

A STUDY ON CRATE SIZING, INVENTORY AND

PACKING PROBLEM

LEE SHIH JIA

(B.Sc., Cornell)

(M.Sc., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48809239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all the sources of information which have been used in

the thesis.

This thesis has also not been submitted for any degree in any university previously.

Lee Shih Jia

07 April 2015

i

Acknowledgements

This thesis is accomplished with tremendous help and guidance from both of

my supervisors, A/Prof Chew Ek Peng and A/Prof Lee Loo Hay who provided

relentless support and encouragement throughout the years.

To my family whom I could not spend more time with on many family

occasions, I could not express more gratitude for their kind understanding and

emotional support.

Lastly, we are also grateful to Company S Singapore Pte. Ltd. for the

inspiration and data provided for the study of this thesis.

ii

Table of Contents

Acknowledgements ... i

Table of Contents ... ii

Summary ... iv

List of Tables .. vi

List of Figures .. vii

List of Abbreviations .. ix

List of Notations .. x

1 Introduction and Overview ... 1

1.1 Background and Motivation .. 2

1.2 Organization of the Thesis .. 9

2 Literature Review ... 10

2.1 Crate Sizing Problem .. 10

2.2 Bin Packing Problem ... 14

3 Crate Length Optimization ... 24

3.1 Crate Length Optimization without Inventory Consideration 24

3.1.1 Modelling Assumptions ... 25

3.1.2 Problem Formulation ... 26

3.1.3 Computational Results ... 27

3.2 Crate Length Optimization with Inventory Cost Consideration 30

3.2.1 Modelling Assumptions ... 31

3.2.2 Problem Formulation ... 33

3.3 Dynamic Programming Approach .. 34

3.3.1 Dynamic Programming Formulation ... 36

3.3.2 Computational Results ... 38

4 Generalized Crate Sizing Problem.. 48

4.1 Modelling Assumptions .. 50

4.2 Problem Formulation ... 52

4.3 Enumeration Method ... 54

4.4 Marginal Improvement Method .. 55

4.4.1 Numerical Experiments ... 58

4.5 Genetic Algorithm Method ... 63

iii

4.5.1 Chromosome Representation ... 64

4.5.2 Creation of initial population ... 65

4.5.3 Selection Mechanism ... 65

4.5.4 Reproduction – crossover operation .. 66

4.5.5 Mutation Operator .. 70

4.5.6 GA Algorithm .. 71

4.5.7 Numerical Experiments ... 75

4.5.8 Determining the number of types... 88

5 Bin packing (Rectangular) .. 89

5.1 Problem Description .. 93

5.2 Problem Formulation ... 96

5.3 (2D-BPP) Layer Packing ... 99

5.3.1 Layer Packing with Column Generation 99

5.3.2 Layer Packing with Improvement Heuristic 103

5.4 Multiple Height Packing ... 109

5.4.1 Problem formulation .. 110

5.5 Numerical Experiments ... 111

5.5.1 Comparison to MIP .. 111

5.5.2 Comparison to Maximal Rectangle Packing 111

5.5.3 Varying Demand Profile .. 112

6 Conclusions and Future Research ... 119

6.1 Conclusions ... 119

6.2 Future Research Topics ... 120

References .. 122

iv

Summary

This thesis is a formal study of an actual problem faced in the industry for

crate sizing, inventory and packing. The problem is relevant because many

manufacturers face the problem of proper planning, operations and evaluation

of their product packaging and packing processes. Since most products will

need to be packed before being distributed to customers, inefficient practices

will lead to higher cost and time expended. In this final process, many aspects

of the way the products are packed can be studied and improved. The

industrial crate sizing problem addresses the problem of determining what are

the optimal crate sizes and also how many types of crates are ideal. There is no

formal study to scientifically investigate the crate sizing problem yet.

Therefore, in this study, we first define and formalize the problem of crate

length optimization faced by the industry, and represent it as an MIP model.

The second problem is extended from the crate length optimization problem

which considers the inventory and we formulate it as a non-linear MIP model.

The tradeoff between inventory cost and wastage cost from fitting products

into crates is considered in the objective function. The non-linear MIP model

is generally difficult to solve, but by exploiting the structure of the problem,

we are able to solve it using dynamic programming because the problem has

the special property of Bellman’s Principle of Optimality. We further extend

the crate size optimization problem by considering the width and height

dimensions of the crate in addition to the length dimension. In this problem,

the products are in rolls; hence the crates are rectangular boxes with square

cross section which means the crate width and height are the same. The

problem is non-trivial and cannot be solved using any solvers for a reasonable

v

size problem. Enumeration method can only be used to solve small size

problems but is computationally intractable for larger problems. Therefore we

propose using a Hungarian based genetic algorithm to solve the problem.

Hungarian method is used to preserve the good neighbourhood structure which

is required for genetic algorithm to perform well. When the parents are

selected for crossover, it is treated as an assignment problem where the gene

of a parent is matched to the closest gene of another parent before applying the

crossover operations. In addition to the crate sizing and inventory problem,

this study also looks into the packing of the crates into containers. After

finding the crate size and crate types, we also need to pack the crates into

shipping containers for distribution. We solve the problem of packing crates

into containers by using a bin packing algorithm with an improvement

heuristic. This approach utilizes the information of the solutions from the

previous iteration to create good potential columns for the next iteration.

Overall, this study has covered several of the important aspects which can be

improved for a real industrial-based problem and also proposes different

methods to tackle and solve the crate sizing, inventory and packing problem.

vi

List of Tables

Table 4.1 Comparison between MI and enumeration method for two sizes.... 59

Table 4.2 Comparison between MIBS, MIBR and enumeration method for

three sizes ... 60

Table 4.3 Comparison between MIBS and enumeration method for four sizes

 .. 61

Table 4.4 Comparison between MIBR and enumeration method for four sizes

 .. 62

Table 4.5 Parameters of GA experiment I ... 78

Table 4.6 Comparison between GA and enumeration for two-size problem... 79

Table 4.7 Comparison between GA and enumeration for three-size problem. 80

Table 4.8 Comparison of GA to enumeration and MIBS I, MIBS II and MIBR

for four-size problem ... 81

Table 4.9 Parameters of GA experiment II .. 83

Table 4.10 Parameters of GA experiment III ... 86

Table 5.1 Comparison to MIP .. 111

Table 5.2 Comparison of utilization before and after improvement 112

Table 5.3 Variance Level versus Packing Utilization Results I 113

Table 5.4 Crate size versus Packing Utilization Results II 113

Table 5.5 Variance Level versus Packing Utilization Results II 114

Table 5.6 Crate size versus Packing Utilization Results II 114

Table 5.7 Multiple height packing ... 115

Table 5.8 Packing of two types .. 116

Table 5.9 Packing of three types .. 117

Table 5.10 Packing of four types ... 118

vii

List of Figures

Figure 1.1 Survey on annual shipping and packaging costs in 2013 2

Figure 1.2 Product packing hierarchy .. 3

Figure 1.3 Product dimensions before and after rolling 4

Figure 1.4 Packaging of roll in crates .. 4

Figure 1.5 Packing of crates in shipping containers .. 5

Figure 3.1 Roll Width Demand Distribution ... 28

Figure 3.2 Objective Value with Number of Crate Types 29

Figure 3.3 Optimal Crate Lengths for Given Number of Crate Types 30

Figure 3.4 Optimal Number of Crate Types at Varying Values of h 39

Figure 3.5 Optimal Number of Crate Types at Varying Values of p 40

Figure 3.6 Uniform Pattern of Mean Demand of Roll Widths 41

Figure 3.7 Normal Pattern of Mean Demand of Roll Widths 41

Figure 3.8 Right Skewed Pattern of Mean Demand of Roll Widths................ 42

Figure 3.9 Total Cost vs Variance for a Uniform Pattern 43

Figure 3.10 Number of Optimal Types vs Variance for a Uniform Pattern 43

Figure 3.11 Total Cost vs Variance for a Normal Pattern 44

Figure 3.12 Number of Optimal Types vs Variance for a Normal Pattern 44

Figure 3.13 Total Cost vs Variance for a Right Skewed Pattern 45

Figure 3.14 Number of Optimal Types vs Variance for a Right Skewed Pattern

 .. 45

Figure 3.15 Total Cost at Different Levels of CV for a Uniform Demand 46

Figure 3.16 Total Cost at Different Levels of CV for a Normal Demand 47

Figure 3.17 Total Cost at Different Levels of CV for a Demand Pattern Similar

to Company S’s Actual Demand .. 47

file:///C:/Users/JEFFREY%20NG/Desktop/Oral%20Defense/ThesisDraft_amendments_6.docx%23_Toc416893291

viii

Figure 3.18 Total Cost at Different Levels of CV for a Demand Pattern Similar

to Company S’s Actual Demand .. 48

Figure 4.1 Pictorial representation of sizes and demand 54

Figure 4.2 Neighbours for marginal improvement .. 55

Figure 4.3 Directions for marginal improvement .. 56

Figure 4.4 Chromosome representation ... 65

Figure 4.5 A naïve crossover example ... 67

Figure 4.6 Naïve crossover example in a graph ... 68

Figure 4.7 Hungarian match crossover pairing .. 69

Figure 4.8 Hungarian match crossover pairing in a graph 69

Figure 4.9 Flowchart of GA algorithm .. 74

Figure 4.10 Convergence for a medium problem GA (5 sizes) 84

Figure 4.11 Convergence for a medium problem GA (10 sizes) 84

Figure 4.12 Convergence for a large problem GA .. 86

Figure 4.13 Objective value vs. increasing number of crate types 87

Figure 4.14 Objective value vs. increasing variance level 88

Figure 4.15 Objective value vs. Varying number of types 89

ix

List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

BPP bin packing problem

CV coefficient of variance

GA genetic algorithm

IP integer programming

LP linear programming

MSSCSP multiple stock size cutting stock problem

MI marginal improvement

MIBR marginal improvement by random

MIBS marginal improvement by sequence

MILP mixed integer linear programming

MIP mixed integer programming

x

List of Notations

Crate Sizing Problem

Roll

N Number of rolls

wi Roll width i

di Roll height (diameter) i

µi Mean demand of roll i

σi Standard deviation of demand of roll i

Crate

K Number of crate types

Lk Crate length k

Wk Crate width (or height) k

Lmin Minimum crate length

Lmax Maximum crate length

Wmin Minimum crate width

Wmax Maximum crate width

xik 1, if roll i is assigned to crate length k and 0, otherwise

yik Loss of length inside crate when roll i is assigned to crate length k; 0

otherwise

xi

zik 1, if roll i is assigned to crate k of length Lk and width Wk; 0 otherwise

sa,...,b Pooled risk of standard deviation (safety stock) of demand of roll

widths a to b

Constants

p Penalty cost factor

h Inventory holding cost factor

P Minimum padding requirement inside the crates

M A very large integer number

Dynamic Program

n Stage of the dynamic program

N Total number of stages (roll width sizes to be considered)

xn State of stage n

an Decision variable of stage n

Assignment problem

ijx

1 if gene i of chromosome 1 is matched to gene j of chromosome 2,

otherwise 0.

i jc

Cost of matching gene i of chromosome 1 to gene j of chromosome 2

Bin packing problem

L Container length

xii

W Container width

H Container height

K Total number of containers available

S Size of the rectangular layer (the floor of the container)

li Length of item i

wi Width of item i

si Size of item i

n Total number of items i

xi Geometrical location of item i (left-coordinate)

yi Geometrical location of item i (back-coordinate)

β Bin (container) index

lij 1 if item i is in the left of item j; 0 otherwise

bij 1 if item i is at the back of item j; 0 otherwise

cij 1 if i j  ; 0 otherwise

di Demand of items i of size li and wi to be packed

aij Number of items i of size li and wi packed in layer j

Aj Packing pattern pj

Xj Number of layers packed with pattern pj

J Total number of distinct feasible cutting patterns pj

xiii

hj Height of layer j

Yk Number of packed bins

jke Number of layer type j in bin k

1

1 Introduction and Overview

Nearly every product has to be packed and transported in the course of its

distribution process. Although this is typically the last operation in any

manufacturing activity, it plays a vital role in ensuring that the product is

delivered to the customer in sound condition. Packing and packaging serves

several purposes such as protection, identification, transportation, storage and

stacking. The packaging should be secure and able to protect the goods

adequately during transportation at suitable cost. However, there are many

challenges encountered in various stages such as planning and evaluation,

packing materials, space utilization, warehouse and storage and freight issues

in order to achieve minimum cost. Specifically, packaging-wise, decisions

have to be made regarding what packaging types to design as well as which

sizes to order and stock in order to cater to demand variability. Packing-wise,

decisions also have to be made on how to pack into the shipping containers.

A research was conducted by Peerless Research Group on behalf of Logistics

Management and Modern Materials Handling magazines for Packsize

International in June 20131. Referring to Figure 1.1, it is revealed that 38% of

the companies noted that their packaging and shipping costs have increased by

5% to 20% in the past year while 53% saw no change and a small minority of

9% saw a decrease. In addition, almost all of the companies (94%) use

different sizes of packaging and the top three expenses involved are packaging

materials, labour and shipping costs. It can be seen that packaging and

shipping costs are a cause of concern for many manufacturers.

1
Source: http://www.mmh.com/images/site/Packsize_Brief_F.pdf

2

There are many aspects of packaging and packing that can be studied in order

to improve the process and keep costs as low as possible. As such it is

worthwhile to study the optimization of packaging and shipping processes to

increase overall efficiency and reduce total cost.

Figure 1.1 Survey on annual shipping and packaging costs in 2013

1.1 Background and Motivation

The research is based on a real industrial problem faced by Company S, a

multinational corporation in the applied chemistry industry. Company S is the

leading manufacturer in performance films which serve as interlayers for

laminated glass, automobile and building window films, protective and

conductive films and others used in a myriad of architectural and industrial

applications. Their main products are polyvinyl butyral (PVB), ethylene vinyl

acetate (EVA), and thermoplastic polyurethane (TPU) which are sold

worldwide from their headquarters based in USA, Belgium, Brazil and

Shanghai.

38%

53%

9%

Annual Shipping and Packaging Costs

Increased

Stayed the same

Decreased

http://en.wikipedia.org/wiki/Polyvinyl_butyral
http://en.wikipedia.org/wiki/Ethylene_vinyl_acetate
http://en.wikipedia.org/wiki/Ethylene_vinyl_acetate
http://en.wikipedia.org/wiki/Thermoplastic_polyurethane

3

Due to the nature of the products, the chemical films are sold in cylindrical

rolls of various lengths and thicknesses. The rolls are customized according to

customer’s specifications. They are also heavy and long hence the rolls are

packaged in big wooden crates which are expensive. The wooden crates serve

as protection from damage during the transportation process. Besides

protection, the crates enable easy identification, lifting by forklift trucks and

storage and warehousing. Company S stocks and uses a number of standard

crate sizes for roll packaging. Currently, the company has designated four

types of crates to cater to the demand. Because there are only a few standard

crate sizes compared to the number of actual demand of roll sizes, there is

bound to be empty space inside the crates once the rolls are fitted into

individual crates. Each roll is assigned to a standard crate size which can fit

the roll with the least amount of space wastage. Inside the crates, the empty

space between the roll length and the crate end is filled with Styrofoam

paddings to disallow the roll from movement and to prevent damage during

transportation.

When the rolls are finished packing into crates, they are then loaded into

shipping containers ready for delivery to customers by sea. There are a few

choices of shipping containers, namely the 20’ and 40’ containers for regular

type of rolls. For rolls that require refrigeration, there are reefer containers.

Figure 1.2 Product packing hierarchy

Roll Crate Container

4

The product is actually a large sheet of thin film before it is rolled up. After

rolling the film, the width of the film becomes the roll width whereas the

length of the film makes up for the rolled up diameter or roll height. The

length of the film can be customized to a few types of cut length. The product

is sold and transported as cylindrical rolls. Together, both the roll width and

roll diameter/height dimensions specify the roll type ordered by customers.

Customers can order one or more types of rolls and the quantities needed for

each type.

Figure 1.3 Product dimensions before and after rolling

When the rolls are fitted into the crates, it should be noted that the length of

the roll corresponds to the rolled up diameter of the roll and the diameter of

the roll depends on the thickness of the film type. Because the diameter of the

roll is a circle, the cross sectional area of a crate is a square. It can be assumed

that the crate height and width are equal to accommodate the cylindrical roll.

Meanwhile, the roll width is the dimension that is parallel to the length of the

crate.

Figure 1.4 Packaging of roll in crates

Roll width Width

Length

Roll

diameter

Film

Crate width

Crate height Roll Padding

Top view of inside the crate

Crate length

Isometric view of the crate

5

The crates are packed into the container. Because most of the crates are very

long and do not fit across the width of the container, they are packed along the

length of the container. Depending on the dimensions of the crates, rotations

can be allowed to maximize on space utilization. Empty space inside the

container is filled with plastic air bags to cushion the impact from

transportation so as to avoid damage to the wooden crates. Unutilized space

and inefficient packing can lead to unnecessary wastage in total freight cost.

Depending on the size and type of customer demand, each order is loaded into

as few containers as possible to save on shipping cost.

Figure 1.5 Packing of crates in shipping containers

From the abovementioned, the research is motivated to provide a more

efficient solution to strategize packing problems. In the first packing step of

packaging rolls into crates, there are decisions on planning the standard crate

sizes and the number of crate types. If the crates are too big, there will be a

waste of crate materials, space inside the crates and eventually in the shipping

containers. Also, the number of crate types can have a huge impact on the

wastage cost. If there are many types, the rolls will fit better but there will be

higher stocking and inventory costs to cater to demand uncertainty. On the

other hand, if there are few types, the rolls will fit worse but there will be

savings in inventory cost. On the practical side, it makes sense to have a

Container length

Container width

Container height

6

manageable number of crate types in order to reduce complexity and handling

of operations.

Currently the usual industrial practice involves reviewing sizes from historical

data and in many instances, experience and intuition by industry experts play

an important role. One method is to determine the sizes with the highest

demands and assign one size for each peak demand. Another method is to

divide the demand sizes into a few equally spaced intervals. The current

practices have certain limitations as they do not consider inventory cost. There

is no formal study on investigating the choice of crate sizes in order to

minimize total costs and also the ideal number of crate sizes. The optimization

of the crate sizes is interesting enough to warrant a formal study to find a

compromise between space wastage and inventory cost.

The problem is challenging because the crates have three dimensions i.e. the

crate length, width and height. Fortunately, due to the constraints of the

problem, the crate width and height can be treated as equal. Essentially,

solving the two dimensions is analogous to solving all three crate’s

dimensions. Beyond the packing of rolls into crates, there is potential savings

in the containerization process as well. Container loading can be improved to

better pack the crates into the shipping containers.

The questions we will like to address in this research are as follows: Firstly,

what type of crates will be suitable for packing the rolls in and what sizes they

should be, secondly, how many types of crates would be optimal and thirdly,

how to pack the crates to the containers so as to minimize total cost from the

7

wastage cost of the packing of rolls into crates and subsequently into

containers and also inventory and shipping cost.

The questions above are addressed to solve the overall problem. Initially, the

optimization of crate size is built from the basic problem involving a

deterministic problem of finding optimal crate lengths only (as crate length is

the naturally the longest dimension of the three dimensions and highest

contributor to the total loss) with a mixed integer programming problem

formulation (MIP). However, given demand uncertainty, the MIP is not easy

to solve and as such, dynamic programming approach is applied to the

problem to solve both the crate lengths and crate types optimally. Thereafter,

the problem is further extended to find the optimal crate dimensions for crate

length, width and height simultaneously. Genetic algorithm approach is

employed in this extended problem. Finally, an improvement method is

applied to improve the packing process of crates into shipping containers for

sea freight.

In this research thesis, we have made several contributions namely:

1. We are able to define and formalize the problem of crate length

optimization faced by the industry, and represent it as an MIP model.

Using the historical data, we are able to find the optimal crate lengths

given the number of crate types.

2. We extend the problem by considering demand uncertainty and

introduce the safety stock consideration into the problem. While the

problem can be modelled as a non-linear MIP model, it has a good

property that exhibits the Bellman’s Principle of Optimality. This

8

allows the problem to be solved efficiently by using dynamic

programming.

3. We further extend the crate size optimization problem by considering

width and height dimensions of the crate in addition to the length

dimension. As the width and the height are the same, the problem can

be modelled as a two dimensional problem. The problem is non-trivial

and cannot be solved using any solvers for a reasonable size problem.

