent optimizers and can be either - 1) unidirectional

(simplex TIT) or 2) bidirectional (duplex TIT). In hGADE, there

exists duplex TIT because at every generation, once the variation

operation of GA and DE are over, they share with each other the

new information i.e., UCM and RPM of offspring and thereafter the

offspring chromosomes undergo fitness evaluation.

• Type of Transferred Information (TTI) - In hybrid optimizers, the

transferred information between parent optimizers can be of different

types. For example, TTI can be 1) solutions (e.g., gbest or pbest

if PSO is one of the parent optimizer, target vector or trial vector if

DE is one of the parent optimizer), 2) solution components, 3) control

parameters, etc. In hGADE, the type of transferred information is so-

lution components because (as explained above) at every generation,

once the variation operation of GA and DE are over, the information

regarding the binary components of offspring flow from GA to DE

and similarly the information regarding the continuous components

of offspring flow from DE to GA.

3.5 Experimental Study

In this Section, the performance of the proposed hGADE framework is

exhaustively evaluated on the UC problem. The experimental evaluation

is systematically divided into 7 case studies:

1. In the first case study, the effect of incorporating the replacement

scheme based on preserving infeasible solutions is demonstrated on

the quality of results as well as the computational efficiency in com-

parison to the replacement schemes of standard GA and DE;
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2. In the second case study, the effect of incorporating heuristic initial-

ization is demonstrated on both the quality of results as well as the

computational efficiency as compared to random initialization;

3. In the third case study, GA is hybridized with four classical DE

variants namely, DE/rand/1, DE/rand/2, DE/current-to-rand/1 and

DE/current-to-rand/2 [68, 74]. In this case study, the parametric

tuning of the proposed hGADE variants is conducted;

4. Thereafter, in the fourth case study, GA is hybridized with two state-

of-the-art self-adaptive DE variants namely, jDE [69] and JADE [71];

5. In the fifth case study, the hGADE variants proposed in case study 3

and 4 are statistically compared among themselves to determine the

best hGADE variants;

6. Further, in the sixth case study, the impact of hybridization between

GA and DE is presented by comparing the performance of the best

hGADE variants (determined in case study 5) against a GA based ap-

proach in which both binary variables as well as continuous variables

are evolved using GA;

7. In the seventh case study, the best hGADE variants (found in case

study 5) are benchmarked against the other approaches proposed in

literature for the UC problem.

The proposed hGADE variants are tested on UC problem for power

systems with 10, 20, 40, 60, 80 and 100 units in a 24 hour scheduling

horizon [9]. The dimensions of the different test systems are summa-

rized in Table 3.2. The spinning reserve requirements are assumed to be

10% of the load demand [13, 14]. The generating unit data and the fore-

casted load demand data for the 10 unit system is summarized in Table
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A.1 and A.2, respectively in the Appendix A. The hGADE variants have

been named for example - hGADE/rand/1, hGADE/current-to-rand/1,

hGADE/jDE, hGADE/JADE if the existing DE strategy in the hGADE

variant is DE/rand/1, DE/current-to-rand/1, jDE and JADE, respectively.

This nomenclature for referring hGADE variants is used in the rest of this

Chapter. Further, for the ease of readers, the hGADE variants have been

assigned acronyms as summarized in Table 3.3.

Table 3.2 Dimensions of different test systems

System size 10 20 40 60 80 100
Binary Variables 240 480 960 1440 1920 2400
Continuous Variables 240 480 960 1440 1920 2400

Table 3.3 Acronyms corresponding to hGADE variants

hGADE/rand/1 hGADE/r1
hGADE/rand/2 hGADE/r2
hGADE/current-to-rand/1 hGADE/cur1
hGADE/current-to-rand/2 hGADE/cur2

For each experiment, 20 independent simulation trials are conducted

to verify the effectiveness of the hGADE variants. However, experimen-

tal results corresponding to only two or three representative test systems

(out of six test systems) are presented for different case studies except for

benchmarking where results obtained on all the test systems are presented.

To make the comparison fair, the populations for all the hGADE variants

(over all the test systems tested) were initialized using the same random

seeds.

The initial experiments showed that (fixing F at 0.9 and CR at 0.9

for hGADE/r1 and fixing F at 0.9 and CR at 1.0 for hGADE/cur1), for

hGADE/r1 and hGADE/cur1 variants, the GA crossover probability of 0.6

and the GA mutation probability of 0.25 worked well on all the test systems.

Thus, the parameter settings of genetic operators i.e., (GA) crossover and
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mutation probabilities were kept fixed for all the simulation studies in this

work as 0.6 and 0.25, respectively. It is noted that the GA mutation prob-

ability (of 0.25) is relatively high because the swap window and window

mutation operators in hGADE probabilistically act on the entire (UCM

part of the) chromosome unlike the standard flip (binary) GA mutation

operator which probabilistically acts on each binary variable. The hGADE

algorithm is developed on C++ platform and executed on PC with Intel

Xeon 3.10 GHz processor and 4 GB memory.

3.5.1 Case Study 1 - Study on Efficacy of Replace-

ment Scheme

The replacement scheme in traditional DE is based on one to one compar-

ison between the offspring and the parent solution and the fitter solution

moving into the next generation. On the other hand, the replacement

scheme in traditional GA is based on combination of offspring population

and parent population and the fittest solutions entering into the next gen-

eration. In constrained optimization problems, both of these replacement

schemes are generally based on the feasibility rules which always prefer a

feasible solution over an infeasible solution [117]. However, as discussed

earlier, the replacement scheme incorporated in the hGADE framework

is based on preserving infeasible solutions. Thus, the effectiveness of the

replacement scheme based on preserving infeasible solutions (named Rep

Scheme 3) is investigated in this case study by comparing against the re-

placement schemes of traditional DE (Rep Scheme 1) and GA (Rep Scheme

2).

Effect on Quality of Results

Fig. 3.4 illustrate the experimental results (corresponding to system opera-

tion cost) of 20 runs using box plots (along with distribution of solutions for
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better visualization) for hGADE/cur1 in presence of different replacement

schemes. Fig 3.4 shows that hGADE/cur1 performed either comparable or

better in presence of the replacement scheme based on preserving infeasible

solutions as compared to the replacement schemes of DE and GA. For ex-

ample, on the 40 unit system, the best cost obtained in presence of scheme

3 was $ 502 and $ 205 better than that obtained in presence of scheme 1

and 2, respectively while the average cost obtained was comparable. On

the 100 unit system, the best cost obtained in presence of scheme 3 was

$ 625 and $ 321 better than that obtained in presence of scheme 1 and 2,

respectively. Further, the average cost obtained in presence of scheme 3

was $ 2540 and $ 1095 better than that obtained in presence of scheme 1

and 2, respectively.
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Fig. 3.4 Comparison of replacement schemes with respect to system operation cost for
hGADE/current-to-rand/1 on different test systems.
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Effect on Computational Efficiency

To investigate if the proposed replacement scheme aids in improving the

computational efficiency as well, experimental results (corresponding to

stopping generation) of 20 runs for hGADE/cur1 were plotted using box

plots in presence of different replacement schemes as shown in Fig. 3.5.

It is observed from the figure that hGADE/cur1 was able to converge

remarkably faster in presence of scheme 3. For example, on the 20 unit

system, in presence of scheme 1 and 2, hGADE/cur1 was not able to con-

verge in a single run within maximum allowed generations (i.e., 4000). In

contrast, in the presence of scheme 3, the average stopping generation was

1920. On the 40 unit system, hGADE/cur1 was not able to converge in

some runs and most of the runs in maximum allowed generations (i.e.,

6000) in presence of scheme 1 and 2, respectively. On the other hand, in

presence of scheme 3, the average stopping generation of hGADE/cur1 was

around 2600.

3.5.2 Case Study 2 - Study on Efficacy of Heuristic

Initialization

As mentioned earlier, a heuristic initialization strategy is incorporated to

improve the effectiveness of the hGADE variants on the UC problem. To

demonstrate this, experiments were conducted on different test systems

by implementing hGADE/r1 and hGADE/cur1 in presence of random and

heuristic initialization. It is noted that in this case study, the optimal

parameter settings corresponding to F , CR and population size are set

according to the experiments shown in the next case study.
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Fig. 3.5 Comparison of replacement schemes with respect to stopping generation for
hGADE/current-to-rand/1 on different test systems.

Effect on Quality of Results

Fig. 3.6 illustrate the experimental results (corresponding to system op-

eration cost) of 20 runs using box plots for hGADE/r1 and hGADE/cur1

in presence of random initialization (RI) and heuristic initialization (HI).

It is observed that heuristic initialization had a remarkable effect on the

quality of results by significantly reducing the best cost, mean cost, me-

dian and standard deviation (i.e., overall distribution of solutions) for both

hGADE/r1 and hGADE/cur1. For example, considering hGADE/r1, as

compared to random initialization, heuristic initialization could improve

the mean cost by $ 1755, $ 4206 and $ 3370 on 20, 60 and 100 unit system,

respectively.
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Fig. 3.6 Comparison of heuristic initialization (HI) and random initialization (RI) with
respect to system operation cost for hGADE/rand/1 and hGADE/current-rand/1 on
different test systems.

Effect on Computational Efficiency

To investigate if heuristic initialization helps in improving the computa-

tional efficiency as well in comparison to random initialization, experimen-

tal results with respect to stopping generation for 20 runs were plotted using

box plots (refer Fig. 3.7) for hGADE/r1 and hGADE/cur1. Fig. 3.7 shows

that heuristic initialization had an equally important effect on improving

the computational efficiency as well in comparison to random initialization

by significantly reducing the best, mean, median and standard deviation of

stopping generation. For example, considering hGADE/r1, as compared to

random initialization, heuristic initialization could reduce the mean stop-

ping generation by 700, 760 and 1180 generations on 20, 60 and 100 unit

system, respectively.
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Fig. 3.7 Comparison of heuristic initialization (HI) and random initialization (RI) with
respect to stopping generation for hGADE/rand/1 and hGADE/current-rand/1 on dif-
ferent test systems.

3.5.3 Case Study 3 - Study on Hybridization of GA

with Classical DE variants

In this Section, a study on hybridizing GA with four classical DE variants

namely, DE/rand/1, DE/rand/2, DE/current-to-rand/1 and DE/current-

to-rand/2 is conducted and the optimal parameter settings F and CR are

determined (for the DE operators acting on continuous variables) followed

by determination of the optimal population size corresponding to each test

system.

Determination of Parameter Settings F and CR

To determine the optimum values of scaling factor F and crossover prob-

ability CR, at first the hGADE/r1 variant was implemented on two test
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systems consisting of 20 and 40 units. The population size for 20 and 40

unit test systems was fixed as 200 and 300, respectively.

Initially for both the test systems, F was varied from 0.5 to 0.9 in

steps of 0.2 and for each F , CR was also varied from 0.5 to 0.9 in steps

of 0.2. Table 3.4 summarize the experimental results for hGADE/r1. It

is observed from Table 3.4 that for hGADE/r1, for both the test systems

and each value of scaling factor F , the results were best with CR at 0.9. It

is also observed that with CR at 0.9, the results for both the test systems

were best with F at 0.9.

Table 3.4 Effect of F and CR on hGADE/rand/1

20 Unit System
F CR Best Cost ($) Avg. Cost ($) Worst Cost ($)

0.5
0.5 1,124,034 1,124,985 1,126,083
0.7 1,124,464 1,124,822 1,125,285
0.9 1,123,669 1,124,401 1,125,205

0.7
0.5 1,124,003 1,12,746 1,125,241
0.7 1,124,033 1,124,850 1,125,718
0.9 1,123,517 1,124,481 1,125,082

0.9
0.5 1,124,006 1,124,705 1,125,299
0.7 1,123,703 1,124,510 1,125,101
0.9 1,123,432 1,124,427 1,125,130

40 Unit System
F CR Best Cost ($) Avg. Cost ($) Worst Cost ($)

0.5
0.5 2,244,660 2,246,440 2,247,500
0.7 2,244,788 2,246,379 2,247,460
0.9 2,244,423 2,246,183 2,247,819

0.7
0.5 2,244,800 2,246,325 2,247,485
0.7 2,244,795 2,246,440 2,248,129
0.9 2,244,415 2,245,807 2,249,350

0.9
0.5 2,244,782 2,245,958 2,246,606
0.7 2,244,526 2,246,237 2,248,955
0.9 2,244,409 2,245,763 2,246,409

Although, Storn and Price suggested in [60] that F can be in the range

[0, 2] yet to the best of our knowledge, there have been hardly any studies

in which F ≥ 1 has been found to perform well. This may be because more

number of numerical optimization studies have been conducted as com-
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pared to optimization studies on real-world problems and another reason

may be that many researchers tend to utilize the parameter settings sug-

gested by other research works. However, as among 0.5, 0.7 and 0.9, F at

0.9 produced the best results, F was varied further from 1.1 to 1.5 in steps

of 0.2 while CR was fixed at 0.9 for hGADE/r1 and hGADE/r2 and 1.0 for

hGADE/cur1 and hGADE/cur2. The reason behind trying F > 1 is that

higher values of scaling factor F promote exploration and may prevent the

algorithm from converging prematurely.

Tables 3.5, 3.6, 3.7 and 3.8 summarize the experimental results (on 40

and 60 unit test systems) for variation of scaling factor F from 0.9 to 1.3 in

steps of 0.2 for hGADE/r1, hGADE/cur1, hGADE/r2 and hGADE/cur2,

respectively. It is noted that the results with scaling factor F at 1.5 were

not promising and hence have not been presented here.

Table 3.5 Effect of F ON hGADE/rand/1

40 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 0.9 2,244,409 2,245,763 2,246,409
1.1 0.9 2,243,904 2,245,636 2,246,867
1.3 0.9 2,243,724 2,245,582 2,247,130

60 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 0.9 3,363,823 3,365,744 3,367,551
1.1 0.9 3,363,610 3,365,632 3,369,860
1.3 0.9 3,363,470 3,365,587 3,368,196

It is observed from Table 3.5 and 3.6 that for hGADE/r1 and hGADE/cur1,

on both the test systems, F at 1.3 produced the best results while Table

3.7 and 3.8 show that for hGADE/r2 and hGADE/cur2, F at 0.9 produced

the best results. Thus, our intuition that higher values of scaling factor

F i.e., F > 1 may work well turned out to be correct for hGADE/r1 and

hGADE/cur1. However, the reason F at 0.9 turned out to be better than

F at 1.3 for hGADE/r2 and hGADE/cur2 may be the fact that hGADE/r2
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Table 3.6 Effect of F on hGADE/current-to-rand/1

40 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 1 2,243,855 2,245,569 2,247,512
1.1 1 2,243,679 2,245,400 2,248,854
1.3 1 2,243,522 2,245,321 2,246,540

60 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 1 3,363,086 3,365,259 3,367,143
1.1 1 3,363,094 3,365,140 3,368,515
1.3 1 3,362,908 3,364,841 3,367,820

Table 3.7 Effect of F on hGADE/rand/2

40 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 0.9 2,243,809 2,245,627 2,247,095
1.1 0.9 2,244,133 2,245,921 2,247,417
1.3 0.9 2,244,221 2,246,239 2,248,250

60 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 0.9 3,363,225 3,365,641 3,368,207
1.1 0.9 3,363,644 3,366,676 3,368,789
1.3 0.9 3,367,088 3,371,279 3,377,343

and hGADE/cur2 are more explorative than hGADE/r1 and hGADE/cur1,

respectively and thus higher value of F may not be required.

Based on the observation from the experimental results, the optimum

parameter settings common for all the test systems and employed for hybrid

of GA and classical DE variants is summarized in Table 3.9.

Determination of Population Size

The population size was determined for the hGADE variants through ex-

periments by implementing hGADE/r1 and hGADE/cur1 on different test

systems. Fig 3.8 illustrate the experimental results using box plots for

hGADE/r1 and hGADE/cur1 on selected test systems.

Tests were first carried out on 10 unit and 20 unit system considering
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population size of 100 and 200. It was observed that for both the test sys-

tems, better results were obtained with population size of 200. Thereafter,

for 40 unit system, tests were carried out considering population size of

200 and 300 and it was observed that better results were obtained with

population size of 300. Thus, as the system size i.e., dimensionality of the

search space increased, the population size requirement also increased to

300. Further, for 60, 80 and 100 unit system, tests were carried out con-

sidering population size of 300 and 400. It was observed that in all the

three test systems, population size of 400 performed better. Thus, as the

system size increased, the population size requirement further increased to

400. The optimum population size obtained for different test systems and

fixed for all the hGADE variants in this work is summarized in Table 3.10.

Table 3.8 Effect of F on hGADE/current-to-rand/2

40 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 1.0 2,243,556 2,245,841 2,248,173
1.1 1.0 2,243,609 2,245,971 2,247,368
1.3 1.0 2,244,575 2,246,560 2,247,655

60 Unit System
F CR Best cost ($) Avg. cost ($) Worst cost ($)

0.9 1.0 3,363,067 3,365,128 3,366,851
1.1 1.0 3,366,857 3,371,039 3,378,546
1.3 1.0 3,371,389 3,377,653 3,382,524

Table 3.9 Optimum parameter settings for hybrid of GA and classical DE variants

GA crossover rate 0.6
GA mutation rate 0.25

DE mutation rate (F) 1.3 (hGADE/r1, hGADE/cur1)
0.9 (hGADE/r2 and hGADE/cur2)

DE crossover rate (CR) 0.9 (hGADE/r1, hGADE/r2)
1.0 (hGADE/cur1 and hGADE/cur2)

Table 3.10 Optimum population size for different test systems

System size 10 20 40 60 80 100
Pop. Size 200 200 300 400 400 400
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Fig. 3.8 Effect of population size with respect to system operation cost on
hGADE/rand/1 and hGADE/current-rand/1 for different test systems.

3.5.4 Case Study 4 - Study on Hybrid of GA and

Self-adaptive DE variants

In this case study, the flexibility of the proposed hGADE framework is

demonstrated by substituting classical DE variants with self-adaptive DE

variants in the framework. Here, GA is hybridized with two state-of-the-art

self-adaptive DE variants namely, jDE [69] and JADE [71].

Study on Hybrid of GA and jDE

In the original study on jDE [69], it was observed that jDE is not sensitive

to the initial F and CR values. However, it was mentioned that if suppose

it is known that CR at 0.95 is good for the test problem at hand, then

this knowledge may be utilized in the initialization. Since, the DE variant

present in jDE is DE/rand/1 and it was observed in the parameter tuning
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study (presented in case study 3) that higher values of F and CR work

better on the UC problem; an investigation was undertaken by modifying

the initial F and CR values and the parameter range corresponding to self-

adaptation for jDE. Thus, hGADE/jDE and hGADE/jDE/modified were

put to comparison with the parameter settings as shown in Table 3.11.

Table 3.11 Parameter settings for hGADE/jDE variant

hGADE
Variant

F

initial
CR

initial
F new
range

CR new
range

hGADE/jDE 0.5 0.9 [0.1, 1.0] [0, 1.0]
hGADE/jDE/modified 0.9 0.9 [0.7, 1.3] [0.7, 1.0]

Fig. 3.9 illustrates the experimental results of 20 runs using box plots

for hGADE/jDE and hGADE/jDE/modified. It is observed from Fig. 3.9

that hGADE/jDE/modified resulted in better distribution of solutions than

hGADE/jDE. Therefore, hGADE/jDE/modified is selected for benchmark-

ing (presented later) and is referred to as hGADE/jDE in the rest of the

Chapter.
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Fig. 3.9 Effect of parameter setting modification with respect to system operation cost
on hGADE/jDE variant for different test systems.
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Study on Hybrid of GA and JADE

As with jDE, in the original study on JADE [71], it was observed that

JADE is not very sensitive to the initial µF and µCR values and an initial

setting of µF = µCR = 0.5 was found to work well for all the standard test

functions. However, as the modification in initial setting and the param-

eter range corresponding to self-adaptation worked well for hGADE/jDE,

a similar investigation was undertaken for hGADE/JADE as well. Thus,

hGADE/JADE and hGADE/JADE/modified were put to comparison with

the parameter settings as shown in Table 3.12.

Table 3.12 Parameter settings for hGADE/JADE variant

hGADE
Variant

µF initial µCR initial
F new

upper limit

hGADE/JADE 0.5 0.5 1.0
hGADE/JADE/modified 0.9 0.9 1.3

Fig. 3.10 illustrates the experimental results of 20 runs using box plots

for hGADE/JADE and hGADE/JADE/modified. Fig. 3.10 shows that as

observed in the hybrid of GA and jDE study, hGADE/JADE/modified also

resulted in better distribution of solutions than hGADE/JADE. Therefore,

hGADE/JADE/modified is selected for benchmarking (presented later)

and is referred to as hGADE/JADE in the rest of the Chapter.

3.5.5 Case Study 5 - Comparison of hGADE variants

Among Themselves

In this case study, to determine the best hGADE variants among the hy-

brid of GA and classical DE variants (presented in case study 3) and the

hybrid of GA and self-adaptive DE variants (presented in case study 4),

the hGADE variants were statistically compared among themselves. Fried-

man’s test which can be employed for multiple comparisons [122] was ap-
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Fig. 3.10 Effect of parameter setting modification with respect to system operation cost
on hGADE/JADE variant for different test systems.

plied to the hGADE variants. Table 3.13 summarizes the individual ranking

and the p-value obtained on different test systems while Table 3.14 sum-

marizes the overall ranking across the 6 test systems obtained in terms of

solution quality by the hGADE variants.

Table 3.13 Results obtained through Friedman’s test for hGADE variants with respect
to quality of results on different test systems

hGADE 10-unit system 20-unit system 40-unit system 60-unit system 80-unit system 100-unit system

variant Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value

hGADE/r1 2.85

0.16929

3.2

0.525

3.35

0.16594

3.9

0.16102

3.9

0.10681

3.25

0.517

hGADE/r2 3.05 4.15 3.85 3.9 4.1 3.5

hGADE/cur1 3.9 3.25 2.85 2.55 2.5 3.55

hGADE/cr2 4.25 3.6 3.75 3.5 3.7 3

hGADE/jDE 3.4 3.65 4.2 3.85 3.45 4.15

hGADE/JADE 3.55 3.15 3 3.3 3.35 3.55

It is observed from Table 3.13 that according to the Friedman’s test,

at the 0.05 significance level, there were no significant differences among
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Table 3.14 Overall rankings obtained through Friedman’s test for hGADE variants with
respect to quality of results for different test systems

hGADE variant Overall rank

hGADE/r1 20.45
hGADE/r2 22.55

hGADE/cur1 18.6
hGADE/cr2 21.8
hGADE/jDE 22.7

hGADE/JADE 19.9

the hGADE variants on any of the test systems. This demonstrates the

robustness of the hybridization strategy. However, according to the overall

Friedman ranking across all the test systems summarized in Table 3.14, it is

observed that hGADE/cur1, hGADE/JADE and hGADE/r1 are the best

hGADE variants. Thus, these hGADE variants were selected for further

comparisons in the rest of this Chapter.

3.5.6 Case Study 6 - Study on Efficacy of the Pro-

posed Hybridization Strategy

To investigate the efficacy of the proposed hybrid GA-DE framework, it

is essential to statistically compare the performance of the hGADE vari-

ants against a GA based approach in which both the binary as well as the

continuous variables are evolved using GA. Thus, in this study, hGADE

variants found to be the best in the previous case study i.e., hGADE/cur1,

hGADE/JADE and hGADE/r1 were compared against a GA based ap-

proach in which the variation operators on binary variables i.e., window

crossover, swap window mutation and mutation operator remain the same.

However, the variation operators employed for evolving continuous vari-

ables are SBX crossover [114] and polynomial mutation [29] operator. The

optimal parameters obtained through experiments corresponding to varia-
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tion operators in GA based approach are summarized in Table 3.15.

Table 3.15 Optimum parameter settings for GA

ηc ηm Pcross_real Pmut_real

5 10 0.6 0.1

It is noted that the rest of the parameters like crossover and muta-

tion probabilities corresponding to variation operators acting on binary

variables, population size corresponding to different test systems and ter-

mination condition remain the same for GA as set for hGADE variants.

Further, the heuristic initialization is applied to GA as well. Moreover, in

order to have a fair comparison, 2 variants of GA- a) GA-2 and b) GA-

3 are implemented. GA-2 variant adopts the replacement scheme 2, i.e.,

the traditional scheme of GA while GA-3 variant adopts the replacement

scheme based on preserving infeasible solutions i.e., scheme 3 (as discussed

earlier).

At first, the Friedman’s test was applied to statistically compare the

performance of the hGADE variants and the GA variants with respect to

the quality of solution and the results obtained are summarized in Table

3.16. It is observed from the p-values corresponding to the different test

systems in the Table 3.16 that although on 10, 20 and 40 unit system,

the algorithms under comparison are not statistically different at the 0.05

significance level but there is significant difference among the contender

algorithms on larger systems i.e., 60, 80 and 100-unit. It is noted that in the

previous case study, it was observed that according to the Friedman’s test,

the hGADE variants are not statistically different at the 0.05 significance

level. This indicates that it is one or more of the hGADE variants which

is/are statistically different from the GA variants.

