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Summary 

This thesis is a formal study of an actual problem faced in the industry for 

crate sizing, inventory and packing. The problem is relevant because many 

manufacturers face the problem of proper planning, operations and evaluation 

of their product packaging and packing processes. Since most products will 

need to be packed before being distributed to customers, inefficient practices 

will lead to higher cost and time expended. In this final process, many aspects 

of the way the products are packed can be studied and improved. The 

industrial crate sizing problem addresses the problem of determining what are 

the optimal crate sizes and also how many types of crates are ideal. There is no 

formal study to scientifically investigate the crate sizing problem yet. 

Therefore, in this study, we first define and formalize the problem of crate 

length optimization faced by the industry, and represent it as an MIP model. 

The second problem is extended from the crate length optimization problem 

which considers the inventory and we formulate it as a non-linear MIP model. 

The tradeoff between inventory cost and wastage cost from fitting products 

into crates is considered in the objective function. The non-linear MIP model 

is generally difficult to solve, but by exploiting the structure of the problem, 

we are able to solve it using dynamic programming because the problem has 

the special property of Bellman’s Principle of Optimality. We further extend 

the crate size optimization problem by considering the width and height 

dimensions of the crate in addition to the length dimension. In this problem, 

the products are in rolls; hence the crates are rectangular boxes with square 

cross section which means the crate width and height are the same. The 

problem is non-trivial and cannot be solved using any solvers for a reasonable 
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size problem. Enumeration method can only be used to solve small size 

problems but is computationally intractable for larger problems. Therefore we 

propose using a Hungarian based genetic algorithm to solve the problem. 

Hungarian method is used to preserve the good neighbourhood structure which 

is required for genetic algorithm to perform well. When the parents are 

selected for crossover, it is treated as an assignment problem where the gene 

of a parent is matched to the closest gene of another parent before applying the 

crossover operations. In addition to the crate sizing and inventory problem, 

this study also looks into the packing of the crates into containers. After 

finding the crate size and crate types, we also need to pack the crates into 

shipping containers for distribution. We solve the problem of packing crates 

into containers by using a bin packing algorithm with an improvement 

heuristic. This approach utilizes the information of the solutions from the 

previous iteration to create good potential columns for the next iteration. 

Overall, this study has covered several of the important aspects which can be 

improved for a real industrial-based problem and also proposes different 

methods to tackle and solve the crate sizing, inventory and packing problem.  
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1 Introduction and Overview 
 

Nearly every product has to be packed and transported in the course of its 

distribution process. Although this is typically the last operation in any 

manufacturing activity, it plays a vital role in ensuring that the product is 

delivered to the customer in sound condition.  Packing and packaging serves 

several purposes such as protection, identification, transportation, storage and 

stacking. The packaging should be secure and able to protect the goods 

adequately during transportation at suitable cost. However, there are many 

challenges encountered in various stages such as planning and evaluation, 

packing materials, space utilization, warehouse and storage and freight issues 

in order to achieve minimum cost. Specifically, packaging-wise, decisions 

have to be made regarding what packaging types to design as well as which 

sizes to order and stock in order to cater to demand variability. Packing-wise, 

decisions also have to be made on how to pack into the shipping containers.  

A research was conducted by Peerless Research Group on behalf of Logistics 

Management and Modern Materials Handling magazines for Packsize 

International in June 20131. Referring to Figure 1.1, it is revealed that 38% of 

the companies noted that their packaging and shipping costs have increased by 

5% to 20% in the past year while 53% saw no change and a small minority of 

9% saw a decrease. In addition, almost all of the companies (94%) use 

different sizes of packaging and the top three expenses involved are packaging 

materials, labour and shipping costs. It can be seen that packaging and 

shipping costs are a cause of concern for many manufacturers.  

1
Source: http://www.mmh.com/images/site/Packsize_Brief_F.pdf 
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There are many aspects of packaging and packing that can be studied in order 

to improve the process and keep costs as low as possible. As such it is 

worthwhile to study the optimization of packaging and shipping processes to 

increase overall efficiency and reduce total cost.  

 

Figure 1.1 Survey on annual shipping and packaging costs in 2013 

 

1.1  Background and Motivation 

The research is based on a real industrial problem faced by Company S, a 

multinational corporation in the applied chemistry industry. Company S is the 

leading manufacturer in performance films which serve as interlayers for 

laminated glass, automobile and building window films, protective and 

conductive films and others used in a myriad of architectural and industrial 

applications. Their main products are polyvinyl butyral (PVB), ethylene vinyl 

acetate (EVA), and thermoplastic polyurethane (TPU) which are sold 

worldwide from their headquarters based in USA, Belgium, Brazil and 

Shanghai.  

38% 

53% 

9% 

Annual Shipping and Packaging Costs 

Increased

Stayed the same

Decreased

http://en.wikipedia.org/wiki/Polyvinyl_butyral
http://en.wikipedia.org/wiki/Ethylene_vinyl_acetate
http://en.wikipedia.org/wiki/Ethylene_vinyl_acetate
http://en.wikipedia.org/wiki/Thermoplastic_polyurethane
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Due to the nature of the products, the chemical films are sold in cylindrical 

rolls of various lengths and thicknesses. The rolls are customized according to 

customer’s specifications. They are also heavy and long hence the rolls are 

packaged in big wooden crates which are expensive. The wooden crates serve 

as protection from damage during the transportation process. Besides 

protection, the crates enable easy identification, lifting by forklift trucks and 

storage and warehousing. Company S stocks and uses a number of standard 

crate sizes for roll packaging. Currently, the company has designated four 

types of crates to cater to the demand. Because there are only a few standard 

crate sizes compared to the number of actual demand of roll sizes, there is 

bound to be empty space inside the crates once the rolls are fitted into 

individual crates. Each roll is assigned to a standard crate size which can fit 

the roll with the least amount of space wastage. Inside the crates, the empty 

space between the roll length and the crate end is filled with Styrofoam 

paddings to disallow the roll from movement and to prevent damage during 

transportation. 

When the rolls are finished packing into crates, they are then loaded into 

shipping containers ready for delivery to customers by sea. There are a few 

choices of shipping containers, namely the 20’ and 40’ containers for regular 

type of rolls. For rolls that require refrigeration, there are reefer containers.  

Figure 1.2 Product packing hierarchy 

 

Roll Crate Container 
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The product is actually a large sheet of thin film before it is rolled up. After 

rolling the film, the width of the film becomes the roll width whereas the 

length of the film makes up for the rolled up diameter or roll height. The 

length of the film can be customized to a few types of cut length.  The product 

is sold and transported as cylindrical rolls. Together, both the roll width and 

roll diameter/height dimensions specify the roll type ordered by customers. 

Customers can order one or more types of rolls and the quantities needed for 

each type. 

 

Figure 1.3 Product dimensions before and after rolling 

When the rolls are fitted into the crates, it should be noted that the length of 

the roll corresponds to the rolled up diameter of the roll and the diameter of 

the roll depends on the thickness of the film type. Because the diameter of the 

roll is a circle, the cross sectional area of a crate is a square. It can be assumed 

that the crate height and width are equal to accommodate the cylindrical roll. 

Meanwhile, the roll width is the dimension that is parallel to the length of the 

crate. 

 

Figure 1.4 Packaging of roll in crates 

Roll width Width 
 

Length 

Roll 

diameter 

  

Film 

Crate width 

Crate height Roll Padding  

Top view of inside the crate 

Crate length 

Isometric view of the crate 
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The crates are packed into the container. Because most of the crates are very 

long and do not fit across the width of the container, they are packed along the 

length of the container. Depending on the dimensions of the crates, rotations 

can be allowed to maximize on space utilization. Empty space inside the 

container is filled with plastic air bags to cushion the impact from 

transportation so as to avoid damage to the wooden crates. Unutilized space 

and inefficient packing can lead to unnecessary wastage in total freight cost. 

Depending on the size and type of customer demand, each order is loaded into 

as few containers as possible to save on shipping cost. 

 

Figure 1.5 Packing of crates in shipping containers 

From the abovementioned, the research is motivated to provide a more 

efficient solution to strategize packing problems. In the first packing step of 

packaging rolls into crates, there are decisions on planning the standard crate 

sizes and the number of crate types. If the crates are too big, there will be a 

waste of crate materials, space inside the crates and eventually in the shipping 

containers. Also, the number of crate types can have a huge impact on the 

wastage cost. If there are many types, the rolls will fit better but there will be 

higher stocking and inventory costs to cater to demand uncertainty. On the 

other hand, if there are few types, the rolls will fit worse but there will be 

savings in inventory cost. On the practical side, it makes sense to have a 

 
  

  

  
  

  
    

  

  

Container length 

Container width 

Container height 
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manageable number of crate types in order to reduce complexity and handling 

of operations. 

Currently the usual industrial practice involves reviewing sizes from historical 

data and in many instances, experience and intuition by industry experts play 

an important role. One method is to determine the sizes with the highest 

demands and assign one size for each peak demand. Another method is to 

divide the demand sizes into a few equally spaced intervals. The current 

practices have certain limitations as they do not consider inventory cost. There 

is no formal study on investigating the choice of crate sizes in order to 

minimize total costs and also the ideal number of crate sizes. The optimization 

of the crate sizes is interesting enough to warrant a formal study to find a 

compromise between space wastage and inventory cost.  

The problem is challenging because the crates have three dimensions i.e. the 

crate length, width and height. Fortunately, due to the constraints of the 

problem, the crate width and height can be treated as equal. Essentially, 

solving the two dimensions is analogous to solving all three crate’s 

dimensions. Beyond the packing of rolls into crates, there is potential savings 

in the containerization process as well. Container loading can be improved to 

better pack the crates into the shipping containers. 

The questions we will like to address in this research are as follows: Firstly, 

what type of crates will be suitable for packing the rolls in and what sizes they 

should be, secondly, how many types of crates would be optimal and thirdly, 

how to pack the crates to the containers so as to minimize total cost from the 
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wastage cost of the packing of rolls into crates and subsequently into 

containers and also inventory and shipping cost.  

The questions above are addressed to solve the overall problem. Initially, the 

optimization of crate size is built from the basic problem involving a 

deterministic problem of finding optimal crate lengths only (as crate length is 

the naturally the longest dimension of the three dimensions and highest 

contributor to the total loss) with a mixed integer programming problem 

formulation (MIP). However, given demand uncertainty, the MIP is not easy 

to solve and as such, dynamic programming approach is applied to the 

problem to solve both the crate lengths and crate types optimally. Thereafter, 

the problem is further extended to find the optimal crate dimensions for crate 

length, width and height simultaneously. Genetic algorithm approach is 

employed in this extended problem. Finally, an improvement method is 

applied to improve the packing process of crates into shipping containers for 

sea freight.  

In this research thesis, we have made several contributions namely:  

1. We are able to define and formalize the problem of crate length 

optimization faced by the industry, and represent it as an MIP model. 

Using the historical data, we are able to find the optimal crate lengths 

given the number of crate types.  

2. We extend the problem by considering demand uncertainty and 

introduce the safety stock consideration into the problem. While the 

problem can be modelled as a non-linear MIP model, it has a good 

property that exhibits the Bellman’s Principle of Optimality.  This 
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allows the problem to be solved efficiently by using dynamic 

programming.  

3. We further extend the crate size optimization problem by considering 

width and height dimensions of the crate in addition to the length 

dimension. As the width and the height are the same, the problem can 

be modelled as a two dimensional problem. The problem is non-trivial 

and cannot be solved using any solvers for a reasonable size problem. 

We propose a Hungarian-based genetic algorithm to solve the problem. 

Hungarian method is used to preserve the good neighbourhood 

structure which is required for genetic algorithm to perform well.  

4. We solve the problem of packing the crates into containers by using a 

bin packing algorithm with an improvement-based heuristic approach. 

This approach utilizes the information of the solutions from the 

previous iteration to create good potential columns for the next 

iteration.  
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1.2 Organization of the Thesis 

 

This thesis consists of 6 chapters. The rest of the thesis is organized as 

follows: 

Chapter 2 first discusses related works and literature review of the crate sizing 

problem, also known as box sizing problem, and then the second part reviews 

the bin packing problem (BPP).  

Chapter 3 describes the crate sizing problem in one dimension, i.e. the crate 

length with and without inventory cost consideration. The problem is defined 

and then solved using integer programming and dynamic programming 

approaches.  

Chapter 4 extends the crate sizing problem from Chapter 3 where both crate 

length and crate width/height are now considered for optimization. In this 

extended problem, genetic algorithm approach is used to find the optimal 

solution for crate dimensions with inventory cost consideration. 

Chapter 5 delineates a packing algorithm to pack the crates into shipping 

containers. The recommended approach is layer packing using packing 

heuristics with improvement-based approach for improvement.  

Finally, Chapter 6 examines some potential future research directions and 

conclusions derived from the study of this work.  
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2 Literature Review 
 

There are many aspects of logistics in the packaging, packing processes and 

delivery of products to customers ranging from packaging type and sizing, 

warehouse and storage, to bin packing or containerization into shipping 

containers. This segment is organized into two parts, where we first review the 

crate sizing problem and related problems then bin packing problem in 1D 

(one-dimensional), 2D (two-dimensional), 3D (three dimensional) and others.  

2.1 Crate Sizing Problem 

 

From the literature, there has been research on the packaging problem and 

related problem such as box sizing or crate sizing problem. Some related 

works in the literature include the size selection problem, standardization, and 

assortment or catalogue problem.  

In the standardization problem, a standard size is smaller or larger than the 

desired size on the control dimension. If the dimension is not the same, there is 

an adaptation loss. The paper by (Bongers, 1982) and book by (Bongers, 1980) 

discussed many ways of tackling the standardization problem such as 

recursion formula for loss function and adaptation loss. In an applied garment 

industry problem, (Tryfos, 1985) tackled the issue of measurement of a given 

number of sizes to apparel in an effort to minimize discomfort and maximize 

expected sale.  The author presented an algorithm to design for optimal sizing 

system based on normal distribution of the population sizes by developing the 

general necessary conditions for optimization via grouping in one controlled 

body dimension mainly in one dimension. However the result was not 
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conclusive. (Pentico, 1986) authored a comment on Tryfos’ paper where he 

noted that the problem of optimal sizing is not a new one, but rather it is a 

special case of the assortment and catalogue problem which has been 

researched. Thus, (Vidal, 1994) extended the study and presented an algorithm 

to determine the numbers and dimensions of sizes of apparels to maximise 

profit.  The author developed an interactive one variable bisection search 

algorithm that solves the problem by giving the optimal solution.  

Meanwhile, the assortment or catalogue problem is to decide a limited subset 

of a large discrete set of possible sizes to stock. Given a set of sizes of 

products and their demands, generally only a selected subset of box sizes will 

be stocked due to factors such as space and inventory cost. (Pentico, 2008) in 

his paper presented a review of assortment or catalogue problem works 

published over the last 50 years from 1957 to 2007. The author classified the 

studies into one dimensional and multi-dimensional where different 

methodologies are used. Many of the research works also used heuristics to 

solve the problem.  Apart from that, the author in his paper also touched on 

some related problem such as standardization, substitution and revenue or 

yield management. (Hinxman, 1980) authored a survey paper on trim-loss and 

assortment problems.  

(Kasimbeyli, Sarac, & Kasimbeyli, 2011) presented a one dimensional cutting 

stock and assortment problem where the total number of roll sizes to be 

stocked was determined using linear integer programming and then the cutting 

stock patterns required to satisfy the demands were determined. However, the 

problem differs from our problem because the rolls are cut into different sizes 

in their problem whereas we only assign one roll to each crate to find the loss 
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in length in the crate length optimization model with inventory consideration. 

