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SUMMARY 

 

A novel all-optical switching device, being termed as photonic transistor (PT), 

which utilizes the optically induced gain and absorption change to manipulate the 

interference characteristics in a 2-waveguide directional coupler, was recently 
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proposed. Initial theoretical studies show high-speed all-optical switching with 

switching gain and substantially lower power than the semiconductor optical 

amplifier (SOA) approach can be realized based on the new switching scheme, which 

will benefit next-generation ultrafast and power-efficient optical network. However, 

systematical studies and experimental realization of PT have been lacking.  

In this dissertation, first of all, the parametric analysis of the absorption-assisted 

energy-up photonic transistor (EUPT) switching performance is carried out based on 

a new analytical method developed, highlighting the important device design aspects 

that have never been raised before. Quantitative evaluation of the switching gain, 

switching speed and energy consumption is carried out based on InGaAsP bulk 

semiconductor, showing an absorption factor      value of greater than 30 is 

required to achieve switching gain and a minimum energy of ~250fJ/bit is consumed 

with use of bulk semiconductor, which is about 10 times higher than the 50fJ/bit 

required for the initially proposed 4-level system with      of about 7-10. 

Secondly, the interband absorption and gain characteristics in the 

semiconductor quantum well is theoretically analyzed and compared with the bulk 

semiconductor based on the Free-Carrier theory. The results suggest the employment 

of quantum well in EUPT will benefit the switching gain, but will not affect the 

switching speed or energy consumption significantly. For QW-InGaAsP based 

EUPT, the      requirement to achieve switching gain >1 is reduced to 22. 

Thirdly, photonic transistor is fabricated in an integrated platform for the first 

time with different fabrication approaches being developed, including quantum-well-

intermixing (QWI) assisted approach on InP-based substrate, and III-V-on-silicon 

integration approach assisted by direct wafer bonding technique. Based on the 

evaluation of fabrication complexity and challenges, we adopt the self-aligned QW-
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on-SOI architecture for final device fabrication.  

Fourthly, two new PT architectures based on three-waveguide (3-WG) 

directional coupler and MZI are proposed to alleviate the fabrication challenges 

posed to the initial design, and 3-WG EUPT is shown to exhibit advantageous 

performance over the 2-WG and MZI EUPT.  

Lastly, optical studies of the devices fabricated are performed and pump-control 

switching with switching gain is demonstrated in a single-waveguide structure. 
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    : Simulated mode power 

    : Simulated mode intensity 
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CHAPTER I    INTRODUCTION AND MOTIVATION 

 

1.1 Backgrounds  

All-optical communication network was first proposed a quarter of century ago, 

with the original goal of keeping the entire network connections in the optical domain 

to eliminate the so-called electronic bottleneck. In the past decades, optical 

transmission has benefitted from the continued advancements of fiber technology, 

including the development of low loss optical fiber, Wavelength-Division 

Multiplexing (WDM) technology and the invention of erbium-doped fiber amplifier 

(EDFA), which dramatically increased the network capacity in a cost-effective 

manner. However, the complementary all-optical switching breakthrough is largely 

absent, leading to a modified reality that electronics remains at some points along the 

data path for signal regeneration and switching. The resultant system involves large 

number of transitions between optical and electrical domains, i.e. Optical-to-

Electrical (OE) and Electrical-to-Optical (EO) or OEO conversions, which poses a lot 

of power consumption, space occupation, and reliability issues [1]. 

In spite of the recent development of photonic integration circuit (PIC) 

technology in the core optical network [2], where the discrete components in the 

traditional optical system, e.g. the transponder and wavelength demultiplexer, are 

monolithically integrated on a chip, resulting in a significant reduction of cost, power, 

space and reliability burdens, PIC technology does not remove the OEO paradigm. 

The ‘electronic bottleneck’ regarding the speed limitation and scalability issue of 

electronic switch, remains in the core electronic switching [2].  

With the fast growing demand for network traffic speed and capacity, the data 
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bitrates continue to increase and the intensive electronic processing at the 

transponders consumes increasingly high power. If the same techniques are used in 

future system, the situation will be greatly exacerbated. Therefore, continual effort 

has been devoted into the development of all-optical processing devices in the past 

decades in order to eliminate the OEO architecture and bring back the original vision 

of all-optical communication network.  

All-optical processing has been widely studied with different material systems 

and various device configurations, among which semiconductor-based all-optical 

processing devices have substantial interests due to the capability of realizing all-

optical processing and optical interconnects in an integrated platform (the photonic 

integration circuit), which will benefit the next-generation ultrafast and power-

efficient optical network [3-4].  

To realize large-scale system integration on chip requires a series of 

considerations on the switching device components, including high switching speed, 

low device power consumption, CMOS compatibility, small device footprint, as well 

as switching gain. Switching gain describes the ability of using small signal beam 

power to switch a much larger beam power, which is an important device requirement 

to achieve cascadability and high fan-out for the switches. 

Currently, the two mainstream technologies for semiconductor-based all-optical 

switches include semiconductor optical amplifier (SOA) and more recently silicon 

photonics. Implementation of ultrafast silicon photonic switch is largely based on the 

weak χ
(3)

 nonlinearity, which usually requires high-Q cavity enhancement to 

compensate the low χ
(3)

, resulting in very narrow bandwidth [5]. SOA-based all-

optical switch utilizes the higher though slower n
(2)

 effect, commonly with use of the 

Mach-Zehnder Interferometer (MZI) configuration, which usually resulted in a 
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millimeter-sized device [6-7]. Apart from the large device footprint, each SOA pair 

requires high electrical power (~0.5W per SOA) and careful electrical biasing at the 

optical transparency point to operate. The spontaneous emission noise added to the 

output signal by the switching process is another problem with the SOA based switch. 

Thus, those SOA switch has been around for many years, it has yet to see much 

practical network deployment.  

In terms of switching gain, the intensity cross modulation between the pump 

and signal in the fast n
(2)

 or χ
(3)

 processes fundamentally makes it impossible to 

achieve switching gain. As a result, in the SOA-based all-optical switches, additional 

optical amplifier has to be employed to amplify the output signal, which consumes 

even more electrical power and result in higher spontaneous emission noise. Some 

switching devices based on the slower switching processes such as thermal optics 

could result in some apparent switching gain. A reported silicon-based switch that 

exhibits switching gain utilizes the slow thermo-optic effect in a dual-ring-resonator 

structure, giving less than 0.1nm switching bandwidth and switching gain up to 3dB 

[8]. 

 

 

1.2 Photonic Transistor 

More recently, a new switching scheme that utilizes the optically induced gain 

and absorption change to manipulate the coupling characteristics in a two-waveguide 

(2-WG) directional coupler was proposed. Based on the new switching scheme, a 

highly efficient all-optical switch, being termed as photonic transistor (PT), is 

theoretically demonstrated. It shows that such PT device can realize high-speed all-

optical switching with switching gain and substantially lower power than the SOA 
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approach [9]. Spontaneous emission noise that is commonly present in the SOA-

based switching device can be intrinsically avoided in the proposed switching scheme. 

Cascading ability is further promised by the switching gain. In addition, based on 

high-refractive-index-contrast nano-waveguide, the device footprint of PT is much 

smaller than that of SOA-MZI architecture. Good input/output isolation, broad 

operational bandwidth and free of biasing are promised in the proposed photonic 

transistor. Furthermore, the implementation of PT involves a pump supply and a 

signal beam at different wavelengths, thus intrinsically promising the wavelength 

conversion functionality, which is an important functionality to overcome the traffic 

blocking issue associated with the wavelength continuity constraint in the WDM all-

optical network [1].  

The initial study of PT was carried out based on the numerical simulation via a 

FDTD program incorporated with a 4-level 2-electron quantum mechanical model 

[10-12]. With the employment of two electron governed by the Pauli exclusion 

principle, the 4-level 2-electron model takes into account a simple picture of electron-

hole pumping dynamics from the lower valence band to the upper conduction band. 

However, this model is still too simple to properly encompass the complex physical 

effects in the medium such as the semiconductor energy band structure, band filling 

effect with Fermi Dirac statistics, carrier induced gain and refractive index change, 

and carrier relaxation to thermal equilibrium after excitation. As a result, much of the 

transient and nonlinear behaviors in the medium were not included. Later, a more 

sophisticated model capable of modeling realistic semiconductor band properties, 

namely multi-level multi-electron model, was proposed for photonic transistor study 

[9]. In that model, the semiconductor band is modeled by many pairs of levels, which 

can quite accurately take into account of band filling effect and interband and 
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intraband transition. However, introducing sufficient number of levels to cover the 

full Fermi-Dirac distribution is important for accurate simulation. As a result, the 

computational efficiency is compromised for fully exploring the operational space 

and fast device design. According to our best knowledge, there have been no further 

studies reported on this new switching device since the initial proposal. Systematic 

studies and experimental realization of such photonic transistor device have been 

lacking. 

This thesis aims at carrying out the first systematic study of the photonic 

transistor, establishing the progress of the photonic transistor research and delivering 

the useful information so that future photonic transistor research work can be built on 

them. 

 

 

1.3 Outline of Dissertation 

This dissertation is the first work that details and systemizes the study of 

photonic transistor from both the theoretical and experimental perspectives. In the 

theoretical part, we developed a new analytical approach that can properly address 

the complex carrier dynamics and light propagation characteristics simultaneously in 

a realistic semiconductor waveguide structure. Efficient parametric study of the 

photonic transistor performance is thus promised. A series of physical insights and 

important device design aspects are highlighted for the first time. Furthermore, we 

proposed two alternative architectures of photonic transistor to address the sever 

fabrication challenges associated with the original version. Theoretical studies show 

no compromise of the switching performance in these new architectures.  

As for the experimental part, the first successful fabrication of photonic 
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transistor based on a hybrid silicon photonic integration platform is reported in this 

dissertation. Different fabrication process flows are developed and evaluated, which 

provides useful guidelines for the future fabrication work. The important material 

parameters that determine the switching performance of photonic transistor are 

experimentally characterized in this dissertation. All-optical switching with switching 

gain is demonstrated for the first time in a hybrid III-V/Si nano-photonic platform. 

The dissertation is presented in the following manner: 

We start with an introduction of the photonic transistor in Chapter II. The new 

switching physics proposed, namely Gain and Absorption Manipulation of Optical 

Interference (GAMOI), and the two complementary types of photonic transistor, 

namely energy-up photonic transistor (EUPT) and energy-down photonic transistor 

(EDPT), will be introduced. Advantageous performance of GAMOI-based photonic 

transistor will be highlighted, based on the Figure of Merit calculation as proposed in 

[9]. Subsequently, we focus on the discussion of the computational model for active 

semiconductor device simulation. It is highlighted that the widely used 4-level 2-

electron FDTD model has a serious drawback that is it does not take into account of 

the realistic semiconductor band structure, thus cannot properly address the band 

filling effect, interband and intraband transition, etc. An advanced quantum 

mechanical FDTD model, named multi-level multi-electron FDTD (MLME-FDTD), 

was proposed to overcome the drawbacks of 4-level 2-electron FDTD model to 

simulate the photonic transistor realistically [9]. The results show that utilizing 

semiconductor as the active medium result in a switching performance for the 

GAMOI PT that is worse than that given by the initial idealized 4-level 2-electron 

FDTD medium.  

In the subsequent three chapters, Chapter III, IV and V, a new analytical model 
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is developed that will enable a much more efficient theoretical studies of the 

operating space parameters for the EUPT. Starting with the coupled mode analysis 

for the directional coupler with one transparent and one absorptive waveguide, the 

AMOI effect is analytical formulated and the switching action induced by the 

absorption coefficient change in the absorptive waveguide is theoretically 

demonstrated. Subsequently, we developed an analytical formulation for the 

absorption and gain coefficients seen by the two monochromatic waves at different 

wavelengths interacting with a semiconductor medium. The formulation is verified 

with MLME-FDTD simulation for the case of InGaAsP bulk semiconductor, and is 

shown to be consistent. Next, the absorption/gain coefficient formulation is 

substituted into the propagation equations of the interacting lights to first study a 

simple pump-control switching scheme in a single-waveguide structure. Based on 

that, EUPT switching analysis is continued with the employment of the coupled mode 

formulation developed previously. The analytical formulation highlights the key 

parameters that determine the switching performance of EUPT, revealing some 

important device design aspects that have never been raised before. Using our 

analytical formulation and MLME-FDTD simulation, quantitative analysis of 

switching performance is carried out for InGaAsP bulk semiconductor based EUPT, 

showing one-order worse Figure of Merit than that given by the 4-level 2-electron 

FDTD simulation results [9].   

In Chapter VI, we will investigate the characteristics of semiconductor quantum 

well (QW) in comparison with the bulk medium in affecting the switching 

performance of EUPT. 

In chapter VII, experimental realization of EUPT in an integrated platform is 

presented with different fabrication approaches being developed, including quantum-
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well-intermixing (QWI) assisted approach on InP-based substrate, and III-V-on-

silicon integration approach assisted by direct wafer bonding technique. The 

fabrication challenges for each approach are discussed and compared, based on which 

the self-aligned QW-on-SOI architecture is chosen for final device fabrication.  

Due to the fabrication challenges of achieving index matching between the 

passive SOI waveguide and the active QW-on-SOI waveguide in the 2-waveguide (2-

WG) photonic transistor, two new device architectures for EUPT operation are 

proposed in Chapter VIII to alleviate the index-matching constraint. The proposed 

structures include the symmetric three-waveguide (3-WG) directional coupler 

structure and Mach Zehnder Interferometer (MZI) structure, the switching 

performance of which are systematically analyzed and compared based on our 

analytical method and MLME-FDTD simulation. The results show that 3-WG EUPT 

exhibits advantageous performance over the 2-WG EUPT and MZI-EUPT. 

Lastly in Chapter IX, measurements of the devices fabricated are performed. 

The saturation intensity and small signal absorption coefficient of the InGaAsP-based 

strained QW medium are experimentally determined. All-optical pump-control 

switching with switching gain is demonstrated in the single-waveguide structure. 

However, switching effect in 2-WG EUPT, 3-WG EUPT and MZI EUPT hasn’t been 

observed. The initial index-matching test in 2-WG EUPT is not successful, which 

requires further exploration. Meanwhile, some new concerns regarding the 

fabrication process and device design are highlighted. The future work plan will be 

presented in Chapter X. 

Portions of this work have appeared in journal form in (Chen et al. 2012 [70]; 

Chen et al. 2013 [26]; Chen et al. 2014 [29]; Chen et al. 2014 [73]; Chen et al. 2014 

[74]) 
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CHAPTER II INTRODUCTION TO PHOTONIC 

TRANSISTOR 

 

 

2.1 Working Principle of Photonic Transistor 

The original photonic transistor device proposed by Y. Huang [9] is in the form 

of a two-waveguide directional coupler, consisting of one passive and one active 

waveguide. Directional coupler is a structure of two parallel waveguides lying in 

proximity so that the light power entering one waveguide can be transferred into the 

other. When the coupler is passive, complete power transfer (complete coupling) can 

be achieved at certain distance (coupling length) if the effective propagation indices 

of the two waveguides are identical. The presence of index mismatch between two 

waveguides will result in incomplete coupling of optical power. Therefore, changing 

the refractive index of the waveguide medium to alter the optical coupling 

characteristics in a directional coupler has been widely utilized for optical switching 

operation. On the other hand, it is less commonly known that changing the imaginary 

part of propagation index of the waveguide, i.e. absorption or gain, can also 

effectively manipulate the coupling characteristics of the coupler to achieve the 

similar switching effect. This effect, namely Absorption or Gain Manipulation of 

Optical Interference (GAMOI), is the basic working principle of the photonic 

transistor. 

With GAMOI, all-optical switching can be realized in the photonic transistor by 

optically manipulating the absorption and gain in the active waveguide via, for 

example, carrier pumping or depletion dynamics in semiconductor medium involving 
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two optical beams. Depending on the relative wavelengths of the switching beam 

(signal beam) and the switched beam (pump supply beam), the implementation of PT 

can be categorized into two complementary approaches, namely energy-up PT 

(EUPT) and energy-down PT (EDPT), which achieve opposite wavelength 

conversion functionalities, and can be cascaded to realize broadband wavelength 

conversion.  

The theoretical details regarding GAMOI effect will be discussed in Chapter 

III. Here, we will first present the general working principles and switching 

operations of EUPT and EDPT.  

 

2.1.1 Energy-up photonic transistor based on AMOI scheme 

The all-optical operation of EUPT adopts the Absorption Manipulation of 

Optical Interference (AMOI) scheme, which is shown in Fig.2.1a. EUPT consists of 

one passive and one active waveguide lying in proximity in parallel. The passive 

waveguide has larger band gap energy than the active waveguide. Three input/output 

ports are labeled as PS-IN (CW pump supply in), SIG-OUT (pulsed signal out) and 

SIG-IN (pulsed signal in). The CW pump supply (PS) beam at wavelength   , with 

photon energy larger than the active medium band-gap energy, is launched from PS-

IN port, coupled to the active waveguide and pumps it to transparency at   . For the 

desired operation, PS is fully coupled out of the active waveguide at switch-off state. 

When a signal pulse at a longer wavelength    is launched into SIG-IN, it sees the 

gain in the active waveguide and depletes the carriers to increases the absorption 

coefficient seen by   . The increase of absorption coefficient alters the coupling 

characteristics of PS beam, causing part of PS power to exit at SIG-OUT. As a 

consequence, the signal at a longer wavelength    is converted to a signal at the 
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shorter wavelength   . Fig. 2.1b shows the band filling condition in the active 

medium at the switch-OFF state and switch-ON state respectively. 

 

 

In comparison with refraction-based all-optical switching, such as χ
(3)

 switching 

or n
(2)

 switching in SOA, the main advantage of AMOI scheme is the capability of 

achieving the switching gain. Switching gain describes the ability of using small 

signal beam power to switch a much larger beam power, which is an important device 

requirement to achieve cascadability and high fan-out for the switches. This is 

because in practice of χ
(3)

 and  n
(2)

 switching, when the weak signal beam induces  

phase shift, the much stronger pump supply beam will experience self-phase 

modulation of multiple , resulting in serious spectral broadening as well as 

 
Figure 2.1: (a) switching operation diagram for energy-up photonic transistor (EUPT) 

based on absorption manipulation of optical interference (AMOI), (b) the carrier 

population change in the conduction band during the switching operation.  
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encountering multi-photon absorption. These problems make the devices not very 

cascadable, which is essential for complex photonic circuits. However, in AMOI 

scheme, as signal beam depletes the carriers in the active waveguide, it is amplified 

along the propagation, the carrier-depletion-induced absorption change would thus be 

enhanced the longer the control beam propagates along the waveguide and eventually 

would cause significant switch of the pump beam. In a sense, the weak signal beam 

gains the optical energy from the pump beam, which is then used to manipulate the 

strong pump beam, resulting in switching gain. Moreover, the AMOI effect causes 

the pump supply power to be partially switched to the passive waveguide, and 

therefore reduces the optical pumping at the active waveguide, which further assists 

in the carrier depletion process.  

Since the pump supply beam can be strong, which can be several-orders higher 

than the saturation intensity of the active medium, the switch-OFF process governed 

by the saturation of the active medium can be very fast. On the other hand, the 

switch-ON process is governed by the ultrafast stimulated emission, thus the overall 

switching speed of EUPT can be ultrafast.  

Furthermore, spontaneous emission noise that is commonly present in the SOA-

based switching devices can be alleviated in the proposed EUPT architecture, due to 

the separation of the active medium and SIG-OUT port. When the signal beam is 

introduced, only the pump supply beam sees significant AMOI effect and is switched 

out of the passive waveguide. The spontaneously emitted light on the other hand will 

mostly remain in the active waveguide.  

 

2.1.2 Energy-down photonic transistor based on GMOI scheme 

The all-optical operation of EDPT is based on Gain Modulation of Optical 
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Interference (GMOI) scheme, which is shown in Fig.2.2a. The device structure is the 

same as EUPT, which consists of one passive and one active waveguide, with three 

input/output ports labeled as PS-IN, SIG-OUT and SIG-IN respectively. In EDPT, all 

three ports are along the active waveguide. The CW pump supply (PS) beam at a 

longer wavelength   , with photon energy larger than the band-gap energy of the 

active medium, is launched from PS-IN and pumps the active waveguide to 

transparency, which is subsequently coupled to the passive waveguide. Without direct 

pumping, the remaining half of the active waveguide is either transparent or 

absorptive at   , ensuring zero output of SIG-OUT port at switch-off state. When a 

signal pulse at a shorter wavelength    is launched into SIG-IN port, it pumps the 

remaining half of the active waveguide to induce gain at   . Then, part of the pump 

supply beam will exit SIG-OUT port, also the SIG-IN port, due to the GMOI effect. 

As a result, the input signal at shorter wavelength    is converted to the signal at 

longer wavelength   . Fig. 2.2b shows the band filling condition in the active 

medium at the switch-OFF state and switch-ON state respectively. 

As we can see, ultrafast switching can also be achieved in EDPT, since the 

switch-ON and switch-OFF are governed by the fast optical pumping and stimulated 

emission process respectively. However, switching gain is absent in EDPT. The 

carriers excited by the incident signal beam produce optical gain seen at   , resulting 

in the amplification of pump supply beam. Meanwhile the carrier depletion at    will 

reduce the gain, suppressing the GMOI effect. Each input signal photon will at most 

result in one excited electron and each output signal photon will deplete one excited 

electron. Therefore, despite the pump supply beam can be very strong, the effective 

amount of switching is below unity quantum efficiency. As the output photon is at 

lower energy than the input photon, even with unity quantum efficiency, the power 
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gain will be less than one. Thus, there is no switching gain. In comparison to XGM-

SOA, XGM-SOA  requires careful electrical current biasing to achieve transparency 

at the signal wavelength (equivalent to the pump supply beam here), while EDPT 

does not require biasing operation. 

 

 

 

2.1.3 Full photonic transistor (FPT) 

In Fig. 2.3, EUPT and EDPT are cascaded to form a two-stage photonic 

transistor device, namely full photonic transistor (FPT), with broadband wavelength 

conversion capability and the switching gain [13]. The input signal at wavelength     

(red) is firstly converted and amplified to an intermediate pulse at a shorter 

 
Figure 2.2: (a) switching operation diagram for energy-down photonic transistor (EDPT) 

based on gain manipulation of optical interference (GMOI), (b) the carrier population 

change in the conduction band during the switching operation.  
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wavelength    (green) through EUPT stage. Subsequently, the intermediate pulse is 

used to switch the pump supply beam at a longer wavelength     (orange) over EDPT 

stage, generating the output signal pulse at    . Note that     can be either longer or 

shorter than    , or even equal to    . Meanwhile, switching gain can be achieved in 

FPT due to the EUPT stage.  

 

 

2.2 FDTD Simulation of Photonic Transistor Switching: Review and 

Discussion 

 

2.2.1 Introduction to 4-level 2-electrn FDTD model and Multi-Level Multi-

Electron FDTD model 

Recently, a quantum mechanical model of a 4-level 2-electron atomic system 

with the incorporation of the Pauli exclusion principle is introduced into the FDTD 

program for the simulation of complex photonic devices with active semiconductor 

medium [10-12]. Implementation of it has been commercially available, e.g. in 

Lumerical FDTD. A simple illustration of 4-level 2-electron treatment is shown in 

 
Figure 2.3: switching operation in a full photonic transistor by cascading EUPT and 

EDPT.           . 
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Fig. 2.4 [14], where the electron interband and intraband dynamics in semiconductor 

medium under excitation of photon with photon energy above the band-gap energy is 

effectively represented by a 4-level 2-electron picture. At ground state, the two 

electrons stay at position 0 and 1. Under excitation of the photons, the electron at the 

corresponding photon energy will undergo interband excitation from 1 to 2, leaving a 

hole at the valence band. The electron at position 2 and the hole at position 1 will 

then undergo intraband decay to the band edge positions 3 and 0, respectively, 

through phonon-assisted processes. Subsequently, the electron and hole will 

recombine via radiative or nonradiative decay and the medium will return to the 

ground state. The employment of two electrons incorporates the Pauli exclusion 

principle, which provides a simplified model for electron-hole pumping dynamics in 

a semiconductor medium [14].  

For the case of photonic transistor simulation that involves two monochromatic 

waves at different frequencies, the active medium is effectively represented by two 

dipoles with resonant wavelengths at the pump supply wavelength and input signal 

wavelength, and each dipole is homogeneously broadened by the dipole dephasing 

time, which is typically in the scale of 100 fsec. The detailed formulation is available 

in [10-12], which will not be discussed further in this dissertation. 

 

 

Figure 2.4: electron dynamics in 4-level 2-electron model: (a) electron interband and 

intraband dynamics in semiconductor medium under excitation of photon with above-

bandgap energy; (b) representation by four energy levels and two electrons [14]. 
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The 4-level 2-electron model represents an ideal medium for the device. One of 

its potential practical realizations would be with use of a semiconductor medium with 

a conduction and valence band structure having a direct energy bandgap. However, 

such a semiconductor medium cannot be adequately modeled by a 4-level 2-electron 

system as it is too simple to properly encompass the complex physical effects in the 

medium such as the semiconductor energy band structure, band filling effect with 

Fermi Dirac statistics, carrier induced gain and refractive index change, and carrier 

relaxation to thermal equilibrium after excitation. As a result, much of the transient 

and nonlinear behaviors in the medium were not included. 

To more accurately model semiconductor medium dynamics, additional energy 

levels and electron dynamics need to be accounted. The typical approach to modeling 

carriers in semiconductor band structure involves solving Bloch equations at many 

energy states in the momentum space (k-states) [15,16]. In FDTD simulation, the 

structure to be simulated is first discretized spatially, then the electromagnetic field at 

each spatial point is updated at each time step, making FDTD an intrinsically 

numerically intensive method. Now if using the typical approach of semiconductor 

modeling, then for each grid, the carrier distribution function in many k-states has to 

be updated at each time step [17], making the computational time forbiddingly long 

[14].  

Based on the 4-level 2-electron FDTD model, a more sophisticated quantum 

mechanical model, namely dynamical-thermal-electron quantum-medium FDTD 

model (DTEQM-FDTD) or simply as multi-level multi-electron FDTD (MLME-

FDTD), is recently developed to address the complex carrier dynamics in a realistic 

semiconductor band structure with high computational efficiency [18-19]. In the 

MLME model, the conduction and valence band states are divided into several 
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groups, each of which is represented by a single dipole with broadened width, as 

shown in Fig. 2.5 [14]. It has been pointed out in the 4-level 2-electron model that 

due to the short dipole de-phasing time in semiconductor (~100fsec), comparing to 

the spontaneous decay lifetime of 3nsec, one can represent many spontaneous-decay-

broadened k states by one effective k state, provided the electron-scattering process 

that affect the dipole phase is lumped into an effective dipole dephasing time. Further 

studies have been performed to show that carrier dynamics can then be accurately 

represented by a finite number of dipoles with optimal spacing, linewidth and with a 

parabolic distribution to represent the parabolic nature of the band structure of the 

semiconductor medium. As a result, complete band characteristics can be represented 

by only a few such dipoles. Take an example of a dipole dephasing time of ~50fsec, 

giving a spectral broadening of ~50nm (FWHM) at =1550nm. Employment of 

only a few such dipoles is able to cover a wavelength range of 100-300nm, which is 

sufficient for various optoelectronic and photonic device application.  

 

With MLME-FDTD, interband carrier radiative or nonradiative decays, 

 
Figure 2.5: the multi-level multi-electron model for FDTD simulation of semiconductor 

material [14]. 
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intraband carrier relaxation, and interband transition (gain or absorption) over a large 

bandwidth can be addressed. In addition, implementation of Pauli Exclusion Principle 

for the transitions between any two levels will result in carrier band-filling effect.  

 

2.2.2 Compare 4-level 2-electron FDTD model and MLME FDTD model 

Here we perform a single test to show the discrepancy between the two FDTD 

models in the simulation of the carrier-depletion induced absorption change. Consider 

a short active waveguide with 4m length, as shown in Fig. 2.6a. The CW beam at 

    1350nm with modal peak intensity at  MW/cm
2
 is launched into the waveguide 

to pump it to transparency, i.e. 100% transmission. After that, a 50ps square pulse at 

    1450nm with peek intensity of 0.5MW/cm
2
 is incident from the opposite end of 

the waveguide. Due to the carrier depletion at 1450nm, the absorption seen by 

1350nm increases, thus the transmission of 1350nm reduces.  

For the 4-level 2-elecdtron FDTD simulation in this case, the resonance 

wavelengths of two dipoles are set at 1350nm and 1450nm. For MLME-FDTD 

simulation, we are allowed to define the band gap wavelength and effective masses of 

electron and holes (   and     to characterize the energy band structure, which are 

not explicitly involved in the 4-level 2-electron FDTD program. Here we set the band 

gap wavelength at 1562.5nm,            and          , in which case the 

small-signal absorptions at 1450nm is comparable with the value from the 4-level 2-

electron FDTD, i.e. ~0.6    . Both models adopt the same spontaneous emission 

time (1ns), intraband transition time (100fs) and dipole dephasing frequency 

(3.98x10
13

 rad/s). In addition, in this dissertation, we will utilize a universal MLME-

FDTD model with a total of 20 pairs of energy levels, i.e. 40 energy levels and 20 

electrons. Two adjacent dipoles have a wavelength spacing of 25nm. Thus, a total of 
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500nm wavelength range (given by 500nm = 20 x 25nm) is covered in the simulation, 

which is sufficiently broad to simulate the dynamics of the Fermi-Dirac carrier 

distribution under the dual-wavelength interaction situation. Take note that the 

MLME-FDTD program that has been used in this dissertation only simulates the 

bulk-semiconductor system. 

 

 

The transmission profiles of the 1350nm CW beam simulated by 4-level 2-

electron FDTD (dash) and MLME-FDTD (solid) are plotted in Fig. 2.6b, and the 

induced absorption coefficients     are calculated correspondingly. As we see, with 

4-level 2-electron FDTD simulation, the transmission drops by ~12% upon the 

incidence of the 1450nm pulse, giving              , while with MLME-

FDTD, the transmission drop is only ~3% and the induced absorption coefficient is 5 

 
 

 
Figure 2.6: (a) 4m single active waveguide with CW pump beam at 1350nm and 

square signal pulse at 1450nm launched from the opposite ends of the waveguides. 

(b) The transmission profile of the pump beam simulated by 4-level 2-electron 

FDTD (dash) and 40-level 20-electron FDTD (solid). 
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times smaller, giving               . Furthermore, we also notice the carrier 

depletion speed and the pumping speed are both much slower with the MLME-FDTD 

simulation due to the inclusion of band filling effect. 

 

2.2.3 Initial studies of GAMOI photonic transistor performance  

The first study of PT based on the MLME-FDTD simulation is carried out with 

the incorporation of 10 pairs of levels (20 levels, 10 electrons) for InGaAsP-based 

bulk semiconductor system [9]. With two adjacent dipoles having wavelength 

spacing of 25nm, simulation covers 250nm wavelength range. It shows that 100Gbps 

switching with switching gain of 10 can be achieved in GAMOI photonic transistor 

with micro-watt switching power and as low as ~2mW pump supply power. The 

overall switching performance of photonic transistor is further evaluated 

quantitatively based on a Merit Factor proposed [9,14], which is given by  

 

   
       

(           
                                                (     

 

where     and      stand for the pump-supply power and input signal power 

respectively.   is the bit rate and    represents the device area.      is used to denote 

the switching gain.     corresponds to the optical channels that the device can 

process, which is a measure of the operational bandwidth of the optical switching 

device. For the typical electronic transistor in microprocessor [20], we have 

     GHz,         ~0.24mW (V~1.1Volt, Ion~1.38mA/m),    ~2, 

             (160nm transistor pitch), and    =1, giving for the electronic 

transistor an equivalent Merit Factor of MFET=         (       . It is 
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subsequently used to normalize the MF of photonic transistor to give the relative 

Figure of Merits (FOM), i.e. F=MFPT / MFET. An ideal photonic transistor device 

shall have F value approaching or exceeding 1 to be competitive with electronic 

transistor. 