Further, the overall ranking obtained through the Friedman’s test for
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Table 3.16 Results obtained through Friedman’s test for hGADE variants and GA with
respect to quality of results on different test systems

hGADE 10-unit system 20-unit system 40-unit system 60-unit system 80-unit system 100-unit system

variant Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value

hGADE/r1 2.8

0.3041

2.75

0.1712

3.35

0.2052

2.95

4.24E-04

2.95

1.34E-04

2.2

4.40E-04
hGADE/cur1 3 3.15 2.95 2.05 2.05 2.55

hGADE/JADE 3.05 2.85 3.05 2.4 2.3 2.55

GA-2 3.6 3.7 3.35 3.8 3.75 4

GA-3 2.55 2.55 2.3 3.8 3.95 3.7

hGADE variants and the GA variants across all the test systems in sum-

marized in Table 3.17. The overall ranking shows that the three hGADE

variants outperform the two GA variants. Thus, the Friedman’s test com-

parison validates the efficacy of the proposed hybridization strategy. Fur-

ther, the GA variant with the adopted replacement scheme i.e., GA-3 scored

better rank than the GA variant with the traditional replacement scheme

i.e., GA-2. This further signifies the efficacy of the replacement scheme

based on preserving infeasible solutions.

Table 3.17 Overall rankings obtained through Friedman’s test for hGADE variants and
GA with respect to quality of results on different test systems

hGADE variant Overall rank

hGADE/r1 17
hGADE/cur1 15.75

hGADE/JADE 16.2
GA-2 22.2
GA-3 18.85

However, to further investigate which of the hGADE variants are sta-

tistically different with respect to the GA variants on the larger system,

Wilcoxon signed rank test [122] is applied to each of the hGADE variants

and the two GA variants. Table 3.18, 3.19 and 3.20 summarize the results

obtained through Wilcoxon signed rank test for hGADE/r1 and GA vari-

ants, hGADE/cur1 and GA variants and hGADE/JADE and GA variants,

respectively.

66



3.5 Experimental Study

Table 3.18 Results obtained through Wilcoxon signed rank test between hGADE/r1
variant and GA with respect to quality of results on different test systems

hGADE/r1 60-unit system 80-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value R+ R- p-value

GA-2 139 71 0.216 149 61 0.105 187 23 0.001
GA-3 143 67 0.165 164 46 0.027 177 33 0.006

Table 3.19 Results obtained through Wilcoxon signed rank test between hGADE/cur1
variant and GA with respect to quality of results on different test systems

hGADE/cur1 60-unit system 80-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value R+ R- p-value

GA-2 170 40 0.014 172 38 0.01 168 42 0.017
GA-3 181 29 0.003 179 31 0.004 171 39 0.012

It is observed from the p-values in the Table 3.18 that hGADE/r1 is

statistically superior to both the GA variants on only 100 unit system.

However, the p-values in the Tables 3.19 and 3.20 show that at the 0.05

level of significance, both hGADE/cur1 and hGADE/JADE are signifi-

cantly superior to the two GA variants on 60, 80 and 100-unit system. The

Wilcoxon signed rank test comparison further confirms the efficacy of the

proposed hybridization strategy.

Next, the 3 best hGADE variants i.e., hGADE/cur1, hGADE/JADE

and hGADE/r1 are compared with GA-3 variant to further (graphically)

demonstrate the effect of hybridization on the quality of the results and

the computational efficiency. It is noted that the GA-3 variant is chosen

for further comparison and analysis as it was found to be better than the

GA-2 according to the Friedman ranking.
Effect of Hybridization on Quality of Results

Fig 3.11 illustrate the experimental results using box plots for comparison

between GA, hGADE/r1, hGADE/cur1 and hGADE/JADE. It is observed

from Fig. 3.11 that in comparison to GA, all the 3 hGADE variants were
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Table 3.20 Results obtained through Wilcoxon signed rank test between hGADE/JADE
variant and GA with respect to quality of results on different test systems

hGADE/JADE 60-unit system 80-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value R+ R- p-value

GA-2 173 37 0.009 187 23 0.001 182 28 0.003
GA-3 174 36 0.008 201 9 6.29E-05 178 32 0.005
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Fig. 3.11 Comparison of GA, hGADE/r1, hGADE/cur1 and hGADE/JADE with re-
spect to system operation cost for different test systems.

able to obtain significantly lower best cost, mean cost, median and standard

deviation on different test systems. For example, as compared to GA,

hGADE/cur1 could improve the best cost (and mean cost) by $ 779 (and

$ 1492), $ 2004 (and $ 3482) and $ 1520 (and $ 4369) on 60, 80 and

100 unit system, respectively. This shows that the effect of the proposed

hybridization strategy between GA and DE is remarkable on improving the

quality of results as compared to GA.
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Effect of Hybridization on Computational Efficiency

To investigate if the proposed hybridization strategy between GA and DE

helps in improving the computational efficiency as well in comparison to

the GA based approach, experimental results of stopping generation for 20

runs were plotted using box plots (refer Fig. 3.12) for GA, hGADE/r1,

hGADE/cur1 and hGADE/JADE.
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Fig. 3.12 Comparison of GA, hGADE/r1, hGADE/cur1 and hGADE/JADE with re-
spect to stopping generation for different test systems.

Fig 3.12 shows that the proposed hybridization had an equally impor-

tant effect on improving the computational efficiency as well in comparison

to GA. For example, in almost all the runs on 60 unit system and many

of the runs on 80 and 100 unit system, GA was not able to converge in

the maximum allowed generations i.e., 8000, 8000 and 9000 generations,

respectively. The mean stopping generation for GA and hGADE/cur1 on

60 unit system was 7365 and 4650, respectively; on 80 unit system was

6388 and 4833, respectively; and on 100 unit system was 7488 and 6515,
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respectively.

3.5.7 Case Study 7 - Comparison of hGADE variants

against other benchmarks

The case study 5 revealed that the three hGADE variants with the best

mean ranks (with respect to Friedman’s test) for solving the UC prob-

lem are hGADE/cur1, hGADE/JADE and hGADE/r1. Thus, in this case

study, the performance of these three hGADE variants is benchmarked

against several algorithms, namely, EP [11], MA [12], EPSO [14], SA [15],

QEA [16], DE [17], GA [10], BGSA [20], PL [4], LR [8] and DP [5]. It

is noted that in order to have a thorough comparison, the benchmark al-

gorithms are selected from both category 1 and 2 discussed in Section

3.2 (related work). The benchmarking involved comparing the best cost

obtained corresponding to hGADE/cur1, hGADE/JADE and hGADE/r1

with those of the benchmark algorithms. This is because the UC being a

day-ahead scheduling problem, the decision makers (i.e., system operators)

have sufficient time to determine the solution. Thus, the best cost solution

is usually preferred [17, 20]. The benchmarking in terms of best cost has

been extensively employed on the UC algorithms in the literature [15, 16].

It is noted that the benchmark algorithms employed the same test systems

and the results of the benchmark algorithms are directly obtained from the

original publications.

Table 3.21 summarizes the comparative results (in terms of best cost)

while Table 3.22 summarizes the ranking in terms of best cost and the total

rank (denoted by rank sum) of the contender algorithms across different

test systems. Table 3.21 shows that on almost all the test systems, the best

cost solution obtained by hGADE/cur1, hGADE/JADE and hGADE/r1

is superior to that of the other approaches. Further, it is noted from Table
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Table 3.21 Comparsion in terms of best cost ($) results obtained by different algorithms

Algorithm 10 Unit 20 Unit 40 Unit 60 Unit 80 Unit 100 Unit

EP [11] 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885
MA [12] 566,686 1,128,192 2,249,589 3,370,595 4,494,214 5,616,314
SA [15] 565,828 1,126,251 2,250,063 N.A. 4,498,076 5,617,876

QEA [16] 563,938 1,123,607 2,245,557 3,366,676 4,488,470 5,609,550
EPSO [14] 563,938 1,123,773 2,244,772 3,364,250 4,487,742 5,608,055
BGSA [20] 563,938 1,123,996 2,246,445 3,364,665 4,488,039 5,607,838

PL [4] 563,937 1,124,369 2,246,508 3,366,210 4,489,322 5,608,440
LR [8] 563,977 1,123,297 2,244,237 3,363,491 4,485,633 5,605,678
DP [5] 563,977 1,123,390 2,244,334 3,366,975 4,490,844 5,610,217

GA [10] 563,938 1,124,290 2,246,165 3,365,431 4,487,766 5,606,811
DE [17] 563,938 1,124,290 2,246,274 3,365,784 4,488,450 5,607,900

hGADE/r1 563,938 1,123,383 2,243,724 3,363,470 4,486,180 5,604,787
hGADE/cur1 563,959 1,123,426 2,243,522 3,362,908 4,485,158 5,605,075

hGADE/JADE 563,959 1,123,410 2,243,971 3,362,880 4,484,711 5,605,632

3.21 that the proposed hGADE variants outperformed both DE [17] and

GA [10] in which binary-real coded DE and binary-real coded GA were

very recently proposed, respectively, to solve the UC problem.

The observations from Table 3.22 are as follows:

• On the 10 unit test system, hGADE/r1 secured the 1st rank while

both hGADE/cur1 and hGADE/JADE secured the 2nd rank.

• On the 20 unit test system, hGADE/r1 secured the 2nd rank while

hGADE/cur1 and hGADE/JADE secured the 4th and 5th rank, re-

spectively.

• On the 40, 60, and 100 unit test systems, the hGADE variants secured

the top 3 ranks.

• On the 80 unit test system, hGADE/JADE and hGADE/cur1 se-

cured the 1st and 2nd rank, respectively while hGADE/r1 secured

the 4th rank.

• The aforementioned observations as well as the total rank in the rank

sum column prove that the hGADE variants are the most consistent

algorithms across all the test systems. It is noticed from Table 3.21

71



A Hybrid Framework Synergizing Genetic Algorithm with
Differential Evolution for the Unit Commitment Problem

Table 3.22 Ranking in terms of best cost obtained by different algorithms

Algorithm 10 Unit 20 Unit 40 Unit 60 Unit 80 Unit 100 Unit Rank Sum

EP [11] 4 11 12 13 14 14 68
MA [12] 6 13 13 12 12 12 68
SA [15] 5 12 14 N.A. 13 13 57

QEA [16] 1 6 7 10 9 10 43
EPSO [14] 1 7 6 5 5 8 32
BGSA [20] 1 8 10 6 7 6 38

PL [4] 3 10 11 9 10 9 52
LR [8] 3 1 4 4 3 4 19
DP [5] 3 3 5 11 11 11 44

GA [10] 1 9 8 7 6 5 36
DE [17] 1 9 9 8 8 7 42

hGADE/r1 1 2 2 3 4 1 13
hGADE/cur1 2 5 1 2 2 2 14

hGADE/JADE 2 4 3 1 1 3 14

that the performance of the hGADE variants and LR [8] is compa-

rable on all the test systems. However, Table 3.22 shows that the

hGADE variants narrowly outperform LR [8] in the overall ranking

(i.e., rank sum). Further, it is noticed from Table 3.22 that the differ-

ence in the overall ranking (i.e., rank sum) achieved by the hGADE

variants and the other benchmark algorithms is significant.

This substantiates the proposed hybridization strategy between GA and

DE and the efficiency of the hGADE algorithm in solving the UC problem.

3.6 Summary

In this Chapter, a novel framework based on hybridization of GA and DE

was presented for solving the UC problem. The flexibility of the proposed

hGADE framework was exhaustively demonstrated through hybridizing

GA with 4 classical DE variants and 2 state-of-the-art self-adaptive DE

variants. According to statistical comparison of the hGADE variants among

themselves, hGADE/current-to-rand/1, hGADE/JADE and hGADE/rand-

/1 were found to be the best hGADE variants. Further, the effectiveness

of the proposed framework was highlighted through extensive comparative
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Table 3.23 Best generation schedule obtained using hGADE/rand/1 for the ten-unit test
system

Generating Unit

Hour 1 2 3 4 5 6 7 8 9 10

1 455 245 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0
5 455 390 0 130 25 0 0 0 0 0
6 455 360 130 130 30 0 0 0 0 0
7 455 410 130 130 25 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0
10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 10 0
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 33 25 10 0 0
14 455 455 130 130 85 20 25 0 0 0
15 455 455 130 130 30 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0
20 455 455 130 130 162 33 25 10 0 0
21 455 455 130 130 85 20 25 0 0 0
22 455 455 0 0 145 20 25 0 0 0
23 455 425 0 0 0 20 0 0 0 0
24 455 345 0 0 0 0 0 0 0 0

study with GA. The best hGADE variants i.e., hGADE/current-to-rand/1,

hGADE/JADE and hGADE/rand/1 were found to be efficient on a range

of test systems in achieving superior best cost solution and average cost

when extensively compared with the other published approaches in the

literature.

In the next Chapter, the single-objective UC problem is extended to

bi-objective UC problem and minimizing emission is considered as an ad-

ditional objective along with minimizing system operation cost.
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Chapter 4

Multi-objective Day-Ahead

Thermal Generation

Scheduling in Deterministic

Environment

4.1 Introduction

This Chapter extends the single-objective unit commitment problem for-

mulation adopted in Chapter 3 to consider minimizing emission as an ad-

ditional objective along with minimizing system operation cost. The gen-

eration scheduling problem considering both system operation cost and

emission as the multiple objectives is a nonlinear, mixed-integer, combi-

natorial, high-dimensional, highly constrained, multi-objective optimiza-

tion problem. The optimization skeleton developed for the UC problem

in Chapter 3 (i.e., problem-specific: chromosome representation, genetic

operators and knowledge) is efficiently embedded within the domination

and decomposition based multi-objective optimization frameworks. Non-
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dominated sorting genetic algorithm II (NSGA-II) [81] and multi-objective

evolutionary algorithms based on decomposition (MOEA/D-SBX [85] and

MOEA/D-DE [86]) are selected as the representative algorithms from the

domination and decomposition frameworks, respectively and efficiently cus-

tomized and applied to the multi-objective economic/emission unit com-

mitment (MOEE-UC) problem.

The rest of the Chapter is organized as follows. Section 4.2 discusses

related work on considering emission along with system operation cost in

the generation scheduling problem formulation. Section 4.3 presents the

proposed work and the motivation. The multi-objective economic-emission

UC problem formulation is presented in Section 4.4. The description of the

proposed algorithms is presented in Section 4.5, 4.6 and 4.7. The experi-

mental study is presented in Section 4.8 and the Chapter is summarized in

Section 4.9.

4.2 Related Work

The generation scheduling problem considering both system operation cost

and emission as the multiple objectives is a challenging multi-objective

optimization problem and finding trade-off optimal solutions is a difficult

task. For this reason, instead of treating cost and emission as competing

objectives, many works have expressed the maximum allowable emission as

constraints in the formulation of unit commitment and economic dispatch

problems [123–125]. The drawback in this approach is that the information

about the trade-off solutions cannot be obtained. Thus, many researchers

have solved the generation scheduling problem considering both system

operation cost and emission as the multiple objectives. These works are

reviewed as follows:
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4.2.1 Brief Review of Methods Proposed for Multi-

objective Economic/Emission Dispatch Prob-

lem

Over the last decade, several multi-objective optimization algorithms based

on evolutionary computation and swarm intelligence such as NSGA-II [126,

127], SPEA [128], NSGA and NPGA [129], MOPSO [130–132], multi-

objective chaotic particle swarm optimization (MOCPSO) [133], multi-

objective chaotic ant swarm optimization (MOCASO) [134], multi-objective

differential evolution [135], multi-objective interactive honey bee mating

optimization (IHBMO) [136], enhanced multi-objective cultural algorithm

(EMOCA) [137], etc. have been proposed for solving the multi-objective

economic/emission dispatch (EED) problem.

However, the limitation of such works is that the EED problem assumes

all the available generating units to be committed and performs only the

multi-objective economic/emission dispatch task i.e., the generator on/off

determination task is neglected. Nevertheless, such extensive works on the

multi-objective EED problem highlights the motivation of the researchers

to consider emission as an independent objective along with the economic

objective in the generation scheduling problem.

4.2.2 Brief Review of Methods Proposed for Multi-

objective Economic/Emission Unit Commitment

(MOEE-UC) Problem

Recently, the researchers have started focusing on solving the UC prob-

lem as a true MOP considering both economic and emission objectives. A

modified NSGA-II based on problem specific genetic operators and prior-
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ity list (PL) based heuristic initialization is presented in [21] for solving

the MOEE-UC problem. In this approach, GA is employed to explore the

binary search space while the lambda-iteration method is adopted for as-

signing the economic/emission power dispatch. In [22], a NSGA-II [81]

based algorithm customized with problem specific genetic operators, Prior-

ity list (PL) based heuristic initialization and repair operation is presented

for the MOEE-UC problem. The NSGA-II based algorithm proposed in

[22] is extended in [23] and optimization models are presented in which re-

liability can be included as an additional constraint or objective along with

economic and emission objectives. In both of these works i.e., [22] and [23],

GA is employed to solve the tasks of determining the units to be turned

on/off as well as the load dispatch. A two-level approach for UC considering

bi-objective optimization model of system operation cost and emission and

a three-objective optimization model of system operation cost, emission

and transmission losses is presented in [24]. The applicability of the ap-

proach [24] is presented by integrating the approach within NSGA-II [81],

SPEA-2 [82] and a simulated-annealing based multi-objective optimiza-

tion algorithm (AMOSA) [138]. A memetic EA based on combination of

NSGA-II and a problem specific local search algorithm is proposed in [139]

to solve the MOEE-UC problem. The memetic algorithm is heuristically

initialized using PL based solutions. Further, the on-off schedule is deter-

mined using NSGA-II (combined with local search algorithm) while the

economic-emission dispatch problem is solved using weighted-sum lambda-

iteration method. The main drawback of these MOEE-UC studies is that

they lacked thorough validation and benchmarking, especially, with some

recent state-of-the-art MOEAs and this leaves a scope for further improve-

ment.
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4.3 Proposed Work and the Motivation

Recognizing the importance of the multi-objective economic/emission UC

(MOEE-UC) problem and observing that almost all the approaches pro-

posed in the literature for solving this problem are based on NSGA-II [81],

motivated us to select a recent state-of-the-art algorithm - multi-objective

evolutionary algorithm based on decomposition (MOEA/D) [85] and inves-

tigate its performance in solving the particular problem. As discussed in

Chapter 2, MOEA/D is a recently proposed evolutionary multi-objective

optimization framework by Zhang and Li in 2007 [85]. Since its proposition,

several MOEA/D variants have been proposed in the literature [87–97].

Inspired from the performance of MOEA/D and its variants in the

literature, in this Chapter, the framework of MOEA/D [86] is chosen.

MOEA/D-SBX and MOEA/D-DE are chosen as the representative algo-

rithms from this framework for application to the MOEE-UC problem.

Further, for comprehensive comparison, NSGA-II-SBX [81] is also tested

on the MOEE-UC problem. The optimization skeleton developed for the

single-objective UC problem in Chapter 3 is efficiently integrated within the

domination and decomposition based multi-objective optimization frame-

works.

In the original study, MOEA/D-SBX as well as MOEA/D-DE were

proposed for continuous MOPs. However, as mentioned earlier, the UC

problem is a mixed-integer optimization problem consisting of both bi-

nary UC variables and continuous power dispatch variables. Therefore, in

MOEA/D-SBX as well as NSGA-II-SBX, GA is employed to explore both

the binary search space as well as the continuous search space. On the other

hand, since the hybridization of GA and DE was found to work very well on

the (single-objective) UC problem in Chapter 3, the hybridization method-
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ology is extended in this Chapter within the MOEA/D-DE framework.

Thus, in proposed (hybrid) MOEA/D-DE, GA is employed to explore the

binary search space while DE explores the continuous search space. To

the best of our knowledge, this work presents a first attempt to hybridize

two powerful EAs - GA and DE (in the aforementioned manner) within

the MOEA/D framework to solve a challenging real-world multi-objective

mixed-integer optimization problem.

A swap window real mutation operator which works on the continuous

variables is also proposed in this Chapter to enhance the performance of

the proposed MOEAs on the MOEE-UC problem.

Further, in the original study of MOEA/D-SBX [85] and MOEA/D-

DE [86], the weight vectors corresponding to different scalar optimization

subproblems are uniformly distributed. However, in this Chapter, a non-

uniform weight vector distribution strategy is proposed to bias the search

direction of MOEA/D-DE. Additionally, an ensemble algorithm based on

combination of MOEA/D-DE with uniform and non-uniform weight vector

distribution strategy is developed to enhance the overall performance of

MOEA/D-DE on the MOEE-UC problem.

4.4 Problem Formulation

In this Section, the multi-objective economic/emission UC problem formu-

lation is presented.

4.4.1 Objective Functions

1. System Operation Cost: The first objective function is to minimize the

system operation cost (SOC), where SOC includes the fuel cost and the

transition cost of all the generating units over the entire scheduling horizon
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[139]. The fuel cost fi
t of unit i is expressed as the quadratic function of

its power output Pi
t during hour t.

fi
t = aiP

t
i

2 + biPi
t + ci (4.1)

where ai, bi, ci are the fuel cost coefficients of unit i.

The transition cost is the sum of the start-up costs and the shut-down

costs. In this Chapter, the shut-down costs have not been taken into con-

sideration in accordance with the literature [139] while the start-up cost is

modeled as follows:

SU t
i =


HSCi, if MDTi ≤ T t

OF F,i ≤MDTi + Tcold,i

CSCi, if T t
OF F,i > MDTi + Tcold,i

(4.2)

where SU t
i is the start-up cost of unit i at hour t, HSCi and CSCi repre-

sents the hot start cost and cold start cost of unit i, respectively, MDTi

represents the minimum down time of unit i, T t
OF F,i is the continuous off

time of unit i up to hour t and Tcold,i is the cold start cost of unit i.

Subsequently, the first objective function (F1) is given by minimization

of the following cost function [139].

F1 =
Tmax∑
t=1

N∑
i=1

(
f t

i .ut
i + SU t

i (1− ut−1
i )ut

i

)
(4.3)

where ut
i represents the unit commitment status of unit i at hour t (1 = ON ,

0 = OFF ), Tmax is the number of hours in the scheduling horizon and N

is the number of thermal generating units in the system.

2. Emission The second objective function F2 is the reduction of emis-
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sion of air-pollutants into the atmosphere [139].

F2 =
Tmax∑
t=1

N∑
i=1

(
Et

i .u
t
i

)
(4.4)

where Ei
t (lb) represents the quantity of pollutants produced by unit i at

time t and is defined as

Ei
t = a1iP

t
i

2 + b1iP
t
i + c1i (4.5)

and a1i, b1i, c1i are the emission coefficients of unit i.

4.4.2 Constraints

1. System power balance: the total power generation at hour t must be

equal to the load demand Lt for that hour.

N∑
i=1

(P t
i .ut

i) = Lt, t = 1, 2, ....Tmax (4.6)

2. System spinning reserve requirements: for reliable operation, the sys-

tem must carry certain reserve capacity at every hour (SRt) in order

to meet unforeseen situations such as deviation in actual load demand

from forecast load demand or generator outage.

N∑
i=1

(Pmax,i.u
t
i) ≥ Lt + SRt, t = 1, 2, ....Tmax (4.7)

where Pmax,i represents the rated upper limit generation of unit i.

3. Unit minimum up/down time: if a unit i is turned on/off, it must

remain on/off for at least its minimum up/down time (MUT i/MDT i)
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duration.
T t

ON,i ≥MUT i

T t
OF F,i ≥MDT i

(4.8)

where T t
ON,i and T t

OF F,i represent the continuous on and off time of

unit i up to hour t, respectively.

4. Unit generation limits: for stable operation, the power output of each

generator is restricted within its limits:

Pmin,i ≤ P t
i ≤ Pmax,i (4.9)

where Pmin,i and Pmax,i represent the rated lower and upper limit

generation of unit i, respectively.

4.5 Proposed Algorithm MOEA/D-DE for

the MOEE-UC problem

In this Chapter, the MOEAs proposed for the MOEE-UC problem are

NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE. These MOEAs are de-

veloped by efficiently incorporating the optimization skeleton developed

for the single-objective UC problem in Chapter 3 within the framework of

the original versions of these MOEAs proposed in the literature. Thus,

to avoid repetition, only MOEA/D-DE is discussed in detail, followed by

the detailed pseudo-code of MOEA/D-DE in this Section. Thereafter,

MOEA/D-SBX and NSGA-II-SBX are discussed briefly in the next Sec-

tions.

The proposed MOEA/D-DE is vividly outlined in the context of the

MOEE-UC problem as follows. It is noted that although many components

of MOEA/D-DE are similar to that of the hGADE algorithm proposed in
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Chapter 3, yet they are again discussed in this section so as to present the

MOEA/D-DE as a complete algorithm and enhance the readability.

4.5.1 Chromosome Representation

For every chromosome, a N×Tmax binary unit commitment matrix (UCM)

represents the thermal generator on/off status and a N × Tmax real power

matrix (RPM) represents the corresponding power dispatch. The chromo-

some representation is depicted in Fig. 4.1. It is noted that a chromosome’s

actual generation schedule is represented by its resultant power matrix

(Res.PM) which is obtained by multiplying the corresponding elements of

UCM and RPM.

