
WAVELET AND ITS
APPLICATIONS

FAN ZHITAO
(B.Sc. (Hons.), NUS)

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE
SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE
2014





Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Fan Zhitao

April 10, 2015





Acknowledgements

I am deeply indebted to my supervisor, Prof Shen Zuowei, who has spent so much time

and efforts to educate me in doing research, as well as in making me a better person.

His passion and insightful thinking for research consistently motivate me to excel in my

skills and to keep on learning. My deepest gratitude also goes to my Thesis Advisory

Committees, Prof Qiu Anqi and Prof Ji Hui, for their endless patience for attending the

semester-based progress meetings and the valuable advices towards the completion of

this thesis.

Much of the work in the thesis would not be done without the fantastic collaborators:

Prof Shen Zuowei, Prof Ji Hui, Dr Andreas Heinecke and Dr Li Ming. I personally benefit

a lot from working with them. The thesis was mainly developed from one of Prof Shen’s

brilliant ideas towards frame theory, from whom I learned how to develop a small idea to

a giant project. The work extended to dual frames was done with Dr Andreas Heinecke

during his stay in NUS for his research fellowship, from whom I learned the attention to

details and the good writing skill. An application project on electron microscopy image

processing (not included in this thesis) was done with Dr Li Ming during his stay for

his research fellowship during 2012 to 2013, from whom I learned passion and excellent

skills in programming. I have also received numerous advices from Prof Ji on both the

theoretical and applicational projects, which have benefited me a lot throughout the

period of my PhD studies.

Lastly, my greatest gratitude goes to all my colleagues, dearest friends and especially



vi

my parents for their unconditional support of my graduate study. I could not list all

your names here but you know I will keep them deeply in my heart. The thesis is finan-

cially supported by the NUS Graduate School (NGS) scholarship in National University

Singapore (2010-2014) and the Research Assistantship by Prof Shen Zuowei and Prof Ji

Hui (2014-2015).



Summary

Motivated from the dual Gramian analysis of shift-invariant frames in [94], we developed

the dual Gramian analysis for frames in abstract Hilbert spaces. We show the dual

Gramian analysis is still a powerful tool for the analysis of frames, e.g. to characterize

a frame, to estimate the frame bounds, and to find the dual frames. The dual Gramian

analysis can be easily extended to the analysis of dual (or bi-) frames by mixed dual

Gramian analysis.

With the introduction of adjoint systems, the duality principle plays a key role in

this analysis. The duality principle also lies in the core of the analysis of Gabor sys-

tems, by which we unify several classical identities, e.g. the Walnut representation,

the Janssen/Wexler-Raz representation, and the Wexler-Raz biorthogonal relationship.

Moreover, several dual Gabor window pairs are constructed from this duality viewpoint,

especially the non-separable multivariate case with any order of smoothness.

For MRA wavelet frames, the (mixed) unitary extension principle can be viewed as

the perfect reconstruction filter bank condition for sequences. The duality perspective

leads to a new and simple way to construct filter banks, or tight/dual wavelet frames

from a prescribed MRA. The new method reduces the construction to a constant matrix

completion problem rather than the usual methods to complete matrices with trigono-

metric polynomial entries. The new construction guarantees the existence of multivariate

tight/dual wavelet frames from a given refinement mask, with the constructed wavelets

easily satisfying additional properties, e.g. small support, symmetric/anti-symmetric.
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Several multivariate tight and dual wavelet frames from given refinable functions have

been constructed.
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Chapter 1

Introduction

1.1 Background

Frame theory, peaking in the last few decades, has infused new life and energy to both

theory and applications and many fascinating results are obtained. The notion of frame

was first introduced by Duffin and Schaeffer to study nonharmonic Fourier series [46].

Like an orthonormal basis, a frame system guarantees a numerical stable reconstruction

from the decomposition of an element in a Hilbert space, however the reconstruction

is no longer unique since most of frame systems are redundant; in other words, they

contain more elements than needed. For a given frame system, one of the natural

systems that could be considered for the reconstruction is the canonical dual frame,

which is the pre-image of the frame system under the frame operator. But due to the

redundancy of the frame system, the choice of the reconstruction system is not unique.

All the alternative systems that provide the perfect reconstruction are called dual frames.

When the canonical dual frame coincides with the original frame system, one has the

so-called tight frame. Tight frame systems, which contain the orthonormal basis as a

special case, provide more flexibility in various properties than orthonormal basis. This

additional flexibility is sometimes desirable in theoretical analysis and applications.
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In real applications, e.g. image processing, systems with special structure should be

considered. Given a signal f ∈ L1(Rd), its Fourier transform f̂ defined by

f̂(ω) :=
∫
Rd
f(x)e−iω·x dx, ω ∈ Rd,

which could be extended to L2(Rd), exhibits the frequency content of a function. Local

changes of the signal f will in general result in a global change of its Fourier transform

and the information about time-localization of different frequencies cannot be easily

interpreted from f̂ . The classical way to resolve this problem is the introduction of a

compactly supported or fast decaying window φ ∈ L2(Rd), resulting in the windowed (or

short-time) Fourier transform

Vφf(ω,t) := ⟨f,MωEtφ⟩ =
∫
Rd
f(x)e−iω·xφ(x− t)dx, (ω,t) ∈ R2d. (1.1)

Here, we denote by Et the translation operator and by M t the modulation operator

on L2(Rd), i.e. Etf := f(· − t) and M tf := etf , where et : x 7→ eit·x and x,t ∈ Rd. By a

discrete sampling of its continuous time-frequency representation (1.1), one is thus led

to considering the properties of the irregular Gabor system (or Weyl-Heisenberg system)

X = {EγMηφ : (γ,η) ∈ Λ},

where Λ ⊂ R2d is some discrete set. The system can be used to analyze and study the

numerical stable reconstruction of the signal from the discrete samples of its continuous

time-frequency domain, or to characterize function spaces (see e.g. [48]). In addition

to a good localization of the window, i.e. of the elements of X, a good simultaneous

frequency localization of the elements of X is often important. This makes windows

that are smooth, i.e. have fast decaying Fourier transform, desirable. But the Balian-
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Low theorem, see e.g. [35, 52, 59, 60], sets some theoretical boundaries. If the shifts and

modulations are lattices (see Chapter 3), then there do not exist windows with both good

time and frequency localization that generate orthonormal bases X. However, there exist

windows with excellent time-frequency localization, that generate frames and even tight

frames, thus ensuring numerically stable and even perfect reconstruction. This makes

Gabor systems an example of systems for which it becomes imperative to oversample, i.e.

to move beyond orthonormal bases into the realm of frames. There is a vast literature on

studying irregular Gabor systems. Most of the results concern perturbation and density

theorems of the sampling sets, see e.g. [25, 50, 51, 58, 80, 103, 108].

The irregular Gabor system with time-frequency varying on lattices will be called

(regular) Gabor system. The frame property of the regular Gabor system in one di-

mensional case has first been studied in [36]. In order to get a reconstruction from the

decomposition by a Gabor frame, the dual frame is needed. The canonical dual frame

of a Gabor frame remains a Gabor frame with the window to be the pre-image of the

window function under the frame operator, since the frame operator commutes with the

shift and modulation operator. By observing that the Gabor system with a separable

shift and modulation lattice is shift-invariant, the analysis developed for shift-invariant

systems in [94] could be applied and the analysis is done in arbitrary dimensions. The

analysis in [94], namely the dual Gramian analysis, is based on a fiberized matrix rep-

resentation of the frame operator by making use of the shift-invariant structure. This

matrix representation is useful in several ways. One is to estimate the frame bounds by a

simple matrix norm. Another is to introduce the adjoint system by a simple row-column

relationship, which greatly simplifies the study of Gabor frames. Since studying the

Riesz sequence property is generally easier than the frame property, the Gabor frame

property could be transferred to the Riesz sequence property of the adjoint system, which

is one consequence of duality principle. In particular, the characterization of tight frames
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can be simplified to an orthonormal sequence property of the adjoint system, and more

generally, dual Gabor frames properties to a biorthogonal relationship of their adjoint

systems. This biorthogonal relationship for characterizing dual Gabor frames is inde-

pendently observed by [39, 70], where it is proved by the Wexler-Raz identity. The

Wexer-Raz identity is essentially a representation of the frame operator, which is later

generalized by Janssen [71]. Not only biorthogonality relationship simplifies the verifi-

cation of dual Gabor frames, but also it makes the construction of dual Gabor windows

painless [36]. Duality results for Gabor system with Λ being a general non-separable

lattice are discussed in [53, 54].

A considerable body of literature on the construction of dual Gabor windows already

exists. In [24], a construction for a dual window of a given compactly supported window,

in particular a given B-spline which is a smooth piecewise polynomial function [2], is

presented. The support of the dual window constructed in [24] is twice as large as that

of the primary window. Moreover, the density of the modulation lattice depends on

the support size of the primary window. Larger support of the primary window, i.e.

in the B-spline case higher smoothness, forces a denser modulation lattice. Also note

that in [22, 27, 77, 81] the authors construct dual windows that overcome the problem

of support in [24]. The paper [81] gives several constructions of Gabor windows using

spline functions and discusses the smoothness of the constructed windows and choice

of lattices. However, it involves complicated symbolic computations, especially when

the smoothness of the window is increased. The idea of [24] is generalized to higher

dimensions in [28]. Similar to the one dimensional case, the support size of the dual

window gets larger when the smoothness of the primary window increases, resulting in

a denser modulation lattice.

Another system widely used in application is the wavelet system. The wavelet system
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is a discrete sample of the continuous wavelet transform, which is given as

Wf(a,b) := a−1/2
∫
Rd
f(x)ψ

(
x− b

a

)
dx, (a,b) ∈ R>0 ×Rd,

for f,ψ ∈L2(Rd). Similar to windowed Fourier transform, the wavelet transform can also

provide a time-frequency transform on the signal. But the windowed Fourier transform

has the same window function at different time locations while the wavelet transform

can change the window size, due to the dilation, adapted to the frequency of the signal.

This makes the wavelet transform more suitable, e.g. to analyze transients in a signal.

The wavelet (or affine) system is defined as

X = {DkEjψ : k ∈ Z, j ∈ Zd,ψ ∈ Ψ}

where Dk is the dilation operator: Dk : f 7→ 2kd/2f(2k·) and Ψ ⊂ L2(Rd) are called the

wavelets. Again the system can be used to analyze the signal or study the numerical

stable reconstruction of the signal from the discrete samples of its continuous time-

frequency domain.

There are many works on the construction of wavelet orthonormal basis in L2(R),

see e.g. [35] for some pioneer works. With the introduction of multiresolution analysis

(MRA) by Mallat and Meyer [86, 88], most of the construction could be explained with

a firm theoretical framework and it inspires more constructions. Wavelet orthonormal

basis with bandlimited windows, i.e. of compact support in the Fourier domain, by Meyer

is shown in [87] and with compactly supported windows by Daubechies is constructed in

[35]. Symmetry of the wavelets is sometimes desirable in applications, but it has been

proved by Daubechies that the only dyadic real symmetric orthonormal wavelet with

compact support is the Haar wavelet [35]. In searching for symmetric wavelet windows,

one way is to drop the single system assumption and the biorthogonal wavelet, i.e.
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wavelet Riesz basis, is then studied in [33]. Wavelet frames, in particular tight wavelet

frames, once again do not have such restriction on the symmetry of the window function.

Wavelet frames in L2(R) are first studied in [36] and the frame bounds are then

estimated in [34]. Compared with Gabor frames, it is not easy to find the canonical dual

wavelet frame, since the frame operator no longer commutes with the dilation operator

in this case. Wavelet frames in L2(Rd) are systematically studied in [96] by the dual

Gramian analysis developed for the analysis of shift-invariant frames. But a wavelet

system is not shift-invariant due to the negative and decreasing dilation. In [96], the

quasi-affine system is introduced by oversampling the wavelet system, which is made

shift-invariant and shares the same frame property as the wavelet system. The wavelet

frame bounds can be easily estimated from a matrix norm and the tight frame property

can be stated as a simple condition on the wavelet windows. Under MRA, the tight

frame property on the windows can be further reduced to a condition on the masks,

namely the unitary extension principle (UEP).

The construction of tight wavelet frames ever since attracts a lot of attention as

UEP provides a useful tool but there is still no simple and unified algorithm to give con-

structions of all wavelets with desired properties. In particular, the multivariate wavelet

construction becomes more difficult due to the increasing dimension. One simple refin-

able function that enjoys wide applications is the B-spline. Using the UEP, totally m

wavelets could be constructed for a given B-spline function Bm, where m is the order of

the B-spline, see e.g. [45]. There have been many other methods to construct univariate

tight wavelet frames from B-splines. For example, by using the UEP and trigonometric

polynomial matrix completion, the construction in [30] can give only two wavelets for

B-splines of any order, and three if certain symmetry is imposed on the wavelets. Inde-

pendent of which method or which B-spline function is used, the approximation order

of the truncated tight wavelet frames constructed via the UEP from B-splines is never
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greater than two. Constructing spline tight wavelet frames of better approximation order

leads to the discovery of the oblique extension principle (OEP), independently discov-

ered in [32] and [38]. By using the OEP, spline tight wavelet frames with two or three

wavelets are constructed in [38] with better approximation order than the ones con-

structed from UEP. In [63–65], interesting examples of symmetric tight wavelet frames

with two or three wavelets are constructed by splitting a matrix of Laurant polynomials

with symmetry.

The construction of non-separable multivariate tight wavelet frames by using re-

finable box splines first appeared in [91], where exponentially decaying orthonormal

wavelets for dimension two or three are constructed. After the UEP was introduced,

compactly supported tight wavelet frames from box splines was first constructed in [99].

The methods provided in [99] are applicable in general to box splines of any order, how-

ever, the support of the constructed wavelet can be large. There are also many other

construction schemes of tight wavelet frames from box splines, see e.g. [18, 31, 61, 79].

The main challenge in these construction schemes is the completion of a trigonometric

polynomial matrix with multivariables from one single row given by the refinement mask

such that the matrix satisfies the UEP condition. For the case of nonnegative refine-

ment masks, a new local construction scheme of tight wavelet frames is proposed in [20]

which simplifies the problem from polynomial matrix completion to a constant matrix

factorization.

The dual Gramian analysis can be easily extended to the analysis of dual (or bi-)

systems, called the mixed dual Gramian analysis, and as a result a characterization of

dual wavelet frames can be derived [97]. This characterization, under MRA, can as well

be reduced to a sufficient condition on the masks, which is the mixed unitary extension

principle (MEP). Compared with the UEP, the construction of wavelets based on the

MEP is to complete two matrices, which gains more flexibility in mask design. Sev-
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eral one dimensional dual wavelet frames have been constructed in [33, 35, 37, 38, 73].

Construction of multivariate dual frames, similar to the multivariate tight frame con-

struction, becomes increasingly difficult, since it involves the completion of two matrices

with polynomial entries. As orthonormal bases are a special class of tight frames, the

biorthogonal systems, i.e. Riesz basis and its dual, are a special class of dual frames. The

literature has a rich history of biorthogonal wavelet constructions but lack dual wavelet

frames constructions. Several biorthogonal wavelet construction based on box splines

have been proposed in [72, 91, 93]. There are many multivariate biorthogonal wavelet

constructions with high order of vanishing moment in [21]. Also note that the lifting

scheme proposed in [109], which is essentially linked to biorthogonal wavelets, leads to

several constructions of multivariate biorthogonal wavelets, see e.g. [55, 78, 106]. A

multivariate dual wavelet frames construction via a projection method is proposed in

[62].

Frames are proved to be effective in real applications. For example, tight wavelet

frames have been implemented in many image restorations such as image inpainting [4,

41], image denoising [13, 57, 105], image deblurring [8, 9, 12], image demosaicing [85], and

image enhencement [69]. Moreover, wavelet frame related algorithms are developed to

solve medical and biological image processing problems, e.g. medical image segmentation

[40, 110], X-ray computed tomography (CT) image reconstruction [43], and protein

molecule 3D reconstruction from electron microscopy images [83]. Frame has more

flexibility of designing appropriate filters for the need of applications. For example, the

filters used for image restoration problems in [1, 11, 90] are learned from the image so

that the filters have captured certain feature of the image and the transform gives a

better sparse representation. In [74], Gabor frame filter banks are designed to get a

high orientation selectivity that adapts to the geometry of image edges for sparse image

approximation. Wavelet filters can be considered as a discrete approximation of certain
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differential operators. The tight wavelet frame based approach for image processing

has close relationship with the PDE based approaches, whose connection to the total

variation based approach is established in [6], to the Mumford-Shah model in [7], and

to nonlinear evolution PDE models in [42].

1.2 Organization

The thesis mainly contributes to the development of the theory of dual Gramian analysis

for frames in an abstract Hilbert space (chapter 3), and a few applications of the resulted

core duality principle for Gabor frame analysis (chapter 4) and wavelets construction

(chapter 5) in L2(Rd). We give a short overview of the contents and contributions of

each part.

• Chapter 2: The synthesis operator and the analysis operator in a Hilbert space will

be defined. Various systems and their definitions will be reviewed. The synthesis

operator and the analysis operator form two self-adjoint operators by composing

in different orders, by which the characterization of systems is investigated. The

synthesis operator and the analysis operator of two different systems form mixed

operators, of which the properties are studied. In the end of this chapter, we con-

sider the restriction of the coefficient space corresponding to the synthesis operator,

which could be viewed as studying a special mixed operator.

• Chapter 3: The pre-Gramian matrix, the (mixed) Gramian matrix and the (mixed)

dual Gramian matrix will be introduced. The links between the (infinite) matrices

and the operators in Chapter 2 are established. In particular, the dual Gramian

matrix, which is formed by only the elements of the system, is a matrix represen-

tation of the frame operator. There are several benefits by writing the operator in

a matrix form, e.g., to find the canonical dual frame by a matrix inverse, and to
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estimate the frame bound by a matrix norm. The pre-Gramian matrix could be

further simplified if systems exhibit special structure. For example, we show the

fiber pre-Gramian matrix of a shift-invariant system introduced in [94] is a special

realization of the abstract pre-Gramian matrix by choosing an adequate orthonor-

mal basis. In [98] the fiber dual Gramian analysis for regular Gabor systems as a

special class of shift-invariant systems is developed. While the emphasis of [98] is

more on the dual Gramian analysis of single systems with only a few glimpse of

dual frames, here we give a detailed mixed dual Gramian analysis of bi-systems.

• Chapter 4: A new system, namely adjoint system, can be easily defined from the

matrix view point of the synthesis operator by a simple row and column relation-

ship; as a result duality principle is derived. Part of the duality principle states

that the frame property of the system is characterized by the Riesz sequence prop-

erty of the adjoint system counterpart, which simplifies the study of frame greatly.

We will see that all the dual frames could be characterized and parametrized by

the adjoint systems. The duality principle also brings a new viewpoint of the

perfect reconstruction filter banks in ℓ2(Zd), which leads to a simple filter bank

construction scheme involving only a constant matrix completion. We then show

the dual Graman analysis for irregular Gabor systems in L2(Rd) by choosing a

Gabor orthonormal basis to best adapt to the structure of the system, and present

the duality principle. For regular Gabor system, we will show how those classical

identities, e.g. Walnut representation, Wexler-Raz/Janssen identities, Wexler-Raz

biorthogonal relationship, could be a simple consequence of the dual Gramian anal-

ysis and the duality principle. We proposed several simple ways to construct dual

Gabor windows based on the duality principle viewpoint, which have coinciding

support and can achieve arbitrary smoothness of the windows.

• Chapter 5: The fiber dual Gramian analysis for wavelet frames in [96] is reviewed.
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In particular, under a multiresolution analysis (MRA), we review the unitary ex-

tension principle (UEP) for tight wavelet frames and mixed unitary extension

principle (MEP) for dual wavelet frames. The UEP, respectively the MEP, is in-

deed the perfect reconstruction condition for filter banks in ℓ2(Zd) associated with

the wavelet masks. This connection, with the construction scheme for filter banks

resulted from duality principle, leads to a simple way of constructing tight and dual

wavelet frames, which, in contrast to the existing constructions involving matrix

completion with polynomials, only requires completing constant matrices. Espe-

cially, this greatly simplifies the task of finding multivariate tight or dual wavelet

frames, and most importantly, guarantees the existence of multivariate tight or

dual wavelet frames from any given refinement mask satisfying a weak condition.

Several multivariate tight wavelet frames constructed from box spline and multi-

variate dual wavelet frame constructed from interplotary refinable functions will

be shown. Finally, given a set of tight frame filter bank, as long as there is a low

pass filter, we show that this filter bank corresponds to an MRA tight wavelet

system in L2(Rd) whose masks are derived from the filter bank.

1.3 Contributions

The contributions of the thesis include the following:

• Built up the dual Gramian analysis of a single system in a separable Hilbert space,

and the mixed dual Gramian analysis for bi-systems.

• Made the connection of dual Gramian analysis proposed in the thesis and the dual

Gramian analysis of shift-invariant system in [94].

• Introduced the adjoint systems and showed the power of duality principle in study-

ing the frame properties of original systems in Hilbert spaces.
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• Detailed mixed dual Gramian analysis for Gabor systems, and unified several clas-

sical identities of Gabor systems by the duality principle.

• Constructed Gabor windows with same compact support and arbitrary smooth-

ness, in particular for high dimensional case.

• Proposed a new and simple scheme to construct perfect reconstruction filter banks

by duality principle.

• Proved the existence of multivariate tight/dual wavelet frames, and proposed a

new and simple way to construct tight/dual wavelet frames which only involves a

completion of constant matrices.



Chapter 2

Hilbert space and operators

In this chapter, we review the basic notations of a Hilbert space and introduce several

operators, in particular, the synthesis operator and the analysis operator, by which

various systems are defined in the Hilbert space. The two different ways of composition

of the synthesis and analysis operators lead to two self-adjoint operators, which are

convenient in the characterization of different systems. The compositions of the synthesis

and analysis operators from two different systems give the mixed operators, several of

whose properties are investigated. Lastly, we will examine the synthesis operator on a

sequence subspace, and the frame operator with a restriction on the sequence subspace

is studied. Parts of this chapter could be found in e.g. [23, 35, 67, 68, 94, 113]. We

summarize, make the notations consistent and provide a sketch of proof to make the

thesis more self-contained.

2.1 Hilbert space and systems

A Hilbert space H is a complex inner product space which is complete with respect

to the norm function induced by the inner product. The inner product is denoted by

⟨·, ·⟩ and the induced norm is defined as ∥x∥ := ⟨x,x⟩1/2 for x ∈H. We only consider the
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separable Hilbert space in this thesis, which admits a countable orthonormal basis. An

orthonormal basis O is a subset in H, of which the linear span is dense in H, each

element has a unit norm and the elements are pairwise orthogonal, i.e. ⟨x,y⟩ = 0 for

any two distinct x,y ∈ O. With a countable orthonormal basis, an infinite-dimensional

separable Hilbert space is isometrically isomorphic to ℓ2 which is the space of square

summable sequences. A sequence X with a certain indexing in H is hereafter referred to

as a system. An operator Λ from a Hilbert space H to another Hilbert space H ′ is a

linear mapping with the domain being a subspace of H and range in H ′. The operator is

said to be bounded or continuous on H if there exists B > 0 such that ∥Λh∥ ≤B∥h∥

for all h ∈H.

