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Abstract

The wealth of microarray data available today allows us to perform two important

tasks: (1) Inferring biological explanations or causes behind diseases. (2) Using these

explanations to diagnose and predict the outcome of future patients. These tasks are

challenging and results are often not reproducible when different batches of data are

analyzed. This problem is further aggravated by the lack of samples because many

laboratories are constrained by budget, biology or other factors; making it hard to draw

reasonable and consistent biological conclusions.

By using databases of biological pathways, which represent a wealth of biological in-

formation about the interdependencies between genes in performing a specific function,

we are able to formulate algorithms that draw meaningful and consistent biological ex-

planations as plausible causes of diseases. We derive and find statistically significant

“subnetworks”, which are smaller connected components within biological pathways,

because the cause of a disease may be linked to a small subset of genes within a path-

way. This, in conjunction with a unique scoring methodology, we are able to compute a

test statistic that is stable even when sample sizes are small, and is consistently detected

over independent batches of data, even from different microarray platforms. We are able

to attain a high subnetwork-level agreement of about 58% using only 2 samples. For

other contemporary methods, this number falls to 27% when analyzed using GSEA and

13% using ORA. In addition, the subnetwork-level agreement achieved by our method

continues to improve when a larger sample size is used, yielding a subnetwork agreement

of about 93%. Our predicted subnetworks are also supported by many existing biological

literature and allow biologists further insights to the mechanisms behind the diseases

studied.

This work is important because the subnetworks identified, being consistent across inde-

pendent datasets, also serve as informative and relevant features. Thus, we are able to

build better predictive algorithms for inferring the outcome of patients. We also present

a useful subnetwork-feature scoring function that is not only able to predict the out-

come of future samples measured on independent microarray platforms but is also able

to handle small-size training samples. This enables researchers to find the mechanisms

behind a disease and use them directly as a tool for diagnosis and prognosis.
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Chapter 1

Introduction

The wealth of information contained in gene-expression databases is growing rapidly.

To date, there are more than 60,000 experimental datasets stored in different gene-

expression repositories; cf. fig. 1.1.

Figure 1.1: Number of gene-expression profile datasets in database repositories.

This quantitative measure of gene transcripts at once allows researchers to gain insight

to complex diseases. The analysis can be divided into two sub-problems, which this dis-

sertation aims to address. The first problem is concerned with identifying the difference

present between patients and normal individuals. The second problem is concerned with

distinguishing patients from normal given what has been identified in the first step.

1



Chapter 1. Introduction 2

1.1 Motivation

1.1.1 Identifying disease-related genes

Traditional microarray analysis is focused on determining differentially-expressed genes

either between normal cells and diseased cells or between two disease subtypes. This

kind of inference typically computes a measure of statistical significance for differentially

expressed genes, but has been shown to have a number of problems.

1. Large numbers of false positives due to multiple hypothesis testing. If there are

30,000 genes in a microarray and assuming that the false-positive rate is about 5%,

then we expect to see 1,500 genes falsely declared as differentially expressed. This

large number of false positives obscures the understanding of complex diseases and

makes analysis difficult.

2. Although these false positives can be alleviated by multiple hypothesis correction,

genes detected as significant are sparsely scattered in biological networks, suggest-

ing that these genes do not provide biological insights to the cause of disease. In

contrast, diseases are usually triggered by a cascade of interacting genes whose

expression levels are expected to change.

3. It has been widely reported that genes detected as significant in one microarray

experiment are not consistently detected in another microarray experiment of the

same disease phenotype (Zhang et al., 2009). And in some cases, they are no better

than randomly produced gene signatures (Venet et al., 2011). For example, the

Cathepsin D gene is significantly differentially expressed in one Leukemia dataset

but not in another independent dataset; cf. fig. 1.2

2



Chapter 1. Introduction 3

4. In addition, the significant genes are very sensitive to sample-size changes espe-

cially when smaller sample sizes are considered. This restricts analysis to sizeable

datasets, but laboratories are sometimes constrained to perform experiments with

few samples.

Figure 1.2: The distribution of the Cathepsin D gene, identified as significant by
t-test in Leukemia dataset 1 but not in Leukemia dataset 2.

Modern methods try to tackle some of these problems by incorporating biological in-

formation into their framework in the form of gene sets. These gene sets represent

biological processes or pathways that are known to perform specific functions. However,

these methods do not solve all of the above-mentioned problems. It has been shown

that these modern methods do not produce consistent results when they are applied on

cross-laboratory and cross-platform data. This has a large impact on scientific studies

because the significant genes often cannot be reproduced; suggesting that most genes

or pathways linked by these methods to the disease may not be real. In addition, these

methods try to assess an entire pathway, which may cause an actually relevant pathway

to be missed because in disease state, only a part of the pathway is perturbed.

3
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Analyzing whole pathways by themselves offers biologists little insight to a disease be-

cause it is very unlikely for a disease to affect whole large pathways. Rather, it is more

plausible for a disease to target a small area within a pathway. This motivates us to

work on methods that specifically consider smaller components within pathways.

1.1.2 A tool for clinical diagnosis

In another application of microarray data, differentially-expressed genes are used to

predict patients from normal. Typically, a machine-learning method is employed at this

step to find the labels of an unlabeled sample. This prediction task faces different kinds

of problems:

1. Batch effect. In order for such methods to be practical, a classifier built using a

dataset from the current time point should also give accurate results when applied

to datasets obtained in the future. However, the features in a set of samples often

cause the samples to be segregated into clusters based on data batches rather than

based on class labels. This makes it very hard for machine-learning algorithms to

make predictions. Cf. fig. 1.3

2. Although batch effect can be reduced by rank-based normalization, even in the

absence of batch effect, using genes as features do not separate the classes well,

as these classifiers tend to have poor predictive accuracy when they are applied to

future batches of samples. Cf. fig. 1.4

There has been no method in our knowledge that can make this prediction reliably uti-

lizing gene-expression values when data from different platforms or laboratories are used.

This suggests that the traditional perspective of using individual genes for classification

may be inadequate.

4
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Figure 1.3: We perform PCA on the microarray data in 2 independent datasets.
Samples are then plotted on the first three principle components. The samples are

separated based on batches rather than by their labels.

Figure 1.4: We use t-test to select significant genes to build classifiers from one dataset
and supply an independent dataset for testing. The weighted accuracy, defined as the
average of the sensitivity and specifity, indicates that classifiers built on individual gene

features do not perform well.
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1.2 Research challenge and contributions

The above-mentioned problems present a few difficulties that need to be addressed. We

identify 3 research challenges that we aim to address in this dissertation:

1. Over all the recent methods that we surveyed, very few methods are able to re-

produce subnetworks or genes in high agreement when applied independently on

independent datasets. One such exception is SNet (Soh et al., 2011), but we dis-

cover that the performance of SNet varies when hard thresholds are used. On

different disease types, the optimal threshold may be different. This motivates

us to find a way to improve SNet to achieve high consistency without relying on

tuned thresholds. We introduce, in PFSNet, two major modifications to the SNet

algorithm and obtain even higher consistency than SNet. We have published the

resulting work in a recent paper, viz:

K. Lim, L. Wong. “Finding consistent disease subnetworks using PFSNet”, Bioin-

formatics, 30(2):189-196, January 2014.

2. To date, we have not seen any published method that provides a handle on the sit-

uation where sample size is extremely small. On the other hand, we often see data

from laboratories that are constrained to conduct biological experiments with ex-

tremely few samples (<5). We discover that most statistics computed under this

circumstance produce a large variance, and hence low consistency, when tested

across diverse datasets. One possible explanation is that the statistics are com-

puted from very few data points. We introduce a novel method, ESSNet, that

involves two major steps. The first is defining subnetworks based on the genes’

average rank, which is shown to be very stable—i.e., lesser variance—across small

sample subsets of the original data. The second is using biological pathways to

6
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increase the number of data points so that the statistics can be computed more

reliably despite the small sample size. We demonstrate that subnetworks are con-

sistently identified across multiple datasets and correlate to biological processes

linked to the disease. The resulting work has been submitted and is under review:

K. Lim, Z. Li, K. P. Choi, L. Wong. “ESSNet: Finding consistent disease subnet-

works in datasets with extremely small sample sizes”.

3. The batch effect presented earlier suggests that gene-expression values do not make

good feature scores for diagnosis of diseases. This motivates us to explore other

forms of features derived from pathways or subnetworks. We demonstrate how

subnetworks can be used as features by using a method to score samples based on

FSNet and ESSNet to achieve high cross-batch prediction accuracy.

1.3 Thesis organization

Chapter 2 provides technical background on microarray analysis methods, which try

to identify the cause of a disease using biological networks and pathways, as well as

classification techniques. Chapter 3 describes our contribution (1) on improving SNet

to achieve a higher level of consistency. Chapter 4 describes our contribution (2) on

dealing with datasets with extremely-small sample sizes. In chapter 5, we discuss how

subnetworks described in (1) and (2) can be used for diagnosis purpose. Finally, in

chapter 6, we summarize our work and propose some future work.

7





Chapter 2

Related Work and Definitions

2.1 Background on gene-expression profiling

Gene-expression profiling is the simultaneous measurement of the amount of mRNAs

of all the genes, which are transcribed from the genome, in the cell. At any moment,

not all the genes are activated, resulting in the phenotypic difference between patients

and normal. Currently, there are two major platforms for profiling gene expression:

(1) traditional microarrays and (2) next-generation sequencing RNA-seq experiments.

Microarrays are more pre-dominant, accounting for 87% of datasets in the ArrayExpress

database (Rustici et al., 2013).

In the popular brand of microarrays made by Affymetrix (Fodor et al., 1991), com-

plementary sequences to the targeted mRNAs are printed onto a gene chip. These

complementary sequences target different parts of the mRNAs and are associated in

pairs. Each pair is made of a perfect-match (PM) and a mismatch (MM) sequence; the

mismatch sequence allows background noise level to be measured, and when combined

9
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with the signal intensity from the perfect-match sequences, determines the expression

value of a particular gene (see fig. 2.1).

PM
MM

Probeset i

Probe pair j

Figure 2.1: A figure depicting probesets and probepairs in a microarray.

RNA-seq (Chu and Corey, 2012, Wang et al., 2009) is a method which fragments the

extracted mRNAs into pieces, and attach short tags to them. The tags are hybridized

to beads and next-generation sequencing is employed to deduce the transcript that they

belong to. A quantitative measure of a gene is derived based on the number of fragments

that map to the gene’s sequence. In practice, RNA-seq offers some advantages over

microarrays: (1) a reference genome is not necessary prior to the experiment, (2) larger

dynamic range, and (3) higher technical reproducibility.

In this thesis, we are concerned with analysis of microarray data due to its wider avail-

ability, although the methods in our dissertation can also be applied to RNA-seq data.

2.1.1 Preprocessing microarray data

Microarray data is often preprocessed before any downstream analysis is conducted. The

preprocessing serves the following functions:

(1) Estimate background noise. (2) Adjusting expression values to correct for non-

specific hybridization using the PM and MM sequences described earlier. (3) Normaliz-

ing values so that values can be compared across chips. (4) Summarizing multiple probe

expressions into a single gene-expression value.

10
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The two most-widely-used microarray-preprocessing tools are MAS5.0 (Affymetrix, 2002)

and RMA (Irizarry et al., 2003).

2.1.1.1 MAS5.0

MAS5.0 is a proprietary software used on Affymetrix chips and is described by a white

paper published by Affymetrix (Affymetrix, 2002). The jth probe pair associated with

the ith probeset can be represented as PMi,j and MMi,j (see fig. 2.1). It uses the MMi,j

probes to estimate the background noise and the probe signal is basically the PMi,j

intensities subtracted by the MMi,j intensities. It is possible for the signal intensities

from MM probes to be larger than the signal intensities for the PM probes, making

it hard to estimate stray signals from the PM intensities. Hence, the MM intensities

have to be adjusted. The adjusted intensity IMi,j for probe pair j in the ith probeset is

defined as:

IMi,j =



MMi,j MMi,j < PMi,j

PMi,j

2(SBi)
MMi,j ≥ PMi,j and SBi > τ1

PMi,j

2

τ1

1+
τ1−SBi
τ2

MMi,j ≥ PMi,j and SBi ≤ τ1

(2.1)

where SBi is a weighted average of the log ratios of probepairs j for the probeset i:

SBi = weighted averagej

(
log2

(
PMi,j

MMi,j

))
(2.2)

The first case in equation 2.1 is when MMi,j is smaller than PMi,j , the background

signal is perfectly measured so no adjustments is made.

11
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For the second case where MMi,j is greater than PMi,j , the adjusted intensity IMi,j

is based on the weighted average of other probe pairs within the same probeset if this

weighted average is big enough, i.e. > τ1.

For the third case, if the weighted average of the other probe pairs within the same

probeset is also very small, then the adjusted intensity is set to a value slightly smaller

than PMi,j , based on a scale parameter τ2.

Tukey’s biweight algorithm is used for the weighted-average computation above, which

basically assigns bigger weights for values close to the median and smaller weights for

values far from the median, so that the average is robust to outliers.

2.1.1.2 RMA

RMA (Irizarry et al., 2003) is another tool for microarray preprocessing. It does not rely

on MM intensities to estimate background noise. Rather, it is a model-based approach

that assumes background noise follows a normal distribution with mean µ and standard

deviation σ and real signal follows an exponential distribution with parameter alpha α.

This formulation results in a closed form solution for the expected real signal given the

PM intensities once the model parameters have been estimated:

E[Signal|PM = x] = a+ b
φ(ab )− φ(x−ab )

Φ(ab ) + Φ(x−ab )− 1
(2.3)

where a = x − µ − σ2α, b = σ, φ(.) is the density function of the normal distribution

and Φ is the cumulative distribution function of the normal distribution.

12
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2.2 Background on class comparison using genes, path-

ways and subnetworks

Many downstream microarray-analysis methods start after data pre-processing. In this

subsection, we discuss various approaches that have been proposed for comparing the

differences between patient and normal by identifying significant genes, pathways and

subnetworks.

2.2.1 Identifying differential gene expression

The earliest work on class comparison (DeRisi et al., 1996, Furey et al., 2000, Golub

et al., 1999a) on microarray analysis uses simple computation like fold-change, t-test and

Wilcoxon rank-sum test to evaluate differential gene expression. Other methods have

been later developed to help estimate false-discovery rates and to introduce statistical

significance to fold-change-based methods.

2.2.1.1 Fold-change

Fold-change measures the change of expression of one gene relative to another. It is

simply defined as:

FC(g) = x1/x2 (2.4)

Or

FC(g) = x1 − x2 (2.5)

13
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where x1 is the mean expression value of g in one class and x2 is the mean expression

value of g in the other class. Fold-change describes relative quantity without using any

information about the distribution of data between the two classes.

2.2.1.2 t-test

Another way to define differential genes is the use of a statistical t-test, which tests the

null hypothesis that the two distributions have equal mean.

The t-test computed on a gene g is based on the t-statistic formula:

T (g) =
x1 − x2
se

(2.6)

where x1 and x2 denote the mean gene-expression value for the two classes respectively

and se refers to the standard error of the difference between two means and has different

forms depending on the assumptions on the data distribution. The most commonly used

variants are described below.

The two classes have unequal sample sizes but equal variance:

se′ =

√
(N1 − 1)s21 + (N2 − 1)s22

N1 +N2 − 2
.

√
1

N1
+

1

N2
(2.7)

In this case, the variances of the 2 classes are pooled to compute the standard error, s21

and s22 denote the variance of the two classes respectively, N1 and N2 denote the sample

size of the two classes respectively. The t-test is computed under N1 + N2 − 2 degrees

of freedom.

14
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The two classes have unequal sample sizes and unequal variance:

se′′ =

√
s21
N1

+
s22
N2

(2.8)

where s21 and s22 denote the variance of the two classes respectively, N1 and N2 denote

the sample size of the two classes respectively. Welch provides an approximation for the

degrees of freedom for this test, computed as:

d.f. =

(
s21
N1

+
s22
N2

)2
(
s21
N1

)2

N1−1 +

(
s22
N2

)2

N2−1

(2.9)

It has been reported that most biological analyses involving the t-test use the first

formula to compute the standard error (Ruxton, 2006) but have unstable performance

in terms of type-I errors. For example, when the significance threshold is set at 0.05, the

standard error computed assuming equal variance tend to have higher amount of type-I

errors when one of the classes has smaller sample size but larger within-class variance.

And, when one of the classes has smaller sample size and smaller within-class variance,

the amount of type-I errors is smaller than expected. Table 2.1 shows the effect on

type-I errors when se’ and se” are used to compute the t-test.

Table 2.1: Effects of standard error on t-test (Ruxton, 2006).

N1 N2 s1 s2
Type I error
se′ se′′

11 11 1 1 0.052 0.051
11 11 4 1 0.064 0.054
11 21 1 1 0.052 0.051
11 21 4 1 0.155 0.051
11 21 1 4 0.012 0.046
25 25 1 1 0.049 0.049
25 25 4 1 0.052 0.048
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2.2.1.3 Wilcoxon rank-sum test

When the underlying distributions of the two classes are not necessarily normal, the

t-test may not provide the best estimate of the p-value for the differential expression.

The Wilcoxon rank-sum test provides an alternative solution in this situation. It tests

the null hypothesis that the two distributions have equal median.