UCM

1 2 …

1

2

:

N-1

N

RPM

1 2 …

1

2

:

N-1

N

Fig. 4.1 Structure of chromosome.

4.5.2 Generation of Initial Population

The UCM of the chromosomes in the initial population are randomly gen-

erated binary matrices while the RPM of all the chromosomes in the ini-

tial population are generated as follows. Suppose the RPM of the kth

chromosome of the population at generation G is denoted by Xk,G (where

Xk,G = [x1,k,G, x2,k,G, ..., xD,k,G], D being the number of decision variables).

The jth decision variable of the kth chromosome is randomly initialized for

the initial population as

xj,k = xmin
j + rand[0, 1].(xmax

j − xmin
j ) (4.10)
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where xmin
j and xmax

j are the minimum and maximum bounds of the jth

decision variable, respectively and randk,j[0, 1] is a uniformly distributed

random number lying between 0 and 1 and is generated independently for

each decision variable of the kth chromosome.

4.5.3 Fitness Evaluation
Since UC is a highly constrained optimization problem, a key factor in

the performance of the algorithm lies in how the algorithm handles the

constraints.

Boundary Constraint Handling

The generator limit constraints given by (4.9) are handled according to

the bound handling approach known as set on boundary [116]. According

to this approach, if a continuous variable corresponding to power dispatch

of a generator exceeds the bounds (during variation operation), then the

variable is set on the boundary.

Load Demand Equality Constraint Repair Operator

In the proposed algorithm, the other constraints (i.e., minimum up

down time and minimum spinning reserve constraints) except for the load

demand equality constraint get adequately handled over the generations

by the replacement principle based on feasibility rules (described later).

Therefore, a repair operator is applied to repair chromosomes that violate

the load demand equality constraint [13]. In the repair procedure, the

chromosome is repaired for load demand equality constraint violation at

hour t using priority list (PL) of the thermal units based on fuel cost

coefficients. If the total power output of the committed thermal units at

hour t is less than the load demand on the system at hour t then the

power output of the committed thermal units is increased in ascending

order of the PL otherwise the power output of the committed thermal
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units is decreased in descending order of the PL to meet the load demand.

It is always ensured that the power output of the thermal units lies within

their generation limits given by (4.9). Algorithm 5 in the Appendix A

shows the pseudo-code of the repair procedure.

Constraint Violation Evaluation

At first, all the constraints are normalized because different constraints

may take different orders of magnitude. An inequality constraint of the

form g(x) ≥ b is normalized using the following transformation:

g(x)
b
− 1 ≥ 0 (4.11)

Equality constraints are also normalized similarly [29]. Thereafter, all

normalized constraint violations are added to calculate the overall con-

straint violation of a chromosome. A chromosome is feasible if the overall

constraint violation is less than the tolerance limit (10−6).

Objective Function Evaluation

The objective function system operation cost and emission are calcu-

lated for each chromosome using its Res.PM (which is obtained by multi-

plying the corresponding elements of UCM and RPM as mentioned earlier).

4.5.4 Variation Operation: Hybridization of GA with

DE

The variation operation is the step where the proposed hybridization be-

tween GA and DE occurs at every generation in MOEA/D-DE. In the

variation operation in MOEA/D-DE (just like the hGADE algorithm pro-

posed in Chapter 3), the binary UC variables are evolved using GA oper-

ators while the continuous power dispatch variables are evolved using DE

operators as described below.
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1 1 0 0 1

1 0 1 0 1
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0 1 0 1 1

1 1 1 0 0

0 1 0 1 0

UCM of Parent1                  UCM of Parent2

1 0 1 0 0

1 0 0 0 1

1 1 0 1 1

1 1 1 0 0

0 0 1 1 0

0 0 1 0 0

1 1 0 0 1

0 0 1 0 1

1 1 1 0 0

0 1 0 1 0

UCM of Offspring1             UCM of Offspring2

Before window crossover

After window crossover

(a) Window crossover

1 0 1 0 0

1 0 0 0 1

1 1 0 1 1

1 1 1 0 0

0 0 1 1 0

UCM of Offspring 1

1 0 1 0 0

1 1 1 0 1

1 1 0 1 1

1 0 0 0 0

0 0 1 1 0

UCM of Offspring 1

Before Swap Window mutation

After Swap Window mutation

(b) Swap window oper-
ator

Fig. 4.2 A pictorial instance of GA operators acting on UCM of parent chromosomes.

GA Operators Acting on Binary Component (i.e., UCM) of the Chro-

mosomes

Since, in the proposed algorithm, the binary variables are encoded in the

form of matrix, problem-specific binary crossover and mutation operators

which have been found in the literature to work well on matrix encodings

are adopted.

• Window crossover - A slightly modified version of the window crossover

operator as mentioned in [12] is used as the binary crossover [23]. It

works by randomly selecting two parents and then randomly selecting

a window size. The entries within the window portion are exchanged

between the UCM of two parents to generate the UCM of two off-

spring. Fig. 4.2 (a) shows an example to illustrate how the window

crossover works on a 5× 5 UCM for a window size 2× 3.

• Swap window mutation - It works on the UCM of a chromosome

by randomly selecting: a) two units, b) a time window of width w
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between 1 and Tmax and c) a window position. The entries of the two

units included in the window are then exchanged. This acts like a

sophisticated mutation operator [9]. Fig. 4.2 (b) shows an example

to illustrate how the swap window mutation works on a 5× 5 UCM

for a window size 1× 3.

• Window mutation - This operator works on the UCM of a chromo-

some by randomly selecting: a) a unit, b) a time window of width w

between 1 and Tmax and c) a window position. Then it mutates all

the bits included in the window, turning all of them to either 1’s or

0’s with an equal probability [9].

DE Operators Acting on Continuous Component (i.e., RPM) of the

Chromosomes

• Mutation - Corresponding to RPM of kth chromosome at genera-

tion G, Xk,G (called target chromosome in DE literature) in the

population, DE creates a mutant chromosome Vk,G (where Vk,G =

[v1,k,G, v2,k,G, ..., vD,k,G], D being the number of decision variables)

through mutation. In MOEA/D-DE, DE/rand/1 strategy is em-

ployed [86], the mutation operation of which takes place as follows:

DE/rand/1 : Vk,G = Xrk
1 ,G + F (Xrk

2 ,G −Xrk
3 ,G) (4.12)

where rk
1 , rk

2 and rk
3 are mutually exclusive and randomly chosen in-

dices probabilistically from either [1, ..., T ] or [1, ..., NP ] and are also

different from the base index k (where T and NP are the neighbor-

hood size and population size, respectively). The scaling factor F is

a control parameter for amplifying the difference of two chromosomes

(for example the difference (Xrk
2 ,G −Xrk

3 ,G) in a vector sense) and lies
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in the range [0, 2]. A smaller value of F promotes exploitation while

a larger value of F promotes exploration [60].

• Crossover - After generating the mutant chromosome Vk,G through

mutation, a crossover operation comes into play to further enhance

the potential diversity of the population. In crossover, the mutant

chromosome Vk,G exchanges its components with the target chromo-

some Xk,G with a probability CR ∈ [0, 1] to form the trial chromo-

some Uk,G (where Uk,G = [u1,k,G, u2,k,G, ..., uD,k,G], D being the num-

ber of decision variables). In MOEA/D-DE, binomial crossover exists

[86] in which each component of the trial chromosome Uk,G is inserted

from either mutant chromosome or target chromosome according to

the following condition:

uj,k,G =


vj,k,G if (randk,j[0, 1] ≤ CR or j = jrand)

xj,k,G otherwise
(4.13)

where randk,j[0, 1] is a uniformly distributed random number and

jrand ∈ [1, 2, ..., D] is a randomly chosen index which ensures that

the trial chromosome gets at least one component from the mutant

chromosome.

Proposed Mutation Operator Acting on Continuous Component (i.e.,

RPM) of the Chromosomes

• Swap window real mutation - A swap window real mutation operator

is proposed and incorporated within the algorithm. This mutation

operator, as the name suggests, resembles the swap window mutation

operator acting on UCM of the chromosomes as discussed above. The

only difference lies in the aspect that swap window real mutation op-

erator acts on RPM of the chromosomes unlike swap window muta-

tion operator which acts on the UCM of the chromosomes. Thus, this
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operator works on the RPM of a chromosome by randomly selecting:

a) two units, b) a time window of width w between 1 and Tmax, and

c) a window position. The entries of the two units included in the

window are then exchanged.

4.5.5 Replacement

The original MOEA/D-SBX [85] and MOEA/D-DE [86] are proposed for

unconstrained optimization problems. However, as the UC problem is a

constrained optimization problem, the replacement component of the orig-

inal MOEA/D is modified to incorporate constraint handling [140] as dis-

cussed below.

At every generation, once corresponding to an index i the variation

operation is completed i.e., the child’s (say xchild′s) UCM and RPM are

created using GA and DE, respectively; the UCM and RPM are combined

to evaluate the fitness of the xchild. Thereafter, xchild is compared with a

randomly picked solution in the neighborhood (say y) of index i and the

replacement/update of neighborhood takes place according to the following

rules based on superiority of feasibility [140].

• If both xchild and y are infeasible and CV (xchild) < CV (y), then y is

replaced by xchild (where CV denotes the total constraint violation).

• Else if xchild is feasible but y is infeasible, then y is replaced by xchild.

• Else if xchild is infeasible but y is feasible, then y is not replaced by

xchild.

• Else if both xchild and y are feasible and g(xchild|λj, z) ≤ g(y|λj, z),

i.e., if xchild is equal to or better than y with regard to Tchebycheff

aggregation function, then y is replaced by xchild.
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4.5.6 Stopping Criterion

The algorithm stops if the maximum number of generations (set as input)

is reached.

4.5.7 Steps of the Proposed Algorithm MOEA/D-DE

Input

• NP : the number of subproblems considered in MOEA/D-DE i.e., the
population size;

• λ1, λ2, ..., λNP : a set of NP weight vectors;

• T : the neighborhood size;

• δ: the probability that parent solutions are selected from the neigh-
borhood;

• nr: the maximal number of solutions that can be replaced by each
child solution.

• z: the initial reference point (z1, z2) = (1030, 1030). The reference
point initially has very large dimensions and is updated during the
evolution of population.

At each generation, MOEA/D-DE maintains the following:

• A population of NP solutions x1, x2, . . . , xNP , where xi is the current
solution to the ith subproblem.

• F (x1), F (x2), . . . , F (xNP ), where F (xi) = {F1(xi), F2(xi)} ∀i = 1, 2,
. . . , NP .

• CV (xi) = total constraint violation of xi ∀i = 1, 2, . . . , NP .

• z = (z1, z2), where z1 and z2 are the best values found so far for
objective F1 and F2, respectively.

The steps executed are as follows.

• Step 1: Initialization

– Step 1.1 Compute the Euclidean distances between any two
weight vectors and then calculate T closest weight vector to
each λi. For all i = 1, 2, . . . , NP , set B(i) = {i1, i2, . . . , iT},
where λj, ∀j ∈ B(i) are T closest vectors to λi.

– Step 1.2 Randomly generate the initial population.
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– Step 1.3 For all i = 1, 2, . . . , NP , repair xi for load demand
equality constraint violation.

– Step 1.4 Calculate CV (xi) and F (xi) i.e., {F1(xi), F2(xi)}.
– Step 1.5 Update z = (z1, z2) according to the condition: zj =

min
1≤i≤NP

Fj(xi) if xi is feasible.

• Step 2: Update
For i = 1, 2, . . . , NP , do

– Step 2.1 Selection of Mating/Update Range: Uniformly
generate random number rand from [0,1]. Then,

P =
B(i), if rand < δ

1, 2, . . . , NP , otherwise

– Step 2.2 Reproduction:
1. Randomly select three indices r1, r2, and r3 from P which

are different from i.
2. Decode xk in UCMk and RPMk, where k = i, r1, r2, r3.
3. Generate a solution UCMchild using GA recombination op-

erators on UCMk, where k = i, r1.
4. Generate a solution RPMchild using DE recombination op-

erators on RPMk, where k = r1, r2, r3.
5. Encode UCMchild and RPMchild in xchild.

– Step 2.3 Repair: Repair xchild for boundary constraint viola-
tion and load demand equality constraint violation.

– Step 2.4: Calculate CV (xchild) and F (xchild) i.e., {F1(xchild),
F2(xchild)}.

– Step 2.5 Update of z: For j = 1, 2 do
1. If xchild is feasible and zj > Fj(xchild) then set zj = Fj(xchild)

– Step 2.6 Replacement/Update of Solutions: Set c = 0 and
then do

1. Set flag = 0.
2. If c = nr or P is empty, i = i + 1 and go to Step 2.1, else

randomly pick an index j from P .
3. Determine if xchild replaces xj or not according to the re-

placement rules.
4. If xchild replaces xj then flag = 1 and c = c + 1.
5. If flag = 1, remove j from P and go to Step 2.6.1.

• Step 3: Stopping Criteria
If termination criterion is satisfied, then stop else go to Step 2.
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Output

• Approximation to Pareto-optimal solutions: {x1, x2, . . . , xNP}.

• Approximation to Pareto-optimal front: {F (x1), F (x2), ..., F (xNP )}.

4.6 Proposed MOEA/D-SBX for the MOEE-

UC problem

The proposed algorithm MOEA/D-SBX for the MOEE-UC problem is

similar to the algorithm MOEA/D-DE (described above) in each and ev-

ery aspect other than the variation operation. As the name suggests, in

MOEA/D-SBX, the continuous component of the chromosomes are evolved

using SBX operator unlike DE operators in MOEA/D-DE. Since, MOEA/D-

DE and MOEA/D-SBX have lot of resemblance, in order to avoid repeti-

tion, the pseudo-code of MOEA/D-SBX is not presented here.

4.7 Proposed NSGA-II-SBX for the MOEE-

UC problem

The proposed algorithm NSGA-II-SBX for the MOEE-UC problem is based

on the domination based multi-objective optimization framework of NSGA-

II [81] (as discussed in Chapter 2). In NSGA-II-SBX, as the name suggests,

GA evolves both the binary as well as the continuous component of the

chromosomes. The algorithm is called NSGA-II-SBX instead of NSGA-

II to emphasize that the continuous component of the chromosomes are

evolved using SBX operator just like in MOEA/D-SBX. The optimiza-

tion skeleton i.e., problem-specific chromosome representation, load de-

mand equality constraint handling, genetic operators and swap window

real mutation operator is the same in NSGA-II-SBX as that in MOEA/D-
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DE and MOEA/D-SBX. Thus, NSGA-II-SBX is not discussed in detail and

the algorithm is illustrated through a flowchart as shown in Fig. 4.3.

4.8 Experimental Study

In this Section, extensive case studies are undertaken to exhaustively demon-

strate the effectiveness of the different algorithmic components and investi-

gate the performance of the proposed algorithms on the MOEE-UC prob-

lem. The experimental evaluation is systematically divided into 7 case

studies.

1. In the first case study, the effectiveness of the window crossover op-

erator is demonstrated;

2. In the second case study, the efficacy of the binary mutation operators

is presented;

3. In the third case study, the effectiveness of the proposed swap window

real mutation operator is illustrated;

4. Thereafter, in the fourth case study, the proposed MOEAs i.e., NSGA-

II-SBX, MOEA/D-SBX and MOEA/D-DE are exhaustively com-

pared among themselves;

5. Further, in the fifth case study, the proposed MOEAs are bench-

marked against the approaches presented in the literature;

6. In the sixth case study, a non-uniform weight vector distribution

strategy is proposed for MOEA/D-DE and its effectiveness is inves-

tigated;
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Fig. 4.3 Flowchart of the NSGA-II-SBX for MOEE-UC problem.
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7. Finally, in the seventh case study, an enhanced MOEA/D-DE based

on ensemble of MOEA/D-DE with uniform and non-uniform weight

vector distribution strategy is proposed.

The proposed MOEAs are developed on C++ platform and executed on

PC with Intel 3.10 GHz processor. The MOEAs are tested on the MOEE-

UC problem for power systems with 10, 60 and 100 units in a 24 hour

scheduling horizon [139]. The spinning reserve requirements are assumed

to be 10% of the load demand [139]. For each experiment, 20 independent

simulation trials are conducted to verify the robustness of the proposed

algorithm.

4.8.1 Performance Metric

To investigate the performance of the proposed algorithms, inverted gener-

ational distance (IGD) [140] is used as the performance metric. The reasons

behind choosing IGD metric are that it provides a measure of both proxim-

ity and diversity of the obtained non-dominated solutions in the objective

space with respect to the Pareto-optimal front [140]. Further, recently it

has been observed that IGD is the most widely used indicator to measure

the performance of MOEAs in the evolutionary community.

For the analytical benchmark functions possessing pre-defined Pareto-

optimal front, let P ∗ be the set of uniformly distributed Pareto-optimal

solutions in the objective space and P be the obtained approximation set

of non-dominated solutions in the objective space from an algorithm. The

IGD of the approximation set P with respect to the ideal set P ∗ is defined

as follows:

IGD(P, P ∗) =

∑
v∈P ∗

d(v, p)

| P ∗ |
, (4.14)
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where d(v, p) = min
v∈P ∗
||v− p|| with p ∈ P , | P ∗ | being the cardinality of

P ∗.

However, for real-world problems like MOEE-UC, the exact optimal

front being unknown, the Pareto-optimal front is approximated by a refer-

ence front which is constructed by selecting the non-dominated solutions

from all the simulation runs under the experiment [47]. It is noted that a

smaller IGD reflects better proximity and diversity.

4.8.2 Parameter Tuning

Parameter tuning can play a very important role in deciding the per-

formance of EAs [141]. In this Section, the parameters of the proposed

MOEAs - NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE are tuned.

The common parameters upon which the performance of the proposed

MOEAs depend are - population size, terminating generation number,

window crossover probability, binary mutation probability and swap win-

dow real mutation probability. Further, some parameters are specific to

NSGA-II-SBX and MOEA/D-SBX like SBX distribution index (ηc) and

SBX variable crossover probability and some parameters are specific to

MOEA/D-DE like scaling factor F and crossover probability CR. Addi-

tionally, a parameter common to both MOEA/D-SBX and MOEA/D-DE

is the neighborhood size T .

The common parameters like population size and generation number

were decided through pilot experiments and are summarized for different

test systems in Table 4.1. The rest of the parameters were tuned by em-

ploying IGD metric comparison as discussed below. The 60 unit test system

was selected as the representative test system on which parametric tuning

was conducted.

Parameter tuning with respect to NSGA-II-SBX

96



4.8 Experimental Study

Table 4.1 Common parameter settings of MOEAs corresponding to different test systems

Test system 10-unit system 60-unit system 100-unit system

Population size 200 300 400
Generation number 10000 50000 50000

At first, the sensitivity of NSGA-II-SBX to window crossover probabil-

ity was determined by fixing other parameters as: SBX distribution index

at 2, SBX variable crossover probability at 1.0, binary mutation probability

at 0.25, swap window real mutation probability at 0.25, and executing the

algorithm 10 times each for different values of window crossover probabil-

ity ranging from 0.5 to 1.0 at interval of 0.1. Thereafter, IGD metric was

plotted using box plots as shown in Fig. 4.4a. It is observed from Fig. 4.4a

that the performance of NSGA-II-SBX is best with respect to IGD metric

for window crossover probability fixed at 0.6.

Thereafter, fixing window crossover probability at 0.6, and other param-

eters same as mentioned above, the sensitivity of NSGA-II-SBX to SBX

distribution index was determined by executing the algorithm 10 times each

for ηc fixed at 2, 5, 10 and 20. Fig. 4.4b shows the IGD metric comparison

for different values of ηc. It is observed from Fig. 4.4b that the performance

of NSGA-II-SBX is best for ηc fixed at 2.

Similarly, one by one the sensitivity of NSGA-II-SBX to the parameters

- SBX variable crossover probability, binary mutation probability and swap

window real mutation probability was determined by plotting the IGD met-

ric variation as shown in Fig. 4.4c, 4.4d and 4.4e, respectively. Finally, the

optimal parameters corresponding to NSGA-II-SBX determined through

the above procedure are summarized in Table 4.2.
Parameter tuning with respect to MOEA/D-SBX

The optimal parameters corresponding to MOEA/D-SBX were also de-

termined in a similar manner. Fig. 4.5a, 4.5b, 4.5c, 4.5d and 4.5e illustrate
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Fig. 4.4 Parameter sensitivity results (IGD metric) with respect to NSGA-II-SBX on
the 60 unit system.

the IGD metric variation with respect to parameter - window crossover

probability, SBX distribution index, neighborhood size, binary mutation

probability and swap window real mutation probability, respectively. The

optimal parameters corresponding to MOEA/D-SBX are summarized in
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Table 4.2 Optimal parameter settings corresponding to NSGA-II-SBX

Window crossover probability 0.6
SBX distribution index (etac) 2

SBX variable crossover probability 1.0
Binary mutation probability 0.25

Swap window real mutation probability 0.25

Table 4.3.
Table 4.3 Optimal parameter settings corresponding to MOEA/D-SBX

Window crossover probability 0.8
SBX distribution index (etac) 5

SBX variable crossover probability 1.0
Neighborhood size (T ) 20%

Binary mutation probability 0.25
Swap window real mutation probability 0.35

Parameter tuning with respect to MOEA/D-DE

The optimal parameters corresponding to MOEA/D-DE were also de-

termined in similar manner. Fig. 4.6a, 4.6b, 4.6c, 4.6d and 4.6e illustrate

the IGD metric variation with respect to parameter - window crossover

probability, scaling factor, neighborhood size, binary mutation probability

and swap window real mutation probability, respectively. It is noted that

the parameter CR is fixed at 1.0 as in the original study on MOEA/D-DE

[86]. Further, unlike the original study on MOEA/D-DE [86], polynomial

mutation was not adopted. This is because the polynomial mutation oper-

ator was not found to enhance the performance of the proposed MOEAs.

The optimal parameters corresponding to MOEA/D-DE are summarized

in Table 4.4.

Table 4.4 Optimal parameter settings corresponding to MOEA/D-DE

Window crossover probability 0.5
Scaling factor (F ) 0.7

Binomial crossover probability (CR) 1.0
Neighborhood size (T ) 15%

Binary mutation probability 0.35
Swap window real mutation probability 0.35
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Fig. 4.5 Parameter sensitivity results (IGD metric) with respect to MOEA/D-SBX on
the 60 unit system.
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Fig. 4.6 Parameter sensitivity results (IGD metric) with respect to MOEA/D-DE on
the 60 unit system.
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4.8.3 Case Study 1- Study on Efficacy of Window

Crossover Operator

In this case study, the efficacy of window crossover operator was investi-

gated by comparing with three other crossover operators - row, column and

line. These crossover operators are defined as follows:

• Row crossover - It works by randomly selecting two parents and then

randomly selecting two rows. The entries within the two rows (i.e.,

across all the columns) are exchanged between the UCM of two par-

ents to generate the UCM of two offspring.

• Column crossover - It works by randomly selecting two parents and

then randomly selecting two columns. The entries within the two

columns (i.e., across all the rows) are exchanged between the UCM

of two parents to generate the UCM of two offspring.

• Line crossover - It works by randomly selecting two parents and then

randomly selecting a column. The entries on the right hand side of

the column (i.e., across all the rows) are exchanged between the UCM

of two parents to generate the UCM of two offspring.

It is noted that the row and column crossover operator are similar to

window crossover operator but are different in the sense that unlike window

crossover operator, row crossover operator spans across all the columns

while column crossover operator spans across all the rows.

Fig. 4.7a and 4.7b illustrate the comparison of IGD metric results for

different genetic crossover operators with respect to NSGA-II-SBX on 60

and 100 unit system, respectively while Fig. 4.8a and 4.8b illustrate the

same with respect to MOEA/D-DE on 60 and 100 unit system, respectively.
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Fig. 4.7 IGD metric results for different genetic crossover operators with respect to
NSGA-II-SBX.

It is observed from the figures that considering the IGD metric results

with respect to both NSGA-II-SBX and MOEA/D-DE, window crossover

is the most consistent crossover operator and in most of the cases window

crossover operator significantly outperforms the other crossover operators.

Thus, this case study justifies the reason behind incorporating window

crossover operator in the proposed MOEAs.
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Fig. 4.8 IGD metric results for different genetic crossover operators with respect to
MOEA/D-DE.
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4.8.4 Case Study 2- Study on Efficacy of Binary Mu-

tation Operators

In this case study, the efficacy of binary mutation operators (i.e., swap win-

dow mutation and window mutation) was investigated by executing NSGA-

II-SBX and MOEA/D-DE with and without binary mutation operators. It

is noted that instead of analyzing the effects of two binary mutation op-

erators separately, their combined effect was investigated. Fig. 4.9a and

4.9b illustrate the comparison of IGD metric results for MOEA/D-DE (i.e.,

with binary mutation) and MOEA/D-DE/NBM (i.e., MOEA/D-DE with-

out binary mutation) on 10 and 60 unit system, respectively. It is observed

from the figures that with binary mutation, MOEA/D-DE performed re-

markably better than without binary mutation. Further, in presence of 100

unit system, MOEA/D-DE/NBM could not find any feasible solution while

NSGA-II-SBX/NBM (i.e., NSGA-II/SBX without binary mutation) could

not find any feasible solution in each of the test systems. Thus, this case

study validates the efficacy of the binary mutation operators incorporated

in the proposed MOEAs.