(Yanasse, 1994) proposed a search strategy for a 1 dimensional assortment 

problem. The strategy uses and updates a lower bound contour until a 

satisfactory solution is achieved. (Gasimov, Sipahioglu, & Saraç, 2007) 

presented a 1.5 dimensional cutting stock and assortment problem. A 1.5 

dimensional cutting stock problem is where the length of a sheet is sufficiently 

large or considered infinite. The authors presented an MILP and new conic 

scalarization. (Li & Chang, 1998) proposed a new model to reformulate the 

assortment problem with less binary variables. (Li & Tsai, 2001) presented a 

fast algorithm to solve the two dimensional assortment problem and proved 

that it is computationally efficient. (Li, Chang, & Tsai, 2002) proposed a 

piecewise linearization technique to find the approximate global optimization 

for assortment problem. (Lin, 2006) presented a genetic algorithm for solving 

the two dimensional assortment problem. (Baker, 1999) proposed a 

spreadsheet model to determine which sizes to stock and formulated it as a 

shortest or longest path problem on a directed acylic network. (Gemmill, 

1992) introduced a genetic algorithm to solve the assortment problem. In an 

industrial application, (Rajaram, 2001) considered the assortment problem in 

fashion planning to choose a mix of the merchandise to maximize expected 

profit and determine the inventory breadth and depth. Additionally,  (Flapper, 

González–Velarde, Smith, & Escobar-Saldívar, 2010) discussed the 

assortment of products to stock if customers only order if the delivery is on 

time and maximize profit by considering inventory cost, setup cost and others. 

(Chen & Lin, 2007) approached the product assortment problem using a data 
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mining method to decide on which products to display and their ideal shelf 

life. 

The crate sizing problem can also be related to the box sizing problem. One of 

the earliest works on box sizing is by (Wilson, 1965) who presented a paper 

with the objective to select the optimum number and sizes of boxes which can 

minimize the total system cost where an integer programming formulation was 

given. The author used heuristics to generate the box sizes. The paper by 

(Korchemkin, 1983) also presented a heuristic approach but by first dividing 

the problem into smaller sub-problems to solve a minimum-cost packaging 

problem. Using genetic algorithm, (Wang, Wang, Ni & Cheng, 2011) 

introduced a genetic search algorithm model named Multi-parameter 

Optimization Design System of Package Container Size to solve the packaging 

problem that reduces logistics cost by determining the optimum inside and 

outside of the packages. The authors used genetic algorithm to search the 

optimal  inside and outside package sizes during the packaging process to 

efficiently reduce the waste of space for container vessels, rate of 

transportation and quantity of storage resources. In an industrial based 

problem (Leung, Wong, & Mok, 2008) the authors presented a box sizing 

problem whereby they used genetic algorithms to design make-to-order carton 

sizes to fit products of different sizes in the apparel industry with the objective 

to minimize total distribution and packing costs. The problem presented differs 

from this paper as they pack multiple items into each carton whilst there is 

only one roll to each crate in our problem.  (Wong & Leung, 2006) presented a 

box sizing problem whereby they would like to search for the best box design, 

the optimal set of cartons for combined order which minimizes the unfilled as 
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well as the number of carton types in the apparel industry with the objective to 

minimize total distribution and packing costs. Similarly, (Xu, Qin, Shen, & 

Shen, 2008)  presented an optimization framework to the box sizing problem 

caused by supply chain strategy changes using the Cut/Pack/Select (CPS) 

framework which decomposes the problem into several sub problems for 

simplicity. The authors used a combination of the CPS framework and IP 

model to determine the box sizes before the demand of product is fixed with 

the use of an existing heuristic algorithm, the container loading problem.  

Given the historical demands, the framework uses a top down approach and 

determines the sizes of the inner and outer boxes, the matching of the products 

to their corresponding boxes, and uses container loading to load the boxes into 

the container for shipment. Their problem differs in that there are inner and 

outer boxes as the problem involves packing multiple small products into inner 

boxes and then packing these inner boxes into outer boxes before being 

consolidated for shipping in containers. From a different perspective, (Zhang, 

Yuan, & Yuan, 2012) presented an algorithm to generate a function to 

determine expected waste space versus box size for box optimization. In order 

to do so, the authors’ research showed the correlation between average waste 

space per box and box sizes for online next fit bin packing by enlarging 

interval distribution.  

2.2 Bin Packing Problem 

 

The sizes of the packaging boxes will impact the packing patterns and 

utilization of shipping containers for shipping to customers worldwide. It is 

closely related to the bin packing problem where the objective is to lower 
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shipping costs. Cutting and packing problems is an actively researched topic. 

The paper by (Dyckhoff, 1990) provided a good typology of the various 

cutting and packing problems. (Wäscher, Haußner, & Schumann, 2007) 

produced an improved typology and bibliography of research applications.  

(Oliveira & Wäscher, 2007) discussed the many ways how cutting and 

packing problems can be modelled in LP formulation. There are two closely 

related problems called the cutting stock and bin packing problems because 

the difference is that in cutting stock, there are unlimited stock (bin) sizes to 

cut from whereas in bin packing, there are limited bins to pack into. Each 

problem is the reverse of the other.  

One of the more prominent cutting and packing problems is cutting stock. 

(Coverdale & Wharton, 1978) and (Haessler & Sweeney, 1991) covered on the 

cutting stock problems and ways of solving them. (Gilmore & Gomory, 1961) 

presented the one dimensional cutting stock problem solution with LP and 

column generation,  then (Gilmore & Gomory, 1963) reformulated the LP,  

proposed a rapid algorithm for knapsack problem, and modelled a paper mill 

problem with constraints modified for different parent length rolls and cost. 

(Gilmore & Gomory, 1965) extended the LP for two or more dimensions in 

addition to the corrugated box problem and sequencing problem. (Dyckhoff, 

1981) presented a new linear programming approach as compared to the 

classical model from Gilmore & Gomory. (Sinuany-Stern & Weiner, 1994)   

discussed the one dimensional cutting stock problem using two objectives. In 

addition, (Vance, Barnhart, Johnson, & Nemhauser, 1994) solved the binary 

cutting stock problem by column generation and branch-and-bound. (Cui & 

Zhou, 2002) discussed on the special case of generating optimal cutting 
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patterns for single-size rectangles. (Alves & Carvalho, 2008) presented an 

exact algorithm to solve the ordered cutting stock problem.  

Besides cutting stock approach, bin packing problem is also widely 

researched. Exact solutions can be obtained via branch-and-bound algorithm 

as in (Martello & Vigo, 1998) and (Martello, Pisinger, & Vigo, 2000) for 2D 

and 3D problems respectively. The former work performed worst case analysis 

and found new lower bounds for the NP hard problem. It also obtained exact 

solution for cases of up to 120 pieces. Extension of this work to 3D managed 

to solve cases of up to 90 pieces.  

There are a variety of approaches to cutting and packing problems. Two of the 

earlier heuristics for packing include first fit decreasing (FFD) where items are 

first placed in order of non-increasing weight and best fit decreasing (BFD) 

where items are put into best-filled bin that can hold them. (Berkey & Wang, 

1987) also discussed heuristics to solve the packing problem with finite next-

fit, finite first-fit, finite best-strip, finite bottom-left and hybrid first-fit 

heuristics. Many authors also tackle the packing problems in layers, shelves 

and stages. (Caprara, Lodi, & Monaci, 2005) introduced the first 

approximation scheme APTAS for two-dimensional shelf bin packing.  

Many approaches using different types of algorithm and heuristics were 

developed to solve one dimensional bin packing problems. (Abidi, Krichen, 

Alba, & Molina, 2013) developed a genetic algorithm for the one dimensional 

bin packing problem. By using greedy algorithm, the first fit heuristics and 

randomly, the algorithm generates an initial population of chromosomes and 

performs a series of perturbations to improve load of all bins sequentially. On 
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the other hand, (Toledo Suarez, Gonzlez, & Rendon, 2006) introduced a 

heuristic approach using interactive algorithm for offline one dimensional bin 

packing problem. The authors’ algorithm is successful with the design of the 

algorithm bounded by the performance of the point Jacobi method by taking 

the problems as a matrix.  (Bhatia, Hazra, & Basu, 2009) however presented a 

study on better fit heuristics for one dimensional packing where an existing 

object from a bin is replaced when the object can fill the bin better than the 

object replaced. The proposed algorithm behaves as offline as well as online 

heuristics but performs better than offline best fit decreasing heuristics and 

also online best fit heuristics. 

Other methods such as stochastic approach for one dimensional bin packing 

were also studied by (Berkey & Wang, 1991) who presented a systolic based 

parallel approximation algorithm that obtains solution for one dimension bin 

packing problem. The authors’ algorithm has an asymptotic error bound of 1.5 

and time complexity of Θ(n). From the author’s experimental study, the 

heuristic offers improved packing and execution performance over 

parallelization of two well-known serial algorithms. Similarly, (Anika & Garg, 

2014) presented packing problem solution by parallelizing generalized one 

dimensional bin using MapReduce. This optimization is attained by packing a 

set of items in as fewer bins as possible. The efforts have been put to 

parallelize the bin packing solution with the well-known programming model, 

MapReduce which is supportive for distributed computing over large cluster 

of computers. The authors have proposed two different algorithms using two 

different approaches, for parallelizing generalized bin packing problem. The 

results obtained were tested and it was found that by working on the problem 
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set in parallel, significant time efficient solutions for bin packing problem 

were obtained. Aside from that, (Kao & Lin, 1992)  introduced a new 

stochastic approach called annealing genetic algorithm for one dimensional 

bin packing problem where simulated annealing is used for exhaustive and 

parallel treatment of the problem and to increase the probability of finding 

global minimums. The results showed that the solution quality of this 

approach is equal if not better than first-fit-decreasing with no non-monotone 

anomaly found. 

Using heuristics, many similar approaches for one dimensional bin packing 

have also been used for two dimensional bin packing problem for 

optimization. (Bansal, Lodi, & Sviridenko, 2005) presented a generalization of 

the classical bin packing problem with orthogonal packing without rotation 

using guillotine cuts. Guillotine cuts is a well-studied and frequently used 

constraint where every rectangle in the packing must be obtainable by 

recursively applying a sequence of edge to edge cuts parallel to the edges of 

the bin. The author proved that guillotine two dimensional bin packing 

problem admits an asymptotic polynomial time approximation scheme which 

is in sharp contrast with the fact that general two dimensional bin packing 

problem is APX-hard. The author was also able to show a structure of 

approximating general guillotine packing by simpler packing which could be 

of independent interest. 

(Bekrar & Kacem, 2008) explored the use of two heuristics for two 

dimensional bin packing using best shelf and non-shelf heuristic filling.  Using 

strip and bin packing with guillotine cuts by packing a set of rectangular bins 

on one strip of width W and infinite height or bins of width W and height H, 
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the items are packed without overlapping and need to be extracted by a series 

of cuts that go from one edge to the opposite edge (guillotine constraint). The 

results obtained by the author shows that the two heuristic algorithms are 

complementary.    

(Pargas & Jain, 1993) presented a stochastic optimization approach to a two 

dimensional bin packing problem for a rectangular area similar  to genetic 

algorithm or simulated annealing algorithm. Using a parallel processing 

algorithm with processes of evaluating the length of layout; near perfect load 

balancing is achieved with a minimum of 80% efficiency or utilization based 

on bin length.  

(Omar & Ramakrishnan, 2011) proposed evolutionary particle swarm 

optimization algorithm (EPSO) for solving non-oriented two dimensional bin 

packing problem. The author deals with a set of rectangular pieces that need to 

be packed into identical rectangular bins where the rectangular pieces are only 

allowed to rotate 90⁰ without overlapping. Although comprehensive testing 

methodology was presented, the results only indicated improved initial results 

and the author is currently working on improvement for the proposed EPSO.   

On the other hand, (Cao & Kotov, 2011) presented a two dimensional bin 

packing problem to minimize the number of large rectangles for packing a set 

of small rectangles using best fit algorithm. The author was able to prove that 

this heuristic approach obtains better results and is faster compared to classical 

bin packing algorithm. 

Three dimensional packing problem consists of packing a set of boxes into a 

minimum number of bins. To solve three dimensional bin packing problem, 
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many methodologies using a hybrid approach were applied. (Lin, Foote, Pulat, 

Chang & Cheung, 1993) presented a layer by layer scheme that finds the 

appropriate boxes in the next layer using a hybrid genetic algorithm called 

SMILE to solve the three dimensional container packing problem. It is also a 

heuristic approach however the solution is augmented by simulated annealing 

to improve performance. The authors also presented an improvement of 

SMILE in the following year and proved that genetic algorithm is a good 

technique for optimization problems. (Yang & Shi, 2010) used a heuristic 

approach and introduced an algorithm for solving the three-dimensional bin 

packing problem, which is based on hybrid of caving degree algorithm from 

container loading problem and variable neighbourhood descent structure. 

Based on the computational experiments performed on standard benchmark 

problems, the algorithm show that the quality of the solutions is equal to or 

better than that obtained by the best existing algorithms in average.  The 

authors applied the concept of genetic algorithm with multiple chromosomes 

to a three dimensional bin packing problem. From the results, the authors were 

able to prove that multiple chromosomes algorithm gives a better optimization 

solution. The authors were also able to show the multiple chromosomes 

algorithm created had better adaptability for large problem and near optimal 

solutions for small problems compared to a single chromosome algorithm.  

(Wang & Chen, 2010) likewise presented a hybrid genetic algorithm as well 

for a three dimension bin packing problem. The authors introduced in their 

hybrid algorithm a combination of a specially designed diploid representation 

scheme of individual and a heuristic packing method using fill packing 

method. With the above approach, the authors presented several genetic 
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algorithms in their research and also found that the proposed hybrid algorithm 

presented using combination of chromosomes to be efficient in addressing 

three dimensional bin packing problem.  Another example of hybrid algorithm 

for solving three dimensional bin packing problem was presented by (Jiang & 

Cao, 2012) with combination of simulated annealing. The authors combined 

the concept of block and batch to create a seven tuple algorithm and also 

increased the memory function for searching process. By doing so, the 

author’s computational results were able to prove that the methodology used 

was very efficient to obtain near optimal solution within short duration.  

(Pimpawat & Chaiyaratana, 2001) presented a heuristic rule which uses a co-

operative co-evolutionary genetic algorithm (CCGA) in conjunction to solve 

three dimensional container loading or bin packing problem. The method 

differs from others by using proposed heuristics to partition the entire loading 

sequence into a number of shorter sequences. The authors proved that the 

methodology used is efficient in optimization of minimal number of containers 

required compared to standard genetic algorithm. The author was also proved 

that CCGA is suitable for use in a sequence based optimization problem use.  

(Salma & Ahmed, 2011) considered a storage problem of a foam industry and 

introduced a heuristic by proposing an integer programming model for 

variable bin length storage problem. The problem is a variable sized bin 

packing where it involves allocating, without overlapping, a given set of 

rectangular items that cannot be rotated into the minimum number of three 

dimensional bins with different bin dimensions as input variables. Based on 

the proposed approach, the authors reduced the dimension of a given bin 

packing problem from three dimensional to a one dimensional. 
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On a more probabilistic and stochastic analysis note, (Akeda & Hori, 1976) 

performed Monte Carlo simulation and presented the confidence interval for 

mean random packing density and lower bound on limiting density 

comparison. (Ong, Magazine, & Wee, 1984) proved that the expected number 

of bins can be estimated as a function of number of elements and that the 

number of bins converges to expected value in probability. (Rhee & 

Talagrand, 1991) and (Rhee & Talagrand, 1993) dealt with stochastic packing 

with items of random sizes. In particular, the latter work showed that there 

exists an online algorithm that depends on the distribution of items. Other 

authors used different methods to solve the one dimensional bin packing 

problem such as genetic algorithm (Gómez & Fuente, 2000) use a cyclic 

crossover GA with fitness by area and variable mutation to minimize wastage 

of raw material. (Brusco, Thompson, & Jacobs, 1997) used simulated 

annealing with morphing process such that workload across all bins are evenly 

distributed.  (Levine & Ducatelle, 2004) used a hybrid ant colony optimization 

(ACO) with local search whereas (Healy & Moll, 1996) used local 

optimization with rectangular layout in terms of holes and rectangles. (Van De 

Vel & Shijie, 1991) presented an algorithm which is non-polynomial as an 

application of bin packing technique to minimize makespan of a job 

scheduling problem. (Lins, Lins, & Morabito, 2003) considered a non-

orthogonal 2D problem that seeks to maximize the number of items using the 

recursive  partition of  a  rectangular or an L-shaped piece into two pieces,  

each  of which  is rectangular or an L-shaped piece. It is ideal for pallet 

loading and the L-approach always finds optimum packing of (ℓ, w)- 
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rectangles into rectangular piece even though it is a little time/memory 

consuming.  

Related to the use of column generation to solve the 2D packing problem,  

(George, 1996) packed circles into rectangles using three approaches – a 

greedy heuristic, a pre-allocation method and integer programming related 

methods for no more than three pipe sizes in each container. (Puchinger & 

Raidl, 2007) developed an integer linear programming models for a 3-stage 

2BP and used column generation in combination with greedy heuristics to 

improve the optimization process. (Vanderbeck, 1999), (Vanderbeck, 2000) 

and (Vanderbeck, 2001) did a computational study of a column generation 

algorithm for bin packing and cutting stock problems.  