The Wilcoxon statistic U computed for a gene g is defined as:

U(g) = min(U1, U2) (2.10)

where: U1 = R1 − n1(n1+1)
2 , U2 = R2 − n2(n2+1)

2

and Ri is the sum of ranks in class i, and ni is the number of samples in class i.

2.2.1.4 SAM

When the t-test and Wilcoxon test are used, a confidence interval (1−α) and significance

level (α) are often defined. If each statistical test incurs a false-positive rate of 5%, then

evaluating a microarray of 10,000 genes we would expect 500 false positives. SAM

(Tusher et al., 2001) is a method for better controlling this.

SAM extends from the t-test by introducing a few modifications:

1. Modify the t-statistic for each gene g as follows:

T ′g =
x1 − x2
se′ + s0

(2.11)
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The modified t-statistic includes a small positive constant s0 because the t-statistic

becomes artificially inflated when the standard-error term in the denominator is

very small. The value for s0 is chosen to minimize the coefficient of variation.

Note that in the new version of SAM, a Wilcoxon test statistic is provided as an

alternative to the t-statistic.

2. Use a permutation procedure to estimate significance

Let T ′1 < T ′2 < . . . < T ′k be the ordering of k genes sorted in increasing order of the

modified t-statistic. The permutation test randomly swaps the class labels of the

original data, preserving the proportions of the classes, and the modified t-statistic

is computed using this permuted set for each gene. The same ordering can be per-

formed on these statistics computed for the permuted data. For example, let T
′′i
j

be the statistic computed for the ith permutation such that T
′′i
j+1 > T

′′i
j , then the

permutation procedure might produce the following ordering after b number of

permutations:

T
001
1 < T

001
2 < ... < T

001
k

T
002
1 < T

002
2 < ... < T

002
k

T
00b
1 < T

00b
2 < ... < T

00b
k

… … …

Figure 2.2: Permutation procedure for SAM.

The ordered statistics over b permutations can be averaged:

T
′′B
i =

∑b
j=1 T

′′j
i

b
(2.12)

Since, all the T ′ and T
′′B are ordered, they can be plot against each other. If all

the statistics are derived from the null distribution, then we expect the statistics
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correlate perfectly to line up to form a 45-degree diagonal. The significant genes

therefore deviate from this diagonal; the algorithm selects a parameter δ to achieve

this.

3. Estimate false-discovery rate based on the permuted data

In practice, the δ parameter is automatically selected based on the specified FDR.

In order to achieve this, the algorithm finds the smallest T ′a such that genes that fall

below this threshold are significantly repressed and the largest T ′b such that genes

that lie above it are significantly overrepresented. The number of false positives

is estimated based on the previously computed statistics on the permuted data.

This is simply the average count of T
′′

that exceeds the T ′a and T ′b thresholds over

all permutations.
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Figure 2.3: Plot of observed T ′ and expected T ′′ in SAM (Tusher et al., 2001).

2.2.1.5 Rank Products

The methods discussed thus far advocate the use of some statistical test over simple

fold-change because (1) fold-change does not give any statistical significance, and (2)

the thresholds chosen can be very arbitrary. On the other hand, statistical methods

that select differentially expressed genes lack the intuitive appeal of fold-change. It is
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possible for genes to have very high statistical significance but very low fold-change,

whereas biologists tend to lend more confidence to genes with higher fold-change than

purely based on statistical significance.

Rank products (Breitling et al., 2004) are introduced to measure the statistical signifi-

cance based on fold-change. The algorithm ranks the fold-changes generated for every

pairwise sample comparison. For example, if there are m samples in class 1 and n

samples in class 2, then there can be m× n number of fold-changes for every gene.

FC
(1,1)
g1 , FC

(1,2)
g1 , ..., FC

(m,n)
g1

FC
(1,1)
g2 , FC

(1,2)
g2 , ..., FC

(m,n)
g2

FC
(1,1)
gk , FC

(1,2)
gk , ..., FC

(m,n)
gk

… … …

column-wise!
ranking

R
(1,1)
gk , R

(1,2)
gk , ..., R

(m,n)
gk

R
(1,1)
g1 , R

(1,2)
g1 , ..., R

(m,n)
g1

R
(1,1)
g2 , R

(1,2)
g2 , ..., R

(m,n)
g2

… … …

Figure 2.4: Example of rank product computation.

The rank product of a gene is defined as the geometric mean of its ranks across all the

comparisons.

RankProduct(gi) =

 m,n∏
a=1,b=1

R(a,b)
gi

 1
mn

(2.13)

In order to give rank products a statistical significance, a permutation test is performed.

The permutation test computes the rank products obtained after randomly swapping the

class labels. This generates a null distribution from which the p-values can be derived.

2.2.2 Gene-set-based methods

For several years now, there has been a paradigm shift from looking at individual genes

to gene sets. Such methods avoid large multiple hypothesis testing by preselecting gene
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sets using biological knowledge. These gene sets are often termed “pathways” in the

literature, and are groups of genes that perform a specific function. These methods can

be classified into four categories, described in separate sections below.

2.2.2.1 Over-representation analysis

Over-representation analysis (ORA) is a method that tests if the proportion of differentially-

expressed genes (DEG) in a pathway are significantly different from the proportion in

a random set of genes (Khatri and Drăghici, 2005). The method utilizes a hypergeo-

metric test under the null hypothesis that there is no difference in the proportion of

differentially-expressed genes (DEG) between a pathway and a random gene set.

The hypergeometric test is motivated from sampling without replacement. The proba-

bility of observing k DEGs in a population of N microarray genes, in a given pathway,

can be represented by the following formula:

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) (2.14)

The numerator of the eq.2.14 represents the number of ways of sampling k DEGs in the

pathway from K observed DEGs in the microarray and the number of ways of sampling

(n − k) non-DEGs in the pathway from (N − K) non-DEGs in the microarray, and

the denominator is the number of ways of sampling n genes in the pathway from N

microarray genes.

This sampling without replacement can be better understood with a diagram depicting

the overlap of DEGs in the microarray and the DEGs in the pathway (see figure 2.5).

The hypergeometric test provides a p-value that computes the probability of observing

an overlap of more than k.

20



Chapter 2. Related Work 21

N genes 
in microarray

k DEGs in pathway

K DEGs in microarray

n genes 
in pathway

Figure 2.5: Figure depicting the calculations for the hypergeometric test.

p value = P (X > k) = 1−
k∑
i

P (X = i) (2.15)

The p-value in ORA provides a way to rank pathways according to their correlation

with a disease.

2.2.2.1.1 Discussion ORA has a few shortcomings. (1) There are many ways to

compute k DEGs, e.g. by a fold-change or t-test, but these methods are largely affected

by the choice of thresholds used to select the DEGs. (2) Inability to detect surrounding

genes that are also implicated but not differentially expressed. (3) The hypothesis of the

test implies that ratio of DEGs are no different in a pathway than a random gene-set;

however as genes in a pathway are generally coordinated in their behaviour to perform

the specific function associated with the pathway, this null hypothesis is generally false;

hence the p-value tends to be underestimated.

2.2.2.2 Direct-group methods

Direct-group methods avoid the problem of ORA by using all the genes within the

pathway to compute a score instead of pre-selecting some DEGs within the pathway.

The two most popular methods in this category are functional class scoring (FCS) and
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gene set enrichment analysis (GSEA). They differ in the way the scores are computed.

These are detailed below:

2.2.2.2.1 Functional Class Scoring FCS (Goeman et al., 2004) first considers

gene-wise scores, which could be derived from t-test, analysis of variance (ANOVA)

or fold-change. The scores are aggregated for each pathway by taking the arithmetic

mean of the − log(p value). A null distribution of aggregated scores is obtained by a

permutation test that randomly selects a set of genes of the same size as the pathway

being evaluated. The p-value assigned for a pathway is the proportion of permutations

that have aggregated scores higher than the score computed for the original data.

2.2.2.2.2 Gene set enrichment analysis Gene set enrichment analysis (GSEA) is

another direct group method that provides a logical hypothesis for evaluating whether

the genes in a pathway are differentially expressed between two classes (Subramanian

et al., 2005). The algorithm works by computing a ranked gene list, which orders the

gene from the most differentially expressed to the least. A running-sum score is then

computed by running through the genes one by one in the ranked list starting from

the most differentially expressed, increasing (decreasing) the score every time the same

gene is (is not) encountered in the pathway. The enrichment score for a pathway is a

Kolmogorov-Smirnov-like statistic and is the maximum deviation of the running-sum

score from zero.

A p-value is computed for each pathway by permutation test. When there a sufficiently-

large number of samples, GSEA provides a p-value by computing a null distribution via

class-label swapping. When there are few samples, GSEA provides the option of gene

swapping to compute the null distribution.
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that sets related to the phenotypic distinction will tend to show the
latter distribution.

There are three key elements of the GSEA method:

Step 1: Calculation of an Enrichment Score. We calculate an enrich-
ment score (ES) that reflects the degree to which a set S is
overrepresented at the extremes (top or bottom) of the entire
ranked list L. The score is calculated by walking down the list L,
increasing a running-sum statistic when we encounter a gene in S
and decreasing it when we encounter genes not in S. The magnitude
of the increment depends on the correlation of the gene with the
phenotype. The enrichment score is the maximum deviation from
zero encountered in the random walk; it corresponds to a weighted
Kolmogorov–Smirnov-like statistic (ref. 7 and Fig. 1B).

Step 2: Estimation of Significance Level of ES. We estimate the
statistical significance (nominal P value) of the ES by using an
empirical phenotype-based permutation test procedure that pre-
serves the complex correlation structure of the gene expression
data. Specifically, we permute the phenotype labels and recompute
the ES of the gene set for the permuted data, which generates a null
distribution for the ES. The empirical, nominal P value of the
observed ES is then calculated relative to this null distribution.
Importantly, the permutation of class labels preserves gene-gene
correlations and, thus, provides a more biologically reasonable
assessment of significance than would be obtained by permuting
genes.

Step 3: Adjustment for Multiple Hypothesis Testing. When an entire
database of gene sets is evaluated, we adjust the estimated signif-

icance level to account for multiple hypothesis testing. We first
normalize the ES for each gene set to account for the size of the set,
yielding a normalized enrichment score (NES). We then control the
proportion of false positives by calculating the false discovery rate
(FDR) (8, 9) corresponding to each NES. The FDR is the estimated
probability that a set with a given NES represents a false positive
finding; it is computed by comparing the tails of the observed and
null distributions for the NES.

The details of the implementation are described in the Appendix
(see also Supporting Text, which is published as supporting infor-
mation on the PNAS web site).

We note that the GSEA method differs in several important ways
from the preliminary version (see Supporting Text). In the original
implementation, the running-sum statistic used equal weights at
every step, which yielded high scores for sets clustered near the
middle of the ranked list (Fig. 2 and Table 1). These sets do not
represent biologically relevant correlation with the phenotype. We
addressed this issue by weighting the steps according to each gene’s
correlation with a phenotype. We noticed that the use of weighted
steps could cause the distribution of observed ES scores to be
asymmetric in cases where many more genes are correlated with
one of the two phenotypes. We therefore estimate the significance
levels by considering separately the positively and negatively scoring
gene sets (Appendix; see also Fig. 4, which is published as supporting
information on the PNAS web site).

Our preliminary implementation used a different approach,
familywise-error rate (FWER), to correct for multiple hypotheses
testing. The FWER is a conservative correction that seeks to ensure
that the list of reported results does not include even a single
false-positive gene set. This criterion turned out to be so conser-
vative that many applications yielded no statistically significant
results. Because our primary goal is to generate hypotheses, we
chose to use the FDR to focus on controlling the probability that
each reported result is a false positive.

Based on our statistical analysis and empirical evaluation, GSEA
shows broad applicability. It can detect subtle enrichment signals
and it preserves our original results in ref. 4, with the oxidative
phosphorylation pathway significantly enriched in the normal sam-
ples (P ! 0.008, FDR ! 0.04). This methodology has been imple-
mented in a software tool called GSEA-P.

Fig. 1. A GSEA overview illustrating the method. (A) An expression data set
sorted by correlation with phenotype, the corresponding heat map, and the
‘‘gene tags,’’ i.e., location of genes from a set S within the sorted list. (B) Plot
of the running sum for S in the data set, including the location of the maximum
enrichment score (ES) and the leading-edge subset.

Fig. 2. Original (4) enrichment score be-
havior. The distribution of three gene sets,
from the C2 functional collection, in the list
of genes in the male!female lymphoblas-
toid cell line example ranked by their cor-
relation with gender: S1, a set of chromo-
some X inactivation genes; S2, a pathway
describing vitamin c import into neurons;
S3, related to chemokine receptors ex-
pressed by T helper cells. Shown are plots of
the running sum for the three gene sets: S1
is significantly enriched in females as ex-
pected, S2 is randomly distributed and
scores poorly, and S3 is not enriched at the
top of the list but is nonrandom, so it scores
well. Arrows show the location of the maximum enrichment score and the point where the correlation (signal-to-noise ratio) crosses zero. Table 1 compares the
nominal P values for S1, S2, and S3 by using the original and new method. The new method reduces the significance of sets like S3.

Table 1. P value comparison of gene sets by using original and
new methods

Gene set
Original method
nominal P value

New method
nominal P value

S1: chrX inactive 0.007 "0.001
S2: vitcb pathway 0.51 0.38
S3: nkt pathway 0.023 0.54

15546 " www.pnas.org!cgi!doi!10.1073!pnas.0506580102 Subramanian et al.

Figure 2.6: An example depicting how GSEA works (Subramanian et al., 2005).

2.2.2.2.3 Discussion FCS and GSEA have the same shortcoming that parts of the

large pathway that are not correlated to disease may dilute the signal if only a small

branch of the pathway is relevant to disease. In addition, although pathways provide

better biological interpretation than analyzing single genes, the size of some pathways

are large and provide too vague an insight to the disease.

Moreover, in the permutation test in FCS and GSEA (when sample size is small) creates

random sets of genes by gene swapping, ignoring the gene-gene correlation within a

pathway. The p-values obtained by such a procedure can be underestimated since no

coordination is expected from a random set of genes.

2.2.2.3 Model-based methods

Another way to discover disease-related pathways is to construct a dynamical model

for the pathways and then reason about the constructed model. For example, a model

of a disease-related pathway constructed for the disease phenotype is expected to be

inconsistent when the same model is simulated on the normal phenotype. We describe

two model-based methods, GGEA (based on Petri Nets) and SRI (based on ordinary

differential equations):

23



Chapter 2. Related Work 24

2.2.2.3.1 Gene graph enrichment analysis GGEA is based on a Petri Net model

(Geistlinger et al., 2011). The gene sets are mapped to a gene-regulatory network (GRN),

thus forming induced subnetworks. These induced subnetworks are modeled as Petri

nets, where the ‘places’ are genes and the ‘transitions’ are the regulatory effects. The

tokens in a Petri net are 2-tuples representing fuzzy fold-change and t-test p-values.

Fuzzification is a procedure that maps fold-change and t-test p-values into a value be-

tween 0 and 1 based on linear interpolation. A transition is fired based on predefined

rules on the regulatory element. For example, a toy GRN depicted in figure 2.7 shows

gene x activating gene y; if the place for gene x contains a token with an upregulated

value, then an activating transition is fired, producing a token in the target gene y with

an upregulated value (see figure 2.7).

f+ reg ∈ {f+,f-}
rules fold-change significance

Down Up Low High
f+ Down Up Low High
f- Up Down Low High

x

y

token=<fcx,sigx>

token=f+(<fcx,sigx>)

(a) (b)

Figure 2.7: An example depicting firing of a transition in a Petri net in GGEA. (a)
A Petri net is modelled based on a gene regulatory network. In this example, the
regulatory effect (f+) causes gene x to activate gene y. A token in node x is annotated
with fold-change and p-value significance from a t-test. A transition is fired based on
the rules defined by the regulatory effect. This results in a token in the output node
y annotated with a fold-change and p-value based on the activation rule. (b) A set of
rules governing the firing of a transition, where f+ denotes activation and f- denotes
inhibition. For example an inhibitory regulatory element will map an ”Up” fold-change

to a ”Down” fold-change

GGEA checks if the tokens in the output place in a Petri net contain values that agree

with the actual data. GGEA compares these values to compute a consistency score.

The consistency score of a pathway is the sum of individual genes’ consistency in the
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pathway normalized by the size of the pathway. This normalized score is converted to

a p-value by a permutation test: class labels of the samples are randomly swapped and

the consistency scores for each pathway recomputed, forming a null distribution. The

actual p-value is the proportion of permutation scores larger than the observed score.

2.2.2.3.2 System response inference SRI first constructs a dynamical model for

one phenotype (Zampieri et al., 2011). To do this, it first identifies gene-gene interactions

that are present in each pathway by computing a simple pair-wise Pearson correlation.

Two genes are inferred as being in the same pathway if their correlation exceeds a certain

threshold. A system of linear differential equations (ODE) are then constructed for these

putative interactions. Once the parameters for this system of ODEs are estimated, the

model is simulated on the opposite phenotype. The predicted gene-expression values

are compared against the actual experimental gene-expression values via a t-test, thus

identifying genes that are perturbed in the two phenotypes.

2.2.2.3.3 Discussion Model-based methods work on very fine-grained pathways,

while there are many large pathway databases, there are much fewer fine-grain pathways.

