
ON APPLYING NETWORK CODING TO

WIRELESS AD HOC NETWORKS: A STUDY OF

ROBUSTNESS, EFFICIENCY AND

CROSS-LAYER SYNERGY

WANG JIN

(B.Eng., Harbin Institute of Technology, China)

Supervised by

Professor WONG Wai-Choong, Lawrence

Dr. CHAI Teck Yoong

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48809307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that the thesis is my original work and it has been written

by me in its entirety.

I have duly acknowledged all the sources of information which have been used

in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

WANG Jin

February 18, 2015

i

Acknowledgments

Having completed my PhD thesis, I would like to take this opportunity to thank

the following people: Professor Wai-Choong Wong, Lawrence and Dr. Teck

Yoong Chai, for their continuous guidance and support during my course of the

PhD study. In the past five years, they had trained me not only on how to con-

duct research, but much more than that, including technical writing, communi-

cation, and social interaction skills. I will carry over the spirit of self-motivation

and independence, which they taught me during my study. Without their help,

I would not be able to finish my PhD study and this thesis would have been

getting nowhere.

Pursuing a PhD degree is not merely an academic pursue. There are also

many administrative matters that need to be handled. Without the assistance

from Miss Jie Guo, it is impossible for me to handle all the paper works on time.

As such, I wish to express my gratitude to her!

The China Scholarship Council offered me a scholarship and the School of

Engineering, National University of Singapore waived the tuition fee for me and

offered me a good place to study. This opportunity changed my life so much

that I will always be thankful during the rest of my life.

Last but not the least; I would like to thank my parents, for their support

and encouragement throughout my years of studies. They have guided me both

in study and in life, I hope what I have done and what I will be doing make

them proud of me. At the same time, my fiancé Mr. Cenzhe Zhu is one of the

ii

most important persons, if not the most important one, in helping me complete

my PhD study. Although he is not specialised in the area of my research, his

perspectives always inspires me. In addition, the happiness and wisdom he

brought into my life were very important in overcoming the difficulties I faced.

The accomplishment of the dissertation undoubtedly reflects his contributions.

February 18, 2015

iii

iv

Table of Contents

Summary x

List of Tables xi

List of Figures xi

List of Symbols xv

List of Abbreviations xviii

1 Introduction 1

1.1 Background . 1

1.2 Research Challenges . 4

1.3 Thesis Contribution . 8

1.4 Thesis Organization . 11

2 Related Works 13

2.1 Overview of Network Coding . 13

2.1.1 Robustness in wireless ad hoc networks 18

2.2 Network Coding for Scheduling Problem 19

v

2.2.1 Overheads in Network Coding 19

2.2.2 MAC-Layer and Physical-Layer Scheduling 22

2.3 Content Distribution in Wireless Ad Hoc Networks with Network

Coding . 24

2.3.1 Overview of Cross-layer Designs 24

2.3.2 Content distribution using BitTorrent-like protocols . . . 27

3 Improving the Robustness of Coding-aware Routing Protocols

to Flow Arrivals 29

3.1 Introduction . 29

3.2 Protocol Overview . 35

3.2.1 Digest of the DCAR protocol 35

3.2.2 Two tables to store flow information 40

3.2.3 Self recommendations . 41

3.2.4 Handling Self Recommendations 42

3.2.5 Decision Making . 42

3.2.6 Controlling the Frequency of Self Recommendations . . . 43

3.3 Route-Change Procedure . 44

3.3.1 Procedure Timeline . 44

3.3.2 The Unbiased CRM Metric 46

3.4 Topology Analysis . 48

3.4.1 Theoretical Induction of Indicators 49

3.4.2 Simulation Results . 58

3.5 Evaluation . 62

vi

3.5.1 Simulation 1. Simple Topology 64

3.5.2 Simulation 2. “Wheel” Topology 66

3.5.3 Simulation 3. Grid Topology 69

3.6 Chapter Summary . 72

4 Improving Coding Efficiency and Fairness by Network-layer Packet

Scheduling Algorithm 75

4.1 Introduction . 75

4.2 The Static Form of the Problem 79

4.2.1 Weighted Clique Cover Problem 79

4.2.2 Solution to WCCP . 84

4.2.3 Scalability and Error Analysis 92

4.3 The Dynamic Form of the Problem 98

4.3.1 Heuristic Scheduling . 100

4.3.2 Performance with Poisson Arrivals 105

4.4 Evaluation . 109

4.4.1 Simulation 1 . 112

4.4.2 Simulation 2 . 116

4.5 Chapter Summary . 118

5 Content Distribution in Wireless Ad Hoc Networks with Net-

work Coding 119

5.1 Introduction . 119

5.2 Routing Metric . 122

vii

5.3 Application-layer Strategies . 126

5.4 Implementation . 130

5.4.1 Initial Setup . 130

5.4.2 Cross-layer Dynamics . 133

5.4.3 Simulation Settings . 134

5.4.4 Results . 135

5.5 Chapter Summary . 139

6 Conclusion 141

6.1 Thesis Contribution . 141

6.2 Future Work . 145

Bibliography 147

List of Publications 163

viii

Summary

Due to its fast deployment, error tolerance, and sophisticated protocol stack, the

technique of wireless ad hoc networks is utilized in more and more applications.

Network coding, typically as a method to improve throughput, is quite suitable

for wireless networks. The broadcast nature of wireless networks is analogous to

multi-casting for which network coding was originally devised.

In this thesis, we analyse several issues on applying network coding tech-

niques to wireless ad hoc networks. Several aspects, including the robustness,

fairness, the coding efficiency and the possible synergy between network layer

and application layer are studied.

Specifically, we first propose a coding-aware routing protocol that is able

to detect coding opportunities even if the order of arrival of packet flows is

unfavourable to such detection. This robustness is essential because wireless ad

hoc networks are prone to node failures, node joining, and topology changes.

These can significantly impact performance if the routing protocol is not robust

enough.

Then we dig deeper into the inner structure of the coding scheme and prove

that coding-aware packet scheduling is pivotal in shaping the distribution of

throughput among flows. Compared to a trivial round-robin scheduling, our

scheduling method decreases the span and variance of per-flow throughputs. In

addition, a well planned scheduling can improve the coding efficiency. A good

scheduling algorithm is not one that only schedules packets with higher coding

ix

benefits. Instead, it should plan ahead and avoid cases when some packets that

could have been coded are left behind with no coding counterpart. Thus, a

practical coding-aware packet scheduling algorithm is devised, with the goal to

improve fairness and coding efficiency.

Finally, the above-mentioned improvement in the network layer is incorpo-

rated into a Peer-to-Peer (P2P) content distribution protocol, capitalizing on

the synergy between network layer and application layer. The availability of

cross-layer information can greatly help both in network layer and in application

layer. By taking the offered load information from the application layer as a

substitute for the queue length, the routing protocol can now measure the traffic

load of a flow more accurately. On the other hand, the routing metric obtained

from the network layer can help the application layer to determine which neigh-

bour peers to connect to. The peer with a better route would be favoured, thus

enlarging the coding benefits. In addition, the network layer can back-propagate

rate adjustment packets to actively adjust offered load according to the coding

graph and the solution to the Weighted Clique Cover Problem (WCCP), where

the information is only available in network layer but not in application layer.

Results show that such cross-layer solution can greatly improve performance.

x

List of Tables

3.1 Definition of a Few Terminologies 49

4.1 Default Parameters for Performance Evaluation of the Static-

Form Problem . 95

4.2 Simulation 1 Parameter Settings 113

5.1 Simulation Parameters . 135

xi

List of Figures

1.1 A Typical Wireless Ad Hoc Network 2

3.1 A Simple Test Scenario for SCAR 32

3.2 Route-Change Procedure Timeline (SR: Self Recommendation.

MRQ: Modified RREQ Packet. MRP: Modified RREP Packet.) . 45

3.3 Modified RREQ/RREP Packet Formats 47

3.4 Possible Topologies for 2 Coding-possible Route Pairs 53

3.5 Possible Topologies for 3 Coding-possible Route Triples 55

3.6 An Artificially Designed Topology to Measure the Effectiveness of

CN Indicators . 59

3.7 Scatter Plot of Throughput Gain with Different C2 Values 59

3.8 Average Throughput Gain versus Pre-adjusted C2 Values 60

3.9 Average Throughput Gain versus Adjusted C2 Values 60

3.10 Scatter Plot of Throughput Gain with Different C3 Values 62

3.11 Average Throughput Gain versus Pre-adjusted C3 Values 63

3.12 Average Throughput Gain versus Adjusted C3 Values 63

3.13 Simulation Results for the Simple Test Topology 65

xii

3.14 Simulation Results for “Wheel” Topology 67

3.15 Simulation Results for Grid Topology 71

4.1 There Exists Polynomial Solutions to WCCP for Claw-free Perfect

Graphs . 83

4.2 One Example of Coding Graph 86

4.3 The Overall Block Diagram of the Algorithm for WCCP 88

4.4 Processing Time Sensitivity to N 96

4.5 Processing Time Sensitivity to p 96

4.6 Processing Time Sensitivity to mean(w) 96

4.7 The Error Rate and Average Error with Different Q Values . . . 98

4.8 Average Throughput Performance with Poisson Arrivals 107

4.9 Minimum Throughput Performance with Poisson Arrivals 108

4.10 A Topology where Source and Destination Nodes are on the Same

Circle . 113

4.11 The Generated Topology for Simulation 1 113

4.12 Coding Graph at Node O in Simulation 1 114

4.13 Per-flow Throughput in Simulation 1 115

4.14 Random Topology . 117

4.15 Per-flow Throughput of Simulation 2 117

5.1 The flow chart depicting the generation of INC/DEC packets . . 130

5.2 Special RREQ/RREP Packet Formats 132

5.3 Cumulative Percentage Finished over Time 136

xiii

5.4 Number of Coded Packets Sent 137

5.5 Upload/Download Amounts for Selected Pairs 139

xiv

List of Symbols

C2adj The adjusted C2 indicator.

C2, C3, . . . , CN The CN series of topology indicators.

E An edge set.

⌊·⌋ The floor of a floating-point number, i.e., the maximum integer that is smaller

than the given number.

fn A new coming flow in a network.

fp A potential flow in a network.

G A graph.

(

k
2

)

The number of combinations choosing 2 from k items.

Km,n A bipartite where m and n are the cardinalities of its two disjoint vertex

set.

G(n, p) A random graph generator that generates a graph with n vertices and

a probability parameter p.

xv

MQd The dynamic version of MQ (Modified Queue Length).

MQs The static version of MQ (Modified Queue Length).

N(v) The set of neighbouring vertices of a vertex v.

Φ The empty set.

Pl The packet loss rate of link l.

Q The quantization level of the approximation algorithm.

rin−use Previously-in-use route.

ri ∼ rj A flow that takes route ri can be coded with another flow that takes

route rj.

R(S −D) The set of possible routes from node S to node D.

rsr The recommended route from source to destination.

Σ∗,Γ The optimal allocation method.

U(i, j) The amount of packets uploaded by node i to node j.

V A vertex set.

|V| The cardinality, or the number of vertices, of a vertex set.

Vqi , Qi The i-th clique of graphG, represented by its vertex set. In some context,

it is simply denoted by Qi.

xvi

w(·) A function that maps a vertex to an integer weight.

wqi The uniform weight of the i-th clique of graph G.

Z+ The set of positive integers.

xvii

List of Abbreviations

ACK Acknowledgement packet.

AODV Ad-Hoc On-demand Distance Vector.

ARQ Automatic Repeat-reQuest.

BT BitTorrent.

CCP Clique Cover Problem.

CRM Coding-aware Routing Metric.

DCAR Distributed Coding-aware Routing.

DMDP Deterministic Markov Decision Process.

DPSA Dynamic Packet Scheduling Algorithm.

DSR Dynamic Source Routing.

ECT Expected Coded Transmission Time.

EDGE Enhanced Data rates for GSM Evolution.

xviii

ETX Expected Transmission Count.

FIFO First-In-First-Out.

GPRS General Packet Ratio Services.

GSM Global System for Mobile Communication.

HEU Heuristic Scheduling Scheme.

LTE Long Term Evolution.

MAC Media Access Control.

MDP Markov Decision Process.

MIMO Multiple-Input-Multiple-Output.

MIQ Modified Interference Queue Length.

MIT Massachusetts Institute of Technology.

MQ Modified Queue-length.

MRP Modified RREP Packet.

MRQ Modified RREQ Packet.

NA Non-Approximation Algorithm.

OLSR Optimal Link State Routing.

OSI Open System Interconnect.

xix

P2P Peer-to-Peer.

PHY Physical layer.

pps Packet Per Second.

QoS Quality of Service.

RC Route-Change.

RNC Random Network Coding.

RR Round-Robin.

RREP Route REsPonse Packet.

RREQ Route REQuest Packet.

SCAR Self recommendation Coding-Aware Routing Protocol.

SR Self Recommendation.

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol / Internet Protocol suite.

UMTS Universal Mobile Telecommunications System.

VANET Vehicular Ad Hoc Network.

WCCP Weighted Clique Cover Problem.

WCG Weighted Coding Graph.

xx

Wi-Fi Wireless Fidelity.

XLiNC Cross-layer Solution with Network Coding.

xxi

xxii

Chapter 1

Introduction

1.1 Background

Recent years have seen the proliferation of wireless solutions for communica-

tion purposes. Industry-level mobile networks have advanced from analogue

signals to digital signals, from the 2G Global System for Mobile Communication

(GSM) technology, through 2.5G General Packet Ratio Services (GPRS)/En-

hanced Data rates for GSM Evolution (EDGE), 3G Universal Mobile Telecom-

munications System (UMTS) to the now rising 4G Long Term Evolution (LTE)

networks. In fact, a survey in 2013 [1] has already pointed out that the pace

of growth of wireless subscriptions has slowed to the extent of reaching satura-

tion. New growth areas include multi-device plans and greater customization of

service plans. Concurrently, home Wireless Fidelity (Wi-Fi) coverage is growing

steadily, tapping the power of 802.11 series of protocols. Its bandwidth, reliabil-

ity, and manageability have persuaded more and more users to shift from wired

1

50

100

150

200

250

300

100 200 300 400 500 600 700 800 900

Mobile Node

Transmission

Range

Connection

Figure 1.1: A Typical Wireless Ad Hoc Network

Internet connections to wireless ones.

Yet these advances are based on infrastructural topologies where all wireless

terminals connect to a single gateway. A wireless ad hoc network is a collection

of wireless mobile nodes that dynamically form a temporary network without an

infrastructure. Fig 1.1 demonstrates a typical wireless ad hoc network. There are

nine nodes in the network. Two nodes, which cannot reach each other directly,

form a path consisting of several forwarding nodes. The forwarding nodes that

are in between then work cooperatively to establish a multi-hop route from the

source node to the destination. Increasing deployment of ad hoc networks for dif-

ferent applications is seen due to its inherent advantageous characteristics: such

as, self-configuration, mobility, absence of single point of failure, autonomous

behaviour, infrastructure-less operation, ease of deployment, and low cost.

The concept of network coding has begun to rapidly alter the way we think

about and implement communication networks [2]. It can be used to improve

performance and increase capacity in both wired and wireless communication

2

networks. The origin of this concept is from Ahlswede [3] in 2000, in which

network coding is proposed as a theoretical formulation as a max-flow min-cut

problem. With network coding enabled, intermediate nodes in networks can

encode several received packets into a single coded packet before forwarding.

Sounded like a small improvement, network coding nevertheless has a great im-

pact on the research field of information theory. The early developments of

network coding were based on theoretical formulation of the information flows

corresponding to the packet transmissions. The research objective is generally

to reach the upper bound of throughput as promised in the information flow

formulation.

The first breakthrough on network coding is the discovery of random linear

network coding by Li [4]. In this paper, an explicit construction of a multicast

coding scheme that achieves the max-flow bound on the information transmission

rate is given. With this coding scheme, each intermediate node sends through its

outgoing channels a linear combination of the packets received on its incoming

interface. The random linear combination is proved to perform well enough

for decoding. This type of network coding is usually referred to as intra-flow

network coding because all coded packets are from a single flow, either unicast

or multicast.

The scope of network coding is later extended to inter-flow coding where

COPE [5] is the pioneering work. In this scheme, usually packets from dif-

ferent sources and to different destinations are coded together at intermediate

nodes. Inter-flow network coding is gaining ground rapidly as a result of the

3

profusion of its applications. A network with multiple unicast flows is usually

more commonly seen than a network with only one flow. COPE is a practical

protocol for inter-flow network coding where each node promiscuously listens to

all packet transmissions in its proximity. Intermediate nodes encode packets in

an opportunistic manner. Downstream nodes can decode the coded packet with

previously overheard packets.

The technique of inter-flow network coding is a good fit for applications in

wireless ad hoc networks, due to their common concepts of multi-hop transmis-

sions and promiscuous listening. Packet forwarding is required in network coding

because coding can only happen at intermediate nodes. It is required in wireless

ad hoc networks in order to deliver packets to far-away nodes. On the other

hand, the broadcast nature of wireless transmissions enables nodes in a network

to overhear other packets. Overheard information is mandatory in determining

whether packets can be coded and how can the coded packet be decoded.

In this thesis, our key topic is on how to strategically adapt network coding

techniques to the characteristics of wireless ad hoc networks. Many research

challenges are encountered and corresponding solutions are proposed.

1.2 Research Challenges

Binding network coding techniques to the existing protocol stack for wireless ad

hoc networks is not as easy as it may seem.

Network coding is usually applied in a sub-layer between Media Access Con-

trol (MAC) layer and network layer (as is done in COPE [5]). Network layer

4

protocols encapsulate application-related data into packets, determine the route

to be taken, and then send them to output queues. Before contending for media

access as the queue packets usually do, they are screened for coding opportuni-

ties in the sub-layer. If coding opportunities were found, multiple packets can

be coded and the combined/coded packets are inserted into the output queue to

replace the previously uncoded packets (native packets). After that, the legacy

network transmission process resumes and MAC layer protocols take their usual

course of action.

This approach is straight-forward and easy to implement. However, it is

subject to many problems:

1. The way a node processes its packet backlog affects the network per-

formance significantly. It is non-trivial to find an optimal coding-aware

scheduling method to maximize throughput.

2. Network coding is applied only for two-hop flows. For coding structures

that involve more than two hops, the disorganized opportunistic coding

scheme is unable to discover additional coding opportunities.

3. There lacks a usable congestion control mechanism. In the typical 802.11

plus Transmission Control Protocol (TCP) protocol stack, congestion con-

trol is enforced by TCP’s sliding window mechanism. However, this mech-

anism is no longer effective because network coding usually breaks the

sequential packet order, which is nevertheless pivotal for TCP’s congestion

control.

5

To solve these problems, we aim to:

1. Find a packet scheduling algorithm that jointly considers per-flow fairness,

overall throughput, and the configurability that balances fairness and effi-

ciency.

2. Devise a coding-aware routing protocol that enables multi-hop inter-flow

network coding. With a source-routing-based coding-aware routing proto-

col, the route with highest coding benefits can be chosen, and the two-hop

restriction imposed on the opportunistic coding scheme can be overcome.

3. Design a cross-layer solution that jointly considers network conditions in

the network layer and in the application layer. With the cross-layer ap-

proach, the application layer can be notified of the underlying coding op-

portunities as well as traffic congestion. Conversely, the network layer

can be informed about future offered load, leading to better routing and

scheduling decisions.

Though network coding has its strength in boosting throughput by reducing

the total number of transmissions, we should evaluate its appropriateness when

applied to wireless networks with a more comprehensive performance metric.

The following questions should be properly addressed before we can confidently

employ a coding-aware network protocol stack in wireless networks:

1. Is the protocol backward compatible? It is well understood that coding

benefits are highly dependent on coding structures and traffic patterns.

6

Network coding is possible only when there are packets to encode, and

when the encoded packet can be decoded at recipient nodes. In cases

where the coding structure or traffic pattern does not encourage network

coding, can we still properly handle the packets without severely degrading

network performance?

2. When coding is possible, can the protocol promptly detect such possibili-

ties and accurately evaluate the coding benefits against the coding costs?

Wireless ad hoc networks are usually self-organizing and failure-prone. A

coding-aware protocol should be able to detect coding opportunities re-

gardless of the order of arrivals of the traffic flows and the topology changes

in the network.

3. Despite the throughput gain, how is the protocol performing with respect

to other performance metrics? Some Quality of Service (QoS) metrics

should be evaluated, including but not limited to packet delay, fairness, etc.

This is an area that is often overlooked. Nevertheless, we believe factors

other than throughput gain are just as important in practical networks.

4. Is a traffic pattern suitable for network coding? If the traffic pattern inher-

ently prohibits network coding, the improvement brought about by network

coding would be minimal. On the other hand, if the traffic pattern encour-

ages network coding, or if the traffic pattern can be adapted for coding

schemes, the overall coding benefits can be magnified.

There are even more challenges that await solutions, like the Acknowledge-

7

ment packet (ACK) problem for broadcast packets, the hidden terminal problem,

the problem of channel fading that results in decoding failure, etc. All of these

challenges put pressure on designing a practical protocol that implements net-

work coding in wireless networks. Yet we are gaining steady improvements as

more and more researchers contribute to this course.

1.3 Thesis Contribution

The first problem solved in this thesis is the discovery of coding opportunities.

It is observed that current solutions usually assume a certain order of flow ar-

rivals. Only when certain flows start earlier than the others can the protocol

detect coding opportunities. If the order is reversed, it is very likely those coding

opportunities will be overlooked. If routes are selected based merely on informa-

tion collected from a single flow, the routing protocol essentially achieves only a

local optimum. If we are able to alter the routing decisions for other flows, we

might end up getting a higher overall throughput.

Our work provides us with a means for intermediate nodes to sense the arrival

of a new flow and to participate in the route-maintenance phase. In the route-

maintenance phase, existing routes are reviewed with the aim of finding better

routes. In Self recommendation Coding-Aware Routing Protocol (SCAR) we

propose a series of procedures to conduct such maintenance. In addition to the

procedures to conduct route maintenance, the routing metric is further revised

to remove a bias. This metric essentially removes the bias that would have been

incorporated in the routing metric favouring the currently-in-use route. With

8

the introduction of the route-maintenance dynamics, our coding-aware routing

protocol is much more robust against different order of flow arrival.

The second problem we tackle is the problem of coding efficiency and fair-

ness among flows. Existing protocols that utilize the power of network coding

usually take the most straightforward means to do network-packet scheduling,

namely round-robin scheduling. Whenever the MAC layer of one node succeeds

in contending the media, the network layer sequentially polls each flow for pack-

ets to send. Before sending out the packet, the node searches the packet queue,

looking for counterpart packets to be coded with. However, it is observed that

such scheduling is far from optimum. On one hand, simple linear or ad hoc

searching for one packet’s coding counterpart is inefficient. There can be a more

organized way of choosing a coding counterpart. On the other hand, the respec-

tive throughputs of the individual flows are unevenly distributed and severely

biased as observed in simulations. Flows with more coding counterparts will be

transmitted more frequently, while those “less popular” flows are starved.

In this thesis, our target is to maximize the minimum per-flow throughput

first. When this target is fulfilled, there may be multiple choices. The solution

that can maximize the average per-flow throughput is then selected. The rea-

son we take this two-step maximization target is that we can demonstrate the

importance of packet scheduling along the way. Simply maximizing the overall

throughput would be undesirable as it suffers from starvation. In the meantime,

maximizing overall throughput is comparably trivial in the context of packet

scheduling, and one can easily adapt our derivation to achieve that.

9

The derivation of our solution is done in a step-by-step manner. First, by for-

mulating the scheduling problem in a static setting, i.e., where flows are already

predetermined, we transform the packet scheduling problem to a mathematical

optimization problem. Though this problem is proved to be NP-hard, we propose

a search-based algorithm that turns out to perform quite well. Our algorithm

adopts a series of pruning rules to remove unnecessary search branches to reduce

computational complexity. When no pruning rule is applicable, an approxima-

tion method is used to keep the complexity under control. The solution to this

static form of scheduling problem is then extended to dynamic cases where we

assume Poisson arrivals. A heuristic algorithm is adopted to adapt the static

solution to the new settings. After this, we further relax our assumption of the

Poisson arrival, and test an adjusted version of the heuristic algorithm in wireless

network simulations. Results show that our method can significantly reduce the

variance of throughput distribution among flows. At the same time, the overall

throughput is mostly retained. In fact, with the more organized scheduling al-

gorithm that we proposed, we demonstrate a network can perform better before

reaching saturation.

Moving beyond applying network coding in the network layer alone, we

demonstrate its use in wireless P2P content distribution. A cross-layer approach

is taken, in the hope of exploiting a synergistic relationship between the network

layer and the application layer. In fact, the network layer can make better rout-

ing decisions if it is given the offered load information from the application layer.

It can organize packet scheduling in a more informed way as well. Likewise, the

10

application layer can choose one node’s peer neighbours more wisely and control

the offered load to avoid congestion based on the knowledge of the network state.

The contribution of this thesis is mainly three-fold.

Firstly, we overcome coding-aware routing protocols’ susceptibility to traffic

patterns. Our routing protocol is equipped with the tool to discover potential

coding opportunities even after routes have been established. Secondly, we offer

a new powerful tool, coding-aware network-layer packet scheduling, for better

control over per-flow performances. Lastly, a full-fledged coding-aware APP-

cum-NETWORK layer protocol is devised, creating a synergy that can benefit

the overall performance.