(Adelson, Norman, & Laporte, 1976) provided references on dynamic 

programming method used to solve the crate length optimization model. Other 

references include (Ji & Jeng, 1990), (Liu & Hsiao, 1997), (Mrad, Meftahi, & 

Haouari, 2013), (Savelsbergh, 1997), (Verma & Singh, 2010) and (Dowsland, 

1996) which provided references on GA algorithm. 
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3  Crate Length Optimization 
 

Orders come in various combinations of rolls from customers all over the 

world and each roll will be packaged into a crate. Due to process restraints, the 

crate width is a constant for all crates. With the crate width as a given 

constant, the roll lengths are calculated and adjusted according to the thickness 

of the material so as to have a consistent roll diameter. As such, the primary 

concern in the determination of the crate sizes is assumed to be the crate 

lengths. Since it is not possible to have a single crate type for every single roll 

size, it is inevitable that there will be some loss in the space inside the crates. 

As there can only be a few limited types of pre-determined crate sizes, the 

demand rolls will naturally be categorized into a few subsets of lengths which 

are packed accordingly into the best fit pre-determined crate length. Currently, 

Company S pre-determines the standard crate lengths from experience and 

there are four types of crate lengths in use. The company would like to 

determine the crate sizes given a fixed number of crate types to minimize 

overall loss and improve the efficiency of the transportation process.  

3.1 Crate Length Optimization without Inventory 

Consideration 

This section introduces a mixed integer linear programming model which is 

developed to solve the real world problem of finding the optimal crate lengths 

as described above. The model will find the optimal crate lengths with the 

objective of minimizing the total waste of space in the crates for a given 

number of crate types and demand distribution of the rolls of films. 
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3.1.1  Modelling Assumptions 

The assumptions for crate length optimization model are as below: 

(1) Each roll is assigned to one crate. This is a restriction due to the nature 

of the product. It is not possible to pack more than one roll in each 

crate as the rolls will be damaged from abrasion with one another 

during transportation. 

(2) Demands of roll widths are given. The demands are generated based on 

historical data.   

(3) The number of crate types is given as pre-determined input. The 

company would like to revisit the current practice of crate sizes and 

examine the consequences of having other number of crate types. 

(4) The roll as placed into the rectangular crate will mean that the roll’s 

width actually corresponds to the length of the crate whereas the roll’s 

length is rolled up and contributes to the diameter of the roll. 

 

The following parameters and decision variables are used for the crate length 

optimization model in this section: 

Parameters  

wi Roll width i 

µi Mean demand of roll width i 

K Number of crate types 

N Number of roll widths 

Lmin Minimum crate length 
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Lmax Maximum crate length 

P Padding requirement inside the crates 

M A very large integer number 

Decision Variables  

Lk Crate length k 

xik 1, if roll i is assigned to crate length k and 0, otherwise 

yik Loss of length inside crate when roll i is assigned to crate length k, and 

0, otherwise 

3.1.2  Problem Formulation 

 

The optimization model for Problem 1 has been formulated as follows:   

 1 1

 
N K

i ik
i k

Min y
 
  (3.1) 

s.t. 

 (1 )k i ik ikL w y M x     for i=1,.., N, k=1,.., K (3.2) 

 (1 )k ik iL M x w P     for i=1,.., N, k=1,.., K (3.3) 

 
1

1
K

ik

k

x


  for i=1,.., N (3.4) 

 min maxkL L L   for k=1,.., K (3.5) 

 0iky   for i=1,.., N, k=1,.., K (3.6) 

  0,1ikx   for i=1,.., N, k=1,.., K (3.7) 
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In the objective function (3.1), we minimize the total sum of space wastage in 

terms of length. The decision variable yik represents the extra length from the 

assigned crate length Lk minus the roll width wi. This is multiplied by the 

corresponding mean demand of roll width µi to obtain the total sum of length 

loss inside all the crates assigned to all the rolls. Note that we have included P 

in the computation of the total loss. However this will not affect the optimal 

solution since P is a constant value, and hence will not affect the decision 

variables. Constraint (3.2) enforces the constraint that each roll must be 

assigned to a crate length that is bigger or equal to its width when ikx is 1. 

Constraint (3.3) implies that the assigned crate length should have a minimum 

allowance of P inside the crates for each roll. Constraint (3.4) ensures that 

each roll is assigned to one crate type only. Constraint (3.5) states that all the 

decision variables of optimal crate lengths must be within the range of 

specified minimum crate length Lmin and maximum crate length Lmax. 

Constraint (3.6) dictates that the decision variables yik must be positive and 

lastly, constraint (3.7) states that the decision variables xik are 0-1 binary 

variables.  

3.1.3  Computational Results 

 

Figure 3.1 shows the input parameter for the roll width of Company S’s 

demand distribution and we observe that it is highly scattered with a few 

obvious peaks. There are 80 types of roll widths in total. The few peaks are 

due to strongly dominant industry sizes, for example those for architectural 

and automotive use. The other input parameters are set such that the minimum 

padding length, P is 8cm and K varies from 2 to 10 types. 
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Figure 3.1 Roll Width Demand Distribution 

 

Figure 3.2 shows the computational results obtained by implementing the 

mixed integer linear programming model for the crate length optimization 

problem using ILOG CPLEX11.2 for a distribution of Company S’s demand 

of film rolls. We observe that as expected, the objective value will decrease 

with increasing specified number of crate types. There are diminishing returns 

of reducing loss of empty space inside the crates with increasing number of 

crate types. 
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Figure 3.2 Objective Value with Number of Crate Types 

 

Figure 3.3 shows the resulting optimal crate lengths for specified number of 

crate types from 2 to 10. The x-axis is the index k for the optimal lengths while 

y-axis is the optimal lengths Lk for the ten cases. For example, the case for two 

types has a line with two points at (1.00, 0.56) and (2.00, 1.00) which mean 

that the two optimal lengths in sequence are 0.56 and 1.00. For each result, the 

crate length 1.00 is a must because it has to accommodate for the biggest roll 

width in the demand with 8cm padding length. It can be seen that there are 

several crate lengths present in a few number of crate types hovering around 

0.20, 0.38 and 0.56 due to the peaks of these demands in the input distribution 

(Figure 3.1). The first crate length for all cases generally is either 0.20 or 0.07, 

with the exception of the case for two types whereby it is 0.56.  
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Figure 3.3 Optimal Crate Lengths for Given Number of Crate Types 

 

3.2 Crate Length Optimization with Inventory Cost 

Consideration 

 

The model presented in section 3.1 solves the real industrial problem by 

Company S to revise the optimal crate lengths used in transportation of the 

rolls. However, it did not consider demand uncertainty. The fluctuation in 

demand affects the amount of total inventory costs of the packaging crate 

materials. For each crate type, it is necessary  to keep a certain level of safety 

stocks in each distribution centre to deal with the uncertainty of demands from 

customers. If the number of fixed crate types is too large, then it is 

unavoidable that more safety stocks need to be held and this adds to the 

complexity of handling. In addition, there is limited space in the warehouse to 

hold all types of crates. The motivation of the problem can also be more 

simply described as follows: if crate types increase, wastage will decrease due 

to better fit of the rolls in the crates but inventory cost will also increase due to 
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more safety stocks, and so more crate types also translates to higher cost and 

complexity of handling. 

Therefore the model in section 3.1 is extended with the consideration to find 

the optimal number of crate types so as to save on total inventory costs 

associated with the handling, storing and warehousing of all crate types. With 

the purpose of determining both the optimal crate types and lengths, the trade-

off between loss of space inside the crates and inventory holding cost of the 

safety stock of crate types will be presented as an objective function in this 

section. In this extended problem, there is incentive to limit the number of 

crate types because the resulting objective value will decrease with increasing 

crate types, unlike the previous problem definition where inventory cost was 

not considered and there was no trade-off between the two variables. The two 

key decisions are choosing the optimal number of crate types and their lengths 

such that the associated inventory cost of having more number of box types’ 

safety stock is balanced with minimizing the waste of space in the crates for 

all items. This is because if more crate types are decided, there is certainty that 

the extra space inside the crates will be less. However, this also leads to more 

costs to keep safety stocks of each crate type.  On the other hand, a decision to 

have less crate types will result in more extra space but keep safety stock costs 

lower. In this section, the model will find both the optimal number of crate 

types and the optimal lengths to use. 

3.2.1  Modelling Assumptions 

 

The assumptions for the second problem are outlined below: 
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(1) Each roll is assigned to one crate. This is a continuation of the 

assumption from the model in section 3.1. 

(2) Demands of the roll width are independently distributed. 

(3) Periodic review policy is assumed. Hence the safety stock is computed 

using this policy based on the demand variability over the lead time 

and the review period. 

The parameters and decision variables from the crate length optimization 

problem in Section 3.1 are used along with the additional variables as follows, 

with the exception of K, number of crate types now not being an input but a 

decision variable along with optimal crate lengths Lk. 

Inputs and Parameters  

σi Standard deviation of demand of roll width i 

p          Penalty cost  

h Inventory holding cost   

The parameters p and h are assumed to be constant, independent of the number 

of crate types chosen. The assumption is based on that both factors are 

estimated from the average of historical data. However, it is possible that the 

parameter p may change considering that p is the penalty which encapsulates 

both the cost of extra wood or materials, and additional padding per cm of 

extra length in the crate. In addition, due to bulk ordering, it might be more 

expensive if more crate types are ordered from the packaging supplier. This is 

because the supplier might charge more for customizing a large number of 

varied crate sizes in lower quantities. 
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Decision Variables  

K Number of crate types 

Lk Crate length k 

3.2.2  Problem Formulation 

 

The second problem definition with inventory cost considerations can be 

formulated mathematically as below in conjunction with constraints (3.2) to 

(3.7) from the problem definition in Section 3.1. 

  
1 1 1

     
K N K

k i ik

k i k

Min hS p y
  

   (3.8) 

s.t.  

 2

k i ik

i

S x   for k=1,.., K (3.9) 

 1,i k ikx x   for i=2,.., N, k=1,.., K (3.10) 

 

and constraints (3.2) to (3.7) as in the first problem in Section 3.1. 

The objective function (3.8) reflects the dynamics of trade-off between having 

less crate types to have smaller value of the first term to compensate for the 

rise of value in the second term. The first term in the objective function is the 

product of the sum of Sk as the safety stock of each crate type k with the 

corresponding factor h to convert to equivalent in dollars of the inventory 

costs. The second term is the product of the sum of total space wastage in 

terms of length for all demands with a penalty cost factor p to convert to 

equivalent loss in dollars. Constraint (3.9) introduces safety stock of crate size 
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k, Sk
2
 which is the sum of σi

2
 if wi is assigned to crate type k.  It can also be 

viewed as the risk pooling term for all rolls which are clustered into groups for 

optimal crate types. Lastly, constraint (3.10) forbids a roll i-1 from being 

assigned to a crate k unless its adjacent (and larger) roll i is assigned to crate k 

for all rolls i. Because of the different variability of demand, a situation may 

arise where it will be more desirable to assign a particular roll width to a larger 

crate type available. In order to restrict this situation, the constraint is 

introduced. The other constraints (3.2) to (3.7) are as described in Section 3.1. 

The formulation of the model is a non-linear mixed integer programming 

problem. As it is not a straightforward problem to solve, this leads to the use 

of a dynamic programming approach in Section 3.3. 

3.3 Dynamic Programming Approach 

Although the crate length optimization model with inventory consideration has 

been formulated in the preceding section, the integer programming model does 

not exploit the special sequential structure of the problem. As such, a dynamic 

programming approach is presented as an alternative to solve the problem.  

The dynamic programming approach is based on the development of a 

recursive optimization process. There are several characteristics of a dynamic 

program: stages, states and the recursive property. The state of a stage reflects 

enough information to evaluate the optimal value function of a stage. The 

recursive property links the current stage to the next stage for all stages. 

There are several structures of the problem that make the dynamic 

programming approach viable. The first is that the problem has optimal 

substructures which satisfy Bellman’s Principle of Optimality wherein 
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regardless of the initial state and decision, the subsequent decisions must 

constitute an optimal policy which is a consequence of the initial state and 

decision. Secondly, there is a finite choice of the crate length, which is one of 

the lengths of demand. In this problem, the solution space is most definitely 

limited to the set of the rolls widths considered. Therefore the solution space is 

discrete and finite. Seeing that the roll widths can be portrayed as an 

increasing array of variables, naturally the rolls will also be guaranteed an 

assignment of a crate type that is the smallest crate type that the rolls are able 

to fit in, or more simply put as the adjacent crate length. In addition, the 

objective function (3.9) is an additive function of the non-decreasing costs of 

space penalty and inventory holding of the safety stock. The decision at each 

stage depends on minimizing this total cost function which reflects the returns 

of the current path.  

The following notation is used to formulate the problem as a dynamic 

program. 

Inputs and Parameters  

w(i)  Roll width i 

sa,...,b  Pooled risk of standard deviation (safety stock) of demand of roll 

widths a to b 

p Penalty cost per unit loss of length 

h Inventory holding rate 

n Stage of the dynamic program 
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N Total number of stages (roll width sizes to be considered) 

xn State of stage n  

Decision variable 

an  Decision variable at stage n where an represents the previous crate type 

width  

3.3.1 Dynamic Programming Formulation 

 

We formulate the problem as a forward induction dynamic program. In a 

forward induction process, the first stage is the initial stage of the problem. 

Then, the subproblems are solved moving forward one at a time until all stages 

are included. Suppose n is the stage of the dynamic program and N is the total 

number of roll width types considered, then there are N number of stages. 

Calculating F(n) for n=1,…,N, where N is the total number of roll width types 

considered, we obtain the final optimal value F(N) given that F(0) is initialized 

to zero.  

The problem is formulated as a forward induction dynamic program as shown 

below: 

1

1

( ) ( ),0 1

( ) min ( , ) ( , ) min ( , ) ( ),
n n

n n n n

n n
n n n n n n n n n n n

a a

F x F x x n

F x g x a F x a g x a F a x n





    
 

     
 
 

  (3.11) 

0 0( 0) (0) 0                                                                                F x F    (3.12) 

( )n nF x is the minimum cost function for state xn at stage n, 1( )n nF x is the cost 

to go and ( , )n n ng x a  is the one period cost. When 0 1nx n   , ( )n nF x is equal 

to 1( )n nF x . When xn=n, then {0,1,..., 1}na n  and ( )n nF x is the best decision 
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an which gives the minimum cost which is a sum of the one period cost at 

stage n and the cost to go, where the one period cost is evaluated as 

1,...,

1

[ ( ) ( )]
n

n

n

i a n

i a

p w n w i s h 

 

  .   

Using this method, it will divide the demands into groups through enumeration 

of all the stages and each group’s set of rolls will be assigned to the adjacent 

crate length. The adjacent crate length is none other than the last or biggest roll 

width which is assigned to the cluster, plus an additional given pre-set of 

padding allowance, a constant P.  The term ( )nF a  in (3.11) is the minimum 

cost up to stage an and one period cost refers to the additional possible costs of 

the possible states xn, where we can see that it is the possible grouping of the 

roll widths into clusters resulting in cost of penalty from loss of length inside 

the crates, compounded by the penalty cost factor p, and also the cost of safety 

stocks in the latter part, compounded by the holding cost factor h. The 

difference between the two problem definitions in Sections 3.1 and 3.2 as 

described above therein lies in the consideration of the cost function to be 

minimized. If the inventory cost is removed, the dynamic programming 

approach reduces to minimizing only the penalty cost and the solution will be 

a crate type for every roll as there is no motivation to risk pool the fluctuations 

of the roll demands to drive down the inventory cost of holding safety stock of 

crate types. The formulation leads to several deductions of the defined 

problem, first of which is that the optimal solution set is equal to or is a subset 

of the set of roll widths considered. Following which, it can be deduced that 

the optimal decision assigns the roll widths to their adjacent length that is 
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longer. Specifically this refers to the term 
1

[ ( ) ( )]
n

n

i

i a

p w n w i 
 

 in the optimal 

decision whereby the w*(n) chosen is the largest of all the w(i) for all states of 

possible widths within the cluster starting for the index of  i from an+1 up to n 

as the cost function is an additive function of two non-separable non-

decreasing costs. 