Given a system X in H, we start with two operators that are naturally associated

with this system. First let ℓ2(X) be the space of square summable sequences indexed by

X and ℓ0(X) be the space of sequences with finite support. The synthesis operator

of X is defined by

TX : ℓ2(X) →H : c→
∑
x∈X

c(x)x,

which is well defined on the dense subspace ℓ0(X) of ℓ2(X). The system X is called a

Bessel system if TX is bounded on ℓ0(X), in which case we consider TX as its unique

continuous extension to a bounded operator on ℓ2(X). The operator norm ∥TX∥ is called

the Bessel bound.

A Bessel system X is called fundamental if its closed linear span is all of H and

it is called ℓ2-independent if TX is injective. A Bessel system X is called a Riesz

sequence if TX is bounded below on ℓ2(X), or equivalently there exist two positive

constants A≤B such that

A∥c∥ ≤ ∥
∑
x∈X

c(x)x∥ ≤B∥c∥ for all c ∈ ℓ2(X).
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We denote the partial inverse of a bounded operator Λ as Λ†, namely, the inverse of

the map Λ restricted on (kerΛ)⊥ to its range. Then for a Riesz sequence X, ∥TX∥ and

∥T †
X∥−1 will be called the upper, respectively lower Riesz bound of X. A Riesz

sequence X is called a Riesz basis if in addition X is fundamental.

The analysis operator associated with the system X is defined as

T ∗
X :H → ℓ2(X) : h 7→ {⟨h,x⟩}x∈X ,

which is the unique adjoint operator of TX . System X is a Bessel system if and only

if T ∗
X is bounded and the Bessel bound is ∥T ∗

X∥. In addition, a Bessel system X is

fundamental if and only if T ∗
X is injective. A Bessel system is called a frame if T ∗

X is

bounded below on H, or equivalently there exist two positive constants A≤B such that

A∥f∥ ≤

∑
x∈X

|⟨f,x⟩|2
1/2

≤B∥f∥ for all f ∈H.

In this case, ∥T ∗
X∥ and ∥(T ∗

X)†∥−1 are the upper, respectively lower frame bound of

X, and X is a tight frame if those two bounds coincide (with default value to be 1

throughout the thesis if no specification). The frame property guarantees the numerical

stable reconstruction from the coefficients given by the analysis operator. Note that

when X is a frame, it is already fundamental. We say that X forms a frame sequence

if it is a frame for a closed subspace of H, or equivalently any of the following criteria is

satisfied.

Proposition 2.1.1. Let X be a Bessel system. Then the following are equivalent:

(a) ranTX is closed.

(b) TX is bounded below on (kerTX)⊥.

(c) T ∗
X is onto (kerTX)⊥.
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(d) T ∗
X is bounded below on (kerT ∗

X)⊥.

Proof. First to show (a) implies (b). It is clear that TX is a bounded and one-to-one

linear mapping from (kerTX)⊥ to ranTX . Since ranTX is closed by (a), with [101,

Corollary 2.12], the partial inverse

T †
X : ranTX → (kerTX)⊥

is bounded, i.e. there exists M > 0 such that ∥T †
Xf∥ ≤ M∥f∥ for f ∈ ranTX . Since

f ∈ ranTX , there exists c ∈ (kerTX)⊥ such that TXc= f . Hence

∥c∥ = ∥T †
XTXc∥ ≤M∥TXc∥

which says TX is bounded below on (kerTX)⊥.

To show (b) implies (a). For a given sequence {fn} ∈ ranTX converging to f ∈ H,

to show f ∈ ranTX , i.e. there exists c ∈ (kerTX)⊥ such that TXc = f . For any fn ∈

ranTX , there exists cn ∈ (kerTX)⊥ satisfying TXcn = fn. Since TX is bounded below on

(kerTX)⊥, then there exists M > 0 and

∥cn− cm∥ ≤ 1
M

∥TXcn−TXcm∥ = 1
M

∥fn−fm∥.

That the sequence {fn} is Cauchy implies that {cn} is Cauchy. Hence {cn} converges

to a point c ∈ (kerTX)⊥. Since TX is bounded, we have TXc= f which says f ∈ ranTX .

Since ranT ∗
X = (kerTX)⊥, that T ∗

X is onto (kerTX)⊥ is equivalent to that ranT ∗
X is

closed. As a result, the proof for the equivalence of (c) and (d) is analogous to that for

the equivalence of (a) and (b).

Now we show (a) implies (d), i.e. if ranTX is closed, then T ∗
X is bounded below on

(kerT ∗
X)⊥. Since kerT ∗

X = (ranTX)⊥ and ranTX is closed, then ranTX = (kerT ∗
X)⊥. By
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open mapping theorem [101], the bounded linear operator TX : (kerTX)⊥ → (kerT ∗
X)⊥ is

an open map, i.e. let U be the unit ball in (kerTX)⊥ and V be the unit ball in (kerT ∗
X)⊥,

then there exists δ > 0 such that δV ⊂ TXU . For any f ∈ (kerT ∗
X)⊥, we have

∥T ∗
Xf∥ = sup{⟨c,T ∗

Xf⟩, c ∈ U} = sup{⟨TXc,f⟩, c ∈ U}

≥ sup{⟨f0,f⟩,f0 ∈ δV } = δ∥f∥.

Lastly we show that (d) implies (a), i.e. if T ∗
X is bounded below on (kerT ∗

X)⊥, say by

δ > 0, then ranTX is closed. Let a sequence {fn} ⊂ ranTX converging to f , to show there

exist c such that TXc = f . Let cn ∈ (kerTX)⊥ such that TXcn = fn. Note in addition

that T ∗
X is onto (kerTX)⊥ since (d) and (c) are equivalent. Then

∥cn− cm∥ = sup
d∈(kerTX)⊥:∥d∥≤1

|⟨cn− cm,d⟩| = sup
h:∥T ∗

Xh∥≤1
|⟨cn− cm,T

∗
Xh⟩|

≤ sup
h:∥h∥≤1/δ

|⟨cn− cm,T
∗
Xh⟩| = sup

h:∥h∥≤1/δ
|⟨TXcn−TXcm,h⟩|

= sup
h:∥h∥≤1/δ

|⟨fn−fm,h⟩| = 1
δ

∥fn−fm∥,

which shows {cn} is Cauchy since {fn} is Cauchy. So there is c such that cn → c, and

by the continuity of TX , we have TXc= f .

2.2 Self-adjoint operators

In this section, we will show that the two self-adjoint operators, R := T ∗
XTX and S :=

TXT
∗
X , could be conveniently used to characterize various properties of a given system X.

Moreover, we will see that the operator R is naturally linked to the linear independence

property of the system X while S, usually referred to as the frame operator, is linked

to the redundancy property of the system.

Theorem 2.2.1. Suppose system X is Bessel in H. Then
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(a) System X is ℓ2-independent if and only if R is injective.

(b) System X is fundamental if and only if S is injective.

Proof. The proofs of (a) and (b) are analogous due to the similar structure of R and

S. We show in details the proof of (b). If Bessel system X is fundamental, then T ∗
X

is injective. The condition Sf = TXT
∗
Xf = 0 implies T ∗

Xf ∈ kerTX . With kerTX =

(ranT ∗
X)⊥, we have T ∗

Xf = 0. The injectivity of T ∗
X implies f = 0, which concludes that

S is injective. Conversely, suppose S is injective. For T ∗
Xf = 0, we have TXT ∗

Xf = 0.

Then f = 0 by the injective of S. So this gives that T ∗
X is injective, and hence system

X is fundamental.

Theorem 2.2.2. Let system X be a Bessel system in H. Then

(a) System X forms a Riesz sequence with lower bound A if and only if R is invertible

and the inverse is bounded by A−2.

(b) System X forms a frame with lower bound A if and only if S is invertible and the

inverse is bounded by A−2.

Proof. We show the proof of (b). If Bessel system X is a frame, i.e. T ∗
X is bounded

below by A, then

A2∥f∥2 ≤ ∥T ∗
Xf∥2 = ⟨TXT ∗

Xf,f⟩ ≤ ∥T ∗
XTXf∥∥f∥.

Since T ∗
X is bounded, say by B, then we have in addition that

A2∥f∥ ≤ ∥Sf∥ ≤B2∥f∥.

So by [101, Theorem 12.12], S is invertible and the inverse bound can be obtained from

the lower bound.
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Conversely, if S is invertible, then TX is onto H. By Proposition 2.1.1, T ∗
X is bounded

below on (kerT ∗
X)⊥. Since H = ranTX ⊂ (kerT ∗

X)⊥, thus H = (kerT ∗
X)⊥. This gives that

T ∗
X is bounded below on H, or equivalently that X is a frame.

Theorem 2.2.3. Let X be a Bessel system. Then

(a) System X is an orthonormal sequence if and only if R = I.

(b) System X is a tight frame if and only if S = I.

Proof. We only show the proof of (b). If S = I, then

⟨f,f⟩ = ⟨Sf,f⟩ = ⟨T ∗
Xf,T

∗
Xf⟩

Hence ∥T ∗
Xf∥ = ∥f∥ which implies that X is a tight frame.

Conversely, if X is a tight frame, for f,g ∈H, we have

∥T ∗
Xf +T ∗

Xg∥2 = ∥f +g∥2

Thus

∥T ∗
Xf∥2 +2Re ⟨T ∗

Xf,T
∗
Xg⟩+∥T ∗

Xg∥2 = ∥f∥2 +2Re ⟨f,g⟩+∥g∥2,

which gives

Re ⟨T ∗
Xf,T

∗
Xg⟩ = Re ⟨f,g⟩.

By taking if, ig instead of f,g and going through the same calculation, we have

Im ⟨T ∗
Xf,T

∗
Xg⟩ = Im ⟨f,g⟩.

This shows

⟨TXT ∗
Xf,g⟩ = ⟨T ∗

Xf,T
∗
Xg⟩ = ⟨f,g⟩.
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Since g is arbitrary, we then have TXT ∗
Xf = f , i.e. S = I.

2.3 Mixed operators

Suppose X and Y = RX are Bessel systems in H where R denotes the indexing by

system X, we now study the properties of systems X and Y . If TY T ∗
X or its adjoint

TXT
∗
Y is the identity of H, then X and Y are called a pair of dual frames in H, and

Y is called a dual frame of X. Note that

∥h∥2 = ⟨TY T ∗
Xh,h⟩ = ⟨T ∗

Xh,T
∗
Y h⟩ ≤ ∥T ∗

Y ∥∥h∥∥T ∗
Xh∥

for any h ∈H, which shows that X, and by symmetry of the situation also Y , is a frame

in H.

Given a frame X for H, it is well known that X and S−1X, where S = TXT
∗
X , are

dual frames since S−1 is self-adjoint and therefore T ∗
S−1X = T ∗

XS−1. The system S−1X

is called the canonical dual frame of X. In particular, a tight frame has itself as the

canonical dual frame. The canonical dual frame S−1X is distinguished from any other

dual frame RX by several properties. For example, S−1X is the unique dual frame to

make the projector T ∗
RXTX an orthogonal projector, see [97]. Also, ∥T ∗

S−1Xf∥ ≤ ∥T ∗
RXf∥

for any f ∈ H, see e.g. [35, 68]. Moreover, S−1 is the only self-adjoint operator among

all dual frame maps R. That is, if X is a frame in H and RX is a dual frame, then RX

is the canonical dual frame if and only if

⟨x,Rx′⟩ = ⟨Rx,x′⟩ for all x,x′ ∈X, (2.1)

see [97]. The canonical dual frame can also be used to verify the independence properties

of the system. Specifically, see [97], if X is a frame in H, then ⟨x,S−1x⟩ ≤ 1 for all x∈X
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and X is a Riesz basis if and only if

⟨x,S−1x⟩ = 1 for all x ∈X. (2.2)

In particular, a tight frame is an orthonormal basis if and only if all its elements have

unit norm.

We now present some facts about the mixed operators TY T ∗
X , TXT

∗
Y , T

∗
Y TX and

T ∗
XTY . The first is in the spirit of the canonical dual frame.

Proposition 2.3.1. Let X and Y = RX be frames for H such that ranT ∗
X = ranT ∗

Y .

Then TY T
∗
X is boundedly invertible and (TY T ∗

X)−1Y and X are dual frames.

Proof. We have

ranTY T ∗
X = ran(TY |ranT ∗

X
) = ran(TY |ranT ∗

Y
) = ran(TY |(kerTY )⊥) = ranTY =H.

To show the injectivity of TY T ∗
X , let f ∈H such that TY T ∗

Xf = 0. Then T ∗
Xf ∈ kerTY =

(ranT ∗
Y )⊥ = (ranT ∗

X)⊥ which gives T ∗
Xf = 0. Since X is a frame, T ∗

X is injective, and thus

f = 0, showing that TY T ∗
X is injective. A similar proof shows that TXT ∗

Y is also invertible.

Thus by open mapping theorem [101], TY T ∗
X and TXT

∗
Y are boundedly invertible on H

and, denoting Q= (TY T ∗
X)−1R, we have

T ∗
QXh= {⟨h,(TY T ∗

X)−1Rx⟩}x∈X

for any h ∈H, i.e. T ∗
QX = T ∗

Y (TXT ∗
Y )−1. Therefore, TXT ∗

QX is the identity on H.

Proposition 2.3.2. Let X and Y = RX be Bessel systems in H such that ranT ∗
X =

ranT ∗
Y . Then the following are equivalent:

(a) X and Y are frames.
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(b) TY T
∗
X and TXT ∗

Y are bounded below.

Proof. Suppose X and Y are frames in H. Then TX is bounded below on (kerTX)⊥ =

ranT ∗
X = ranT ∗

Y and T ∗
Y is bounded below on H. Thus, for every h ∈H, we have

∥T †
X∥−1∥(T ∗

Y )†∥−1∥h∥ ≤ ∥T †
X∥−1∥T ∗

Y h∥ ≤ ∥TXT ∗
Y h∥.

Hence TXT ∗
Y is bounded below on H and similarly so is TY T ∗

X . Conversely, since TXT ∗
Y

is bounded below together with TX being bounded, then T ∗
Y is bounded below which

gives that Y is a frame. By the same argument X is a frame.

Note that the assumption ranT ∗
X = ranT ∗

Y in Proposition 2.3.1 and 2.3.2 is essential.

There do exist frames X and Y = RX such that TY T ∗
X = TXT

∗
Y = 0 which are called

orthogonal frames, see [76]. Note that ranT ∗
X = ranT ∗

Y is not needed in Proposition 2.3.2

for (b) to imply (a) but (b) does not imply this condition. Indeed, the canonical dual

of a frame X is the only Bessel system R′X in H for which TR′XT
∗
X = I and ranT ∗

X =

ranT ∗
R′X , see [94].

Proposition 2.3.3. Let X and Y = RX be Bessel systems in H such that ranTX =

ranTY . Then the following are equivalent:

(a) X and Y are Riesz sequences.

(b) T ∗
Y TX and T ∗

XTY are bounded below.

Proof. If T ∗
Y TX is bounded below and T ∗

Y is bounded, then TX is bounded below which

implies X is a Riesz sequence. On the other hand, if X and Y are Riesz sequences, then

TX is bounded below and T ∗
Y is bounded below on (kerT ∗

Y )⊥ = (kerT ∗
X)⊥. Therefore

T ∗
Y TX is bounded below.
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2.4 Restricting coefficient space

One question about reducing the redundancy of a frame can be posed by asking whether

every frame contains a Riesz basis. The question has a negative answer, since the vectors

of a Riesz basis are necessarily bounded and bounded below away from zero in norm.

Thus, if {en}n∈N is an orthonormal basis, then {e1,
1√
2e2,

1√
2e2, . . .} where 1√

n
en appears

n times is a tight frame which does not contain a Riesz basis. Counterexamples still exist

if one does not allow frames which contain a subsequence converging to zero in norm

[14, 104]. In other words, it is in general not possible to choose a coordinate subspace

of the coefficient space ℓ2(X) of a tight frame X, such that the restriction of TX to this

subspace becomes injective while still being onto. Here by a coordinate subspace of

ℓ2(X) we mean any subspace of the form span{ex}x∈Y where Y ⊂X and ex ∈ ℓ2(X) is

the standard unit vector given by ex(x′) = δx,x′ . That is, the coordinate subspaces are

those subspaces that can be identified with ℓ2(Y ) for some Y ⊂X.

The situation drastically changes if one considers arbitrary subspaces of the coefficient

space. Given a Bessel system X, the question becomes whether there is some subspace

S ⊂ ℓ2(X) such that TX |S is bounded below, i.e. such that

∥(TX |S)−1∥−1∥c∥ ≤

∥∥∥∥∥∥
∑
x∈X

c(x)x
∥∥∥∥∥∥≤ ∥TX |S∥∥c∥ for all c ∈ S. (2.3)

Note that a system X is a frame sequence if (2.3) holds for all c ∈ (kerTX)⊥, that X

contains a Riesz sequence if (2.3) holds for a coordinate subspace ℓ2(X) and that X is

a Riesz sequence if (2.3) holds for S = ℓ2(X).

If X is a frame in H, then TXT
∗
X is bounded below and onto, thus TX |ranT ∗

X
is

bounded below and onto, and one can choose S = ranT ∗
X . Moreover, ranT ∗

X is exactly

the space of coefficients needed for X to span H, so we really may restrict our attention

to precisely this subspace of ℓ2(X). In effect, in this view the distinction between frame



24 Hilbert space and operators

and Riesz property vanishes and in this sense one can always make a redundant system

non-redundant by considering it on a smaller coefficient space. The more redundant a

system is, the fewer coefficients one needs to represent the whole space since kerTX gets

larger while ranT ∗
X gets smaller.

We now turn to the restriction of the coefficient space to some subspace of ℓ2(X)

through an orthogonal projection. That is, consider the operator TXPST ∗
X where X is a

Bessel system in H, S is a subspace of ℓ2(X) and PS is the orthogonal projection onto S.

If ranT ∗
X ⊂ S, then TXPST ∗

X = TXT
∗
X and one has the classical situation with TX acting

on the whole coefficient space ranT ∗
X . In general, decompose S into the orthogonal

direct sum S = S1 ⊕S2, where S1 = S∩ ranT ∗
X and S2 is the orthogonal complement of

S1 in S. Then S1 ⊂ ranT ∗
X and S2 ⊂ kerTX , i.e. TXPS2T

∗
X is identical to zero.

Operators of the form TXPST
∗
X arise in many contexts. Let, say, X be a tight frame

in H, let Y ⊂X and M(Y ) =∑
x∈Y ⟨·,x⟩x. Then the mapping M defined on the power

set of X is a simple example of a positive operator valued measure, a notion playing a

major role in quantum information theory, describing generalized measurements [102]. In

general, M(Y ) is not an orthogonal projection. Indeed, letting P (Y ) be the orthogonal

projection of ℓ2(X) onto the subspace span{ex}x∈Y , then M(Y ) = TXP (Y )T ∗
X , which

is an instance of Naimark’s dilation theorem (see e.g. [89]). The mapping P defines a

projection valued measure, describing the standard measurements in quantum theory.

We now show that TXPST ∗
X is an orthogonal projection whenever X is a tight frame for

certain subspaces related to S.

Proposition 2.4.1. Let X be a fundamental Bessel system in H and S a subspace of

ℓ2(X). Then the following are equivalent:

(a) TXT
∗
X is the identity on E1 = {f ∈H : T ∗

Xf ∈ S}.

(b) TXT
∗
X is the identity on E2 = ranTX |S.
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If (a) (or (b)) holds, then TXPST
∗
X is an orthogonal projection with range E1 and E1 =

E2.

Proof. With S decomposed as above, notice that TXPST ∗
X = TXPS1T

∗
X +TXPS2T

∗
X =

TXPS1T
∗
X . Hence, ranTX |S = ranTX |S1 and TXT ∗

X is the identity on E1 if and only if it

is the identity on {f ∈H : T ∗
Xf ∈ S1}. Therefore, assume as we may, that S ⊂ ranT ∗

X .

(a) ⇒ (b): Note that TXT ∗
X maps E1 onto E2 and is the identity on E1. So these two

sets coincide. (b) ⇒ (a): If T ∗
Xh∈ S, then (TXT ∗

X)TXT ∗
Xh= (TXT ∗

X)h, i.e. TXT ∗
Xh−h∈

kerTXT ∗
X . Since X is fundamental, hence H = ranTX = (kerT ∗

X)⊥ = (kerTXT ∗
X)⊥, which

gives kerTXT ∗
X = {0}.

Now assume (a). As TXPST ∗
X is self-adjoint it remains to show that it is the identity

on its range. If h ∈ E1, then TXPST
∗
Xh = TXT

∗
Xh = h and thus E1 ⊂ ranTXPST ∗

X . It

therefore remains to show ranTXPST ∗
X ⊂ E1. To this end, let h ∈ ranTXPST ∗

X , say

h = TXPST
∗
Xg. Since S ⊂ ranT ∗

X , we have PST ∗
Xg = T ∗

Xf for some f ∈ E1. Therefore,

by (b),

T ∗
Xh= T ∗

XTXPST
∗
Xg = T ∗

XTXT
∗
Xf = T ∗

Xf ∈ S,

i.e. h ∈ E1.

Without the assumption on X to be fundamental, (b) does not imply (a). Take,

say, H = R3 with the standard orthonormal basis {e1, e2, e3} and X = {e1, e2}. Let

S = ranT ∗
X =R2. Then TXT ∗

X is the identity on E2 but not on E1 =R3. Merely under the

assumption on X being fundamental, E1 in general does not coincide with E2 (or its clo-

sure). Take H = R2 and X =
√

2/5{(0,1)⊤,(1,0)⊤,(1,1)⊤}. Let S = span{(0,1,1)⊤} ⊂

span{(1,0,1)⊤,(0,1,1)⊤} = ranT ∗
X . Then E1 = span{(1,0)⊤} but E2 = span{(2,1)⊤}.

Note also that in this example TXPST ∗
X is the orthogonal projection onto E2, i.e. in the

above result, the assumption TXPST
∗
X to be an orthogonal projection does not imply

(a) (or (b)).
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According to Proposition 2.4.1, the operator TXPST ∗
X is a projection whenever TXT ∗

X

is the identity on certain subspaces of H, i.e. when X is a tight frame for certain

subspaces of H. We now look at the weaker condition when TXT ∗
X is bounded below on

the aforementioned subspaces. Note however, that if S is a proper subspace of ranT ∗
X ,

we can choose a nonzero h ∈ H such that T ∗
Xh ∈ (ranT ∗

X) ⊖S. Then TXPST
∗
Xh = 0.

Thus, in this case TXPST ∗
X cannot be bounded below. However, if X is a fundamental

Bessel system in H and S ⊂ ranT ∗
X , then TXT

∗
X is bounded below on E1 if and only if

(TXT ∗
X |E1)−1 is bounded on E2.



