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SUMMARY 

The complex, spatiotemporal gene expression patterns characteristic of multicellular organisms 

are controlled by sequence-specific cis-regulatory elements distributed throughout the genome.  

Among the different classes of elements, enhancers are recognized as key drivers of cell-type 

specific transcription programs, serving as an integrative binding platform for both lineage-

specific TFs and external signaling effector TFs. Due to this central role in gene regulation, 

disruption of enhancer function can lead to disease, and much interests have been focused on 

enhancer discovery and annotation in model cell lines (Bernstein et al., 2012). Despite these 

efforts, our understanding of enhancer activation dynamics, especially during embryonic 

development, remains incomplete. The annotation of all enhancers during cell differentiation and 

lineage commitment will help us dissect the complex patterns of developmental gene expression 

and understand the basis of gene dysregulation resulting in disease.  

 

The endoderm is the inner germ layer of the embryo which gives rise to the epithelial lining of 

the digestive and respiratory system, as well as components of the liver, pancreas, thyroid and 

thymus. Despite the physiological importance of these organs, relatively little is known about 

how endoderm progenitor cells give rise to all differentiated derivatives. To begin addressing this 

knowledge gap, we employed an in vitro endoderm differentiation model for transcriptome and 

epigenome profiling. Our transcriptome profiling of endoderm and its derivatives at defined 

developmental stages provided a valuable resource for the investigation of novel markers during 

lineage specification. Epigenomic and functional annotation of these enhancers further revealed 

the coordination between lineage-specifying TFs and signaling effectors for endoderm 

differentiation, as well as a diversity of enhancer priming states. Importantly, we also 
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demonstrated the importance of these enhancer catalogs in facilitating the identification of causal 

variants of complex diseases relevant to endoderm organs. 

 

One defining characteristic of enhancers is expression regulation through a distance-independent 

manner, which confounds target gene identification and enhancer functionalization. Active 

enhancers are recognized to regulate gene expression through physical interactions with their 

target loci through the looping-out of intervening DNA sequences. To map global enhancer-

promoter interactions, I was involved in a large-scale ChIA-PET study, focusing on the general 

transcription factor RNAPII in multiple human cell types. This work not only revealed 

widespread cell-specific enhancer-promoter and promoter-promoter interactions, but also 

identified interactions involving disease-associated regulatory elements with their target genes.  

 

In sum, the enhancer repertoire uncovered in this work represents a valuable resource for the 

study of human endoderm formation and patterning. In addition to elements associated with 

known endoderm genes, we have predicted thousands of developmental enhancers whose 

regulatory functions were previously unknown. Our work on chromatin organization in human 

cells have also revealed previously unappreciated organizational complexity between regulatory 

elements and target promoters for transcription control. 
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CHAPTER 1 INTRODUCTION 

1.1 The human genome sequence 

The completion of the initial human genome sequence in 2001 represented a significant 

milestone in biology, human genetics and biomedical research (Lander et al., 2001; McPherson 

et al., 2001). Subsequent refinement and analyses of the draft sequence led to a comprehensive 

identification and mapping of 20,000 – 25,000 protein-coding genes (Consortium, 2004), 

signaling the beginning of an era of “omics” revolution from the traditional gene-centric 

paradigm. Equipped with this extensive catalogue, genetics researchers now face immense 

challenges in understanding the functions of these genes and their products, as well as their 

regulation and coordination at a cellular and organismal level. An added layer of complexity 

originated from the presence of vast stretches of poorly characterized, non-coding genomic 

regions within which protein-coding regions (1.9% of entire human genome) reside (Lander et 

al., 2001). The systematic identification of all functional elements in the human genome 

represented a crucial requisite for comprehensive understanding of the spatial and temporal 

expression patterns for all identified genes, as well as the basis for altered gene expression during 

pathological conditions.   
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1.2 Eukaryotic transcriptional machinery and transcriptional regulatory elements 

(TREs) 

Transcription of eukaryotic genes is dependent on three known classes of DNA-binding proteins, 

namely basic TFs, activators, and coactivators. Prior to each round of transcription, more than 30 

basic TFs, consisting of RNAPII and a variety of accessory factors, including TFIIA, TFIIB, 

TFIID, TFIIE, TFIIF and TFIIH, assemble on the core promoter as a Pre-initiation Complex 

(PIC), constituting the “basal transcription machinery” (Conaway and Conaway, 1993; 

Murakami et al., 2013). On its own, the PIC initiates low levels of basal transcriptional activity, 

while full transcription require the presence of sequence-specific activator TFs. These activators 

can be classified by their DNA-binding domains, which may include basic leucine zipper (bZIP), 

homeobox, forkhead or helix-loop-helix (HLH) domains (Pabo and Sauer, 1992). Activator 

function is mediated by a transcription activation module, which is thought to facilitate PIC 

formation through protein-protein interactions with basic TFs (Orphanides et al., 1996). One 

other mechanism for activator function involves coactivator recruitment through protein-protein 

interactions. Coactivators exist as large complexes and modulate activator function through 

interactions with the basic transcriptional machinery (i.e. Mediator coactivator complex) (Malik 

and Roeder, 2000) or through chromatin remodeling systems (i.e. SWI/SNF complex) (Neely et 

al., 1999).  

 

Components of the eukaryotic transcription machinery mediate gene expression by RNAPII 

through binding to specific nucleotide sequences called TREs. These elements include promoters 

and gene-distal elements such as enhancers, silencers, insulators and locus control regions (Fig 

1.1). Generally, promoters function as the site for PIC assembly, while gene-distal elements 
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harbor sequence motifs for activator TFs. The physical and functional properties of each of these 

elements are discussed further below. 
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Figure 1.1 Transcriptional regulatory elements in eukaryotic genomes (Maston et al., 2006) 

TREs can be generally classified as promoter/promoter-proximal or distal element. These 

elements function through binding to distinct elements of the transcription machinery.  
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1.2.1 Promoters 

Core promoters are located at the transcriptional start site (TSS) of genes. They are required and 

sufficient for transcription initiation by RNAPII through assembly of the PIC. Although 

considered as a single class of regulatory elements, core promoters are structurally and 

functionally diverse, harboring different types of Core Promoter Elements (CPEs), including the 

TATA box, Initiator element (Inr), Downstream Promoter Element (DPE), Downstream Core 

Element (DCE), Motif Ten Element (MTE), TFIIB-Recognition Element (BRE) and CpG islands 

(Kadonaga, 2012). The diversity of CPEs has been proposed to provide combinatorial regulation 

of transcription initiation, increasing the number of possible gene expression patterns in complex 

organisms (Gershenzon and Ioshikhes, 2005; Smale and Kadonaga, 2003). Sequence analyses 

revealed that CPEs are not universal across promoters – a large number of functional core 

promoters lack any of these known CPEs, suggesting the existence of other CPEs which are yet 

to be discovered (Hartmann et al., 2013). 

 

Located up to several hundred base pairs upstream of the core promoters are the proximal 

promoters. These elements have been demonstrated to regulate transcription through binding of 

specific TFs (Hock et al., 2004; Landry et al., 2005). A functional link between proximal 

promoters and distal enhancers was first suggested by the finding that these two classes of 

elements activate transcription through binding to the same ‘general’ activation protein domains 

(Seipel et al., 1992). In one example, promoter deletion studies showed that a proximal promoter 

of the glucagon receptor gene functioned as a cis-acting enhancer and regulates constitutive gene 

expression (Geiger et al., 2001). Besides harboring intrinsic enhancer activities, proximal 

promoters also interact with distal enhancers and mediate transcription in a synergistic manner 
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(Grzeskowiak et al., 2000; Vorachek et al., 2000; Wood et al., 1998). Due to these properties, 

proximal promoters are considered functionally indistinguishable from enhancers. Indeed, recent 

computational analyses revealed sequence features of proximal promoters which reliably 

predicted distal enhancers (Taher et al., 2013).  
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1.2.2 Enhancers 

Transcriptional enhancers are short, non-coding regulatory elements responsible for activating 

target gene expression during differentiation and development (Visel et al., 2009a). Enhancer 

activity was first documented over 30 years ago within a region of the SV40 virus genome which, 

when cloned and introduced into a human cell line, increased transcription of a reporter gene by 

several hundred folds (Banerji et al., 1981). Subsequent to this seminal discovery, the first 

mammalian enhancers, driving cell-type specific expression of the Ig heavy chain gene, were 

identified (Banerji et al., 1983; Gillies et al., 1983). Due to a unique property of enhancers to 

function independent of the distance to their target gene as well as the underlying chromatin 

context, enhancers can be ‘hijacked’ through an enhancer trap, allowing unbiased identification 

and screenings for spatial enhancer activities (Korzh, 2007). Leveraging on this, enhancer trap 

assays in Drosophila demonstrated that distal cis-regulatory elements drive spatial and temporal 

gene expression patterns during development (O’Kane and Gehring, 1987). More recently, 

studies employing high-throughput genomic profiling of TF-binding, histone modifications and 

open chromatin suggested the presence of hundreds of thousands of enhancers across multiple 

cell types, often residing far from their target promoters (Bernstein et al., 2012; Ernst et al., 2011; 

May et al., 2011; Rada-Iglesias et al., 2011). These genome-wide observations led to the current 

view of enhancer activation as a highly dynamic and cell-type-specific process, and raised 

several key mechanistic questions regarding how enhancers function in TF binding and how 

binding information is relayed to target promoters.  
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1.2.2.1 Enhancer architecture 

A general feature of enhancers is the enrichment of clusters of functional TF binding sites in 

various combinations (Arnone and Davidson, 1997; Berman et al., 2002; Gotea et al., 2010; 

Levy et al., 2001), which is a critical molecular mechanism to ensure robustness of TF 

recruitment for tight gene expression regulation, while preventing unwanted activation through 

randomly occurring binding sites. Detailed studies of enhancer architecture in Drosophila and 

zebrafish have revealed the existence of regulatory modules, each containing one or several TF 

binding sites, within each enhancer (Arnosti et al., 1996; Kulkarni and Arnosti, 2003; Liu and 

Posakony, 2012; Rastegar et al., 2008). These regulatory modules function as separate functional 

units, occupy flexible positions within an enhancer and can independently regulate gene 

expression. These observations have led to the ‘billboard’ model, where enhancers function as 

‘information display’ platforms with the overall functional output of an enhancer depends on net 

sum of all modules contained within (Fig 1.2A). This model, established through independent 

studies of individual enhancers, was further supported by a massively parallel reporter assay 

which tested almost 5,000 synthetic enhancers (Smith et al., 2013). The organizational flexibility 

underlying the billboard model has been suggested to confer evolutionary flexibility to enhancers, 

as demonstrated by sequence and binding site divergence of the even-skipped enhancer between 

the Sepsidae and Drosophilidae species (Hare et al., 2008), and may explain the weak sequence 

conservation of certain human enhancers (Blow et al., 2010).  

 

Despite strong experimental support for flexible motif positioning within a large number of 

enhancers, strict motif positioning, including spacing, order and orientation, has been observed in 

other enhancers (Senger et al., 2004). One of the best-characterized of these is the interferon-β 
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(IFN-β) enhancer (Thanos and Maniatis, 1995), where small sequence changes to individual 

motifs, or the spacing between them, is sufficient to impair binding of all eight known factors 

binding the enhancer (Fig 1.2B) (Panne et al., 2007). The striking sequence constraint at this 

locus led to an alternative model, the ‘enhanceosome’ model of enhancer architecture (Merika 

and Thanos, 2001), where individual TFs assemble in a cooperative  and highly ordered manner 

relative to each other, forming unique, stable complexes or ‘enhanceosomes’. This model can 

explain why presence of individual TFs do not activate IFN-β transcription (Thanos and Maniatis, 

1995). The requirement for cooperative TF binding leads to a sharp, “all-or-none” activation 

effect, characteristic of rapid biological processes such as the immune response. Indeed, 

enhanceosomes assembly have been reported for the activation of other immune-related genes, 

such as interleukin-6 and interleukin-2 receptor α (Vanden Berghe et al., 1999; John et al., 1995).  

Unlike the enhancers functioning under the ‘billboard’ model, the strict sequence constraints at 

enhanceosome binding sites make these enhancers more susceptible to inactivating mutations 

(Panne et al., 2004, 2007).  

 

Accumulating evidence suggests that both the billboard and enhanceosome models may 

represent two extreme ends of a spectrum of architectural diversity, and that no generalizable 

motif rules exist when large numbers of enhancers are examined. For example, during cardiac 

specification in Drosophila, five cardiac developmental TFs co-bind bind and activate heart 

enhancers in the absence of any consistent motif patterns (Junion et al., 2012). In the absence of 

one TF, all remaining TFs failed to mediate enhancer activation, emphasizing the importance of 

cooperative binding. This third model, termed ‘TF collective’, emphasizes a critical role of 
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protein-protein interactions in determining overall enhancer activities, beyond that of a linear 

nucleotide-based code.  

 

The increasing availability of high-throughput reporter assays (Levo and Segal, 2014) enabling 

quantitative output measurement of large numbers of enhancers may further challenge these 

existing models founded on a principled understanding of enhancer function. The current 

research focus on enhancer architecture lies in gaining further mechanistic understanding beyond 

the description of specific enhancers. This is exemplified by current research focus moving from 

simple models of DNA binding codes to higher levels of protein DNA interactions, including 

protein side-chain flexibility, DNA shape-readout, docking geometries and protein allosteric 

effects (Siggers and Gordân, 2014). 
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A) 

 

 

 

 

 

B) 

 

 

Figure 1.2 Two models of enhancer function (Arnosti and Kulkarni, 2005)  

A) In the billboard model, regulatory modules within enhancers function independently and 

occupy flexible positions. Enhancer cooperativity is not necessary, and net enhancer output 

depends on net effect of individual interactions between TFs (grey circles) and repressors (black 

boxes) and the basal transcription machinery, resulting in transcription activation (top) or 

repression (bottom). 

B) In the enhanceosome model, TFs (grey ovals and circles) bind to a strictly defined motif 

structure, where all TFs assemble cooperatively for gene activation. Disruption of motif 

sequence, or displacement of a single motif resulting in lack of a single TF, causes the enhancer 

to be inactive.  
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1.2.2.2 Enhancer-promoter interactions 

The highly organized TF binding patterns on enhancers raised further questions regarding how 

binding information is relayed to target promoters, and several models have been proposed to 

address this question (Fig 1.3). Binding of sequence-specific TFs have been proposed to induce 

the transcription complex to ‘track’ from the distal enhancer, through small steps along the 

intervening DNA, until it encounter its target promoter (Bulger and Groudine, 2011). This model 

has only been tested on a few enhancers and requires more detailed validation. Focused 

investigations at several independent loci suggest that enhancers mediate long-range chromatin 

loops through various mechanisms which lead to the juxtaposition of enhancer and promoter 

elements. Through chromatin conformation capture (3C) and gene knockdown assays, these 

studies have demonstrated critical roles for lineage-specific TFs in mediating chromatin loop 

formation and subsequent target gene expression (Yun et al., 2014; Zhang et al., 2013a; Zhou et 

al., 2013). A novel insight in enhancer function was illustrated by a recent finding that enhancer 

looping mediated by the LIM domain-binding protein 1 (LDB1) may simultaneously enhance 

target gene expression and repress other target genes at the level of promoter pausing in pituitary 

corticotrope cells (Zhang et al., 2015).  

 

An alternative enhancer–promoter looping mechanism involving chromatin architectural proteins 

was supported through the genome-wide observation that CTCF binding sites significantly 

overlap enhancer elements (Shen et al., 2012). This mechanism was subsequently supported by 

findings of CTCF-mediated chromatin looping at multiple individual gene loci  (Eldholm et al., 

2014; Gosalia et al., 2014; Majumder and Boss, 2010), as well as the PCDH gene cluster 

involving more than 50 different exons (Golan-Mashiach et al., 2012). The finding that CTCF 
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directly recruits TATA-binding protein-associated factor 3 (TAF3) to promoter distal sites for 

DNA looping suggests that CTCF may directly interact with the core transcription machinery 

complex to tether enhancers to their target promoters (Liu et al., 2011). 

 

A third mechanism through which enhancers mediate chromatin looping involves the 

transcription of non-coding RNAs (ncRNA) on enhancers, termed enhancer RNAs (eRNAs) 

(Kim et al., 2010; Wang et al., 2011). Although eRNAs are transcribed from a large proportion 

of enhancers, the mechanistic details of their functions, if any, remained unclear. Antisense 

oligonucleotide blockage of eRNAs at both the NRIP1 and GREB1 loci resulted in disruption of 

enhancer-promoter interactions with concomitant reduction in target gene expression (Li et al., 

2013). Similarly, knockdown of the enhancer-assocation ncRNA CCAT1-L resulted in reduced 

interaction frequency between CCAT1-L locus and decreased MYC transcription in colorectal 

cancer cells (Xiang et al., 2014), strengthening support for a role of eRNAs in physically 

tethering enhancer-promoter loops. Collectively these studies highlight the versatility of 

enhancers in harnessing TFs, architectural proteins and ncRNAs as mechanistic tools to transmit 

regulatory information to their target genes.   

 

Enhancer regulation of gene expression may occur at different stages of transcription, including 

transcription initiation, elongation or termination. The direct involvement of components of the 

general transcription machinery in enhancer-promoter loop formation suggests that regulation 

occurs at the level of transcription initiation (Koch et al., 2011; Liu et al., 2011; Ren et al., 2011). 

In support, the mediator complex co-occupies ESC enhancers with the pluripotency factors 

NANOG, OCT4 and SOX2 and facilitate loop formation to RNAPII through direct interactions 
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with cohesin (Kagey et al., 2010). More recent work have revealed a novel role of enhancer 

loops in regulating promoter-proximal pause release and led to a new class of enhancers termed 

‘anti-pause’ enhancers (Liu et al., 2013). Looping of these enhancers result in activation of the P-

TEFb complex and release of RNAPII for elongation. Global chromatin contact maps during 

Drosophila embryogenesis further revealed that enhancer-promoter contacts remained similar 

across developmental stages and frequently associated with paused RNAPII, suggesting release 

of paused polymerase as a key transcriptional mechanism facilitating rapid activation of 

developmental genes (Ghavi-helm et al., 2014). These studies provided further mechanistic 

insights into enhancer-target promoter regulation.   
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Figure 1.3 Proposed model for enhancer function (Williamson et al., 2011) 

Activator TFs binding to enhancers may recruit additional co-activators, which reorganize 

chromatin along the intervening region facilitating tracking of the transcription complex towards 

the target genes (bottom left). Alternatively, spatial colocalization between enhancers and target 

promoters may be facilitated through miniloops (bottom middle) or a single loop (bottom right).  
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1.2.2.3  Super-enhancers 

A set of studies focusing on enhancer discovery through chromatin modifications and TF binding 

proposed a unique class of TREs termed ‘super-enhancers’ (Hnisz et al., 2013; Lovén et al., 2013; 

Whyte et al., 2013). These studies suggest that a small subset of enhancers act as key regulators 

of cell fate, cell-type-specific gene expression and important drivers of oncogenic progression. 

Super-enhancers tend to span large genomic distances and generally have a median size of an 

order of magnitude larger than normal enhancers. Super-enhancers can be identified through the 

‘stitching’ of adjacent enhancers and assessment of Med1 enrichment levels (Whyte et al., 2013). 

Since the initial proposal of the super-enhancer concept, various publications have employed 

differing defining criteria for super-enhancers. For example, Med1, H3K27ac and the master TF 

MyoD have each been used for super-enhancer identification (Hnisz et al., 2013; Lovén et al., 

2013). To date, the only consistent feature of super-enhancers is the exceptionally high TF or 

histone modification enrichment levels revealed by ChIP-seq assays.  

 

Despite the lack of a clear criterion for super-enhancer identification, the current definitions have 

revealed several important properties of these elements. Genomic profiles of lineage-specific TFs 

and H3K27ac have revealed widespread prevalence of super-enhancers in over 90 different cell 

types and tissues (Hnisz et al., 2013; Whyte et al., 2013). In a broad range of cancer cells, super-

enhancers were found to be specifically enriched at multiple oncogenes (Hnisz et al., 2013; 

Lovén et al., 2013). Notably, binding of the BRD4 transcriptional coactivator at super-enhancers 

and expression of associated oncogenes were specifically impaired by Brd4 inhibition, 

highlighting a potential mechanism in which bromodomain inhibitors achieve cancer therapeutic 

effects through super-enhancers (Chapuy et al., 2013). Like enhancers, super-enhancers are 
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enriched for disease-associated variants. This was illustrated for super-enhancers found in human 

brain tissues and immune cells, which were associated with SNPs associated with Alzheimer’s 

disease and rheumatoid arthritis respectively (Hnisz et al., 2013)    

 

Given that super-enhancers are identified through the clustering of individual enhancers into a 

single broad element, it is unclear whether the functions observed for super-enhancers are in fact 

a reflection of individual enhancers used to define super-enhancers. The assessment of 

cooperativity between individual enhancers may reveal whether super-enhancers function more 

than the sum of its parts. To date, this possibility has not been conclusively tested and remains a 

major goal of the super-enhancer concept. One confounding technical problem lies in the 

difficulty to accurately quantify small differences in TF binding through ChIP-seq datasets (Park 

et al., 2013; Teytelman et al., 2013). Despite contrasting views on whether super-enhancers 

provide any novel insights on enhancer function, blockage of super-enhancer function through 

inhibition of general TF or coactivator binding led to disruption of oncogene expression ion 

tumor cells, highlight super-enhancers as a potential therapeutic target for selective inhibition of 

oncogenic transcriptional programs and cancer progression. 
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1.2.3 Silencers 

Silencers, as the name suggests, repress gene transcription. Like enhancers, silencers are 

sequence-specific elements and function in a distance- and orientation-independent manner, 

although location-dependent silencers have been reported (Dong and Lim, 1996; Moffat et al., 

1996). Silencers can be found on promoters, intergenic regions, or within introns. They function 

through the recruitment of repressive TFs called repressors, which exert a negative influence on 

transcription through several mechanisms. Repressors targeted to the core promoter can directly 

repress RNAPII through post-translational modifications (Hengartner et al., 1998), or indirectly 

through blockage of basal TF binding (Li and Manley, 1998). Repressors can also antagonize 

activator binding: the BCL-6 repressor blocks its target promoters through competition with 

activator TFs for proximal promoter binding (Harris et al., 2005). The mechanisms of repressor 

function are broadened through the recruitment of co-repressor complexes (Privalsky, 2004; 

Reynolds et al., 2013). These complexes, such as the Polycomb Group proteins, repress 

transcription through chromatin compaction by modifying histones (Srinivasan and Atchison, 

2004). More recent genome-wide analyses of repressor and co-repressor binding sites revealed 

widespread binding of repressors on actively transcribed regions of the genome (Wang et al., 

2009), raising the possibility that repressors may in fact function as activators which prime or 

fine-tune transcription levels (Dovey et al., 2010). 
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1.2.4 Insulators 

The specificity of the long-range regulatory effects of enhancers and silencers are enforced by a 

unique class of elements, called insulators, which partition the genome into discreet domains of 

expression (Valenzuela and Kamakaka, 2006). Insulators function either as barrier elements, 

preventing the spread of repressive chromatin domains, or enhancer blockers, disrupting 

enhancer-promoter communication (Fig 1.4). Sequences involved in insulator function typically 

resided between compact and de-condensed regions of the chromosome, and were traditionally 

identified through functional tests involving the integration of reporter constructs into cell lines 

or transgenic animals (Chung et al., 1993; Kellum and Schedl, 1991). These efforts led to the 

identification of several insulator binding proteins in Drosophila, such as BEAF, Zw5 and CTCF 

(Gaszner et al., 1999; Roy et al., 2007; Zhao et al., 1995). In contrast, the only Drosophila 

insulator protein with a vertebrate orthologue is CTCF (Bell et al., 1999). Contrary to its classical 

role as an insulator protein, recent 5C analyses revealed CTCF enrichment on looping 

interactions between active distal enhancers and promoters, and that 79% of all distal enhancer-

promoter interactions are not blocked by intervening CTCF binding sites (Sanyal et al., 2012). At 

individual gene loci, CTCF has also been demonstrated to regulate complex gene clusters with 

distal regulatory elements (Golan-Mashiach et al., 2012; Xu et al., 2011). Collectively, these 

studies are leading to an emerging concept of CTCF as an architectural protein, establishing 

genome topology and mediating interactions between regulatory elements and their target genes 

(Ong and Corces, 2014). 