In addition, these methods also examine gene-expression profiles over many different

conditions, which is rarely available on the same microarray platform.

2.2.2.4 Network-based methods

Network-based methods address the shortcomings of direct-group methods by fragment-

ing the large pathways into smaller components (subnetworks) and testing them for sig-

nificant correlation to phenotypes. We describe three methods in this category: network

enrichment analysis (NEA), differential expression analysis for pathways (DEAP) and

25



Chapter 2. Related Work 26

significant subnetworks (SNet). They differ in the way the subnetworks are generated,

as well as in the scoring method used to generate a p-value for statistical significance.

2.2.2.4.1 Network enrichment analysis NEA (Sivachenko et al., 2007) maps ev-

ery gene in the microarray onto a gene regulatory network. For every such gene, its

immediate neighborhood in a pathway forms a subnetwork. The subnetworks are then

evaluated using statistics from direct-group methods like FCS or GSEA to see if the

subnetworks are differentially expressed as a whole.

(a) (b)

Figure 2.8: An example depicting the subnetworks in NEA. The green nodes denote
genes upregulated in class 1, the red nodes denote nodes upregulated in class 2 and
the black nodes denote genes with no differential expression. (a) A disease-relevant
subnetwork predicted by NEA are“star” shaped and do not fully explain the biological
cause of diease, which usually involves a cascade of genes affecting each other. (b)
Some “hub” genes may contain many edges to other non-relevant genes; hence these
subnetworks may be missed because the genes with no differential expression dilute the

signal.

Although NEA tries to circumvent issues in direct-group methods by testing smaller

parts of the pathway, it suffers from a few shortcomings. Firstly, the subnetwork gener-

ated are “star” shaped, and only provide a partial explanation to the disease, whereas

diseases are usually caused by a cascade of genes whose upstream genes exert an effect on

downstream genes. Secondly, the size of the neighborhood greatly affects the precision

of the method because it is possible for a huge number of non-differentially expressed

neighbors to dilute the signal of a disease-relevant subnetwork (see figure 2.8).
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2.2.2.4.2 Differential expression analysis for pathways DEAP (Haynes et al.,

2013) considers all possible maximal paths within a pathway. Each gene is given a

differential-expression score defined to be the difference between the logarithm of the

arithmetic mean of expression values in the two phenotypes. The algorithm chooses the

path with the maximum absolute differential expression score for each pathway. The

score given for each path is recursively computed based on the catalytic or inhibitory

edges taken as positive and negative summands respectively. For example, consider a

maximal path in a pathway with 6 genes in figure 2.9, where the green nodes represents a

differential expression score of +1 and the red nodes represents a differential expression

score of -1, the score of this path is computed in equation 2.16.

g1 g5g3g2 g4 g6

Figure 2.9: An example of a maximal path annotated with differential expression
scores. The red nodes denote repressed genes and the green nodes denote activated

genes.

g1–(g2–(g3–(g4–(g5–g6)))) = 1–(−1–(1–(−1–(1− (−1))))) = 6 (2.16)

Although DEAP breaks up large pathways into smaller paths, maximal paths may not

be by themselves differentially expressed. For example, it is possible for a subpath of a

maximal path within a pathway to be correlated to phenotype, but this can be missed

since the other genes in the maximal path might dilute this signal.

2.2.2.4.3 SNet Among all the methods discussed thus far, SNet (Soh et al., 2011)

seems to be most motivated from a biological perspective. SNet addresses problems in

the previous approaches in two ways. Firstly, the subnetworks are generated in a way

that has a propensity to form connected clusters of genes. This is done by specifying
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some constraints on the genes that result in a gene list segmenting the pathway into

connected components: In at least β% of the patients of the same phenotype, the genes

must be among the highly-expressed (i.e., in the top α%) genes in each of these patients.

We can formulate this in mathematical terms. Let I(egi,pj ) be an indicator function

that outputs a value 1 if gi is in the top α% of the genes in patient pj and a value 0

otherwise. Then a gene list is formed by a voting procedure:

∑
pj∈D

I(egi,pj )

|D|
> β% (2.17)

This means that we observe on average β% of the patients of phenotype D have gene gi

in their top α% of highly expressed genes.

As some of these subnetworks may not be truly correlated to a particular phenotype,

each subnetwork is given a score for each patient by summing up the votes every time

a gene gi in the subnetwork is encountered in the top α% of highly expressed genes in a

patient pj . Let β∗(gi) denote the votes given for each gene gi:

β∗(gi) =
∑
pj∈D

I(egi,pj )

|D|
(2.18)

Then, the score computed for a sample pk, for a particular subnetwork S, is:

Scorepk(S) =
∑
gi∈S

I(egi,pk) ∗ β∗(gi) (2.19)

A t-test is computed over the scores for the class of patients with phenotype D and the

scores for the class of patients with phenotype ¬D, and a p-value is computed based on

the null distribution generated via class-label swapping.

28



Chapter 2. Related Work 29

α%

Q
ua
n%

le
top α% genes that 

occur in at least β% 
of samples

Figure 2.10: An example depicting how SNet works.

2.2.2.4.4 Discussion Network-based methods offer biologists more insightful glimpse

at the mechanisms of disease, because they scrutinise and narrow down genes within a

pathway that are plausibly linked to disease. The effective use of gene relationships rep-

resented as edges in the network provides these methods this extra benefit compared to

direct-group methods. The principle behind selecting these small subnetworks is crucial

to the biological interpretation of the results. In addition, the scoring of subnetworks

for statistical significance also play a big role in the performance of these methods.

2.2.3 Permutation tests

A commonly-recurring sub-routine in many methods mentioned in the previous sections

is a permutation test to compute p-values identifying significant genes, pathways or sub-

networks. It is therefore necessary and important to discuss how various permutation-

test methods can affect the performance of methods that utilize permutation tests for

p-value computation.

A p-value is defined as the probability of obtaining a statistic as extreme as the observed

value assuming the null hypothesis is true. The null hypothesis is a statement about the

probability model generating the data, e.g. the classes are from two normal distributions
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with equal means, as in a t-test. We reject the null hypothesis when the p-value is very

small (usually < 0.05).

p value = P (X ≥ x|H0) (2.20)

P-values can be obtained in a number of ways. First, well-studied test statistics like

the t-statistic follow a theoretical null distribution derived from theoretical calculations

under certain mathematical assumptions, from which p-values can be computed. But

the null distribution may be incorrect when the mathematical assumptions are violated.

Moreover, many methods compute scores that do not have theoretical null distributions.

This motivates the need for a computational procedure that allows the estimation of null

distribution for p-value computation purpose. We describe below 3 procedures that are

commonly used in the literature.

2.2.3.1 Class-label swapping

Class-label swapping, as its name suggests, permutes the data by randomly swapping the

class labels of the samples while preserving the size of the classes. Figure 2.12(a) shows

an example of 5 samples in class 1 and 5 samples in class 2 depicted by red and blue

respectively and the transformation of the input matrix after one round of permutation.

The number of permutations possible largely depends on the sample size. For example,

if we have 10 samples in class 1 and 9 samples in class 2, then we can have
(
19
10

)
unique

ways to permute the data. Hence, the number of permutations that can be computed is(
N+M
M

)
. The number of permutations also limits the granularity of the p-value that can

be achieved by this method. For example, with 1000 permutations, the smallest possible

p-value is 10−3.
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(a)

(b)

Figure 2.11: An example of class-label swapping. (a) In data with moderately large
sample size, the permutation test provides a p-value with reasonable granularity. (b)
With very small sample size, the p-value is not small enough to properly reject the null

hypothesis. In this case, the smallest p-value that can be computed is 1/6.

When the sample size is small, it is impossible to get p-values of fine granularity with

class-label swapping because there are not enough unique permutations that can be

generated from the data. For example, figure 2.12(b) depicts the 6 unique ways the

class labels can be reassigned, hence the smallest p-value is 1/6.

2.2.3.2 Gene swapping

Because class-label swapping cannot be used when sample size is small, gene-label swap-

ping has been introduced in many methods to provide a way to estimate p-values under

this situation. As microarray experiments typically involve thousands of genes, the num-

ber of ways to permute the gene labels is sizable enough to produce small p-values. For

example, if an array contains m genes, then there are m! permutations and the smallest

p-value is 1/(m!).

The issue with gene swapping, however, is that gene-gene covariance within the micro-

rarray is not preserved during the permutation process. Hence, the null distribution
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Figure 2.12: Gene swapping does not preserve the correlation between genes, unlike
class-label swapping. An example correlation matrix is visualized here, with blue for
positive correlation and red for negative correlation, the shade of color represents the
strength of correlation for a pathway. The genes in the pathway (left) have generally
positive correlation, but when these genes are swapped for random genes (right), the

correlation between the genes changes dramatically.

generated by gene-label swapping procedure produces a p-value that is severely under-

estimated, resulting in a tendency of rejecting the null hypothesis.

2.2.3.3 Array rotation

In order to overcome this problem, array-rotation procedures compute a matrix that

represent the inherent covariance between the genes in the samples (Dorum et al., 2009).

A random rotation matrix is then used to simulate new arrays, at the same time keeping

the covariance invariant across the number of rotations.

The underlying principle of array rotation is QR decomposition, which decomposes an

input matrix into two matrices.

X = XQ.XR (2.21)
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where X is an n × m gene-expression matrix with n samples and m genes. XQ is a

n× r orientation matrix with r othonormal columns, where r is the rank of the X. XR

is an upper triangular configuration matrix with positive diagonal elements and is also

a sufficient statistic for the covariance matrix between the genes in X.

The rotation procedure keeps the XR configuration matrix as an invariant, while a

random matrix R∗ is used to rotate the XQ orientation matrix. R∗ is computed by

simulation of a n × n matrix, R, of random normal deviates and then taking the Q

component after QR decomposition has been performed on the R matrix.

Let R be a simulated n× n matrix of random normal deviates, then R* is computed as

follows:

R∗ = RQ.RR (2.22)

The final rotated matrix is therefore computed as follows:

X∗ = RQ.XQ.XR (2.23)

The rotation procedure offers two advantages over class-label swapping and gene-label

swapping. Firstly, it has the ability to handle data with small sample sizes since there is

an unbounded number of ways to rotate the input matrix. Secondly, gene-gene correla-

tions within a pathway are kept; hence a more reasonable null distribution is computed.

However, one problem with array rotation is that artificial gene-expression values can be

created and may not have any resemblance to the real gene-expression values. A second

problem is that, when sample size is very small, the gene-gene covariance computed
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may not capture the actual gene-gene correlations dictated by the underlying biological

pathways with high fidelity.

2.3 Background on classification in microarray analysis

It is possible to further extend the analysis pipeline after identifying relevant genes,

pathways and subnetworks by predicting patient phenotypes and outcomes based on

gene expression. The objective here is to build a supervised-machine-learning classifier

that is able to accurately distinguish the class labels of patients given their expression

profiles. This typically comprises of a few steps, described below.

2.3.1 Feature selection

In section 2.2, we have already discussed many different ways to shortlist genes, pathways

and subnetworks based on some separation statistics. Most of these methods can be used

to select a non-redundant set of features as input to the classifier.

2.3.2 Classification

There are many supervised-machine-learning techniques for use in this area, here we

review four frequently-used classification methods:

2.3.2.1 Decision trees

Decisions can be very intuitively interpreted in the form of a tree. The internal nodes of

the tree represent tests on the feature attributes and the branches represent outcomes

of the tests. The leaf nodes are the decisions representing the class labels.
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The algorithm works by recursively choosing an attribute that best splits the data into

subsets that are enriched in one class over the other. The algorithm terminates on a few

base conditions:

1. When a perfect split is achieved, i.e. 100% of the samples belong to one class only,

then a leaf node is created and is denoted by the class label.

2. When all the attributes have been exhausted, the leaf node is then assigned to be

the class that has the majority of samples.

There are many ways in which a node can be split, the most commonly used measures

are described below.

2.3.2.1.1 Information gain Information gain chooses the attribute that minimizes

the information content required to classify the samples in the resulting partitions.

It is based on the entropy of the data, representing the expected information required

to classify a sample, defined as:

Info(D) = −
m∑
i=1

pi log2(pi) (2.24)

where pi is the proportion of samples in class i in the dataset D.

The amount of information still required to arrive at an exact classification after using

an attribute A to partition the data is defined as:

InfoA(D) =
v∑
j=1

|Dj |
|D|
× Info(Dj) (2.25)

where Dj is the number of samples in the jth partition of attribute A, and v is the total

number of distinct partitions of attribute A.
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The information gain is the difference between the two values above:

Gain(A) = Info(D)− InfoA(D) (2.26)

Attributes with the maximum gain are chosen to split the nodes in the decision tree.

2.3.2.1.2 Gini index Gini index measures the impurity of the dataset:

Gini(D) = 1−
m∑
i=1

p2i (2.27)

where pi is the proportion of samples in class i in the dataset D.

The Gini index considers binary split for each attribute. The Gini index for the resulting

split using an attribute A is computed as:

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2.28)

where D1 and D2 are the resulting partitions of the binary split.

The attribute that maximizes the reduction in data impurity is then selected as the

splitting attribute:

∆(A) = Gini(D)−GiniA(D) (2.29)

2.3.2.2 k-Nearest Neighbors (kNN)

The kNN is a lazy classifier that compares a test sample with training samples that are

similar to it. If each sample is represented by n attributes, then the feature space is an

n-dimensional space. kNN searches for the k training samples that are closest to the
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test sample in this n-dimensional feature space. The classifier then makes a prediction

by a simple majority voting on the k nearest training samples.

The measure of distance between test and training samples in the n-dimensional space

can be done using various distance metrics:

1. Euclidean distance

Dist(x, y) =
√∑

(x− y)2 (2.30)

2. Minkowski distance

Dist(x, y) = (
∑

(x− y)p)
1
p (2.31)

where p is some chosen constant. Note that p = 1 gives the Manhattan distance,

and p = 2 gives the Euclidean distance.

3. Manhattan distance

Dist(x, y) =
∑
|x− y| (2.32)

4. Mahalanobis distance

Dist(x, y) =
√

(x− y)S−1(x− y)T (2.33)

where S is the sample covariance matrix of the features.
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2.3.2.3 Support Vector Machines (SVM)

SVM in the linear-separable case seeks the best line or hyperplane in an n-dimensional

feature space that best separates the two classes. SVM achieves this by selecting the

hyperplane with the largest margin, defined as the shortest distance between the sepa-

rating hyperplane and the training samples of the classes. The separating hyperplane

can be written as:

W.X + b = 0 (2.34)

where W is a weight vector perpendicular to the separating hyperplane.

Additional constraints are specified so that the points that lie on one side of the hyper-

plane belong to class 1 and points that lie on the other side belong to class 2.

Let y = +1 be the class label of a training sample X if it is in class 1 and y = −1 if it

is in class 2. Then the additional constraints are defined as:

W.X + b > 1 if yi = +1 (2.35)

W.X + b < −1 if yi = −1 (2.36)

The problem is now reformulated as a quadratic optimization problem to solve for the

hyperplane and support vectors.

When the data is not linearly separable, a kernel is used to transform the points in this

n-dimensional space into another higher-dimensional space so that the points can be

linear separable in this new feature space. The three most-commonly-used kernels in

SVM are:
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1. Polynomial kernel

K(Xi, Xj) = (Xi.Xj + 1)h (2.37)

2. Gaussian radial basis kernel

K(Xi, Xj) = e|Xi−Xj |
2/2σ2

(2.38)

3. Sigmoid kernel

K(Xi, Xj) = tanh(κXi.Xj − δ) (2.39)

2.3.2.4 Näıve Bayesian classifier

The näıve Bayesian classifier maximizes the posterior probability of a sample belonging

to a class given its attributes:

arg max
i
P (Ci|X) (2.40)

where Ci represents the ith class label and X is a sample represented by an n-dimensional

attribute vector.

Based on the Bayes formula, we have:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(2.41)

Since the denominator is independent of the class labels, the posterior probability is

proportional to the prior and likelihood, and maximizing the posterior probability is

equivalent to maximizing P (X|Ci)P (Ci):
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P (Ci|X) ∝ P (X|Ci)P (Ci) (2.42)

Näıve Bayes uses an assumption that the attributes are conditionally independent of

one another given the class label of a sample. Hence,

P (X|Ci) =
n∏
k=1

P (xk|Ci) (2.43)

where P (xk|Ci) represents the proportion of samples with the kth attribute having the

value xk over the total number of samples in class Ci.

Thus, the näıve Bayesian classifier predicts the class in the following way:

arg max
i
P (Ci|X) = arg max

i
P (Ci).

n∏
k=1

P (xk|Ci) (2.44)

2.3.3 Enhancements

It is possible to enhance the predictive accuracy of supervised classifiers using the fol-

lowing techniques:

2.3.3.1 Bagging

The main idea behind bagging (Breiman, 1996) is the use of sampling with replacement

of the training samples, known as bootstrapping. The classifier is then built on the

bootstrapped training dataset and repeated n times, resulting in n different classifier

models.
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Given a test dataset, bagging applies all the n models on the test samples and applies a

majority voting procedure to predict the class labels of the test samples.

Bagging often produces higher accuracy than the single classifier and is more robust to

noise (Koh and Wong, 2012).

2.3.3.2 Boosting

In boosting (Schapire, 1990), the same bootstrapping procedure is applied. And the

classifiers are iteratively added and weighted according to their predictive accuracy.