3.3.2 Computational Results 

 

In this section, the proposed method of dynamic programming is applied to a 

set of demands using MATLAB version R2012a. The dynamic programming 

implementation has a time complexity with two ‘for’ loops that executes n 

times, where n is the input size of the number of crate widths. Therefore the 

order of complexity of the algorithm is quadratic complexity, O(n
2
).  The 

complexity is of a polynomial algorithm. 

Firstly, it is applied to Company S’s actual demand data whereby the input 

parameters of p and h are 0.066 and 2.50 respectively. Both values are 

estimated from historical data. The result obtained is 10 optimal types of 

crates. 

Next, the method is tested against a range of p and h values. Figure 3.4 shows 

the number of optimal crate types at varying values of h from 1.0 to 3.5 when 

p is fixed at 0.066. The number of optimal crate types decreases with 

increasing h.  The decreasing pattern is expected because with higher 

inventory cost, there is more incentive to group into fewer types so that each 

type has the advantage to buffer the uncertainty in demand.  
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Figure 3.4 Optimal Number of Crate Types at Varying Values of h 

 

On the other hand, Figure 3.5 shows the number of optimal crate types at 

varying values of p from 0.02 to 0.10 when h is fixed at 2.50. The number of 

optimal crate types increases with increasing p. The number of crate types is 

very sensitive to the changes in the values of p. The sensitivity is due to the 

fact that the factor p, although small in magnitude relative to h, is multiplied 

with the µi, mean demand of roll width i in the first term in (3.12).  Its 

contribution to the total cost is compounded and is therefore more sensitive 

compared to h. 
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Figure 3.5 Optimal Number of Crate Types at Varying Values of p 

 

Thirdly, the method is tested against different demand patterns of the roll 

width to see the effects of varying the ratio of p/h on the total cost and number 

of optimal types. Three types of demand pattern for a range of 20 types of roll 
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pattern. For these three figures, the x-axis represents the roll width size from 

100 to 290 while the y-axis represents the mean demand value. The normal 
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Figure 3.6 Uniform Pattern of Mean Demand of Roll Widths 

 

 

Figure 3.7 Normal Pattern of Mean Demand of Roll Widths 
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Figure 3.8 Right Skewed Pattern of Mean Demand of Roll Widths 

 

In Figures 3.9, 3.11 and 3.13, the results are shown below whereby the x-axis 

shows the variance of demand varying from 0 to 4 for all cases of p/h from 

0.005 to 0.05 and the y-axis shows the total cost in dollars for each scenario. In 

Figures 3.10, 3.12 and 3.14, the y-axis shows the number of optimal types.  

For the case of uniform mean demand of roll widths, Figures 3.9 and 3.10 

illustrate the effects of variance level on both optimal cost and number of 
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ratios of p/h, the total cost increases uniformly. As for the number of optimal 

types, for values of p/h that are more or equal to 0.005, the optimal is always 
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it starts triggering a change in the number of optimal types. When p/h=0.001, 
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Figure 3.9 Total Cost vs Variance for a Uniform Pattern 

 

 

Figure 3.10 Number of Optimal Types vs Variance for a Uniform Pattern 
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distinct changes in the number of optimal types as the variance increases. The 

higher holding cost and variance levels increase the tendency to have less crate 

types as evidenced by Figure 3.12. This is because when the ratio of p/h is 

lower, the risk pooling effect has a more significant contribution to the total 

cost with the tendency to choose fewer types of crates resulting in higher 

savings from inventory cost. 

 

Figure 3.11 Total Cost vs Variance for a Normal Pattern 

 

Figure 3.12 Number of Optimal Types vs Variance for a Normal Pattern 
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The same effect is investigated for a right skewed pattern of mean demand of 

roll width. Figure 3.13 highlights the same trend as before with total cost 

increasing with variance while Figure 3.14 shows the effect with increasing 

number of types.  

 

Figure 3.13 Total Cost vs Variance for a Right Skewed Pattern 

 

 

Figure 3.14 Number of Optimal Types vs Variance for a Right Skewed Pattern 
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Finally, Figures 3.15 and 3.16 are shown below whereby the x-axis shows the 

coefficient of variance of demand varying from 0 to 0.48 for all cases of p/h 

from 0.01 to 0.0005 and the y-axis shows the total cost in dollars for each 

scenario. As predicted, Figures 3.15 and 3.16 can be viewed that as CV 

(coefficient of variance) increases, for all different ratios of p/h, the total cost 

increases. The increase appears to be even more sensitive for lower ratios of 

p/h compared to increase in variance.  

 

Figure 3.15 Total Cost at Different Levels of CV for a Uniform Demand 
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Figure 3.16 Total Cost at Different Levels of CV for a Normal Demand 
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Figure 3.18 Total Cost at Different Levels of CV for a Demand Pattern Similar 

to Company S’s Actual Demand 
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length and diameter) and corresponding quantity (mean demand and variance). 

Each roll is to be packaged into one wooden rectangular crate. There are 

numerous possible types of rolls that can be customized by a customer. 

Because of the large number of combinations, it is not feasible to have one 

crate size for each roll type. The usual practice is to decide on a few crate sizes 

and stock them on hand to address the variety of the customer demand types. 

When packing a customer demand, each roll is packaged into a feasible crate 

size with minimum loss of volume. The total loss of volume of each customer 

demand is the total loss of volume inside the crates which is the sum of the 

differences between a chosen crate size and its roll for all rolls/crates. Because 

all demands have to be packed, this is equivalent to minimizing total volume 

of crates assigned.  Meanwhile, the total inventory cost is the cost of safety 

stock from risk pooling all demands of the same-size crates for all crate types. 

The objective is two-fold, one is to decide the optimal crate sizes and the other 

is to assign and pack all rolls in a demand into crates with minimum total 

volume and minimum inventory cost.  

However, the generalized crate sizing problem differs from crate length 

optimization problem in the earlier section in that the number of optimal crate 

sizes is fixed and given as input for optimization. The number of optimal crate 

types is a pre-determined input (but we can always vary the number of crate 

types to find the optimal number of crate types). In this problem, the inputs are 

the customer demand with various lengths and widths. Since there are only 

finite number of customer demand types (with various length and width 

dimensions), the choice of the optimal crate sizes will be finite and they 

should fall into the dimensions of the customer demand type. Without loss of 
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generality, we assume that the requirement of padding has been considered in 

the dimension of the customer demand type.  

As mentioned in the background problem, the crate has a unique characteristic 

of being very long and having a square cross sectional area to accommodate 

the cylindrical shape of the rolls. With a square cross section, this means that 

the crate width and height are of equal dimensions. Due to this property, 

solving the crate sizing problem can be viewed as solving a 2D problem. 

However, computational results will depict the total loss of volume (3D) for 

the generalized crate sizing problem. 

Although dynamic programming was used in the earlier problem, in this 

extended problem, dynamic programming cannot be used as it does not exhibit 

the property of the Bellman’s Principle of Optimality. The principle dictates 

that the optimal solution of the problem must constitute the optimal solution of 

earlier stages or smaller sub-problems. But in this case, the optimal solution of 

the sub-problem may change in the optimal solution when there are two 

dimensions to be considered instead of just one dimension in the section. As 

such, the recursive method cannot be applied here.  

We will define the problem in sections 4.1-4.2.  Three methods are proposed 

to solve this problem, namely enumeration method, marginal improvement 

method and genetic algorithm. They will be discussed in Sections 4.3-4.5.   

4.1 Modelling Assumptions  

The following assumptions will be used in this problem: 
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(1) The roll height or diameter is assumed to be always smaller than the 

roll width. As such, rotation is not possible. The crate length and crate 

width are not interchangeable.   

(2) From this section onwards, the crate length Lk and crate width Wk are 

assumed to be inclusive of minimum padding P. 

The following parameters are used for the generalized crate sizing problem in 

this section: 

Parameters  

wi Roll width i 

di Roll height (diameter) i 

µi Mean demand of roll type i 

σi Standard deviation of demand of roll type i 

K Number of crate types 

Lmin Minimum crate length 

Lmax Maximum crate length 

Wmin Minimum crate width 

Wmax Maximum crate width 

Decision variables 

Lk Crate length k 

Wk Crate width (or height) k 
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zik 1, if roll i is assigned to crate k of length Lk and width Wk; 0 otherwise 

The inputs required are demand of roll types i and the number of optimal types 

N. Each roll type has µi mean demand and σi standard deviation of demand. If 

roll type i is selected to the current group of pooled risk, 2

i ik

i

z represents 

the pooled risk of the variances of the rolls in the group. Specifically, it is the 

square root sum of the variances of the rolls in the group. Finally, the total cost 

or objective value in this problem is the total loss of volume and the total cost 

of inventory. It is the combined cost of crate volume from packing the rolls 

into crates and the cost of holding safety stock of pooled risks for all crate 

types k.  

4.2 Problem Formulation 

 

  
2 2

1 1 1

     
K N K

i ik i k k ik

k i i k

min h z p L W z 
  

    (4.1) 

s.t.  

 i ik kw z P L   for i=1,.., N, k=1,.., K (4.2) 

 i ik kd z P W   for i=1,.., N, k=1,.., K (4.3) 

 
1

1
K

ik

k

z


  for i=1,.., N (4.4) 

 min maxkL L L   for k=1,.., K (4.5) 

 min maxkW W W   for k=1,.., K (4.6) 

  0,1ikz   for i=1,.., N, k=1,.., K (4.7) 
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Objective function (4.1) minimizes the sum of total inventory holding cost and 

sum of crate volume
2

i k kL W multiplied by the factor p for items i that are 

assigned to crate k. Constraints (4.2) and (4.3) dictate that the dimensions of 

the roll width wi and roll diameter di are smaller than the crate lengths and 

crate widths for a feasible fit into the crates.  Constraint (4.4) guarantees that 

each roll i is assigned to only one crate type of length Lk and width Wk. 

Constraints (4.5) and (4.6) confine the solutions of crate lengths and crate 

widths to their minimum and maximum values allowed. Lastly, constraint 

(4.7) prescribes that the variable zik is either 0 or 1.  

To put into visual perspective, a table portrays all the options of crate sizes. 

Figure 4.1 shows the pictorial representation of all sizes and demand. The 

columns represent crate width whereas the rows represent crate length, both 

sorted in ascending order. Each cell represents a demand of crate size in the 

two dimensions. The crate length and crate width are discrete and do not need 

to be equally spaced sizes.  

For a demand of u crate lengths and v crate widths, the table is an array of size 

uxv. As the optimal solution will only lie on the dimensions given by the 

customer orders, every cell in the table can be regarded as a potential 

candidate for the optimal size. Naturally, the cell with the biggest size xuyv is 

part of the optimal size solution because all demands must be assigned. For 

any given number of optimal crate types K, there can be 
uv-1

C(K-1) ways of 

choosing the optimal solution.  To give an insight into the magnitude of the 

problem, a problem with just 10 crate lengths and 10 crate widths with 4 

optimal sizes has 
99

C3 that is 156,849.  
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Figure 4.1 Pictorial representation of sizes and demand 
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4.4 Marginal Improvement Method 

Due to the limited capability of the enumeration method, a second method is 

introduced in this section. The second method involves using marginal 

improvement to find and improve a given solution.  

Given a solution, i.e. a set of crate sizes, we would like to know the marginal 

improvement in the overall objectives values if we change one of the crate 

sizes to one of its neighbouring sizes while keeping the rest unchanged. This 

can be illustrated in Figure 4.2. Note that the highlighted cell is the crate size 

xiyj (the length is Li, and the width is Wj) that we would like to change, and its 

neighbours are xi-1yj-1, xi-1yj, xi-1yj+1, xiyj-1, xiyj+1, xi+1yj-1, xi+1yj and xi+1yj+1.  

 

Figure 4.2 Neighbours for marginal improvement 

 

Cxiyj is defined as the objective value for the overall solution, while Cxiyj+1 is 

the objective value for the overall solution when crate size xiyj is changed to 

xiyj+1 while the rest of crate sizes remained the same. 

xi-1yj-1  xi-1yj  xi-1yj+1   

xiyj-1 xiyj       xiyj+1   

xi+1yj-1  xi+1yj  xi+1yj+1   

    

… 

…
 

Ascending crate length 

Ascending crate width 

x 

y 
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The table also displays the potential neighbours for marginal improvement for 

a point that has 8 adjacent neighbours. For a point that is on the perimeter, 

there will be fewer neighbouring points. Figure 4.3 shows the possible 

directions for marginal improvement for a cell that is not on the perimeter and 

has eight neighbours. The number of neighbours is equal to the number of 

possible directions.  

 

Figure 4.3 Directions for marginal improvement 

 

The algorithm for the marginal improvement method is as follows: 

1. Set StopFlag=0 

2. For any crate size we would like to change, while StopFlag =0, do the 

following steps 3-8 ; else exit 

3. Set current point PointofConsideration 

4. Calculate and set total cost of current solution CurrentTotalCost 

5. Calculate change in CurrentTotalCost when the PointofConsideration 

is changed to a neighbouring cell as neighbourCost for all neigbours 

6. Find minimum neighbourCost and set LowestCost 

7. If LowestCost=CurrentTotalCost then StopFlag=1 and current point is 

not improving the solution any more, exit; else replace current point to 

Cxi-1yj-1  Cxi-1yj  Cxi-1yj+1  

 

 

Cxiyj-1  

 

Cxiyj       Cxiyj+1  

 

 

Cxi+1yj-1  

 

Cxi+1yj  

 

Cxi+1yj+1  
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PointofConsideration as the neighbour with lowest neighbourCost and 

repeat steps 3 to 7 

8. Output LowestCost and new crate sizes  

The marginal improvement method is based on one-crate-size-at-a-time. While 

keeping the rest of the solution, it only improves the current input size of 

consideration. The quality of the rest of the other sizes greatly affects the 

quality of the solution. If the other sizes are very far off, then the improved 

one size does not help in minimizing total cost and the solution will also be far 

from optimal. Nevertheless, the marginal improvement is a useful tool when 

one is in the vicinity of optimal or good solutions. On top of that, it can be 

used as a local search tool to generate better solutions in a short amount of 

time because the marginal improvement method at any one time only needs to 

calculate at most eight neighbouring cells to consider. There will be savings in 

time for a quick improved solution and computational power because it does 

not need to evaluate all the cells which can certainly slow down the process. 

The marginal improvement algorithm improves based on changing one crate 

size at a time. In order to change all the crate sizes, there are two ways of 

choosing which crate size to improve. The former is by sequence (marginal 

improvement by sequence- MIBS) while the latter is by random (marginal 

improvement by random- MIBR). For example, for a three size problem, 

MIBS will change crate size type 1 and then crate size type 2. Crate size type 3 

cannot be changed because it is the biggest crate size that must accommodate 

itself. Meanwhile, MIBR may either change crate size type 1 first and then 

crate size type 2, or crate size type 2 first and then crate size type 1. In 
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addition, the starting values for the crate sizes can either be pre-set or 

randomly generated.  

4.4.1 Numerical Experiments 

 

Numerical experiments were conducted to evaluate the marginal improvement 

method. Without loss of generality, in all the experiments, we assume that the 

demand size is 1 and variance is 0.  To compare to the enumeration method, 

the following tests were conducted. Table 4.1 shows the comparison between 

marginal improvement (MI) and enumeration method for the problem with 

two sizes. Note that in this problem, as we can only vary one crate size, MIBR 

reduces to MIBS. The starting value of (x1
*
, y1

*
) is (1,1) and the value of (x2

*
, 

y2
*
) is (n,n). The size of the search space is n

2
. 