 

 

 



  

20 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Mechanisms of insulator function (Valenzuela and Kamakaka, 2006) 

Barrier insulators prevent the spread of heterochromatin regions, protecting target promoters 

from silencing (Top). Enhancer blocking focuses enhancer function to a single locus (bottom). 
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1.2.5 Locus Control Regions (LCRs) 

LCRs are composite regulatory elements which regulate a gene cluster or locus, directing 

physiological and tissue-specific gene expression. (Li, Kenneth R., X. Fang, 2002). LCRs consist 

of multiple cis-acting elements, including enhancers, insulators and silencers, which can be 

identified by a cluster of DNase-hypersensitive (HS) sites. Each HS site may exhibit variable TF 

binding, histone modifications and chromatin interactions (Kim et al., 2012), resulting in variable 

effects on gene expression between each element. The overall function of an LCR depends on 

the collective activities of individual HS sites, although most LCRs exhibit strong enhancer 

activity. LCR-associated elements can also operate in an additive or synergistic manner (Engel 

and Tanimoto, 2000). The different combinations of elements thus confer LCRs great diversity 

and properties in driving tissue-specific expression. 

  

The β-globin LCR was the first LCR to be identified, consisting of a 16kb genomic span with 5 

HS sites driving erythrocyte-specific expression (Grosveld et al., 1987). Since then, LCRs have 

been discovered as key drivers for a large number of mammalian gene clusters, including the T 

cell receptor, apolipoprotein and immunoglobulin loci (Li, Kenneth R., X. Fang, 2002). Because 

of their central role in transcriptional control, mutations in LCRs have been implicated in human 

diseases, such as thalassemia (Driscoll et al., 1989). 
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1.3 Enhancers in development  

Enhancers are the most abundant and variable type of TREs between different cell types, and are 

recognized as the primary drivers of cell-type specific gene expression patterns (Heintzman et al., 

2009; Parker et al., 2013; Xi et al., 2007). The dynamics of such cell-type specific gene 

regulation is particularly evident during early embryonic development, where gene expression 

patterns and cell fate decision outcomes depend on the integration of multiple signaling 

pathways. Because the signaling effectors of these pathways occupy enhancers together with 

cell-specific master regulatory TFs (Trompouki et al., 2011), enhancers have been considered 

“information integration hubs” (Buecker and Wysocka, 2012), where external signals, regulatory 

TFs and genomic sequence information converge to establish the complex, dynamic expression 

patterns during development.  

 

During early embryonic development, pluripotent and multipotent stem cells are exposed to 

multiple extrinsic signaling pathways, which guide these progenitors to undergo self-renewal or 

specify them towards specific cell fates (Pera and Tam, 2010). These signaling pathways evoke 

different cellular responses not only through induction of tissue-specific TF expression, but also 

by differential enhancer activation. For example, during hepatocyte differentiation, Hippo 

signaling mediates HNF4A and FOXA2 to bind and activate distinct sets of enhancers, allowing 

these master liver TFs to express different genes and fulfill distinct roles during cell 

differentiation and organ development (Alder et al., 2014). Such developmental gene regulation 

is also evident at the tissue and organ level, where distinct sets of master TFs in different 

Drosophila appendages differentially activate a shared set of enhancers (McKay and Lieb, 2013).  
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In order for enhancer activation to occur in a timely and dynamic manner during development, 

enhancer specification occurs early during development before their target genes are expressed. 

Early observations through in vivo footprinting analyses revealed that FoxA and GATA factors, 

required for Alb1 gene expression in liver, bound the Alb1 enhancer in endoderm cells and were 

required for subsequent Alb1 enhancer function (Bossard and Zaret, 1998; Gualdi et al., 1996; 

Liu et al., 1991). Because chromatin occupancy by these factors preceded other TFs in liver, they 

were termed ‘pioneer factors’. Not only were pioneer factors characterized by the timing of DNA 

binding, they were able to bind condensed chromatin. Subsequently, pioneer factors in other cell 

types were discovered, such as PU.1 and RUNX1 in B cells, and FoxD3, Sox2 and Sp1 in ES 

cells (Raghu Ram and Meshorer, 2009). Pioneer factor binding on enhancers may facilitate rapid 

transcriptional activation by reducing the number of binding events required later in development 

(Fig 1.5). Alternatively, pioneer factors may also actively organize the local chromatin to 

facilitate binding of other regulatory TFs. For example, the pioneer factors FoxA1, GATA-4 and 

TFE3 can generate local DNase hypersensitivity in chromatin (Cirillo et al., 2002; Ishii et al., 

2004). In addition to pioneer factor binding, an additional property of many developmental 

enhancers is that they are held in a primed state, marked by H3K4me1 and H3K37me3, but 

devoid of H3K27ac, in ES cells (Rada-Iglesias et al., 2011). Upon differentiation, these ‘poised’ 

enhancers acquire H3K27ac and were associated with gene activation. Subsequently, H3K9me3 

was also identified as a mark of poised enhancers independent of H3K27me3. A poised enhancer 

state thus allows for timely expression of key developmental genes upon signaling and 

developmental cues.  
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Figure 1.5 Active and passive roles of pioneer factors (Zaret and Carroll, 2011) 

Pioneer factors may function passively, facilitating enhancer activation through prior binding 

which reduces the number of binding events required subsequently. Alternatively, pioneer 

factors can actively remodel the underlying chromatin structure, indirectly allowing other 

regulators to bind.  
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1.4 TREs and enhancers in diseases 

Given the pivotal role of TREs in developmental gene control, it is not surprising that a large 

number of mutations in TREs have been linked to human diseases. According to data compiled 

by the Human Gene Mutation Database (www.hgmd.cf.ac.uk), a total of 3,024 regulatory 

mutations have been identified, as of Oct 2014, which underlie or are associated with human 

inherited diseases. These documented mutations are mainly found on promoters, and their 

corresponding target genes and underlying defects are well-defined. Table 1 illustrates a list of 

classic Mendelian disorders resulting from TRE mutations. Such mutations disrupt basic TF or 

activator binding which are required for transcription through RNAPII, resulting in significant 

changes in expression levels of a single gene. Although most mutations increase disease risk 

through reduction of transcription, some mutations may also increase gene transcription. For 

example, mutation of a COLIA1 regulatory element increases TF binding affinity and COLIA1 

transcription, resulting in an altered ratio of transcribed collagen chains leading to reduced bone 

mineral density (Grant et al., 1996). Besides promoters, several mutations in distal enhancers 

were identified to be associated with disease phenotypes. For example, the blood disorder  

β-thalassemia, a result of dysregulation of the β-globin gene, can be caused by translocations 

which remove a distal enhancer required for high-level expression of the β-globin gene in 

erythroblasts (Driscoll et al., 1989) (Table 1). In another example, point mutations or 

translocations of an upstream enhancer of the sonic hedgehog (SHH) gene, a regulator of limb 

and brain development, was found to be associated with inherited preaxial polydactyly (Lettice et 

al., 2003).  
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In contrast to monogenic Mendelian diseases, many common human disorders exhibit a more 

complex inheritance pattern, and disease susceptibility depends on the net effect of interactions 

between multiple genes and may be influenced by environmental factors. To understand the 

genetic changes underlying common disease susceptibility, it is useful to examine common 

genetic variation, such as Single Nucleotide Polymorphisms (SNPs), to detect associations 

between variants and the disorder. Such variants can be identified through genomewide 

association studies (GWASs) which employ high-density SNP arrays to scan for SNPs which are 

statistically associated with the trait of interest. To date, GWASs have identified hundreds of 

common variants statistically correlated with various traits and diseases (Welter et al., 2014). 

Because SNPs probed in these studies are designed to capture genome linkage disequilibrium 

structure, trait-associated SNPs are more likely to tag actual risk loci rather than being causal 

themselves. More than 90% of these variants are found on noncoding regions and are enriched in 

DHSs (Maurano et al., 2012) (Fig 1.6), suggesting that causal variants may disrupt regulatory 

element function. Large-scale epigenomic profiling further revealed a correlation of GWAS 

variants with the enhancer marks H3K4me1, H3K27ac and eRNA (Akhtar-Zaidi et al., 2012; 

Ernst et al., 2011; Farh et al., 2015), suggesting that the disruption of enhancer function and 

dysregulation of the relevant target gene(s) may underlie disease predisposition. In support, fine-

mapping of various diseases-associated loci, including coronary artery disease (Harismendy et al., 

2011), breast cancer  (French et al., 2013; Meyer et al., 2013) and obesity (Smemo et al., 2014) 

identified functional variants disrupting enhancer TF binding and expression of target genes. The 

functional annotation of all genomic TREs, especially enhancers, is expected to shed light on the 

etiology of common human diseases and ultimately aid in development of novel diagnostic tools 

and therapeutics. 
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Table 1. TREs associated with human diseases 

TRE Disease Gene affected Reference 

Core promoter β-thalassemia HBB (Antonarakis et al., 1984) 
    

Proximal promoter Familial hypercholesterolemia LDLR (Mozas et al., 2002) 
 Hemophilia B F9 (Reitsma et al., 1988) 
 Pyruvate kinase deficiency PKLR (Manco et al., 2000) 
 Charcot-Marie-Tooth disease GJB1 (Wang et al., 2000) 
    

Enhancer Aniridia PAX6 (Lauderdale et al., 2000) 
 Preaxial polydactyl SHH (Lettice et al., 2003) 
 Van Buchem disease SOST (Loots et al., 2005) 
 X-linked deafness POU3F4 (Naranjo et al., 2010) 

    
Insulator Hereditary spherocytosis ANK1 (Gallagher et al., 2010) 

    
Silencer Asthma TGF-β (Hobbs et al., 1998) 

 Facioscapulohumeral muscular 
dystrophy 4q35 genes (Gabellini et al., 2002) 

    
LCR β-thalassemia HBB (Driscoll et al., 1989) 

 α-thalassemia HBA1 (Hatton et al., 1990) 
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A) 

 

 

 

 

 

 

 

 

Figure 1.6 Genomic distribution of GWAS SNPs (Maurano et al., 2012) 

(A) Distribution of GWAS SNPs according to localization on various genomic features, 

including coding regions, promoters, introns or intergenic regions.  
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1.5 Genome-wide TRE mapping  

To functionalize TREs and understand how they are coordinated for gene regulation, as well as 

the genetic basis of TRE-associated diseases, it is essential to identify and annotate these 

elements on a genome-wide scale. Unlike TREs at core/proximal promoters, distal TREs are 

distributed throughout the vast regions of non-coding DNA far from their target genes. In 

addition, these elements tend to be small and degenerate, and exhibit variable sequence 

conservation, confounding their identification and annotation. In the past decade, several 

international consortia, such as ENCODE and the Roadmap Epigenomics Project (Fig 1.7A), 

have been set up for collaborative epigenome mapping through resource- and data-sharing. The 

rapid development of NGS technologies and data analysis tools have greatly increased the scope 

and precision through which nucleotide sequences could be interrogated. As a result, many novel 

biochemical assays, such as DNase-seq, ChIP-seq and ChIA-PET, were developed and adopted 

by multiple research labs to leverage on the capabilities of NGS platforms (Fig 1.7B). Using 

these assays and model cell lines, TREs in 1% of the human genome were mapped in 2007 

(Consortium, 2007), and a comprehensive catalogue of TREs in the entire genome was 

completed in 2012 (Bernstein et al., 2012). These high-throughput genomic mapping tools are 

discussed in the following sections, with a focus on their specific applications and limitations.  
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(A) 

 

(B) 

 

Figure 1.7 Genome-wide functional element identification.  

(A) Multiple large-scale international consortia were established to focus on epigenomic 

mapping. (B) High-throughput experimental techniques employed for the identification of 

various types of genomic elements (Rivera and Ren, 2013). 
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1.5.1 Comparative genomics 

Given their central role in mediating gene expression, TREs tend to be evolutionarily conserved 

due to functional selection. Hence, in principle, TREs can be identified through sequence 

comparisons between genomes of different organisms and determining regions of high homology 

(Loots et al., 2000). Such sequence comparisons involve the generation of alignments between 

orthologous sequence pairs using bioinformatics approaches, taking into account inherent 

variations such as DNA rearrangements, insertions, deletions, and repeating elements. BLAST 

(Altschul et al., 1990) represented one of the first alignment tools for pairwise sequence 

comparison, and has since evolved into a family of related programs for different types of input 

sequences (Loots, 2008). To overcome the limitations of BLAST in alignment of large genomic 

regions, newer tools, such as PipMaker and Mulan, were developed which can handle multiple 

sequence comparisons up to genome-scale size. Visualization of large scale alignment data were 

facilitated by various web-based database interfaces, such as the UCSC and Ensembl genome 

browsers, which allow visual navigation along entire genomes. Comparative sequence alignment 

between human, mouse and fish genomes have been leveraged for genome-wide identification of 

human TREs which function as tissue-specific enhancers (Pennacchio et al., 2006; Visel et al., 

2008) and silencers (Ochi et al., 2012). 

 

One limitation of the comparative genomics approach is the underlying assumption that 

functional elements under evolutionary constraint exhibit higher similarity, which may not 

always be true. In a large-scale deletion of over 1,000 constrained elements in mice, no obvious 

impact on phenotype was observed, suggesting that not all conserved elements are functional 

(Nóbrega et al., 2004). Conversely, non-conserved elements may be functional. This is illustrated 
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at the HBB locus, where well-characterized HBB regulatory elements do not exhibit sequence 

alignment in all the organisms examined (King et al., 2005). On a genome-wide scale, ChIP-seq 

of mouse heart tissue identified functional enhancers which are poorly conserved (Blow et al., 

2010). A second limitation of comparative genomics is the lack of functional details of the 

identified TREs beyond sequence conservation. Collectively, the limitations of comparative 

genomics necessitate complementation with other methods for comprehensive TRE annotation.   
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1.5.2 Chromatin accessibility 

Eukaryotic genomes are organized as chromatin, a complex of DNA and histone proteins tightly 

wound into repeating units called “nucleosomes” (Kornberg and Lorch, 1999). Native chromatin, 

with a condensed nucleosomal structure, occludes DNA-regulatory protein interactions. Regions 

of chromatin harboring TREs must therefore undergo structural remodeling to increase 

accessibility of the underlying DNA to regulatory factors. Such physical differences in chromatin 

accessibility can be used as a proxy for TRE mapping, as nucleosome-free regions exhibit 

pronounced sensitivity to nuclease digestion compared to native chromatin (Gross and Garrard, 

1988). Enzymatic cleavage of chromatin using DNase I or micrococcal nuclease (MNase) can be 

coupled with high-throughput sequencing (DNase- and MNase-seq) (Boyle et al., 2008; Schones 

et al., 2008) to achieve high resolution genome-wide mapping of open chromatin structure. An 

alternative approach, Formaldehyde-Assisted Isolation of Regulatory Elements-sequencing 

(FAIRE-seq), employs formaldehyde crosslinking and sequencing to identify open chromatin 

through depletion of histone-bound DNA (Gaulton et al., 2010; Giresi et al., 2007).  

 

By measuring chromatin accessibility in 125 cell and tissue types, a total of 2.9 million DNase-

hypersensitive sites (DHSs) have been identified in the human genome, of which ~ 970,000 sites 

were cell-type-specific (Thurman et al., 2012). The findings that these DHSs were highly 

correlated with TF binding signals, and that a majority (97.4%) of experimentally-validated cis-

regulatory elements were found within DHSs, highlighted chromatin accessibility profiling as a 

powerful tool for comprehensive mapping of regulatory elements. One limitation of DHS-

mapping is the large number (50 million) of cells needed (Song and Crawford, 2010), precluding 

the use of this assay when on clinical samples. To overcome this limitation, an improved assay, 
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ATAC-seq, was developed to leverage on the unique properties of Tn5 transposase for genome 

fragmentation and sequencing adaptor transposition into accessible chromatin regions for 

sequencing (Buenrostro et al., 2013). This assay negates multiple intermediate steps, such as gel 

purification and cross-link reversal, enabling mapping of open chromatin with as little as 500 

cells and within clinical timescales. However, like comparative genomics approaches, the lack of 

functional details for these accessible elements necessitated the integration of additional genomic 

information, as discussed below, for more comprehensive regulatory element annotation. 
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1.5.3 Regulator binding 

The gene regulatory function of TREs are typically mediated by TF binding, hence the 

identification of TF binding sites represents an alternative method for high-throughput TRE 

discovery. Among the first genomic technique developed for this purpose is DNA adenine 

methyltransferase (Dam) identification (DamID) (van Steensel and Henikoff, 2000). In this 

method, Dam is fused to the DNA-binding protein of interest, resulting in methylation of DNA 

loci bound by, or in proximity to the protein of interest. Genomic DNA is subsequently digested 

using methylation-sensitive restriction enzymes followed by ligation of universal adapters. 

Methylated fragments, representing molecular beacons for protein-bound loci, are then 

selectively amplified by PCR and detected through microarray hybridization. Using DamID, it is 

possible to detect indirect and transient binding interactions. However, this assay relies on 

average DNA methylation patterns over up to 24hrs (Vogel et al., 2007) and is unable to map TF 

binding changes and TRE activation in dynamic biological processes, such as embryonic 

development.  

 

An alternative method is ChIP-seq, where bound transcription factors or chromatin proteins are 

first covalently crosslinked to DNA. Following chromatin fragmentation, DNA fragments are 

enriched, through their bound proteins, in an immunoprecipitation step. These DNA fragments, 

representing genomic locations of the bound factor, are purified for adapter ligation and high-

throughput sequencing (Fig 1.8). Unlike DamID, ChIP-seq allows genome-wide quantification 

of all in vivo TF binding sites with high resolution and accuracy, making it possible to perform 

motif predictions to identify non-canonical TF motifs (Johnson et al., 2007). Furthermore, the 

covalent crosslinking of TFs to chromatin captures a snapshot of binding interactions and allows 
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time-course analysis of binding dynamics (Sandmann et al., 2007; Yáñez-Cuna et al., 2012). A 

significant improvement of the original ChIP-seq protocol was developed by incorporating an 

additional nuclease digestion step to trim out unbound and contaminating DNA from protein-

binding nucleotides (Rhee and Pugh, 2011). This refinement allowed ChIP-exo to achieve near 

single-nucleotide resolution of binding peaks with considerably lower false positive rates.  

 

ChIP-seq has been applied to map the binding profiles of more than 100 known TFs in over 70 

cell types, revealing hundreds of thousands of putative TREs (Bernstein et al., 2012). Depending 

on the TF targeted, ChIP-seq can be used to identify specific classes of TREs. For example, 

global mapping of the insulator protein CTCF revealed cell-type specific barrier insulator 

elements (Cuddapah et al., 2009), while profiling of the histone acetyltransferase p300 identified 

active, tissue-specific enhancers (Visel et al., 2009b). Although ChIP-seq can potentially identify 

all genomic loci bound by a TF, not all these bound sites are functional in regulating gene 

expression (Fisher et al., 2012; Li et al., 2008). Hence, TREs identified through regulator binding 

may include a large number of false positive elements, which may be eliminated through 

assessment of additional chromatin features, such as DNA methylation or histone modifications.  
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Figure 1.8 Schematic of the ChIP-seq workflow (Park, 2009).  
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1.5.4 Chromatin structure 

Beyond the primary nucleotide sequence, gene expression regulation by TREs also involves 

chemical and structural changes to DNA, commonly referred to as epigenetic modifications 

(Felsenfeld and Groudine, 2003). These modifications can be classified into two main categories: 

direct methylation of DNA cytosine residues, and post-translational modification of nucleosomal 

histones. Functionally, these non-genetic changes regulate chromatin packaging as well as 

genome interpretation by the transcriptional machinery, thus defining TRE identity and function. 

As such, global profiling of epigenetic modifications represents a powerful method for TRE 

discovery and annotation. Recently, long noncoding RNAs (lncRNAs) have been demonstrated 

as key regulators of gene expression and are considered a new class of epigenetic modulators. 

The roles of lncRNAs in epigenetic regulation are reviewed elsewhere (Mercer and Mattick, 

2013). 
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1.5.4.1 DNA methylation 

DNA methylation typically occurs on the cytosine residues of CpG dinucleotides in vertebrates 

(Bird, 2002), and up to 70 – 80% of all CpG dinucleotides are methylated in humans (Ehrlich et 

al., 1982). Unmethylated CpG dinucleotides often form clusters, known as CpG islands, at the 5’ 

ends of genes (Bird, 1987). The presence of a CpG methyl group can either promote or inhibit 

binding of transcriptional regulatory proteins, thereby influencing gene expression patterns. For 

example, methyl-CpG binding domain proteins specifically bind to methylated CpG 

dinucleotides, facilitating the recruitment of histone deacetylases for chromatin compaction and 

transcriptional repression (Bird, 2002; Hashimshony et al., 2003). Conversely, methylation of 

CTCF binding sites at the H19 locus abolished insulator recruitment, resulting in expression of 

the imprinted Igf2 gene (Bell and Felsenfeld, 2000). Due to its widespread effects on gene 

expression, DNA methylation have been implicated in diverse processes including X 

chromosome inactivation, carcinogenesis, development and aging (Das and Singal, 2004; Lister 

et al., 2013; Mohandas et al., 1981; Oliveira et al., 2012). 