We propose a Hungarian-based genetic algorithm to solve the problem.

Hungarian method is used to preserve the good neighbourhood

structure which is required for genetic algorithm to perform well.

4. We solve the problem of packing the crates into containers by using a

bin packing algorithm with an improvement-based heuristic approach.

This approach utilizes the information of the solutions from the

previous iteration to create good potential columns for the next

iteration.

9

1.2 Organization of the Thesis

This thesis consists of 6 chapters. The rest of the thesis is organized as

follows:

Chapter 2 first discusses related works and literature review of the crate sizing

problem, also known as box sizing problem, and then the second part reviews

the bin packing problem (BPP).

Chapter 3 describes the crate sizing problem in one dimension, i.e. the crate

length with and without inventory cost consideration. The problem is defined

and then solved using integer programming and dynamic programming

approaches.

Chapter 4 extends the crate sizing problem from Chapter 3 where both crate

length and crate width/height are now considered for optimization. In this

extended problem, genetic algorithm approach is used to find the optimal

solution for crate dimensions with inventory cost consideration.

Chapter 5 delineates a packing algorithm to pack the crates into shipping

containers. The recommended approach is layer packing using packing

heuristics with improvement-based approach for improvement.

Finally, Chapter 6 examines some potential future research directions and

conclusions derived from the study of this work.

10

2 Literature Review

There are many aspects of logistics in the packaging, packing processes and

delivery of products to customers ranging from packaging type and sizing,

warehouse and storage, to bin packing or containerization into shipping

containers. This segment is organized into two parts, where we first review the

crate sizing problem and related problems then bin packing problem in 1D

(one-dimensional), 2D (two-dimensional), 3D (three dimensional) and others.

2.1 Crate Sizing Problem

From the literature, there has been research on the packaging problem and

related problem such as box sizing or crate sizing problem. Some related

works in the literature include the size selection problem, standardization, and

assortment or catalogue problem.

In the standardization problem, a standard size is smaller or larger than the

desired size on the control dimension. If the dimension is not the same, there is

an adaptation loss. The paper by (Bongers, 1982) and book by (Bongers, 1980)

discussed many ways of tackling the standardization problem such as

recursion formula for loss function and adaptation loss. In an applied garment

industry problem, (Tryfos, 1985) tackled the issue of measurement of a given

number of sizes to apparel in an effort to minimize discomfort and maximize

expected sale. The author presented an algorithm to design for optimal sizing

system based on normal distribution of the population sizes by developing the

general necessary conditions for optimization via grouping in one controlled

body dimension mainly in one dimension. However the result was not

11

conclusive. (Pentico, 1986) authored a comment on Tryfos’ paper where he

noted that the problem of optimal sizing is not a new one, but rather it is a

special case of the assortment and catalogue problem which has been

researched. Thus, (Vidal, 1994) extended the study and presented an algorithm

to determine the numbers and dimensions of sizes of apparels to maximise

profit. The author developed an interactive one variable bisection search

algorithm that solves the problem by giving the optimal solution.

Meanwhile, the assortment or catalogue problem is to decide a limited subset

of a large discrete set of possible sizes to stock. Given a set of sizes of

products and their demands, generally only a selected subset of box sizes will

be stocked due to factors such as space and inventory cost. (Pentico, 2008) in

his paper presented a review of assortment or catalogue problem works

published over the last 50 years from 1957 to 2007. The author classified the

studies into one dimensional and multi-dimensional where different

methodologies are used. Many of the research works also used heuristics to

solve the problem. Apart from that, the author in his paper also touched on

some related problem such as standardization, substitution and revenue or

yield management. (Hinxman, 1980) authored a survey paper on trim-loss and

assortment problems.

(Kasimbeyli, Sarac, & Kasimbeyli, 2011) presented a one dimensional cutting

stock and assortment problem where the total number of roll sizes to be

stocked was determined using linear integer programming and then the cutting

stock patterns required to satisfy the demands were determined. However, the

problem differs from our problem because the rolls are cut into different sizes

in their problem whereas we only assign one roll to each crate to find the loss

12

in length in the crate length optimization model with inventory consideration.

(Yanasse, 1994) proposed a search strategy for a 1 dimensional assortment

problem. The strategy uses and updates a lower bound contour until a

satisfactory solution is achieved. (Gasimov, Sipahioglu, & Saraç, 2007)

presented a 1.5 dimensional cutting stock and assortment problem. A 1.5

dimensional cutting stock problem is where the length of a sheet is sufficiently

large or considered infinite. The authors presented an MILP and new conic

scalarization. (Li & Chang, 1998) proposed a new model to reformulate the

assortment problem with less binary variables. (Li & Tsai, 2001) presented a

fast algorithm to solve the two dimensional assortment problem and proved

that it is computationally efficient. (Li, Chang, & Tsai, 2002) proposed a

piecewise linearization technique to find the approximate global optimization

for assortment problem. (Lin, 2006) presented a genetic algorithm for solving

the two dimensional assortment problem. (Baker, 1999) proposed a

spreadsheet model to determine which sizes to stock and formulated it as a

shortest or longest path problem on a directed acylic network. (Gemmill,

1992) introduced a genetic algorithm to solve the assortment problem. In an

industrial application, (Rajaram, 2001) considered the assortment problem in

fashion planning to choose a mix of the merchandise to maximize expected

profit and determine the inventory breadth and depth. Additionally, (Flapper,

González–Velarde, Smith, & Escobar-Saldívar, 2010) discussed the

assortment of products to stock if customers only order if the delivery is on

time and maximize profit by considering inventory cost, setup cost and others.

(Chen & Lin, 2007) approached the product assortment problem using a data

13

mining method to decide on which products to display and their ideal shelf

life.

The crate sizing problem can also be related to the box sizing problem. One of

the earliest works on box sizing is by (Wilson, 1965) who presented a paper

with the objective to select the optimum number and sizes of boxes which can

minimize the total system cost where an integer programming formulation was

given. The author used heuristics to generate the box sizes. The paper by

(Korchemkin, 1983) also presented a heuristic approach but by first dividing

the problem into smaller sub-problems to solve a minimum-cost packaging

problem. Using genetic algorithm, (Wang, Wang, Ni & Cheng, 2011)

introduced a genetic search algorithm model named Multi-parameter

Optimization Design System of Package Container Size to solve the packaging

problem that reduces logistics cost by determining the optimum inside and

outside of the packages. The authors used genetic algorithm to search the

optimal inside and outside package sizes during the packaging process to

efficiently reduce the waste of space for container vessels, rate of

transportation and quantity of storage resources. In an industrial based

problem (Leung, Wong, & Mok, 2008) the authors presented a box sizing

problem whereby they used genetic algorithms to design make-to-order carton

sizes to fit products of different sizes in the apparel industry with the objective

to minimize total distribution and packing costs. The problem presented differs

from this paper as they pack multiple items into each carton whilst there is

only one roll to each crate in our problem. (Wong & Leung, 2006) presented a

box sizing problem whereby they would like to search for the best box design,

the optimal set of cartons for combined order which minimizes the unfilled as

14

well as the number of carton types in the apparel industry with the objective to

minimize total distribution and packing costs. Similarly, (Xu, Qin, Shen, &

Shen, 2008) presented an optimization framework to the box sizing problem

caused by supply chain strategy changes using the Cut/Pack/Select (CPS)

framework which decomposes the problem into several sub problems for

simplicity. The authors used a combination of the CPS framework and IP

model to determine the box sizes before the demand of product is fixed with

the use of an existing heuristic algorithm, the container loading problem.

Given the historical demands, the framework uses a top down approach and

determines the sizes of the inner and outer boxes, the matching of the products

to their corresponding boxes, and uses container loading to load the boxes into

the container for shipment. Their problem differs in that there are inner and

outer boxes as the problem involves packing multiple small products into inner

boxes and then packing these inner boxes into outer boxes before being

consolidated for shipping in containers. From a different perspective, (Zhang,

Yuan, & Yuan, 2012) presented an algorithm to generate a function to

determine expected waste space versus box size for box optimization. In order

to do so, the authors’ research showed the correlation between average waste

space per box and box sizes for online next fit bin packing by enlarging

interval distribution.

2.2 Bin Packing Problem

The sizes of the packaging boxes will impact the packing patterns and

utilization of shipping containers for shipping to customers worldwide. It is

closely related to the bin packing problem where the objective is to lower

15

shipping costs. Cutting and packing problems is an actively researched topic.

The paper by (Dyckhoff, 1990) provided a good typology of the various

cutting and packing problems. (Wäscher, Haußner, & Schumann, 2007)

produced an improved typology and bibliography of research applications.

(Oliveira & Wäscher, 2007) discussed the many ways how cutting and

packing problems can be modelled in LP formulation. There are two closely

related problems called the cutting stock and bin packing problems because

the difference is that in cutting stock, there are unlimited stock (bin) sizes to

cut from whereas in bin packing, there are limited bins to pack into. Each

problem is the reverse of the other.

One of the more prominent cutting and packing problems is cutting stock.

(Coverdale & Wharton, 1978) and (Haessler & Sweeney, 1991) covered on the

cutting stock problems and ways of solving them. (Gilmore & Gomory, 1961)

presented the one dimensional cutting stock problem solution with LP and

column generation, then (Gilmore & Gomory, 1963) reformulated the LP,

proposed a rapid algorithm for knapsack problem, and modelled a paper mill

problem with constraints modified for different parent length rolls and cost.

(Gilmore & Gomory, 1965) extended the LP for two or more dimensions in

addition to the corrugated box problem and sequencing problem. (Dyckhoff,

1981) presented a new linear programming approach as compared to the

classical model from Gilmore & Gomory. (Sinuany-Stern & Weiner, 1994)

discussed the one dimensional cutting stock problem using two objectives. In

addition, (Vance, Barnhart, Johnson, & Nemhauser, 1994) solved the binary

cutting stock problem by column generation and branch-and-bound. (Cui &

Zhou, 2002) discussed on the special case of generating optimal cutting

16

patterns for single-size rectangles. (Alves & Carvalho, 2008) presented an

exact algorithm to solve the ordered cutting stock problem.

Besides cutting stock approach, bin packing problem is also widely

researched. Exact solutions can be obtained via branch-and-bound algorithm

as in (Martello & Vigo, 1998) and (Martello, Pisinger, & Vigo, 2000) for 2D

and 3D problems respectively. The former work performed worst case analysis

and found new lower bounds for the NP hard problem. It also obtained exact

solution for cases of up to 120 pieces. Extension of this work to 3D managed

to solve cases of up to 90 pieces.

There are a variety of approaches to cutting and packing problems. Two of the

earlier heuristics for packing include first fit decreasing (FFD) where items are

first placed in order of non-increasing weight and best fit decreasing (BFD)

where items are put into best-filled bin that can hold them. (Berkey & Wang,

1987) also discussed heuristics to solve the packing problem with finite next-

fit, finite first-fit, finite best-strip, finite bottom-left and hybrid first-fit

heuristics. Many authors also tackle the packing problems in layers, shelves

and stages. (Caprara, Lodi, & Monaci, 2005) introduced the first

approximation scheme APTAS for two-dimensional shelf bin packing.

Many approaches using different types of algorithm and heuristics were

developed to solve one dimensional bin packing problems. (Abidi, Krichen,

Alba, & Molina, 2013) developed a genetic algorithm for the one dimensional

bin packing problem. By using greedy algorithm, the first fit heuristics and

randomly, the algorithm generates an initial population of chromosomes and

performs a series of perturbations to improve load of all bins sequentially. On

17

the other hand, (Toledo Suarez, Gonzlez, & Rendon, 2006) introduced a

heuristic approach using interactive algorithm for offline one dimensional bin

packing problem. The authors’ algorithm is successful with the design of the

algorithm bounded by the performance of the point Jacobi method by taking

the problems as a matrix. (Bhatia, Hazra, & Basu, 2009) however presented a

study on better fit heuristics for one dimensional packing where an existing

object from a bin is replaced when the object can fill the bin better than the

object replaced. The proposed algorithm behaves as offline as well as online

heuristics but performs better than offline best fit decreasing heuristics and

also online best fit heuristics.

Other methods such as stochastic approach for one dimensional bin packing

were also studied by (Berkey & Wang, 1991) who presented a systolic based

parallel approximation algorithm that obtains solution for one dimension bin

packing problem. The authors’ algorithm has an asymptotic error bound of 1.5

and time complexity of Θ(n). From the author’s experimental study, the

heuristic offers improved packing and execution performance over

parallelization of two well-known serial algorithms. Similarly, (Anika & Garg,

2014) presented packing problem solution by parallelizing generalized one

dimensional bin using MapReduce. This optimization is attained by packing a

set of items in as fewer bins as possible. The efforts have been put to

parallelize the bin packing solution with the well-known programming model,

MapReduce which is supportive for distributed computing over large cluster

of computers. The authors have proposed two different algorithms using two

different approaches, for parallelizing generalized bin packing problem. The

results obtained were tested and it was found that by working on the problem

18

set in parallel, significant time efficient solutions for bin packing problem

were obtained. Aside from that, (Kao & Lin, 1992) introduced a new

stochastic approach called annealing genetic algorithm for one dimensional

bin packing problem where simulated annealing is used for exhaustive and

parallel treatment of the problem and to increase the probability of finding

global minimums. The results showed that the solution quality of this

approach is equal if not better than first-fit-decreasing with no non-monotone

anomaly found.

Using heuristics, many similar approaches for one dimensional bin packing

have also been used for two dimensional bin packing problem for

optimization. (Bansal, Lodi, & Sviridenko, 2005) presented a generalization of

the classical bin packing problem with orthogonal packing without rotation

using guillotine cuts. Guillotine cuts is a well-studied and frequently used

constraint where every rectangle in the packing must be obtainable by

recursively applying a sequence of edge to edge cuts parallel to the edges of

the bin. The author proved that guillotine two dimensional bin packing

problem admits an asymptotic polynomial time approximation scheme which

is in sharp contrast with the fact that general two dimensional bin packing

problem is APX-hard. The author was also able to show a structure of

approximating general guillotine packing by simpler packing which could be

of independent interest.

(Bekrar & Kacem, 2008) explored the use of two heuristics for two

dimensional bin packing using best shelf and non-shelf heuristic filling. Using

strip and bin packing with guillotine cuts by packing a set of rectangular bins

on one strip of width W and infinite height or bins of width W and height H,

19

the items are packed without overlapping and need to be extracted by a series

of cuts that go from one edge to the opposite edge (guillotine constraint). The

results obtained by the author shows that the two heuristic algorithms are

complementary.

(Pargas & Jain, 1993) presented a stochastic optimization approach to a two

dimensional bin packing problem for a rectangular area similar to genetic

algorithm or simulated annealing algorithm. Using a parallel processing

algorithm with processes of evaluating the length of layout; near perfect load

balancing is achieved with a minimum of 80% efficiency or utilization based

on bin length.

(Omar & Ramakrishnan, 2011) proposed evolutionary particle swarm

optimization algorithm (EPSO) for solving non-oriented two dimensional bin

packing problem. The author deals with a set of rectangular pieces that need to

be packed into identical rectangular bins where the rectangular pieces are only

allowed to rotate 90⁰ without overlapping. Although comprehensive testing

methodology was presented, the results only indicated improved initial results

and the author is currently working on improvement for the proposed EPSO.

On the other hand, (Cao & Kotov, 2011) presented a two dimensional bin

packing problem to minimize the number of large rectangles for packing a set

of small rectangles using best fit algorithm. The author was able to prove that

this heuristic approach obtains better results and is faster compared to classical

bin packing algorithm.

Three dimensional packing problem consists of packing a set of boxes into a

minimum number of bins. To solve three dimensional bin packing problem,

20

many methodologies using a hybrid approach were applied. (Lin, Foote, Pulat,

Chang & Cheung, 1993) presented a layer by layer scheme that finds the

appropriate boxes in the next layer using a hybrid genetic algorithm called

SMILE to solve the three dimensional container packing problem. It is also a

heuristic approach however the solution is augmented by simulated annealing

to improve performance. The authors also presented an improvement of

SMILE in the following year and proved that genetic algorithm is a good

technique for optimization problems. (Yang & Shi, 2010) used a heuristic

approach and introduced an algorithm for solving the three-dimensional bin

packing problem, which is based on hybrid of caving degree algorithm from

container loading problem and variable neighbourhood descent structure.

Based on the computational experiments performed on standard benchmark

problems, the algorithm show that the quality of the solutions is equal to or

better than that obtained by the best existing algorithms in average. The

authors applied the concept of genetic algorithm with multiple chromosomes

to a three dimensional bin packing problem. From the results, the authors were

able to prove that multiple chromosomes algorithm gives a better optimization

solution. The authors were also able to show the multiple chromosomes

algorithm created had better adaptability for large problem and near optimal

solutions for small problems compared to a single chromosome algorithm.

(Wang & Chen, 2010) likewise presented a hybrid genetic algorithm as well

for a three dimension bin packing problem. The authors introduced in their

hybrid algorithm a combination of a specially designed diploid representation

scheme of individual and a heuristic packing method using fill packing

method. With the above approach, the authors presented several genetic

21

algorithms in their research and also found that the proposed hybrid algorithm

presented using combination of chromosomes to be efficient in addressing

three dimensional bin packing problem. Another example of hybrid algorithm

for solving three dimensional bin packing problem was presented by (Jiang &

Cao, 2012) with combination of simulated annealing. The authors combined

the concept of block and batch to create a seven tuple algorithm and also

increased the memory function for searching process. By doing so, the

author’s computational results were able to prove that the methodology used

was very efficient to obtain near optimal solution within short duration.

(Pimpawat & Chaiyaratana, 2001) presented a heuristic rule which uses a co-

operative co-evolutionary genetic algorithm (CCGA) in conjunction to solve

three dimensional container loading or bin packing problem. The method

differs from others by using proposed heuristics to partition the entire loading

sequence into a number of shorter sequences. The authors proved that the

methodology used is efficient in optimization of minimal number of containers

required compared to standard genetic algorithm. The author was also proved

that CCGA is suitable for use in a sequence based optimization problem use.

(Salma & Ahmed, 2011) considered a storage problem of a foam industry and

introduced a heuristic by proposing an integer programming model for

variable bin length storage problem. The problem is a variable sized bin

packing where it involves allocating, without overlapping, a given set of

rectangular items that cannot be rotated into the minimum number of three

dimensional bins with different bin dimensions as input variables. Based on

the proposed approach, the authors reduced the dimension of a given bin

packing problem from three dimensional to a one dimensional.

22

On a more probabilistic and stochastic analysis note, (Akeda & Hori, 1976)

performed Monte Carlo simulation and presented the confidence interval for

mean random packing density and lower bound on limiting density

comparison. (Ong, Magazine, & Wee, 1984) proved that the expected number

of bins can be estimated as a function of number of elements and that the

number of bins converges to expected value in probability. (Rhee &

Talagrand, 1991) and (Rhee & Talagrand, 1993) dealt with stochastic packing

with items of random sizes. In particular, the latter work showed that there

exists an online algorithm that depends on the distribution of items. Other

authors used different methods to solve the one dimensional bin packing

problem such as genetic algorithm (Gómez & Fuente, 2000) use a cyclic

crossover GA with fitness by area and variable mutation to minimize wastage

of raw material. (Brusco, Thompson, & Jacobs, 1997) used simulated

annealing with morphing process such that workload across all bins are evenly

distributed. (Levine & Ducatelle, 2004) used a hybrid ant colony optimization

(ACO) with local search whereas (Healy & Moll, 1996) used local

optimization with rectangular layout in terms of holes and rectangles. (Van De

Vel & Shijie, 1991) presented an algorithm which is non-polynomial as an

application of bin packing technique to minimize makespan of a job

scheduling problem. (Lins, Lins, & Morabito, 2003) considered a non-

orthogonal 2D problem that seeks to maximize the number of items using the

recursive partition of a rectangular or an L-shaped piece into two pieces,

each of which is rectangular or an L-shaped piece. It is ideal for pallet

loading and the L-approach always finds optimum packing of (ℓ, w)-

23

rectangles into rectangular piece even though it is a little time/memory

consuming.