The results indicate that the MI methods are able to find the global optimal 

solution. 
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K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration) 

Cost 

(MI) 

Cost 

2 2 2 1 2 2 20 20 

3 3 2 3 3 153 153 

4 4 2 4 4 640 640 

5 5 3 5 5 1925 1925 

6 6 3 6 6 4860 4860 

7 7 4 7 7 10339 10339 

8 8 5 8 8 20288 20288 

9 9 5 9 9 36369 36369 

10 10 6 10 10 61600 61600 

11 11 6 11 11 99341 99341 

12 12 7 12 12 153072 153072 

13 13 7 13 13 229333 229333 

14 14 8 14 14 330848 330848 

15 15 9 15 15 467775 467775 

16 16 9 16 16 645376 645376 

17 17 10 17 17 873647 873647 

18 18 10 18 18 1163808 1163808 

19 19 11 19 19 1523059 1523059 

20 20 12 20 20 1971200 1971200 

Table 4.1 Comparison between MI and enumeration method for two sizes 

 

Table 4.2 shows the comparison between MIBS, MIBR and enumeration 

method for the problem with three sizes. The starting values of (x1
*
, y1

*
) and 

(x2
*
, y2

*
) are randomly generated and the value of (x3

*
, y3

*
) is (n,n). Because 

the starting values are randomly generated, the results depend on the initial 

values. The experiment is run 20 times and the lowest cost is obtained with the 

corresponding optimal sizes. The results for both MIBS and MIBR indicate 

that the MI methods are able to find the global optimal solution. 
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K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration) 

Cost 

(MIBS) 

Cost 

(MIBR) 

Cost 

3 3 3 1 3 2 126 126 126 

4 2 4 4 2 512 512 512 

5 4 4 5 2 1587 1587 1587 

6 3 6 6 3 3888 3888 3888 

7 5 6 7 3 8482 8482 8482 

8 4 8 8 4 16384 16384 16384 

9 6 8 9 4 29709 29709 29709 

10 5 10 10 5 50000 50000 50000 

11 7 10 11 5 80886 80886 80886 

12 6 12 12 6 124416 124416 124416 

13 8 12 13 6 186271 186271 186271 

14 7 14 14 7 268912 268912 268912 

15 9 14 15 7 380682 380682 380682 

16 8 16 16 8 524288 524288 524288 

17 10 16 17 8 711417 711417 711417 

18 9 18 18 9 944784 944784 944784 

19 11 18 19 9 1240174 1240174 1240174 

20 10 20 20 10 1600000 1600000 1600000 

Table 4.2 Comparison between MIBS, MIBR and enumeration method for 

three sizes 

 

Table 4.3 shows the comparison between MIBS and enumeration method for 

the problem with four sizes. The starting values of (x1*, y1
*
), (x2

*
, y2

*
) and (x3

*
, 

y3
*
) are randomly generated and the value of (x4

*
, y4

*
) is (n,n). The experiment 

is run 20 times and the lowest cost is obtained with the corresponding optimal 

sizes and cost as shown in MIBS I Cost column. With the exception of n=8, it 

is able to find the global optimal solution. 
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When we increase the number of runs from 20 to 100, the MIBS II Cost 

column is obtained.  

K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration) 

Cost 

(MIBS I) 

Cost 

(MIBS  

II) Cost 

4 4 4 2 2 4 4 3 456 456 456 

5 5 2 2 5 5 4 1355 1355 1355 

6 6 2 2 6 6 4 3360 3360 3360 

7 7 3 3 7 7 5 7231 7231 7231 

8 8 4 3 8 8 6 14048 14400 14048 

9 9 3 3 9 9 6 25515 25515 25515 

10 10 4 4 10 10 7 42820 42820 42820 

11 11 4 4 11 11 8 68959 68959 68959 

12 12 5 5 12 12 9 106704 106704 106704 

13 13 5 5 13 13 9 - 158925 159757 

14 14 5 5 14 14 10 - 230384 230720 

15 15 6 5 15 15 11 - 324975 324675 

16 16 6 6 16 16 11 - 449056 449056 

17 17 6 17 11 8 17 - 613547 608022 

18 18 8 7 18 18 13 - 812718 812718 

19 19 7 19 12 10 19 - 1068560 1059079 

20 20 8 7 20 20 15 - 1369500 1372720 

Table 4.3 Comparison between MIBS and enumeration method for four sizes 

Table 4.4 shows the comparison between MIBR and enumeration method for 

four sizes. Note that the MIBR method is run for 20 times (MIBR I) and 100 

times (MIBR II) and both runs reach global optimal solution for n ranging 

from 4 to 12.  
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K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration) 

Cost 

(MIBR 

I) 

Cost 

(MIBR  

II) Cost 

4 4 4 2 2 4 4 3 456 456 456 

5 5 2 2 5 5 4 1355 1355 1355 

6 6 2 2 6 6 4 3360 3360 3360 

7 7 3 3 7 7 5 7231 7231 7231 

8 8 3 3 8 8 6 14048 14048 14048 

9 9 4 3 9 9 7 25515 25515 25515 

10 10 4 4 10 10 7 42820 42820 42820 

11 11 4 4 11 11 8 68959 68959 68959 

12 12 5 4 12 12 9 106704 106704 106704 

13 13 5 5 13 13 9 - 158925 158925 

14 14 5 5 14 14 10 - 230384 230384 

15 15 6 6 15 15 11 - 324675 324675 

16 16 6 6 16 16 11 - 449056 449056 

17 17 7 6 17 17 12 - 608022 608022 

18 18 7 7 18 18 13 - 807300 807300 

19 19 8 7 19 19 14 - 1059079 1059079 

20 20 9 8 20 20 15 - 1377200 1377200 

Table 4.4 Comparison between MIBR and enumeration method for four sizes 

 

From the results for the marginal improvement methods, it can be seen that 

they can be used to find optimal solutions for small problems of two, three and 

four sizes. For the same-scale problem, the marginal improvement method was 

able to produce the optimal solution with a much shorter time compared to the 

enumeration method which took very long. The running time of the marginal 

improvement method took minutes whereas the enumeration method took 

hours. However, when the problem gets bigger, it becomes more difficult to 

get optimal solutions, and so we introduce another method in Section 4.5.  
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4.5 Genetic Algorithm Method 

The genetic algorithm (GA) method is a well-known evolutionary algorithm 

that is used to handle a multitude of optimization problems. Based on the idea 

of ‘survival of the fittest’, GA begins with an initial population which 

comprises of randomly generated individuals. Every individual is evaluated 

and given a fitness score/measure. At each generation, the individuals undergo 

mutation, crossover and the fittest individuals are selected to remain and 

survive for the next generation.  

The GA has many good properties that can be used to solve different types of 

problems. It has good mechanism to consider the trade-off between 

exploitation and exploration. By using the appropriate selection, crossover and 

mutation mechanism, we can achieve good results. In general, selection helps 

to keep elitism in the solutions, crossover performs exploitation and mutation 

does the exploration. In order for the GA to perform well, it is important to 

have the right solution representation (chromosome representation) which can 

work well with the crossover operation. If such a representation is not present, 

when we do crossover, we might not be able to exploit the neighbourhood to 

obtain good solution. In our problem, the chromosome is represented by the 

crate sizes which will be discussed later, and if we do naïve crossover, we 

might destroy the neighbourhood structure. Hence we propose a Hungarian 

method which aims to match the genes for crossover to ensure the offspring 

will lie within the neighbourhood of the parents.   

The GA approach is introduced in this section because the enumeration 

method and marginal improvement methods are local search methods that are 
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not as efficient for solving larger size problems. The GA approach is able to 

obtain improved results over the other two methods. 

The proposed GA algorithm can be viewed as a general framework for a 

generalized crate sizing problem. It can be used to find the optimal 2D(+1) 

sizes of crates given a demand of crate sizes. The first requirement for this 

framework is the crate length and crate width is not interchangeable. The 

second requirement is that the second and third dimensions are equal and 

treated as the same. As such, this can be applied to any problem which has the 

same properties. In essence, the GA can be used for a problem that finds the 

optimal sizes of long and rectangular type of boxes/packaging/crates. The 

demand of the sizes can be normal or of other distributions. This does not 

affect the suitability of the GA algorithm. However, this changes the fitness 

function of the GA where the evaluation function is currently proposed for a 

normally distributed demand. For other distributions, the fitness function 

should be modified accordingly.  

 

4.5.1 Chromosome Representation 

 

Each chromosome is an individual and represents a solution.  The 

chromosome has several genes and each pair of genes represents a crate 

size for a customer demand type. The chromosomes are of fixed length.  

Note that if there are K crate types, the chromosome only needs 2(K-1) 

genes. This is because the largest customer demand type is always a 

required crate size in the optimal solution. Hence it is not necessary to 

include it in the chromosome.   
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Figure 4.4 depicts an example of chromosome representation of crate 

sizes. This is a chromosome for six crate types.  The first pair of genes 

(L3,W2) is a crate size for the customer demand type with crate length L3 

and crate width W2. Each pair of genes refers to the crate sizes for the 

customer demand type respectively.  

 

Figure 4.4 Chromosome representation 

 

4.5.2 Creation of initial population 

 

The creation of the initial population P0 comprises of crate sizes chosen 

from the set of possible customer demand types. If the number of available 

customer demand types is N, and the number of crate sizes of the problem 

is K, where K is less than N, each chromosome is created by choosing K-1 

individuals from N-1 types. For the initial population, 100 chromosomes 

are generated.  

4.5.3 Selection Mechanism  

 

After a population of individuals are generated, we need to have a 

selection mechanism to select parents for reproduction. For the criteria of 

(L3,W2) 

(L3,W5) 

(L12,W4) 

(L9,W7) 

(L4,W12) 
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selection, a fitness value F(x) has to be assigned to all individuals in the 

population. The total cost of an individual is the evaluation of the objective 

function as described in the problem formulation (4.1). The fitness of an 

individual F(x) is then measured by using a function to calculate total cost 

of the individual over the mean of the total cost of all the individuals in the 

population.  

In this algorithm, tournament selection is used. The winning pair of 

individuals is selected as parents for mating.   

4.5.4 Reproduction – crossover operation 

 

After a pair of individuals is selected as parents, crossover is usually 

performed.  In our problem, we will use the arithmetic crossover. Let 1f

and 2f be the genes matched for crossover, and the offspring is 1s after 

crossover. It is defined as 1 1 2. (1 ).
s f f       .  After performing 

crossover, the child might not belong to any of the customer types, and so 

some repair needs to be carried out. For repair, the child is modified to the 

closest customer type from its neighbours.  

Note that it is important to find the matching pair of genes to perform the 

crossover. If we naively match the genes by their order in the 

chromosome, the offspring generated might be far off from their parents, 

which will be undesirable for crossover operations. The concept of 

distance is introduced to measure the similarity between the two gene 

pairs. In our case, we use rectilinear distance as the measure. 
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Figure 4.5 illustrates a naïve crossover between parent A and parent B and 

the rectilinear distance between the gene pairs. Figure 4.6 shows the 

relationship of the crossover in a graph. It can be seen that the offspring 

resulting from the crossover can be far away from their parents which 

would destroy the neighbourhood structure. 

 

Figure 4.5 A naïve crossover example 
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Figure 4.6 Naïve crossover example in a graph 

 

In our problem, a naïve crossover is not very effective. This is because the 

optimal crate size is not likely to deviate far from its neighbours.  

Therefore the neighbourhood structure is essential here. When we preserve 

the neighbourhood structure, the crossover is done over a smaller region 

and produces an offspring in the vicinity. By taking advantage of this 

special property, it is able to have more exploitation. If we match the pairs 

of genes to the closest neighbour, this can be modelled as a 1-to-1 

assignment problem. The objective of the assignment problem is to pair off 

all genes between the two parents at minimum matching cost.  Therefore 

we propose the Hungarian algorithm to solve the assignment problem here. 
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Figure 4.7 illustrates a modified crossover between parent A and parent B 

and the rectilinear distance between the gene pairs. Figure 4.8 shows the 

relationship of the crossover in a graph. 

 

Figure 4.7 Hungarian match crossover pairing 

 

Figure 4.8 Hungarian match crossover pairing in a graph 
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The formulation for the Hungarian model to find the matching genes so that 

we can process the crossover operation is presented below. Assume that we 

have two parent chromosomes 1 and 2, ai1 is the crate length and bi1 is the 

crate width of gene i for parent chromosome 1, while aj2 is the crate length and 

bj2 is the crate width of gene j for parent chromosome 2. Then 

1 2 1 2(| | | |)i j i j i jc a a b b     is the cost of matching gene i of chromosome 1 

to gene j of chromosome 2. n is the number of pairs of genes in the 

chromosome. The problem of finding matching genes can be modelled as an 

assignment problem shown below: 

  
1 1

min
n n

ij ij

i j

c x
 

  (4.8) 

s.t.  

 
1

1
n

ij

j

x


  for i=1,.., n (4.9) 

 
1

1
n

ij

i

x


  for j=1,.., n (4.10) 

 {0,1}ijx   for i=1,.., n, j=1,.., n (4.11) 

ijx is the binary variable where it is 1 if gene i of chromosome 1 is matched 

to gene j of chromosome 2, otherwise it is 0.  

After the above assignment problem is solved using the Hungarian 

algorithm, crossover is performed.  

4.5.5 Mutation Operator 
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The purpose of mutation is to bring in random traits and increase 

variability of the population to allow for exploration. Mutation is applied 

using a random number and compared with mutation probability to decide 

if mutation should be performed.
 
The mutation rate is set and if the random 

number is less than mutation rate, a gene of the offspring is randomly 

selected to be mutated. It is randomly mutated to another customer demand 

type among its neighbours.  

4.5.6 GA Algorithm  

 

The algorithm for the GA implemented follows the steps outlined below: 

1. Initial population - Generate initial population. 

2. Parent selection - Based on tournament selection whereby a random set 

of tournament size individuals is selected for tournament. The 

individual with lower F(x) wins (minimization). Two winning 

individuals are selected as parents for reproduction.  

3. Reproduction - A new offspring is produced using the following steps: 

a. A cost matrix cij is constructed using the pairing of the selected 

pair of parents where the cost is calculated using rectilinear 

distance  

b. Hungarian match is used to find the nearest neighbour to 

preserve the neighbourhood property.  

c. Once matches are found, whole arithmetic crossover  

1 1 2. (1 ).
s f f      

 is applied; if not feasible, repair and 

modify to nearest neighbour. 
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d. Mutation is applied using a random number and compared with 

mutation probability to decide if mutation should be performed.  

4. The cycle of parent selection, crossover, and mutation is repeated to 

generate new individuals. 

5. Fitness function-All individuals in the population are evaluated for 

F(x), the fitness value based on total cost of individual. 

a. Individuals with lower F(x) are preferred (minimization of 

fitness value) 

6.  Elitism is the preservation of best solutions of the population pool for 

the next generation. 

a. At the end of each generation, elite individuals with best fitness 

values are selected to remain and copied into the next 

generation’s population 

b. Individuals with unsatisfactory fitness values are discarded 

c. The best elite individuals are selected to remain for the next 

generation’s population Pt+1 

7. The new population Pt+1 replaces the current population Pt   

8. Exit when set number of generations G is reached 

9. The best solution is found 

The algorithm for the GA can be illustrated using the flowchart as shown 

in Figure 4.9 below. After the best chromosomes are chosen for copying 

into the next generation, marginal improvement as discussed in Section 4.4 

is applied to a small percentage of individuals. The marginal improvement 

step is intended to speed up the process of finding better solutions. After 

this is done, one generation is complete and progresses to the next 
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generation. The GA algorithm is run for a set number of generations before 

terminating. The output is the minimum value when the set number of 

generations is reached. 
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Figure 4.9 Flowchart of GA algorithm 
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4.5.7 Numerical Experiments 

Numerical experiments were conducted using the proposed GA algorithm.  

4.5.7.1 Comparison with Enumeration Method 

 

In a standard GA, parameter tuning is crucial to the evolutionary computation 

of the problem. The efficiency of a GA is greatly dependent on its 

tuning parameters. The parameters include population size, tournament size, 

probability of mutation, α value in the crossover operator and the number of 

generations. Design of experiments can be applied to find the optimal settings 

for all the parameters. On the other hand, the paramaters can be tuned one at a 

time although this may produce suboptimal solutions because the parameters 

may interact in a complex way. Despite the disadvantage, many researchers 

opt to tune the parameters  “by hand” which is testing different values and 

selecting the value with the best results due to time constraints. When building 

a GA, there is a need to guesstimate what the optimal values are for a lot of 

parameters. Mostly there is a lot of trial and error. In this thesis, the same 

approach is adopted to tune the parameters by experimentation.  