4.8.5 Case Study 3- Study on Efficacy of Swap Win-

dow Real Mutation Operator

In this case study, the efficacy of the proposed swap window real muta-

tion operator was analyzed by executing NSGA-II-SBX and MOEA/D-DE

with and without the mutation operator. Fig. 4.10a and 4.10b illustrate

the comparison of IGD metric results for NSGA-II-SBX (i.e., with swap

window real mutation) and NSGA-II-SBX/NSWRM (i.e., without swap

window real mutation) on 60 and 100 unit system, respectively while Fig.
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Fig. 4.9 IGD metric results for with and without binary mutation with respect to
MOEA/D-DE.

4.11a and 4.11b illustrate the same for MOEA/D-DE (i.e., with swap win-

dow real mutation) and MOEA/D-DE/NSWRM (i.e., MOEA/D-DE with-

out swap window real mutation) on 60 and 100 unit system, respectively.

It is observed from the figures that with respect to both NSGA-II-SBX

and MOEA/D-DE, inclusion of the proposed swap window real mutation

operator had a remarkable effect on the quality of results.
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Fig. 4.10 IGD metric results for with and without swap window real mutation with
respect to NSGA-II-SBX.
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Fig. 4.11 IGD metric results for with and without swap window real mutation with
respect to MOEA/D-DE.

To further analyze how MOEA/D-DE and MOEA/D-DE/NSWRM com-

pare in the objective space, the distribution of the final non-dominated so-

lutions with the lowest IGD values found by MOEA/D-DE and MOEA/D-

DE/NSWRM on 60 and 100 unit system are plotted in Fig. 4.12a and

4.12b, respectively. It is evident from the figures that with the incorpora-

tion of the proposed swap window real mutation operator, MOEA/D-DE is

able to obtain significantly better convergence. Thus, this case study vali-

dates the effectiveness of the proposed swap window real mutation operator

incorporated in the different MOEAs.

4.8.6 Case Study 4- Comparative Study of the Pro-

posed MOEAs

In this case study, the performance of the proposed MOEAs i.e., NSGA-II-

SBX, MOEA/D-SBX and MOEA/D-DE is compared on three different test

systems comprising of 10, 60 and 100 units. Fig. 4.13a, 4.13b and 4.13c

illustrate the IGD metric comparison for NSGA-II-SBX, MOEA/D-SBX
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Fig. 4.12 The distribution of the final non-dominated solutions found (with the lowest
IGD values) by MOEA/D-DE and MOEA/D-DE/NSWRM.

and MOEA/D-DE on 10, 60 and 100 unit system, respectively. Following

are the observations from these figures:

• The best, mean and median IGD of MOEA/D-DE is significantly

lower than that of NSGA-II-SBX and MOEA/D-SBX on all the test

systems and thus MOEA/D-DE is significantly superior to NSGA-II-

SBX and MOEA/D-SBX in terms of IGD metric.

• Since, the performance of MOEA/D-SBX is worse than that of NSGA-

II-SBX, it indicates that incorporation of decomposition based multi-

objective optimization framework alone may not be adequate. More-

over, as MOEA/D-DE remarkably outperforms MOEA/D-SBX, it

shows that the proposed hybridization strategy between GA and DE

as in MOEA/D-DE plays a significant role in improving the perfor-

mance of MOEA/D on the MOEE-UC problem.

Fig. 4.14a, 4.14b and 4.14c show the distribution of the final non-

dominated solutions found by NSGA-II-SBX, MOEA/D-SBX and MOEA/D-

DE with the lowest IGD values on 10, 60 and 100 unit system, respectively.
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Fig. 4.13 IGD metric results with respect to performance of proposed MOEAs.

The superior performance of MOEA/D-DE is clearly visible on 60 and

100 unit system in Fig. 4.14b and 4.14c, respectively as MOEA/D-DE

outperforms MOEA/D-SBX with respect to convergence and outperforms

NSGA-II-SBX both with respect to convergence and diversity.

However, to further investigate if MOEA/D-DE is statistically different

from NSGA-II-SBX and MOEA/D-SBX, Wilcoxon signed rank test [122]

is applied with respect to the IGD metric values. Table 4.5 summarize the

results obtained through Wilcoxon signed rank test. The table summarizes

the statistics obtained from - a) pairwise comparison between MOEA/D-
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Fig. 4.14 The distribution of the final non-dominated solutions (with the lowest IGD
values) found by NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE.

DE and NSGA-II-SBX, and b) pairwise comparison between MOEA/D-DE

and MOEA/D-SBX on the three test systems.

It is observed from the p-values in the Table 4.5 that MOEA/D-DE

is statistically superior to both NSGA-II-SBX and MOEA/D-SBX at 0.01

level of significance. Thus, Wilcoxon test results confirm that MOEA/D-

DE is significantly superior to both NSGA-II-SBX and MOEA/D-SBX.

The comparative analysis of the proposed MOEAs presented in this case

study shows that MOEA/D-DE is the best performing algorithm among the

proposed MOEAs on this problem. This highlights the efficacy of the pro-

posed hybridization strategy between GA and DE for solving the MOEE-
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Table 4.5 Results obtained through Wilcoxon signed rank test between MOEA/D-DE
and other two MOEAs with respect to quality of IGD metric on different test systems

MOEA/D-DE 10-unit system 60-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value R+ R- p-value

NSGA-II-SBX 209 1 3.81E-6 196 14 2.09E-4 210 0 1.91E-6
MOEA/D-SBX 210 0 1.91E-6 210 0 1.91E-6 210 0 1.91E-6

UC problem.

4.8.7 Case Study 5- Benchmarking of the Proposed

MOEAs

In this case study, the ability of the proposed MOEAs is investigated

by benchmarking it against the algorithms presented in the literature.

The competitor algorithms considered are NSGA-II [139] and two variants

of multi-objective memetic algorithms suggested in [139], termed NSGA-

II+WLS and NSGA-II+DLS, which were designed by incorporating two

local search techniques called wide local search (WLS) and deep local

search (DLS) within NSGA-II. The results of NSGA-II, NSGA-II+WLS

and NSGA-II+DLS are directly obtained from the authors’ of the original

publication [139]. Fig. 4.15a and 4.15b show the distribution of the fi-

nal non-dominated solutions found by NSGA-II-SBX, MOEA/D-SBX and

MOEA/D-DE (with the lowest IGD values) and the benchmark algorithms

NSGA-II, NSGA-II+WLS and NSGA-II+DLS (reported in [139]) on 10 and

100 unit system, respectively. It is noted that only 10 and 100 unit systems

are considered here for benchmarking because in the original publication

[139], the results were presented for the benchmark algorithms on only 10

and 100 unit system.

However, as MOEA/D-DE was found to perform the best among the

proposed MOEAs in the previous case study, the focus of rest of the Chap-
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Fig. 4.15 The distribution of the final non-dominated solutions found (with the lowest
IGD values) by NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE and the benchmark
algorithms NGSA-II, NSGA-II+WLS and NSGA-II+DLS.

ter is on comparing MOEA/D-DE with the benchmark algorithms i.e.,

NSGA-II, NSGA-II+WLS and NSGA-II+DLS. For clarity, the distribu-

tion of the final non-dominated solutions found by MOEA/D-DE (with

the lowest IGD values) and the benchmark algorithms NSGA-II, NSGA-

II+WLS and NSGA-II+DLS (reported in [139]) on 10 and 100 unit system

is presented in Fig. 4.16a and 4.16b, respectively.

Before analyzing the performance of the proposed algorithm MOEA/D-

DE with respect to the benchmark algorithms, the goals of an ideal MOEA

(as discussed in Chapter 2) are re-visited. The goals are to obtain - 1) good

convergence, 2) uniform distribution and 3) good spread in the objective

space [29].

Following are the observations from Fig. 4.16a and 4.16b with respect

to convergence, distribution and spread characteristics of the contender

MOEAs.

• Convergence - Fig. 4.16a shows that on the 10 unit test system,

MOEA/D-DE outperforms NSGA-II and performs comparable to

NSGA-II+WLS and NSGA-II+DLS in terms of convergence. On
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Fig. 4.16 The distribution of the final non-dominated solutions found (with the lowest
IGD values) by MOEA/D-DE and the benchmark algorithms NGSA-II, NSGA-II+WLS
and NSGA-II+DLS.

the 100 unit system, Fig. 4.16b shows that MOEA/D-DE signifi-

cantly outperforms all the three benchmark algorithms i.e., NSGA-II,

NSGA-II+WLS and NSGA-II+DLS in terms of convergence.

• Distribution - It is evident from Fig. 4.16a and 4.16b that MOEA/D-

DE provides a uniformly distributed set of trade-off solutions while

the solutions provided by NSGA-II, NSGA-II+WLS and NSGA-II+DLS

are distinctly scattered in the objective space and not well distributed.

• Spread - On both 10 and 100 unit systems, MOEA/D-DE fails to

capture the solution with the minimum system operation cost (i.e.,

objective F1) while on the 100 unit system, MOEA/D-DE also fails

to capture the solutions with as well as close to minimum emission

(i.e., objective F2).

The above characteristics of the contender MOEAs shows that the

proposed algorithm MOEA/D-DE outperforms the benchmark algorithms

with respect to convergence and distribution aspects. The only drawback

of MOEA/D-DE in contrast to the benchmark algorithms is the inability
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to obtain a better spread (or better convergence at the extremes) in the

objective space. Although, the solutions with minimum emission are prac-

tically least desirable to system operators as these solutions (because of

the conflicting nature of the objectives) correspond to maximum system

operation cost, yet the proposed algorithm MOEA/D-DE cannot be con-

sidered superior to the benchmark algorithms until it obtains the solution

with minimum system operation cost as well. Notwithstanding, the bench-

marking analysis presented in this case study clearly unveils the potential

of the proposed algorithm MOEA/D-DE to solve the MOEE-UC problem,

with some scope of enhancement to obtain a better spread as well in the

objective space.

4.8.8 Case Study 6- Proposed Non-uniform Weight

Vector Distribution Strategy and its Effective-

ness

It is clear from the previous case study that the proposed MOEA/D-DE

requires some modification to catch the tails of the Pareto-optimal front.

Further, it is intuitively identified that MOEA/D-DE requires a guided ex-

ploration towards the extremities in order to obtain a better spread (or bet-

ter convergence at the extremes) in the objective space. Different strategies

can be incorporated to enhance the performance of a MOEA. One of the

interesting strategy can be incorporation of local search within the frame-

work of MOEA. There are several studies in the literature in which local

search operators have been proposed to improve the efficacy of MOEAs

[47–49], etc. Such MOEAs are called multi-objective memetic algorithms.

However, there are many issues that may affect the performance of memetic

algorithms such as the choice of scalarization function in the local search
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operator and frequency of local search operator [142].

Another interesting strategy can be making some modification in the

framework of MOEA/D. Several modifications of the original MOEA/D

have been presented in the literature recently [87–97] (as discussed in

Chapter 2). However, we decided to present a new modification which

can exactly target the existing limitation observed in the performance of

MOEA/D-DE on the MOEE-UC problem.

In the original study of MOEA/D [85] and MOEA/D-DE [86], a uniform

weight-vector distribution (UWD) strategy is suggested and the weight vec-

tors employed are uniformly distributed in the closed interval [0, 1] to pro-

vide uniform weight to all the search directions. However, as the proposed

algorithm with the UWD strategy in spite of obtaining well converged

and uniformly distributed non-dominated solutions fails to outperform the

benchmark algorithms in terms of spread; a non-uniform weight-vector dis-

tribution (NUWD) strategy is proposed in this case study.

The target of the proposed NUWD strategy is to help MOEA/D-DE

achieve more spread and/or convergence in both directions while maintain-

ing the performance of MOEA/D-DE in terms of convergence and distribu-

tion throughout the trade-off front. Thus, in the proposed NUWD strategy,

search directions are more concentrated towards the extremes with slight

compromise in the middle i.e., more sub-problems are allocated towards

the extremes and relatively fewer sub-problems in the middle. A function

selected to generate non-uniformly distributed weight vectors is a scaled

and shifted cosine function, and is defined as:

λk′

i = g(λk
i ) = 0.5(1− cosπλk

i ) i = 1, 2, . . . , NP ; k = 1, 2. (4.15)

where λk′
i replaces λk

i as input in the algorithm MOEA/D-DE.
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Fig. 4.17a and 4.17b show the uniform weight-vector distribution em-

ployed in the original MOEA/D-DE [86] and the non-uniformly distributed

weight vectors generated using the proposed strategy employing the cosine

function mentioned above.
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Fig. 4.17 (a) Uniform weight vector distribution in the original MOEA/D-DE, (b) Pro-
posed non-uniform weight vector distribution.

Next, the NUWD strategy is incorporated within MOEA/D-DE and the

performance of the resulting algorithm, MOEA/D-DE/NUWD, is investi-

gated by comparing it against MOEA/D-DE (i.e., with the UWD strat-

egy). Fig. 4.18a, 4.18b and 4.18c show the comparison of MOEA/D-DE

and MOEA/D-DE/NUWD on the basis of IGD metric for 10, 60 and 100

unit system, respectively. It is observed from the figures that although on

10 unit system, MOEA/D-DE and MOEA/D-DE/NUWD perform com-

parably but on 60 and 100 unit system, MOEA/D-DE/NUWD performs

much better than MOEA/D-DE. The NUWD strategy helps in improving

the average and worst IGD value in the case of 60 unit system while im-

proving the best, mean, median and worst IGD value in the case of 100

unit system.

To further analyze how MOEA/D-DE and MOEA/D-DE/NUWD com-
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Fig. 4.18 IGD metric results for MOEA/D-DE with uniform and (proposed) non-uniform
weight vector distribution.

pare in the objective space, the distribution of the final non-dominated so-

lutions with the lowest IGD values found by MOEA/D-DE and MOEA/D-

DE/NUWD on 10, 60 and 100 unit system are plotted in Fig. 4.19a, 4.19b

and 4.19c, respectively.

It is visually evident from the figures that the proposed NUWD strat-

egy improves the performance of MOEA/D-DE/NUWD (in comparison to

MOEA/D-DE) on different test systems in the following ways:

• Attaining better spread in the extreme region of minimum system
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Fig. 4.19 The distribution of the final non-dominated solutions found (with the lowest
IGD values) by MOEA/D-DE with uniform and proposed non-uniform weight vector
distribution.

operation cost in the case of 10 unit system (see Fig. 4.19a)

• Attaining better spread in the extreme region of minimum emission

in the case of 60 unit system (see Fig. 4.19b)

• Attaining better convergence in the extreme regions of minimum sys-

tem operation cost and minimum emission in the case of 100 unit

system (see Fig. 4.19c).

However, there is a limitation of MOEA/D-DE/NUWD which is diffi-

cult to be observed if the IGD metric box plots and the scatter plots are
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viewed separately. It lies in the fact that the improvement of MOEA/D-

DE/NUWD in terms of spread and convergence at the extreme regions

come at the cost of slight compromise in convergence as compared to

MOEA/D-DE in the remaining part of the trade-off front. This can be

analyzed by viewing and comparing the corresponding IGD metric box

plots and scatter plots of MOEA/D-DE and MOEA/D-DE/NUWD on dif-

ferent test systems. For example, on the 60 unit system, the scatter plot in

Fig. 4.19b shows that MOEA/D-DE NUWD obtains much better spread

in the extreme region of minimum emission. However, the comparative

IGD metric plots in Fig. 4.18b shows that the best IGD value attained

by MOEA/D-DE/NUWD is almost comparable to that of MOEA/D-DE.

Similar observation is made in the case of 10 unit system as well. Inspite of

better spread as in case of MOEA/D-DE/NUWD, if the best IGD value re-

mains the same, it means that there is a slight compromise in the remaining

part of the trade-off front.

Thus, the comparative analysis of MOEA/D-DE and MOEA/D-DE

with NUWD strategy leads to the following inferences:

• The proposed non-uniform weight vector distribution strategy consid-

erably improves the overall performance of MOEA/D-DE as evident

from IGD metric comparison.

• Thus, non-uniform weight vector distribution strategy is a promising

method to bias the search direction of MOEA/D towards a particular

region of the trade-off front (in this case towards the extremes).

• MOEA/D-DE and MOEA/D-DE/NUWD seem to complement each

other in the sense that MOEA/D-DE/NUWD provides better spread

and convergence towards the extremes of the trade-off front while
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MOEA/D-DE provides better convergence in the remaining part of

the trade-off front.

• Hence, there is scope for further improvement in the performance of

the proposed MOEA/D-DE algorithm on the MOEE-UC problem.

4.8.9 Case Study 7- Proposed Enhanced MOEA/D-

DE and comparison with the benchmark algo-

rithms

Having observed that there is scope for further improvement in the perfor-

mance of MOEA/D-DE and that the nature of MOEA/D-DE and MOEA/D-

DE/NUWD is complementary to each other, it was intuitive that com-

bining the two MOEAs may lead to an enhanced performance. Thus, in

this case study, an ensemble optimizer is proposed to overcome the limita-

tions of MOEA/D-DE and MOEA/D-DE/NUWD. The proposed ensem-

ble optimizer is based on combination of MOEA/D-DE and MOEA/D-

DE/NUWD.

It is well known that with the advent of CPU with multiple cores, par-

allel computing has become quite affordable and convenient. Thus, in the

proposed ensemble optimizer, MOEA/D-DE and MOEA/D-DE/NUWD

are executed independently but simultaneously on two different cores (pro-

cessors) without any communication (i.e., no migration) until both the

algorithms reach the termination condition (i.e., maximum generation).

Upon the completion of single run of both the algorithms, the final popula-

tion of both are combined and non-dominated sorting [81] is implemented.

The non-dominated solutions of the combined population are then sorted

in the descending order with respect to the crowding distance [81] and the

119



Multi-objective Day-Ahead Thermal Generation Scheduling in
Deterministic Environment

top NP (i.e., popsize) solutions are retained as the final trade-off solutions.

The proposed ensemble optimizer is based on a parallel multi-start

model which is heterogeneous and independent i.e., non co-operative [143].

The parallel multi-start model is heterogeneous because it consists of two

different algorithms (i.e., MOEA/D-DE and MOEA/D-DE/NUWD) and

independent because there is no exchange of information during the exe-

cution of the component algorithms [143]. It is noted that the basic idea

of the proposed ensemble optimizer is to efficiently combine the comple-

mentary strengths of MOEA/D-DE and MOEA/D-DE/NUWD by running

them parallely and combining in the end to amplify the overall performance

[143].

The algorithm based on the aforementioned ensemble strategy is termed

Enhanced-MOEA/D-DE (or Enh-MOEA/D-DE) and is tested by running

on PC with Intel dual core 3.10 GHz processor. At first, Enh-MOEA/D-DE

is compared with its individual component algorithms i.e., MOEA/D-DE

and MOEA/D-DE/NUWD in terms of IGD metric on 10, 60 and 100 unit

test systems (see Fig. 4.20a, 4.20b and 4.20c). The observations from these

comparative IGD box plots are as follows:

• On 10 unit system, Enh-MOEA/D-DE performs better than both

MOEA/D-DE and MOEA/D-DE/NUWD.

• On 60 unit system, Enh-MOEA/D-DE performs much better than

MOEA/D-DE and comparable to MOEA/D-DE/NUWD.

• On 100 unit system, Enh-MOEA/D-DE significantly outpeforms both

MOEA/D-DE and MOEA/D-DE/NUWD.

To further investigate if Enh-MOEA/D-DE is statistically different from

MOEA/D-DE and MOEA/D-DE/NUWD, Wilcoxon signed rank test [122]
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Fig. 4.20 IGD metric results for MOEA/D-DE, MOEA/D-DE/NUWD and Enh-
MOEA/D-DE.

is applied with respect to the IGD metric values. Table 4.6 summarize the

results obtained through Wilcoxon signed rank test. The table summa-

rizes the statistics obtained from - a) pairwise comparison between Enh-

MOEA/D-DE and MOEA/D-DE, and b) pairwise comparison between

Enh-MOEA/D-DE and MOEA/D-DE/NUWD on the three test systems.

Following are the observations from the p-values in the Table 4.6:

• Enh-MOEA/D-DE shows significant improvement over MOEA/D-

DE on 10, 60 and 60 unit system at the level of significance 0.1, 0.01
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Table 4.6 Results obtained through Wilcoxon signed rank test between Enh-MOEA/D-
DE and MOEA/D-DE and between Enh-MOEA/D-DE and MOEA/D-DE/NUWD with
respect to quality of IGD metric on different test systems

Enh-MOEA/D-DE 10-unit system 60-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value R+ R- p-value

MOEA/D-DE 153 57 0.075 195 15 2.61E-4 210 0 1.91E-6

MOEA/D-DE/NUWD 189 1 7.63E-6 138 15 0.002 210 0 1.91E-6

and 0.01, respectively.

• Enh-MOEA/D-DE shows significant improvement over MOEA/D-

DE/NUWD on all the three test systems at the level of significance

0.01.

The IGD metric and the statistical comparison indicate that Enhanced-

MOEA/D-DE significantly outperforms its component algorithms i.e., MO-

EA/D-DE and MOEA/D-DE/NUWD. This shows that integration of MO-

EA/D-DE and MOEA/D-DE/NUWD efficiently combines their strengths

and remarkably enhances the performance of MOEA/D-DE. However, there

is a limitation in the comparison of Enh-MOEA/D-DE with MOEA/D-DE

and MOEA/D-DE/NUWD. The limitation is that since Enh-MOEA/D-DE

is an ensemble of MOEA/D-DE/NUWD and MOEA/D-DE, the compu-

tational resources (i.e., function evaluations) consumed by Enh-MOEA/D-

DE is twice that of MOEA/D-DE and MOEA/D-DE/NUWD. Thus, it

was expected that Enh-MOEA/D-DE will show improvement over its con-

stituent algorithms. However, the experiment was still conducted to see

how much improvement is actually obtained.

To further investigate the strength of Enh-MOEA/D-DE, another ex-

periment is conducted. In this experiment, an ensemble optimizer based

on combination of MOEA/D-DE with itself is executed i.e., MOEA/D-DE

is run on two processors and upon the completion of single run of both the
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algorithms, the final population of both are combined and non-dominated

sorting [81] is implemented. The non-dominated solutions of the combined

population are then sorted according to descending order with respect to

crowding distance [81] and the top NP (i.e., popsize) solutions are retained

as the final trade-off solutions. This algorithm is termed MOEA/D-DE en-

semble and it resembles Enh-MOEA/D-DE except that the latter is an

ensemble of MOEA/D-DE and MOEA/D-DE/NUWD while the former is

an ensemble of MOEA/D-DE and MOEA/D-DE.

In this experiment, MOEA/D-DE, MOEA/D-DE ensemble and Enh-

MOEA/D-DE are executed on 60 and 100 unit test systems. Fig. 4.21a

and 4.21b show the IGD metric comparison of the algorithms on 60 and 100

unit test systems, respectively. It is observed from the figures that although

on 60 unit system, the performance of Enh-MOEA/D-DE and MOEA/D-

DE ensemble is comparable but on 100 unit system, Enh-MOEA/D-DE

significantly outperforms MOEA/D-DE ensemble algorithm as well.

To further analyze if Enh-MOEA/D-DE is statistically superior to MO-

EA/D-DE and MOEA/D-DE ensemble, Wilcoxon signed rank test [122] is

applied with respect to the IGD metric values. Table 4.7 summarize the

results obtained through Wilcoxon signed rank test. The table summarizes

the statistics obtained from pairwise comparison between Enh-MOEA/D-

DE and MOEA/D-DE ensemble on the two test systems. The p-values in

the Table 4.7 indicates that Enh-MOEA/D-DE shows significant improve-

ment over MOEA/D-DE ensemble on the 100 unit system at the level of

significance 0.01.

Next, the efficacy of Enh-MOEA/D-DE is verified by comparing it

against the benchmark algorithms. Fig. 4.22a and 4.22b show the dis-

tribution of the final non-dominated solutions found by Enh-MOEA/D-

DE (with the lowest IGD values) and the benchmark algorithms NSGA-II,
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Fig. 4.21 IGD metric results for MOEA/D-DE, MOEA/D-DE ensemble and MOEA/D-
DE + MOEA/D-DE/NUWD ensemble i.e., Enh-MOEA/D-DE.

Table 4.7 Results obtained through Wilcoxon signed rank test between Enh-MOEA/D-
DE and MOEA/D-DE ensemble with respect to quality of IGD metric on different test
systems

Enh-MOEA/D-DE 60-unit system 100-unit system

v.s. R+ R- p-value R+ R- p-value

MOEA/D-DE ensemble 147 63 0.12 207 3 9.53E-6

NSGA-II+WLS and NSGA-II+DLS on the 10 and 100 unit system, respec-

tively.