Related to the use of column generation to solve the 2D packing problem,

(George, 1996) packed circles into rectangles using three approaches – a

greedy heuristic, a pre-allocation method and integer programming related

methods for no more than three pipe sizes in each container. (Puchinger &

Raidl, 2007) developed an integer linear programming models for a 3-stage

2BP and used column generation in combination with greedy heuristics to

improve the optimization process. (Vanderbeck, 1999), (Vanderbeck, 2000)

and (Vanderbeck, 2001) did a computational study of a column generation

algorithm for bin packing and cutting stock problems.

(Adelson, Norman, & Laporte, 1976) provided references on dynamic

programming method used to solve the crate length optimization model. Other

references include (Ji & Jeng, 1990), (Liu & Hsiao, 1997), (Mrad, Meftahi, &

Haouari, 2013), (Savelsbergh, 1997), (Verma & Singh, 2010) and (Dowsland,

1996) which provided references on GA algorithm.

24

3 Crate Length Optimization

Orders come in various combinations of rolls from customers all over the

world and each roll will be packaged into a crate. Due to process restraints, the

crate width is a constant for all crates. With the crate width as a given

constant, the roll lengths are calculated and adjusted according to the thickness

of the material so as to have a consistent roll diameter. As such, the primary

concern in the determination of the crate sizes is assumed to be the crate

lengths. Since it is not possible to have a single crate type for every single roll

size, it is inevitable that there will be some loss in the space inside the crates.

As there can only be a few limited types of pre-determined crate sizes, the

demand rolls will naturally be categorized into a few subsets of lengths which

are packed accordingly into the best fit pre-determined crate length. Currently,

Company S pre-determines the standard crate lengths from experience and

there are four types of crate lengths in use. The company would like to

determine the crate sizes given a fixed number of crate types to minimize

overall loss and improve the efficiency of the transportation process.

3.1 Crate Length Optimization without Inventory

Consideration

This section introduces a mixed integer linear programming model which is

developed to solve the real world problem of finding the optimal crate lengths

as described above. The model will find the optimal crate lengths with the

objective of minimizing the total waste of space in the crates for a given

number of crate types and demand distribution of the rolls of films.

25

3.1.1 Modelling Assumptions

The assumptions for crate length optimization model are as below:

(1) Each roll is assigned to one crate. This is a restriction due to the nature

of the product. It is not possible to pack more than one roll in each

crate as the rolls will be damaged from abrasion with one another

during transportation.

(2) Demands of roll widths are given. The demands are generated based on

historical data.

(3) The number of crate types is given as pre-determined input. The

company would like to revisit the current practice of crate sizes and

examine the consequences of having other number of crate types.

(4) The roll as placed into the rectangular crate will mean that the roll’s

width actually corresponds to the length of the crate whereas the roll’s

length is rolled up and contributes to the diameter of the roll.

The following parameters and decision variables are used for the crate length

optimization model in this section:

Parameters

wi Roll width i

µi Mean demand of roll width i

K Number of crate types

N Number of roll widths

Lmin Minimum crate length

26

Lmax Maximum crate length

P Padding requirement inside the crates

M A very large integer number

Decision Variables

Lk Crate length k

xik 1, if roll i is assigned to crate length k and 0, otherwise

yik Loss of length inside crate when roll i is assigned to crate length k, and

0, otherwise

3.1.2 Problem Formulation

The optimization model for Problem 1 has been formulated as follows:

 1 1

N K

i ik
i k

Min y
 
 (3.1)

s.t.

 (1)k i ik ikL w y M x    for i=1,.., N, k=1,.., K (3.2)

 (1)k ik iL M x w P    for i=1,.., N, k=1,.., K (3.3)

1

1
K

ik

k

x


 for i=1,.., N (3.4)

 min maxkL L L  for k=1,.., K (3.5)

 0iky  for i=1,.., N, k=1,.., K (3.6)

  0,1ikx  for i=1,.., N, k=1,.., K (3.7)

27

In the objective function (3.1), we minimize the total sum of space wastage in

terms of length. The decision variable yik represents the extra length from the

assigned crate length Lk minus the roll width wi. This is multiplied by the

corresponding mean demand of roll width µi to obtain the total sum of length

loss inside all the crates assigned to all the rolls. Note that we have included P

in the computation of the total loss. However this will not affect the optimal

solution since P is a constant value, and hence will not affect the decision

variables. Constraint (3.2) enforces the constraint that each roll must be

assigned to a crate length that is bigger or equal to its width when ikx is 1.

Constraint (3.3) implies that the assigned crate length should have a minimum

allowance of P inside the crates for each roll. Constraint (3.4) ensures that

each roll is assigned to one crate type only. Constraint (3.5) states that all the

decision variables of optimal crate lengths must be within the range of

specified minimum crate length Lmin and maximum crate length Lmax.

Constraint (3.6) dictates that the decision variables yik must be positive and

lastly, constraint (3.7) states that the decision variables xik are 0-1 binary

variables.

3.1.3 Computational Results

Figure 3.1 shows the input parameter for the roll width of Company S’s

demand distribution and we observe that it is highly scattered with a few

obvious peaks. There are 80 types of roll widths in total. The few peaks are

due to strongly dominant industry sizes, for example those for architectural

and automotive use. The other input parameters are set such that the minimum

padding length, P is 8cm and K varies from 2 to 10 types.

28

Figure 3.1 Roll Width Demand Distribution

Figure 3.2 shows the computational results obtained by implementing the

mixed integer linear programming model for the crate length optimization

problem using ILOG CPLEX11.2 for a distribution of Company S’s demand

of film rolls. We observe that as expected, the objective value will decrease

with increasing specified number of crate types. There are diminishing returns

of reducing loss of empty space inside the crates with increasing number of

crate types.

0

5

10

15

20

25

30

35

0
.0

0

0
.0

5

0
.0

6

0
.0

9

0
.1

1

0
.1

5

0
.2

3

0
.2

7

0
.3

4

0
.3

8

0
.4

6

0
.5

5

0
.5

7

0
.6

1

0
.7

0

0
.7

4

0
.8

7

1
.0

0

P
e

rc
e

n
ta

ge
 (

%
)

Normalized Roll Width (cm)

29

Figure 3.2 Objective Value with Number of Crate Types

Figure 3.3 shows the resulting optimal crate lengths for specified number of

crate types from 2 to 10. The x-axis is the index k for the optimal lengths while

y-axis is the optimal lengths Lk for the ten cases. For example, the case for two

types has a line with two points at (1.00, 0.56) and (2.00, 1.00) which mean

that the two optimal lengths in sequence are 0.56 and 1.00. For each result, the

crate length 1.00 is a must because it has to accommodate for the biggest roll

width in the demand with 8cm padding length. It can be seen that there are

several crate lengths present in a few number of crate types hovering around

0.20, 0.38 and 0.56 due to the peaks of these demands in the input distribution

(Figure 3.1). The first crate length for all cases generally is either 0.20 or 0.07,

with the exception of the case for two types whereby it is 0.56.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2 3 4 5 6 7 8 9 10

To
ta

l l
o

ss
 in

 le
n

gt
h

 (
cm

)

Number of crate types

30

Figure 3.3 Optimal Crate Lengths for Given Number of Crate Types

3.2 Crate Length Optimization with Inventory Cost

Consideration

The model presented in section 3.1 solves the real industrial problem by

Company S to revise the optimal crate lengths used in transportation of the

rolls. However, it did not consider demand uncertainty. The fluctuation in

demand affects the amount of total inventory costs of the packaging crate

materials. For each crate type, it is necessary to keep a certain level of safety

stocks in each distribution centre to deal with the uncertainty of demands from

customers. If the number of fixed crate types is too large, then it is

unavoidable that more safety stocks need to be held and this adds to the

complexity of handling. In addition, there is limited space in the warehouse to

hold all types of crates. The motivation of the problem can also be more

simply described as follows: if crate types increase, wastage will decrease due

to better fit of the rolls in the crates but inventory cost will also increase due to

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

 N
o

rm
a

liz
ed

 L
k

k

2 types

3 types

4 types

5 types

6 types

7 types

8 types

9 types

10 types

31

more safety stocks, and so more crate types also translates to higher cost and

complexity of handling.

Therefore the model in section 3.1 is extended with the consideration to find

the optimal number of crate types so as to save on total inventory costs

associated with the handling, storing and warehousing of all crate types. With

the purpose of determining both the optimal crate types and lengths, the trade-

off between loss of space inside the crates and inventory holding cost of the

safety stock of crate types will be presented as an objective function in this

section. In this extended problem, there is incentive to limit the number of

crate types because the resulting objective value will decrease with increasing

crate types, unlike the previous problem definition where inventory cost was

not considered and there was no trade-off between the two variables. The two

key decisions are choosing the optimal number of crate types and their lengths

such that the associated inventory cost of having more number of box types’

safety stock is balanced with minimizing the waste of space in the crates for

all items. This is because if more crate types are decided, there is certainty that

the extra space inside the crates will be less. However, this also leads to more

costs to keep safety stocks of each crate type. On the other hand, a decision to

have less crate types will result in more extra space but keep safety stock costs

lower. In this section, the model will find both the optimal number of crate

types and the optimal lengths to use.

3.2.1 Modelling Assumptions

The assumptions for the second problem are outlined below:

32

(1) Each roll is assigned to one crate. This is a continuation of the

assumption from the model in section 3.1.

(2) Demands of the roll width are independently distributed.

(3) Periodic review policy is assumed. Hence the safety stock is computed

using this policy based on the demand variability over the lead time

and the review period.

The parameters and decision variables from the crate length optimization

problem in Section 3.1 are used along with the additional variables as follows,

with the exception of K, number of crate types now not being an input but a

decision variable along with optimal crate lengths Lk.

Inputs and Parameters

σi Standard deviation of demand of roll width i

p Penalty cost

h Inventory holding cost

The parameters p and h are assumed to be constant, independent of the number

of crate types chosen. The assumption is based on that both factors are

estimated from the average of historical data. However, it is possible that the

parameter p may change considering that p is the penalty which encapsulates

both the cost of extra wood or materials, and additional padding per cm of

extra length in the crate. In addition, due to bulk ordering, it might be more

expensive if more crate types are ordered from the packaging supplier. This is

because the supplier might charge more for customizing a large number of

varied crate sizes in lower quantities.

33

Decision Variables

K Number of crate types

Lk Crate length k

3.2.2 Problem Formulation

The second problem definition with inventory cost considerations can be

formulated mathematically as below in conjunction with constraints (3.2) to

(3.7) from the problem definition in Section 3.1.

1 1 1

K N K

k i ik

k i k

Min hS p y
  

  (3.8)

s.t.

 2

k i ik

i

S x  for k=1,.., K (3.9)

 1,i k ikx x  for i=2,.., N, k=1,.., K (3.10)

and constraints (3.2) to (3.7) as in the first problem in Section 3.1.

The objective function (3.8) reflects the dynamics of trade-off between having

less crate types to have smaller value of the first term to compensate for the

rise of value in the second term. The first term in the objective function is the

product of the sum of Sk as the safety stock of each crate type k with the

corresponding factor h to convert to equivalent in dollars of the inventory

costs. The second term is the product of the sum of total space wastage in

terms of length for all demands with a penalty cost factor p to convert to

equivalent loss in dollars. Constraint (3.9) introduces safety stock of crate size

34

k, Sk
2
 which is the sum of σi

2
 if wi is assigned to crate type k. It can also be

viewed as the risk pooling term for all rolls which are clustered into groups for

optimal crate types. Lastly, constraint (3.10) forbids a roll i-1 from being

assigned to a crate k unless its adjacent (and larger) roll i is assigned to crate k

for all rolls i. Because of the different variability of demand, a situation may

arise where it will be more desirable to assign a particular roll width to a larger

crate type available. In order to restrict this situation, the constraint is

introduced. The other constraints (3.2) to (3.7) are as described in Section 3.1.

The formulation of the model is a non-linear mixed integer programming

problem. As it is not a straightforward problem to solve, this leads to the use

of a dynamic programming approach in Section 3.3.

3.3 Dynamic Programming Approach

Although the crate length optimization model with inventory consideration has

been formulated in the preceding section, the integer programming model does

not exploit the special sequential structure of the problem. As such, a dynamic

programming approach is presented as an alternative to solve the problem.

The dynamic programming approach is based on the development of a

recursive optimization process. There are several characteristics of a dynamic

program: stages, states and the recursive property. The state of a stage reflects

enough information to evaluate the optimal value function of a stage. The

recursive property links the current stage to the next stage for all stages.

There are several structures of the problem that make the dynamic

programming approach viable. The first is that the problem has optimal

substructures which satisfy Bellman’s Principle of Optimality wherein

35

regardless of the initial state and decision, the subsequent decisions must

constitute an optimal policy which is a consequence of the initial state and

decision. Secondly, there is a finite choice of the crate length, which is one of

the lengths of demand. In this problem, the solution space is most definitely

limited to the set of the rolls widths considered. Therefore the solution space is

discrete and finite. Seeing that the roll widths can be portrayed as an

increasing array of variables, naturally the rolls will also be guaranteed an

assignment of a crate type that is the smallest crate type that the rolls are able

to fit in, or more simply put as the adjacent crate length. In addition, the

objective function (3.9) is an additive function of the non-decreasing costs of

space penalty and inventory holding of the safety stock. The decision at each

stage depends on minimizing this total cost function which reflects the returns

of the current path.

The following notation is used to formulate the problem as a dynamic

program.

Inputs and Parameters

w(i) Roll width i

sa,...,b Pooled risk of standard deviation (safety stock) of demand of roll

widths a to b

p Penalty cost per unit loss of length

h Inventory holding rate

n Stage of the dynamic program

36

N Total number of stages (roll width sizes to be considered)

xn State of stage n

Decision variable

an Decision variable at stage n where an represents the previous crate type

width

3.3.1 Dynamic Programming Formulation

We formulate the problem as a forward induction dynamic program. In a

forward induction process, the first stage is the initial stage of the problem.

Then, the subproblems are solved moving forward one at a time until all stages

are included. Suppose n is the stage of the dynamic program and N is the total

number of roll width types considered, then there are N number of stages.

Calculating F(n) for n=1,…,N, where N is the total number of roll width types

considered, we obtain the final optimal value F(N) given that F(0) is initialized

to zero.

The problem is formulated as a forward induction dynamic program as shown

below:

1

1

() (),0 1

() min (,) (,) min (,) (),
n n

n n n n

n n
n n n n n n n n n n n

a a

F x F x x n

F x g x a F x a g x a F a x n





    
 

     
 
 

 (3.11)

0 0(0) (0) 0 F x F   (3.12)

()n nF x is the minimum cost function for state xn at stage n, 1()n nF x is the cost

to go and (,)n n ng x a is the one period cost. When 0 1nx n   , ()n nF x is equal

to 1()n nF x . When xn=n, then {0,1,..., 1}na n  and ()n nF x is the best decision

37

an which gives the minimum cost which is a sum of the one period cost at

stage n and the cost to go, where the one period cost is evaluated as

1,...,

1

[() ()]
n

n

n

i a n

i a

p w n w i s h 

 

  .

Using this method, it will divide the demands into groups through enumeration

of all the stages and each group’s set of rolls will be assigned to the adjacent

crate length. The adjacent crate length is none other than the last or biggest roll

width which is assigned to the cluster, plus an additional given pre-set of

padding allowance, a constant P. The term ()nF a in (3.11) is the minimum

cost up to stage an and one period cost refers to the additional possible costs of

the possible states xn, where we can see that it is the possible grouping of the

roll widths into clusters resulting in cost of penalty from loss of length inside

the crates, compounded by the penalty cost factor p, and also the cost of safety

stocks in the latter part, compounded by the holding cost factor h. The

difference between the two problem definitions in Sections 3.1 and 3.2 as

described above therein lies in the consideration of the cost function to be

minimized. If the inventory cost is removed, the dynamic programming

approach reduces to minimizing only the penalty cost and the solution will be

a crate type for every roll as there is no motivation to risk pool the fluctuations

of the roll demands to drive down the inventory cost of holding safety stock of

crate types. The formulation leads to several deductions of the defined

problem, first of which is that the optimal solution set is equal to or is a subset

of the set of roll widths considered. Following which, it can be deduced that

the optimal decision assigns the roll widths to their adjacent length that is

38

longer. Specifically this refers to the term
1

[() ()]
n

n

i

i a

p w n w i 
 

 in the optimal

decision whereby the w*(n) chosen is the largest of all the w(i) for all states of

possible widths within the cluster starting for the index of i from an+1 up to n

as the cost function is an additive function of two non-separable non-

decreasing costs.

3.3.2 Computational Results

In this section, the proposed method of dynamic programming is applied to a

set of demands using MATLAB version R2012a. The dynamic programming

implementation has a time complexity with two ‘for’ loops that executes n

times, where n is the input size of the number of crate widths. Therefore the

order of complexity of the algorithm is quadratic complexity, O(n
2
). The

complexity is of a polynomial algorithm.

Firstly, it is applied to Company S’s actual demand data whereby the input

parameters of p and h are 0.066 and 2.50 respectively. Both values are

estimated from historical data. The result obtained is 10 optimal types of

crates.

Next, the method is tested against a range of p and h values. Figure 3.4 shows

the number of optimal crate types at varying values of h from 1.0 to 3.5 when

p is fixed at 0.066. The number of optimal crate types decreases with

increasing h. The decreasing pattern is expected because with higher

inventory cost, there is more incentive to group into fewer types so that each

type has the advantage to buffer the uncertainty in demand.

39

Figure 3.4 Optimal Number of Crate Types at Varying Values of h

On the other hand, Figure 3.5 shows the number of optimal crate types at

varying values of p from 0.02 to 0.10 when h is fixed at 2.50. The number of

optimal crate types increases with increasing p. The number of crate types is

very sensitive to the changes in the values of p. The sensitivity is due to the

fact that the factor p, although small in magnitude relative to h, is multiplied

with the µi, mean demand of roll width i in the first term in (3.12). Its

contribution to the total cost is compounded and is therefore more sensitive

compared to h.

0

2

4

6

8

10

12

14

16

18

1.0 1.5 2.0 2.5 3.0 3.5

N
u

m
b

e
r

o
f

C
ra

te
 T

yp
e

s

h

Optimal Number of Crate Types vs h

40

Figure 3.5 Optimal Number of Crate Types at Varying Values of p

Thirdly, the method is tested against different demand patterns of the roll

width to see the effects of varying the ratio of p/h on the total cost and number

of optimal types. Three types of demand pattern for a range of 20 types of roll

width sizes are created. Figures 3.6 to 3.8 depict the demand patterns

generated for testing. They are a) uniform, b) normal and c) right skewed

pattern. For these three figures, the x-axis represents the roll width size from

100 to 290 while the y-axis represents the mean demand value. The normal

demand refers to a generated demand in which the average demands for the

mid-size crate types are generally higher than the smaller and larger crate

types. Meanwhile, right skewed demand refers to a generated demand in

which the average demands for the small-size crate types are generally higher

than the other crate types.

0

2

4

6

8

10

12

14

0.02 0.04 0.06 0.08 0.10

N
u

m
b

e
r

o
f

C
ra

te
 T

yp
e

s

p

Optimal Number of Crate Types vs p

41

Figure 3.6 Uniform Pattern of Mean Demand of Roll Widths

Figure 3.7 Normal Pattern of Mean Demand of Roll Widths

0

50

100

150

200

250

300

350

400

450

100 140 180 220 260

M
e

an
 D

e
m

an
d

Roll Width

Mean Demand of Roll Widths

0

50

100

150

200

250

300

350

400

450

100 140 180 220 260

 M
e

an
 D

e
m

an
d

Roll Width

Mean Demand of Roll Widths

42

Figure 3.8 Right Skewed Pattern of Mean Demand of Roll Widths

In Figures 3.9, 3.11 and 3.13, the results are shown below whereby the x-axis

shows the variance of demand varying from 0 to 4 for all cases of p/h from

0.005 to 0.05 and the y-axis shows the total cost in dollars for each scenario. In

Figures 3.10, 3.12 and 3.14, the y-axis shows the number of optimal types.

For the case of uniform mean demand of roll widths, Figures 3.9 and 3.10

illustrate the effects of variance level on both optimal cost and number of

optimal crate types. As expected, when variance increases, for all different

ratios of p/h, the total cost increases uniformly. As for the number of optimal

types, for values of p/h that are more or equal to 0.005, the optimal is always

20 types, one type for each roll width. The ratio has to be low enough before

it starts triggering a change in the number of optimal types. When p/h=0.001,

the number decreases rapidly from 20 to 10 then 7. When p/h=0.0005, the

number drops slowly from 10 to 4 types. Lastly, for p/h=0.0001, the number

decreases gradually from 4 to 2 types.