Chapter 3

Dual Gramian analysis

In this chapter, we will introduce the dual Gramian matrix of a given system in a Hilbert

space and its corresponding analysis to the frame property of the system. For a given

system X, the key to the dual Gramian analysis is to find a pre-Gramian matrix JX that

represents the synthesis operator TX by only the elements of X and the corresponding

adjoint J∗
X satisfies the following identity with a unitary operator U :H → ℓ2:

∥T ∗
Xf∥2 = ∥J∗

XUf∥2 = (Uf)∗G̃X(Uf), for f ∈H,

where G̃X := JXJ
∗
X denotes the dual Gramian. With this representation, one hopefully

can characterize various properties of the system X in terms of its elements. The dual

Gramian matrix can also be conveniently used for constructing the canonical dual frame,

and estimating the frame bounds.

The matrix representations could be further simplified as soon as the given system

exhibits some structure. In [94, 96–98] for general and particular shift-invariant systems

in L2(Rd), the synthesis and analysis operators are represented by a continuum of ma-

trices, the so-called fibers, instead of just one matrix. Properties of the analysis and

synthesis operators can then be characterized by properties of the fibers, which have to
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hold in a uniform way. Connection of abstract pre-Gramian and the fiber pre-Gramian

matrices will be shown by designing an appropriate orthonormal basis adapting to the

shift-invariant structure. Gabor systems are a particular well-structured class of shift-

invariant systems and the mixed dual Gramian analysis, which is a generalization from

single system analysis to dual (or bi-) systems analysis, is developed in complement to

[98].

3.1 Definitions

Depending on the structure of the given system and the associated underlying Hilbert

space, there are many ways to define a pre-Gramian matrix. In general, for a given

system X of a Hilbert space H, the pre-Gramian matrix JX of X associated with an

orthonormal basis O in H is defined as

JX := (⟨x,e⟩)e∈O,x∈X (3.1)

where the rows are indexed by O and the columns are indexed by X, and the (e,x)-entry

is the inner product of x with e.

Note that matrix JX is dependent on the orthonormal basis O chosen, and is infinite

when either the index O or X is infinite. The matrix naturally defines an operator:

ℓ2(X) → ℓ2(O) : c 7→

∑
x∈X

c(x)⟨x,e⟩

e∈O

which is well-defined on ℓ0(X). In order for each entry ∑x∈X c(x)⟨x,e⟩ to be well defined

for c ∈ ℓ2(X), we need ∑
x∈X

|⟨x,e⟩|2 <∞ (3.2)

for all e ∈ O. We will use JX to denote both this operator and the pre-Gramian matrix.
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Note the condition (3.2) will always be satisfied for any choice of orthonormal basis if

X is a Bessel system. The adjoint matrix

J∗
X = (⟨e,x⟩)x∈X,e∈O

will also denote the corresponding operator on ℓ2(O).

Let X be a system in H and assume (3.2) for X with respect to an orthonormal

basis O of H. The Gramian matrix of X is defined as

GX := J∗
XJX =

(∑
e∈O

⟨x′,e⟩⟨e,x⟩
)

x∈X,x′∈X

= (⟨x′,x⟩)x∈X,x′∈X , (3.3)

and its dual Gramian matrix (with respect to O) as

G̃X := JXJ
∗
X =

(∑
x∈X

⟨x,e⟩⟨e′,x⟩
)

e∈O,e′∈O

. (3.4)

The entries of the Gramian matrix are well-defined since O is an orthonormal basis

of H and the entries of the dual Gramian matrix are well-defined since X satisfies the

condition (3.2). The last equality in (3.3), which follows again from the fact that O

is an orthonormal basis of H, shows that this definition coincides with the traditional

definition of Gramian matrix of a given system X. Hence, the definition of the Gramian

matrix is independent of the choice of the orthonormal basis O. If given another system

RX satisfies (3.2) with respect to the same orthonormal basis O, the mixed Gramian

matrix of X and RX is defined as

GRX,X := J∗
RXJX = (⟨x′,Rx⟩)x∈X,x′∈X , (3.5)

and their mixed dual Gramian matrix (with respect to O) as

G̃RX,X := JRXJ
∗
X =

(∑
x∈X

⟨Rx,e⟩⟨e′,x⟩
)

e∈O,e′∈O

. (3.6)
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Note the (dual) Gramian matrix is Hermitian but the mixed (dual) Gramian matrix

is generally not. The finite dimensional situation is a simple example to illustrate the

matrices defined.

Example 3.1.1. Let H be the finite dimensional Hilbert space Cm and let {ei}mi=1 denote

its canonical orthonormal basis. Let X = {xk}nk=1 ⊂ Cm. Then, the pre-Gramian matrix

of X is

JX =


x1(1) · · · xn(1)

... . . . ...

x1(m) · · · xn(m)


which is the matrix representation of the synthesis operator associated with X

TX : ℓ2(X) → Cm : c 7→
n∑
k=1

ckxk.

Similarly, the adjoint matrix J∗
X

J∗
X =


x1(1) · · · x1(m)

... . . . ...

xn(1) · · · xn(m)



is the matrix representation of the analysis operator

T ∗
X : Cm → ℓ2(X) : f 7→ {⟨f,xk⟩}nk=1.

Its corresponding Gramian matrix and the dual Gramian matrix are

GX = J∗
XJX = (⟨xk′ ,xk⟩)k,k′ , G̃X = JXJ

∗
X =

 n∑
k=1

xk(j)xk(j′)

j,j′

which are the matrix representations of the linear operators T ∗
XTX and TXT

∗
X respec-
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tively.

If in addition, there is another system Y = {yk}nk=1 ⊂ Cm and JY is the associated

pre-Gramian matrix, then the mixed Gramian matrix and mixed dual Gramian matrix

are

GX,Y = J∗
XJY = (⟨yk′ ,xk⟩)k,k′ , G̃X,Y = JXJ

∗
Y =

 n∑
k=1

xk(j)yk(j′)

j,j′

which are then the matrix representations of the mixed operators T ∗
XTY and TXT

∗
Y re-

spectively.

3.2 Analysis

In order to link the (mixed) dual Gramian matrix G̃X to the (mixed) frame operator,

we need the synthesis operator corresponding to the orthonormal basis O of H, denoted

as U , which is the unitary operator given by

U : ℓ2(O) →H : c 7→
∑
e∈O

c(e)e.

The adjoint operator counterpart is the analysis operator

U∗ :H → ℓ2(O) : f 7→ {⟨f,e⟩}e∈O.

The unitary operator U maps the sequence space ℓ2(O) to H and the adjoint operator

U∗ maps H to the sequence space ℓ2(O). Using this unitary operator U , the link between

the pre-Gramian matrix of X and the synthesis operator TX of X is stated as follows.

Proposition 3.2.1. Let X be a given system in H and let O be an orthonormal basis

of H. Assume that X and O satisfy (3.2). Then we have

TXc= UJXc for any c ∈ ℓ0(X), (3.7)
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and

T ∗
XUd= J∗

Xd for any d ∈ ℓ0(O). (3.8)

Consequently, X is a Bessel system if and only if JX (or J∗
X) is bounded. The Bessel

bound equals ∥JX∥ = ∥J∗
X∥. A Bessel system X is a Riesz sequence (resp. frame) if and

only if JX (resp. J∗
X) is bounded below.

Proof. For any c ∈ ℓ0(X), we have

UJXc=
∑
e∈O

∑
x∈X

c(x)⟨x,e⟩e=
∑
x∈X

c(x)
∑
e∈O

⟨x,e⟩e=
∑
x∈X

c(x)x= TXc.

In the above derivation, the sequence (∑x∈X c(x)⟨x,e⟩)e∈O is in ℓ2(O) since c ∈ ℓ0(X)

and O is an orthonormal basis. The summation order can be changed because the

summation indexed by X is finite for c ∈ ℓ0(X).

To prove (3.8), for any d ∈ ℓ0(O), we have

T ∗
XUd= (⟨Ud,x⟩)x∈X =

⟨
∑
e∈O

d(e)e,x⟩


x∈X

=
∑
e∈O

d(e)⟨e,x⟩


x∈X

= J∗
Xd.

Notice that J∗
Xd∈ ℓ2(X), becauseX and O satisfy (3.2). With the two relationships (3.7)

and (3.8), the characterizations of various properties of the system X can be transferred

from the synthesis operator TX and the analysis operator T ∗
X to the corresponding pre-

Gramian matrix JX and its adjoint J∗
X . Hence, the rest of the results follow from the

definitions of Bessel systems, Riesz sequences or frames that are given in terms of the

operator TX or T ∗
X .

It is noted that the proof of (3.7) does not require the assumption (3.2). However,

the assumption (3.2) makes the matrix-vector product JXc well-defined for any vector

c in ℓ2(X). As a result, the matrix JX can be formally used to define an operator on

ℓ2(X), but it may not map to ℓ2(O). The connection of (dual) Gramian matrix to
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operators T ∗
XTX and TXT

∗
X is established as follows.

Proposition 3.2.2. Let X be a given system in H and let O be an orthonormal basis

of H. Assume that X and O satisfy (3.2). Then we have

⟨TXc,TXd⟩ = d∗GXc for any c,d ∈ ℓ0(X), (3.9)

and

⟨T ∗
XUc,T

∗
XUd⟩ = d∗G̃Xc for any c,d ∈ ℓ0(O). (3.10)

Furthermore, X is a Bessel system if and only if the Gramian matrix GX (resp. the dual

Gramian matrix G̃X) defines a bounded operator of ℓ2(X) (resp. ℓ2(O)). The Bessel

bound equals to ∥GX∥1/2 = ∥G̃X∥1/2. If the system X is Bessel, we have

T ∗
XTXc=GXc for any c ∈ ℓ2(X),

U∗TXT
∗
XUd= G̃Xd for any d ∈ ℓ2(O).

Proof. Let c,d ∈ ℓ0(X). Then

⟨TXc,TXd⟩ = ⟨
∑
x′∈X

c(x′)x′,
∑
x∈X

d(x)x⟩ =
∑
x∈X

d(x)
∑
x′∈X

c(x′)⟨x′,x⟩ = d∗GXc.

For c,d ∈ ℓ0(O) we get

⟨T ∗
XUc,T

∗
XUd⟩ =

∑
x∈X

⟨Uc,x⟩⟨x,Ud⟩

=
∑
e∈O

d(e)
∑
e′∈O

c(e′)
∑
x∈X

⟨e′,x⟩⟨x,e⟩

= d∗G̃Xc.
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From (3.10), by taking limit, we conclude that

∥T ∗
XUc∥2 = c∗G̃Xc for arbitrary c ∈ ℓ2(O),

although both sides may equal infinity for some cases. In fact, it shows that both the

upper bound and the lower bound of the operator T ∗
X , which is equivalent to the frame

property of X, can be characterized by the bounds of the nonnegative Hermitian matrix

G̃X . Since the Bessel property has already been characterized by the upper bounds of

G̃X or GX in Proposition 3.2.2, the following proposition characterizes the lower bound

of frames and Riesz sequences in terms of the dual Gramian and Gramian matrices.

Proposition 3.2.3. Let X be a Bessel system in H and let O be an orthonormal basis

of H. Then

(a) X is ℓ2-independent if and only if GX is injective. X forms a Riesz sequence if

and only if GX has a bounded inverse and the lower Riesz bound is ∥G−1
X ∥−1/2. X

is an orthonormal sequence if and only if GX = I.

(b) X is fundamental if and only if G̃X is injective. X is a frame if and only if G̃X

has a bounded inverse and the lower frame bound is ∥G̃−1
X ∥−1/2. X is a tight frame

if and only if G̃X = I.

Proof. If the system X is Bessel, then by Proposition 3.2.2, we have

T ∗
XTX =GX , U∗TXT

∗
XU = G̃X .

Hence (a) and (b) follow immediately from the characterization by T ∗
XTX and TXT ∗

X .

The properties of a frame can also be characterized by the Gramian matrix. In

general, as an operator, the Gramian matrix has a non-trivial null set for a frame sys-

tem. Thus, the analysis of frame properties via Gramian matrix involves the partial
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inverse and its boundedness, see [94] for the details of the characterization of a frame

via Gramian matrix. While the Gramian matrix is very handy for studying Riesz and

orthonormal properties of a system, the dual Gramian matrix is more convenient for

studying the frame and tight frame properties of a system.

Note that when X is a Bessel system with an upper bound B, the summation∑
x∈X |⟨x,e⟩|2 is uniformly bounded by B2 for all e ∈ O. Hence the condition (3.2)

holds. Furthermore, the elements {∑x∈X |⟨x,e⟩|2, e ∈ O} form the diagonal entries of

the dual Gramian matrix G̃X . Hence, the necessary condition for X being a tight frame

is ∑x∈X |⟨x,e⟩|2 = 1 for all e ∈ O and it becomes sufficient when X is a Bessel system

with bound 1.

Proposition 3.2.4. Let X be a given system in H and let O be an orthonormal basis

of H. Assume X is a Bessel system of H with bound 1. Then the system X is a tight

frame if and only if ∑
x∈X

|⟨x,e⟩|2 = 1 for all e ∈ O. (3.11)

Proof. The necessity part is easy to see, as each element ∑x∈X |⟨x,e⟩|2 is one of the

diagonal entries of G̃X . For the sufficiency part, consider the sequence c ∈ ℓ2(O) whose

e′-th element has value 1 and others have value 0. Then G̃Xc gives the e′-th column of

matrix G̃X . By Proposition 3.2.2 and the fact that X is a Bessel system with bound 1,

we have ∥G̃Xc∥ ≤ 1. Moreover,

∥G̃Xc∥2 = ∥{
∑
x∈X

⟨e′,x⟩⟨x,e⟩}e∈O∥2 =
∑
x∈X

|⟨x,e′⟩|2
2

+
∑

e∈O\{e′}
|
∑
x∈X

⟨e′,x⟩⟨x,e⟩|2

= 1+
∑

e∈O\e′
|
∑
x∈X

⟨e′,x⟩⟨x,e⟩|2,

which implies that ∑
x∈X

⟨e′,x⟩⟨x,e⟩ = 0, for e ∈ O\{e′},

Hence the dual Gramian matrix G̃X = I, and therefore X is a tight frame by Proposi-
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tion 3.2.3.

As a direct application of Proposition 3.2.4, an orthonormal sequence X is clearly

a Bessel system with bound 1 and it becomes an orthonormal basis if it satisfies the

additional condition (3.11) for some orthonormal basis O, i.e. X is also fundamental.

For a general Bessel system X with bound B, following the same argument as Proposi-

tion 3.2.4, the condition ∑
x∈X |⟨x,e⟩|2 = B2 for all e ∈ O implies that the system is a

tight frame with bound B, i.e. ∑x∈X |⟨f,x⟩|2 =B2∥f∥2 for all f ∈H.

Given another system RX in H which is indexed by X, the mixed (dual) Gramian

matrices are connected to T ∗
RXTX and TRXT

∗
X as follows.

Proposition 3.2.5. Let X and RX be systems in H both of which satisfy (3.2) with

respect to an orthonormal basis O. Suppose the mixed Gramian GRX,X and mixed dual

Gramian G̃RX,X are both defined with respect to O and let U be the synthesis operator

of O. Then

⟨TXc,TRXd⟩ = d∗GRX,Xc for all c,d ∈ ℓ0(X), (3.12)

and

⟨T ∗
XUc,T

∗
RXUd⟩ = d∗G̃RX,Xc for all c,d ∈ ℓ0(O). (3.13)

Further, if X and RX are Bessel systems, then GRX,X defines a bounded operator on

ℓ2(X) and G̃RX,X defines a bounded operator on ℓ2(O). If X and RX are Bessel systems,

then

T ∗
RXTXc=GRX,Xc for all c ∈ ℓ2(X), (3.14)

and

U∗TRXT
∗
XUc= G̃RX,Xc for all c ∈ ℓ2(O). (3.15)

Since the mixed (dual) Gramian matrix is not Hermitian, the upper bound of the

matrix may not give the upper bound of the operators TX and TRX . As a result,
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the mixed (dual) Gramian does not give the characterization of Bessel property. The

relationship (3.15) implies the following characterization of dual frames X and RX.

Proposition 3.2.6. Let X and RX be Bessel systems for H. Then X and RX are dual

frames for H if and only if G̃RX,X = I on ℓ2(O).

3.3 The canonical dual frame

In this section, we demonstrate the convenience brought by the dual Gramian analysis in

the construction of the canonical dual frame from a given frame or in the construction

of tight frames. Proposition 3.2.2 implies that the dual Gramian matrix makes the

computation of the canonical dual frame feasible, as shown in the following proposition.

Proposition 3.3.1. Let X be a frame in H with frame bounds A,B and let U be the

synthesis operator of an orthonormal basis of H. The system UG̃−1
X U∗X is a frame with

bounds B−1,A−1, and is the canonical dual frame of X.

For the finite dimensional case, the canonical dual frame can be easily computed by

a matrix inverse, and see e.g. [49] for a connection of canonical dual frame and matrix

pseudo-inverse. As one can use the Gramian matrix to construct an orthonormal basis

from a Riesz basis, we can use the dual Gramian matrix to construct a tight frame from

a frame. Let S−1/2 denote the inverse of the positive square root of S.

f = S−1/2SS−1/2f = S−1/2 ∑
x∈X

⟨S−1/2f,x⟩x=
∑
x∈X

⟨f,S−1/2x⟩S−1/2x.

Thus, S−1/2X forms a tight frame, usually referred to as the canonical tight frame.

Proposition 3.3.2. Let X be a frame in H and let U be the synthesis operator of an

orthonormal basis of H. Let G̃−1/2
X denote the inverse of the positive square root of G̃X .

Then, the system UG̃
−1/2
X U∗X forms the canonical tight frame.
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The following example illustrates that the computation of the dual frame becomes

straightforward for the finite dimensional case.

Example 3.3.3. Let H be the finite dimensional Hilbert space Cn. Let X = {fk}mk=1 be

a frame in Cn. The dual Gramian matrix G̃X is self-adjoint and positive definite hence

invertible. Then {G̃−1
X fk}mk=1 forms the (canonical) dual frame of system {fk}mk=1.

Example 3.3.3 can be extended to the construction of tight frames. Let G̃−1/2
X denote

the inverse of the positive square root of G̃X which can be found, for example, by a

unitary diagonalization of the positive definite matrix G̃X . Then {G̃−1/2
X fk}mk=1 is a

tight frame.

Note the property of being a Riesz basis can be verified by evaluating the inner

products of the elements of X and its corresponding canonical dual frame.

Corollary 3.3.4. Let X be a frame in H and let U be the synthesis operator of an

orthonormal basis of H. Then ⟨U∗x,G̃−1
X U∗x⟩ ≤ 1 for all x ∈ X. Moreover, X is a

Riesz basis if and only if ⟨U∗x,G̃−1
X U∗x⟩ = 1 for all x ∈X.

3.4 Frame bounds estimation

Dual Gramian analysis can be used to estimate the frame bounds by using matrix norm

inequalities. Let I be a countable index set, and let M be a complex valued nonnegative

Hermitian matrix with its rows and columns indexed by I. The matrix M can be viewed

as an operator from ℓ2(I) to ℓ2(I). We use the following inequality to estimate ∥M∥:

sup
i∈I

∑
j∈I

|M(i, j)|2
1/2

≤ ∥M∥ ≤ sup
i∈I

∑
j∈I

|M(i, j)|.

The left inequality is easy to see by the definition of matrix norm and using the canon-

ical orthonormal basis of ℓ2(I). The right inequality is by that fact that ∥M∥ ≤
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√
∥M∥1∥M∥∞, see e.g. [56]. Since M is Hermitian, then ∥M∥1 = ∥M∥∞. Together

with Proposition 3.2.2, we give an estimate of the Bessel bound of a given system X.

Proposition 3.4.1. Let X be a system in a Hilbert space H satisfying (3.2) with respect

to an orthonormal basis O of H .

(a) Let

B̃1 : e 7→
∑
e′∈O

|
∑
x∈X

⟨e′,x⟩⟨x,e⟩|.

Then X is a Bessel system whenever supe∈O B̃1(e) < ∞ and its Bessel bound is

not larger than (supe∈O B̃1(e))1/2.

(b) Assume that X is a Bessel system, let

B̃2 : e 7→

∑
e′∈O

|
∑
x∈X

⟨e′,x⟩⟨x,e⟩|2
1/2

.

Then K = (supe∈O B̃2(e))1/2 <∞ and the Bessel bound is not smaller than K.

The lower frame bound can be obtained when the dual Gramian matrix is diagonally

dominant. Recall that for a Hermitian diagonally dominant matrix M ,

∥M−1∥ ≤ sup
i∈I

|M(i, i)|−
∑
j∈I\i

|M(i, j)|
−1

by ∥M−1∥ ≤ ∥M−1∥∞ since M is Hermitian, and the bound of ∥M−1∥∞ see e.g. [111].

This leads to the following proposition.

Proposition 3.4.2. Let X be a system in Hilbert space H satisfying (3.2) with respect

to an orthonormal basis O of H. Let

b̃1 : e 7→

∑
x∈X

|⟨e,x⟩|2 −
∑
e′ ̸=e

|
∑
x∈X

⟨e′,x⟩⟨x,e⟩|

−1

.
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Then X is a frame whenever supe∈O b̃1(e)<∞ and the lower frame bound is not smaller

than (supe∈O b̃1(e))−1/2.

Similarly, Riesz bounds can be estimated by using the Gramian matrix GX and we omit

the details here.

3.5 Shift-invariant system and fiber matrices

If the system is shift-invariant in L2(Rd), for a suitable basis, the pre-Gramian matrix

exhibits a strong block-wise structure. It then can be simplified to the fiber pre-Gramian

matrices of shift-invariant systems introduced in [94]. Before proceeding, we recall the

relevant notations and facts about lattices. Let K ⊂Rd be a lattice, i.e. the image of Zd

under some invertible linear map AK : Rd → Rd. The volume of K is |K| := |detAK |

and its dual lattice is K̃ := {k̃ ∈Rd : k̃ ·k ∈ 2πZ,∀k ∈K}, which implies |K||K̃| = (2π)d.

We denote the fundamental domain of K by ΩK , i.e. a subset of Rd, whose K-shifts

form an essentially partition of Rd. The Lebesgure measure of ΩK is |K|. The density

of a pair (K,L) of lattices in Rd is den(K,L) := (2π)d

|K||L| and the adjoint of (K,L) is

(L̃, K̃). Then den(K,L)den(L̃, K̃) = 1.

For a general (K-)shift-invariant system X = EΦ,K := {Ekϕ : ϕ ∈ Φ,k ∈ K} with

Φ ⊂ L2(Rd), we choose

{((2π)d|K̃|)−1/2EkM−k̃χ̂Ω
K̃

(−·) : k ∈K,k̃ ∈ K̃}

as the orthonormal basis and the pre-Gramian matrix of X is

JX = ((2π)d|K̃|)−1/2(⟨Ek
′
φ,EkM−k̃χ̂Ω

K̃
(−·)⟩)(k,k̃)∈K×K̃,(k′,ϕ)∈K×Φ

= ((2π)d|K̃|)−1/2(⟨Ek̃ϕ̂,Mk′−kχΩ
K̃

⟩)(k,k̃)∈K×K̃,(k′,φ)∈K×Φ
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where we have used the Fourier transform properties such as (Ekf)∧ =M−kf̂ , (Mkf)∧ =

Ekf̂ and ⟨f̂ , g⟩ = ⟨f, ĝ⟩ for f,g ∈ L2(Rd). For k̃ ∈ K̃ and l ∈ L fixed, JX consists of

repeated blocks of the Fourier sequence of ϕ̂(·− k̃) on Ω
K̃

. The abstract pre-Gramian is

therefore linked to the fiber pre-Gramian matrices of the (K-)shift-invariant system

X, which have been introduced in [94] as the infinite matrices

JX(ω) := |K|−1/2
(
ϕ̂(ω− k̃)

)
k̃∈K̃,ϕ∈Φ

(3.16)

indexed by ω ∈ Rd.