The initial study shows that the relative figure of merit F for the GAMOI 

photonic transistor is ~0.012, which is 10
5
x higher than the for typical the 

(3)
 and 

SOA based switches, as shown in Table 2.1. It is also highlighted in [9] that further 

engineering the active medium and waveguide geometry can improve the device 

power consumption and reduce the device footprint, thus can further increase the 

FOM of the PT to make it comparable with the electronic transistor. 

 

 

 

Next, with adoption of the same energy band parameters, we use the 40-level 

20-electron model to repeat the EUPT switching simulation presented in [9]. The 

wavelengths of the CW pump supply and the 50ps input signal pulse are at 

   1450nm and     1550nm respectively, and the modal peak intensities in the 

active waveguide are at         and            respectively. For 

semiconductor waveguide with a high refractive index core material with n=3.4 

Table 2.1: Relative figure of merit for various photonic switching devices (1) 
(3)

 of 

semiconductor [21,22], (2) SOA BASED [23-25], (3) GAMOI 

 

 X
(3)

 SOA GAMOI 

    (at 100Gbps) 0 ~400mW ~4mW 

     (at 100Gbps) ~1W ~0.01mW ~400W 

Switching gain     ~0.1 ~0.1 10 

Device area    (  
 ) ~10,000 ~10,000 300 

Max. Data Rate (        ~5Tb/s ~100Gbps ~100Gbps 

    ~1 ~20 ~20 

  ~4x10
-8

 ~4x10
-7

 ~0.012 
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surrounded by a low refractive index cladding material with n=1.45 and a cross-

sectional dimension of 250nmx350nm, which gives a mode area of      

         at 1450nm, the corresponding pump supply power and signal pulse peak 

power are 1.29mW and 0.43    respectively. The coupling length or device length is 

    .  

The resultant dynamic switching is shown in Fig. 2.7, where the instantaneous 

optical power of the input signal (dash line) and output signal (solid lines) is plotted 

against the simulation time. The blue solid curve shows output signal simulated by 

the 20-level-FDTD program [9], and the red curve shows the output signal simulated 

by the 40-level-FDTD program. We find switching effect is nearly absent in the 

examined EUPT structure when 40-level-FDTD simulation is adopted. The 

absorption coefficient change induced by the carrier depletion at the signal 

wavelength could have been overestimated with the 20-level model.  

 

 

 
Figure 2.7: dynamic switching of bulk-InGaAsP-based EUPT with CW pump supply 

beam at 1450nm and 50ps input signal pulse at 1550nm wavelength (dash line). The 

output signal at 1450nm obtained from 20-level FDTD simulation (blue solid line) and 

40-level FDTD simulation (red solid line) are compared.  
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The discrepancy between the two MLME-FDTD simulations could be due to 

insufficient number of levels adopted in [9]. Separate calculation shows the Fermi-

level for the medium of interest pumped to transparency at 1450nm is at 1420nm, 

while the 20-level model is able to cover the wavelength range up to 1350nm. Such 

coverage is marginal for representing the complete Fermi-Dirac distribution. 

Unfortunately, further studies on PT have been lacking. Based on the above test, we 

can see a more systematic and in-depth discussion on the switching performance and 

switching physics of the photonic transistor is needed. Additional concern with the 

MLME-FDTD model for photonic transistor simulation is the long simulation time. It 

can take a minimum of 2 days for just one case simulation, which is thus not suitable 

for full exploration of the operational space and fast device design. Therefore, a more 

efficient simulation approach is required. 

 

2.3 Conclusion 

In this chapter, we reviewed the working principle of GAMOI photonic 

transistor device and highlighted its significantly advantageous switching 

performance over the current mainstream all-optical switching technologies (
(3)

 and 

SOA) [9]. We also introduced a MLME-FDTD quantum mechanical model to the 

overcome the main drawbacks of the widely used 4-level 2-electron FDTD model, 

such that to properly address the complex carrier dynamics in semiconductor medium 

and thus simulate the photonic transistor realistically. We also utilized the MLME-

FDTD model incorporated with 20 pairs of energy levels to repeat the exemplary 

EUPT switching presented in [9]. It shows an overestimation of switching gain exists 

with the adoption of fewer energy pairs in the MLME FDTD simulation. Thus the 40-

level 20-electron model will be adopted in this thesis.  
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Although MLME-FDTD provides a quite accurate way of evaluating the 

switching performance of GAMOI photonic transistor, the simulation is very time 

consuming, which is not suitable for parametric device studies. In the next chapter, a 

novel analytical method is developed, based on which parametric study of photonic 

transistor is performed and important device design aspects that have never been 

raised before will be highlighted.  

The carrier transition physics in the GMOI-based EDPT switching is 

fundamentally similar to the conventional cross-gain modulation (XGM) based SOA, 

and the gain manipulation of optical interference is essentially the same as the 

absorption manipulation approach except for the opposite sign in the imaginary index 

of the active medium. Therefore, the detailed studies of GMOI-based EDPT will not 

be extended in this dissertation. The AMOI-based EUPT is the key stage that 

provides switching gain to the full photonic transistor, which will be focused on in 

this dissertation.  
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CHAPTER III THEORETICAL STUDIES OF EUPT 

PART I: Static Switching Studies and Development of an 

Efficient Effective Semiconductor 2-Beam Interaction 

Model with 4-Level Like Rate Equations 

 

 

The PT devices can be simulated in the spatial temporal domain using the 

MLME-FDTD method we have. The problem of FDTD in general is that while it can 

give almost all the performance information for the devices with a good level of 

accuracy without much approximation, it is very slow. Thus, to fully investigate the 

performances of the PT devices, it would be very difficult to rely only on the MLME-

FDTD model. To address this issue, a powerful semi-analytical method is developed 

that make certain simplifying assumptions and yet is able to take band-filling and 

saturation into account. It gives a set of 4-level like equations that can be solved 

semi-analytically. We have checked the reasonable accuracy of this approach against 

the MLME-FDTD results and found good agreements. A set of performance curves 

for the PT is then generated using this simplified approach. Another advantage of this 

approach is that it is able to produce physical insights that are hard to obtain from 

pure numerical method based on MLME-FDTD.   

In the following three chapters, a novel analytical approach is developed to 

study the switching performance of EUPT, including the power consumption, 

switching speed and switching gain. Important design aspects, such as the pump 

supply and signal beam conditions, material properties and coupler dimensions, for 

optimizing the device performance will be discussed. Meanwhile, the analytical 
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calculation will be examined with the employment of the Multi-Level Multi-Electron 

FDTD (MLME-FDTD) model with model parameters fitted to simulate the InGaAsP 

bulk semiconductor system.  

As the working principle of EUPT has been illustrated in Fig. 2.1, here we just 

want to clarify the notations of the parameters that will be involved in the later 

discussion. As shown in Fig. 3.1, the CW pump supply beam at wavelength   , is 

launched from the passive waveguide, with optical power denoted by      . The 

subscript H refers to the higher photon energy among the operating light. The signal 

pulse at a longer wavelength    is launched into the opposite end of the active 

waveguide, with OFF-state power denoted by        and ON-state power denoted by 

     . The subscript L refers to the lower photon energy compared to the pump 

supply. The increase of absorption coefficient alters the coupling characteristics of 

pump supply beam, causing part of pump supply power       to exit from the 

passive waveguide to generate the output signal. The output signal power at switch-

off state is denoted by        and at switch-ON state is      . It is important to 

note that all the power parameters referred to here represent the instantaneous power, 

rather than the average power. 

 

 

 
Figure 3.1: Switching action in EUPT.       is the continuous pump supply power at wavelength 

  , incident into the passive waveguide.       and        denote the ON- and OFF-state input 

signal power at wavelength   .       and        denote the ON- and OFF-state output signal 

power at wavelength   . Solid arrow shows the light propagation at switch-OFF state and dash 

arrows show the switch-ON state. 
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3.1 Static Switching Studies of Absorption Manipulation of Optical 

Interference - Coupled Mode Analysis 

 

First of all, we will use the coupled mode theory to illustrate the basic working 

principle of EUPT, i.e. via Absorption Manipulation of Optical Interference (AMOI), 

which utilizes the optically induced absorption change in one constituent waveguide 

of a directional coupler to manipulate the coupling characteristics of light and achieve 

switching action. The formulation will be utilized to analyze the switching 

performance in the later sections.  

Consider a two-waveguide (2-WG) directional coupled composed of one 

passive waveguide and one absorptive waveguide as shown in Fig. 3.2. The passive 

waveguide, waveguide 1 (WG1), has a propagation constant of   . The absorptive 

waveguide, WG2, has the propagation constant of the form             . The 

imaginary part     is the absorption coefficient of the optical field amplitude, as 

denoted by the subscript   . The optical field is launched from WG1 at z=0.  

 

 

 

The coupled mode equations for this 2-WG directional coupler are given as 

follows. 

 
Figure 3.2: Two-waveguide coupler with a passive waveguide and an absorptive 

waveguide. The continuous wave is launched into the passive waveguide at z=0. The 

transmitted power from WG1 and WG2 are denoted by |  |
   and |  |

 . 
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where    and    are the normalized field amplitudes in WG1 and WG2 respectively. 

    and     are coupling coefficients between two waveguides. Substitute Eqn. (3.1) 

into the energy-conservation relation,  

  |  |
  |  |

  

  
      |  |

                                          

we get        
 . For simplicity, we write       and       .  

The coupled mode equations in Eqn. (3.1) can be solved analytically. The 

general solution of       for the initial condition         and         are given 

by 

      
     

     
      

     

     
                                    

where 

   
      

 
   

 

 
                                                

are the eigenmode propagation constants, and   and   are given by  

      √       
  

  

   
                                         

Here a length-unit parameter     is used to represent   through      
 

 |  |
. The 

longer     represents the weaker coupling strength.     is equal to the complete 

coupling length of a 2-WG directional coupler at index matching condition.    

       gives the effective propagation constant difference between two 

waveguides, which relates to the effective propagating refractive indices (called the 

model indices) mismatch for the optical propagating modes in the two coupled 
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waveguide arms through         
  

 
.   is the wavelength of light. Explicit 

expressions of   and   in Eqn. (3.5) are given in [26]. 

The optical power variation along WG1 is thus determined, which gives  

|     |
  

      

      
{[      (

  

 
)        (

  

 
)]

 

 [       (
  

 
)       (

  

 
)]

 

         
  

 [                    ]  [                  ] }        

Next we show how the solution of Eqn. (3.6) can be used to illustrate the 

switching operation in EUPT. 

 

i. Switch-OFF state,       

At switch-off state, the active waveguide is pumped to transparency, i.e. 

     . Eqn.(3.6) becomes 

|     |
    [  (

  

  
)
 

]                                           

where    
 

 
√    

  

   
 . 

The device length of EUPT is designed to be one coupling length at 

transparency condition, so that the output power from WG1 at switch-off state, i.e. 

       as denoted in Fig. 3.1, is minimized. Coupling length is defined as the 

minimum distance by which maximum power of incident light is coupled out of the 

incident waveguide. Thus when Eqn.(3.7) reaches the minimum value, the 

corresponding z gives the coupling length  
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√(
     

 )
 

  

                                            

where the subscript 2 in     indicates the coupling length for the 2-WG coupler.  

Substituting Eqn. (3.8) into Eqn.(3.7) gives the power output of WG1 

normalized to the input pump supply power at switch-off state, which is given by 

 

       

     
   

 

(
     

 )
 

  

   (
   

   
)
 

                                  

 

In the case of     , the effective modal indices of the two coupled 

waveguides are equal. As a result, the incident pump power is completely coupled out 

of WG1, giving          and         becomes the complete coupling length. 

This is the ideal operational condition for EUPT to achieve high-extinction-ratio 

switching.  

However, it is important to note that, in real application, material asymmetry 

between passive and active waveguides poses fabrication complexity and challenges 

in achieving effective modal index matching. Fabrication discrepancies based on 

current technology can easily compromise coupling efficiency particularly in high-

refractive-index-contrast nano-waveguide structures. Moreover, asymmetric coupler 

structure is particularly sensitive, as dispersion of individual constituent waveguide 

differs, leading to different coupling efficiency at different wavelength, which limits 

the operational bandwidth. Meanwhile, pumping up the active medium will change 

the refractive index of it, which further increases the uncertainty in achieving 

effective modal index matching. From Eqn. (3.8) and Eqn. (3.9), we can see that the 
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sensitivity of coupling length and coupling efficiency to the model index mismatch 

   is dependent on the complete coupling length    . The longer     we target, the 

more sensitive the coupler is to the undesired model index mismatch. Therefore, with 

the aim of reducing the fabrication challenge, it is referred to have a shorter device. 

 

ii. Switch-ON state       

At switch-ON state, the input signal entering the active waveguide depletes the 

carriers and increases the absorption coefficient seen by the pump supply beam. The 

output signal power at switch-ON state, which is normalized to the input pump 

supply power, i.e. 
      

     
 , can be obtained from Eqn. (3.6) with       substituted 

in, where     is given by Eqn. (3.8). The resultant expression depends on two 

parameters only, which are |  |    and       . In Fig. 3.3, 
      

     
 is plotted versus 

       at different |  |   . The points at          corresponds to 
       

     
. As 

we can see, with the increase of absorption in WG2, the incident power is partially 

switched out of WG1, resulting in the increase of      . Meanwhile, by increasing 

   , i.e. employing longer device,       can be further increased.  

On the other hand, as effective modal index mismatch increases,        

increases, and the optical modulation amplitude                  induced by 

a fixed        decreases. As a result, the extinction ratio of the output signal 

                drops significantly.  
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3.2 Development of an Efficient Effective Semiconductor 2-Beam 

Interaction Model with 4-Level Like Rate Equations 

 

In the last section, the absorption induced switching action in EUPT is 

analytically formulated with a uniform and arbitrary value of absorption coefficient 

along the active waveguide. However, in the actual switching operation, as shown in 

Fig. 2.1, the absorption coefficient, seen at the pump supply wavelength at    

induced by the carrier depletion at the signal wavelength   , is a complicated 

function of the operating wavelengths    and   , the corresponding intensities, as 

well as the energy band structure of the active medium. Furthermore, since the 

absorption coefficient varies with the light intensities and at the same time attenuates 

the pump intensity, it should be coupled with the propagation characteristics of the 

operating beams and vary spatially.  

 
Figure 3.3: 

      

     
, represented by the power transmission from WG1 at      versus 

       at different |  |   . |  |   .varies from 0 to 8 corresponds to the effective 

modal index mismatch       from 0 to 0.02 with            and 1550nm light 

wavelength. 
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The available approaches that can self-consistently deal with the optical field 

propagation and light-matter interaction in a semiconductor waveguide include the 

MLME FDTD simulation [10-13, 18,19] and the Bloch-equation-based semi-

analytical model [27]. FDTD simulation incorporated with carrier dynamics 

calculation is typically time consuming, thus not suitable for parametric study of 

complex optical device. The Bloch-equation-based semi-analytical model, that 

utilizes the planewave-based eigenmode expansion technique and mode-matching 

analysis, is computationally more efficient than FDTD, but still requires intensive 

computation associated with iterative mode solving and mode-matching analysis. 

Moreover, due to the assumption of the quasi-equilibrium carrier distribution, Bloch-

equation-based semi-analytical model cannot properly deal with the high input power 

cases when deviation from Fermi-Dirac statistics occurs.  

In this section, we will derive a simple analytical expression for the absorption 

coefficient and gain coefficient seen by the two interacting optical fields at different 

wavelengths in a semiconductor medium. The formulation is developed based on a 4-

level like picture, which provides a dynamic picture for the interband and itraband 

transition of carriers with the presence of two monochromatic fields at different 

wavelengths. The realistic semiconductor energy band features, on the other hand, 

can be preserved through the employment of the generic parameter – saturation 

intensity. With the Free-carrier formulation, the saturation of interband absorption 

and gain takes into account of the density of states of the semiconductor energy band 

and characterize the band filling effect with the Fermi-Dirac statistics. At the end, our 

analytical formulation is shown to be consistent with the MLME-FDTD simulation.  
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3.2.1 4-level 1-electron picture 

We first consider a 4-level system as shown in Fig. 3.4. The energy difference 

between level 0 and 3 is equal to the photon energy of pump supply beam      , and 

the energy difference between level 1 and 2 is equal to the photon energy of signal 

beam      , where h is the Planck’s constant,   denotes the speed of light. The 

carrier densities at these four levels are denoted by   ,   ,    and    respectively. 

Suppose the intensities of pump supply beam and signal beam are    and   . The rate 

equations in this 4-level system are given as follows.  

 

   

  
 

  

   
 

  

   
                                                           

   

  
  

  

   
 

  

   
                                                          

   

  
 

  

   
 

  

   
                                                          

 
Figure 3.4:  Simplified 4-level system is used to represent the semiconductor band 

structure (dash curves). The energy difference between level 0 and 3 is equal to the photon 

energy of pump supply beam at   , and the energy difference between level 1 and 2 is 

equal to the photon energy of the signal beam at   . The stimulated carrier transition is 

promoted by the incidence of pump supply beam and signal beam with intensities of    

and    respectively. 
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where     and     represent the inter-band spontaneous decay time for transition 

energies of       and        respectively.     and     correspond to the intraband 

transition time in valence band and condition band.     and     are typically in the 

nano-second scale, while      and     are in the 10-100fs scale.               and 

              gives the stimulated emission rate between level 3 and 0 and 

between level 2 and 1. 

To make the 4-level 1-electron model feasible to represent the actual carrier 

dynamics in the semiconductor medium, the following constraints or conditions have 

to be met. First of all, the 4-level 1-electron model does not incorporate the Pauli 

exclusion principle, which leads to N1=0 at the ground state. The direct consequence 

is that the population inversion between level 2 and 1 is present upon any pumping 

rate at    i.e. the signal beam at    always sees gain. Therefore, 4-level 1-electron 

picture is applicable only when the pump supply intensity is sufficiently high to 

introduce gain at the signal wavelength. Secondly, the off-resonance dipole-field 

interaction is neglected in our formulation, i.e. the pump supply at    does not 

contribute to the carrier transition between level 2 and 1, and the signal beam at    

does not contribute to the transition between level 3 and 0. This is valid when the 

wavelength separation    -   is larger than the spectral broadening line width, which 

is typically ~50nm. In the actual EUPT operation, the above two conditions are 

typically satisfied or even desired. The gain at the signal wavelength implies fast 

carrier depletion, which is the cause of the absorption increase at the pump supply 

wavelength. On the other hand, large wavelength separation between the pump 
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supply and the input signal is desired to prevent the direct interband transition 

competition between the two wavelengths, which is to say we do not want the carrier 

excitation at pump wavelength to directly compete with the carrier depletion at the 

control wavelength and vise versa. Thus, the formulation based on the 4-level 1-

electron model will be generally applicable for our EUPT analysis. 

Eqn. (3.10) are solved at steady state, i.e. 
   

  
 

   

  
 

   

  
 

   

  
  . By 

introducing the total carrier density                 , the difference of 

carrier density between level 0 and 3,           , can be derived  

      
    

   
       
       

          
       
       

         
           

                          

As we see, when     , Eqn. (3.11) is reduced to  

      
    

  (
            

       
)          

                                     

 

which leads to the absorption coefficient at    

         
   

   
  

     
⁄

                                                   

 

where       |    |,             is the small-signal absorption coefficient, and 

      [(
            

       
)       ]

  

 is the saturation intensity at   , defined as the 

intensity required to reduce the absorption coefficient by half.  

On the other hand, we derived the relationship between            and 

     at the steady state, which is given by  
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With the substitution of Eqn. (3.12), Eqn. (3.14) gives 

 

     
 

           
 

    

(
     

  
  )

            
       

                     

 

which leads to the expression of the gain coefficient seen by    as the medium is 

pumped at    with intensity   , 

 

         
       

   
  

     
⁄

                                                      

 

where            and               
  is the saturation intensity at   . 

        
       

(
     
  

  )( 
       
       

  )
 is the small-signal gain coefficient, which is 

dependent on the pump intensity   . When          such that the medium is pump 

up to transparency at   ,         reaches the maximum value        
       

            
, 

denoted by     here. 

Therefore, with the substitution of       and       into Eqn. (3.11), the 

absorption coefficient at    induced by carrier depletion at    is written as  

 

   
   

   
         

            

  
     

 
       

            

       ⁄
         ⁄
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If we consider               and            , 
         

            
   

     and 
       

            
    Although 

         

            
 is small, the product of 

         

            

  

     
 is not negligible when            . And in EUPT operation, the 

pump supply intensity is typically that high in order to pump the active waveguide to 

transparency (section 4.3.1). The role of 
         

            

  

     
 in affecting the value of    

can be interpreted as follows. With              we noticed 
         

            
  

   

   
 

represents the ratio of spontaneous emission rate over the intraband transition rate, 

while        ⁄  can be interpreted as the ratio of stimulated pumping rate over the 

spontaneous emission rate. Thus
         

            

  

     
 effectively tells the relative rate 

between the stimulated pumping and the intraband transition, or equivalently the 

states filling rate at level 3. That means, despite of the fast intraband decaying from 3 

to 2, the empty states left over at 3 can be quickly re-filled at high   , resulting in 

reduced empty states and thus the reduced absorption coefficient seen at   .  

Simplifying the expression of Eqn. (3.17), it is written as  

 

   
   

     
  

     
 

       ⁄
         ⁄

                                  

 

where    
         

            
 denotes the transition time ratio between the intraband 

transition and spontaneous emission. 

Subsequently, the gain coefficient seen by    can be obtained by substituting 

Eqn. (3.11) into Eqn. (3.14), and with the substitution of       and      , we get 
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       ⁄

 
   

   

       ⁄

         ⁄
                       

 

For the case of          , Eqn. (3.18) and Eqn. (3.19) are reduced to 

 

   
   

     
  

     
 

     
     

  
  

                                                       

 

  

  
 

   

   

     
     

  
  

                                                            

 

Eqn.(3.20) and Eqn. (3.21) tell us that 
   

  
 is linearly dependent on    and 

   

  
, 

and the ratio of       is proportional to the intensity ratio 
  

  
. Furthermore, reducing 

   

  
 and reducing    will increase the induced absorption coefficient   . These 

characteristics will be examined by MLME-FDTD simulation in the later section. 

 

3.2.2 Analytical formulation of 
   

   
 and 

     

     
 for bulk semiconductor based on 

free carrier theory and quasi equilibrium approximation 

 

To verify the accuracy of the absorption and gain formulation developed, we 

first consider the bulk semiconductor system, where 
   

   
 and 

     

     
 can be formulated 

analytically. The calculation will be subsequently compared with the MLME-FDTD 

simulation.  
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Free-carrier theory and quasi-equilibrium approximation are adopted to derive 

the expressions of       ,       and  
   

   
, and because of that, band filling effects with 

Fermi-Dirac statistics in a realistic semiconductor band structure are taken into 

account in our absorption and gain formulation [28]. 

The gain coefficient at wavelength   is expressed by 

 

     
 

      
∫    

 

 

    |    | 
                   

  (
         

  
)
                  

 

where   
   

 
  is the angular frequency of light,   is the polarization dephasing rate, 

   is susceptibility of free space, n is the refractive index of the material and c is the 

speed of light.   
    

   
 is the reduced-mass energy, with reduced mass    

(
 

  
 

 

  
)
  

and wave vector k of the corresponding state. The integration is 

performed over the entire energy band for   from zero to infinity.      is the dipole 

matrix element between conduction and valence, which is be represented by  

|    |  
    

   (    )
   , where    is the band gap energy and         for 

InGaAsP.   and    are electron charge and mass.      represents the joint density of 

states.          and          are the Fermi-Dirac distribution for electron and hole 

respectively, which are given by  

 

         
 

 
 ( 

  
  

   )   

                                              

         
 

 
 ( 

  
  

   )   
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where   
 

   
           at room temperature.    and    are the quasi-

equilibrium chemical potential of electron or holes. When              , 

      , which becomes the absorption coefficient.  

 

i. Formulation for          

    is the small-signal absorption coefficient at   , when the carriers are 

mostly in the valence band, giving            and           . Therefore     is 

given by  

    
  

      
∫    

 

 

    |    | 
 

  (
          

  
)
              

    is the small-signal gain coefficient at   , when the medium is pumped to 

transparency at   , i.e.        , from which the chemical potentials    and    are 

calculated. Since there are two variables, a second equation is required to relate    

and   . Here we utilize the carrier conservation relation based on low-temperature  

condition, from which we have     =    . By defining        , it gives 

    
  

  
 and     

  

  
. The solution   from         is denoted by      . The 

subscript      represents the chemical potential at which the absorption 

coefficient of    is zero. So     is given by 

 

    
  

      
∫    
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)    (       
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  (
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Therefore, we have  
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  ∫    
 

 

    

(    )
 

 

  (
          

  
)
 

            

 

ii. Formulation for                

Refer to the derivation from Eqn. (3.13) to Eqn. (3.16), it is important to note 

that       and       are defined under different contexts, thus do not share a universal 

expression. 

       is defined for the pumping process, i.e. the pump intensity at which the 

absorption coefficient at pump supply wavelength is reduced by half. Thus we start 

with the rate equation of carrier density as follows  

 

   

  
  

        

   
 ∫   

                    

      

 

 

                         

 

where    is the total carrier density in the conduction band. The first term at right 

hand side represents the rate of stimulated carrier generation by absorbing the 

incident light at    with intensity   , and          . The second term represents 

the spontaneous decay rate, with the interband transition time        
      

    |    | 
 and 

       . At steady state, these two rates are balanced, so that 
   

  
   and gives  

   
   

  
∫   

                    

      

 

 

                                    

 

The definition of       tells that    
 

 
   , when         . Thus Eqn. (3.29) 
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becomes 
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where the subscript        denotes the chemical potentials at witch the absorption 

coefficient at    is equal to half of the small-signal absorption coefficient and      is 

given by Eqn. (3.25). 

As for the depletion process, where       is defined, the rate equation of carrier 

density is given by 
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where           , corresponding to the gain coefficient at   . The rest of the 

parameters are defined similarly as in Eqn. (3.28). At steady state, i.e. 
   

  
  , 

Eqn.(3.31) gives 
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Consider the case of          and          in Eqn. (3.19), we get 

 

      

     

  
                                                              

 

Eqn. (3.33) is then substituted into Eqn. (3.32) with          and         , 

giving that  
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(3.34) 

 

The subscript        denotes the chemical potentials at witch the gain 

coefficient at    is equal to half of the small-signal gain coefficient     when the 

medium is pump to transparency at   . With the substitution of Eqn. (3.30), Eqn. 

(3.34) becomes 
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3.2.3 Verification with MLME-FDTD simulation 

With the explicit expressions of      ,       and 
   

   
, the absorption and gain 

coefficients in Eqn. (3.20) and Eqn.(3.21) can be analytically calculated for varied 

band structures and interacting light properties. In this section, MLME-FDTD 

simulation will be adopted to verify our formulation, based on the energy band 

parameters in Table 3.1 for the InGaAsP bulk semiconductor. 
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The FDTD simulation is carried out for a single waveguide with short length of 

4μm. The CW pump supply beam at           is launched into the waveguide 

at intensity          and the signal beam at           is launched from the 

opposite end of the waveguide with intensity         . Based on our calculation, 

                 and               . FDTD simulation shows the small-

signal absorption coefficient of the waveguide at 1350nm is equal to     

        . Subsequently, the transmissions of the pump supply and signal beams are 

monitored at different incident    and   , based on which    and    can be 

calculated.  

 

3.2.3.1 Verification of the absorption coefficient expression     

To verify the absorption coefficient expression    in Eqn. (3.20), we first plot 

       versus the intensity ratio       at different   , as shown in Fig. 3.5. We find 

       is linearly dependent on      , the linear curve filling of which is shown by 

the solid lines. As we can see, the slope of it is generally a constant that does not vary 

with the pump intensity, while the intercept increases with the pump intensity, which 

is consistent with our formulation. 

Table 3.1: Energy band parameters of InGaAsP bulk semiconductor  

 

Parameters Values 

Energy band (in wavelength) 1.5625 µm 

Background refractive index (n) 3.4 

Electron effective mass (  ) 0.046m0 

Hole effective mass (  ) 0.36m0 

Dipole dephasing rate ( ) 4 x 10
13

rad/s 

Intraband transition time  50fs 
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Next, to compare the slopes in Fig. 3.5 with the coefficient           ⁄  in Eqn. 

(3.20), we consider fixed           and varied    from 1425nm to 1520nm. In 

Fig. 3.6a, the slopes of ‘       vs      ’ plots are plotted against    for different   , 

which we find are constant at              , and start to increase as      

        . The increasing behavior cannot be interpreted by our formulation, which 

requires further investigation. In the following discussion, we focus on the cases of 

             , which is also the practical range for many device applications. 

Subsequently,           ⁄  is calculated using Eqn. (3.30) and Eqn. (3.35) for the 

corresponding     and   , and compared with the slope values in the constant range 

(i.e.              ) in Fig. 3.6a, which is shown in Fig. 3.6b. As we can see, 

our analytical calculation is generally consistent with the FDTD simulation, with a 

percentage error <5%. 

 

 
Figure 3.5: 

   

  
 versus 

   

  
 at different   , simulated using 40-level 20-electron FDTD. 

          and          .               is the small-signal absorption 

coefficient at          . The solid lines correspond to the linear curve fitting for each 

data set.
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Then to verify the term of            ⁄  in Eqn. (3.20), we first plot the 

intercepts of the        vs      ’ plots in Fig 3.5 with respect to    for fixed 

          and varied    from 1425nm to 1520nm, which is shown in Fig. 3.7a. 

We find it is linearly dependent on    with intercepts close to 1 and are generally 

independent of   , which are all consistent with the behavior of            ⁄ . 

Subsequently, to further verify the coefficient        ⁄  in            ⁄ , we 

consider fixed signal wavelength           and varied pump supply wavelength 

   from 1300nm to 1375nm. In Fig. 3.7b,        is plotted versus    with     ⁄  

  for different   , the slopes of which are then multiplied by the corresponding      , 

calculated using Eqn. (3.30), to get the intraband-interband transition ratio   . The 

results are listed in Table 3.2. As we can see,    is generally constant at      

    . In the actual semiconductor band structure, the intraband transition is a process 

of thermalizing the optically excited carriers into a quasi-equilibrium distribution 

through carrier-carrier and carrier-phonon scattering, which is slower than the inter-

state transition time, i.e. 50ps we used in our FDTD simulation. The typical timescale 

for the intraband process lies between a few picoseconds and a few hundred 

 
Figure 3.6: a) slopes of ‘      vs      ’ plots are plotted against    at different   . b) 

Analytically calculated 
     

     
 (cross dot with dash line) and the slope values in a) that are 

obtained from FDTD simulation (triangle dots) versus the signal wavelength   .     