0

100

200

300

400

500

600

100 140 180 220 260

M
e

an
 D

e
m

an
d

Roll Width

Mean Demand of Roll Widths

43

Figure 3.9 Total Cost vs Variance for a Uniform Pattern

Figure 3.10 Number of Optimal Types vs Variance for a Uniform Pattern

On the other hand, for the case of normal mean pattern of roll widths, the

increase in total cost appears to be more sensitive for lower ratios of p/h. It is

also evident that at higher ratios of p/h, there appears to be more types of

crates chosen as there is not much to gain from risk pooling the demands into

clusters. At lower ratios of p/h of 0.01, 0.005 and 0.001, there are more

0

50

100

150

200

250

300

350

400

450

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

To
ta

l C
o

st

Variance

Total Cost vs Variance

0.005

0.001

0.0005

0.0001

p/h

0

5

10

15

20

25

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

N
u

m
b

e
r

o
f

O
p

ti
m

al
 T

yp
e

s

Variance

Number of Optimal Types vs Variance

0.005

0.001

0.0005

0.0001

p/h

44

distinct changes in the number of optimal types as the variance increases. The

higher holding cost and variance levels increase the tendency to have less crate

types as evidenced by Figure 3.12. This is because when the ratio of p/h is

lower, the risk pooling effect has a more significant contribution to the total

cost with the tendency to choose fewer types of crates resulting in higher

savings from inventory cost.

Figure 3.11 Total Cost vs Variance for a Normal Pattern

Figure 3.12 Number of Optimal Types vs Variance for a Normal Pattern

0

50

100

150

200

250

300

350

400

450

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

TO
ta

l C
o

st

Variance

Total Cost vs Variance

0.5

0.1

0.05

0.01

0.005

0.001

p/h

0

5

10

15

20

25

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

N
u

m
b

e
r

o
f

O
p

ti
m

al
 T

yp
e

s

Variance

Number of Optimal Types vs Variance

0.5

0.1

0.05

0.01

0.005

0.001

p/h

45

The same effect is investigated for a right skewed pattern of mean demand of

roll width. Figure 3.13 highlights the same trend as before with total cost

increasing with variance while Figure 3.14 shows the effect with increasing

number of types.

Figure 3.13 Total Cost vs Variance for a Right Skewed Pattern

Figure 3.14 Number of Optimal Types vs Variance for a Right Skewed Pattern

0

50

100

150

200

250

300

350

400

450

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

To
ta

l C
o

st

Variance

Total Cost vs Variance

0.5

0.1

0.05

0.01

0.005

0.001

p/h

0

5

10

15

20

25

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

N
u

m
b

e
r

o
f

O
p

ti
m

al
 T

yp
e

s

Variance

Number of Optimal Types vs Variance

0.5

0.1

0.05

0.01

0.005

0.001

p/h

46

Finally, Figures 3.15 and 3.16 are shown below whereby the x-axis shows the

coefficient of variance of demand varying from 0 to 0.48 for all cases of p/h

from 0.01 to 0.0005 and the y-axis shows the total cost in dollars for each

scenario. As predicted, Figures 3.15 and 3.16 can be viewed that as CV

(coefficient of variance) increases, for all different ratios of p/h, the total cost

increases. The increase appears to be even more sensitive for lower ratios of

p/h compared to increase in variance.

Figure 3.15 Total Cost at Different Levels of CV for a Uniform Demand

0

500

1000

1500

2000

2500

0.00 0.08 0.16 0.24 0.32 0.40 0.48

To
ta

l
C

o
st

CV

Total Cost vs CV

p=0.0005

p=0.001

p=0.005

p=0.01

47

Figure 3.16 Total Cost at Different Levels of CV for a Normal Demand

Lastly, a demand distribution which is scattered and has several peaks which

closely resembles the actual distribution of Company S as shown in Figure 3.1

is used to investigate the effect of varying the ratio of p/h. Figures 3.17 and

3.18 below show the results when a demand distribution with several peaks is

used.

Figure 3.17 Total Cost at Different Levels of CV for a Demand Pattern Similar

to Company S’s Actual Demand

0

200

400

600

800

1000

1200

1400

0.00 0.08 0.16 0.24 0.32 0.40 0.48

To
ta

l C
o

st

CV

Total Cost vs CV

p=0.005

p=0.001

p=0.005

p=0.01

0

200

400

600

800

1000

1200

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

To
ta

l C
o

st

Variance

0.01

0.02

0.03

p/h

48

Figure 3.18 Total Cost at Different Levels of CV for a Demand Pattern Similar

to Company S’s Actual Demand

4 Generalized Crate Sizing Problem

In the previous section, the crate sizing problem deals with one crate

dimension i.e. the crate length only. Realistically, a crate has three dimensions

which can be taken into account for optimization. By including all three

dimensions and thus calculating the total loss in terms of volume, this gives a

more accurate grasp of the real problem.

Thus this section is dedicated to the generalized crate sizing problem. The

problem can be viewed as an extension of the crate length optimization

problem where now the optimization problem is extended to solve for both

optimal crate length and crate width/crate height simultaneously. The crate

width and height are treated as equal. Customers order a combination of roll

sizes. A single customer demand has information on roll dimensions (roll

0

2

4

6

8

10

12

14

16

18

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n
u

m
b

e
r

o
f

O
p

ti
m

al
 T

yp
e

s

Variance

0.01

0.02

0.03

p/h

49

length and diameter) and corresponding quantity (mean demand and variance).

Each roll is to be packaged into one wooden rectangular crate. There are

numerous possible types of rolls that can be customized by a customer.

Because of the large number of combinations, it is not feasible to have one

crate size for each roll type. The usual practice is to decide on a few crate sizes

and stock them on hand to address the variety of the customer demand types.

When packing a customer demand, each roll is packaged into a feasible crate

size with minimum loss of volume. The total loss of volume of each customer

demand is the total loss of volume inside the crates which is the sum of the

differences between a chosen crate size and its roll for all rolls/crates. Because

all demands have to be packed, this is equivalent to minimizing total volume

of crates assigned. Meanwhile, the total inventory cost is the cost of safety

stock from risk pooling all demands of the same-size crates for all crate types.

The objective is two-fold, one is to decide the optimal crate sizes and the other

is to assign and pack all rolls in a demand into crates with minimum total

volume and minimum inventory cost.

However, the generalized crate sizing problem differs from crate length

optimization problem in the earlier section in that the number of optimal crate

sizes is fixed and given as input for optimization. The number of optimal crate

types is a pre-determined input (but we can always vary the number of crate

types to find the optimal number of crate types). In this problem, the inputs are

the customer demand with various lengths and widths. Since there are only

finite number of customer demand types (with various length and width

dimensions), the choice of the optimal crate sizes will be finite and they

should fall into the dimensions of the customer demand type. Without loss of

50

generality, we assume that the requirement of padding has been considered in

the dimension of the customer demand type.

As mentioned in the background problem, the crate has a unique characteristic

of being very long and having a square cross sectional area to accommodate

the cylindrical shape of the rolls. With a square cross section, this means that

the crate width and height are of equal dimensions. Due to this property,

solving the crate sizing problem can be viewed as solving a 2D problem.

However, computational results will depict the total loss of volume (3D) for

the generalized crate sizing problem.

Although dynamic programming was used in the earlier problem, in this

extended problem, dynamic programming cannot be used as it does not exhibit

the property of the Bellman’s Principle of Optimality. The principle dictates

that the optimal solution of the problem must constitute the optimal solution of

earlier stages or smaller sub-problems. But in this case, the optimal solution of

the sub-problem may change in the optimal solution when there are two

dimensions to be considered instead of just one dimension in the section. As

such, the recursive method cannot be applied here.

We will define the problem in sections 4.1-4.2. Three methods are proposed

to solve this problem, namely enumeration method, marginal improvement

method and genetic algorithm. They will be discussed in Sections 4.3-4.5.

4.1 Modelling Assumptions

The following assumptions will be used in this problem:

51

(1) The roll height or diameter is assumed to be always smaller than the

roll width. As such, rotation is not possible. The crate length and crate

width are not interchangeable.

(2) From this section onwards, the crate length Lk and crate width Wk are

assumed to be inclusive of minimum padding P.

The following parameters are used for the generalized crate sizing problem in

this section:

Parameters

wi Roll width i

di Roll height (diameter) i

µi Mean demand of roll type i

σi Standard deviation of demand of roll type i

K Number of crate types

Lmin Minimum crate length

Lmax Maximum crate length

Wmin Minimum crate width

Wmax Maximum crate width

Decision variables

Lk Crate length k

Wk Crate width (or height) k

52

zik 1, if roll i is assigned to crate k of length Lk and width Wk; 0 otherwise

The inputs required are demand of roll types i and the number of optimal types

N. Each roll type has µi mean demand and σi standard deviation of demand. If

roll type i is selected to the current group of pooled risk, 2

i ik

i

z represents

the pooled risk of the variances of the rolls in the group. Specifically, it is the

square root sum of the variances of the rolls in the group. Finally, the total cost

or objective value in this problem is the total loss of volume and the total cost

of inventory. It is the combined cost of crate volume from packing the rolls

into crates and the cost of holding safety stock of pooled risks for all crate

types k.

4.2 Problem Formulation

2 2

1 1 1

K N K

i ik i k k ik

k i i k

min h z p L W z 
  

   (4.1)

s.t.

 i ik kw z P L  for i=1,.., N, k=1,.., K (4.2)

 i ik kd z P W  for i=1,.., N, k=1,.., K (4.3)

1

1
K

ik

k

z


 for i=1,.., N (4.4)

 min maxkL L L  for k=1,.., K (4.5)

 min maxkW W W  for k=1,.., K (4.6)

  0,1ikz  for i=1,.., N, k=1,.., K (4.7)

53

Objective function (4.1) minimizes the sum of total inventory holding cost and

sum of crate volume
2

i k kL W multiplied by the factor p for items i that are

assigned to crate k. Constraints (4.2) and (4.3) dictate that the dimensions of

the roll width wi and roll diameter di are smaller than the crate lengths and

crate widths for a feasible fit into the crates. Constraint (4.4) guarantees that

each roll i is assigned to only one crate type of length Lk and width Wk.

Constraints (4.5) and (4.6) confine the solutions of crate lengths and crate

widths to their minimum and maximum values allowed. Lastly, constraint

(4.7) prescribes that the variable zik is either 0 or 1.

To put into visual perspective, a table portrays all the options of crate sizes.

Figure 4.1 shows the pictorial representation of all sizes and demand. The

columns represent crate width whereas the rows represent crate length, both

sorted in ascending order. Each cell represents a demand of crate size in the

two dimensions. The crate length and crate width are discrete and do not need

to be equally spaced sizes.

For a demand of u crate lengths and v crate widths, the table is an array of size

uxv. As the optimal solution will only lie on the dimensions given by the

customer orders, every cell in the table can be regarded as a potential

candidate for the optimal size. Naturally, the cell with the biggest size xuyv is

part of the optimal size solution because all demands must be assigned. For

any given number of optimal crate types K, there can be
uv-1

C(K-1) ways of

choosing the optimal solution. To give an insight into the magnitude of the

problem, a problem with just 10 crate lengths and 10 crate widths with 4

optimal sizes has
99

C3 that is 156,849.

54

Figure 4.1 Pictorial representation of sizes and demand

4.3 Enumeration Method

The first approach of enumeration method is the most direct method. It

enumerates all possible optimal sizes given a specified number of crate types

and demand and then assigns all the demand accordingly to calculate the

minimum total cost. Each demand is assigned to the smallest feasible crate

type.

The method has been implemented using MATLAB R2012a program. It is

simple in execution and works well for small size problems. However the

brute force method slows down considerably when applied to larger problems.

Even though the program can be extended to accommodate larger size

problems, running time is a cause of concern. Even so, the enumeration

method is useful to yield optimal solutions for small size problems and serves

as an appropriate comparison basis and benchmark for other subsequent

methods.

x1y1

N(μ,σ)

x1y2

N(μ,σ)

x1y3

N(μ,σ)

x1y4

N(μ,σ)

x2y1

N(μ,σ)

x2y2

N(μ,σ)

x2y3

N(μ,σ)

x2y4

N(μ,σ)

x3y1

N(μ,σ)

x3y2

N(μ,σ)

x3y3

N(μ,σ)

x3y4

N(μ,σ)

x4y1

N(μ,σ)

x4y2

N(μ,σ)

x4y3

N(μ,σ)

x4y4

N(μ,σ)

Ascending crate width

Ascending crate length

y

x

…

…

55

4.4 Marginal Improvement Method

Due to the limited capability of the enumeration method, a second method is

introduced in this section. The second method involves using marginal

improvement to find and improve a given solution.

Given a solution, i.e. a set of crate sizes, we would like to know the marginal

improvement in the overall objectives values if we change one of the crate

sizes to one of its neighbouring sizes while keeping the rest unchanged. This

can be illustrated in Figure 4.2. Note that the highlighted cell is the crate size

xiyj (the length is Li, and the width is Wj) that we would like to change, and its

neighbours are xi-1yj-1, xi-1yj, xi-1yj+1, xiyj-1, xiyj+1, xi+1yj-1, xi+1yj and xi+1yj+1.

Figure 4.2 Neighbours for marginal improvement

Cxiyj is defined as the objective value for the overall solution, while Cxiyj+1 is

the objective value for the overall solution when crate size xiyj is changed to

xiyj+1 while the rest of crate sizes remained the same.

xi-1yj-1 xi-1yj xi-1yj+1

xiyj-1 xiyj xiyj+1

xi+1yj-1 xi+1yj xi+1yj+1

…

…

Ascending crate length

Ascending crate width

x

y

56

The table also displays the potential neighbours for marginal improvement for

a point that has 8 adjacent neighbours. For a point that is on the perimeter,

there will be fewer neighbouring points. Figure 4.3 shows the possible

directions for marginal improvement for a cell that is not on the perimeter and

has eight neighbours. The number of neighbours is equal to the number of

possible directions.

Figure 4.3 Directions for marginal improvement

The algorithm for the marginal improvement method is as follows:

1. Set StopFlag=0

2. For any crate size we would like to change, while StopFlag =0, do the

following steps 3-8 ; else exit

3. Set current point PointofConsideration

4. Calculate and set total cost of current solution CurrentTotalCost

5. Calculate change in CurrentTotalCost when the PointofConsideration

is changed to a neighbouring cell as neighbourCost for all neigbours

6. Find minimum neighbourCost and set LowestCost

7. If LowestCost=CurrentTotalCost then StopFlag=1 and current point is

not improving the solution any more, exit; else replace current point to

Cxi-1yj-1 Cxi-1yj Cxi-1yj+1

Cxiyj-1

Cxiyj Cxiyj+1

Cxi+1yj-1

Cxi+1yj

Cxi+1yj+1

57

PointofConsideration as the neighbour with lowest neighbourCost and

repeat steps 3 to 7

8. Output LowestCost and new crate sizes

The marginal improvement method is based on one-crate-size-at-a-time. While

keeping the rest of the solution, it only improves the current input size of

consideration. The quality of the rest of the other sizes greatly affects the

quality of the solution. If the other sizes are very far off, then the improved

one size does not help in minimizing total cost and the solution will also be far

from optimal. Nevertheless, the marginal improvement is a useful tool when

one is in the vicinity of optimal or good solutions. On top of that, it can be

used as a local search tool to generate better solutions in a short amount of

time because the marginal improvement method at any one time only needs to

calculate at most eight neighbouring cells to consider. There will be savings in

time for a quick improved solution and computational power because it does

not need to evaluate all the cells which can certainly slow down the process.

The marginal improvement algorithm improves based on changing one crate

size at a time. In order to change all the crate sizes, there are two ways of

choosing which crate size to improve. The former is by sequence (marginal

improvement by sequence- MIBS) while the latter is by random (marginal

improvement by random- MIBR). For example, for a three size problem,

MIBS will change crate size type 1 and then crate size type 2. Crate size type 3

cannot be changed because it is the biggest crate size that must accommodate

itself. Meanwhile, MIBR may either change crate size type 1 first and then

crate size type 2, or crate size type 2 first and then crate size type 1. In

58

addition, the starting values for the crate sizes can either be pre-set or

randomly generated.

4.4.1 Numerical Experiments

Numerical experiments were conducted to evaluate the marginal improvement

method. Without loss of generality, in all the experiments, we assume that the

demand size is 1 and variance is 0. To compare to the enumeration method,

the following tests were conducted. Table 4.1 shows the comparison between

marginal improvement (MI) and enumeration method for the problem with

two sizes. Note that in this problem, as we can only vary one crate size, MIBR

reduces to MIBS. The starting value of (x1
*
, y1

*
) is (1,1) and the value of (x2

*
,

y2
*
) is (n,n). The size of the search space is n

2
.

The results indicate that the MI methods are able to find the global optimal

solution.

59

K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration)

Cost

(MI)

Cost

2 2 2 1 2 2 20 20

3 3 2 3 3 153 153

4 4 2 4 4 640 640

5 5 3 5 5 1925 1925

6 6 3 6 6 4860 4860

7 7 4 7 7 10339 10339

8 8 5 8 8 20288 20288

9 9 5 9 9 36369 36369

10 10 6 10 10 61600 61600

11 11 6 11 11 99341 99341

12 12 7 12 12 153072 153072

13 13 7 13 13 229333 229333

14 14 8 14 14 330848 330848

15 15 9 15 15 467775 467775

16 16 9 16 16 645376 645376

17 17 10 17 17 873647 873647

18 18 10 18 18 1163808 1163808

19 19 11 19 19 1523059 1523059

20 20 12 20 20 1971200 1971200

Table 4.1 Comparison between MI and enumeration method for two sizes

Table 4.2 shows the comparison between MIBS, MIBR and enumeration

method for the problem with three sizes. The starting values of (x1
*
, y1

*
) and

(x2
*
, y2

*
) are randomly generated and the value of (x3

*
, y3

*
) is (n,n). Because

the starting values are randomly generated, the results depend on the initial

values. The experiment is run 20 times and the lowest cost is obtained with the

corresponding optimal sizes. The results for both MIBS and MIBR indicate

that the MI methods are able to find the global optimal solution.

60

K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration)

Cost

(MIBS)

Cost

(MIBR)

Cost

3 3 3 1 3 2 126 126 126

4 2 4 4 2 512 512 512

5 4 4 5 2 1587 1587 1587

6 3 6 6 3 3888 3888 3888

7 5 6 7 3 8482 8482 8482

8 4 8 8 4 16384 16384 16384

9 6 8 9 4 29709 29709 29709

10 5 10 10 5 50000 50000 50000

11 7 10 11 5 80886 80886 80886

12 6 12 12 6 124416 124416 124416

13 8 12 13 6 186271 186271 186271

14 7 14 14 7 268912 268912 268912

15 9 14 15 7 380682 380682 380682

16 8 16 16 8 524288 524288 524288

17 10 16 17 8 711417 711417 711417

18 9 18 18 9 944784 944784 944784

19 11 18 19 9 1240174 1240174 1240174

20 10 20 20 10 1600000 1600000 1600000

Table 4.2 Comparison between MIBS, MIBR and enumeration method for

three sizes

Table 4.3 shows the comparison between MIBS and enumeration method for

the problem with four sizes. The starting values of (x1*, y1
*
), (x2

*
, y2

*
) and (x3

*
,

y3
*
) are randomly generated and the value of (x4

*
, y4

*
) is (n,n). The experiment

is run 20 times and the lowest cost is obtained with the corresponding optimal

sizes and cost as shown in MIBS I Cost column. With the exception of n=8, it

is able to find the global optimal solution.

61

When we increase the number of runs from 20 to 100, the MIBS II Cost

column is obtained.