1.4 Thesis Organization

In Chapter 2, we give a thorough review of literatures in the domain of wireless

ad hoc networks, network coding, and P2P content distribution systems. The

problem of coding-aware routing protocols’ susceptibility to the flow arrival dy-

namics is addressed in Chapter 3. We then further analyse the problem of packet

scheduling in Chapter 4. A new cross-layer solution is proposed in Chapter 5

where all our efforts culminate at a full-fledge protocol set. Finally we conclude

and envision possible future directions in Chapter 6.

11

12

Chapter 2

Related Works

2.1 Overview of Network Coding

Network coding is a research area that may have interesting applications in prac-

tical networks. It can improve throughput when two wireless nodes communicate

via a common intermediate relay node. Works on network coding started with

a pioneering paper by Ahlswede et al. [3], who showed that with network cod-

ing, as symbol size approaches infinity, a source can multicast information at a

theoretically maximum rate. This rate can be calculated by modelling the net-

work as a max-flow min-cut problem in graph theory. The the max-flow min-cut

optimization theorem states that in a flow network, the maximum amount of

flow from the source to the sink is equal to the minimum capacity that, when

removed in a specific way from the network results in no flow from the source to

the sink. Network coding can be seen as a generalized routing scheme in which

the intermediate nodes are allowed to mix data from multiple incoming links be-

13

fore sending the mixed data onto the outgoing links. This is an obvious contrast

to the popular store-and-forward routing scheme implemented in most current

networks where the intermediate nodes just simply forward the received data.

This new transmission paradigm offers several benefits, including improvements

in throughput, network reliability and robustness. It is significant that it has

been shown that multicast capacity can be achieved for many networks by using

network coding. Li et al. [4] and Chou et al. [6] mainly focus on addressing

the efficiency of network coding. Lun et al. [7] and Ramamoorthy et al. [8]

mainly study on the efficiency of network coding in multi-hop wireless networks.

In recent years, there have been works [5, 9, 10, 11, 12, 13, 14, 15] on multiple

unicast sessions by applying wireless network coding. These approaches are cat-

egorized as inter-flow network coding, which encodes multiple packets destined

to different next hops and broadcasts them together. In addition, in [16], an

algebraic framework for studying capacity in arbitrary networks and robust net-

working using linear codes are presented. The authors have provided necessary

and sufficient conditions for the feasibility of any set of connections over a given

network. Specifically, a connection between the solutions to network problems

and the underlying mathematical theory has been made.

Network coding techniques have also been widely used to improve through-

put, energy efficiency, and robustness of wireless networks. In particular, Nguyen

et al. [17] have proposed XOR-based network coding for wireless broadcast net-

works. They have shown that the source can reduce retransmissions by com-

bining lost packets together before broadcasting them to all receivers. Also, in

14

[18], it is shown that network throughput efficiency can be improved by up to

3.5 times over the traditional Automatic Repeat-reQuest (ARQ) approach with

joint network and channel coding. Additionally, the authors have shown that

network coding can be used to improve network throughput and media quality

by using the Markov Decision Process (MDP) [19] and Deterministic Markov

Decision Process (DMDP) [20]. Furthermore, the network throughput region

can be substantially enlarged in prioritized transmission scenarios consisting of

an oracle source and multiple wireless users [21]. In [7], it has been shown that

with a linear optimization function with a distributed solution, the problem of

minimum-energy multicast in lossless wireless networks with omnidirectional an-

tennas can be approximated. Furthermore, it has been shown in [22, 23, 24, 25,

26] that network coding can be utilized to reduce energy consumption in wireless

ad hoc networks. In particular, it is shown that by utilizing linear network cod-

ing for multi-hop wireless networks, minimum energy-per-bit can be achieved.

Specifically, a polynomial time algorithm exists, in contrast to the NP-hard

problem of constructing minimum-energy multicast tree when store-and-forward

routing method is used.

One-hop coding opportunities were first studied and exploited by the COPE

protocol in [5]. The simple one-hop nature and the empirical success of COPE

have since motivated numerous subsequent works. Some examples include: [27],

which finds the energy-efficient scheduling with opportunistic coding, [13], which

calculates the maximum number of overhearing opportunities under practical

wireless settings. [28, 29, 30, 31] develop techniques to select routes that create

15

more coding opportunities, [32, 33, 34, 35] jointly optimize network coding and

scheduling, [36] picks the modulation rate that takes into account both coding

gain and data rate, and [37] proposes a technique to XOR packets that use differ-

ent modulation schemes. Some recent efforts considered cross-layer approaches

in the context of coding-aware routing [29].

The benefits of network coding in multi-hop wireless networks have been

further studied. The main idea in this research theme is to exploit the natural

propagation of wireless signals; thus, in a single transmission, several neighbour-

ing nodes in the vicinity of a sender can receive the transmitted data. In [38], a

wireless data exchange example has been demonstrated in which the relay node

utilizes network coding to reduce the number of transmissions. Moreover, in [5],

a practical network coding system, namely, COPE, has been demonstrated in

a wireless ad hoc network to improve network throughput. It has been shown

that network coding can offer several-fold gain in throughput, by allowing the

nodes to snoop on the medium, learn the neighbours’ status, and detect coding

opportunities. Additionally, the transmission delay with network coding has also

been investigated [39].

Topologies are highly dynamic in wireless ad hoc networks. As a result, a

network protocol works very well if only it operates in a distributed manner. Pro-

tocol design is difficult for traditional store-and-forward routing in a distributed

manner. In [40], experimental results have shown that the network through-

put gain depends on the network traffic patterns. Hence, the network protocol

utilizing network coding needs to have a mechanism to control the information

16

flows to maximize the coding opportunities and to work efficiently. To realize

network coding in practice, we must always pay attention to the overhead of data

exchange and the complexity of scheduling protocols for coordinating communi-

cation between the intermediate nodes in a network. In 2006, a seminal work,

namely, Random Network Coding (RNC) is proposed in [41]. The main idea

of random network coding is to allow the intermediate nodes to select indepen-

dently and randomly linear mappings from their incoming links onto outgoing

links over some large finite field. It is shown that RNC can help achieve the

theoretical network capacity with high probability.

Chaporkar and Proutiere [32] also studied the issue of joint scheduling and

COPE-like coding, focusing on characterizing the capacity region of a simplified

version of COPE combined with scheduling according to back pressure. In [28],

Le et al. proposed an on-demand Distributed Coding-aware Routing (DCAR)

for selecting a high throughput path with more potential coding opportunities

by introducing a coding-aware routing metric called Coding-aware Routing Met-

ric (CRM), which jointly considers coding opportunities, congestion levels, and

related factors for comparing coding-possible and coding-impossible routes when

multiple routes are available. In addition, DCAR can detect coding opportuni-

ties on an entire path, thus eliminating the two-hop coding limitation in COPE.

However, both of these existing coding-aware routing protocols do not consider

the dynamic nature of data flows in a network.

17

2.1.1 Robustness in wireless ad hoc networks

In recent years, a number of routing protocols have been designed for wireless ad

hoc networks. Many routing issues from different aspects are addressed, for ex-

ample, energy efficiency, reliability, robustness, security and data fusion. In this

subsection, we will mainly discuss these aspects on existing routing protocols.

Some of the routing protocols designed for general multi-hop wireless networks

are also very useful for wireless ad hoc networks, so we will also include them in

the investigation.

2.1.1.1 Routing Structure

Generally, routing structure for wireless ad hoc networks can be classified as

flat, hierarchical or location-based. For the flat routing structure, all the nodes

have equal status in routing functionality. For example, the routing protocol

Directed Diffusion proposed in [42] is a flat routing protocol. For hierarchical-

based routing protocols, different nodes may have different roles, where some

of them are used for local routing while others are used for global routing. For

example, the routing protocols proposed in [43, 44, 45] are hierarchical-based.

In the case of location-based routing, geographical information is always needed

in forming the routing structure such as the one proposed in [46].

2.1.1.2 Path Selection

Path selection is an important issue for all routing protocols. There exist many

path selection criteria, for example, the hop count, transmission costs and signal

18

strength. Hop count is the most widely used path selection criterion both in

wired and wireless networks. Protocols such as Ad-Hoc On-demand Distance

Vector (AODV) [47], Dynamic Source Routing (DSR) [48], and Optimal Link

State Routing (OLSR) [49] all use it as the path selection criterion. This criterion

is also very popular in wireless ad hoc networks. However, De Couto et al. [50]

proposed that using hop count as the only criterion in path selection is not good

enough. This is mainly because wireless links are not just of perfect or bad

quality. Many links have intermediate qualities [51] instead. The link quality

mentioned here is referred to the capability of a link, how fast it can deliver a

packet to the next node in one transmission. For a random loss channel, this

quality can be valued by a number, such as 0.6, which means that when a packet

is transmitted over the link, the probability of successfully receiving this packet

is 0.6. The links with intermediate quality have significant influence on the

reliability of data transmission, especially when the number of retransmissions

allowed per hop is limited. Since link quality information has not been included

in the hop count, end-to-end routing reliability degrades significantly when poor

quality links are chosen for data forwarding.

2.2 Network Coding for Scheduling Problem

2.2.1 Overheads in Network Coding

In network coding, in order to carry out successful encoding and decoding of

packets, network nodes need to exchange information with each other. However,

19

this can lead to high network overhead which can significantly degrade network

performance. This is due to the fact that overhead introduces additional conges-

tion, delay, inefficient bandwidth utilization and energy consumption. Research

studies show that there are ways by which this overhead can be minimized.

A buffer model is proposed in [6], which employs traditional generation-

based network coding. It involves grouping packets according to generations

and linear combination of packets that belong to the same generation. The idea

is to minimize or limit packet overhead generated by the coefficient vector at

the expense of coding opportunities. This approach is susceptible to packet loss

which is partially mitigated by flushing the old generations and this leads to

some performance improvements. However, discarding packets at the receiver is

inefficient as the bandwidth consumed is wasted unproductively.

A better approach is proposed in [52], which employs Multi-Generation Mix-

ing and eliminates the need to increase buffer size while improving performance.

In this scheme, packets are grouped into generations and generations are grouped

into mixing sets. Packets belonging to a new generation can be linearly combined

with those from old generations. This ensures that the receivers which may not

have received full-rank matrix to perform decoding on the previously received

coded packets could use information in newly arriving coded packets to perform

decoding and thus guaranteeing reliability and reducing overhead. Even though

this approach is better than the former one, it may still experience performance

deterioration due to increased overhead when the network traffic is so high that

each generation contains quantities of packets to be sent out. Kim [53] presented

20

the concatenated random parity forwarding technique that enables network cod-

ing gain to increase with each additional hop in wireless networks. This scheme

employs partial network coding in which a relay node combines and sends out

parity bits (instead of entire codewords) received from neighbouring nodes. The

destination node then mixes information bits from direct path from the source

nodes, and parity bits from the relay nodes to improve reliability and lessen over-

head. Nonetheless, the main difficulty for this scheme is that additional control

information overhead may be required to coordinate relay encodings.

Jin et al. [54] studied an adaptive random network coding in WiMAX by

taking into consideration the requirements of a number of upstream nodes and

dynamically modifying block size in reaction to channel conditions. In their

scheme, a downstream node prematurely sends feedback to a subset of upstream

nodes to stop transmission in order to minimize unnecessary blocks and thus

lessening protocol overhead. In order to effectively handle the overhead, a new

encoding strategy, XOR-TOP, which employs local topology to effectively mea-

sure the available non-coded or native packets at the neighbouring nodes, is

introduced in [55]. They claim that their scheme, which does not employ in-

formation exchange among neighbouring nodes, can always accurately identify

coding opportunities according to the local topology. However, their claim on

accurate identification of coding opportunities is questionable as wireless link

conditions are unpredictable. Therefore, there is a chance of making an error in

estimating available native packets at neighbouring nodes. This is especially true

in a high-mobility environment in which the local network topology frequently

21

changes. Although reliability is crucial, the idea of acknowledging each and ev-

ery packet sent (as in [55]) can degrade performance because of the additional

overhead introduced especially in a network with high TCP traffic in which the

MAC and the transport layer performs retransmissions.

Katti et al. [5] employed bit-map format in the packet’s reception report to

report packets which have been overheard by a node. Even though the represen-

tation for reception reports in their approach has two advantages of compact-

ness and effectiveness, their approach of handling overheard packets has some

shortcomings. Consider a network with high traffic. According to their approach

which employs fixed packet waiting time, there is high probability of many pack-

ets being overheard by nodes. Therefore, packet overhead is more likely to be

high due to long reception reports thereby degrading network performance. Fur-

thermore, since more packets will be overheard, more memory will be required

at each node. Also, high power consumption will be required to transmit packets

with high overhead thereby increasing cost.

2.2.2 MAC-Layer and Physical-Layer Scheduling

Network coding is a great fit for wireless networks. Fragouli et al. [56] study the

case of applying network coding in wireless networks in many aspects. These

include throughput, reliability, mobility and management. Several key challenges

are proposed as well.

There are many researchers working on the topic of scheduling in network

coding settings. However, most of them focus on MAC-layer scheduling which

22

usually gives “higher priority” to coding nodes. [57, 58, 59, 60, 61, 62] are

examples of this kind.

Yomo and Popovski [63] propose an opportunistic scheduling algorithm. The

links between the intermediate nodes and receiver nodes are subject to channel

fading. When this fading is time-varying, the authors propose an opportunistic

network coding scheme to determine how many and which packets are coded. It

is shown that such an opportunistic scheme can provide higher throughput than

any coding scheme that involves a fixed number of packets.

Ni et al. [64] discuss the optimal physical-layer transmission rate in the

Massachusetts Institute of Technology (MIT) Roofnet platform. The basic idea

is that lower rate gives rise to longer transmission range or higher delivery ratio.

Furthermore, the distances from the intermediate node to the two recipients

may not be the same. So their delivery ratios would be different. In 802.11b,

if 5.5Mbps or 11Mbps is used, the total Expected Coded Transmission Time

(ECT) can be different.

Most network-coding schemes are agnostic about Physical layer (PHY) and

MAC layer. They assume a greedy algorithm to enforce network coding. Cha-

porkar and Proutiere [32] advocate that exploiting every opportunity to enforce

network coding may downgrade the overall throughput of the system. The hy-

pothesis is demonstrated using a scenario where interference is incorporated into

the analysis. Hence, a specially tailored MAC-layer scheduling algorithm is pro-

posed in order to achieve the expected throughput gain.

Zhao and Yang [65] consider the joint scheduling problem for Multiple-Input–

23

Multiple-Output (MIMO) and network coding (MIMO-NC) in wireless networks.

A network in which each node is equipped with two antennas is analysed. In

order to achieve higher throughput, the authors propose a packet scheduling al-

gorithm which in essence matches all source-destination flows into pairs. When

a pair is discovered, MIMO-NC is applied to reduce the number of transmis-

sions. However, this approach requires full knowledge of the network and traffic

patterns. In addition, it is highly dependent on the traffic pattern. When the

prescribed pair is not available, the benefits are gone leaving only cost of building

a MIMO system.

2.3 Content Distribution in Wireless Ad Hoc Net-

works with Network Coding

2.3.1 Overview of Cross-layer Designs

In recent years, cross-layer design methods are widely used for performance op-

timization in wireless ad hoc and sensor networks ([66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77]). In [66], cross-layer design is defined as a simple violation of

layered communication architecture. In many different ways, cross-layer interac-

tions can occur, either by merging adjacent layers, or by creating new interfaces

between adjacent layers or by a shared database between the layers.

In [78], a cross-layer adaptation GRACE is proposed for energy conservation

and QoS improvement in mobile multimedia terminals. GRACE is an adaptation

framework. It performs only local adaptation by interfacing system layers to a

24

central resource manager which acts as a coordinator.

Optimal results are achieved by the mediation between the layers of the

manager to yield a proper combination of configurations for each layer. Although

several cross-layer interactions are currently studied, there is limited work yet in

exploring the cross-layer design in the realms of network coding.

Cross-layer design is based on the cooperation of different protocol layers.

For example, Madan et al. [79] propose joint optimization over transmit pow-

ers, rates, and link schedules of wireless ad hoc networks to maximize lifetime.

Constraints for the lifetime are flow conservation, maximum rate, energy con-

servation and transmission range. For a given incidence matrix of the network

graph, link gain matrix and initial energy, convex optimization is used to solve

for the optimal rates and powers. However, the computational complexity of

the algorithm grows as a double exponential function of the size of the network.

Meanwhile, in real-time applications, it is very difficult to obtain the inputs that

are necessary for the algorithm.

The layering approach derived from the modelling, design and implemen-

tation of wired networks is very strict, so it is one of the major limitations in

addressing the challenges mentioned in 2.1 in the wireless networking system

context. Traditionally, the protocol stack is divided into layers similar to the

Open System Interconnect (OSI) Architecture, for example in the well-known

Transmission Control Protocol / Internet Protocol (TCP/IP) protocol suite. In

the layered system architecture, each layer performs its own specific functions,

such as routing or end-to-end flow control, strictly within the knowledge of the

25

same layer. Information exchange between adjacent layers is limited to the flow

of data packets but nothing else. In the original context, it is an excellent ap-

proach because it enforces modular design and development of the operating

systems and simplifies protocol design and implementation.

However, in the wireless ad hoc networks, relying merely on the informa-

tion available within a particular layer is no longer sufficient to provide the

desired QoS, or implement novel system or application services made possible

by wireless communications. For example, the Data Link layer, whether it is link

capacity or loss resiliency, cannot choose the appropriate data rate to improve

the performance of a wireless link, without the feedback of wireless channel char-

acteristics from the physical radio. Without such kind of information, transport

and application layers cannot adapt (or react) to the additional physical-layer

time-varying constraints such as highly variant jitter or loss, besides the tradi-

tional congestion control. For another example, without leveraging application

service information such as localization service, the network layers and below

cannot optimize the coordination of transmissions and traffic flows, either to

reduce the traffic-induced interference or implement novel services based on lo-

cation and other environmental information. As a third example, without the

direct knowledge of application characteristics, the MAC and PHY layers cannot

adjust their behaviour (such as transmission power, data rate and adaptive mod-

ulation schemes) according to the relative priority of individual traffic flows or

even individual packets, to provide better service or simply to conserve energy.

26

2.3.2 Content distribution using BitTorrent-like protocols

BitTorrent (BT) [80] is a pioneering work and a prevalent protocol used in P2P

content distribution. Many other P2P protocols are designed on top of it. [81]

considers applying network coding techniques in multicast P2P networks. The

authors base their analysis on a star network topology and conclude that there

is no significant benefit applying network coding in that topology. However, the

authors point out that non-multicast network models can lead to new results.

Avalanche [82] utilizes the power of network coding in an intra-flow manner.

In this system, an original data file is divided into n pieces and before sending

out these native pieces, each peer encodes them using random linear network

coding. Receivers, upon receiving enough coded pieces, can decode to get the

native pieces. Other related works on network coding-based wireless content

distribution systems are described in [83, 84, 85, 86].

[87] is among the first to propose a cross-layer solution applying P2P tech-

niques in wireless ad hoc networks. However, we will show that a straightfor-

ward implementation of P2P on an ad hoc network is not satisfactory in terms

of overhead and overlay connectivity. [88] investigates the impact of practical re-

source constraints of mobile devices (namely disk access, computation overhead,

memory constraints, and wireless bandwidth) on the performance of content dis-

tribution using network coding in Vehicular Ad Hoc Network (VANET)s. After

validating its model against real experiments, the authors design a novel data

pulling strategy to reduce the overall delay of content distribution.

27

28

Chapter 3

Improving the Robustness of

Coding-aware Routing

Protocols to Flow Arrivals

3.1 Introduction

Coding-aware routing protocols [29] are recently gaining popularity as a result

of their seamless integration with existing protocol stacks and their superior

throughput gain in multiple-unicast scenarios. Practitioners do not need to know

the topology or to schedule nodes’ transmission sequence prior to deployment.

Yet still the coding-aware routing protocol is able to detect coding opportunities

and route flows in a way such that coding benefits could be exploited.

Coding-aware routing protocols are generally on-demand source-routing-based.

Coding opportunities are extremely dependent on network traffic patterns. Cod-

29

ing benefits can be realised only when coding flow pairs have sufficient and com-

parable amount of packets to send. In this sense, it is impractical to plan all

possible routes before the arrival of flows. The on-demand character therefore

suits coding-aware routing protocols well. From another perspective, coding op-

portunities can be voided if any participating flows took a different route. It

is possible that the flow does not route through the coding node at all. It is

also possible that the flow slightly detours and some destination nodes of the

participating flows fail to overhear the packets from this flow. Those destina-

tion nodes are then not able to decode the coded packet and the bandwidth

used to transmit the coded packet is wasted. In order to avoid such situation,

routing decisions are put on the level of flow, instead of segments, nor per-hop

basis. That is why source routing techniques are utilized where the whole route

is determined even before the first hop of the packet is traversed.

Coding-aware routing protocols should be able to fairly evaluate the benefit

that network coding brings as well as the drawbacks of the higher interference

when routing flows closer to each other. DCAR [28] proposes a routing protocol

that thoroughly weighs the factors that need to be considered. It proposes a

CRM to quantify and compare the merits between coding-possible and coding-

impossible routes. This metric is based on the queue length at the network layer.

A longer queue length implies heavier traffic, higher channel occupation rate, and

higher interference. Queue length is then modified with coding benefits consid-

ered. If packets from one flow can be coded with another one, DCAR considers

the free-ride effect by adding the queue length only once for both flows. The

30

resultant metric can then by large reflect the expected number of transmission

slots that one new arriving packet should wait before it gets transmitted.

Although current coding-aware routing protocols, like DCAR, are able to

discover coding-possible routes, they lack a mechanism to conduct coordina-

tion among different flows. In this thesis, the term flow refers to the source-

destination pair where packets are flowing from the source node towards the

destination node. If the route is selected merely based on information collected

from a single flow, this routing decision essentially achieves only a local optimum.

If we alter routing decisions for other flows, we might end up with a higher over-

all throughput. Our work provides us with a means for intermediate nodes to

sense the arrival of new flows and to participate in the route-maintenance phase.

This is called Self Recommendation (SR) while our protocol is named as SCAR.

SR enables a re-assessment of prior routing decisions and includes a procedure

to update it. Consider the scenario shown in Fig 3.1 where each node can only

reach its nearest neighbour. Suppose there is an existing flow 1→4→2. With the

arrival of a new flow 6→3→5, new coding opportunities are introduced at node

3. Node 3 can sense this new opportunity as an intermediate node. Without

the mechanism of self recommendation, node 1 will not be aware of the flow ar-

rival, not to mention changing the route to utilize this coding opportunity. Our

protocol specifies when intermediate nodes will send self recommendations, and

how source nodes will compare the available routes. In our protocol, node 1 will

re-route via 1→3→2, fully utilizing the coding opportunity.

Consider a wireless network that evolves along time. There can be multiple

31

1 2

3

4

5 6

Existing Flow

New Flow

Transmission Range

Figure 3.1: A Simple Test Scenario for SCAR

events that occur to the network, like the arrival and departure of flows, the traf-

fic load changes, and possibly node movements. The ultimate routing decisions

for all flows can be completely different if the sequence of these events is altered.

Their overall performances can differ greatly as well. This is because existing

routing protocols consider only information that is obtainable at the time when

flows joined the network. After that, no further route maintenances are done. In

our work, the self recommendation enables a new mechanism to revise existing

route decisions. Such a revision is non-trivial mainly because of two reasons.

First, the routing metric should be modified to remove a bias brought in by the

currently-in-use route, which we term as in-use-path bias. The static Modified

Queue-length (MQ)s of the nodes in the currently-in-use route are overestimated

but their dynamic MQs are fair. This would inflate the Modified Interference

Queue Length (MIQ) of those neighbouring nodes while keeping the MIQ cal-

culation for the currently-in-use route correct (MIQ is a concept proposed in

32

DCAR [28], we will produce a digest of that paper in Section 3.2.1). This essen-

tially puts all other routes, except for the currently-in-use route, at a competitive

disadvantage. In our work, this bias is removed by making adjustment on the

biased metric, and thus we term it unbiased metric in this work. The second

reason why this revision is non-trivial is that, new routes should be tested before

the final adoption. Route changes often involve more than one route. In the

simplest setting where only one route is subject to change, the route selected ac-

cording to the unbiased CRM would generally be better than any other routes.

But this may not be true if any other routes underwent the same Route-Change

procedure. We introduce a probation period to test the validity of such route

changes.

We abstracted the above described scenario into several problems. The first

is how to discover the arrival of new flows and new coding opportunities. Sec-

ondly, we need to know how to evaluate these opportunities and decide whether

to change existing routes. To complete the work, we also need a third step to

test whether the newly introduced complexity is well compensated. Here we

first briefly answer these questions. The network dynamics are monitored by

intermediate nodes. Like most routing protocols, our protocol also employs a

Route REQuest Packet (RREQ)-Route REsPonse Packet (RREP) procedure to

discover routes. The benchmark protocol is the DSR [89] protocol and parts

of the DCAR protocol are also included. In an on-demand routing protocol,

RREQ/RREP packets suggest new incoming flows. This discovered informa-

tion is encoded in a SR packet and is sent to the source node, triggering a

33

Route-Change (RC) procedure to handle it. The Route-Change procedure em-

ploys a new unbiased routing metric to evaluate all possible routes, and makes

updates to the routing table. We stress again here that “unbiased” is termed

against the in-use-path bias. We will come back to this in Section 3.3.2. On

the other hand, we have carefully analysed the causes for the throughput gain,

and devised a series of indicators to predict the gain. Through extensive simu-

lations on various topologies, we conclude empirically that throughput gains are

observed whenever the indicators imply so, thus strengthening their applicability.