Theorem 3.5.1. Let Φ ⊂ L2(Rd), K ⊂ Rd be a lattice and X = {Ekϕ : ϕ ∈ Φ,k ∈ K}.

Let c ∈ ℓ0(X) = ℓ0(K×Φ). Then

JX(ω)ĉ(ω) = (JXc)∧(ω) for a.e. ω ∈ Ω
K̃
,

with respect to the orthonormal basis {((2π)d|K̃|)−1/2EkM−k̃χ̂Ω
K̃

(−·) : k ∈K,k̃ ∈ K̃}.

Proof. Let c ∈ ℓ0(X). For almost every ω ∈ Ω
K̃

, we have

JX(ω)ĉ(ω) = |K|−1/2

∑
ϕ∈Φ

ϕ̂(ω− k̃)ĉϕ(ω)

k̃∈K̃

= |K|−1/2|K̃|−1

∑
ϕ∈Φ

∑
k′∈K

cϕ[k′]e−ik′·ω ∑
k∈K

⟨Ek̃ϕ̂,MkχΩ
K̃

⟩eik·ω


k̃∈K̃

= ((2π)d|K̃|)−1/2

∑
k∈K

∑
ϕ∈Φ

∑
k′∈K

cϕ[k′]⟨Ek̃ϕ̂,Mk−k′
χΩ

K̃
⟩e−ik·ω


k̃∈K̃

.

The last term is the Fourier series of the sequence

JXc= ((2π)d|K̃|)−1/2

∑
ϕ∈Φ

∑
k′∈K

cϕ[k′]⟨Ek̃ϕ̂,Mk−k′
χΩ

K̃
⟩


k∈K,k̃∈K̃

at ω.
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The fiber pre-Gramian matrices JX(ω) introduced in [94] are used to study shift-

invariant systems through the representations

((TXc)∧(ω− k̃))
k̃∈K̃ = |K|1/2JX(ω)ĉ(ω), (3.17)

(T ∗
Xf)∧(ω) = |K|−1/2J ∗

X(ω)(f̂(ω− k̃))
k̃∈K̃ (3.18)

which hold for all c ∈ ℓ0(X), f ∈ L2(Rd) and a.e. ω ∈ Ω
K̃

. By the relationships (3.17)

and (3.18), the study of properties of the operators TX and T ∗
X are then transferred

to that of a continuum of simple structured matrices which are only defined by the

generators of the system. In [94], the Gramian matrix GX(ω) = J ∗
X(ω)JX(ω) and the

dual Gramian matrix G̃X(ω) = JX(ω)J ∗
X(ω) (with the weak condition∑ϕ∈Φ |ϕ̂(w)|2 <∞

for a.e. w ∈ Rd for it to be well-defined) are introduced. Those matrices are used to

decompose the operators T ∗
XTX and TXT ∗

X in the Fourier transform domain into simple

fibers which are then used to characterize various properties of shift-invariant systems.

More specifically, define

Λ(ω) := ∥G̃X(ω)∥, λ(ω) := ∥G̃X(ω)−1∥

as the operator norms of G̃X(ω) and G̃X(ω)−1 at each ω ∈ Td, and λ(ω) is ∞ if G̃X(ω)

is not invertible. The shift-invariant system X is Bessel if and only if the function Λ is

essentially bounded on Td. Moreover, the Bessel bound is ∥Λ∥1/2
L∞ . When X is Bessel,

this system is a frame if and only if the function λ is essentially bounded on Td. The

lower frame bound is ∥λ∥−1/2
L∞ . The system is a tight frame if and only if Λ(w) = λ(w) = 1,

or equivalently, G̃X(w) = I for a.e. w ∈ Td.

Similarly, one can use the Gramian matrix to investigate the Bessel and Riesz prop-
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erties of a shift-invariant system. The interested reader is referred to [94] for more details

on the fiberization technique and the (dual) Gramian analysis for shift-invariant systems.

As observed in [98], Gabor systems are the special case of shift-invariant systems

with Φ being modulations of the window φ∈L2(Rd). Given φ∈L2(Rd) and two lattices

K,L, the system

(K,L)φ := {EkM lφ : k ∈K,l ∈ L}

is called the (regular) Gabor system generated by φ. This system, being the collection

of all K-shifts of the set {M lφ : l ∈ L}, is K-shift-invariant. In particular the fiber

pre-Gramian matrices of a Gabor system X = (K,L)φ are

JX(ω) = |K|−1/2
(
φ̂(ω− k̃− l)

)
k̃∈K̃,l∈L

(3.19)

for ω ∈ Rd.

The statements in this section hold verbatim for Gabor shift-invariant systems. The

analysis of Gabor systems by using dual Gramian analysis is shown in [98], which how-

ever mainly focuses on single systems. In the next section we present the mixed dual

Gramian analysis for dual Gabor systems.

3.6 Mixed dual Gramian analysis for Gabor systems

The matrices JX(ω) represent the synthesis operator TX , see (3.17), while their matrix

adjoints, denoted as J ∗
X(ω), represent the analysis operator T ∗

X , see (3.18). Consequently

the mixed operator TY T ∗
X can be represented by JY (ω)J ∗

X(ω) and T ∗
Y TX can be repre-

sented by J ∗
Y (ω)JX(ω). These fiberized representations of TY T ∗

X (and T ∗
Y TX) transfer

the study of these operators to the study of the family of simpler fiber matrices, for

which the respective properties have to hold uniformly in ω. Precisely, if φ,ψ ∈ L2(Rd)
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are such that X = (K,L)φ and Y = (K,L)ψ are Bessel systems, the mixed dual Gramian

fiber matrices are

G̃Y,X(ω) := JY (ω)J ∗
X(ω) = |K|−1

∑
l∈L

ψ̂(ω− k̃− l)φ̂(ω− k̃′ − l)

k̃,k̃′∈K̃

, (3.20)

where ω ∈ Rd. Then

((TY T ∗
Xf)∧(ω− k̃))

k̃∈K̃ = G̃Y,X(ω)(f̂(ω− k̃))
k̃∈K̃ (3.21)

for all f ∈ L2(Rd) and a.e. ω ∈ Rd. Note that for any φ,ψ ∈ L2(Rd) the entries of the

mixed dual Gramians are locally integrable, and therefore a.e. finite, regardless of the

Bessel assumption on X and Y . The Bessel assumption, however, ensures that the

matrix product G̃Y,X(ω)(f̂(ω− k̃))
k̃∈K̃ for any f ∈ L2(Rd) has a.e. finite values, since

the relevant series converge absolutely a.e..

The image of a Gabor system under the unitary Fourier transform is again a Gabor

system, with the role of the shift and modulation lattice interchanged. Thus the Bessel,

Riesz, frame and dual frame properties can be equivalently studied through the Fourier

transform counterparts X̂ := (L,K)
φ̂

and Ŷ := (L,K)
ψ̂

of the Bessel systems X and Y .

Their mixed dual Gramian fiber matrices are

G̃
Ŷ ,X̂

(ω) = J
Ŷ

(ω)J ∗
X̂

(ω) = (2π)2d|L|−1

∑
k∈K

ψ(−ω+ l̃+k)φ(−ω+ l̃′ +k)


l̃,l̃′∈L̃

(3.22)

and

((T
Ŷ
T ∗
X̂
f̂)∧(ω− l̃))

l̃∈L̃ = (2π)dG̃
Ŷ ,X̂

(ω)(f(−ω+ l̃))
l̃∈L̃

holds for all f ∈ L2(Rd) and a.e. ω ∈ Rd. On the other hand

((T
Ŷ
T ∗
X̂
f̂)∧(ω− l̃))

l̃∈L̃ = (2π)d((TY T ∗
Xf)∧∧(ω− l̃))

l̃∈L̃ = (2π)2d((TY T ∗
Xf)(−ω+ l̃))

l̃∈L̃
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and therefore

((TY T ∗
Xf)(−ω+ l̃))

l̃∈L̃ = (2π)−dG̃
Ŷ ,X̂

(ω)(f(−ω+ l̃))
l̃∈L̃ (3.23)

for all f ∈ L2(Rd) and a.e. ω ∈ Rd. We refer to (3.21) as the representation of the Gabor

frame operator in Fourier domain and (3.23) as the representation in time domain.

Switching the order of multiplication of the fiber pre-Gramian matrices leads to the

mixed Gramian fiber matrices

GY,X(ω) := J ∗
Y (ω)JX(ω) = |K|−1

∑
k̃∈K̃

ψ̂(ω− k̃− l)φ̂(ω− k̃− l′)


l,l′∈L

(3.24)

and

G
Ŷ ,X̂

(ω) = J ∗
Ŷ

(ω)J
X̂

(ω) = (2π)2d|L|−1

∑
l̃∈L̃

ψ(−ω+k+ l̃)φ(−ω+k′ + l̃)


k,k′∈K

(3.25)

for ω ∈ Rd, which can be used for fiberized representations of the mixed operator T ∗
Y TX .

If X,Y are Bessel and c ∈ ℓ2(K×L), then

(T ∗
Y TXc)∧(ω) = GY,X(ω)ĉ(ω) (3.26)

for a.e. ω ∈ Rd. By using the Fourier transformed systems, one may get another fiber

representation of the operator T ∗
Y TX , which has a similar form as (3.26). Since the

Fourier system does not help to get a simple real domain representation and the repre-

sentation needs dedicated attentions to the lattice changes, the exact representation will

not be spelled out here.

The abstract Gramian matrix of two regular Gabor systems X and Y already has
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the simple form

GY,X =
(
⟨EkM lψ,Ek

′
M l′φ⟩

)
(k,l)∈K×L,(k′,l′)∈K×L

and might be of some interest. If for example X and Y are Bessel systems, then T ∗
Y TX is

the identity if and only if GY,X is the identity, i.e. if and only if X and Y biorthonormal.

However, the fiber Gramian matrices (3.24) and (3.25) reveal more information of the

operator T ∗
Y TX on each fiber.



Chapter 4

Duality principle

While the synthesis operator characterizes the linear independent property of a system,

the analysis operator is more suitable for the study of the frame (redundant) property.

Due to this dual nature, one may consider two systems X and Y such that the synthesis

operators are the adjoint operators of each other, i.e. TX = T ∗
Y . Such a system Y will be

called an adjoint system of X. The relationship of the operators is rather crude and it is

not clear how to find an adjoint system. If one, however, has a matrix representation of

the synthesis operator, the relationship between a given system and its adjoint system

will be reduced to a column-row relationship. The simple principle around which the

results in this chapter revolve is thus provided by the matrix representations and the

duality of the adjoint operators.

Duality Principle. The systems X and X∗ are adjoint to each other if for some matrix

representation of the synthesis operator of X, the columns can be associated with X

while the rows can be associated with X∗. Consequently, the analysis (resp. synthesis)

properties of X are characterized by the synthesis (resp. analysis) properties of X∗.

The trivial case of course is the one of finite systems in finite dimensions. If X =

{xk}nk=1 ⊂ Cm, then with respect to the standard orthonormal bases TX is given by the
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matrix

JX =


x1(1) · · · xn(1)

... . . . ...

x1(m) · · · xn(m)

 ,

and T ∗
X by its adjoint matrix J∗

X . Thus, a possible adjoint system of X is given by

X∗ = {(xk(i))k=1,...,n : i= 1, . . . ,m} ⊂ Cn,

i.e. by the rows of JX .

In this chapter, we will introduce adjoint systems based on the pre-Gramian matrix

defined in the previous chapter. As a result the duality principle is derived, i.e. the

dual Gramian matrix of X equals the Gramian matrix of its adjoint system X∗. An

immediate consequence of duality principle is that the frame property could be equally

studied from the Riesz sequence property of the adjoint system counterpart. The ad-

joint systems of a given frame could as well be used to characterize and parametrize all

the dual frames. Moreover, from the duality viewpoint and the special structure of the

adjoint system associated with a filter bank in ℓ2(Zd), we propose a simple construction

scheme for perfect reconstruction filter banks by easily completing constant matrices.

The synthesis operator of a system with a special structure may admit a different matrix

representation. As seen in Section 3.5, the abstract dual Gramian analysis could be sim-

plified for the shift-invariant system to fiber dual Gramian analysis. But the underlying

duality principle is the same, no matter how technical the matrix representation of the

operator is.

For systems with special structure, more appropriate orthonormal basis could be de-

signed to take advantage of the structure. We will define the adjoint systems for irregular

Gabor systems by using a Gabor orthonormal basis and derive the duality principle. In

general, the adjoint systems defined through the abstract pre-Gramian matrix may not
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have the same structure as the original system. But for the regular Gabor system,

if using the fiber pre-Gramian matrix representation instead, an adjoint system could

again be realized as a Gabor system. The fiber dual Gramian analysis of Gabor systems

and the duality principle straightforwardly lead to several classical representations of

the mixed frame operator, e.g. Walnut representation, Wexler-Raz/Janssen representa-

tion, and the Wexler-Raz biorthogonal relationship for dual frames. As already observed

in [98], the duality principle on each fiber is also the unifying theme behind the numer-

ous painless constructions of Gabor windows and we use it to explicitly construct dual

Gabor windows. The dual window pairs whose construction we outline have coinciding

support and can achieve arbitrary smoothness. Most importantly, the method is easily

generalized to high dimensions.

4.1 Adjoint system and duality principle

By writing the synthesis operator in the pre-Gramian matrix form (3.1), we observe the

given system X forms the columns of the matrix. We define the rows of the pre-Gramian

matrix to be a new system, called adjoint system. The Gramian matrix of the adjoint

system will be the dual Gramian matrix of the original system, which is the core of

duality principle.

Definition 4.1.1. Let X be a system in a Hilbert space H satisfying (3.2) with respect

to an orthonormal basis O, and let JX be the corresponding pre-Gramian matrix defined

in (3.1). A system X∗ in a Hilbert space H ′ is called an adjoint system of X if

(a) there exists an orthonormal basis O′ of H ′ such that X∗ and O′ satisfy (3.2),

(b) the corresponding pre-Gramian matrix JX∗ of X∗ associated with O′ is the adjoint
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matrix of the pre-Gramian matrix JX (up to unitary equivalence), i.e.

JX∗ = UJ∗
XV, (4.1)

where U and V are two unitary operators. 1

For a given system X, there are many ways to construct a pre-Gramian matrix that is

the same as the synthesis operator up to unitary equivalence. The definition of adjoint

systems can be adapted to any pre-Gramian matrix of the synthesis operator of the

original system, which leads to different ways to define an adjoint system. The following

example shows that the R-dual sequence defined in [15] is indeed an adjoint system of a

given system (see also [16, 26, 29]).

Example 4.1.2 ([15]). Let X = {fk}k∈N be a system indexed by natural number N in a

Hilbert space H satisfying (3.2) with respect to an orthonormal basis {ei}i∈N. Suppose

{hk}k∈N is another orthonormal basis of H and define X ′ = {gi :=∑
k∈N⟨fk, ei⟩hk}i∈N.

Then X ′ is indeed an adjoint system of X. Firstly, the system X ′ satisfies (3.2) since

∑
i∈N

|⟨gi,hk⟩|2 =
∑
i∈N

|⟨fk, ei⟩|2 <∞ for all k ∈ N.

Secondly, it is easy to see that

JX ′ = (⟨gi,hk⟩)k,i = (⟨fk, ei⟩)k,i = J∗
X .

From the matrix point of view, the columns of JX correspond to the original system

X while the rows of JX form an adjoint system in ℓ2(N), which is then mapped to the

system X ′ in H by the unitary map corresponding to the orthonormal basis {hk}k∈N. The

definition for adjoint system by R-dual sequence works fine due to the same cardinality
1Note that one might also consider the matrix transpose of the pre-Gramian in (4.1) without intro-

ducing essential changes to the discussion that follows.
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of the system X and the orthonormal basis {hk}k∈N of H. But indeed the adjoint system

may not always lie in the same Hilbert space, e.g. a finite system in a finite Hilbert space,

see Example 4.1.7.

With the definition of adjoint system, observe that

G̃X = JXJ
∗
X = V J∗

X∗UU∗JX∗V ∗ = V GX∗V ∗,

i.e. the dual Gramian matrix of system X is (unitarily equivalent to) the Gramian matrix

of the adjoint systemX∗, which is the essence of duality principle. This observation could

be easily generalized to two systems. Given a system RX in H, then

G̃RX,X = JRXJ
∗
X = V J∗

(RX)∗UU∗JX∗V ∗ = V G(RX)∗,X∗V ∗

and

GRX,X = J∗
RXJX = U∗J(RX)∗V ∗V J∗

X∗U = U∗G̃(RX)∗,X∗U.

which says that the mixed dual Gramian matrix of two systems X and RX is (unitarily

equivalent to) the mixed Gramian matrix of their adjoint systems X∗ and (RX)∗. Note

that whenever we consider several systems and their corresponding adjoint systems,

we will always assume that all of them are satisfying the respective adjoint relationship

(4.1) with respect to the same orthonormal bases and unitary operators. Since the mixed

(dual) Gramian matrix is reduced to (dual) Gramian matrix when R = I, we formulate

the following the central result of this section, the duality principle, for two systems.

Theorem 4.1.3. Let X, RX be systems in H satisfying (3.2) with respect to an or-

thonormal basis, and X∗, resp. (RX)∗, be adjoint systems of X, resp. RX (with respect

to the same orthonormal bases and unitaries). Then, up to unitary equivalence, G̃RX,X

is equal to G(RX)∗,X∗ and GRX,X is equal to G̃(RX)∗,X∗.
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Note that the assumption on the existence of the adjoint systems in this duality

principle puts a restriction on the systems for which it can be applied. Both have to

satisfy (3.2) (for the same orthonormal basis), for which it is sufficient that both systems

are Bessel systems. In the case that R is the identity, the duality principle results several

duality statements about a single system and its adjoint. Note the requirement for taking

the same orthonormal basis for both X and RX will vanish since RX =X in this case.

Theorem 4.1.4. Let X be a given system in H, and suppose that X∗ is an adjoint

system of X in H ′ as defined in Definition 4.1.1. Then

(a) A system X is Bessel in H if and only if its adjoint system X∗ is Bessel in H ′

with the same Bessel bound.

(b) A Bessel system X is ℓ2-independent if and only if its adjoint system X∗ is Bessel

and fundamental.

(c) A system X forms a frame in H if and only if its adjoint system X∗ forms a Riesz

sequence in H ′. The frame bounds of X coincide with the Riesz bounds of X∗.

(d) A system X forms a tight frame in H if and only if its adjoint system X∗ forms

an orthonormal sequence in H ′.

Since the adjoint system of the adjoint system is the original system itself, the role of

X andX∗ in the above theorem is interchangeable. The duality principle for the sequence

pair in Example 4.1.2, i.e. the sequence {fk}k∈N and its R-dual sequence {gi}i∈N in [15],

follows immediately from Theorem 4.1.4. Indeed, understanding the results in [15] from

the viewpoint of dual Gramian analysis is one of the motivations of this thesis. As

another direct consequence of duality principle, we get the following characterization of

dual frames.

Theorem 4.1.5. Suppose X and RX are Bessel systems in H. Systems X and RX are

dual frames if and only if X∗ is biorthonormal to (RX)∗.
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Note that the above biorthonormality is with respect to the natural indexing of the

vectors of X∗ and (RX)∗ by means of the orthonormal basis chosen for the representation

of the pre-Gramian matrices JX and JRX . Moreover, the following is also a consequence

of the duality principle.

Example 4.1.6. Consider the setting of [15], i.e. let X = {fi}i∈N be a frame for H and

{ei}i∈N and {hi}i∈N be two orthonormal bases of H. Denote S = TXT
∗
X . For each j ∈N,

define

gj =
∑
i∈N

⟨fi, ej⟩hi,

and

g∗
j =

∑
i∈N

⟨S−1fi, ej⟩hi.

As seen in Example 4.1.2 X ′ = {gj}j∈N is an adjoint system of X. The system {g∗
j}j∈N

is the corresponding adjoint system of S−1X and therefore

⟨g∗
i ,gj⟩ = δi,j for all i, j ∈ N

follows from Theorem 4.1.3 since S−1X is the canonical dual frame of X.

In Example 4.1.2 and Example 4.1.6, the Hilbert spaces of the original system and

its adjoint system are the same. But the Hilbert space H ′ might be different from H as

we will see next in a finite dimensional Hilbert space.

Example 4.1.7. Proceeding with Example 3.1.1. Let X = {xk}nk=1 ⊂ Cm. The pre-

Gramian matrix is

JX =


x1(1) · · · xn(1)

... . . . ...

x1(m) · · · xn(m)

 .

By Definition 4.1.1, the rows of JX form an adjoint system of X. Notice that the rows
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are elements in Cn, a space maybe different from Cm. The duality principle for the finite

case can be understood in terms of matrix terminology. The columns are fundamental

(equivalent to be a frame) if and only if the rows are linearly independent (equivalent

to be a Riesz sequence). The columns form a tight frame if and only if the rows form

an orthonormal sequence. The row and column relationship for finite matrices is well

studied, see e.g. [23, 107].

Given another system Y = {yk}nk=1 in Cm, and let JY be the pre-Gramian ma-

trix. Hence the duality principle also implies that the columns of JX and JY , i.e. X

and Y , are dual frames if and only if the rows of JX and JY are biorthonormal, i.e.∑n
k=1xk(i)yk(j) = δij for i, j = 1,2, . . . ,m.

As another application of Definition 4.1.1 to the mixed frame operator, we observe

a relationship between the mixed frame operators of systems and their adjoint systems.

Let X, Y = RX and Z be Bessel systems in H, and O be an orthonormal basis of H.

Then the obvious matrix relationship

JXJ
∗
Y JZ = (J∗

ZJY J
∗
X)∗

holds, where all pre-Gramians are being considered with respect to O. If X∗,Y ∗,Z∗ are

adjoint systems of X,Y,Z, respectively, all with respect to the same orthonormal basis

O′ and unitaries U,V , then

JXJ
∗
Y JZ = V (JZ∗J∗

Y ∗JX∗)∗U. (4.2)

Note that JXJ∗
Y JZ is the pre-Gramian matrix of the systemX ′ =TXT

∗
Y Z while JZ∗J∗

Y ∗JX∗

is the pre-Gramian matrix of the system Y ′ = TZ∗T ∗
Y ∗X∗. Equation (4.2) implies that the

systems X ′ and Y ′ are adjoint systems as in Definition 4.1.1. The result is summarized

as the following.
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Theorem 4.1.8. If X,Y = RX,Z are Bessel systems in H, and X∗, Y ∗, Z∗ are their

respective adjoint systems (with respect to the same orthonormal bases and unitaries),

then the system TXT
∗
Y Z is an adjoint system of TZ∗T ∗

Y ∗X∗.