K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration)

Cost

(MIBS I)

Cost

(MIBS

II) Cost

4 4 4 2 2 4 4 3 456 456 456

5 5 2 2 5 5 4 1355 1355 1355

6 6 2 2 6 6 4 3360 3360 3360

7 7 3 3 7 7 5 7231 7231 7231

8 8 4 3 8 8 6 14048 14400 14048

9 9 3 3 9 9 6 25515 25515 25515

10 10 4 4 10 10 7 42820 42820 42820

11 11 4 4 11 11 8 68959 68959 68959

12 12 5 5 12 12 9 106704 106704 106704

13 13 5 5 13 13 9 - 158925 159757

14 14 5 5 14 14 10 - 230384 230720

15 15 6 5 15 15 11 - 324975 324675

16 16 6 6 16 16 11 - 449056 449056

17 17 6 17 11 8 17 - 613547 608022

18 18 8 7 18 18 13 - 812718 812718

19 19 7 19 12 10 19 - 1068560 1059079

20 20 8 7 20 20 15 - 1369500 1372720

Table 4.3 Comparison between MIBS and enumeration method for four sizes

Table 4.4 shows the comparison between MIBR and enumeration method for

four sizes. Note that the MIBR method is run for 20 times (MIBR I) and 100

times (MIBR II) and both runs reach global optimal solution for n ranging

from 4 to 12.

62

K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration)

Cost

(MIBR

I)

Cost

(MIBR

II) Cost

4 4 4 2 2 4 4 3 456 456 456

5 5 2 2 5 5 4 1355 1355 1355

6 6 2 2 6 6 4 3360 3360 3360

7 7 3 3 7 7 5 7231 7231 7231

8 8 3 3 8 8 6 14048 14048 14048

9 9 4 3 9 9 7 25515 25515 25515

10 10 4 4 10 10 7 42820 42820 42820

11 11 4 4 11 11 8 68959 68959 68959

12 12 5 4 12 12 9 106704 106704 106704

13 13 5 5 13 13 9 - 158925 158925

14 14 5 5 14 14 10 - 230384 230384

15 15 6 6 15 15 11 - 324675 324675

16 16 6 6 16 16 11 - 449056 449056

17 17 7 6 17 17 12 - 608022 608022

18 18 7 7 18 18 13 - 807300 807300

19 19 8 7 19 19 14 - 1059079 1059079

20 20 9 8 20 20 15 - 1377200 1377200

Table 4.4 Comparison between MIBR and enumeration method for four sizes

From the results for the marginal improvement methods, it can be seen that

they can be used to find optimal solutions for small problems of two, three and

four sizes. For the same-scale problem, the marginal improvement method was

able to produce the optimal solution with a much shorter time compared to the

enumeration method which took very long. The running time of the marginal

improvement method took minutes whereas the enumeration method took

hours. However, when the problem gets bigger, it becomes more difficult to

get optimal solutions, and so we introduce another method in Section 4.5.

63

4.5 Genetic Algorithm Method

The genetic algorithm (GA) method is a well-known evolutionary algorithm

that is used to handle a multitude of optimization problems. Based on the idea

of ‘survival of the fittest’, GA begins with an initial population which

comprises of randomly generated individuals. Every individual is evaluated

and given a fitness score/measure. At each generation, the individuals undergo

mutation, crossover and the fittest individuals are selected to remain and

survive for the next generation.

The GA has many good properties that can be used to solve different types of

problems. It has good mechanism to consider the trade-off between

exploitation and exploration. By using the appropriate selection, crossover and

mutation mechanism, we can achieve good results. In general, selection helps

to keep elitism in the solutions, crossover performs exploitation and mutation

does the exploration. In order for the GA to perform well, it is important to

have the right solution representation (chromosome representation) which can

work well with the crossover operation. If such a representation is not present,

when we do crossover, we might not be able to exploit the neighbourhood to

obtain good solution. In our problem, the chromosome is represented by the

crate sizes which will be discussed later, and if we do naïve crossover, we

might destroy the neighbourhood structure. Hence we propose a Hungarian

method which aims to match the genes for crossover to ensure the offspring

will lie within the neighbourhood of the parents.

The GA approach is introduced in this section because the enumeration

method and marginal improvement methods are local search methods that are

64

not as efficient for solving larger size problems. The GA approach is able to

obtain improved results over the other two methods.

The proposed GA algorithm can be viewed as a general framework for a

generalized crate sizing problem. It can be used to find the optimal 2D(+1)

sizes of crates given a demand of crate sizes. The first requirement for this

framework is the crate length and crate width is not interchangeable. The

second requirement is that the second and third dimensions are equal and

treated as the same. As such, this can be applied to any problem which has the

same properties. In essence, the GA can be used for a problem that finds the

optimal sizes of long and rectangular type of boxes/packaging/crates. The

demand of the sizes can be normal or of other distributions. This does not

affect the suitability of the GA algorithm. However, this changes the fitness

function of the GA where the evaluation function is currently proposed for a

normally distributed demand. For other distributions, the fitness function

should be modified accordingly.

4.5.1 Chromosome Representation

Each chromosome is an individual and represents a solution. The

chromosome has several genes and each pair of genes represents a crate

size for a customer demand type. The chromosomes are of fixed length.

Note that if there are K crate types, the chromosome only needs 2(K-1)

genes. This is because the largest customer demand type is always a

required crate size in the optimal solution. Hence it is not necessary to

include it in the chromosome.

65

Figure 4.4 depicts an example of chromosome representation of crate

sizes. This is a chromosome for six crate types. The first pair of genes

(L3,W2) is a crate size for the customer demand type with crate length L3

and crate width W2. Each pair of genes refers to the crate sizes for the

customer demand type respectively.

Figure 4.4 Chromosome representation

4.5.2 Creation of initial population

The creation of the initial population P0 comprises of crate sizes chosen

from the set of possible customer demand types. If the number of available

customer demand types is N, and the number of crate sizes of the problem

is K, where K is less than N, each chromosome is created by choosing K-1

individuals from N-1 types. For the initial population, 100 chromosomes

are generated.

4.5.3 Selection Mechanism

After a population of individuals are generated, we need to have a

selection mechanism to select parents for reproduction. For the criteria of

(L3,W2)

(L3,W5)

(L12,W4)

(L9,W7)

(L4,W12)

66

selection, a fitness value F(x) has to be assigned to all individuals in the

population. The total cost of an individual is the evaluation of the objective

function as described in the problem formulation (4.1). The fitness of an

individual F(x) is then measured by using a function to calculate total cost

of the individual over the mean of the total cost of all the individuals in the

population.

In this algorithm, tournament selection is used. The winning pair of

individuals is selected as parents for mating.

4.5.4 Reproduction – crossover operation

After a pair of individuals is selected as parents, crossover is usually

performed. In our problem, we will use the arithmetic crossover. Let 1f

and 2f be the genes matched for crossover, and the offspring is 1s after

crossover. It is defined as 1 1 2. (1).
s f f       . After performing

crossover, the child might not belong to any of the customer types, and so

some repair needs to be carried out. For repair, the child is modified to the

closest customer type from its neighbours.

Note that it is important to find the matching pair of genes to perform the

crossover. If we naively match the genes by their order in the

chromosome, the offspring generated might be far off from their parents,

which will be undesirable for crossover operations. The concept of

distance is introduced to measure the similarity between the two gene

pairs. In our case, we use rectilinear distance as the measure.

67

Figure 4.5 illustrates a naïve crossover between parent A and parent B and

the rectilinear distance between the gene pairs. Figure 4.6 shows the

relationship of the crossover in a graph. It can be seen that the offspring

resulting from the crossover can be far away from their parents which

would destroy the neighbourhood structure.

Figure 4.5 A naïve crossover example

(187, 92)

(145, 85)

(187, 99)

(113, 71)

(171, 28)

(166, 69)

(173, 78)

(147, 36)

(174, 96)

(120, 77)

44

35

103

86

100

Parent B Rectilinear Distance Parent A

68

Figure 4.6 Naïve crossover example in a graph

In our problem, a naïve crossover is not very effective. This is because the

optimal crate size is not likely to deviate far from its neighbours.

Therefore the neighbourhood structure is essential here. When we preserve

the neighbourhood structure, the crossover is done over a smaller region

and produces an offspring in the vicinity. By taking advantage of this

special property, it is able to have more exploitation. If we match the pairs

of genes to the closest neighbour, this can be modelled as a 1-to-1

assignment problem. The objective of the assignment problem is to pair off

all genes between the two parents at minimum matching cost. Therefore

we propose the Hungarian algorithm to solve the assignment problem here.

110 120 130 140 150 160 170 180 190
20

30

40

50

60

70

80

90

100

Parent A

Parent B

Offspring

69

Figure 4.7 illustrates a modified crossover between parent A and parent B

and the rectilinear distance between the gene pairs. Figure 4.8 shows the

relationship of the crossover in a graph.

Figure 4.7 Hungarian match crossover pairing

Figure 4.8 Hungarian match crossover pairing in a graph

110 120 130 140 150 160 170 180 190
20

30

40

50

60

70

80

90

100

Parent A

Parent B

Offspring

(187, 92)

(145, 85)

(187, 99)

(113, 71)

(171, 28)

(166, 69)

(173, 78)

(147, 36)

(174, 96)

(120, 77)

Parent B Rectilinear Distance Parent A

28

37

16

13

32

70

The formulation for the Hungarian model to find the matching genes so that

we can process the crossover operation is presented below. Assume that we

have two parent chromosomes 1 and 2, ai1 is the crate length and bi1 is the

crate width of gene i for parent chromosome 1, while aj2 is the crate length and

bj2 is the crate width of gene j for parent chromosome 2. Then

1 2 1 2(| | | |)i j i j i jc a a b b    is the cost of matching gene i of chromosome 1

to gene j of chromosome 2. n is the number of pairs of genes in the

chromosome. The problem of finding matching genes can be modelled as an

assignment problem shown below:

1 1

min
n n

ij ij

i j

c x
 

 (4.8)

s.t.

1

1
n

ij

j

x


 for i=1,.., n (4.9)

1

1
n

ij

i

x


 for j=1,.., n (4.10)

 {0,1}ijx  for i=1,.., n, j=1,.., n (4.11)

ijx is the binary variable where it is 1 if gene i of chromosome 1 is matched

to gene j of chromosome 2, otherwise it is 0.

After the above assignment problem is solved using the Hungarian

algorithm, crossover is performed.

4.5.5 Mutation Operator

71

The purpose of mutation is to bring in random traits and increase

variability of the population to allow for exploration. Mutation is applied

using a random number and compared with mutation probability to decide

if mutation should be performed.

The mutation rate is set and if the random

number is less than mutation rate, a gene of the offspring is randomly

selected to be mutated. It is randomly mutated to another customer demand

type among its neighbours.

4.5.6 GA Algorithm

The algorithm for the GA implemented follows the steps outlined below:

1. Initial population - Generate initial population.

2. Parent selection - Based on tournament selection whereby a random set

of tournament size individuals is selected for tournament. The

individual with lower F(x) wins (minimization). Two winning

individuals are selected as parents for reproduction.

3. Reproduction - A new offspring is produced using the following steps:

a. A cost matrix cij is constructed using the pairing of the selected

pair of parents where the cost is calculated using rectilinear

distance

b. Hungarian match is used to find the nearest neighbour to

preserve the neighbourhood property.

c. Once matches are found, whole arithmetic crossover

1 1 2. (1).
s f f      

 is applied; if not feasible, repair and

modify to nearest neighbour.

72

d. Mutation is applied using a random number and compared with

mutation probability to decide if mutation should be performed.

4. The cycle of parent selection, crossover, and mutation is repeated to

generate new individuals.

5. Fitness function-All individuals in the population are evaluated for

F(x), the fitness value based on total cost of individual.

a. Individuals with lower F(x) are preferred (minimization of

fitness value)

6. Elitism is the preservation of best solutions of the population pool for

the next generation.

a. At the end of each generation, elite individuals with best fitness

values are selected to remain and copied into the next

generation’s population

b. Individuals with unsatisfactory fitness values are discarded

c. The best elite individuals are selected to remain for the next

generation’s population Pt+1

7. The new population Pt+1 replaces the current population Pt

8. Exit when set number of generations G is reached

9. The best solution is found

The algorithm for the GA can be illustrated using the flowchart as shown

in Figure 4.9 below. After the best chromosomes are chosen for copying

into the next generation, marginal improvement as discussed in Section 4.4

is applied to a small percentage of individuals. The marginal improvement

step is intended to speed up the process of finding better solutions. After

this is done, one generation is complete and progresses to the next

73

generation. The GA algorithm is run for a set number of generations before

terminating. The output is the minimum value when the set number of

generations is reached.

74

Figure 4.9 Flowchart of GA algorithm

75

4.5.7 Numerical Experiments

Numerical experiments were conducted using the proposed GA algorithm.

4.5.7.1 Comparison with Enumeration Method

In a standard GA, parameter tuning is crucial to the evolutionary computation

of the problem. The efficiency of a GA is greatly dependent on its

tuning parameters. The parameters include population size, tournament size,

probability of mutation, α value in the crossover operator and the number of

generations. Design of experiments can be applied to find the optimal settings

for all the parameters. On the other hand, the paramaters can be tuned one at a

time although this may produce suboptimal solutions because the parameters

may interact in a complex way. Despite the disadvantage, many researchers

opt to tune the parameters “by hand” which is testing different values and

selecting the value with the best results due to time constraints. When building

a GA, there is a need to guesstimate what the optimal values are for a lot of

parameters. Mostly there is a lot of trial and error. In this thesis, the same

approach is adopted to tune the parameters by experimentation.

In a GA algorithm, increasing the population size will increase the accuracy of

the GA. Basically, the bigger the population the better, but realistically there is

a need to make compromises in order to run the algorithm in a reasonable

amount of time. Meanwhile, on the other end of the spectrum, if a population

size is too small, it is possible that the GA will converge to a local optimum

value as there is a lack of diversity as weak values are generally “pushed out”

to make space for the population size. Generally, the rule of thunb for a

76

population size is in the range of 30-100. It must be noted that increasing the

population size will also increase the time needed to converge. In view of this,

we would like to offset the accuracy with the time it takes to converge. In

order to determine the parameter of population size, the population size is first

set to an empirical value for a run with input size n. Then the population size is

observed to see whether it holds and remains constant as the size of n is

increased from 2 to 20. For this problem, because the results can be compared

to the enumeration method, the convergent values can be evaluated as whether

they are optimal or not. For all sizes n from 3 to 20, the population size is 10

and the number of generations it took to converge to the optimum value is

always either 2 or 3. Hence it can be concluded that a small population size of

10 is sufficient for this small-scale problem of determining two sizes for n

ranging from 2 to 20.

Tournament size is the parameter which determines the selective pressure of a

tournament selection. The size of the tournament selection is relatively small

compared to the population size. The ratio is indicative of the selective

pressure. Due to the coding implementation, the population size must be

divisible by the tournament size. Experimenting with different values of the

tournament size from 2 to 10, the same convergent values were obtained in the

same number of generations. Hence the tournament size can be set to any

value in this range.

Besides population and tournament size, mutation probability is another

parameter that is important as the nature of genetic algorithm is

randomization. There is some bias inherent in the mutation effect where the

larger the current value is, the larger the mutation will be. Hence, the mutation

77

probability is generally set low. The probability of mutation is tuned by

comparing the results obtained when it is changed from 0.01 to 0.10 in steps of

0.01. The same optimal results were obtained for each setting thus the

probability of mutation can be set to 0.01.

Next, crossover operator is also considered for tuning. The α value is a random

weighting factor chosen before each arithmetic crossover operation. It is a

random number generated from the uniform distribution on the interval [a,b],

usually between 0 and 1. This has the advantage of producing feasible

offspring within the solution space. However, if the optimum lies near the

solution space boundary, then it has the disadvantage of producing offspring

toward the interior of the solution space. The value of α is initially set to [0,1].

Lastly, the number of generations is tested from 100 to 10 in steps of 10. The

same optimal results were obtained for each calibration. Since a higher

number of generations takes a longer time, the number of generations is set to

the lowest value of 10 only.

Similarly, this approach was used to calibrate the parameters for the three-size

problem and four-size problems and it was found that the same parameters as

shown in Table 4.5 are still valid.

78

Parameters

Type of coding Real value

Initialization Random

Population size 10

Tournament size 2

Probability of mutation 0.01

α [0,1]

Number of generations 10

Table 4.5 Parameters of GA experiment I

Tables 4.6-4.8 show the results for comparison with the enumeration method

for two-size, three-size and four-size problems. Without loss of generality, in

these experiments, we assume that the demand size is 1 and variance is 0. The

results show that the GA algorithm is able to converge to the global optimal

solution for the following problems when compared to the enumeration

results.

79

K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration)

Cost

(GA)

Cost

2 2 2 1 2 2 20 20

3 3 2 3 3 153 153

4 4 2 4 4 640 640

5 5 3 5 5 1925 1925

6 6 3 6 6 4860 4860

7 7 4 7 7 10339 10339

8 8 5 8 8 20288 20288

9 9 5 9 9 36369 36369

10 10 6 10 10 61600 61600

11 11 6 11 11 99341 99341

12 12 7 12 12 153072 153072

13 13 7 13 13 229333 229333

14 14 8 14 14 330848 330848

15 15 9 15 15 467775 467775

16 16 9 16 16 645376 645376

17 17 10 17 17 873647 873647

18 18 10 18 18 1163808 1163808

19 19 11 19 19 1523059 1523059

20 20 12 20 20 1971200 1971200

Table 4.6 Comparison between GA and enumeration for two-size problem

80

K n x1
*
 y1

*
 x2

*
 y2

*
 (Enumeration)

Cost

(GA)

Cost

3 3 3 1 3 2 126 126

4 2 4 4 2 512 512

5 4 4 5 2 1587 1587

6 3 6 6 3 3888 3888

7 5 6 7 3 8482 8482

8 4 8 8 4 16384 16384

9 6 8 9 4 29709 29709

10 5 10 10 5 50000 50000

11 7 10 11 5 80886 80886

12 6 12 12 6 124416 124416

13 8 12 13 6 186271 186271

14 7 14 14 7 268912 268912

15 9 14 15 7 380682 380682

16 8 16 16 8 524288 524288

17 10 16 17 8 711417 711417

18 9 18 18 9 944784 944784

19 11 18 19 9 1240174 1240174

20 10 20 20 10 1600000 1600000

Table 4.7 Comparison between GA and enumeration for three-size problem

Table 4.8 shows the comparison between GA with enumeration, MIBS I,

MIBS II and MIBR costs for the four-size problem. The results show that the

GA performs better than the marginal improvement methods.

81

K n x1
*
 y1

*
 x2

*
 y2

*
 x3

*
 y3

*
 (Enumeration)

Cost

(MIBS

I) Cost

(MIBS

II) Cost

(MIBR)

Cost

(GA)

Cost

4 4 4 2 2 4 4 3 456 456 456 456 456

5 5 2 2 5 5 4 1355 1355 1355 1355 1355

6 6 2 2 6 6 4 3360 3360 3360 3360 3360

7 7 3 3 7 7 5 7231 7231 7231 7231 7231

8 8 3 3 8 8 6 14048 14400 14048 14048 14048

9 9 4 3 9 9 7 25515 25515 25515 25515 25515

10 10 4 4 10 10 7 42820 42820 42820 42820 42820

11 11 4 4 11 11 8 68959 68959 68959 68959 68959

12 12 5 4 12 12 9 106704 106704 106704 106704 106704

13 13 5 5 13 13 9 - 158925 159757 158925 158925

14 14 5 5 14 14 10 - 230384 230720 230384 230384

15 15 6 6 15 15 11 - 324975 324675 324675 324675

16 16 6 6 16 16 11 - 449056 449056 449056 449056

17 17 7 6 17 17 12 - 613547 608022 608022 608022

18 18 7 7 18 18 13 - 812718 812718 807300 807300

19 19 8 7 19 19 14 - 1068560 1059079 1059079 1059079

20 20 8 7 20 20 15 - 1369500 1372720 1377200 1369500

Table 4.8 Comparison of GA to enumeration and MIBS I, MIBS II and MIBR

for four-size problem

Note: For N=9, the optimal sizes from enumeration are (9,3) and (3,9), (9,6)

and (9,9) with the same total cost of 25515.

4.5.7.2 Numerical experiment of a medium size problem

After comparing the GA to the enumeration and marginal improvement

methods for the trivial problems, GA is applied to explore for a medium size

problem based on 50 different types of crate lengths and 50 different types of

82

crate widths. The GA finds for five and ten sizes out of these customer

demand sizes.

In order to determine the parameter of population size for the medium-scale

problem, the population size is tested by increasing the size from 10 to 100 in

increments of 10. It was observed that a population size of below 50 did not

always produce a value that is lower. There was a tendency to get stuck in

local minima. Thus the population size is set to 50.