In a GA algorithm, increasing the population size will increase the accuracy of 

the GA. Basically, the bigger the population the better, but realistically there is 

a need to make compromises in order to run the algorithm in a reasonable 

amount of time. Meanwhile, on the other end of the spectrum, if a population 

size is too small, it is possible that the GA will converge to a local optimum 

value as there is a lack of diversity as weak values are generally “pushed out” 

to make space for the population size. Generally, the rule of thunb for a 
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population size is in the range of 30-100. It must be noted that increasing the 

population size will also increase the time needed to converge. In view of this, 

we would like to offset the accuracy with the time it takes to converge. In 

order to determine the parameter of population size, the population size is first 

set to an empirical value for a run with input size n. Then the population size is 

observed to see whether it holds and remains constant as the size of n is 

increased from 2 to 20. For this problem, because the results can be compared 

to the enumeration method, the convergent values can be evaluated as whether 

they are optimal or not. For all sizes n from 3 to 20, the population size is 10 

and the number of generations it took to converge to the optimum value is 

always either 2 or 3. Hence it can be concluded that a small population size of 

10 is sufficient for this small-scale problem of determining two sizes for n 

ranging from 2 to 20. 

Tournament size is the parameter which determines the selective pressure of a 

tournament selection. The size of the tournament selection is relatively small 

compared to the population size. The ratio is indicative of the selective 

pressure. Due to the coding implementation, the population size must be 

divisible by the tournament size. Experimenting with different values of the 

tournament size from 2 to 10, the same convergent values were obtained in the 

same number of generations. Hence the tournament size can be set to any 

value in this range.  

Besides population and tournament size, mutation probability is another 

parameter that is important as the nature of genetic algorithm is 

randomization. There is some bias inherent in the mutation effect where the 

larger the current value is, the larger the mutation will be. Hence, the mutation 
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probability is generally set low. The probability of mutation is tuned by 

comparing the results obtained when it is changed from 0.01 to 0.10 in steps of 

0.01. The same optimal results were obtained for each setting thus the 

probability of mutation can be set to 0.01.  

Next, crossover operator is also considered for tuning. The α value is a random 

weighting factor chosen before each arithmetic crossover operation. It is a 

random number generated from the uniform distribution on the interval [a,b], 

usually between 0 and 1. This has the advantage of producing feasible 

offspring within the solution space. However, if the optimum lies near the 

solution space boundary, then it has the disadvantage of producing offspring 

toward the interior of the solution space. The value of α is initially set to [0,1].  

Lastly, the number of generations is tested from 100 to 10 in steps of 10. The 

same optimal results were obtained for each calibration. Since a higher 

number of generations takes a longer time, the number of generations is set to 

the lowest value of 10 only. 

Similarly, this approach was used to calibrate the parameters for the three-size 

problem and four-size problems and it was found that the same parameters as 

shown in Table 4.5 are still valid.  
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Parameters  

Type of coding Real value  

Initialization Random 

Population size 10 

Tournament size 2 

Probability of mutation 0.01 

α  [0,1] 

Number of generations 10 

Table 4.5 Parameters of GA experiment I 

 

Tables 4.6-4.8 show the results for comparison with the enumeration method 

for two-size, three-size and four-size problems. Without loss of generality, in 

these experiments, we assume that the demand size is 1 and variance is 0. The 

results show that the GA algorithm is able to converge to the global optimal 

solution for the following problems when compared to the enumeration 

results.  
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K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration) 

Cost 

(GA) 

Cost 

2 2 2 1 2 2 20 20 

3 3 2 3 3 153 153 

4 4 2 4 4 640 640 

5 5 3 5 5 1925 1925 

6 6 3 6 6 4860 4860 

7 7 4 7 7 10339 10339 

8 8 5 8 8 20288 20288 

9 9 5 9 9 36369 36369 

10 10 6 10 10 61600 61600 

11 11 6 11 11 99341 99341 

12 12 7 12 12 153072 153072 

13 13 7 13 13 229333 229333 

14 14 8 14 14 330848 330848 

15 15 9 15 15 467775 467775 

16 16 9 16 16 645376 645376 

17 17 10 17 17 873647 873647 

18 18 10 18 18 1163808 1163808 

19 19 11 19 19 1523059 1523059 

20 20 12 20 20 1971200 1971200 

Table 4.6 Comparison between GA and enumeration for two-size problem 
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K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration) 

Cost 

(GA) 

Cost 

3 3 3 1 3 2 126 126 

4 2 4 4 2 512 512 

5 4 4 5 2 1587 1587 

6 3 6 6 3 3888 3888 

7 5 6 7 3 8482 8482 

8 4 8 8 4 16384 16384 

9 6 8 9 4 29709 29709 

10 5 10 10 5 50000 50000 

11 7 10 11 5 80886 80886 

12 6 12 12 6 124416 124416 

13 8 12 13 6 186271 186271 

14 7 14 14 7 268912 268912 

15 9 14 15 7 380682 380682 

16 8 16 16 8 524288 524288 

17 10 16 17 8 711417 711417 

18 9 18 18 9 944784 944784 

19 11 18 19 9 1240174 1240174 

20 10 20 20 10 1600000 1600000 

Table 4.7 Comparison between GA and enumeration for three-size problem 

 

Table 4.8 shows the comparison between GA with enumeration, MIBS I, 

MIBS II and MIBR costs for the four-size problem. The results show that the 

GA performs better than the marginal improvement methods. 
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K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration) 

Cost 

(MIBS  

I) Cost 

(MIBS  

II) Cost 

(MIBR)  

Cost 

(GA) 

Cost 

4 4 4 2 2 4 4 3 456 456 456 456 456 

5 5 2 2 5 5 4 1355 1355 1355 1355 1355 

6 6 2 2 6 6 4 3360 3360 3360 3360 3360 

7 7 3 3 7 7 5 7231 7231 7231 7231 7231 

8 8 3 3 8 8 6 14048 14400 14048 14048 14048 

9 9 4 3 9 9 7 25515 25515 25515 25515 25515 

10 10 4 4 10 10 7 42820 42820 42820 42820 42820 

11 11 4 4 11 11 8 68959 68959 68959 68959 68959 

12 12 5 4 12 12 9 106704 106704 106704 106704 106704 

13 13 5 5 13 13 9 - 158925 159757 158925 158925 

14 14 5 5 14 14 10 - 230384 230720 230384 230384 

15 15 6 6 15 15 11 - 324975 324675 324675 324675 

16 16 6 6 16 16 11 - 449056 449056 449056  449056 

17 17 7 6 17 17 12 - 613547 608022 608022 608022 

18 18 7 7 18 18 13 - 812718 812718 807300 807300 

19 19 8 7 19 19 14 - 1068560 1059079 1059079 1059079 

20 20 8 7 20 20 15 - 1369500 1372720 1377200 1369500 

Table 4.8 Comparison of GA to enumeration and MIBS I, MIBS II and MIBR 

for four-size problem 

 

Note: For N=9, the optimal sizes from enumeration are (9,3) and (3,9), (9,6) 

and (9,9) with the same total cost of 25515. 

4.5.7.2 Numerical experiment of a medium size problem 

After comparing the GA to the enumeration and marginal improvement 

methods for the trivial problems, GA is applied to explore for a medium size 

problem based on 50 different types of crate lengths and 50 different types of 
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crate widths. The GA finds for five and ten sizes out of these customer 

demand sizes.  

In order to determine the parameter of population size for the medium-scale 

problem, the population size is tested by increasing the size from 10 to 100 in 

increments of 10. It was observed that a population size of below 50 did not 

always produce a value that is lower. There was a tendency to get stuck in 

local minima. Thus the population size is set to 50.  

Another parameter is the tournament size. Experimenting with different 

tournament sizes ranging from 2 to 25, it was observed that a tournament size 

of 2 did not always produce the lowest value while a tournament size of 5 did 

not have the same issue. Therefore the tournament size is set to 5.  

In addition, the probability of mutation is tuned by comparing the results 

obtained when it is changed between 0.01 and 0.25. However, it was found 

that mutation rate of 0.15 and above did not always give the lowest value so it 

should be lower than 0.15. As such the mutation rate is maintained at 0.01. 

The value of α is initially set to [0,1]. The range is gradually increased to [-

0.25,1.25] to allow more diversity. A broader range of the α value was found 

to avoid the pitfall of falling into local minima.  

Then, the number of generations is tested from 1000 to 100 in steps of 100. 

Next, it is tested from 100 to 10 in steps of 10. Because the algorithm 

converges quickly, the number is generations is set at a conservative estimate 

of 50. 

 



83 

 

Parameters  

Type of coding Real value  

Initialization Random 

Population size 50 

Tournament size 5 

Probability of mutation 0.01 

α  [-0.25,1.25] 

Number of generations 50 

Table 4.9 Parameters of GA experiment II 

In order to increase the efficiency of the algorithm, at the end of each 

generation, the top 10% of the population is processed with marginal 

improvement method. Because of this, the first generation of the GA includes 

a solution from the marginal improvement method. The percentages reflect the 

improvement of the value from the initial generation. Both figures 4.10 and 

4.11 show the evolution of the minimum value in each generation. GA is able 

to improve on the marginal improvement method by 13.62% for five sizes and 

11.68% for ten sizes.   
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Figure 4.10 Convergence for a medium problem GA (5 sizes) 

 

Figure 4.11 Convergence for a medium problem GA (10 sizes) 
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4.5.7.3 Numerical experiment of a large size problem  

GA is then applied to explore for a large size problem on the scale of 100 

types of crate lengths and 100 types of crate widths. There are in total 10000 

customer demand sizes that are in the search space. The GA finds for ten 

optimal sizes out of these demand sizes. There are 
9999

C9 = 2.746x10
30 

possibilities in this large size problem.  

When building the large size problem, the algorithm is more sensitive to the 

GA parameters and tuning is necessary. The parameter tuning follows the trial 

and error approach as described previously. Firstly, the population size is 

tested by increasing the size from 10 to 100 in increments of 10. The 

population size and the tournament size were calibrated together. When the 

tournament size is 5, the results did not show lowest results for population 

sizes of 10, 20, 30, 40, 70, and 80. Meanwhile, when the tournament size is 

increased to 10, the results showed that the results were better for population 

size of 100. After investigating different scenarios, the mutation rate is 

maintained to 0.01. As for the crossover operation, the value of α is initially 

set to [-0.25,1.25]. The range is then broadened to [-0.50,1.50]. Finally, the 

number of generations is tested from 1000 to 100 in steps of 100. Because the 

algorithm converges quickly, the number is generations is likewise maintained 

at 50. 
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Parameters  

Type of coding Real value  

Initialization Random 

Population size 100 

Tournament size 10 

Probability of mutation 0.01 

α  [-0.50,1.50] 

Number of generations 50 

Table 4.10 Parameters of GA experiment III 

Figure 4.12 shows the convergence of the objective value in 50 generations. 

As described for the medium size problem, the top 10% of the population is 

directed to the marginal improvement method. GA is then able to improve on 

the marginal improvement method by 37.85%. 

 

Figure 4.12 Convergence for a large problem GA 
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Figure 4.13 shows the decrease in objective value when the number of types is 

increased from 2 to 10 for the same problem. This is due to the better fit of the 

rolls into the crates and hence the cost of the total volume decreases and the 

effect is lower total cost. Meanwhile Figure 4.14 shows the increase in 

objective value for the above problem when variance level is calibrated 

between 2 to 10 for ten types. This is due to the effect of higher cost of safety 

stock which leads to higher overall cost. From here, it can be expected that 

there is a balance of trade-off between total volume cost and inventory cost 

which can help determine the number of ideal types in Section 4.5.2. 

 

Figure 4.13 Objective value vs. increasing number of crate types 
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Figure 4.14 Objective value vs. increasing variance level 
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p

h
 ratio of 10

-6
 and we assume that the demand size and 
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p

h
 ratio is important as this determines the 

trade-off between the inventory cost and the total packing volume cost.  Figure 

4.15 shows that the number of crate types for this problem is 12 where it is at 
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crate types instead. This approach of iteratively conducting the GA algorithm 

to find the number of crate types and their sizes ties back to the original 

problem described in Section 3.2 for the 1D problem. The Hungarian-based 

GA algorithm is able to minimize total volume of crates and inventory stock 

for a 2D problem instead of loss of length and inventory stock only.  

 

Figure 4.15 Objective value vs. Varying number of types 
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shapes, there are regular shapes such as circles, squares and rectangles while 

on the other hand, there are irregular shapes which make it harder to visualize 

generally. However, it is worth noting that although products come in many 

shapes, it is a usual practice to package the products in regular shape boxes for 

shipping purposes. Thus, in those cases, the packing problem of irregular 

shapes can be reduced to a packing problem of regular shapes for tractability 

and ease of handling. Aside from product shape and sizes, the choice of 

container is also important, as there are20-ft and 40-ft, hi-top, reefer and other 

types of containers available. The choice of containers has direct implication 

on the final cost. To add on to the problem, fluctuations in demand make it 

harder to predict when and how to pack the products to be shipped to 

customers therefore robust decisions are preferred and considered for long-

term cost savings. Lastly, sometimes products may either have fixed 

orientations or can be rotated. The many factors that weigh in the packing 

process make it a difficult decision to manage. As such, inefficient packing 

has resulted in many partially-filled containers and unnecessary expenses. 

Owing to the increasing cost of shipping, many companies desire to improve 

on their packing process to reduce the number of containers required and total 

shipping cost.  

In this section, the packing problem is inspired by a company that sells and 

ships products that are in the shape of cylindrical rolls. The rolls have a few 

types of thicknesses available as each unique thickness caters to a customer’s 

industrial purpose. The rolls are also cut to any roll length depending on 

customer specifications. The rolls are each packaged in rectangular box sizes 

before they are packed in shipping containers for shipping worldwide. The 
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company stocks and uses a few known, standard-size and regular-shape boxes 

to contain each roll as packaging. With this decision, it is inevitable that there 

will be some wastage of space inside the boxes even before the actual packing 

problem of the boxes into containers commences.  This makes it even more 

worthwhile to ensure that the next step of containerization packing problem is 

considered for the improvement of shipping cost.  

Following on the choice of boxes, the company also must decide on the type 

of shipping container to use. If a smaller container is chosen, the packing may 

be denser but more containers will be needed. On the other hand, larger 

containers are preferred when the orders are large but more space wastage may 

occur. Afterwards, the packing problem starts with how to load the boxed 

products into the containers to maximize on space. Here, there are many 

practical difficulties encountered in the loading of the containers due to the 

amount of physical labour involved. Firstly, the orientations of the products 

must be correct, and the layout and sequence must be such that it is possible to 

load starting from the back of the container and extending to the front of the 

container for the worker to proceed smoothly. Not only that, the workers will 

stack items from the bottom to top and hence layer packing is also more 

practical. Finally, because in this case the products are fairly fragile, all empty 

space must be padded with airbags for maximum protection of the products. 

Otherwise, the boxes will move around during transport and may cause the 

products to spoil upon arrival. If the boxes are packed dense enough, this extra 

protection is not necessary and the cost of the paddings can be reduced.  Thus 

it is imperative that the packing solution is made more effective to maximize 

on space and minimize cost based on the above mentioned limitations. 
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In this operational packing problem, a demand realization which consists of a 

set of products in different dimensions is to be packed into as few identical 

containers as possible for shipping to customers. The products are individually 

packaged and transported in a known number of standard rectangular box 

sizes. The problem is reduced to a rectangular packing problem by pre-sorting 

the demand according to the height of the boxes. The container is then packed 

layer by layer whereby each layer comprises of boxes sharing the same height. 

In each case, the layer is packed as a rectangular packing problem and a 

relaxed LP with improvement is proposed to minimize the number of layers. 

In order to generate feasible packing patterns, rectangular packing heuristics 

from available literature such as the steplike stacking heuristic and maximal 

rectangle heuristic are applied. Following that, new columns are generated to 

both find improved patterns and explore new ones for the future layers. 

Finally, in the case of multiple heights, the container is packed as a 1D 

packing problem to minimize the number of containers. 

Many conventional packing heuristics tend to use a greedy approach. Items are 

placed and then never considered again in subsequent steps. Items are packed 

densely with minimum waste to the first few containers (due to a large 

assortment of items available for choice), which are then followed by last few 

vastly sparse containers to accommodate the leftovers. However, as all items 

must be packed, it is advantageous to consider repacking the items in different 

patterns so as to average out the load. In this thesis, the approach to the 

abovementioned packing problem comprises of a mathematical model to solve 

the rectangular packing problem. With the use of the relaxed LP, we can 

gather information on the patterns which contribute to the high surplus of 
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demand. Then using this information, improvement method is used where 

solutions whose patterns contribute to high surplus of demand in the optimal 

solution are re-evaluated. New and improved patterns are obtained and the 

method is repeated until the surplus is reduced to a satisfactory low value. 