The contributions of this work are:

1. We have proposed a practical coding-aware routing protocol that enables

coordination among flows. This coordination is done with the help of

Self Recommendations (SRs) from intermediate nodes. The Route-Change

(RC) procedure is devised to synchronize different nodes.

2. We have studied the Coding-aware Routing Metric (CRM) for quantifying

the merits of candidate routes. The concepts of biased and unbiased CRM,

as well as the methods to convert biased CRM to unbiased CRM, are

introduced. We design packet formats and a route-maintenance procedure

to gather necessary information to make the conversion possible.

3. We have analysed various coding structures and propose a series of indica-

tors. These indicators can be used to estimate how much throughput gain

is achievable under SCAR. They can also be used as a guide for modifying

network topologies to improve throughput.

34

Compared to previous coding-aware routing protocols [90, 91, 92, 93], the

performance evaluation of our protocol shows that our protocol can significantly

improve throughput in many network topologies. It is also shown that our

proposed protocol is robust against different traffic patterns. Our protocol is

indifferent to the order of arrivals of flows.

The rest of the chapter is organized as such: Section 3.2 gives an overview

of our SCAR protocol, with Section 3.3 detailing the Route-Change procedure

in our protocol. Section 3.4 analyses coding structures and proposes a series of

indicators to estimate throughput gain. The performance evaluation is given in

Section 3.5 and we conclude in Section 3.6.

3.2 Protocol Overview

In the following text we explain the major components of our SCAR protocol.

In order to fully understand and appreciate the rationale and the methods we

took in designing the protocol, a digest of the DCAR paper [28] is provided for

a quick reference.

3.2.1 Digest of the DCAR protocol

The major contribution of DCAR is the design of the CRM. To better appreciate

the extension we have done in this thesis, we will describe the derivation of

DCAR’s CRM first.

The choice of routing metric is pivotal in the design of a routing proto-

col. A good coding-aware routing metric should quantify the merits between

35

coding-possible and coding-impossible routes. DCAR reviewed existing coding

metric including Hop-count-based routing metric, Expected Transmission Count

(ETX)-based routing metric, and load-based routing metric. The proposed met-

ric in the DCAR paper collectively considered load information, packet loss rate,

and coding benefits.

The evolution of DCAR’s CRM starts from the packet queue length. Larger

queue length indicates more packets to send, higher delays and lower per-flow

throughput. The queue lengths are averaged in order to remove spikes.

Queue length itself does not consider the coding benefits. Or more precisely,

the free-ride benefit is ignored so the queue length overestimates the actual cost

of choosing a particular route. To account for the coding benefit, queue lengths

are modified to arrive at MQ. Two cases of MQs are considered—the stable case

and the dynamic case. DCAR uses the stable MQ (cf. Algorithm 1) to estimate

the overall level of busyness of a node, and uses the dynamic MQ to estimate

the level of busyness of a node seen by a newly-arriving flow (cf. Algorithm 2).

In the pseudo-code of the algorithms, N(v) denotes the neighbour set of vertex

v. Subtracting a vertex set from another vertex set yields the difference set of

vertices. Subtracting a vertex set from a graph, on the other hand, is removing

all vertices in the vertex set and removing all edges that connect to the vertices in

the vertex set. Note that the calculation of static modified queue length involves

two randomness. The first is the random selection of v. The other is the random

selection of maximal clique that contains v. So different runs of Algorithm 1 can

yield different results. The calculation of modified queue length is not optimal

36

in any sense. We will come back to this statement in next chapter as we will be

revising this algorithm.

1 Function Static-Modified-Queue-Length(G)
Input: A weighted graph G = (V,E,w(·))
Output: MQs

2 MQs ← 0;
3 repeat
4 Randomly select v from V ;
5 V ′ ← the vertex set of a maximal clique that contains v;
6 MQs ←MQs +maxi∈V ′{w(i)};
7 V ← V − V ′;

8 until V is empty ;
9 return MQs;

Algorithm 1: Calculate Static Modified Queue Length in DCAR

1 Function Dynamic-Modified-Queue-Length(G, v)
Input: A weighted graph G = (V,E,w(·)), the vertex that denotes

the newly-arriving flow v
Output: MQd

2 V ′ ← {v} ∪N(v);
3 G′ ← G− V ′;
4 return Static-Modified-Queue-Length (G’);

Algorithm 2: Calculate Dynamic Modified Queue Length in DCAR

The modified queue length of a node, however, is not sufficient to estimate

its available bandwidth in the wireless network either. A node with very short

queue length can still be congested if its interfering nodes have a lot of packets

to send. MIQ is calculated to address this factor. Let I(c) denote the set of

node c’s interfering nodes, the MIQ of node c is defined as:

MIQ(c) = MQd(c) +
∑

i∈I(c)

MQs(i) (3.1)

The last factor to consider is packet loss rate. The CRM metric of link l is

37

calculated as:

CRMl =
1 +MIQ(S(l))

1− Pl

(3.2)

where Pl denotes the packet loss rate on link l, S(l) denotes the source node

of link l. CRMl estimates the expected number of transmissions to successfully

transmit the existing packets as well as one incoming packet for the new flow.

The routing metric of a given route can then be calculated as the sum of CRMs

for all links in this route:

CRML =
∑

l∈L

CRMl (3.3)

Another contribution of DCAR is the formulation of a distributed “Cod-

ing+Routing” procedure. In this procedure, enough information can be gathered

so that CRM can be calculated at the source node upon receiving all RREPs.

For each node a in a wireless network, it maintains a list of one-hop neigh-

bours, denoted by N(a). It also keeps track of its packet loss probability on all

of its outgoing links, denoted by P (a, b) where b is one of its neighbour node.

When a new flow arrives to the network, the source node initiates the following

steps to discover possible routes for the flow:

Step 1. The source node a broadcasts a RREQ packet. RREQ packet

contains following information:

• A list of “who-can-overhear” nodes. For now, this is essentially the list of

one-hop neighbours for node a.

38

• The path that it has traversed, as is done in any other source routing

protocols.

Step 2. Upon receiving an RREQ, an intermediate node c first detect if a

loop in traversed path exists. If so, the RREQ packet is discarded. If not, node

c then:

• Temporarily stores the RREQ for future use.

• Updates the “who-can-overhear” list by appending its own one-hop neigh-

bours to it.

• Node c then continues to broadcast the updated version of RREQ.

Step 3. When an RREQ arrives at the destination node b, node b then

replies with an RREP packet with a CRM value of zero, using the reversed path

back to source node a.

Step 4. Upon receiving an RREP, an intermediate node c first extracts

the path from RREP and the “who-can-overhear” information from previously

temporarily stored RREQ. Combining the available information, node c is able

to determine whether this new arriving flow is coding possible with existing flows

that passes by node c. Thus, node c can draw the coding graph from which the

dynamic MQ can be calculated. Adding the MQ from neighbouring nodes to

this dynamic MQ, node c gets the MIQ value. It then adds the MIQ to the CRM

value of the RREP packet and send it to next hop.

Step 5. Upon receiving multiple RREPs from different routes, the source

node a is now able to compare the CRM values across different routes. The route

39

with the smallest CRM value is chosen and this concludes the route discovery

procedure.

3.2.2 Two tables to store flow information

We continue our work from here after describing the DCAR routing metric.

The route-discovery procedure in DCAR [28] has already collected enough

information for future routing coordination, but DCAR simply dumps it after

the routes are constructed. In the SCAR protocol, each node maintains two

tables: potential-flow table and relayed-flow table.

When an RREP passes by a node, it will store the route information in the

potential-flow table. A potential-flow-table entry can be moved to the relayed-

flow table when data packets are received from this route. It will be moved back

if the node fails to receive data packets from this route for a period of time. In

a traditional coding-aware routing protocol, a potential-flow-table entry is only

used for calculating the coding-aware metric when forwarding RREP back to

the source. In our protocol, this potential-flow information is stored for a longer

time, so that this intermediate node can possibly recommend to the source node

to use this route in the future. Obviously, a route can be either in the potential-

or the relayed-flow table, but cannot be in both simultaneously. SRs would only

be done for potential flows (because relayed flows are already chosen by their

sources).

40

3.2.3 Self recommendations

With two tables storing the necessary information for making SRs, the next

question is when to initiate the SR procedure. The SR procedure should be

triggered in two situations. The first is when a new flow joins the network and

a potential coding opportunity is found. The second is when an existing flow is

terminated. In either case, the source should also be notified of the change and

the other routes should be updated in accord with the new flow pattern.

In the first case, upon receiving an RREP of flow fn, an intermediate node

will check whether this new flow can be coded with any of the potential flows it

has stored. If a potential flow fp can be coded with fn, this node can send a SR

to the source node of flow fp “later”, indicating a potential coding opportunity.

It should be sent “later” because we need to wait for this new flow fn to stabilize.

If after a delay, this new flow fn is moved to the relayed-flow table, we can safely

recommend fp to the source of fn. Otherwise, fn remains in the potential-flow

table. This indicates that the source of fn has found a better route than the

one via this intermediate node. Without this delay mechanism, we will have to

send out two recommendations, both to the source node of fn and fp, to utilize

the coding opportunity. This can cause turbulence to the network because more

flows are involved in such a route change. For now, our protocol will send a

SR only when fn is later moved to the relayed-flow table in order to reduce the

overhead.

In the second case, when an intermediate node detects the queue length for a

certain relayed flow f1 is drastically decreasing, and this decrease has continued

41

for some time, it then checks whether there is any other existing flow f2 being

coded with f1. If so, the source of f2 will be notified of the change by an SR

packet, and its route should be updated.

3.2.4 Handling Self Recommendations

Not all recommendations should be accepted. The source retains its autonomy

in determining which route to use. In order to compare this recommended route

with other existing routes, the source node will send Modified RREQ Packet

(MRQ)s to update the CRM of all existing routes as well as the recommended

route. Unlike RREQ, modified RREQs are unicast packets that use source rout-

ing. This modified RREQ will request the destination and relay nodes to append

the CRM value in their reply packets, Modified RREP Packet (MRP)s.

3.2.5 Decision Making

Upon receiving the MRP, the source node updates the CRM values of all routes.

Ideally, the source node can compare these routes and choose the route with the

minimum CRM. However, the CRM values received are biased. They will favour

the currently-in-use route most of the time. In the next section we will discuss

how to remove this bias and improve the effectiveness of SRs.

Altering the routing decision is not the end of the story. The routing decision

we have just made can be wrong sometimes because of two reasons:

1. The CRM metric proposed in [28] is only a heuristic indicator for the

suitability of a route being used in the context of network coding. There

42

is no guarantee that using a route with higher CRM will result in a lower

throughput.

2. The CRM values calculated can be imprecise. The max-clique problem

inherent in the CRM calculation is NP-complete. In real deployments, a

greedy algorithm is usually used instead of a precise solver.

In order to discover and recover from these errors, each recommended route is

given a probation period. After its probation, the source node will refresh its

routing table through the modified RREQ/RREP procedure again. Monitoring

this routing table refresh can give us hints as to whether recommending that

route is a right decision.

3.2.6 Controlling the Frequency of Self Recommendations

For a particular flow, there might be several intermediate nodes that will send

SRs to the source node. An intermediate node may also send multiple SRs for

the same potential flow. Thus the source will constantly be flooded with requests

to update. To prevent this from happening, a way to control the frequency of

SRs is much needed. This control is done in two ways:

1. After an intermediate node sends a SR for a certain path, it is blocked

from sending this specific SR for a period of time.

2. Whenever a source receives a new SR for a particular destination, the

Route-Change procedure is initiated. Subsequent SRs for the same desti-

nation will be taken care of, but will not trigger sending of modified RREQ

43

again. Details for the RC procedure are explained in the next section.

3.3 Route-Change Procedure

This section describes how SR packets can alter existing routes. The route

changes happen in a distributed but ordered manner.

3.3.1 Procedure Timeline

Why is a timeline important? In the simple scenario shown in Fig 3.1, synchro-

nization is not a must. However, as the topology incorporates more nodes and

the network accommodates more flows, modified RREPs may not immediately

follow their initiating modified RREQs. They can be severely delayed or simply

lost. We need to clarify how to handle these delayed packets. Moreover, an inter-

mediate nodes can receive more than one SR in the same time frame, therefore,

triggering even more modified RREQ/RREP packets. We need a synchroniza-

tion method to coordinate all the SRs, modified RREQ, modified RREP packets

so as to achieve a robust and consistent response. This synchronization method

is a common timeline.

The Route-Change procedure starts with the arrival of an SR packet. SR

packets can either initiate a Route-Change procedure, or, they can join an ex-

isting procedure. For a specific source node, there can be several parallel RC

processing instances going on, each for a different destination. Modified RREQ

packets are sent at certain time points in the procedure and the modified RREP

packets are handled depending on the time they are received. Fig 3.2 shows the

44

SR0 SR1 SR2 SR3
MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MRP7

MRQs Route Change

Probation Period
T0 T1

T2 T3

Waiting Period Confirming Period

MRQs Route Change

Figure 3.2: Route-Change Procedure Timeline (SR: Self Recommendation.
MRQ: Modified RREQ Packet. MRP: Modified RREP Packet.)

timeline for one of such RC instances.

An RC procedure consists of three periods, and we discuss them separately

as follows:

1. Waiting Period. Upon receiving SR0 for destination D, if there has not

been any RC instance for D, a new RC instance is initiated. This node

then sends several MRQs as shown in Fig 3.2), each for a known route to

D. During the Waiting Period, any SR packets and any MRP packets for

this destination will be temporarily stored.

2. Probation Period. At T1, the node examines the SR/MRP packets received

so far, compares the previous in-use route with the recommended routes,

and decides which route is going to be adopted. Data packets are then sent

through the newly adopted route. SR and MRP packets received during

this period are simply discarded.

3. Confirming Period. At the end of Probation Period, this node will again

send modified RREQs for each route, and gathers modified RREPs from

these routes. This Confirming Period provides the chance to revert pre-

45

vious route changes if the recommended route has higher CRM than the

previously-in-use route.

3.3.2 The Unbiased CRM Metric

In the last section we mentioned that the CRM values in the modified RREP

packets received are biased. They will favour the currently-in-use route. We

justify this statement here.

The CRM values returned for the previously-in-use route rin−use and the

recommended route rsr are unbiased only if there is no data packet sent through

rin−use. The unbiased CRMs will weigh two routes equally. Consider a scenario

shown in Fig 3.1. The flow (1→4→2) has existed for some time. As the new

flow (6→3→5) arrives, node 3 will send a SR to node 1. The previously-in-use

route is rin−use (1→4→2 in Fig 3.1), and the recommended route is rsr (1→3→2).

In Fig 3.1, unfortunately, there have been data packets sent through (1→4→2)

before the SR is received by node 1. This traffic will increase the static modified

queue length (This is a component of the CRM metric, refer to [28] for more

details) of node 4 from 0 to some value diff. This modified queue length is

transmitted in node 4’s hello message, so node 3 will account for this diff when

calculating the CRM for (1→3→2). Ironically, flow (1→4→2) will not account

for diff in calculating its own CRM. As a result, node 1 receives a higher CRM

for flow (1→3→2), which is unfair. Such a comparison between two flows makes

no sense and also leads to a wrong routing decision.

The remedy for the problem is a more sophisticated modified RREQ-RREP

46

Type Len PathLen InUsePathLen

Path (PathLen*4 bytes)

InUsePath (InUsePathLen*4 bytes)

(a) Modified RREQ

Type Len PathLen InUsePathLen

CRM (8 bytes)

Path (PathLen*4 bytes)

InUsePath (InUsePathLen*4 bytes)

InUsePath in Neighbor Count (InUsePathLen bytes)

Optional (InUsePathLen*8 bytes)

(b) Modified RREP

Figure 3.3: Modified RREQ/RREP Packet Formats

procedure. In this scheme, though the CRM values are calculated as usual, node

1 will pre-process the values and make sure that the final comparison removes

the In-use-path bias.

The packet formats of the modified RREQ/RREP are shown in Fig 3.3 where

Path denotes the route of interest, and InUsePath the previously-in-use route.

In addition to the normal CRM calculation, when the modified RREP is trans-

mitted back towards the source node, the intermediate nodes update the Count

of the packet. If a node in InUsePath happens to be its neighbour, the corre-

sponding count is incremented by 1. Again using the simple scenario in Fig 3.1,

the modified RREP for flow (1→3→2) will have a count of 1. This means node 4,

which is in the InUsePath is node 3’s neighbour. Moreover, the modified RREP

47

packet has an extra optional field. This field will be present only when Path is

exactly the same as InUsePath. This field contains the difference between the

static modified queue lengths of the two cases: calculated with the in-use route

and without the in-use route.

When the source node receives the modified RREPs for both rin−use and rsr,

we have enough information to adjust the CRM values to the unbiased values.

The modified RREP from rin−use has the optional field, and the modified RREP

from rsr has the count field. For each intermediate node in the previously-in-use

route, subtract count × difference from the CRM value of rsr. Therefore, the

CRM values of both flows are the net effect of the previously-in-use route traffic,

and they can be compared directly to decide which route should be chosen.

Mathematically,

ĈRMrsr = CRMrsr −
∑

i∈rin−use

count i ∗ differencei (3.4)

, where ĈRMrsr denotes the unbiased CRM for route rsr, CRMrsr denotes the

CRM in RREP of route rsr. count i and differencei denotes the count and differ-

ence in RREP of rsr for node i, respectively.

3.4 Topology Analysis

In last section, we have demonstrated that, in certain circumstances, SCAR can

discover coding opportunities that are overlooked by other coding-aware routing

protocols. But what exactly characterizes these circumstances? Apparently they

48

Table 3.1: Definition of a Few Terminologies

Link Undirected multi-hop path connecting one node to another

Route Directed multi-hop path connecting a source node to a des-
tination node

Flow An ordered pair of source and destination nodes, without
specifying the route chosen

Coding-possible route This is a legacy definition. Given a set of routes that be-
long to different flows, if the packets of all the flows can be
coded together and their respective destinations can decode
the coded packets, these routes are coding-possible

Coding-possible flow This is a new definition used in this chapter. A set of n flows
are said to be coding-possible if there exist n coding-possible
routes that respectively belong to the n flows

are related to the network topology, but how can we identify these “structures”

and test their ubiquity? Furthermore, how can we quantify these structures’

impact on the finalised throughput gain over other coding-aware protocols.

In this section we try to answer all the above questions.

3.4.1 Theoretical Induction of Indicators

Before describing the indicators, we first define some terms used as shown in

Table 3.1.

The performance of a coding-aware routing protocol is highly dependent on

the network topology and network traffic patterns. Some of the factors that

affect whether the current flow can be coded with other flows are external, e.g.,

the routing decision for another route. We can still use the example topology

shown in Fig 3.1. The flow (6-5) can be coded with other flows only when another

flow, (1-2), has taken the route (1-3-2) instead of (1-4-2). In such a topology, the

probability that SCAR can outperform DCAR is thus 50% given that flow (1-2)

49

comes earlier than the flow (6-5). The probability 50% is the value we want to

capture using our indicators.

These indicators can be used to estimate how much throughput gain that

is obtainable over a typical coding-enabled routing protocol. There have been

much discourse on the maximum achievable coding gain [4, 8]. Note that the

“coding gain” in their works refer to the throughput improvement of a coding-

enabled protocol over other coding-disabled protocol. However, the “throughput

gain” in our work here, refer to the throughput improvement of our protocol

over a coding-enabled protocol. The baseline is elevated to incorporate network

coding, but still excludes the awareness of network dynamics (flow arrivals and

departures).

The series of indicators are named as CN , with N starting from 2. The

definition is as follows. For two two-hop flows that are coding-possible, say

(S1−D1, S2−D2), we assume the number of possible routes for S1−D1 is larger

than or equal to that for S2 −D2. If we choose a route R1 from all the possible

routes for S1 − D1 randomly, the probability that there exists a route R2 for

S2 −D2 that is coding-possible with R1 is defined as C2 for S1 −D1, S2 −D2.

Suppose we define R(S −D) as the set of possible routes for source destination

pair S − D. And we use r1 ∼ r2 to denote a flow taking the route r1 can be

coded with another flow taking the route r2. Mathematically, C2 is calculated

50

as:

C2(S1 −D1, S2 −D2) = C2(S2 −D2, S1 −D1)

=
|{r ∈ R(S1 −D1) | ∃r

′ ∈ R(S2 −D2), r ∼ r′}|

|R(S1 −D1)|
(3.5)

, assuming |R(S1−D1)| > |R(S2−D2)|. For comparison purpose, this C2 value

is then adjusted as C2adj = 2 × |C2− 0.5|, so that the range of C2adj still falls

between zero and one. The rationale of doing this adjustment is discussed later

in this section. As an illustration, we revisit the topology shown in Fig 3.1 and

derive the C2 value for flow pair (1-2) and (6-5). There are two possible routes

for flow (1-2), and only one possible route for (6-5). When choosing the route

(1-4-2) for flow (1-2), there is no possible route for flow (6-5) to code. But if

we choose the route (1-3-2) for flow (1-2), there is. So following the definition

of C2, if we randomly choose a route for flow (1-2), we choose route (1-4-2)

and route (1-3-2) with equal opportunity. The probability that there exists a

route for flow (6-5) (in this case, we have only one possible route for flow (6-5),

i.e., route (6-4-5)) that is coding possible with flow (1-2) is 50%. So the C2

value for these two flows is 0.5, and after adjustment, 0. The C2 value of the

topology is calculated as an average of all the adjusted C2 values of every pair

of coding-possible flows.

C3 is defined similarly with the only exception that we consider three two-hop

flows, while still randomly selecting one route for the first flow. The adjustment

of C3 is the same, C3adj = 2 × |C3− 0.5|. Note that we consider only two-hop

51

flows for now. This is because in our simulation, coding opportunities are mostly

found in two-hop scenarios. Although we have also formulated the indicators for

multi-hop routes, the simulation results did not agree with the indicators. Multi-

hop transmissions are prone to packet loss and they usually have outrageous

delays compared to two-hop transmissions. Given the definition of CN , if we

can find a systematic way of listing all coding-possible route pairs/triples, C2

and C3 can be easily calculated. We then provide a graph-based algorithm to

enumerate all coding-possible route pairs/triples.

Consider 3 possible node placements as shown in Fig 3.4. The three sub-

figures consider how many end nodes these two routes have in common. Fig 3.4a

shows the case when two routes have both their end nodes in common, i.e., any

two-hop route can be coded with its reverse route. In Fig 3.4b, route A-O-C

can be coded with route C-O-B. Similarly, route B-O-C can be coded with C-

O-A. In this topology, two route coding pairs are found. Note that we do not

count A-O-C and C-O-A in this figure, because this pair is already counted in

Fig 3.4a. In Fig 3.4c, where two routes share no common end node, four route

coding pairs are found. They are A-O-C with D-O-B, A-O-D with C-O-B, C-O-

A with B-O-D, and C-O-B with A-O-D. Similarly, the pair A-O-C and C-O-B

is not counted here as it has been counted in the second case. In summary, our

problem is reduced to a problem of listing these structures, then list the route

pairs as above as long as the respective sources and destinations of these routes

are not neighbours.

So far, the work seems trivial. But as we generalize to coding-possible route

52

A O B

(a) A route coded with its reverse

A

O

B

C

(b) Routes share an end node

A

O

B

C

(c) Routes with distinct end nodes

Figure 3.4: Possible Topologies for 2 Coding-possible Route Pairs

53

triples, we begin to find some patterns. A coding-possible route triple can be seen

as a coding-possible route pair with an additional route. The additional route

should meet certain criteria, i.e., the destination/source of the additional route

should be a neighbor to the Source/Destination of either of the other two routes

(Consider a sharing node as a special case of neighbourhood). So we derive the

three possible topologies for coding-possible route triples from Fig 3.4, yielding

Fig 3.5.

Extending Fig 3.4a, the additional route cannot share the end node with the

previous routes, yielding a 4-node structure with 4 triangles (Fig 3.5a). With

the initial two routes A-O-B and B-O-A, the new route can be either C-O-D or

D-O-C. In addition, this topology can be rotated 90 degrees, with C-O-D and

D-O-C chosen to be the initial routes. So we can find 2 × 2 = 4 route triples.

Extending Fig 3.4b, the additional route again cannot share end nodes with the

previous two, introducing the additional nodes D and E in Fig 3.5b. With the

link O-C shared by the initial two routes, there are two coding triples in this

topology: (A-O-C, C-O-B, D-O-E) and (B-O-C, C-O-A, E-O-D). Again, due

to the symmetry of the topology, the number of route triples in this topology

should be multiplied by 5, giving 2 × 5 = 10. Extending Fig 3.4c is the most

complex one. The additional route can potentially share end nodes with initial

routes. However, further investigation reveals that sharing end nodes will reduce

the situation back to the one we have covered in Fig 3.5a and Fig 3.5b. The

only new situation we should consider is shown in Fig 3.5c, where altogether 6

end nodes are considered. There are two route triples in this topology: (A-O-D,

54

A O B

C
(a) Case 1

A

O

B

C

(b) Case 2

A

O

B

C

(c) Case 3

Figure 3.5: Possible Topologies for 3 Coding-possible Route Triples

55

C-O-B, F-O-E) and (B-O-C, D-O-A, E-O-F). Rotating the topology will not give

new route triples.