Another parameter is the tournament size. Experimenting with different

tournament sizes ranging from 2 to 25, it was observed that a tournament size

of 2 did not always produce the lowest value while a tournament size of 5 did

not have the same issue. Therefore the tournament size is set to 5.

In addition, the probability of mutation is tuned by comparing the results

obtained when it is changed between 0.01 and 0.25. However, it was found

that mutation rate of 0.15 and above did not always give the lowest value so it

should be lower than 0.15. As such the mutation rate is maintained at 0.01.

The value of α is initially set to [0,1]. The range is gradually increased to [-

0.25,1.25] to allow more diversity. A broader range of the α value was found

to avoid the pitfall of falling into local minima.

Then, the number of generations is tested from 1000 to 100 in steps of 100.

Next, it is tested from 100 to 10 in steps of 10. Because the algorithm

converges quickly, the number is generations is set at a conservative estimate

of 50.

83

Parameters

Type of coding Real value

Initialization Random

Population size 50

Tournament size 5

Probability of mutation 0.01

α [-0.25,1.25]

Number of generations 50

Table 4.9 Parameters of GA experiment II

In order to increase the efficiency of the algorithm, at the end of each

generation, the top 10% of the population is processed with marginal

improvement method. Because of this, the first generation of the GA includes

a solution from the marginal improvement method. The percentages reflect the

improvement of the value from the initial generation. Both figures 4.10 and

4.11 show the evolution of the minimum value in each generation. GA is able

to improve on the marginal improvement method by 13.62% for five sizes and

11.68% for ten sizes.

84

Figure 4.10 Convergence for a medium problem GA (5 sizes)

Figure 4.11 Convergence for a medium problem GA (10 sizes)

0 5 10 15 20 25 30 35 40 45 50
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
x 10

8

Generation

M
in

im
u
m

 V
a
lu

e

0 5 10 15 20 25 30 35 40 45 50
3.5

3.6

3.7

3.8

3.9

4

4.1
x 10

8

Generation

M
in

im
u
m

 V
a
lu

e

85

4.5.7.3 Numerical experiment of a large size problem

GA is then applied to explore for a large size problem on the scale of 100

types of crate lengths and 100 types of crate widths. There are in total 10000

customer demand sizes that are in the search space. The GA finds for ten

optimal sizes out of these demand sizes. There are
9999

C9 = 2.746x10
30

possibilities in this large size problem.

When building the large size problem, the algorithm is more sensitive to the

GA parameters and tuning is necessary. The parameter tuning follows the trial

and error approach as described previously. Firstly, the population size is

tested by increasing the size from 10 to 100 in increments of 10. The

population size and the tournament size were calibrated together. When the

tournament size is 5, the results did not show lowest results for population

sizes of 10, 20, 30, 40, 70, and 80. Meanwhile, when the tournament size is

increased to 10, the results showed that the results were better for population

size of 100. After investigating different scenarios, the mutation rate is

maintained to 0.01. As for the crossover operation, the value of α is initially

set to [-0.25,1.25]. The range is then broadened to [-0.50,1.50]. Finally, the

number of generations is tested from 1000 to 100 in steps of 100. Because the

algorithm converges quickly, the number is generations is likewise maintained

at 50.

86

Parameters

Type of coding Real value

Initialization Random

Population size 100

Tournament size 10

Probability of mutation 0.01

α [-0.50,1.50]

Number of generations 50

Table 4.10 Parameters of GA experiment III

Figure 4.12 shows the convergence of the objective value in 50 generations.

As described for the medium size problem, the top 10% of the population is

directed to the marginal improvement method. GA is then able to improve on

the marginal improvement method by 37.85%.

Figure 4.12 Convergence for a large problem GA

0 5 10 15 20 25 30 35 40 45 50
5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

9

Generation

M
in

im
u
m

 V
a
lu

e

87

Figure 4.13 shows the decrease in objective value when the number of types is

increased from 2 to 10 for the same problem. This is due to the better fit of the

rolls into the crates and hence the cost of the total volume decreases and the

effect is lower total cost. Meanwhile Figure 4.14 shows the increase in

objective value for the above problem when variance level is calibrated

between 2 to 10 for ten types. This is due to the effect of higher cost of safety

stock which leads to higher overall cost. From here, it can be expected that

there is a balance of trade-off between total volume cost and inventory cost

which can help determine the number of ideal types in Section 4.5.2.

Figure 4.13 Objective value vs. increasing number of crate types

0

2000

4000

6000

8000

10000

12000

14000

2 3 4 5 6 7 8 9 10

O
b

je
ct

iv
e

 V
al

u
e

Number of Types

Objective value vs Number of Types

88

Figure 4.14 Objective value vs. increasing variance level

4.5.8 Determining the number of types

We can determine the suitable number of types by using the proposed GA

algorithm by conducting the GA iteratively. For example, GA is used to

explore for a small size problem on the scale of 50 types of crate lengths and

50 types of crate widths. The GA is used to determine the number of optimal

sizes from 5 to 20 for
p

h
 ratio of 10

-6
 and we assume that the demand size and

variance are 1. The scale of the
p

h
 ratio is important as this determines the

trade-off between the inventory cost and the total packing volume cost. Figure

4.15 shows that the number of crate types for this problem is 12 where it is at

the minimum and increasing the number of types beyond 12 does not bring in

cost savings from fitting the rolls into crates more effectively because this is

countered by the higher safety stock cost of additional crate types. However,

the values for 9, 12 and 14 types are very close and so depending on the

situation, it may be more favourable to opt for the smaller or larger number of

7200

7400

7600

7800

8000

8200

8400

2 4 6 8 10

O
b

je
ct

iv
e

 V
al

u
e

Variance level

Objective value vs Variance level

89

crate types instead. This approach of iteratively conducting the GA algorithm

to find the number of crate types and their sizes ties back to the original

problem described in Section 3.2 for the 1D problem. The Hungarian-based

GA algorithm is able to minimize total volume of crates and inventory stock

for a 2D problem instead of loss of length and inventory stock only.

Figure 4.15 Objective value vs. Varying number of types

5 Bin packing (Rectangular)

Packing problems are common in the industry of shipping and logistics. Some

examples of issues that arise are the choice of product shapes and sizes, choice

of containers, packing layout and sequence, fluctuations in demand, rotations

and space limitations. There are many varieties of products that come in a lot

of different shapes and sizes, depending on the industry and type of business.

Packing problems usually consist of packing products of different sizes.

Compared to packing products that come in a single size only, packing

products that come in different sizes is not as direct. In terms of product

500

505

510

515

520

5 6 7 8 9 10 11 12 13 14 15

O
b

je
ct

iv
e

 v
al

u
e

Number of Types

Objective value vs. Varying Number
of Types

90

shapes, there are regular shapes such as circles, squares and rectangles while

on the other hand, there are irregular shapes which make it harder to visualize

generally. However, it is worth noting that although products come in many

shapes, it is a usual practice to package the products in regular shape boxes for

shipping purposes. Thus, in those cases, the packing problem of irregular

shapes can be reduced to a packing problem of regular shapes for tractability

and ease of handling. Aside from product shape and sizes, the choice of

container is also important, as there are20-ft and 40-ft, hi-top, reefer and other

types of containers available. The choice of containers has direct implication

on the final cost. To add on to the problem, fluctuations in demand make it

harder to predict when and how to pack the products to be shipped to

customers therefore robust decisions are preferred and considered for long-

term cost savings. Lastly, sometimes products may either have fixed

orientations or can be rotated. The many factors that weigh in the packing

process make it a difficult decision to manage. As such, inefficient packing

has resulted in many partially-filled containers and unnecessary expenses.

Owing to the increasing cost of shipping, many companies desire to improve

on their packing process to reduce the number of containers required and total

shipping cost.

In this section, the packing problem is inspired by a company that sells and

ships products that are in the shape of cylindrical rolls. The rolls have a few

types of thicknesses available as each unique thickness caters to a customer’s

industrial purpose. The rolls are also cut to any roll length depending on

customer specifications. The rolls are each packaged in rectangular box sizes

before they are packed in shipping containers for shipping worldwide. The

91

company stocks and uses a few known, standard-size and regular-shape boxes

to contain each roll as packaging. With this decision, it is inevitable that there

will be some wastage of space inside the boxes even before the actual packing

problem of the boxes into containers commences. This makes it even more

worthwhile to ensure that the next step of containerization packing problem is

considered for the improvement of shipping cost.

Following on the choice of boxes, the company also must decide on the type

of shipping container to use. If a smaller container is chosen, the packing may

be denser but more containers will be needed. On the other hand, larger

containers are preferred when the orders are large but more space wastage may

occur. Afterwards, the packing problem starts with how to load the boxed

products into the containers to maximize on space. Here, there are many

practical difficulties encountered in the loading of the containers due to the

amount of physical labour involved. Firstly, the orientations of the products

must be correct, and the layout and sequence must be such that it is possible to

load starting from the back of the container and extending to the front of the

container for the worker to proceed smoothly. Not only that, the workers will

stack items from the bottom to top and hence layer packing is also more

practical. Finally, because in this case the products are fairly fragile, all empty

space must be padded with airbags for maximum protection of the products.

Otherwise, the boxes will move around during transport and may cause the

products to spoil upon arrival. If the boxes are packed dense enough, this extra

protection is not necessary and the cost of the paddings can be reduced. Thus

it is imperative that the packing solution is made more effective to maximize

on space and minimize cost based on the above mentioned limitations.

92

In this operational packing problem, a demand realization which consists of a

set of products in different dimensions is to be packed into as few identical

containers as possible for shipping to customers. The products are individually

packaged and transported in a known number of standard rectangular box

sizes. The problem is reduced to a rectangular packing problem by pre-sorting

the demand according to the height of the boxes. The container is then packed

layer by layer whereby each layer comprises of boxes sharing the same height.

In each case, the layer is packed as a rectangular packing problem and a

relaxed LP with improvement is proposed to minimize the number of layers.

In order to generate feasible packing patterns, rectangular packing heuristics

from available literature such as the steplike stacking heuristic and maximal

rectangle heuristic are applied. Following that, new columns are generated to

both find improved patterns and explore new ones for the future layers.

Finally, in the case of multiple heights, the container is packed as a 1D

packing problem to minimize the number of containers.

Many conventional packing heuristics tend to use a greedy approach. Items are

placed and then never considered again in subsequent steps. Items are packed

densely with minimum waste to the first few containers (due to a large

assortment of items available for choice), which are then followed by last few

vastly sparse containers to accommodate the leftovers. However, as all items

must be packed, it is advantageous to consider repacking the items in different

patterns so as to average out the load. In this thesis, the approach to the

abovementioned packing problem comprises of a mathematical model to solve

the rectangular packing problem. With the use of the relaxed LP, we can

gather information on the patterns which contribute to the high surplus of

93

demand. Then using this information, improvement method is used where

solutions whose patterns contribute to high surplus of demand in the optimal

solution are re-evaluated. New and improved patterns are obtained and the

method is repeated until the surplus is reduced to a satisfactory low value.

With this method, current packing patterns can be improved and new ones can

be explored for the next demand realization. After a given satisfactory number

of runs, we can find a good set of packing patterns. In this section the problem

is defined in Section 5.1 where the rectangular packing problem is described

and difficulties in solving the problem are highlighted. Section 5.2 presents the

formulation of the problem. In Section 5.3, the solution methodology is

presented. The third section solves the case of single height with improvement

method. In the improvement method, how the initial column is first obtained is

described in detail here. Section 5.4 illustrates the case of different heights of

boxes with cutting stock approach. Finally the numerical results for different

scenarios of random demand realizations are finally presented in Section 5.5.

5.1 Problem Description

The packing problem’s main objective is to minimize the total number of

containers and ultimately reduce shipping cost. The input to the problem is a

set of rolls which have been individually packed into rectangular boxes. As

mentioned above, there are a few standard-size, rectangular boxes where the

dimensions of each type of box are given. Therefore, the processed customer

demand is a set of box sizes in given dimensions. In a single customer demand

realization, all boxes must be packed into the containers, leaving no boxes

behind. The output of the problem is the number of containers used. We

94

assume using only one type of container and that there is unlimited number of

containers available, i.e. there is no restriction on the number of containers.

The dimensions of the container are also given. Henceforth, the container is

also referred to as bin.

The overall packing problem described is a 3D bin packing problem which is

NP-hard. This problem has many assorted small items and a single type of bin

size. The number of bins available is not restricted. The packing is packed by

layer, and it can be assumed that the layers can be feasibly arranged such that

the denser solutions are placed bottom first before sparse solutions if any.

Based on the characteristics of the problem and from the typology in literature

(Dyckhoff, 1990) and (Wäscher et al., 2007), our packing problem can be

categorized as a type of 2D dimensionality, input (value) minimization,

weakly heterogeneous assortment and dimensions fixed for the small objects,

weakly heterogeneous and dimensions fixed for the large objects, multiple

stock size cutting stock problem MSSCSP.

The problem can be solved using various methods from the literature with

well-studied 3D bin packing algorithms like the branch-and-bound and other

bin packing methods. Despite that, the problem here has a special

characteristic that justifies a different approach. In particular, the problem has

a low number of types of boxes and their given dimensions. Because there are

only a few types of boxes, it warrants an approach to pack the boxes by layer

as there are only a few standard heights. As such the boxes are pre-sorted into

groups of the same height; the container packing problem can be reduced into

a 2D rectangular packing problem whereby the shipping container is assumed

to be composed of several layers of rectangular area. In this approach, the

95

packing problem has two cases, where the first case is assuming that there is

only one height of boxes (which describes the packing of boxes into layers)

and the second case is there are several heights of boxes (which describes the

packing of layers into bins). The rectangular area of the layer corresponds to

the floor area of the shipping container. The objective of the reduced problem

is to minimize the number of packing layers which is assumed to

unequivocally reduce the number of the containers in the original container

packing problem subsequently.

Although the pre-sorting results in suboptimal solution, the benefits outweigh

the reduced optimality. There is a very practical reason to reducing the original

3D bin packing problem (3D-BPP) into 2D rectangular packing problem

because as mentioned previously, there are a known number of standard boxes

and hence, there are only a few heights of boxes to tackle. Thus the problem is

reduced by pre-sorting the original demand into a few groups of boxes of the

same height. Then each group is treated as packing by layers. Since the

demand of each group is generally large enough to comprise of several layers,

the objective is to minimize the total number of packing layers. After the

rectangular packing stage, the layers are then packed into containers (bins)

using the heights of the layers versus the height of the containers (bins). Even

though reducing the problem from 3D to 2D by pre-sorting into shared heights

makes the problem sub-optimal, this approach yields practical results. The

actual packing problem requires manual labour and packing by layer is

advantageous as it is simpler to understand and easier to manoeuvre with the

heavy equipment and products. For the worker, it is easier to visualize and to

arrange for movement in logical sequence to complete the packing. A packing

96

instruction in original 3D bin packing solution is not easy to read and follow

for the layman. It might require more skilled workers who demand higher

wages. Another possibility is that this will slow down the packing process

making the trade-off for space optimization unpredictable.

This section is organized as follows; for each type of height, the 2D bin

packing problem is solved using the rectangular packing problem with

improvement method as described in Section 5.3. When all the heights are

packed into layers, the layers are then packed into the containers (bins) using

1D packing to minimize the number of bins. This cutting stock approach

completes the overall 3D bin packing process after reducing the problem into

2D. The cutting stock method is described in Section 5.4.

5.2 Problem Formulation

There are many ways of representing a packing problem, for example arch

flow model, set covering model, convexity model, position-oriented model etc.

In a paper, the 3D-BPP is modelled by (Hifi, Kacem, Nègre, & Wu, 2010) as a

mixed integer linear programming model using inequalities to describe the

spatial constraints and minimize the total number of identical containers m

with fixed dimensions length L, width W and height H. There are n rectangular

items i to be packed which consist of several types of boxes with different

lengths li, widths wi and heights hi. The coordinate (xi, yi, zi) is used to describe

the left-bottom-back coordinate of item i and that the coordinate of left-bottom-

back corner of the container (bin) is (0, 0, 0). γi is defined as the label of the

bin to which item i is assigned (i = 1, …, n). The aim is to minimize the

97

greatest label of the used bin γ = max1≤i≤n{γi}. From the 3D-BPP model

described above, the reduced 2D-BPP can be formulated as follows:

Parameters

L Container length

W Container width

li Length of item i

wi Width of item i

n Total number of items i

Decision variables

xi Geometrical location of item i (left-coordinate)

yi Geometrical location of item i (back-coordinate)

β Bin (container) index

lij 1 if item i is in the left of item j; 0 otherwise

bij 1 if item i is at the back of item j; 0 otherwise

cij 1 if i j  ; 0 otherwise

 min 

s.t.

 1, 1,...,ij ji ij ji ij jil l b b c c i j n        (5.1)

 () , 1,...,i j ij ij ji ix x L l c c L l i j n        (5.2)

98

 () , 1,...,i j ij ij ji iy y W b c c W w i j n        (5.3)

    1 () 1 , 1,...,ij ji ij ji i j ijl l b b c i j n              

 (5.4)

  , , 0,1 , 1,...,ij ij ijl b c i j n   (5.5)

 0 , 1,...,i ix L l i n    (5.6)

 0 , 1,...,i iy W w i n    (5.7)

 0 , 1,...,i i n      (5.8)

lij = 1 if item i is in the left of item j, bij = 1 if item i is in the back of item j and

cij = 1 if βi < βj. The first three constraints ensure that no overlap exists

between two packed items. The parameter  is a valid upper bound on β.

Constraint (5.4) implies that when cij = 1 or cji = 1 the items i, j are located in

different layers and when one of lij, lji, bij, bji is equal to 1, items i and j are

necessarily located in the same layer. There are two dimensions, namely along

the x-axis and the y-axis, parallel to the length of the container and the width

of the container respectively. The layer is the horizontal layer of the container

which is the floor area of the container.

The model illustrates the problem of packing same-height crates into a

rectangular bin with known dimensions. While the formulation can give

optimal results for the packing for the 2D-BPP problem, the scale of the MILP

increases greatly with the size of the problem. For example, the number of

decision variables grows exponentially with problems of large number of

items. In daily practice, solving the MILP will demand higher complexity and

99

computation. Therefore instead of using MILP to solve, there are many

authors who prefer the use of heuristics as the packing problem is an NP-hard

problem. In this section, the problem is also solved using heuristics and the

approach is documented in Section 5.3. The methodology uses packing

heuristics for rectangular packing of the bin by layer. The 2D bin packing

problem is solved for each group of height of the boxes.

The assumptions for the model are:

1. The layers of the containers are independent and it is assumed that the

layers can be feasibly placed on one another. Weight and possible

symmetrical placements are not considered.

2. All demands must be satisfied, i.e. all items must be packed for a

particular demand realization.

3. The height of boxes is a constant in each demand realization.

5.3 (2D-BPP) Layer Packing

An enumeration of all the packing patterns is not feasible for a reasonably

large-sized problem. However, by using the idea of generating new columns,

this allows us to build the set of packing patterns by starting with a smaller set

of solutions and then improving the solution by generating new columns.

5.3.1 Layer Packing with Column Generation

In this section, the column generation approach is investigated. The integer

programming model below describes the 2D (rectangular) layer packing

100

problem using the cutting stock approach. The area of the layer is constrained

by the floor of the container with dimensions of L (length of the container) and

W (width of the container). There are n items i, each of which has an

associated size of li, (length of item i), wi (width of item i) and demand di. We

use a column vector Aj to represent a packing pattern pj. The elements of Aj, aij

then corresponds to the number of pieces of item i in the pattern pj. The

elements of Aj must be all non-negative integers. Each pattern pj must be a

feasible 2D packing pattern for the rectangular area of L by W. Let J be the

total number of distinct feasible cutting patterns which is the number of

vectors Aj satisfying the constraints. All demands of item i, di must be

satisfied. The objective is to minimize the total number of layers packed with

pattern pj, jX . The integer programming model presented below can be

relaxed to give a lower bound. Since there are n demand constraints, there are

at most n non-zero variables.