With this method, current packing patterns can be improved and new ones can 

be explored for the next demand realization. After a given satisfactory number 

of runs, we can find a good set of packing patterns. In this section the problem 

is defined in Section 5.1 where the rectangular packing problem is described 

and difficulties in solving the problem are highlighted. Section 5.2 presents the 

formulation of the problem. In Section 5.3, the solution methodology is 

presented. The third section solves the case of single height with improvement 

method. In the improvement method, how the initial column is first obtained is 

described in detail here. Section 5.4 illustrates the case of different heights of 

boxes with cutting stock approach. Finally the numerical results for different 

scenarios of random demand realizations are finally presented in Section 5.5.  

5.1 Problem Description 

The packing problem’s main objective is to minimize the total number of 

containers and ultimately reduce shipping cost. The input to the problem is a 

set of rolls which have been individually packed into rectangular boxes. As 

mentioned above, there are a few standard-size, rectangular boxes where the 

dimensions of each type of box are given. Therefore, the processed customer 

demand is a set of box sizes in given dimensions. In a single customer demand 

realization, all boxes must be packed into the containers, leaving no boxes 

behind. The output of the problem is the number of containers used. We 
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assume using only one type of container and that there is unlimited number of 

containers available, i.e. there is no restriction on the number of containers.  

The dimensions of the container are also given. Henceforth, the container is 

also referred to as bin. 

The overall packing problem described is a 3D bin packing problem which is 

NP-hard. This problem has many assorted small items and a single type of bin 

size. The number of bins available is not restricted. The packing is packed by 

layer, and it can be assumed that the layers can be feasibly arranged such that 

the denser solutions are placed bottom first before sparse solutions if any. 

Based on the characteristics of the problem and from the typology in literature   

(Dyckhoff, 1990) and (Wäscher et al., 2007), our packing problem can be 

categorized as a type of 2D dimensionality, input (value) minimization, 

weakly heterogeneous assortment and dimensions fixed for the small objects, 

weakly heterogeneous and dimensions fixed for the large objects, multiple 

stock size cutting stock problem MSSCSP.  

The problem can be solved using various methods from the literature with 

well-studied 3D bin packing algorithms like the branch-and-bound and other 

bin packing methods. Despite that, the problem here has a special 

characteristic that justifies a different approach. In particular, the problem has 

a low number of types of boxes and their given dimensions. Because there are 

only a few types of boxes, it warrants an approach to pack the boxes by layer 

as there are only a few standard heights. As such the boxes are pre-sorted into 

groups of the same height; the container packing problem can be reduced into 

a 2D rectangular packing problem whereby the shipping container is assumed 

to be composed of several layers of rectangular area. In this approach, the 
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packing problem has two cases, where the first case is assuming that there is 

only one height of boxes (which describes the packing of boxes into layers) 

and the second case is there are several heights of boxes (which describes the 

packing of layers into bins). The rectangular area of the layer corresponds to 

the floor area of the shipping container. The objective of the reduced problem 

is to minimize the number of packing layers which is assumed to 

unequivocally reduce the number of the containers in the original container 

packing problem subsequently.  

Although the pre-sorting results in suboptimal solution, the benefits outweigh 

the reduced optimality. There is a very practical reason to reducing the original 

3D bin packing problem (3D-BPP) into 2D rectangular packing problem 

because as mentioned previously, there are a known number of standard boxes 

and hence, there are only a few heights of boxes to tackle. Thus the problem is 

reduced by pre-sorting the original demand into a few groups of boxes of the 

same height. Then each group is treated as packing by layers. Since the 

demand of each group is generally large enough to comprise of several layers, 

the objective is to minimize the total number of packing layers. After the 

rectangular packing stage, the layers are then packed into containers (bins) 

using the heights of the layers versus the height of the containers (bins). Even 

though reducing the problem from 3D to 2D by pre-sorting into shared heights 

makes the problem sub-optimal, this approach yields practical results. The 

actual packing problem requires manual labour and packing by layer is 

advantageous as it is simpler to understand and easier to manoeuvre with the 

heavy equipment and products. For the worker, it is easier to visualize and to 

arrange for movement in logical sequence to complete the packing. A packing 
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instruction in original 3D bin packing solution is not easy to read and follow 

for the layman. It might require more skilled workers who demand higher 

wages. Another possibility is that this will slow down the packing process 

making the trade-off for space optimization unpredictable.  

This section is organized as follows; for each type of height, the 2D bin 

packing problem is solved using the rectangular packing problem with 

improvement method as described in Section 5.3. When all the heights are 

packed into layers, the layers are then packed into the containers (bins) using 

1D packing to minimize the number of bins. This cutting stock approach 

completes the overall 3D bin packing process after reducing the problem into 

2D. The cutting stock method is described in Section 5.4.  

5.2    Problem Formulation 

There are many ways of representing a packing problem, for example arch 

flow model, set covering model, convexity model, position-oriented model etc.  

In a paper, the 3D-BPP is modelled by (Hifi, Kacem, Nègre, & Wu, 2010) as a 

mixed integer linear programming model using inequalities to describe the 

spatial constraints and minimize the total number of identical containers m 

with fixed dimensions length L, width W and height H. There are n rectangular 

items i to be packed which consist of several types of boxes with different 

lengths li, widths wi and heights hi. The coordinate (xi, yi, zi) is used to describe 

the left-bottom-back coordinate of item i and that the coordinate of left-bottom-

back corner of the container (bin) is (0, 0, 0). γi is defined as the label of the 

bin to which item i is assigned (i = 1, …, n). The aim is to minimize the 
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greatest label of the used bin γ = max1≤i≤n{γi}. From the 3D-BPP model 

described above, the reduced 2D-BPP can be formulated as follows: 

Parameters 

L Container length 

W Container width 

li Length of item i 

wi  Width of item i 

n Total number of items i 

Decision variables 

xi Geometrical location of item i (left-coordinate)  

yi Geometrical location of item i (back-coordinate) 

β Bin (container) index 

lij 1 if item i is in the left of item j; 0 otherwise 

bij 1 if item i is at the back of item j; 0 otherwise 

cij 1 if i j  ; 0 otherwise 

 min    

s.t. 

 1, 1,...,ij ji ij ji ij jil l b b c c i j n         (5.1) 

 ( ) , 1,...,i j ij ij ji ix x L l c c L l i j n         (5.2) 
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 ( ) , 1,...,i j ij ij ji iy y W b c c W w i j n         (5.3) 

    1 ( ) 1 , 1,...,ij ji ij ji i j ijl l b b c i j n              

  (5.4) 

  , , 0,1 , 1,...,ij ij ijl b c i j n    (5.5) 

 0 , 1,...,i ix L l i n     (5.6) 

 0 , 1,...,i iy W w i n     (5.7) 

 0 , 1,...,i i n       (5.8) 

 

lij = 1 if item i is in the left of item j, bij = 1 if item i is in the back of item j and 

cij = 1 if βi < βj. The first three constraints ensure that no overlap exists 

between two packed items. The parameter    is a valid upper bound on β. 

Constraint (5.4) implies that when cij = 1 or cji = 1 the items i, j are located in 

different layers and when one of lij, lji, bij, bji is equal to 1, items i and j are 

necessarily located in the same layer. There are two dimensions, namely along 

the x-axis and the y-axis, parallel to the length of the container and the width 

of the container respectively. The layer is the horizontal layer of the container 

which is the floor area of the container.  

The model illustrates the problem of packing same-height crates into a 

rectangular bin with known dimensions. While the formulation can give 

optimal results for the packing for the 2D-BPP problem, the scale of the MILP 

increases greatly with the size of the problem. For example, the number of 

decision variables grows exponentially with problems of large number of 

items. In daily practice, solving the MILP will demand higher complexity and 
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computation. Therefore instead of using MILP to solve, there are many 

authors who prefer the use of heuristics as the packing problem is an NP-hard 

problem. In this section, the problem is also solved using heuristics and the 

approach is documented in Section 5.3. The methodology uses packing 

heuristics for rectangular packing of the bin by layer. The 2D bin packing 

problem is solved for each group of height of the boxes.  

The assumptions for the model are: 

1. The layers of the containers are independent and it is assumed that the 

layers can be feasibly placed on one another. Weight and possible 

symmetrical placements are not considered.  

2. All demands must be satisfied, i.e. all items must be packed for a 

particular demand realization. 

3. The height of boxes is a constant in each demand realization. 

5.3  (2D-BPP) Layer Packing   

 

An enumeration of all the packing patterns is not feasible for a reasonably 

large-sized problem. However, by using the idea of generating new columns, 

this allows us to build the set of packing patterns by starting with a smaller set 

of solutions and then improving the solution by generating new columns. 

 

5.3.1 Layer Packing with Column Generation 

In this section, the column generation approach is investigated. The integer 

programming model below describes the 2D (rectangular) layer packing 



100 

 

problem using the cutting stock approach. The area of the layer is constrained 

by the floor of the container with dimensions of L (length of the container) and 

W (width of the container). There are n items i, each of which has an 

associated size of li, (length of item i), wi (width of item i) and demand di. We 

use a column vector Aj to represent a packing pattern pj. The elements of Aj, aij 

then corresponds to the number of pieces of item i in the pattern pj. The 

elements of Aj must be all non-negative integers. Each pattern pj must be a 

feasible 2D packing pattern for the rectangular area of L by W. Let J be the 

total number of distinct feasible cutting patterns which is the number of 

vectors Aj satisfying the constraints. All demands of item i, di must be 

satisfied. The objective is to minimize the total number of layers packed with 

pattern pj, jX . The integer programming model presented below can be 

relaxed to give a lower bound. Since there are n demand constraints, there are 

at most n non-zero variables. 

Inputs and Parameters 

L Container length 

W Container width 

S Size of the rectangular layer (the floor of the container) 

li Length of item i 

wi  Width of item i 

si Size of item i 

n Total number of items i 
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di Demand of items i of size li and wi to be packed 

aij Number of items i of size li and wi packed in layer j 

Aj Packing pattern pj 

J Total number of distinct feasible cutting patterns pj 

Decision Variables 

Xj Number of layers packed with pattern pj  

 

min 
1

j

J

j

X

  (5.9) 

subject to 

 
1

J

ij j i

j

a X d


  for i=1,.., n (5.10) 

 0jX   for j=1,.., J (5.11) 

  integerjX  for j=1,.., J (5.12) 

 

In the objective function (5.9), we minimize Xj. Therefore the number of 

containers can be obtained by dividing the objective value by the number of 

layers allowed in a container.  Constraint (5.10) dictates that the decision 

variable on the packing layers Xj has to at least satisfy all the demand of items 

to be packed.  Constraint (5.11) is straightforward, restricting the decision 

variable Xj to be positive and constraint (5.12) additionally restricts it to 

integers only. 
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The idea of column generation is to start with a few patterns and generate new 

ones as needed. Starting with an initial basis, we then determine if all non-

basic columns have reduced cost 0  and if not, then find a column with 

negative reduced cost. In order to find an initial basic feasible solution, it is 

important to verify that the packing pattern is feasible. The patterns will be 

naïve ones where for every item i, we try to fit the maximum number of each 

into the rectangular area of L by W. The reduced cost of a cutting pattern pj is

1 jyA . Then new patterns are generated by solving the integer knapsack 

problem: 

max 
1

ii

n

i

y a

  (5.13) 

subject to 

 
1

n

i i

i

s a S


  (5.14) 

 0ia   for i=1,.., n (5.15) 

 ia  integer for i=1,.., n (5.16) 

This problem is equivalent to a two-dimensional knapsack problem. The 

problem consists of determining a cutting pattern which maximizes the sum of 

the profits of the cut items. In constraint (5.14) si refers to the size of item i and 

S refers to the size capacity of the layer. This constraint describes that the 

packing of all items with size si and quantity of ai into S. For example, if S is a 

rectangle size with length 25 and height 40, while ssm is the unique smallest 

rectangle size with length 2 and width 4, solving the knapsack problem in the 

first cut gives a solution of 125 for asm to maximize the objective value. 

However, this is not feasible as we can only fit a maximum of 120 rectangles 
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of ssm in rectangle S. An intuitive bound for ai is then taking the integer part of 

the ratio of dimensions of S and rectangles si, 
( * )

( * )i i

L W

l w

 
 
 

 whereas another 

bound is by multiplying the maximum number of rectangles si in a horizontal 

row and the maximum number of rectangles si in a vertical column, 

 max / * / , / * /i i i iL l W w W l L w               . 

The column generation approach of solving a rectangular packing problem 

involves solving a dual problem of a two-dimensional knapsack problem. As it 

can be seen, constraint (5.14) is not straightforward to evaluate for different 

sizes of si due to the two-dimensionality. It is difficult to determine the 

feasibility of the 2D packing pattern using linear programming without 

verifying with a packing heuristic. Therefore, the column generation approach 

is not ideal for this problem. We are motivated to find some modification to 

the method in order to solve the problem. In the next section, an improvement 

heuristic is introduced below as an alternative method.  

5.3.2 Layer Packing with Improvement Heuristic 

In this section, a heuristic method of generating new and improved columns is 

proposed. The approach borrows from the idea of column generation for the 

rectangular bin packing problem. In Section 5.3.1, new columns can be created 

from solving the integer knapsack problem. However, in this section, new 

columns are created by solving the integer programming model and then using 

the information found to find improved columns for the next iteration. This is 

because solving the model gives enough information to pursue a better 

solution.     
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By solving the model above, we can obtain information on the following: 

1. The objective value is a measure of the performance of the packing 

solution where a lower number of layers is desirable 

2. Secondly, the results give the surplus of types from the difference of 

left and right hand sides of constraint (5.10) 
1

J

ij j i

j

a X d


  

3. Besides that, Xj shows which of the feasible packing patterns are used 

in the packing of the demand realization. Only the picked packing 

patterns are used for the next step of improvement. 

There are several steps in solving the rectangle packing problem in this 

section. Firstly a random demand realization of items to be packed is 

generated. A packing algorithm such as the steplike stacking heuristic or the 

maximal rectangle packing is used to obtain initial feasible packing patterns as 

described in Section 5.3.2.1. Then the second step is solving the integer 

programming model for each demand realization in order to utilize 

information regarding the surplus of types. The last step is the generation of 

new columns by improving columns as described in Section 5.3.2.2 with an 

improvement method.  

 

5.3.2.1  Initial Column 

The initial column is generated based on the a rectangular packing algorithm 

such as steplike stacking heuristic as described in detail in the paper by (Shi & 

Xue, 2009). The heuristic finds feasible solutions for the rectangular packing 

problem of fixed container size with minimum waste as the objective. The 



105 

 

packing is orthogonal and no overlap is allowed. The authors use the terms 

“Steplike Line” Lt to demarcate the boundary between packed and unpacked 

regions, and “Step Positions” Pj as the available corners to place items at the 

position. All step positions are corners closing to the left and bottom corner of 

the line Lt. At any time t, all combinations of step position and items i are 

evaluated using a score of “Fij” to indicate closeness to match the step sizes 

and items with perfect matches are packed first, then followed by items with 

lower matches and ordered by the amount of area wastage induced.  The 

heuristic is implemented using MATLAB R2012a.  

The inputs are: 

a. Bin/container length and width 

b. Items to be packed in a matrix R with the columns of length li and 

width wi. The first item to be packed is the item with the largest area. 

This is subsequently changed to picking the items randomly so as to 

induce more randomness. 