      .  
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picoseconds, depending upon the detailed condition. In our case, the spontaneous 

emission time by calculation is ~1ns, thus the           implies an intraband 

transition time of ~3ps, which is within a reasonable range.  

 

 

 

 

 
Figure 3.7: (a) the intercepts of ‘      vs      ’ plots are plotted against    at 

different   .          . (b)       vs    at different   , with           and 

    ⁄   .  

 

Table 3.2: Intraband-interband transition time ratio    determined from FDTD 

simulation in Fig. 3.7b 

 

   (nm) 
Slopes of 

Fig.3.7b 
      

(kW/cm2) 
   

1375           13.6           

1350           17.8           

1325           22.6           

1300           29.0           
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3.2.3.2 Verification of the gain coefficient expression    

Next, we continue to examine the gain coefficient    in Eqn. (3.21) by plotting 

      against       at different   , which is shown in Fig. 3.8a.           and 

           We find       is linearly proportional to      , and the 

proportionality is independent of   , which is consistent with Eqn. (3.21).  

 

 

The proportionality is subsequently examined at fixed           and 

varied    from 1425nm to 1520nm, and compared with the analytically calculated 

   

   

     

     
 using Eqn. (3.27), (3.30) and (3.35), which is shown in Fig. 3.8b. We find 

they are generally consistent with each other with an error <10%.  

To summarize, an analytical formulation for absorption and gain coefficients 

seen by two interacting monochromatic fields of different wavelengths in a 

semiconductor material is derived to analyze the case of high-intensity operation in 

the bulk semiconductor system. Starting with a simplified 4-level 1-electron picture, 

our analytical model gives a first-order estimation of up to 90% accuracy to the actual 

situation as verified by MLME-FDTD simulation. One of the main causes to the 10% 

 
Figure 3.8: (a)        is plotted versus      ⁄  at different   .           and    
      . The solid lines show the linear curve fitting for each data set. (b) Analytically 

calculated 
   

   

     

     
 (cross dot dash line) and the proportionality of         over      ⁄  

(triangle dots) versus the signal wavelength   , with          .  
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error could be from the saturation intensity expressions given by Eqn. (3.16) and Eqn. 

(3.13). We note that higher-order saturation behaviors due to multi-photon 

absorptions in semiconductor that can be important at sufficiently high intensity were 

not included. They could have affected the accuracy of our formulation, though at our 

main operating intensity level of interest, we expected these effects to be relatively 

small (they become important at above a few GW/cm
2
 intensity). In addition, we note 

that both the MLME-FDTD model we used and our analytical model neglected 

many-body effects that are also higher-order effects, e.g. many-body Coulomb 

interaction, carrier heating and cooling, etc. These many body effects can come in at 

relatively low intensity. They usually will add additional features to the response, 

typically ultrafast features at turn on/off. Such many-body effects have been 

incorporated into MLME-FDTD model very recently [19], and may be used to study 

the impacts of these many-body effects on changing the switching performances of 

the photonic transistor in the future.  
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CHAPTER IV THEORETICAL STUDIES OF EUPT 

PART II: Applications of the Efficient Effective 

Semiconductor 2-Beam Model to All Optical Switching in a 

Single Semiconductor Waveguide 

 

 

Before we look at the EUPT switching, let us first study a simple pump vs 

control switching operation in a single waveguide structure, which will benefit the 

parametric study of EUPT later. This is because the basic switching mechanism in 

EUPT is based on the medium saturation by the pump beam at a high energy level, 

which creates optical gain for the signal beam at a lower energy level than the pump 

beam’s photon energy. The signal beam then gain optical energy as it propagates and 

simultaneously de-excite the medium, causing the pump to see loss. This same 

process can also occur in a pump-signal interaction situation within a single 

waveguide, also causing all-optical switching in that the pump.energy gets absorbed, 

causing a “downward pulse” when the signal beam enters the waveguide.     

The device geometry and operating parameters are shown in Fig. 4.1. A 

continuous wave pump beam at a wavelength   , with the photon energy above the 

semiconductor bandgap energy   , is lunched into a single semiconductor waveguide 

of length L. The incident intensity of the pump       is higher than the saturation 

intensity of the waveguide medium so that it can pump the waveguide to transparency 

at wavelength   . After that, an input control beam (or input-signal beam as named in 

EUPT operation) at a wavelength    longer than    and with a photon energy above 
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the band gap energy   , is launched into the waveguide at intensity       from the 

waveguide end opposite to that of the pump beam’s entrance. The pump beam will 

output at the entrance of the input control or input signal beam, giving the “output 

signal beam”, with intensity       . As the input control beam would see optical 

gain, it would de-excite the excited carriers in the conduction band, resulting in the 

depletion of the carriers at   , which then induces an increase in the optical 

absorption at   . This consequently reduces the transmission of the pump beam. 

Since the control beam sees the optical gain, it would be amplified along its 

propagation direction towards the pump’s input end. Thus, the carrier-depletion-

induced absorption change would be enhanced the longer the control beam 

propagates along the waveguide and eventually would cause significant switch-off of 

the pump beam. In a sense, the weak control beam gains the optical energy from the 

pump beam, which is then used to shut off the pump beam [29]. 

For consistency, we name the transmission drop of the pump beam upon the 

incidence of control beam as the switch-on process, and the pump pumping back the 

waveguide to transparency after the control beam exits as the switch-off process. 

 

Analytical formulation for the switching gain, switching speed and switching 

energy of the proposed single-waveguide switch will be derived in the following 

 

 
Figure 4.1: Single active waveguide with continuous pump at    and intensity       
incident from z=0. The signal beam at   with intensity       is launched in the opposite 

direction from z=L. The wavelength length is L. 
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sections, based on which parametric study of the pump-control switching will be 

carried out. At the end, dynamic switching with ultrafast switching speed and high 

switching gain will be demonstrated in a bulk-InGaAsP single waveguide structure 

based on MLME-FDTD simulation. 

 

 

4.1 Propagation Equations of Pump and Control Beams 

As shown in Fig. 4.1, the pump beam with intensity       is launched at z=0 

and propagating along +z direction, while the control beam with intensity       is 

launched at z=L and propagates along –z direction. At the steady state, the 

propagation equations for the pump supply and signal beams with Eqn. (3.20) and 

(3.21) substituted in are given by 

 

      

  
  

   

   
  

     
      

     
     

     
     

                                           

      

  
   

   

   

     
     

     

     

   

   
  

     
      

     
     

     
     

                   

 

where          . The negative sign in Eqn. (4.2) indicates the negative 

propagation direction of signal beam. 

First of all, it is straightforward to find that  

      

  
 

   

   

     
     

      

  
                                                 

Take integration from z to L, it gives 
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[            ]                               

where             and             . Then Eqn. (4.4) is substituted into Eqn. 

(4.1), followed by the integration from z=0 to L, which leads to  
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where                 denotes the transmission of pump beam and     

            represents the incident intensity ratio of the incident pump supply and 

signal beam. As a reminder,     refers to the small signal coefficient at    when the 

material is pumped to transparency at   .  

After        is determined, Eqn. (4.4) and Eqn. (3.27) can be used to solve for 

the pump intensity variation along the waveguide      , which is given by  
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where                  . Subsequently, the intensity profile of the signal beam 

      can be calculated using Eqn. (4.4), and the absorption and gain coefficient 

profiles are determined using Eqn. (3.20) and (3.21).  
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4.2 Switching gain characteristics versus material properties, light 

properties and device geometry 

First of all, we need to define the switching gain for the single waveguide 

switching, in which case the output signal is inverted. Consider the amount of change 

in the strong pump power at the pump’s output end can be viewed as the “output 

signal”, which is denoted as                    .       is the effective modal 

area of the waveguide. Let the pulse height of the control beam power be        

         . The all-optical switching gain is defined to be     
       

      
 

       

     
. 

Therefore, with the transmission of the pump beam (   
      

     
) determined with 

Eqn. (4.5) and varied incident intensity ratio     
     

     
, the switching gain can be 

calculated by              .  

As shown in Eqn. (4.5), four key parameters are involved in the switching gain 

calculation, which include 
   

   
, 

     

     
,       and     . By considering the bulk 

InGaAsP as the waveguide core medium (Table 3.1), each parameter’s role in 

determining the switching gain characteristics will be examined as follows. 

Here we first consider the cases in which the pump conditions are fixed. Let the 

pump wavelength at          , with which                 , and let 

        and                 Assuming 
   

   
 and 

     

     
 can vary arbitrarily, 

    is calculated at different 
   

   
 and 

     

     
 with varied      , which are plotted in Fig. 

4.2. (As a reference, for the bulk InGaAsP, 
     

     
     and 

   

   
      when    

       ) In Fig. 4.2a, 
     

     
   is fixed and 

   

   
         and 0.3 is varied. We can 

see that increasing 
   

   
, or equivalently increasing      seen by the control beam, can 
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significantly enhance the switching gain. In Fig. 4.2b, with 
   

   
     being fixed, 

     

     
  is varied from 4 to 8. It shows     becomes significantly higher when 

     

     
 is 

reduced. It is also noticed     increases as the input control intensity (       reduces. 

The enhancement of     with the increase of  
   

   
 and reduce of 

     

     
 is more 

significant when      <40%.  

 

 

Next we use Eqn. (3.27), (3.30) and (3.35) to examine the characteristics of 
   

   
 

and 
     

     
 , which are plotted versus the control beam wavelength    at three different 

pump wavelength    in Fig. 4.3. We find reducing pump wavelength will lead to the 

higher 
   

   
 and the lower 

     

     
, which will increase the switching gain. It is also 

noticed that, at fixed   , the    to give the maximum 
   

   
 also gives the close-to-

minimum value of 
     

     
. Therefore, the maximum-gain    can be the optimal control 

wavelength for high-switching-gain operation. 

 
 

Figure 4.2: Switching gain     versus       
     

     
 for (a) varied 

   

   
 (b) varied 

     

     
, 

where        ,                   and                are fixed. 
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To examine the roles of      and      , we fix      and       instead of 
   

   
 

and 
     

     
. Considering       ,                and               ,     

is plotted against       at varied      and      . In Fig. 4.4a, with       

          ,      increases from 5 to 20. As we see, despite of 
   

   
 being reduced 

from 0.4 to 0.1, the switching gain is still significantly increased with the increase of 

    , which implies      plays more significant roles than      in determining the 

switching gain. In Fig. 4.4b, we let         and       increase from            

to         . We can see the switching gain is increased at the higher      . This 

could be partially due to the reduced 
     

     
 value, as shown in Fig. 4.2b.  

Since     and       are typically larger at the shorter wavelength, we are led to 

the same conclusion as from Fig. 4.3 that reducing the pump wavelength will enhance 

the switching gain. 

To summarize the analysis above, the switching gain of single-waveguide 

pump-control switch can be effectively improved with the higher     ,     ,       

and the lower      , by reducing the pump wavelength, setting the control wavelength 

at the maximum-gain point, and increasing the waveguide length. 

 
Figure 4.3: (a) 

   

   
 versus    and (b) 

     

     
 versus    at different pump wavelength    for 

InGaAsP bulk medium.  
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4.3 Switching Speed and Switching Energy 

In this section, we start with proposing a new saturation intensity for describing 

the optical pumping and saturation behavior in a thick medium. Then with assistance 

of MLME-FDTD simulation, the co-directional optical pumping rate is studied in a 

bulk InGaAsP waveguide, based on which the switching speed and the switching 

energy of pump-control switching scheme are expressed analytically. 

  

4.3.1 Saturation intensity of thick medium 

Part of the Phsyics in EUPT or the single-wavegudie switching case is the 

saturation of the medium by the pump. While the saturation behavior by a pump in a 

thin medium has been well studied, the saturation behavior by a pump in a thick 

medium has not. Here we make a study of the medium saturation for the case of a 

thick medium and discuss the physics involved. 

Previously, we introduced the saturation intensity for the absorption coefficient, 

 

Figure 4.4: Switching gain     versus       
     

     
 with varied (a)      and (b)      . 

              ,       ,               . 
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which is defined as the intensity at which the absorption coefficient drops to exactly 

half of the small-signal absorption.  

 

   
   

   
  

     
⁄

                                                  

 

where     is the small-signal absorption coefficient and       is the saturation 

intensity. H denotes the wavelength of light at   . 

However, when an optical field propagates through a thick active medium, such 

as an active waveguide with a finite length, the optical power is attenuated as it 

propagates due to the absorption, causing stronger pumping at input region than the 

output region. As a result, the absorption coefficient along the propagation direction 

is not uniform. Here we propose a new definition of saturation intensity for the thick 

medium with thickness of L, which is denoted by         to be distinguished from the 

material saturation intensity      . It is defined as the input optical intensity required 

to reduce the absorption coefficient at the output end of the medium by half.  

Consider the active waveguide lies along z axis. The pump supply beam at    

is incident at z=0 and exits at z=L. With Eqn.(3.13), the intensity variation along the 

waveguide is given by 

      

  
  

   

   
     

     
⁄

                                                       

With the integration from z=0 to z=L, Eqn. (4.8) becomes 
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i. Saturation 

The definition of         tells that when             , the absorption 

coefficient at z=L is reduced to half, i.e.           . Thus Eqn.(4.9) at saturation 

condition becomes 

 

  
        

     
 

        

     
                                                            

 

        

     
 is plotted versus     in Fig. 4.5. When the waveguide length is 

significantly small, i.e.       , the solution is 
        

     
  , giving              .  

 

 

ii. Transparency 

To achieve the transparency condition, it requires the transmission    

     

     
  . Substitute    

     

     
 into Eqn. (4.10), it gives 

 

     

     
 

         

    
                                                       

 
Figure 4.5:             ⁄  vs     . 
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As      , Eqn. (4.11) is reduced to 
     

     
 

    

    
  . Therefore to achieve 

99% transmission for example, the required incident intensity is in the order of 

~              and to achieve 99.9% transmission, it requires ~              . 

Take an example of         and                 , the incident pump 

intensity to achieve 99% transmission is           , which corresponds to the 

pump power of 7.7mW in a waveguide with modal area              . 

However, to further increase the transmission to 99.9%, the required pump power 

will be increase by one order to be 77mW. Apparently, it is impractical to pump the 

waveguide to high transparency. Therefore, we consider 95% transparency as an 

acceptable transparency level for our EUPT operation. The corresponding pump 

intensity requirement is ~20         .  

It is also noted that, to reduce the pump power requirement for the transparency 

state, we need to reduce      or      , which however will compromise the 

switching gain. In other words, we cannot infinitely increase      or       to achieve 

high switching gain without compromising the power consumption. 

 

4.3.2 Co-directional optical pumping rate of a waveguide 

The maximum switching speed of the pump-control switching operation is 

mainly determined by the switch-off speed, i.e. the speed of pumping the waveguide 

back to transparency, since the switch-on process dominated by the stimulated 

emission is ultrafast. In the last section, we have studied the saturation characteristics 

of a co-directionally pumped waveguide structure in the steady state, the dynamic 

behavior of which will be analyzed here based on MLME-FDTD simulation. 

In the co-directional pumping process, the optical pumping is initially stronger 
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at the entrance end than the transmitted end, due to the absorption of the waveguide. 

As the pumping continues, the saturation effect reduces the absorption coefficient and 

allows more of the light to travel to the transmitted end. As a result, the carrier-

pumping rate at the transmitted end is increased, which speeds up the transmission 

increase of the pump. Therefore, the whole pumping process will take more time if 

the waveguide is longer and the small-signal absorption coefficient is higher. Based 

on the steady-state saturation characteristics formulated in the last section, we expect 

the co-directional pumping rate of a waveguide structure will also be      

dependent. 

The MLME-FDTD simulation is carried out for the bulk InGaAsP waveguide 

(Table 3.1) pumped by the continuous wave light at 1350nm. We first consider two 

waveguides with the same     , but different individual values of     and  . A 

vertical optical confinement factor is introduced in our MLME-FDTD program, 

which allows us to linearly adjust the value of     without changing the material 

properties. Here we let one waveguide have        and               with 

optical confinement factor equal to 1 and the other waveguide have         and 

              with optical confinement factor equal to 0.2. The two waveguides 

are pumped at           with the same input intensity               . 

Note that                      , thus the waveguide will be pumped to 

transparency eventually. The transmission of the two waveguide are plotted with 

respect to the simulation time in Fig. 4.6, showing the co-directional pumping rate of 

the waveguide is related with the product parameter     , instead of individual 

values of     and  . 
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Next, with the same material properties and incident pump beam condition, the 

co-directional pumping rate is examined at varied     . The transmission of the 

pump beam versus the simulation time is plotted in Fig. 4.7 for      ranging from 

0.46 to 11.5. As we see, it takes longer time to pump the waveguide to the 

transparency state when      is larger. We also notice that for         , the 

transmission of the pump stays ~0 for a certain period before it gets significant 

increase, and the zero-transmission period increases with     . While for      

    , the initial transmission at t~0 is high enough to promote significant carrier 

pumping at the output end, thus the zero-transmission stage is absent. It is also 

important to note that the increasing slope of the pump transmission does not differ 

significantly among varied     . 

 

 
Figure 4.6: single waveguide pumping at the same         , but different individual 

values of     and  . Transmission of pump beam through waveguide with         

and               (blue), waveguide with        and              , and 

waveguide with        and               (red). Pump wavelength is 1350nm, 

intensity is               . 
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Based on the results in Fig. 4.7, the co-directional pumping process in the 

waveguide structure can be categorized into two stages. The first stage refers to the 

zero-transmission stage, in which the pump beam saturates the waveguide to get 

transmit out. This stage gets longer when      is larger. In the second stage, namely 

transmission-out stage, the output end of the waveguide is pumped up and the 

transmission of pump beam significantly increases, the increasing slope of which as 

we demonstrated is independent of     . In the pump-control switching operation, 

depending on the carrier depletion strength during the switch-on process, the switch-

off pumping process can start with either the zero-transmission stage or the 

transmission-out stage. However, to achieve high-speed switching, it is desirable to 

operate at the transmission-out stage, i.e. to prevent complete shut-off of the output 

signal. 

Next, the speed of the transmission-out stage is examined with different 

incident pump intensity. Consider the waveguides with          pumped at 

         , with the input pump intensity       varying from         to 

        . The transmission variation with time at different       is shown in Fig. 

 
Figure 4.7: The transmitted pump (1350nm) versus simulation time through bulk 

InGaAsP (Table 3.1) waveguides with varied     . 
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4.8a. Define time period of the transmission-out stage as the time taken to increase 

the pump transmission from 10% to 90%, which is denoted by    . The subscript p2 

stands for the second pumping stage. In Fig. 4.8b, the pumping rate       is plotted 

against      . As we see, they are proportional to each other, which is similar to the 

thin-medium pumping behavior. The interpolation function is displayed in Fig. 4.8b, 

giving that  

                                                              

where               .  

 

 

 

 
Figure 4.8: (a) Transmission of pump (1350nm) versus simulation time at different 

incident intensity.         . (b) the stage-two pumping rate in (a) versus input 
pump (1350nm) intensity (dots) and the linear interpolation (solid line). (c) 
Transmission of pump at 1350nm (solid), 1400nm (dash) and 1450nm (dotted) versus 

simulation time, with           for           and               . L is 

fixed. 
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Subsequently,     is examined at different pump wavelengths           

and          . Consider           for          . The incident pump 

intensity               , the waveguide length   and the optical confinement 

factor are fixed. The transmission of the pump beam versus the simulation time is 

shown in Fig. 4.8c. As we can see, the pumping rate of the transmission-out stage is 

not strongly dependent on the pumping wavelength. We also examine the value of   

for           and          , which turns out to be the same value as that 

for the           case. 

 

4.3.3 Analytical estimation of switching energy  

The energy consumption      (energy per bit) of the single waveguide switch is 

estimated by  

     
                    

    
                                                     

where    refers to the duty cycle of the control pulse sequence,      represents the bit 

rate of the input control pulses. Consider the highest switching speed           , we 

have 

      
    

 
(    

 

   
)                                                

where                . Since 
 

   
   is typically required to achieve high 

switching gain and     , the switching energy of single waveguide switching is 

more of a constant determined by the waveguide geometry and material property, i.e. 

    

 
. For example of                and              , we have 

              , which stands for the minimum energy requirement for the single-

waveguide switch operated at the highest switching speed. This is much higher than 
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the 10fJ/bit criteria for optical devices to offer sufficient energy advantage for optics 

over the electrical system in the coming 10 years [30].               

corresponds to the mode size of 1450nm light in a 250nmx350nm silicon waveguide 

surrounded by a cladding of silicon dioxide, which is difficult to be further reduced. 

Therefore, the only way to significantly improve the energy efficiency of the pump-

control switching scheme is adopting a “faster” medium with higher value of  .  

 

 

4.4 MLME-FDTD Simulation of Single Waveguide Switching Based 

on InGaAsP Bulk Semiconductor 

The analytical formulation developed for the switching gain and the switching 

speed of the single-waveguide switch will be examined by MLME-FDTD simulation 

in this section. Meanwhile, a 50Gbps and 0.5pJ per bit switching operation with 

switching gain of around 10 is demonstrated for a 40μm-long bulk-InGaAsP-based 

waveguide. 

First of all, consider the pump-control switching operation in a     -length 

400nm-width bulk-InGaAsP-based (Table 3.1) single waveguide. Let          , 

          and                be fixed, and       varies. MLME-FDTD 

simulation gives             , thus          . The transmission of pump 

beam    versus       is plotted in Fig. 4.9, where the triangular dots show the 

MLME-FDTD results and the solid line shows the analytical calculation result. As we 

see, the analytical calculation is generally consistent with the FDTD simulation with 

a slight underestimation of   , or an overestimation of the switching gain by ~10%, 

which is of the same order of error with our absorption/gain formulation (Fig. 3.8). 
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Next, MLME-FDTD is utilized to demonstrate the dynamic switching in a 

       bulk-InGaAsP waveguide operated at          ,          , 

              and                . With             , it gives 

         . Consider              , the pump power and the control pulse 

peak power are equal to 6.45mW and 0.645mW respectively. The temporal profiles 

of the input and output signal powers are shown in Fig. 4.10. As we can see, the 

waveguide is initially pumped to transparency, with 100% of the pump power 

transmitted through. As a 27.5ps-width square control pulse is launched from the 

opposite end of the waveguide, the transmission of pump is rapidly reduced to ~0 

within ~10ps. After the control pulse exits, the pump beam re-pumps the waveguide 

to transparency within ~50ps. The 10% - 90% transmission rising time, i.e.    , is 

consistent with our analytical calculation using Eqn. (4.12), which gives         . 

Hence, a 20Gbps switching operation with switching gain of 10 is demonstrated in a 

40    long bulk-InGaAsP waveguide. The energy consumption per bit calculated by 

 
Figure 4.9: The transmission of pump beam versus       

     

     
 for          , 

calculated by our analytical formulation (solid line) and MLME-FDTD simulation. 

          and          .               .  
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Eqn. (4.13) is around 0.34pJ/bit. 

 

To further increase the switching speed, we simultaneously increase the pump 

and control intensities by 4 times. At the same time, the control pulse width is 

reduced to 10ps. The resultant signal profiles are shown in Fig. 4.11. As we see, the 

switching gain is slightly reduced, giving        The switch-on speed governed by 

the carrier depletion at the control wavelength does not exhibit significant increase, 

remaining at ~10ps, despite of the increase in control intensity. While the switch-off 

speed is significantly increased, giving a time scale of ~10ps. Thus 50Gbps switching 

is achieved. With              , the pump power and control peak power are 

equal to 25.8mW and 2.58mW respectively, giving the total switching energy of 

0.54pJ/bit. 

 
Figure 4.10: The transmitted pump power  (solid line) when a 27.5ps control pulse with 

10% of the pump intensity (dash line) is launched from the opposite end of the 

waveguide.           and          .               . The waveguide 

length L     =22.8. Assume              . 
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4.5 Conclusion 

Based on the analysis above, several main switching parameters and their roles 

in affecting the switching performance of single waveguide switch are summarized as 

follows: 

1) Pump wavelength   : reducing the pump wavelength benefits the switching 

gain performance in the way of increasing 
   

   
 ,      and      , and reducing 

     

     
.  

However, the power efficiency of the device will drop with the adoption of the 

shorter wavelength pump, due to the increased pump power requirement for 

achieving the transparency state with the larger      and      . 

2) Pump intensity      :                    is required to ensure 95% 

transparency at switch-off state. Meanwhile, it is the main parameter that determines 

the switching speed. The higher      , the faster the device is switched off.  

3) Control wavelength   : to increase the switching gain, choose the 

 
Figure 4.11: The transmitted pump power (solid line) when a 10ps control pulse with 

10% of the pump intensity (dash line) is launched from the opposite end of the 

waveguide.           and          .               . The waveguide 

length L=40m and     =22.8. The mode area is              . 
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wavelength that gives the maximum optical gain as the waveguide medium is 

pumped up at   . 

4) Control intensity      : Reduce to increase the switching gain. 

5)     : It is a parameter dependent on the material property, pump 

wavelength choice as well as the device geometry, and also the most important 

parameter that determines the switching performance of the single waveguide switch. 

Increasing      can effectively increase the switching gain, but it will also increase 

the pump power requirement to achieve transparency state.  

6) Waveguide modal area     : Reducing the modal area can reduce the energy 

consumption, therefore strongly guiding nano-waveguide is important for low-power 

all-optical switching. 

In the following section, the switching performance of EUPT will be 

systematically analyzed based on the analytical technique developed in this section. 
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CHAPTER V THEORETICAL STUDIES OF EUPT PART 

III: Performance Study and Optimization of EUPT  

 

 

5.1 Analytical Analysis of Switching Gain in EUPT 

Consider the ideal operational condition in EUPT, i.e. the pump supply beam is 

completely coupled into the active waveguide at the switch-OFF condition. Refer to 

the notations defined in Fig. 3.1,        and        are thus equal to zero. The 

switching gain of EUPT is given by               ⁄ .  

The accurate way of calculating       is substituting the absorption/gain 

formulation into the coupled mode equations of pump supply and input signal beams 

and solving them self-consistently, which however will not be explored here. Instead, 

an approximation method is developed, by utilizing the single-waveguide formulation 

in Eqn. (4.5) to calculate the effective absorption coefficient      induced in the 

active waveguide by the carrier depletion, which is then substituted into the coupled 

mode formulation in section 3.1 to determine the output signal power      . It is 

important to note that, in the EUPT operation, as the signal beam is launched into 

active waveguide of the coupler, it experiences efficient coupling into the passive 

waveguide, resulting in reduced interaction distance along the active waveguide. To 

take this factor into account, we assume the coupling effect simply reduces the 

interaction length by half. Subsequently, Eqn. (4.5) is modified as follows 
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where    can be written as         to calculate the effective absorption coefficient 

     induced in the active waveguide. Here the incident intensity ratio     is denoted 

by 
      

     
, where                 ,                 , and      is the 

effective modal area in the active waveguide. Thus     can also been written as 

      

     
. 

Next, refer to Eqn. (3.6) in section 3.1. With      and          , it 

gives the output signal power normalized to the input pump supply power at different 

absorption coefficient in the active waveguide, which is given by  
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With     
    

 
 and     

      

     
 substituted in, the switching gain factor is 

given by  

       |  (
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                                            (   ) 

where       is determined from Eqn. (5.1). 
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We note that |  (
     

 
)|
 

 in Eqn. (5.3) is a monotonically increasing function 

of       as shown in Fig. 3.3. Equivalently,     monotonically decreases with the 

increase of   , which is same as the single-waveguide case given by     

(    )   . Since Eqn. (4.5) and Eqn. (5.3) for the    determination are similar to 

each other, we will expect the switching gain of EUPT to exhibit the same 

characteristics as in the single waveguide switch, i.e. the switching gain increases 

with the 
   

   
,      ,      and decreases with 

     

     
. As a result, the conclusions we 

draw from the single-waveguide switch analysis in section 4.5 will generally apply to 

the EUPT switch.  

Subsequently, the quantitative analysis for the switching gain of EUPT is 

carried out with the active waveguide material specified, i.e. the bulk InGaAsP 

semiconductor given in Table 3.1. With the pump supply wavelength fixed at 

         , the input signal wavelength is chosen at           for the     

maximization. With that, the analytical calculation gives 
   

   
     , 

     

     
     and 

               
 . The pump supply intensity       

     

    
 is decided by the 

switching speed targeted, which can be estimated by Eqn. (4.12). Here we let 

             
  to give         . Note that,         

    

 
      is 

required to achieve 95% transparency at switch-off state, where      is divided by 2 

since only half of the active waveguide is effectively pumped up. Therefore, we have 

     <84, which means with pump supply intensity at              
 , we 

need to keep      <84 to ensure >95% transparency state in the active waveguide 

thus high coupling efficiency of pump supply beam during the switch-off state.  

Next,     is analytically calculated with different input signal intensity and 
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different     . In Fig. 5.1,     is plotted against       
      

     
  at varied     . It 

shows      needs to be >30 to achieve the switching gain, i.e.      , and 

switching gain of 2 can be achieved with        . If we increase      to 55 for 

example,     will be increased to ~20. In addition, for each     , there is a 

maximum switching gain associated with an optimal input signal power, and the 

optimal input signal power generally decreases with the increase of     . When 

       , the optimal 
      

     
 ratio is ~0.01.  

 

 

 

5.2 Switching Speed and Figure of Merit of Bulk-InGaAsP-based 

EUPT 

In section 4.3.2, we derived Eqn. (4.12) to estimate the co-directional pumping 

rate of a single waveguide structure at the transmission-out stage, which is 

 

 
            

Figure 5.1: Switching gain of EUPT versus       
      

     
 at different     , 

with                         
 .           and          .  
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proportional to the incident pump intensity. However, for the case of EUPT in the 

directional-coupler structure, the pump supply power is partially switched out of the 

active waveguide during the switch-on state, thus the overall pumping rate will be 

slower than the direct pumping of the single waveguide structure. With this fact taken 

into account, the switch-off time of EUPT is estimated by 

     ⁄   [  |  (
     

 
)|
 

]         (              )        (   ) 

where             for the bulk InGaAsP.  

Next, the relative Figure of Merit of bulk-InGaAsP EUPT is calculated based 

on our analytical model, and compared with value presented in Huang’s work [9]. 

With the substitution of our new notations, the Merit Factor as defined in Eqn. (2.1) is 

written as 

   
          

(        )      
 

      
(           )    (        )  

    (   ) 

where the signal pulse repetition time        is equal to the sum of switch-on time 

and switch-off time to represent the maximum-switching-speed case. Based on the 

previous single-waveguide FDTD simulation, the switch-on time is assigned with a 

fixed value of       
      . The switch-off time      is given by Eqn. (5.4). 

(           )    (        ) gives the energy per bit      of the EUPT. 

Consider the         case for the bulk-InGaAsP-based EUPT, we have 

      ,                          
 , and using Eqn. (5.4), it gives 

           . To make a fair comparison, the same      and     values as in 

Huang’s work are adopted here, giving              
  and       . In 

addition, Huang’s calculation considered EUPT operated at          has a device 
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area of         
 , thus         in our case leads to a device area of    

       .  

The resultant Merit Factor for EUPT is               , which is then 

normalized to the Merit Factor for the electronic transistor (              ) to 

obtain the relative figure of merits (FOM) for the EUPT.  It shows FOM=        , 

which is one order lower than the FOM for the GAMOI photonic transistor obtained 

from the 4-level 2-electron FDTD simulation (Table 2.1). In addition, the energy 

consumption of EUPT based on our calculation is ~250fJ/bit, which is about 5 times 

higher than the previous calculation in [9] given by ~44fJ/bit.  