4.2 Adjoint system and dual frames

The set of dual frames not only could be characterized by a biorthogonal relationship of

the adjoint systems, but also can be parametrized in terms of the adjoint systems.

Proposition 4.2.1. Let X be a frame for H and RX indexed by X in H is a Bessel

system. Denote S = TXT
∗
X . Let X∗, (RX)∗ and (S−1X)∗ be adjoint systems of X, RX

and S−1X respectively (with respect to the same orthonormal bases and unitaries). Then

(a) (S−1X)∗ is a system in ranTX∗,

(b) RX is a dual frame of X if and only if (RX)∗ is an additive perturbation of

(S−1X)∗ by vectors from (ranTX∗)⊥ whose collection is a Bessel system.

Proof. (a) We have kerTX = kerTS−1X so in particular kerJX = kerJS−1X , i.e. (ranJ∗
X)⊥ =

(ranJ∗
S−1X)⊥ and in turn ranJ∗

X = ranJ∗
S−1X . Therefore, ranU∗JX∗V ∗ = ranU∗J(S−1X)∗V ∗

with unitaries U and V and thus ranJX∗ = ranJ(S−1X)∗ .

(b) Suppose RX is a dual frame for X, i.e. JRXJ∗
X = I. Then (JRX −JS−1X)J∗

X = 0

since JS−1XJ
∗
X = I. Taking adjoint yields

ran(J∗
RX −J∗

S−1X) ⊂ kerJX = (ranJ∗
X)⊥,

and thus

ran(U∗(J(RX)∗ −J(S−1X)∗)V ∗) ⊂ (ranU∗JX∗V ∗)⊥,

i.e.

ran(J(RX)∗ −J(S−1X)∗) ⊂ (ranJX∗)⊥.



56 Duality principle

Conversely, suppose the vectors of (RX)∗ are perturbations of the vectors of (S−1X)∗

by certain elements of (ranTX∗)⊥ whose collection is a Bessel system. If y ∈ (ranTX∗)⊥,

then y is orthogonal to every vector of the system X∗. Since (S−1X)∗ is biorthonormal

to X∗ by the duality principle Theorem 4.1.4, this implies that (RX)∗ is biorthonormal

to X∗. In turn RX and X are dual frames.

Alternatively the dual frames of a given frame could be parametrized even without

referring to the adjoint systems (see [84]). The canonical dual frame S−1X of X can

now be characterized by norm minimization properties analogous to the Gabor frame

case (see [59, Proposition 7.6.2]), in which the canonical dual window is characterized

among all dual windows as the one of minimal norm and as the window that among all

dual windows is closest to the primary window. The simple proof is precisely as for this

special case (see also [15, Proposition 20]).

Proposition 4.2.2. Let X be a frame for H and RX be a dual frame of X. Denote

S = TXT
∗
X . Index all adjoints by the orthonormal basis O with respect to which the pre-

Gramians JX and JRX are represented, for example X∗ = {X∗
e}e∈O. Then the following

are equivalent:

(a) RX = S−1X.

(b) If R′X is a dual frame of X, then

∥(RX)∗
e∥< ∥(R′X)∗

e∥

whenever (RX)∗
e ̸= (R′X)∗

e.

(c) If R′X is a dual frame of X, then

∥∥∥∥∥ (RX)∗
e

∥(RX)∗
e∥

− X∗
e

∥X∗
e∥

∥∥∥∥∥<
∥∥∥∥∥ (R′X)∗

e

∥(R′X)∗
e∥

− X∗
e

∥X∗
e∥

∥∥∥∥∥
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whenever (RX)∗
e ̸= (RX)∗

e.

Proof. For the first equivalence note that by Proposition 4.2.1, every vector of (R′X)∗

is the sum of two orthogonal vectors, say (R′X)∗
e = (S−1X)∗

e +ye, and thus

∥(R′X)∗
e∥2 = ∥(S−1X)∗

e∥2 +∥ye∥2 ≥ ∥(S−1X)∗
e∥2.

The second equivalence can be established by noting that the biorthonormality of (RX)∗

and X∗ implies ∥∥∥∥∥ (RX)∗
e

∥(RX)∗
e∥

− X∗
e

∥X∗
e∥

∥∥∥∥∥
2

= 2− 2
∥(RX)∗

e∥∥X∗
e∥
.

With the notion of the adjoint system, the properties of the dual systems charac-

terized by the mixed frame operator can now be phrased in terms of the mixed dual

Gramian matrix. For example, finding a dual frame can be done by finding a matrix

inverse.

Corollary 4.2.3. Let X and Y =RX be frames for H such that span{X∗} = span{Y ∗}.

Let O be an orthonormal basis for H and U be the synthesis operator of O. Then G̃Y,X

is boundedly invertible and UG̃−1
Y,XU

∗Y and X are dual frames.

In the following corollary, the verification of the mixed operators to be bounded

below in Proposition 2.3.2 is transferred to the mixed dual Gramian matrices.

Corollary 4.2.4. Let X and Y = RX be Bessel systems in H such that span{X∗} =

span{Y ∗}, then the following are equivalent:

(a) X and Y are frames.

(b) G̃X,Y and G̃Y,X are bounded below.

By the duality principle Theorem 4.1.4, two Bessel systemsX and Y =RX are frames

if and only if X∗ and Y ∗ are Riesz sequences. Now G̃X,Y =GX∗,Y ∗ and G̃X,Y =GY ∗,X∗
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up to unitaries. Thus, by Corollary 4.2.4, if span{X∗} = span{Y ∗}, then X∗ and Y ∗ are

Riesz sequences if and only if GX∗,Y ∗ and GY ∗,X∗ are bounded below. Replacing X∗ by

X and Y ∗ by Y yields the following. If span{X} = span{Y }, then X and Y are Riesz

sequences if and only if GX,Y and GY,X are bounded below. This is Proposition 2.3.3

stated in terms of Gramian matrices. In this sense, Proposition 2.3.2 and 2.3.3 can be

considered as one.

4.3 Duality for filter banks

One of the realizations of the abstract Hilbert spaces is the discrete ℓ2(Zd) space, and us-

ing the dual Gramian analysis and the duality principle to study filter banks in this space

reveals a simple filter banks construction scheme. Filter banks are the implementation

of N -shift-invariant systems in ℓ2(Zd) of the form

X =X(a,N) := {(al(n−Nk))n∈Zd : l ∈ Zr,k ∈ Zd}, (4.3)

where a= {al}l∈Zr ⊂ ℓ2(Zd) is a set of filters, N ∈ N is the (sub)sampling rate, r ∈ N is

the number of channels and Zr := Z/rZ. The associated synthesis operator

TX : ℓ2(Zr ×Zd) → ℓ2(Zd) : c 7→
∑
l∈Zr

(↑N c(l, ·))∗al

is given by upsampling followed by discrete convolutions. Here, for fixed l ∈Zr, ↑N c(l,k)

is equal to c(l,N−1k) if N divides all entries of k ∈ Zd and is equal to 0 otherwise. The

transform given by the synthesis operator of X is called a synthesis filter bank. The

analysis operator

T ∗
X : ℓ2(Zd) → ℓ2(Zr ×Zd) : c 7→ (↓N (c∗al(−·))(k))(l,k)∈Zr×Zd
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is composed of discrete convolutions followed by downsampling by the factor N , i.e.

↓N d(k) = d(Nk) for k ∈ Zd. This transform is called an analysis filter bank. A filter

bank consists of an analysis and synthesis filter bank with equal number of channels and

the same sampling rate but, in general, with respect to different filters. If Y =X(b,N)

for b= {bl}l∈Zr ⊂ ℓ2(Zd), then the pair X and Y , or more precisely the mixed operator

TY T
∗
X , is called a perfect reconstruction filter bank, whenever X and Y are dual

frames in ℓ2(Zd). A tight frame filter bank is a perfect reconstruction filter bank with

coinciding analysis and synthesis filters, i.e. X = Y . We now use the abstract pre-

Gramian analysis to study the frame properties of filter banks. Due to the finite number

of filters, X satisfies (3.2) with respect to the canonical orthonormal basis of ℓ2(Zd) and

the pre-Gramian matrix of X is

JX = (al(n−Nk))n∈Zd,(l,k)∈Zr×Zd .

Given a second system

Y =X(b,N) := {(bl(n−Nk))n∈Zd : l ∈ Zr,k ∈ Zd}, (4.4)

associated with a set of filters b = {bl}l∈Zr ⊂ ℓ2(Zd). The mixed dual Gramian matrix

of X and Y is

G̃Y,X = JY J
∗
X =

r−1∑
l=0

∑
k∈Zd

al(n′ −Nk)bl(n−Nk)

n,n′∈Zd

.

In particular, two Bessel systems X and Y are dual frames if and only if G̃Y,X = I on

ℓ2(Zd).

We now show how the duality principle can provide a significant simplification of

perfect reconstruction filter banks construction. Its generality and simplicity makes the
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constructed filters flexible enough to be useful in design problems that meet many con-

ditions. For example, in Section 5.2, we will refine it to meet additional constraints and

to result in a simple dual and tight MRA-wavelet frame construction. As reasonable for

the design problem, we now restrict ourselves to finitely supported filters, also referred

to as finite impulse response (FIR) filters. Besides making the filter bank systems auto-

matically Bessel, all information on the systems can now be written in well-structured

finite matrices in terms of the filters. Since the columns of the pre-Gramian matrix JX

are formed by the system, a reordering of the columns of the pre-Gramian is equivalent

to the reordering of the system. Based on the masks {al}r−1
l=0 which are assumed to

be finitely supported here, the columns of JX are reordered by grouping different al’s

(omitting the shift) together so that the pre-Gramian matrix JX is formed by shifts of

a small block matrix (or a permutation of the columns of it) given by

A=



a0(n1) a0(n2) · · · a0(nm)

a1(n1) a1(n2) · · · a1(nm)
... ... . . . ...

ar−1(n1) ar−1(n2) · · · ar−1(nm)


(4.5)

where ni ∈ Zd, i = 1,2, . . . ,m, is the coordinate of the masks and m is the maximum

number of the supports of masks {al}r−1
l=0 . To be specific, for one dimension case, by

reordering the columns of JX or equivalently reordering the rows of J∗
X , the matrix J∗

X

can be expressed as a block-wise matrix generated by the N -shifts of the block matrix

A, i.e.

J∗
X(n,k) =


Ak−Nn if 1 ≤ |k−Nn| ≤m

0 else
,

where Aj denotes the j-th column of A, j = 1, . . . ,m. In other words, each block of the



4.3 Duality for filter banks 61

matrix J∗
X is the same as the block matrix A shifted to the right by N :



...
...

...
...

...
...

...
...

...
...

...
...

...
...

· · · A1 A2 A3 A4 · · · Am 0 0 0 0 · · ·

· · · 0 0 A1 A2 A3 A4 · · Am−1 Am 0 0 · · ·

· · · 0 0 0 0 A1 A2 A3 · · · Am−1 Am · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...


.

Thus, the columns of J∗
X , or the adjoint system X∗ ofX (4.4), is formed by concatenating

different masks entries that lie in the same NZ-coset of an index n. That is,

X∗ = {(al(n))(l,n)∈Zr×Ωj
: j ∈ Zd},

with Ωj := j+NZd and each element of the adjoint system being the concatenation of

the filters entries indexed by the NZd-coset of an index. For higher dimensions, it is still

true that each element in X∗ is formed by concatenating different masks entries that lie

in the same NZd-coset of an index.

Suppose B is the matrix defined in (4.5) associated with filters {bl}r−1
l=0 and m in

this case is the maximum number of the support of {al, bl}r−1
l=0 . Essentially, this block-

wise observation on the pre-Gramian matrix reduces the infinitely many biorthonormal

requirements on the rows of JX and JY where Y =X(b,N) to finitely many conditions

on the matrices A and B.

Theorem 4.3.1. Let X = X(a,N) and Y = X(b,N), for FIR filters a = {al}r−1
l=0 and

b = {bl}r−1
l=0 in ℓ2(Zd) and N ∈ N. Then X and Y are dual frames in ℓ2(Zd), provided

that

r−1∑
l=0

al(n)bl(n′) = 0, (4.6)
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r−1∑
l=0

∑
n∈Ωj

al(n)bl(n) = 1 (4.7)

for all n,n′ ∈ Zd with n ̸= n′ and all j ∈ Zd/NZd. The system X is a tight frame when

al = bl for l = 0, . . . , r−1.

Proof. Let n ∈ Zd. If n′ ̸= n, then (4.6) implies

r−1∑
l=0

∑
k∈Zd

al(n′ −Nk)bl(n−Nk) =
∑
k∈Zd

r−1∑
l=0

al(n′ −Nk)bl(n−Nk) = 0,

while for n′ = n, (4.7) implies

r−1∑
l=0

∑
k∈Zd

al(n−Nk)bl(n−Nk) =
r−1∑
l=0

∑
k∈Ωn

al(k)bl(k) = 1.

Thus the masks satisfy G̃Y,X = I.

This condition leads to the following result on the construction of perfect recon-

struction filter banks. Given any linearly independent FIR filters defining some analysis

filter bank, it provides large degrees of freedom in designing a synthesis filter bank via

a matrix inversion.

Construction 4.3.2. Let A= (al(nj))l∈Zr,j∈Zr ∈ Cr×r be invertible and M ∈ Cr×r be a

diagonal matrix with diagonal (c(n0), . . . , c(nr−1)) such that

∑
n∈Ωj

c(n) = 1

for every j ∈ Zd/NZd. Let B = (bl(nj))l∈Zr,j∈Zr = (A∗)−1M . Then the filters a =

{al}r−1
l=0 ⊂ ℓ2(Zd) and b = {bl}r−1

l=0 ⊂ ℓ2(Zd) defined by A and B generate dual frames

X(a,N) and X(b,N) in ℓ2(Zd).
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Proof. By construction A∗B =M . Thus the n-th column of A is orthogonal to the m-th

column of B whenever n ̸= m. Moreover, ∑r
l=0

∑
n∈Ωj

al(n)bl(n) = ∑
n∈Ωj

c(n) = 1 for

every j ∈ Zd/NZd. The claim therefore follows from Theorem 4.3.1 since the systems

are Bessel due to the finite support of the filters.

Remark. Note let A be the matrix defined in (4.5) associated with masks {al}r−1
l=0

and B associated with masks {bl}r−1
l=0 . Theorem 4.3.1 says A∗B = M where M is a

diagonal matrix with the diagonal entries c (which has the same indexing as the masks)

satisfying ∑n∈Ωj
c(n) = 1 for all j ∈ Zd/NZd. This assumption on the filters is strong

and Construction 4.3.2 based on this theorem hence is limited in the sense that the

proposed construction could not cover all the possible constructions by using G̃Y,X = I.

The condition G̃Y,X = I indeed can still be written as a condition A∗B = M but the

matrix M is not necessarily a diagonal matrix.

Under stronger conditions on the matrices one can derive tight frame filter banks.

If in Construction 4.3.2 one starts out with a unitary matrix A and a diagonal matrix

M which in addition has only nonnegative entries, then the rows of the matrix AM1/2

define a tight frame filter bank.

4.4 Irregular Gabor systems

The abstract pre-Gramian matrix can be defined for any system, but it may be simpler

in case the system exhibits a structure that can be exploited by choosing an appropriate

orthonormal basis. In this section, we discuss the duality principle for irregular Gabor

systems in L2(Rd) with no assumption on the structure of the sampling set. Given a

countable subset Λ ⊂ R2d, consider the irregular Gabor system

X = {EγMηφ : (γ,η) ∈ Λ}
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generated by the window function φ ∈ L2(Rd). Any orthonormal basis of L2(Rd) can be

used for the dual Gramian analysis of this system. Given the modulation and translation

structure of X, a natural choice is

{|K̃|−1/2MkEk̃χΩ
K̃

: k ∈K,k̃ ∈ K̃} (4.8)

for some lattice K ⊂ Rd. The resulting pre-Gramian is

JX = |K̃|−1/2(eiη·(k̃−γ)⟨Mη−kEγ−k̃φ,χΩ
K̃

⟩)(k,k̃)∈K×K̃,(γ,η)∈Λ.

The pre-Gramian matrix seems complicated but it has a blockwise structure. For exam-

ple, if k̃,γ are fixed, the submatrix indexed by (k,η) is formed by the Fourier sequence

of Eγ−k̃φ on Ω
K̃

. Moreover, if φ has, say, compact support, then JX is a sparse matrix,

composed of infinitely many infinite band-matrix blocks. In case the rows of JX are

square summable, i.e. if

∑
(γ,η)∈Λ

|⟨Mη−kEγ−k̃φ,χΩ
K̃

⟩|2 <∞ for all k ∈K,k̃ ∈ K̃, (4.9)

the entries of the dual Gramian

G̃X,X = JXJ
∗
X = |K̃|−1

 ∑
(γ,η)∈Λ

⟨Mη−kEγ−k̃φ,χΩ
K̃

⟩⟨χΩ
K̃
,Mη−k′

Eγ−k̃′
φ⟩


(k,k̃),(k′,k̃′)∈K×K̃

of X are well-defined. The condition (4.9) is weak in the sense that it is always satisfied

if system X is Bessel. The rows of JX define an adjoint system X∗

X∗ = {(|K̃|−1/2eiη·(k̃−γ)⟨Mη−kEγ−k̃φ,χΩ
K̃

⟩)(γ,η)∈Λ : k ∈K,k̃ ∈ K̃} (4.10)
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in ℓ2(Λ) if in addition the columns of JX are square summable, i.e. that

∑
(k,k̃)∈K×K̃

|⟨Mη−kEγ−k̃φ,χΩ
K̃

⟩|2 <∞ for all (γ,η) ∈ Λ. (4.11)

The system X is being considered in ℓ2(K×K̃) via its coefficient sequences with respect

to the chosen orthonormal basis, while its adjoint system X∗ is being considered in ℓ2(Λ),

i.e. as a system of sequences indexed by the original system X itself. In accordance with

Definition 4.1.1, any image of X∗ under a unitary map into a separable Hilbert space is

as well an adjoint system of X. To get an adjoint system in L2(Rd), one may for example

use the orthonormal basis (4.8) to unitarily map X∗ into L2(Rd). That is, identifying Λ

with K×K̃ via a bijection Λ →K×K̃ : (γ,η) 7→ (Rγ,Rη), one may consider the adjoint

system {fk,k̃}(k,k̃)∈K×K̃ ⊂ L2(Rd), where

fk,k̃ := |K̃|−1 ∑
(γ,λ)∈Λ

eiλ·(k̃−γ)⟨Mλ−kEγ−k̃φ,χΩ
K̃

⟩MRγERηχΩ
K̃
. (4.12)

Though the expression (4.12) is complicated, it is nothing but a reconstruction by the

Gabor orthonormal basis (4.8) using sequences in ℓ2. By using the same orthonormal

basis (4.8), it is easy to see that the pre-Gramian matrix of this adjoint system (4.12) is

the same as that of the system in sequence space (4.10), and moreover the dual Gramian

of X is equal to the Gramian of X∗, i.e.

G̃X =GX∗ , (4.13)

which is the duality principle for irregular Gabor systems. This duality principle has

the following consequence for irregular Gabor systems generated by a single window.

Theorem 4.4.1. Let X = {EγMηφ : (γ,η) ∈ Λ} be an irregular Gabor system and K ⊂

Rd be a lattice such that (4.9) and (4.11) hold. Further, let X∗ be the ℓ2(Λ) system
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(4.10) or its image under some unitary map in some Hilbert space. Then:

(a) The system X is a Bessel system if and only if X∗ is a Bessel system, in which

case the Bessel bounds coincide.

(b) If X is Bessel, then it is fundamental if and only if X∗ is ℓ2-independent.

(c) The system X is a frame if and only if X∗ is a Riesz sequence, in which case the

frame bounds and Riesz bounds coincide. In particular, X is a tight frame if and

only if X∗ is an orthonormal sequence.

Given a second window, i.e. a second system Y = {EγMηψ : (γ,η) ∈ Λ}, and con-

sidering JY and Y ∗ with respect to the same orthonormal basis (4.8) (and under the

same unitary map as for X∗), then we have the duality principle for two irregular Gabor

systems

G̃X,Y =GX∗,Y ∗ , (4.14)

which yields the following characterization of dual frames.

Theorem 4.4.2. Suppose X = {EγMηφ : (γ,η) ∈ Λ} and Y = {EγMηψ : (γ,η) ∈ Λ} are

Bessel systems. Let X∗ and Y ∗ be their respective adjoint systems with respect to (4.8)

(see (4.10)) or their image under some unitary map (see (4.12)). Then X and Y are

dual frames if and only if X∗ and Y ∗ are biorthonormal.

The adjoint system is defined for the particular orthonormal basis (4.8) and the

duality principle is stated. While any other orthonormal basis is possible, we have

already seen in Section 3.5 that in case the shifts and modulations of a Gabor system

are regular lattices, the abstract pre-Gramian with an appropriate choice of orthonormal

basis could be simplified to the fiber matrices of shift-invariant systems. Moreover, this

allows for adjoint systems, which, back in the original space L2(Rd), not only have
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a closed form expression, but also have a Gabor structure closely tied to that of the

original system. In [53, 54], a Gabor system defined on an adjoint lattice for a general

non-separable lattice is introduced and duality principle is discussed, but the analysis is

somewhat technical.

4.5 Duality principle for (regular) Gabor systems

Definition 4.1.1 for adjoint systems is most general in the sense that one can always

consider the rows of the pre-Gramian of the original system as a new system, which

will lead to the duality between the two systems whenever those rows and columns are

square summable. An adjoint system of a shift-invariant system, can be defined through

Definition 4.1.1 and the fiber pre-Gramian matrices, but in general it may not be possible

to give it in an explicit form, i.e. as a shift-invariant system.

Denoting the columns of the fiber pre-Gramian matrix JX(ω) in (3.16) of a shift-

invariant system X as a system Xω at each ω ∈ Ω
K̃

, the fiberization technique transfers

the properties of X to properties of the collection of systems {Xω}ω∈Ω
K̃

, see [94]. For

example, a shift-invariant system is a frame if and only if the systems Xω are frame

systems uniformly for a.e. ω ∈ Ω
K̃

with the same frame bounds. On each fiber, the

adjoint system of Xω can be introduced as the collection of rows of JX(ω) and the

duality principle can be discussed. In particular, the collection of all adjoint systems

of the systems {Xω}ω∈Ω
K̃

can be considered as an adjoint system of the given shift-

invariant system. The adjoint system defined this way may not have an explicit form as

a shift-invariant system. In case of a given Gabor shift-invariant system X, it is possible,

as we will review below, to find another Gabor system Y , such that all of its fiber system

Yω are adjoint systems of the respective fiber systems Xω. In other words, on each fiber,

JX(ω) = J ∗
Y (ω) (modulo a complex conjugation). However, the fiber systems and the

corresponding duality principle discussed on each fiber is still of some interest. This weak
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formulation of the duality principle is very convenient for the construction of tight/dual

Gabor windows detailed in Section 4.7. It is also the foundation for the tight (resp.

dual) wavelet frame construction through the UEP (resp. MEP), see (5.2) below.