Given a test sample, boosting computes a score for each class based on the weighted

votes given by each bootstrapped classifier. The class with the highest score is made as

the prediction.

However, current research (Long and Servedio, 2008) suggests that boosting is not robust

to noise in the training data.

2.3.4 Evaluation strategies

2.3.4.1 Training and testing on independent datasets

One popular way to evaluate classifiers is by cross validation, a process whereby many

classifiers are built and tested on subsets of the original data.

However, cross validation often does not generalize to the heterogeneity in microarray

data of the same disease type obtained from different laboratories and at different time-

points. The same classifier that learns from one dataset usually does not work when

applied to an independent dataset from a possibly different platform or time; cf. fig.

1.4.
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In this thesis, we advocate testing the performance of classifiers by training the classifier

on one dataset and using this model for classification on an independent microarray

dataset of the same disease phenotype.

2.3.4.2 Performance indicators

In most analysis, a classifier’s accuracy is used as a measure of its performance, but this

ignores the size of class. For example, it is possible to easily achieve 100% accuracy for

a dataset which has only samples belonging to class 1; a näıve classifier can just output

class 1 all the time to achieve this 100% accuracy. In view of this, we consider other

performance indicators:

1. sensitivity or recall

TP

(TP + FN)
(2.45)

2. specificity

TN

(FP + TN)
(2.46)

3. precision

TP

(TP + FP )
(2.47)

where TP , TN , FP and FN refer to the number of true positives, true negatives, false

positives and false negatives respectively.
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2.4 Datasets

This dissertation is concerned with the hypothesis that specific areas within biological

pathways, which we term “subnetworks”, are responsible for specific diseases. It has

been shown that different pathway repositories have very little agreement between them

(Soh et al., 2010a, Stobbe et al., 2011, Zhou et al., 2012). This makes the choice of

pathways an important consideration in our study as it can greatly affect the analysis of

the methods. We use pathways from PathwayAPI (Soh et al., 2010b). This is a database

that unifies popular pathway databases like KEGG (Kanehisa and Goto, 2000, Kanehisa

et al., 2012), Wikipathways (Kelder et al., 2012) and Ingenuity (www.ingenuity.com), so

that the biological information is as comprehensive as possible. It contains 319 human

pathways, 4221 genes and 61017 edges.

The microarray array datasets used in this dissertation are for specific diseases of interest.

For each disease type, we use two independent microarray data sets from previously

published experiments:

1. Duchenne muscular dystrophy (DMD/NOR)

Phenotypes of interest are patients suffering from Duchenne muscular dystrophy

and normal patients. The first dataset is based on the Affymetrix HG U95v2 mi-

croarray platform and contains 12 DMD patients and 12 normal patients (Pescatori

et al., 2007). The second dataset is based on the Affymetrix HG U133A microar-

ray platform and contains 22 DMD patients and 14 normal patients (Haslett et al.,

2002).

2. Leukemia (ALL/AML)

Phenotypes of interest are patients suffering from acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). The first dataset is based on Affymetrix
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HU8600 microarrays and has 47 ALL patients and 25 AML patients (Golub et al.,

1999b). The second dataset is based on Affymetrix HG U95v2 microarrays and

has 24 ALL patients and 24 AML patients (Armstrong et al., 2002).

3. Acute lymphoblastic leukemia subtypes (BCR-ABL/E2A-PBX1)

Phenotypes of interest are patients with the BCR-ABL fusion gene and patients

with the E2A-PBX1 fusion gene. The first dataset is based on Affymetrix HG U95v2

microarrays and has 15 BCR-ABL patients and 27 E2A-PBX1 patients (Ross et al.,

2004). The second dataset is based on Affymetrix HG U133A microarrays and has

15 BCR-ABL patients and 18 E2A-PBX1 patients (Yeoh et al., 2002).

For the work on classification (Chapter 5), we use two addition datasets:

4. Ovarian cancer

Obtained from ArrayExpress database (www.ebi.ac.uk/arrayexpress) under acces-

sion number E-GEOD-4122 and E-GEOD-26712.

5. Lung cancer

Obtained from ArrayExpress database (www.ebi.ac.uk/arrayexpress) under acces-

sion number E-GEOD-29066 and E-GEOD-31908.

44



Chapter 3

Finding consistent disease

subnetworks using PFSNet

3.1 Background

We begin this chapter by investigating one of the network-based methods that has

reported high reproducibility of results over independent microarray datasets of the

same disease phenotype, SNet (see chapter 1 for a description). This high agreement

between two datasets of the same disease lends more confidence to the real cause of

disease.

Although SNet claims to have high subnetwork-level overlap and gene-level overlap, it

is unclear what happens to its performance over a range of thresholds (α). This is

important because on a new dataset, the optimal choice of threshold may vary (the β

threshold is fixed at 50% to simulate majority voting). Some important genes that are

close to the α% region may fail to get voted into the gene list because they do not meet

the majority-voting requirement. One might lower the α threshold to allow these genes
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to be voted in, however, the number of false-positive genes voted into the subnetwork is

also increased at the same time. (see figure 3.1).

α
Q
ua
nt
ile

α

Q
ua
nt
ile

(a)

(b)

Figure 3.1: An example of SNet. (a) Selecting the top 10% of genes may exclude
some important genes relavent to disease. (b) By loosening the threshold, more genes
are selected but some spurious genes can also be included into the subnetwork, thus

diluting the signal.

Indeed the performance of SNet starts to degrade when we allow more genes to be

considered by increasing the α threshold. For example, the agreement of significant

subnetworks between two datasets of the same disease is shown in figs. 3.2 to 3.4. Note

that in their original paper, SNet uses a default α of 10% in their experiments. The

results from figs. 3.2 to 3.4 also show that the subnetwork agreement is not always

the highest when α is set at 10%. Moreover, when we analyze subnetworks that are

upregulated in the two phenotypes of the same dataset separately, the agreement is not

always consistently high. For example, when α = 10%, the subnetworks upregulated in

AML have higher agreement (about 65%) between the two datasets than subnetworks

upregulated in ALL (about 20%). Perhaps this is due to ALL being actually composed

of multiple subtypes (Li et al., 2003). In addition, the subnetwork-level agreement in

some dataset (e.g. leukemia subtype) is generally low regardless of the α threshold.
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Figure 3.2: Subnetwork agreement for SNet in the DMD datasets over a range of α
threshold values.
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Figure 3.3: Subnetwork agreement for SNet in the Leukemia datasets over a range of
α threshold values.

3.2 Method

In this chapter, we introduce two improvements, FSNet and PFSNet, which allow us to

detect consistent disease subnetworks without the need to select a hard threshold. These

generalized versions of SNet are able to predict subnetworks over a range of threshold

values with even higher consistency.
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Figure 3.4: Subnetwork agreement for SNet in the ALL subtype datasets over a range
of α threshold values.

3.2.1 Subnetwork generation

In both FSNet and PFSNet, we assign a fuzzy value, fs(egi,pj), to each gene gi based

on the ranking of its expression value egi,pj within a sample pj . To do so, we define an

upper threshold θ1 and a lower threshold θ2. The genes that lie above the top θ1% are

assigned a weight of 1 and the genes below θ2% are assigned a weight of 0. The genes

between θ1 and θ2 are given a weight between 0 and 1 by linear interpolation (see figure

3.5). We can think of the fuzzy value as a partial vote given by patient pj for each gene

gi. In contrast, the patients in SNet give a total vote (of value 1) if gi’s expression is

ranked in the top 10% in pj or give no vote if its expression is not in the top 10% (cf.

chapter 1).

Therefore, we can also simulate majority voting by summing up the partial votes given

by each patient for a particular gene. The goal at this step is to compute a gene list,

which segregates the genes in the pathways into smaller connected components. The

voting criteria that determines whether the gene gi is accepted into this gene list is thus

modified as follows:
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∑
pj∈D

fs(egi,pj )

|D|
> β = 50% (3.1)

where D is the phenotype for which the subnetwork is generated, pj ranges over the

patients of phenotype D and fs is the fuzzy function which converts the gene-expression

value egi,pj to a value between 0 and 1. Once the gene list is computed, subnetworks in

each reference pathway are generated by taking connected components induced by the

genes in this list. We ignore subnetworks that are less than size 5.

θ1

θ2

Q
ua

nt
ile

1

0

[0,1]

θ1θ2

0

1

Highly expressed genesModerate expressed genesLow expressed genes

Figure 3.5: An example of the fuzzification process, genes in the top θ1 percentile of
the a sample is given weight 1, genes in the bottom θ2 percentile are given weight 0
and genes in between the two thresholds are given a weight between 0 and 1 by linear

interpolation.

3.2.2 Subnetwork scoring

The generated subnetworks are a representation of consistently-abundant genes that are

connected in a pathway from one phenotype. Some of these subnetworks may not show
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correlation to phenotypes if they are not differentially expressed in the other phenotype.

Hence, we need to score the generated subnetworks for their correlation to phenotype.

The key idea used in FSNet is to obtain a distribution of subnetwork scores for each

patient in phenotype D and ¬D so that the two distributions can be separated by a

t-test.

We use β∗(gi) to denote the average partial vote described by eq. 3.2 in the following:

β∗(gi) =
∑
pj∈D

fs(egi,pj )

|D|
(3.2)

We hypothesize that the weighted sum of average partial votes would generate two

very different scores for the D and ¬D populations if the subnetwork is differentially

expressed in the phenotypes. This basically means that the genes within a subnetwork

are consistently voted high in one phenotype and consistently voted low in the other

phenotype.

The score computed for sample pk, for a particular subnetwork S, is:

Scorepk(S) =
∑
gi∈S

fs(egi,pk) ∗ β∗(gi) (3.3)

In contrast, in SNet, where total votes are used, the average total vote is the percentage

of phenotype-D samples having gene gi in the top 10%.

The key idea used in PFSNet is to obtain two average partial vote scores (obtained from

the D and ¬D phenotype respectively) for each gene in the subnetwork. Let β∗1(gi)

and β∗2(gi) denote the average partial votes for phenotype D and ¬D respectively, as

described in the following equations:
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β∗1(gi) =
∑
pj∈D

fs(egi,pj )

|D|
(3.4)

β∗2(gi) =
∑
pj∈¬D

fs(egi,pj )

|¬D|
(3.5)

Accordingly, each patient is assigned a two subnetwork scores, which are the weighted

sum of average partial votes computed using the phenotype D and ¬D respectively.

Scorepk1 (S) =
∑
gi∈S

fs(egi,pk) ∗ β∗1(gi) (3.6)

Scorepk2 (S) =
∑
gi∈S

fs(egi,pk) ∗ β∗2(gi) (3.7)

We hypothesize that the difference between the two scores for each patient should be

non-zero if the genes are consistently voted high in one phenotype over the other.

3.2.3 Statistical test

In FSNet, the subnetwork scores for patients in phenotype D and ¬D form two sepa-

rate distributions, which can be discriminated using a standard t-test. The t-statistic

captures the difference between the population means.

In PFSNet, the two subnetwork scores arise from the same patient. We test the null

hypothesis that the difference in these two scores give a distribution with mean equal to

0, using a paired t-test.

51



Chapter 3. PFSNet 52

3.2.4 Permutation test

As the null distribution may not really be represented by the theoretical distribution

(Gatti et al., 2010, Goeman and Bühlmann, 2007, Venet et al., 2011), we generate the

null distribution by a permutation procedure. We randomly swap the class labels (1,000

times) for each dataset—i.e., randomly assigning a sample to belong to either phenotype

D or ¬D while maintaining the original proportion of D and ¬D samples—and obtain

a distribution of subnetwork scores. From this null distribution, we estimate at 5%

significance level on one-tail of the distribution, whether a subnetwork that we compute

for our original dataset is statistically significant.

3.3 Results

We use the pathways and microarray datasets detailed in chapter 2 to compare our

proposed methods with other methods for microarray data analysis. To reiterate, for

each disease type we obtain two independent datasets which are produced using different

microarray platforms.

We run PFSNet, FSNet, SNet, GSEA, GGEA, SAM and t-test on the two datasets

independently and obtain two corresponding outputs.

We compare these two corresponding outputs from the two datasets using two measures

of Jaccard-like agreement, defined below.

We use the subnetwork-generation procedure mentioned in section 3.2.1 to generate

the subnetworks in dataset 1. We then test these subnetworks for statistical significance

using the procedure mentioned in section 3.2.2– 3.2.4 on datasets 1 and 2 independently.

Let the significant subnetworks identified by dataset 1 and dataset 2 be SN1 and SN2
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respectively. Then the subnetwork-level agreement is defined as

|SN1 ∩ SN2|
|SN1 ∪ SN2|

(3.8)

When testing GSEA, which identifies pathways instead of subnetworks, we measure the

pathway-level agreement which is defined analogously.

We also measure the agreement between the genes in the output generated by the two

independent datasets. Let the genes in SN1 and SN2 be GSN1 and GSN2 respectively,

then the gene-level agreement is defined as

|GSN1 ∩GSN2 |
|GSN1 ∪GSN2 |

(3.9)

3.3.1 Comparing PFSNet, FSNet and SNet

FSNet is flexible enough to be able to emulate SNet by setting θ1 = θ2 = 10%. In this

way, genes above the 90th percentile are given a total vote and genes below the 90th

percentile are given no vote at all. This is equivalent to setting SNet with α = 10%.

When comparing PFSNet, FSNet and SNet, we fix θ1 = 5% and vary θ2 between 5%

and 50% for PFSNet and FSNet. We also vary α between 5% and 50% for SNet. This

allows more genes to be considered in the subnetworks in all the methods. β is set at

50% to emulate majority voting; cf. figs. 3.6 to 3.8.

Our experiments show that when θ1 (in FSNet and PFSNet) or α (in SNet) is low, the

subnetworks may not be a true representation of the disease simply because too few

genes are chosen to induce the subnetworks. But when too many genes are considered,

there are more false positives showing up in the subnetworks. E.g., when the value for
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Figure 3.6: Consistency of predicted subnetworks in the DMD/NOR datasets (θ1 =
5%).

θ2 is set at the extreme ends (5% and 50%), the subnetworks have very low agreement

between datasets in all 3 methods. In the Leukemia dataset, FSNet achieves the max-

imum subnetwork agreement of 100% (θ2=20%) whereas SNet achieves the maximum

subnetwork agreement of 77% (α=15%). In the DMD dataset, FSNet achieves maximum

subnetwork agreement of 90% (θ2=10%) whereas SNet achieves maximum subnetwork

agreement of 73% (α=10%). In the ALL subtype dataset, FSNet achieves maximum

subnetwork agreement of 38% whereas SNet only achieves 26%.

The results also show that giving genes that are not in the top 5% a partial vote is better

than giving them a total vote. As we allow more and more genes to be considered,

FSNet generally gives better subnetwork agreement than SNet. FSNet is thus more
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Figure 3.7: Consistency of predicted subnetworks in the ALL/AML datasets (θ1 =
5%).

robust towards noise when incorporating more genes. E.g., when θ2=α=50%, FSNet is

able to get 69% subnetwork agreement but SNet only manages 40% in the Leukemia

dataset. Similarly in DMD, FSNet achieves 59% whereas SNet achieves 29%.

In PFSNet, we get even higher subnetwork-level agreement than both FSNet and SNet.

This shows the node scores obtained from the opposite phenotype play an important

role in contributing towards consistent subnetworks. In particular, while both FSNet

and SNet do not have very good subnetwork-level agreement in the ALL subtype dataset

(38% and 25% respectively), PFSNet is able to achieve 74%.

We also measure the gene-level agreement to check whether the significant subnetworks

contain similar genes in the two datasets. We see a similar trend that PFSNet performs
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Figure 3.8: Consistency of predicted subnetworks in the BCR-ABL/E2A-PBX1
datasets (θ1 = 5%).

better than FSNet which in turn performs better than SNet. In particular, for the

ALL subtype dataset which has the worst pathway-level agreement reported above, the

maximum gene-level agreement for PFSNet, FSNet and SNet are 84%, 57% and 47%

respectively.

3.3.2 Comparing with GSEA, GGEA, SAM and t-test

We compare our methods with GSEA, GGEA, SAM and t-test. We run GSEA and

GGEA on both datasets and measure the level of pathway agreement between the two

datasets. In general, we achieve higher pathway-level agreement than GSEA and GGEA.

PFSNet has a pathway-level agreement between 56%–100%, FSNet has a pathway-level
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agreement between 38%–75%, GSEA has a pathway-level agreement between 12%–57%

and GGEA has a pathway-level agreement between 18%–51%; cf. table 3.1.

We also measure the gene-level agreement from significant subnetworks between each

pair of datasets. In order to compare this with GSEA, we computed the gene-level

agreement from the “leading edge” gene sets in each pair of datasets. The “leading

edge” genes are those genes that appear in GSEA’s ranked list at the point at which the

Kolmogorov-Smirnov running sum reaches its maximum deviation from zero (Subra-

manian et al., 2005). We also compare gene-level agreement with SAM and t-test which

identifies individual differentially-expressed genes. PFSNet has a gene-level agreement

between 54%–100%, FSNet has a gene-level agreement between 38%–88%, SNet has a

gene-level agreement between 29%–76%. In contrast, GSEA, SAM and t-test have much

worse agreement at the 5% significance level. GSEA has a gene-level agreement between

4%–44%, SAM has a gene-level agreement between 8%–50% and t-test has a gene-level

agreement between 8%–41%; cf. table 3.2.