Inputs and Parameters

L Container length

W Container width

S Size of the rectangular layer (the floor of the container)

li Length of item i

wi Width of item i

si Size of item i

n Total number of items i

101

di Demand of items i of size li and wi to be packed

aij Number of items i of size li and wi packed in layer j

Aj Packing pattern pj

J Total number of distinct feasible cutting patterns pj

Decision Variables

Xj Number of layers packed with pattern pj

min
1

j

J

j

X

 (5.9)

subject to

1

J

ij j i

j

a X d


 for i=1,.., n (5.10)

 0jX  for j=1,.., J (5.11)

 integerjX for j=1,.., J (5.12)

In the objective function (5.9), we minimize Xj. Therefore the number of

containers can be obtained by dividing the objective value by the number of

layers allowed in a container. Constraint (5.10) dictates that the decision

variable on the packing layers Xj has to at least satisfy all the demand of items

to be packed. Constraint (5.11) is straightforward, restricting the decision

variable Xj to be positive and constraint (5.12) additionally restricts it to

integers only.

102

The idea of column generation is to start with a few patterns and generate new

ones as needed. Starting with an initial basis, we then determine if all non-

basic columns have reduced cost 0 and if not, then find a column with

negative reduced cost. In order to find an initial basic feasible solution, it is

important to verify that the packing pattern is feasible. The patterns will be

naïve ones where for every item i, we try to fit the maximum number of each

into the rectangular area of L by W. The reduced cost of a cutting pattern pj is

1 jyA . Then new patterns are generated by solving the integer knapsack

problem:

max
1

ii

n

i

y a

 (5.13)

subject to

1

n

i i

i

s a S


 (5.14)

 0ia  for i=1,.., n (5.15)

 ia integer for i=1,.., n (5.16)

This problem is equivalent to a two-dimensional knapsack problem. The

problem consists of determining a cutting pattern which maximizes the sum of

the profits of the cut items. In constraint (5.14) si refers to the size of item i and

S refers to the size capacity of the layer. This constraint describes that the

packing of all items with size si and quantity of ai into S. For example, if S is a

rectangle size with length 25 and height 40, while ssm is the unique smallest

rectangle size with length 2 and width 4, solving the knapsack problem in the

first cut gives a solution of 125 for asm to maximize the objective value.

However, this is not feasible as we can only fit a maximum of 120 rectangles

103

of ssm in rectangle S. An intuitive bound for ai is then taking the integer part of

the ratio of dimensions of S and rectangles si,
(*)

(*)i i

L W

l w

 
 
 

 whereas another

bound is by multiplying the maximum number of rectangles si in a horizontal

row and the maximum number of rectangles si in a vertical column,

 max / * / , / * /i i i iL l W w W l L w               .

The column generation approach of solving a rectangular packing problem

involves solving a dual problem of a two-dimensional knapsack problem. As it

can be seen, constraint (5.14) is not straightforward to evaluate for different

sizes of si due to the two-dimensionality. It is difficult to determine the

feasibility of the 2D packing pattern using linear programming without

verifying with a packing heuristic. Therefore, the column generation approach

is not ideal for this problem. We are motivated to find some modification to

the method in order to solve the problem. In the next section, an improvement

heuristic is introduced below as an alternative method.

5.3.2 Layer Packing with Improvement Heuristic

In this section, a heuristic method of generating new and improved columns is

proposed. The approach borrows from the idea of column generation for the

rectangular bin packing problem. In Section 5.3.1, new columns can be created

from solving the integer knapsack problem. However, in this section, new

columns are created by solving the integer programming model and then using

the information found to find improved columns for the next iteration. This is

because solving the model gives enough information to pursue a better

solution.

104

By solving the model above, we can obtain information on the following:

1. The objective value is a measure of the performance of the packing

solution where a lower number of layers is desirable

2. Secondly, the results give the surplus of types from the difference of

left and right hand sides of constraint (5.10)
1

J

ij j i

j

a X d




3. Besides that, Xj shows which of the feasible packing patterns are used

in the packing of the demand realization. Only the picked packing

patterns are used for the next step of improvement.

There are several steps in solving the rectangle packing problem in this

section. Firstly a random demand realization of items to be packed is

generated. A packing algorithm such as the steplike stacking heuristic or the

maximal rectangle packing is used to obtain initial feasible packing patterns as

described in Section 5.3.2.1. Then the second step is solving the integer

programming model for each demand realization in order to utilize

information regarding the surplus of types. The last step is the generation of

new columns by improving columns as described in Section 5.3.2.2 with an

improvement method.

5.3.2.1 Initial Column

The initial column is generated based on the a rectangular packing algorithm

such as steplike stacking heuristic as described in detail in the paper by (Shi &

Xue, 2009). The heuristic finds feasible solutions for the rectangular packing

problem of fixed container size with minimum waste as the objective. The

105

packing is orthogonal and no overlap is allowed. The authors use the terms

“Steplike Line” Lt to demarcate the boundary between packed and unpacked

regions, and “Step Positions” Pj as the available corners to place items at the

position. All step positions are corners closing to the left and bottom corner of

the line Lt. At any time t, all combinations of step position and items i are

evaluated using a score of “Fij” to indicate closeness to match the step sizes

and items with perfect matches are packed first, then followed by items with

lower matches and ordered by the amount of area wastage induced. The

heuristic is implemented using MATLAB R2012a.

The inputs are:

a. Bin/container length and width

b. Items to be packed in a matrix R with the columns of length li and

width wi. The first item to be packed is the item with the largest area.

This is subsequently changed to picking the items randomly so as to

induce more randomness.

At any time t, the following steps are performed:

a. The information on packed items are stored in a matrix Q where the

first two columns are the packed length and width and the next two

columns are the packed positions.

b. Fij scores are assigned for each item i and step position j combination

at time t. The adjacent distance Dij which is the borders shared by Lt

and item i at step position j is used to evaluate the score. Wij is used to

evaluate the total loss incurred when assigning an item that is larger

than the size of the step position.

106

c. Fij and Wij are used to indicate the type of fit of the item and step

position combination. There are 8 types of scenarios:

 Fij=2: Item fits on both length and width of Pj perfectly (Wij=0)

 Fij=1: Item fits on either length or width and are smaller on

both dimensions (Wij=0)

 Fij=0: Item does not fit on either dimension and are smaller on

both dimensions (Wij=0)

 Fij=1: Item fits on the length of Pj perfectly and has larger

width than the width of Pj (Wij is nonzero)

 Fij=1: Item fits on the width of Pj perfectly and has larger

length than the length of Pj (Wij is nonzero)

 Fij=0: Item does not fit the size of Pj and has larger width than

the width of Pj (Wij is nonzero)

 Fij=0: Item does not fit the size of Pj and has larger length than

the length of Pj (Wij is nonzero)

 Fij=0: Item does not fit the size of Pj and has larger length than

the length of Pj and larger width than the width of Pj (Wij is

nonzero)

d. The hierarchy of choosing the best combination of item-step position is

based on the value of Fij=2 and Wij=0, then Fij=1 and Wij=0 and Fij=0

and Wij=0 followed by all combinations with nonzero loss Wij. For

combinations that have the same value of Fij and Wij=0, the

combination with highest value of Dij is selected to be packed. For

combinations with non-zero loss, the pairing with lowest value of Wij is

selected to be packed.

107

e. After assigning an item to a step position, Pj and Lt are updated

depending on the type of scenario at the end of time t. Only one item is

packed at each time t.

f. Packed item i is removed from matrix R and inserted into the matrix Q.

g. The heuristic terminates either when matrix R is empty, bin is full or

no more items can be feasibly packed.

The outputs are:

a. Matrix Q with packed items and positions. The sequence of Q

represents the sequence of packing of items into bin.

b. Utilization is computed by comparing total area of packed items with

the bin area.

Initial column is generated by applying the heuristic to a demand realization of

items. From the heuristic, feasible packing patterns are obtained. Patterns that

have low utilization are discarded. Low utilization refers to utilizations which

are lower than a pre-determined threshold value. This is because we only want

columns with efficient packing utilization. All the remaining items in columns

with low utilizations are regrouped as one demand and repacked again. This

step provides more new columns for the initial column.

5.3.2.2 Generation of New Columns

The method is used to improve the current solution and also to get new

columns for the master problem. The columns are improved using the

information obtained from the master problem. Generally the idea is that we

108

try to replace loose demand types with tight demand types to increase

efficiency. This is a one to one exchange of types.

i* refers to the row index i of element aij that makes the expression

1 1 2 2[()]i i in J ia X a X a X d    the largest. This is finding the i
th

 demand

constraint that has the largest surplus of demand. Meanwhile j* refers to the

column index j of element aij that makes the term
i j ja X in i-th demand

constraint the largest. This is finding the j-th pattern that contributes the largest

to the surplus of item type i*.

From constraint (5.10),

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 1 2 2

1

1 1 2 2

*1 1 *2 2 *

() [1,]

* arg max[()] [1,]

* arg max[(, ,...,)] [1

n J

n J

n n nn J n

J

ij j i i i in J i

j

i i in J i
i

i i i n J
j

a X a X a X d

a X a X a X d

a X a X a X d

a X d a X a X a X d i n

i a X a X a X d i n

j a X a X a X j



   

   

   

       

      

  



,]J

1. Let * arg max()i j j i
i j

i a X d  and ** arg max()i j j
j

j a X

2. Looking at pattern j*, we try to improve the columns by replacing patterns

which have loosest demand type with tightest demand types. The reason

behind this is that tight demand types are tight because the options for a

pattern with lower quantity are not available to choose from the available

patterns. Not only that, the loose demand types are not as much required in

the demand and so their space can be given up to substitute with tight

109

demand types. The actions reduce the total amount of surplus which means

there is a closer match to the demand quantities required.

3. Let ' arg min()i j j i
i j

i a X d 

4. Remove i*, and put in as many i’ as possible. This is achieved by

calculating the actual area occupied by i* and replaced with i’.

5. Verify the new pattern by using a rectangular bin packing algorithm. This

step is important to make sure the new pattern is physically feasible in a

rectangular bin.

6. After verification, the master problem is re-solved with the new column.

7. If a tolerance of surplus is exceeded for any type i, repeat steps 1 to 6 to

improve the columns. Otherwise, end.

5.4 Multiple Height Packing

Because the crates were pre-sorted into same heights for packing into layers in

the previous section, the final stage of packing is packing the layers into

containers or bins. The layers have a few types of heights and are packed into

as few containers as possible to minimize the number of bins used. The

problem is formulated and as shown below.

Inputs and Parameters

H Container height

K Total number of containers available

hj Height of layer j

J Total number of distinct feasible cutting patterns pj

110

Decision Variables

Yk Number of packed bins

jke Number of layer type j in bin k

5.4.1 Problem formulation

Minimize
1

k

K

k

Y

 (5.17)

subject to

1

J

j jk k

j

h e HY


 for k=1,.., K (5.18)

1

1
K

jk

k

e


 for j=1,.., J (5.19)

 jke integer for j=1,.., J, k=1,.., K (5.20)

  0,1kY  for k=1,.., K (5.21)

In the objective function (5.17), we minimize the total number of bins. The

term
k

k

Y represents the sum of the number of bins k required. The variable

jke represents the number of layer type j in bin k. The constraint (5.18) dictates

that the sum of chosen layers of Yk has to be less than or equal to the height H

of the container. Meanwhile (5.19) assigns each layer to one bin only. The

constraints (5.20) and (5.21), restricting the decision variable Yk to be binary

and jke to be integer.

111

5.5 Numerical Experiments

We evaluate the rectangular packing algorithm with improvement approach as

described in the methodology section above by experimenting with several

scenarios. The algorithm has been written in a test environment of MATLAB

R2012a and IBM ILOG CPLEX v12.6 and tested on a Windows PC with

specifications of 1.6GHz Pentium M processor and 512MB RAM.

5.5.1 Comparison to MIP

Both MIP in Section 5.2 and column generation approach described in Section

5.3 can be used to solve rectangular packing problems. In order to compare the

two approaches to MIP, two test cases are set up. The first set is a set of 25

items with various heights and lengths. The second set is a set of 50 items.

The test cases are from test cases J1 and J2 with known optimal solution from

(Jakobs, 1996). All items should fit in the container dimensions for the optimal

solution.

 MIP Improvement Heuristic

Set Utilization (%) Time (CPU seconds) Utilization (%)

1 100 2.16 100

2 100 4.69 98

Table 5.1 Comparison to MIP

5.5.2 Comparison to Maximal Rectangle Packing

For larger scale problems, the MIP will be harder to execute and therefore

heuristics are used. In the improvement method, the initial column is obtained

112

from the steplike stacking heuristic. Therefore we would like to know if

changing the initial column method to the maximal rectangle heuristic will

yield different results for the improvement approach described in Section 5.3.

The following describes the comparison between the two as the starting

heuristic for the improvement method. Table 5.2 shows the results obtained

where the columns show improvement of average utilization of layers before

and after performing column generation.

Instance Average utilization

before improvement

Average utilization after

improvement

1 0.418575 0.794040

2 0.489320 0.775986

3 0.701556 0.775986

4 0.744508 0.748719

5 0.495216 0.765984

7 0.489320 0.813990

8 0.465739 0.812306

9 0.577752 0.803041

10 0.530588 0.747982

Table 5.2 Comparison of utilization before and after improvement

5.5.3 Varying Demand Profile

The method is tested against three types of demand profiles. The first demand

profile is sampled from a uniform distribution of crate lengths with low

variance, the second with medium variance and lastly, high variance. Next the

demand profile is sampled from a set of crate widths that are low, medium and

113

high in size. This affects the grouping of the demand into low, medium or high

number of groups with the same packing height.

5.5.3.1 Steplike Stacking Algorithm with Improvement

CV Max utilization (%) Average

0.1 95.00 91.50 95.00 87.80 89.00 91.66

0.3 93.33 94.50 93.06 92.50 92.89 93.26

0.5 93.30 93.44 93.93 94.46 93.42 93.71

Table 5.3 Variance Level versus Packing Utilization Results I

Crate size Max utilization (%) Average

Small 92.00 90.08 90.61 91.00 84.80 89.70

Medium 90.33 90.29 91.03 87.45 89.50 89.72

Large 90.30 91.46 89.50 84.70 91.46 89.48

Table 5.4 Crate size versus Packing Utilization Results II

5.5.3.2 Maximal Rectangle Algorithm with Improvement

The demand from section 5.5.3.1 is repeated with the packing heuristic now

changed to the maximal rectangle algorithm instead of the step like stacking

heuristic. The following are the results from the change in heuristic. From the

114

numerical results, it is shown that the improvement method can be

independent of the starting heuristic.

CV Max utilization (%) Average

0.1 95.00 91.50 95.00 87.80 89.00 91.66

0.3 93.33 94.50 93.06 92.50 92.89 93.26

0.5 93.30 93.44 93.93 94.46 93.42 93.71

Table 5.5 Variance Level versus Packing Utilization Results II

Crate size Max utilization (%) Average

Small 92.00 90.08 90.61 91.00 84.80 89.70

Medium 90.33 90.29 91.03 87.45 89.50 89.72

Large 90.30 91.46 89.50 84.70 91.46 89.48

Table 5.6 Crate size versus Packing Utilization Results II

5.5.3.3 Multiple Height Packing

Lastly, multiple height packing is used to determine the number of containers

needed from the packed layers used in the previous stage. Using MATLAB

R2012a to construct the model for multiple height packing described in

Section 5.4, the simulated scenarios involve random quantity of rectangles

with shared height h for a few types of height and to be packed into containers.

From the table below, n refers to the total quantity of layers with different

115

heights of h to be packed into containers of a fixed size. The height of the

container is set at 200.

Types of height n h Number of

containers

2 50 25 10

50

3 50 25 13

50

75

4 50 25 16

50

75

100

5 100 20 30

40

60

80

100

Table 5.7 Multiple height packing

116

5.5.3.4 Varying the number of crate types

In this section, we would like to investigate the effect of having different

number of crate types on the containerization. Random sets of data with two,

three, and four types are packed to minimize the number of layers.

Number of types Set Min utilization Max utilization Average utilization

2 1 0.624915 0.848942 0.774266

2 0.106118 0.848942 0.663236

3 0.011791 0.848942 0.639654

4 0.312458 0.848942 0.670114

5 0.607229 0.848942 0.768371

6 0.760510 0.848942 0.819464

7 0.483425 0.848942 0.727103

8 0.560066 0.848942 0.752650

9 0.530588 0.848942 0.742824

10 0.725138 0.848942 0.807674

Table 5.8 Packing of two types

Table 8 shows the packing of ten random demands with two types of crates.

For each set of demand, the minimum utilization, maximum utilization and

average utilization are obtained. The minimum utilization is often quite low,

because this reflects the odd crates left behind in the last container. On the

other hand, the maximum utilization appears stagnant at 0.848942 due to the

reason that this packing pattern is the best and is used for all containers before

coming to the odd crates which are left behind. The average utilization varies

between 0.63654 and 0.819464.

117

Number of types Set Min utilization Max utilization Average utilization

3 1 0.489320 0.848942 0.758299

2 0.660288 0.848942 0.801778

3 0.795883 0.848942 0.835677

4 0.253503 0.848942 0.728675

5 0.053059 0.848942 0.689765

6 0.621968 0.848942 0.792198

7 0.792935 0.848942 0.834940

8 0.784092 0.848942 0.832729

9 0.288876 0.848942 0.708925

10 0.837151 0.848942 0.845994

Table 5.9 Packing of three types

Table 5.9 shows the packing of ten random demands with three types of crates.

Similar to the experiment conducted for two types, the results of the average

utilization appears to be slightly better off in general with the average

utilization ranging from 0.689765 to 0.845994. The maximum utilization

remains at 0.848942 because this is the best packing pattern available to

satisfy for the earlier containers.

118

Number of types Set Min utilization Max utilization Average utilization

4 1 0.212235 0.848942 0.741350

2 0.347830 0.848942 0.764932

3 0.100222 0.848942 0.724155

4 0.165072 0.848942 0.734472

5 0.760510 0.848942 0.830666

6 0.271190 0.848942 0.751176

7 0.394994 0.848942 0.772792

8 0.807673 0.848942 0.840098

9 0.598386 0.848942 0.798830

10 0.035373 0.848942 0.711382

Table 5.10 Packing of four types

Finally Table 5.10 shows the packing of ten random demands with three types

of crates. Similar to the previous two experiments, the results show that the

average utilization ranges from 0.711382 to 0.840098. The maximum

utilization also remains at 0.848942.

119

6 Conclusions and Future Research

The study of this thesis is on the problem of sizing of crates, with inventory

consideration in addition to the packing of the crates into containers. The

objective is to minimize total cost while addressing the issue of the optimal

number of types of crates to use and the optimal sizes respectively. Besides

that, the packing of the crates into containers is also considered. The study is

important because it is based on a real industrial problem and there are

practical results which can be applied to improve the various aspects of the

problem.

6.1 Conclusions

Firstly, we are able to define and formalize an actual industrial problem where

an MIP is formulated for the crate length optimization problem to minimize

total loss of length and determine the optimal crate lengths. In the crate length

optimization problem, historical data was used to find the optimal number of

crate lengths given the number of crate types.

Next, we extend the problem to determine both the number of optimal crate

types to use and also the optimal sizes using inventory consideration. Here we

consider inventory and introduce safety stock into the problem. The problem is

formulated as a non-linear MIP; however it has a good property which makes

it suitable to solve efficiently using dynamic programming. A dynamic

program is formulated for the problem which is able to determine both the

number of crate types and optimal sizes at the same time.

120

A generalized crate sizing problem is then formulated to find optimal crate

sizes in 3D and solved using Hungarian-based GA algorithm. As the width and

the height are the same, the problem can be modelled in 2D. Using the

Hungarian match for parent selection and crossover, the neighbourhood

property can be preserved and the GA is used to find the crate sizes. The

Hungarian match is needed due to the structure of the problem as the crate

sizes are more likely to belong to one of its neighbours than a size that is far in

distance.

Finally, we also consider the problem of packing the crates into containers

using an improved bin packing algorithm. The actual 3D bin packing problem

has been reduced to a 2D packing problem due to several properties of the

problem. Moreover, packing by layer is more intuitive and easier to apply.

When packing multiple different size items, they are pre-sorted into items of

same height which then enables the problem to be solved using a rectangular

packing algorithm. The improvement method uses readily available

rectangular packing heuristics to generate the initial column. Then, new and

improved columns are constructed from the information of the previous

iteration.

6.2 Future Research Topics

There are several topics related to the scope of this thesis where future

research can be conducted.

In the crate sizing problem, the GA was constructed to find the optimal crate

length, width and height. The model is based on 2D because the problem has

the property of rectangular cross section. However, a future research topic can

121

be an extension of the problem to 3D. By varying the number of crate types

for each run, it is also possible to find the optimal number of types to use.