Now we can see the importance of triangles in these topologies. As long as

we list all triangles in a topology, by examining the adjacency of these triangles,

we can easily list all route pairs and route triples. This deduction can be carried

forward for 4, 5 or even more routes. Based on their definitions, C2 and C3

can be easily calculated. We then discuss what are the implications of these

indicators.

The improvement of SCAR over DCAR lies in the route-maintenance phase.

SCAR provides a mechanism to revise already established routes. Therefore,

if prior routes are poorly selected, they can be changed later to take into con-

sideration the new flows in the network. Having a C2 between 0 and 1 leaves

the possibility of choosing the “wrong” route initially. DCAR is more likely to

choose the “right” route if C2 is closer to 1, and it is less likely to choose the

right route if C2 is closer to 0. On the other hand, as the C2 value increases

from 0.5 to 1, the throughput gain SCAR can provide over DCAR decreases as

a result of better DCAR performance. As the C2 value decreases from 0.5 to 0,

theoretically SCAR could still find the “right” route after a Route-Change pro-

cedure, and thus should provide a higher throughput gain. However in practice,

SCAR’s performance also suffers. A decreasing C2 value usually means more

potential routes and less “correct” routes. With more routes in the network,

the modified RREQ-RREP packets are prone to get lost, leading to incorrect

route change decisions. So the intuition is: C2 value being too big or too small

56

can limit SCAR’s performance over DCAR. So an adjusted C2 is proposed as

C2adj = 2× |C2 − 0.5|. C2adj is scaled such that it varies from 0 to 1. Smaller

values imply higher throughput gain.

We argue that:

1. C2 represents the level of confidence that DCAR will find a coding struc-

ture in a given topology. C3 and higher rank indicators denotes the likeli-

hood for DCAR to find multi-packet coding opportunities.

2. Adjusted C2, or C2adj , represents the extent of throughput gain we can

expect from choosing to use SCAR over DCAR as the routing protocol.

Smaller C2adj implies higher throughput gain.

3. Adjusted C3 or higher-rank indicators offer possibility of higher perfor-

mance as well, but the volatility of throughput gain is higher.

We validate our proposed scheme by simulations. The objective is to test and

justify the effectiveness of using CN indicators to predict SCAR’s throughput

gain over DCAR. The approach we take is: First, to prove that the C2 can

indeed reflect SCAR’s ability to improve throughput, and then to verify that

C3 and higher-rank indicators for flows can reflect SCAR’s ability to discover

multi-packet coding opportunities. In order to test our hypotheses, we designed

a series of topologies where different coding structures with different CN values

can be spotted. We then evaluate the throughput gains of SCAR over DCAR

in these coding structures and plot them against the CN value as shown in the

next section.

57

3.4.2 Simulation Results

3.4.2.1 Simulation 1

With an artificially designed topology where flows with different CN values can

be found (See Fig 3.6), we choose 16 flow pairs for each of the C2 values to be

examined, namely, 0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5 and 1. For each

flow pair, we measure the network throughput of both routing protocols under 6

different offered loads. The throughput measured at the stationary state of each

simulation instance is averaged over 10 runs with random seeds. Fig 3.7 is the

scatter plot of the throughput gain for each flow pair against the value of C2.

The mean throughput gain for each C2 value is denoted as a triangle symbol

in the figure. The throughput gains for both pre-adjusted C2 and adjusted C2

are averaged over the data points to yield Fig 3.8 and Fig 3.9. The error bars

denote 90% confidence intervals. From these results, we observe that a C2 value

between 0 and 1 implies a throughput gain significantly different from zero,

while a C2 value of zero or one, implies a throughput gain near zero. It is worth

noting that C2 being 0.5 gives the highest throughput gain. This justifies the

adjustment on C2. The adjusted C2 values are readily comparable, and thus

can be averaged to get the C2 for the whole topology. Although the correlation

between throughput gain and adjusted C2 values is not strictly linear, it is safe

to assume a pseudo-linear relationship within the granularity we are discussing.

58

12

8

13

14

10

5

3

1 6

7

4

2 11

9

Figure 3.6: An Artificially Designed Topology to Measure the Effectiveness of
CN Indicators

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.25 0.333 0.4 0.5 0.6 0.666 0.75 0.8 1

T
hr

ou
gh

pu
t G

ai
n

(%
)

Pre-adjustment C2 Value

Scatter
Mean

Figure 3.7: Scatter Plot of Throughput Gain with Different C2 Values

59

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.25 0.333 0.4 0.5 0.6 0.666 0.75 0.8 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t G

ai
n

(%
)

Pre-adjusted C2 Value

Pre-adjusted C2

Figure 3.8: Average Throughput Gain versus Pre-adjusted C2 Values

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.25 0.333 0.4 0.5 0.6 0.666 0.75 0.8 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t G

ai
n

(%
)

Adjusted C2 Value

Adjusted C2

Figure 3.9: Average Throughput Gain versus Adjusted C2 Values

60

3.4.2.2 Simulation 2

Topologies with a specified C3 value are difficult to construct. In fact, the topol-

ogy shown in Fig 3.6 gives 30 non-zero C3 value, but 26 of them have a value of

1/3. In order to test with other C3 values, we have randomly generated tens of

topologies, usually each one can produce only 2-3 valid C3 values for our evalu-

ation. Finally we collected altogether 144 different flow triples taking C3 values

in (0, 0.25, 1/3, 0.5, 2/3, 0.75, 1). The throughput gain with different C3 values

is plotted in Fig 3.10, with the average throughput gain shown in Fig 3.11 for

pre-adjusted C3 values and in Fig 3.12 for adjusted C3 values. The error bars

denote 90% confidence intervals. We can find some patterns within the scatter

plot. The scatter plot for each non-zero and non-one C3 value in Fig 3.10 can

be basically divided into two clusters. One in the ±10% throughput gain range,

and the other cluster above 10%. The first cluster is roughly symmetric about

the zero point and we can explain it as a normal variation. In these cases, SCAR

simply brings in a dynamic scheme for the sources to reconsider those already

established routes, adding some deviations to the mean throughput. The second

cluster, however, are the cases where SCAR manages to find multiple-packet cod-

ing possibilities. In fact, after thorough examination of the simulation log file for

the data points in this cluster, SCAR tends to find 3-packet coding opportunities

while DCAR only finds 2-packet coding opportunities or no coding opportuni-

ties at all due to the order of flow arrivals. In conclusion, a C3 value between

0 and 1 offers multiple-packet coding opportunities that can be discovered by

SCAR. However, SCAR is not guaranteed to find them and the performance can

61

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.25 0.333 0.5 0.666 0.75 1

T
hr

ou
gh

pu
t G

ai
n

(%
)

Pre-adjustment C3 Value

Scatter
Mean

Figure 3.10: Scatter Plot of Throughput Gain with Different C3 Values

fluctuate within a relatively large variation depending on the traffic condition.

3.5 Evaluation

In last section we have argued that it is fairly common to have a topology

where SCAR has an advantage over existing coding-aware routing protocols. In

particular, when the adjusted CN indicator signifies a value close to zero, higher

throughput gain can be expected.

In this section, we proceed to measure the performance of SCAR in network

simulations rather than mathematical formulations. Three sets of simulations

are done on the Qualnet1 simulator, revealing different aspects of features of our

proposed protocol SCAR.

1http://web.scalable-networks.com/content/qualnet

62

-10

-5

 0

 5

 10

 15

 20

 25

 0 0.2 0.25 0.333 0.4 0.5 0.6 0.666 0.75 0.8 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t G

ai
n

(%
)

Pre-adjusted C3 Value

Pre-adjusted C3

Figure 3.11: Average Throughput Gain versus Pre-adjusted C3 Values

-10

-5

 0

 5

 10

 15

 20

 0 0.2 0.25 0.333 0.4 0.5 0.6 0.666 0.75 0.8 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t G

ai
n

(%
)

Adjusted C3 Value

Adjusted C3

Figure 3.12: Average Throughput Gain versus Adjusted C3 Values

63

3.5.1 Simulation 1. Simple Topology

Using the simple scenario in Fig 3.1, we illustrate how DCAR is vulnerable

to flow-arrival times and how our proposed protocol SCAR can withstand this

variability. We start with a flow from node 1 to node 2, and then, add a new

flow from node 6 to 5. This is defined as starting order 1. The starting order is

then reversed and is defined as starting order 2. The flows are given the same

traffic load. For starting order 1, whether there is a coding structure depends

on the route selection for flow 1-2. The paths 1-3-2 and 1-4-2 would have the

same routing metric value at the beginning. Under DCAR, if node 1 randomly

chooses path 1-4-2, there will be no coding structure formed in the network. For

starting order 2, DCAR can also choose the right routes to use at the onset. In

contrast, for SCAR, no matter which flow node 1 chooses at the beginning, it is

able to adjust itself to form a coding structure and improves the throughput of

the network. In terms of CN indicators, the flow pair (1-2) and (6-5) has a C2

value of 0.5, which equals an adjusted C2 value of 0. This implies that it is very

likely to have a throughput gain with these flow pairs. The whole topology, when

considering all possible flow pairs, has an adjusted C2 value of 0.46. There is

no multiple-packet coding opportunity in this topology. Anyway, this topology

is simply to serve as a demonstration, so we do not test with more flow pairs.

We vary the offered load and plot the end-to-end throughput in Fig 3.13.

The two starting orders mentioned above are considered for DCAR and SCAR.

Each data point in the figure is an average throughput over 10 different random

seeds. We observe that SCAR could always choose the path 1-3-2 after a period

64

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load (Kbps)

DCAR
SCAR

(a) Starting order 1

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load (Kbps)

DCAR
SCAR

(b) Starting order 2

Figure 3.13: Simulation Results for the Simple Test Topology

65

of time and forms a coding structure in the network, while DCAR could only

choose between the paths 1-3-2 and 1-4-2 randomly under starting order 1. The

throughput gain at the highest offered load averages to 12.3%. However, under

starting order 2, the performance of DCAR and SCAR are quite similar. The

confidence interval, or the minimum/maximum value in the simulation, is not

plotted in the figure for clarity. In fact, the minimum and maximum values are

quite similar and DCAR’s and SCAR’s confidence interval severely overlap. The

reason why SCAR’s average performance is better than DCAR’s, is that SCAR

has higher probability of reaching the maximum value.

3.5.2 Simulation 2. “Wheel” Topology

The “Wheel” topology as shown in Fig 3.14a is an interesting and efficient topol-

ogy to study the performance of coding-aware routing protocol. A central node

(0) is surrounded by six nodes (1-6) evenly distributed along the cycle. Each

node can reach all the other nodes except for the node on the opposite end of the

diameter (e.g. node 1 can reach all nodes except node 4, and vice versa). Each

node tries to send data to the node at the opposite end of the diameter. There

are many coding opportunities in this scenario as studied in [28]. In our topol-

ogy analysis, this topology has an adjusted C2 value of 0.36 and an adjusted C3

value of 0.33. This suggest that it is likely to see a throughput gain by exploiting

the C2 value, while the throughput gain may not be consistent because the C3

value brings in more uncertainty as well as an expected throughput gain.

The average throughput of the network under varying traffic load is plotted

66

1

4

3 5

6

0

2

(a) “Wheel” topology

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 200 400 600 800 1000 1200 1400 1600

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load (Kbps)

DCAR
SCAR

(b) Average throughput of the network

Figure 3.14: Simulation Results for “Wheel” Topology

67

in Fig 3.14b. When the network is saturated, the throughput gain averages to

8.02%. Further inspection into the simulation log reveals that SCAR tends to

find 4-packet coding opportunities when DCAR is unlikely to find any. This

is because of DCAR’s inability to change route once the route was established.

In such a topology, DCAR usually will match the first two arriving flows to

share a common intermediate node. But the third arriving flow will be routed

through a different intermediate node to avoid congestion. After DCAR routes

the fourth arriving flow, these four flows are routed as two groups with each group

sharing a common intermediate node. Therefore, in the case of DCAR, it is very

unlikely, if at all possible, to find 4-packet coding opportunities. DCAR’s routing

mechanism will forbid the third flow to be routed through the same intermediate

node for the first two flows. However, in the case of SCAR, the Route-Change

procedure brings in more possibilities. SCAR enables a mechanism to revise

existing routes even if the protocol firstly routes the 4 flows as two groups. SCAR

also allows multiple concurrent Route-Change procedures, so it is also possible

to change routes for two flows simultaneously. For example, suppose flow (1-4)

and (4-1) have both chosen node 6 as the intermediate node. And we have the

third flow (2-5) choosing node (3) as the intermediate node. Now the flow (5-2)

comes in. Node 6 notices flow (5-2)’s arrival, and it initiates the Route-Change

procedure for all flows including (1-4), (4-1), and (2-5). If flow (2-5) opted to use

node 6 as the intermediate node after the Route-Change procedure, we are now

having a 4-packet coding opportunity. Anyway, it is worth noting that SCAR

does not guarantee a better routing decision. In complex network situations,

68

the interference of other flows may cause the Route-Change procedure to fail.

It is also possible that multiple intermediate nodes are equally weighed by the

CRM. Therefore, whether multiple flows would choose the same intermediate

node is flow pattern sensitive and opportunistic. Anyway, SCAR have a higher

probability of finding such opportunities. We have also tested different starting

orders and find that this does not have any influence on the performance of

DCAR and SCAR. The reason is that this is a totally symmetric scenario with

symmetric topology and flows.

3.5.3 Simulation 3. Grid Topology

Next we construct the same 4 × 4 topology as mention in [28] where each node

can only reach its northern, southern, eastern and western nodes. The simu-

lation is run for 10 rounds and at each round, five flows (each with 2-5 hops)

are randomly added into the network. The adjusted C2 and C3 values of this

topology is 1, suggesting that there would be no throughput gain from switching

the routing protocol. This is because in the deduction of the CN indicators, we

limit the coding structure to two-hop ones. But in this grid topology, only multi-

hop coding structures exist. The average end-to-end throughput of the network

achieved by DCAR and SCAR is shown in Fig 3.15a. In this simulation, SCAR

is only slightly better than DCAR because the multi-hop coding opportunities

discovered by SCAR are prone to errors, therefore the throughput gain is com-

promised. When the offered load continues to increase, the throughput gain can

be negative sometimes. The average throughput gain in a saturated network is

69

1.15%.

However, by modifying the topology only a little bit, we can achieve totally

different results. By increasing the transmission range of the nodes to reach

all its 8 neighbouring nodes, the CN indicators change dramatically. After

the modification, the adjusted C2 value is 0.38 suggesting high probability of

throughput gain, and the adjusted C3 value is 0.48, suggesting an expected

throughput gain with variation. The simulation results are shown in Fig 3.15b

and the throughput gain is obvious. The average throughput gain reaches 9.63%

without changing any flow settings. In both figures, the average throughput went

up and down. This is because at higher offered load, the packet error rate is

also higher, leading to retransmissions and packet drops. In a severely saturated

network, packet collisions are more often and thus more retransmissions are

required, reducing the effective throughput.

The comparison between these two grid topology settings further justifies

the effectiveness of CN indicators. C2 can be used as a reliable predictor for

the expected throughput gain. Though C3 is not as reliable as C2 for a single

run of simulation, it still identifies multiple-packet coding opportunities and pro-

vides an expected throughput gain across a large number of runs of simulations.

Additionally, one can leverage on the knowledge of CN to modify the network

topology, hoping to drastically improve the overall throughput.

70

 200

 210

 220

 230

 240

 250

 260

 270

 280

 290

 300

 200 250 300 350 400 450 500 550 600

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load (Kbps)

DCAR
SCAR

(a) Average throughput of grid topology

 200

 220

 240

 260

 280

 300

 320

 200 250 300 350 400 450 500 550 600

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

bp
s)

Offered Load (Kbps)

DCAR
SCAR

(b) Average throughput of modified grid topology

Figure 3.15: Simulation Results for Grid Topology

71

3.6 Chapter Summary

In this chapter, we first introduced SCAR, a coding-aware routing protocol with

Self-Recommendation for wireless ad hoc networks. The mechanism of SR en-

ables the protocol to discover hidden coding opportunities that have been over-

looked by other routing protocols. Whenever a new flow joins the network with

new coding opportunity, prior routing decisions are revised through a Route-

Change procedure. In such an environment, direct application of the routing

metric will wrongly favour the currently-in-use route. To remove this bias, the

Route-Change procedure triggered by the SR employs an adjustment method to

remove such bias.

Moreover, in order to estimate how much performance we can gain from

exploiting the SRs, a series of indicators are introduced. These indicators are

calculated using graph theory, and they reflect how much throughput gain can be

expected when using our protocol in a given topology. Testing these indicators

on multiple topologies reveals that the throughput gain is not a coincidence

and many practical topologies come with positive indicators. In other words,

a fair number of network topologies are susceptible to changes in the order of

flow arrival. Thus, the robustness we emphasize is an important metric when

evaluating coding-aware routing protocols.

Further simulations are done in Qualnet to evaluate our protocol. It is shown

that our protocol can significantly outperform other coding-aware routing pro-

tocols and the predictions given by the indicators are generally correct. The

dynamic nature of our protocol results in a higher invariability against network

72

changes.

73

74

Chapter 4

Improving Coding Efficiency

and Fairness by Network-layer

Packet Scheduling Algorithm

4.1 Introduction

Packet scheduling, as it is often used by researchers on network coding, generally

refers to the behaviour to conduct certain transmission task in an omniscient

and ordered way in a given network [94]. The transmission task is usually to

deliver several packets from one or more source nodes to one or more destination

nodes. The scheduling is done with the full knowledge of the topology and

the transmission capacity. In addition, all nodes are expected to act under the

coordination of the supervisor.

In real deployments, the above mentioned requirements are seldom practical.

75

Instead, coding-aware routing protocols are often used to judiciously route the

flows so that coding benefits can be exploited. Coding-aware routing protocols

relax the requirement of centralised control and make the coding opportunities

occur opportunistically. However, the problem of per-flow fairness and further

throughput improvements are less analysed. As far as to the author’s knowledge,

there has been no in-depth analysis on per-flow fairness with network coding

enabled. Also, how to select the proper packet in a node’s backlog so that the

overall draining rate of the packet queues of this node can be maximized has not

been deeply studied.

In this chapter, we argue that by adopting a well-designed network-layer

packet scheduling algorithm, we can have better control over other performance

metrics of wireless ad hoc networks. Packet scheduling in this chapter refers

to the decisions made at each node when it is ready to send packet. With

multiple packets backlogging, each node should determine which packet to send

first. When network coding techniques are considered, this decision also involves

finding which are the other packets that should be coded together with the above

selected packet.

In studying the packet scheduling problem, we can set different optimization

objectives. One of these may be to maximize overall throughput. In our research

it is observed that realizing this target is relatively straightforward but the solu-

tion suffers from severe starvation for some of the flows. In fact, only the flows

that have coding counterparts would be able to transmit packet while flows with-

out coding counterpart are completely ignored. This is generally undesirable in

76

actual deployments of the protocol. So we can instead set the target to a more

meaningful one. We want to find a criteria that jointly considers transmission

efficiency as well as per-flow fairness. Minimum per-flow throughput turns out

to be a good proxy for such purpose. When this metric is maximized, all flows

would have at least this same amount of throughput, yet some flows that are

advantageous in exploiting the coding benefit could have higher throughputs.

In this chapter, our target is to maximize the minimum per-flow through-

put first. When this target is fulfilled there may still be multiple choices, the

solution that can maximize the average per-flow throughput is then selected.

This two-step maximization can lead to quite acceptable performance as we will

demonstrate in the evaluation section of this chapter. In addition, the deriva-

tion of the solution to this relatively complex target function can cover all the

essentials of the problem.

Existing protocols that utilize the power of network coding usually take the

most straightforward means to do network-packet scheduling, namely, Round-Robin

(RR) scheduling. Basically an intermediate node will construct many queues,

each storing packets from a specific flow/session. When the MAC layer seizes the

chance to transmit after channel contention, the network layer selects the packet

to be sent in a round-robin fashion across all queues. When a certain queue is

selected, the first packet in that queue is dequeued and it goes through a check

for coding opportunity. Coding opportunities are depicted in a coding graph [28].

In this graph, each vertex denotes a flow that passes by this intermediate node.

An edge that links two vertices means packets from the respective two flows can

77

be coded together. When three flows can be coded together, it is shown as a

triangle. Similarly, N coding-possible flows are denoted as a complete N -vertex

sub-graph, aka. N -clique.

However, with this scheduling we do not have much control over the perfor-

mance of the network (namely, per-flow throughput and fairness). Some flows

may be repeatedly transmitted because they can be coded with many other flows,

while some flows with less or no coding counterparts can starve. In addition, it

is possible that we can increase the throughput by intelligently selecting the set

of packets to transmit.

In this work, we first study a simplified and static form of the scheduling

problem. When given a set of packets from multiple flows waiting to be sent,

we analyse how to code and send the packets with the minimum number of

transmissions. This problem is abstracted and formulated as a WCCP. WCCP

is NP-hard in general, but some special cases of it can be solved in polynomial

time. In order to reduce complexity and to make it more amenable for general

use, a search algorithm with pruning and approximation is proposed. With this

algorithm, the solution can be calculated much faster with known error bounds.

The solution to this static problem can then provide guidance to find the

solution to the real problem, i.e., the dynamic form of the problem. In this form,

we consider a node to be an intermediate node for multiple flows. A number

of fixed-capacity queues are embedded in this node with packets stochastically

arriving. The processing speed is also limited. We estimate the fairness with two

relevant performance metrics: one is the minimum throughput and the other is

78

the variance of the throughputs of all flows. A higher minimum throughput, and

a smaller throughput variance imply better fairness. Our objective is to find

an optimal scheduling scheme which first maximizes fairness, then maximizes

throughput. We use a heuristic scheduling method for this dynamic form of the

problem.

Section 4.2 formulates the static scheduling problem as a WCCP and pro-

poses an approximation algorithm. Section 4.3 describes the dynamic form of

the problem and we propose here a heuristic scheduling scheme. Sections 4.2

and Section 4.3 contain some preliminary evaluations. Section 4.4 presents the

scheduling scheme in the form of a routing protocol and a series of network simu-

lations is done to evaluate the performance of this protocol. Lastly, we conclude

in Section 4.5.

4.2 The Static Form of the Problem

4.2.1 Weighted Clique Cover Problem

In this section, we discuss the packet scheduling method within a single node.

It is assumed in this section that no new packets will arrive, so this form is

referred to as the static form of the scheduling problem. This scheduling method

determines, from among all the packet queues, which queue to transmit and how

the packet from this queue is encoded with other packets from other flows.

Consider a node in a network. This node has multiple packet queues and the

number of packets inside each queue is known. Packets from some of the queues

79

can be coded together while others cannot. This relationship is depicted in a

coding graph where each vertex represents one queue and each edge represents

a coding-possible relationship between two queues. Each vertex is assigned with

a weight. The weight of a vertex is equivalent to the number of packets that

are backlogged in the packet queue corresponding to the vertex. A set of k

packets can be coded and sent in one transmission if and only if they come from

k distinct queues (k vertices) and each pair of queues is coding-possible (
(

k
2

)

edges). The objective is to find a scheduling algorithm for this Weighted Coding

Graph (WCG) that minimizes the number of transmissions to dump all packet

queues. This problem is called static in the sense that it deals with packets

already in queues and there are no new packet arrivals.

This problem is mathematically formulated as a weighted clique cover prob-

lem (WCCP) as below:

Definition 1 (Weighted Graph). A weighted graph is a graph G = {V,E} and

a weight function w : V → Z+. V is the set of vertices, E is the set of edges,

and the weight function maps each vertex in V to a positive integer.

Definition 2 (Clique). A clique is a complete sub-graph of the parent graph G.

Mathematically, a clique is a set of vertices Vq, such that ∀v ∈ Vq, v ∈ V , and

∀e ∈ V 2
q , e ∈ E. V 2

q denotes the set of edges that connect each pair of vertices

in Vq.

Definition 3 (Weighted Clique). A weighted clique w.r.t. the graph G is defined

as Q = {Vq, wq}, where Vq is a clique in G and wq is a positive integer that

80

satisfies:

∀v ∈ Vq, wq ≤ w(v) (4.1)

Definition 4 (Weighted Clique Cover). A weighted clique cover w.r.t. the

weighted graph is a set of weighted cliques Q = {Qi = {Vqi , wqi}, i = 1, 2 . . . , n}

such that:

⋃

i=1,2,...,n

Vqi = V (4.2)

∀v ∈ V,w(v) =
∑

qi:v∈Vqi

wqi (4.3)

Definition 5 (Weighted Clique Cover Problem). Given a graph G = {V,E} and

a weight function w : V → Z+. Weighted clique cover problem is to minimize

∑

i=1,...,nwqi among all possible weighted clique covers for graph G.