3.3.3 Comparing pathways and subnetworks

As pathways are often large, many analyses involving a whole pathway do not give

consistent results. E.g., when we tested GSEA/GGEA in the previous subsection using

pathways, the level of agreement was generally low.

One of the contributions in SNet, FSNet and PFSNet is the ability to break large

pathways into smaller subnetworks. We select significant subnetworks from SNet, FSNet

and PFSNet, and test them using GSEA. We discover that many of these subnetworks

are also considered significant by GSEA/GGEA, even though GSEA/GGEA had earlier

considered the original whole pathways from which these subnetworks were derived to

be insignificant.
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Table 3.1: Comparing pathway-level agreement of PFSNet, FSNet, GGEA and GSEA. (For PFSNet and FSNet, threshold values of
θ1 = 5%, θ2 = 15% are used.)

Dataset PFSNet FSNet GSEA GGEA

Leukemia 1.00 0.75 0.12 0.18
ALL (subtype) 0.56 0.38 0.34 0.37
DMD 0.82 0.79 0.57 0.51

Table 3.2: Comparing gene-level agreement of PFSNet, FSNet, SNet, GSEA, SAM, t-test. (For PFSNet and FSNet, threshold values of
θ1 = 5%, θ2 = 15% are used. D represents subnetworks enriched in phenotype D and ¬D represents subnetworks enriched in phenotype
¬D. For GSEA, the “leading edge genes” were used. For SAM and t-test, we took genes at 5% significance level and also the top n genes

indicated in brackets.)

Dataset PFSNet FSNet SNet GSEA SAM(5% sig) SAM(top 100) t-test(5% sig) t-test(top 100)
D ¬D D ¬D D ¬D D ¬D D ¬D D ¬D D ¬D D ¬D

Leukemia 1.00 0.81 0.64 0.42 0.35 0.58 0.12 0.20 0.50 0.47 0.01 0.01 0.35 0.29 0.19 0.07
ALL (subtype) 0.54 0.70 0.38 0.41 0.29 0.57 0.04 0.04 0.19 0.27 0.12 0.21 0.08 0.10 0.01 0.00
DMD 0.82 0.72 0.88 0.75 0.76 0.54 0.44 0.20 0.34 0.08 0.27 0.19 0.41 0.19 0.11 0.25
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Table 3.3: Testing subnetworks from PFSNet, FSNet and SNet using GSEA and
GGEA.

PFSNet FSNet SNet

Leukemia (GSEA) 0.50 0.00 0.00
Leukemia (GGEA) 0.67 0.50 0.50
ALL subtype (GSEA) 1.00 0.15 0.11
ALL subtype (GGEA) 1.00 0.47 0.35
DMD (GSEA) 0.90 0.57 0.50
DMD (GGEA) 0.54 0.71 0.45

We next test whether these subnetworks are consistently declared significant in two

independent datasets by GSEA/GGEA; cf. table 3.3. Subnetworks taken from PFSNet

give the highest agreement of about 100%, subnetworks taken from FSNet give the

highest agreement of about 71% and the subnetworks taken from SNet give the highest

agreement of about 50%. In contrast, using large pathways, GSEA and GGEA have an

agreement of about 57% and 51% respectively.

3.3.4 Biologically-significant subnetworks

We also check the subnetworks consistently detected by PFSNet for biological rele-

vance. We discover that many subnetworks and their genes are involved in relevant

disease-related processes known in the literature. Some of these subnetworks predicted

as significant in PFSNet are not discovered by SNet. We report these subnetworks

ranked according to the p-value computed by PFSNet in table 3.4. We will describe

three example subnetworks for the respective diseases to demonstrate their relevance to

the diseases.

The cause of Duchenne muscular dystrophy is well known to stem from the gene Dys-

trophin, which codes for a protein attached to the cell membrane (sacrolemma) of stri-

ated muscle cells (Goldstein and McNally, 2010). When its expression is perturbed, the

cell membrane becomes fragile and permits an amplification in calcium signals into the
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muscle cell causing a cascade of signals to induce cell death. Our subnetwork is gener-

ated around the Dystrophin gene and implicates other genes belonging to the Myosin

(MYBPC1,MYBPC2) and Troponin (TNNI1,TNNI2) family. The Myosin and Troponin

genes are responsible for controlling muscle contractions. The down-regulation of Tro-

ponin in DMD patients might help explain muscle contracture, a condition in which

the muscle shortens. This is because with lower abundance of Troponin, Myosin is able

to bind to Actin. This mechanism together with the amplification of calcium causes

the muscle to constantly contract, shortening over time (Goldstein and McNally, 2010,

Krans, 2010).

For the Leukemia dataset (in which patients are either classified to have acute lym-

phoblastic leukemia or acute myeloid leukemia), one of the significant subnetworks that

is biologically relevant is part of the Interleukin-4 signaling pathway. The binding of

Interleukin-4 to its receptor (Cardoso et al., 2008) causes a cascade of protein activa-

tions involving JAK1 and STAT6 phosphorylation. STAT6 dimerizes upon activation

and is transported to the nucleus and interacts with the RELA/NFKB1 transcription

factors, known to promote the proliferation of T-cells (Rayet and Gelinas, 1999). In

contrast, acute myeloid leukemia does not have genes in this subnetwork up-regulated

and are known to be unrelated to lymphocytes.

For the ALL subtype dataset, the patients are categorized to either having the BCR-ABL

oncogene or E2A-PBX1 oncogene. Antigen processing pathway is one of the significant

subnetworks. This suggests that lymphocytes elicit different response in the two ALL

subtypes. The immunophenotypic characteristics of acute leukemias have been described

in the literature (Giunta and Pucillo, 2012, Hruak and Porwit-MacDonald, 2002). ALL

belonging to the BCR-ABL subtype express the cluster of differentiation (CD) markers

CD9 and CD10, whereas those belonging to the E2A-PBX1 subtype express the CD19

and CD45 markers.
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Table 3.4: Top 5 subnetworks that have biological significance. (* indicates sub-
networks that were not found in SNet and # indicates pathways that were missed by

GSEA)

Leukemia ALL subtype DMD

Proteasome Degradation Wnt Signaling*# Striated Muscle Contraction*#
IL-4 Signaling*# Antigen Processing Integrin Signaling
Antigen Processing* Jak-STAT Signaling*# VEGF Signaling*
B-Cell Receptor Signaling# T-Cell Receptor Signaling Tight Junction
Wnt Signaling*# Adherens Junction*# Actin Cytoskeleton Signaling

3.4 Discussion

Methods for analysing microarray data that focus on identifying biological processes and

pathways are superior to the traditional method of testing individual genes for two main

reasons. Firstly, gene sets represented by pathways make discovery more interpretable.

Secondly, they have the ability to identify gene sets whose members might have only

slight changes in individual gene-expression values.

We have shown in this chapter that analysis of subnetworks provides even better bio-

logical interpretability than whole pathways, which become too generalised when they

are large. Moreover, some subnetworks that were detected as significant were origi-

nally missed when the whole large pathways were tested. We have verified that SNet,

a method that analyzes subnetworks, has the ability to produce more consistent results

than other methods surveyed. However, SNet is not very robust when different thresh-

olds are used, this is because a too-relaxed threshold will include some non-relevant

genes and a too-stringent threshold will exclude some relevant genes.

We have introduced two improvements to SNet in this chapter: by incorporating the

fuzzification technique (FSNet), and by computing paired t-statistic based on the fuzzy

score of two phenotypes (PFSNet). We have found that subnetworks identified by FSNet
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and PFSNet show higher consistency across independently-obtained datasets than other

methods.
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ESSNet: Handling datasets with

extremely-small sample size

4.1 Background

In microarray analysis, one is often faced with the problem of obtaining the right sample

size to draw meaningful conclusions from the data. It is possible to conduct computations

and simulations to estimate the sample size required upstream of a laboratory’s analysis

pipeline. Many methods that look into this issue examine the relationship between

different statistical variables and their relationship with sample size. For instance, the

t-statistic described in chapter 2 is a function of two population means divided by their

standard error. The standard error is in turn a function of the sample variance and

sample size. Such methods estimate sample size by predefining power and type-I error,

the t-distribution can then be used to estimate the minimum sample size required.

A large sample size is usually required to maintain high statistical power and low family-

wise error rate or false-discovery rate. For example, one such model (Hart et al., 2013)
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requires more than 100 samples to achieve power at 0.9 and false-discovery rate at 0.05;

see figure 4.1.
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Figure 4.1: A model estimating require sample size for a specified power and false-
discovery rate (Hart et al., 2013).

However, many laboratories do not start with an upstream pipeline of determining

sample sizes. And, inevitably, some are also constrained by budget, biology, and other

factors to conduct studies with small sample sizes (N < 5). Dealing with data of small

sample size presents some complications:

1. As mentioned earlier, a gene-wise t-test between the two phenotype groups will

sacrifice power and type-I error in data of small sample size.

2. Many other gene-set methods that compute a p-value based on permutation test

cannot do so reliably because there are not enough samples to do class-label swap-

ping, resulting in poor granularity of the p-value (see chapter 2).

In addition, many existing methods compute differentially-expressed genes (DEGs) as

part of their framework. For example:

1. ORA examines the overlapping proportions of DEGs within a pathway.
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2. In GSEA, a Kolmogorov-Smirnov-like statistic is computed from a ranked list of

DEGs within a pathway.

3. DEAP has a recursive function that sums up differential expression.

Most scores of differential expression are based on fold-change and p-value from a t-

test. We examine the effect of sample size on computing DEGs on many different

datasets and find that genes ranked by fold-change or t-test p-values have very large

variances. For example, in figs. 4.2 to 4.4, the ranks of p-values, log fold changes and

gene-expression level are recorded, for every sample size (N) considered ranging from

2 to 10. This process is repeated over 100 times and the standard deviations of the

respective ranks are measured. P-values and fold-change are more sensitive to sample

size variation, as this is evident in the larger standard deviation of the ranks of p-values

and fold-change. In contrast, gene ranking based on expression level has a much smaller

standard deviation and is less sensitive to sample size variation.
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Figure 4.2: Effects of sample size on the ranks of differentially-expressed genes in
DMD/NOR dataset.

This questions the validity of existing methods in small-sample-size situations (N < 5).

Although in our previous chapter, PFSNet works well in moderate- and large-sample-

size situations, its performance degrades as we consider sub-samples from the original

sample size.
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Figure 4.3: Effects of sample size on the ranks of differentially-expressed genes in
ALL/AML dataset.

all 2 3 4 5 6 7 8 9 10

−1
0

1
2

3

samples

lo
g 

fc
 ra

tio

all 2 3 4 5 6 7 8 9 10

0.
90

0.
95

1.
00

1.
05

1.
10

samples

ra
nk

 ra
tio

all 2 3 4 5 6 7 8 9 10

samples

p−
va

l r
at

io

1
5

10
15

all 2 3 4 5 6 7 8 9 10

−5
0

5

log fc

samples

co
ef

f. 
of

 v
ar

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gene rank

samples

co
ef

f. 
of

 v
ar

all 2 3 4 5 6 7 8 9 10

0.
0

0.
5

1.
0

1.
5

t.test p−val

samples

co
ef

f. 
of

 v
ar

0.
0

0.
1

0.
2

0.
3

t−test p.value(s)

sample size (N)

va
ria

nc
e

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

log fc

sample size (N)

va
ria

nc
e

all 2 3 4 5 6 7 8 9 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

gene rank

sample size (N)

va
ria

nc
e

all 2 3 4 5 6 7 8 9 10all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

t−test p−value(s)

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

fold−change

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

fold−change

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

t−test p−value(s)

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

fold−change

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

fold−change

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

gene rank

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

all 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

t−test p−value(s)

sample size (N)

st
an

da
rd

 d
ev

ia
tio

n

Figure 4.4: Effects of sample size on the ranks of differentially-expressed genes in
BCR-ABL/E2A-PBX1 dataset.

In this chapter, we formulate a method, ESSNet, that is able to detect disease-relevant

subnetworks even in datasets of small sample size. We then study the effects of small

sample size, comparing ESSNet with other methods.

4.2 Method

4.2.1 Subnetwork generation

For each sample of phenotype D, we rank the genes by their expression values. Let

r(gi, pj) be the rank of gene i in patient j. We tested and found that gene ranks do not

fluctuate as much due to sample-size variation as fold-change or p-values from t-test; see
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figs. 4.2 to 4.4. Each gene is then given a rank based on the average among the samples

of phenotype D:

rankD(gi) =
∑
j∈D

r(gi, pj)

|D|
(4.1)

where |D| is the number of samples belonging to the phenotype D.

We obtain a gene list extracted from the top α% of the gene ranks computed in equation

4.1. We chose α = 10 in our experiments. Genes not in this list are removed from every

pathway, thus fragmenting each pathway into smaller connected components (i.e., the

subnetworks). We only consider subnetworks that are of size at least 5. The subnetworks

for phenotype ¬D are generated analogously.

4.2.2 Subnetwork testing

4.2.2.1 Scoring

The subnetwork scores in SNet (Soh et al., 2011) and PFSNet (Lim and Wong, 2014)

are assigned to patients in each phenotype D and ¬D. For example, a disease-related

subnetwork might have a mean value of 15 in phenotype D and 51 in ¬D. In datasets

with large sample sizes, class-label permutations are used to test whether this difference

is significant. In datasets with extremely small sample size, this is not possible, and

one has to resort to the theoretical t-distribution for this test. But, in this situation, a

small change in sample size can produce dramatically different outcomes. For example, a

t-test between two groups with two samples each—say 10, 20 and 50, 52—has a p-value

of 0.077, whereas with a few more samples 9,10,20,21 and 49,50,52,53, the p-value drops

to 0.0008.

67



Chapter 4. ESSNet 68

Our subnetwork score is based on a novel idea. We postulate that, when a subnetwork is

irrelevant to the distinction between phenotypes D and ¬D, the difference of the expres-

sion values of any gene in this subnetwork in any pair of samples of D and ¬D should

be very small. Suppose there are k genes in a subnetwork, m patients in phenotype D

and n patients in phenotype ¬D. Then there are m ∗ n possible pairs of differences for

each of the k genes. According to the postulate, if the subnetwork is irrelevant, these

M = k ∗m ∗ n paired differences should be distributed around 0. Thus we propose to

evaluate these paired differences using a paired t-test.

Let δ(gi, pj , p
′
l) = e(gi, pj)− e(gi, p′l) be the distribution of paired expression differences

for each pj in D, p′l in ¬D and gi in subnetwork S, where e(a, b) represents the expression

value of gene a in patient b. Then the t-statistic computed for the subnetwork S is:

TS =
µδ

sdδ/
√
M

(4.2)

where µδ and sdδ are the average and standard deviation over all paired differences of

genes in the subnetwork S respectively and M = k ∗m ∗ n.

Returning to our example of using two samples per group, although we have only 2

samples per phenotype, we can have up to 4 ∗ k paired differences if k is the size of the

subnetwork.

It is also possible to define a similar distribution based on the rank differences of the

genes in subnetwork S; i.e. δ′(gi, pj , p
′
l) = r(gi, pj)−r(gi, p′l) where r represents the rank

function defined in equation 4.1. The t-statistic computed for the paired rank difference

is analogously defined to that of the paired expression differences in equation 4.2.

The choice of statistical test depends on the assumptions that govern the dataset. The

t-test is a parametric test that assumes data normality. If the number of samples and the
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size of subnetworks are very small, it is hard to verify this normality assumption. Hence

it might be necessary to consider an alternative test statistic that does not assume data

normality. In our software, we provide the option of specifying a Wilcoxon-like test.

However, in our experiments, the two tests actually produce very similar results.

The Wilcoxon-like test statistic for subnetwork S is computed by

WS =

∣∣∣∣∣∣
k∑
i=1

n∑
j=1

m∑
l=1

sign(δ(gi, pj , p
′
l)).Ri,j,l

∣∣∣∣∣∣ (4.3)

where sign is a function that maps positive numbers to 1 and negative numbers to −1 and

Ri,j,l is the rank of the absolute value of the differences over all genes in the subnetwork

S in increasing order.

The Wilcoxon-like test has a similar null hypothesis to the t-test without restricting to

a normal distribution and tests if the differences have a median 0.

4.2.2.2 Estimating the null distribution

Our conjecture that δ(gi, pj , p
′
l) is a distribution around 0 can be tested on a null dis-

tribution. There are two traditional ways that estimates this null distribution, in which

randomized columns or rows of the expression matrix is used to re-compute the statistic

over a number of iterations.

The first way assumes the null hypothesis that the subnetwork being tested is irrelevant

to distinguishing the two phenotypes. Thus the gene-expression profiles of any pair of

patients from the two phenotypes are exchangeable for computing points in the null

distribution. In other words, class labels are randomly swapped to create new data

inputs from which the null distribution is formed. This method is used by GSEA to
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evaluate the significance of the Kolmogorov-Smirnov-like statistic of the pathway when

sample size is sufficiently large. This method preserves the full gene-gene correlations,

as well as gene-expression values, in each patient. However, when sample size is small

there are limited ways in which the class labels can be permuted, resulting in a sparse

null distribution. This greatly affects the reliability and the graularity of the p-values.