At any time t, the following steps are performed: 

a. The information on packed items are stored in a matrix Q where the 

first two columns are the packed length and width and the next two 

columns are the packed positions. 

b. Fij scores are assigned for each item i and step position j combination 

at time t. The adjacent distance Dij which is the borders shared by Lt 

and item i at step position j is used to evaluate the score. Wij is used to 

evaluate the total loss incurred when assigning an item that is larger 

than the size of the step position. 
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c. Fij and Wij are used to indicate the type of fit of the item and step 

position combination. There are 8 types of scenarios: 

 Fij=2: Item fits on both length and width of Pj perfectly (Wij=0) 

 Fij=1: Item fits on either length or width and are smaller on 

both dimensions (Wij=0) 

 Fij=0: Item does not fit on either dimension and are smaller on 

both dimensions (Wij=0) 

 Fij=1: Item fits on the length of Pj perfectly and has larger 

width than the width of Pj (Wij is nonzero) 

 Fij=1: Item fits on the width of Pj perfectly and has larger 

length than the length of Pj (Wij is nonzero) 

 Fij=0: Item does not fit the size of Pj and has larger width than 

the width of Pj (Wij is nonzero) 

 Fij=0: Item does not fit the size of Pj and has larger length than 

the length of Pj (Wij is nonzero) 

 Fij=0: Item does not fit the size of Pj and has larger length than 

the length of Pj and larger width than the width of Pj (Wij is 

nonzero) 

d. The hierarchy of choosing the best combination of item-step position is 

based on the value of Fij=2 and Wij=0, then Fij=1 and Wij=0 and Fij=0 

and Wij=0 followed by all combinations with nonzero loss Wij. For 

combinations that have the same value of Fij and Wij=0, the 

combination with highest value of Dij is selected to be packed. For 

combinations with non-zero loss, the pairing with lowest value of Wij is 

selected to be packed. 
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e. After assigning an item to a step position, Pj and Lt are updated 

depending on the type of scenario at the end of time t. Only one item is 

packed at each time t.   

f. Packed item i is removed from matrix R and inserted into the matrix Q. 

g. The heuristic terminates either when matrix R is empty, bin is full or 

no more items can be feasibly packed. 

The outputs are: 

a. Matrix Q with packed items and positions. The sequence of Q 

represents the sequence of packing of items into bin. 

b. Utilization is computed by comparing total area of packed items with 

the bin area. 

Initial column is generated by applying the heuristic to a demand realization of 

items. From the heuristic, feasible packing patterns are obtained. Patterns that 

have low utilization are discarded. Low utilization refers to utilizations which 

are lower than a pre-determined threshold value. This is because we only want 

columns with efficient packing utilization. All the remaining items in columns 

with low utilizations are regrouped as one demand and repacked again. This 

step provides more new columns for the initial column.  

 

5.3.2.2 Generation of New Columns 

The method is used to improve the current solution and also to get new 

columns for the master problem. The columns are improved using the 

information obtained from the master problem.  Generally the idea is that we 
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try to replace loose demand types with tight demand types to increase 

efficiency. This is a one to one exchange of types.  

i* refers to the row index i of element aij that makes the expression 

1 1 2 2[( ) ]i i in J ia X a X a X d    the largest. This is finding the i
th

 demand 

constraint that has the largest surplus of demand. Meanwhile j* refers to the 

column index j of element aij that makes the term 
*i j ja X  in i*-th demand 

constraint the largest. This is finding the j-th pattern that contributes the largest 

to the surplus of item type i*.   

From constraint (5.10),  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 1 2 2

1

1 1 2 2

*1 1 *2 2 *

( ) [1, ]

* arg max[( ) ] [1, ]

* arg max[( , ,..., )] [1

n J

n J

n n nn J n

J

ij j i i i in J i

j

i i in J i
i

i i i n J
j

a X a X a X d

a X a X a X d

a X a X a X d

a X d a X a X a X d i n

i a X a X a X d i n

j a X a X a X j



   

   

   

       

      

  



, ]J

  

1. Let * arg max( )i j j i
i j

i a X d  and ** arg max( )i j j
j

j a X   

2. Looking at pattern j*, we try to improve the columns by replacing patterns 

which have loosest demand type with tightest demand types. The reason 

behind this is that tight demand types are tight because the options for a 

pattern with lower quantity are not available to choose from the available 

patterns. Not only that, the loose demand types are not as much required in 

the demand and so their space can be given up to substitute with tight 
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demand types. The actions reduce the total amount of surplus which means 

there is a closer match to the demand quantities required. 

3. Let ' arg min( )i j j i
i j

i a X d   

4. Remove i*, and put in as many i’ as possible. This is achieved by 

calculating the actual area occupied by i* and replaced with i’.  

5. Verify the new pattern by using a rectangular bin packing algorithm. This 

step is important to make sure the new pattern is physically feasible in a 

rectangular bin. 

6. After verification, the master problem is re-solved with the new column. 

7. If a tolerance of surplus is exceeded for any type i, repeat steps 1 to 6 to 

improve the columns. Otherwise, end. 

5.4 Multiple Height Packing 

Because the crates were pre-sorted into same heights for packing into layers in 

the previous section, the final stage of packing is packing the layers into 

containers or bins. The layers have a few types of heights and are packed into 

as few containers as possible to minimize the number of bins used. The 

problem is formulated and as shown below.  

Inputs and Parameters 

H Container height 

K Total number of containers available 

hj Height of layer j 

J Total number of distinct feasible cutting patterns pj 
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Decision Variables 

Yk Number of packed bins 

jke  Number of layer type j in bin k 

5.4.1  Problem formulation 

Minimize 
1

k

K

k

Y

  (5.17) 

subject to 

 
1

J

j jk k

j

h e HY


  for k=1,.., K (5.18) 

 
1

1
K

jk

k

e


  for j=1,.., J (5.19) 

 jke integer for j=1,.., J, k=1,.., K (5.20) 

  0,1kY   for k=1,.., K (5.21) 

In the objective function (5.17), we minimize the total number of bins. The 

term 
k

k

Y   represents the sum of the number of bins k required. The variable 

jke represents the number of layer type j in bin k. The constraint (5.18) dictates 

that the sum of chosen layers of Yk  has to be less than or equal to the height H 

of the container. Meanwhile (5.19) assigns each layer to one bin only. The 

constraints (5.20) and (5.21), restricting the decision variable Yk to be binary 

and jke to be integer.  
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5.5 Numerical Experiments 

We evaluate the rectangular packing algorithm with improvement approach as 

described in the methodology section above by experimenting with several 

scenarios. The algorithm has been written in a test environment of MATLAB 

R2012a and IBM ILOG CPLEX v12.6 and tested on a Windows PC with 

specifications of 1.6GHz Pentium M processor and 512MB RAM.  

 

5.5.1 Comparison to MIP 

Both MIP in Section 5.2 and column generation approach described in Section 

5.3 can be used to solve rectangular packing problems. In order to compare the 

two approaches to MIP, two test cases are set up. The first set is a set of 25 

items with various heights and lengths. The second set is a set of 50 items.  

The test cases are from test cases J1 and J2 with known optimal solution from 

(Jakobs, 1996). All items should fit in the container dimensions for the optimal 

solution. 

 MIP Improvement Heuristic 

Set Utilization (%) Time (CPU seconds) Utilization (%) 

1 100 2.16 100 

2 100 4.69 98 

Table 5.1 Comparison to MIP 

 

5.5.2 Comparison to Maximal Rectangle Packing 

 

For larger scale problems, the MIP will be harder to execute and therefore 

heuristics are used. In the improvement method, the initial column is obtained 
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from the steplike stacking heuristic.  Therefore we would like to know if 

changing the initial column method to the maximal rectangle heuristic will 

yield different results for the improvement approach described in Section 5.3. 

The following describes the comparison between the two as the starting 

heuristic for the improvement method. Table 5.2 shows the results obtained 

where the columns show improvement of average utilization of layers before 

and after performing column generation.  

 

Instance Average utilization 

before improvement 

Average utilization after 

improvement 

1 0.418575 0.794040 

2 0.489320 0.775986 

3 0.701556 0.775986 

4 0.744508 0.748719 

5 0.495216 0.765984 

7 0.489320 0.813990 

8 0.465739 0.812306 

9 0.577752 0.803041 

10 0.530588 0.747982 

Table 5.2 Comparison of utilization before and after improvement 

 

5.5.3 Varying Demand Profile 

The method is tested against three types of demand profiles. The first demand 

profile is sampled from a uniform distribution of crate lengths with low 

variance, the second with medium variance and lastly, high variance.  Next the 

demand profile is sampled from a set of crate widths that are low, medium and 
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high in size. This affects the grouping of the demand into low, medium or high 

number of groups with the same packing height. 

 

5.5.3.1 Steplike Stacking Algorithm with Improvement 

 

CV Max utilization (%) Average 

0.1 95.00 91.50 95.00 87.80 89.00 91.66 

0.3 93.33 94.50 93.06 92.50 92.89 93.26 

0.5 93.30 93.44 93.93 94.46 93.42 93.71 

Table 5.3 Variance Level versus Packing Utilization Results I 

Crate size Max utilization (%) Average 

Small 92.00 90.08 90.61 91.00 84.80 89.70 

Medium 90.33 90.29 91.03 87.45 89.50 89.72 

Large 90.30 91.46 89.50 84.70 91.46 89.48 

Table 5.4 Crate size versus Packing Utilization Results II 

  

5.5.3.2 Maximal Rectangle Algorithm with Improvement 

 

The demand from section 5.5.3.1 is repeated with the packing heuristic now 

changed to the maximal rectangle algorithm instead of the step like stacking 

heuristic. The following are the results from the change in heuristic. From the 
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numerical results, it is shown that the improvement method can be 

independent of the starting heuristic.  

CV Max utilization (%) Average 

0.1 95.00 91.50 95.00 87.80 89.00 91.66 

0.3 93.33 94.50 93.06 92.50 92.89 93.26 

0.5 93.30 93.44 93.93 94.46 93.42 93.71 

Table 5.5 Variance Level versus Packing Utilization Results II 

Crate size Max utilization (%) Average 

Small 92.00 90.08 90.61 91.00 84.80 89.70 

Medium 90.33 90.29 91.03 87.45 89.50 89.72 

Large 90.30 91.46 89.50 84.70 91.46 89.48 

Table 5.6 Crate size versus Packing Utilization Results II 

 

5.5.3.3 Multiple Height Packing 

 

Lastly, multiple height packing is used to determine the number of containers 

needed from the packed layers used in the previous stage.  Using MATLAB 

R2012a to construct the model for multiple height packing described in 

Section 5.4, the simulated scenarios involve random quantity of rectangles 

with shared height h for a few types of height and to be packed into containers. 

From the table below, n refers to the total quantity of layers with different 
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heights of h to be packed into containers of a fixed size. The height of the 

container is set at 200. 

Types of height n h Number of 

containers 

2 50 25 10 

50 

3 50 25 13 

50 

75 

4 50 25 16 

50 

75 

100 

5 100 20 30 

40 

60 

80 

100 

Table 5.7 Multiple height packing 
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5.5.3.4 Varying the number of crate types 

In this section, we would like to investigate the effect of having different 

number of crate types on the containerization.  Random sets of data with two, 

three, and four types are packed to minimize the number of layers.  

Number of types Set Min utilization Max utilization Average utilization 

2 1 0.624915 0.848942 0.774266 

2 0.106118 0.848942 0.663236 

3 0.011791 0.848942 0.639654 

4 0.312458 0.848942 0.670114 

5 0.607229 0.848942 0.768371 

6 0.760510 0.848942 0.819464 

7 0.483425 0.848942 0.727103 

8 0.560066 0.848942 0.752650 

9 0.530588 0.848942 0.742824 

10 0.725138 0.848942 0.807674 

Table 5.8 Packing of two types 

 

Table 8 shows the packing of ten random demands with two types of crates. 

For each set of demand, the minimum utilization, maximum utilization and 

average utilization are obtained. The minimum utilization is often quite low, 

because this reflects the odd crates left behind in the last container. On the 

other hand, the maximum utilization appears stagnant at 0.848942 due to the 

reason that this packing pattern is the best and is used for all containers before 

coming to the odd crates which are left behind.  The average utilization varies 

between 0.63654 and 0.819464.  
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Number of types Set Min utilization Max utilization Average utilization 

3 1 0.489320 0.848942 0.758299 

2 0.660288 0.848942 0.801778 

3 0.795883 0.848942 0.835677 

4 0.253503 0.848942 0.728675 

5 0.053059 0.848942 0.689765 

6 0.621968 0.848942 0.792198 

7 0.792935 0.848942 0.834940 

8 0.784092 0.848942 0.832729 

9 0.288876 0.848942 0.708925 

10 0.837151 0.848942 0.845994 

Table 5.9 Packing of three types 

 

Table 5.9 shows the packing of ten random demands with three types of crates. 

Similar to the experiment conducted for two types, the results of the average 

utilization appears to be slightly better off in general with the average 

utilization ranging from 0.689765 to 0.845994. The maximum utilization 

remains at 0.848942 because this is the best packing pattern available to 

satisfy for the earlier containers. 
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Number of types Set Min utilization Max utilization Average utilization 

4 1 0.212235 0.848942 0.741350 

2 0.347830 0.848942 0.764932 

3 0.100222 0.848942 0.724155 

4 0.165072 0.848942 0.734472 

5 0.760510 0.848942 0.830666 

6 0.271190 0.848942 0.751176 

7 0.394994 0.848942 0.772792 

8 0.807673 0.848942 0.840098 

9 0.598386 0.848942 0.798830 

10 0.035373 0.848942 0.711382 

Table 5.10 Packing of four types 

 

Finally Table 5.10 shows the packing of ten random demands with three types 

of crates. Similar to the previous two experiments, the results show that the 

average utilization ranges from 0.711382 to 0.840098. The maximum 

utilization also remains at 0.848942. 
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6 Conclusions and Future Research 
 

The study of this thesis is on the problem of sizing of crates, with inventory 

consideration in addition to the packing of the crates into containers. The 

objective is to minimize total cost while addressing the issue of the optimal 

number of types of crates to use and the optimal sizes respectively. Besides 

that, the packing of the crates into containers is also considered. The study is 

important because it is based on a real industrial problem and there are 

practical results which can be applied to improve the various aspects of the 

problem. 

6.1 Conclusions 

Firstly, we are able to define and formalize an actual industrial problem where 

an MIP is formulated for the crate length optimization problem to minimize 

total loss of length and determine the optimal crate lengths. In the crate length 

optimization problem, historical data was used to find the optimal number of 

crate lengths given the number of crate types.  

Next, we extend the problem to determine both the number of optimal crate 

types to use and also the optimal sizes using inventory consideration. Here we 

consider inventory and introduce safety stock into the problem. The problem is 

formulated as a non-linear MIP; however it has a good property which makes 

it suitable to solve efficiently using dynamic programming. A dynamic 

program is formulated for the problem which is able to determine both the 

number of crate types and optimal sizes at the same time.  



120 

 

A generalized crate sizing problem is then formulated to find optimal crate 

sizes in 3D and solved using Hungarian-based GA algorithm. As the width and 

the height are the same, the problem can be modelled in 2D. Using the 

Hungarian match for parent selection and crossover, the neighbourhood 

property can be preserved and the GA is used to find the crate sizes. The 

Hungarian match is needed due to the structure of the problem as the crate 

sizes are more likely to belong to one of its neighbours than a size that is far in 

distance. 

Finally, we also consider the problem of packing the crates into containers 

using an improved bin packing algorithm. The actual 3D bin packing problem 

has been reduced to a 2D packing problem due to several properties of the 

problem. Moreover, packing by layer is more intuitive and easier to apply. 

When packing multiple different size items, they are pre-sorted into items of 

same height which then enables the problem to be solved using a rectangular 

packing algorithm. The improvement method uses readily available 

rectangular packing heuristics to generate the initial column. Then, new and 

improved columns are constructed from the information of the previous 

iteration. 

6.2 Future Research Topics 

There are several topics related to the scope of this thesis where future 

research can be conducted.  

In the crate sizing problem, the GA was constructed to find the optimal crate 

length, width and height. The model is based on 2D because the problem has 

the property of rectangular cross section. However, a future research topic can 
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be an extension of the problem to 3D.  By varying the number of crate types 

for each run, it is also possible to find the optimal number of types to use. 

Instead, a future research topic can be variable chromosome length GA. In 

traditional GA, the chromosome length is determined when the solution is 

encoded into a chromosome. Subsequently, the chromosome length does not 

change. Varying the chromosome length allows for finding an optimal solution 

by starting with a shorter chromosome and is then transferring to the following 

stages with a longer chromosome to maintain diversity. 

Additionally, the crate sizing problem and the bin packing problem are related. 

The crate sizes to pack the rolls are obtained from dynamic programming or 

GA and these crates are then packed into the containers. The crate sizes 

obtained from the earlier stage will influence the packing problem in the next 

stage. A potential research topic is to treat both problems together and 

investigate how the crate sizes affect the packing stage afterwards and use this 

information to improve the total cost of both stages. The problem can also be 

extended with other considerations such as rotations, weight or symmetry 

constraints. 

In our problem, only one roll is packed into a crate. It would be interesting to 

study a different problem if multiple products are allowed. In this case, larger 

crate sizes may be more desirable and will not be penalized as much because it 

is able to contain more products in one crate. 
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