 

Globally, DNA methylation can be profiled by coupling several biochemical assays with high-

throughput sequencing. The first method, bisulphite sequencing, involves bisulphite treatment of 

DNA to convert unmethylated cytosines to uracil (Clark et al., 1994), which is recognized as 

thymine after PCR amplification and sequencing. A second method involves restriction digestion 

of DNA, which typically occurs on unmethylated DNA (Bird and Southern, 1978). Alternatively, 

methylated DNA can be selectively isolated by affinity purification (Cross et al., 1994). The 

analysis of such genome-wide methylation profiles, or methylomes, revealed that DNA 

methylation levels on distal TREs outside CpG islands varies as a direct, functional outcome of 
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TF binding (Feldmann et al., 2013; Stadler et al., 2011). More specifically, these studies revealed 

that TF binding outside CpG islands is required to generate low-methylated regions (LMRs), 

which correspond to distal regulatory elements exhibiting cell-type specificity, DNase 

hypersensitivity and enhancer activities. Importantly, aberrant methylation profiles at these 

elements have been associated with gene dysregulation in cancer (Aran et al., 2013), suggesting 

that gene expression control by DNA methylation at distal TREs underlie changes in gene 

expression contributing to disease. 
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1.5.4.2 Histone modifications 

In eukaryotic cells, DNA is folded into nucleosomes, or histone-DNA complexes which 

constitute a fundamental, repeating unit of chromatin. Each nucleosome consists of 147 bp of 

DNA wrapped around a histone octamer, consisting of two copies of each of the 4 core histones 

(H2A, H2B, H3, H4) (Kornberg, 1974). Each core histone consists of an N terminal tail which 

can be chemically modified, and more than 100 different posttranslational modifications have 

been identified on the amino-terminal tails, including acetylation, methylation, ubiquitylation 

and sumoylation (Kouzarides, 2007). Histone modifications play activating and repressive roles 

in transcription, and generally regulate gene expression through their effects on chromatin 

accessibility and protein recruitment, yet the detailed mechanisms and functions of a large 

number of these modifications are not well understood. Genome-wide surveys of histone 

modification localization has been recognized as an effective method to study their roles in 

transcription regulation, as well as facilitate detailed mechanistic studies on effects of their 

deposition and removal on gene expression. 

 

Extensive global profiling of histone modifications have been performed using ChIP-seq (Barski 

et al., 2007; Mikkelsen et al., 2007; Wang et al., 2008). These landmark studies provided a first 

glimpse into the complex patterns of modifications, known as the “histone code”, at key genomic 

features, such as promoters, transcribed gene bodies, enhancers and silenced chromatin (Fig 1.9). 

For example, H3K27ac is found on both active promoters and distal enhancers, while 

H3K27me3 generally marks repressed or heterochromatic regions (Fig 1.9). Subsequent efforts 

in epigenome mapping during development revealed a class of ‘poised’ enhancers which were 

enriched in H3K4me1 and H3K27me3, and could be differentiated from active enhancers based 
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on H3K27ac enrichment (Creyghton et al., 2010; Rada-Iglesias et al., 2011). The expanding 

repertoire of publicly available chromatin maps has facilitated computational efforts in 

integrative analyses. To systematically and comprehensively dissect the functions of the various 

histone modification combinations, chromatin states from nine human cell lines were segmented 

into regions of varying combinations using a multivariate hidden Markov model (Ernst et al., 

2011). Such integrative analyses of multiple chromatin marks, together with similar work 

performed on ENCODE chromatin data (Hoffman et al., 2013; Won et al., 2013), provide greater 

precision and reliability in TRE prediction and condense the large number of chromatin 

combinations into manageable sets of functional annotations. A key future direction will be to 

expand histone profiling to include more physiologically-relevant cell types, such as from 

normal and diseased tissues, to uncover the unique chromatin signatures underlying the different 

cell states.   
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Figure 1.9 Histone modifications mark functional genomic elements (Zhou et al., 2011) 

Promoters, gene bodies, enhancers, insulators, repressed genes. Histone modifications 

structurally and functionally define these elements and make it possible to identify them.   
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1.6 Investigating higher-order chromatin organization 

The concerted efforts in genome-wide profiling of open chromatin, TF binding sites and 

chromatin structure over the past few years have greatly facilitated the identification of hundreds 

of thousands of functional regulatory elements and genetic enhancers (Rivera and Ren, 2013; Xie 

et al., 2013; Zhu et al., 2013). However, these catalogues of epigenomic data are presented as 

two-dimensional, linear maps with no information linking regulatory elements to their target 

gene or loci. The discovery that eukaryotic enhancers can regulate their target genes over 

megabases of intervening DNA sequences (Lettice et al., 2003; Qin et al., 2004), together with 

the demonstration that specific DNA regulatory elements are capable of organizing chromatin 

into domains with distinct expression patterns (Kurukuti et al., 2006; Murrell et al., 2004), 

suggest a role of topological chromatin organization in transcription regulation. Not only so, 

defects in higher-order genome organization have also been implicated in gene misregulation 

leading to human diseases (Misteli, 2010). Hence, large-scale mappings of chromatin 

conformation and long-range chromatin interactions not only provide a 3D perspective of the 

genome, but can also inform about the role of chromatin in transcription regulation in health and 

disease, as well as aid in the functionalization of common disease risk loci. 

 

The past two decades has seen rapid development of various molecular and genomic methods for 

the investigation of chromatin organization. Among the first genomic technique developed is 

DNA adenine methyltransferase (Dam) identification (DamID) (van Steensel and Henikoff, 

2000). In principle, by fusing Dam to a chromatin-binding protein of interest, target DNA loci 

bound by, or in proximity to the chromatin protein, will be specifically methylated. Genomic 

DNA is digested by methylation sensitive restriction enzymes, such as DpnI, followed by 
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ligation of universal adapters. Methylated fragments are then selectively amplified by PCR and 

detected through microarray hybridization. The DamID technique has been extensively applied 

in Drosophila to study chromatin interactions associated with heterochromatin components, 

various transcription factors, Polycomb complex proteins and nuclear lamina proteins at 

kilobase-pair resolution (Moorman et al., 2006; Pickersgill et al., 2006; van Steensel and 

Henikoff, 2000; Tolhuis et al., 2006). To study the remodeling of genome organization by 

nuclear lamins during differentiation, Peric Hupkes and colleagues applied DamID to map 

lamin-associated chromatin contacts in embryonic and terminally differentiated mouse cells, 

uncovering functional reorganization of hundreds of genes in single transcription units and large, 

multigene domains (Peric-Hupkes et al., 2010). As DamID relies on average DNA methylation 

patterns over up to 24 hrs as a readout of proximity (Vogel et al., 2007), it is unable to capture 

the highly fluid and dynamic changes of lamin scaffold organization previously reported in 

embryonic stem cells (Bhattacharya et al., 2009). The use of exogenous fusion proteins also 

precludes DamID experiments on endogenous proteins with native post-translational 

modifications, such as epigenetic histone signatures, which are intimately tied to chromatin 

spatial organization. DamID is therefore suitable for genome-wide analysis of chromatin contacts 

and enhancer-promoter interactions associated with a subset of proteins at low dynamic range. 
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1.6.1 Chromosome Conformation Capture (3C) 

A major breakthrough in chromatin organization research resulted from the development of the 

Chromosome Conformation Capture (3C) assay and its subsequent variants (de Wit and de Laat, 

2012) (Fig 1.10). All 3C variants rely on the proximity ligation concept employed in the “nuclear 

ligation assay” developed in the Seyfred laboratory (Cullen et al., 1993). In 3C, cells are first 

fixed with formaldehyde to covalently link DNA with their associated proteins. Crosslinked 

chromatin is then cut using restriction endonucleases, generating chromatin complexes with 

protruding, sticky-ended DNA strands which are re-ligated under dilute conditions favoring 

intra-molecular ligations. Interaction frequencies between specific loci, represented by ligation 

junctions, are then semiquantitatively analyzed through agarose gel electrophoresis (Dekker et al., 

2002) or quantitatively through qPCR (Splinter et al., 2006; Vernimmen et al., 2007; Würtele 

and Chartrand, 2006). In both methods, restriction fragments are amplified using primers specific 

for predicted ligation junctions. Using this method, Dekker and colleagues constructed a 

population-averaged contact matrix of yeast chromsome 3, from which a 3D model was 

developed (Dekker et al., 2002). 3C was subsequently applied to study the β-globin gene locus, 

uncovering multiple contacts between LCRs with the active β-globin locus in mouse (Tolhuis et 

al., 2002), consistent with an independent RNA-TRAP analysis of the same locus (Carter et al., 

2002). These observations prompted Tolhuis and colleagues to propose that clustering of distal 

enhancers into an “Active Chromatin Hub” constitutes a key requirement for globin gene 

expression. Further work employing the 3C assay have demonstrated looping chromatin 

interactions involving insulator elements (Liu and Garrard, 2005), imprinting control regions 

(ICR) (Murrell et al., 2004) and trans-interactions from different chromosomes (Dhar et al., 2009; 

Spilianakis et al., 2005). 3C has also been successfully applied at several noncoding disease risk 
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loci for target gene identification (Bauer et al., 2013; French et al., 2013; Zhang et al., 2012b), 

providing an important first step towards functionalization of these poorly annotated genomic 

regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

48 
 

1.6.2 Circular chromosome conformation capture (4C) 

To overcome the limitations of 3C in detecting widely-spaced and novel interactions, several 

related strategies, collective termed ‘4C’, have been developed to enable whole-genome 

identification of interaction sites associated with a genomic locus of choice (Lomvardas et al., 

2006; Simonis et al., 2006; Zhao et al., 2006). Regardless of the strategy, all 4C methods rely on 

the formation of a circular DNA template and inverse PCR using primers specific for a genomic 

locus of interest. Crosslinked chromatin is first cut with four-base cutting restriction enzyme and 

ligated as in 3C protocols. Subsequent crosslink reversal results in circular DNA molecules 

which are amenable to inverse PCR amplification. Amplicons representing interacting sites are 

identified through microarray hybridization or sequencing, revealing global chromatin 

interactions associated with the H19 ICR and the olfactory receptor enhancer. Frequent four-base 

cutters are preferred over six-base cutters as four-cutters generate smaller restriction fragments 

which provide higher resolution and are more reliably amplified by inverse PCR (Ohlsson and 

Göndör, 2007). Alternatively, a six-cutter can be used in the initial digestion followed by a four-

cutter digestion after proximity ligation and crosslink reversal to extract ligation junctions for 

circularization and inverse PCR (Simonis et al., 2006). Higher circularization efficiency is 

expected using the latter strategy, as reactions are performed on smaller, naked DNA instead of 

crosslinked DNA. The second digestion step also ensures that ligation junctions are not too large 

to be efficiently amplified by inverse PCR, which is possible when multiple DNA fragments are 

crosslinked and ligated. A modification of this two-step digestion strategy was employed by Ling 

et al. in their “Associated Chromosome Trap” (ACT) assay (Ling et al., 2006). Instead of 

circularization and inverse PCR amplification of interacting sequences, PCR adapters are ligated 

onto DNA fragments after the second digestion and identified through PCR and sequencing. The 
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ACT assay demonstrated that imprinting control regions (ICRs) can physically colocalise with 

their target genes through interchromosomal interactions. Like 3C, 4C can be coupled with ChIP 

and a ChIP-4C technique, termed enhanced-4C (e4C), has been developed to study all 

transcriptional interactions associated with a locus of interest (Schoenfelder et al., 2009). 

Through RNAPII immunoprecipitation, proximity ligation and 4C analysis, a cluster of hundreds 

of transcribed loci were found to be associated with the mouse globin locus, with specific subsets 

of coassociated gene loci bound and coregulated by a lineage-specific TF, Klf1. To overcome 

some of the inherent limitations associated restriction digestion of chromatin, a sonication-based 

4C strategy was developed (Fullwood et al., 2010). Regardless of the exact strategy used, these 

studies collectively exemplified 4C as a versatile “one-versus-all” strategy for targeted dissection 

of global chromatin interaction. Indeed, 4C has been successfully applied to chart the cis-

regulatory circuitry at the FTO locus, unraveling the genetic targets of noncoding variation 

associated with increased risk of obesity in humans (Smemo et al., 2014).  
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1.6.3 Chromosome conformation capture carbon copy (5C) 

5C is an adaptation of 3C for chromatin interaction analysis between multiple genomic elements 

in parallel. Following proximity ligation and crosslink reversal, 3C templates are subjected to 

ligation-mediated amplification (LMA) (Landegren et al., 1988) at high levels of primer 

multiplexing. Each primer pair, specific for one end of a restriction fragment, will anneal 

adjacent to one another at the targeted ligation junction and are subsequently ligated to form a 5C 

library. As each primer carry a universal 5’ end sequence, the 5C library can be amplified with a 

pair of universal primers. Ligation junctions can then be quantified using microarray or high-

throughput sequencing. Comprehensive 5C analyses of the β-globin locus not only recapitulated 

known LCR interactions, but also revealed novel interactions between the LCR and the δ- and γ-

globin genes (Dostie et al., 2006). The 2D interactions maps generated by 5C can be represented 

in 3D using an iterative modeling approach, first demonstrated at the HoxA gene cluster to reveal 

chromatin dynamics during cellular differentiation (Fraser et al., 2009). Subsequent work 

combining 5C with an integrative structure determination platform (Alber et al., 2007) 

culminated in higher-resolution 3D models of the α-globin domain, demonstrating the clustering 

of active genes into chromatin globules (Baù et al., 2011). This strategy was subsequently 

applied to uncovering the basic folding principles of a bacteria genome (Umbarger et al., 2011). 

Several inherent limitations preclude the use of 5C technology for modeling larger genomes. 

When measuring interaction frequencies over many Mbs in complex genomes, the large numbers 

of ligation junctions, coupled with high levels of multiplexing primers, confounds accurate 

ligation junction quantification. Although the use of universal primers in 5C largely avoids 

amplification efficiency issues present in 3C, annealing efficiencies of 5C primers can vary and 

require ligation templates to control for such differences. The preparation of control templates, 
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consisting of numerous minimally-overlapping BAC clones, can be laborious for large genomes. 

5C is thus suited for comprehensive analyses of long range interactions within specific gene 

clusters or small genomes within a couple of Mbs. 
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1.6.4 Hi-C 

Hi-C was developed in 2009 to leverage on the scale of massively parallel DNA sequencing 

technologies to address global chromatin interactions at a genome-wide scale. In Hi-C, 

crosslinked chromatin is fragmented through restriction digestion, leaving overhangs which are 

filled in with biotin-labeled nucleotides. Blunt-ended DNA fragments are ligated under dilute 

proximity ligation conditions and purified after crosslink reversal. DNA is further sheared and 

ligation junctions are pulled down using streptavidin beads. High throughput sequencing of 

ligation junctions following by reference genome mapping will identify interaction between all 

pairs of restriction fragments. Using this catalogue of interacting fragments, Lieberman et al 

constructed the first genome-wide matrix of chromatin contacts in human cells at Mb-scale, 

confirming known principles of genomic organization and revealing distinct spatial 

compartmentalization of open, gene-rich chromatin from inactive and closed domains 

(Lieberman-Aiden et al., 2009). These domains were proposed to be territorially organized in a 

highly compact, knot-free configuration within the nucleus. A subsequent Hi-C study using 

human and mouse cells revealed high pervasiveness and conservation of chromatin domains 

within and between species (Dixon et al., 2012), suggesting evolutionary conservation of 

topological domains as a structural feature of mammalian genomes. In Drosophila, a higher 

resolution (kilobase-pair-scale) Hi-C map has likewise uncovered distinct physical domains 

demarcating genomic activity (Sexton et al., 2012). Notably, analysis of Drosophila chromatin 

interactions at higher resolution (10-100 kb) suggests a hierarchical organization involving 

discrete physical chromatin modules, distinct from the fractal globule conformation proposed 

using the human Hi-C map. 
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One variant of Hi-C has been independently developed to address chromosomal configurations 

in yeast (Duan et al., 2010). In this assay, ligation junctions are circularized following two 

restriction digestion steps as in 4C. A further restriction digestion step allows ligation of adapters 

containing an EcoP15I restriction site. Subsequent EcoP15I digestion releases paired-end tags for 

high throughput sequencing. This strategy was successfully applied to map global chromatin 

interactions at kb-resolution in yeast, leading to a proposed 3D model consistent with the Rabl-

orientation reported in yeast nuclei (Jin et al., 1998). A second strategy, tethered chromosome 

capture (TCC) (Kalhor et al., 2012), was developed to minimize random inter-complex ligations 

by immobilizing chromatin complexes on beads prior to proximity ligation. The improved 

sensitivity allowed the authors to define specific chromosomal regions and quantify their 

propensity to from interchromosomal interactions. 

 

The Hi-C assay can be combined with other genomic techniques to study the link between 

chromatin organization and specific biological processes. As discussed by Wijchers and 

colleague (Wijchers and de Laat, 2011) and substantiated by in silico analysis of human Hi-C 

data (Fudenberg et al., 2011), 3D genome organization may be the primary dictator of the targets 

of cancer-causing chromosomal recombination, suggesting that chromatin conformation directly 

reflects gene expression patterns underlying normal and diseased biological processes.  

Furthermore, by combining Hi-C with genome-wide translocation sequencing, it was 

demonstrated that a direct relationship exist between intra- and interchromosomal translocation 

loci and their proximity in spatial space (Chiarle et al., 2011; Zhang et al., 2012c). A further 

study subsequently revealed a direct relationship between Hi-C chromatin proximity maps and 

genome-wide replication timing profiles (Ryba et al., 2010), suggesting domain 
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compartmentalization as a possible mechanism for regulating DNA replication. Collectively, 

these studies highlight the broad applicability of Hi-C with other genomic techniques to address 

functional relationships between chromatin architecture and specific biological processes 
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Figure 1.10 Summary of 3C-based methods (de Wit and de Laat, 2012) 
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1.6.5 Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)  

The determination of 3D chromatin organizations represents an exciting first step towards 

complete functional annotation of the genome. To understand how DNA sequence and 

associated proteins specify genome organization, ChIA-PET was developed (Fullwood et al., 

2009). In this assay (Fig 1.11), crosslinked chromatin is sheared by sonication and enriched for 

specific protein factors through immunoprecipitation. Biotinylated half-linkers containing MmeI 

restriction sites are added to blunt-ended DNA fragments to facilitate proximity ligation. 

Following crosslink reversal, DNA fragments are restriction digested to release ligation junctions, 

which are isolated using streptavidin-coupled magnetic beads. Through PCR amplification, high-

throughput sequencing and reference genome mapping of ligation junctions, ChIA-PET allows 

the detection of DNA loci tethered together by the protein factor of interest and connected 

through proximity ligation. In a proof-of-concept study, ChIA-PET has been applied to analyze 

chromatin interactions associated with oestrogen receptor α in human breast adenocarcinoma 

cells (Fullwood et al., 2009). The identification of all ERα-associated chromatin interactions 

allowed the mapping of an extensive network of intrachromosomal interactions involving gene 

promoters, suggesting a global mechanism through which ERα organizes higher-order chromatin 

structure to direct target gene expression.  

 

The role of chromosomal organization in global transcriptional regulation was elucidated in a 

subsequent ChIA-PET study which mapped long-range chromatin interactions associated with 

RNA polymerase II (RNAPII) in five human cell lines (Li et al., 2012). Widespread promoter-

centered chromatin contacts were uncovered which further aggregated into multigene complexes, 

suggesting a chromatin structural framework for coordinated transcription, in support of the 
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postulated “transcription factory” model (Cook, 1999). Furthermore, in an independent study of 

H3K4me2-associated chromatin interactions (Chepelev et al., 2012), a large proportion (56%) of 

interactions were formed between promoters exhibiting coexpression, suggesting that subnuclear 

chromatin organization provides a structural framework for transcription regulation. 

 

Insights into chromatin organization beyond the 30 nm fiber have been provided by the 

identification of various scaffolding proteins, such as SATB, CTCF, condensin  and the mediator 

complex (Cai et al., 2003; Gartenberg and Merkenschlager, 2008; Kagey et al., 2010; Phillips 

and Corces, 2009). Among these factors, CTCF has been recognized as the “master” regulator of 

chromatin architecture. ChIA-PET has been applied to map the CTCF chromatin interactome in 

mouse embryonic stem cells (Handoko et al., 2011), revealing novel intra- and interchromosomal 

interactions. Through association of CTCF-associated chromatin loops with their underlying 

epigenetic signatures, five distinct interaction domains were uncovered, each specifying a unique 

transcriptional status, suggesting interplay between architectural proteins and transcriptional 

machinery for functional chromatin compaction. An investigation of enhancer-promoter 

interactions through cohesin-associated chromosome structures further revealed that transcription 

of cell identity genes, driven by super-enhancers, are control by local chromosome structure 

(Dowen et al., 2014).  
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Figure 1.11 Schematic of the ChIA-PET methodology (Zhang et al., 2012a) 
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1.7 Embryonic endoderm development 

1.7.1 Multiple signaling levels regulate endoderm formation 

The definitive endoderm (DE) is one of the three primary germ layers which is formed during 

gastrulation (Lu et al., 2001). DE is a physiologically important germ layer as it gives rise to a 

diverse array of cell types, including epithelial cells of the digestive and respiratory systems, as 

well as multiple organs such as the liver, pancreas, thymus, thyroid and lungs. As a result of this 

versatility in organ specification, disruptions in endodermal organ functions lead to multiple 

human diseases afflicting millions of individuals each year. A thorough understanding of 

endoderm organ formation, from descriptive embryology, signaling pathways, transcription 

factor networks and cis-regulatory systems is needed to understand the genetic basis of human 

congenital diseases, as well as to facilitate efforts in endoderm tissue engineering for 

transplantation based therapies.   

 

Fate-mapping and embryological experiments in model organisms such as mouse, chick Xenopus 

and zebrafish have revealed the cellular aspects of endoderm emergence (Fig 1.12). Despite 

differences in morphological arrangements of the prospective germ layers, the underlying 

molecular pathways culminating in a primitive gut tube formation are highly conserved. In all 

amniote embryos, gastrulation begins when a cluster of cells at the posterior end of the epiblast 

ingress to form the primitive streak (PS), which marks the site of further cellular migration 

culminating in mesoderm and endoderm formation (Mikawa et al., 2004). Specifically, epiblast 

cells at the anterior end of the primitive streak transit through an “epithelial-mesenchymal” 

process and form the middle (mesoderm) or outer (definitive endoderm) layer of the gastrula 

(Shook and Keller, 2003). Definitive endoderm is then patterned along the anteroposterior axis 
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by signals arising from the surrounding mesoderm, which specify the naïve endoderm to distinct 

foregut, midgut and hindgut domains (Zorn and Wells, 2009). These committed domains are 

further specified into various organ-specific lineages, ultimately contributing to the formation of 

organs along the anterior-posterior body axis, such as the esophagus, lungs, stomach, liver, 

pancreas and intestines (Grapin-Botton and Melton, 2000). 

 

In vivo genetic perturbation and explant studies have provided much insights into the extrinsic 

signals required for endoderm lineage specification (Zorn and Wells, 2009). The Nodal signaling 

pathway is central to body axes specification as well as mesoderm and endoderm formation in 

frog, zebrafish, mouse and chick (Schier, 2003). Nodal signaling ligands belong to the TFBβ 

family of secreted growth factors, and signal through the transmembrane serine-threonine kinase 

receptors Alk4 or Alk7. Phosphorylation by Alk4/7 results in activation of the cytosolic proteins 

Smad2/3 which, together with Smad4, lead to stimulation of endodermal genes such as Foxh1 or 

Mixl1. As a result, loss of function components of the Nodal signaling pathway result in 

compromised endoderm formation (Dunn et al., 2004; Liu et al., 2004; Shen, 2007). Consistent 

with these studies, inactivation of the Nodal antagonist Lefty2 results in excessive endoderm 

formation (Meno et al., 1999). Early studies investigating signals required for Nodal expression 

revealed that mouse embryos lacking Nodal or β-catenin do not form primitive streak, suggesting 

an involvement of the canonical Wnt pathway in endoderm induction (Huelsken et al., 2000). 