  We also need to note that our MF calculation only involves EUTP. Once 

EDPT is included, additional power consumption and device area will be added on, 

and the switching gain will be reduced. As a result, the FOM for the full photonic 

transistor will be lower than         . 

 

5.3 Dynamic Switching of EUPT Simulated by MLME-FDTD 

The dynamic switching of InGaAsP-based EUPT will be demonstrated by 

MLME-FDTD simulation in this section, with one case of         and one case 

of        . The pump supply and signal wavelengths are fixed at           

and          . 
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For the first case in Fig. 5.2, the directional coupler consisting of two 400nm-

width waveguides separated by 200nm has the coupling length of 61   . With the 

vertical optical confinement factor equal to 0.5, we have            
   for the 

active waveguide, which gives             The background refractive index of the 

active medium is 3.482, so that it can be index matched to the passive waveguide 

with n=3.5 when the active waveguide is pumped to transparency at            

 
 

 
Figure 5.2: (a) EUPT with          . n is the background material refractive index. 

The pump supply beam at           and             
  is incident from the 

passive waveguide, and the square signal at           with             
  and 

         is launched from the opposite end of the active waveguide after the active 

waveguide is pumped to transparency. (b) The input signal (red dash) and output signal 

(blue solid) intensity profiles.  
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The pump supply beam at input intensity of             
  is launched from 

the passive waveguide, and the 50ps signal pulse with peak intensity at       

        is launched from the opposite end of the active waveguide after the active 

waveguide is pumped to transparency. The temporal profiles of input signal (red dash 

line) and output signal (blue solid line) power are plotted in Fig. 5.2b. The 

analytically calculated switching gain for this case is        , which is close to the 

FDTD simulation results. The switch-on and switch-off time are ~10ps and ~40ps 

respectively. With             
 , the pump power       is equal to 3.44mW, 

and the peak power of the input signal       is equal 2.15mW. Therefore, Fig. 5.2 

shows a 20Gbps switching with switching gain of 0.18 and switching energy of 

0.28pJ/bit.  

For the second case, as shown in Fig. 5.3, without changing the geometry of the 

coupler, the small-signal absorption coefficient is increased to           
   by 

setting the optical confinement factor at 1. As a result, we have          . The 

background refractive index of the active medium in this case is 3.464 to promise 

index matching when the active waveguide is pumped to transparency. The incident 

pump intensity and the peak intensity of the 50ps signal pulse are equal to       

         and             
 s respectively.  

Fig. 5.3b shows the temporal profiles of the input signal (red dash line) and 

output signal (green solid line) power. The switching gain is equal to 2.2, which is 

close to the analytical calculation result of        . The switch-off time ~40ps is 

consistent with the analytical calculation using Eqn. (5.4), which gives          . 

Therefore, with             
 , the pump power       is equal to 7.31mW, and 

the peak power of the input signal       is equal 0.86mW, giving the total switching 

energy of 0.4pJ/bit.  
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5.4 Conclusion 

To conclude Chapter III, IV and V, a new analytical formulation is developed 

for calculating the absorption and gain coefficients seen by two monochromatic fields 

of different wavelengths interacting with a semiconductor medium. Based on that, the 

 
 

 
Figure 5.3: a) EUPT with          . n is the background material refractive index. The 

pump supply beam at           and              
  is incident from the 

passive waveguide, and the square signal at           with             
  and 

         is launched from the opposite end of the active waveguide after the active 

waveguide is pumped to transparency. (b) The input signal (red dash) and output signal 

(green solid) intensity profiles.  
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switching performance of 2-WG EUPT is analytically formulated and systematically 

studied. It shows 
   

   
, 
     

     
,       and      are the four key parameters that 

effectively determine the switching gain of 2-WG EUPT. Increasing 
   

   
,      and 

     , or effectively reducing 
     

     
 will lead to the higher switching gain. On the other 

hand, increasing           will compromise the power efficiency of EUPT in the 

way that more pump power is required to pump the active waveguide to transparency. 

Therefore, in the real application, the switching gain and power consumption needs to 

be balanced with appropriate choices of active material, pump supply wavelength and 

device length.  

Furthermore, with the assistance of MLME-FDTD, the co-directional pumping 

rate in a waveguide is analyzed, and two pumping stages are identified: the zero-

transmission stage and transmission-out stage. We suggested the switch-off process 

of EUPT should be constrained to the transmission-out stage to maximize the 

switching speed. Meanwhile, the transmission-out-stage pumping rate expression is 

deduced for the InGaAsP bulk medium (Eqn. (4.12)), which is shown proportional to 

the input pump intensity with a proportionality constant of        (     ) and has 

little dependence on the pumping wavelength.  

With the employment of InGaAsP-based bulk semiconductor in Table 3.1, the 

switching performance of EUPT is quantitatively analyzed. Compared with the 

previous analysis based on 4-level 2-electron FDTD simulation in [9], our calculation 

shows a larger      (        ) is required to achieve switching gain, the energy 

consumption is at least 5 times higher (~250fJ/bit) and the Figure of Merit is more 

than one-order worse. But the overall performance is still significantly advantageous 

over the 
(3) 

and SOA based switches.  
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At the end, 20Gbps switching operation with switching gain of ~2 and 

switching energy of 0.4pJ/bit is demonstrated in a bulk-InGaAsP-based EUPT switch 

with the employment of MLME-FDTD simulation. Simulation results are shown 

consistent with our analytical calculation. 
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CHAPTER VI: QUANTUM WELL SEMICONDUCTOR 

FOR EUPT APPLICATION 

 

In the last chapter, the switching performance of EUPT is theoretically studied 

based on InGaAsP bulk semiconductor. The calculation shows a      value of at 

least 30 is required to promise switching gain and a minimum of 250fJ/bit energy is 

consumed, which result in a relative Figure of Merit in the order of     .  According 

to the roadmap of optical network power consumption illustrated in D. A. B. Miller’s 

article in 2009 [30], an energy target of ~10fJ/bit (or power target of 10μW/Gbps) is 

suggested for the optical devices to offer sufficient energy advantage over the 

electrical system in the coming 10 years. Thus a power reduction of at least 10 times 

is required for the current EUPT based on bulk InGaAsP. On the other hand, the 

device footprint, or equivalently the requirement of      to achieve switching gain, 

also needs to be reduced to further improve the Figure of Merit. These can be only 

done with the employment of new active medium. 

In this chapter, we will investigate the characteristics of semiconductor 

quantum well (QW) in comparison with the bulk medium in affecting the switching 

performance of EUPT. We will start with a brief introduction to the semiconductor 

quantum well to highlight the main energy band features and some basic interband 

absorption behaviors in the QW. The key parameters that have been shown to 

determine the switching performance of EUPT are then calculated for the bulk 

InGaAsP and QW InGaAsP based on the free-carrier theory. At the end, a conclusion 

will be given.  
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6.1 Introduction to Semiconductor Quantum Wells 

 

6.1.1 Band structures 

Quantum well in semiconductors is formed by having a thin layer of a material 

with narrower bandgap (well) sandwiched between two layers of a material with a 

wider bandgap (barriers). The electrons and holes are confined in the lower-energy 

well layer, and when the well layer is sufficiently thin, the wave natures of electrons 

and holes respond to form standing waves, resulting in the quantized energy system.  

With the energy quantization, a selection rule applies for the interband carrier 

transition, which states that only transitions between states of the same quantum 

number in the valence and conduction bands are allowed. Since quantum well has 

only one-dimensional confinement, this rule only applies to the momentum space 

perpendicular to the layers, while in the directions parallel to the layers, electron and 

holes are still free to move as in the bulk system. As a result, we do not really have 

discrete energy states for electrons and holes in quantum wells, we have instead 

“subbands” that form above the energies calculated for the confined states. The 

electron in a given confined state can gain additional kinetic energy from the in-plane 

motion in quantum well.  

 

6.1.2 Interband optical absorption  

The direct consequence of such energy subband structure is the modified 

density of states that distinguishes the quantum well from the bulk system in many 

optical properties. In a bulk semiconductor (3D) system, the density of states rises 

with square root of energy from the band gap edge, while in the semiconductor 
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quantum well, the density of states for a given subband turns out to be a constant with 

energy, thus the density of states over the entire energy band is a series of steps with 

each step starting at the appropriate confinement energy (Fig. 6.1). If we consider the 

simplest model for the interband absorption that an electron is raised “vertically” (no 

change of momentum) from the valence band to the conduction band by absorbing a 

photon, and we presume such transitions have identical strength over different photon 

energies, the absorption spectrum of semiconductor will follow directly from the 

density of states, as shown in Fig. 6.1.  

  

On the other hand, the quantum confinement results in the heavy-hole-light-

hole splitting in the valence band. The heavy and light holes with different effective 

masses have energy quantization at different levels. Therefore, the light hole and 

heavy hole subbands are coupled with the electron subbands individually, leading to 

 
Figure 6.1: Optical absorption in bulk (i.e., 3D) semiconductors and in quantum wells, in 

the simplest model where excitonic effects are neglected.[31] 
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separate set of interband transitions. If we consider a waveguide with light 

propagating along the quantum well layers, there are two distinct optical polarization 

directions: one with polarization parallel to the quantum well layers, called TE 

polarization, and the other with the polarization perpendicular to the quantum well 

layers, called TM polarization. Because of some microscopic selection rules 

associated with the unit cell wavefunctions, the heavy-hole-to-conduction band 

transition is forbidden for TM polarization. Thus, the absorption strength or gain at 

TM polarization is typically smaller than those for TE polarization. This is why 

quantum well waveguide lasers essentially always run in the TE polarization. For our 

EUPT application, we also keep the pump supply and signal beam at TE polarization.  

Furthermore, the quantum confinement enhances the excitonic effect in the 

quantum well medium. Exciton refers to electron-hole pair in a bound hydrogenic 

state formed due to the Coulomb attraction between the negatively charged electron 

and positively charged hole. It has slightly lower energy (binding energy) than the 

free carrier states, thus optical excitation of valence band carriers into the excitonic 

state introduces an absorption peak near and below the band gap edge or subband 

edge. Excitonic absorption is difficult to resolve in the room-temperature bulk 

semiconductor, since the excitons are rapidly ionized via collisions with optical 

phonons. However, the quantum confinement in the quantum well confines the 

electron and hole closer together than in the three-dimensional case, making the 

absorption strength to create an exciton larger [32]. An actual absorption spectrum of 

a quantum well sample is shown in Fig. 6.2. The absorption in a series of steps agrees 

with the single-carrier picture discussed above, while the strong absorption peaks at 

the subband edges require the concept of excitons to interpret.  

The large optical nonlinearity of the excitons has been investigated and utilized 
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widely in many applications, such as laser mode locking [33], optical processing [34], 

etc. However, the excitonic effect is not applicable in our EUPT case since our device 

is strongly pumped at a wavelength far above the band gap edge. The large 

population of the excited carriers will significantly saturate the formulation of the 

excitons. Therefore, we may ignore the excitonic effect in our discussion. The energy 

subband picture will be sufficient to analyze the characteristics of semiconductor 

quantum well for our EUPT application. 

 

 

6.2 Bulk-vs-QW Comparison Based on Free-Carrier Theory 

In this dissertation, the interband absorption, saturation, and transition 

dynamics in a semiconductor medium is studied based on the free-carrier theory. The 

free-carrier model treats the carriers as ideal Fermi gases, and assumes the charged 

particle interactions are sufficiently fast compared to the field transition, such that 

intraband thermodynamic quasi-equilibrium Fermi-Dirac carrier distributions can be 

established. Although the realistic picture contains more effects, such as many-body 

Coulomb interaction, which renormalizes the bandgap energy and electric-dipole 

 
Figure 6.2: Absorption spectrum of a typical GaAs/AlGaAs quantum well structure at 

room temperature. [31] 
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interaction energy, the free-carrier model is reasonably accurate for comparing the 

interband transition characteristics between the bulk semiconductor and quantum well 

semiconductor. 

In section 3.2.2, we derived the formulation for    ,    ,      , and       based 

on the free carrier theory, and the calculation results for these parameters for the bulk 

semiconductor is shown consistent with the MLME FDTD simulation. These 

formulations are also applicable to the quantum well system with the substitution of 

2D density of state expression. To make a fair comparison, we consider the same 

InGaAsP band parameters as in Table 3.1, and consider the lowest confinement 

energy of the quantum well to be equal to the band gap energy of the bulk InGaAsP. 

Meanwhile, we assume the second-order confinement energy in the QW is 

sufficiently high such that the states there will not be excited. 

 

6.2.1 Pump power requirement 

First of all, with Eqn. (3.30) and Eqn. (3.25), the saturation intensity       are 

calculated for the bulk and quantum well InGaAsP at different pump wavelength   , 

which is shown in Fig. 6.3. We can see       significantly increases with the decrease 

in the value of   , and is up to 50% higher in the QW than in the bulk. It lies in the 

range of 10~100kW/cm
2
, which is of the same order as the experimental results for 

the GaAs-based system [35]. Since the pump power requirement to achieve 

transparency state in the active waveguide increases with       (section 4.3.1), the 

adoption of quantum well in our EUPT device will compromise the power efficiency 

to certain extend.   
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6.2.2 Switching gain 

In section 4.2, we highlighted the significance of increasing 
   

   
 and reducing 

     

     
 in enhancing the switching gain of EUPT and examined the characteristics of 

   

   
 and 

     

     
 in the InGaAsP-based bulk semiconductor, as shown in Fig. 3.11. Here 

we use Eqn. (3.27), (3.30) and (3.35) to perform the calculation for InGaAsP-based 

quantum well medium with the same band parameters as given by Table 3.1. In Fig. 

6.4, the 
   

   
 and 

     

     
 are plotted versus the signal wavelength    at three different 

pump supply wavelengths   , where the red plots correspond to the quantum well 

cases and the black plots show the bulk cases. We find with 2D carrier confinement, 

quantum well medium generally gives the higher 
   

   
 and the lower 

     

     
 than bulk 

medium, which is thus favorable for enhancing the switching gain. It is also noticed 

for the quantum well medium, reducing pump wavelength will lead to higher 
   

   
 and 

lower 
     

     
, and the    to give the maximum 

   

   
 also gives the close-to-minimum 

value of 
     

     
, which are the same as the bulk case. 

 

 
Figure 6.3: Analytically calculated       versus pump wavelength    for quantum well 

(solid) and bulk (dash) InGaAsP. 
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Next, we perform the switching gain calculation for the QW-InGaAsP-based 

EUPT, using the same switching parameters as in Fig. 3.20, i.e.          , 

          and               . With         and          the 

switching gain of QW-InGaAsP-based EUPT is plotted versus      , as shown in 

Fig. 3.5. Meanwhile, the switching gain plot for the bulk-InGaAsP EUPT at      

   is included for comparison. We can see, with the adoption of QW medium, the 

 
Figure 6.5: Switching gain of QW-InGaAsP-based EUPT versus       

      

     
 at 

        (black solid) and         (black dash), and switching gain of bulk 

InGaAsP EUPT at         (red solid).                           . 

          and          .  

 
 

 
Figure 6.4: (a) 

   

   
 versus    and (b) 

     

     
 versus    at different pump wavelength    for 

bulk (black) and quantum well (red) medium.  
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     requirement for achieving switching gain is reduced to 22, which means the 

device footprint can be reduced by ~27%.  

 

6.2.3 Switching speed 

In section 4.3.2, we investigated the co-directional optical pumping rate of a 

waveguide, and identified two pumping stages: the zero-transmission stage and 

transmission-out stage. It was highlighted that the switch-off process of EUPT should 

be constrained to the transmission-out stage to maximize the switching speed. 

Meanwhile, the transmission-out-stage pumping rate expression is deduced based on 

MLME-FDTD simulation for the InGaAsP bulk medium (Eqn. (4.12)), which is 

shown proportional to the input pump intensity with a proportionality constant of 

              .   plays the significant role in determining the energy 

consumption of EUPT. By increasing  , one can further reduce the energy 

consumption. 

To compare the   value between the bulk and quantum well medium, we 

consider the thin-medium pumping rate and take the simple estimation that  

             
      

   ∫    
  
 

     
 

|      |
       

∫        
  
 

 
                           

where we assume the absorption coefficient is constant with time, and the  

spontaneous decay rate is neglected since the pump intensity of interest is 

significantly higher than the saturation intensity in the EUPT operation. The integral 

∫        
  

 
calculates the total number of states up to the energy level where the 

medium is pumped, i.e.           , and 
      

   
 gives the number of carriers 

optically excited per second. The term |      |
  is the transition dipole matrix 
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element at    . The density of state expressions for the bulk and quantum well are 

given by        
 

   (
   

  )

 

 
√  and        

  

   , respectively. Subsequently, we 

can use Eqn. (6.1) to analytically estimate the pumping rate ratio between bulk and 

quantum well, which is  

                     

                  
  

 
 
|        |

  
  

   

|        | 
 
  

   

 
 

 

|        |
 

|        | 
                             

 

Studies have shown that the transition dipole matrix element becomes 

polarization dependent in the quantum well, and a transition strength enhancement 

can be observed for TE polarization. Calculation also shows that the strongest 

enhancement is observed for the e-hh transition at the subband edge, with an 

enhancement factor of 3/2 [36]. In that case, the pumping rate in the bulk and QW 

become comparable. Therefore, employing QW will not benefit the switching speed 

of our EUPT. 

 

6.2.4 Conclusion 

Based on the free-carrier analysis above, we can see QW is advantageous over 

the bulk medium in terms of improving the switching gain of EUPT. However, 

compared with the bulk medium, QW requires a higher pump power to achieve the 

equivalent transparency state and poses little change to the switching speed of EUPT. 

We need to take note that the increased pump power requirement for achieving the 

transparency state does not necessarily increase the energy consumption of the 

device. Since the energy per bit is defined as the total power consumption divided by 

bit rate (Eqn. (4.13)) and the bit rate (mainly determined by the pumping rate) is 
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proportional to the pump supply intensity through a constant  , it turns out the energy 

consumption per bit has little dependence on the pump supply power.  

 

6.3 Strained Quantum Well 

More recently, extensive interests have been devoted to a new class of 

semiconductor quantum well structures, namely strained quantum well [37-38]. They 

are made of thin lattice mismatched layers where the mismatch is accompanied by a 

uniform elastic strain that modifies the energy band structure of semiconductors and 

thus changes the electronic and optical properties of the quantum well. Their 

applications in semiconductor lasers have been studied extensively and great 

improvement of the lasing characteristics has been demonstrated theoretically and 

experimentally. Stained quantum well can also benefit our photonic transistor in 

terms of increasing the switching gain and reducing the energy consumption of the 

device. 

Two types of strain can be accommodated in the quantum well, as illustrated in 

Fig. 6.6. The quantum well layer with larger lattice constant experiences compressive 

strain, while with the smaller lattice constant, it experiences tensile strain. A critical 

thickness hc exists such that the formation of dislocation and defects resulting from 

the misfit strain can be avoided when the layer thickness is smaller than hc. It has 

been shown that the stain has a pronounced effect on the valence band structure of 

III-V materials. It removes the degeneracy in the valence band and removes the 

symmetry of the semiconductor lattice. Under a biaxial compressive strain, the heavy 

hole band is raised above the light hole band, resulting in reduced the density of 

states. On the other hand, a tensile strain raises the light-hole band above the heavy-

hole band, which can change the dominant mode polarization from TE to TM and 
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affect the resulting optical spectrum significantly [39].  

One of the main applications of strained layer quantum well structures is 

quantum well lasers. It has been shown theoretically and experimentally that strained 

QW can lead to dramatic reductions in threshold current and improvement in terms of 

modulation bandwidth of laser linewidth [40]. Under compressive strain, the effective 

mass of hole is reduced due to the raise of heavy-hole band, which leads to a reduced 

density of states. As a result, semiconductor laser will achieve the population 

inversion condition at a smaller carrier density, thus has lower threshold current than 

 

 
 

Figure 6.6: illustration of compressive strain and tensile strain in the quantum well layers. 

The atomic layer quantity does not represent the actual case. 
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the non-strained one [41-42]. On the other hand, a tensile strain would raise the light 

hole band above the heavy hole band and cause the crossover between the energy 

bands of light hole and heavy hole at certain point. This affect can change the 

dominant mode from TE polarization to TM polarization and affect the optical 

spectrum significantly. [43] 

Compressively strained quantum well is particularly interested for our photonic 

transistor application. The enhanced optical gain and differential gain imply more 

carrier depletion and the larger absorption change induced by the same amount of 

carrier depletion at switch-ON state, which will thus improve the switching gain 

characteristics of EUPT. The reduced carrier density will also benefit the EUPT 

operation in terms of reducing the pump power requirement to achieve transparency 

state. Therefore, in this dissertation, compressively strained quantum well will be 

adopted in the actual photonic transistor device. More details regarding the strained 

quantum well wafer design and the device fabrication process will be presented in the 

next chapter.  
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CHAPTER VII  FABRICATION APPROACHES OF 

EUPT 

 

The theoretical analysis of EUPT in the last chapter poses several basic 

requirements for the actual device structure of EUPT to meet the desired switching 

performance. First of all, high-index-contrast nano-waveguide structure is required to 

enhance the optical confinement, so as to increase the power efficiency of the device. 

The calculation in Section 5.2 shows with               the energy consumption 

of bulk-InGaAsP EUPT is in the order of 200fJ/bit, which is 20 times of the 10fJ/bit 

criteria for the future optical devices [30]. Increasing      will further exacerbate the 

situation. The mode size of a dielectric waveguide can be estimated by          , 

where    √     
       

 ,       and       are the refractive index of the core 

and cladding respectively. For the case of InGaAsP as the core medium with       

~3.4, it requires           to achieve modal area <0.043 m
2
 at         . 

Therefore the conventional as-grown InP cladding (n~3.2) cannot provide sufficient 

refractive index contrast to achieve strong optical confinement. We need a cladding 

material with a lower refractive index, such as silicon dioxide and air.  

Secondly, to achieve high 
   

   
 and prevent direct competition of interband 

carrier transition between the pump supply and signal beam, it is desired to have short 

pump supply wavelength and large wavelength separation (>50nm) between the 

pump and signal. As a result, the pump and signal wavelengths are typically 100-

200nm shorter than the band gap wavelength of the active medium. Therefore, we 

need the band gap difference between the passive waveguide and active waveguide to 

be sufficiently large (>200nm) so that the pump supply and signal beam will see only 
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one waveguide active.  

Furthermore, with the adoption of strongly-guiding nano-waveguide structure, 

the spatial gap between the active and passive waveguides for efficient optical 

coupling is typically in the sub-micrometer scale, which means the conventional 

passive-active integration techniques, such as selective-area epitaxy [44], re-growth 

[45], quantum well intermixing [46], which have spatial resolution in the several-

micrometer scale, are not feasible for our application. 

In this chapter, we will introduce two fabrication approaches for realizing the 

photonic transistor. One approach utilizes the ion-implantation induced quantum well 

intermixing (QWI) technique with assistance of diffusion-stop gap to achieve high-

resolution passive-active integration, and utilizes adhesive bonding technique (BCB 

bonding) for high-refractive-index-contrast waveguide structure. The other approach 

is based on direct wafer bonding of III-V active medium on silicon-on-insulator (SOI) 

platform. The fabrication steps for each approach have been developed, and the pros 

and cons of which will be highlighted.  

 

 

7.1 EUPT Based on Quantum-Well Intermixing With 

InGaAsP/InGaAs Multi-Quantum-Well Thin-Film Structure  

The first configuration of our photonic transistor is based on III-V platform, 

which utilizes the ion-implantation induced quantum well intermixing (QWI) 

technique with assistance of diffusion-stop gap to achieve high-resolution passive-

active integration. A thin-film structure obtained by BCB-bonding process is adopted 

to achieve high-refractive-index contrast, thus strong optical confinement in the 

waveguides. 



120 
 

7.1.1 Introduction to quantum well intermixing 

Over the years many approaches have been investigated to realize different 

bandgap structure on the same wafer. The first representative approach is selective-

area epitaxy growth [45], which is achieved by either opening a dielectric window 

through lithography followed by epitaxy growth or etching away the epitaxy layer in 

selective area followed by regrowth of quantum structure with a different energy 

bandgap. Those approaches have the advantage of flexibility in choosing structures 

for different area, leading to high material quality. However, multiple epitaxy growth 

leads to high cost. In addition, the joints between adjacent areas are typically 

discontinuous, over which is a transition region of typically ~100m with varied and 

undesired energy bandgap structures. Thus, regrowth is not suitable for our 

application, which requires passive-active integration with high spatial resolution.  

The second approach is based on post-growth modification on quantum wells, a 

representative example of which is quantum well intermixing (QWI) techniques. 

QWI utilizes the inter-diffusion effect between the quantum well and the barriers to 

alter the quantum well bandgap energy. Since there will not be repeated use of 

epitaxial growth system, the cost of it is low. Furthermore, the joints between 

different areas will be smoother, and the transition region is typically of a few 

micrometers. 

The most important methods that have been used to realize QWI include the 

following. (1) Impurity free vacancy diffusion (IFVD), which commonly uses a SiO2 

layer to promote the outer diffusion of Ga. This method requires quite high annealing 

temperature compared to other approaches. (2) Impurity induced disordering (IID), in 

which impurities such as dopants are used to enhance the III-V material self-diffusion 

in the crystal and promote intermixing. However, the dopants will also change the 
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electrical characteristic of the structure dramatically, thus limits the application of this 

method. (3) Photo-absorption induced disordering (PAID), in which high power laser 

pulses is used to produce transient heating in the crystal. The resulting thermal 

expansion will then cause bond breaking and lattice disruption that lead to a localized 

increase in the density of point defects. This method has been shown to give good 

spatial resolution and high material quality. The drawback lays in the fact that in 

complex device geometry, it will be time consuming to scan the laser beam through 

the wafer. (4) Ion implantation assisted QWI, which relies on the diffusion of point 

defects created during ion implantation.  

In our application, we will employ the low-energy ion-implantation assisted 

QWI to achieve passive-active integration. An exemplary process of low-energy ion-

implantation induced quantum-well intermixing process is shown in Fig. 7.1. We start 

with a sample of InGaAs/InGaAsP quantum well grown on InP substrate and capped 

by a several hundred nanometers thick InP layer. SiO2 is patterned as the ion 

implantation mask at selective areas, and phosphorus ions are implanted at the energy 

of several hundred keV. The thickness of implantation mask and the implantation 

energy are chosen so that implanted ions will be stopped within the mask at the 

covered areas to prevent introducing ions into the epitaxy wafer, and within the InP 

cap layer in the open areas to avoid direct implantation damage in the quantum well 

region. Subsequently, SiO2 mask is removed and rapid thermal annealing is carried 

out, causing the defects in the InP cap layer, which are generated by ion implantation, 

to diffuse through the quantum well region. These defects, mostly vacancies, promote 

the inter-diffusion of atoms over the quantum-well and barrier interface to make it to 

be smeared, leading to an increase in quantized energy level in the well. As a result, 

the bandgap energy of the implanted region will undergo a blue-shift. Specifically, 
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the well is InGaAs and phosphorus ions are diffused from the InGaAsP barrier into 

the well, causing the well to be effectively narrower, resulting in a blue shift of the 

bandgap energy.  

 

The lateral resolution of the ion-implantation induced quantum well intermixing 

is limited by two main factors. The first factor comes from the ion implantation 

process. The high-energy ions entering the wafer structure will collide with the atoms 

in the wafer and undergo a Monte Carlo process. The final distribution of the ions is 

influenced by many factors, including the implanted ion types, the energy of 

implanted ions, the wafer structure (materials, thickness, etc.), and the implantation 

condition such as temperature and tilting. As the wafer structure is fixed, and the type 

of implantation ion is typically chosen among the neutral species in the wafer system 

to eliminate free carrier absorption, which is thus fixed too. The next main parameter 

that can be adjusted is the implantation ion energy. It is known that both the depth 

and lateral range of ion increase with higher implantation energy. In order to 

 

            
 

Figure 7.1: Ion-implantation induced quantum well intermixing. QW refers to the 

InGaAs/InGaAsP quantum well. (a) Ion implantation process, where implanted ions stops 

at SiO2 mask layer and InP cap layer. (b) Annealing process to promote the vacancies at 

InP cap layer into QW region. The top insertion shows the quantum well potential before 

(solid) and after (dash) QWI and the increase of energy level due to the change of 

quantum well potential profile.  
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minimize the lateral range of the implanted ion, it is necessary to minimize the 

implantation energy.  

The second factor that limits the lateral resolution of QWI is from the diffusion 

of vacancies during the rapid thermal annealing process. As the vacancies diffuse 

downwards through the QW region, the vacancies also undergo lateral diffusion over 

a distance that depends on the annealing time and temperature. Increasing annealing 

temperature and annealing time will both have the vacancies to smear out more, 

resulting in reduced lateral resolution of QWI. To minimize the defect diffusion 

length, ion implantation to very close proximity of the quantum well is needed, which 

however is usually avoided by conventional ion-implantation assisted QWI, because 

the ions will induce excessive free carrier absorption loss to the light.  

Experimental results to date indicate that the resolution based on ion-

implantation-induced intermixing remains on the order of 2  , which is not small 

enough for our application. 

 

7.1.2 Diffusion-stop gap for increasing the lateral resolution of QWI 

To further improve the resolution of QWI, we propose a diffusion-stop gap 

method, which refers to etching a narrow gap through the QW region prior to the 

QWI process to constraint the lateral traveling of both implanted ions and vacancies.  

The process of diffusion-stop-gap assisted ion-implantation induced QWI is 

illustrated in Fig. 7.2. First of all, a narrow gap of about 100nm width is patterned 

using electron beam lithography (EBL) technique and etched down through the QW 

region using Inductively Coupled Plasma (ICP) etching technique. Subsequently, the 

ion implantation mask is patterned to protect area that does not require QWI. The 

mask can cross over the diffusion-stop gap and partially cover the region requiring 
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QWI to compensate the EBL overlay alignment error. With our EBL system (Elionix 

100kV), the overlay alignment error is typically ~100nm, thus the mask edge is let 

~500nm away from the diffusion-stop gap, which is short enough to allow the ion-

implantation induced vacancies to diffuse over. After ion implantation, the sample is 

annealed and the vacancies diffuse into the QW region. Since the vacancies cannot 

diffuse across the diffusion-stop gap, the QW at other side is not affected. The lateral 

resolution of such QWI process is thus determined by the width of diffusion-stop gap.  

 

The workability of diffusion-stop gap is subsequently demonstrated with the 

following experiment. Commercially grown epitaxial InP-InGaAsP-InGaAs quantum 

well wafer with ten 5.5nm unstrained InGaAs quantum well separated by 12nm thick 

InGaAsP barriers, capped by 500nm InP bulk layer, is adopted.  The as-grown 

photoluminescence peak wavelength of the QW is at 1510nm. For the first sample, as 

shown in Fig. 7.3a, parallel and periodic diffusion-stop gaps with 100nm width are 

patterned. The gaps are separated by 500nm and etched though the QW region. 