The second way postulates that any two gene-expression values within the same patient

are exchangeable to compute the null distribution. This method creates new data inputs

by randomly re-labeling genes. This method is used by GSEA to evaluate the significance

of the Kolmogorov-Smirnov-like statistic of the pathway when the dataset has a small

sample size, since a sizeable null distribution can be generated this way. However, this

postulate is based on the assumption that the genes’ expression are independent of each

other, ignoring the correlation between genes. In other words, this method actually tests

if the genes in the pathway behave no differently from a random set of genes. But the

genes in any pathway are coordinated by nature, whereas a random set of genes is not.

Hence this null hypothesis is not appropriate. So it has a tendency of being rejected,

producing false positives.

We rely instead on a third way to produce the null distribution for our test. It postu-

lates that randomized gene-expression profiles that preserve the gene-gene correlation

structure in the original dataset are exchangeable with it. This postulate is consistent

with the assumption that genes in any pathway are coordinated and gene expressions

are governed by biological pathways. Due to exchangeability that follows from the pos-

tulate, it is statistically sound to use correlation-preserving randomized gene-expression

profiles to obtain a null distribution of the test statistic. As mentioned in chapter 2,

array rotation (Dorum et al., 2009) is one of the known techniques for producing a large

number of these correlation-preserving randomized gene-expression profiles. We use this

technique to produce statistically-valid p-values for our test statistic.
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4.2.3 Weighted differences

The performance of our method might be affected by the selection of hard thresholds

(α%), since allowing more genes to be considered in the subnetwork might increase

the number of spurious genes selected within each subnetwork whereas using a very

conservative threshold might select very small subnetworks. In order to overcome this

issue, we weigh the differences based on the gene ranks computed in equation 4.1. We

use two thresholds θ1 and θ2 (θ1 < θ2) on the gene ranks, genes with ranks above θ1 are

given a weight of one and genes with ranks between θ1 and θ2 are given weights between

zero and one by linear interpolation. Genes with ranks below θ2 have are given weights

zero since they are not used to induce the subnetworks. (In our experiments, θ1 = 10%

and θ2 = 20%.)

For each difference δ of the subnetwork computed in phenotype D, we adjust δ to be:

δ′′(gi, pj , p
′
l) = w(rankD(gi)) ∗ δ(gi, pj , p′l). (4.4)

where w is a function mapping the gene ranks to a weight between zero and one as

explained above. The difference for the subnetwork computed in phenotype ¬D is

computed analogously.

4.3 Results

We randomly partition the two independent datasets into subsets of smaller sample sizes

ranging from 2 to 10 from each phenotype. In order to observe the effect of sample size

on various methods, we compare the subnetwork overlap of the corresponding methods

with varying sample sizes.

71



Chapter 4. ESSNet 72

For every sample size (N) considered, we partition the datasets accordingly and use the

subnetwork-generation procedure mentioned in section 4.2.1 to generate the subnetworks

in one dataset. We then test these subnetworks for statistical significance, under a

significance threshold of 5% using the procedure mentioned in sections 4.2.2– 4.2.3 on

the two datasets independently. The subnetwork overlap is a Jaccard-like agreement,

defined as follows: Let the two sets of significant subnetworks identified by dataset 1 and

dataset 2 using N samples be SNN
1 and SNN

2 respectively. Then the subnetwork-level

agreement is defined as

|SNN
1 ∩ SNN

2 |
|SNN

1 ∪ SNN
2 |
. (4.5)

There are many ways to partition a dataset of M samples into subsets of N samples. For

our experiments, we test the procedure many times and report the average subnetwork-

level agreement.

Since ORA and GSEA identify whole pathways instead of subnetworks, in testing these

methods, we measure the pathway-level agreement which is defined analogously.

We also measure the overlap in genes between the predicted subnetworks, which is

defined analogously below, where GenesNi denotes the set of genes in SNN
i :

|GenesN1 ∩GenesN2 |
|GenesN1 ∪GenesN2 |

. (4.6)

4.3.1 Comparing subnetwork- and gene-level overlap

We compare the subnetwork-level agreement of our method, ESSNet-unweighted, with

other gene-set methods (ORA-hypergeo, ORA-paired, GSEA, NEA-paired, DEAP, and

PFSNet); see figs. 4.5 to 4.7.
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Figure 4.5: Consistency of subnetworks and their genes in DMD/NOR dataset using
partitions of smaller sample sizes ranging from 2 to 10 from each phenotype.

ORA-hypergeo is the usual overlap-analysis method. It tests whether a pathway is sig-

nificant by intersecting the genes in the pathway with a pre-determined list of differen-

tially expressed genes (here, we use all genes whose t-statistic meets the 5% significance

threshold), and checking the significance of the size of the intersection using the hy-

pergeometric test. ORA-paired is a modification of ORA-hypergeo; it does not use a

pre-determined list of differentially expressed genes and the hypergeometric test. In-

stead, it applies the t-test described in section 4.2.2.1 using all the genes in the pathway.

GSEA is a direct-group method based on the Kolmogorov-Smirnov test as described in

section 4.2.2.1. As mentioned earlier, the gene-permutation option is used to evaluate
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Figure 4.6: Consistency of subnetworks and their genes in ALL/AML dataset using
partitions of smaller sample sizes ranging from 2 to 10 from each phenotype.

significance. NEA-paired is a network-based method where each gene and its immedi-

ate neighbourhood in a pathway form a subnetwork. The subnetworks are subjected to

the t-test discussed in section 4.2.2. PFSNet is a network-based method as previously

discussed in chapter 3. ESSNet-unweighted generates subnetworks based on the method

discussed in section 4.2.1 and tests each subnetwork for statistical significance using the

scores computed from section 4.2.2.

ORA-hypergeo has very low pathway-level overlap even when sample size is 10. There are

three weaknesses that contribute to its poor performance. Firstly, it amounts to testing

whether the entire pathway is significantly differentially expressed. If only a branch
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Figure 4.7: Consistency of subnetworks and their genes in BCR-ABL/E2A-PBX1
dataset using partitions of smaller sample sizes ranging from 2 to 10 from each pheno-

type.

of a large pathway is relevant to the phenotypes, the noise from the large irrelevant

part of the pathway can mask the signal from that branch. Secondly, it relies on a

pre-determined list of differentially-expressed genes. This list is sensitive to the choice

of threshold that defines which genes to be considered as differentially expressed. And,

irrespective of the threshold, as shown in figs. 4.2 to 4.4, this list lacks consistency when

sample size is small. Thirdly, its use of the hypergeometric test corresponds to the null

hypothesis that genes in the pathway behave no differently from random sets of genes

of the same size as the pathway. As genes in a pathway are generally coordinated in

their behaviour to perform the specific function associated with the pathway, this null
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hypothesis is generally false. Thus this hypergeometric test tends to reject the null

hypothesis.

ORA-paired circumvents the second weakness of ORA-hypergeo since it does not need

any list of differentially-expressed genes. It also eliminates the third weakness of ORA-

hypergeo since it uses a biologically-more-plausible null hypothesis that genes in the

pathway have similar expression values between the two phenotypes if the pathway is

irrelevant to the difference of the two phenotypes. Therefore, ORA-paired performs

much better than ORA-hypergeo. The subnetwork-level agreement increases to as high

as 65% verses 13% in ORA-hypergeo when N = 10 and 34% verses 11% when N = 2.

This suggests that the paired-difference t-test is a strategy that works extremely well in

a small-sample-size situation.

A disease could be the result of the dysfunction of a small part of a large pathway. In this

situation, most of the genes in this large pathway may not be differentially expressed.

Even though ORA-paired has improved on ORA-hypergeo, it is still unlikely to find

this large pathway significant. That is, ORA-paired retains the first weakness of ORA-

hypergreo. Thus, it makes sense to directly extract subnetworks from pathways and test

these subnetworks individually for significance.

We apply the NEA idea (Sivachenko et al., 2007) to generate candidate subnetworks

from a pathway, after which we apply ORA-paired to determine the significant ones.

This NEA-paired approach circumvents all three weaknesses of ORA-hypergeo. Hence

it performs even better than ORA-paired. The subnetwork-level agreement increases to

as high as 85% when N = 10 and 43% when N = 2. This suggests that the subnetwork-

generation procedure increases the sensitivity of the paired-difference t-test. We believe

this is because paired differences around the neighborhood of selected genes enable the
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test to correctly reject subnetworks that have no differentially expressed genes within

them.

GSEA also eliminates the second weakness of ORA-hypergeo because it does not need

any list of pre-determined differentially expressed genes. GSEA’s Kolmogorov-Smirnov

statistic is based on the rank of the t-statistic values of the genes in the pathway.

However, GSEA retains the first weakness of ORA-hypergeo. And, when the gene-

permutation option is used to determine the significance of the Kolmogorov-Smirnov

statistic, as in this chapter, it also retains the third weakness of ORA-hypergeo. There-

fore, while it outperforms ORA-hypergeo, it is inferior to ORA-paired and NEA-paired.

GSEA achieves a maximum pathway-level overlap of 45% when N is 10 and 27% when

N = 3. We are unable to evaluate GSEA when N = 2 because it requires a minimum

of 3 samples.

DEAP examines all possible maximal linear paths in the pathway and chooses the path

with maximum absolute differential expression score. The score given for a path is recur-

sively computed based on the catalytic or inhibitory edges taken as positive and negative

summands respectively (Haynes et al., 2013). DEAP partially eliminates the first weak-

ness of ORA-hypergeo because it breaks the pathway into maximal linear paths, but it

does not consider non-maximal subpaths. It also shares the second weakness of ORA-

hypergeo because it computes a score for each path based on differential expression

which is unstable when sample size is small. As a result, DEAP has poor performance.

DEAP achieves a maximum pathway-level overlap of 28% when N is 10 and 6% when

N is 2.

PFSNet does not need any list of pre-determined differentially-expressed genes, eliminat-

ing the second weakness of ORA-hypergeo. It generates subnetworks, and so eliminates

the first weakness of ORA-hypergeo. For each subnetwork and each sample, it computes
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a pair of scores for that sample based on phenotype D data and phenotype ¬D data

respectively. It postulates very reasonably that, if the subnetwork is irrelevant to the

difference between D and ¬D, these pairs of scores should be distributed around 0. It

then uses class-label permutations to evaluate this null hypothesis. Thus PFSNet also

eliminates the third weakness of ORA-hypergeo. However, when sample size is small,

the null distribution cannot be properly produced using class-label permutations. Thus

PFSNet has good performance when N is reasonably high but inferior performance when

N is small. PFSNet achieves a maximum overlap of 65% when N = 10 and 21% when

N = 2.

Finally, we apply the same set of tests to ESSNet-unweighted, which selects subnet-

works as described in section 4.2.1 and tests these subnetworks for significance using

the scores computed in section 4.2.2. Clearly, ESSNet-unweighted also eliminates all

three weaknesses of ORA-hypergeo in a manner analogous to NEA-paired. It has ex-

cellent performance, superior to all other methods studied here. We get much higher

subnetwork overlap of up to 99% when N = 10 and 58% when N = 2. We believe

ESSNet-unweighted performs better than other methods because of the following addi-

tional reasons.

Even though NEA-paired performs well, each of its subnetwork is based on a seed gene

and its immediate neighbouring genes in that pathway, regardless of whether those

neighbouring genes are themselves differentially or highly expressed. This can potentially

cause a loss in signal, especially when the seed gene has a large number of immediate

neighbours. Moreover, such a subnetwork cannot capture a long causal chain of genes.

These two issues are rectified in ESSNet-unweighted which forms a subnetwork in a

pathway based on a connected component comprising entirely of high-ranking genes

and, as shown earlier in figs. 4.2 to 4.4, relying on gene ranking is more robust to

sample-size variation.
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Table 4.1: Precision and recall of ESSNet-unweighted.

Precision Recall
DMD ALL BCR DMD ALL BCR

D ¬D D ¬D D ¬D D ¬D D ¬D D ¬D

sa
m

p
le

si
ze

(N
)

2 0.96 0.88 0.87 0.95 0.93 0.91 0.45 0.31 0.34 0.25 0.19 0.17
3 0.93 0.86 0.99 0.89 0.90 0.87 0.56 0.45 0.56 0.41 0.21 0.16
4 0.88 0.88 0.97 0.92 0.91 0.87 0.67 0.50 0.51 0.53 0.35 0.48
5 0.89 0.88 0.94 0.90 0.89 0.90 0.73 0.52 0.74 0.55 0.36 0.38
6 0.82 0.88 0.93 0.92 0.89 0.91 0.78 0.62 0.74 0.62 0.44 0.438
7 0.85 0.86 0.95 0.93 0.90 0.87 0.75 0.59 0.66 0.64 0.55 0.53
8 0.84 0.89 0.97 0.94 0.90 0.92 0.81 0.69 0.74 0.66 0.61 0.66
9 0.88 0.90 0.94 0.92 0.89 0.89 0.90 0.67 0.76 0.74 0.65 0.67
10 0.88 0.93 0.97 0.92 0.90 0.90 0.86 0.84 0.89 0.74 0.66 0.73

4.3.2 Precision and recall

As shown later in section 4.3.5, ESSNet-unweighted attains very high subnetwork over-

lap when the sample size is large. So, it is possible to define a set of gold-standard

subnetworks as follows, to estimate the false-positive and false-negative subnetworks

induced by small samples:

G = SNall
1 ∩ SNall

2 (4.7)

where SNall
i is the set of significant subnetworks produced by ESSNet-unweighted based

on the entire dataset i.

The precision and recall are defined respectively as:

precision =
|SNN ∩G|
|SNN |

, recall =
|SNN ∩G|
|G|

(4.8)

where SNN is the set of significant subnetworks produced by ESSNet-unweighted using

an N -sample subset of one entire dataset.
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It is surprising that the precision does not drop much even when smaller sample sizes

are considered. For example, we get a precision of about 88%, 87% and 91% even when

N = 2 in the DMD, Leukemia and ALL-Subtype datasets respectively. On the other

hand, the maximum recall when N = 2 is about 50% in the DMD dataset. Cf. 4.1.

Thus, more bona fide subnetworks are missed from the predictions when N is very small,

while few false positives are produced. This is reasonable as a small sample may not

have captured all the causes underlying a phenotype.

4.3.3 Comparing expression-difference, rank-difference t-test and Wilcoxon-

like test

We also want to test whether there is any difference between using a parametric t-

test and a non-parametric Wilcoxon test in extremely-small-sample-size situations. We

evaluate the t-test using the distribution of expression-difference and rank-difference

defined by δ(gi, pj , p
′
l) and δ′(gi, pj , p

′
l) respectively in section 4.2.2.1.

Our results show that there is little difference in the subnetwork-level overlap computed

using these tests; see figs. 4.8 to 4.10

4.3.4 Comparing unweighted and weighted ESSNet

The weighted version of ESSNet modifies each pairwise difference for each gene by

a function of the gene’s average ranking amongst the class of samples in which the

subnetwork was derived.

Our results show that subnetwork-level agreement improves when ESSNet-weighted is

used; see figs. 4.11 to 4.13. For example, when the top 20% genes are considered (but with

genes in the top 10-20% given lesser weight), ESSNet-unweighted and ESSNet-weighted
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Figure 4.8: Consistency of subnetworks in ESSNet between t-test and wilcoxon test
in DMD/NOR dataset.
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Figure 4.9: Consistency of subnetworks in ESSNet between t-test and wilcoxon test
in ALL/AML dataset.
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Figure 4.10: Consistency of subnetworks in ESSNet between t-test and wilcoxon test
in BCR-ABL/E2A-PBX1 dataset.

has a maximum subnetwork overlap of 56% and 62% respectively when N = 2. By

down-weighting spurious genes towards zero, spurious subnetworks are rejected thereby

increasing the subnetwork-level overlap.

ESSNet−weighted (θ1= 10%,θ2=20%)
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Figure 4.11: Consistency of subnetworks between weighted and unweighted ESSNet
in DMD/NOR dataset.
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Figure 4.12: Consistency of subnetworks between weighted and unweighted ESSNet
in ALL/AML dataset.
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Figure 4.13: Consistency of subnetworks between weighted and unweighted ESSNet
in BCR-ABL/E2A-PBX1 dataset.
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4.3.5 Comparing different null-distribution-generation methods in large-

sample-size data

The rotation test is a viable alternative for generating the null distribution in datasets

that have very small sample sizes, since it preserves gene-gene correlations. When sample

size is large, it is possible to generate the null distribution using class-label swapping. We

compare these two different methods of generating the null distribution in large-sample-

size datasets because class-label permutation imposes less assumptions on the data and

is a good baseline to compare against. In our experiments, we find that rotation test

and class-label swapping produce similar results. This lends us confidence on the results

obtained from the rotation tests in datasets with smaller sample size. ESSNet achieves

very good subnetwork-level agreement when sample size is small, and it continues to be

superior when sample size is large; cf. tables 4.2 and 4.3.

Table 4.2: Average number of subnetworks predicted by ESSNet over the sample
sizes (N); the first number denotes the number of subnetworks in the numerator of the
subnetwork-level agreement and the second number denotes the number of subnetworks

in the denominator of the subnetwork-level agreement; cf. equation 4.5.