Subsequent studies revealed that Wnt signaling is required to maintain Nodal expression and 

promote endoderm formation (Ben-Haim et al., 2006; Fan et al., 2007). 
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Nodal signaling induces the endodermal lineage through the expression of a network of 

transcription factors, including Sox17, Eomes, Gata4/6 and the Mix-like homeobox genes(Zorn 

and Wells, 2007). Collectively, these genes result in a commitment to an endodermal fate while 

separating endoderm and mesoderm lineages. Global expression profiling of endoderm precursor 

cells suggested that these genes are wired within multiple complex feedback loops, influencing 

each other’s expression and harboring distinct and overlapping target genes (Brown et al., 2008; 

Tamplin et al., 2008).  
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Figure 1.12 Fate maps of Xenopus, zebrafish and mouse (Zorn and Wells, 2009) 

Fate mapping studies in (a) Xenopus, (b) zebrafish and (c) mouse have delineated the cell types 

in the embryo giving rise to endoderm. 
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1.7.2 Endoderm patterning 

Following lineage commitment, the flat sheet of endodermal germ cells undergoes a series of 

morphogenetic movements, originating from the anterior and posterior ends, which converge at 

the yolk stalk to form a gut tube (Grapin-Botton and Melton, 2000). Studies in Xenopus and mice 

revealed that by the end of gastrulation, maternal Wnt/β-catenin signals at the anterior domain 

induces expression of the anterior transcription factors Hhex (Zorn et al., 1999), Mixl1 (Hart et 

al., 2002) and Foxa2 (Dufort et al., 1998). These TFs are required for foregut development and 

their differential expression at the anterior domain result in the establishment of a broad anterior-

posterior domain boundary which specifies foregut development at the anterior end. This initial 

boundary is further reinforced and maintained by graded and overlapping patterning signals, 

including FGF, Wnt and BMP ligands, which are secreted from the surrounding mesodermal 

tissues (Tam et al., 2007). At the transcriptional level, FGF4 signaling induces Cdx2 expression, 

required for hindgut specification, while repressing Hhex and Foxa2 (Dessimoz et al., 2006). 

Similarly, experiments in Xenopus and zebrafish established the role of Wnt signaling in 

promoting hindgut development and blocking foregut fate (Goessling et al., 2008; McLin et al., 

2007). Conversely, Wnt signaling must be repressed in the anterior endoderm by the Wnt 

antagonist Sfrp5 to maintain a foregut identity (Fig 1.13). At this stage, each anterior-posterior 

domain has already acquired distinct developmental potentials, evidenced by observations that 

the foregut has a higher potential to form hepatic tissues compared to hindgut cells (Fukuda-

Taira, 1981), while the hindgut is incompetent to respond to posterior foregut pancreatic 

induction by retinoid acid (Kinkel et al., 2008). Cellular signals and TFs required for domain 

induction are well-established, it is unclear how this process is regulated at the transcription 

regulation level, and current knowledge of the cis-regulatory elements driving this process are 
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lacking. Given that transplantation-based therapies based on in vitro derivation of endoderm 

organs have great therapeutic potential, and that human congenital malformations frequently 

afflict multiple endodermal organs simultaneously, there are growing interests in unraveling the 

molecular mechanisms underlying endoderm tissue and organ development.  
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Figure 1.13 Schematic illustration of endoderm patterning (Zorn and Wells, 2009)  

Towards the end of gastrulation, endoderm domains expressing distinct TFs are patterned by 

differential signaling pathways, specifying foregut, midgut and hindgut progenitor domains.  
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1.7.3 Endoderm induction from embryonic stem cells 

Human embryonic stem cells (hESCs), with their unlimited potential for self-renewal and ability 

to form all human cell types, has been widely touted as a potential cure for a wide range of 

diseases, including those affecting endoderm-derived organs such as diabetes, biliary atresia and 

ulcerative colitis. Efforts focusing on differentiation of hESCs into endoderm have relied on 

lessons learnt through in vivo genetic perturbations and explants approaches using model 

vertebrate organisms (Bernardo et al., 2011; Tam and Loebel, 2007; Zorn and Wells, 2009). 

TGFβ signaling through Nodal/Activin could induce an endodermal cell fate from hESCs just as 

they do in mouse and Xenopus embryos (D’Amour et al., 2005; Hudson et al., 1997; Tada et al., 

2005). Strikingly, the timing of ESC-directed endoderm differentiation by Activin, as revealed 

by molecular marker expression, closely mimics that in mouse gastrulation. Furthermore, as in 

Xenopus embryos, low levels of Activin (1-10ng/ml) induced a mesoderm fate, while high (10-

100ng/ml) doses induced DE formation.  These observations suggest that a deep understanding 

of endoderm development in model organisms can help guide efficient differentiation of hESCs 

through each developmental juncture into endoderm. Based on this principle, several in vitro 

differentiation methods have been developed to varying degrees of success based on induction 

efficiencies, yielding a mixture of DE and other cell lineages (Cheng et al., 2012; D’Amour et al., 

2005; Touboul et al., 2010). These mixed induction outcomes may arise from a lack of 

understanding of the precise involvement of each signal in DE induction, leading to inefficient 

induction or suppression of alternative lineages at each developmental branchpoint. For example, 

although BMP, FGF, Wnt and VEGF have been used, in addition to TFGβ pathway activation, 

for DE differentiation, these signals are also involved in mesoderm formation (Cheng et al., 2012; 

Green et al., 2011; Touboul et al., 2010). As a heterogeneous population of DE cells compromise 
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subsequent generation of endoderm organs (McKnight et al., 2010), it is imperative that signals 

at each step of endoderm formation and patterning be accurately defined. Through systematic 

provision and blockage of these signals in hESCs, considerable progress have been achieved in 

endoderm specification and patterning (Loh et al., 2014). These advances have enabled in-depth 

studies of global chromatin structure, as well as gene expression and TF occupany in these 

transient developmental cell states (Loh et al., 2014).    
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1.8 Aim and objectives of thesis 

As discussed above, enhancers represent the most abundant and cell-specific elements among all 

known TRE classes. These properties, coupled with recent findings that a majority of genetic 

variants associated with human complex diseases reside on enhancers (Maurano et al., 2012), 

fueled much motivation and interest in enhancer discovery and annotation. These pursuits are 

further facilitated by the recent availability of next-generation sequencing technologies and novel 

molecular assays, such as RNA-seq, ChIP-seq and DNase-seq. These assays make it possible for 

global investigations of epigenomic profiles and identification of transcriptional enhancers.    

 

In this thesis, we aim to identify transcriptional enhancers in a genome-wide and cell-type 

specific manner, and make use of these predicted enhancers to study the role of cis-regulation in 

human endoderm development and disease. To achieve this, the main objective involves 

genome-wide profiling of the transcriptome and histone modifications in human endoderm at 

various stages of development. As vertebrate endoderm formation and patterning constitutes one 

of the earliest events during human gestation, and are largely inaccessible for detailed molecular 

studies, we will use an in vitro hESC differentiation model which recapitulates marker gene 

expression characteristic of endoderm. With this, we will examine transcriptomic profiles and 

underlying chromatin states as hESCs transit through defined developmental stages, giving rise 

to endoderm and downstream regional antecedents of endodermal organs. Although much 

progress have been made in elucidating the signaling and TF network regulating endoderm 

formation, how these signals and TFs are coordinated for  endoderm specification are largely 

unknown. As enhancers function as integrated binding platforms for lineage-specifying TFs and 

signaling effectors, we will also investigate the coordination between these elements and factors 
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in regulating endoderm development. We also aim to investigate whether the predicted 

enhancers are enriched in variants contributing to complex diseases afflicting endodermal organs. 

Lastly, we aim to set up chromatin interaction analysis assays to study the general principles 

underlying enhancer-promoter interactions, which will aid in elucidating target genes of 

enhancers harboring disease-causing risk variants.  

 

During the course of this work, two independent groups have similarly performed human 

endoderm epigenome mappings (Gifford et al., 2013; Xie et al., 2013). Unlike this study, Xie et 

al profiled promoter chromatin remodeling, revealing the role of repressive Polycomb group 

proteins in endoderm specification. Gifford et al claimed to comprehensively map promoter and 

enhancers from all three hESC-derived germ layers, including endoderm. However, the reported 

endoderm enhancers were enriched for neural (ectoderm-derived) functions (Loh et al., 2014), 

suggesting that those elements were not endoderm-specific. This study therefore represented the 

first successful effort in high-quality endoderm enhancer discovery. Using these predicted 

enhancers we sought to understand the role of distal regulatory elements in integrating extrinsic 

signals and master regulatory TFs for endoderm lineage specification. We also aimed to test 

whether these elements are enriched for causal variants of complex diseases afflicting endoderm-

derived organs. A crucial problem in enhancer research involves target gene identification, as 

enhancer function is typically quite insensitive to distance to their target loci. The final objective 

of this work is to facilitate enhancer target gene identification through the mapping of all 

promoter-associated chromatin interactions in human cells.  
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CHAPTER 2 MATERIALS AND METHODS 

2.1 Cell culture 

hESCs were propagated on matrigel- (BD Biosciences) coated plates in mTeSR1 media 

(Invitrogen). mTeSR1 media was refreshed every 24 hrs, and cultures were visually inspected 

daily for spontaneous differentiation. Differentiated cell clumps were removed thorough scraping. 

During serial passaging, culture media was aspirated and cells were incubated with collagenase 

IV at 37°C for 5 min. Subsequently, cells were scraped into clumps and transferred at a split ratio 

of 1:3 onto new coated plates. PS, DE, AFG, PFG and MHG cells were differentiated from 

hESCs (Loh et al., 2014) and were contributed by Kyle Loh and Dr. Lay Teng Ang (Genome 

Institute of Singapore). Details of the differentiation protocol is described in Chapter 2.2. 

 

MCF7 and K562 cells were obtained from the American Type Culture Collection (ATCC). 

MCF7 cells were grown in DMEM/F12 media (Invitrogen) supplemented with 5% FBS 

(Invitrogen), 10 U/ml pencillin (Invitrogen), 100 μg/ml streptomycin (Invitrogen) and 4 mM L-

glutamine (Invitrogen). Cells were maintained at 37°C, 5% CO2 and passaged at 80% confluency. 

During passaging, cells were detached from culture vessel using 0.25% trypsin/0.03% EDTA 

solution at 37°C for 5 min, rinsed with fresh growth media and seeded into new culture vessels at 

a split ratio of 1:5. K562 cells were grown in RPMI 1640 media (Invitrogen) supplemented with 

5% FBS (Invitrogen), 10 U/ml pencillin (Invitrogen), 100 μg/ml streptomycin (Invitrogen) and 

4mM L-glutamine (Invitrogen). Cells were maintained at 37°C, 5% CO2 and passaged when 

confluent (8×105 cells/ml). During passaging, cells were centrifuged at 100 g for 5min and 

resuspended to 2×105 cells/ml in culture media. 
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2.2 DE specification and anterioposterior patterning from hESCs 

Confluent hESC cultures were passaged as small clumps with collagenase and seeded onto 

Matrigel coated plates. After 1-2 days of recovery in mTeSR1, hESCs were washed with F12 

(Gibco) and were treated for 24 hrs with Activin A (100 ng/mL, R&D Systems), CHIR99021 

(2 µM, Stemgent), and PI-103 (50 nM, Tocris) in CDM2 to specify APS. Afterwards, cells were 

washed (F12), then treated for 48 hours with Activin A (100 ng/mL), LDN-193189/DM3189 

(250 nM, Stemgent), and FGF2 (10 ng/mL, Invitrogen) in CDM2 to generate DE by day 3. 

Media was refreshed every 24 hrs. 

 

Day 3 DE was patterned into AFG, PFG, or MHG by 4 days of continued differentiation in 

CDM2. DE was washed (F12), then differentiated as follows: AFG, A-83-01 (1 µM, Tocris) and 

DM3189 (250 nM); PFG, RA (2 µM, Sigma) and DM3189 (250 nM); MHG, BMP4 (10 ng/mL, 

R&D Systems), CHIR99021 (3 µM), and FGF2 (100 ng/mL), yielding day 7 anterioposterior 

domains. To derive specific PFG organ domains (in CDM2 + KnockOut Serum Replacement 

(KOSR, 10% v/v, Gibco)), DE was washed, treated with DM3189 (250 nM), IWP2 (4 µM, 

Stemgent), PD0325901 (500 nM, Tocris), and RA (2 µM) for 1 day, washed (F12), and then 

differentiated 3 more days for pancreatic or hepatic induction. Pancreatic differentiation: Activin 

A (10 ng/mL), DM3189 (250 nM), IWP2 (4 µM), PD0325901 (500 nM), RA (2 µM), and 

SANT1 (150 nM, Tocris). Hepatic differentiation: A-83-01 (1 µM), BMP4 (10 ng/mL), IWP2 (4 

µM), and RA (2 µM). Day 7 pancreatic progenitors were further differentiated towards endocrine 

progenitors by treatment with RA (2 µM), DM3189 (250 nM), and DAPT (10 µM, Tocris) for 2 

days in CDM2 + KOSR (10%). Media was refreshed every 24 hours for all conditions.  
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CDM2 media consist of the following: 50% IMDM (Gibco) and 50% F12 (Gibco), supplemented 

with 5 mg/mL polyvinyl alcohol (Sigma, A1470 or Europa Bioproducts, EQBAC62), 1% v/v 

chemically-defined lipid concentrate (Gibco, 11905-031), 450 µM monothioglycerol (Sigma, 

M6145), 0.7 µg/mL insulin (Roche, 1376497), and 15 µg/mL transferrin (Roche, 652202). 

 

2.3 RNA-seq and data analysis 

Prior to RNA extraction, cell culture media was aspirated and cells washed with PBS. Total 

RNA was extracted using an RNeasy Mini Kit (Qiagen) coupled with on-column DNase (Qiagen) 

treatment according to the manufacturer’s protocols. RNA concentration and quality was 

assessed using a Bioanalyzer (Agilent). 1μg total RNA with RIN > 9.0 was used for RNA-seq 

library construction with a TruSeq RNA Library Preparation Kit (Illumina) according to the 

manufacturer’s instructions. Briefly, mRNA purified from total RNA was fragmented to a size 

range of 300 to 500 bp and reverse-transcribed. The resulting cDNA fragments were blunt-ended 

and 3’-adenylated to allow sequencing adapter ligation. Following adapter ligation, libraries 

were PCR amplified for 15 cycles. Library size and concentration were validated by on-chip 

electrophoresis (Bioanalyzer, Agilent) and qPCR (Lightcycler, Roche). High-throughput 

sequencing was performed on a Hi-Seq2000 machine (Illumina) for 1×36+7 cycles (single read, 

36 bp for insert, 7 bp for adapter barcode). Preliminary data analyses were performed using the 

Illumina sequencing analysis software CASAVA 1.8, including image analysis, base calling, 

cluster filtering, library demultiplexing and sequence alignment. Aligned reads were used as 

input into DESeq (Anders and Huber, 2010) for normalization and differential expression 
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analysis. Gene expression levels were normalized as RPKM (reads per kilobase of exon per 

million mapped reads) to account for gene length differences, and genes with RPKM < 1 in all 

cell types were regarded as not expressed and excluded from subsequent analyses. For each gene, 

RPKM values were normalized as percentage of the highest value across all cell types to allow 

expression profile comparison among genes with widely differing expression levels. Normalized 

expression values were clustered using the HOPACH package in Bioconductor (van der Laan 

and Pollard, 2003) to identify stage-specific transcripts. Expression heatmaps were generated 

using Java Treeview (Saldanha, 2004) and Genepattern software (Broad Institute).  

 

2.4 Reverse-transcription quantitative-PCR 

Cells were harvested and total RNA extracted using an RNeasy Mini Kit (Qiagen) as described. 

1 μg total RNA was reverse-transcribed into cDNA using Superscript III (Invitrogen). cDNA 

levels for specific genes were quantified by quantitative PCR using gene-specific primers 

(Appendix I) and detected on a LightCycler 480 instrument (Roche). Gene expression levels 

were normalized to the housekeeping gene PBGD for comparison between different cDNA 

samples.  

 

2.5 Chromatin Immunoprecipitation (ChIP) and sequencing 

Adherent cells were washed with PBS and cross-linked in 1% formaldehyde for 10 mins at RT. 

Cross-linking is quenched with 0.2 M glycine for 5mins, and cells were collected by scraping 

and centrifugation. Cells were further washed twice with ice-cold PBS supplemented with 

Complete Protease Inhibitor (Roche), pelleted and stored at -80°C. Prior to immunoprecipitation, 
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cell pellets were thawed on ice, lysed in 1% SDS lysis buffer (50 mM HEPES-KOH pH 7.5, 150 

mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 1% SDS with 1X Complete 

Protease Inhibitor) twice and sonicated for 10 cycles at high intensity (30 s on, 60 s off) using a 

Bioruptor sonicator (Diagenode). To assess sonication efficiency, a small aliquot of sonicated 

chromatin was digested with Proteinase K (1 hr, 50°C), column-purified and electrophoresed to 

ensure a fragment size of 100 – 300 bp. Prior to immunoprecipitation, sonicated chromatin was 

diluted ten times in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 

mM Tris-HCl pH 8.1, and 167 mM NaCl) to 0.1% SDS concentration. Diluted chromatin was 

centrifuged (13,200 rpm, 10 min) to remove cellular debris and pre-cleared overnight with 

Protein G Dynabeads (Invitrogen). Concurrently, for each individual ChIP, 100 μL of Protein G 

Dynabeads was washed twice (PBS + 0.1% Triton X-100), complexed with ChIP-qualified 

antibody overnight at 4°C, and washed thrice to yield antibody-bead complexes. Pre-cleared 

chromatin was combined with antibody-bead complexes and incubated overnight (4°C) for 

immunoprecipitation. Antigen-antibody-bead complexes were washed twice respectively in low 

salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 150 mM 

NaCl), high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 

500 mM NaCl), LiCl wash buffer (10 mM Tris pH 8.0, 1 mM EDTA, 0.25 M LiCl, 1% Nonidet 

P-40) and TE buffer. Antibodies were eluted from beads and formaldehyde cross-linking was 

reversed overnight by mild heating (65°C), and chromatin was sequentially treated with RNase 

and Proteinase K before final column purification. The final concentration of 

immunoprecipitated chromatin was quantified by a PicoGreen assay (Invitrogen). To ensure 

specificity of the ChIP protocol, enrichment of ChIP DNA was quantified by ChIP-qPCR with 

gene-specific primers and detected on a LightCycler 480 instrument (Roche). Antibodies used 
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for ChIP are anti-H3K4me2 (ab32356), anti-H3K27ac (ab4729), anti-H3K4me3 (ab8580) from 

Abcam, and anti-H3K27me3 (07-449) from Millipore/Upstate.  

 
10 ng of ChIP DNA was used for sequencing library construction using a ChIP-seq DNA sample 

Prep Kit (Illumina) with modifications. Briefly, DNA was end-repaired, 3’-adenylated, ligated 

with Illumina adapters and PCR amplified (15 cycles) with Phusion High Fidelity DNA 

polymerase (Finnzymes). Amplified fragments were purified and size-selected using AMpure 

beads (Beckman Coulter). Library size was verified by on-chip electrophoresis (Agilent 

Bioanalyzer) and library concentration quantified by qPCR. High-throughput sequencing was 

performed on a Hi-Seq 2000 system (Illumina) for 1 x 36+7 cycles (single read, 36 bp of insert 

of a multiplexed library, 7 bp for adapter barcode identification). Each library was sequenced to 

a depth of at least 37 million reads.  

 

2.6 ChIP-seq data analysis 

Sequenced reads were mapped to the hg19 human reference genome using Bowtie (Langmead et 

al., 2009), allowing up to 3 bp mismatches and discarding reads mapping to more than 1 

genomic locus. Each aligned fragment was extended by 200 bp and input-normalization and peak 

calling was performed using HOMER (Heinz et al., 2010). Histone modification peaks were 

called using a 2 kb peak width, without subtraction of local surrounding background. Enrichment 

fold changes were computed against input controls and peaks were identified based on > 4-fold 

enrichment. Enhancer peaks were considered gene-distal based a minimum 2 kb distance from 

annotated TSS. Enhancer centers were defined using the “Nucleosome Free Regions” (nfr) 

feature for peak calling in HOMER, which centralizes enhancer peaks on local depletions (dips) 
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in histone modification, signifying nucleosome-free regions which facilitates TF binding. Cell 

type-specific peaks were identified using k-means clustering with Cluster 3.0 software (de Hoon 

et al., 2004) based on Euclidean distance. Histone modifications on promoters were evaluated by 

calculating ChIP-seq tag counts within a 2 kb window, normalized to corresponding tag counts 

in the input dataset. Motif enrichment was performed by comparing cell-type-specific peak 

sequences with 50,000 genomic fragments with same length and GC content of the peaks. 

Enrichment of gene ontology terms was calculated using GREAT (McLean et al., 2010) using 

the “basal plus extension” association rule, with maximal extension length of 200kb. ChIP-seq 

tracks were visualized using the Integrative Genomics Viewer from the Broad Institute 

(Thorvaldsdottir et al., 2012). 

 

2.7 Gene Set Enrichment Analysis (GSEA) 

The GSEA software (Subramanian et al., 2005) was downloaded from 

http://www.broadinstitute.org/gsea. GSEA accepts as input 1. Gene expression profile obtained 

from microarray or RNA-seq and 2. A gene set obtained based on prior biological knowledge. 

The GSEA algorithm will determine whether genes in the provided gene set are randomly 

distributed throughput the supplied gene expression profile, or preferentially enriched in the top 

or bottom in terms of expression level. Here, we used as gene expression profile microarray data 

of hESCs induced towards endodermal differentiation by Activin treatment (Bernardo et al., 

2011). The gene set consisted of the genes proximal to the top 500 putative DE enhancers by 

H3k27ac enrichment levels. These two inputs were used for GSEA analysis using default 

settings. Briefly, the gene set is ranked using the Signal2Noise metric, which ranks each gene 

based on the difference of the means scaled by standard deviation: 
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Signal2noise(gene) = 

 

Where μA represents the mean of the expression level of gene g of all replicates under Activin 

treatment, and μB represents the mean of expression level of gene g of all replicates in untreated 

cells. Likewise, σA represents standard deviation of gene g among all replicates under Activin 

treatment, while σB represents standard deviation in untreated cells. 

 

With these two inputs, GSEA ranks the gene list by expression level, and computes an 

enrichment score (ES) which reflects the extent to which putative DE enhancer-proximal genes 

is overrepresented at the extremes (highest and lowest) of the gene list. ES is calculated through 

a running-sum statistic through the gene list, increasing when a DE enhancer-proximal gene is 

encountered in the gene list, and decreasing when not (Subramanian et al., 2005). A p value is 

then calculated using a phenotype-based permutation test method. Specifically, genes are 

randomly assigned to either “Activin-treated” or “untreated”, re-ranked and an ES calculated. 