Fig. 4.22a shows that on the 10 unit test system, with respect to con-

vergence, Enh-MOEA/D-DE outperforms NSGA-II while with respect to

distribution, Enh-MOEA/D-DE is significantly superior to all the three

benchmark algorithms. Further, on the 100 unit system, Fig. 4.22b shows

that Enh-MOEA/D-DE remarkably outperforms all the three benchmark

algorithms in terms of both convergence and uniform distribution. The

improvement of Enh-MOEA/D-DE in comparison to MOEA/D-DE (visu-

ally) reflects in the aspect that Enh-MOEA/D-DE is able to capture the

solution with minimum system operation cost as well (which MOEA/D-DE

failed to do). Although, in terms of spread, NSGA-II+DLS provides few
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Fig. 4.22 The distribution of the final non-dominated solutions found by Enh-MOEA/D-
DE and the benchmark algorithms NGSA-II, NSGA-II+WLS and NSGA-II+DLS.

solutions that Enh-MOEA/D-DE does not. However, the solutions with

minimum emission are practically least desirable to system operators as

these solutions because of the conflicting nature of the objectives corre-

spond to maximum system operation cost (as mentioned earlier as well).

Next, Enh-MOEA/D-DE is compared in terms of the minimum system

operation cost (i.e., single-objective comparison) with the algorithms pro-

posed in the literature for solving the MOEE-UC problem, namely, NSGA-

II [139], NSGA-II+WLS [139], and NSGA-II+DLS [139]; the hGADE vari-

ants proposed for the UC problem in Chapter 3, namely, hGADE/r1,

hGADE/cur1, and hGADE/JADE; and traditional optimization method

proposed in the literature for the UC problem, namely, LR [8]. The com-

parison of the contender algorithms in terms of minimum system operation

cost is summarized in Table 4.8. It is observed from Table 4.8 that on the

10 and 100 unit test systems, the proposed Enh-MOEA/D-DE significantly

outperforms NSGA-II [139] and NSGA-II+WLS [139] and performs compa-

rably to NSGA-II+DLS [139]. In comparison to the algorithms for solving

the single-objective UC problem (i.e., LR, hGADE/r1, hGADE/cur1, and
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hGADE/JADE), Table 4.8 shows that the proposed Enh-MOEA/D-DE

achieves near-optimal solution on all the test systems.

Table 4.8 Single-objective comparison of Enh-MOEA/D-DE with the benchmark algo-
rithms

Algorithm Best Cost ($)

10 unit 60 unit 100 unit

LR [8] 563,977 363,491 5,605,678
hGADE/r1 563,938 363,470 5,604,787

hGADE/cur1 563,959 362,908 5,605,075
hGADE/JADE 563,959 362,880 5,605,632
NSGA-II [139] 565,898 N.A. 5,625,616

NSGA-II+WLS [139] 564,114 N.A. 5,618,657
NSGA-II+DLS [139] 563,938 N.A. 5,605,918
Enh-MOEA/D-DE 563,959 362,971 5,605,425

This case study demonstrates that the proposed ensemble optimizer

Enh-MOEA/D-DE shows significant improvement over MOEA/D-DE and

significantly outperforms the benchmark algorithms in solving the MOEE-

UC problem. Further, in terms of single-objective comparison, the pro-

posed Enh-MOEA/D-DE achieves near-optimal solution on all the test

systems. Thus, this case study validates the efficacy of the proposed Enh-

MOEA/D-DE in solving the MOEE-UC problem.

4.9 Summary

In this Chapter, NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE were

efficiently customized and applied to solve the UC problem considering

system operation cost and emission as the multiple conflicting objectives.

The three proposed MOEAs were exhaustively compared among themselves

on a range of test systems and MOEA/D-DE was found to significantly

outperform both NSGA-II-SBX and MOEA/D-SBX in terms of IGD metric

comparison.

The benchmarking of MOEA/D-DE with the results presented in the

literature on the MOEE-UC problem revealed that MOEA/D-DE outper-
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forms the benchmark algorithms in terms of convergence and distribution

throughout the trade-off front except at the extremes. Thus, a non-uniform

weight vector distribution strategy (NUWD) was proposed to improve the

performance of MOEA/D-DE towards the extremes. The comparison of

MOEA/D-DE and MOEA/D-DE with NUWD strategy i.e., MOEA/D-

DE/NUWD revealed that although the latter has superior performance at

the extremes, it comes at the cost of slight compromise in convergence as

compared to the former in the remaining part of the trade-off front.

Since, MOEA/D-DE and MOEA/D-DE/NUWD were found to com-

plement each other, an ensemble optimizer, termed Enh-MOEA/D-DE,

based on combination of MOEA/D-DE and MOEA/D-DE/NUWD was

proposed. The proposed Enh-MOEA/D-DE was found to efficiently inte-

grate the strengths of MOEA/D-DE and MOEA/D-DE/NUWD and out-

perform the individual component algorithms. Also, Enh-MOEA/D-DE

was observed to be significantly superior to the benchmark algorithms in

terms of convergence as well as uniform distribution.

In this Chapter, the UC problem was solved in a deterministic environ-

ment considering economic and emission objectives. In the next Chapter,

reliability is added as an additional objective and the UC problem is solved

as a three-objective optimization problem considering the uncertainties oc-

curring due to load forecast error and generator outage.
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Chapter 5

Multi-objective Day-Ahead

Thermal Generation

Scheduling in Uncertain

Environment

5.1 Introduction

The bi-objective unit commitment problem formulation presented in Chap-

ter 4 for system operation cost and emission as the conflicting objectives

considers the environment to be deterministic. However, the generation

scheduling is subject to uncertainty due to deviations from load forecasts

and outage of components such as generator, etc. Thus, the system oper-

ators would prefer to obtain trade-off optimal solutions by incorporating

various uncertainties and considering reliability as an additional objective

along with system operation cost and emission for better decision mak-

ing. Thus, this Chapter extends the bi-objective unit commitment prob-

lem formulation presented in Chapter 4 to consider maximizing reliability
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as an additional objective along with minimizing system operation cost

and emission. In this Chapter, the uncertainties taken into account are the

uncertainties occurring due to thermal generator outage and load forecast

error. These uncertainties are captured using expected energy not served

(EENS) reliability index while EENS cost is used to reflect the reliability

objective. The UC problem considering system operation cost, emission

and reliability as the multiple objectives is a a nonlinear, mixed-integer,

combinatorial, high-dimensional, highly constrained, three-objective opti-

mization problem. The MOEAs developed for the bi-objective UC problem

in deterministic environment in Chapter 4 i.e., NSGA-II-SBX, MOEA/D-

SBX and MOEA/D-DE are efficiently extended in this Chapter to solve

the three-objective UC problem in uncertain environment.

The rest of the Chapter is organized as follows. Section 5.2 discusses

the related work on managing uncertainty in the unit commitment prob-

lem. Section 5.3 presents the proposed work and the motivation. The

three-objective UC problem formulation is presented in Section 5.4. The

procedure for evaluating the reliability objective is presented in Section 5.5.

The proposed algorithms are discussed in Section 5.6. The experimental

study is presented in Section 5.7 and the Chapter is summarized in Section

5.8.

5.2 Related Work

To address uncertainty in the unit commitment problem, units with total

capacity exceeding the forecasted load need to scheduled. In the literature,

there are two popular approaches for taking uncertainty into account in the

unit commitment problem: reserve requirements and stochastic program-

ming [25]. In both the approaches, reserve is committed either implicitly

or explicitly [25]. These approaches and the algorithms based on these
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approaches proposed in the literature are discussed as follows.

Managing uncertainty through reserve requirements

Spinning reserve allows system operator (SO) to respond to unforeseen

imbalances between load and generation caused by generation outages and

load forecasting errors. Traditionally, the SR requirement has been based

on deterministic criteria that the minimum amount of SR should be either

equal to the largest capacity of the online generator, or greater than or equal

to a fixed percentage (10%) of the load demand [1]. However, such deter-

ministic criteria do not properly take into account the generation outages

or the errors in load forecast i.e., the stochastic nature of the power sys-

tem. For example, if the SR is set equal to the largest capacity of the online

generator than as per this criterion no load shedding will take place if the

outage of a single unit occurs. However, the SR could be over-committed

if the largest online generator is highly reliable and/or if the customers do

not attach high value to continuous supply of energy. Moreover, this crite-

rion does not ensure that the entire load demand would be met in the case

two or more generators undergo outage simultaneously. Thus, although

deterministic criterion of setting spinning reserve are simple, the solutions

obtained can be sub-optimal and unreliable.

Probabilistic reserve assessment methods, on the other hand can pro-

vide a more realistic evaluation of the SR requirement in the UC problem.

Anstine et al. [144] were the first to propose probabilistic reserve assess-

ment criterion to account for the uncertainty related to outage of generating

units. They proposed a technique according to which the SR requirement

is adjusted at each scheduling period such that a uniform level of risk prob-

ability is maintained throughout the scheduling horizon. The disadvantage

of this approach is that the risk is an abstract quantity and it does not

clearly reflect how much SR should be scheduled. Moreover, maintaining
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a uniform risk level throughout the scheduling horizon may provide sub-

optimal solution as it may require commitment of expensive generating

units when such expensive reserve may not be economically justified.

Gooi et al. [145] were the first to optimize SR within the UC problem.

They proposed a LR based UC method according to which the genera-

tion can be scheduled to meet a pre-defined acceptable value of risk index.

However, as the risk is an abstract quantity and lacks intuitive interpreta-

tion, they used external cost/benefit analysis to suggest that the risk index

should be the value at which the sum of operating cost and expected cost

of energy not served is minimum.

Chattopadhyay and Baldick [146] proposed a probabilistic reserve as-

sessment method according to which the SR at each scheduling period

should be such that the loss of load probability (LOLP) is below a pre-

defined LOLP limit. Although, this method is easy to implement, the

drawback of this method is that selecting an appropriate LOLP limit is a

difficult task and setting LOLP limit arbitrarily may lead to sub-optimal

solution.

Bouffard and Galiana [147] proposed a probabilistic reserve assessment

method in which the UC problem formulation considers two reliability

metrics, expected energy not served (EENS) and loss of load probabil-

ity (LOLP). They suggested that the SR requirement should be such that

both EENS and LOLP at each scheduling period are less than a pre-defined

limit. The disadvantage of this approach is the same as the approach pro-

posed in [146] because selecting an appropriate EENS limit and LOLP limit

are difficult tasks and setting the limits arbitrarily may lead to sub-optimal

solution.

Simopoulos et al. [148] included the uncertainties due to unit outage

and load forecast error in the UC problem by implementing reliability con-
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straints on LOLP and EENS reliability indices and presented a SA based

algorithm to solve the reliability constrained UC problem. Wang and Singh

[149] included the uncertainty due to unit outage in the UC problem by re-

vising the spinning reserve constraint and presented a hybrid of binary PSO

and real PSO to solve the UC problem. However, this approach neglected

the uncertainty due to load forecast error.

A two-level evolutionary approach considering system operation cost

for forecasted demand as the first objective and the risk of not fulfilling

possible demand variations as the second objective is presented by Geor-

gopoulou and Giannakoglou [150]. However, this approach considered only

the uncertainty due to load forecast error and neglected the uncertainty

due to unit outages.

Ortega-Vazquez and Kirschen [151] suggested a method in which at

first the SR requirement for each scheduling period is determined in an

auxiliary computation prior to solving the UC problem. They argued that

the SR requirement for each scheduling period should be such that the

sum of operating costs and EENS cost is minimum for that period. Thus,

they employed external cost/benefit analysis to determine the optimum

level of reserve at each period and thereafter, the reserve constrained unit

commitment problem was solved.

Chandrasekaran and Simon [152] proposed a fuzzy assisted hybrid of

binary and real-coded cuckoo search algorithm (CSA) and solved the UC

problem considering system operation cost, emission and reliability. Ex-

pected energy not served is used to reflect the reliability objective. However,

the drawback of this approach is that only the best compromise solution

corresponding to the three-objective optimization problem is presented and

not the entire trade-off solutions.

Trivedi et al. [23] presented a NSGA-II based generation scheduling
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algorithm and different optimization models to include uncertainties due

to unit outage and load forecast error such as - a) bi-objective optimiza-

tion model considering system operation cost and EENS reliability index

as the multiple objectives with constraint on LOLP reliability index, b) bi-

objective optimization model considering system operation cost and emis-

sion as the multiple objectives with constraints on LOLP and EENS reli-

ability indices and c) three-objective optimization model considering sys-

tem operation cost, emission and EENS reliability index as the multiple

objectives with constraints on LOLP and EENS reliability indices. The

drawback of this approach is (the same as discussed above) that selecting

an appropriate LOLP and EENS limit are difficult tasks and setting the

limits arbitrarily may lead to sub-optimal solutions.

Managing uncertainty through stochastic optimization

One of the stochastic optimization methods which has been used in

the literature to incorporate the uncertainties and solve the UC problem is

stochastic programming [153]. Stochastic programming is a framework for

modeling optimization problems that involve uncertainty. This approach

uses a multi-stage decision framework which recognizes the ability to adapt

some decisions to the conditions in real time which generally differ from

those forecasted. The simplest such framework has two stages that mimic

the decision process and is generally the one which is adopted for solving

the UC problem.

Solving UC problem through stochastic programming requires scenario

analysis to model the uncertainties [154]. Scenarios are different possible

situations or realization that could happen because of the existing uncer-

tainties. Ideally a huge number of scenarios are required to completely

incorporate the uncertainties. However, solving the stochastic UC problem

with the huge set of scenarios is computationally too expensive. Thus, sce-
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nario reduction techniques are employed to limit the number of scenarios.

Then the goal of the stochastic programming approach for UC problem is to

minimize the total expected system operation cost over the representative

scenarios [154].

The applicability of stochastic programming approach to solve the UC

problem is demonstrated in [27, 155]. However, there are some challenges

in adopting the stochastic programming approach: a) construction of sce-

narios, b) reduction of scenarios, and c) measuring the quality of solution

with respect to the true optimum [154].

Another stochastic optimization method which has been implemented

to solve the UC problem in uncertain environment is robust optimization

[156]. In contrast to stochastic programming models which requires the in-

formation of underlying probability distribution of the uncertainty, robust

unit commitment (RUC) models require only moderate information about

the underlying uncertainty, such as the mean and the range of the uncer-

tain data [157]. Further, in contrast to stochastic programming models in

which the total expected cost is minimized, robust unit commitment models

minimize the worst-case cost regarding all possible outcomes of uncertain

parameters. The applicability of robust optimization based approach to

solve the UC problem is demonstrated in [157–160]. The drawback of the

robust unit commitment models is that the solutions obtained can be very

conservative.

5.3 Proposed Work and the Motivation

The literature survey shows that the unit commitment problem has been

rarely solved in an uncertain environment considering system operation

cost, emission and reliability as the multiple conflicting objectives. Al-
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though, the study presented in [152] considered the aforementioned objec-

tives, the limitation is that only the best compromise solution was presented

and not the entire trade-off solutions. Further, the study presented in [23]

also considered the three-objective optimization problem, the limitation

is that reliability (EENS and LOLP) constraints were also incorporated

in the optimization model. As discussed above, selecting an appropriate

EENS limit and LOLP limit are difficult tasks and setting the limits arbi-

trarily may lead to sub-optimal solutions. Moreover, the NSGA-II based

approach presented in [23] was not validated by comparing against other

efficient MOEAs.

In this Chapter, a three-objective optimization model considering max-

imizing reliability as an additional objective along with minimizing system

operation cost and emission is presented. The uncertainties occurring due

to both unit outage and load forecast error are taken into account. These

uncertainties are captured using expected energy not served (EENS) relia-

bility index while EENS cost is used to reflect the reliability objective. The

three-objective optimization problem of considering economic, emission and

reliability objectives in the UC problem formulation is called MOEER-UC

problem in this Chapter.

In Chapter 4, the MOEAs - NSGA-II-SBX, MOEA/D-SBX and MOEA-

/D-DE were efficiently customized and proposed for solving the MOEE-

UC problem. Among the proposed MOEAs, MOEA/D-DE was found to

be the best algorithm for the bi-objective UC problem in deterministic

environment. Thus, in this Chapter, MOEA/D-DE algorithm is applied

to the MOEER-UC problem. However, for comprehensive comparison,

MOEA/D-SBX and NSGA-II-SBX are also selected and applied to the

MOEER-UC problem.

Moreover, in this Chapter as well, a new non-uniform weight vector
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distribution strategy is proposed to enhance the performance of MOEA/D-

DE on the MOEER-UC problem. Furthermore, MOEA/D-DE with ϵ-

dominance based external archive is presented to obtain a well-distributed

set of trade-off solutions.

5.4 Problem Formulation

In this Section, the MOEER-UC problem formulation is presented.

5.4.1 Objective Functions

1. System Operation Cost: The first objective function is to minimize the

system operation cost (SOC), where SOC includes the fuel cost and the

transition cost of all the generating units over the entire scheduling horizon

[139]. The fuel cost fi
t of unit i is expressed as the quadratic function of

its power output Pi
t during hour t.

fi
t = aiP

t
i

2 + biPi
t + ci (5.1)

where ai, bi, ci are the fuel cost coefficients of unit i.

The transition cost is the sum of the start-up costs and the shut-down

costs. In this Chapter, the shut-down costs have not been taken into con-

sideration in accordance with the literature [139] while the start-up cost is

modeled as follows:

SU t
i =


HSCi, if MDTi ≤ T t

OF F,i ≤MDTi + Tcold,i

CSCi, if T t
OF F,i > MDTi + Tcold,i

(5.2)

where SU t
i is the start-up cost of unit i at hour t, HSCi and CSCi repre-

sents the hot start cost and cold start cost of unit i, respectively, MDTi
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represents the minimum down time of unit i, T t
OF F,i is the continuous off

time of unit i up to hour t and Tcold,i is the cold start cost of unit i.

Subsequently, the first objective function (F1) is given by minimization

of the following cost function [139].

F1 =
Tmax∑
t=1

N∑
i=1

(
f t

i .ut
i + SU t

i (1− ut−1
i )ut

i

)
(5.3)

where ut
i represents the unit commitment status of unit i at hour t (1 = ON ,

0 = OFF ), Tmax is the number of hours in the scheduling horizon and N

is the number of thermal generating units in the system.

2. Emission: The second objective function (F2) is the reduction of

emission of air-pollutants into the atmosphere [139].

F2 =
Tmax∑
t=1

N∑
i=1

(
Et

i .u
t
i

)
(5.4)

where Ei
t (lb) represents the quantity of pollutants produced by unit i at

time t and is defined as

Ei
t = a1iP

t
i

2 + b1iP
t
i + c1i (5.5)

and a1i, b1i, c1i are the emission coefficients of unit i.

3. Expected Energy Not Served (EENS) Cost

The third objective function (F3) is to maximize the reliability of the

system. The function used to represent the reliability of the system is

the expected energy not served (EENS) cost [151] which is defined as the

product of the expected energy not served (EENS) and a value of lost load

(VOLL) determined using survey [161]. It is noted that VOLL represents

the average value (in $/MWh) that consumers place on the accidental loss

of 1 MWh of electricity [151]. Since, predicting the generation outages and
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deviation of load demand from the forecasted demand during the actual

implementation of a particular generation schedule is impossible, only an

EENS cost (also called outage cost) can be computed. The EENS cost is

given by

F3 = V OLL× EENStot (5.6)

where EENStot is total expected unserved energy for the entire scheduling

horizon.

It is noted that the lower the EENS cost, the higher is the reliability of

the system and vice-versa.

5.4.2 Constraints

1. System power balance: the total power generation at hour t must be

equal to the load demand Lt for that hour.

N∑
i=1

(P t
i .ut

i) = Lt, t = 1, 2, ....Tmax (5.7)

2. Unit minimum up/down time: if a unit i is turned on/off, it must

remain on/off for at least its minimum up/down time (MUT i/MDT i)

duration.
T t

ON,i ≥MUT i

T t
OF F,i ≥MDT i

(5.8)

where T t
ON,i and T t

OF F,i represent the continuous on and off time of

unit i up to hour t, respectively.

3. Unit generation limits: for stable operation, the power output of each

generator is restricted within its limits:

Pmin,i ≤ P t
i ≤ Pmax,i (5.9)
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where Pmin,i and Pmax,i represent the rated lower and upper limit

generation of unit i, respectively.

4. Maximum system operation cost:

This constraint is incorporated as:

F1 ≤ SOCmax (5.10)

where F1 represents the objective function system operation cost and

SOCmax is the user-defined upper limit for solution’s SOC.

5. Maximum Emission:

This constraint is incorporated as:

F2 ≤ Emismax (5.11)

where F2 represents the objective function emission and Emismax is

the user-defined upper limit for solution’s emission.

6. Maximum EENS cost:

This constraint is incorporated as:

F3 ≤ EENSCmax (5.12)

where F3 represents the objective function EENS cost and EENSCmax

is the user-defined upper limit for solution’s EENS cost.

In this Chapter, the MOEER-UC problem has been formulated by

extending the MOEE-UC problem formulation considered in Chapter 4.

Thus, the modifications made in the problem formulation considered in
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this Chapter as compared to the problem formulation considered in Chap-

ter 4 are clearly highlighted below.

• Minimizing EENS cost (i.e., maximizing reliability) is added as an

additional objective function to the existing objective functions - min-

imizing system operation cost and emission.

• The constraint related to system spinning reserve requirements is

removed.

• The additional constraints related to maximum system operation

cost, maximum emission and maximum EENS cost as given by (5.10),

(5.11) and (5.12) are incorporated.

The reason behind removal of the spinning reserve (SR) requirement

constraint is that in the presented approach, SR is implicitly scheduled ac-

cording to the system operation cost and the level of reliability (i.e., EENS

cost). In other words, the system operator does not need to determine

a-priori the SR to be scheduled at each hour. The presented approach

provides system operator with several trade-off optimal solutions and the

system operator can select a particular solution according to the system

operation cost and EENS cost.

The reasons behind incorporation of the constraints related to maxi-

mum system operation cost, maximum emission and maximum EENS cost

as given by (5.10), (5.11) and (5.12), respectively are discussed in the case

study 2 in Section 5.7.

5.5 Procedure for Calculation of EENS cost

(i.e., Reliability objective)

In this Section, the procedure for calculation of the EENS cost in pres-

ence of uncertainty due to thermal unit outage and load forecast error is
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presented. The EENS cost calculation requires evaluating EENStot (i.e.,

total expected unserved energy for the entire scheduling horizon) as EENS

cost is obtained by just multiplying EENStot with VOLL (see (5.6)). The

method for incorporating the uncertainties and evaluating EENStot is as

follows:

5.5.1 Incorporating Uncertainty due to Thermal Unit

Outage

Each thermal unit is considered as a two-state model, according to which

a unit is either available or unavailable for generation. According to this

model, the unavailability of the unit i during a short time interval LT

(known as the system lead time) is given by

Ui(LT ) = 1− eλiLT (5.13)

where λi is the failure rate of unit i [162]. The probability Ui(LT ) given

by (5.13) is known as the outage replacement rate (ORR) of the unit, i.e.,

the probability of losing capacity and not being able to replace it.

To calculate the EENStot index for every chromosome, the conventional

“loss of load” method is used, except that ORR is used instead of FOR

(Forced Outage Rate) [162]. This method is based on the creation of the

capacity outage probability table (COPT) according to the given load curve

[163]. A COPT is formed for every hour using the ORR of all the committed

units. The creation of COPT is based on the unit addition algorithm [163].

A COPT may be visualized as a table with n rows (j = 1, 2, . . . n) and

3 columns. The first column represents n different generation levels that

may be outaged. The second and third column represents the probability

PRj and the total capacity CRj that remains in service corresponding to
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each outage level, respectively. The reliability index EENSt (i.e., expected

energy not served for each hour t) is calculated as follows:

EENSt =
n∑

j=1
PRj.LOSSj. (Lt − CRj), t ∈ [1, Tmax] (5.14)

where LOSSj is given by

LOSSj =


1, if CRj < Lt

0, otherwise
(5.15)

The EENS index of the entire scheduling horizon, EENStot is given by

EENStot =
Tmax∑
t=1

EENSt (5.16)

5.5.2 Incorporating Uncertainty due to Thermal Unit

Outage and Load Forecast Error

The procedure presented in the above Section represents the method to

evaluate EENStot if the uncertainty due to only thermal unit outage is

considered and the uncertainty due to load forecast error is neglected. How-

ever, load forecast is generally associated with uncertainty and hence should

be considered in the UC problem. Thus, the procedure below represents

the method to evaluate EENStot in presence of both the uncertainties.

It is an accepted practice to assume that the forecast load consists of

actual load plus a normally distributed error [162, 163]. The standard

deviation (σt
load) of the load forecast error is equal to a percentage SL of

the expected demand and depends upon the accuracy of the forecasting

tool.