To facilitate the understanding of the definitions, we describe some of the

symbols and terms here. For a graph G = (V,E) where V is the vertex set

and E is the edge set, there can be multiple cliques in this graph. Cliques are

complete sub-graphs of a given parent graph. For the purpose of clarification,

the vertex set of a clique is denoted as Vq. Similarly, we use Vqi to list all cliques

of the graph G = (V,E), where i is the index that iterate through all cliques. In

the scope of this thesis, a weighted clique is defined as a clique when assigned

with a uniform weight to all its vertices. The weight that is assigned to clique

Vqi is then denoted by wqi .

As one of the 21 Karp’s NP-complete problems [95], Clique Cover Problem

81

(CCP) is NP-complete. WCCP, as a generalized form of CCP is known to be

NP-complete as well and researchers have been working on a practical solution

to it. It is shown by Hsu [96, 97] that the WCCP problem can be solved in

polynomial time if the graph is a claw-free perfect graph. A claw is the shape

shown in Fig 4.1a. It is often referred to as K1,3 because it is essentially 1,3-

bipartite. Bipartite is a type of graph where vertices are partitioned into two

disjoint sets, and every edge connects from a vertex in the first set to a vertex in

the other set. A claw-free graph is a graph where none of its sub-graphs is a claw.

A perfect graph is a concept raised in the 1970s by Claude Berge [98]. A graph

is said to be perfect if for each of its induced sub-graphs, the chromatic number

equals to the size of its largest clique of the sub-graph. The chromatic number of

a graph is the minimum number of colours required to colour the vertices of the

graph such that no adjacent vertices share the same colour. Take Fig 4.1b as an

example. Nodes A, B, D, E can form a sub-graph. The corresponding induced

sub-graph contains the four nodes, as well as the 4 edges that connect them. In

this induced sub-graph, the chromatic number is 3 because we can colour nodes

A and E as red, node D as green and node B as yellow such that no adjacent

nodes have the same colour. The size of the maximum clique in this sub-graph is

also 3 as nodes A, B and D form a 3-node clique. The simplest imperfect graph

is a ring of 5 nodes shown in Fig 4.1c. The size of the maximum clique is 2 but

the chromatic number is 3. A more recent paper [99] summarizes the problem

and some recent advances on the topic.

82

(a) Illustration of a Claw

A

B

C

D

E

(b) An Example of Perfect Graph

A

B

C D

E

(c) An Example of Imperfect
Graph

Figure 4.1: There Exists Polynomial Solutions to WCCP for Claw-free Perfect
Graphs

83

4.2.2 Solution to WCCP

As the size of the problem (i.e., the number of vertices, the number of edges, and

the amount of weights) scales up, WCCP becomes very hard to tackle. Existing

polynomial solutions focus only on the claw-free perfect graphs. As is shown in

Fig 4.1a, a claw is a very basic structure and it is observed in our simulations that

such a structure appear very often. For practical networks, we need a definitive

method to solve them, irrespective of whether they are claw-free.

Here we propose a search-based algorithm to solve WCCP for all graphs,

which is more general than the existing algorithms. With the problem being NP-

complete, the worst-case computational complexity of our algorithm is expected

to be exponential. In order to solve the problem with practical time limits, a

search-based algorithm with pruning rules is proposed in this work. The major

improvement is the introduction of pruning rules. Applying the pruning rules

can drastically decrease the amount of branches in search tree. We will come to

see the effect of pruning rules in Section 4.4 Note that pruning can be applied

even when the graph has claw sub-graphs and is imperfect. In very complex

graphs, pruning rules may not be directly applicable, we therefore introduce an

approximation method to keep the run time invariant to the amount of weights.

In essence, our algorithm is a search algorithm that structures all possible

solutions to WCCP into a tree structure. Consider the WCCP in such a way:

For each vertex in the graph, its weight equals the sum of the weights of all

cliques that this vertex is part of. If we can list all cliques that one vertex is part

of, the search for weighted clique covers can be transformed into the search for

84

allocation methods that allocate weights of vertices to a set of cliques.

The transformation of “covering” to “allocation” constructs the search space

for our algorithm. We iteratively allocate weights for each vertex. When all

vertices have their weights allocated, the solution to WCCP is determined. The

search tree is then equivalent to a decision tree.

The root node of the search tree denotes the initial state of the problem. A

total of |V | un-allocated weights are pending allocation at the root node. Then

one vertex v is selected. There can be multiple ways to allocate w(v) to v’s

participating cliques.

Definition 6 (Participating Clique). In a graph G = (V,E), a participating

clique of a given vertex v ∈ V is any clique G′ ⊂ G such that v ∈ G′.

For each way of allocation, a new node is created in the search tree as a child

node of the root node. In this new layer of nodes, v has finished its allocation

of weight and thus is removed from the graph. After |V | levels, the graph is

empty and all allocation decisions are made. The path from root node to each

leaf node determines a series of allocation decisions. This series of decisions then

determines one weighted clique cover of the graph. Recall that our objective is

to find a solution to the WCCP that minimizes the target function. This is then

translated as, to find a leaf node in this search tree, that minimizes the target

function.

For example, consider the coding graph shown in Fig 4.2. The numbers in

parentheses denote the weights corresponding to the vertices. The first search

decision can be made at the vertex D. Its weight (1) should be allocated to one

85

D(1) E(1) F(1) G(1)

C(2)B(3)

A(3)

Figure 4.2: One Example of Coding Graph

of its four adjacent cliques (D), (B,D), (D,E) and (B,D,E). So in the first

layer, we have four child nodes, each of which denotes one choice of possible

allocations.

If we continue the search in this manner, it is a brute-force algorithm. To

analyse the computational complexity of this brute-force algorithm, we carefully

examine the case at one node in the search tree. Suppose the node under con-

sideration is v and its weight is W . Suppose D is the number of participating

cliques of v. Consider the problem to allocate W items to D piles. There are

a total of
(

W+D−1
D−1

)

allocation methods, and here is a brief proof. The problem

can be converted to another equivalent problem: What is the number of possible

allocation methods if we are to allocate W +D items to D piles where each pile

has at least one item. If we put these W + D items in a line, inserting D − 1

non-overlapping breaks can delimit these items into D piles, and each pile has

at least one item. There are altogether W + D − 1 places to insert break and

we are to insert D− 1 breaks. The total number of possible delimitation is thus

(

W+D−1
D−1

)

.

The above analysis is on one layer of the search tree only, and the total

86

search tree has |V | levels. Taking the average for all vertices, the computational

complexity of the brute-force algorithm is estimated to be O(
(

W+D−1
D−1

)|V |
), where

W = maxv∈V w(v) and D is the average number of participating cliques that

one vertex can be in. In real cases, since W ≫ D, we take D as a constant and

hence
(

W+D−1
D−1

)

≈ WD. The complexity can be simplified as O(
(

W+D−1
D−1

)|V |
) ≈

O(WD|V |). This is obviously unacceptable as the scale factors are both on the

base and the exponent. So we seek a better algorithm through pruning and

approximation.

The detailed pruning rule and the approximation method are described in

following subsections. We first give the overall block diagram of the algorithm

in Fig 4.3 for reference. This diagram shows how the contents are joined to a

total algorithm.

4.2.2.1 Pruning

Before branching on one vertex we need to get all of its participating cliques, and

the number of branches is dependent on the number of ways to allocate weights

to these participating cliques. The pruning rule below demonstrates that we

only need to consider a subset of these participating cliques in certain cases, and

hence we can significantly reduce the amount of computation. N(v) denotes the

set of neighbouring vertices of vertex v.

Theorem 1 (Pruning Rule). For a vertex v ∈ V where ∀vi ∈ N(v), w(v) ≤

w(vi), if a participating clique Qj of v is subsumed by another participating clique

Qk, i.e., VQj
⊂ VQk

, child nodes in the search tree where Qj is allocated with

87

Start

Iterate over all |V| vertices

For vertex v, try applying pruning rule

After pruning, how many (b) branches left?

Store b temporarily

Finished iteration on all vertices?

Get next vertex

Choose vertex v with smallest b

Apply approximation method on vertex v

Split into b sub-problems

Any other vertices left in the graph?

sub sub sub...

End

b>1

b=1

N

Y

Y

N

Figure 4.3: The Overall Block Diagram of the Algorithm for WCCP

88

non-zero weight can be pruned. Stated another way, we only need to consider

allocation methods that allocates zero weights to Qj.

Proof. Suppose in one optimal allocation, vertex v allocates w∗(0 < w∗ ≤ w(v))

to cliqueQj . We use VQk
−VQj

to denote the difference vertices set between clique

VQk
and VQj

. For each vl ∈ VQk
− VQj

, we assert that vl must have allocated

at least w′ = w∗ + w(vl)− w(v) ≥ w∗ to some of its participating cliques where

the vertex v is excluded. The reason is stated as below: for every unit of weight

of vl, its allocation may either fall in a clique that involves v, or fall in a clique

that does not involve v. With w(vl) ≥ w(v), vl can allocate at most w(v) to the

cliques that involve v. Furthermore, with our assumption that v has allocated

w∗ to Qj where vl is not part of, vl can then allocate at most w(v) − w∗ to the

clique that involve v. Therefore, vl must allocate at least w(vl) − (w(v) − w∗)

to the cliques that does not involve v, just as we have asserted. Consider the

following reallocation: For each vl, we withdraw w∗ weights from cliques that do

not involve v. This withdrawal either shrinks the vertex set for some cliques, or it

totally eliminates some cliques with only one vertex vl inside. In fact, the latter

case will never happen if the prior allocation is optimal. Then these withdrawn

weights are merged into the weighted clique Qj with w∗ weights, yielding a

weighted clique Qk with w∗ weights. This reallocation will never increase the

sum of weights of weighted cliques, so the new allocation is also optimal. This

justifies the pruning rule because at least the new allocation, which is optimal,

is in the search tree after pruning.

89

In the following we give several corollaries to further demonstrate the usage

of this pruning rule.

Corollary 2 (One-degree Vertex). In WCCP, if there exists a degree-one vertex

vj connecting to another vertex vk, we can prune all other branches and leave

only the ones that allocate min(w(vj), w(vk)) to the two-vertex clique (vj , vk).

Proof. The vertex vj has only one neighbour vk, so its participating cliques are

(vj) and (vj , vk). Since the former clique is subsumed by the latter one, we can

allocate zero weight to the one-node clique (vj) if w(vj) ≤ w(vk). For the cases

when w(vj) > w(vk), we can allocate at most min(w(vj), w(vk)) to the clique

(vj , vk). Applying Theorem 1, we can derive our conclusion in this corollary.

Corollary 3 (m-degree Vertex). In WCCP, if there exists an m-degree (m ≥

1) vertex vj, and vj together with its m neighbours form a (m + 1)-vertex

clique Qj, we can prune all other branches and leave only the ones that allo-

cate minv∈V (Qj)(w(v)) to the clique Qj .

The proof of this corollary follows the same logic as the proof of Corollary 2.

4.2.2.2 Approximation

So far we have discussed the pruning rule. When the pruning rule is carried

out at a node, the number of branches at this node in the search tree is signifi-

cantly reduced. But what happens when no pruning rule is applicable? We use

quantization to remove the scale effect of the weights on vertices.

We first determine a parameter Q in the algorithm. Q denotes the level of

90

quantization of weights used in the search algorithm. Consider a vertex with a

weight of W and D participating cliques. In the brute-force search algorithm, we

will have
(

W+D−1
D−1

)

branches at this node because there are a total of
(

W+D−1
D−1

)

ways to allocate weights to the participating cliques. In our approximation

algorithm, a weight W (= Q×m) is split into Q equal shares and these Q shares

are allocated to participating cliques instead. Therefore, the number of branches

at this node is reduced to
(

Q+D−1
D−1

)

.

We then analyse the amount of error introduced in the approximation step.

We argue that the error involved in the approximation step is upper bounded

by the W/Q where W is the sum of weights across all nodes and Q is the level

of quantization. The proof is as follows: For a single vertex, its weight can

be arbitrarily allocated to its participating cliques. But due to quantization,

each participating clique can only be assigned an integer multiple of m as its

weight. Suppose that a real optimal allocation exists and is denoted by Σ∗, and

the “optimal” allocation found by our search algorithm is Σ. We derive Σ− Σ∗

by comparing the allocated weight for each participating clique. Consider the

transformation from Σ∗ to Σ. Any negative value in Σ−Σ∗ implies a revocation

of weight for the clique in allocation Σ∗; Any positive value in Σ−Σ∗ implies a

reallocation to the corresponding clique. Note that any revocation or reallocation

involves at most one share of quantized weight, and this is exactly 1/Q of the

weight in the original problem. The size of the problem is reduced to 1/Q of the

original problem and we can derive that the error involved is limited to W/Q.

91

4.2.3 Scalability and Error Analysis

4.2.3.1 Scalability

We use Gilbert’s random graph model [100] to randomly generate test coding

graphs. This model defines a graph generator that takes two arguments. The

generator itself is denoted as G(n, p) in the paper, where n denotes the number

of vertices and p denotes the probability by which each edge is selected. For each

set of parameter we generate 25 random graphs and test our algorithm as well as

a Non-Approximation (NA) algorithm. The non-approximation algorithm also

has the feature of pruning unnecessary branches, but it does not quantize the

weights into blocks. Therefore, it needs to consider a lot more branches when

no pruning rule is applicable, but the solution it provides is an accurate answer.

Since WCCP solves the problem on a weighted graph, weight information

should be attached to the randomly generated graphs. In this evaluation, we

set the weights assigned to each vertex to be a random variable conforming to a

log-normal distribution. By adjusting the mean and standard deviation of this

log-normal distribution, we are able to test the algorithm with different scales of

weights. The reason we choose log-normal distribution is that it is the simplest

finite variance distribution with only positive values.

The final objective of this sub-section is to validate our analysis in previous

sections. We are interested to test whether our stated algorithm can indeed

accelerate the search for a solution to WCCP. Despite we have derived the com-

putational complexity of our algorithm as well as a brute-force algorithm, a

92

validation in practice can be helpful because we can have a hands-on feeling

of the complexity difference. In addition, we are also interested in testing how

much error we have introduced in the approximation step. We have two criteria,

one is the error rate, indicating how often an error occurs. The other is average

error, indicating when an error is seen, how big it is.

In order to make the evaluations, we implemented our algorithm as well as

the comparison algorithm with approximation mechanism disabled. The perfor-

mance of our algorithm is then tested with extravagantly complex inputs. The

reason we deliberately magnify the size of problem in our experiments is that

we can only measure the elapsed time with higher confidence when the solver

has run for sufficiently long time. Otherwise, the result can be easily affected by

other out-of-the-system factors like operating system scheduling, system load,

etc.

We run the solver in a computer with the following setting: Intel i5-3570

3.40 GHz, 8 GB memory, Windows 7 Enterprise 64-bit SP1. Because some

of the test graphs are so complicated that it is impractical to wait until their

finish, we opt to estimate their finishing time according to elapsed time and

finished proportion. When the program has run for 10 minutes and still running,

we use the following method to estimate the total time required to finish the

search algorithm. Consider the search tree is constituted of several layers. We

started searching from the root node and searched in a depth-first manner. At

the end of 10 minutes, a proportion of the nodes in the search tree have been

visited while the others are not. We first estimate the time required to finish

93

the inner-most search sub-tree by dividing the elapsed time in this sub-tree by

the amount of nodes visited in this sub-tree. This estimation is done recursively

to outer nodes and finally reaches the root node. For example, suppose we are

currently working on the fourth layer, finished two branches but has three more

to go under this decision node when the limit of 10 minute is hit. We first

estimate the total amount of time required to finish this node by multiplying

(2 + 3)/2 = 5/2 to the elapsed time on this node. Since all branches in this

layer-4 node were finished, we go back to its parent node, a layer-3 node, repeat

the above method to estimate the total amount of time required to finish this

layer-3 node. This method is to be repeated recursively back to the root node

and the total amount of time required to finish the search tree is calculated.

The underlying assumption of this method is that the searching complexity in

the first 10 minutes is an effective estimator for the overall searching complexity.

In each layer, the time required to process the branches we have yet to reach

is assumed to be proportional to the number of these branches and the average

time to finish one branch in the past.

We have tested the validity of this estimation method for some of the scenar-

ios when the estimation is above 10 minutes but below 2 hours, the estimation

error is generally within 20%. Since we are more concerned about the order of

magnitude instead of the absolute value, this error is acceptable. In addition,

even though the 25 graphs are generated using the same set of parameters, their

processing times can span from milliseconds to days or more. In order to capture

this distribution, we take the median value among these 25 values and draw the

94

Table 4.1: Default Parameters for Performance Evaluation of the Static-Form
Problem

Parameter N p mean(w) stdev(w) Q

Value 20 0.15 100 50 10

figures.

The default parameters when running the experiments are shown in Table 4.1.

This default set of parameters is chosen after weighing two factors. Firstly, we

want the scenario to be of some complexity. Secondly, we want to keep the size of

the maximum clique to be smaller than 6. This number is worked out in [13] as

the theoretical maximum clique size in a coding graph. By setting the probability

of generating a 6-node clique to be 5%, we work out this set of parameters. Then

we evaluate the performance of the algorithm by adjusting each single parameter.

Note that the ratio between the mean and the standard deviation is fixed at 2:1

for the log-normal distribution. Fig 4.4 and Fig 4.5 show that 1) the processing

time grows for both algorithms when the size of the problem grows, 2) our

algorithm consistently runs faster than the non-approximation algorithm, and

3) the improvement (as large as several orders of magnitude) is most significant

when the scale of the problem is big. Fig 4.6 measures the performance with

different mean weights. It is clear that our algorithm is roughly invariant to the

weight factor while the non-approximation algorithm grows exponentially with

the mean weights. Please be reminded that the indicated “processing” time in

the graphs, whenever above 10 minutes, is not the real measured value, but a

predictor of the true processing time.

95

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 14 16 18 20 22 24 26 28

P
ro

ce
ss

in
g

tim
e

(m
s)

N (the number of vertices in coding graph)

WCC
NA

Figure 4.4: Processing Time Sensitivity to N

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

P
ro

ce
ss

in
g

tim
e

(m
s)

p (the probability of selecting any edge)

WCC
NA

Figure 4.5: Processing Time Sensitivity to p

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 40 60 80 100 120 140 160

P
ro

ce
ss

in
g

tim
e

(m
s)

Mean weight

WCC
NA

Figure 4.6: Processing Time Sensitivity to mean(w)

96

4.2.3.2 Error Analysis

Even though we have derived an upper bound for the approximation error in-

troduced in Section 4.2.2.2, we are still interested in typical values. In fact, we

observe in most cases the error level is significantly lower than the upper bound.

Given a set of parameters, we define the error rate as the probability of getting a

scenario that results in an error out of all the generated scenarios. The average

error is defined as the average amount of error over all the cases. Since the

program stops at the 10th minute, any scenario with a running time longer than

10 minutes does not come with a precise result value. Therefore, we only sample

the ones that have results worked out within 10 minutes.

Surprisingly, the measured error is significantly lower than what we have ex-

pected. Within the three sets of experiments where we adjustN , p and mean(w),

the error rates are 1.92%, 1.08%, and 6.38%, respectively. The average errors

are also very small, at 0.17%, 0.09%, and 0.15% respectively. So the overall error

rate is much smaller than the upper bound we set, which is 5%. Note that the

overall error rate is given by the error rate multiplied by the average error as

we have defined. Further analysis leads us to conclude that this is because of

the limit we put on the processing time. For those test cases where the process-

ing time is longer than 10 minutes, there is a higher probability of getting an

error because of the greater amount of branching. Now that we have excluded

those cases, the measured error level is underestimated. Nevertheless, this ex-

periments at least gives us some hints on the level of error introduced. It also

demonstrates that in real-life scenarios with real-time processing requirements,

97

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10
 0

 5

 10

 15

 20

 25

 30

 35

 40

E
rr

or
 r

at
e

(%
)

A
ve

ra
ge

 E
rr

or
 (

%
)

Q (the level of quantization)

Error Rate
Average Error

Figure 4.7: The Error Rate and Average Error with Different Q Values

the error introduced is negligible.

We also measure the amount of error introduced by adjusting the parameter

Q. A larger Q means a finer quantization and usually less error as analysed in

Section 4.2.2.2. A smaller Q will lead to higher levels of errors. The extreme case

of Q = 1 is in essence a trivial “all-or-none” algorithm. From Fig 4.7 we observe

1) our algorithm performs significantly better than the trivial solution and 2) a

Q value greater than 5 can give good-enough performance (with empirical errors

smaller than 5%). The values in Fig 4.7 are obtained by running the experiment

with default parameters 50 times. Both the error rate and the average error are

presented in the figure.

4.3 The Dynamic Form of the Problem

So far we have analysed the scheduling problem where no new packets would

arrive. In this section, we will relax this restriction and study the problem

when new packets are arriving while queued packets are being processed. The

98

transmission capacity is also considered as it can be a restricting condition.

Before designing the scheduling method, we need to define the optimization

objective. When taking into account transmission capacity, we need to con-

sider the trade-off between throughput and fairness. Note that existing coding-

ignorant scheduling methods (e.g. Round-robin) have no control over this trade-

off at all. In order to avoid unnecessary complexity in describing the scheduling

scheme, we discuss only two extreme cases. The first is putting maximal through-

put at the highest priority. Among all possible ways to maximize throughput,

we choose the one that achieves the best fairness. The second case is the other

way round, putting fairness over throughput. In fact, the second case is more

sophisticated and its solution reflects all the tools we use in designing the scheme

for the first case. So only the second case is expanded in the following.

A simplified solution to the dynamic problem would be to blindly apply

the solution from the static problem with slight modification. Consider that the

algorithm for the static problem can be applied successively to the dynamic form

of the scheduling problem periodically. We only need to substitute the number

of packets in the packet queues with the expected number of packets that would

arrive at each assessment instant. The scheduling decisions obtained this way

can then be used to schedule packets dynamically.

However, this approach is subject to several problems. The adverse effect of

dynamic packet arrivals is two-fold:

1. Some flows may have no queued packets when the node is ready to transmit.

This waste of bandwidth would decrease the throughput.

99

2. Some flows may have packets coming faster than they are being processed,

resulting in queue overflows. The static solution has never considered the

transmitting capacity of nodes and thus cannot guarantee better perfor-

mance when the network is saturated.

Dynamic packet arrivals may introduce opportunities as well. In the static

setting, very often some “leftover” packets cannot be coded or fully-coded be-

cause there are no other packets left to be coded with. This situation is very

much alleviated in the dynamic case as this shortage of packets will recover

sooner or later.

There is another important change resulting from random packet arrivals.

In the dynamic case, packet arrival intervals are random variables that conform

to certain distribution, if at all we can model the arrivals. Since the inputs to

the system are not deterministic but probabilistic, the outputs, or the solution

can not be deterministic neither. Moreover, due to the fact that packet arrivals

are usually bursty and error-prone, it is very difficult to work out an “optimal”

solution even in the probabilistic sense. But fortunately, the lack of “optimal”

solution does not mean nothing can be done to improve the round-robin schedul-

ing. In fact, we take a heuristic approach to achieve a better scheduling decision.

4.3.1 Heuristic Scheduling

The objective of dynamic scheduling is to get higher throughput given the ca-

pacity of the network, and to maintain a relative fairness among all flows when

the network is saturated.

100

The starting point of this scheduling method is the trivial solution we men-

tioned above. First we translate the offered loads of flows into the expected

number of packets that would arrive in one second. These figures are used as

the weight in WCCP and a static solution is obtained in the form of a set of

weighted cliques. We will refer to this solution as the initial plan.

The first heuristic rule is to overcome the restriction of transmission capacity.

The capacity of a node can be estimated by monitoring its transmission history.

When the capacity is smaller than the arrival rate, flows with heavy traffic

should be cut off while flows with less traffic remain intact. Basically we use

the Generate-Quota algorithm shown in Algorithm 3 to allocate the limited

transmission capacity. The final set of weights for all cliques obtained in this

step is called a quota, and it is the starting point for further steps in solving the

dynamic form of the scheduling problem.

Here we briefly explain the rationale behind the algorithm. We describe a

simplified version of the Generate-Quota algorithm. The first step is to solve

a WCCP where all vertices are assigned a weight of one (∀v,w(v) = 1). If

the transmission capacity is higher than the amount of transmissions required

by this WCCP, we proceed to solve a WCCP where all vertices are assigned

a weight of two (∀v,w(v) = 2). This continues until either when we deplete

the transmission capacity, or when the uniform weight u reaches the minimum

weight among vertices. For the first case, we understand that we can transmit u

packets for each flow with the limited transmission capacity, but cannot transmit

u+ 1 packets. So setting the quota to u for each flow maximizes the minimum

101

per-flow throughput. For the second case, we have spare transmission capacity

after fulfilling the flow with minimum offered load. An amount of u weights are

deducted from all vertices, yielding a weighted graph with less vertices (because

there is at least one vertex that has only u weight). Then, the rest of the

transmission capacities are allocated to the new smaller weighted graph following

the same procedure as above to further reduce the per-flow throughput variance.

The above-described simplified version requires too many iterations, so we

introduce the algorithm described in Algorithm 3. In Algorithm 3 we have better

guesses of the uniform weight to start with, instead of the fixed scheme from 1

with step 1. For example, we jump directly to wmin if the given transmission

capacity can cover the least weight vertex (cf. Line 9). If that is not the case, we

also improve the search for maximum u by starting from ⌊ C
X1
⌋+1 (cf. Line 15).