Note the matrices GY,X(ω) in (3.24) and G̃Y,X(ω) in (3.20) have very similar struc-

ture. By changing the lattices from (K,L) to (L̃, K̃), the mixed Gramian fiber matrices

GY,X(ω) of the two new systems are then essentially the same as the mixed dual Gramian

matrices G̃Y,X(ω) of the original systems. On the pre-Gramian level this means the

columns of the pre-Gramian of the original system are the rows of the pre-Gramian of

the new system. With this in mind the adjoint system of the Gabor system X = (K,L)φ

has been defined in [98] (up to the scalar factor) as

X∗ = (den(K,L))1/2(L̃, K̃)φ. (4.15)

The (l, k̃) ∈ (L,K̃) entry of JX∗(ω) is |K|−1/2φ̂(ω− l− k̃), hence

JX∗(ω) = J ∗
X(ω) (4.16)

for all ω ∈ Rd. On each fiber level, this is the analogy to the abstract Definition 4.1.1.

Given another Gabor systems Y = (K,L)ψ, one observes

G̃X,Y (ω) = JX(ω)J ∗
Y (ω) = JX∗(ω)JY ∗(ω) = GX∗,Y ∗(ω),

for all ω ∈ Rd, which is the duality principle for Gabor systems.

Theorem 4.5.1. Let X = (K,L)φ and Y = (K,L)ψ be Bessel systems and X∗,Y ∗ their

respective adjoint systems defined in (4.15). Then G̃X,Y (ω) = GX∗,Y ∗(ω) for all ω ∈ Rd.

Consequently, X and Y are dual frames if and only if X∗ and Y ∗ are biorthonormal.

The roles of X and X∗ are interchangable since X∗∗ = X. If X = Y , the duality
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principle says that the dual Gramian matrices ofX are (up to complex conjugation) equal

to the Gramian matrices of its adjoint system X∗. This is the essence of the duality

principle derived in [98] for single systems. In the case of single systems, the Bessel

asssumption on the system is no longer needed. Moreover, the (dual) Gramian matrices

are Hermitian, the boundedness of the relevant operators, i.e. the Bessel property, can

also be characterized through the (dual) Gramian fiber matrices. The duality principles

for single systems therefore are (see [98, Theorem 2.2]): the system X is Bessel if and

only if X∗ is Bessel, in which case the Bessel bounds coincide; if X is Bessel, then it is

fundamental if and only if X∗ is ℓ2-independent; the system X is a frame if and only if

X∗ is a Riesz sequence, in which case the frame bounds of X coincide with the Riesz

bounds of X∗; in particular, X is a tight frame if and only if X∗ is an orthonormal

sequence.

In the abstract setting, a simple matrix relation reveals the relationship Theo-

rem 4.1.8 between the mixed frame operator of systems and their adjoints. For three

Gabor Bessel systems X = (K,L)φ, Y = (K,L)ψ and Z = (K,L)g, both X ′ = TY T
∗
ZX and

Y ′ = TX∗T ∗
Z∗Y ∗ are Gabor systems with windows TY T ∗

Zφ and (den(K,L)1/2)TX∗T ∗
Z∗ψ,

respectively. As in Theorem 4.1.8, the new system X ′ is an adjoint system of Y ′.

Theorem 4.5.2. Suppose X = (K,L)φ, Y = (K,L)ψ and Z = (K,L)g are Bessel systems,

with adjoint systems X∗,Y ∗,Z∗ defined in (4.15). Then TY T
∗
ZX is an adjoint system of

TX∗T ∗
Z∗Y ∗. In particular, the windows of the two systems coincide, i.e.

TY T
∗
Zφ= TX∗T ∗

Z∗ψ. (4.17)

Proof. As observed in [98], (4.17) follows from the matrix identity

JY (ω)J ∗
Z(ω)JX(ω) = (J ∗

X(ω)JZ(ω)J ∗
Y (ω))∗ = (JX∗(ω)J ∗

Z∗(ω)JY ∗(ω))∗.
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By (3.21) the (0,0)th entry of JY (ω)J ∗
Z(ω)JX(ω) is equal to (TY T ∗

Zφ)∧(ω) for a.e. ω.

On the other hand, the (0,0)th entry of (JX∗(ω)J ∗
Z∗(ω)JY ∗(ω))∗ equals the (0,0)th

entry of JX∗(ω)J ∗
Z∗(ω)JY ∗(ω), which is equal to (TX∗T ∗

Z∗ψ)∧(ω) for a.e. ω.

Remark. The abstract pre-Gramian can be used to define adjoint systems of a Gabor

system (K,L)φ . The question whether (L̃, K̃)φ can be defined through this abstract

pre-Gramian setting is also asked in [15] by using the R-dual sequences. The question

does not necessarily arise if one considers the row-column relationship of different matrix

representations of the synthesis operator. A system and its R-dual sequence are adjoint

via the abstract pre-Gramian representation, while (K,L)φ and (L̃, K̃)φ are adjoint via

the fiber pre-Gramian representation. Different matrix representations can be particu-

larly tailored to make best use of a specific structure of the given system. Note that

adjoints systems defined through the abstract pre-Gramian directly yield a statement

about the synthesis operators of the respective systems to be adjoint operators (up to

a unitary transform). The fiber adjoint relation between (K,L)φ and (L̃, K̃)φ in gen-

eral makes finding the connection of operators much more involved since the domain

and target spaces become more subtle, interested reader is referred to Section 3.2 of

[98] for more discussions. However, the relationship on fiber level is sufficed to give the

characterization of system properties of interest, e.g. Bessel, Riesz sequence and frame.
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4.6 Duality identities for Gabor systems

The essence of several important classical identities for dual Gabor frames is the du-

ality principle. We briefly show how three classical results, the Walnut representation,

the Wexler-Raz biorthogonality relation and the Janssen/Wexler-Raz identity, are as

well merely reformulations and certain aspects of the fiberized dual Gramain matrix

representation of the Gabor frame operator and the duality principle.

Throughout this section, let X = (K,L)φ and Y = (K,L)ψ be Bessel Gabor systems.

The Walnut representation is the fiberized representation of the Gabor frame operator

in time domain (3.23) evaluated at l̃ = 0, which says that

TY T
∗
Xf = |L̃|

∑
l̃∈L̃

∑
k∈K

EkψE l̃+kφE l̃f

for all f ∈ L2(Rd). This representation has first been proposed for rectangular lattices

in [112] where it is shown under the technical condition that the windows φ,ψ belong to

the Wiener space

{g ∈ L∞(Rd) :
∑
n∈Zd

∥gEnχ[0,1]d∥∞ <∞}.

This condition implies that X and Y are Bessel systems (see [98, Corollary 3.26]). The

Bessel condition is the natural and weaker condition for the fiberized representation

(3.23) to hold.

With the notion of adjoint system, the mixed frame operator can be written as

TY T
∗
Zφ= TX∗T ∗

Z∗ψ. (4.18)

which holds for Bessel systems X,Y and Z = (K,L)g and their respective adjoints X∗,Y ∗

and Z∗ as defined in (4.15). This is known as Wexler-Raz or Janssen identity. This

duality identity, as shown in Theorem 4.5.2, is part of TY T ∗
ZX and TX∗T ∗

Z∗Y ∗ being
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adjoint systems of each other.

Given two Gabor Bessel systems X and Y , they are dual frames if and only if

(den(K,L))⟨ψ,E l̃M k̃φ⟩ = δl̃0δk̃0 (4.19)

for all l̃ ∈ L̃ and k̃ ∈ K̃. This however, known as Wexler-Raz biorthogonality relations,

is only one aspect of the duality principle Theorem 4.5.1 which establishes G̃X,Y (ω) =

GX∗,Y ∗(ω) and under the Bessel assumption leads to the statement about the systems.

The Wexler-Raz biorthogonality relation is picking out one case of this more general

duality identity, the case that the dual Gramian fibers are the identity if and only if

the Gramian fibers of their adjoint systems are. The statement that those matrices

are actually equal, however implies many other interesting dualities, as we have already

indicated above. The Wexler-Raz biorthogonality relations have independently been

proved in various places, e.g. the approach in [39, 70] is via the the Janssen/Wexler-Raz

identity (4.18).

4.7 Dual Gabor windows construction

In this section, we explicitly construct windows for dual Gabor frames. Of course any

given Gabor frame and its canonical dual frame, which is generated by the image of the

primary window under the inverse of the frame operator, are dual frames (see e.g. [98]).

Though the canonical dual has the minimal norm property mentioned earlier, alternate

dual windows might be more desirable in terms of, e.g., support size and smoothness.

Given two Bessel Gabor systems X = (K,L)φ and Y = (K,L)ψ, we have seen in

Section 3.6 how the mixed Gabor frame operator TY T ∗
X can be represented in Fourier

domain (3.21) and time domain (3.23). The systems X and Y are dual frames if this

operator is equal to the identity, i.e. if the rows of the pre-Gramians (3.19) of X and Y
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are biorthonormal at almost every fiber, and the representations (3.21) and (3.23) result

in the following characterization of dual window pairs.

Proposition 4.7.1 ([98]). If φ,ψ ∈L2(Rd) are such that the Gabor systems (K,L)φ and

(K,L)ψ are Bessel systems, then (K,L)φ and (K,L)ψ are dual frames if and only if one

(and therefore both) of the following conditions holds:

∑
k∈K

EkφEk+l̃ψ = |L̃|−1δl̃,0 for all l̃ ∈ L̃, (4.20)

and

∑
l∈L

Elφ̂Ek̃+lψ̂ = |K|δk̃,0 for all k̃ ∈ K̃. (4.21)

Note that (4.20) is equivalent to the biorthogonality relationship (4.19) while (4.21) is

equivalent to the Fourier version. Note the duality principle Theorem 4.5.1 says the fiber

mixed dual Gramian matrix of two Bessel systems is equal to the fiber mixed Gramian

matrix of the adjoint systems. Proposition 4.7.1 only states the special case when the

mixed dual Gramian matrix is the identity. This is then also equivalent to the fiber

mixed Gramian matrix of the adjoint systems being the identity, or the biorthogonality

relationship (4.19). Proposition 4.7.1 transfers the dual frame property of the columns

to the birorthogonal relationship of the rows on each fiber, which greatly simplifies the

construction of windows. In case the two windows φ and ψ coincide, a construction

scheme based on this duality point of view has already been sketched in [98] for tight

Gabor frame windows construction in L2(Rd), which has also been observed in [36] as the

“painless” way to construct tight Gabor frames for L2(R). Based on Proposition 4.7.1,

we propose the following for constructing dual Gabor frame windows.

Proposition 4.7.2. Let φ,ψ ∈ L2(Rd) be compactly supported and bounded, such that∑
k∈KE

k(φψ) = 1. Choose a lattice L such that L̃ is sparse enough to ensure that the
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support of E l̃ψ is disjoint from the support of φ for all l̃ ∈ L̃ \ {0}. Then the Gabor

systems (K,L)cφ and (K,L)cψ, where c= |L̃|−1/2, are dual frames.

Proof. Since φ and ψ are compactly supported and bounded, both Gabor systems are

Bessel systems, see [94, Corollary 1.6.3]. Moreover, the assumption on the functions to

be compactly supported implies that the sum in (4.20) only has finitely many nonzero

terms. By the choice of L, condition (4.20) reduces to one condition, namely for the case

l̃ = 0. This condition is met after scaling, since φψ is a partition of unity with respect

to K.

Note that the shift lattice K is determined by the shift size in the partition of unity.

One could however use some dilation to restate the results for arbitrary sizes of the shift

lattice. An analogue result can be formulated, starting from (4.21) instead of (4.20), i.e.

by changing the roles of the lattices, the partition of unity in Proposition 4.7.2 might also

be used to contruct bandlimited dual windows. We illustrate the construction, starting

from different classes of partitions of unity.

Constructed partition of unity. Partitions of unity characterize orthonormal

refinable functions for multiresolution analysis and one may draw this from the classical

orthonormal wavelet constructions for Gabor window constructions.

Example 4.7.3. In [87], Meyer constructed a function

h(x) = cos
[
πβ

2

(
3|x|
2π −1

)]

for x ∈ R, where β is some Ck or C∞-function for which β(x) = 0 if x≤ 0 and β(x) = 1

if x≥ 1, and

β(x)+β(1−x) = 1 (4.22)
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for all x ∈ R. Note that this implies h(x) = 1 for |x| ≤ 2π/3 and h(x) = 0 for |x| ≥ 4π/3.

Moreover, the regularity of h is the same as the regularity of β. Since β satisfies (4.22),

one gets ∑
k∈2πZ

|h(x+k)|2 = 1.

Therefore, g =
√

3/(8π)h is the window of a tight Gabor frame with respect to (2πZ, 3
4Z).

For a factorization of |g|2 into two different functions one can get dual Gabor windows.

Factoring piecewise polynomials. One family of functions whose shifts form a

partition of unity are B-splines. The B-spline Bm of order m ∈ N is inductively given by

B1 = χ[0,1] and Bm+1 =Bm ∗B1. Since ∑k∈ZBm(x+k) = 1, if one factors Bm into two

bounded functions supported in [0,m], say Bm = φψ, then for any a ≥ m the functions

a−1/2φ and a−1/2ψ are dual Gabor windows with respect to (Z,2πa−1Z). Since B-

splines are nonnegative, one may also take their square root as window function for

a tight frame. This idea has also been used in [74] to construct discrete tight Gabor

frames, which exhibit good orientation selectivity and are very useful in various image

processing problems.

Example 4.7.4. Starting from the linear B-spline B2, we get that 2−1/2B2 and 2−1/2χ[0,2]

are dual Gabor windows with respect to (Z,πZ). The cubic B-spline

B4(x) = 1
6



x3 if 0 ≤ x < 1

−3x3 +12x2 −12x+4 if 1 ≤ x < 2

3x3 −24x2 +60x−44 if 2 ≤ x < 3

(4−x)3 if 3 ≤ x < 4

0 else

,
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Fig. 4.1 Primary and dual Gabor windows constructed from the cubic B-spline in Ex-
ample 4.7.4.

can be factored into a piecewise linear and a piecewise quadratic polynomial:

φ̃(x) = 1
6



(a−1)−1x2 if 0 ≤ x < 1

x2 +(3a−12)x+4a−1 if 1 ≤ x < 2

x2 +(3b−24)x+44b−1 if 2 ≤ x < 3

(3− b)−1(4−x)2 if 3 ≤ x < 4

0 else

, ψ̃(x) =



(a−1)x if 0 ≤ x < 1

−x+a if 1 ≤ x < 2

x− b if 2 ≤ x < 3

(3− b)(4−x) if 3 ≤ x≤ 4

0 else

,

where a (resp. b) is the (only) real solution of the second (resp. third) cubic equation

in B4. Thus 2−1φ̃ and 2−1ψ̃ are dual Gabor windows with respect to (Z, π2Z) (see Fig-

ure 4.1).

In principle this method can be used on B-splines of higher order by solving higher

order polynomial equations in order to get factorizations. In general, however, those

solutions will be numerical in nature and have no explicit closed form. Moreover, using

this method one can only guarantee continuity but no higher order smoothness of the

windows. In order to construct smoother windows, we now turn to alternative construc-

tions.

Trigonometric polynomials. Starting from the identity cos2x+ sin2x = 1, and

restricting ourselves to functions of compact support, let h = cos2(·π/2)χ[−1,1]. Then
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h(x) +h(x− 1) = 1 for all x ∈ [0,1] and the integer shifts of h are a partition of unity.

Factoring h into two functions, e.g. cos(·π/2)χ[−1,1] and cos(·π/2)χ[−1,1], we can get two

symmetric and continuous dual Gabor windows with respect to (Z,πZ). In order to get

windows with higher smoothness, we now improve this construction by leveraging on

the idea for the construction of pseudo-spline wavelet masks [44], namely that higher

powers can result in higher smoothness. That is, we now start from the identity

1 =
(

cos2
(
πx

2

)
+sin2

(
πx

2

))2m−1
, (4.23)

for any given nonnegative integer m. Define h in a similar fashion as above by cutting

off the first m-terms of the binomial expansion of (4.23), i.e. let

h(x) = cos2m
(
πx

2

)m−1∑
j=0

(
2m−1
j

)
cos2(m−1−j)

(
πx

2

)
sin2j

(
πx

2

)
χ[−1,1](x). (4.24)

As above integer shifts of h are a partition of unity. Taking, say, l, l̃ ∈ N such that

l+ l̃ =m, h can be factored into the two functions

φ(x) = cos2l
(
πx

2

)
χ[−1,1](x),

and

ψ(x) = cos2l̃
(
πx

2

)m−1∑
j=0

(
2m−1
j

)
cos2(m−j−1)

(
πx

2

)
sin2j

(
πx

2

)
χ[−1,1](x).

Then for any a≥ |supph| = 2, the functions a−1/2φ and a−1/2ψ are dual Gabor windows

with respect to (Z,2πa−1Z). Note that the larger m is chosen, the smoother one can

make the two functions.
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Fig. 4.2 Primary and dual Gabor windows constructed from trigonometric polynomials
in Example 4.7.5.

Example 4.7.5. Let l = 2 nad l̃ = 1. Let

φ(x) = cos4
(
πx

2

)
χ[−1,1](x),

and

ψ(x) = cos2
(
πx

2

)(
cos4

(
πx

2

)
+5cos2

(
πx

2

)
sin2

(
πx

2

)
+10sin4

(
πx

2

))
χ[−1,1](x).

Then 2−1/2φ and 2−1/2ψ are dual Gabor windows with respect to (Z,πZ). The window

functions are shown in Figure 4.2.

In [77] and [22], the authors are motivated from the solutions of

â(πω)b̂(πω)+ â(π(ω+1))b̂(π(ω+1)) = 1, (4.25)

to construct dual windows of equal support size. Several of their windows coincide with

ours, which is not surprising since the trigonometric polynomials we construct from

(4.24), solve (4.25) [44]. However, our method is easier than solving the polynomial

equation (4.25) directly and moreover can be easily generalized to higher dimensions.

The idea to use higher powers in order to improve smoothness has already been
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used [73] for constructing wavelet masks satisfying interpolatory conditions and higher

order smoothness properties. A generalization to multidimensions has for example been

considered in [72]. There, one starts as well from a partition of unity, namely let a ∈

ℓ0(Zd) satisfy the interpolatory condition

∑
ν∈Zd

2

â(ω+πν) = 1 for all ω ∈ Rd, (4.26)

where Zd2 := Zd/2Zd and â(ω) =∑
n∈Zd a(n)e−in·ω. After raising to some positive integer

power, this interpolatory condition is being factored in [72] to construct higher order

smoothness interpolatory functions in high dimensions. Here we will use the factoring to

derive dual windows. The technique of [72] is as follows. The formal Laurent polynomial

P corresponding to the mask â as

P (z) =
∑
n∈Zd

a(n)zn.

Defining

Pν(z) = P (z exp(−πiν)), ν ∈ Zd2, |z| = 1,

the interpolatory condition (4.26) is equivalent to

∑
ν∈Zd

2

Pν(z) = 1 for all |z| = 1. (4.27)

This in turn implies

 ∑
ν∈Zd

2

Pν(z)


mN

=
∑

|γ|=mN

CγmN ∏
µ∈Zd

2

P γµ
µ (z)

= 1 for all |z| = 1,

for any positive integers m and N , where CγmN are the multinomial coefficients. Letting
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m= 2d and N ∈ N, this interpolatory condition for P is being factored in [72, Theorem

2.3.] as follows.2 Define

G0 = {γ ∈ Nm0 : |γ| =mN,γ0 >N and γ0 > γν ,ν ∈ Zd2 \{0}},

Gj = {γ ∈ Nm0 : |γ| =mN,γ0 >N,γ0 ≥ γν ,ν ∈ Zd2 \{0}, with exactly j equalities},

for j = 1, . . . ,m−2, and

H =
m−2∑
j=0

1
j+1

 ∑
γ∈Gj

CγmNP
γ0−1 ∏

ν∈Zd
2\{0}

P γν
ν

+C
(N,...,N)
mN

∏
ν∈Zd

2

PNν .

Then ([72, Theorem 2.3]) proves that the product PH satisfies the interpolatory con-

dition (4.27). The following example shows one particular construction of dual Gabor

frames based on this result.

Example 4.7.6. A possible a ∈ ℓ0(Zd) to satisfy the interpolatory condition (4.26) is

given by

â(ω) = 1
2

(
cos

(
ω1
2

)
cos

(
ω2
2

)
cos

(
ω1 +ω2

2

))2
(5− cos(ω1)− cos(ω2)− cos(ω1 +ω2)) ,

see [72]. The corresponding Laurant polynomial is

P (z) = 1
128((z1 +z−1

1 )(z2 +z−1
2 )(z1z2 +(z1z2)−1))2

(
5− z2

1 +z−2
1

2 − z2
2 +z−2

2
2 − (z1z2)2 +(z1z2)−2

2

)
,

where z1 = e−iω1/2 and z2 = e−iω2/2. Applying [72, Theorem 2.3] with m= 4 and N = 1

yields

H =P (P 2 +4P (Pν1 +Pν2 +Pν3)+12(Pν1Pν2 +Pν2Pν3 +Pν1Pν3)+3(P 2
ν1 +P 2

ν2 +P 2
ν3)+24Pν1Pν2Pν3)

2The factor 2d is an artifact of the dyadic dilations we use. The construction in [72] works for general
dilation matrices and 2d is being replaced by the determinant of the dilation matrix.
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Fig. 4.3 Primary and dual Gabor windows of Example 4.7.6.

where ν1,ν2,ν3 ∈ Zd2 \{0} are the 3 coset elements. Therefore, defining

φ(x) =


P (e−iπx/2) if x ∈ [−1,1]2

0 else
, ψ(x) =


H(e−iπx/2) if x ∈ [−1,1]2

0 else
,

and choosing the lattices (Z2,πZ2), the conditions of Proposition 4.7.1 are satisfied for

the windows 2−1φ and 2−1ψ. The graphs of the dual windows are shown in Figure 4.3.





Chapter 5

Wavelet systems: Tight and dual

frames

The dual Gramian analysis established for shift-invariant systems in [94] is used in [96]

for studying wavelet frames with the assistant of the shift-invariant quasi-affine system,

which shares the same (tight) frame property of the wavelet system. Thus, the dual

Gramian analysis can be carried on for the quasi-affine system to obtain a complete

characterization of (tight) frame property of its corresponding wavelet system in terms

of its generators. The dual Gramian analysis of a single wavelet system can be easily

generalized (with certain conditions) to the mixed dual Gramian analysis of dual wavelet

systems, see [97]. Under the condition of the wavelet systems being Bessel, the tight

frame property of a wavelet system can be considered as the special case of dual frames

when the two systems coincide.

In [96, 97], the characterization of wavelet frames via the (mixed) dual Gramian

analysis is applied to a special class of wavelet frames which are generated from a mul-

tiresolution analysis (MRA). Then, with some additional conditions, the huge (mixed)

dual Gramian matrix can be factored through the MRA such that the dual Gramian

matrix is reduced to a finite order matrix generated by the masks of the refinable func-
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tion and wavelets. This leads to the unitary extension principle (UEP) for tight wavelet

frames first presented in [96] and the mixed unitary extension principle (MEP) for dual

wavelet frames in [97]. The UEP (resp. MEP) greatly simplifies the construction of tight

(resp. dual) wavelet frames, particularly for the univariate case.