This process is repeated for 1,000 permutations, generating a histogram of permutated, null ESs. 

P value of the observed ES is then estimated relative to this null ES distribution.  

 

2.8 Putative functional variant identification 

To look for associations between MHG enhancers and known ulcerative colitis risk 

polymorphisms, 108 ulcerative colitis risk SNP IDs, together with their respective genomic 

coordinates and population of origin, were obtained from the NHGRI GWAS catalogue 
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(http://www.genome.gov/gwastudies) (Annex III) and used as input in the FunciSNP software 

(Coetzee et al., 2012). All known variants within a window size of 500 kb from each ulcerative 

colitis risk SNP were extracted from the relevant population from the 1000 Genomes database 

and merged with MHG-specific enhancers to identify overlaps. R2 and D’ values were calculated 

for each SNP residing within an MHG enhancer.  

 

2.9 ChIA-PET library construction 

RNAPII and CTCF ChIP was performed as described above in K562 and hESC respectively. 

Antibodies used were RNAPII 8WG16 monoclonal (Covance mms-126R) and anti-CTCF 

polyclonal (Millipore 07-729). For each library, 500 ng of ChIP-enriched chromatin fragments, 

tethered to antibody-conjugated Protein G Dynal beads, were end-repaired using T4 DNA 

polymerase (Promega) and washed thrice with ChIA-PET wash buffer (10 mM Tris-HCl, 1 mM 

EDTA, 500 mM NaCl). Each sample was divided into two equal aliquots and ligated separately 

with Linkers A and B respectively using T4 DNA ligase (Fermentas). These two linkers share 

the same nucleotide sequences except for 4 nucleotides in the middle (Linker A - TAAG; Linker 

B - ATGT) which serve as a nucleotide barcode for linker identification. Following overnight 

ligation at 16°C, the two aliquots were washed, 5’-phosphorylated using DNA polynucleotide 

kinase (NEB) and eluted in elution buffer (10 mM Tris-HCl, 1 mM EDTA, 1% SDS). To 

minimise inter-ligation between different chromatin complexes, proximity ligation is carried out 

in dilute conditions (1.2 ml chromatin in 10 ml ligation reaction). ChIA-PET constructs were 

extracted from ligation products by MmeI digestion, amplified using PCR (18 cycles), and 

purified by phenol-chloroform extraction and isopropanol precipitation. To check for successful 
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library amplification, purified PCR products were electrophoresed in a 6% TBE gel (Invitrogen) 

and stained with SYBR Green I for 10min. The 223 bp band, representing amplified ChIA-PET 

ligation fragments, was gel purified, and sequenced using a Hi-Seq 2000 instrument (Illumina). 

ChIA-PET data analysis was performed by Dr Li Guoliang using the ChIA-PET tool (Li et al., 

2010).  

 

2.10 Fluorescence In Situ Hybridization (FISH) 

MCF7 cells were harvested by trypsinization, transferred to 15ml falcon tubes and swelled in 

hypotonic conditions (0.75 M KCl) for 15 min at 37°C. Cells were fixed with methanol/acetic 

acid (3/1), dropped onto glass slides and aged overnight at 37°C. Following overnight 

propagation of E.Coli harbouring BAC DNA of interest, plasmid DNA was extracted 

(Nucleobond PC500 Plasmid Purification Kit, Macherey-Nagel) and labelled by nick translation 

(Nick Translation Labelling Kit, ENZO Life Sciences) in the presence of biotin-16-dUTP or 

digoxigenin-11-dUTP (Roche). In the presence of 1mg/ml of Human Cot1 and Salmon sperm 

DNA (Invitrogen), labelled BAC clones were resuspended to 5 ng/ml in hybridization buffer 

(PBS, 2×SSC, 10% dextran sulphate, 50% formamide). Prior to hybridization, MCF7 nuclei on 

slides were digested with (0.005% pepsin (Sigma), 0.01 M HCl) at 37°C for 3min followed by 

fixation with 1% formaldehyde (Merck - Calbiochem) and dehydrated through a 70%-80%-100% 

ethanol series. Labelled probes were denatured at 75°C for 5 min and hybridized to aged slides 

(described above) at 37°C overnight. Post-hybridization washes were performed twice at 45°C in 

2×SSC, 50% formamide for 7 min each followed by 2 washes in 2×SSC at 45°C for 7 min each. 

Slides were revealed with avidin-conjugated fluorescein isothiocyanate (FITC) (Vector 

Laboratories, CA) for biotinylated probes and anti-digoxigenin-Rhodamine for digoxigenin-
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labeled probes (Roche). After washing, slides were mounted with vectashield (Vector 

Laboratories) and observed under an epifluorescence microscope (ZEISS, Image.Z2) and under 

63× lens magnification. Between 300 – 800 interphase nuclei were analyzed for each probe mix. 

Probe signals were visualized and analysed using metafer4 software. A center-to-center distance 

of 1μm was used as cut-off for colocalization analysis. BACs used are listed in APPENDIX II. 

 

2.11 RNAPII immunofluorescence staining combined with DNA FISH 

MCF7 cells were grown to 70% confluency in hybridization chambers and fixed with 4% 

paraformaldehyde (PFA) (Sigma-Aldrich) for 15min at room temperature (RT) followed by 

permeabilization with 0.04% Triton X (Promega) for 30min at RT. Prior to staining, cells were 

blocked with 10% normal donkey serum (Millipore) for 1 hr at RT and incubated with mouse 

RNA polymerase II 8WG16 monoclonal antibody (Covance, 1:1000) overnight at 4°C. Cells 

were incubated with Cy3-conjugated donkey anti-mouse IgG polyclonal antibody (Millipore, 

1:1000) for 1hr at RT, after which slides were mounted with ProLong Gold antifade reagent 

containing DAPI (Invitrogen). For combined RNAPII staining-DNA FISH, RNAPII-stained cells 

were post-fixed in 4% PFA for 10 min at RT after secondary antibody incubation and 

permeabilized in 0.5% Triton X for 10 min at RT. Cells are subsequently dehydrated through a 

70%-80%–100% ethanol series, rehydrated with 2×SSC and denatured in 2×SSC/50% 

formamide at 80°C for 40 min. Prior to FISH probe hybridization, cells were incubated in 2×SSC 

for 5min at 4°C and permeabilized in 2×SSC/0.5% Triton X for 5 min at 4°C. Probe preparation 

and hybridization for FISH were performed as described for DNA-FISH. Association of RNAPII 

foci with promoter-promoter interaction loci was visualized with a Carl Zeiss Meta LSM 
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confocal microscope with 63x optical lens and interslice distance (Z-axis) of 0.4mm. Data was 

analysed using LSM image browser and percentage overlap was determined by manual counting. 

 

2.12 Zebrafish enhancer reporter assay 

Putative enhancer elements were PCR-amplified from 100ng human genomic DNA (Promega) 

using Phusion High-Fidelity DNA polymerase master mix (Thermo Scientific) and enhancer-

specific PCR amplification primers (APPENDIX I). Amplification products were 

electrophoresed in a 1% agarose gel for size verification, and PCR conditions were optimized to 

ensure only a single PCR band per amplification reaction was observed. Successfully amplified 

enhancers were cloned into pENTR-TOPO vectors (Invitrogen) according to manufacturer’s 

instructions, and purified using a plasmid elution kit (Qiagen Miniprep kit). Positive 

transformants were screened using colony PCR with Taq DNA polymerase (NEB). pENTR-

TOPO vectors contain recombination sites derived from bacteriophage λ to facilitate 

recombination with the ZED vector through the Gateway® Technology (Landy, 1989). ZED 

vector was a kind gift from Dr. José Bessa (Bessa et al., 2009). LR recombination was performed 

using Clonase enzyme mix (Clontech) and positive recombinants were identified through BglII 

restriction digestion and further verified by single-pass sequencing. Tol2 transposase mRNA was 

prepared by in vitro transcription using the mMESSAGE mMACHINE kit (Life Technologies) 

using Tol2 cDNA. Tol2 cDNA was a kind gift from Dr. Cathleen Teh (IMCB, A*STAR 

Singapore). 
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For embryo microinjection, injection needles were prepared by pulling borosilicate glass 

capillaries (O.D.: 1.0 mm, I.D.: 0.58 mm) using a micropipette puller (P-97, Sutter Instruments) 

with the following settings: Heat=560, Pull=30, Vel=90, Time=80. The injection mix was 

prepared by mixing 2.5 ul enhancer DNA (80 ng/ul), 5 ul Tol2 transposase mRNA (50 ng/ul) and 

2.5 ul phenol red solution (0.1% in PBS, Sigma). 1nl of the injection mix was injected into each 

zebrafish embryo during the 1-cell stage. For each enhancer element, a total of 100 – 120 

embryos were injected. Embryos were observed by fluorescence microscopy between 16-36 

hours-post-fertilization (hpf) for reporter activity. 
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CHAPTER 3 TRANSCRIPTIONAL AND EPIGENOMIC PROFILING DURING 

HUMAN ENDODERM DEVELOPMENT 

3.1 Transcriptomic profiling of endoderm differentiation and patterning 

To recapitulate human endoderm formation and subsequent derivatives along the anteroposterior 

axis, an in vitro differentiation model was employed in which hESCs are progressively induced 

to differentiate into primitive streak (PS) and definitive endoderm (DE), then subsequently 

patterned into anterior foregut (AFG), posterior foregut (PFG) and mid/hindgut (MHG) 

progenitor cells. To capture the dynamics of global gene expression patterns during this process, 

levels of polyadenylated transcripts from each of these cell types were quantified by RNA-seq. 

Following total RNA extraction, mRNA purification, library construction and high-throughput 

sequencing, 74 – 95 million raw reads per library was obtained (Table 2). These reads were 

filtered and mapped using the standard Illumina analysis pipeline (described in Materials and 

Methods), generating an average of 68 million uniquely mapped reads per library for 

downstream analyses. A transcript was considered as expressed if it presented an [RPKM] > 1 in 

all six cell types. Using these criteria, a total of 16,781 transcripts were detected over the course 

of differentiation and patterning. To study cell-type specific expression, all transcripts were 

clustered based on expression levels using the HOPACH algorithm (van der Laan and Pollard, 

2003) (Fig 3.1A). Among the 2,124 cell-type specific transcripts identified, 1,784 (84%) mapped 

to coding regions, 89 (4.2%) consisted of non-coding RNAs, while a further 250 (11.8%) 

transcripts mapped to unannotated genomic regions (Fig 3.1B). The expression levels of 12 cell-

specific transcripts were further verified by qPCR, which confirmed their stage-specific 

expression patterns (Fig 3.1C).  
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To investigate whether these clusters are truly representative of cell-type and region-specific 

identity, expression levels of 51 key regulatory genes in endoderm development and patterning 

were presented as a heatmap (Fig 3.1D). Characteristic of an undifferentiated state, genes 

specifically expressed in hESCs include the pluripotency markers SOX2, PRDM14 and DPPA4, 

while NANOG and OCT4 expression persists up to PS stage, consistent with previous 

observation that expression of these two genes persists until streak formation (Teo et al., 2011). 

Endoderm markers, including SOX17, CXCR4 and CER1, were specifically enriched in the DE 

cluster. Likewise, transcripts for the anterior foregut markers TBX1, PAX1 and PAX9 (Green et 

al., 2011) were enriched in AFG. Consistently, PDX1, MEIS1 and MEI2 (Fujitani et al., 2006; 

von Burstin et al., 2010) exhibited PFG-specific expression, and multiple posterior HOX 

transcripts (Illig et al., 2013) were enriched in MHG. Gene Ontology analysis was performed on 

genes enriched in each stage following differentiation (Fig 3.1E) (McLean et al., 2010). The PS 

and DE-specific cluster was enriched for the Gene Ontology term “endoderm development” (p = 

6.3×10-5) and “primary germ layer formation” (p = 4.4×10-4); AFG cluster for “pattern 

specification process” (p = 1.5×10-7); PFG cluster for “liver development” (p = 5.2×10-7); MHG 

cluster for “tube development” (p = 8.2×10-6) and “urogenital system development” (p = 2.6×10-

4). These distinct gene signature classes suggest that key endoderm developmental programs are 

regulated in a stage-specific manner, and further demonstrated that the in vitro hESC-

differentiation model employed can accurately recapitulate early stages of human embryological 

development. Our global transcriptomic data represent the first comprehensive gene catalogues 

of human endoderm differentiation, and further revealed a panel of non-coding RNAs and 

unannotated transcripts whose roles in endoderm development are poorly characterized and 
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understood. These data hence represent a novel and valuable resource for future investigation of 

lineage determinants driving human endoderm development. 
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Table 2 Statistics of sequenced and aligned RNA-seq reads 

Sample 
Sample Yield 

(Mb) 
Clusters 

(raw) 
% PF 

Clusters 
Uniquely 

Aligned Clusters 
% Align 

(PF) 

ES 2,473 74,549,297 94.77 54,097,899 76.57 
PS 3,152 95,345,326 94.45 70,418,857 78.2 
DE 2,990 91,244,264 93.63 68,458,887 80.13 

AFG 3,090 94,498,635 93.44 71,416,623 80.88 
PFG 3,117 95,569,242 93.18 73,263,188 82.27 
MHG 3,099 95,183,586 93.01 68,860,031 77.78 

Average 2,986.83 91,065,058 93.75 67,752,581 79.31 
PF: pass-filter 
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E) 

 

Figure 3.1 RNA-seq analysis reveals cell-type specific transcripts during endoderm 

differentiation and patterning 

(A) HOPACH clustering of RNA-seq reads to identify cell-specific transcripts according to 

expression levels. (B) Proportion of transcripts sorted according to annotation and coding 

characteristics. (C) qPCR validation of expression levels of 12 cell-type specific transcripts. (D) 

Heatmap showing expression patterns of 51 key endoderm regulatory genes. (E) Gene Ontology 

analysis of the identified transcript classes. 
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3.2 Chromatin state profiling during endoderm formation 

The precise and complex spatial-temporal gene expression patterns during early embryonic 

development are controlled by TREs found throughout the genome (Maston et al., 2006). We 

hypothesized that comprehensive profiling of chromatin states during endoderm lineage 

commitment will enable identification and annotation of such regulatory elements. ChIP-seq, 

with its ability for global unbiased mapping of protein binding or localization, was selected as 

the method of choice to profile the distribution of a panel of histone modifications (H3K4me2, 

H3K4me3, H3K27ac, and H3K27me3) during defined stages of endoderm differentiation. Prior 

to ChIP-seq library construction, efficiency of the ChIP process was first evaluated to ensure 

sufficient and specific enrichment for the appropriate histone modification of interest. One key 

factor affecting this process is antibody quality, which may exhibit substantial lot-to-lot 

variability and affect data reproducibility and biological relevance (Egelhofer et al., 2011). Due 

to a lack of understanding and available chromatin data in endoderm and subsequent derivatives, 

ChIP-qPCR was performed for TSS of well-characterized genes in hESCs (Fig 3.2). These genes 

include pluripotency markers (SOX2, DPPA4, PRDM14), general transcription/translation 

factors (BTF3, EIF3B), and housekeeping genes (GAPDH, ACTB), all of which are well-

characterized and actively transcribed in hESC. In addition, chromatin states at TSS of three 

differentiation markers (WNT8B, FOXP4, NODAL), which are not expressed in hESC, were also 

assayed. We observed that the TSS of actively transcribed genes were strongly enriched with the 

activating marks H3K4me2 (112 – 372 fold), H3K4me3 (11 – 59 fold) and H3K27ac (8 – 102 

fold), while relatively depleted of repressive H3K27me3 (1.6 – 15 fold) (Fig 3.2). Conversely, 

TSS of differentiation markers were highly marked with H3K27me3 (26 – 76 fold) but not 

H3K4me3 (2.4 – 3.5) and H3K27ac (2.6 – 8.4 fold). Notably, H3K4me2 was highly enriched (97 
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– 101 fold) at TSS of differentiation markers, consistent with previous observations that 

H3K4me2 marks developmentally poised genes (Orford et al., 2008). In sum, these data 

informed that the ChIP protocol and antibodies were efficient and specific in enriching for the 

appropriate histone marks and associated genomic DNA. 

 

The validated ChIP conditions were subsequently applied on ES, PS and DE cells, and ChIP-

enriched DNA from each experiment was used for sequencing library preparation. In total, 15 

ChIP-seq libraries were constructed and sequenced (Table 3), culminating in a range of 37 – 57 

million raw sequencing reads per library. Low quality reads were filtered through the standard 

Illumina pipeline, and pass-filtered reads were mapped to the human reference genome (hg19) 

using Bowtie (Langmead et al., 2009). In total, 23 to 38 million reads aligned uniquely per 

library, while non-specific reads mapping to more than one genomic locus were discarded from 

subsequent analyses. 
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Figure 3.2 ChIP-qPCR validation of histone modifications in ES cells 

ChIP DNA enriched with H3K4me2, H3K4me3, H3K27ac and H3K27me3 were amplified using 

TSS-specific primers. Expression levels were normalized against negative control regions (NC1 

and NC2). Fold change values and standard deviations were determined from triplicate samples. 

Green columns represent genes which are actively transcribed in hESCs; red columns represent 

differentiation marker genes which are not transcribed in hESCs. 
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Table 3 Statistics of ChIP-seq sequencing and mapping during endoderm differentiation 

Cell 

Type 
Sample Sample Yield 

(Mbases) 
Clusters 

(raw) 
Clusters 

(PF) 
% PF 

Clusters 
Uniquely Aligned 

Clusters 
% Align 

(PF) 

ES 

Input 1,643 57,979,888 46,953,326 80.98 37,999,327 80.93 
H3K4me2 1,134 40,221,845 32,407,688 80.57 28,071,539 86.62 
H3K4me3 1,160 40,691,323 33,151,167 81.47 23,968,294 72.3 
H3K27ac 1,529 53,796,546 43,680,960 81.2 37,421,478 85.67 

H3K27me3 1,384 48,853,675 39,539,641 80.93 28,812,536 72.87 

PS 

Input 1,423 48,428,268 40,668,117 83.98 32,778,502 80.6 
H3K4me2 1,235 42,634,762 35,277,317 82.74 30,405,520 86.19 
H3K4me3 1,177 39,937,664 33,621,173 84.18 24,852,771 73.92 
H3K27ac 1,299 44,327,988 37,109,028 83.71 31,761,617 85.59 

H3K27me3 1,288 44,036,094 36,807,047 83.58 28,289,896 76.86 

DE 

Input 1,684 57,605,100 48,121,636 83.54 38,684,983 80.39 
H3K4me2 1,254 42,599,651 35,819,126 84.08 30,360,291 84.76 
H3K4me3 1,128 37,717,885 32,226,238 85.44 24,024,660 74.55 
H3K27ac 1,483 50,508,880 42,379,490 83.91 36,162,419 85.33 

H3K27me3 1,215 40,966,068 34,701,839 84.71 27,362,400 78.85 
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3.3 Promoter chromatin signatures for key regulators of endoderm differentiation 

To investigate promoter chromatin states underlying the dynamic, stage-specific gene expression 

patterns observed during endoderm differentiation, histone modification levels were examined at 

the promoters of 51 stage-specific genes previously identified by RNA-seq. ChIP-seq tag counts 

within +/- 2 kb of these promoters were calculated and input-normalized for all 6 cell types (Fig 

3.3A). Generally, mRNA expression at each developmental stage is associated with promoter 

enrichment of H3K4me3 and H3K27ac, with depletion of H3K27me3, as illustrated at the 

PRDM14 locus (Fig 3.3B). Notably, H3K4me2 enrichment on these promoters was largely 

invariant with expression levels. Although H3K4me2 and H3K4me3 often co-localize on active 

promoters, H3K4me2 also marks developmentally poised genes (Orford et al., 2008). H3K4me2 

enrichment on promoters during early developmental stages may serve to facilitate subsequent 

reactivation of these genes in later developmental stages.  

 

Developmental genes exhibit a bivalent chromatin structure in ES cell stage (Bernstein et al., 

2006), yet it is unclear how genes activated during different developmental stages differ in their 

poising status. To investigate this, we analyzed the chromatin states of PS/DE and gut progenitor 

genes (AFG, PFG and MHG) in the ES cell stage. 80% of PS/DE genes, which were activated 

within 24 hours of differentiation, were bivalent, compared to only 25% of gut progenitor marker 

genes (Fig 3.3C). In contrast, 75% of these gut progenitor genes, which were activated only after 

4 days of differentiation, were solely marked by repressive H3K27me3. These observations 

suggest that promoter bivalency is established in a developmental-stage specific manner, and that 

epigenetic mechanisms exist to maintain a ‘chromatin hierarchy’ in ES cells, ensuring a 
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permissive state for early developmental genes, while maintaining a repressive state for later 

developmental genes.  

 

Our integrative analysis of chromatin states in relation to expression patterns further revealed 

that a subset of developmental genes with similar expression patterns exhibit distinct chromatin 

profiles. For example, both CXCR4 and CER1 exhibit similar expression profiles at the DE stage, 

yet H3K4me3 persisted in gut progenitors at the CXCR4 promoter, while CER1 promoter lost 

H3K4me3 and regained repressive H3K27me3 (Fig 3.3D,E). CXCR4 encodes a chemokine 

receptor involved in diverse developmental processes from regional specification of endoderm 

and pancreas (Katsumoto and Kume, 2013), to intestinal epithelial development (Zimmerman et 

al., 2011) and neuronal development (Stumm et al., 2003). Conversely, targeted disruption of 

Cer1, a TGF-β signaling inhibitor in anterior endoderm, showed that the gene is not required for 

later development (Stanley et al., 2000). Hence, the differences in chromatin states between these 

two genes may reflect their varying roles and expression in later development stages, suggesting 

that distinct epigenetic mechanisms exist to regulate developmental gene expression.   
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D)      
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Figure 3.3 Histone modification signatures around promoters of lineage specific genes 

during endoderm differentiation 

(A) Heatmaps of histone modification and RNA-seq read enrichment at TSS of 51 stage-specific 

transcripts. (B) Chromatin signatures at the PRDM14 locus (C) Proportion of genes in endoderm 
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and gut progenitors with promoter enrichment of H3K4me3, H3K27me3 or both. (D-E) 

Chromatin signatures at the CXCR4 and CER1 locus.  
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3.4 Identification and epigenomic profiling of endoderm enhancers 

Although promoters are important in regulating transcription initiation, enhancers are the key 

drivers of cell-type specific gene expression programs (Bulger and Groudine, 2011; Heintzman 

et al., 2009). Several genome-wide studies have successfully leveraged on H3K27ac as a tissue- 

and developmental stage-specific chromatin marker for active enhancer elements (Cotney et al., 

2012; Creyghton et al., 2010). Furthermore, the dynamics of H3K27ac enrichment are associated 

with gene expression changes during the transition from pluripotency to cell specification 

(Bogdanović et al., 2012). We therefore focused on H3K27ac profiling for endoderm enhancer 

discovery. 
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3.4.1 H3K27ac peak profiling identifies putative endoderm enhancers 

To predict active enhancer elements and study their activation dynamics during endoderm 

differentiation, mapped H3K27ac reads were used to identify enhancer peaks. In total, 8,653, 

11,510 and 13,993 H3K27ac peaks were identified in ES, PS and DE respectively. Consistent 

with the association of H3K27ac with active promoters and enhancers (Bonn et al., 2012; Ernst 

et al., 2011; Heintzman et al., 2009), we observed that for all 3 cell types, ~45% of H3K27ac+ 

elements were TSS-proximal (0 – 2kb), while the remaining were TSS-distal ( > 2kb) (Fig 3.4A). 