500nm SiO2 is subsequently deposited by Plasma Enhanced Chemical Vapor 

              
 
Figure 7.2: Ion implantation induced quantum well intermixing with assistance of 

diffusion-stop gap. QW stands for InGaAs/InGaAsP quantum well. (a) Ion implantation 

process: 100nm-width diffusion stop gap is etched through the QW region. SiO2 ion 

implantation mask covers one side of the diffusion-stop gap. (b) Rapid thermal annealing 

process: the defects diffuse into the QW region and stop at the gap in the lateral direction, 

leaving region at the other side of the gap unaffected.  
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Deposition (PECVD) technique as the ion implantation mask, with ion implantation 

windows open at alternative stripe. The reference sample, as shown in Fig. 7.3b is 

patterned with the same ion implantation mask, but without diffusion-stop gap. 

Phosphorous ions are implanted at 100keV with dosage of          at substrate 

temperature of 200   for both samples. The defect implantation depth was about 

300nm from the QW region. The SiO2 mask is then removed and the samples are 

both annealed in a rapid thermal processor at 625   for 2min. 

 

 

Figure 7.4 shows the PL spectrum of diffusion-stop-gap sample and reference 

sample after annealing. As we see, the reference sample without diffusion-stop gaps 

(Fig. 7.3b) has single PL peak at 1348nm, showing a ~160nm blue shift of bandgap 

energy over the sample. Although the implantation regions are well separated, the 

subsequent annealing has the defects smear out, resulting in uniform band gap shift 

across the un-implanted regions. However, the diffusion-stop-gap sample (Fig. 7.3a) 

exhibits two PL peaks separated by 70nm with similar peak intensities. One peak 

appears at the same wavelength as reference sample, showing the PL spectrum of the 

regions implanted with ions. The other peak at 1418nm shows the PL spectrum of 

regions without ion implantation, which experiences a 90nm blue shift. This shift is 

        
 
Figure 7.3: (a) InGaAs/InGaAsP quantum well wafer with a series of parallel diffusion-

stop gaps etched and separated by 500nm. SiO2 ion implantation mask covers alternative 

stripes. (b) InGaAs/InGaAsP quantum well wafer without diffusion-stop gap. The ion 

implantation mask is the same as in (a). 
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caused by the QWI induced by thermal annealing process. As we can see, with 

adoption of diffusion-stop gap, regions with 70nm band gap difference can be 

patterned at a spatial resolution of 100nm. The band gap difference can be further 

increased by optimizing the ion implantation and annealing conditions.  

 

 

7.1.3. Thin-film structure realized via BCB bonding 

To enhance the optical confinement in the photonic transistor waveguide, and 

thus to increase the modal intensity and reduce the power consumption, it is 

necessary to have high refractive index contrast in both the lateral and vertical 

directions of the waveguides. The tall structure created by single etching step can 

provide high index contrast in the lateral direction, while the vertical contrast 

provided by latticed matched III-V materials， which are InP and InGaAs/InGaAsP 

in our case, is typically very small (dn~0.1). One way to achieve high refractive index 

contrast in both directions is to have the structure suspended in air, such as in the case 

 
Figure 7.4: PL spectrum of diffusion-stop-gap sample in Fig. 7.3a (red) and the reference 

sample in Fig. 7.3b (black) after ion implantation and rapid thermal annealing.  
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of micro disk [47, 48] or photonic band-gap structure [49]. Another way is to utilize 

certain polymer (BCB, n~1.56) [50] or dielectric material (SiO2, n~1.45) with a 

refractive index low compared to the high refractive index of III-V semiconductor 

material (n~3.2). In this work, we will take the second approach and use the BCB 

bonding technique to fabricate the thin-film photonic transistor. 

The detailed process steps are shown in Fig. 7.5. Following the diffusion-stop-

gap assisted QWI process in Fig 7.2, we start with the InGaAsP/InGaAs quantum 

well wafer with patterned active and passive regions. First of all, InP cap layer is 

removed by chemical etching with HCl:H2O (1:1) solution. The wafer is subsequently 

deposited with 300nm SiO2 etching mask layer using PECVD technique, and coated 

with 300nm positive resist PMMA950-5A. After 15min hotplate baking at 170
o
C, the 

sample is coated with a think layer of E-spacer to reduce the charging effect during 

the electron-beam exposure. The device structures (EUPT coupler structure) are then 

patterned on the PMMA layer using Electron Beam Lithography (EBL) technique 

followed by resist developing in MIBK:IPA (1:3) for 70s. Reactive Ion Etching (RIE) 

based on CHF3/Ar chemistry is employed to transfer the EBL patterns into the 

PECVD-deposited SiO2 layer. Subsequently, Inductively Coupled Plasma (ICP) 

etching based on Cl2/N2 chemistry is adopted to transfer the device patterns into the 

epi-wafer with SiO2 as etching mask. Then the SiO2 etching mask is removed with 

HF chemical etching, and a thin layer of PECVD SiO2 is deposited on both the QW 

sample and a GaAs carrier wafer. This is to increase the surface adhesion of the QW 

sample and GaAs carrier wafer to BCB. After spin coating of BCB 3022-35 onto 

them, the device wafer is carefully flipped onto the GaAs carrier wafer. The whole 

assembly is placed onto a hotplate (~120
o
C) and force is applied onto the top wafer. 

After that, the whole assembly is put into a nitrogen oven to cure the BCB. The 
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temperature cycle should follow the recommendation of the BCB manufacturer. After 

curing, the top InP substrate is chemically removed by hydrochloric acid solution 

(HCl:H2O=2:1) and the thin-film structure is formed.  

 

Fig. 7.6 shows the SEM image of resultant thin-film photonic transistor.  Fig. 

7.6a is the cleaved end facet of 3m-width thin-film waveguide extended to the 

sample edge for free-space coupling of light. The thickness of the QW thin film is 

256nm. The lateral confinement is achieved by two trenches etched on the QW wafer, 

which are filled with SiO2 and BCB. Fig. 7.6b is the top image of photonic transistor 

coupler, with waveguides width at 305nm and gap size at 455nm.  

 
 
Figure 7.5: Fabrication process of BCB-based thin-film EUPT. 
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7.1.4. Pros and Cons with thin-film EUPT based on QWI approach 

The main advantage of the thin-film EUPT based on QWI approach is that the 

active and passive waveguides are made of the same material, thus having the same 

material refractive index. Effective refractive index matching condition between 

active and passive waveguides can be achieved by simply fabricating the symmetric 

coupler structure, without the need of carefully tuning the waveguide widths. 

Otherwise, if the active and passive waveguides are composed of different materials, 

critical control of waveguide widths will be needed to achieve effective refractive 

index matching, which will increase the fabrication challenges and the complexity of 

device design. Thin-film structure also maximizes the optical mode confinement, 

compared with the other structures as to be presented in the later sections, thus 

potentially is the most power-efficient approach for realizing EUPT. 

However, the energy band gap shift induced by QWI, as we achieved here, is 

not adequate for the EUPT applications. Measurement shows the passive waveguide 

  
 
Figure 7.6: SEM images of BCB-based thin-film EUPT. a) Cross section of single thin-

film QW waveguide bonded on BCB. The two stand-up structures are the etched 

trenches on the QW wafer filled with SiO2 and BCB for high lateral index contrast. b) 

Top view of thin-film photonic transistor.  
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obtained in our QWI process is still highly absorptive to the pump and supply beams. 

Increasing the bandgap difference between the active and passive waveguides to up-

to 150nm is possible by further optimizing the QWI recipe. However, optimization of 

QWI recipe is not cost effective and the fabrication process of thin-film EUPT is very 

complicated, which leads to high difficulty in process optimization and trouble 

shootings. Furthermore, 150nm bandgap difference is not ideally large for our EUPT 

operation. Therefore, in this dissertation, we will not continue with this approach. 

Separate studies could be carried out in the future to investigate the feasibility of the 

QWI approach for the EUPT application.  

Next, we will present the second fabrication approach developed that can 

alleviate the above drawbacks: hybrid III-V/silicon integrated platform. This is also 

the approach we adopted for the actual device realization.  

  

 

7.2 EUPT Based on III-V-on-Silicon Integrated Platform 

The second EUPT device configuration we will propose here is based on a 

hybrid III-V/silicon integrated platform. The active waveguide consists of a III-V 

quantum well (InGaAsP/InGaAs quantum well is adopted) nano-waveguide directly 

bonded on the silicon on insulator (SOI) nanowaveguide, while the SOI waveguide 

without QW bonded on top forms the passive waveguide in EUPT. Due to the 

different material compositions of the two waveguides, fine control of each individual 

waveguide width is required to achieve effective model index matching condition. 

Compared with the QWI approach, much larger band-gap difference can be achieved 

between the passive and active waveguides. Furthermore, the buried oxide in SOI 

wafer provides the high refractive index contrast required for the waveguide.  
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It is important to highlight that fabrication of such device configuration that 

involves highly compact integration of passive/active nano-scale features with sub-

micrometer separation on a III-V/Si integration platform has never been reported 

before. Requirement of high-precision dimension control for the constituent nano-

waveguides further increases the fabrication challenges.  

Here I propose two different fabrication process flows to realize the EUPT 

device on the hybrid silicon nano-photonic platform. Different process flows result in 

different EUPT device structures, namely T-structure and self-aligned structure. The 

detailed fabrication steps will be presented in the following sections. The pros and 

cons for each device structure will also be discussed. 

 

7.2.1 Introduction to direct wafer bonding 

 The hybrid III-V/Si integration in our device fabrication relies on the direct 

wafer bonding technique. Direct wafer bonding refers to the process of connecting 

two wafer surfaces without any adhesive or additional materials to promote the 

adhesion between the two surfaces. It allows different materials to be stacked 

together without the concern for the crystalline relationship between them, leading to 

more innovative device architectures and many new applications. Compared with the 

adhesive bonding, like the BCB bonding we adopted for thin-film structure, direct 

bonding can withstand subsequent high temperature processes. Additionally, most 

direct bonded structures can subsequently be processed using standard micro-

technologies and microelectronics manufacturing tools, which is a key point for 

CMOS Front End compatibility and developing new stacked structures. 

A variety of stacking structures have been achieved with various materials, 

such as Si, SiO2, SiGe, Ge, III-V, SiC, nitride, sapphire, diamond, glass, quartz, 
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metal, etc. [51]. According to the material similarity at the bonding interface, it can 

be categorized into homogenous bonding (thin film and substrate of the same 

material) and heterogeneous bonding (thin film and substrate of different materials). 

A well-known application is the mass production of silicon-on-insulator (SOI) 

bonded structures, which belongs to the heterogeneous bonding category. III-V to Si 

direct bonding is another important type of heterogeneous bonding, which has 

attracted a lot of interest and been widely used for photonic integration application. In 

this dissertation, we will focus on the III-V (in particular InP) to silicon direct wafer 

bonding technique. 

A key challenge for direct bonding of III-V to silicon is the thermal expansion 

coefficient mismatch. Conventional direct bonding involves a high-temperature 

(>600°C) annealing step, which is detrimental when bonding dissimilar materials 

[52]. More recently, the O2 plasma-assisted wafer bonding has been developed and 

widely used for low temperature (<400°C) bonding [53]. The bonding process is 

described as follows. After a rigorous sample-cleaning procedure, native oxides on Si 

and III-V compound semiconductors are removed in HF and NH4OH solutions, 

respectively. Subsequently, sample surfaces are exposed to O2 plasma to convert the 

hydrophobic surfaces to hydrophilic ones by growing a thin layer of highly reactive 

native oxide, which then form high density of −OH groups (i.e. hydroxyl groups) 

after contacting with H2O-based solutions or even H2O in the air. The two substrates 

can then be weakly bonded to each other at room temperature via Van der Waals 

forces or hydrogen bonds. During the following anneal process at elevated 

temperature (220°C in this work), the well-know chemical reactions in Si-based 

hydrophilic bonding given in Eqn. (7.1) and (7.2) takes place and forms strong 

covalent bonds,  
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Si −OH+M− OH → Si − O −M +H2O(g),                             (7.1) 

Si + 2H2O → SiO2 + 2H2(g),                                     (7.2) 

where M stands for a metal with high electronegativity, i.e. group III and group V 

elements in our case. 

 

 

7.2.2 Vertical outgasing channel for void-free direct wafer bonding of III-V on 

SOI 

The gas byproducts of H2O and H2 from the reactions in Eqns. (7.1) and (7.2) 

can accumulate and cause a large number of interfacial voids at the bonding interface 

as shown in Fig. 7.7a, which can even cause de-bonding. Thus to obtain high-quality    

bonding interface, it is critical to remove the gas byproduct efficiently.  

          
(a)                                                                   (b) 

        
Figure 7.7: Optical microscope image of the top surface of InGaAsP/InGaAs thin film 

directly bonded on SOI wafer. (a) Without interfacial amorphous or outgassing channels 

(b) With 5mx5m square outgassing channels patterned on SOI prior to direct bonding 

process. Channel-to-channel separation is 50m. 
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There are two main approaches that have been widely adopted to eliminate the 

interfacial voids formulation. The first approach is to utilize a layer of interfacial 

amorphous dielectric to absorb the gas byproducts. The common interfacial 

amorphous dielectric is thermal or PECVD SiO2 or SiNx, whose thickness is typically 

less than 100nm in order to maintain good optical and thermal coupling between a 

III-V epilayer and Si [53]. However, in our application, the presence of low-

refractive-index dielectric interfacial layer can cause the optical mode distortion in 

our QW-on-SOI nano-waveguide and complicate the coupler design, thus we will 

adopt the second approach, which is deploying vertical outgassing channels (VOC) 

on SOI prior to the wafer bonding process [54-55]. The vertical outgassing channels 

are basically an array of holes that are etched through the silicon layer to the buried 

oxide layer. During the annealing process, the gas byproducts and other forms of 

gaseous molecules can migrate to the closest outgassing channel, getting trapped and 

absorbed by the buried oxide, instead of accumulating at bonding interface to form 

voids. As shown in Fig. 7.7b, with VOC patterned on SOI, the voids are completely 

eliminated, compared to the sample without VOC in Fig. 7.7a.  
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The effectiveness of the vertical outgassing channels is a function of the 

Table 7.1: Process flow for direct bonding of InGaAsP/InGaAs quantum well on SOI with 

vertical outgassing channels employed. 

 
Process steps for SOI Process steps for QW wafer 

Step 1: Pattern vertical outgassing 

channels and device pattern if applicable 

1. Pattern VOC and alignment 

markers using photolithography 

followed by ICP etching through 

silicon layer 

2. Pattern device features using EBL 

followed by ICP etching of silicon 

(PECVD SiO2 is used as ICP etching 

mask in our process 

 

Step 2: Solvent cleaning: 

1. Acetone + ultrasonic for 5min 

2. IPA + ultrasonic for 5min 

3. DI water + ultrasonic for 5min 

Step 3: Piranha cleaning:  

H2SO4+H2O2 (7:3), heated at 140Cdeg 

on hotplate for 15min to completely 

remove any organic residues off the 

sample surface 

Step 4: HF cleaning: 

BHF (7:1) for 1min to remove the 

surface oxide from ambient oxidation 

or deposited SiO2 left over from the 

previous process. 

Step 5: O2 plasma exposure: 

Pressure=200mTorr, RF = 100W, 

O2=10sccm for 100s. 

Step 6: Repeat Step 3 

Step 7: Repeat Step 3 for 5s. 

Step 8: Removing the top InP cap layer: 

HCl:H2O (1:1) for 2min 

Step 9: Ammonium (NH4OH) cleaning: 

25% NH4OH solution for 1min to 

remove the native oxide on the 

sample surface. 

Step 10: O2 plasma exposure: 

Pressure=200mTorr, RF = 50W, O2=20sccm for 60s. 

Step 11: Manual bonding 

Flip over QW wafer and quickly press it onto the SOI substrate. Apply force 

over the bonding area, staring from the center region and gradually moving to the 

surrounding area.   

Step 12: Annealing 

The bonded sample is put into the vacuum oven with a piece of metal weight 

pressing on top for overnight annealing (~20hr) at 220degC. 

Step 13: Remove InP substrate 

The annealed sample is put into HCl:H2O (2:1) solution to remove the InP 

substrate. 
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channel size as well as the spacing between channels. Separate studies have shown 

that reducing the channel spacing can effectively reduce the number of interfacial 

voids, and eventually, void-free bonding is achieved when the spacing is equal to or 

less than      [55]. On the other hand, the size of channel plays less significant 

roles in reducing the interfacial voids. In our process, we use         square 

VOCs separated by     .  

Our process flow for O2 plasma-assisted QW-to-Si bonding with adoption of 

VOC is illustrated in Table 7.1. Commercially grown epitaxial InP-InGaAsP-InGaAs 

quantum well wafer with ten 5.5nm unstrained InGaAs quantum well separated by 

12nm thick InGaAsP barriers, capped by 500nm InP bulk layer, is adopted. The InP 

cap layer is chemically removed before the bonding process. Fig. 7.8 shows the top 

surface of QW thin film bonded on SOI wafer. The smooth area has VOC patterned 

in SOI. 1.4cm x 1.4cm void-free bonding is achieved.  

 

The device structures can either be patterned on SOI prior to the bonding or on 

the QW thin film after bonding, depending on the particular application.  

 
 

Figure 7.8: InGaAsP/InGaAs QW thin film boned on SOI patterned with VOC. 
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7.2.3 Photonic transistor with T-structure QW-on-SOI active waveguide 

Two different QW-on-SOI waveguide structures, namely T-structure and self-

aligned structure, are proposed here to form the active waveguide in our EUPT 

device. The fabrication procedures for the corresponding EUPT will also be different. 

Here we start with the T-structure based EUPT. 

The T-structure EUPT coupler is shown in Fig. 7.9a. The QW-on-SOI active 

waveguide has a wider QW waveguide on top and a narrow SOI waveguide at the 

bottom. The optical mode power will be mainly confined mainly in the QW region to 

maximize the light-matter interaction, thus to enhance effectiveness of the 

absorption-induced switching. Fig. 7.9b shows intensity distribution of the coupled 

mode in the T-structure photonic transistor.  

 

The fabrication process of T-structure-based photonic transistor is shown in 

Fig. 7.10. The SOI waveguides are patterned together with the vertical outgassing 

channel prior to the bonding process. It is important to note that we should not use 

negative EBL resist to pattern SOI waveguide, otherwise there will be lack of 

sufficient bonding area to support the QW thin film. Therefore, the positive EBL 

resist PMMA is adopted here. Following the PECVD SiO2 (etching mask) deposition 

on the SOI wafer and then PMMA coating, the device patterns and VOCs are written 

          
Figure 7.9:  (a) T-structure EUPT, where the active waveguide is comprised of a wider 

QW waveguide bonded on a narrower SOI waveguide. (b) Mode solution of the index-

matched T-structure photonic transistor, solved by COMSOL. The red arrows show the 

polarization of optical field of this mode. 
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on PMMA using EBL technique. After resist developing, the patterns are transferred 

into 300nm SiO2 layer through RIE technique. Using the SiO2 layer as the hard mask, 

Si is then etched using ICP technique based on BCl3/HBr chemistry. Next, QW wafer 

is bonded on the device-patterned SOI wafer following the procedures given in Table 

7.1. After chemically removing the InP substrate, 300nm PECVD SiO2 is deposited 

on the bonded sample, followed by spin coating of PMMA and EBL overlay 

patterning of QW waveguides. After resist developing, CHF3/Ar-based RIE etching 

and Cl2/N2-based ICP etching are performed in sequence to transfer the patterns into 

the SiO2 layer first and then into the QW layer.  

 

 

 
 
Figure 7.10: Process flow for fabricating T-structure based EUPT 
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Fig. 7.11 shows the SEM image of the resultant T-structure photonic transistor. 

The structures in Fig. 7.11a and Fig. 7.11b are from the same wafer. We find the 

alignment accuracy with the EBL overlay patterning of QW waveguide is not 

consistent over the wafer and a misalignment of as high as 150nm could happen.  

 

 The fabrication complexity is greatly reduced with T-structure QW-on-SOI 

approach compared with the QWI-based thin film structure. Strong optical 

confinement is achieved, and at the same time large band gap difference between 

passive and active waveguides is promised. However, T-structure QW-on-SOI faces a 

new fabrication challenge - the misalignment of QW and SOI in the active 

waveguide, caused by the EBL overlay error, may lead to significant change in the 

coupling condition. First of all, the misalignment will induce effective modal 

refractive index change in QW-on-SOI waveguide, introducing uncertainties in 

achieving the refractive index-matching condition. Secondly, the misalignment also 

effectively changes the separation between the passive and active waveguide, which 

will lead to great change in the coupling length. Thirdly, the angular misalignment 

destructs the parallel nature between the two waveguides, which further complicates 

  
 
Figure 7.11: SEM image of T-structure EUPT, where the SiO2 mask for ICP etching of 

QW has not been removed. (a) Good alignment (b) poor alignment between QW and 

bottom SOI waveguide. 
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the coupling conditions.  

Fig 7.12 shows the mode simulation for 1350nm light in the T-structure coupler 

when the QW and the bottom SOI is aligned or misaligned by 40nm. The thickness of 

Si and QW is 340nm and 250nm respectively. The refractive index of Si is 3.5 and 

the refractive index of QW is 3.45. The coupler stands on top of a buried oxide layer 

with n=1.47 and surrounded by air with n=1. The lateral dimensions of SOI and QW-

on-SOI waveguides are adjusted such that they are refractive index matched in the 

aligned situation shown in Fig. 7.12a. The eigenmode with similar power in two 

waveguides represents the refractive index matching condition, while the eigenmode 

with much higher power in one waveguide than the other corresponds to the 

refractive index-mismatched condition. As we can see, the coupling efficiency is 

greatly reduced with the presence of 40nm misalignment.  

 

In addition, T-structure EUPT involves three width variables, including the 

width of passive SOI waveguide, the width of SOI in QW-on-SOI waveguide and the 

width of QW, which could introduce different amount of errors into the final photonic 

transistor device. The effective index matching condition thus becomes highly 

uncertain, which poses great challenges on the device design.  

 

 

 
Figure 7.12: Mode simulation by COMSOL. (a) The symmetric eigenmodes in T-structure 

photonic transistor with QW aligned to the bottom SOI (b) The anti-symmetric eigenmode 

and (c) the symmetric compound mode as QW is shifted to right by 40nm.  
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7.2.4 Photonic transistor based on self-aligned QW-on-SOI waveguide 

To eliminate the EBL overlay misalignment issue, the self-aligned QW-on-SOI 

waveguide structure is proposed, in which the QW and SOI waveguides are etched 

down together with the same etching mask. Since the widths of QW and SOI in the 

QW-on-SOI waveguide are the same, the number of variables involved in coupler 

design is further reduced.  

The self-aligned photonic transistor structure is shown in Fig. 7.13a, and the 

eigenmode solution for the effective index matching case is shown in Fig. 7.13b. 

Unlike the T-structure where the optical mode is mostly confined in the QW thin film, 

the self-aligned structure has great amount of mode power stay in the Si region. Thus 

the effective absorption or gain change in the self-aligned QW-on-SOI waveguide 

will be less than that in the T-structure one. However, we can properly design the 

thickness of QW and SOI to increase the confinement of optical power in the QW, 

which will be discussed section 7.3.  

 

 

The fabrication procedure of self-aligned QW-on-SOI architecture is illustrated 

in Fig. 7.14. The vertical outgassing channels are first patterned on the SOI wafer. 

The QW thin film is subsequently bonded on top following the procedure in Table 

      
 
Figure 7.13:  (a) Self-aligned photonic transistor, where the QW and SOI in the active 

waveguide are of the same width. (b) Symmetric compound mode of the index-matched 

self-aligned photonic transistor solved by COMSOL. The red arrows show the 

polarization of optical field of this mode. 
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7.1. Next, 200nm thick HSQ (a negative EBL resist) is coated on the bonded sample 

and baked at 180°C on the hotplate for 2min. With EBL technique, the coupler 

structures are patterned on the HSQ layer and developed in TMAH for 30s. 

Subsequently, the device structures are transferred into the QW layer by ICP etching 

with Cl2/N2-chemistry and then into silicon layer by ICP etching with CHF3/SF6 

chemistry. Then the HSQ mask residue is removed with HF wet etching and a new 

HSQ layer of 800nm thick is coated to cover the ~600nm-hight QW-on-SOI 

waveguides. Next, EBL is adopted to pattern the protection mask over the active 

waveguide. After EBL resist developing, the QW over the unprotected (passive) area 

are etched away using Cl2/N2-based ICP technique. The resultant device structure is 

shown in Fig. 7.15.  

The entire fabrication process and the process parameters for the self-aligned-

structure-based EUPT are tabulated at the end of the thesis (Appendix). 

 

 
 
Figure 7.14: Process flow for fabricating self-aligned photonic transistor. 
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7.3 Wafer Design and Device Design for Self-Aligned EUPT 

 Due to the advantages of self-aligned structure over the T-structure in terms of 

eliminating the EBL misalignment issue and reducing the number of waveguide 

width variables in the coupler design, the self-aligned QW-on-SOI approach will be 

adopted to realize our photonic transistor. On the other hand, the thin-film structure 

based on BCB bonding and QW-on-SOI T-structure could be promising candidates 

for other device configurations which do not require accurate control of the 

propagating refractive index of the waveguiding mode, but requires strong optical 

confinement such as for the case of single-waveguide or Mach Zehnder 

Interferometer (MZI) based structures, etc. 

 

7.3.1 Strained InGaAsP quantum well wafer design 

In Chapter VI, we have theoretically shown the significant improvement of 

 
 

Figure 7.15: SEM image of self-aligned-structure based EUPT 
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switching performance in our EUPT with the employment of quantum well 

semiconductor medium, due to the increase of 
   

   
 and reduction of 

     

     
. In the actual 

wafer design, multi-layer quantum well is adopted to increase the optical confinement 

in the QW region thus enhancing the effective absorption and gain experienced by the 

propagating modes in the waveguides. Furthermore, introduction of strains into 

quantum well has been shown to further enhance the gain and achieve high-speed 

modulation [56-57], which will be employed in our wafer design.  

The wafer structure is shown in Fig. 7.16, where the layers highlighted by 

purple color constitute the final QW thin film bonded on the SOI waveguide. The 

strained InGaAsP quantum well consists of seven 5.5nm-thick 

In0.719Ga0.281As0.914P0.086 wells with 1% compressive strain separated by 8nm-thick 

In0.63Ga0.37As0.601P0.399 barriers with 0.65% tensile strain. Due to the presence of 

strain, we cannot infinitely increase the number of wells. Thus we intentionally 

increased the thickness of InGaAsP cladding layer below the quantum well layers (on 

top of QW after bonding) to pull the mode peak to the quantum well region till the 

intensity for the mode within the QW layers is maximized. The simulation is carried 

out at wavelength of 1.342m (given by the laser wavelength we will use for the 

device measurement) for the case of a QW-on-SOI waveguide with width of 400nm 

and height of 250nm for the SOI part of the waveguide. The mode simulation at the 

optimal thickness of InGaAsP cladding layer is shown in Fig. 7.16. Furthermore, a 

two-period InP/InGaAs superlattice is introduced near the bonding surface to prevent 

the defects generated at the bonding interface from diffusing into the QW [58]. 
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7.3.2 Refractive index of InGaAsP quantum well thin film 

To design a propagating refractive index-matched coupler structure, the 

refractive indices of the constituent waveguide materials need to be known. The 

quantum well thin film consists of complex layer structures and is highly absorptive 

at the pump supply wavelength, which makes measurement of the real part of the 

refractive index very challenging. Here we take the theoretical approach that 

calculating the refractive indices of the QW layers based on different models and 

identifying a refractive index range for the QW thin film. This refractive index range 

is taken into account during the coupler design by introducing certain variation of the 

waveguide width accordingly to search for the index matching condition. 

The material and layer composition of the QW thin film is given in Table 7.2. It 

mainly consists of the quaternary semiconductor InxGa1-xAsyP1-y. A variety of 

theoretical models are available for calculating the refractive index of InxGa1-xAsyP1-y 

with different composition. They match the experimental results to different extents, 

  
 

Figure 7.16: (a) Strained InGaAsP multi-quantum-well wafer structure. (b) The QW-on-

SOI waveguide cross section and the optical mode profile at wavelength of 1.342m and 

waveguide width of 400nm. 
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depending on the optical wavelength range of interest. Some reported formulae for 

the semiconductor refractive index calculation break down in the wavelength range 

close to the bandgap. In our case, the PL peak of the cladding layer 

In0.741Ga0.259As0.563P0.437, which occupies 63% of total thickness, is 1.26m 

(0.984eV), and the bandgap wavelength by calculation is 1.3m (0.954eV). The 

optical pump wavelength for our EUPT operation was chosen to be 1342nm 

(0.924eV), which is only 0.03eV (~1.15kBT at room temperature) below the band gap 

of the cladding layers. Therefore, some models, like Sellmeier formula [59] and 

Single oscillator model (SOM) [59], which have neglected the optical absorption, are 

not well applicable.  

 

 

Here we choose the following four published methods for near-bandgap 

calculation. Burkhard et al.’s method [60] based on interpolation of polarizabilities 

has shown good consistency with experimental data for the range of -0.3eV<   

  <0.2eV, where    is the photon energy. Modified single-oscillator model (MSOM) 

[61], compared with conventional SOM, uses a more realistic approach for 

absorption, leading to a better fit for the light close to bandgap. Adachi’s approach 

 
Table 7.2: The layer structure of InGaAsP multi-quantum well thin film bonded on SOI 

wafer. 

 

Material Thickness Strain PL peak 

 200nm 0 1.26m 

In0.63Ga0.37As0.601P0.399 
x 7 

8nm -0.65% 1.26m 

In0.719Ga0.281As0.914P0.086 5.5nm 1% 1.55m 

In0.63Ga0.37As0.601P0.399 8nm -0.65% 1.26m 

In0.741Ga0.259As0.563P0.437 20nm 0 1.26m 

InP 
x 2 

7.5nm 0  

In0.851Ga0.149As0.327P0.673 7.5nm 0 1.1m 

InP 7.5nm 0  
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[62], starting from calculating the imaginary part of the complex dielectric function, 

followed by exploiting Kramers-Kronig relation to derive the refractive index n, is 

also applicable to near bandgap case. Charles et al.’s two-oscillator model [63] is not 

composition x, y dependent. The formula is obtained by fitting to the experimental 

results and involves only photon energy, material PL energy and some fitting 

parameters.  

The formulae mentioned above are developed for InxGa1-xAsyP1-y lattice 

matched to InP, which in our case are applicable to In0.741Ga0.259As0.563P0.437 and 

In0.851Ga0.149As0.327P0.673 layers only. To calculate the QW barrier 

In0.63Ga0.37As0.601P0.399 and well In0.719Ga0.281As0.914P0.086, which are lattice 

mismatched to InP, we adopt Vegard’s rule in Eqn. (7.3), where the quantity   

            is related to the dielectric constant   and thus the refractive index 

through     
 
 .  

 

 (               ) 

                                                         

      

 

Table 7.3 shows the refractive indices of the constituent layers at wavelength 

1342nm, calculated using the above methods. The refractive index of the entire 

structure is a weighted average based on the layers’ thicknesses. As we can see, the 

refractive index of the QW thin film is in the range of 3.4-3.46. Furthermore, the 

carrier induced refractive index change due to the optical pumping is typically in the 

order of 0.01, which is smaller than this range. Thus, it will be not be separetly 

analyzed in our design.   



148 
 

 

 

7.3.3 Discussion on fabrication errors and device tolerance 

In practice, the physical dimension of the final device deviates from the initial 

design due to the fabrication errors.  The dimension error in the vertical direction is 

usually small, since wafer growth is typically highly precise. While the dimension 

error in the horizontal direction, which is mainly originated from the EBL step, is a 

function of many factors, including the EBL dot map, electron beam current, 

exposure time, the property of resist (e.g. thickness, sensitivity, conductivity, etc.), 

the wafer material, size of pattern, resist developing time and temperature and so on. 