σt
load = SL× Lt (5.17)
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The distribution representing the forecast demand can be divided into

a discrete number of class intervals with the distribution mean being the

net forecast demand and standard deviation given by (5.17). The load

representing the class interval mid-point is assigned the designated proba-

bility for that class interval. It is recommended in [163] that a seven-step

approximation (0, ±1σ, ±2σ, ±3σ) to the normal distribution (known as

seven-step model) is adequate to represent the uncertainty in demand fore-

cast. Thus, with the assumption of demand forecast uncertainty to be

normally distributed and represented by the seven-step model, the EENS

index calculation for each hour t is given by

EENSt =
7∑

m=1
(EENSt(m)PL(m)), t ∈ [1, Tmax] (5.18)

where PL(m) and EENSt(m) indicate the probability and EENS value for

hour t associated with the discrete class interval m in the seven-step model,

respectively. It is noted that EENSt(m) is calculated using (5.14) and

(5.15) by simply replacing Lt in the two equations by Lt(m) where Lt(m)

represents the load for hour t associated with the discrete class interval

m in the seven-step model. Once EENSt for every hour t is evaluated

using (5.18), the EENS index of the entire scheduling horizon, EENStot

(as discussed above as well) is given by

EENStot =
Tmax∑
t=1

EENSt (5.19)

5.5.3 Techniques Applied to Reduce the Computa-

tional Time in Evaluation of EENS cost

The evaluation of EENSt index (i.e., expected energy not served at every

hour) of a chromosome is a very computationally intensive task [162]. This
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makes a MOEA computationally inefficient as the EENSt has to be calcu-

lated for every chromosome and at every hour. Considering the population

size to be 300 and the terminating generation number to be 50,000 as in

the case of a 60 unit system, requires EENSt index to be calculated 300

x 24 x 50,000 i.e., 360,000,000 times which is an enormous figure. Thus,

the following techniques are applied to reduce the computational time in

evaluation of the EENSt index:

• The computational time in creating COPT is reduced by omitting

the outage levels for which the cumulative probabilities are less than

a predefined limit, e.g., 10−7 [162].

• Additionally, to avoid the need for repeated creation of COPT, a

memory archive is created to store the commitment patterns for each

time period, and their corresponding EENSt index values. In subse-

quent generations, whenever a commitment pattern is repeated, the

corresponding EENSt value is copied and assigned to the repeated

pattern. This technique significantly reduces the computational time.

5.6 Proposed Algorithms

In this Chapter, the MOEAs proposed for the MOEER-UC problem are

NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE. These MOEAs are de-

veloped for the MOEER-UC problem by extending the MOEAs proposed

in Chapter 4 (for the MOEE-UC problem in deterministic environment).

Thus, the similarities as well as the differences in the MOEAs proposed in

this Chapter (for the MOEER-UC problem) and the MOEAs proposed in

the Chapter 4 (for the MOEE-UC problem) are clearly highlighted below:

• Similarities - The basic framework of the MOEAs i.e., chromosome
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representation, crossover operators, mutation operators, constraint

handling, etc. remains the same.

• Differences - Only modifications for the algorithm MOEA/D-DE are

suggested to improve the performance of MOEA/D-DE on the three-

objective UC problem. However, these modifications are discussed

only later in the case studies presented in Section 5.7.

Thus, in a way, the MOEAs proposed in Chapter 4 for the MOEE-

UC problem are applied (and modified as well in the case of MOEA/D-

DE) in this Chapter to a different problem which is MOEER-UC problem.

However, the MOEER-UC problem is more complex and challenging than

the MOEE-UC problem because of the presence of an additional objective.

Since, the basic framework of the MOEAs remains the same as presented

in Chapter 4; to avoid repetition, these are not presented again. Further,

to avoid repetition, only the pseudo-code of MOEA/D-DE is presented as

follows.

5.6.1 Steps of the Proposed Algorithm MOEA/D-DE

Input

• NP : the number of subproblems considered in MOEA/D-DE i.e., the
population size;

• λ1, λ2, ..., λNP : a set of NP weight vectors;

• T : the neighborhood size;

• δ: the probability that parent solutions are selected from the neigh-
borhood;

• nr: the maximal number of solutions that can be replaced by each
child solution.

• z: the initial reference point (z1, z2, z3) = (1030, 1030, 1030). The ref-
erence point initially has very large dimensions and is updated during
the evolution of population.
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At each generation, MOEA/D-DE maintains the following:

• A population of NP solutions x1, x2, . . . , xNP , where xi is the current
solution to the ith subproblem.

• F (x1), F (x2), . . . , F (xNP ), where F (xi) = {F1(xi), F2(xi), F3(xi)}∀i =
1, 2, . . . , NP .

• CV (xi) = total constraint violation of xi ∀i = 1, 2, . . . , NP .

• z = (z1, z2, z3), where z1, z2 and z3 are the best values found so far
for objective F1, F2 and F3, respectively.

The steps executed are as follows.

• Step 1: Initialization

– Step 1.1 Compute the Euclidean distances between any two
weight vectors and then calculate T closest weight vector to
each λi. For all i = 1, 2, . . . , NP , set B(i) = {i1, i2, . . . , iT},
where λj, ∀j ∈ B(i) are T closest vectors to λi.

– Step 1.2 Generate initial population randomly.
– Step 1.3 For all i = 1, 2, . . . , NP , repair xi for load demand

equality constraint violation.
– Step 1.4 Calculate CV (xi) and F (xi) i.e., {F1(xi), F2(xi), F3(xi)}.
– Step 1.5 Update z = (z1, z2, z3) according to the condition:

zj = min
1≤i≤NP

Fj(xi) if xi is feasible.

• Step 2: Update
For i = 1, 2, . . . , NP , do

– Step 2.1 Selection of Mating/Update Range: Uniformly
generate random number rand from [0,1]. Then,

P =
B(i), if rand < δ

1, 2, . . . , NP , otherwise

– Step 2.2 Reproduction:
1. Randomly select three indices r1, r2 and r3 from P which

are different from i.
2. Decode xk in UCMk and RPMk, where k = i, r1, r2, r3.
3. Generate a solution UCMchild using GA recombination op-

erators on UCMk, where k = i, r1.
4. Generate a solution RPMchild using DE recombination op-

erators on RPMk, where k = r1, r2, r3.
5. Encode UCMchild and RPMchild in xchild.

146



5.7 Experimental Study

– Step 2.3 Repair: Repair xchild for boundary constraint viola-
tion and load demand equality constraint violation.

– Step 2.4: Calculate CV (xchild) and F (xchild) i.e., {F1(xchild),
F2(xchild), F3(xchild)}.

– Step 2.5 Update of z: For j = 1, 2 do
1. If xchild is feasible and zj > Fj(xchild) then set zj = Fj(xchild)

– Step 2.6 Replacement/Update of Solutions: Set c = 0 and
then do

1. Set flag = 0.
2. If c = nr or P is empty, i = i + 1 and go to Step 2.1, else

randomly pick an index j from P .
3. Determine if xchild replaces xj or not according to the re-

placement rules.
4. If xchild replaces xj then flag = 1 and c = c + 1.
5. If flag = 1, remove j from P and go to Step 2.6.1.

• Step 3: Stopping Criteria
If termination criterion is satisfied, then stop else go to Step 2.

Output

• Approximation to Pareto-optimal solutions: {x1, x2, . . . , xNP}.

• Approximation to Pareto-optimal front: {F (x1), F (x2), ..., F (xNP )}.

5.7 Experimental Study

In this Section, extensive case studies are undertaken to investigate the per-

formance of the proposed algorithms - NSGA-II-SBX, MOEA/D-SBX and

MOEA/D-DE on the MOEER-UC problem. The experimental evaluation

is systematically divided into 5 case studies.

1. In the first case study, MOEA/D-DE is implemented considering sys-

tem operation cost and EENS cost as the multiple objectives;

2. In the second case study, all the three proposed algorithms are imple-

mented considering system operation cost, emission and EENS cost

as the multiple objectives in the constrained objective space;
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3. Thereafter, in the third case study, the proposed algorithms are im-

plemented considering system operation cost, emission and EENS

cost as the multiple objectives in the unconstrained objective space;

4. In the fourth case study, a novel non-uniform weight vector distribu-

tion strategy is proposed to improve the performance of MOEA/D-

DE on the three-objective optimization problem; and

5. Finally, in the fifth case study, MOEA/D-DE with external archive

is presented to enhance the overall performance of MOEA/D-DE on

the MOEER-UC problem.

The proposed MOEAs are developed on C++ platform. The MOEAs

are tested on the MOEER-UC problem for power systems with 10, 20 and

60 units in a 24 hour scheduling horizon [139]. The lead time of the system

is fixed as 4 hours [162] while the standard deviation (σt
load) of the load

forecast error is assumed to be 5% of the hourly load demand as suggested

in [164]. Further, VOLL is assumed to be 5000 $/MWh [151]. For each

experiment, 15 independent simulation trials are conducted to verify the

potential of the proposed algorithms. The inverted generational distance

(IGD) is used as the performance metric to investigate the performance

of the proposed algorithms in this Chapter as well (like in Chapter 4).

The common parameters of the three MOEAs like population size and

generation number are summarized for different test systems in Table 5.1.

The rest of the algorithmic parameters corresponding to NGSA-II-SBX,

MOEA/D-SBX and MOEA/D-DE were kept the same as shown in Tables

4.2, 4.3 and 4.4, respectively in Chapter 4.

Table 5.1 Common parameter settings of MOEAs corresponding to different test systems

Test system 10-unit system 20-unit system 60-unit system

Population size 300 300 300
Generation number 10000 20000 50000
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5.7.1 Case Study 1 - Study on considering system

operation cost and EENS cost as the multiple

objectives in unconstrained objective space

In this case study, MOEA/D-DE is implemented considering system opera-

tion cost and EENS cost as the multiple objectives. The emission objective

and the constraint related to maximum emission i.e., (5.11) is neglected

here as the primary aim of this case study is to demonstrate the relation-

ship between the two objectives - system operation cost and EENS cost.

Moreover, the objective space is unconstrained i.e., the constraints related

to SOCmax and EENSCmax given by (5.10) and (5.12), respectively are

not considered. Fig. 5.1a and 5.1b show the trade-off front obtained using

MOEA/D-DE corresponding to 10 and 20 unit system, respectively. These

figures clearly show that system operation cost and EENS cost objectives

are conflicting in nature.

It is also interesting to note that a knee region (sharp bend in the

curve) exists in each of the trade-off front obtained in Fig. 5.1a and 5.1b.

This region is important in multi-objective optimization problems because

beyond this region the front is steep which implies that there is a sharp

decrease in one objective with a slight increase in the other objective [165].

Such characteristic of the knee solutions make them unique to decision

makers for practical applications. A knee region can be visually identified

as a convex bulge in the Pareto-optimal front [165]. According to [166], knee

on the P-O front corresponds to farthest solution from the line formed by

joining the extreme solutions on the Pareto-optimal front. The neighboring

solutions to the knee on the P-O front are called the knee solutions.

The reason for which system operation cost and EENS cost objectives

are conflicting is the fact that system operation cost increases when more
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Fig. 5.1 Non-dominated solutions obtained by MOEA/D-DE with system operation cost
and EENS cost as the multiple objectives.

number of units are committed while the same leads to increase in reliability

of the system i.e., decrease in EENS cost. However, this case study exper-

imentally proves that system operation cost and EENS cost are conflicting

objectives. The system operator may adopt the bi-objective optimization

model considered in this case study if he/she is not concerned with the

emission and is satisfied with the trade-off solutions obtained with respect

to system operation cost and EENS cost. However, as the main aim of

this Chapter is to present trade-off solutions to the system operator with

respect to all the three objectives; the remaining case studies consider the

three-objective optimization model discussed in the problem formulation.

5.7.2 Case Study 2 - Study on considering system op-

eration cost, emission and EENS cost as multi-

ple objectives in constrained objective space

In this case study, the proposed MOEAs are implemented considering sys-

tem operation cost, emission and EENS cost as the multiple objectives in

the constrained objective space. The reasons behind incorporation of the
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constraints related to maximum system operation cost, maximum emission

and maximum EENS cost as given by (5.10), (5.11) and (5.12), respectively

and solving the problem in the constrained objective space are as follows:

• The three-objective dimensional space for the problem under consid-

eration is extremely large and thus solving the problem in the uncon-

strained objective space may require a very large population size and

increase the computational cost manifold.

• Moreover, the system operators would not like to see a solution which

is very poor in any of the three objectives. Thus, solving the problem

in the constrained objective space can provide only good solutions to

the system operators for easier decision making.

• Further, it was observed in case study 1 that a knee region exists

in the trade-off front corresponding to system operation cost and

EENS cost. In such optimization problems, the knee region is the

most desired as the solutions outside this region do not offer a good

trade-off to the decision maker.

Overall, in the constrained objective space, the algorithms can provide

better approximation of the Pareto-optimal surface and the system oper-

ator can obtain selected solutions for better decision making. However,

care must be taken to set the values corresponding to SOCmax, Emismax

and EENSCmax. This is because if the problem is solved in highly con-

strained objective space then either the algorithm may not be able to find

any feasible solution or may perform poorly. In this study, the values cor-

responding to SOCmax and EENSCmax were determined by first solving

the bi-objective optimization problem in the unconstrained objective space

as discussed in case study 1. The SOCmax and EENSCmax values were
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chosen such that the knee region and certain region beyond the knee re-

gion is preserved. Moreover, the Emismax value was decided based on the

results obtained in the previous Chapter in which system operation cost

and emission were considered as the multiple objectives in deterministic

environment. This led to informed decision making regarding the setting

of SOCmax, Emismax and EENSCmax values and these values set corre-

sponding to different test systems are summarized in Table 5.2.

Table 5.2 Settings corresponding to constraints on objective functions for different test
systems

Test system 10-unit system 20-unit system 60-unit system

SOCmax ($) 600,000 1,150,000 3,400,000
Emismax ($) 45,000 80,000 230,000

EENSCmax ($) 300,000 500,000 1,200,000

Fig. 5.2a, 5.2b and 5.2c illustrate the IGD metric comparison between

NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE on 10, 20 and 60 unit

system, respectively. It is observed from these figures that the best, mean

and median IGD of MOEA/D-DE is significantly lower than that of NSGA-

II-SBX and MOEA/D-SBX on all the test systems and thus MOEA/D-DE

is significantly superior to NSGA-II-SBX and MOEA/D-SBX in terms of

IGD metric.

Fig. 5.3a, 5.3b and 5.3c show the distribution of the final non-dominated

solutions found by MOEA/D-DE, MOEA/D-SBX and NSGA-II-SBX with

the lowest IGD values on 10 unit system, respectively. Similarly, Fig. 5.4a,

5.4b and 5.4c show the distribution of the final non-dominated solutions

found by MOEA/D-DE, MOEA/D-SBX and NSGA-II-SBX with the low-

est IGD values on 20 unit system, respectively. The superior performance

of MOEA/D-DE, particularly with respect to NSGA-II-SBX, is clearly vis-

ible in these figures as MOEA/D-DE is able to obtain much uniformly

distributed solutions as compared to NSGA-II-SBX.
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Fig. 5.2 IGD metric results with respect to performance of proposed MOEAs.

Since, MOEA/D-DE is found to significantly outperform NSGA-II-SBX

and MOEA/D-SBX in solving the MOEER-UC problem, the rest of the

Chapter is devoted to further investigating the performance of MOEA/D-

DE.

5.7.3 Case Study 3 - Study on system operation cost,

emission and EENS cost as the multiple objec-

tives in unconstrained objective space

Although, MOEA/D-DE outperforms MOEA/D-SBX and NSGA-II-SBX

on the three-objective optimization problem in the constrained objective
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(a) MOEA/D-DE (b) MOEA/D-SBX

(c) NSGA-II-SBX

Fig. 5.3 3-D scatter plot of proposed MOEAs with best IGD metric on 10 unit system.

space (as observed in case study 2), there seems to be a limitation in the

performance of MOEA/D-DE as many solutions are clustered at the bound-

ary of the constrained objective space (see Fig. 5.3a and 5.4a). This is also

observed in the results obtained using MOEA/D-SBX (see Fig. 5.3b and

5.4b). Thus, an investigation is undertaken in this case study to analyze if

MOEA/D-DE is able to perform satisfactorily in the constrained objective

space.

In this case study, MOEA/D-DE is implemented considering system

operation cost, emission and EENS cost as the multiple objectives in the

unconstrained objective space. This means that the constraints related to
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(a) MOEA/D-DE (b) MOEA/D-SBX

(c) NSGA-II-SBX

Fig. 5.4 3-D scatter plot of proposed MOEAs with best IGD metric on 20 unit system.

SOCmax, Emismax and EENSCmax as mentioned in the problem formula-

tion are relaxed in this case study. The rest of the algorithmic parameters

and constraints remain the same. MOEA/D-DE is executed on 10 and 20

unit systems in the unconstrained objective space and the results obtained

are compared with the results obtained in the constrained objective space.

Fig. 5.5a and 5.5b show the side view and the front view, respectively, of

the distribution of the final non-dominated solutions found by MOEA/D-

DE in the constrained and the unconstrained objective space on the 10

unit system. Similarly, Fig. 5.6a and 5.6b show the side view and the front

view, respectively, of the distribution of the final non-dominated solutions
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found by MOEA/D-DE in the constrained and the unconstrained objective

space on the 20 unit system.

(a) Side view (b) Front view

Fig. 5.5 Non-dominated solutions obtained by MOEA/D-DE in constrained objective
space (represented by red balls) and unconstrained objective space (blue cubes) on the
10 unit system.

(a) Side view (b) Front view

Fig. 5.6 Non-dominated solutions obtained by MOEA/D-DE in constrained objective
space (represented by red balls) and unconstrained objective space (blue cubes) on the
20 unit system.

It is observed from these figures that in both the cases i.e., on 10 and

20 unit system, the solutions found by MOEA/D-DE in the constrained

objective space belong to a region which is a subset of the region in which

MOEA/D-DE in the unconstrained objective space found the solutions.
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Thus, the comparison highlights the following:

• MOEA/D-DE is able to perform satisfactorily in the constrained ob-

jective space as compared to the unconstrained objective space.

• The solutions explored by MOEA/D-DE in the unconstrained objec-

tive space illustrate the vastness of the objective space. Although,

MOEA/D-DE is able to perform well in the unconstrained objective

space yet constraining the objective space is better as it presents

selected solutions to the system operator and can enhance decision

making.

• The reason for which MOEA/D-DE is not able to maintain a uniform

distribution of solutions on the trade-off surface may be because there

is no explicit diversity maintenance operator in the framework of

original MOEA/D [85].

• A method needs to be devised to improve the performance of MOEA/D-

DE and obtain a better distribution of solutions in the middle of the

trade-off surface.

5.7.4 Case Study 4 - Study on MOEA/D-DE with

non-uniform weight vector distribution

Although, the case study 2 shows that MOEA/D-DE outperforms MOEA/D-

SBX and NSGA-II-SBX on the three-objective optimization problem and

the case study 3 shows that MOEA/D-DE is able to perform satisfactorily

in the constrained objective space as compared to the unconstrained objec-

tive space yet, the clustering of solutions obtained by MOEA/D-DE along

the boundary of the constrained objective space is a limitation as it reduces

the number of solutions obtained in the middle of the trade-off surface.
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As discussed in Chapter 4, different strategies like local search, etc.

can be incorporated to enhance the performance of an MOEA. However,

as in Chapter 4, non-uniform weight-vector distribution (NUWD) strategy

was found to improve the performance of MOEA/D-DE; in this case study

as well, a new NUWD strategy is incorporated within the framework of

MOEA/D-DE for the three-objective optimization problem.

The target of the proposed NUWD strategy is to help MOEA/D-DE

achieve a better distribution in the middle of the trade-off surface while

maintaining the performance of MOEA/D-DE in terms of convergence

throughout the trade-off surface. Thus, in the proposed NUWD strategy,

search directions are concentrated more towards the middle with slight

compromise along the edges i.e., more sub-problems are allocated towards

the middle and relatively fewer sub-problems along the edges. The fol-

lowing function is selected to generate non-uniformly distributed weight

vectors:

λk′

i = g(λk
i ) = (acos(2λk

i − 1)/π) i = 1, 2, . . . , NP ; k = 1, 2. (5.20)

where λk′
i replaces λk

i as input in the algorithm MOEA/D-DE.

Fig. 5.7a and 5.7b show the uniform weight-vector distribution em-

ployed for a three-objective optimization problem in the original MOEA/D-

DE [86] and the non-uniformly distributed weight vectors generated using

the proposed strategy employing the function mentioned above, respec-

tively. It is observed in Fig. 5.7b that as desired, the NUWD strategy

has weight vectors concentrated more towards the middle than towards the

edges.

Next, the NUWD strategy is incorporated within MOEA/D-DE and the

performance of the resulting algorithm, MOEA/D-DE/NUWD, is investi-
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(a) (b)

Fig. 5.7 (a) Uniform weight vector distribution in the original MOEA/D-DE for 3-
objective optimization problem, (b) Proposed non-uniform weight vector distribution
for 3-objective optimization problem.

gated by comparing it against MOEA/D-DE (i.e., with the UWD strat-

egy). Fig. 5.8a, 5.8b and 5.8c show the comparison of MOEA/D-DE and

MOEA/D-DE/NUWD on the basis of IGD metric for 10, 20 and 60 unit

system, respectively. It is observed from the figures that on 10 and 20 unit

system, MOEA/D-DE/NUWD performs slightly better than MOEA/D-

DE while on 60 unit system, MOEA/D-DE performs slightly better than

MOEA/D-DE/NUWD. Overall, the performance of MOEA/D-DE/NUWD

seems comparable to that of MOEA/D-DE.

To further analyze how MOEA/D-DE and MOEA/D-DE/NUWD com-

pare in the objective space, the distribution of the final non-dominated so-

lutions with the lowest IGD values found by MOEA/D-DE and MOEA/D-

DE/NUWD on 10, 20 and 60 unit system are plotted in Fig. 5.9a, 5.9b and

5.9c, respectively. It is visually evident from the figures that the proposed

NUWD strategy enhances the performance of MOEA/D-DE/NUWD (in

comparison to MOEA/D-DE) on different test systems by providing much

better distribution of solutions towards the middle of the trade-off surface.
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Fig. 5.8 IGD metric results for MOEA/D-DE with uniform and (proposed) non-uniform
weight vector distribution.

The comparative analysis of MOEA/D-DE and MOEA/D-DE/NUWD

leads to the following inferences:

• The performance of MOEA/D-DE with uniform weight vector distri-

bution strategy and the proposed non-uniform weight vector distri-

bution strategy is comparable in terms of IGD metric comparison.

• However, MOEA/D-DE/NUWD provides much better distribution

of solutions as compared to MOEA/D-DE.

• Even with MOEA/D-DE/NUWD, there is clustering of solutions to-

wards the edges of the trade-off surface.
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(a) 10 unit system (b) 20 unit system

(c) 60 unit system

Fig. 5.9 The distribution of the final non-dominated solutions found (with the lowest
IGD values) by MOEA/D-DE with uniform (represented by red balls) and (proposed)
non-uniform weight vector distribution (blue cubes).

• Thus, there is scope for further improvement in the performance of

the proposed MOEA/D-DE on the MOEER-UC problem.

5.7.5 Case Study 5 - Study on MOEA/D-DE with

external archive

The case study 4 showed that although MOEA/D-DE with non-uniform

weight-vector distribution can provide much better distribution of solutions

than MOEA/D-DE yet there is scope for further improvement in achieving

even better distribution. One of the strategy to obtain better distribution
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of solutions can be to use a larger population size. However, that may

increase the computational cost manifold. Another strategy can be to

incorporate an external archive into the algorithmic framework. Thus, in

this case study, MOEA/D-DE with an external archive is investigated to

in order to achieve a better distribution of solutions.

Several MOEAs have been proposed in the literature which maintain

an external archive. The purpose of an archive can be twofold -

• It can be used to maintain an approximation of the set of non-

dominated solutions visited by the MOEA during multi-objective op-

timization.

• Along with maintaining an approximation of the set of non-dominated

solutions, it can be used to guide the search process of the MOEA as

well.

Some examples of archive based MOEAs are PAES [79], SPEA [80],

SPEA2 [82], MOPSO [167], ϵ-MOEA [168]. One of the strategies of con-

structing archive can be to store all the non-dominated solutions found by

the MOEA during the search process. However, this strategy is rarely used

as it results in an unbounded archive and the decision maker would never

like to have such a large set of solutions for decision making. Further, the

size of the true non-dominated set may be exponentially large or even in-

finite and the complexity of the archive updating operator increases with

the archive size. Thus, most of the archiving strategies presented in the

literature use some method to restrict the archive size. Usually, all the non-

dominated solutions are stored in the archive until it reaches it pre-defined

limit. Thereafter, the archive size is limited using both Pareto-dominance

and some diversity preservation technique. For example, to limit the size
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of archive, a clustering mechanism is used in SPEA [80] and SPEA-II [82]

while an adaptive grid based mechanism is used in MOPSO [167].

The archiving strategy proposed in the original MOEA/D study [85]

is an unbounded archive. Since, an unbounded archive is generally not

desired (as discussed above), in this case study, MOEA/D-DE with an

external archive is implemented where the external archive is updated using

the ϵ-dominance principle as in ϵ-MOEA [168]. However, it is noted that

unlike ϵ-MOEA, the ϵ-dominance based archive is used with MOEA/D-

DE in this case study only to store an approximation of the set of non-

dominated solutions and not to guide the algorithm in its search process.