We considered TSS-distal, H3K27ac+ loci as putative enhancers and identified 13,367 such 

peaks, which were further subjected to k-means clustering to obtain cell-type specific peaks. 

From this analysis, 2,052, 2,155 and 4,320 H3K37ac peaks were identified in ES, PS/DE and DE 

respectively (Fig 3.4B). We hypothesized that peaks found in PS/DE and DE contain active 

enhancers which drive an endoderm transcriptional program, and merged them for subsequent 

analyses (thereafter referred to as ‘putative DE enhancers’). Compared to flanking regions, 

putative DE enhancers were more evolutionary-constrained (Fig 3.4C), suggesting functional 

conservation. 
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Figure 3.4 Epigenomic profiling to identify DE enhancers 

(A) Number of H3K27ac elements identified in ES, PS and DE, and their proportion according 

to distance away from the nearest TSS. (B) Heatmap illustrating k-means clustering (k=7) of all 

distal H3K27ac+ elements. (C) Phastcons score of DE enhancers. 
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3.4.2 Functional annotation of putative DE enhancers 

Having identified a list of putative DE enhancers, we next asked whether these elements resided 

near genes involved in endoderm development. An unsupervised gene ontology statistical 

analysis, GREAT (McLean et al., 2010), was performed to assign each peak to annotated genes, 

followed by an analysis of functional gene annotation enrichment among the assigned genes. 

Notably, gene ontology analysis associated these peaks significantly with genes involved in 

endoderm development (p=4.53×10-30), gastrulation (p=1.07×10-25), and axis specification 

(p=5.82×10-18) (Fig 3.5A). Furthermore, these genes exhibit robust in vivo expression in mouse 

endoderm according to expression patterns recorded in the Mouse Genome Database (Bult et al., 

2008). To test whether these peaks correlate positively with proximal gene expression in 

endoderm, expression levels of transcripts located within 50kb from each putative DE enhancer 

were measured and compared in each cell-type (Fig 3.5B). Importantly, genes proximal to 

putative DE enhancers exhibited significantly higher expression in DE, demonstrating a positive 

correlation between tissue-specific enhancer activation and gene expression patterns in the 

appropriate cell-type. Collectively, these data suggest that the H3K27ac+ peaks identified 

through global chromatin state profiling of in vitro differentiation cultures represent bona fide 

enhancers relevant to endoderm development.  
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Figure 3.5 Functional annotation of putative DE enhancers 

(A) Gene ontology terms associated with DE enhancers. Blue columns represents biological 

processes, while purple columns refers to Mouse Genome Informatics (MGI) data of curated 

mouse expression information. (B) Expression levels of transcripts within 50 kb of putative DE 

enhancers measured in all 6 cell-types. The p-value stated represents the least significant p-value 

of all pairwise comparisons with respect to expression levels in DE.   
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3.5 Convergence of endoderm lineage-specifying TFs with TGF-β signaling effectors for 

enhancer activation 

Genome-wide analyses of enhancer function revealed that in addition to core TFs, enhancers are 

also bound by DNA-binding effectors of various signaling pathways, leading to the recognition 

of enhancers as integration hubs between extrinsic cell signaling, genomic sequence and 

epigenetic information (Calo and Wysocka, 2013; Chen, 2008; Mullen et al., 2011). We sought 

to investigate whether our putative DE enhancers bind core endoderm TFs or signaling effectors, 

and if so, how these different classes of factors are coordinated for the enhancer activation. 
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3.5.1 Binding site analysis of putative DE enhancers 

We hypothesized that DNA motif enrichment at putative DE enhancers will reveal TFs and 

signaling effectors driving endoderm enhancer activation for the initiation of downstream 

transcriptional programs. Binding site analysis revealed significant enrichment of motifs for 

GATA4, NANOG, EOMES, FOXA2, and AP-1, as well as the NODAL signaling effectors 

SMAD2/3, SMAD4 and FOXH1 on putative DE enhancers (Fig 3.6A). Notably, GATA4, 

NANOG, EOMES and FOXA2 were all reported to play key regulatory roles in endoderm 

development (Rojas et al., 2010; Teo et al., 2011). The enrichment of motif sequences of the AP-

1 transcriptional complex is consistent with the role of JNK kinases in regulating endoderm 

development (Loebel et al., 2011; Xu and Davis, 2010), illustrating a novel link between the 

JNK-AP1 signal transduction pathway and the active enhancer landscape in regulating endoderm 

lineage specification. Taken together, these observations demonstrate the association of putative 

DE enhancers with multiple core TFs of the TGF-β signaling pathway, as well as master 

regulatory TFs in endoderm development, supporting a function of these elements as enhancers 

in regulating endoderm gene expression. 
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Figure 3.6 Overrepresented DNA sequence motifs enriched at putative DE enhancers 

Position weight matrix logo and p-value of the top sequence motifs enriched at putative DE 

enhancers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

107 
 

3.5.2 Association of putative DE enhancers with endoderm-specifying TFs 

To validate the motif analyses data and evaluate whether putative DE enhancers are broadly 

associated with lineage-specifying TFs/signaling effectors, we adopted an integrative genomics 

approach using SMAD2/3, SMAD4, FOXH1 (Kim et al., 2011), FOXA2 (Gifford et al., 2013) 

and EOMES (Teo et al., 2011) binding profiles in endoderm, as well as our DE chromatin 

modifications. We first calculated the correlation of tag counts of these factors with chromatin 

modifications in ES, PS and DE (Fig 3.7A). EOMES and FOXH1 peaks co-clustered with 

H3K27ac in PS and DE (Cluster 1), while SMAD2/3/4 and FOXA2 peaks co-clustered with 

H3K4me2 in DE (Cluster 2). Notably, both clusters are characterized by enhancer-associated 

histone modifications. These two clusters formed a super-cluster in relation to clusters 3 and 4, 

which are characterized by promoter (H3K4me3) and repressive (H3K27me3) chromatin 

modifications, indicating that endodermal TFs broadly converged onto putative DE enhancers. 

To investigate the cell-type specificity of this overlap, we compared TF ChIP-seq intensities at 

putative DE enhancers with neural crest enhancers (Rada-Iglesias et al., 2012). Notably, binding 

of all 5 TFs enriched significantly at DE enhancers over neural crest enhancers (p < 2.2 x 10-4) 

(Fig 3.7B). To further characterize the degree of association between endoderm-specifying TFs 

and putative DE enhancers, we calculated the extent of overlap between their respective binding 

peaks. Out of 6475 H3K27ac+ peaks in DE, 5342 (82.5%) overlapped with both SMAD2/3 and 

EOMES (Fig 3.7C), indicating extensive convergence between putative DE enhancers and 

endoderm TFs.  

 

The observation that multiple NODAL signaling effectors converged onto putative DE enhancers 

raised the question of whether putative DE enhancers modulate NODAL signaling 
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transcriptional output. To investigate this, gene set enrichment analysis (GSEA) (Subramanian et 

al., 2005) was performed to query putative DE enhancer-proximal genes against differentially-

expressed genes during endoderm differentiation induced by Activin treatment on hESCs 

(Bernardo et al., 2011) (Fig 3.7D). Strikingly, the top 500 putative DE enhancer-associated genes 

were significantly enriched in the gene set positively regulated by Activin (ES = 0.51, p value < 

0.001), suggesting that putative DE enhancers positively regulate the expression of endoderm 

differentiation genes induced by NODAL. Collectively, these data suggest that endoderm-

specifying TFs drive endoderm transcriptional program through binding to, and subsequent 

activation of, putative DE enhancers. 
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Figure 3.7 TGF-β signaling effectors and endoderm-specifying TFs bind at putative DE 

enhancers in vivo 

(A) Hierarchical clustering of TF ChIP-seq datasets with ES, PS and DE chromatin 

modifications. (B) ChIP-seq profiles of SMAD2/3, SMAD4, EOMES, FOXA2 and FOXH1 and 

H3K27ac at DE enhancers. (C) ChIP-seq peak counts for EOMES, SMAD2/3 and H3K27ac in 
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DE, and the extent of overlap between these peaks. (D) GSEA analysis of top 500 putative DE 

enhancer proximal genes within the gene set positively regulated by Activin (Bernardo et al., 

2011). Top panel: ES generated through a running-sum statistic, as each gene in the ranked 

expression profile is considered one by one. ES is increased when a DE enhancer proximal gene 

is observed, and decreased when a DE enhancer proximal gene is not observed. Each black 

vertical line below the ES score represents a single gene in the ranked expression profile, which 

may be increased (red) or decreased (blue) by Activin treatment compared to untreated controls. 

Bottom panel: ranked gene list, consisting of 36,704 genes and their corresponding mean 

expression value.  
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3.5.3 Coordination between TGF-β effectors and EOMES for enhancer activation 

An interestingly observation from the analyses described above was that only a small fraction of 

all EOMES binding peaks (12.9%: 5342 out of 41324) coincided with both SMAD2/3 and 

putative DE enhancers (Fig 3.7C), prompting us to question the function of the remaining peaks. 

To study this, we examined the association between EOMES and TGF-β signaling effectors with 

H3K27ac enrichment in DE. Binding profiles of these TFs were examined in relation to 

H3K27ac in DE using a non-supervised clustering approach (Fig 3.8A). EOMES binding alone 

correlated with weak H3K27ac in DE (Class I), as per TGF-β effectors in the absence of EOMES 

(Class II). Notably, maximal DE enhancer acetylation was observed only with co-localization of 

EOMES with all 3 NODAL effectors (Class III) (p value < 10-84, Fig 3.8B), indicating that 

endoderm-specifying effects of TFG-β signaling is determined by binding of effectors to a small 

subset of EOMES binding sites. 

 

The large proportion of Class I (36704/53902, 68.1%) binding sites suggested that these 

regulatory loci may be associated with developmental programs driven by EOMES independent 

of TGF-β signaling. EOMES has been reported to regulate neurogenesis (Arnold et al., 2008a; 

Hodge et al., 2012), trophoblast and mesoderm development, as well as endoderm specification 

(Arnold and Robertson, 2009; Arnold et al., 2008b; Russ et al., 2000), and is thus considered a 

master regulator of various mesodermal- and endodermal-derived cell lineages. We hypothesized 

that EOMES-bound sites which do not overlap DE enhancers may represent regulatory elements 

driving non-endodermal developmental lineages. Consistently, gene ontology analysis of Class I 

EOMES binding sites revealed that these loci were significantly associated with genes involved 

in neurogenesis (p=1.7 × 10-19), mesoderm morphogenesis (p=1.8 × 10-11) and heart development 



  

112 
 

(p=1.4 × 10-10) (Fig 3.8C). The integration of TF binding datasets with developmental stage-

specific chromatin profiles allowed the genetic dissection of TF loci involved in transcriptional 

programs of different developmental lineages.  

 

In sum, our data suggest that convergence of extrinsic signaling pathways and lineage-specifying 

TFs onto multiple TF-binding enhancer loci controls the endodermal cell fate, possibly through 

regulating key endoderm lineage specifiers and/or markers, such as SOX17 and CER1 (Fig 3.8D). 

Multiple TF-bound loci have previously been reported in mouse ES cells and heart to drive 

tissue-specific gene expression (Chen et al., 2008; He et al., 2011), and our analyses have 

provided a comprehensive catalogue of such multiple TF-bound loci in early human endoderm 

development. 
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Figure 3.8 Genetic dissection of endoderm TF binding sites 

(A) Clustering of endoderm TF binding sites with H3K27ac signals in DE and ES. (B) Average 

H3K27ac tag counts in DE computed based on number of endoderm TFs bound. TFs included in 

the analysis are SMAD2/3, SMAD4, EOMES and FOXH1. (C) GO terms associated with Class I 
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EOMES binding sites identified from the clustering analysis in (A). (D) Examples of key 

endoderm marker gene loci regulated by multiple TF-bound putative DE enhancers. 
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3.6 Endoderm enhancer priming 

We next focused on examining the mechanisms facilitating enhancer activation during DE 

differentiation. TF binding (Zaret and Carroll, 2011) and chromatin structure (Calo and Wysocka, 

2013; Rada-Iglesias et al., 2011) have been proposed to pre-mark distal regulatory elements for 

rapid target gene activation. Although SMAD2/3, SMAD4 and FOXH1 extensively occupied DE 

enhancers following differentiation, they are significantly less enriched at the same loci in ES 

cells (Fig. 3.9A). Pre-marking with H3K4me1 has been observed to correlate with 

developmental enhancer poising (Calo and Wysocka, 2013; Rada-Iglesias et al., 2011), and we 

hypothesized that additional priming mechanisms may exist. To comprehensively investigate the 

relationship between chromatin structure and enhancer poising, we overlapped putative DE 

enhancers with 17 histone modifications and chromatin modifiers in human ES cells (Ernst et al., 

2011). Surprisingly, unsupervised clustering revealed that only ~30% of putative DE enhancers 

were pre-marked with H3K4me1, indicating that this histone modification alone does not 

comprehensively identify all poised developmental enhancers (Fig 3.9B). We identified 

repressive H3K9me3 (cluster 2) as a poising mark on distal regulatory elements, extending a 

previously reported function of H3K9me3 in pre-marking promoters of transcriptional targets of 

the NODAL/TGF-β pathway during endoderm formation (Xi et al., 2011). In addition, we 

discovered an enhancer cluster pre-marked predominantly by H4k20me1 (cluster 6). 

Interestingly, H4k20me1 also plays a central role in regulating RNAPII promoter-proximal 

pausing (Kapoor-Vazirani and Vertino, 2014), suggesting that a common epigenetic mechanism 

may regulate both enhancer poising and RNAPII pausing for rapid transcriptional output. We 

further observed ~25% of DE enhancers pre-marked solely by H2A.Z (cluster 1). H2A.Z is a 

variant of the H2A histone subunit involved in transcription regulation through its effects on 
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chromatin structure (Goldman et al., 2010; Thambirajah et al., 2006), and was recently 

demonstrated to be enriched at promoters and enhancers in hESCs during ES self-renewal and 

differentiation (Hu et al., 2013). Importantly, H2A.Z decreases nucleosome stability and 

occupancy, promoting nucleosome displacement by TFs (Jin et al., 2009). Hence, H2A.Z may 

facilitate rapid and preferential endoderm TF binding and enhancer activation. Indeed, upon ES 

differentiation, H2A.Z-marked pre-enhancers were significantly more enriched in SMAD2/3, 

SMAD4, FOXH1 and EOMES compared to unmarked, latent pre-enhancers (cluster 5) (p value 

< 10-13) (Fig 3.9C). Collectively, our analyses revealed novel and diverse combinations of 

chromatin priming modifications, including H3K9me3, H4k20me1, and H2A.Z, which 

complements and expands our current understanding of enhancer priming mechanisms. 
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Figure 3.9 A diversity of DE enhancer priming states 

(A) (left) ChIP-seq profiles of endoderm-specifying TFs (SMAD2/3, SMAD4, FOXH1 and 

EOMES) in ES cells and endoderm at 6,475 active DE enhancers. EOMES is not expressed in 

ES and no binding data is available. (right) Average signals of SMAD2/3, SMAD4 and FOXH1 

centered at DE enhancers in endoderm and ES cells. (B) Heatmap illustrating ChIP-seq 

enrichment profiles for 17 chromatin modifications and epigenetic modifiers in hESCs at DE 
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enhancers. (C) Average TF binding signals at H2AZ-primed enhancers (red) in comparison to 

latent pre-enhancers (grey). Significance of difference between these two classes were obtained 

using the two-sample Wilcoxon test on the sum of reads within a 6 kb window. 
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CHAPTER 4 ENHANCER DISCOVERY, ANNOTATION AND VALIDATION DURING 

ENDODERM PATTERNING  

4.1 Enhancer discovery and epigenome profiling during endoderm patterning  

We performed epigenome mapping of H3K4me2, H3K4me3, H3K27ac and H3K27me3 through 

ChIP-seq in AFG, PFG and MHG progenitor cells. A total of 15 libraries were successfully 

sequenced and mapped, generating 25 to 35 million reads per library (Table 4). We identified a 

total of 16,158 gene-distal H3K27ac+ peaks from all three cell types and performed k-means 

clustering to identify cell-specific peaks, resulting in 4,071, 5,163 and 2,620 peaks representing 

putative enhancers in AFG, PFG and MHG respectively (Fig 4.1A). Consistent with an active 

enhancer signature, these H3K27ac+ elements were also strongly enriched in H3K4me2, while 

relatively depleted in H3K4me3 and H3K27me3 (Fig 4.1B). Notably, the average H3K27ac and 

H3K4me2 signals at these peaks exhibited a characteristic nucleosomal displacement “dip” 

suggestive of trans-factor binding. Furthermore, these peaks resided on genomic loci which were 

generally evolutionarily constrained, exhibiting a higher conservation score than flanking 

background regions (Fig 4.1C) suggesting functional conservation. 
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Table 4 Statistics of ChIP-seq sequencing and mapping during endoderm patterning 

Cell 

Type 
Sample Sample Yield 

(Mbases) 
Clusters 

(raw) 
Clusters 

(PF) 
% PF 

Clusters 
Uniquely Aligned 

Clusters 
% Align 

(PF) 

AFG 

Input 1,485 52,995,835 42,425,219 80.05 34,203,212 80.62 
H3K4me2 1,261 45,215,583 36,016,254 79.65 31,503,417 87.47 
H3K4me3 1,200 42,481,592 34,289,338 80.72 25,343,250 73.91 
H3K27ac 1,451 51,943,097 41,460,711 79.82 36,427,381 87.86 

H3K27me3 1,281 45,439,398 36,586,138 80.52 28,987,197 79.23 

PFG 

Input 1,370 47,407,892 39,138,045 82.56 31,423,936 80.29 
H3K4me2 1,147 40,098,063 32,781,185 81.75 28,808,105 87.88 
H3K4me3 1,224 42,103,096 34,958,923 83.03 26,369,516 75.43 
H3K27ac 1,328 45,984,718 37,947,007 82.52 33,321,267 87.81 

H3K27me3 1,356 46,984,836 38,752,066 82.48 31,017,154 80.04 

MHG 

Input 1,528 52,945,040 43,654,736 82.45 35,469,473 81.25 
H3K4me2 1,073 37,199,292 30,663,675 82.43 26,708,061 87.1 
H3K4me3 1,184 40,429,661 33,831,958 83.68 25,238,641 74.6 
H3K27ac 1,309 45,449,581 37,394,612 82.28 32,219,198 86.16 

H3K27me3 1,237 42,719,651 35,329,148 82.7 28,295,115 80.09 
PF = pass-filter 
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A)     B)    C) 

 

 

 

 

 

 

 

 

 

Figure 4.1 Identification of cell-specific H3K27ac+ peaks following endoderm patterning 

(A) Heatmap of H3K27ac profiles grouped into cell-specific classes using k-means clustering. (B) 

Average signals of H3K4me2, H3K4me3, H3K27ac and H3K27me3 at AFG, PFG and MHG 

enhancers identified through clustering. (C) Sequence conservation (phastCons score) of AFG, 

PFG and MHG enhancers.  

 

 

 

 

 

 

 

 

 

 



  

122 
 

4.2 Functional annotation of enhancers 

4.2.1 Gene ontology and RNA expression analysis 

To assess whether the putative enhancers in AFG, PFG and MHG correlate with expression of 

proximal genes, transcript levels of genes within 50kb from each group of H3K27ac+ elements 

were computed from RNA-seq datasets (Fig 4.2A). Notably, these elements correlated 

significantly with increased proximal transcript levels within their respective domains. 

Functional annotation using GREAT (McLean et al., 2010) revealed associations of the 

identified elements with annotated developmental genes (Fig 4.2B). Specifically, AFG elements 

were associated with genes required for foregut morphogenesis (p < 4.8×10-12); PFG elements 

with genes involved in foregut (p < 1.7×10-12) and pancreas development (p < 1.0×10-8); MHG 

elements with genes relevant to mid- (p < 7.1 ×10-14) and hindgut morphogenesis (p < 3.7×10-12). 

Importantly, these putative enhancers were also strongly associated with genes linked to 

endodermal developmental defects identified through mouse deletion studies (Bult et al., 2008) 

(Fig 4.2C), highlighting the potential of these putative enhancer catalogues as comprehensive 

resources for understanding the molecular etiology of human endodermal congenital diseases. 
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A) 

  

B)       C) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Functional annotation of putative AFG, PFG and MHG enhancers 

(A) RNA-seq expression levels of transcripts proximal to each enhancer class. P values represent 

the least significant value between all pairwise comparisons involving the putative enhancers of 

interest. P values were calculated using paired t-test. (B) Gene ontology biological processes 

associated with each enhancer class. (C) Developmental defects associated with genes in 

proximity to enhancers from each enhancer class. 
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4.2.2 Motif analysis of cell-type-specific enhancers 

To further establish cell-type-specific activities of these putative enhancers, we performed TF 

binding site analysis (Fig 4.3A). Among the most highly overrepresented AFG motifs included 

OTX2 (p = 10-45) and SIX1 (p = 10-29). Otx2 is a homeodomain-containing TF required for 

anterior patterning and is restricted in expression to the anterior endoderm (Ang et al., 1994; Jin 

et al., 2001). Six1 is a homeobox protein required for anterior organ development, including the 

thymus, lung and inner ear (Bricaud and Collazo, 2006; El-hashash et al., 2011; Laclef et al., 

2003). Enriched PFG motifs included hepatic progenitor specifiers HNF1B (p = 10-90), GATA6 

(p = 10-66) and FOXA2 (p = 10-16), and pancreas differentiation factor PDX1 (p = 10- 50). 

Importantly, all these TFs play significant roles in organ-specification, specifically liver and 

pancreas, from the posterior foregut endoderm (Lee et al., 2005; Lokmane et al., 2008; Zhao et 

al., 2005) (Ahlgren et al., 1996). MHG enhancers were enriched in motifs for CDX2 (p = 10- 118), 

a master regulator of intestinal specification expressed in hindgut endoderm (Gao et al., 2009), as 

well as the WNT signaling effector TCF4 (p = 10-47), required for proper hindgut formation and 

subsequent intestine development and homeostasis (van Es et al., 2012; Gregorieff et al., 2004; 

Verzi et al., 2010). To check whether the motif enrichment was specific for each type of 

progenitor cell, we sampled two motifs from each cell-type and calculated their motif densities. 