Thus keeping the process condition consistent is important for improving the 

fabrication repeatability. In our case, negative resist HSQ is utilized for EBL 

patterning of the coupler structure. A series of dimension tests show the run-to-run 

and device-to-device dimension errors are typically in the order of 10nm. 

According to the coupled mode theory, the coupling efficiency and coupling 

length in a passive directional coupler versus the index mismatch are give as follows.  

Table 7.3: Theoretically calculated refractive index of InGaAsP at different composition 

and averaged refractive index of QW thin film.  

 

 Interpolation 

of 

polarizabilities 

MSOM 
Dielectric 

function 

Two-

oscillator 

model 

In0.741Ga0.259As0.563P0.437 3.512 3.446 3.536 3.448 

In0.63Ga0.37As0.601P0.399 3.334 (Vegard’s rule) 

In0.719Ga0.281As0.914P0.086 3.452 (Vegard’s rule) 

In0.851Ga0.149As0.327P0.673 3.372 3.330 3.333 3.317 

InP 3.196 

Averaged refractive 

index of QW thin film 
3.448 3.406 3.461 3.407 
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    √                                                                    

where         

  

 
 is the propagation constant difference between two waveguides, 

      is the effective modal refractive index difference.     
 

  
 is the complete 

coupling length and   is the coupling coefficient. So     is basically the desired or 

designed device length in the complete coupling condition and    represents the 

dimension errors due to the fabrication errors. 

 

 

 

From Eqn. (7.5), we can obtain Table 7.4, which gives a quantitative 

presentation on how much the coupling efficiency and coupling length will change in 

the presence of effective refractive index mismatch      .               represents 

the percentage of change in the coupling length. The wavelength of our interest is the 

pump supply wavelength 1.342   . As an example, if we need    =100    and the 

fabrication error introduces an effective refractive index mismatch      = 0.0067, 

the coupling efficiency would drop by half and the coupling length would be 

Table 7.4: coupling efficiency and coupling length change in the presence of effective 

refractive index mismatch in the 2-waveguide directional coupler. 

 

                         

0.0000 100.00% 0.00% 

0.2224 90.00% -5.13% 

0.3357 80.00% -10.56% 

0.4383 70.00% -16.33% 

0.5473 60.00% -22.54% 

0.6713 50.00% -29.29% 

0.8210 40.00% -36.75% 

1.0241 30.00% -45.23% 

1.3405 20.00% -55.28% 

2.0076 10.00% -68.38% 
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decreased by 29.29%. If we design a    =200    index-matched coupler, with the 

same index mismatch, the coupling efficiency would be dropped by 80% and the 

coupling length would be reduced by half. 

Next, we use the commercial mode solver COMSOL to examine the effective 

modal refractive indices of the self-aligned QW-on-SOI waveguide and the solo-SOI 

waveguide as the waveguide widths are varied. In our simulation, the wavelength of 

light is 1342nm, with polarization in the horizontal direction. We let the thicknesses 

of silicon and QW thin film be fixed, which according to the wafer design are 250nm 

and 349nm respectively. The refractive index of silicon is 3.5, and the refractive 

index of SiO2 is 1.45. Our photonic transistor will be eventually covered by a thick 

layer of PECVD SiO2 for protection. Thus the refractive index of the entire cladding 

region would be 1.45. It is also important to note that the refractive index of QW is 

not precisely known, which will be considered as a variable in our simulation. 

As shown in Fig. 7.17, the effective modal refractive indices      with respect 

to the waveguide widths are plotted for QW-on-SOI waveguide (red and blue) and 

SOI waveguide (black). Based on the QW refractive index (denoted as n(QW)) 

calculation in Table 7.3, here we consider the two extreme cases, i.e. n(QW)=3.4 and 

3.47, which are plotted in red and blue color respectively. As we can see, to achieve 

effective index-matching condition, the QW-on-SOI waveguide width should not be 

>400nm and QW-on-SOI waveguide is generally more sensitive to the waveguide 

width change than SOI waveguide. Thus we fix the QW-on-SOI waveguide width at 

380nm, and the index-matched SOI waveguide has a width in the range of 650nm to 

750nm depending on the refractive index of QW, as shown by the green arrow. By 

taking into account of dimension error +/-10nm, the width of SOI waveguide needs to 

vary from 650nm to 900nm in the actual fabrication in order to hit the effective-index 
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matching condition.  

 

It is also important to highlight that, even with the optimal SOI width being 

found, the 10nm dimension error induced by EBL error could leads to an effective 

refractive index mismatch of ~0.026 maximally, in the subsequent fabrication rounds. 

This will result in <10% coupling efficiency and >70% coupling length change for 

the coupler of    =100   . Thus the device tolerance to fabrication error is very low.  

 

  
 

Figure 7.17: Effective modal index of self aligned QW-on-SOI waveguide with 

n(QW)=3.47 (blue) and n(QW)=3.4 (red), and 250nm-height SOI waveguide (black) 

versus the waveguide width.  
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CHAPTER VIII    NEW ARCHITECTURES FOR EUPT 

 

The coupling efficiency of the asymmetric 2-WG EUPT is extremely sensitive 

to the fabrication errors. The direct consequence of incomplete coupling in the 

presence of effective-model-refractive-index mismatching (termed as index 

mismatching for short in the following discussion) is the reduction of the switching 

extinction ratio, which is an important parameter that measures the signal quality, 

affecting the bit error rate (BER) in optical links [64]. Fabrication discrepancies 

based on current technology can easily compromise coupling efficiency particularly 

in high-refractive-index-contrast nano-waveguide structures. Moreover, asymmetric 

coupler structure is particularly sensitive, as dispersion of individual constituent 

waveguide differs, leading to different coupling efficiency at different wavelength, 

which limits the operational bandwidth. Meanwhile, pumping up the active medium 

will change the refractive index of it, which further increases the uncertainty in 

achieving effective modal refractive index matching. 

In this chapter, we will propose two new architectures for EUPT, which can 

greatly alleviate the fabrication challenges without compromising the switching 

performance.  

The first architecture is based on a symmetric three-waveguide (3-WG) 

directional coupler, which consists of one active central waveguide and two passive 

side waveguides. The symmetric nature of the structure promises efficient coupling, 

thus high extinction ratio switching, without stringent effective modal refractive 

index-matching requirement between the coupled waveguides. The absorption 

manipulation-based switching performance is not compromised by the presence of 

effective model refractive index mismatch and thus enhances the device tolerance to 
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fabrication errors [26,65]. 

The second architecture adopts the Mach-Zehnder Interferometry geometry, 

which consists of two identical active arms. Without the direct coupling between the 

passive and active waveguides, the fabrication process is much easier. Instead of 

using phase modulation in the conventional MZI-based switching device, amplitude 

modulation induced by absorption change in one of the arm is the dominant 

mechanism that promotes the switching. Since the carrier induced absorption is 

typically larger than the refraction change, the device length can be greatly shorter 

than the refraction-based MZI switch, such as the conventional MZI-based SOA 

switch [66]. 

In this chapter, the switching mechanism and switching performance of 3-WG 

EUPT and MZI-EUPT will be theoretically studied and compared with 2-WG EUPT. 

The pros and cons for the three architectures will be highlighted at the end of the 

chapter. 

 

8.1 EUPT Based on Symmetric Three-Waveguide (3-WG) Coupler  

The proposed device architecture is shown in Fig. 8.1, which consists of an 

active waveguide placed between two identical passive waveguides at equal distance, 

forming a configuration similar to a 3-WG directional coupler. The optically-induced 

absorption change in the central waveguide controls the optical coupling between two 

side waveguides, which is analogous to an electronic transistor gate using resistance 

to control the current flow. The same all-optical switching operation in the 2-WG 

EUPT can be applied to the 3-WG structure, as shown in Fig. 8.1.  
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8.1.1 Coupled mode analysis of 3-WG EUPT 

We first use the coupled mode theory to formulate the absorption-induced 

switching action. Consider a symmetric three-waveguide coupler as shown in Fig. 

8.2. It consists of three equidistant parallel single-mode waveguides where passive 

waveguides 1 and 3 are identical with propagation constant   . The central 

waveguide, waveguide 2, is absorptive, with propagation constant   , where    

        . The imaginary part     is the absorption coefficient for the optical field 

amplitude. The optical field is launched into WG1. All the parameters are defined 

similarly as in the 2-WG case. 

 

 
 
Figure 8.1: Switching action in 3-WG EUPT based on a symmetric three-waveguide 

coupler with central waveguide being absorptive.       is the continuous pump supply 

power at wavelength   , incident into the passive waveguide.       and        denote 

the ON- and OFF-state input signal power at wavelength   .       and        denote 

the ON- and OFF-state output signal power at wavelength   . Solid arrow shows the light 

propagation at switch-OFF state and dash arrows show the switch-ON state. 

 

Figure 8.2: Symmetric three-waveguide coupler with absorptive central waveguide and 

two side waveguide, which are passive and identical. Continuous wave light is launched 

from the side waveguide WG1. 
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For strongly guiding nano-waveguide structure presented here, direct coupling 

between waveguide 1 and 3 can be considered to be negligible as compared to the 

coupling between adjacent waveguides. The coupled mode equations can hence be 

written as 

  
   

  
                                                            

  
   

  
                                                             

  
   

  
                                                       

 

Due to the symmetric nature of the structure,         and        . Use the 

energy-conservation relation 
 (|  |

  |  |
  |  |

 )

  
      |  |

 , it further gives    

       
     

 . Thus for simplicity, we have            and          . 

The following derivation is similar to the 2-WG case as shown in section 3.1, 

thus will not be presented.  The solution of |     |
 , |     |

  and |     |
  for initial 

condition         and               are given by 
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where   and   are given by       √       
   

  

   
          with 

    
 

 |  |
. 

 

i. Switch-OFF state,       

When the central waveguide is pumped to transparency, i.e.      , Eqn. (8.2) 

is reduced to  
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where   
 

 
√     

  

   
 . 

We plot out Eqn. (8.3) for direct visualization of the coupling characteristics in 
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the symmetric three-waveguide coupler. By writing z as    
 

   
 and expanding   

explicitly, Eqn. (8.3) can be reduced to a function of two parameters only, i.e. the 

product |  |    and the ratio     ⁄ . The optical power variation along three 

waveguides in the transparency case is plotted versus     ⁄  at different |  |    as 

shown in Fig. 8.3.  

 

 

 
 
Figure 8.3: Optical intensity along WG1 (black solid line), WG2 (gray solid line), WG3 

(black dash line) in the 3-WG coupler shown in Fig. 8.2, when |  |   =0, 2, 4, 6, 8 and 

10, corresponding to      =0, 0.005, 0.01, 0.015, 0.02, and 0.025, with         . The 

coupling length is labeled by       ⁄ . 
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It is important to see that >90% of light launched into WG1 can be coupled out, 

in spite of the index mismatch. As |  |    increases, the coupling between the 

central waveguide and side waveguides weakens and the power transfer from WG1 to 

WG3 becomes slower, resulting in an increase of coupling length    . Meanwhile the 

maximum intensity in WG2 reduces at high |  |    value. If |  |    becomes very 

large,     tends to be infinity, and the optical power in WG2 is zero, i.e. the light 

remains in WG1 without any coupling.  

The 3-WG photonic transistor is operated at one coupling length to minimize 

the OFF-state output power from WG1, similar to the 2-WG EUPT. The coupling 

length of 3-WG coupler    , defined as the minimum distance by which maximum 

power of incident light is coupled out of the incident waveguide, can be derived by 

finding the minimum point of |     |
  in Eqn. (8.3a), which is given by  

    
  

√             |  |   

                                        

 

Thus substitute Eqn. (8.4) into Eqn. (8.3a), we get the OFF-state power output 

of WG1 normalized to the input pump supply power, which is given by  

       

     
 

  

√             |  |   

                                       

 

Recall Eqn. (3.9) for the OFF-state power output normalized by the input pump 

supply power in the 2-WG EUPT as a function of    between constituent 

waveguides  

       

     
   

 

(
     

 )
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)
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To make comparison, Eqn. (8.5) and Eqn. (3.9) are plotted versus |  |    in 

Fig. 8.4. It is evident that the OFF-state output power from 3-WG photonic transistor 

remains at a very low value, in spite of the index mismatch between the central active 

waveguide and the side passive waveguides. However, in 2-WG EUPT, 
       

     
 

increases with |  |   , and quickly gets close to 1. The inserted graphs show the 

FDTD simulation of 1.319   light propagating in 2-WG and 3-WG couplers with 

|  |   =6.36. The simulated couplers have              and    

          , which corresponds to an effective index mismatch of 0.0526. As we 

can see, the light is completely coupled out of the incident waveguide in the 3-WG 

coupler. However, in the 2-WG coupler, most of the light remains in the incident 

waveguide without coupling. 

 

ii. Switch-ON state,       

At switch-ON state, as shown in Fig. 8.1, the input signal depletes the carriers 

 
 

Figure 8.4: Transparency-state output power from WG1 in 2-WG coupler (dash line) and 

3-WG coupler (solid line) with different |  |    when the incident light is launched from 

WG1. The inserted graphs show the FDTD simulation of light coupling in the 2-WG and 

3-WG with      =0.052.    
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in the central waveguide and introduces the absorption seen by the power supply 

beam, i.e.      . The ON-state output power normalized to the incident pump 

supply power 
      

     
 is given by Eqn. (8.2a) with z=    (Eqn. (8.4)). The resultant 

expression, similar to the 2-WG case, is dependent on two parameters, namely 

|  |    and       . 
      

     
 is plotted with respect to        at different |  |    in 

Fig. 8.5. With increase of absorption in WG2, the incident pump supply power is 

partially switched out of WG1. Increasing the device length     can further increase 

      

     
. On the other hand, the optical modulation amplitude                 

decreases as index mismatch increases for fixed       . However, 
      

     
 remains at 

a very low value, promising a high extinction ratio                 despite 

      decreases with |  |   .  

 

 

 
 

Figure 8.5: Power transmission from WG1 of the symmetric 3-WG coupler at coupling 

length     versus        at different|  |   . |  |    from 0 to 8 corresponds to the 

effective modal refractive index mismatch      from 0 to 0.02 with          and 

1.55m light wavelength. 
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8.1.2 Analytical analysis of switching gain in bulk-InGaAsP-based 3-WG EUPT  

The switching gain of 3-WG EUPT will be examined in this section, following 

the same procedures as we adopted for the 2-WG EUPT switching gain analysis in 

section 5.1.  

First of all, Eqn. (4.5) is modified to calculate the effective absorption 

coefficient      of the central active waveguide induced by the carrier depletion at 

the switch-on state. Differing from the 2-WG configuration, 3-WG EUPT allows 

switching operation in the presence of phase mismatch between the active and 

passive waveguides. Only part of the incident pump power is coupled into the central 

active waveguide to pump the medium, and the amount of which decreases as the 

index mismatching increases. With Eqn. (8.3b), we can get the maximum percentage 

of input pump supply power coupled in to the active waveguide 

 

|         |
  

  

      
                                                       

 

which is equal to 50% at the index matching condition. 

In addition, with the higher effective-model-refractive-index mismatch, the 

input signal beam launched into the central waveguide sees less coupling into the side 

waveguides, resulting in longer effective interacting distance or more carrier 

depletion in the active waveguide. Thus we introduce an interaction factor   
 

 
  to 

the term of      in Eqn. (4.5). The term   
   

          
  gives the coupling 

efficiency of signal beam launched from the central waveguide. As we can see, the 

interaction factor is equal to ½ when      and becomes 1 when    increases to 

infinity. 
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With the above two factors taken into account, Eqn. (4.5) is written as  

       
   

   
  [  

   

   

     
     

      
  

      
     

   ] 

       
  

     

  

      
     

      
         

 

          
                 

 

where     
     

     
,                  and                 , with      

representing the effective modal area in the active waveguide. The effective 

absorption induced in the active waveguide is subsequently determined with    

         .  

The second step is to substitute the effective absorption         calculated 

from Eqn. (8.7) into the coupled mode formulation in the last section. With Eqn. (8.4) 

substituted into Eqn. (8.2a), we have the output signal power normalized to the 

incident pump supply power, i.e. 
      

     
, which is denoted by |                |

 . 

The switching gain factor of 3-WG EUPT is thus given by  

 

       |  (
       

 
      )|

 

                                                  

 

The quantitative analysis of switching gain in 3-WG EUPT is carried out based 

on the same InGaAsP bulk semiconductor given in Table 3.1. The pump supply and 

signal wavelengths are at           and          , and       

        . To compare with 2-WG EUPT, we first examine the case of        

  , at which the maximum switching gain that can be achieved in 2-WG EUPT is 

equal to 1. In Fig. 8.6, the switching gain     of 3-WG EUPT is plotted versus 
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at different      . We find under the index matching condition, i.e.        , 3-

WG EUPT achieves the higher switching gain than the 2-WG EUPT. Meanwhile, a 

maximum switching gain associated with an optimal input signal power is observed 

for each      , and the maximum     generally increases with      .  

 

 

Next, consider other        with       varying from 0 to 8, the maximum 

    that can be achieved at each       and        are plotted in Fig. 8.7. As 

expected, the switching gain becomes higher when        increases. We also find 

there is a significant increase of switching gain as       is increased from 2 to 4, 

which corresponds to a refractive index change of ~0.004, if          . Since the 

carrier depletion process is always accompanied by the refractive index change, we 

may utilize this effect to further enhance the switching gain of 3-WG EUPT.  

 

 
Figure 8.6: The switching gain of 3-WG EUPT versus  

      

     
 at       

         .           and          .               .          . 
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8.1.3 Switching speed and Figure of Merit for Bulk InGaAsP-based 3-WG EUPT 

The switching speed of 3-WG EUPT is formulated differently from the 2-WG 

case. Refer to the inserted figure in Fig. 8.4 that shows the FDTD simulation of 

optical coupling in the 3-WG directional coupler with           . We see the 

incident light experiences multiple couplings along the central waveguide, which can 

be considered as multiple pumping processes going in parallel at different locations, 

thus will speed up the overall pumping process. Therefore, depending on the number 

of coupling     present along one device length    , the switch-off speed of 3-WG 

EUPT with multiple-coupling situation can be written as  

     ⁄         |  (            )|
 
[  |  (

       

 
      )|

 

]          

where |  (            )|
 
 

  

      
     

 is the maximum value of Eqn. (8.3b) 

giving the percentage of incident pump power that can be coupled into the central 

waveguide.   |  (
       

 
      )|

 

 takes into account of the switching-induced 

 

 
Figure 8.7: The maximum switching gain that can be achieved at different       and 
      .           and          .               .  
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pump-power reduction in the active waveguide.     is a function of      , which 

can be derived from Eqn. (8.3b) and Eqn. (8.4), giving that  

    [  
|  |   

√            
]

  

                                    

As a result, Eqn. (8.9) can be written as 

 

     ⁄                                                                

with             
  

      
      [  

|  |   

√            
]
  

.             increases 

with      , but is always <1, which suggests the switch-off speed of 3-WG EUPT is 

always slower than 2-WG EUPT if they are operated at the same optical power and 

the same switching gain.       =0 corresponds to the slowest case, giving 

               , which suggests the switch-off speed of index-matched 3-WG 

EUPT is half of the speed in 2-WG EUPT under equivalent operating conditions. 

When       increases to 6,             increases 0.9. The validity of Eqn. (8.11) 

will be examined in the exemplary switching cases in the next section by MLME-

FDTD simulation.  

Next, the Merit Factor are calculated using Eqn. (5.5) for the bulk-InGaAsP-

based 3-WG EUPT with           in Fig. 8.6, where          ,    

       and               .       varies from 0 to 8. For each      , we 

use the maximum switching gain and the corresponding       for the MF calculation. 

     is determined using Eqn. (8.11) and let           Consider      

        ,        and          (              . The resultant Merit 

Factors are subsequently normalized by the Merit Factor of electronic transistor to 

obtain the relative Figure of Merit, which are plotted versus       in Fig. 8.8. As we 
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can see, it generally increases with       and tends to saturate when        . For 

the comparison, we calculate FOM for 2-WG EUPT with           in Fig. 5.1, 

which has               ,                    ,           , 

             ,           and       . The result is        , which is 

plotted in dash line in Fig. 8.8. As we see, with the same       , 3-WG EUPT 

exhibits the higher Figure of Merit than 2-WG EUPT. The FOM of 3-WG EUPT can 

be potentially further improved by increasing       . 

 

Note that in spite of the increasing switching gain, switching speed and the 

Figure of Merit with      , it is not favored to infinitely increase       for the 3-

WG EUPT operation. One of the reasons is the device will become significantly long 

at large      , making it infeasible for large-scale photonic integration. On the other 

hand, increasing       will reduce the coupling efficiency of the input pump suppler 

power into the central waveguide, thus will pose higher pump power requirement to 

achieve transparency state in the active waveguide. Based on all the analysis above, 

 
Figure 8.8: Figure of Merit for bulk-InGaAsP-based 3-WG EUPT with           at 

different       (solid line) and for bulk-InGaAsP-based 2-WG EUPT with           

(dash line).          ,          ,                and.       varies from 

0 to 8.   
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we consider         as an appropriate range for 3-WG EUPT operation. 

 

8.1.4 Dynamic switching of index-mismatched bulk-InGaAsP 3-WG EUPT 

simulated by MLME-FDTD 

Next, MLME-FDTD simulation is adopted to demonstrate the switching action 

in an index mismatched 3-WG EUPT based on InGaAsP bulk semiconductor medium 

(Table 3.1). The pump supply and the input signal wavelengths are           and 

          respectively. The input intensities of the two beams are also fixed, 

giving                and                 . We arbitrarily choose the 

case of        . The device geometry is shown in Fig. 8.9a. Note that n=3.436 is 

the background refractive of the active medium without optical pumping, while 

      is calculated when the central waveguide is optically pumped to transparency 

at the pump supply wavelength. In addition, we have purposely made the side 

waveguides to be multi-mode waveguides and the widths of the side waveguides 

wider than the central waveguide to let the simulation more consistent with the real 

device. Fig. 8.9b shows the FDTD simulation of pump supply beam propagating 

along this 3-WG coupler after the central waveguide is pumped to transparency. We 

can see there are 5 intensity peaks along the active waveguide, which is consistent 

with the analytical plot in Fig. 8.3 for        .  
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Here we consider two different       values, (1)                  

           and (2)                             , where           is 

fixed and     is varied by adjusting the vertical optical confinement factor of the 

active waveguide. The MLME-FDTD simulation results are shown in Fig. 8.10, 

where the red plot shows the 50ps input signal pulse, and green and blue plots 

correspond to the output signals for the cases of             and             

respectively. Based on the analytical calculation, the switching gains for theses two 

cases are equal to 1.7 and 3.4 respectively, which are higher than the FDTD results. 

This could be due to the refraction-induced switching that is not taken into account of 

our formulation. As we can see from Fig. 8.6, the switching gain at fixed        

could be very sensitive to the effective model refractive index shift, especially when 

 
 

Figure 8.9: a) 3-WG coupler structure and simulation parameters for FDTD simulation of 

EUPT operation.         and          . b) FDTD simulation of pump supply 

beam propagating along the 3-WG coupler after the central waveguide is pumped to 

transparency.  
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      is around 4~6. On the other hand, the switch-off time calculated using Eqn. 

(8.11) is ~6ps, which is close to the simulation results. 

As a result, 50Gbps switching with switching gain ~2 is demonstrated in an 

index-mismatched bulk-InGaAsP-based 3-WG EUPT. With              , the 

pump supply power is 34.4mW and the signal peak power is 0.28mW, which 

corresponds to an energy consumption of 0.56pJ/bit. 

 

 

 

8.2 EUPT based on Mach–Zehnder interferometer (MZI-EUPT) 

The involvement of direct coupling between passive and active waveguide 

poses great fabrication complexity and challenges. An alternative approach to 

eliminate the passive-active coupling scheme is based on the Mach-Zehnder 

interferometric configuration, which will be studied in the following sections.  

 

 
Figure 8.10: Input and output signal profiles for 3WG-EUPT with        . 

Simulation parameters are given in Fig. 8.8 The three plots show the temporal profiles of 

incident signal (red) at 1450nm and output signal at 1350nm when           (green) 

and           (blue). 
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8.2.1 Working principle of MZI-EUPT 

The Mach-Zehnder-based EUPT (MZI-EUPT) structure and the switching 

process are shown in Fig. 8.11. To ease the fabrication and device design, we 

consider the symmetric MZI configuration with two identical active arms. The 

incident pump supply power       splits into two arms by a 3-dB directional 

coupler, pumping the two arms to transparency. When they meet at another 3-dB 

coupler, all of the power exits from one arm, due to the     phase difference induced 

in the first 3-dB coupler. When the signal at a longer wavelength is launched into one 

arm, it depletes carriers and introduces absorption to the pump supply beam. As a 

result, the pump supply in that arm is attenuated, and the coupling condition at the 

second 3-dB coupler changes, so that the pump supply power is partially coupled into 

the output port.  

 

 
 
 

 
Figure 8.11: Switching operation in MZI-based EUPT, which consists of two identical 

active arms.   
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8.2.2 Analytical analysis of switching gain for MZI-EUPT 

Since the input pump supply power splits to half at the first 3-dB coupler, Eqn. 

(4.5) is modified as follows to calculate the transmission    of the pump beam 

through the active waveguide with input signal launched in. 

 

        
   

   
  [  

   

   

     
     

      
   
 

]        
  

     

     

 
        

        

 

where                 , with      being the modal area of the active 

waveguide, and     
     

     
. At the second 3-dB coupler, two pump supply beams 

with different powers, i.e.         and          , meet and interfere with each 

other. The power exiting the output port can be derived from coupled mode theory, 

which is given by          (  √  )
 
. Thus the gain factor for MZI-EUPT is 

given by  

    
 

 
   (  √  )

 
                                                

 

Next, quantitative analysis of switching gain is carried out for bulk-InGaAsP-

based MZI-EUPT with different     . Using the same simulation parameters as 

adopted for 2-WG and 3-WG EUPT analysis, we have          ,           

and               . Fig. 8.12a shows the switching gain     plotted versus 

      at different     . Similar to the 2-WG and 3-WG EUPT,     of MZI-EUPT 

generally increases with     , and there is an optimal             ratio associated 
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with the maximum switching gain     for each      value. The condition       is 

achieved when          .  

Subsequently, the maximum     that can be achieved at each      is plotted in 

Fig. 8.12b, and compared with the 2-WG EUPT and index-matched 3-WG EUPT 

working at the same   ,    and      . Note that for MZI-EUPT, the maximum     

is plotted against      , due to the presence of two active waveguides. As we can 

see, MZI-EUPT exhibit the highest switching gain at a given     , followed by 

3WG-EUPT and 2-WG EUPT.  

 

 

 

8.2.3 Switching speed and Figure of Merit of bulk InGaAsP-based MZI-EUPT 

The switching speed of MZI-EUPT can be estimated using the single-

waveguide formulation in Eqn. (4.12), which gives 

 

    
 

      

 
                                                   

where                for the bulk InGaAsP semiconductor in Table 3.1.  

  

Figure 8.12: (a) The switching gain of MZI-EUPT versus  
      

     
 for different     . (b) 

the maximum switching gain that can be reached at  each      plotted against       for 

MZI-EUPT (solid), and against       for 2-WG EUPT (dotted line) and index-matched 3-

WG EUPT (dash line).           and          .               .    
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Subsequently, with Eqn. (5.5), the Figure of Merit of bulk-InGaAsP-based 

MZI-EUPT is calculated for the case of          in Fig. 8.12a to compare with 

that for the 3-WG EUPT and 2-WG EUPT. The device area of MZI-EUPT is 

estimated with            (                 , where we assume the 

width of the MZI device is 20 times of the coupler structure. The maximum switching 

gain with         is equal to 3.2, at which,                         . 

The switch-off time is calculated from Eqn. (8.14), giving          . Then with 

              and         we get the relative Figure of Merit for InGaAsP-

based MZI-EUPT with          is ~      , which is lower than FOM=  

     for the 2-WG EUPT with           and FOM=              for 3-

WG EUPT with          . The main disadvantage of MZI EUPT is the large 

device size.  

 

8.2.4 Dynamic switching in Bulk-InGaAsP-based MZI-EUPT simulated by 

MLME-FDTD 

The MLME-FDTD simulation of switching operation in bulk-InGaAsP-based 

MZI-EUPT is carried out for         (                       ), as 

shown in Fig. 8.13. The pump supply and input signal wavelengths are           

and          . The input pump intensity is                and the input 

signal peak intensity is                 .  
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The temporal profiles of input and out signals are shown in Fig. 8.13. The 

switching gain from FDTD simulation is ~2.5, which is close to the analytical 

calculation given by 2.9. The switch-on speed is slower than the single-waveguide 

case, which is because the output signal power responds to the transmission change of 

the active waveguide differently. The output signal of single waveguide switch 

responds to     , while the output signal of MZI EUPT responds to (  √  )
 
, 

which increases slowly as    reduces from 1. On the other hand, the switch-off time 

from MLME-FDTD simulation is ~30ps, which is shorter than the analytical 

calculation given by ~60ps. This is mainly because the pump transmission through 

the signal-in waveguide is only partially shut off, which takes shorter than 10%-to-

90% rising time     to pump it to transparency.  

 

 

 
Figure 8.13: a) MZI structure with two 3dB couplers at input and output, and FDTD 

simulation parameters for EUPT operation. Solid arrows and dash arrows correspond to 

the switch-off state and switch-on state respectively. b) The intensity profile of pump 

supply beam at switch-off state when the two active arms are pumped to transparency.  



176 
 

 

 

8.3 Conclusion 

To alleviate the fabrication challenges for achieving effective-model-refractive-

index matching in 2WG-EUPT, we proposed two new EUPT architectures in this 

chapter, including 3-WG EUPT and MZI-EUPT. In the 3WG configuration, the 

nature of symmetry promises complete coupling thus high-extinction-ratio switching 

even with the presence of effective-model-refractive-index mismatching. MZI 

configuration eliminates the passive-active coupling mechanism, and the symmetric 

structure of which further reduces the fabrication challenges.  

The switching performance of bulk-InGaAsP 3-WG EUPT and MZI-EUPT are 

systematically analyzed based on our analytical approach developed in Chapter III-V. 

It shows 3-WG EUPT is generally slower but has higher switching gain than 2-WG 

EUPT under the same operational conditions. The switching gain of MZI EUPT is 

higher than the 3-WG EUPT and 2-WG EUPT when they have the same     , but 

the switching speed of MZI EUPT is slower than 2-WG EUPT since the incident 

 
Figure 8.13: temporal profiles of input signal at 1450nm (red) and output signal at 

1350nm (blue) of the MZI-EUPT in Fig. 8.13a simulated by MLME-FDTD. The band 

structure of active medium is given by Table 3.1. 
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pump power splits into half before it pumps the active arms. The Figure of Merit for 

3-WG EUPT is shown higher than the 2-WG EUPT and the MZI EUPT with the 

same     . Increasing the effective-model-refractive-index mismatching factor 

      in 3-WG EUPT can further improve the FOM due to the increase of switching 

gain. However, the pump supply power coupled into the central waveguide decreases 

with the increase of      , which poses the higher pump power requirement for 

achieving the transparency state at the switch-off state. Thus         is suggested 

for high-performance operation with 3-WG EUPT.  