The actual value of maximum u is always bigger than ⌊ C
X1
⌋ + 1, because by

duplicating (Γ1,X1) to ⌊ C
X1
⌋ + 1 times, the total amount of transmission ca-

pacity C is still not exhausted. This improvement can significantly reduce the

number of iterations especially when the average amount of weight is big. The

characteristics that we have maximized the minimum per-flow throughput and

minimized the per-flow throughput variance are retained after the performance

tuning. In the pseudo-code of the algorithm, we use Σ and Γ to denote the

quota and scheduling methods, respectively. But in essence, both of these two

notations are sets of weighted cliques. Φ is used to denote the empty set.

The second heuristic rule is to exploit the order of packet arrival. In order

to enforce a quota plan with out-of-order packet arrivals, we employ a proba-

102

1 Function Generate-Quota(G, C)
Input: A weighted graph G = (V,E,w(·)), transmission capacity C
Output: Quota Σ

2 if V is empty then
3 return Φ;
4 end
5 wmin ← the minimum vertex weight in G;
6 Γ1 ← Uniform-WCCP(G, 1);
7 Γwmin

← Uniform-WCCP(G, wmin);
8 X1,Xwmin

= |Γ1|, |Γwmin
|;

9 if C ≥ Xwmin
then

10 G′ ← (G− Γwmin
);

11 C ′ ← (C −Xwmin
);

12 Σu ←Generate-Quota(G′, C ′);
13 return Γwmin

+Σu;

14 else if X1 ≤ C < Xwmin
then

15 for u = ⌊ C
X1
⌋+ 1 to wmin do

16 Γu ← Uniform-WCCP(G, u);
17 Xu = |Γu|;
18 if Xu > C then
19 G′ ← (G− Γwu−1

);
20 C ′ ← (C −Xwmin

);
21 return Γwu−1

+ Generate-Random-Quota(G′, C ′);

22 end

23 end

24 else
25 return Generate-Random-Quota (G, C);
26 end

27 Function Uniform-WCCP(G, u)
Input: A weighted graph G = (V,E,w(·)), uniform weight u
Output: Scheduling method Γ

28 modify w(·) in G such that all weights are set to u;
29 return the solution of WCCP with the modified G;

30 Function Generate-Random-Quota(G, C)
Input: A weighted graph G = (V,E,w(·)), transmission capacity C
Output: Scheduling method Γ

31 Γ← Φ;
32 for i = 1 to C do
33 randomly select a maximal clique c in G;
34 Γ← Γ + c;

35 end
36 return Γ;

Algorithm 3: Generate-Quota Algorithm

103

bilistic scheduling method. If multiple cliques are ready to transmit (i.e., their

corresponding flows have packets in queue), each of them is given a probability

to transmit in this round. The probability for one clique is its quota minus

the amount that has been transmitted in this instance, and then this count is

normalized by the sum across all cliques. The randomness achieved by this prob-

abilistic scheduling method avoids many problems faced by a fixed scheduling

method. There is no bias towards any flow due to the absence of a sequential

decision model. Cliques with higher quota are given higher probabilities in the

beginning. With more packets sent for this clique, its probability would de-

crease and other cliques will have higher probabilities. In the equilibrium state,

the number of packets sent for each clique would be generally proportional to its

quota. In cases when no clique has positive probability, the first packet in the

queue is sent regardless of whether other packets in its clique are ready.

The third heuristic rule is to exploit the opportunity to code more “leftover”

packets. In our scheduling scheme, packets are checked for on-the-spot coding

opportunities before sending out. For example, there may be a single-vertex

clique representing one flow in the initial plan and quota plan. When this clique

is set to transmit as a result of the probabilistic scheduling, we check for hidden

coding opportunities right before sending out packets from this flow, i.e., if this

packet can be coded with another packet in the same queue, they are coded

together and sent with the other flow marked with one packet reserve. In future

schedules, flows with a reserve are eligible for probabilistic scheduling even if

they do not have packets in their queue. The reserve works as if the packets

104

are not sent until the reserve is used. The mechanism of packet reserve can

take advantage of the opportunities to code more packets, without disturbing

the existing quota-based system. It also adds more flexibility to the scheduling

scheme.

All heuristic rules work together toward the same objective. When the net-

work is able to sustain all flows, we try to stick to the static scheduling scheme

because this is the scheduling that maximizes the throughput. When the network

cannot satisfy all flow traffic requirements, we aim to maximize the minimum

throughput among all flows, which is the most frequently used metric for mea-

suring fairness. It should be noted that the heuristic scheduling method may not

yield the optimal solution, but we demonstrate that we can nevertheless achieve

reasonable performance gain.

4.3.2 Performance with Poisson Arrivals

The effectiveness of our heuristic scheduling rules is examined next. In this sub-

section, we test our scheduling scheme with Poisson packet arrivals. MASON

[101] is chosen to be the simulator used because it is a fast discrete-time Java-

based simulator. In this simulation, we simply model the behaviour of a queu-

ing system. We are interested to see whether, in an isolated environment, our

scheduling scheme can perform better than scheduling schemes that are straignt-

forwardly extended for coding awareness. A more extensive and more realistic

simulation is done in Section 4.4 so as to evaluate the overall performance of our

scheduling scheme with all network factors considered.

105

Two frequently used scheduling schemes are taken as the comparison group.

One is First-In-First-Out (FIFO)-based, and the other is RR-based. Basically

these two packet scheduling schemes cover most existing literatures on network

coding protocols. In the FIFO-based scheduling scheme, all packets arrive at a

single queue, each with a tag denoting which flow it is coming from. When the

node obtains permission to transmit, the first packet in the queue is dequeued.

The packet backlog then undergoes a check for maximal clique. Finally, all flows

from this maximal clique dequeue one packet each, encode them and transmit

to the medium. On the other hand, the RR-based scheduling scheme maintains

multiple queues, each for a flow. The scheduler then polls these queues in a

round-robin fashion. This scheme overcomes the problem in FIFO-based method

that a busy flow can crowd out all other flows.

Among all generated coding graphs using the default parameters (cf. Ta-

ble 4.1), the one that corresponds to the median processing time is used in this

simulation. This choice guarantees that the generated coding graph is neither

too plain, nor too complex. In this test bench, a total of 20 flows are present.

The total offered load is 1868 Packet Per Second (pps), with the minimum flow

being 48 pps and the maximum being 282 pps. Each simulation is run for 60

seconds (time in simulation). The average throughput and minimum through-

put among all flows are sampled from the end of the 10th second until the end

of the simulation. After 10 seconds, the system has already stabilised, so we

choose to measure the throughputs from 10 seconds onward to the end of the

simulation. All simulations are repeated with 10 different random seeds and

106

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

pp
s)

Total Offered Load (pps)

FIFO
RR

HEU

Figure 4.8: Average Throughput Performance with Poisson Arrivals

the average/minimum per-flow throughput is plotted in Fig 4.8 and Fig 4.9,

respectively.

In the static version of this scheme, a round-robin based scheduling scheme

requires 1198 transmissions to clear the queued packets. However, our static

solution requires only 1010 transmissions. This is almost a 20% improvement.

In the dynamic case, the average throughput improvement is not as signifi-

cant. We scale the offered packets with a multiplier and generate different offered

loads. The distribution of service time follows exponential distribution. We set

the mean service time to be 100 packets per second. It is observed that our

Heuristic Scheduling Scheme (HEU) can outperform RR when the offered load

is below 400. This is four times the transmission capacity. The maximum im-

provement can reach 13%. This amount is smaller than the 20% obtained in

the static form. This is generally because our heuristic scheduling method bal-

107

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
in

im
um

 T
hr

ou
gh

pu
t (

pp
s)

Total Offered Load (pps)

FIFO
RR

HEU

Figure 4.9: Minimum Throughput Performance with Poisson Arrivals

ances between better performance and higher anomaly tolerance. Only if we can

always stick to the optimal scheduling scheme can we achieve the highest perfor-

mance improvement. But a fixed scheme cannot adapt to the dynamic network

conditions. With the introduction of probabilistic scheduling and the allowance

mechanism, we achieved adaptability to network contingencies at a small cost

of potential performance gain. When the offered load continues to rise above

400, RR provides higher average throughput as compared to HEU. At the same

time, we turn to Fig 4.9 for more insight about this under-performance. One

can soon discover that the minimum throughput of HEU is slightly below 10 pps

while the average throughput is slightly above 10 pps. This indicates that our

scheme achieves the fairness by allocating almost equal-throughput channel for

each flow. The RR scheme can provide around 12 pps average throughput, but

its minimum throughput is only around 5 pps. This is most conspicuous for the

108

FIFO scheme where the minimum throughput is minimal. In fact, from 250 pps

offered load and above, HEU can provide better fairness than RR. But it only

starts to under-perform in terms of average throughput after 400 pps.

To sum up, when the network is not severely saturated (as in this simulation,

when the average transmission capacity is 100 packets per second and the total

offered load is below 400 packets per second), our heuristic scheduling scheme

for the dynamic case can provide higher average throughput across all flows.

At the same time, our scheduling scheme is able to schedule packets in a way

such that no flow suffers from starvation. In particular, we managed to achieve

the highest minimum per-flow throughput. It overcomes the crowd-out effect of

other scheduling schemes when the offered load is too high and some flows may

suffer from low or even zero throughput.

4.4 Evaluation

In this section, we evaluate our work in a more complex network environment.

Specifically, an environment with upstream/downstream nodes, contentions, and

interferences. We first tune our heuristic scheduling scheme to counter the ad-

verse effects we may encounter in real networks. Then the tuned scheduling

scheme is tested in Qualnet simulations where a set of network topologies with

multiple nodes are constructed.

There are three assumptions in the evaluation of our heuristic scheduling

scheme. But they are not immediately valid in the real network settings.

109

1. The offered load of each flow is known and fixed.

2. The transmission capacity of each node is known and fixed.

3. The arrival of packets follows Poisson process.

Therefore, we have to make adjustments to fit the scheduling scheme in a real

protocol. Hence we designed Dynamic Packet Scheduling Algorithm (DPSA), on

top of the routing protocol proposed in Chapter 3—SCAR. SCAR is a routing

protocol based on DSR [89]. Routes are selected in a on-demand fashion and

source routing is used to navigate packets through the network. SCAR is able

to discover coding opportunities and compare potential throughput gain among

multiple paths.

The first adjustment is the design of a cross-layer channel and a rate control

scheme. Using the cross-layer channel, application layer can give hints on the

offered load to lower layers. The rate control mechanism, being an extension to

congestion control mechanism, is able to adjust the offered load of flows for both

congestion and transmission efficiency concerns. In short, this mechanism can

cut off “excessive” offered load for some flows while encouraging higher offered

load for other flows. Put in the context of Algorithm 3 (The Generate-Quota

Algorithm), excessive offered load is the amount of weight of vertices that fail

to get included in the scheduled quota. According to the calculated quota, rate

control packets for certain flows are sent backwards from downstream nodes to

upstream nodes. When receiving the rate control packet, the source node for the

flow can decide to tune down its offered load. More information on the cross-

110

layer channel and the rate control scheme can be found in next Chapter, where

we extensively study how can we exploit the synergy between network layer and

application layer.

Since we mentioned rate control, it is worth noting that the TCP congestion

control mechanism is disabled in our simulations. It is understood that TCP’s

window-based congestion control is not suitable for scenarios with network cod-

ing[28]. This is because packets are frequently out-of-order with the introduction

of network coding. Out-of-order packets have the implication of a congestion in

the TCP protocol, and TCP will limit the offered load based on this false alarm.

This can cause a severe performance degradation, and thus we use our own

rate control mechanism described above to replace the TCP congestion control

mechanism.

The second adjustment is the delivery of offered load information from the

upstream nodes to the downstream nodes. Consider a flow with three nodes,

S, I and D. Node S can rely on the cross-layer channel to estimate the offered

load. For intermediate nodes like I, a propagation of offered load information

is required from the upstream node to the downstream nodes. The propagated

offered load information, adjusted by packet drop rate, finally yields the offered

load perceived by the intermediate nodes. An upstream node calculates the

offered load for a downstream node by subtracting the amount of packets dropped

from its own offered load, periodically. This delivery of information is encoded

in the source routing header.

The third adjustment is the introduction of changing transmission capacity.

111

This is a critical value used in the heuristic scheduling scheme. Overstating this

value will generally lead to unfair scheduling and understating this will lead to

lower throughput gain. In our protocol, this value is measured as the number of

packets processed per second, averaged through the recent 5 seconds. Therefore,

it can to some extent reflect changes in the network condition, but filter out

unnecessary noise.

4.4.1 Simulation 1

We choose a circle topology in Simulation 1 as shown in Fig 4.10. First we fix

a central node O and the radius r of a circle. Then we randomly generate an

angle θ1 between 0◦ and 360◦. Node A1 is added on the circle such that the

line segment that connects A1 and O intercepts the positive axis with an angle

θ1. This process is repeated N times until N nodes are added on the circle.

The traffic patterns are randomly generated as long as the source node and the

destination node are not within transmission range (R) with each other [13]. A

total of e flows are selected and all these flows use node O as the intermediate

node. The experimental parameters are described in Table 4.2. The generated

topology and the coding graph is shown in Fig 4.11 and Fig 4.12, respectively.

For simplicity, we manually choose node O as the intermediate node for all flows.

The 802.11 protocol stack is employed to construct the network.

The comparison group is chosen to be SCAR as described in Chapter 4,

which uses round-robin scheduling. In this simulation, each run of simulation

is repeated 10 times with different random seeds and the measurements are

112

O

A1

A2

θ1

θ2

Figure 4.10: A Topology where Source and Destination Nodes are on the Same
Circle

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

O

Figure 4.11: The Generated Topology for Simulation 1

Table 4.2: Simulation 1 Parameter Settings

Parameter Value Parameter Value

PHY/MAC layer protocol 802.11b NETWORK layer protocol DPSA

of nodes N 10 # of flows e 10

Radius of the circle topology r 100 m Transmission range R 150 m

113

1 5

6
10

2

3

4

7

8

9

Figure 4.12: Coding Graph at Node O in Simulation 1

averaged.

The per-flow average throughput is shown in Fig 4.13, with the error bars

showing the minimum and maximum per-flow throughput. Note that the points

are slightly shifted along the x-axis for visual clearance. The exact x value should

be the mid point between each pair of data points. It is observed that DPSA can

initially provide higher throughput than SCAR. This is because the DPSA sys-

tematically schedules the packets to be coded together, minimizing the number

of transmissions to clear packets in queue. In addition, DPSA almost provides a

straight line connecting the zero point to its highest achievable throughput. On

the other hand, the curvature of the SCAR line is much higher.

However, DPSA’s maximum throughput level is lower than SCAR’s. This

happens when the network is fully saturated, i.e., the transmission capacity of

the router node is smaller than the offered load. DPSA schedules packets in an

114

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45

P
er

-f
lo

w
 T

hr
ou

gh
pu

t (
K

B
ps

)

Average Offered Load (KBps)

DPSA
SCAR

Figure 4.13: Per-flow Throughput in Simulation 1

order that prioritizes fairness. In terms of the coding graph, DPSA intentionally

shifts transmission capacity from those well-connected vertices to the ones that

have less neighbours. The result of this shifting leads to improved performance.

The throughput span is significantly narrowed, meaning smaller variance and

better fairness. DPSA can fairly allocate bandwidth to all flows—the minimum

throughput among all flows is roughly 70% of the average throughput. On the

other hand, some flows receive only around 20% of the average throughput in

SCAR.

As the offered load continues to rise, the average throughput of both pro-

tocols decline. This is mainly because of MAC-layer contentions, collisions and

retransmissions. The router node has decreasing transmission capacity because

the media is more often occupied by the source nodes. The hidden terminal

115

problem is more severe at higher offered loads.

4.4.2 Simulation 2

In this simulation we take a random topology to mimic real-life ad hoc networks.

The topology is shown in Fig 4.14. We randomly choose 10 S-D pairs and

generate traffic according to a randomly generated ratio.

In Fig 4.15 we have plotted the average throughput versus the average of-

fered load. In this simulation, we can still observe that DPSA provides higher

throughput than SCAR when the network is not yet saturated. However, the dif-

ference in the average throughput of a saturated network almost vanishes. This

can be explained by the cascading loss effect: In Simulation 2 most flows have

more than two hops. The scheduling decision made at one node can affect the

offered load of the next. Without proper planning (as in round-robin schedul-

ing), the mismatch between offered load and transmission capacity would cause

a great proportion of packets to be discarded along the way. The more hops

one flow has, the bandwidth loss becomes more severe. This is a great waste of

bandwidth, which effectively decreases the maximum throughput achievable by

the round-robin scheduling. Also note that DPSA manages to schedule packets

more fairly, and the scheduling maintains a good linkage between upstream nodes

and downstream nodes, minimizing the cascading loss effect. In addition, the

significant decrease of throughput as seen in Simulation 1 is not present. This is

simply because the MAC-layer contention is not as severe as in Simulation 1’s

topology.

116

0

1

2

4

3 7

8

9

5

6

10

11

13

12

Figure 4.14: Random Topology

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

P
er

-f
lo

w
 T

hr
ou

gh
pu

t (
K

B
ps

)

Average Offered Load (KBps)

DPSA
SCAR

Figure 4.15: Per-flow Throughput of Simulation 2

117

4.5 Chapter Summary

In this chapter, we have raised an area of problem that was long been neglected—

the packet scheduling scheme with network coding enabled. Although a trivial

round-robin method can provide decent results, an optimized scheduling method

can push the boundaries further to reach optimality. To make things worse, the

MAC contention and interferences can significantly degrade the performance of

round-robin scheduling. This gives rise to our work described in this chapter.

The optimal scheduling problem is tackled first in a simplified and static ver-

sion. With our scheduling method, intermediate nodes can clear packet queues

faster. This implies a higher throughput at one node. The scalability of the

algorithm is also tested. The findings are then applied to the dynamic form of

the scheduling problem where we consider multiple queueing systems. Although

it is hard to analyse the system, we proposed a heuristic scheduling method

addressing the challenges posed by a dynamic system. The solution to this dy-

namic problem is finally incorporated into a routing protocol. Simulation results

for this routing protocol reveal that with proper scheduling, we can have better

control over the fairness of the network. The coding efficiency is maximized

without compromising the overall fairness. When fairness is not a concern, one

can easily adapt our protocol to put more emphasis on those higher coding gain

pairs to improve throughput.

118

Chapter 5

Content Distribution in

Wireless Ad Hoc Networks

with Network Coding

5.1 Introduction

Peer-to-peer file sharing has contributed a significant amount of network traffic

on the Internet. Time has proven that P2P techniques are very effective meth-

ods for content distribution [80, 88]. Content distribution in wireless ad hoc

networks is also an area that has been extensively studied [82, 87]. This chapter

considers the problem of applying network coding techniques on wireless P2P

transmissions.

Network coding is quite suitable for P2P transmissions because of the in-

herent existence of coding structures, such as reversed flows. A flow from node

119

S, through some route, arriving at node D, is definitely coding-possible with

another flow from node D, through the same but reverse route, to node S. P2P

networks are based on this tit-for-tat traffic pattern, thus have a lot of reversed-

flow-like coding opportunities.

Although traffic patterns are amenable to network coding, directly applying

network layer coding schemes on P2P protocols gives unsatisfactory results [81].

We need to examine the problem more carefully and work out a solution that

maximizes the synergy between wireless P2P and network coding.

The synergy between the network layer and the application layer derives from

the extra source of information. Specifically, when given the routing information

in the network layer, the application layer can evaluate the appropriateness of

choosing a certain peer better. In wired networks, this may not be as significant

because all peers are relatively indifferent to one source node. But in wireless

ad hoc networks, choosing a peer that is very far away can degrade the through-

put performance. Given the routing information, it is now possible to choose

peers that have better routes, thus enabling higher delivery efficiency. Secondly,

routing metrics can now be measured more accurately due to the information

from the application layer. This is because coding opportunities are highly de-

pendent on traffic patterns. So are the routing metrics. With the offered load

information from the application layer, intermediate nodes can predict future

coding opportunities in a quantified manner. Lastly, the application layer can

now adjust offered load dynamically according to the packet scheduling scheme

at intermediate nodes. It can be expected that the adjusted offered load can

120

yield a weighted coding graph that is more friendly to packet scheduling, and

improve the coding efficiency as well as fairness among flows.

In this chapter, we propose a cross-layer solution for the wireless P2P content

distribution problem. In a wireless ad hoc network, the scenario we consider is

that one node possesses the file to be shared among other nodes. The content

discovery is done through broadcasts of meta-data of this file. Our cross-layer

design aims to minimize the distribution time. The cross-layer considerations

can be beneficial to the application layer by providing routing conditions for

peer nodes. Therefore, peer-selection decisions can be done in a more informed

way. In addition, the application layer can hint to the network layer on the

offered load, thus enabling better routing decisions and packet scheduling order.

Furthermore, the network layer could suggest to the application layer to adjust

offered load for a particular flow only, with the aim to maximize network coding

benefits.

The contributions of our proposed new scheme include:

1. Formulated and improved the coding-aware routing protocol. In particu-

lar, we point out the usually neglected self-interference in calculating the

routing metric.

2. Applied the routing metric in the peer-selection strategy. This enables a

peer-selection criterion that considers more than just the hop count. It

also minimizes the reliance on optimistic unchoking to discover better peer

choices.

121

3. Designed a full-fledged APP-cum-NETWORK layer protocol stack to re-

alize wireless P2P content distribution based on the ideas proposed above.

The evaluation of this solution is based on simulation.

The content of this chapter is organized as such: The key components of the

protocol stack are analysed in Section 5.2 and Section 5.3 for the network layer

and application layer, respectively. Further details of the protocol are described

in Section 5.4 where simulation results are analysed as well. Finally we conclude

in Section 5.5.

5.2 Routing Metric

The network layer can benefit from cross-layer considerations leading to better

routing decisions. With the offered load information hinted by the application

layer, the network layer can better quantify current coding benefits and predict

future coding opportunities. These are reflected in a comprehensive evaluation

metric. This metric should be able to weigh the benefits brought about by

network coding against other conditions in the network. The routing metric we

adopt is based on the one proposed in the Distributed Coding-Aware Routing

(DCAR) scheme [28]. We extend this metric in two aspects:

1. We find that the calculation of the MQ in DCAR’s formulation is incom-

plete and sub-optimal. This is extended with a mathematical formulation

of the problem, a completeness-proved search algorithm, and a practical

pruning and approximation implementation method.

122

2. Though DCAR takes interference into consideration, a significant part of

interference has been ignored, namely self-interference. We add this part

into the derivation of CRM (Coding-aware Routing Metric) and modify

the RREQ-RREP procedure to update the change.

The first aspect has been elaborated in Chapter 4 and this work further

incorporates the second improvement. The design of the CRM employed in our

protocol is not the theme of this chapter; we nevertheless give a brief walkthrough

for the derivation of the CRM to make this thesis self-contained. More details

can be found in [28].

The gist of the CRM is to evaluate how busy each node is transmitting

packets from other flows. In other words, we evaluate approximately how long a

packet from the newly arriving flow need to wait before it can be processed by

all the intermediate nodes and arrive at the destination. So the starting point of

such a metric is the average queue length of a network interface. Since this queue

length metric did not take coding benefits into account, it should be modified to

yield the modified queue length (MQ).

This modification is done on a WCG. This graph consists of vertices, edges

and weights associated with those vertices. Vertices in a WCG correspond to

flows that pass through an intermediate node. An edge between two vertices

indicates that those two flows can be coded. The weight information associated

with a vertex is the offered load of that flow. So the problem of finding the best

packet scheduling scheme, is then reduced to a mathematical weighted clique

cover problem (WCCP). WCCP studies how to cover a WCG with the minimum

123

number of cliques. Put in the context of networking, a clique in WCG represents

a coded transmission. The vertices in that clique correspond to the flows from

which the native packets are coming. Now it is easy to see that the minimum

number of cliques to cover a WCG equals the minimum number of transmissions

to clear all queued packets. This number, in effect, describes how busy a node

is in transmitting packets, with network coding benefits considered. We have

proved this problem is NP-hard but also gave a workable solution that produces

sufficiently good results in Chapter 4.

Formally, the derivation above can be abstracted as:

MQ(v) = |WCCP(Gv)| (5.1)

, where v is the node under consideration, queue lengths from all relevant flows

Q(v) constitute the coding graph Gv, and by solving the WCCP on Gv we get

modified queue length MQ(v).

So far the modified queue length reflects all conditions within a node. Next,

we take interference into account and arrive at the MIQ. Interference comes from

two sources. The first is the channel time occupied by adjacent nodes. When

adjacent nodes are transmitting, the transmission for this node is blocked by

the RTS signals to avoid collision. The second source is the interference that

is brought about by the flow itself. When the upstream node of this node is

transmitting packets for this flow, this node will be blocked as well. By ignoring

this effect, one will arrive at inappropriate routing metrics as described in the

124

following example. Suppose we have two possible routes from a source node to a

destination, one is two-hop and the other one is three-hop. Assume the network

is all idling prior to the arrival of this flow. If self-interference is ignored, the

metric for both flows will both equal to zero. But with the consideration of self

interference, the two-hop route will be preferred as its metric is only equivalent

to one times the offered load of this flow. The three-hop route will have a

metric of two times the offered load, because the self-interference impacts twice,

both by the source node and by the first hop node. Thus when self-interference

is ignored, the impact of the packet path along the downstream nodes is not

adequately taken into consideration.