All motifs exhibited a sharp density peak corresponding to the cell-type they were enriched in 

(Fig 4.3B). In sum, TF binding site analyses corroborated foregut, midgut and hindgut 

progenitor-specific activities of the identified elements suggested by RNA-seq and Gene 

Ontology analyses.  
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(A)      (B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 TF binding site analysis on putative enhancers in AFG, PFG and MHG 

(A) TF motifs and their enrichment scores for each enhancer class. (B) Two TFs were selected 

from each enhancer class (AFG: OTX2 and SIX1; PFG: HNF1B and HOXA2; MHG: CDX2 and 

HOXA9) and their motif densities measured across all three enhancer groups.    
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4.3 In vivo validation using a transgenic zebrafish model 

To validate the spatiotemporal activities of the predicted enhancers, we utilized a Tol2 zebrafish 

reporter assay system (Kawakami, 2007). This system has been demonstrated to exhibit 

reproducible germline transmission from G0 embryos to G1, with minimal G0 mosaicism (Fisher 

et al., 2006). Since then, G0 embryos have been successfully utilized for validation of human 

heart enhancers (Narlikar et al., 2010) and enhancers from mouse embryonic stem cells (Zhang 

et al., 2013b). We therefore set up a reporter vector system (Fig 4.4A) using the Tol2 ZED vector 

(Bessa et al., 2009) and analyzed reporter gene expression in G0 zebrafish embryos. Three 

elements exhibiting cell-type-specific H3K27ac enrichment were tested for their ability to drive 

expression of a GFP reporter in zebrafish embryos. All tested loci corresponded to previously-

uncharacterized genomic regions, and were proximal to TBX1, HNF1B, and CDX2 respectively. 

The TBX1-proximal AFG element drove GFP expression in zebrafish embryos (Fig 4.4B). GFP 

expression broadly corresponded with anterior tbx1 expression revealed by in situ hybridization 

(Hong et al., 2008; Kochilas et al., 2003), suggesting that the tested element is a tbx1 enhancer in 

anterior foregut progenitor cells. The PFG enhancer ~35 kb downstream of HNF1B drove GFP 

expression in zebrafish embryos which broadly corresponded to insulin-GFP signals (Fig 4.4C) 

(Song et al., 2007), suggesting H3K27ac enrichment predicted an enhancer driving HNF1B 

expression. This observation supports the hypothesis that the element is an enhancer in posterior 

foregut progenitors and is consistent with the role of HNF1B in pancreas beta cell development 

(De Vas et al., 2015). Finally, we tested a H3K27ac-enriched element within an intron of 

WNT5B in MHG, and observed GFP expression in zebrafish embryos which broadly overlapped 

with wnt5b expression (Fig 4.4D) (Freisinger et al., 2010; Kudoh et al., 2001). This observation 
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suggest that the tested element is an enhancer driving WNT5B expression, consistent with the 

epigenome profile of this region suggestive of an MHG enhancer.  
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D) 
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Figure 4.4 In vivo enhancer validation in zebrafish embryos 

(A) Schematic representation of the in vivo enhancer validation process. Putative enhancers were 

PCR amplified from genomic DNA, TOPO-cloned into a transfer vector and transferred into the 

ZED reporter vector (Bessa et al., 2009) through recombination. Each enhancer-ZED vector was 

injected into ~100 zebrafish embryos during 1-cell stage. (B) AFG enhancer activity upstream of 

TBX1, compared to tbx1 in situ hybridization data. Right, top: (Hong et al., 2008); Right, bottom: 

(Kochilas et al., 2003). (C) PFG enhancer activities downstream of HNF1B, compared with 

insulin-GFP fluorescence (Right, bottom) (Song et al., 2007). (D) Intragenic enhancer at WNT5B 

locus, compared to wnt5b in situ hybridization data. Right, top: (Kudoh et al., 2001); Right, 

bottom: (Freisinger et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

132 
 

4.4 Identification of a putative causative variant for ulcerative colitis 

GWAS studies have been conducted for diverse human traits and diseases over the past few 

years, and have successfully identified thousands of associated genetic variants. A major 

limitation for GWAS studies is the difficulty in interpreting the biological relevance of the 

susceptibility loci, as genotyped SNPs are designed to tag genome linkage structure and not 

disease risk. Identification of the causal variant(s) from associated SNPs is often not 

straightforward, as many risk loci fall in non-coding regions far from known genes, where 

annotation information remains limited (Maurano et al., 2012). Furthermore, many risk SNPs 

exist in strong linkage disequilibrium with other variants in proximity, further expanding the 

search space for the causal variant. Large-scale open chromatin mapping in multiple human cells 

and tissues revealed enrichment of risk variants at DNaseI-hypersensitive sites, implicating TREs 

in common human disease risk (Maurano et al., 2012). Our GREAT analysis of endoderm 

domain-specific enhancers revealed associations of these elements to various developmental 

disorders (Fig 4.2C), prompting us to question whether these enhancers may harbor causal 

variants of human complex diseases involving endoderm organs, such as the intestines.  

 

Ulcerative colitis is a complex disease characterized by inflammation and ulceration of the large 

intestine epithelium lining. The exact cause of this disorder is unknown, but likely involves 

multiple contributing factors including genetics, stress and diet. More than 100 risk loci have 

been reported to be associated with the disease (Anderson et al., 2011; Jostins et al., 2012), yet 

how these loci affect disease phenotype is largely unknown. Although treated as an autoimmune 

disorder, multiple studies have highlighted intestinal epithelial dysfunction as a contributing 

factor to disease pathogenesis (Hering et al., 2012; Laukoetter et al., 2008; McGuckin et al., 
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2009; Salim and Söderholm, 2011; Shen et al., 2009). Because MHG enhancers were associated 

with genes regulating hindgut morphogenesis and proper intestine and colon development (Fig 

4.2B), we set out to test whether these enhancers may include causal variants contributing to 

ulcerative colitis.  

 

To investigate this we obtained a list of 108 published ulcerative colitis-associated SNPs 

(tagSNP) from the NHGRI GWAS catalogue (www.genome.gov/gwastudies) and overlapped all 

known SNP variants from the 1000 Genomes Project within 250kb from each tagSNP with 2,620 

MHG enhancers. A total of 2,618 SNPs overlapped MHG enhancers, of which 1,073 were linked 

to a tagSNP (r2 > 0) (Fig 4.5A). We refer to these linked SNPs as “putative causal SNPs” and 

sorted them according to linkage strength and distance from tagSNPs. Out of all 108 tagSNPs, 36 

were in linkage with at least one putative causal SNP (r2>0). A further 8 out of these 36 tagSNPs 

were in relatively strong linkage (r2 > 0.3) with at least one putative causal SNP (Fig 4.5B) 

(Table 5). Strikingly, tagSNP rs17085007 was linked to 12 putative causal SNPs, of which 3 

were in absolute linkage (R2 = 1.0) (Table 5). rs17085007 has been identified as a UC risk locus 

in Japanese (Asano et al., 2009), European (Jostins et al., 2012) and Korean (Yang et al., 2013) 

populations. It resides on chr13q12.13, a non-coding region approximately 110kb downstream of 

USP12. Like most non-coding risk variants, the biological significance of disease association 

underlying this SNP is unknown. Fine mapping revealed a 74kb linkage block surrounding 

rs17085007 (Asano et al., 2009), which overlapped an MHG enhancer cluster (Fig 4.5C). ChIP-

seq data from an additional panel of ENCODE cell types failed to reveal any histone 

modification enrichment across this SNP locus, even though the risk locus mapped to regions of 
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high sequence conservation (Fig 4.5D). Disruption of an/multiple MHG enhancer(s) may 

account for ulcerative colitis risk associated with the 13q12.13 genetic locus.  
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Figure 4.5 Ulcerative colitis causal variant identification using MHG enhancers 

(A) Distribution of 1000 Genomes SNPs (1kgSNPs) by R2 values to ulcerative colitis tagSNPs. 

(B) Correlated risk SNPS which overlapped MHG enhancers, refered to as putative causal 

variants. These SNPs are sorted according to strength of linkage and distance from tagSNPs, and 

red dots represent putative causal SNPs in relatively strong linkage (R2 >0.3) with tagSNPs. (C) 

Fine mapping of a 290kb region around the ulcerative colitis-associated SNP rs17085007, 

adapted from (Asano et al., 2009). A 74kb linkage block encompass the SNP and several MHG 
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enhancer elements. (D) Histone modification profiles of MHG cells and five ENCODE cell types 

at the rs17085007 risk SNP, together with basewise phyloP conservation score of the locus.  
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Table 5 List of tagSNPs and their corresponding SNPs overlapping MHG enhancers  
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4.5 Risk locus target gene identification 

Local chromosome structure organized by CTCF binding has been recently shown to be 

important for the expression super-enhancer driven genes (Dowen et al., 2014). To investigate 

chromatin organization at 13q12.13, we made use of CTCF chromatin interactions detected by 

ChIA-PET in hESC and MCF7 cells (unpublished data from Ruan Lab). CTCF binding is 

associated with looping interactions to both active and inactive promoters, and has been 

proposed as a global organizer of long range chromatin interactions (Jin et al., 2013; Phillips and 

Corces, 2009). Given that CTCF binding is largely invariant between different cell types (Kim et 

al., 2007), we reasoned that CTCF-associated chromatin interactions can provide general insights 

into higher-order chromatin organization across multiple cell-types. Extensive CTCF-associated 

chromatin loops were observed extending over 1 Mb, linking the rs17085007 locus to CDX2 (Fig 

4.6A) in both hESC and MCF7 cells. In parallel, we examined Hi-C chromatin interactions in 

IMR90 fibroblast cells (Jin et al., 2013) and observed similar looping interactions with the CDX2 

locus (Fig 4.6B), suggesting that chromatin topology at this locus is broadly similar between 

different cell types. We validated this interaction using DNA FISH in the colon cell line HCT116 

and observed significant colocalization of the two loci for both alleles (Fig 4.6C). CDX2 is 

crucial for intestine specification from hindgut endoderm (Gao et al., 2009; Grainger et al., 2010) 

and is important for maintaining the balance of epithelium proliferation-differentiation (Lorentz 

et al., 1997; Suh and Traber, 1996). Importantly, CDX2 expression was markedly reduced in 

ulcerative colitis patients (Coskun et al., 2012). These data suggest that CDX2 is the target gene 

of the 13q12.13 ulcerative colitis risk locus. 
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C) 

 

 

 

Figure 4.6 Target gene identification for risk locus 13q12.13 

(A) H3K27ac signals at 13q12.13 in endoderm derivatives, and long range interactions with 

CDX2 revealed through CTCF ChIA-PET. (B) Genome topology of the same locus based on Hi-

C data. (C) DNA-FISH validation of interaction between 13q12.13 risk locus (test/positive) and 

CDX2 locus (bait) in HCT116 colon cell line. A control probe (negative) was selected 

equidistant from CDX2 as the test probe. n refers to the number of nuclei counted; 1x and 6.6x 

refers to the control-normalized fold changes in interacting nuclei count in the control and test 

experiment respectively. P values were calculated using the Fisher’s Exact Test. 
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CHAPTER 5 ANALYSIS OF GLOBAL CHROMATIN INTERACTIONS IN 

TRANSCRIPTION CONTROL 

5.1 RNAPII ChIA-PET library construction in K562 cells 

In this study, we hypothesized that application of ChIA-PET to components of the general 

transcription machinery, such as RNAPII, allows investigation of global transcription-associated 

interactions between enhancers and promoters. To this end, we have constructed ChIA-PET 

libraries for RNAPII in the myelogenous leukemia cell line K562 (Zhang et al., 2012a), as part 

of a more comprehensive study involving five human cell lines (Li et al., 2012). Formaldehyde 

cross-linked chromatin was sonicated for RNAPII ChIP to a size range of 200 – 500 bp (Fig 

5.1A), and 100 ng of ChIP DNA was used as input for ChIA-PET library construction. The 

8WG16 RNAPII antibody, which recognizes the initiation form of RNAPII, was used for all 

ChIP experiments. This antibody binds the unphosphorylated consensus repeat, YSPTSPS, and 

allows for enrichment of both pre-initiatiation and initiating forms of RNAPII (Phatnani and 

Greenleaf, 2006). Hence, the 8WG16 epitope specifically enriches for promoter-bound RNAPII 

much more efficiently than RNAPII on coding regions or 3’ ends (O’Brien et al., 1994). This 

allows the ChIP protocol to enrich for total promoter-associated RNAPII, which will ensure a 

comprehensive overview of all RNAPII- and promoter-associated chromatin interactions. 

Subsequent to proximity ligation and PET purification, PCR was performed for library 

amplification and resolved by gel electrophoresis, yielding an approximately 230 bp product (Fig 

5.1B). Amplified libraries were resolved using on-chip electrophoresis to validate fragment size 

and concentration (Fig 5.1C) and subsequently sequenced on an Illumina GAIIx machine. 
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A)      B) 
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Figure 5.1 RNAPII ChIA-PET library construction (Zhang et al., 2012a) 

A) Gel electrophoresis of formaldehyde-fixed, sonicated chromatin DNA from K562 cells. B) 

Purified ChIA-PETs were amplified using 18 and 20 PCR cycles. Amplified PETs appear as a 

sharp, distinct 223 bp band. The 40 bp bands represent excess unligated adapters. C) Bioanalyzer 

analysis of the amplified library.  
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5.2 Distinct models of RNAPII-associated chromatin interactions 

K562 RNAPII ChIA-PET libraries were constructed and sequenced in replicates, generating 

about 14 million tags per library. Sequenced tags were mapped to the human genome for binding 

peak and interaction cluster calling by Dr Li Guoliang using the ChIA-PET tool (Li et al., 2010) 

(Table 6). Close to 27,000 RNAPII peaks and 65,000 interaction clusters were identified per 

library. Among the identified interactions, more than 34,000 interactions were observed in both 

libraries, representing approximately 53% of interactions identified in each library (Fig 5.2). We 

subsequently pooled all interactions from both libraries for subsequent analyses. Among the 

genome-wide RNAPII interactions identified, 16,597 (17.3%) represented promoter-promoter 

(P-P) interactions, while 27,438 (28.6%) and 39,046 (40.7%) were promoter-enhancer (P-E) and 

enhancer-enhancer (E-E) interactions respectively. The large number of P-P and E-E interactions 

suggests that a significant number of genetic loci may be coordinately transcribed. Such P-P and 

E-E interactions were also widely observed in MCF7 cells (Table 6). Based on the connectivity 

between pairs of interactions, these interactions could be combined to form complex interactions, 

from which three distinct interaction types were identified (Fig 5.3A). “Basal” promoters (BP) 

are characterized by isolated RNAPII binding; “single-gene” interactions (SG) include a single 

promoter interacting with one/multiple enhancers; “multi-gene” interactions (MG) consist of 

multiple interacting promoters and enhancers. A total of 6,223 interaction models were identified. 

Although there were only 1,328 (21%) MG interaction clusters, these clusters contained 11,723 

genes, constituting 61% of all genes involved in the interaction models (Fig 5.3B). These data 

suggest that in addition to the classical ‘enhancer-promoter’ transcription model, promoters and 

enhancers are engaged in extensive interaction clusters for transcription.  
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Figure 5.2 Interaction overlap analysis between two biological replicates of RNAPII ChIA-

PET libraries 
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Table 6 Statistics of sequenced tag counts, RNAPII peaks, interaction clusters and 

interaction types in K562 cells%  

Library 
Unique 

tags 

RNAPII 

peaks 

Interaction 

clusters# 

Interaction type* 

Promoter-

promoter 

Promoter-

enhancer 

Enhancer-

enhancer 

Promoter-

terminator 

K562-1 14,177,547 26,922 64,565 16,597 
(17.3%) 

27,438 
(28.6%) 

39,046 
(40.7%) 

12,856 
(13.4%) K562-2 14,365,592 27,046 65,961 

MCF-1^ 15,283,270 27,198 23,440 8,599 
(24.8%) 

11,720 
(33.8%) 

8,495 
(24.5%) 

5,860 
(16.9%)) MCF-2^ 15,622,720 27,683 24,126 

# Interaction clusters with PET counts greater than 3 
* Interaction type computed using total number of interaction clusters from both replicates  
^ MCF7 interaction data were generated by other members of the lab 
% Data analysis using ChIA-PET tool were performed by Dr Li Guoliang (Genome Institute of Singapore) 
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Figure 5.3 Three models for RNAPII-associated chromatin interactions (Li et al., 2012) 

A) Basal – RNAPII peak at promoter. Single-gene – single enhancer to promoter. Multigene – 

several enhancers and promoters converging. B) Proportion of single-gene, basal-promoter and 

multi-gene interactions models, as well as the number of genes associated with each model. 
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5.3 Validation of chromatin interactions 

To validate the RNAPII-associated interactions identified by ChIA-PET, DNA FISH analysis 

was performed on three randomly-selected intrachromosomal interactions. At each test site, a 

control probe was selected equidistant from the predicted interacting probe pair, and probe 

interactions were counted in at least 300 nuclei for each interaction. All test-probe pairs showed 

significantly higher levels of co-localization than the control probe (Fig 5.4A). In addition, 5 

randomly selected interchromosomal interactions were similarly validated (Fig 5.4B). Compared 

to the control probe (-), test probes (+) targeting different chromosomes showed significantly 

higher co-localization levels. These data indicate that most chromatin interactions captured by 

RNAPII ChIA-PET were genuine. 

 

The multi-gene interactions identified suggest that interacting genes may be coordinately 

transcribed in a postulated “transcription factory” (Cook, 1999). To study the link between multi-

gene interacting loci and transcription factories, I performed 3D-DNA fish combined with 

RNAPII IF staining of MCF7 nuclei for 4 multi-gene interacting loci. All 4 tested multi-gene 

interaction loci (green) showed significant association with RNAPII IF staining (red) (Fig 5.4C). 

These data demonstrated a convergence of multi-gene interacting loci with regions of active 

RNAPII transcription, supporting the hypothesis that chromatin interactions provide a structural 

framework for coordinated gene transcription.  
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Figure 5.4 Validation of RNAPII-associated chromatin interactions 

A) DNA-FISH validation for three single-gene interactions in MCF7. Negative denotes a control 

BAC probe approximately equidistant from the bait (green), while positive denotes a test BA 

probe. n denotes the total number of nuclei analyzed. Control-normalized fold changes in 

interacting nuclei count in the control and test experiments were denoted by “x” at the bottom 

right corner. P values were calculated using the Fisher’s Exact Test. B) DNA FISH validation of 

five randomly chosen interchromosomal interactions. “+” denotes positive test probe pairs, while 

“-” denotes non-interacting control probe pairs. C) Colocalization analysis of multi-gene loci 

with RNAPII foci. RNAPII-IF staining (red) with four multi-gene loci (green, MED20, PLEC1, 

SYVN1, HIST1). Overlaps between RNAPII foci, multi-gene loci and control locus were 

visually determined for nuclei (n = 436) and alleles and shown as a barchart.   
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5.4 Enhancer-promoter interactions and disease-associated loci 

The identification of thousands of enhancer-promoter interactions using model cell lines in this 

study suggests that the target genes of non-coding disease-causing mutations or regulatory 

variants may be revealed. Consistent with this hypothesis, RNAPII ChIA-PET in MCF cells 

revealed abundant interactions at the SHH locus with an enhancer ~1Mb upstream (Fig 5.5A). 

Importantly, mutations within this enhancer has been reported to cause the congenital disorder 

preaxial polydactylyl through disruption of SHH transcription (Lettice et al., 2002).  

 

In another example, we examined the IRS1 locus, which was demonstrated to harbor a type II 

diabetes (T2D) susceptibility locus (Kilpeläinen et al., 2011; Rung et al., 2009). The disease 

locus resides in a gene desert ~600Mb downstream of the IRS1 promoter, yet no direct molecular 

link has been demonstrated between these two genetic loci. Here, we identified chromatin 

interactions between the IRS1 promoter and two downstream enhancers ~600 kb and 1 Mb away. 

Importantly, the more proximal enhancer coincides with the reported T2D risk locus (Fig 5.5B), 

suggesting that genetic variants at this locus may impair enhancer function and disrupt IRS1 

expression, leading to increased disease risk. We further validated the 1 Mb chromatin 

interaction with IRS1 using DNA-FISH (Fig 5.5B) and showed that interactions identified within 

this region are genuine. Hence, chromatin interaction data may reveal the genetic targets of 

disease risk loci and facilitate subsequent functionalization studies.    
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Figure 5.5 Identification and validation of enhancer-promoter interactions involved in 

disease  

A) Interaction between the SHH gene and its upstream enhancer located approximately 1Mb 

away. B) Interaction cluster involving two putative enhancers of IRS1, one of which harbors an 
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insulin resistance susceptibility locus. The 1.1Mb interaction was validated by DNA-FISH. 

Screenshots of genetic loci and chromatin interactions were adopted from (Li et al., 2012). 

Control-normalized fold changes in interacting nuclei count in the control and test experiments 

were denoted by “x” at the bottom right corner. P values were calculated using the Fisher’s Exact 

Test. 
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CHAPTER 6 CONCLUDING REMARKS 

6.1 Endoderm enhancer discovery 

The precise, yet variable and complex gene expression patterns characteristic of development are 

largely mediated by enhancers, which function as an integrating platform mediating crosstalk 

between extracellular signals and encoded genetic information. The development of ChIP and 

high-throughput sequencing has made possible the unbiased identification of thousands of 

enhancers in multiple cell and tissue types (Bernstein et al., 2012; Visel et al., 2009b). In this 

study we have coupled an in vitro endoderm differentiation model with high-throughput 

sequencing for transcriptome and epigenome mapping, allowing comprehensive enhancer 

prediction and discovery in these developmentally transient cell states. Despite the physiological 

importance of endoderm-derived organs, including the lung, liver, pancreas and intestines, our 

understanding of the regulatory mechanisms driving endoderm differentiation remains 

rudimentary. Enhancer discovery through epigenome profiling may not only contribute to a 

better understanding of genome-environment crosstalk underlying distinct cellular states and 

behavior, but also have the potential to aid in annotation of genetic determinants underlying 

disease predisposition, as illustrated in this study. 

 

Efforts to identify transcriptional enhancers in a high-throughput manner have focused on the 

trans-acting factor EP300 (ref), as well as the chromatin marks H3K4me1 H3K4me2 and 

H3K27ac. Among these modifications, H3K27ac has been identified to be strongly enriched with 

active promoters and enhancers in tissue culture models (Creyghton et al., 2010; Hawkins et al., 

2011; Rada-Iglesias et al., 2011). Subsequent studies successfully used H3K27ac to identify 

enhancers during zebrafish embryogenesis (Bogdanović et al., 2012), as well as enhancers for 
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limb specification in mouse, rhesus macaque and human (Cotney et al., 2013). Cell-type-specific 

enhancers can be further detected through cross-comparisons of H3K27ac in multiple cell types 

for increased specificity (Cotney et al., 2012). In this study, we focused on H3K27ac as cells 

transit from hESC to endoderm derivatives to obtain a comprehensive catalogue of putative 

enhancers driving dynamic and developmental-stage-specific transcriptional programs during 

endoderm formation. Our stringent criteria for defining putative enhancers resulted in a 

catalogue of strongly enriched (> 4 fold tag count over input), gene-distal H3K27ac+ elements, 

which are also enriched in H3K4me2 while depleted in H3K4me3 and H3K27me3 (Fig 4.1B). 