The advantage of an ϵ-dominance based archive is that it allows the decision

maker to control the resolution of the Pareto set approximation by choosing

an appropriate ϵ value corresponding to each objective.

MOEA/D-DE with ϵ-dominance based external archive was implemented

on 10 and 20 unit systems considering different ϵ values. Fig. 5.10a, 5.10b

and 5.10c illustrate the distribution of the solutions obtained in the external

archive by MOEA/D-DE on the 10 unit system with ϵ set as 100, 250 and

400, respectively, corresponding to each objective. Similarly, Fig. 5.11a,

5.11b and 5.11c illustrate the distribution of the solutions obtained in the

external archive by MOEA/D-DE on the 20 unit system with ϵ set as 100,

250 and 400, respectively, corresponding to each objective. It is observed

in these figures that MOEA/D-DE with external archive is able to pro-

vide significantly better distribution of solutions throughout the trade-off

surface as compared to that obtained by MOEA/D-DE and MOEA/D-

DE/NUWD. Further, it is observed that the resolution of the Pareto set

approximation is efficiently controlled by ϵ value as for both the systems,

ϵ at 250 returns a less crowded set of solutions than ϵ at 100 and ϵ at 400

returns a less crowded set of solutions than ϵ at both 100 and 250.
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(a) Epsilon = 100 (b) Epsilon = 250

(c) Epsilon = 400

Fig. 5.10 The distribution of the final solutions obtained in the external archive by
MOEA/D-DE with different settings of epsilon on the 10 unit system.

Thus, MOEA/D-DE with ϵ-dominance based external archive is estab-

lished as the best algorithm among the proposed MOEAs in this Chapter

for solving the MOEER-UC problem.

5.8 Summary

In this Chapter, NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE were

efficiently extended and applied to solve the UC problem considering system

operation cost, emission and reliability as the multiple conflicting objectives

in uncertain environment. The three proposed MOEAs were exhaustively

compared among themselves on a range of test systems and MOEA/D-DE
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(a) Epsilon = 100 (b) Epsilon = 250

(c) Epsilon = 400

Fig. 5.11 The distribution of the final solutions obtained in the external archive by
MOEA/D-DE with different settings of epsilon on the 20 unit system.

was found to significantly outperform both NSGA-II-SBX and MOEA/D-

SBX in terms of IGD metric comparison.

However, a limitation was observed in the performance of MOEA/D-DE

as many solutions were found to be clustered at the boundary of the ob-

jective space. Therefore, a non-uniform weight vector distribution strategy

was proposed for MOEA/D-DE in the three-objective space. The com-

parative analysis of MOEA/D-DE and MOEA/D-DE with the proposed

NUWD strategy i.e., MOEA/D-DE/NUWD revealed that the latter pro-

vides much better distribution of solutions than MOEA/D-DE in the mid-

dle of the trade-off surface. However, it was observed that with MOEA/D-
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DE/NUWD as well, more than desired solutions were concentrated towards

the edges of the trade-off surface.

Therefore, MOEA/D-DE with an external archive was implemented so

that a better approximation set of the non-dominated solutions explored

by the algorithm during the optimization can be obtained. The external

archive was updated using ϵ-dominance principle. The observation of the

archived solutions in the objective space illustrated that with MOEA/D-

DE based on external archive, the system operator can efficiently obtain

uniformly distributed solutions in the trade-off surface.

In this Chapter, UC problem was solved in an uncertain environment

considering economic, emission and reliability objectives. In the next Chap-

ter, the wind-thermal UC problem is solved as a three-objective optimiza-

tion problem.
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Chapter 6

Multi-objective Day-Ahead

Thermal Generation

Scheduling in Presence of

Significant Wind Penetration

6.1 Introduction

In this Chapter, the three-objective unit commitment problem formulation

considered in Chapter 5 is extended to include significant wind penetration.

The multiple objectives considered remain the same as in Chapter 5 i.e.,

minimizing system operation cost, minimizing emission and maximizing

reliability. The uncertainties occurring due to thermal unit outage, load

forecast error and wind forecast error are captured using expected energy

not served (EENS) reliability index while EENS cost is used to reflect

the reliability objective. The UC problem in presence of significant wind

penetration considering system operation cost, emission and reliability as

the multiple objectives is a a nonlinear, mixed-integer, combinatorial, high-
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dimensional, highly constrained, three-objective optimization problem. In

Chapter 5, among the proposed MOEAs i.e., NSGA-II-SBX, MOEA/D-

SBX and MOEA/D-DE, for the three-objective UC problem in uncertain

environment, MOEA/D-DE was found to be the best performing MOEA.

Thus, in this Chapter, only MOEA/D-DE and its variants proposed in

Chapter 5 are applied to the three-objective wind-thermal UC problem.

The rest of the Chapter is organized as follows. Section 6.2 discusses

the related work on wind-thermal unit commitment problem. The proposed

work and the motivation is presented in Section 6.3. The three-objective

UC problem formulation in presence of significant wind penetration is pre-

sented in Section 6.4. The procedure for evaluating the reliability objective

is presented in Section 6.5. The proposed algorithm is discussed in Section

6.6. The experimental study is presented in Section 6.7 and the Chapter

is summarized in Section 6.8.

6.2 Related Work

As discussed in chapter 5, spinning reserve allows system operator (SO)

to respond to unforeseen imbalances between load and generation caused

by generation outages and load forecasting errors. Traditionally, the SR

requirement has been based on deterministic criteria that the minimum

amount of SR should be either a function of the largest capacity of the

online generator, or greater than or equal to a fixed percentage (10%) of

the load demand [1]. However, such deterministic criteria do not properly

take into account the generation outages or the errors in load forecast i.e.,

the stochastic nature of the power system. Moreover, with the increased

uncertainty due to unpredictable nature of wind, the deterministic criterion

of deploying spinning reserve becomes all the more unreliable.
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In [26, 169], special constraints relating to Up Spinning Reserve (USR)

and Down Spinning Reserve (DSR) are adopted in the wind-thermal unit

commitment problem. These additional reserve constraints are based on

the notion that a large penetration of wind generation requires an increase

in the SR requirement to minimize the risk of not meeting the demand

and thus minimize the expected energy not served (EENS) cost. However,

this approach is not economically justified as the reserve provision comes

at a cost. Increasing SR requirement to accommodate higher wind power

penetration will require a larger number of thermal generators to be syn-

chronized. This can increase the system operation cost (SOC) to such a

limit that it might be economically better to avoid the increase in SR re-

quirement. Thus, there is a trade-off between the cost of providing reserve

and the benefit it brings by reduction in the EENS cost.

In [170], an evolutionary iteration PSO (EIPSO) algorithm is presented

to determine the optimal spinning reserve for a wind-thermal power system.

The spinning reserve is distinguished into two types - up spinning reserve

(USR) and down spinning reserve (DSR) and it is demonstrated that the

optimal spinning reserve (both USR and DSR) of a wind-thermal power

system is achieved when the total cost i.e., sum of total operation cost and

EENS cost (also called outage cost) is minimum.

In [28], an approach is proposed in which the SR is scheduled to meet a

pre-specified system (wind-thermal) reliability level. The disadvantage in

this approach is that it is not possible to determine a system’s optimal reli-

ability level in advance. Thus, fixing the same reliability level for different

systems would result in sub-optimal solutions.

In [171], the SR requirement is considered to be α times the standard

deviation σnet of the net forecast demand (load forecast – wind forecast)

error. The drawback in this approach is that it procures larger amounts of
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SR as the installed wind capacity (and wind power production) increases

and does not take into account the cost and benefit of SR provision.

In [151], an approach based on minimizing the total cost (i.e., sum of

SOC and EENS cost) is proposed to determine the optimal amount of

SR for the traditional power system. In [172], the approach (based on

minimizing the total cost) presented in [151] is extended to estimate the

optimal SR requirement in systems with significant wind power penetra-

tion. However, the drawback in the approach presented in [151, 172] is

that the SR optimization is not carried out as an inter-temporal optimiza-

tion problem. Instead, in the first step, the inter-temporal couplings are

neglected and the auxiliary computation determines the hourly SR using

cost/benefit analysis. Thereafter, in the second step, the inter-temporal

couplings are considered and the problem is solved as a reserve-constrained

unit commitment problem. However, in this kind of approach, the risk

cannot be traded among different hours and the obtained solution may be

sub-optimal.

In [173], a stochastic optimization methodology based on scenario tree

analysis to capture the uncertainty due to load forecast, wind forecast and

unit outages is presented. The objective function to be minimized is con-

sidered as the expected cost of the system over the optimization period

covering all of the scenarios. Stochastic and deterministic modes of opti-

mization are compared and it is demonstrated that when the uncertainty of

wind is taken into account as in stochastic optimization, it results in better

performing and less costly schedules than the deterministic optimization.

Further, it is demonstrated in [173] that more frequent scheduling of the

system by adopting updated load and wind forecasts can lead to better cap-

turing of the uncertainties and thus result in better performing schedules

and more optimal results.
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In [174], an improved gravitational search algorithm was proposed for

wind-thermal unit commitment. The scenario analysis i.e., scenario gen-

eration and reduction method was adopted to incorporate the uncertainty

due to load and wind forecasts on system operation. The objective func-

tion to be minimized is considered as the expected cost of the system over

the optimization period covering all of the scenarios. In [175], a combina-

tion of quantum inspired binary gravitational search algorithm and chance

constrained programming is proposed to solve the thermal UC problem

with wind power integration. The objective function to be minimized is

considered as the system operation cost in the study [175].

The impact of integrating large levels of wind generation on emissions

reduction is studied in [176]. It is demonstrated in [176] that superior

emission reduction benefits are observed when wind generation forecasts

are included in the unit commitment and power dispatch decisions (the

forecasted approach) rather than in the case if the wind generation is ac-

commodated simply when its available (the fuel saver approach). The latter

approach is called the fuel saver approach because it considers that the only

benefit wind generation can provide is fuel-saving one. Thus, in such oper-

ational strategy whenever wind generation is available, some thermal units

are deloaded to accommodate the wind generation. However, it assumes

that a thermal unit can only deloaded to its minimum capacity and cannot

be switched off. Therefore, the fuel saver approach is a simplistic strategy

whereas in the forecasted approach, fewer thermal units are dispatched and

thus the units run at higher efficiency (resulting in higher emission reduc-

tion). Further, it is also demonstrated in the study [176] that considerable

CO2 reductions can be obtained with increasing levels of installed wind

capacity.

In [177], a methodology is presented to estimate the average displaced

171



Multi-objective Day-Ahead Thermal Generation Scheduling in
Presence of Significant Wind Penetration

or reduced emission by integration of wind generation. It is demonstrated

in [177] that the correlation factor between the wind generation time se-

ries and the power system’s marginal emissions time series determines the

average displaced emission by wind generation. If the correlation factor

between the two time series is high, then the average displaced emission by

wind generation is high and vice-versa.

A multi-objective evolutionary algorithm based on decomposition is

proposed for economic emission dispatch of wind-thermal power system in

[178]. The stochastic nature of wind power is modeled by Weibull probabil-

ity distribution function and a chance-constrained programming method is

adopted to simultaneously optimize cost and emission objectives of wind-

thermal power system. The drawback in this approach is that the problem

considered is economic emission dispatch while the unit commitment task

is neglected.

Recently, a hybrid algorithm based on combination of PSO and sequen-

tial quadratic programming is proposed in [179] to solve the combined unit

commitment and emission (CUCE) problem. In this study [179], the objec-

tive function to be minimized is considered as the sum of system operation

cost and emission cost.

A detailed review on impacts of large-scale wind penetration on design-

ing and operation of electric power systems is presented in [180]. Further,

a detailed survey of models and algorithms for reliability based power sys-

tems planning and operation with wind power integration is presented in

[181].

6.3 Proposed Work and the Motivation

The literature survey shows that the problem of wind-thermal unit commit-

ment has been rarely addressed as a three-objective optimization problem
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considering simultaneous optimization of system operation cost, emission

and reliability.

Thus, in this Chapter, the three-objective optimization model of maxi-

mizing reliability as an additional objective along with minimizing system

operation cost and emission as presented in Chapter 5 for the MOEER-

UC problem is adopted. The uncertainties occurring due to thermal unit

outage, load forecast error and wind forecast error are taken into account.

These uncertainties are captured using expected energy not served (EENS)

reliability index and EENS cost is used to reflect the reliability objective.

The three-objective wind-thermal UC problem is referred as MOWT-UC

problem in this Chapter.

In Chapter 5, the MOEAs - NSGA-II-SBX, MOEA/D-SBX and MOEA-

/D-DE were proposed for the MOEER-UC problem. Through comprehen-

sive comparison, MOEA/D-DE was established as the best MOEA among

the three MOEAs for solving the MOEER-UC problem. Since, the charac-

teristics of the two problems i.e., MOEER-UC problem (solved in Chapter

5) and MOWT-UC problem addressed in this Chapter are the same because

of the three-objective optimization model considered in both the problems;

in this Chapter only MOEA/D-DE is applied to the MOWT-UC problem.

Along with MOEA/D-DE, the same variants of the algorithm as pro-

posed in Chapter 5 i.e., MOEA/D-DE with non-uniform weight vector

distribution and MOEA/D-DE with ϵ-dominance based external archive

are applied to the MOWT-UC problem in this Chapter.

Thus, the motivation behind the work conducted in this Chapter is

to demonstrate that the three-objective optimization model considered in

the Chapter 5 can be conveniently extended to include significant wind

generation. Further, the intention is to illustrate that the MOEA/D-DE

proposed in Chapter 5 can efficiently obtain the trade-off optimal solutions
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for the MOWT-UC problem as well.

6.4 Problem Formulation

In this Section, the MOWT-UC problem formulation is presented.

6.4.1 Objective Function

1. System Operation Cost: The first objective function is to minimize the

system operation cost (SOC), where SOC includes the fuel cost and the

transition cost of all the thermal generating units over the entire schedul-

ing horizon [139]. The fuel cost fi
t of thermal unit i is expressed as the

quadratic function of its power output Pi
t during hour t.

fi
t = aiP

t
i

2 + biPi
t + ci (6.1)

where ai, bi, ci are the fuel cost coefficients of unit i.

The transition cost is the sum of the start-up costs and the shut-down

costs. In this Chapter, the shut-down costs have not been taken into con-

sideration in accordance with the literature [139] while the start-up cost is

modelled as follows:

SU t
i =


HSCi, if MDTi ≤ T t

OF F,i ≤MDTi + Tcold,i

CSCi, if T t
OF F,i > MDTi + Tcold,i

(6.2)

where SU t
i is the start-up cost of unit i at hour t, HSCi and CSCi repre-

sents the hot start cost and cold start cost of unit i, respectively, MDTi

represents the minimum down time of unit i, T t
OF F,i is the continuous off

time of unit i up to hour t and Tcold,i is the cold start cost of unit i.

Subsequently, the first objective function (F1) is given by minimization
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of the following cost function [139].

F1 =
Tmax∑
t=1

N∑
i=1

(
f t

i .ut
i + SU t

i (1− ut−1
i )ut

i

)
(6.3)

where ut
i represents the unit commitment status of unit i at hour t (1 = ON ,

0 = OFF ), Tmax is the number of hours in the scheduling horizon and N

is the number of thermal generating units in the system.

2. Emission: The second objective function (F2) is the reduction of

emission of air-pollutants into the atmosphere [139].

F2 =
Tmax∑
t=1

N∑
i=1

(
Et

i .u
t
i

)
(6.4)

where Ei
t (lb) represents the quantity of pollutants produced by unit i at

time t and is defined as

Ei
t = a1iP

t
i

2 + b1iP
t
i + c1i (6.5)

and a1i, b1i, c1i are the emission coefficients of unit i.

3. Expected Energy Not Served (EENS) Cost

The third objective function (F3) is to maximize the reliability of the

system. The function used to represent the reliability of the system is

the expected energy not served (EENS) cost [151] which is defined as the

product of the expected energy not served (EENS) and a value of lost load

(VOLL) determined using survey [161]. It is noted that VOLL represents

the average value (in $/MWh) that consumers place on the accidental loss

of 1 MWh of electricity [151]. Since, predicting the generation outages and

deviation of load demand from the forecasted demand during the actual

implementation of a particular generation schedule is impossible, only an

EENS cost (also called outage cost) can be computed. The EENS cost is
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given by

F3 = V OLL× EENStot (6.6)

where EENStot is total expected unserved energy for the entire scheduling

horizon.

It is noted that the lower the EENS cost, the higher is the reliability of

the system and vice-versa.

6.4.2 Constraints

1. System power balance: the total power generation by the wind-

thermal system at hour t must be equal to the load demand Lt for

that hour.
N∑

i=1
P t

i + P t
w = Lt, t = 1, 2, ....Tmax (6.7)

where P t
i is the power produced by thermal unit i at hour t, P t

w is the

total wind power generation at hour t and Lt is the forecast demand

at hour t.

2. Unit minimum up/down time: if a thermal unit i is turned on/off, it

must remain on/off for at least its minimum up/down time duration.

T t
ON,i ≥MUT i

T t
OF F,i ≥MDT i

(6.8)

where T t
ON,i and T t

OF F,i represent the continuous on and off time of

unit i up to hour t, respectively.

3. Unit generation limits: for stable operation, the power output of each

thermal generator is restricted within its limits:

Pmin,i ≤ P t
i ≤ Pmax,i (6.9)
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where Pmin,i and Pmax,i represent the rated lower and upper limit

generation of unit i, respectively.
4. Maximum system operation cost:

This constraint is incorporated as:

F1 ≤ SOCmax (6.10)

where F1 represents the objective function system operation cost and

SOCmax is the user-defined upper limit for solution’s SOC.
5. Maximum Emission:

This constraint is incorporated as:

F2 ≤ Emismax (6.11)

where F2 represents the objective function emission and Emismax is

the user-defined upper limit for solution’s emission.
6. Maximum EENS cost:

This constraint is incorporated as:

F3 ≤ EENSCmax (6.12)

where F3 represents the objective function EENS cost and EENSCmax

is the user-defined upper limit for solution’s EENS cost.
7. Power output limits on wind generation system: The power output

function with respect to the wind speed is given by [182]

P t
w =



0 vt
w ≤ vci or vci ≤ vt

w

Pwn

(
vt

w−vci

vr−vci

)
, vci ≤ vt

w ≤ vr

Pwn vr ≤ vt
w ≤ vco

(6.13)
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where vt
w is the forecast wind speed at hour t; vci, vco and vr are the

cut-in, cut-out and rated wind turbine speed respectively; and Pwn is

the equivalent rated power output for wind power generation.

In this Chapter, the MOWT-UC problem has been formulated by ex-

tending the MOEER-UC problem formulation considered in Chapter 5.

The modifications made in the problem formulation considered in this

Chapter as compared to the problem formulation considered in Chapter

5 are clearly highlighted below.

• The constraint related to system power balance is modified as the sys-

tem now comprises of thermal generators as well as wind generators.

Thus, at each hour the power output of the combined wind-thermal

system should be equal to the load demand.

• The constraint related to power output limits on wind generation

system is added as the power output of the wind generation system

depends upon the hourly wind speed.

Thus, it is noted that the MOWT-UC problem is an extension of the

MOEER-UC problem which was comprehensively solved in Chapter 5. Fur-

ther, it is noted that the wind farm investment cost is not taken into account

in this study.

6.5 Procedure for Calculation of EENS cost

(i.e., Reliability objective)

The system reliability evaluation i.e., EENS cost evaluation procedure is

modified in this Chapter (as compared to Chapter 5) as the uncertainty
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occurring due to error in wind forecast is also incorporated. The proce-

dure for calculation of the EENS reliability index in presence of various

uncertainties is described as follows.

6.5.1 Incorporating Uncertainty due to Thermal Unit

Outage

Each thermal unit is considered as a two-state model, according to which

a unit is either available or unavailable for generation. According to this

model, the unavailability of the unit i during a short time interval LT

(known as the system lead time) is given by

Ui(LT ) = 1− eλiLT (6.14)

where λi is the failure rate of unit i [162]. The probability Ui(LT ) given

by (6.14) is known as the outage replacement rate (ORR) of the unit, i.e.,

the probability of losing capacity and not being able to replace it.

To calculate the EENS index for every chromosome, the conventional

“loss of load” method is used, except that ORR is used instead of FOR

(Forced Outage Rate) [162]. This method is based on the creation of the

capacity outage probability table (COPT) according to the given load curve

[163]. A COPT is formed for every hour using the ORR of all the committed

units. The creation of COPT is based on the unit addition algorithm [163].

A COPT may be visualized as a table with n rows (j = 1, 2, . . . n) and

3 columns. The first column represents n different generation levels that

may be outaged. The second and third column represents the probability

PRj and the total capacity CRj that remains in service corresponding to

each outage level respectively. The reliability index EENSt (i.e., expected
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energy not served for each hour t) is calculated as follows:

EENSt =
n∑

j=1
PRj.LOSSj. (Lt − CRj), t ∈ [1, Tmax] (6.15)

where LOSSj is given by

LOSSj =


1, if CRj < Lt

0, otherwise
(6.16)

The EENS index of the entire scheduling horizon, EENStot is given by

EENStot =
Tmax∑
t=1

EENSt (6.17)

6.5.2 Incorporating Uncertainty due to Thermal Unit

Outage, Load Forecast Error and Wind Fore-

cast Error

The procedure presented in the above Section represents the method to

evaluate EENStot if the uncertainty due to only thermal unit outage is

considered and the uncertainty due to load forecast and wind forecast er-

ror is neglected. However, load forecast and wind forecast are generally

associated with uncertainty and hence should be considered in the wind-

thermal UC problem. It is an accepted practice to assume that the forecast

load consists of actual load plus a normally distributed error [163]. The

standard deviation (σt
load) of the load forecast error is equal to a percent-

age SL of the expected demand and depends upon the accuracy of the

forecasting tool.

σt
load = SL× Lt (6.18)
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The forecast of wind power production can also be assumed to be equal

to the actual value plus a normally distributed error. The standard devia-

tion (σt
wind) of the wind forecast error is approximated by [172]

σt
wind = 1

5P t
w + 1

50Pwn (6.19)

The net forecast demand is the difference between the forecast load and

the forecast wind power. It is assumed that the errors in load forecast and

wind power forecast are uncorrelated Gaussian stochastic variables [28, 172]

and the standard deviation (σt
d) of the error on net forecast demand is

σt
d =

√
(σt

load)2 + (σt
wind)2 (6.20)

The distribution representing the net forecast demand can be divided

into a discrete number of class intervals with the distribution mean being

the net forecast demand and standard deviation given by (6.20). The

load representing the class interval mid-point is assigned the designated

probability for that class interval. It is recommended in [172] that a seven-

step approximation (0, ±1σ, ±2σ, ±3σ) to the normal distribution (known

as seven-step model) is adequate to represent the uncertainty in net demand

forecast. Thus, with the assumption of net demand forecast uncertainty

to be normally distributed and represented by the seven-step model, the

EENS index calculation for each hour t is given by

EENSt =
7∑

m=1
(EENSt(m)PL(m)), t ∈ [1, Tmax] (6.21)

where PL(m) and EENSt(m) indicate the probability and EENS value

for hour t associated with the discrete class interval m in the seven-step

model, respectively.
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It is noted that EENSt(m) is calculated using (6.15) and (6.16) by

simply replacing Lt in the two equations by Lt(m) where Lt(m) represents

the load for hour t associated with the discrete class interval m in the

seven-step model.

Once EENSt for every hour t is evaluated using (6.21), the EENS index

of the entire scheduling horizon, EENStot (as discussed above as well) is

given by

EENStot =
Tmax∑
t=1

EENSt (6.22)

6.6 Proposed Algorithm

In the Section 6.4, it is highlighted that there are only two modifications

which need to be made in the problem formulation of MOEER-UC (con-

sidered in Chapter 5) to formulate the MOWT-UC problem. Thus, the

MOWT-UC problem is an extension of the MOEER-UC problem which

was comprehensively solved in Chapter 5. Hence, as the characteristics of

the two problems (i.e., MOEER-UC problem and MOWT-UC problem)

are the same, MOEA/D-DE and its variants proposed in Chapter 5 i.e.,

MOEA/D-DE with non-uniform weight vector distribution and MOEA/D-

DE with ϵ-dominance based external archive are applied to the MOWT-UC

problem.

Since, the basic framework of MOEA/D-DE i.e., chromosome represen-

tation, crossover operators, mutation operators, constraint handling, etc.

remains the same as presented in Chapter 5; to avoid repetition, these are

not presented again. Thus, only the pseudo-code of MOEA/D-DE for the

MOWT-UC problem is presented as follows.
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6.6 Proposed Algorithm

6.6.1 Steps of the Proposed Algorithm MOEA/D-DE

Input

• NP : the number of subproblems considered in MOEA/D-DE i.e., the
population size;

• λ1, λ2, ..., λNP : a set of NP weight vectors;

• T : the neighborhood size;

• δ: the probability that parent solutions are selected from the neigh-
borhood;

• nr: the maximal number of solutions that can be replaced by each
child solution.

• z: the initial reference point (z1, z2, z3) = (1030, 1030, 1030). The ref-
erence point initially has very large dimensions and is updated during
the evolution of population.