Mathematically, modified interference queue length can be represented as:

MIQ(v) = MQ(v) + Σu∈N(v)MQ(u) +R (5.2)

, where N(v) denotes the set of neighbours of node v and R is the offered load

of the newly-arriving flow.

Lastly, the effect of packet loss is considered. By dividing the MIQ by the

successful transmission rate, we arrive at the final result of CRM. The Successful

transmission rate equals one minus the packet loss rate for a given node.

CRM(v) =
1 +MIQ(v)

1− P (v)
(5.3)

, where P (v) denotes the packet loss rate for the link at node v for the newly-

arriving flow. The CRM metric for the flow as a whole is the sum of CRM metric

125

of all nodes along the selected route.

CRM = Σv∈LCRM(v) (5.4)

, where L is the set of nodes along the selected route. In order to achieve higher

throughput and lower delay, one should choose the least-busy route, or the route

with the smallest metric value.

5.3 Application-layer Strategies

This section studies how the cross-layer design can help from the application

layer’s perspective. As pointed out in previous literatures [87], direct deployment

of P2P protocols on wireless ad hoc network is undesirable. The major limitation

is the topology constraint. For wired networks, the physical locations of the

peers are transparent to the P2P protocol. The logical topology overrides the

effect of physical location. However, physical location relationships are no longer

irrelevant or unimportant in wireless ad hoc networks. Even without putting

additional assumptions on the behaviour of a node, the choice of neighbour peers

is never homogeneous. Their physical location imposes an intrinsic constraint,

and this constraint can heavily impact the transmission performance.

As a result, P2P-based content distribution in wireless networks entails a

discrimination of peers. The peer-selection algorithm is given even higher im-

portance. For example, BitHoc [102] distinguishes near-by peers from far-away

peers. Peers that are more than two hops away are considered far away. In our

126

work, the power of network coding is tapped, so a peer-selection algorithm that

considers hop distance, coding benefits, and network traffic is called for. This is

exactly the routing metric we discussed in Section 5.2.

Applying solely the CRM in the peer-selection algorithm is, however, not

desirable as well. CRM is a good measure for the fitness of choosing a peer,

but solely applying this metric can easily cause starvation for a lot of other

nodes. Usually this problem is solved by introducing uncertainties, similar to

the optimistic unchoking mechanism in BitTorrent. For example, we can choose

peers mostly using CRM, but opt to other measures occasionally. The probability

is hard to determine, but as a rule of thumb, we fixed it to 20%. For example,

we can choose peers mostly using CRM, but opt to other measures occasionally.

Setting this probability too high will yield degraded efficiency, while setting it

too low can starve some nodes. As a rule of thumb, we fixed it to 20%. This

means that when a node is about to choose a new peer, it will choose a peer

with the smallest CRM value 80% of the time, while 20% of the time the node

will randomly choose a peer from the rest of all connected nodes.

The cross-layer channel brings in another improvement for the application

layer, i.e., the possibility of dynamic offered load adjustment based on coding

opportunities. For most of the P2P protocols, the offered load of P2P flows are

governed by the tit-for-tat reward scheme and the limitation of transmission ca-

pacity. This is essentially a contention where every flow is requesting for higher

offered load. However, we argue that with some coordination to intentionally

adjust offered loads among flows, all flows can be better off, including the flows

127

that yielded themselves to decrease offered load. The requests to adjust offered

load (INC and DEC) are sent backward from the intermediate nodes to source

nodes. Hence, it is not vulnerable to selfish nodes who want to increase offered

load all the time. We then describe the mechanism in three parts: how load

adjustment packets are generated at intermediate nodes; how they are transmit-

ted backwards to the source nodes; and how the source nodes respond to such

requests.

Load adjustment packets are generated according to the Quota-Generating

Algorithm described in Chapter 4. The logic behind the generation of load

adjustment packets is straightforward. For each flow, this intermediate node

can have 3 possible opinions: INC, DEC, and no opinion. What is attached

in the first two types of packets is a relevant amount. This amount denotes

the suggested change in offered load. If the quota generated in Algorithm 3

equals the offered load of this flow, it means that all packets from this flow can

be delivered with no problem. In such case, the opinion would be INC if this

node’s transmission capacity is not saturated. This node hints upstream nodes to

increase the offered load to fully utilize its bandwidth. In this case, the suggested

amount is the difference between transmission capacity and the cardinality of the

WCCP solution, divided by the total number of flows. Otherwise if this node’s

transmission capacity is saturated, the node expresses no opinion for this flow.

On the other hand when the quota is smaller than the offered load of this flow,

it means that this node cannot handle all packets from this flow, and actively

cuts off the overly-abundant supply of packets. Therefore, this node will hint

128

upstream node to decrease the offered load for this flow by sending DEC packets.

The relevant amount is then the difference between its current offered load and

its assigned quota. Be reminded that the quota will never be greater than the

offered load according to the Quota-Generating Algorithm. The objective of such

logic is to mediate the offered loads of all the flows such that the bandwidth is

fully utilized and no received packets are dropped due to insufficient transmission

capacity along the route.

The load adjustment packet is actually only a flag in the ACK packet from

the TCP protocol. Upon receiving a load adjustment packet at an intermediate

node, this node needs to consider its own opinion before forwarding to the up-

stream nodes. The DEC packet overrides the INC packets as a means to avoid

congestion. For example, if a node determines that a INC is appropriate for a

flow, but receives a DEC from the downstream node, it propagates this DEC

to upstream nodes and discards its own INC opinion. In other words, an INC

packet can reach the source node only when all intermediate nodes endorse the

INC decision or have no opinion.

When we jointly consider the INC/DEC packet generating rule and the for-

warding rule, we arrive at the overall flow chart depicting the generation of INC

and DEC packets as shown in Fig 5.1.

The source nodes adopt the following scheme to respond to load adjustment

packets: when the bandwidth is sufficient to accommodate higher offered load,

all INC requests are satiated while DEC requests are discarded; when the band-

width is saturated, INC requests are not processed until a DEC arrives. This

129

Run the Quota-Generation Algorithm

Recv load adjustment packets

from downstream nodes

Is this node the last intermediate

 node for this flow?

It is an INC It is a DEC
No opinion from

downstream node

The quota equals the offered load?

Is this node's transmission

capacity saturated?

Send DEC to upstream

 node for this flow

Send INC to upstream

 node for this flow
No opinion

END

Y N

Y

N

Y N

Figure 5.1: The flow chart depicting the generation of INC/DEC packets

scheme guarantees that a decrease in offered load for one flow is always accom-

panied with some increases for other flows.

5.4 Implementation

In this section, we discuss the implementation issues. The details are described

methodically, from the construction of the ad hoc network to the termination of

transmission.

5.4.1 Initial Setup

After the topology has been constructed, one node is assigned with a file to be

distributed. This node is then referred to as the seed node. This node then acts

as both a seed and a tracker. In order to make the file known to other nodes, it

130

broadcasts the meta-data of this file in a series of special RREQ messages with

no specific intended recipient. Nodes that heard this message can determine if

the file is of interest to them. If a node is interested in the file, it then sends

a RREP message to the seed node, establishing the route from the seed to this

node (leecher). The format of this special RREQ/RREP is shown in Fig 5.2a and

Fig 5.2b, respectively. Most of the field names are self-descriptive, so we refrain

from the tautology but only give some overall description. As for the length

of fields, a single row is generally 4 bytes (32 bits) unless otherwise stated in

parentheses. So one fourth of a row is one byte. Special fields such as FileSizeLen

is of length two bytes. Some concepts are borrowed from BitTorrent’s Torrent

file format[103]. Note that the RREP contains only a 8-bit hash of the file name

that is being shared. In our scenarios, we did not envision highly concurrent file

sharing.

Unlike traditional RREQ/RREP procedures, the arrival of RREP packets at

the seed node is not the end of the story. The seed node is responsible for sup-

plying a list of peers to the leecher. Upon receiving this list of peers, the leecher

node can then initiate connections to other peers in the list. When connections

are established for a majority of the nodes in the network, the swarm of a P2P

network is constructed and the routes between each pair of nodes are selected.

Following that, the nodes in the network then start periodic exchanges of piece

bitmaps. Each node keeps tracks of piece bitmaps of its two-hop neighbours

employing a rarest-first piece-selection algorithm [104].

131

Type Len PathLen Reserved

NameLen PieceSize FileSizeLen

Path (PathLen*4 bytes)

File Name (NameLen bytes)

Piece Hash List (*20 bytes)
FileSizeLen

PieceSize

(a) Special RREQ

Type Len PathLen Reserved

NameLen PieceSize FileSizeLen

Path (PathLen*4 bytes)

File Name (NameLen bytes)

Piece Hash List (*20 bytes)
FileSizeLen

PieceSize

(b) Special RREP

Figure 5.2: Special RREQ/RREP Packet Formats

132

5.4.2 Cross-layer Dynamics

Once the initial peer connections are established, we then consider how the

dynamics of the protocol stack fulfil the task of content distribution.

The first important issue is the update of offered load information. Initially,

each peer establishes new connections with other peers with a fixed start-up

offered load. This value is then adjusted by the mechanism we describe in Sec-

tion 5.3. The planned offered load is inserted in the source routing header to

inform the intermediate nodes. As such, intermediate nodes can plan their packet

scheduling algorithm better. Every 30 seconds, the uploading node will initiate

the RREQ/RREP procedure again to calculate the CRM again. The new CRM

value is used to re-evaluate peer selection, and peers may opt to change peers if

better routes are available.

From the observations of our simulation results, this re-evaluation of routes

is pivotal. Without this re-evaluation, the performance of our protocol will be no

better than existing coding-ignorant P2P protocols for ad hoc networks. This is

because a route selected in the initial setup soon becomes obsolete when network

traffic for other flows changes. The coding benefits may become less significant

or be totally invalidated after such changes. The re-evaluation interval should

not be set too short as well to avoid network turbulence.

133

5.4.3 Simulation Settings

We have implemented the above-described strategies collectively as a network-

layer routing protocol and an application-layer P2P protocol in Qualnet 1. Qual-

net is a network simulator with the 7-layer OSI network structure implemented.

We designed our protocols as modules and test the performance against the

topology shown in Fig 4.14.

In this topology, we choose node 3 to be the seed node, and nodes 0, 4, 8,

10, 13 as leecher nodes. The file to be distributed is 50 mega-bytes, divided into

3200 16-KB pieces. The piece size chosen is smaller than typical values seen in

BitTorrent due to the instability of wireless transmissions. A smaller piece size

can significantly increase the chance of successfully transmitting a whole piece

along multi-hop routes.

The performance of our protocol is compared against two other protocols.

The first is a direct implementation of BitTorrent. The second is BitHoc, a ver-

sion of BitTorrent tailored for wireless networks. For both protocols, network-

layer opportunistic network coding is turned on. Hence these two protocols

are referred to as “BitTorrent-NC” and “BitHoc-NC”. Our protocol is named

as Cross-layer solution with Network Coding (XLiNC). BitTorrent-NC, though

with network coding enabled, is expected to have the worst performance. This

is because the network topology of ad hoc networks is significantly different from

the wired networks where BitTorrent is often employed. The heterogeneity be-

tween peers can quickly deteriorate the transmission efficiency. BitHoc-NC takes

1http://web.scalable-networks.com/content/qualnet

134

Table 5.1: Simulation Parameters

Parameter Value Parameter Value

Terrain Dimension 1000x1000 Radio range 100 m

PHY layer PHY802.11b MAC Protocol MACDOT11

Transmission Rate 2Mbps Mobility None

Auto-rate-fallback Disabled Packet Payload 512 Bytes

of Unchoked Peers 2

a step further. It is able to discriminate peers according to their relative distances

in the network. Thus, the choice of peers can be done in a more bandwidth-

efficient way. In the meantime, BitHoc-NC sometimes selects far-away peers to

increase the transmission diversity. In XLiNC, a completely different peer selec-

tion scheme is employed. Peers are selected based on their offered-load-adjusted

CRM metric. XLiNC also introduces more transmission diversity by randomly

selecting other peers just like BitTorrent’s opportunistic unchoking. Our inten-

tion is to show a cross-layer design can utilize a synergy between wireless P2P

and network coding techniques.

Some of the simulation parameters are displayed in Table 5.1. Note that

some of the terms used in the table are specific to Qualnet, but their names are

self-descriptive.

5.4.4 Results

The finishing time is the most important evaluation criteria for a content dis-

tribution protocol. It measures the total amount of time required to finish the

content distribution. Fig 5.3 shows the cumulative percentage of progress for all

three protocols. The finishing time is 2653.79, 1490.87, and 1267.24 seconds for

135

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

F
in

is
he

d

Time Line (s)

BitTorrent-NC
BitHoc-NC

XLiNC

Figure 5.3: Cumulative Percentage Finished over Time

all three protocols respectively. It is observed that BitTorrent-NC has the longest

finishing time. The initialization of the P2P network is also slower, depicted by

the smoother slope at the beginning. This is because of an inappropriate peer-

selection algorithm. Choosing a far-away node as a peer and uploading to that

node at the initialization phase can significantly reduce the effectiveness of chan-

nel usage. The curve of BitHoc-NC and XLiNC coincide to overlap each other in

the beginning. This is because in the beginning, only the seed node can trans-

mit packets. Thus, the seed node becomes a bottleneck, restricting the overall

throughput. As the transmission continues, the content of the file is dispersed

across the network. With higher availability of the file, XLiNC can select peers

more wisely and utilize the coding gain better.

We also measure the number of coded packets sent in the network. As de-

picted in Fig 5.4, XLiNC has the highest number of coded packets sent. BitHoc-

NC sent less coded packets but their shapes are similar. BitTorrent-NC has

the least number of coded packets sent. As compared to the other two proto-

136

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000#
of

 C
od

ed
 P

ac
ke

ts
 S

en
t (

th
ou

sa
nd

)

Time Line (s)

BitTorrent-NC
BitHoc-NC

XLiNC

Figure 5.4: Number of Coded Packets Sent

cols, BitTorrent-NC has longer and flatter tails, indicating that network coding

is rarely seen, both at the beginning and at the end of the transmission. On

closer examination of this result, one may find that the smaller number of coded

packets is not the only cause for BitTorrent-NC’s much longer finishing time. In

fact, a significantly higher dropped-packet count is the major cause for it. In our

simulation, we measure the total amount of packets that are dropped. While in

XLiNC the total dropped count is 12,774, BitTorrent-NC almost quadrupled this

number, reaching a total of 44,933. To put this in context, note that the total

number of coded packets is less than 100,000 in BitTorrent-NC. This relatively

high drop rate can severely degrade performance. The reason for such high drop

rate is that BitTorrent tends to choose longer routes/peers. Both the failed TCP

transmissions and the mismatch between offered load and transmission capacity

at intermediate nodes are attributable for the higher dropped-packet count.

Next we go deeper to examine the synergistic effect between wireless P2P

and network coding techniques. BitTorrent-based P2P protocols usually share

137

the same mechanisms: opportunistic unchoking and anti-snubbing. Opportunis-

tic unchoking is indispensable in discovering better peers, and anti-snubbing is

making opportunistic unchoking more effective. Ideally, a peer can discover a

“snubbing” as soon as its paired peer stops to upload, and then initiates oppor-

tunistic unchoking to exchange files with another peer. Anti-snubbing is most

important in network-coding-enabled networks because an exchanging peer pair

is naturally a coding opportunity. Maintaining an equal and fair peer relation-

ship can make best use of network coding. When one peer stops to send, or lacks

new pieces, the balance is broken and coding opportunities are gone.

Fig 5.5 presents the number of downloaded/uploaded packets for selected

peer pairs. A peer pair denoted by i− j represents the peer pair between node

i and node j. For each pair, Uij and Uji are displayed for all three protocols,

where Uij denotes the amount uploaded by node i to node j. It is observed that,

for example, XLiNC exhibits higher traffic but lower absolute difference for pair

“4 − 8” and “8 − 13”. This is explained as follows. From the view of node 8 in

XLiNC, it evaluates all peers based on the CRM. Node 3, though being the seed

node, takes two hops to arrive and the route from node 3 to node 8 involves a

lot of interference from node 4. Node 10 takes 3 hops to arrive, so the CRM

value is also higher. On the contrary, node 4 is only one hop away, and node

13, when taking the route 13 − 12− 8 is mostly noise-free. So node 4 and node

13 are the preferred peers for node 8, and node 8 tries to connect to them more

often. On the other hand, since the routing layer can negotiate offered load

with application layer, the protocol will try to maximize the free-rider effect,

138

 0

 10

 20

 30

 40

 50

 60

 70

 80

0-4 0-10 4-8 4-10 8-10 8-13

T
he

 A
m

ou
nt

 o
f P

ac
ke

ts
 U

pl
oa

de
d/

D
ow

nl
oa

de
d

(t
ho

us
an

d)

Node Pairs

BitTorrent-NC Upload
BitTorrent-NC Download

BitHoc-NC Upload
BitHoc-NC Download

XLiNC Download
XLiNC Download

Figure 5.5: Upload/Download Amounts for Selected Pairs

or coding benefits, by reducing the disparity between the offered loads for both

directions in a pair.

5.5 Chapter Summary

In this chapter, we have proposed a cross-layer solution for wireless content

distribution utilizing network coding techniques. The advantages of introducing

this cross-layer solution is that we can exploit the synergy between network layer

and application layer. In wireless ad hoc networks, this cross-layer channel serves

well to exchange routing information and traffic pattern information.

The novelty of this solution consists of the following points:

1. The peer-selection algorithm in P2P applications is broadened to consider

specific routes. Given the routing metric information, peers are better

139

evaluated in terms of their contribution to overall throughput.

2. The routing metric can be calculated with precise offered load information.

This value can be more predictive than the average queue length, which is

the best guess given only information from the network layer.

3. A backward propagation of load adjustment packets is introduced to dy-

namically control the offered load. This avoids the bandwidth wastage

during congestions and improves coding efficiency at intermediate nodes.

In addition to these novel concepts, many implementation details are consid-

ered as well. These include the initial setup of the system followed by adaptations

to system dynamics. Simulation results show it is advantageous to employ such

a cross-layer solution. The performance of our cross-layer solution outperforms

another location-aware P2P protocol with network coding enabled.

140

Chapter 6

Conclusion

6.1 Thesis Contribution

In this thesis, we have investigated various issues on binding network coding

techniques with wireless ad hoc networks.

Among other challenges we face, the first part of the thesis strives to improve

coding-aware routing protocols’ robustness against network dynamics. Specifi-

cally, the timing, and the order in which flows join or exit the network, as well as

offered load changes should be coped with by the coding-aware routing protocol.

The protocol should be able to detect coding opportunities and evaluate coding

benefits regardless of the factors mentioned above. Hence, we have introduced

SCAR, a coding-aware routing protocol with self recommendation in wireless ad

hoc networks. The mechanism of self recommendation enables the protocol to

discover hidden coding opportunities that have been overlooked by other routing

protocols. Whenever a new flow joins the network and presents a new coding

141

opportunity, prior routing decisions are revised through a Route-Change proce-

dure. The Route-Change procedure triggered by the self recommendation is able

to adjust the biased routing metrics.

In order to gain further insights into how much our protocol can outperform

protocols without such route-maintenance procedure, a series of indicators are

introduced. Through topology analysis, the proposed indicator C2 estimates,

how much throughput gain is achievable by revising prior route decisions for 2

flows. Similarly, C3 reflects how much throughput gain is achievable if we initi-

ate a self-recommendation at the intermediate nodes for 3 flows. Testing these

indicators on multiple topologies reveals that the throughput gain achieved by

SCAR is not a coincidence and many practical topologies come with positive in-

dicators. Further simulations are done in Qualnet to evaluate our protocol. It is

shown that our protocol can significantly outperform other coding-aware routing

protocols and the predictions given by the indicators are generally correct. The

dynamic nature of our protocol results in a higher tolerance and adaptiveness

against changes.

The second issue we study is coding-aware packet scheduling algorithms.

To avoid misunderstanding, the scheduling problem considered in this thesis

is not the same scheduling problem defined in most literatures. Prior works

mostly define scheduling as the practice to coordinate all nodes’ transmissions

in a network. This scheduling can only be done with the full knowledge of the

topology, the transmission capacities, the planned transmission tasks, and the

full compliance of all nodes. Our thesis considers a totally different schedul-

142

ing problem. We consider the tactic chosen by a node to process its back-

logged packets in network-layer. It is proved in this thesis that a well-designed

network-layer packet scheduling algorithm can help us tune the performance of

the network. Specifically, we set the performance target to maximize minimum

per-flow throughput first, and then maximize the average per-flow throughput.

This target, though being a bit complex, is very practical in real deployments. In

addition, the tools we used in achieving this target are non-trivial and they cover

the tools used for other targets, such as directly maximizing overall throughput.

In our work, the scheduling problem is tackled first in a simplified and static

version. In this case, we abstract the static scheduling problem as an optimiza-

tion problem called WCCP. Since this problem is proved to be NP-hard, we pro-

posed pruning rules and approximation methods to keep this problem tractable,

while maintaining acceptable error. With our scheduling method, intermediate

nodes can clear packet queues faster and the scalability of the algorithm is also

studied. The findings are then applied to the dynamic form of the problem where

we consider multiple queueing systems with random packet arrivals and finite

queue lengths. We proposed a heuristic scheduling method (HEU) to address

the challenges posed. Since more uncertainties are brought into the problem,

HEU provides only 13% improvement in a dynamic situation, compared to the

20% performance gain in the static form. But after all, we can still gain positive

throughput gain and we managed to improve the fairness significantly. In the

simulation we observe that the minimum per-flow throughput is almost at the

same level as the average per-flow throughput. This is an indication of good fair-

143

ness control of the scheduling algorithm. The solution to this dynamic problem

is then incorporated into a routing protocol. Simulation results for this routing

protocol reveal that with proper scheduling, we can have better control over the

fairness of the network. When fairness is not a concern, one can easily adapt

our protocol to put more emphasis on those higher coding gain pairs to improve

throughput.

After considering the robustness, efficiency and fairness of network coding

techniques, we apply the findings to a full solution—P2P content distribution in

wireless ad hoc networks. The scenario is characterized by typical traffic pat-

terns in the form of multiple unicast flows. This pattern is generally suitable

for inter-flow network coding techniques. To make better use of the information

at hand, we adopt a cross-layer method to integrate the network layer and the

application layer together. The novelty of this cross-layer solution is generally

three-fold. Firstly, the application layer can give hints on the offered load in-

formation for flows. These hints are used by the network layer to produce more

reliable routing metrics. Compared to our previous way of calculating routing

metric, we no longer need to rely on the average queue length to predict future

offered load. Secondly, the routing metric, while on one hand reflects the appro-

priateness of choosing the route for a flow, also foretells the potential achievable

throughput of this flow. Thus, this information can be used by the application

layer to wisely choose neighbour peers. By choosing peers with better routing

metrics, the coding benefits can be exploited, and thus expedites the whole con-

tent distribution process. The third part of the novelty is the back propagation

144

of rate adjustment packets. Intermediate nodes, when doing packet scheduling,

can have a clear understanding of how coding efficiency can be improved. By

sending back rate adjustment packets, intermediate nodes can notify the source

nodes about the network conditions. This interaction between network layer and

application layer can help P2P content distribution systems utilize bandwidth

more efficiently.

6.2 Future Work

This thesis solved various problems in the incorporation of network coding tech-

niques into wireless ad hoc networks and reaches a cross-layer solution for a

typical wireless application. However, there are still a number of directions to

follow up:

1. A major limitation of XOR-based network coding is that ACK is not reli-

able. When multiple packets are coded together, at most one native packet

can have reliable ACK packet from the TCP protocol. For other native

packets that were transmitted in the same coded packet, there is no mech-

anism to ensure their successful transmissions. So one possible direction is

to employ a circular scheme that rotates among these native flows to choose

a “leading” flow. Moreover, the ACK of the “leading” flow is a modified

ACK that acknowledges multiple packets in the past for this flow. This

scheme can detect link failures much earlier than the currently employed

one.

145

2. The hidden terminal problem impacts network coding severely as well. A

great number of packet loss comes from interference of hidden terminals.

The hidden terminal problem can be much alleviated by a more organized

MAC-layer scheduling method. So this can be a future direction to improve

network coding efficiency as well.

3. The cross-layer solution to content distribution in wireless networks can

be improved further as well. The idea is to exploit the fact that file pieces

are universal across the network. In other words, a node that has received

a given piece previously can use the file to decode future coded packets.

It is not imperative for a node to have received the exact native packet

for decoding. As long as the node has received the corresponding piece, it

can decode successfully. This can help us increase the amount of network

coding opportunities, thus yielding higher throughputs.

146

Bibliography

[1] PricewaterhouseCoopers. North American wireless industry survey. PwC.

2013. url: http://www.pwc.com/en_US/us/industry/communications

/publications/assets/pwc-north-american-wireless-industy-sur

vey-2012.pdf.

[2] T. Matsuda, T. Noguchi, and T. Takine. “Survey of network coding

and its applications”. In: IEICE Transactions on Communications 94.3

(2011), pp. 698–717.