We note that H3K27ac alone is insufficient for conclusive enhancer discovery (Cotney et al., 

2012), and that supplementation of our current datasets with endoderm-specifying TF binding 

profiles, such as SOX17, CXCR4 and MIXL1, will allow for more comprehensive and accurate 

enhancer identification. The feasibility of such approaches is illustrated by a recent study 

examining the binding dynamics of 38 TFs in relation to epigenome and transcriptome changes 

during hESC differentiation (Tsankov et al., 2015). Such enhancer catalogues not only serve as a 

valuable resource for understanding embryonic transcription regulation, but may also facilitate 

the discovery of regulatory variants underlying common diseases afflicting endoderm-derived 

organs, as illustrated here for rs17085007 associated with ulcerative colitis risk. The approach 

used in this study should be broadly applicable to other in vitro cell differentiation models, such 

as cardiomyocytes (Lian et al., 2013) and renal progenitors (Takasato et al., 2014), and is 

expected to reveal further insights in development and disease relevant to these cell lineages.   

 

Our analysis of DE enhancers revealed that sequence information encoded in DE enhancers are 

interpreted by both the endoderm-specifying TF, EOMES, as well as the NODAL signaling 
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effectors SMAD2/3, SMAD4 and FOXH1. In addition to endoderm (Teo et al., 2011), EOMES 

is also required for specification of cardiac mesoderm (Costello et al., 2011), and it is unclear 

how a single TF can specify progenitor cell fates in these two non-overlapping germ layers. Our 

integrative analysis of the binding profiles of these TFs in DE, coupled with H3K27ac as readout 

of functional binding, revealed a unique set of co-bound regulatory elements associated with an 

endoderm transcriptional program. Cell-fate decisions within the primitive streak have been 

suggested to be regulated by graded levels of NODAL signaling; a high level of Nodal/Smad2/3 

signaling is required for DE specification, while low levels of Nodal are sufficient to induce 

mesoderm formation (Costello et al., 2011; Dunn et al., 2004; Vincent et al., 2003). Epigenome 

profiling in DE revealed that strong H3K27ac enrichment is associated with high SMAD2/3/4 

occupancy, whereas elements bound by EOMES with weak SMAD2/3/4 are associated with 

mesoderm and cardiac development (Fig 3.8). Hence, a subset of DNA-bound EOMES 

cooperates with NODAL signaling to induce endoderm differentiation, whereas at other loci 

EOMES may associate with other DNA binding partners for mesoderm specification through a 

SMAD2/3- and FOXH1-independent mechanism. It will be interesting to examine the 

relationship between NODAL effectors, EOMES and other regulatory TFs predicted to be 

enriched on DE enhancers, e.g. GATA4 and NANOG (Fig 3.6). This work further identified an 

overrepresentation of AP-1 motifs on DE enhancers, suggesting that transcriptional effectors of 

the JNK signaling pathway assemble on DE enhancers. Impaired JNK activity in mouse ES cells 

and embryoid bodies led to reduced expression of endoderm lineage markers such as Sox17 and 

Hnf1 (Loebel et al., 2011; Xu and Davis, 2010). This is consistent with the current finding that 

JNK signaling effectors assemble on DE enhancers and highlight the potential of JNK pathway 

modulation as a strategy to improve current directed-DE differentiation protocols. In sum these 
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observations suggest that chromatin signatures in the relevant cell types can reveal the role of 

specific signaling pathways in developmental gene expression.  

 

Enhancer discovery through chromatin profiling is complement by other next-generation 

sequencing approaches, such as DNase-seq and TF ChIP-seq. Collectively, these assays have 

greatly expanded our knowledge of enhancer localizations, properties and functions (Bulger and 

Groudine, 2010; Shlyueva et al., 2014), which in turn have spurred other novel methods for 

enhancer discovery. For example, publicly available enhancer catalogues have facilitated 

computational dissection of enhancer sequence features and highlighted the potential of in silico 

approaches for accurate enhancer prediction (Yáñez-Cuna et al., 2014). Sequencing of enhancer-

associated bidirectional capped RNAs has been reported as a more sensitive and reliable 

predictor of enhancer activity (Andersson et al., 2014). Despite the high-throughput nature of 

these approaches, the predicted elements require additional validation assays as readout for 

enhancer function, which are laborious and low-throughput in nature. To overcome this 

limitation, several innovative assays were recently developed, combining enhancer discovery and 

validation into a single high-throughput experiment. These methods include STARR-seq (Arnold 

et al., 2013), SIF-seq (Dickel et al., 2014) and FIREWAch (Murtha et al., 2014). The application 

of these novel enhancer discovery techniques, together with targeted genome-editing techniques 

using site-specific nucleases (Gaj et al., 2013) are foreseen to translate genomic information into 

functional knowledge and ultimately, clinically-relevant endpoints.  
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6.2 ChIA-PET analysis of global chromatin interactions 

 

Through ChIA-PET analyses of RNAPII, we have comprehensively mapped transcription-

associated chromatin interactions between promoters and distal regulatory elements. Not only do 

promoters contact their respective enhancers, we also observed extensive enhancer-enhancer and 

promoter-promoter interactions, suggesting extensive looping of RNAPII binding sites into 

higher-order interaction complexes. The clustering of a large number of genes into higher-order 

structures may provide the structural basis for coordinated transcription regulation of different 

genes, consistent with the hypothesis that highly active transcriptional units gather at certain 

concentrated foci of RNAPII and offers mechanistic insight into transcription factories. This idea 

is further confirmed through DNA-FISH coupled with immunostaining, where we demonstrated 

the physical association of these interaction complexes with RNAPII foci. The clustering of 

multiple genes into transcription units may offer a structural explanation to the recent 

phenomena of pervasive transcription in intergenic regions (Jensen et al., 2013). In addition, this 

model is in principle akin to the bacterial operon as a mechanism for coordinated transcription 

regulation of related genes, further advancing the notion that similar biological concepts apply in 

eukaryotic and bacterial systems despite differences in complexity and structure. We note that 

the RNAPII interactions observed in this study are associated with pre-initiation forms of the 

protein, and not all interactions captured represents active transcription or elongation events. The 

interactions identified can be complemented with transcriptomic and epigenetic data to allow 

dissection of different transcriptional states. Alternatively, ChIA-PET can be performed on other 

phosphorylated formed of RNAPII, such as Ser5P (initiating form) or Ser2,5P (elongating form) 

(Phatnani and Greenleaf, 2006). These data, together with increasing sequencing depth and 
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coverage, will allow even more comprehensive analysis of transcription-associated chromatin 

interactions and potentially reveal more diverse types of regulatory interaction classes. 

 

Current 3C-based methods investigating genome organization relies on capturing crosslinked and 

ligated chromatin from a large population of cells for contact frequency quantification. The result 

is an averaged set of chromatin interactions which is assumed to represent the dominant 

conformation within the entire cell population. However, population-averaged assays disregard 

the presence of biologically relevant subpopulations and may poorly reflect the actual state in 

either the majority or any subpopulation of cells (Altschuler and Wu, 2010). To address this 

issue, Kalhor et al. developed a computational strategy which employed a scoring function to 

define the genome as a set of models each representing a spatial variant in different cells (Kalhor 

et al., 2011). By iteratively deriving each model from primary input data, cell-to-cell variants are 

independently and reproducibly reflected. The combination of this strategy with existing 

genome-wide methods, such as Hi-C and ChIA-PET, may overcome the limitations of chromatin 

interaction averaging.  

 

Experimentally, the requirement for large cell numbers for current high-throughput chromatin 

interaction assays precludes their application to many interesting biological samples, such as 

patient DNA. This requirement may be augmented by increasing the length of current ChIA-PET 

tags from the current 20 bp by MmeI restriction digestion, to 27 bp by EcoP15I digestion. Longer 

tags map to the genome with greater accuracy, reducing the number of false positive chromatin 

interactions and improving the coverage of chromatin interactions at a given sequencing depth. A 

non-enzymatic approach for obtaining longer PETs is to sonicate the ChIA-PET ligation 

products to obtain DNA fragments of 400 – 600 bp. The biotinylated linker-containing DNA can 
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then be purified using streptavidin-magnetic beads and subjected to Illumina paired end 

sequencing analysis at 75/105 bp from both ends.  Another factor influencing cell number 

requirement involves the over-amplification of DNA templates derived from small number of 

cells, resulting in high redundancy and low interaction complexity. A potential solution involves 

the use a single molecule sequencing platform, such as the SMRT system by Pacific Biosciences, 

to overcome the requirement for library PCR amplification.  

 

All 3C-derived methods rely on formaldehyde fixation of cells to crosslink proteins and DNA 

which are in physical proximity, providing a snapshot representation of chromatin structure. As 

formaldehyde has a relatively short crosslinking arm of 2Å, it may not, in principle, efficiently 

crosslink certain proteins which are more distantly bound to DNA. For example, both the histone 

deacetylase Rpd3 [95] and MTA3 [96], a component of the Mi-2/NuRD histone deacetylase 

complex, are refractory to formaldehyde crosslinking, necessitating the use of a second 

crosslinker with a longer spacer arm. These studies suggest that additional crosslinking using 

reagents of varying spacer arms are more effective in preserving large multiprotein complexes 

and possibly their associated chromatin interactions. Indeed, ChIA-PET experiments using 

ethylene glycol bis(succinimidyl succinate) (EGS) in combination with formaldehyde increases 

chromatin interaction complexity (unpublished observations, Ruan Lab).  

  

The current improvements in sensitivities and scales at which interactions between genomic loci 

can be detected and analyzed calls for assays for functional testing of the identified interactions. 

The synthetic zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases 

(TALENs) contains independent DNA-binding and DNA-cleavage protein domains, and can 
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produce simultaneous targeted breaks on the same chromosome at distances up to 15Mbs, 

producing large deletions at frequencies of 0.1-10% in a native chromatin environment in human 

cells (Lee et al., 2010; Urnov et al., 2010). CRISPR represents a more efficient alternative to 

ZFNs and TALENs, where target specificity of the Cas9 endonuclease is obtained through a 

guide RNA which can be designed complementary to any genomic locus (Wiedenheft et al., 

2012). The versatility of the CRISPR systems is likely to make it the method of choice for 

targeted perturbations of chromatin interactions.  

 

Genome-wide association studies (GWAS) have identified a large number of genetic loci 

associated with disease susceptibility. Most of these loci reside in noncoding regions, suggesting 

that mutations in enhancers may account for a large fraction of disease-associated risk (Visel et 

al., 2009a). While GWAS-associated loci can be overlapped with ENCODE data-defined 

genetic/epigenetic descriptors obtained through DNase-seq and ChIP-seq (Hazelett et al., 2014; 

Rhie et al., 2013), the question of how noncoding disease risk elements are connected to gene 

functions remains unresolved. Using RNAPII ChIA-PET analyses, we have comprehensively 

identified enhancers and their target genes in several human cell types. As illustrated by the SHH 

and IRS1 loci, long range interaction data can provide the connectivity of GWAS risk loci to 

their target genes and facilitate functionalization of these disease risk-associated elements. As 

transcriptional enhancers are highly cell-type-specific, we expect that the application of ChIA-

PET to disease-relevant cell types is expected to provide further mechanistic explanations for 

increased risk and transcription dysregulation underlying human complex diseases. 
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APPENDIX I - OLIGONUCLEOTIDE SEQUENCES USED IN THIS STUDY 

qPCR primers for RNA-seq validation 

Reverse transcription qPCR primers Sequence 

PBGD-F (housekeeping) GGAGCCATGTCTGGTAACGG 
PBGD-R (housekeeping) CCACGCGAATCACTCTCATCT 

ISL1-F AGATTATATCAGGTTGTACGGGATCA 
ISL1-R ACACAGCGGAAACACTCGAT 
IRX3-F CTCCGCACCTGCTGGGACTTC 
IRX3-R CTCCACTTCCAAGGCACTACAG 
PAX9-F TGGTTATGTTGCTGGACATGGGTG 
PAX9-R GGAAGCCGTGACAGAATGACTACCT 
TBX1-F CGGCTCCTACGACTATTGCCC 
TBX1-R GGAACGTATTCCTTGCTTGCCCT 

HNF1B-F AGGCCACAATCTCCTCTCAC 
HNF1B-R TTGCTGGGGATTATGGTGGGA 
HNF4A-F CATGGCCAAGATTGACAACCT 
HNF4A-R TTCCCATATGTTCCTGCATCAG 
HOXA1-F CGTGAGAAGGAGGGTCTCTTG 
HOXA1-R GTGGGAGGTAGTCAGAGTGTC 
HOXB4-F GTTCCCTCCATGCGAGGAATA 
HOXB4-R GCTGGGTAGGTAATCGCTCTG 
HOXC5-F GCAGAGCCCCAATATCCCTG 
HOXC5-R CCGATCCATAGTTCCCACAAGTT 
HOXC6-F F:ACCCCTGGATGCAGCGAATGAATTCG 
HOXC6-R GTTCCAGGGTCTGGTACCGCGAGTA 
CDX2-F F: GGGCTCTCTGAGAGGCAGGT 
CDX2-R CCTTTGCTCTGCGGTTCTG 
PDX1-F F: GCGTTGTTTGTGGCTGTTGCGCA 
PDX1-R AGCTTCCCCGCTGTGTGTGTTAGG 

 

qPCR primers for ChIP enrichment validation 

ChIP-qPCR primers Sequence 

NC1-F TTCAAGTGACTCCCCTGTCTC 
NC1-R TTCAGCAGAATTACAAGAAACAAAAT 
NC2-F TTTTGCAAGATTAGTTGATAAGAGAGA 
NC2-R GCGTTGGTTGTGGGACTATT 

WNT8B-F CCTTCCACCTCTTGTGTGCT 
WNT8B-R CAGGGACAGGAAGGAGACAG 
FOXP4-F AAGATGAAATCAGCGCATCC 
FOXP4-R CCTCCCTTCATTTCCTCAGA 
NODAL-F GGCAGGGATCCCAGGTGAGGT 
NODAL-R GCAGGCTTGTCCCGGCAGAT 
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DPPA4-F CATTCTCAGCACCCTCGGTT 
DPPA4-R TGGGGGCTAGAGGGAAATGG 
GAPDH-F GCCTCTGCGCCCTTGAGCTA 
GAPDH-R GATGCGGCCGTCTCTGGAAC 
ACTB-F GGGTGGGTCACTAGGGAGAGA 
ACTB-R GACTCCCCCAACACCACACT 
EIF3B-F GAAGCCACATGCACCCAATG 
EIF3B-R ACTCAACAGGCGATTGCTCA 
BTF3-F TATTCGCTCCGACAAGGTACAA 
BTF3-R CCGCTCCCGTCCTCCTA 

PRDM14-F ACCCCGTACAGAACGAAGTG 
PRDM14-R AAACCCTCCAACCAAGAAGG 

SOX2-F GCCCTGCAGTACAACTCCAT 
SOX2-R GACTTGACCACCGAACCCAT 

RNAPII-F AACGGCGAATTCCACAAC 
RNAPII-R CGCGTCTGCTAACGTAGTCC 

RNAPII-neg-F AGTCTGAGCTTTGTGGACAGC 
RNAPII-neg-R CCCTCCCAGTATACAGTCTTGC 

 

ChIA-PET linker and adapter sequences 

Linkers Sequence 

Linker A GGCCGCGATATCTTATCCAAC 
Linker B GGCCGCGATATACATTCCAAC 
Adapters Sequence 

Adapter A CCATCTCATCCCTGCGTGTCCCATCTGTTCCCTCCCTGTCTCAGNN 

Adapter B CTGAGACACGCAACAGGGGATAGGCAAGGCACACAGGGGATAGG 

PCR primers Sequence 
Primer A AATGATACGGCGACCACCGAGATCTACACCCTATCCCCTGTGTGCCTTG 

Primer B CAAGCAGAAGACGGCATACGAGATCGGTCCATCTCATCCCTGCGTGTC 

Sequencing primers Sequence 
Forward AATGATACGGCGACCACCGAGAT 
Reverse CAAGCAGAAGACGGCATACGA 

 

PCR primers for enhancer validation in zebrafish 

Zebrafish PCR primers Sequence 

TBX1-F CACCCCTCCGGGTGACCAAAATCA 
TBX1-R GGATTGTCCCTCCTAGGCCA 

HNF1B-F CACCACTTAGCAGATGCTGTCAACAC 
HNF1B-R CGGCAGGCCCATAGAGATTA 
WNT5B-F CACCTGGCATCTCGCATGTCCTTT 
WNT5B-R AGACGAGTGCAGTTCCTTGG 

 



  

199 
 

APPENDIX II – BAC PROBES USED FOR DNA-FISH 

Intrachromosome (related to Fig 4.6C, Fig 5.4A and Fig 5.5B) 

Test mix Control mix 

RP11-766A9 + RP11-463D24 RP11-766A9 + RP11-979M22 
RP11-191N14 + RP11-915D14 RP11-191N14 + RP11-92F20 

RP11-80F13 + RP11-795I20 RP11-80F13 + RP11-482K16 
RP11-136G6 + RP11-780D7 RP11-136G6 + RP11-903H1 

 

Interchromosome (related to Fig 5.4B) 

Test mix Control mix 

RP11-727F15 + RP11-143M10 RP11-727F15 + RP11-563H6 
RP11-626F12 + RP11-556I13 RP11-626F12 + RP11-563H6 
RP11-727F15 + RP11-419E4 RP11-727F15 + RP11-563H6 
RP11-286L5 + RP11-107L14 RP11-286L5 + RP11-563H6 
RP11-286L5 + RP11-419E4 RP11-286L5 + RP11-563H6 

 

Immunofluorescence-DNA FISH 

MG locus Control locus 

RP11-973N23 RP11-699B7 
RP11-399J13 RP11-699B7 
RP11-34B20 RP11-699B7 

RP11-143M10 RP11-699B7 
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APPENDIX III – ULCERATIVE COLITIS SNPS FROM NHGRI GWAS CATALOG 

108 TagSNPs for ulcerative colitis from the NHGRI GWAS catalog 

No. Coordinates (chr:position) SNP ID Population 

1 13:27531267 rs17085007 ASN 

2  16:86009740 rs16940186 ASN 

3 1:20200990 rs4654903 ASN 

4 16:86014241 rs16940202 ASN 

5 1:2501338 rs10797432 EUR 

6 1:20171860 rs6426833 EUR 

7 1:200101920 rs2816958 EUR 

8 2:198881668 rs1016883 EUR 

9 2:199523122 rs17229285 EUR 

10 3:53062661 rs9847710 EUR 

11 4:103511114 rs3774959 EUR 

12 5:594083 rs11739663 EUR 

13 5:134443606 rs254560 EUR 

14 6:32612397 rs6927022 EUR 

15 7:2789880 rs798502 EUR 

16 7:27231762 rs4722672 EUR 

17 7:107480315 rs4380874 EUR 

18 7:128573967 rs4728142 EUR 

19 11:96023427 rs483905 EUR 

20 11:114386830 rs561722 EUR 

21 15:41563950 rs28374715 EUR 

22 16:30482494 rs11150589 EUR 

23 16:68591230 rs1728785 EUR 

24 17:70641698 rs7210086 EUR 

25 19:47123783 rs1126510 EUR 

26 20:33799280 rs6088765 EUR 

27 20:43065028 rs6017342 EUR 

28 1:67705958 rs11209026 EUR 

29 1:161479745 rs1801274 EUR 

30 1:206939904 rs3024505 EUR 

31 2:61204856 rs7608910 EUR 

32 2:241579108 rs4676406 EUR 

33 3:49719729 rs9822268 EUR 
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34 4:123329362 rs17388568 EUR 

35 7:107492789 rs4510766 EUR 

36 10:101290301 rs6584283 EUR 

37 12:68500075 rs7134599 EUR 

38 16:68674788 rs6499188 EUR 

39 17:38040763 rs2872507 EUR 

40 21:40465534 rs2836878 EUR 

41 22:50435480 rs5771069 EUR 

42 1:2513216 rs734999 EUR 

43 1:8021973 rs35675666 EUR 

44 1:22698447 rs7524102 EUR 

45 2:102663628 rs2310173 EUR 

46 2:219010146 rs11676348 EUR 

47 5:10752315 rs267939 EUR 

48 5:35876274 rs3194051 EUR 

49 5:40410935 rs6451493 EUR 

50 5:158826792 rs6871626 EUR 

51 6:43795968 rs943072 EUR 

52 6:106522027 rs6911490 EUR 

53 6:138006504 rs6920220 EUR 

54 9:4981602 rs10758669 EUR 

55 9:117553249 rs4246905 EUR 

56 9:139266405 rs10781499 EUR 

57 10:35554054 rs12261843 EUR 

58 11:1874072 rs907611 EUR 

59 11:76299194 rs2155219 EUR 

60 13:27531267 rs17085007 EUR 

61 13:41013977 rs941823 EUR 

62 16:86014241 rs16940202 EUR 

63 20:62327582 rs2297441 EUR 

64 21:16817051 rs1297265 EUR 

65 21:45615023 rs2838519 EUR 

66 1:200877562 rs7554511 EUR 

67 4:180284814 rs6811556 EUR 

68 5:107834247 rs4571457 EUR 

69 7:18800413 rs11764116 EUR 

70 7:81857893 rs929351 EUR 
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71 13:79550934 rs7319358 EUR 

72 14:29132877 rs1956388 EUR 

73 20:31718653 rs6059101 EUR 

74 6:32079567 rs17207986 EUR 

75 9:117605070 rs11554257 EUR 

76 7:98760504 rs7809799 EUR 

77 1:20227723 rs4654925 EUR 

78 1:206943968 rs3024493 EUR 

79 1:20140036 rs1317209 EUR 

80 1:67694202 rs2201841 EUR 

81 1:161472158 rs10800309 EUR 

82 2:61186829 rs13003464 EUR 

83 3:49721532 rs3197999 EUR 

84 5:583442 rs4957048 EUR 

85 7:107503441 rs4598195 EUR 

86 9:139266496 rs4077515 EUR 

87 10:101291593 rs11190140 EUR 

88 12:68504592 rs1558744 EUR 

89 17:38062196 rs2305480 EUR 

90 1:200935866 rs11584383 EUR 

91 2:200290359 rs1992950 EUR 

92 17:38051348 rs8067378 EUR 

93 21:16805220 rs1736135 EUR 

94 16:10975311 rs4781011 EUR 

95 1:161479745 rs1801274 ASN 

96 9:5213687 rs10975003 ASN 

97 7:107453103 rs2108225 ASN 

98 7:107495434 rs886774 EUR 

99 13:40505510 rs9548988 EUR 

100 3:49701983 rs9858542 EUR 

101 9:139269338 rs10781500 EUR 

102 1:20142866 rs3806308 EUR 

103 1:67725120 rs10889677 EUR 

104 12:68596661 rs2870946 EUR 

105 9:85311147 rs668853 EUR 

106 7:107479519 rs4730273 EUR 

107 7:107484437 rs4730276 EUR 
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108 7:107580839 rs2158836 EUR 
 

 