The UEP (resp. MEP) also connects the study of the tight (resp. dual) frame prop-

erty of an entire wavelet system to the study of one-level perfect reconstruction prop-

erty of a filter bank in ℓ2(Zd). This connection, with the perfect reconstruction filter

bank construction scheme in Section 4.3 resulted from duality principle, leads to a new

and simple construction scheme of multivariate tight/dual wavelet frames from given

refinable functions with many desired properties. For example, the supports of the

constructed wavelet frames are small, which are not larger than that of the associated

refinable function in the MRA. All wavelets are symmetric or anti-symmetric. The num-

ber of wavelets is relatively small compared to, e.g., the number of wavelets obtained

from the tensor product of univariate B-spline framelets in [96]. Moreover, compared

to the existing construction schemes that involve completing matrices with polynomial

entries, the proposed construction scheme only requires completing constant matrices.

The construction scheme also guarantees the existence of multivariate tight/dual MRA

wavelet frames with compact support for L2(Rd) starting from a given MRA with weak

condition.

The tensor product of univariate B-spline wavelet frames has been widely used in

many image restoration tasks, e.g., see [4, 5, 8–10, 12, 13, 41, 57, 105]. Using tensor

product tight frames is convenient for the computation of frame decomposition and

reconstruction, but it may be limited for certain applications in image processing since

many types of images are non-separable multi-dimensional data. So far, the existing non-

separable tight wavelet frames are not as widely used as the tensor product B-spline tight

wavelet frames. Possible reasons are the construction process is tedious and wavelets
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may lack certain desired properties including small support, symmetry/anti-symmetry,

and relatively small number of wavelets. We hope that the simple construction scheme

and the examples of the multivariate box spline tight wavelet frames constructed in

this thesis will inspire some new applications that benefit from the nice properties of

multivariate box spline tight wavelet frames. The construction of dual frames, which

involves completing two constant matrices, is easier than completing a unitary matrix for

a single system in the sense that one can design one matrix (i.e. the primary wavelets) and

simply find the other by a matrix inversion. With this gained flexibility and simplicity,

one may choose to apply dual wavelet frames in adequate signal processing tasks. In

addition, compared to the construction of tight wavelet frames using only refinement

masks with nonnegative entries, the construction of dual wavelet frames now can start

from refinement masks consisting of negative entries. The construction can, for example,

be applied to any mask of a compactly supported stable refinable function whose integer

shifts form a partition of unity.

So far, we only show, starting from an MRA in L2(Rd), how to make use of the filter

banks construction to obtain tight/dual wavelet frames. Lastly, we will show, given a set

of tight frame filter bank, as long as there is a low pass filter, this filter bank corresponds

to an MRA tight wavelet system in L2(Rd) whose masks are derived from the filter bank.

5.1 Wavelet frames

A wavelet system X ⊂ L2(Rd) is the collection of functions of the form

X =X(Ψ) :=
⋃
k∈Z

DkE(Ψ) (5.1)
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where Ψ is a finite subset of L2(Rd), E(Ψ) is the set of the integer translations of

the functions in Ψ, and Dk is the dilation operator Dk : f 7→ 2kd/2f(2k·). Since wavelet

systems are not shift-invariant due to dilations of decreasing and negative powers, quasi-

affine systems are introduced in [96] to be able to apply the dual Gramian analysis for

shift-invariant systems [94]. For a given wavelet system X, the quasi-affine system

Xq is the shift-invariant system generated by replacing DkEjψ(·) by the functions

2kd/2EγDkψ(·− j)

at each dilation level k < 0, for all ψ ∈ Ψ and j ∈ Zd, where each entry of γ ⊂ Zd takes

values in {0,1,2, . . . ,2−k − 1}. The dual Gramian matrix of this shift-invariant system

Xq at ω ∈ Td := [−π,π]d is

G̃Xq(ω) =
∑
ψ∈Ψ

∞∑
k=κ(α−β)

ψ̂(2k(ω+α))ψ̂(2k(ω+β))

α,β∈2πZd

, (5.2)

where κ denotes the dyadic valuation

κ : Rd → Zd : ω 7→ inf{k ∈ Z : 2kω ∈ 2πZd},

see [96]. Given a mapping R : Ψ → L2(Rd), the mixed dual Gramian matrix of the

shift-invariant system Xq and (RX)q at ω ∈ Td is

G̃Xq,(RX)q(ω) =
∑
ψ∈Ψ

∞∑
k=κ(α−β)

ψ̂(2k(ω+α))R̂ψ(2k(ω+β))

α,β∈2πZd

. (5.3)

The fiber matrices G̃Xq(ω) represent the frame operator of Xq while the matrices

G̃Xq,(RX)q(ω) represent the mixed frame operator of Xq and (RX)q. In case R = I, the

mixed dual Gramian matrix G̃Xq,(RX)q is reduced to the dual Gramian matrix G̃Xq . It
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is proven in [96] that the wavelet system X is a frame if and only if the quasi-affine

system Xq is a frame and these two systems have the same frame bounds. Therefore,

the frame property of wavelet system X is completely characterized by the dual Gramian

matrix G̃Xq . Particularly, the wavelet system X forms a tight frame if and only if the

quasi-affine system Xq forms a tight frame, i.e. the wavelet system X is a tight frame

if and only if G̃Xq(w) is the identity matrix for a.e. ω ∈ Td. In fact, using the same

method as Section 3.4, we can obtain many wavelet frame bounds estimates via the dual

Gramian matrix. Furthermore, the oversampling theory for the wavelet frame can also

be obtained by the observation that the submatrix of the dual Gramian matrix of the

wavelet system still preserves the same operator bounds as the dual Gramian matrix,

see [96, 100] for more details. For a general map R : Ψ → L2(Rd), it has been proved in

[97] that X and RX are dual frames if and only if both systems are Bessel systems and

G̃Xq,(RX)q(ω) is the identity matrix for a.e. ω ∈ Td.

When the wavelet system is generated by an MRA and under some further mild

assumption, the (mixed) dual Gramian matrix defined in (5.2) and (5.3) can be factored

through the MRA to a finite order matrix. This results in the UEP for characteriz-

ing MRA-based tight wavelet frames and the MEP for characterizing MRA-based dual

wavelet frames. Recall that a function φ ∈ L2(Rd) is called a refinable function if

φ̂(2·) = â0φ̂ (5.4)

for some a0 ∈ ℓ2(Zd) where â0 is the Fourier series of a0. The sequence a0 or its Fourier

series â0 is called the refinement mask of φ. Now let φ ∈ L2(Rd) and V0 ⊂ L2(Rd) be

the closed linear span of E(φ) and Vk := Dk(V0) for k ∈ Z. The sequence of subspaces

{Vk}k∈Z is called an MRA if (i) Vk ⊂ Vk+1; (ii) ∪kVk is dense in L2(Rd) and (iii) ∩kVk =

{0}. For {Vk}k∈Z to be an MRA, it is sufficient that φ∈L2(Rd) is a compactly supported

refinable function with φ̂(0) = 1 (see e.g. [75]). With such an MRA in hand, the wavelets



88 Wavelet systems: Tight and dual frames

Ψ = {ψl}rl=1 ⊂ L2(Rd) are then defined as

ψ̂l(2·) = âlφ̂ (5.5)

for some al ∈ ℓ2(Zd). The sequence al or its Fourier series âl is called a wavelet mask

and the function ψl ∈ Ψ is called a wavelet. For simplicity, we assume, in all of what

follows, that the refinable function φ is compactly supported with φ̂(0) = 1 (as a re-

sult, the refinement mask is finitely supported) and that all wavelet masks are finitely

supported. The UEP for MRA tight wavelet frames in [96] is stated as follows.

Theorem 5.1.1 ([96]). Let φ be a compactly supported refinable function with φ̂(0) = 1

and the refinement mask a0 is finitely supported. Let Ψ = {ψl}rl=1 be the wavelets with

the finite supported wavelet masks {al}rl=1. If, for a.e. w ∈ Rd and ν ∈ {0,π}d,

r∑
l=0

âl(w)âl(w+ν) = δν,0, (5.6)

then the wavelet system X(Ψ) is a tight frame.

The MEP for MRA dual wavelet frames is stated as follows.

Theorem 5.1.2 ([97]). Let φa and φb be compactly supported refinable functions with

φ̂a(0) = φ̂b(0) = 1 and finitely supported refinement masks a0 and b0. Let {al}rl=1, resp.

{bl}rl=1, be the masks of a wavelet system X derived from φa, resp. Y derived from φb.

Then X and Y are dual frames, provided they are Bessel systems and

r∑
l=0

âl(ω)b̂l(ω+ν) = δν,0, (5.7)

for any ν ∈ {0,π}d and a.e. ω ∈ Td.

In the MEP, it is crucial to assume that the two wavelet systems X and Y are Bessel.

If in addition all wavelet masks have first order vanishing moments, i.e. ∑k∈Zal(k) = 0
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for all l = 1, . . . r, then the wavelet system X(Ψ) is a Bessel system (see e.g. [61]; or [95]

for a dual Gramian argument under an additional mild smoothness condition on the

refinable function). However, for the dual Gramian analysis of a single system which

is Hermitian, the strong assumption that the system is a Bessel system is no longer

needed. Moreover, due to the Hermitian property of the matrix, the dual Gramian

can be used for the characterization of Bessel property under a mild condition on the

refinable function, see [94].

Note that, one can associate with the wavelet system X(Ψ) the matrix

HX(ω) =



â0(ω+ν1) â1(ω+ν1) . . . âr(ω+ν1)

â0(ω+ν2) â1(ω+ν2) . . . âr(ω+ν2)
... ... . . . ...

â0(ω+ν2d) â1(ω+ν2d) . . . âr(ω+ν2d)


, (5.8)

generated by the masks {al}rl=0, where ω ∈ Td and {ν1, . . . ,ν2d} = {0,π}d, and HY is the

same matrix associated with Y = RX. Under the conditions on the refinable function,

the UEP states that a wavelet system X(Ψ) is a tight frame system if HX(w)H∗
X(w) = I

for a.e. w ∈ Td, while the MEP says that X and Y are dual wavelet frames whenever

they are Bessel systems and HX(ω)H∗
Y (ω) = I for a.e. ω ∈ Td. In other words, under

the MRA assumption and some additional mild conditions, the infinite (mixed) dual

Gramian matrix defined in (5.2) can be factored to the finite order matrix HX (and

HY ), and the tight (resp. dual) wavelet frame property for two wavelet Bessel systems

is reduced to a condition on HXH∗
X (resp. HXH∗

Y ). The interested reader is referred to

[96, 97] for more details.

In addition, the UEP (resp. MEP) condition also reduces the tight (resp. dual) frame

property of wavelet systems of infinite levels to a single-level perfect reconstruction

property of a filber bank for ℓ2-sequences. In fact, the UEP (resp. MEP) is exactly the
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dual Gramian conidtion for the tight (resp. dual) frame property of systems formulated

by the masks in the sequence space. Recall that the system X = X({2d/2al}rl=0,2)

defined in (4.4) is a 2-shift-invariant system. As a result the fiber dual Gramian analysis

in [94] can be applied. Indeed the matrix HX (5.8) is the fiber pre-Gramian matrix of

this system which links to the operator TX and T ∗
X as follows:

((TXc)∧(ω+ν))ν∈{0,π}d = 2d/2HX(ω)(ĉl(2ω))l∈Zr , for c ∈ ℓ0(X),

(T ∗
Xc)∧(ω) = 2−d/2H∗

X(ω/2)(ĉ(ω/2+ν))ν∈{0,π}d , for d ∈ ℓ0(Zr ×Zd).

The fiber mixed dual Gramian matrix is then G̃X,Y = HXH∗
Y where Y =X({2d/2bl}rl=0,2).

Since the filters are FIR, X and Y are Bessel systems and thus G̃Y,X(ω) is the identity

for a.e. ω ∈ Rd, i.e. the MEP condition (5.7), if and only if the (time-domain) mixed

dual Gramian matrix G̃Y,X is the identity, i.e.

2d
r∑
l=0

∑
k∈Zd

al(n+2k+ ℓ)bl(2k+ ℓ) = δn,0 for any n,ℓ ∈ Zd. (5.9)

Both are the necessary and sufficient conditions for the filter bank systems X and Y to be

dual frames. Besides (5.7), the sufficiency condition provided by Theorem 5.1.2 contains

the important second part that X and Y have to be Bessel systems. This however,

as reviewed above, can be guaranteed by working with wavelet masks that have first

order vanishing moments. In summary, if the wavelet masks {al, bl}rl=1 have first order

vanishing moments, then Theorem 5.1.2 leads to a much simpler sufficient condition for

MRA-based wavelet systems to be dual wavelet frames. Namely, the generated wavelet

systems X(Ψ) and X(Ψ̃) are dual wavelet frames for L2(Rd), whenever the filter bank

systems X = X({2d/2al}rl=0,2) and Y = X({2d/2bl}rl=0,2) are dual frames in ℓ2(Zd).

Similarly, in the case that Y =X, the fiber dual Gramian G̃X(ω) is the identity for a.e.

ω ∈ Rd, i.e. the UEP condition (5.6), if and only if the dual Gramian matrix G̃X is the
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identity, i.e.

2d
r∑
l=0

∑
k∈Zd

al(n+2k+ ℓ)al(2k+ ℓ) = δn,0 for any n,ℓ ∈ Zd. (5.10)

In other words, the wavelet system X(Ψ) is a tigh wavelet frame for L2(Rd), whenever

the filter bank system X =X({2d/2al}rl=0,2) is a tight frame in ℓ2(Zd).

In the next section we will use this connection and adapt the duality principle con-

struction for perfect reconstruction filter banks to meet the vanishing moment require-

ments on the masks. In doing so, we give a simple matrix inversion scheme for construct-

ing multivariate dual wavelet frames, as well as a unitary matrix completion scheme for

tight wavelet frames, with a prescribed MRA as yet another application of the duality

principle.

5.2 Tight/dual wavelet frames construction via con-

stant matrix completion

Having established a link between the MEP (resp. UEP) and the perfect reconstruction of

filter banks, we propose a simple construction method for multivariate dual (resp. tight)

wavelet frames for a given MRA in terms of a constant matrix completion scheme. This

is done by fine tuning the filter bank Construction 4.3.2 to meet the extra requirement

of first order vanishing moments. Our freedom to achieve this, lies in the appropriate

choice of the diagonal matrix involved. In this section, we mainly describe the proposed

construction of dual wavelet frames, and the construction of tight wavelet frames can

be considered as the special case when the two systems coincide but with an additional

condition on the refinement mask. The construction starts from a real-valued refinement
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mask a0 satisfying

∑
n∈Ωj

a0(n) = 2−d, (5.11)

for all j ∈ Zd/2Zd, where Ωj = (2Zd + j) ∩ supp(a0). This condition on the refinement

mask is a rather mild requirement. Condition (5.11) is equivalent to â0(0) = 1 and

â0(jπ) = 0 for j ∈ (Zd/2Zd)\{0}. If â0(0) = 1, then (5.11) holds provided that the cascade

algorithm for a0 converges in L2(Rd) for any compactly supported initial function whose

integer shifts are a partition of unity, see [82]. Recall that the cascade algorithm for the

refinement mask a0 is the sequence φn = 2d∑k∈Zd a0(k)φn−1(2 ·−k), n ∈ N, where φ0 is

some compactly supported function. If for example a refinable function is stable, i.e. its

integer shifts form a Riesz sequence, and its integer shifts form a partition of unity, then

its refinement mask satisfies (5.11). Refinement masks that satisfy (5.11) include masks

of box splines, of certain butterfly subdivision schemes or of the interpolation function

of [92]. We will use those in examples below.

Construction 5.2.1. Suppose the finitely supported real-valued refinement mask a0 sat-

isfies (5.11).

• Step 1 (initialization): Define the first row of a matrix A by collecting the non-

zero entries of a0. Let M be the diagonal matrix with the first row of A as its

diagonal.

• Step 2 (primary wavelet masks): Complete the matrix A to be an invertible square

matrix, each of whose remaining rows has entries summing to zero.

• Step 3 (dual wavelet masks): Define Ã= AM−1 and B = (Ã∗)−1.

If a0 has, say, m nonzero entries, then A is an m×m matrix whose first row contains

the nonzero entries of the refinement mask a0. This defines a one-to-one correspondence
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between the support of a0 and {1, . . . ,m}. Via this correspondence (or more precisely by

reversing the procedure the matrix in (4.5) is derived from given masks), the remaining

rows of A define m−1 finitely supported d-dimensional wavelet masks, whose support is

contained in the support of a0. By the same correspondence, the first row of B defines

a d-dimensional refinement mask and the remaining rows of B define d-dimensional

wavelet masks with first order vanishing moments, the support of which is contained in

the support of a0. This is implied by the following lemma.

Lemma 5.2.2. Let A and B be the matrices derived in Construction 5.2.1. Then the

first rows of A and B coincide and each of their remaining rows sums to 0.

Proof. That all but the first row of A sum to zero is a requirement in Construction 5.2.1.

Every entry of the first row of Ã is equal to 1 and BÃ∗ = I. Therefore, the entries of

the first row of B sum to 1 and the entries of each remaining row of B sum to 0. If

B̃ = BM−1, then B̃A∗ = I, where B̃ is uniquely determined since A∗ is invertible by

construction. Since the entries of the first column of A∗ sum to 1 and the entries of each

remaining column of A∗ sum to zero by construction, it follows that each entry of the

first row of B̃ is equal to 1. This implies that the first rows of A and B coincide.

Remark. (1) Construction 5.2.1 is a special way to construct adjoint systems of the

original system X generated by the masks a0, which is inspired from the idea of the

connection between the MEP and perfect reconstruction filter banks. There is a lot

of freedom to construct matrix A with only its first row provided, which allows us

to construct wavelet masks with desired properties. For example, if the refinement

mask a0 has certain symmetric properties, one may impose extra symmetric conditions

on the matrix extension to generate wavelet masks with the same symmetries, as we

will see later in the examples. (2) Construction 5.2.1 is only one possible scheme to

obtain matrices A and B that satisfy the conditions specified in Theorem 4.3.1. One

may consider a matrix A with more rows than columns, i.e. there are more wavelets.
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Construction 5.2.1 contains the minimal number of wavelet masks among all the possible

constructions using Theorem 4.3.1.

Construction 5.2.1 is best possible, on the other hand, in the sense that it cannot

be improved to yield two different MRAs generated by real refinement masks for the

primary and dual wavelets. Indeed, suppose a finitely supported mask satisfies (5.11)

and its nonzero entries define the diagonal of a diagonal matrix M . The crux of the

construction is to factor M =A∗B, with A and B such that their first rows a and b each

have entries summing to one, while each of their remaining rows has entries summing

to zero. Now, if A0 and B0 are the submatrices derived from A and B by deleting their

first rows, then A∗
0B0 =M−a⊤b. Letting 1 the constant one vector and 0 the constant

zero vector, then A∗
0B01⊤ = A∗

00⊤ = 0⊤, while (M − a⊤b)1⊤ = diag(M)⊤ − a⊤. Thus

diag(M) = a. Similarly, multiplying 1 from the left, diag(M) = b follows. Consequently

a = b, i.e. such a construction cannot produce different primary and dual refinement

masks, no matter what the number of wavelets is.

Now let X(Ψ) be the wavelet system generated from the masks determined by A and

let X(Ψ̃) be the wavelet system generated from the masks determined by B. The above

argument shows that both wavelet systems X(Ψ) and X(Ψ̃) are derived from the same

underlying MRA. Our main result is that X(Ψ) and X(Ψ̃) are dual frames.

Theorem 5.2.3. Suppose the real-valued refinement mask a0 ∈ ℓ2(Zd) is of finite support

satisfying (5.11), and the corresponding refinable function φ ∈ L2(Rd) is supposed to be

compactly supported with φ̂(0) = 1. Then the masks derived by Construction 5.2.1 satisfy

the MEP condition (5.7), and the wavelet systems X(Ψ) and X(Ψ̃) generated by those

masks are dual wavelet frames in L2(Rd). The number of Ψ (or Ψ̃) is one less than the

size of the support of a0. Moreover, the support of the derived masks is no larger than

the support of a0 and if the support of φ is convex, then the support of the primary and

dual wavelets is no larger than the support of φ.
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Proof. Let {al}rl=0 and {bl}rl=0 be the masks derived from Construction 5.2.1. To use the

MEP, X(Ψ) and X(Ψ̃) need to be Bessel systems. This is ensured by the finite support

of all masks and the first order vanishing moments of all wavelet masks guaranteed by

Lemma 5.2.2. It remains to verify (5.7) of the MEP. By construction A∗B = M . This

implies that the n-th column of A is orthogonal to the m-th column of B whenever

n ̸=m. Moreover, together with (5.11), it implies

r∑
l=0

∑
n∈Ωj

al(n)bl(n) =
∑
n∈Ωj

(A∗B)(n,n) =
∑
n∈Ωj

a0(n) = 2−d,

for every j ∈Zd/2Zd. Thus the masks satisfy (4.6) and (4.7) of Theorem 4.3.1, which im-

plies the MEP (5.9) and therefore (5.7). By construction, supp(al) ⊂ supp(a0) ⊂ supp(φ)

for l = 1, . . . , r. If supp(φ) is convex, then supp(φ(2 · +k)) ⊂ 1
2 supp(φ) + 1

2 supp(φ) =

supp(φ) for any k ∈ supp(a0). The primary wavelets are given by

ψl = 2d
∑
k∈Zd

al(k)φ(2 ·+k)

and thus supp(ψl) ⊂ supp(φ) for l = 1, . . . , r. The same arguments hold for the dual

wavelets.

For any finitely supported refinement mask, one can always find matrices satisfying

Step 2 of Construction 5.2.1. This implies the following existence result.

Theorem 5.2.4. For any MRA of L2(Rd), derived from a real-valued refinement mask

satisfying (5.11) with the corresponding refinable function satisfying φ̂(0) = 1, there exist

dual wavelet frames with the following properties:

(a) the number of primary and dual wavelets is one less than the size of the support

of the refinement mask,
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(b) the support of the all wavelet masks is contained in the support of the refinement

mask,

(c) the support of all wavelets is contained in the support of the refinable function,

whenever the refinable function has convex support.

Proof. It only remains to note that Step 2 of Construction 5.2.1 can be executed for

any finitely supported refinement mask. Indeed, if, as above, A is to be an m×m

matrix, then its first row is not in (span{1})⊥, where 1 := (1,1, . . . ,1) ∈ Rm. Each of the

remaining m−1 rows has to have entries summing to zero and one can choose any m−1

linear independent vectors of the (m− 1)-dimensional space (span{1})⊥ to complete A

to be an invertible matrix.