[3] R. Ahlswede, N. Cai, S. Li, and R. Yeung. “Network information flow”. In:

IEEE Transactions on Information Theory 46.4 (2000), pp. 1204–1216.

[4] S. Li, R. Yeung, and N. Cai. “Linear network coding”. In: IEEE Trans-

actions on Information Theory 49.2 (2003), pp. 371–381.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.

“XORs in the air: Practical wireless network coding”. In: IEEE/ACM

Transactions on Networking 16.3 (2008), pp. 497–510.

147

http://www.pwc.com/en_US/us/industry/communications/publications/assets/pwc-north-american-wireless-industy-survey-2012.pdf
http://www.pwc.com/en_US/us/industry/communications/publications/assets/pwc-north-american-wireless-industy-survey-2012.pdf
http://www.pwc.com/en_US/us/industry/communications/publications/assets/pwc-north-american-wireless-industy-survey-2012.pdf

[6] P. Chou, Y. Wu, and K. Jain. “Practical network coding”. In: Proceed-

ings of Allerton Conference on Communication, Control, and Computing.

2003, pp. 40–49.

[7] D. Lun, M. Médard, and R. Koetter. “Efficient operation of wireless

packet networks using network coding”. In: Proceedings of International

Workshop on Convergent Technologies. 2005.

[8] A. Ramamoorthy, J. Shi, and R. Wesel. “On the capacity of network cod-

ing for random networks”. In: IEEE Transactions on Information Theory

51.8 (2005), pp. 2878–2885.

[9] Z. Li and B. Li. “Network coding: The case of multiple unicast sessions”.

In: Proceedings of Allerton Conference on Communications. 2004.

[10] T. Ho and R. Koetter. “Online incremental network coding for multi-

ple unicasts”. In: Proceedings of DIMACS Working Group on Network

Coding. 2005.

[11] T. Ho, Y. Chang, and K. Han. “On constructive network coding for multi-

ple unicasts”. In: Proceedings of Allerton Conference on Communication,

Control and Computing. 2006.

[12] S. Rayanchu, S. Sen, J. Wu, S. Banerjee, and S. Sengupta. “Loss-aware

network coding for unicast wireless sessions: Design, implementation, and

performance evaluation”. In: Proceedings of ACM SIGMETRICS Perfor-

mance Evaluation Review. 2008, pp. 85–96.

148

[13] J. Le, J. Lui, and D. Chiu. “How many packets can we encode? - An analy-

sis of practical wireless network coding”. In: Proceedings of the 27th IEEE

International Conference on Computer Communications. 2008, pp. 371–

375.

[14] Z. Mobini, P. Sadeghi, M. Khabbazian, and S. Zokaei. “Power allocation

and group assignment for reducing network coding noise in multi-unicast

wireless systems”. In: IEEE Transactions on Vehicular Technology 61.8

(2012), pp. 3615–3629.

[15] A. Shafieinejad, F. Hendessi, and F. Fekri. “Network coding for multiple

unicast sessions in multi-channel/interface wireless networks”. In: Wire-

less Networks 19.5 (2013), pp. 891–911.

[16] R. Koetter and M. Médard. “An algebraic approach to network coding”.

In: IEEE/ACM Transactions on Networking 11.5 (2003), pp. 782–795.

[17] D. Nguyen, T. Tran, T. Nguyen, and B. Bose. “Wireless broadcast using

network coding”. In: IEEE Transactions on Vehicular Technology 58.2

(2009), pp. 914–925.

[18] T. Tran, T. Nguyen, B. Bose, and V. Gopal. “A hybrid network coding

technique for single-hop wireless networks”. In: IEEE Journal on Selected

Areas in Communications 27.5 (2009), pp. 685–698.

[19] D. Nguyen, T. Nguyen, and X. Yang. “Multimedia wireless transmission

with network coding”. In: Proceedings of Packet Video. 2007, pp. 326–

335.

149

[20] T. Tran and T. Nguyen. “Prioritized wireless transmissions using ran-

dom linear codes”. In: Proceedings of IEEE International Symposium on

Network Coding. 2010, pp. 1–6.

[21] T. Tran, T. Nguyen, and R. Raich. “On achievable throughput region

of prioritized transmissions via network coding”. In: Proceedings of 18th

Internatonal Conference on Computer Communications and Networks.

2009, pp. 1–6.

[22] T. Tran, D. Nguyen, and T. Nguyen. “A case for joint network coding and

power control in wireless linear networks”. In: Proceedings of 6th Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks Workshops. 2009, pp. 1–6.

[23] T. Tran, D. Nguyen, T. Nguyen, and D. Tran. “Joint network coding and

power control for cellular radio networks”. In: Proceedings of 2nd Inter-

national Conference on Communications and Electronics. 2008, pp. 1–

6.

[24] Y. Wu, P. Chou, and S. Kung. “Minimum-energy multicast in mobile ad

hoc networks using network coding”. In: IEEE Transactions on Commu-

nications 53.11 (2005), pp. 1906–1918.

[25] X. Liu, K. Fouli, R. Kang, and M. Maier. “Network-coding-based energy

management for next-generation passive optical networks”. In: Journal

of Lightwave Technology 30.6 (2012), pp. 864–875.

150

[26] M. Zhou, Q. Cui, R. Jantti, and X. Tao. “Energy-efficient relay selec-

tion and power allocation for two-way relay channel with analog network

coding”. In: IEEE Communications Letters 16.6 (2012), pp. 816–819.

[27] T. Cui, L. Chen, and T. Ho. “Energy efficient opportunistic network cod-

ing for wireless networks”. In: Proceedings of the 27th IEEE International

Conference on Computer Communications. 2008, pp. 361–365.

[28] J. Le, J. Lui, and D. Chiu. “DCAR: Distributed coding-aware routing

in wireless networks”. In: IEEE Transactions on Mobile Computing 9.4

(2010), pp. 596–608.

[29] S. Sengupta, S. Rayanchu, and S. Banerjee. “An analysis of wireless net-

work coding for unicast sessions: The case for coding-aware routing”.

In: Proceedings of the 26th IEEE International Conference on Computer

Communications. 2007, pp. 1028–1036.

[30] S. Das, Y. Wu, R. Chandra, and Y. Hu. “Context-based routing: Tech-

nique, applications, and experience”. In: Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation. 2008,

pp. 379–392.

[31] A. Khreishah, I. Khalil, and J. Wu. “Distributed network coding-based

opportunistic routing for multicast”. In: Proceedings of the 13th ACM

International Symposium on Mobile Ad Hoc Networking and Computing.

2012, pp. 115–124.

151

[32] P. Chaporkar and A. Proutiere. “Adaptive network coding and schedul-

ing for maximizing throughput in wireless networks”. In: Proceedings of

the 13th Annual International Conference on Mobile Computing and Net-

working. 2007, pp. 135–146.

[33] B. Scheuermann, W. Hu, and J. Crowcroft. “Near-optimal co-ordinated

coding in wireless multihop networks”. In: Proceedings of the 3rd Inter-

national Conference on Emerging Networking Experiments and Technolo-

gies. 2007.

[34] D. Traskov, M. Heindlmaier, M. Médard, and R. Koetter. “Scheduling for

network-coded multicast”. In: IEEE/ACM Transactions on Networking

20.5 (2012), pp. 1479–1488.

[35] L. Yang, Y. Sagduyu, and J. Li. “Adaptive network coding for scheduling

real-time traffic with hard deadlines”. In: Proceedings of the 13th ACM

International Symposium on Mobile Ad Hoc Networking and Computing.

2012, pp. 105–114.

[36] T. Kim, S. Vural, I. Broustis, D. Syrivelis, S. Krishnamurthy, and T. La

Porta. “A framework for joint network coding and transmission rate con-

trol in wireless networks”. In: Proceedings of the 29th IEEE International

Conference on Computer Communications. 2010, pp. 1–9.

[37] Y. Yan, B. Zhang, H. Mouftah, and J. Ma. “Practical coding-aware mech-

anism for opportunistic routing in wireless mesh networks”. In: Pro-

152

ceedings of IEEE International Conference on Communications. 2008,

pp. 2871–2876.

[38] Y. Wu, P. Chou, and S. Kung. Information exchange in wireless networks

with network coding and physical-layer broadcast. Tech. rep. MSR-TR-

2004, 2004.

[39] A. Eryilmaz, A. Ozdaglar, and M. Medard. “On delay performance gains

from network coding”. In: Proceedings of 40th Annual Conference on In-

formation Sciences and Systems. 2006, pp. 864–870.

[40] S. Hu and H. Médard. “The importance of being opportunistic: Practi-

cal network coding for wireless environments”. In: Proceedings of 43rd

Allerton Conference on Communication, Control, and Computing. 2005.

[41] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B.

Leong. “A random linear network coding approach to multicast”. In:

IEEE Transactions on Information Theory 52.10 (2006), pp. 4413–4430.

[42] C. Intanagonwiwat, R. Govindan, and D. Estrin. “Directed diffusion: A

scalable and robust communication paradigm for sensor networks”. In:

Proceedings of the 6th Annual International Conference on Mobile Com-

puting and Networking. 2000, pp. 56–67.

[43] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. “Energy-efficient

communication protocol for wireless microsensor networks”. In: Proceed-

ings of the 33rd Annual Hawaii International Conference on System Sci-

ences. 2000, pp. 1–10.

153

[44] Q. Li, J. Aslam, and D. Rus. “Hierarchical power-aware routing in sen-

sor networks”. In: Proceedings of the DIMACS Workshop on Pervasive

Networking. 2001.

[45] T. Singh, N. Gupta, and J. Minj. “Hierarchical cluster based routing pro-

tocol with high throughput for wireless sensor networks”. In: Proceedings

of IEEE International Conference on Signal Processing, Computing and

Control. 2013, pp. 1–6.

[46] Y. Xu, J. Heidemann, and D. Estrin. “Geography-informed energy conser-

vation for ad hoc routing”. In: Proceedings of the 7th Annual International

Conference on Mobile Computing and Networking. 2001, pp. 70–84.

[47] C. Perkins and E. Royer. “Ad-hoc on-demand distance vector routing”.

In: Proceedings of 2nd Workshop on Mobile Computing Systems and Ap-

plications. 1999, pp. 90–100.

[48] D. Johnson and D. Maltz. “Dynamic source routing in ad hoc wireless

networks”. In: Mobile Computing. Springer, 1996, pp. 153–181.

[49] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,

A. Qayyum, and L. Viennot. “Optimized link state routing protocol”. In:

RFC 3626 (2003).

[50] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. “Performance

of multihop wireless networks: Shortest path is not enough”. In: ACM

SIGCOMM Computer Communication Review 33.1 (2003), pp. 83–88.

154

[51] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. “Link-level

measurements from an 802.11 b mesh network”. In: Proceedings of ACM

SIGCOMM Computer Communication Review. 2004, pp. 121–132.

[52] M. Halloush and H. Radha. “Network coding with multi-generation mix-

ing: A generalized framework for practical network coding”. In: IEEE

Transactions on Wireless Communications 10.2 (2011), pp. 466–473.

[53] S. Kim. “Concatenated random parity forwarding in large-scale multi-hop

relay networks”. In: Proceedings of Military Communications Conference.

2007, pp. 1–7.

[54] J. Jin and B. Li. “Adaptive random network coding in WiMAX”. In:

Proceedings of IEEE International Conference on Communications. 2008,

pp. 2576–2580.

[55] R. Prasad, H. Wu, D. Perkins, and N. Tzeng. “Local topology assisted

XOR coding in wireless mesh networks”. In: Proceedings of 28th Interna-

tional Conference on Distributed Computing Systems Workshops. 2008,

pp. 156–161.

[56] C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, and H. Rahul.

“Wireless network coding: Opportunities & Challenges”. In: Proceedings

of Military Communications Conference. 2007, pp. 1–8.

[57] Y. Sagduyu and A. Ephremides. “Joint scheduling and wireless network

coding”. In: Proceedings of WINMEE, RAWNET and NETCOD 2005

Workshops. 2005.

155

[58] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. “On MAC scheduling and

packet combination strategies for practical random network coding”. In:

Proceedings of IEEE International Conference on Communications. 2007,

pp. 3582–3589.

[59] S. Shabdanov, C. Rosenberg, and P. Mitran. “Joint routing, scheduling,

and network coding for wireless multihop networks”. In: Proceedings of

9th International Symposium on Modeling and Optimization in Mobile,

Ad Hoc and Wireless Networks. 2011, pp. 33–40.

[60] N. Jones, B. Shrader, and E. Modiano. “Optimal routing and schedul-

ing for a simple network coding scheme”. In: Proceedings of 31st IEEE

International Conference on Computer Communications. 2012, pp. 352–

360.

[61] J. Ghaderi, T. Ji, and R. Srikant. “Connection-level scheduling in wireless

networks using only MAC-layer information”. In: Proceedings of the 31st

IEEE International Conference on Computer Communications. 2012.

[62] S. Wang, Q. Song, X. Wang, and A. Jamalipour. “Distributed MAC pro-

tocol supporting physical-layer network coding”. In: IEEE Transactions

on Mobile Computing 12.5 (2013), pp. 1023–1036.

[63] H. Yomo and P. Popovski. “Opportunistic scheduling for wireless network

coding”. In: Proceedings of IEEE International Conference on Commu-

nications. 2007, pp. 5610–5615.

156

[64] B. Ni, N. Santhapuri, C. Gray, and S. Nelakuditi. “Selection of bit-rate

for wireless network coding”. In: Proceedings of the 5th IEEE Annual

Communications Society Conference on Sensor, Mesh and Ad Hoc Com-

munications and Networks Workshops. 2008, pp. 1–6.

[65] M. Zhao and Y. Yang. “Packet scheduling with joint design of MIMO and

network coding”. In: Journal of Parallel and Distributed Computing 72.3

(2009), pp. 227–236.

[66] V. Srivastava and M. Motani. “Cross-layer design: A survey and the road

ahead”. In: IEEE Communications Magazine 43.12 (2005), pp. 112–119.

[67] S. Buzzi, H. Poor, and D. Saturnino. “Adaptive cross-layer distributed

energy-efficient resource allocation algorithms for wireless data networks”.

In: EURASIP Journal on Advances in Signal Processing (2009).

[68] G. Carneiro, J. Ruela, and M. Ricardo. “Cross-layer design in 4G wireless

terminals”. In: IEEE Wireless Communications 11.2 (2004), pp. 7–13.

[69] L. Chen, S. Low, M. Chiang, and J. Doyle. “Cross-layer congestion con-

trol, routing and scheduling design in ad hoc wireless networks”. In: Pro-

ceedings of the 25th IEEE International Conference on Computer Com-

munications. 2006, pp. 1–13.

[70] M. Conti, S. Giordano, G. Maselli, and G. Turi. “Mobileman: Mobile

metropolitan ad hoc networks”. In: Proceedings of Personal Wireless

Communications. 2003, pp. 169–174.

157

[71] V. Raisinghani and S. Iyer. “ECLAIR: An efficient cross layer architecture

for wireless protocol stacks”. In: Proceedings of World Wireless Congress.

2004.

[72] W. Su and T. Lim. “Cross-layer design and optimisation for wireless sen-

sor networks”. In: International Journal of Sensor Networks 6.1 (2009),

pp. 3–12.

[73] J. Yuan, Z. Li, W. Yu, and B. Li. “A cross-layer optimization framework

for multicast in multi-hop wireless networks”. In: Proceedings of the 1st

International Conference on Wireless Internet. 2005, pp. 47–54.

[74] L. Song and D. Hatzinakos. “A cross-layer architecture of wireless sensor

networks for target tracking”. In: IEEE/ACM Transactions on Network-

ing 15.1 (2007), pp. 145–158.

[75] N. Zhao and L. Sun. “Research on cross-layer frameworks design in wire-

less sensor networks”. In: Proceedings of the 3rd International Conference

on Wireless and Mobile Communications. 2007.

[76] M. Razzaque, S. Dobson, and P. Nixon. “Cross-layer architectures for

autonomic communications”. In: Journal of Network and Systems Man-

agement 15.1 (2007), pp. 13–27.

[77] J. Kuo, C. Shih, C. Ho, and Y. Chen. “A cross-layer approach for real-

time multimedia streaming on wireless peer-to-peer ad hoc network”. In:

Ad Hoc Networks 11.1 (2013), pp. 339–354.

158

[78] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. “GRACE:

Cross-layer adaptation for multimedia quality and battery energy”. In:

IEEE Transactions on Mobile Computing 5.7 (2006), pp. 799–815.

[79] R. Madan, S. Cui, S. Lall, and A. Goldsmith. “Cross-layer design for life-

time maximization in interference-limited wireless sensor networks”. In:

IEEE Transactions on Wireless Communications 5.11 (2006), pp. 3142–

3152.

[80] R. Xia and J. Muppala. “A survey of BitTorrent performance”. In: IEEE

Communications Surveys & Tutorials 12.2 (2010), pp. 140–158.

[81] D. Chiu, R. Yeung, J. Huang, and B. Fan. “Can network coding help

in P2P networks?” In: Proceedings of 2nd Workshop on Network Coding,

Theory, and Applications (in Conjunction with WiOpt 2006). 2006, pp. 1–

5.

[82] C. Gkantsidis and P. Rodriguez. “Network coding for large scale content

distribution”. In: Proceedings of the 24th IEEE International Conference

on Computer Communications. 2005, pp. 2235–2245.

[83] C. Huang, T. Hsu, and M. Hsu. “Network-aware P2P file sharing over

the wireless mobile networks”. In: IEEE Journal on Selected Areas in

Communications 25.1 (2007), pp. 204–210.

[84] Y. Zhu, B. Li, and J. Guo. “Multicast with network coding in application-

layer overlay networks”. In: IEEE Journal on Selected Areas in Commu-

nications 22.1 (2004), pp. 107–120.

159

[85] Q. Yan, M. Li, Z. Yang, W. Lou, and H. Zhai. “Throughput analysis of co-

operative mobile content distribution in vehicular network using symbol

level network coding”. In: IEEE Journal on Selected Areas in Communi-

cations 30.2 (2012), pp. 484–492.

[86] Y. Kao, C. Lee, P. Wu, and H. Kao. “A network coding equivalent content

distribution scheme for efficient peer-to-peer interactive VoD streaming”.

In: IEEE Transactions on Parallel and Distributed Systems 23.6 (2012),

pp. 985–994.

[87] M. Conti, E. Gregori, and G. Turi. “A cross-layer optimization of gnutella

for mobile ad hoc networks”. In: Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking and Computing. 2005, pp. 343–

354.

[88] U. Lee, S. Lee, K. Lee, and M. Gerla. “Understanding processing over-

heads of network coding-based content distribution in VANETs”. In:

IEEE Transactions on Parallel and Distributed Systems 24.11 (2013),

pp. 2304–2318.

[89] D. Johnson, D. Maltz, and J. Broch. “DSR: The dynamic source routing

protocol for multi-hop wireless ad hoc networks”. In: Ad Hoc Networking

5 (2001), pp. 139–172.

[90] Y. Yan, Z. Zhao, B. Zhang, H. Mouftah, and J. Ma. “Rate-adaptive

coding-aware multiple path routing for wireless mesh networks”. In: Pro-

ceedings of IEEE Global Communications Conference. 2008, pp. 1–5.

160

[91] J. Zhang and Q. Zhang. “Cooperative network coding-aware routing for

multi-rate wireless networks”. In: Proceedings of the 28th IEEE Interna-

tional Conference on Computer Communications. 2009, pp. 181–189.

[92] Y. Yan, B. Zhang, J. Zheng, and J. Ma. “Core: A coding-aware oppor-

tunistic routing mechanism for wireless mesh networks”. In: IEEE Wire-

less Communications 17.3 (2010), pp. 96–103.

[93] S. Sengupta, S. Rayanchu, and S. Banerjee. “Network coding-aware rout-

ing in wireless networks”. In: IEEE/ACM Transactions on Networking

18.4 (2010), pp. 1158–1170.

[94] J.-S. Park, D. S. Lun, F. Soldo, M. Gerla, and M. Medard. “Performance

of Network Coding in Ad Hoc Networks”. In: Proceedings of IEEE Mili-

tary Communications Conference (MILCOM 2006). 2006.

[95] R. Karp. “Reducibility among combinatorial problems”. In: 50 Years of

Integer Programming 1958-2008 (2010), pp. 219–241.

[96] W. Hsu and G. Nemhauser. “A polynomial algorithm for the minimum

weighted clique cover problem on claw-free perfect graphs”. In: Discrete

Mathematics 38.1 (1982), pp. 65 –71.

[97] W. Hsu and G. Nemhauser. “Algorithms for maximum weight cliques,

minimum weighted clique covers and minimum colorings of claw-free per-

fect graphs”. In: Topics on Perfect Graphs 88 (1984), pp. 357–369.

[98] C. Berge and E. Minieka. Graphs and hypergraphs. Vol. 7. North-Holland

Publishing Company Amsterdam, 1973.

161

[99] F. Bonomo, G. Oriolo, and C. Snels. “Minimum weighted clique cover on

strip-composed perfect graphs”. In: Graph-Theoretic Concepts in Com-

puter Science. Springer Berlin Heidelberg, 2012, pp. 22–33.

[100] E. Gilbert. “Random graphs”. In: The Annals of Mathematical Statistics

30.4 (1959), pp. 1141–1144.

[101] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. “Mason: A

multi-agent simulation environment”. In: Simulation: Transactions of the

Society for Modeling and Simulation International 81.7 (2005), pp. 517–

527.

[102] A. Krifa, M. Sbai, C. Barakat, and T. Turletti. “BitHoc: A content sharing

application for wireless ad hoc networks”. In: Proceedings of the 7th IEEE

International Conference on Pervasive Computing and Communications.

2009, pp. 1–3.

[103] B. Cohen. The BitTorrent protocol specification. Jan. 2008. url: http:/

/www.bittorrent.org/beps/bep_0003.html.

[104] B. Cohen. “Incentives build robustness in BitTorrent”. In: Proceedings of

Workshop on Economics of Peer-to-Peer Systems. 2003, pp. 68–72.

162

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html

List of Publications

[1] J. Wang, C. Zhu, T. Y. Chai, andW.Wong. “SCAR: A coding-aware rout-

ing protocol with self recommendation in static wireless ad hoc networks”.

In: Journal of Computer Networks and Communications 2014.637278

(2014), pp. 1–12.

[2] J. Wang, T. Y. Chai, and W. Wong. “Towards a fair and efficient packet

scheduling scheme in inter-flow network coding”. In: Journal of Sensor

and Actuator Networks 2014.4 (2014), pp. 274–296.

[3] J. Wang, T. Y. Chai, and W. Wong. “Content Distribution in wireless ad

hoc networks with network coding”. In: Proceedings of the 14th Interna-

tional Conference on Communication Systems. Macau, Nov. 2014.

[4] J. Wang, T. Y. Chai, and W. Wong. “Optimizing packet scheduling deci-

sions with network coding”. In: Proceedings of International Conference

on Telecommunications. Lisbon, Portugal, May 2014.

[5] J. Wang, C. Zhu, Q. Guo, T. Y. Chai, and W. Wong. “SCAR: A dy-

namic coding-aware routing protocol”. In: Proceedings of the 6th Inter-

163

national Conference on Signal Processing and Communication Systems.

Gold Coast, Australia, Dec. 2012.

[6] C. Zhu, C. Guo, J. Wang, and T. Tay. “Towards scalability issue in

ontology-based context-aware systems”. In: Proceedings of 2012 Inter-

national Conference on Software and Computer Applications. June 2012,

pp. 127–131.

164

	Summary
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	Background
	Research Challenges
	Thesis Contribution
	Thesis Organization

	Related Works
	Overview of Network Coding
	Robustness in wireless ad hoc networks

	Network Coding for Scheduling Problem
	Overheads in Network Coding
	MAC-Layer and Physical-Layer Scheduling

	Content Distribution in Wireless Ad Hoc Networks with Network Coding
	Overview of Cross-layer Designs
	Content distribution using BitTorrent-like protocols

	Improving the Robustness of Coding-aware Routing Protocols to Flow Arrivals
	Introduction
	Protocol Overview
	Digest of the DCAR protocol
	Two tables to store flow information
	Self recommendations
	Handling Self Recommendations
	Decision Making
	Controlling the Frequency of Self Recommendations

	Route-Change Procedure
	Procedure Timeline
	The Unbiased CRM Metric

	Topology Analysis
	Theoretical Induction of Indicators
	Simulation Results

	Evaluation
	Simulation 1. Simple Topology
	Simulation 2. ``Wheel'' Topology
	Simulation 3. Grid Topology

	Chapter Summary

	Improving Coding Efficiency and Fairness by Network-layer Packet Scheduling Algorithm
	Introduction
	The Static Form of the Problem
	Weighted Clique Cover Problem
	Solution to WCCP
	Scalability and Error Analysis

	The Dynamic Form of the Problem
	Heuristic Scheduling
	Performance with Poisson Arrivals

	Evaluation
	Simulation 1
	Simulation 2

	Chapter Summary

	Content Distribution in Wireless Ad Hoc Networks with Network Coding
	Introduction
	Routing Metric
	Application-layer Strategies
	Implementation
	Initial Setup
	Cross-layer Dynamics
	Simulation Settings
	Results

	Chapter Summary

	Conclusion
	Thesis Contribution
	Future Work

	Bibliography
	List of Publications