DMD ALL BCR

sa
m

p
le

si
ze

(N
)

2 8.2/13.4 7.0/11.9 4.8/12.6
3 11.1/15.9 11.3/17.9 5.0/11.7
4 13.18/16.5 11.9/15.9 6.2/10.4
5 14.2/16.7 14.6/18.3 7.9/12.7
6 15.14/17.6 14.9/18.0 11.0/15.7
7 15.2/17.4 16.1/19.2 12.9/17.5
8 15.4/17.5 16.2/19.0 15.3/20.4
9 16.6/18.8 17.0/19.8 15.8/20.8
10 17.6/19.7 17.3/19.7 16.2/20.8
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Table 4.3: Number of subnetworks predicted by the various methods on a full dataset
where the null distribution is computed using array rotation (rot), class-label swap-
ping (cperm) and gene swapping (gswap); the first number denotes the number of
subnetworks in the numerator of the subnetwork-level agreement and the second num-
ber denotes the number of subnetworks in the denominator of the subnetwork-level

agreement; cf. equation 4.5.

DMD ALL BCR

rot cperm rot cperm rot cperm

ESSNet 20/23 13/15 22/24 25/27 24/29 30/32
NEA-paired 77/98 91/115 140/163 109/119 176/192 37/43
ORA-paired 30/62 30/62 34/74 34/74 53/99 53/99

ORA-hypergeo 20/46 41/141 24/60 48/73 4/14 32/166
DEAP 14/62 - 0/2 - 1/16 -

cperm gswap cperm gswap cperm gswap

GSEA 23/64 24/69 8/52 17/48 7/57 5/46

4.3.6 Comparing number of predicted subnetworks using negative con-

trol data

It is also possible to test whether ESSNet is robust to false positives. We conduct in-

silico testing by randomly generating matrices of gene-expression data; for each gene we

sample from a random normal distribution, using the same mean and standard deviation

in both phenotypes. The purpose of the test is to see if ESSNet detects any subnetworks

as significant when it should not. On these random input matrices, ESSNet reports very

small number of false subnetworks (typically less than 3), well within that expected from

the p-value threshold and much fewer than other methods; see fig. 4.14

4.3.7 Informative subnetworks

While biological pathways provide a wealth of information to explain disease phenotype,

large pathways offer little biological insight. On the other hand, subnetworks may narrow

down the biological cause of a disease but very small subnetworks are trivial and non-

informative. In order to assess how informative our significant subnetworks are, we
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Figure 4.14: Number of significant subnetworks predicted by ESSNet, GSEA and
DEAP on randomized negative control.

compare the size of the significant subnetworks identified by ESSNet with subnetworks

induced from individual genes declared significant by t-test.

When subnetworks are induced by fragmenting pathways using significant individual

genes, the genes are scattered over the pathways and have very few edges with other

significant genes in the pathway. This results in very-small-sized subnetworks that con-

tains very little useful biological information. In contrast, the subnetworks detected by

ESSNet are bigger and thus more informative; cf. fig. 4.15.

Another way to determine how informative our predicted subnetworks are, is to see if

they overlap with results produced by other methods. We select significant subnetworks

predicted by ESS and test them using GSEA. While GSEA often does not declare a

pathway to be significant when the entire pathway is supply as input, it often declares

the subnetworks identified ESSNet in that pathway to be significant. Specifically, GSEA

is able to recover 100%, 51% and 54% of the subnetworks in the DMD, Leukemia and

ALL Subtype dataset respectively. When we included PFSNet to this analysis, the per-

centages increased to 100%, 90% and 91% respectively. This demonstrates subnetworks

predicted by ESSNet can be recovered by other methods (provided these methods are
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Figure 4.15: A figure showing the sizes of subnetwork identified by ESSNet as com-
pared to subnetworks that are formed by significant individual genes from t-test.

supplied the subnetworks as input, and not the entire pathways they come from), and

also suggests the plausibility that they are useful and pertinent.

4.3.8 Relative sensitivity

Due to the lack of gold-standard subnetworks, we evaluate the sensitivity of our method

relative to other existing methods. We assume that the consistently detected path-

ways/subnetworks across two independent full datasets using other existing methods,

are real disease-relevant subnetworks/pathways and try to measure the proportion of

false negatives, i.e. disease subnetworks/pathways that are missed, from this set of

gold-standard subnetworks/pathways. Similarly, we can estimate the relative sensitivity

of other methods against consistently significant subnetworks identified by ESSNet.

The relative sensitivity of ESSNet when consistently significant pathways from GSEA

were used as the gold-standard ranges from 60% to 80% in the three datasets evaluated.

On the other hand, GSEA only recovers between 10% to 30% of the pathways that were

consistently significant in ESSNet. This shows that ESSNet is more sensitive relative

to GSEA. The relative sensitivity between ESSNet and PFSNet are not significantly

different from each other; cf. fig. 4.16.
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Figure 4.16: ESSNet has higher sensitivity relative to GSEA. On the other hand,
ESSNet and PFSNet have about the same relative sensitivity.
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Figure 4.17: The pathways that are common to ESSNet and GSEA have smaller p-
values than pathways unique to GSEA alone. This might suggest that pathways picked

up by ESSNet is more likely to be real.

Although ESSNet does not recover all of the gold-standard pathways obtained from

GSEA, the pathways that are common between ESSNet and GSEA have lower p-values

than those that are unique to GSEA alone. This suggests that the pathways that are

recovered by ESSNet are more reliable and pathways that are unique to GSEA could be

false positives; cf. fig. 4.17.
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4.3.9 Biologically-significant subnetworks

The subnetworks predicted by ESSNet have very strong biological relevance even when

a small sample size is used. We used sample sizes of 2, 2 and 4 for the DMD, Leukemia

and ALL Subtype datasets respectively as these sample sizes give roughly the same

subnetwork agreement; cf. figs. 4.5 to 4.7. As there are many different predictions since

there are many ways to partition the data into subsets of smaller sample sizes from the

entire dataset, we report the subnetworks that are detected most frequently in table 4.4.

For DMD, striated muscle contraction and actin cytoskeleton signaling are the main

cause of the disease (Goldstein and McNally, 2010, Krans, 2010). ESSNet was not

only able to detect these two subnetworks but also other biologically-significant sig-

naling pathways that might be the trigger for these main pathways. For example, it

was reported that PTEN signaling (Dogra et al., 2006) contributes to PI3K/Akt signal-

ing (Feron et al., 2009) which in turn affects the DMD gene found in striated muscle

contraction. ECM receptor interaction was also implicated in DMD (Vidal et al., 2012).

For Leukemia, numerous works have reported the involvement of ERK/MAPK signaling

(Das Gupta et al., 2013), Toll-like receptor signaling (Dimicoli et al., 2013) and JAK/-

STAT signaling (Furqan et al., 2013) in interfering with apoptosis. Other subnetworks

like antigen processing (Hruak and Porwit-MacDonald, 2002) and metabolism of xeno-

biotics by cytochrome P450 (Kanagal-Shamanna et al., 2012) have also been linked to

Leukemia.

Similarly, for ALL subtype, the various subnetworks identified also have biological sup-

port, including antigen processing (Giunta and Pucillo, 2012), IFNG signaling (Kim

et al., 2010), Wnt signaling (Ress and Moelling, 2005), IL-4 signaling (Cardoso et al.,

2008), JAK/STAT signaling and T-Cell receptor signaling (Mumprecht et al., 2009).
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Table 4.4: Biologically relevant subnetworks predicted by ESSNet.

DMD (N=2) Leukemia (N=2) ALL Subtype (N=4)

PI3K/Akt Signaling ERK/MAPK Signaling Antigen processing
PTEN Signaling Toll-like receptor Signaling IFNG Signaling
ECM Receptor Apotosis Signaling Wnt Signaling
Actin Cytoskeleton Signaling JAK/STAT Signaling IL-4 Signaling
Striated Muscle Contraction Antigen processing JAK/STAT Signaling
Integrin Signaling Metab. of xenobiotics by P450 T-Cell Receptor

4.4 Discussion

Detecting disease-relevant subnetworks/genes is a difficult task when sample size is small.

We have shown in this chapter that many methods that compute gene-wise differen-

tial expression perform poorly when sample size is small due to the large variance in

fold-change and t-test p-values that is inevitable when a small sample population is

considered.

An ideal method should be able to pick out all relevant factors underlying the phenotypes

that are present in a given sample set and should not report any irrelevant factors. It

follows from this ideal that we can expect a good method to satisfy these three hallmarks:

(i) The selected subnetworks are reproduced when applied to new batches of data that

are sufficiently representative of the phenotypes. (ii) The selected subnetworks from a

large dataset should be a superset of those chosen from a subset of the dataset. (iii) The

relevant subnetworks can be identified using as small a dataset as possible.

We are able to reproduce similar subnetworks in independent batches of data, this is

evident in the high subnetwork-level agreement; cf. figs. 4.5 to 4.7. ESSNet also demon-

strates very good precision, when compared against a set of gold-standard subnetworks

derived from the full datasets; cf. table 4.1. This suggests that most of the subnetworks

predicted using a small sample size are also detected in the large dataset and further

implies that it does not produce a lot of false positives even when sample size is small.
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On the other hand, ESSNet misses out on some gold-standard subnetworks because the

small number of samples are unable to capture all the underlying phenotypic differences.

However, ESSNet is also superior for large sample sizes; cf table 4.3.

Our method, ESSNet is unlike other previous methods because we do not greedily select

genes to be included based on differential expression but rely on gene-expression-level

ranking within a phenotype, which is shown to be stable even under extremely-small

sample sizes. In addition, our conjecture that δ(gi, pj , p
′
l) is a distribution around 0, is

tested on the null distribution obtained by array rotation; this preserves the gene-gene

correlation structure and is suitable for datasets with small sample size. This allows us

to consistently predict relevant subnetworks even when sample size is small.

The subnetworks that we discover using ESSNet are also supported by many relevant

biological literature and have the potential to allow biologist further insights to the

mechanism behind the disease.
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Chapter 5

Classification using subnetworks

5.1 Background

In the beginning of this dissertation, we have highlighted that classifiers for distinguish-

ing patients from controls often have poor classification accuracy when the model is

based on significant genes from one dataset and then tested on an independent dataset.

This suggests that the significant genes may not necessarily be discriminatory when

tested on a new batch of data.

The poor predictive accuracy can be attributed in part to batch effects causing expression

values for genes in one dataset to differ greatly in another dataset. Batch effects are

usually explained by some technical source of variation when experiments are done at

different times and platforms. This is evident in all the datasets that we have examined

in this thesis. We can visualize batch effects by performing principal component analysis

(PCA), a procedure that is commonly used to find patterns in high-dimensional data.

PCA transforms the data into a coordinate system whose N th dimension has the N th

largest variance in the data. The PCA plots for the first three principle components

93



Chapter 5. Classification using subnetworks 94

show that the datasets are clearly separated by their batches, making it hard to build a

classifier that can predict well on both datasets (see figs. 5.1 to 5.5).
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Figure 5.1: Batch effects in the DMD/NOR datasets, the blue and red color denote
different data batches. (a) Scatterplot on the first 3 components using gene-expression

values. (b) Scatterplot on the first 3 components using gene ranks.
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Figure 5.2: Batch effects in the ALL/AML datasets, the blue and red color denote
different data batches. (a) Scatterplot on the first 3 components using gene-expression

values. (b) Scatterplot on the first 3 components using gene ranks.
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Figure 5.3: Batch effects in the BCR-ABL/E2A-PBX1 datasets, the blue and red
color denote different data batches. (a) Scatterplot on the first 3 components using

gene-expression values. (b) Scatterplot on the first 3 components using gene ranks.

Because batch effects cause gene-expression values to differ greatly in independent
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Figure 5.4: Batch effects in the Lung cancer datasets, the blue and red color denote
different data batches. (a) Scatterplot on the first 3 components using gene-expression

values. (b) Scatterplot on the first 3 components using gene ranks.
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Figure 5.5: Batch effects in the Ovarian cancer dataset, the blue and red color denote
different data batches. (a) Scatterplot on the first 3 components using gene-expression

values. (b) Scatterplot on the first 3 components using gene ranks.

datasets, researchers resort to rank-based normalization to help minimize these effects.

However, the PCA plots for the respective datasets show the presence of batch effects

even after using rank-based normalization as a preprocessing step (see figs. 5.1 to 5.5).

This suggests that rank-based normalization may not fully solve the problem and further

demonstrates the drawback of using individual genes as classification features.

This leads us to find alternative features that might possibly withstand the batch effects,

and achieve better prediction accuracy across the disease datasets studied in this disser-

tation. In this chapter, we discuss how subnetworks make good features for classifying

patients.

95



Chapter 5. Classification using subnetworks 96

5.2 Method

5.2.1 PFSNet feature scores

Under the PFSNet methodology, it is intuitive to use the sample scores for each sub-

network, which is computed with respect to the D and ¬D phenotypes respectively,

described in eqs. (3.6) and (3.7). Therefore, each subnetwork directly gives us two

feature scores for a patient pk:

PFSNet featurepk,S1 = Scorepk1 (S) (5.1)

PFSNet featurepk,S2 = Scorepk2 (S) (5.2)

where Scorepk1 (S) and Scorepk2 (S) are described in chapter 3, eqs. (3.6) and (3.7).

We add a third feature score defined as the difference between these two scores:

PFSNet featurepk,S3 = Scorepk1 (S)− Scorepk2 (S) (5.3)

5.2.2 ESSNet feature scores

ESSNet can derive reliable subnetworks from small-sample-size datasets. If we have

a way of scoring these subnetworks for each patient, it potentially allows us to train

a reliable classifier even for small training datasets. However, it is not possible to

directly use subnetworks predicted by ESSNet as features, because the scores computed

by ESSNet for the subnetworks are not for individual patient. We describe below a novel

idea to get around this problem.
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The idea is to see whether the pair-wise differences of genes within a subnetwork between

a given sample px and the two separate groups (D and ¬D) have a distribution around

zero, defined as:

∆(D)(S, px) = {egi,px–egi,p′ | gi ∈ S and p′ ∈ D} (5.4)

∆(¬D)(S, px) = {egi,px–egi,p′ | gi ∈ S and p′ ∈ ¬D} (5.5)

where e(gi, pk) is the gene expression of gene gi of patient pk. It is also possible to use

values after rank-based normalization and fold-change for this computation.

We can use ∆(D)(S, px) and ∆(¬D)(S, px) to derive feature scores of the subnetwork S

for patient px. If the subnetwork S is useful for classification, we expect ∆(D)(S, px)

and ∆(¬D)(S, px) to have a positive or negative median for patients in one of the classes.

Conversely, if the subnetwork S is not useful for classification, we expect both ∆(D)(S, px)

and ∆(¬D)(S, px) to have a median around zero for patients in both classes, regardless

of their class labels.

The feature scores are derived by using three numbers to summarize the distributions

∆(D)(S, px) and ∆(¬D)(S, px), viz. taking the median and 2 standard deviations above

and below the median. This gives us 6 feature scores for each subnetwork:

ESSNet featurepx,S1 = median(∆(D)(S, px)) (5.6)

ESSNet featurepx,S2 = median(∆(D)(S, px)) + 2σ (5.7)
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ESSNet featurepx,S3 = median(∆(D)(S, px))− 2σ (5.8)

and ESSNet featurepx,S4 , ESSNet featurepx,S5 and ESSNet featurepx,S6 are defined

analogously based on ∆(¬D)(S, px).

We can also obtain pair-wise differences of genes within a subnetwork among all possible

pairs of patients of phenotype D and ¬D, this gives us new distributions from which a

t-statistic can be computed and used as feature scores.

∆(D−¬D)(S) = {egi,p′–egi,p′′ | gi ∈ S and p
′ ∈ D and p′′ ∈ ¬D} (5.9)

The t-statistic between ∆(¬D)(S, px) and ∆(D−¬D)(S) measures how far the their means

are; if px is of phenotype D, we would expect the two means to be close if the subnetwork

is discriminatory. Conversely, if px is of phenotype ¬D, then their means should be

further apart.

Similarly, we can define the other distributions ∆(¬D−¬D), ∆(¬D−D) and ∆(D−D) as:

∆(¬D−¬D)(S) = {egi,p′–egi,p′′ | gi ∈ S and p
′ ∈ ¬D and p′′ ∈ ¬D and p

′ 6= p′′} (5.10)

∆(¬D−D)(S) = {egi,p′–egi,p′′ | gi ∈ S and p
′ ∈ ¬D and p′′ ∈ D} (5.11)

∆(D−D)(S) = {egi,p′–egi,p′′ | gi ∈ S and p
′ ∈ D and p′′ ∈ D and p

′ 6= p′′} (5.12)

98



Chapter 5. Classification using subnetworks 99

These are the 4 additional features derived from the t-statistic computed from eq. 2.6

for patient px:

ESSNet featurepx,S7 = T statistic(∆(¬D)(S, px),∆(D−¬D)(S)) (5.13)

ESSNet featurepx,S8 = T statistic(∆(¬D)(S, px),∆(¬D−¬D)(S)) (5.14)

ESSNet featurepx,S9 = T statistic(∆(D)(S, px),∆(D−D)(S)) (5.15)

ESSNet featurepx,S10 = T statistic(∆(D)(S, px),∆(¬D−D)(S)) (5.16)

5.3 Results

5.3.1 Batch-effect reduction

We perform PCA on the subnetwork scores from PFSNet and plotted the first three

principle components on a scatterplot, the data points are colored red for one dataset

and blue for another dataset from another batch. The plot in fig. 5.6 shows that the

data points are no longer clustered by batch in most datasets. Rather, the data points

in the PCA plots are now separated by class labels regardless of which batch it comes

from; see fig. 5.7.