In the end, the optimal operational parameters for the three EUPT 

configurations to achieve 20Gbps switching speed and switching gain of 2 are 

tabulated in Table 8.1. Calculation is based on the energy band parameters of 

InGaAsP bulk semiconductor in Table 3.1. The pump supply and input signal 

wavelengths are 1.35 m and 1.45m respectively.  MLME-FDTD simulation shows 

20Gbps is generally promised among the three EUPT device structures with the pump 

supply intensity of               , which is fixed here.     is calculated using 

mode area of               . 

 

 

 
Table 8.1: Optimal operational parameters for bulk-InGaAsP-based 2-WG, 3-WG and 

MZI-EUPT to achieve 20Gbps switching speed and switching gain of 2. 

 
          

          

               

     
      

      ⁄   

     

(fJ/bit) 

2-WG EUPT 35.5 1.47 354 

3-WG EUPT (    ) 31.2 0.96 343 

MZI-EUPT 13.1 1.02 344 
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CHAPTER IX  Experimental Investigation 

 

Experimental investigation of the proposed photonic transistor switching 

scheme has never been reported before. The lack of existing knowledge calls for 

tremendous amount of characterization and optimization work, typically requiring 

multiple rounds of device design, fabrication, testing and optimization process. 

Unfortunately, it is hardly possible to accomplish all the work within the Ph.D 

candidature period. Thus, my effort has been devoted to the first-stage measurement 

work, including material parameter characterization and demonstration of all-optical 

switching with switching gain in the single-waveguide structure.  

The material parameter characterization, in particular the saturation intensity 

      and small-absorption coefficient    measurement, is important to the first-stage 

actual device design. With the known saturation intensities and small absorption 

coefficient, we are able to estimate the minimum device length    required for 

switching gain, and deduce the pump power requirement, switching energy, device 

sensitivity, fabrication feasibility and so on.  

Meanwhile, all-optical switching with switching gain is demonstrated for the 

first time in single nanowaveguide structure based on the hybrid III-V/Silicon 

integration platform [74]. This single-waveguide switch features 6nm broadband 

operation, small device footprint and low sensitivity to fabrication error. More 

importantly, it experimentally demonstrated the self-enhanced carrier-depletion-

induced-absorption effect, which is the key mechanism in the switching scheme we 

proposed that leads to the switching gain in our EUPT devices.  

The 2-WG EUPT, 3-WG EUPT and MZI EUPT based on self-aligned QW-on-

SOI integration are fabricated. The first batch of EUPT devices are designed to be 
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long enough to fulfill the      requirement for switching gain. However, the 

maximum pump supply power that can be delivered in our set up is not sufficient to 

pump up such long QW-on-SOI waveguides. Therefore, the initial tests for achieving 

the desired OFF-state pumping characteristics in 2-WG, 3-WG and MZI-EUPT are 

not successful. A series of improvements are desired for the future device design and 

fabrication, which will be discussed in this chapter. 

 

9.1 Saturation Intensity and Small Absorption Coefficient 

Measurement 

It has been shown in the previous chapters that saturation intensity       and the 

small-signal absorption coefficient (   ) of the active waveguide at the pump supply 

wavelength play the determining roles in affecting the AMOI-based EUPT 

performance. Experimental characterization of       and     is thus very important 

to the actual device design. With the knowledge of       and    , the minimum 

device length   required for switching gain can be estimated, and the pump power 

requirement, switching energy, device sensitivity, fabrication feasibility and so on 

can also be subsequently deduced. 

Here we propose a new measurement methodology to determine the values of 

      and    . The measurement is carried out in a single self-aligned QW-on-Si 

hybrid waveguide with the in-house-built free-space coupling station. The pump 

beam is launched into the waveguide and the transmitted optical power is monitored 

under varied experimental conditions. Analytical formulation is developed to 

simulate the propagation characteristics of light through the waveguide and the values 

of       and     are obtained from fitting the theoretical calculation to the 
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experimental data. 

Section 9.1 is organized as follows. First of all, to formulate the propagation 

characteristics of light, we start with the simplest case, in which the coupling 

efficiency and propagation loss of the waveguide are eliminated. The basic 

methodology of this measurement is thus illustrated. After that, the full device 

structure and the measurement set up are introduced in detail. Several parameters 

involved in the actual measurement situation, i.e. coupling efficiencies, are 

subsequently taken into account to form the complete formulation. Then the 

measurement procedure and the data analysis are presented in detail at the end. 

 

9.1.1 Basic methodology 

Upon the launch of the pump beam into a single active QW-on-SOI waveguide, 

the propagation characteristics of the pump beam can be formulated with Eqn. (4.9) 

in Section 4.3.1  

 

  
     

     
 

           

     
                                                         

 

where we have assumed the propagation loss of the waveguide is negligible. L is the 

length of the active waveguide.     is the background absorption coefficient of the 

waveguide at the optical wavelength     With the substitution of the transmission 

parameter   
     

     
, Eqn. (4.9) becomes  
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As we can see, the transmission   is a function of incident intensity of light 

      and the waveguide length L, related with the material property parameter       

and    . In other words,       and     could be deduced from the optical 

transmission of the waveguide at varied       and L.  

However, in the actual experiment, we also have to take into account of the 

propagation loss of the waveguide due to the sidewall roughness caused by the 

etching process. Thus, the propagation equation in Eqn. (4.9) is modified as 

 

      

  
  

[
 
 
 
 

   

   
     

     
⁄

   

]
 
 
 
 

                                                       

 

where   denotes the propagation loss coefficient. The solution of Eqn. (9.2) is given 

by  

  
     

     
 

   

  
  

      (  
   

  
)      

      (  
   

  
)      

  (      )                         

 

   can be experimentally determined using Fabry-Perot technique [67-68] at a 

wavelength longer than the bandgap wavelength of the QW. The measurement details 

will be presented later. With    known,     and       can be subsequently 

determined based on curve fitting at varied       and  .  
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9.1.2 Waveguide structure and experimental set up 

Fig. 9.1a shows the SEM image of QW-on-SOI waveguide for saturation 

intensity measurement, where the inserted figure shows the sidewall of the hybrid 

waveguide. The strained InGaAsP QW is directly bonded on SOI waveguide, 

forming the self-aligned QW-on-SOI waveguide. The waveguide length L varies 

from 10m to 50m in the following measurement. The cross-sectional structure of 

the waveguide and the quantum well layer structure are shown in Fig. 9.1b. The 

designed InGaAsP strained QW thin filmed ensures that the optical mode centers at 

the QW region as illustrated in Fig. 9.1c as 1342nm light propagates through the 

device structure. Note that 1342nm is the pump supply wavelength for       and     

measurement, as well as for the all-optical switching operation to be presented in the 

later section. 

There are two tapering structure designed at the waveguide ends for optical 

coupling between passive SOI waveguide and active QW-on-SOI waveguide. 

Optimization of the tapering structure will not be discussed in this dissertation. Two 

100m-length and 350nm-width SOI waveguides are introduced before and after the 

QW-on-SOI hybrid waveguide for higher-order mode filtering purpose. The passive 

SOI waveguide is tapered to 4m wide at the cleaved wafer edge to increase free-

space coupling efficiency, as shown in Fig. 9.1d.  

The experimental set up for saturation intensity measurement is shown in Fig. 

9.2. The measurement is carried out using a continuous wave (CW) solid state laser 

operating at a wavelength of 1342nm. The laser output beam is sent to an acousto-

optic modulator (AOM), which is controlled by a Tektronix function generator to 

select a single 400ns pulse at a 2kHz repetition rate. The low repetition rate and short 

pulses were used to minimize thermal effects [69]. The 1342nm pulse sequence is 
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subsequently transmitted through a half-wave plate (/2 plate) at 1340nm, followed 

by a polarization beam splitter (PBS), where the TE-polarized (the polarization is 

parallel to the wafer surface) component is transmitted and the amount of 

transmission can be varied by rotating the polarization of light using of the half wave 

plate without changing the optical alignment. Next, the TE-polarized 1342nm pulse 

string is launched into the 4m-width SOI waveguide through free-space coupling, 

 

 
 

 

 

Figure 9.1: (a) SEM image of self-aligned QW-on-SOI waveguide with tapers for optical 

top-down coupling. (b) Cross section of the QW-on-SOI waveguide and the wafer 

structure of the QW thin film. (c) The optical mode intensity distribution in the QW-on-

SOI waveguide for TE polarized 1342nm optical mode. (d) The full structure of QW-on-

SOI hybrid waveguide with single-mode filters. The waveguide is not drawn to scale.  
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by using a x60 microscope objective lens to focus the free-space optical beam at the 

waveguide end facet. The transmitted light is collected by the second x60 objective 

lens and sent to the Thorlabs InGaAs-based photo-detector (PD). The generated 

photo-current signal is measured by the Stanford Research System lock-in amplifier, 

which is able to effectively remove the background noise out of the weak signal.  

The blue solid line in Fig. 9.2 shows the optical path of 532nm alignment beam, 

which splits into two paths at a 50/50 beam splitter and propagates at opposite 

directions at the sample station. This beam is utilized to align the waveguide and two 

objective lenses. The dichroic mirror at right-bottom combines the alignment beam 

and the measurement beam by transmitting 1342nm light and partially reflecting 

532nm light. The left-bottom mirror in dash line is removed during the measurement 

and put back when doing the alignment. 

 

 

Fig. 9.3 shows the photo of the free-space coupling station with the input and 

 
Figure 9.2: Experimental setup for saturation intensity measurement. 
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output objective lens aligned with the nano-waveguide on the sample chip. Multi-

dimensional translational and angular adjustments with sub-micrometer accuracy are 

integrated to the sample stage and the objective lens mounts, in order to achieve fine 

control of optical coupling efficiency. Above the coupling station is an optical 

microscope integrated with visible and infrared vision systems.  

The models of the instruments involved in our experiments are provided in 

Table 9.1. 

 

 
Figure 9.3: The free-space coupling station with input and output objective lens aligned 

with the nano-waveguide on the sample chip. 
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9.1.3 Measurement procedure and results 

From the measurement set up and device structure in Fig. 9.2 and Fig. 9.1, we 

can see Eqn. (9.3) is not sufficient to describe the actual measurement condition. In 

the experiment, the optical power are measured before and after the input and output 

objective lens, while       and       in Eqn. (9.3) refer to the optical intensities, or 

equivalently optical power, in the active QW-on-SOI waveguide. Thus input and 

output free-space coupling efficiency and Si-to-QW top-down coupling efficiency 

should be taken into account of our formulation. As a result, Eqn. (9.3) is modified as 

follows 

  (
    

   

 

    
)  

   

  
  

     (  
   

  
)        

        (  
   

  
)        

  (      )             

where     and      are the input and output optical power before and after the 

objective lens respectively. The variable       denotes the saturation power, which 

determines the saturation intensity        The relationship between       and       is 

dependent on the cross-sectional structure of the waveguide, which will be discussed 

Table 9.1: Instrument model list 

 

Instruments Model 

1342nm CW laser 
Sintec Optronics LD pumped all-solid 

state laser 

Acousto-optic modulator (AOM) ISOMET 1206C 

Function generator 1 Tektronix PFG 5105 

Function generator 2 Tektronix AFG 3251 

Lock in amplifier Stanford Research System SR850 

Oscilloscope  Agilent DSO-X 3054A (4GSa/s) 

Photodetector (PD1 and PD2) Thorlabs DET10C 

Tunable laser (1460nm-1580nm) Agilent 8164A 

Tunable laser (1390nm - 1530nm) Yenista Tunics Reference 

Optical power meter Thorlabs S112, S145C 
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later. The variable    represents the total input coupling efficiency, i.e. the percentage 

of the incident laser power (before the first objective lens) being coupled into the 

QW-on-SOI waveguide, and    represents the total output coupling efficiency, i.e. the 

percentage of the exited power (before coupled out of the QW-on-SOI waveguide) 

being detected by the photodetector. 

As discussed in section 9.1.1, we can vary     and   to deduce the two 

unknown parameters       and     based on curve fitting technique. However, in 

order to use Eqn. (9.4) to fit the experimental data, we need to first know the values 

of    and   ,   .  

Section 9.1.3.1 will present the Fabry-Perot measurement of the propagation 

loss coefficient    of QW-on-SOI waveguide, from which    and    can be 

determined. After that, the transmission response of QW-on-SOI waveguides with 

varied input intensity is obtained. With the substitution of   , the theoretical 

calculation is fitted to the experimental results to get the saturation intensity value 

      and the small-signal absorption coefficient    .  

 

9.1.3.1 Measurement of propagation loss coefficient and coupling 

coefficients 

i. Introduction to Fabry-Perot technique 

The propagation loss coefficient    of the QW-on-SOI waveguide is measured 

using the Fabry-Perot technique at a wavelength below the bandgap energy of the 

QW [67-68]. A brief introduction of FP technique will be presented here first. 

Due to the presence of two reflective end facets of the waveguide, the light 

entering the waveguide experiences multiple reflections and thus exhibits self-
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interference effect along the waveguide. The total transmission of the light can be 

derived analytically, which is given by 

       

(    )
 
  

    
   

               
                                   

where     represents the free-space-to-waveguide coupling coefficient, including the 

input and output coupling efficiencies.    is end-facet reflectivity of the waveguide. 

Due to the adoption of mode filtering structure along our waveguide (Fig. 9.1d), only 

the fundamental mode will propagate through and play roles in the FP response. 

Therefore,    measures the percentage of the incident fundamental-mode light 

reflected back to the fundamental mode from the waveguide end facet.     is the 

single-pass optical power loss of the waveguide.   represents the single-pass phase 

shift of light, which can vary with the wavelength of light. 

For the FP-loss measurement, the light source in Fig. 9.2 is replaced by the 

Agilent 8164A tunable laser (TL) source and AOM is removed. During the 

measurement, the incident light wavelength is varied from 1580nm to 1581nm and 

simultaneously the transmitted light power is measured as the photocurrent of PD.  

Due to the wavelength change,          oscillates between -1 to 1, resulting in 

the oscillation of the transmission between            
(    )

 
  

(      )
  and          

   
(    )

 
  

(      )
  . Therefore,    can be deduced from the contrast of transmission 

spectrum, i.e. 
       

       
 (

      

      
)
 

, where        , which can be either 

analytically or numerically calculated [70]. Assuming the output power of the TL and 

coupling efficiency     are constant over the 1nm wavelength span, the transmission 

spectrum contrast 
       

       
 is equal to the photocurrent spectrum contrast measured at 
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the output PD. In other words, the single-pass optical loss    of the waveguide can be 

determined from the output photocurrent spectral contrast. 

It is important to note that, for the QW-integrated hybrid waveguide,    

includes the single-pass propagation loss of the QW-on-SOI waveguide and the SOI 

passive waveguide, as well as the top-down coupling loss between the QW-on-SOI 

waveguide and the SOI passive waveguide. The subscript t stands for the total loss. 

The procedures to separate the different types of loss above will be presented next. 

 

ii. Fabry-Perot measurement of    

We first performed the FP measurement for the passive SOI waveguide to 

determine the single-pass propagation loss of SOI waveguide. The SOI waveguide 

has the same structure as the QW-integrated hybrid waveguide in Fig. 9.1d, except 

that the QW-on-SOI waveguide segment with tapering structure is replaced by a 

straight 1m-wdith SOI waveguide. We get the single-pass propagation loss of SOI 

waveguide        , where the subscript S stands for the SOI.  

Subsequently, single-pass propagation loss    for the hybrid waveguides are 

determined at different QW-on-SOI waveguides lengths L (from 10     to 120   ). 

   divided by    gives the loss within the QW-on-SOI region, which is denoted as 

    and the subscript QS stands for QW-on-SOI. We can see     includes the top-

down coupling loss and propagation loss along the QW-on-SOI waveguide, thus can 

be written as         
    . The variable     stands for the top-down coupling 

coefficient between the SOI waveguide and QW-on-SOI waveguide.  

At the end, as shown in Fig. 9.4,          is plotted against L, and the slope of 

the linear interpolation gives the value of   , which is equal to 0.019     . 

Meanwhile, we also obtain the total top-down coupling coefficient         .  
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iii. Determination of c1 and c2 

The variable    and    represent the total input and output coupling efficiencies, 

as defined in Eqn. (9.4). Thus we can write              , where    is the single-

pass propagation loss of SOI waveguide,     is the free-space coupling coefficient 

and     is the top down coupling coefficient. By measuring the transmission of the 

passive SOI waveguide at 1342nm, we have            . With the substitution of 

    =0.81, we have           . Since the input and output coupling features in our 

set up are generally symmetric, we assume      , which gives      ~0.15.  

 

9.1.3.2  Transmission response of QW-on-SOI hybrid waveguide and curve 

fitting 

With   ,    and    determined,       and     are the only two unknown 

parameters in Eqn. (9.4), which can be experimentally deduced from the transmission 

response of the QW-integrated hybrid waveguide at varied length L and varied input 

 

 

Figure 9.4: The experimentally determined          versus the QW-on-SOI waveguide 

length L (dots) and the linear interpolation (solid line) with the trend line’s equation.  
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pump power    .  

 

i. Measurement procedures 

The transmission response measurement is carried out for the QW-on-SOI 

waveguides with               and       Using the measurement set up in 

Fig. 9.2, the input 1432nm beam is modulated at 2kHz repetition rate and 400ns pulse 

width. At each waveguide length L, the input optical power     is varied and 

measured before the first objective lens with an optical power meter. At each    , the 

transmitted optical power is detected by a PD, the photocurrent of which is measured 

by the Stanford Research System SR850 digital lock-in amplifier. Assuming the lock-

in’s reading is proportional to the average optical power detected at the PD, the 

proportionality is obtained based on a single measurement, which is subsequently 

used to convert the lock-in’s reading to the optical power reading     .  

 

 

Figure 9.5: The transmission response of QW-on-SOI waveguide at length L=10m 

(blue), 30m (red) and 50m (green) with respect to the peak pulse power of the pump 

supply beam at 1342nm. The input pulse at 1342nm is modulated at 2kHz repetition rate 

and 400ns pulse width. The dot plots correspond to the experimental measurement and 

the dash lines show the curve fitting using Eqn. (9.4).  
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The experimentally determined transmission response (         versus    ) at 

different L is simultaneously fitted with Eqn. (9.4) using universal       and     

values. The experimental data (dots) and best fitting curves (dash lines) are shown in 

Fig. 9.5, where the x axis shows the peak power of the input pump pulse. The blue, 

red and green plots correspond to the cases of               and      

respectively.  

 

ii.  FP-assisted spontaneous emission amplification 

One can see that, the transmission of the QW-integrated waveguide does not 

follow the saturation behavior expected, i.e. the transmission of the waveguide 

increases with the input optical power and gradually becomes constant when the input 

power is sufficiently high. Instead, with the increase of input optical power, the 

transmission of the waveguide increases at first, followed by a decrease. More 

importantly, the measurement results are repeatable, implying the transmission drop 

is not due to the thermal damage of the waveguide. Furthermore, we vary the pump 

pulse width from 100ns to 5s without changing the pulse repetition rate, and find 

this increase-followed-by-decrease trend is consistently observed, which therefore 

excludes the possibility of local carrier heating. We then checked the transmitted 

spectrum of        QW-on-SOI waveguide, which is shown in Fig. 9.6. A strong 

amplification at 1537nm is observed as the input pump power increases. This 

phenomenon suggests at the high pumping strength, the spontaneously emitted light 

could sees high enough gain to compensate the propagation loss and end-facet loss to 

achieve optical power amplification. As a consequence, the carrier depletion rate got 

enhanced around 1537nm, which thus increases the absorption seen by the pump 

beam and induces the transmission drop phenomenon.  
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iii. Curve fitting and data analysis 

The enhanced carrier depletion due to the FP-assisted spontaneous emission 

amplification deviates in the saturation behavior from our analytical model at high 

input power. Thus, the curve fitting in Fig. 9.5 aims at achieving theoretical-

experimental matching at low input power. For future measurement studies, 

antireflection coating is needed at the waveguide end facets to remove the FP effect. 

Based on the low-input-power fitting, we obtain                         

and                    .  

 

 

Next, mode simulation by COMSOL is carried out to analyze the intensity 

profile of the optical mode in our QW-on-SOI waveguide (Fig. 9.1c), to subsequently 

find the relationship between       and      . Let the refractive index of QW be 3.45, 

n(Si)=3.5 and n(SiO2)=1.45. Let us denote the simulated mode power as      and the 

 
 

Figure 9.6: The transmitted spectrum of L=50m QW-on-SOI waveguide with input 

pump pulse peak power at 44mW (blue), 76mW (red) and 105mW (green). The input 

pulse at 1342nm is modulated at 2kHz repetition rate and 400ns pulse width.  
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simulated mode intensity within the QW layer region as     , we have 
    

    
 

     

     
 . 

As a result, it gives              ⁄         , which is about 2.5 times of the 

theoretically calculated value for QW InGaAsP, i.e. ~            (Fig. 6.3). 

Furthermore, the mode simulation shows the optical power confinement in InGaAsP 

well layers is 10%, thus the material     of well InGaAsP is  ~          

        , which is close to the other reported values [71-72]. 

 

9.1.4 More concerns with the actual EUPT device design 

Based on the       and     values we obtained, several new concerns with the 

actual EUPT device design are highlighted here. 

First of all, according to the previous studies in section 4.3.1, to pump our QW-

on-SOI waveguide to 95% transparency state, it requires the incident pump power to 

be higher than            , which is equal to              with       

      . That means if we want         to promise switching gain>1, up to 

230mW pump power is required, which is impractically high. To reduce the pump 

power requirement, we need to further optimize the waveguide design to enhance the 

mode intensity in the quantum well region, e.g. center the mode peak at the QW 

layers and reduce the mode size. In that case, if we want to reduce the pump power 

requirement to a practical value, say 10mW, the mode size needs to be reduced to 

        , which is equivalent to the mode size of 1550nm light in a 300nm x 

300nm SOI waveguide. If we continue to use QW as the active medium, only the T-

structure QW-on-SOI waveguide can give desired optical confinement. If so, we need 

to come out with a new fabrication process to eliminate the EBL misalignment issue 

as we highlighted in section 7.2.3. 
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Secondly, the small-signal absorption coefficient of our QW-on-SOI waveguide 

is ~0.135    . If we consider the         criteria to achieve switching gain>1 

with 2-WG EUPT, it would require          . As shown in Fig. 7.17, the 

effective modal refractive index change       upon 10nm fabrication error in the 

QW-on-SOI waveguide width is around 0.02. At the pump wavelength 1342nm, the 

corresponding       with           is as high as 15.4, which will reduce the 

coupling efficiency to only 4%. Therefore, the self-aligned QW-on-SOI architecture 

is too sensitive to the fabrication error for practical implementation of 2-WG EUPT. 

It is necessary to increase the optical mode overlapping with the QW region to 

increase the small-signal absorption coefficient     of the waveguide, and to 

subsequently reduce the required device length. Let’s assume we can increase     by 

5 times, the required     can be correspondingly reduced by 5 times and the 

fabrication error induced       becomes ~3, giving a coupling efficiency ~50%. The 

situation will become more controllable. However, for our case, increasing     by 5 

times means increasing the modal confinement in the InGaAsP well layers to 50%, 

which is practically difficult to realize, since the occupation of well layers in entire 

MQW structure is only 5.5nm/(5.5nm+ 8nm)=40%. Therefore, the quantum well 

design has to be further optimized in the following two aspects: 1) increasing the gain 

of the QW to reduce the      requirement, 2) minimizing the barrier size without 

affecting the quantum confinement performance to increase the mode overlapping 

with the well layers thus to increase    .  

As for the 3-WG EUPT, which allows operation in the presence of index 

mismatch, it is still not practical to have very high       value, as we discussed in 

section 8.3.1. Given         as a comfortable regime for 3-WG EUPT operation, 

and with            as the fabrication error induced index mismatch, it requires 
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        . In other words, it is practical to design a 3-WG EUPT with     less 

than     , so that the fabrication error induced effective-model-refractive-index 

mismatch would not compromise the power consumption of the 3-WG EUPT 

significantly. Then we look at the index matching case, in which the device length 

    is equal to √          . With              , we have          , 

which could be marginal for achieving the switching gain. Hence for the 3-WG 

EUPT, we still need a larger    . 

 

 

 

9.2 All-optical Switching with Switching Gain in a Hybrid III-

V/Silicon Single Nano-waveguide 

 

9.2.1 Introduction 

As we highlighted in the first chapter, all-optical switching devices are of 

substantial interests for increasing the speed and reducing the power consumption of 

optical communication network through eliminating the OEO (optical-electrical-

optical) conversion. In particular, with intense interests in large-scale photonic 

integration on silicon platform, signal gain (switching gain) in the high-speed all-

optical switching operation would be desired [1-4]. Switching gain describes the 

ability of using small signal beam power to switch a much larger beam power, which 

is an important device requirement to achieve cascadability and high fan-out for the 

switches.  

Demonstrations to date of all-optical switching gain on chip have relied on 
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post-amplifications of the switched signal, e.g. semiconductor optical amplifier 

(SOA), which result in higher power overhead and undesired spontaneous emission 

noise. The only reported on-chip architecture that exhibits internal switching gain 

without the need for post-stage amplifier is based on a silicon dual ring-resonator 

structure [8]. It utilized the slow thermo-optic effect, giving nanosecond-scale speed 

and narrow operational bandwidth of < 0.1nm. Such dual-ring resonant structures are 

also highly sensitive to the fabrication error, which limits the implementation 

practicality. 

In this section, we report the first experimental demonstration of a non-

resonator-based all-optical switch that exhibits internal switching gain on a hybrid 

III-V/silicon nanophotonic integration platform. The architecture is simply the self-

aligned QW-on-SOI hybrid waveguide that we used for the material parameter 

characterization in the last section. The single-waveguide switch operates based on a 

dual-wavelength pump-versus-control (PvC) beam switching scheme as we described 

in Chapter 4. In addition, it features broadband operation, small device footprint and 

low sensitivity to fabrication error, making itself a viable candidate for large-scale 

photonic circuit integration.  

More importantly, the realization of all-optical switching gain in the single-

waveguide switch experimentally proves the self-enhanced carrier-depletion-induced 

absorption effect. This effect is known as the basic physics that induces the switching 

gain in the photonic transistor operation, thus the key that differentiates our photonic 

transistor from the previous all-optical switching devices reported. 

 

9.2.2 Working principle of pump-versus-control (PvC) beam switching 

Here we first give a brief review on the dual-wavelength pump-versus-control 



198 
 

(PvC) beam switching scheme for the single-waveguide switch.  

As illustrated in Fig. 4.1, the single-waveguide switch consists of a nano-

waveguide structure with an optically-active semiconductor medium of length L. The 

switching operation involves a strong continuous wave (CW) pump beam at 

wavelength    and a weak control pulse (input signal) at wavelength   , where 

         and    is the band gap wavelength of the active medium. Under the 

OFF-state, the CW pump beam with input intensity       is launched into the 

waveguide to pump the active region to transparency, leading to a high transmitted 

pump beam intensity       . Under the ON-state, the counter-propagating control 

beam (input signal) with pulse peak intensity       is launched into the waveguide 

device, which depletes the carriers and induces absorption seen by the pump beam. 

The carrier dynamics is illustrated in Fig. 2.1b. This effect leads to a rapid cut-off of 

the transmitted pump beam power, generating an inverted output signal. The amount 

of change (i.e downward transition                    ) in the transmitted pump 

power is viewed as the “output signal”. The pulse height of the control beam power 

                 is viewed as the “input signal”. The switching gain factor is 

defined as     
       

      
 

       

     
.       represents the case of switching gain. 

It is worthwhile to note that the control beam would be amplified as it 

propagates through the strongly pumped active waveguide. Correspondingly, the 

carrier-depletion-induced absorption change in the medium enhances for the pump 

beam as the control beam continues propagating through. Hence, a weak control 

beam (input signal) (i.e.       <<      ) can gain the optical energy from the pump 

beam and effectuate large induced absorption to the pump beam. This effect 

differentiates our PvC switching scheme from the well-known cross-gain switching 

scheme in the semiconductor optical amplifier.  
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Parametric study and numerical simulation of PvC switching have been 

presented in Chapter 4. Experimental demonstration of PvC switching operation will 

be presented next.  

 

9.2.3  Experimental set up for PvC switching operation 

The measurement set up for PvC switching operation is shown in Fig. 9.7, 

where the green and red arrows represent the optical paths of pump beam and control 

beam respectively, and the visible alignment beam is not shown explicitly. 

 

 

 

The pump beam is generated by a continuous wave (CW) solid state laser 

operating at a wavelength of 1342nm. It subsequently passes through an acousto-

optic modulator, controlled by a function generator to choose 400ns single pulse with 

5kHz. Then the pump pulse travels through a half-wave plate, followed by a 

polarization beam splitter, which is the same as the set up in Fig. 9.1. Two short-pass 

 
Figure 9.7: Measurement set up for dual-wavelength pump-control switching operation.  
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dichroic mirrors (SPDM) at 1400nm are placed before the objective lens 1 (OL1) and 

after the objective lens 2 (OL2) to combine/separate the pump and control beams. 

1342nm will transmit through the SPDM with little reflection. At the end, 1342nm 

pump beam is detected by a Thorlabs biased photodetector (PD1) with rising time 

~10ns, before which is a converging lens to maximize the light detection and a short-

pass filter (SPF) at 1400nm to remove any control light going into PD1.  

The control pulse modulated at 200kHz with 400ns pulse width is generated by 

a Yenista tunable laser (TL) controlled by Tektronix function generator. The 

wavelength of light can be tuned from 1390nm to 1540nm. The control beam first 

transmits through a half-wave plate (/2 plate) at 1550nm and the polarization beam 

splitter (PBS), so that the amount of transmission can be varied by rotating the 

polarization of light without changing the optical alignment and the polarization 

entering the waveguide is kept at TE polarization. The control beam is subsequently 

guided to the second SPDM and reflected into the OL2, propagating in the opposite 

direction of the pump beam. The transmitted control beam through OL1 is then 

reflected by the other SPDM and towards another Thorlabs biased photodetector 

(PD2). PD1 and PD2 are of the same model. Same as the pump beam detection, a 

long pass filter (LPF) at 1400nm and a converging lens are placed in front of PD2 to 

remove any pump beam going into PD2 and maximize the detection of control beam.  

At the end, PD1 and PD2 are connected to the Agilent digital storage 

oscilloscope through the 50 BNC cable to instantaneously monitor the transmitted 

pump pulse and control pulse.  

 

 

 



201 
 

9.2.4 Switching gain characterization 

9.2.4.1 Switching gain versus control wavelength 

The switching gain of pump-control switching is first examined in the L=30m 

QW-on-SOI waveguide with control wavelength varying from 1520nm to 1540nm. 

The pump and control pulses are modulated at 5kHz and 200kHz respectively with 

the same pulse width at 400ns. The peak power of the input pump pulse is fixed at 

180mW, and the control pulse peak power from TL varies around 9mW, depending 

on the emission wavelength. Note that, with input coupling efficiency        , the 

pump power coupled into the QW-on-SOI waveguide is      , which can only 

pump the waveguide to 90% transparency                     .  