At each generation, MOEA/D-DE maintains the following:

• A population of NP solutions x1, x2, . . . , xNP , where xi is the current
solution to the ith subproblem.

• F (x1), F (x2), . . . , F (xNP ), where F (xi) = {F1(xi), F2(xi), F3(xi)}∀i =
1, 2, . . . , NP .

• CV (xi) = total constraint violation of xi ∀i = 1, 2, . . . , NP .

• z = (z1, z2, z3), where z1, z2 and z3 are the best values found so far
for objective F1, F2 and F3, respectively.

The steps executed are as follows.

• Step 1: Calculation of net forecast load on thermal genera-
tors
Compute the net forecast load on thermal generators for each hour by
taking difference between the forecast load demand and the forecast
wind power corresponding to each hour.

• Step 2: Initialization

– Step 2.1 Compute the Euclidean distances between any two
weight vectors and then calculate T closest weight vector to
each λi. For all i = 1, 2, . . . , NP , set B(i) = {i1, i2, . . . , iT},
where λj, ∀j ∈ B(i) are T closest vectors to λi.

– Step 2.2 Generate initial population randomly.
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– Step 2.3 For all i = 1, 2, . . . , NP , repair xi for load demand
equality constraint violation.

– Step 2.4 Calculate CV (xi) and F (xi) i.e., {F1(xi), F2(xi), F3(xi)}.
– Step 2.5 Update z = (z1, z2, z3) according to the condition:

zj = min
1≤i≤NP

Fj(xi) if xi is feasible.

• Step 3: Update
For i = 1, 2, . . . , NP , do

– Step 3.1 Selection of Mating/Update Range: Uniformly
generate random number rand from [0,1]. Then,

P =
B(i), if rand < δ

1, 2, . . . , NP , otherwise

– Step 3.2 Reproduction:
1. Randomly select three mutually exclusive indices r1, r2 and

r3 from P which are different from i.
2. Decode xk in UCMk and RPMk, where k = i, r1, r2, r3.
3. Generate a solution UCMchild using GA recombination op-

erators on UCMk, where k = i, r1.
4. Generate a solution RPMchild using DE recombination op-

erators on RPMk, where k = r1, r2, r3.
5. Encode UCMchild and RPMchild in xchild.

– Step 3.3 Repair: Repair xchild for boundary constraint viola-
tion and load demand equality constraint violation.

– Step 3.4: Calculate CV (xchild) and F (xchild) i.e., {F1(xchild),
F2(xchild), F3(xchild)}.

– Step 3.5 Update of z: For j = 1, 2 do
1. If xchild is feasible and zj > Fj(xchild) then set zj = Fj(xchild)

– Step 3.6 Replacement/Update of Solutions: Set c = 0 and
then do

1. Set flag = 0.
2. If c = nr or P is empty, i = i + 1 and go to Step 3.1, else

randomly pick an index j from P .
3. Determine if xchild replaces xj or not according to the re-

placement rules.
4. If xchild replaces xj then flag = 1 and c = c + 1.
5. If flag = 1, remove j from P and go to Step 3.6.1.

• Step 4: Stopping Criteria
If termination criterion is satisfied, then stop else go to Step 3.
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Output

• Approximation to Pareto-optimal solutions: {x1, x2, . . . , xNP}.

• Approximation to Pareto-optimal front: {F (x1), F (x2), ..., F (xNP )}.

6.7 Experimental Study

In this Section, MOEA/D-DE and its variants are tested on the MOWT-

UC problem for power system with 20 thermal units in a 24 hour scheduling

horizon [139]. The lead time of the system is fixed as 4 hours [162] while the

standard deviation (σt
load) of the load forecast error is assumed to be 5% of

the hourly load demand as suggested in [164]. Further, VOLL is assumed

to be 5000 $/MWh [151]. The wind turbine characteristics data is taken

from [182] while the forecast wind velocity data is taken from [183].

At first, the effect of wind integration was analyzed by executing MOEA-

/D-DE on the 20 unit system without any wind penetration and with 10%

and 15% wind penetration. Fig. 6.1a and 6.1b illustrate the side view and

top view for the distribution of the final non-dominated solutions found by

MOEA/D-DE in different wind penetration scenarios. It is observed from

the figures that with the wind penetration, the system operation cost and

emission reduce considerably. However, it is noted that in this work, the

wind farm investment cost is not taken into account (as mentioned above).

Next, MOEA/D-DE and its variants namely MOEA/D-DE/NUWD

and MOEA/D-DE with ϵ-dominance based external archive were imple-

mented on the 20 unit system considering 10% and 15% wind penetration.

Fig. 6.2a, 6.2b and 6.2c show the distribution of the final non-dominated

solutions found by MOEA/D-DE, MOEA/D-DE/NUWD and MOEA/D-

DE with ϵ-dominance based external archive on 20 unit system with 10%

wind penetration, respectively. Similarly, Fig. 6.3a, 6.3b and 6.3c show the
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(a) Side view (b) Top view

Fig. 6.1 Non-dominated solutions obtained by MOEA/D-DE in presence of (only) ther-
mal generation (represented by red balls), 10% wind penetration (represented by green
cubes) and 15% wind penetration (represented by blue stars) on the 20 unit system.

distribution of the final non-dominated solutions found by MOEA/D-DE,

MOEA/D-DE/NUWD and MOEA/D-DE with ϵ-dominance based exter-

nal archive on 20 unit system with 15% wind penetration, respectively.

It is noted that in the case of MOWT-UC problem as well, the behavior

of MOEA/D-DE and its variants is the same as was observed in the case of

MOEER-UC problem in Chapter 5. The clustering of solutions obtained

by MOEA/D-DE along the boundary of the constrained objective space

(see Fig. 6.2a and 6.3a) is a limitation as it reduces the number of solu-

tions obtained in the middle of the trade-off surface. However, MOEA/D-

DE/NUWD is able to find a better distribution of solutions towards the

middle of the trade-off surface (see Fig. 6.2b and 6.3b). Furthermore,

MOEA/D-DE with external archive is able to provide significantly better

distribution of solutions throughout the trade-off surface as compared to

that obtained by MOEA/D-DE and MOEA/D-DE/NUWD (see Fig. 6.2c

and 6.3c).
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(a) MOEA/D-DE (b) MOEA/D-DE/NUWD

(c) MOEA/D-DE with external archive

Fig. 6.2 The distribution of the final solutions obtained by MOEA/D-DE, MOEA/D-
DE/NUWD and MOEA/D-DE with external archive for 10% wind penetration on the
20 unit system.

6.8 Summary

In this Chapter, the three-objective unit commitment problem presented in

Chapter 5 was extended and significant wind penetration was efficiently in-

cluded. The multiple-objectives of the wind-thermal UC problem remained

the same i.e., system operation cost, emission and reliability. MOEA/D-

DE and its variants proposed in Chapter 5 for the MOEER-UC problem

were applied to the MOWT-UC problem considering 10% and 15% wind

penetration. The results obtained demonstrated that MOEA/D-DE with

ϵ-dominance based external archive presents uniformly distributed trade-off
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(a) MOEA/D-DE (b) MOEA/D-DE/NUWD

(c) MOEA/D-DE with external archive

Fig. 6.3 The distribution of the final solutions obtained by MOEA/D-DE, MOEA/D-
DE/NUWD and MOEA/D-DE with external archive for 15% wind penetration on the
20 unit system.

optimal solutions for the MOWT-UC problem as well.
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Chapter 7

Conclusions and Future Work

This Chapter summarizes the conclusions and the main contributions of

the research work reported in this thesis and outlines directions for fu-

ture work. Section 7.1 presents the conclusions of the thesis while Section

7.2 details the main contributions of thesis. Finally, Section 7.3 presents

recommendations for future work.

7.1 Conclusions

The unit commitment (UC) is one of the most important problems in power

system scheduling. The UC problem is mostly solved in the literature con-

sidering system operation cost as the single (economic) objective and the

emission as well as the reliability aspects are generally neglected. The

primary aim of the thesis was to consider emission and reliability as ob-

jectives along with system operation cost and solve the UC problem as a

multi-objective optimization problem using evolutionary algorithms (EAs).

In Chapter 3, the UC problem in deterministic environment involving

system operation cost as the single objective was tackled. An evolutionary

optimization skeleton based on problem-specific: chromosome representa-
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tion, genetic operators, and knowledge was developed. Further, a novel

hybrid framework (termed hGADE) based on combination of genetic al-

gorithm and differential evolution was proposed to solve the UC problem.

This Chapter demonstrated the flexibility of the hGADE framework by hy-

bridizing GA with 4 classical and 2 state-of-the-art self-adaptive DE vari-

ants. Further, the efficacy of the hGADE variants was highlighted by exten-

sively comparing against a GA based approach. The best hGADE variants

i.e., hGADE/current-to-rand/1, hGADE/JADE and hGADE/rand/1 were

benchmarked and found to be efficient in achieving superior average cost

and best cost solution.

In Chapter 4, the single-objective UC problem solved in Chapter 3

was extended to bi-objective UC problem and minimizing emission was

considered as an additional objective along with minimizing system oper-

ation cost. The optimization skeleton developed for the single-objective

UC problem in Chapter 3 (i.e., problem-specific: chromosome representa-

tion, genetic operators and knowledge) was efficiently embedded within the

domination and decomposition based multi-objective optimization frame-

works. Non-dominated sorting genetic algorithm II (NSGA-II) and multi-

objective evolutionary algorithms based on decomposition (MOEA/D-SBX

and MOEA/D-DE) were selected as the representative algorithms from

the domination and decomposition frameworks, respectively. The algo-

rithms were efficiently customized and applied to the multi-objective eco-

nomic/emission unit commitment (MOEE-UC) problem. Further, the hy-

brid strategy between GA and DE, which was found to perform well in

Chapter 3 on the single-objective UC problem was incorporated within

MOEA/D-DE. The proposed MOEAs i.e., NSGA-II-SBX, MOEA/D-SBX

and MOEA/D-DE were exhaustively compared among themselves on the

MOEE-UC problem and MOEA/D-DE was found to significantly out-
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perform the contender algorithms. Thereafter, MOEA/D-DE was bench-

marked with the algorithms presented in the literature. It was observed

that MOEA/D-DE was able to outperform the benchmark algorithms in

terms of convergence and distribution throughout the trade-off front except

at the extremes. Therefore, a novel non-uniform weight vector distribution

(NUWD) strategy was proposed within the framework of MOEA/D-DE

to bias the search direction of the algorithm towards the extremes. Al-

though, MOEA/D-DE with the proposed NUWD strategy i.e., MOEA/D-

DE/NUWD was able to capture the extremes better than MOEA/D-DE, a

slight compromise was observed towards the middle of the trade-off front.

Since, MOEA/D-DE and MOEA/D-DE/NUWD were found to be com-

plementary to each other, an ensemble optimizer based on combination

of MOEA/D-DE with uniform and non-uniform weight vector distribution

strategy was proposed. The ensemble optimizer was found to enhance the

overall performance of the algorithm. Moreover, the ensemble optimizer

significantly outperformed the benchmark algorithms in obtaining better

converged and uniformly distributed trade-off optimal solutions.

In Chapter 5, the bi-objective economic/emission UC problem (in deter-

ministic environment) solved in Chapter 4 was extended to three-objective

UC problem in uncertain environment and maximizing reliability was con-

sidered as an additional objective along with minimizing system operation

cost and minimizing emission. The uncertainties occurring due to thermal

generator outage and load forecast error were captured using expected en-

ergy not served (EENS) reliability index and EENS cost was used to reflect

the reliability objective. The MOEAs developed for the bi-objective UC

problem in Chapter 4 i.e., NSGA-II-SBX, MOEA/D-SBX and MOEA/D-

DE were applied in this Chapter to solve the three-objective UC problem.

The proposed MOEAs were exhaustively compared among themselves and
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MOEA/D-DE was found to significantly outperform NSGA-II-SBX and

MOEA/D-SBX. However, a limitation was observed in the performance

of MOEA/D-DE in the sense that many solutions were found to be clus-

tered towards the edges of the trade-off surface. Since, the non-uniform

weight vector distribution (NUWD) strategy was found to efficiently bias

the search direction of MOEA/D-DE on the bi-objective optimization prob-

lem in Chapter 4; a new NUWD strategy was proposed for the three-

objective optimization problem in this Chapter. The proposed NUWD

strategy was found to improve the performance of the algorithm in terms of

obtaining better distribution of solutions towards the middle of the trade-

off surface. However, more than desired solutions were still found to be

clustered towards the edges of the trade-off surface. Thus, MOEA/D-DE

with an ϵ-dominance based external archive was presented to overcome this

limitation. MOEA/D-DE with external archive was found to obtain sig-

nificantly better distributed solutions corresponding to the three-objective

UC problem as compared to MOEA/D-DE and MOEA/D-DE with NUWD

strategy.

In Chapter 6, the three-objective UC problem (in uncertain environ-

ment) solved in Chapter 5 was further extended to include significant wind

penetration. The additional uncertainty due to wind forecast error was

captured along with uncertainty due to thermal generator outage and load

forecast error using expected energy not served (EENS) reliability index.

The multiple objectives considered remained the same as that in Chapter

5 i.e., minimizing system operation cost, minimizing emission and maxi-

mizing reliability. In Chapter 5, MOEA/D-DE was established as the best

MOEA among the proposed MOEAs for solving the three-objective UC

problem. Since, the characteristics of the two problems i.e., problem solved

in Chapter 5 and the problem considered in this Chapter remained the same
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because of the three-objective optimization model in both the problems; in

this Chapter only MOEA/D-DE was implemented. Further, the variants

of MOEA/D-DE i.e., MOEA/D-DE based on non-uniform weight vector

distribution strategy and MOEA/D-DE with ϵ-dominance based external

archive were also implemented to solve the three-objective wind-thermal

UC problem. The experimental results revealed that MOEA/D-DE with ϵ-

dominance based external archive was able to return uniformly distributed

trade-off optimal solutions for the wind-thermal UC problem.

7.2 Main Contributions

The main contributions made with respect to different problems tackled in

the thesis are summarized as follows:

7.2.1 Contributions related to single-objective UC prob-

lem

1. A novel framework based on hybrid of GA and DE such that GA

explores the binary search space while DE explores the continuous

search space, was developed for solving the single-objective UC prob-

lem. The contributions related to the proposed hGADE framework

are further categorized as follows:

(a) A total of 6 hybrid GA-DE variants were developed by integrat-

ing GA with - 1) 4 classical versions of DE algorithm namely,

DE/rand/1, DE/rand/2, DE/current-to-rand/1 and DE-current-

to-rand/2 [68, 74]; and 2) 2 self-adaptive versions of the DE al-

gorithm, namely jDE [69] and JADE [71] and successfully tested

on the UC problem.
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(b) It was observed that the system operator can make remark-

able cost savings by adopting the proposed hGADE algorithm

(specifically the variants hGADE/current-to-rand/1, hGADE/-

JADE and hGADE/rand/1) for solving the UC problem.

7.2.2 Contributions related to bi-objective UC prob-

lem considering deterministic environment

1. To the best of our knowledge, a first attempt was made to propose

a MOEA/D-DE for solving the bi-objective UC problem considering

economic and emission objectives. The contributions related to the

proposed MOEA/D-DE are further categorized as follows:

(a) The hybridization strategy between GA and DE algorithm was

embedded within the framework of MOEA/D-DE such that GA

explores the binary search space while DE explores the contin-

uous search space. The proposed MOEA/D-DE was found to

significantly outperform NSGA-II-SBX and MOEA/D-SBX on

the bi-objective UC problem.

(b) A novel non-uniform weight vector distribution strategy was pro-

posed within the framework of MOEA/D-DE to bias the search

direction of the algorithm towards the extremes of the trade-off

front.

(c) An ensemble optimizer based on combination of MOEA/D-DE

with uniform and non-uniform weight vector distribution strat-

egy was proposed. The ensemble optimizer, termed Enhanced-

MOEA/D-DE, was found to present significantly better con-

verged and distributed trade-off solutions than the algorithms

proposed in the literature.
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7.2.3 Contributions related to three-objective UC prob-

lem considering uncertain environment

1. To the best of our knowledge, a first attempt was made to propose a

MOEA/D-DE for solving the three-objective UC problem consider-

ing economic, emission and reliability objectives. The contributions

related to the proposed MOEA/D-DE are categorized as follows:

(a) The proposed MOEA/D-DE based on hybrid strategy between

GA and DE algorithm was found to significantly outperform

NSGA-II-SBX and MOEA/D-SBX on the three-objective UC

problem.

(b) A novel non-uniform weight vector distribution strategy was pro-

posed within the framework of MOEA/D-DE to bias the search

direction of the algorithm and obtain better distribution of so-

lutions towards the middle of the trade-off surface.

(c) MOEA/D-DE with an ϵ-dominance based external archive was

proposed for solving the three-objective UC problem. It was

demonstrated that MOEA/D-DE with ϵ-dominance based ex-

ternal archive obtains much better uniformly distributed set of

trade-off solutions than MOEA/D-DE without archive on the

three-objective UC problem.

7.2.4 Contributions related to three-objective wind-

thermal UC problem considering uncertain en-

vironment

1. To the best of our knowledge, a first attempt was made to propose

a MOEA/D-DE for solving the three-objective UC problem in pres-
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ence of significant wind penetration considering economic, emission

and reliability objectives. MOEA/D-DE with an ϵ-dominance based

external archive (which was found to be the best algorithm for three-

objective UC problem), was proposed to solve the three-objective

wind-thermal UC problem considering economic, emission and relia-

bility objectives. The algorithm was found to obtain a uniformly dis-

tributed set of trade-off solutions in the archive for the three-objective

wind-thermal UC problem.

7.3 Future Work

7.3.1 Further study related to extension of UC prob-

lem

• The power system scheduling problems can be made more realistic

by adding the network security constraints. Thus, the proposed al-

gorithms in the thesis can be extended to solve security-constrained

unit commitment (SCUC) problem [184–188].

7.3.2 Further study related to hGADE algorithm

• The proposed hybridization strategy between GA and DE in the

hGADE framework can be tested on other challenging real-world

mixed-integer optimization problems.

• The proposed hGADE framework is generic and depending upon the

problem requirements or choice, the user may easily integrate other

discrete and/or real parameter operators in the framework for solv-

ing challenging single-objective mixed-integer optimization problems.
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Thus, for example, hybridizing GA with other well known optimizers

like PSO [64], EDA [66], etc for solving mixed-integer optimization

problems and comparing the performance of different hybrid EAs can

be a very interesting study.

7.3.3 Further study related to MOEA/D-DE algo-

rithm

• Similarly to the hGADE algorithm, the proposed hybrid MOEA/D-

DE (presented in Chapter 4, 5 and 6) based on combining the strengths

of GA and DE is a generic algorithm which can be tested on other

challenging multi-objective mixed integer optimization problems.

• The proposed non-uniform weight vector distribution strategy for

bi-objective optimization problem (as in Chapter 4) and for three-

objective optimization problem (as in Chapter 5) is a generic algo-

rithmic component and can be integrated within the framework of

MOEA/D to bias the search direction of MOEA/D and tested on

other problems. Moreover, other non-uniform weight vector distribu-

tion strategies can also be investigated within the MOEA/D frame-

work.

• An ensemble optimizer (termed Enh-MOEA/D-DE) based on combi-

nation of MOEA/D-DE with uniform and non-uniform weight vector

distribution strategy was proposed in Chapter 4 for solving the bi-

objective economic/emission UC problem. However, in the ensemble

optimizer, there was no migration (i.e., communication) between the

component MOEAs. Thus, a parallel island model [189] based on

integration of MOEA/D-DE with uniform and non-uniform weight-
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vector distribution strategy, which involves communication (i.e., mi-

gration) between the component MOEAs, can be proposed to enhance

the performance of Enh-MOEA/D-DE.

• In Chapter 5 and 6, it was observed that in the trade-off surface

obtained using MOEA/D-DE for the three-objective UC problems,

many solutions were clustered at the edges of the surface. The reason

(as was mentioned in the Chapter as well) may be that there is no ex-

plicit diversity maintenance operator in the framework of MOEA/D.

Recently, Gee et al.[190] proposed an online diversity assessment tech-

nique in evolutionary multi-objective optimization. According to this

technique, the diversity of the population can be evaluated online

i.e., during the search process. This technique can also measure the

diversity loss caused by any individual in the population and the al-

gorithm can then perform a diversity-preservation selection based on

this information. In [190], this technique was incorporated within

the MOEA/D and the technique was demonstrated to enhance the

diversification of the solution set obtained by the algorithm.

Thus, an interesting future work can be to implement MOEA/D-

DE with such online diversity assessment technique and diversity-

preservation based selection so as to investigate if it results in diver-

sification of the trade-off solutions obtained by MOEA/D-DE on the

three-objective UC problem.

7.3.4 Further study related to application of other

MOEAs

• In this thesis, NSGA-II-SBX, MOEA/D-SBX and MOEA/D-DE were

the three MOEAs which were applied to different multi-objective UC
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problems. However, the three MOEAs used the same optimization

skeleton ( i.e., problem-specific: chromosome representation, genetic

operators and knowledge). Thus, an interesting future study can be

to embed the optimization skeleton within other popular MOEAs

like indicator based MOEA - HypE [191], etc and compare the per-

formance of different MOEAs on the multi-objective UC problems.
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Appendix A

Table A.1 Generating unit data for the (base) ten unit system

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
Pmax (MW) 455 455 130 130 162 80 85 55 55 55
Pmin (MW) 150 150 20 20 25 20 25 10 10 10
a($/MW 2h) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
b($/MW h) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79

c($/h) 1000 970 700 680 450 370 480 660 665 670
a1(lb/MW 2h) 0.0046 0.0046 0.0068 0.0068 0.0042 0.0042 0.0465 0.0465 0.0465 0.0470
b1(lb/MW h) -0.5112 -0.5112 0.5455 -0.5455 0.3277 0.3277 -3.9023 -3.9023 -3.9524 -3.9864

c1(lb/h) 42.90 42.90 40.27 40.27 13.86 13.86 330.00 330.00 350.00 360.00
MUT (h) 8 8 5 5 6 3 3 1 1 1
MDT (h) 8 8 5 5 6 3 3 1 1 1
HSC($) 4500 5000 550 560 900 170 260 30 30 30
CSC($) 9000 10000 1100 1120 1800 340 520 60 60 60
Tcold(h) 5 5 4 4 4 2 2 0 0 0
Istate(h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1

Table A.2 Forecast load demand data for the (base) ten unit system

Hour Demand (MW) Hour Demand (MW) Hour Demand (MW)
1 700 9 1,300 17 1,000
2 750 10 1,400 18 1,100
3 850 11 1,450 19 1,200
4 950 12 1,500 20 1,400
5 1,000 13 1,400, 21 1,300
6 1,100 14 1,300 22 1,100
7 1,150 15 1,200 23 900
8 1,200 16 1,050 24 800
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Algorithm 5: Pseudo-code for Repair Operation
1 begin
2 \\ Calculating power output generation for each hour;
3 Init UCM : UCM ←− ZEROS(N, Tmax) ;
4 Init P owerOutput: P owerOutput←− ZEROS(Tmax) ;
5 for time = 1 : Tmax do
6 P owerOutput(time)←− SUM(UCM(1 : N, time) ·RP M(1 : N, time)) ;
7 end
8 \\ Repair Operation;
9 init tolerance←− 10−6;

10 for time = 1 : Tmax do
11 if P owerOutput(time) < LoadDemand(time) then
12 Gap = LoadDemand(time)− P owerOutput(time);
13 \\ Incrementing power output of committed generators according to ascending

order of PL to meet load demand;
14 for p = 1 : 1 : 10 do
15 for unit = 1 : N do
16 if ucm(unit, time) == 1&&priority(unit) ==

p&&RP M(unit, time) < P max(unit) then
17 Diff = P max(unit)−RP M(unit, time);
18 if Gap ≤ Diff then
19 RP M(unit, time) = RP M(unit, time) + Gap;
20 Gap = 0.0;
21 else
22 RP M(unit, time) = P max(unit);
23 Gap = Gap−Diff ;
24 end
25 end
26 if Gap < tolerance then
27 break;
28 end
29 end
30 if Gap < tolerance then
31 break;
32 end
33 end
34 else
35 if P owerOutput(time) > LoadDemand(time) then
36 Gap = P owerOutput(time)− LoadDemand(time);
37 \\ Decrementing power output of committed generators according to

descending order of PL to meet load demand;
38 for p = 10 : −1 : 1 do
39 for unit = 1 : N do
40 if ucm(unit, time) == 1&&priority(unit) ==

p&&RP M(unit, time) > P min(unit) then
41 Diff = RP M(unit, time)− P min(unit);
42 if Gap ≤ Diff then
43 RP M(unit, time) = RP M(unit, time) + Gap;
44 Gap = 0.0;
45 else
46 RP M(unit, time) = P min(unit);
47 Gap = Gap−Diff ;
48 end
49 end
50 if Gap < tolerance then
51 break;
52 end
53 end
54 if Gap < tolerance then
55 break;
56 end
57 end
58 end
59 end
60 end
61 end
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