99



Chapter 5. Classification using subnetworks 100

PFSNet −> PCA for ALL/AML
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Figure 5.6: A figure showing that the batch effects are reduced by PFSNet subnetwork
features. The colors red and blue represent different batches.
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Figure 5.7: A figure showing that data points are separated by class labels instead of
batch when PFSNet features are used. The colors green and orange represent different

classes.

5.3.2 Predictive accuracy

We use Näıve Bayes (cf. Chapter 2) to build the classifier based on the significant

subnetwork identified by PFSNet and ESSNet as features using their scores described in

section 5.2.1 and 5.2.2. We compare this classifier against other classifiers that are built

using gene features. The significant genes are chosen based on several popular gene-

selection procedures detailed in chapter 2, including t-test, SAM and rank products.

100



Chapter 5. Classification using subnetworks 101

Classifiers based on individual gene features do not do well, as shown in the beginning

of this thesis; cf. fig. 1.4. So, we introduce a few enhancements to try and improve

classifiers built on gene features that have been shown quite effective (Koh and Wong,

2012):

1. Rank-based normalization as a preprocessing step.

2. Bagging of classifiers after rank-based normalization.

When evaluating the classifiers, we use give equal weight to sensitivity and specificity.

The predictive accuracy is thus defined as:

predictive accuracy = 0.5 sensitivity + 0.5 specificity (5.17)

5.3.2.1 Gene-feature-based classifier with and without rank normalization

Rank-based normalization is able to boost predictive accuracy in some datasets. For

example, in the DMD/NOR dataset predictive accuracy has increased to 90% from 50%,

in the ALL/AML dataset predictive accuracy has increased to 60% from 52%, in the

BCR-ABL/E2A-PBX1 dataset predictive accuracy has increased to 56% from 52%, in

the Lung cancer dataset predictive accuracy has increased to 59% from 50%, and in the

Ovarian cancer dataset predictive accuracy has increased to 73% from 50%, when t-test

is used as the feature-selection method at the 5% significance level. Our experiments

also show that the other feature-selection methods like SAM and rank products are not

significantly better than the classic t-test; cf. figs. 5.8 to 5.12.
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Figure 5.8: Predictive accuracy of gene-feature-based classifiers with and without
rank normalization in the DMD/NOR dataset.
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Figure 5.9: Predictive accuracy of gene-feature-based classifiers with and without
rank normalization in the ALL/AML dataset.
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Figure 5.10: Predictive accuracy of gene-feature-based classifiers with and without
rank normalization in the BCR-ABL/E2A-PBX1 dataset.
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Figure 5.11: Predictive accuracy of gene-feature-based classifiers with and without
rank normalization in the Lung cancer dataset.
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Figure 5.12: Predictive accuracy of gene-feature-based classifiers with and without
rank normalization in the Ovarian cancer dataset.
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5.3.2.2 Comparing with enhancement by bagging

We perform bagging of classifiers on the set of features selected by the t-test with

rank-based normalization. Bagging increases predictive accuracy in only one dataset;

in ALL/AML, predictive accuracy increases to 70% from 66.7%. In other datasets like

DMD/NOR and Ovarian cancer, predictive accuracy remain about the same at 90% and

72% respectively. In the BCR-ABL/E2A-PBX1 and Lung cancer datasets, predictive

accuracy is also not significantly different at 53% and 59% respectively (cf. fig. 5.13).
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Figure 5.13: Predictive accuracy of gene-feature-based classifier compared to bagging.

5.3.2.3 Comparing ranked gene features, pathway features and subnetwork

features from PFSNet and ESSNet

We compare, in fig. 5.14, a gene-feature-based classifier with rank normalization as

described earlier with a pathway-feature-based classifier and subnetwork-feature-based

classifiers. The pathway-feature-based classifier uses significant pathways identified by

GSEA. However, since GSEA does not compute a feature score for its significant path-

ways, we generate pathway feature scores based on section 5.2.2. We also construct two

subnetwork-feature-based classifiers that are based on PFSNet and ESSNet.
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The GSEA classifier performs well in the ALL/AML dataset and achieves 95% predictive

accuracy. However, in other datasets, it performed no signficiantly better than the

gene-feature-based classifier, achieving 70%, 64%, 55% and 82%, in comparison with

90%, 58%, 59% and 74% in the gene-feature-based classifier in the DMD/NOR, BCR-

ABL/E2A-PBX1, Lung cancer and Ovarian cancer datasets respectively. This suggests

that signal dilution from non-disease-relevant genes in the pathway might have also

affected how discriminatory the features are.

On the other hand, the PFSNet classifier outperforms the rank-normalized-gene-feature

classifier in all datasets. The predictive accuracy reaches as high as 100% in the

DMD/NOR and Ovarian cancer datasets. In datasets in which rank-based normaliza-

tion has been shown to offer not much improvement in predictive accuracy, e.g. BCR-

ABL/E2A-PBX1 and Lung cancer datasets, the PFSNet classifier achieves 83% and

92% predictive accuracy respectively compared to 58% and 59% respectively achieved

by the rank-normalized-gene-feature classifier. The ESSNet classifier shows predictive

accuracy very close to the PFSNet classifier. Its predictive accuracy is about 94% for

the DMD/NOR dataset, 85% for the ALL/AML dataset, 83% for the BCR-ABL/E2A-

PBX1 dataset, 85% for the Lung cancer dataset and 96% for the Ovarian cancer dataset.

These results clearly show the superiority of the features extracted using PFSNet and

ESSNet. To further demonstrate that subnetwork acts as better features, we extract

and use the gene-expression profiles of those genes that belonged to the subnetworks

predicted by ESSNet. We find that predictive accuracy drops to close to 50% for all the

datasets we observe; cf. fig. 5.15. This suggests that the genes by themselves are not a

good discriminator for classification but rather the subnetwork scores that are logically

and biologically motivated serve as better features for the discriminatory task.
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Figure 5.14: Predictive accuracy of gene-feature-based classifier compared to PFSNet
and ESSNet classifier.
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Figure 5.15: Predictive accuracy of gene-feature-based classifier using genes extracted
from subnetworks in ESSNet; demonstrating that genes in the subnetworks by them-
selves are not a good discriminator for classification and the methodology behind our
subnetwork feature scores detailed in sections 5.2.1 and 5.2.2 is key to the better per-

formance.

5.3.2.4 Effects of sample size on predictive accuracy of PFSNet and ESSNet

We reduce the sample size of the training datasets to examine the effects of sample size

on predictive accuracy of PFSNet classifier and ESSNet classifier respectively. For each

dataset, we partition the training dataset into subsets of smaller sample sizes ranging

from 2 to 10 for each phenotype. This training dataset is then used to build a Näıve

Bayes classifier based on the PFSNet and ESSNet subnetwork features described in

section sections 5.2.1 and 5.2.2. The predictive accuracy is then computed using a full
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independent test dataset. As there are many possible ways to partition the training

dataset, we report the average predictive accuracy over all the subsets for a particular

sample size; cf. fig. 5.16. The PFSNet classifier’s predictive accuracy drops when the

training dataset sample size is reduced, achieving 58% predictive accuracy when sample

size is 2 and 81% when sample size is 10. In contrast, the ESSNet classifier is more

robust to smaller training datasets, achieving 68% when sample size is 2 and 90% when

sample size is 10.
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Figure 5.16: Predictive accuracy of PFSNet and ESSNet classifier when the training
dataset is partitioned into smaller subsets and tested on a full independent dataset.

5.3.3 Unsupervised clustering

In order to further show that the subnetworks chosen as features provide good discrim-

inatory power, we demonstrate that the subnetwork scores also do well in unsupervised

learning. When the class labels are hidden from the learning model, subnetwork scores

are clustered together based on their phenotype. Fig 5.17 shows hierarchical clustering

performed on the various datasets using subnetwork features.

5.4 Caveats

As some of the features for the ESSNet classifier are derived from computing a t-statistic

using pair-wise gene-expression differences within a subnetwork, the pair-wise differences
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Figure 5.17: A figure depicting heirarchical clustering performed on the patient’s
subnetwork scores.

might not be independent of one another. One possible improvement is to select specific

samples that are used in computing the gene-expression differences so that the differences

are independent of one another.

We use the subnetwork features to generate 4 clusters of datapoints representing the

distributions ∆(D−¬D)(S), ∆(¬D−D)(S), ∆(D−D)(S) and ∆(¬D−¬D)(S), on the training

dataset. A sample is chosen for each of these 4 clusters based on the smallest Euclidean

distance to the respective centroid of these 4 clusters. Hence, the features in eqs. (5.13)

to (5.16) are modified as:

ESSNet featurepx,S
′

7 = T − statistic(∆(¬D)(S, px),∆(¬D)(S, py1)) (5.18)

where py1 is a sample from the D phenotype whose features have the smallest Euclidian

distance to the ∆(D−¬D)(S) centroid.
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ESSNet featurepx,S
′

8 = T − statistic(∆(¬D)(S, px),∆(¬D)(S, py2)) (5.19)

where py2 is a sample from the ¬D phenotype whose features have the smallest Euclidian

distance to the ∆(¬D−¬D)(S) centroid.

ESSNet featurepx,S
′

9 = T − statistic(∆(D)(S, px),∆(D)(S, py3)) (5.20)

where py3 is a sample from the D phenotype whose features have the smallest Euclidian

distance to the ∆(D−D)(S) centroid.

ESSNet featurepx,S
′

10 = T − statistic(∆(D)(S, px),∆(D)(S, py4)) (5.21)

where py4 is a sample from the ¬D phenotype whose features have the smallest Euclidian

distance to the ∆(¬D−D)(S) centroid.

When these alternative feature scores are used to built the classifier, the predictive

accuracy are more or less consistent with the classifier built on the unmodified feature

scores, achieving about 97% for the DMD/NOR dataset, 88% for the ALL/AML dataset,

85% for the BCR-ABL/E2A-PBX-1 dataset, 85% for the Lung cancer dataset and 92%

for the Ovarian cancer dataset; cf. fig. 5.18

5.5 Discussion

Traditional methods of classifying patients using their gene-expression profiles are unable

to accurately predict the outcome of new batches of patients partly because of the

inherent batch effect. Methods that try to tackle this issue by normalizing the gene-

expression profiles also do not consistently achieve good results. Instead, our method
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Figure 5.18: Predictive accuracy of the ESSNet classifier using the modified subnet-
work features. The green and red bars represent an increase and decrease in predicitive
accuracy when the modified subnetwork features are used (cf. eqs. (5.13) to (5.16))

compared to the original subnetwork features.

does not rely directly on gene-expression values as feature values but transforms these

gene-expression values into a different feature space defined by subnetworks, previously

discussed in chapters 3 and 4. By doing so, we circumvent the batch effects and are

able to achieve good prediction results. In the case of ESSNet, we have also shown that

these features still remain relevant when the training data is small.

Isolating disease-relevant subnetworks from pathways offer many insights to researchers.

The machine-learning methods employed in this chapter lends further confidence that

the subnetworks generated by both PFSNet and ESSNet are not only explanatory to

the cause of disease but are also discriminatively accurate when they are used to identify

unlabeled patients given their gene-expression profiles.
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Chapter 6

Discussion and Future Work

6.1 Conclusions

High-throughput microarray experiments are often analyzed to obtain useful biological

insights. Many modern methods incorporate biological pathways into their analysis to

provide better biological interpretability of the results, but many of these methods are

unable to reproduce their results when applied to an independent dataset describing the

same disease. They fare even worse in datasets with small sample sizes.

In our first contribution, as discussed in Chapter 3, we investigated ways to relax the

over-reliance of hard thresholds imposed by SNet (Soh et al., 2011), one of the methods

that have previously demonstrated high levels of subnetwork-level agreement between

two batches of data belonging to the same disease phenotype. This is crucial because

the recommended thresholds to use may not always yield optimal results in different

datasets. Although it may be possible to experimentally obtain optimal thresholds,

an optimization task is cumbersome, and may lead to over-tuning of the parameters.

In contrast, our method relies on a fuzzy function that adapts to the majority-voting
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feature of SNet and is perfectly able to emulate SNet. This, coupled with a more robust

significance test, by computing a distribution of the differences in the two subnetwork

scores and testing if this distribution has a mean around zero, enables us to produce

even higher subnetwork-level agreement than SNet as well as other previously analyzed

methods. The higher subnetwork-level agreement that results from our method, PFSNet

(Lim and Wong, 2014), lends more confidence to the real cause of disease.

Our second contribution, described in chapter 4, extended the microarray analysis using

pathway databases to situations where the dataset contains only a small number of sam-

ples. This is particularly novel and useful because many laboratories are constrained to

a small number of samples for various reasons but contemporary methods for analyzing

these data perform poorly. This is because most methods focus on differentiating two

phenotype scores but a small sample of scores may not be truly representative of the

population. We differentiated ourselves from other methods by reasoning about a dis-

tribution computed from the difference in gene-expression values of the two phenotypes

in isolated subnetworks instead. In addition, unlike other contemporary methods like

ORA (Khatri and Drăghici, 2005), GSEA (Subramanian et al., 2005) and DEAP (Haynes

et al., 2013) that rely on a pre-computing every genes’ differential expression, we gener-

ate subnetworks around high-ranking genes and are less susceptible to the high variance

of t-test p-values in small-sample-size datasets. Because of these reasons, we are able

to detect consistent subnetworks, using our method ESSNet, even in small-sample-size

datasets with the help of biological pathways.

Our final contribution, as detailed in chapter 5, uses the subnetworks predicted in the

previous two chapters as features in a machine-learning algorithm. We demonstrate that

traditional methods that perform feature extraction on individual genes are not good

because of two reasons. 1) Their selected genes are not consistently detected in different

batches of data of the same disease type. 2) They have poor cross-batch classification
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accuracy. This is in part due to batch effects, a phenomenon where the results are cor-

related to technical sources of variation instead of biological outcome. Modern methods

try to overcome this problem by normalization but this did not consistently deliver good

results in the datasets that we tested. In contrast, we once again differentiated ourselves

by using the extracted subnetwork features and their scoring methodology, derived from

PFSNet and ESSNet, which allowed us to achieve much better cross-batch classification

accuracy than many other methods.

6.2 Future work

Our results motivate many other interesting and broader areas of research, which are

elaborated below.

6.2.1 Multi-omics analysis

One way that could further validate our methods is to integrate the analysis of other

sources of data. For example, researchers may identify causal genes by looking at

single-nucleotide polymorphism (SNPs), methylation sites or copy-number variations.

However, these analyses detect millions of mutations or methylation sites because the

experiment is done at single-nucleotide resolution. Using our subnetworks as a basis for

this analysis could potentially narrow down this huge list of mutations to a handful. In

addition, one could also make a conjecture that the influence of these SNPs would lie on

the boundary of the subnetworks, triggering a cascade of events that explain the onset

of disease. Thus, multi-omics analysis serves two purposes. On one hand, a large list

of predictions from other analysis can be narrowed down. For example, in fig. 6.1, the

number of differentially-methylated sites detected by t-test is greatly reduced. On the

other hand, our subnetworks can be validated with additional supporting information.
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For example, fig. 6.2a shows the methylation sites of a gene in an example subnetwork in

liver cancer that influences a cascade of genes leading to the compromise of the hepatic

tight junction in fig. 6.2b.

0

30000

60000

90000

120000

Total Significant Methylation sites Narrowed down by PFSNet

831

Figure 6.1: By looking at the genes in the induced subnetworks predicted by PFSNet,
we are able to narrow down a huge list of differentially methylation sites to a handful

and more insightful genes for further analysis.

6.2.2 Applications to RNA-seq data

One of the newer technologies in measuring gene-expression profiles is the use of next-

generation sequencing. In RNA-seq, transcribed genes are fragmented into pieces and

tagged so that sequencing can identify as well as quantify the gene’s expression. Al-

though RNA-seq data is less widely available due to experimental costs, it offers a wider

dynamic range, resulting in gene-expression profiles that have high granularity. It also

has increased sensitivity since it is able to better detect genes expressed at very low

levels. It is possible to use RNA-seq data as inputs to PFSNet since it is robust to the

inclusion of lowly-expressed genes. In addition, because RNA-seq experiments are more

costly, ESSNet would be a good choice to analyze small-sample-size datasets.

6.2.3 Utilizing directional gene relationships

So far our methods regard the biological pathways as an undirected graph. However,

in certain cases, biological events are not merely gene interactions but could indicate a
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(a)

(b)

Figure 6.2: An example of validating PFSNet subnetworks via multi-omics data. a) the methylation sites circled in red are highly
correlated in the disease phenotype and are also detected in one of the subnetworks predicted by PFSNet (Image reproduced from USCS
Genome Browser). b) the hyper-methylation of subnetwork genes highlighted in blue effect a cascade of genes leading to the compromise

of the hepatic tight juction, possibly explaining the metastatis of liver cancer.
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transfer of molecules in metabolic pathways or a transfer of signals in signaling pathways.

It might be possible to also take into account the directionality of the edges within

such biological pathways so that the relationship between genes within the significant

subnetworks are also consistently preserved across the datasets.
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