When the case A = B, the construction idea of dual wavelet frames can be easily

reduced to the construction of tight wavelet frames but with a few distinctions. In the

case of A=B, one does not have the freedom to complete one matrix first but rather to

complete matrix A satisfying the desired property A∗A=M . By defining Ã=AM−1/2,

it is to complete a matrix satisfying Ã∗Ã = I which says Ã is a unitary matrix. Since

we have to take square root on the matrix M , we need to assume an extra assumption

on the refinement mask, i.e. the entries of a0 are nonnegative. Suppose mask a0 satisfy

(5.11) and all entries of a0 are nonnegative. Then we have the following construction

scheme for tight wavelet frames.

Construction 5.2.5. Suppose we have a refinement mask a0 with only nonnegative

entries and satisfying (5.11).

• Step 1 (initialization): Align the nonzero entries of a0 as a row vector a and

define a normalized vector ã0 with ∥ã0∥ = 1 by taking the square root of a. Let M

be the diagonal matrix with a as its diagonal.
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• Step 2 (orthogonal matrix extension): Construct an orthogonal matrix Ã with the

first row being ã0.

• Step 3 (restoration): Define the matrix A= ÃM1/2.

Remark. Compare to Construction 5.2.1 for dual wavelet frames, Construction 5.2.5 for

tight wavelet frames is more stringent. Construction 5.2.5 needs to complete a unitary

matrix, while Construction 5.2.1 still has the freedom to construct one matrix A with

the minimal requirement that A is invertible. One may use the differences of the two

constructions adapted to various practical signal processing tasks.

Analogous to Theorem 5.2.3 for dual wavelet frames, Construction 5.2.5 leads to the

following result for tight wavelet frames.

Theorem 5.2.6. Suppose the refinement mask a0 ∈ ℓ2(Zd) with nonnegative entries is

of finite support satisfying (5.11), and the corresponding refinable function φ ∈ L2(Rd)

is supposed to be compactly supported with φ̂(0) = 1. The masks derived from Construc-

tion 5.2.5 satisfy the UEP condition (5.10), and the wavelet system X(Ψ) generated by

the corresponding masks forms a tight frame in L2(Rd). The number of Ψ is one less

than the size of the support of a0. the support of the derived masks is no larger than the

support of a0 and if the support of φ is convex, then the support of the primary and dual

wavelets is no larger than the support of φ.

Proof. The orthogonality of the columns of A is guaranteed by Step 2 and Step 3.

Moreover, we have

m−1∑
l=0

∑
n∈Ωj

|al(n)|2 =
m−1∑
l=0

∑
n∈Ωj

a0(n)|ãl(n)|2 =
∑
n∈Ωj

a0(n) = 2−d,

where the assumption of the entries a0 to be nonnegative is used. According to Theo-

rem 4.3.1, the masks {al}m−1
l=0 generated by Construction 5.2.5 satisfy the UEP (5.10).



98 Wavelet systems: Tight and dual frames

Thus, by the UEP, the wavelet system X(Ψ) generated by the wavelets defined from

these wavelet masks forms a tight wavelet frame in L2(Rd).

For any finitely supported refinement mask, one can always find unitary matrices

satisfying Step 2 of Construction 5.2.5. This implies the following existence result.

Theorem 5.2.7. For any MRA of L2(Rd), derived from a nonnegative refinement mask

satisfying (5.11) with the corresponding refinable function satisfying φ̂(0) = 1, there exist

tight wavelet frames with the following properties:

(a) the number of wavelets is one less than the size of the support of the refinement

mask,

(b) the support of the all wavelet masks is contained in the support of the refinement

mask,

(c) the support of all wavelets is contained in the support of the refinable function,

whenever the refinable function has convex support.

In the existing construction schemes, the construction of a compactly supported

dual or tight wavelet frame from a given refinement mask is mainly to solve a prob-

lem of completing unitary matrices with trigonometric polynomial entries. In contrast,

Construction 5.2.1 and 5.2.5 are only a problem of completing constant matrices. As

a result, the construction of dual and tight wavelet frames is greatly simplified in our

scheme. Such a simplification is very helpful to the construction of multivariate dual and

tight wavelet frames from refinable function, e.g. box splines, with desired properties as

we will show in the next two sections. Tight wavelet frames have a wide application in

the last decades, for which we show the construction first.
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5.3 Multivariate tight wavelet frame from box splines

Given a set of directions {ξj}nj=1 ⊂ Zd with multiplicity mj for each ξj , the Fourier

transform of the box spline φ associated with the given directions is defined by

φ̂(ω) =
n∏
j=1

(
1− e−iξj ·ω

iξj ·ω

)mj

.

Let L be the minimal number of directions {ξjk}Lk=1 whose removal from this set cannot

span Rd anymore, then the corresponding box spline φ lies in CL−2(Rd). The box spline

φ is refinable and the refinement mask is given by

â0(ω) =
n∏
j=1

(
1+ e−iξj ·ω

2

)mj

.

The entries of the refinement mask a0 are nonnegative and a0 satisfies (5.11). The in-

terested reader is referred to [3] for a detailed introduction to box splines.

In the following examples, all multivariate wavelet frames constructed by Construc-

tion 5.2.5 have the following properties: the supports of wavelets are not larger than

that of the box spline, wavelets and their masks are either symmetric or anti-symmetric,

and the number of wavelets constructed is one less than the size of the support of the

refinement mask.

Example 5.3.1. Considering the linear bivariate box spline with the following three

directions:

{ξ1, ξ2, ξ3} = {(1,0)⊤, (0,1)⊤, (1,1)⊤}.

The multiplicity mj = 1 for all j. The graph of the function is plotted in (a) of Figure 5.1.
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The refinement mask of this box spline is

a0 = 1
8


0 1 1

1 2 1

1 1 0

 . (5.12)

Construction 5.2.5 gives the following six wavelet masks:

1
8


0 −1 −1

1 2 1

−1 −1 0

 , 1
8


0 −1 1

−1 2 −1

1 −1 0

 , 1
8


0 1 −1

−1 2 −1

−1 1 0

 ,

√
3

12


0 −1 −1

−1 0 1

1 1 0

 ,
√

6
24


0 1 1

−2 0 2

−1 −1 0

 ,
√

2
8


0 −1 1

0 0 0

−1 1 0

 .

See Figure 5.2 for the graphs of the six corresponding wavelets. It is seen that the

supports of the wavelet masks (resp. wavelets) are not larger than the support of the

refinement mask (resp. box spline). All wavelets are either symmetric or anti-symmetric.

As a comparison, the number of bivariate wavelets obtained by the tensor product of linear

B-spline wavelets in [96] is eight and they have larger support. The number of bivariate

wavelets constructed in [31] is seven and their supports are the same as the support of

box spline. There are six wavelets in the construction of [79]. Seven or six wavelets with

the same support as the box spline are constructed in [20].

Example 5.3.2. Considering the box spline with the following three directions

{ξ1, ξ2, ξ3} = {(1,0)⊤, (0,1)⊤, (1,1)⊤},

with multiplicities mj = 2 for all j. The graph of the function is plotted in (b) of Fig-



5.3 Multivariate tight wavelet frame from box splines 101

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

x
y

z

(a) φ1

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
0

0.1

0.2

0.3

0.4

0.5

xy

z

(b) φ2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
y

z

(c) φ3

Fig. 5.1 Graphs of refinable box splines used in the constructions: (a) the box spline in
Example 5.3.1; (b) the box spline in Example 5.3.2; (c) the box spline in Example 5.3.3.
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Fig. 5.2 Graphs of the six wavelets constructed from box spline of three directions with
multiplicity one in Example 5.3.1.
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Fig. 5.3 Graphs of the first six wavelets constructed from box spline of three directions
with multiplicity two in Example 5.3.2.

ure 5.1. The refinement mask is

a0 = 1
64



0 0 1 2 1

0 2 6 6 2

1 6 10 6 1

2 6 6 2 0

1 2 1 0 0


. (5.13)

Construction 5.2.5 gives 18 wavelet masks (see Appendix A.1). See Figure 5.3 for the

plots of the first six wavelets. The same box spline is also used in [79] to generate seven

wavelets, whose explicit expressions are provided in [19].

Example 5.3.3. Considering the bivariate box spline in R2 with the following four

directions:

(ξ1, ξ2, ξ3, ξ4) = {(0,1)⊤, (1,0)⊤, (1,1)⊤, (1,−1)⊤}

with multiplicity mj = 1 for all j. The graph of the function is plotted in (c) of Figure 5.1.
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Fig. 5.4 Graphs of the first six wavelets constructed from box spline of four directions
with multiplicity one in Example 5.3.3.

The refinement mask is

a0 = 1
16



0 1 1 0

1 2 2 1

1 2 2 1

0 1 1 0


. (5.14)

Construction 5.2.5 gives 11 wavelet masks (see Appendix A.2) and see Figure 5.4 for

the graphs of the first six wavelets. Using the same bivariate box spline, 15 wavelets are

constructed using the method proposed in [31] and six wavelets with larger support are

constructed using the method in [79].

Example 5.3.4. Considering the refinable function the box spline in R3 with the fol-

lowing four directions:

(ξ1, ξ2, ξ3, ξ4) = {(1,0,0)⊤, (0,1,0)⊤, (0,0,1)⊤, (1,1,1)⊤}.
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with multiplicity 1 for each direction. The refinement mask is

a0 = 1
16


0 0 0 0 1 1 0 1 1

1 1 0 1 2 1 0 1 1

1 1 0 1 1 0 0 0 0

 . (5.15)

The above matrix is the 3D matrix aligned slice by slice by the x-coordinate. Con-

struction 5.2.5 gives 14 wavelets (see Appendix A.3). When using the tensor product

of univariate wavelets to construct trivariate wavelets, e.g. linear B-spline and its two

wavelets, it will produce totally 26 wavelets. As a comparison, only 14 wavelets are

produced with their supports no larger than the support of the box spline. The reduced

number of wavelets and the relative small support of wavelet masks could benefit the appli-

cations of tight wavelet frames in high-dimensional data, in terms of both computational

efficiency and memory utilization efficiency.

5.4 Multivariate dual wavelet frame construction

Construction 5.2.1 can start from any given finitely supported real-valued refinement

mask satisfying (5.11) and we now illustrate it by some examples. Example 5.4.1 is

based on a piecewise linear box spline. The refinement mask used in Example 5.4.2 is

derived from the butterfly subdivision scheme [47], while Example 5.4.3 starts from an

interpolatory refinable function derived from a box spline [92]. Note that the latter two

examples use interpolatory refinement masks containing negative entries, which cannot

be used for the multivariate tight wavelet construction in Constructon 5.2.5. In all the

examples, the primary wavelet masks are defined based on discrete first or second order

difference operators along certain directions. Again, all dual multivariate wavelet frames

constructed by Construction 5.2.1 have the following properties: the supports of primary

or dual wavelets are not larger than that of the box spline, wavelets and their masks
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are either symmetric or anti-symmetric, and the number of primary or dual wavelets

constructed is one less than the size of the support of the refinement mask.

Example 5.4.1. Starting from the box spline of the three directions {(1,0)⊤,(0,1)⊤,(1,1)⊤}

with the mask a0 (5.12), we choose the 6 primary wavelet masks

1
2


0 1 0

0 0 0

0 −1 0

 ,
1
2


0 0 1

0 0 0

−1 0 0

 ,
1
2


0 0 0

1 0 −1

0 0 0

 ,

1
4


0 −1 0

0 2 0

0 −1 0

 ,
1
4


0 0 −1

0 2 0

−1 0 0

 ,
1
4


0 0 0

−1 2 −1

0 0 0

 .

These masks correspond to wavelets with certain directions (see Figure 5.5). The dual

refinement mask again is a0 while the dual wavelets obtained from Construction 5.2.1

have the following masks (see Figure 5.6 for the dual wavelets)

1
8


0 1 0

0 0 0

0 −1 0

 ,
1
8


0 0 1

0 0 0

−1 0 0

 ,
1
8


0 0 0

1 0 −1

0 0 0

 ,

1
16


0 −3 1

1 2 1

1 −3 0

 ,
1
16


0 1 −3

1 2 1

−3 1 0

 ,
1
16


0 1 1

−3 2 −3

1 1 0

 .

Example 5.4.2. The butterfly subdivision scheme, widely used in computer graphics,

has first been proposed in [47]. If this subdivision scheme is applied on a regular grid
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Fig. 5.5 The primary wavelets of Example 5.4.1.
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Fig. 5.6 The dual wavelets of Example 5.4.1.



5.4 Multivariate dual wavelet frame construction 107

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

x
y

z

ψ2

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

x
y

z

ψ6

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
y

z

ψ17

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
y

z

ψ20

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x
y

z

ψ̃2

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x
y

z

ψ̃6

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−0.1

−0.05

0

0.05

0.1

x
y

z

ψ̃17

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x
y

z

ψ̃20

Fig. 5.7 Some primary and dual wavelets of Example 5.4.2.

with both coordinates indexed by integers, it corresponds to the refinement mask

a0 = 1
64



0 0 0 0 −1 −1 0

0 0 −1 0 2 0 −1

0 −1 2 8 8 2 −1

0 0 8 16 8 0 0

−1 2 8 8 2 −1 0

−1 0 2 0 −1 0 0

0 −1 −1 0 0 0 0



.

This mask satisfies condition (5.11) and hence can be used in Construction 5.2.1. In

total we construct 24 primary and 24 dual wavelets (see Appendix B.1). The graphs of

some of the wavelets are plotted in Figure 5.7. Since the support of the refinement mask

a0 is large, the primary wavelets can cover a wide range of directions.

Example 5.4.3. Several interpolatory refinable functions have been constructed in [92]

by using box splines. The mask of the interpolatory refinable function constructed using
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Fig. 5.8 Some primary and dual wavelets of Example 5.4.3.

the box spline of the three directions {(1,0)⊤,(0,1)⊤,(1,1)⊤} with multiplicity 2 is

a0 = 1
256



0 0 0 −1 −3 −3 −1

0 0 −3 0 6 0 −3

0 −3 6 33 33 6 −3

−1 0 33 64 33 0 −1

−3 6 33 33 6 −3 0

−3 0 6 0 −3 0 0

−1 −3 −3 −1 0 0 0



,

which satisfies condition (5.11) and hence can be used in Construction 5.2.1. In total

we construct 30 primary wavelets and 30 dual wavelets (see Appendix B.2). The support

of the masks derived in this example is larger and hence more directions can be covered

by the wavelets. See Figure 5.8 for the graphs of some of the wavelets.
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5.5 Filter banks revisited

In the wavelet literature one usually constructs tight or dual wavelet frames for given

MRAs, i.e. the refinable function and its mask are already prescribed. We have for

example done so in Section 5.2, using the connection between tight/dual MRA wavelet

frames and filter banks as described in Section 5.1. Here we consider a different perspec-

tive and ask whether for a given filter bank, regardless of how it is constructed, there is

an underylying MRA wavelet frame system in L2(Rd) whose masks are the given filter

bank. In general this is a hard question unless one likes to go to Sobolev spaces, see e.g.

[66]. However, when the filter bank satisfies the UEP condition, the answer is positive.

Let {al}rl=0 be a filter bank of finitely supported filters. Suppose this filter bank

satisfies the UEP condition for subsampling rate 2, i.e.

2d
r∑
l=0

∑
k∈Zd

al(n+2k+ ℓ)al(2k+ ℓ) = δn,0 for any n,ℓ ∈ Zd,

or equivalently in Fourier domain

r∑
l=0

âl(ω)âl(ω+ν) = δν,0 (5.16)

for all ν ∈ {0,π}d and a.e. ω ∈ Td. By (5.16), we have r ≥ 2d and HX(ω) in (5.8) can be

extended to a unitary matrix for a.e. ω ∈ Td. In particular, the norm of any column of

this matrix is at most one, i.e.

∑
ν∈{0,π}d

|âl(ω+ν)|2 ≤ 1 (5.17)

for a.e. ω ∈ Td and all l = 0, . . . , r.

Assume one of the filters in the filter bank, say a0, is a low-pass filter, i.e. â0(0) = 1.

Then (5.16) automatically implies âl(0) = 0 for l = 1, . . . , r and (5.17) implies â0(ν) = 0
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for ν ∈ {0,π}d\{0}. As long as we show that the low-pass filter a0 defines a refinable

function φ∈L2(Rd), then {ψl}rl=1 defined in (5.5) by the filters {al}rl=1 and this refinable

function φ generate a tight MRA-wavelet frame system in L2(Rd). Define

φ̂(ω) :=
∞∏
j=1

â0(2−jω), ω ∈ Rd.

It is clear that φ is a compactly supported refinable distribution. Using (5.17), one can

prove that φ is a compactly supported refinable function in L2(Rd) with refinement mask

a0. For completeness, we outline the proof which is contained in [17] for the univariate

case.

Consider the cascade algorithm defined by

f̂n(ω) = â0(2−1ω)f̂n−1(2−1ω) =
n∏
j=1

â0(2−jω)f̂0(2−nω), ω ∈ Rd,

with f̂0 = χTd . The pointwise limit φ̂ of {f̂n}n∈N clearly satisfies the refinement equation

φ̂(2·) = â0φ̂. That φ∈L2(Rd) is guaranteed by the UEP, more precisely by (5.17), which

implies that {f̂n}n∈N is a bounded sequence in L2(Rd). Indeed,

∥f̂n∥2 =
∫

2n(0,π)d

n−1∏
j=1

|â0(2−jω)|2
∑

ν∈{0,π}d

|â0(2−nω+ν)|2 dω ≤ ∥f̂n−1∥2

for all n≥ 1, thus ∥f̂n∥ ≤ ∥f̂0∥ = (2π)d for all n≥ 1 by induction. Since {f̂n}n∈N converges

pointwise to φ̂, Fatou’s lemma implies ∥φ̂∥ ≤ liminfn→∞ ∥f̂n∥<∞. Thus φ ∈ L2(Rd).

In summary, we have the following result for this section.

Theorem 5.5.1. Suppose a given FIR filter bank satisfies the UEP condition (5.6), or

equivalently (5.10). If one of the filters is a low pass filter, then there exists an MRA

tight wavelet frame in L2(Rd) whose underlying MRA is derived from this low pass filter
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and the wavelet masks are the rest of the filters in the filter bank.





Appendix A

Tight wavelet frame masks



A.1 Wavelet masks of Example 5.3.2

√
12

96



0 0 1 0 −2

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

−2 0 1 0 0


, 1

16



0 0 −1 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


,

√
6

48



0 0 0 1 0

0 −2 0 0 1

0 0 0 0 0

1 0 0 −2 0

0 1 0 0 0


,

√
2

16



0 0 0 −1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 −1 0 0 0


,

√
2

16



0 0 0 0 0

0 0 1 −2 0

0 1 0 1 0

0 −2 1 0 0

0 0 0 0 0


,

√
6

16



0 0 0 0 0

0 0 −1 0 0

0 1 0 1 0

0 0 −1 0 0

0 0 0 0 0


, 1

24



0 0 1 −1 1

0 −1 0 0 −1

1 0 0 0 1

−1 0 0 −1 0

1 −1 1 0 0


,

√
3

72



0 0 1 2 1

0 2 −3 −3 2

1 −3 0 −3 1

2 −3 −3 2 0

1 2 1 0 0


,

√
15

576



0 0 1 2 1

0 2 6 6 2

1 6 −54 6 1

2 6 6 2 0

1 2 1 0 0


,

√
12

96



0 0 1 0 2

0 0 0 0 0

1 0 0 0 −1

0 0 0 0 0

−2 0 −1 0 0


, 1

16



0 0 −1 0 0

0 0 0 0 0

1 0 0 0 −1

0 0 0 0 0

0 0 1 0 0


,

√
6

48



0 0 0 1 0

0 −2 0 0 −1

0 0 0 0 0

1 0 0 2 0

0 −1 0 0 0


,

√
2

16



0 0 0 −1 0

0 0 0 0 −1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0


,

√
2

16



0 0 0 0 0

0 0 1 2 0

0 1 0 −1 0

0 −2 −1 0 0

0 0 0 0 0


,

√
6

16



0 0 0 0 0

0 0 −1 0 0

0 1 0 −1 0

0 0 1 0 0

0 0 0 0 0


,

√
2

48



0 0 1
√

2 −1

0
√

2
√

6 −
√

6 −
√

2

1
√

6 0 −
√

6 −1
√

2
√

6 −
√

6 −
√

2 0

1 −
√

2 −1 0 0


,

√
12

96



0 0 1 −
√

2 −1

0 −
√

2 0 0
√

2

1 0 0 0 −1

−
√

2 0 0
√

2 0

1
√

2 −1 0 0


,

1
48



0 0 1
√

2 −1

0
√

2 −2
√

6 2
√

6 −
√

2

1 −2
√

6 0 2
√

6 −1
√

2 −2
√

6 2
√

6 −
√

2 0

1 −
√

2 −1 0 0


.



A.2 Wavelet masks of Example 5.3.3

√
2

16



1 −1

−1 0 0 1

1 0 0 −1

−1 1


, 1

16



1 −1

1 −2 2 −1

−1 2 −2 1

−1 1


, 1

16



−1 −1

−1 2 2 −1

−1 2 2 −1

−1 −1


, 1

16



1 −1

1 2 −2 −1

−1 −2 2 1

−1 1


,

√
2

16



−1 −1

1 0 0 1

1 0 0 1

−1 −1


, 1

16



1 1

1 2 2 1

−1 −2 −2 −1

−1 −1


, 1

16



1 −1

1 −2 2 −1

1 −2 2 −1

1 −1


, 1

16



1 1

1 −2 −2 1

−1 2 2 −1

−1 −1


,

1
16



1 −1

1 2 −2 −1

1 2 −2 −1

1 −1


,

√
2

16



1 −1

−1 0 0 1

−1 0 0 1

1 −1


,

√
2

16



−1 −1

1 0 0 1

−1 0 0 −1

1 1


.

A.3 Wavelet masks of Example 5.3.4

1
8


0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

 , 1
8


0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0

 , 1
8


0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

,

1
8


0 0 0 0 0 0 0 0 0

0 0 0 1 −2 1 0 0 0

0 0 0 0 0 0 0 0 0

 ,
√

2
16


0 0 0 0 0 0 0 1 1

−1 −1 0 0 0 0 0 −1 −1

1 1 0 0 0 0 0 0 0

 ,

√
2

16


0 0 0 0 1 1 0 0 0

0 0 0 −1 −2 −1 0 0 0

0 0 0 1 1 0 0 0 0

 , 1
16


0 0 0 0 −1 −1 0 1 1

1 1 0 −1 −2 −1 0 1 1

1 1 0 −1 −1 0 0 0 0

 ,

√
14

56


0 0 0 0 1 1 0 1 1

−1 −1 0 −1 0 1 0 1 1

−1 −1 0 −1 −1 0 0 0 0

 , 1
8


0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0


1
8


0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0

 , 1
8


0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0

 ,

√
2

16


0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 −1 −1

−1 −1 0 0 0 0 0 0 0

,
√

3
24


0 0 0 0 1 1 0 0 0

0 0 0 2 0 −2 0 0 0

0 0 0 −1 −1 0 0 0 0

 ,

√
42

336


0 0 0 0 −4 −4 0 3 3

−3 −3 0 4 0 −4 0 3 3

−3 −3 0 4 4 0 0 0 0

 .
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Dual wavelet frame masks
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