At each control wavelength, the transmitted pump pulse is detected by PD1, 

and the photocurrent of which is measured by the oscilloscope. The pulse amplitude 

read at the oscilloscope is subsequently converted to the optical power by examining 

the responsivity of the photodetector. The average power of input control beam is 

directly measured using a power meter before OL2. Subsequently, the switching gain 

is determined using the following equation,  

 

    
          

       
 

 

    

       

     
                                           

 

where        is the peak power of transmitted pump pulse detected by PD1 and 

      is the peak power of the incident control pulse detected before OL2.    and    

are the total input and output coupling coefficient, giving            based on the 

previous measurement. 

The switching gain versus the control wavelength is plotted in Fig. 9.8a. As we 
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see, the maximum switching gain is achieved at ~1537nm, which coincides with the 

peak of the transmitted spectrum of our QW-on-SOI waveguide in Fig. 9.6. The 

secondary peak at 1524nm could be due to the Fabry-Perot effect experienced by the 

pump. Exemplary switching with control wavelength at 1537nm is shown in Fig. 

9.8b. The peak power of the control pulse is 8.4mW. The transmitted pump profiles 

detected at PD1 are shown in the upper set of plots. With the incidence of control 

pulse (green dash), the amplitude of the transmitted pump pulse is decreased. On the 

other hand, the transmitted control beam detected at PD2 (lower set of plots) is 

amplified with the presence of pumping (red dash).  

 

9.2.4.2 Switching gain versus control power 

Next, with fixed control wavelength at 1537nm, the switching gain is examined 

at varied incident control power. Fig. 9.8a shows the drop of the transmitted pump 

pulse peak power, i.e.        , versus the incident control pulse peak power      . A 

quasi-linear increase of         is observed, as       <4mW. When the input control 

power further increases, the transmission drop of the pump beam starts to saturate. 

The corresponding switching gain is calculated and plotted versus the control peak 

  
Figure 9.8: (a) Switching gain of L=30m QW-on-SOI waveguide at different control 

wavelength. H=1342nm. (b) Transmitted pump (upper set) with (red) and without (blue) 

the incidence of control pulse, and the transmitted control (lower set) with (red) and 

without (blue) the incidence of the pump. L =1537nm.  
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power       in Fig. 9.8b, showing the maximum switching gain is achieved as the 

control power <4mW. Meanwhile, we noticed a small switching gain of ~1.2 is 

achieved with L=30m QW-on-SOI waveguide.  

 

 

9.2.4.3 Determination of         

We can also deduce the value of         from the PvC switching experiment 

based on the small-control measurement with              . The length of QW-

on-SOI waveguide is       . The pump and control wavelengths are 1342nm and 

1537nm. First of all, the amplification of the transmitted control pulse with the 

presence of 180mW 1342nm pump pulse is measured, which is equal to 9.1. Since 

the control pulse experiences material absorption when pump is not present, “9.1 

times amplification” is not the actual gain it sees. Here we use     √  
     

   to 

estimate the absorption coefficient at the control wavelength    , where    

       is the band gap wavelength. It gives 

       √  
     

  √  
     

  ⁄ =          . As a result, the actual gain 

 
 
Figure 9.9: (a) the drop of transmitted pump pulse peak power and (b) the switching gain 

at varied input control pulse peak power.  

 



204 
 

coefficient seen by the control beam with the presence of optical pumping at 1342nm 

is             . Thus we have  
   

   
    , which is as expected higher than the bulk 

InGaAsP semiconductor with 
   

   
     .  

  

9.2.4.4 Pump-control switching in longer QW-on-SOI waveguide 

It is worthwhile to note that higher switching gain and lower operational power 

are possible by simply increasing the device length [29] and reducing the optical 

mode area (e.g. adopting the T-structure QW-on-SOI waveguide). However, the 

measurement carried out for        QW-on-SOI waveguide under the same 

pump beam condition and the optimized control beam condition gives a switching 

gain of 0.67. The failure of observing higher switching gain in the longer waveguide 

could be due to that 1) the longer waveguide requires higher incident pump power to 

excite the carriers. The input pump power is not high enough to provide equivalent 

transparency state as in the        case; 2) the FP-assisted spontaneous emission 

amplification effect as observed in Fig. 9.6 further suppresses the carrier excitation 

and thus the gain at the control wavelength. Therefore, future work should include 1) 

optimizing the tapering structure to increase the top-down coupling efficiency; 2) 

adopting anti-reflection coating to eliminate the FP resonance and suppress the 

spontaneous amplification effect. 
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9.3 2-WG EUPT 3-WG EUPT and MZI-EUPT Fabrication and 

Measurement 

 

The 2-WG EUPT, 3-WG EUPT and MZI EUPT based on self-aligned QW-on-

SOI integration are fabricated. The first batch of EUPT devices are designed to fulfill 

the      requirement for switching gain. Therefore, with              , the 

device lengths for 2-WG and 3-WG EUPT are generally longer than 200m and the 

active waveguide length in MZI-EUPT is chosen at 100m. However, as we 

highlighted in section 9.1.4, the maximum pump supply power that can be delivered 

in our set up is not sufficient to pump up such long QW-on-SOI waveguides. 

Therefore, the desired OFF-state pumping characteristics in 2-WG, 3-WG and MZI-

EUPT are not achieved. 

In this section, the device design strategy, the varied device dimensions, and the 

SEM images of the three types of EUPT devices fabricated will be presented.  

 

 

9.3.1 2-WG, 3-WG EUPT: design, fabrication and measurement 

The general strategy of device design to achieve effective model refractive 

index matching in the 2-WG EUPT based on self-aligned QW-on-SOI structure has 

been presented in section 7.3.3. Among the 2-WG EUPT devices fabricated on the 

same sample chip, the self-aligned QW-on-SOI waveguide width is designed at a 

fixed value of 380nm, and the passive SOI waveguide width varies from 650nm to 

900nm with an increment of 25nm to match the effective model index of the QW-on-
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SOI waveguide. Introducing such wide range of width variation is to take into 

account of the QW-on-SOI waveguide width error in the fabrication process and the 

uncertainty of InGaAsP QW material refractive index. Furthermore, to meet the 

minimum      requirement for switching gain, without exacerbating the sensitivity 

of the coupler structure, the 2-WG EUPT device length is chosen around 200m. 

Correspondingly, the gap size between the active and passive waveguide is fixed at 

200nm in our design. The same strategy is adopted for the 3-WG EUPT testing 

sample design. The cross-sectional dimension of the designed 2-WG and 3-WG 

EUPT are shown in Fig. 9.10. 

 

 

In addition to the SOI waveguide width variation, the device length variation is 

also required to match the actual coupling length. Consider the 2-WG EUPT first. 

Depending on the resultant QW-on-SOI waveguide width (370nm-390nm) and the 

 
 

 
 

Figure 9.10: (a) 2-WG EUPT and (b) 3-WG EUTP design for effective model index 

matching test. 
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actual refractive index of QW (3.4-3.5), the complete coupling length in the index-

matching condition varies in a wide range. Simulation shows, at 200nm gap size, the 

complete coupling length could be in the range of 150m to 350m. However, in 

practice, it is not necessary to introduce such wide variation of device length for each 

SOI waveguide width tested. We performed the model simulation for 2-WG EUPT 

under different parametric conditions of QW-on-SOI waveguide, as shown in Fig. 

9.11a. At different QW-on-SOI width, i.e.      =370nm, 380nm and 390nm, the 

refractive index of QW is varied from 3.4 to 3.5, and the corresponding index-

matched SOI waveguide width        and the complete coupling lengths     are 

obtained. Subsequently,     is plotted against        for each      . It is found 

    is a function of        with little dependency on the QW-on-SOI waveguide 

width, as shown in Fig. 9.11b. In other words, regardless of how much error is 

introduced to the QW-on-SOI waveguide dimension, once the correct        is 

found, the device length is determined. Therefore, theoretically, we can assign one 

particular device length to each        tested. However, in real application, we still 

need to introduce device length variation in our design, since the coupling length may 

change due to deviation of gap size during the fabrication. Here we let the 2-WG 

EUPT device length vary by +/-50% around the     value in Fig. 9.11b at the 

corresponding       . On the other hand, since the complete coupling length of 3-

WG directional coupler at index-matching condition is equal to √  of 2-WG 

complete coupling length, the device length variation range for each        tested in 

3-WG EUPT is set to be √  of that for the corresponding 2-WG EUPT. 
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Fig. 9.12a and Fig. 9.12c show the SEM image of the SIG-IN and SIG-OUT 

ports of the 2-WG EUPT and 3-WG EUPT fabricated. The propagation directions of 

the signal and pump beams are indicated by the red and yellow arrows respectively. 

Fig. 9.12b and Fig. 9.12d show the coupler region of the 2-WG and 3-WG EUPT 

with the passive SOI waveguides and active QW-on-SOI waveguide lying in 

proximity. The optical pumping measurement is carried out on the free-space 

coupling station in Fig. 9.7. The pump beam at 1342nm is modulated to generate 

400ns pulses at 5kHz repetition rate and the input pump pulse peak power is set at the 

maximum value of 180mW. The pump beam is launched into the passive waveguide, 

and the transmitted light spots from the passive and active waveguides are monitored 

              
 

 
Figure 9.11: (a) Parametric variation for mode simulation in 2-WG EUPT. (b) 

Complete coupling length LC2 versus the corresponding index-matched SOI waveguide 

width at different QW-on-SOI width. 
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using an infrared IR camera. Unfortunately, we did not observe successful coupling 

in any of the 2-WG EUPTs or 3-WG EUPTs fabricated. Most of light exists from the 

passive waveguide.  

 

 

The failure of demonstrating the significant coupling phenomenon should be 

due to the lack of sufficient pump power for such long device structure, as we 

highlighted in the single-waveguide PvC switching experiment. If the active 

waveguide cannot be pumped into transparency state, the large absorption coefficient 

of it seen by the pump beam will prevent the efficient optical coupling, even in the 

      
 

       
 

 

Figure 9.12: (a) SEM images of 2-WG EUPT fabricated with the SIG-IN and SIG-OUT 

ports and the propagation directions of pump supply and signal beams (b) the coupler 

region of 2-WG EUPT with the QW-on-SOI waveguide and SOI waveguide lying in 

proximity. (c) SEM image of 3-WG EUPT fabricated with the SIG-IN and SIG-OUT ports 

and the propagation directions of pump supply and signal beams. The QW on passive 

waveguides hasn’t been removed. (d) the coupler region of 3-WG EUPT with the QW-on-

SOI waveguide and SOI waveguide lying in proximity.  
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index-matching condition. In the future work, efforts should be devoted into further 

increasing the pump power coupled into the EUPT devices, e.g. increasing the free-

space-to-waveguide coupling efficiency and the top-down coupling efficiency at the 

QW tapering structure, adopting the more proper AOM for the higher beam 

deflection efficiency.   

 

9.3.2 MZI-EUPT: design, fabrication and measurement 

Effective-model-refractive-index-matching constraint between SOI and QWI-

on-SOI waveguide is avoided in the MZI-based EUPT. However, additional passive 

interferometric structures are required for optical beam splitting and combining. 

Theoretical demonstration of MZI-EUPT in section 8.2 utilized two 3-dB directional 

couplers. Alternatively, we can also adopt two 50/50 Multimode interferometers 

(MMI) to achieve the same effect with the smaller footprint size. 

3D Lumerical FDTD simulation is performed to design the MMI structure, the 

optimized design is shown in Fig. 9.13. Fig. 9.14a shows the simulation structure 

with two 50/50 MMI joint together. The input light is launched from one port of the 

MMI. The dimensions of the constituent MMI is shown in Fig. 9.14b, where the 

refractive indices of the MMI and cladding medium are 3.5 and 1.5 respectively, and 

the wavelength of incident light is 1342nm. The resultant beam propagation 

characteristics is shown in Fig. 9.14c. We can see the input light equally splits to two 

paths at the first MMI, which are then combined and transmits out of one port.  
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The designed MMI is fabricated on the SOI substrate with 230nm thick Si and 

the measurement shows 50/50 power splitting can be achieved. However, the 

transmission characteristics as simulated in Fig. 9.13b are not observed in the joint 

MMI structure. This is because the beam-combining effect at the second MMI is 

sensitive to the relative phase difference between the two incoming beams. 

Fabrication error may induce slight difference in the waveguide widths between the 

two waveguides connecting the MMIs, which deviates the phase difference between 

the two optical paths. Thus for future MZI EUPT device design, additional phased 

tuning mechanism, e.g. thermal tuning mechanism, is required along at least one 

active arm to adjust the relative phase of light to optimize the interference 

performance at the output MMI.  

MMI-based MZI-EUPT devices with 100m-length QW-on-SOI waveguide 

are fabricated for testing. Since additional fabrication steps are required and the 

      
Figure 9.13: 50/50 MMI design for MZI EUPT application. (a) Lumerical FDTD 

simulation structure with two MMI joint together. The 1342nm light is launched from 

one port of the first MMI (b) dimension of the constituent MMI. Refractive indices of 

MMI and cladding are 3.5 and 1.5 respectively. (c) beam propagation simulated by 

FDTD. 
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fabrication process flow needs to be re-developed, the phased tuning component is 

not introduced in these devices. Fig. 9.14a shows the input part of the MMI-based 

MZI structure fabricated. The output part of MZI EUPT is shown in Fig. 9.14b, 

where the input signal beam is coupled into the active arm through a passive 

symmetric directional coupler. The same directional coupler is used to couple the 

pump supply beam to the output port of the device. Since the longer wavelength 

experiences the shorter coupling length, the signal beam will propagates over more 

than one coupling length and will be coupled back to the incident waveguide (the 

active arm), while the pump supply beam will experience significant power transfer 

to the output waveguide. The same design is included at the other arm to make the 

structure symmetric. At the output of MZI EUPT is another identical MMI to 

combine two beams.  

Launching the 1342nm 400ns pulsed pump beam at the maximum power into 

these MZI-EUPT, we did not observe any output light from the device. It could be 

due to that the pump power is not sufficiently high to pump through the whole device 

or the series of interferometric structures along the MZI-EUPT device are not 

optimized. The future work for MZI-EUPT device development should start with the 

purely passive configuration to optimize the interferometric structures first.  

As we can see, despite of eliminating the difficult index-matching constraint 

between QW-on-SOI and SOI waveguides, the MZI-EUPT involves multiple 

interferometric structures and requires additional phase tuning mechanism. It not only 

increases the total device footprint, but also increases the fabrication challenges, 

which therefore limits its feasibility for large-scale device integration.  
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9.4 Conclusion 

In this chapter, the saturation intensity and small-signal absorption 

measurements is carried out for our self-aligned QW-on-SOI waveguide, which gives 

               and              . Pump-control switching with switching 

gain of 1.2 is demonstrated in a     -length QW-on-SOI waveguide, from which 

 
 

                     
Figure 9.14: SEM images of MZI EUPT fabricated (a) the PS-IN port with 50/50 MMI 

for pump supply splitting (b) the SIG-IN and SIG-OUT ports with symmetric directional 

coupler for signal input and pump output. 
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we also deduced 
   

   
    .  

The measurement results highlighted several new device design aspects that 

need to be taken into consideration in the future, including 1) the waveguide mode 

size should be further reduced to increase the power efficiency; 2) the quantum well 

layer design needs further optimization to increase the optical mode overlapping thus 

to increase the small-signal absorption coefficient of the waveguide, which can 

consequently reduces the device size and the device tolerance to the fabrication error; 

3) anti-reflection has to be included to prevent the spontaneous emission 

amplification that causes the strong self-depletion of carriers and the gain reduction. 
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CHAPTER X    DISCUSSION AND FUTURE PLAN 

 

10.1 Summary of Achievements 

The main achievements of the thesis can be summarized as follows: 

Firstly, we report a novel analytical approach for analyzing the performance of 

EUPT systematically. An analytical formulation for the absorption and gain 

coefficients seen by two monochromatic waves at different wavelengths interacting 

with a semiconductor medium is developed for the first time, based on which the 

optical field propagation and light-matter interaction in a semiconductor medium can 

be self-consistently dealt with without the need of iterative calculation or numerical 

computation. The switching gain, switching speed and switching energy are 

subsequently formulated analytically, from which important device design aspects are 

highlighted. It shows 
   

   
, 
     

     
,       and      are the four key parameters that 

effectively determine the switching gain of 2-WG EUPT. Increasing 
   

   
,      and 

     , or effectively reducing 
     

     
 will lead to the higher switching gain. On the other 

hand, increasing           will compromise the power efficiency of EUPT in the 

way that more pump power is required to pump the active waveguide to transparency.  

With the employment of the InGaAsP’s energy band parameters, we obtained the 

minimum      values for achieving switching gain in the bulk-InGaAsP-based 

EUPT and QW-InGaAsP-based EUPT, which are equal to 30 and 22 respectively, 

and the minimum energy consumption is ~250fJ/bit. The resultant Figure of Merit is 

one order worse than the FOM obtained from the 4-level 2-electron FDTD simulation 

presented with the initial proposal of PT. Furthermore, numerical simulation via a 

MLME-FDTD program, which is capable of addressing complex carrier dynamics in 
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the realistic semiconductor band structure, is adopted to verify our analytical 

calculation. At the end, 20Gbps switching operation with switching gain of ~2 and 

switching energy of 0.4pJ/bit is demonstrated with MLME-FDTD simulation in a 

bulk-InGaAsP-based EUPT.  

Secondly, a new architecture based on a three-waveguide (3-WG) directional 

coupler is proposed to achieve the switching merits of a 2-WG EUPT without 

stringent effective modal index matching requirement between the coupled 

waveguides. The symmetric nature of the structure promises efficient coupling, thus 

high extinction ratio switching, despite index mismatch between the active and 

passive waveguides. The absorption manipulation-based switching performance is 

not compromised by the presence of index mismatch and thus enhances the device 

tolerance to fabrication errors. Meanwhile, an alternative device architecture to 

alleviate the index matching constraint is proposed, which is based on the symmetric 

Mach Zehnder Interferometer consisting of two identical active arms. Amplitude 

modulation induced by absorption change in one of the arm is utilized for the 

switching operation. Without the direct coupling between the passive and active 

waveguides, the fabrication challenge is greatly reduced. Our analytical method 

provides a systematic comparison between the original 2-WG EUPT and our new 

EUPT architectures.  The calculation results show 3-WG EUPT is generally slower 

but has higher switching gain than 2-WG EUPT under the same operational 

conditions. The switching gain of MZI EUPT ranks between the 3-WG EUPT and 2-

WG EUPT when they have the same     , but the switching speed of MZI EUPT is 

slower than 2-WG EUPT since the incident pump power splits into half before it 

pumps the active arms. The Figure of Merit for 3-WG EUPT is shown higher than the 

2-WG EUPT and the MZI EUPT with the same     . Increasing the index 
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mismatching factor       in 3-WG EUPT can further improve the FOM due to the 

increase of switching gain. However, the pump supply power coupled into the central 

waveguide decreases with the increase of      , which poses the higher pump power 

requirement for achieving the transparency state at the switch-off state. Thus 

        is suggested for high-performance operation with 3-WG EUPT.  

Thirdly, different fabrication approaches are proposed for the realization of 

EUPT, including quantum-well-intermixing (QWI) approach on InP-based substrate, 

and III-V-on-silicon integration approach assisted by direct wafer bonding technique. 

For the QWI approach, a diffusion-stop gap technique is proposed to achieve sub-

micron spatial resolution of local band gap shift induced by ion-implantation assisted 

quantum well intermixing. With adoption of BCB bonding technique, thin-film QW 

nano-waveguide with high index contrast is realized. For the III-V-on-silicon 

approach, two different QW-on-SOI waveguide architectures, i.e. T-structure and 

self-aligned structure, are proposed for the active waveguide in EUPT. The 

corresponding fabrication procedures and individual process steps are developed. 

Since the EBL alignment error will cause sever repeatability issue with the T-

structure EUPT, self-aligned QW-on-SOI architecture is adopted for the EUPT 

realization. Single-waveguide switch, 2-WG EUPT, 3-WG EUPT and MZI EUPT are 

successfully fabricated based on the QW-on-SOI integration approach.  

Lastly, the optical measurement station for the waveguide-based dual-

wavelength switching operation is designed and constructed based on the free-space 

coupling scheme.  The saturation intensity and small-signal absorption for our self-

aligned QW-on-SOI waveguide are experimentally determined, giving       

         and            
  . Pump-control switching with switching gain of 

1.2 is demonstrated in a     -length QW-on-SOI waveguide, from which we also 
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deduced 
   

   
    . Furthermore, spontaneous emission amplification is observed in 

the strongly pumped active waveguide due to the Fabry-Perot resonance formed by 

the waveguide end facets, which induces significant carrier depletion, thus increased 

absorption seen by the pump beam and reduced gain seen by the control beam. As a 

result, the switching gain performance is greatly compromised. To alleviate the 

spontaneous emission amplification effect in the actual device application or the 

integrated photonic circuit, novel anti-reflection design is proposed for the EUPT 

operation. 

Apart from photonic transistor studies, there are some other theoretical and 

experimental works on the optical nano-waveguides having been carried out, which 

were not presented in this dissertation.   

First of all, we derived an exact analytical solution for the facet reflection of a 

strongly-guided wave propagating in a planar waveguide with high-refractive-index 

contrast between the waveguide core and cladding layers. Facet reflections at the 

waveguide-air interface for strongly-guiding waveguides with sub-wavelength scale 

dimensions do not follow the usual Snell’s law. Significant amount of reflected 

power can be channeled into higher order modes as well as radiation modes. Our 

work shows for the first time how the exact analytical solution of the facet reflection 

can be obtained by using a new technique based on Fourier analysis and perturbative 

series summation without the need for approximation or iteration. The proposed 

analysis enables the distribution of power reflected into various guided and radiation 

modes to be readily computed. Through this technique, a spectral overlapping 

criterion and a coupling matrix are derived that analyze effectively the power 

distribution among all the strongly and weakly-coupled radiation modes in an end-

facet reflection. Accurate pre-determination of the number of radiation modes for 
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efficient computation without compromising resultant accuracy is achieved. More 

importantly, the anomalous wave reflection behaviors at the facet of a strongly-

guiding waveguide are presented. These include anomalous high radiation modes 

coupling as a function of cladding refractive index not reported before [70]. 

Secondly, we reported the first realization of sub-200 nm wide AlN-GaN-AlN 

(AGA) ridge waveguide with height-to-width ratio of ~6:1, fabricated via 

inductively-coupled plasma (ICP) etching with Cl2/Ar gas chemistry.  RIE power and 

ICP power were varied in the ranges of 100 W-450 W and 200 W-600 W 

respectively.  An optimized RIE power and ICP power at 100 W and 400 W 

respectively, reduced the density of nano-rods formed in the etched trenches.  Further 

optimization of the gas flow rate of Cl2/Ar to 40 sccm/10 sccm improved the slope of 

the etched waveguide.  In addition, we also developed a simple and novel dice-and-

cleave technique to achieve cleaved end facet of AGA waveguide [73]. The same 

technique is utilized to cleave the thick SOI substrate of our EUPT device. 

 

10.2 Future Works  

The main works to be carried out in the future include: 

First of all, the anti-reflection coating will be applied to the new batch of single-

waveguide switch and 2-WG EUPT to repeat the saturation intensity measurement, 

single-waveguide PvC switching measurement and the index-matching test for the 2-

WG EUPT.  

After that, the integrated anti-reflection structure will be tested. In an actual 

photonic integration circuit, un-desired back-reflection of light can exist everywhere, 

which may compromise the active photonic device performance significantly. 

Integrated anti-reflection structure is thus necessary to prevent the back-reflected 
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light from entering the active devices. An exemplary design for 2-WG EUPT is 

shown in Fig. 10.1. The pump supply beam is coupled into the EUPT through a 

narrow-band ring resonator at the pump wavelength. This can prevent the 

spontaneous emitted light and the transmitted input signal entering the photonic 

circuit. Secondly, to prevent the back reflection of pump supply beam, we may place 

an absorptive ring resonator with the resonance wavelength at the pump supply 

wavelength at the SIG-IN port. The transmitted pump beam sees effective coupling 

thus will be absorbed by the ring, while the input signal sees little coupling and will 

be propagating into the EUPT. Lastly, at the terminations of the two non-functional 

ports, we put a small-radius bending structure joint to an absorptive sharp tapering 

structure to effectively scatter and absorb the light propagating towards there.  

 

 

 

Furthermore, measure the dynamic response of the single-waveguide switch, 

 
Figure 10.1: EUPT design with anti-reflection structures. 
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and eventually demonstrate the switching operation in 2-WG EUPT or 3-WG EUPT. 

The quantum well wafer design will be further optimized to increase the mode-

overlapping factor with the well layers to increase the small signal absorption 

coefficient of the QW-on-SOI waveguide. The waveguide design and fabrication 

process need the further optimization as well to enhance the optical confinement and 

mode intensity in the QW region and reduce the device tolerance to the fabrication 

error.  

For the theoretical work, we may evaluate the potential application of quantum 

dots in our EUPT, since studies have shown that this class of material could have 

substantially low saturation intensity and ultrafast carrier transition response. The co-

directional pumping rate of waveguide also requires further verification and studies, 

since it plays the key role in determining the energy consumption per bit of our 

photonic transistor. Systematic analysis for the GMOI-based EDPT will be carried 

out in the future. 

 

 

APPENDIX: 

 

The fabrication process and process parameters for self-aligned QW-on-SOI 

based EUPT are tabulated as follows. 
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Steps sample equipment model parameters 

1 Cleaning SOI - 

1. Acetone + ultrasnoic for 5min 

2. IPA + ultrasnic for 5min 

3. DI water + ultrasonic for 5min 

2 

PECVD 

deposition 

of 280nm 

SiO2  

SOI 

PECVD System, 

Nextral ND200 

(Unaxis)  

H2: 184sccm 

N2O: 400sccm 

Pressure: 729mTorr 

Temperature: 279.2ºC 

RF: 100W 

DC: 44.2V 

Time 150s 

3 

Spin coating 

of 300nm 

PMMA950_

5A and E-

spacer 

SOI Spin coater 

1. Spin coat PMMA950_5A at 

3000rpm for 90s 

2. Baked on hot plate at 170 ºC for 

15min 

3. Spin coat E-spacer at 2000rpm for 

90s 

4. Baked on hot plate at 95 ºC for 

1min 

4 

EBL 

patterning of 

alignment 

marker and 

de-gassing 

channel 

SOI  

Electron Beam 

Lithography 

System (Elionix 

100 kV) 

Current: 1nA 

Dosage: 1100C/cm
2
 

Dot map: 600m, 60000 dot 

5 
Develop 

EBL pattern 
SOI  - 

1. DI water rinse for 5s and N2 blow 

2. Immersion in MIBK:IPA (1:3) for 

70s 

3. IPA rinse for 5s and N2 blow dry 

6 
RIE etching 

of SiO2 
SOI 

RIE Etcher, 

Plasmalab 80plus 

(Oxford) 

CHF3: 45sccm 

Ar: 15sccm 

Pressure: 50mTorr 

RF: 150W 

DC: 353V 

time: 15min 

7 
Remove 

PMMA 
SOI  

RIE Etcher, SIRUS 

(Trion) 

1. O2 plasma etching:  

- O2: 10sccm 

- Pressure: 250mTorr 

- RF:100W 

2. Acetone + ultrasnoic for 5min 

3. IPA + ultrasnoic for 3min 

4. DI water + ultrasnoic for 3min 

8 
ICP etching 

of Si 
SOI 

ICP System, 

Shuttle Lock 

Reactor SLR-7701-

8R (Unaxis)  

HBr: 48sccm 

Cl2: 40sccm 

ICP: 400W 

RIE: 80W 

Pressure: 10mTorr 

Temperature: 20 ºC 

Time: 119s 
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9 

Direct wafer 

bonding of 

QW on SOI 

SOI, 

strained 

QW  

Table 7.1, Step 3-13 

10 

Spin coating 

of 200nm 

HSQ 

QW on 

SOI 

spin coater and hot 

plate 

1. Baked on hot plate at 120 ºC for 

10min for dehydration 

2. Spin coat HSQ006 at 3000rpm for 

90s 

3. Baked on hot plate at 120 ºC for 

2min 

4. Baked on hot plate at 180 ºC for 

2min 

11 

EBL 

patterning of 

device 

structure 

QW on 

SOI 

Electron Beam 

Lithography 

System (Elionix 

100 kV) 

Current: 500pA 

Dosage: 2800C/cm
2
 

Dot map: 300m, 60000 dot 

12 
Develop 

EBL pattern 

QW on 

SOI 
- 

1. Immersion in TMAH for 28s 

2. DI water rinse for 5s and use N2 

gun to blow dry 

13 
ICP etching 

of QW 

QW on 

SOI 

ICP etcher 

(Plasmalab System 

100) 

Cl2: 15sccm 

N2:  60sccm 

RF: 70W 

ICP: 400W 

Temperature: 250 ºC 

DC bias: 239V 

Time: 45s 

14 
ICP etching 

of Si 

QW on 

SOI 

ICP etcher 

(Plasmalab System 

100) 

CHF3: 50sccm 

SF6: 9sccm 

ICP: 1000W 

RF: 33W 

Pressure: 15mTorr 

Temperature: -20 ºC 

DC: 93-113V 

Time: 25s 

15 
HF remove 

HSQ mask 

QW on 

SOI 
- Immersion in BHF (1:7) for 10s  

16 

Spin coating 

of 800nm 

HSQ 

QW on 

SOI 

Spin coater and hot 

plate 

1. Spin coat HSQ (FOX 24) at 

3000rpm for 90s 

2. Baked on hot plate at 120 ºC for 

2min 

3. Baked on hot plate at 180 ºC for 

2min 

17 

EBL 

patterning of 

active 

waveguides  

QW on 

SOI 

Electron Beam 

Lithography 

System (Elionix 

100 kV) 

Current: 500pA 

Dosage: 2900C/cm
2
 

Dot map: 300m, 60000 dot 

18 
Develop 

EBL pattern 

QW on 

SOI 
- 

1. Immersion in TMAH for 28s 

2. DI water rinse for 5s and use N2 

gun to blow dry 
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19 
ICP etching 

of QW 

QW on 

SOI 

ICP etcher 

(Plasmalab System 

100) 

Cl2: 15sccm 

N2:  60sccm 

RF: 70W 

ICP: 400W 

Temperature: 250 ºC 

DC bias: 239V 

Time: 45s 

20 
HF remove 

HSQ mask 

QW on 

SOI 
- Immersion in BHF (1:7) for 20s  

21 

ALD 

deposition 

of 30nm 

Al2O3 to 

improve 

heat 

dissipation 

QW on 

SOI 

ALD R200 

Advanced, Picosun 

H20 Precursor pulse Time : 0.1s, 

purge Time : 10s  

TMA Precursor Pulse Time : 0.1s, 

Purge Time : 6s 

Process cycle : 500 

Carrier gas: Ar 

Temperature : 300degC 

22 

ICP-CVD 

deposition 

of 1m SiO2 

protection 

layer 

QW on 

SOI 

ICP - Chemical 

Vapor Depostion 

( Plasmalab System 

380) 

SiH4: 7.5sccm 

N2O: 14sccm 

RF: 20W 

ICP: 1000W 

Temperature: 250 ºC 

DC: 100-146V 

Time: 70min 

23 
Dice and 

Cleave 

QW on 

SOI 

Disco dicing and 

cleaning system 

DAD321 

1. Dice from the backside of wafer to 

200m away from the wafer top 

surface 

- 150m thick DSICO diamond blade 

- 30000 rpm 

- Feed speed: 5mm/s 

2. Apply a force from the side of the 

substrate to cleave the wafer [73] 
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