Instead, a future research topic can be variable chromosome length GA. In

traditional GA, the chromosome length is determined when the solution is

encoded into a chromosome. Subsequently, the chromosome length does not

change. Varying the chromosome length allows for finding an optimal solution

by starting with a shorter chromosome and is then transferring to the following

stages with a longer chromosome to maintain diversity.

Additionally, the crate sizing problem and the bin packing problem are related.

The crate sizes to pack the rolls are obtained from dynamic programming or

GA and these crates are then packed into the containers. The crate sizes

obtained from the earlier stage will influence the packing problem in the next

stage. A potential research topic is to treat both problems together and

investigate how the crate sizes affect the packing stage afterwards and use this

information to improve the total cost of both stages. The problem can also be

extended with other considerations such as rotations, weight or symmetry

constraints.

In our problem, only one roll is packed into a crate. It would be interesting to

study a different problem if multiple products are allowed. In this case, larger

crate sizes may be more desirable and will not be penalized as much because it

is able to contain more products in one crate.

122

References

Abidi, S., Krichen, S., Alba, E., & Molina, J. M. (2013, 28-30 Apr.).

Improvement heuristic for solving the one-dimensional bin-packing

problem. Paper presented at the 5th International Conference on

Modeling, Simulation and Applied Optimization (ICMSAO), 2013. (pp.

1-5). IEEE.

Adelson, R. M., Norman, J. M., & Laporte, G. (1976). A dynamic

programming formulation with diverse applications. Operational

Research Quarterly (1970-1977), 27(1), 119-121. doi: 10.2307/3009216

Akeda, Y., & Hori, M. (1976). On random sequential packing in two and three

dimensions. Biometrika, 63(2), 361-366. doi: 10.2307/2335631

Alves, C., & Carvalho, J. M. V. d. (2008). New integer programming

formulations and an exact algorithm for the ordered cutting stock

problem. The Journal of the Operational Research Society, 59(11), 1520-

1531. doi: 10.2307/20202235

Anika, & Garg, D. (2014, 21-22 Feb.). Parallelizing generalized one-

dimensional bin packing problem using MapReduce. Paper presented at

the IEEE International Advance Computing Conference (IACC),

2014. (pp. 628-635). IEEE.

Baker, B. M. (1999). A spreadsheet modelling approach to the assortment

problem. European Journal of Operational Research, 114(1), 83-92. doi:

http://dx.doi.org/10.1016/S0377-2217(98)00097-6

http://dx.doi.org/10.1016/S0377-2217(98)00097-6

123

Bansal, N., Lodi, A., & Sviridenko, M. (2005, 23-25 Oct.). A tale of two

dimensional bin packing. Paper presented at the Proceedings of the 46th

Annual IEEE Symposium on Foundations of Computer Science, 2005.

(pp. 657-666). IEEE.

Bekrar, A., & Kacem, I. (2008, 30 Jun.-2 Jul.). A comparison study of

heuristics for solving the 2D guillotine strip and bin packing problems.

Paper presented at the International Conference on Service Systems and

Service Management, 2008. (pp. 1-6). IEEE.

Berkey, J. O., & Wang, P. Y. (1987). Two-dimensional finite bin-packing

algorithms. The Journal of the Operational Research Society, 38(5), 423-

429. doi: 10.2307/2582731

Berkey, J. O., & Wang, P. Y. (1991, 30 Apr.-2 May). A parallel

approximation algorithm for solving one-dimensional bin packing

problems. Paper presented at the Proceedings of Fifth International

Parallel Processing Symposium, 1991. (pp. 138-143). IEEE.

Bhatia, A. K., Hazra, M., & Basu, S. K. (2009, 6-7 Mar.). Better-fit heuristic

for one-dimensional bin-packing problem. Paper presented at the IEEE

International Advance Computing Conference IACC, 2009. (pp. 193-

196). IEEE.

Bongers, C. (1980). Standardization: Mathematical methods in assortment

determination. Dordrecht, Netherlands: Springer Netherlands.

124

Bongers, C. (1982). Optimal size selection in standardization: A case study.

The Journal of the Operational Research Society, 33(9), 793-799. doi:

10.2307/2581209

Brusco, M. J., Thompson, G. M., & Jacobs, L. W. (1997). A morph-based

simulated annealing heuristic for a modified bin-packing problem. The

Journal of the Operational Research Society, 48(4), 433-439. doi:

10.2307/3010270

Cao, D. & Kotov, V. M. (2011, 12-14 Aug.). A best-fit heuristic algorithm for

two-dimensional bin packing problem. Paper presented at the

International Conference on Electronic and Mechanical Engineering and

Information Technology (EMEIT), 2011. (Vol. 7, pp. 3789-3791). IEEE.

Caprara, A., Lodi, A., & Monaci, M. (2005). Fast approximation schemes for

two-stage, two-dimensional bin packing. Mathematics of Operations

Research, 30(1), 150-172. doi: 10.2307/25151644

Chen, M.-C., & Lin, C.-P. (2007). A data mining approach to product

assortment and shelf space allocation. Expert Systems with Applications,

32(4), 976-986. doi: http://dx.doi.org/10.1016/j.eswa.2006.02.001

Coverdale, I., & Wharton, F. (1978). On cutting stock problems. The Journal

of the Operational Research Society, 29(5), 503-504. doi:

10.2307/3009773

Cui, Y., & Zhou, R. (2002). Generating optimal cutting patterns for

rectangular blanks of a single size. The Journal of the Operational

Research Society, 53(12), 1338-1346. doi: 10.2307/822723

http://dx.doi.org/10.1016/j.eswa.2006.02.001

125

Dowsland, K. A. (1996). Genetic algorithms-A tool for OR? The Journal of

the Operational Research Society, 47(4), 550-561. doi: 10.2307/3010730

Dyckhoff, H. (1981). A new linear programming approach to the cutting stock

problem. Operations Research, 29(6), 1092-1104. doi: 10.2307/170363

Dyckhoff, H. (1990). A typology of cutting and packing problems. European

Journal of Operational Research, 44(2), 145-159. doi:

http://dx.doi.org/10.1016/0377-2217(90)90350-K

Flapper, S. D. P., González–Velarde, J. L., Smith, N. R., & Escobar-Saldívar,

L. J. (2010). On the optimal product assortment: Comparing product and

customer based strategies. International Journal of Production

Economics, 125(1), 167-172. doi:

http://dx.doi.org/10.1016/j.ijpe.2010.01.017

Gasimov, R. N., Sipahioglu, A., & Saraç, T. (2007). A multi-objective

programming approach to 1.5-dimensional assortment problem. European

Journal of Operational Research, 179(1), 64-79. doi:

http://dx.doi.org/10.1016/j.ejor.2006.03.016

Gemmill, D. D. (1992). Solution to the assortment problem via the genetic

algorithm. Mathematical and Computer Modelling, 16(1), 89-94. doi:

http://dx.doi.org/10.1016/0895-7177(92)90080-5

George, J. A. (1996). Multiple container packing: A case study of pipe

packing. The Journal of the Operational Research Society, 47(9), 1098-

1109. doi: 10.2307/3010370

http://dx.doi.org/10.1016/0377-2217(90)90350-K
http://dx.doi.org/10.1016/j.ijpe.2010.01.017
http://dx.doi.org/10.1016/j.ejor.2006.03.016
http://dx.doi.org/10.1016/0895-7177(92)90080-5

126

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to

the cutting-stock problem. Operations Research, 9(6), 849-859. doi:

10.2307/167051

Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to

the cutting stock problem-Part II. Operations Research, 11(6), 863-888.

doi: 10.2307/167827

Gilmore, P. C., & Gomory, R. E. (1965). Multistage cutting stock problems of

2 and more dimensions. Operations Research, 13(1), 94-120. doi:

http://dx.doi.org/10.1287/opre.13.1.94

Gómez, A., & Fuente, D. d. l. (2000). Resolution of strip-packing problems

with genetic algorithms. The Journal of the Operational Research Society,

51(11), 1289-1295. doi: 10.2307/254213

Haessler, R. W., & Sweeney, P. E. (1991). Cutting stock problems and

solution procedures. European Journal of Operational Research, 54(2),

141-150.

Healy, P., & Moll, R. (1996). A local optimization-based solution to the

rectangle layout problem. The Journal of the Operational Research

Society, 47(4), 523-537. doi: 10.2307/3010728

Hifi, M., Kacem, I., Nègre, S., & Wu, L. (2010). A linear programming

approach for the three-dimensional bin-packing problem. Electronic Notes

in Discrete Mathematics, 36(0), 993-1000. doi:

http://dx.doi.org/10.1016/j.endm.2010.05.126

http://dx.doi.org/10.1287/opre.13.1.94
http://dx.doi.org/10.1016/j.endm.2010.05.126

127

Hinxman, A. I. (1980). The trim-loss and assortment problems: A survey.

European Journal of Operational Research, 5(1), 8-18. doi:

http://dx.doi.org/10.1016/0377-2217(80)90068-5

Jakobs, S. (1996). On genetic algorithms for the packing of polygons.

European Journal of Operational Research, 88(1), 165-181. doi:

http://dx.doi.org/10.1016/0377-2217(94)00166-9

Ji, J., & Jeng, M. (1990, 9-13 Dec.). Bin-packing adjustable rectangles and

applications to task scheduling on partitionable parallel computers. Paper

presented at the Proceedings of the Second IEEE Symposium on Parallel

and Distributed Processing, 1990. (pp. 312-315). IEEE.

Jiang, J., & Cao, L. (2012, 19-20 May). A hybrid simulated annealing

algorithm for three-dimensional multi-bin packing problems. Paper

presented at the International Conference on Systems and Informatics

(ICSAI), 2012. (pp. 1078-1082). IEEE.

Kao, C.-Y., & Lin, F.-T. (1992, 18-21 Oct.). A stochastic approach for the

one-dimensional bin-packing problems. Paper presented at the IEEE

International Conference on Systems, Man and Cybernetics, 1992. (pp.

1545-1551). IEEE.

Kasimbeyli, N., Sarac, T., & Kasimbeyli, R. (2011). A two-objective

mathematical model without cutting patterns for one-dimensional

assortment problems. Journal of Computational and Applied

Mathematics, 235(16), 4663-4674. doi:

http://dx.doi.org/10.1016/j.cam.2010.07.019

http://dx.doi.org/10.1016/0377-2217(80)90068-5
http://dx.doi.org/10.1016/0377-2217(94)00166-9
http://dx.doi.org/10.1016/j.cam.2010.07.019

128

Korchemkin, M. B. (1983). A heuristic partitioning algorithm for a packaging

problem. Computing, 31(3), 203-209. doi: 10.1007/BF02263431

Leung, S. Y. S., Wong, W. K., & Mok, P. Y. (2008). Multiple-objective

genetic optimization of the spatial design for packing and distribution

carton boxes. Computers & Industrial Engineering, 54(4), 889-902. doi:

http://dx.doi.org/10.1016/j.cie.2007.10.018

Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search

for bin packing and cutting stock problems. The Journal of the

Operational Research Society, 55(7), 705-716. doi: 10.2307/4102017

Li, H.-L., & Chang, C.-T. (1998). An approximately global optimization

method for assortment problems. European Journal of Operational

Research, 105(3), 604-612. doi: http://dx.doi.org/10.1016/S0377-

2217(97)00072-6

Li, H.-L., Chang, C.-T., & Tsai, J.-F. (2002). Approximately global

optimization for assortment problems using piecewise linearization

techniques. European Journal of Operational Research, 140(3), 584-589.

doi: http://dx.doi.org/10.1016/S0377-2217(01)00194-1

Li, H.-L., & Tsai, J.-F. (2001). A fast algorithm for assortment optimization

problems. Computers & Operations Research, 28(12), 1245-1252. doi:

http://dx.doi.org/10.1016/S0305-0548(00)00035-6

Lin, C.-C. (2006). A genetic algorithm for solving the two-dimensional

assortment problem. Computers & Industrial Engineering, 50(1–2), 175-

184. doi: http://dx.doi.org/10.1016/j.cie.2006.03.002

http://dx.doi.org/10.1016/j.cie.2007.10.018
http://dx.doi.org/10.1016/S0377-2217(97)00072-6
http://dx.doi.org/10.1016/S0377-2217(97)00072-6
http://dx.doi.org/10.1016/S0377-2217(01)00194-1
http://dx.doi.org/10.1016/S0305-0548(00)00035-6
http://dx.doi.org/10.1016/j.cie.2006.03.002

129

Lin, J. -L., Foote, B., Pulat, S., Chang, C. –H., & Cheung, J. Y. (1993, 1-5

Mar.). Hybrid genetic algorithm for container packing in three

dimensions. Paper presented at the Proceedings of the Ninth Conference

on Artificial Intelligence for Applications, 1993.

Lins, L., Lins, S., & Morabito, R. (2003). An L-approach for packing (ℓ, w)-

rectangles into rectangular and L-shaped pieces. The Journal of the

Operational Research Society, 54(7), 777-789. doi: 10.2307/4101727

Liu, F.-H. F., & Hsiao, C. -J. (1997). A three-dimensional pallet loading

method for single-size boxes. The Journal of the Operational Research

Society, 48(7), 726-735. doi: 10.2307/3010061

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin

packing problem. Operations Research, 48(2), 256-267. doi:

10.2307/223143

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite

bin packing problem. Management Science, 44(3), 388-399. doi:

10.2307/2634676

Mrad, M., Meftahi, I., & Haouari, M. (2013). A branch-and-price algorithm

for the two-stage guillotine cutting stock problem. The Journal of the

Operational Research Society, 64(5), 629-637. doi: 10.2307/23407008

Oliveira, J. F., & Wäscher, G. (2007). Cutting and packing. European Journal

of Operational Research, 183(3), 1106-1108.

doi:10.1016/j.ejor.2006.04.022

130

Omar, M. K., & Ramakrishnan, K. (2011, 6-9 Dec.). EPSO for solving non-

oriented two-dimensional bin packing problem. Paper presented at the

IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM), 2011. (pp. 106-110). IEEE.

Ong, H. L., Magazine, M. J., & Wee, T. S. (1984). Probabilistic analysis of bin

packing heuristics. Operations Research, 32(5), 983-998. doi:

10.2307/170649

Pargas, R. P., & Jain, R. (1993, 1-5 Mar.). A parallel stochastic optimization

algorithm for solving 2D bin packing problems. Paper presented at the

Proceedings of the Ninth Conference on Artificial Intelligence for

Applications, 1993. (pp. 18-25). IEEE.

Pentico, D. W. (1986). Comments on "On the optimal choice of sizes" by

Peter Tryfos. Operations Research, 34(2), 328-329. doi: 10.2307/170829

Pentico, D. W. (2008). The assortment problem: A survey. European Journal

of Operational Research, 190(2), 295-309. doi:

http://dx.doi.org/10.1016/j.ejor.2007.07.008

Pimpawat, C., & Chaiyaratana, N. (2001, 7-30 May). Using a co-operative co-

evolutionary genetic algorithm to solve a three-dimensional container

loading problem. Paper presented at the Proceedings of Congress on

Evolutionary Computation, 2001. (Vol. 2, pp. 1197-1204). IEEE.

Puchinger, J., & Raidl, G. R. (2007). Models and algorithms for three-stage

two-dimensional bin packing. European Journal of Operational

http://dx.doi.org/10.1016/j.ejor.2007.07.008

131

Research, 183(3), 1304-1327. doi:

http://dx.doi.org/10.1016/j.ejor.2005.11.064

Rajaram, K. (2001). Assortment planning in fashion retailing: methodology,

application and analysis. European Journal of Operational Research,

129(1), 186-208. doi: http://dx.doi.org/10.1016/S0377-2217(99)00406-3

Rhee, W. T., & Talagrand, M. (1991). Multidimensional optimal bin packing

with items of random size. Mathematics of Operations Research, 16(3),

490-503. doi: 10.2307/3690035

Rhee, W. T., & Talagrand, M. (1993). On line bin packing with items of

random size. Mathematics of Operations Research, 18(2), 438-445. doi:

10.2307/3690289

Salma, M., & Ahmed, F. (2011, May 31-Jun. 3). Three-dimensional bin

packing problem with variable bin length application in industrial storage

problem. Paper presented at the 4th International Conference on Logistics

(LOGISTIQUA), 2011. (pp. 508-513). IEEE.

Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized

assignment problem. Operations research, 45(6), 831-841. doi:

10.2307/172068

Shi, W., & Xue, Z. (2009, 19-20 Dec.). A steplike stacking heuristic algorithm

for solving rectangle packing problem. Paper presented at the

International Conference on Information Engineering and Computer

Science (ICIECS), 2009. (pp. 1-4). IEEE.

http://dx.doi.org/10.1016/j.ejor.2005.11.064
http://dx.doi.org/10.1016/S0377-2217(99)00406-3

132

Sinuany-Stern, Z., & Weiner, I. (1994). The one dimensional cutting stock

problem using two objectives. The Journal of the Operational Research

Society, 45(2), 231-236. doi: 10.2307/2584129

Toledo Suarez, C. D., Gonzlez, E. P., & Rendon, M. V. (2006, 13-17 Nov.). A

heuristic algorithm for the offline one-dimensional bin packing problem

inspired by the point Jacobi matrix iterative method. Paper presented at

the Fifth Mexican International Conference on Artificial Intelligence

(MICAI), 2006. (pp. 281-286). IEEE.

Tryfos, P. (1985). Technical note—On the optimal choice of sizes. Operations

Research, 33(3), 678-684. doi: 10.2307/170565

Vance, P. H., Barnhart, C., Johnson, E. L., & Nemhauser, G. L. (1994). Solving

binary cutting stock problems by column generation and branch-and-bound.

Computational optimization and applications, 3(2), 111-130. doi:

10.1007/bf01300970

Vanderbeck, F. (1999). Computational study of a column generation algorithm

for bin packing and cutting stock problems. Mathematical Programming,

86(3), 565-594. doi: 10.1007/s101070050105

Vanderbeck, F. (2000). Exact algorithm for minimising the number of setups in

the one-dimensional cutting stock problem. Operations Research, 48(6),

915-926. doi: 10.2307/222998

Vanderbeck, F. (2001). A nested decomposition approach to a three-stage, two-

dimensional cutting-stock problem. Management Science, 47(6), 864-879.

133

doi: 10.2307/2661644

Van De Vel, H., & Shijie, S. (1991). An application of the bin-packing technique

to job scheduling on uniform processors. The Journal of the Operational

Research Society, 42(2), 169-172. doi: 10.2307/2583183

Verma, V., & Singh, B. (2010). Genetic-algorithm-based design of passive

filters for offshore applications. Industry Applications, IEEE Transactions

on Industry Applications, 46(4), 1295-1303. doi:

10.1109/TIA.2010.2049629

Vidal, R. V. V. (1994). On the optimal sizing problem. The Journal of the

Operational Research Society, 45(6), 714-719. doi: 10.2307/2584462

Wang, H., & Chen, Y. (2010, 23-26 Sept.). A hybrid genetic algorithm for 3D

bin packing problems. Paper presented at the IEEE Fifth International

Conference on Bio-Inspired Computing: Theories and Applications (BIC-

TA), 2010. (pp. 703-707).

Wang, L., Wang, D., Ni, H., & Cheng, J. (2011, 15-17 Apr.). On the genetic-

search-algorithm-based multi-parameter optimization design system of

packaging container size. Paper presented at the International Conference

on Electric Information and Control Engineering (ICEICE), 2011. (pp.

3399-3402). IEEE.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of

cutting and packing problems. European Journal of Operational Research,

183(3), 1109-1130. doi: http://dx.doi.org/10.1016/j.ejor.2005.12.047

http://dx.doi.org/10.1016/j.ejor.2005.12.047

134

Wilson, R. C. (1965). A packaging problem. Management Science, 12(4), B135-

B145. doi: 10.2307/2627807

Wong, W. K., & Leung, S. Y. S. (2006, 21-23 June). Carton box optimization

problem of VMI-based apparel supply chain. Paper presented at the IEEE

International Conference on Management of Innovation and Technology,

2006. (Vol. 2, pp. 911-915). IEEE.

Xu, J., Qin, H., Shen, R., & Shen, C. (2008, 12-15 Oct.). An optimization

framework for the box sizing problem. Paper presented at the IEEE

International Conference on Service Operations and Logistics, and

Informatics (IEEE/SOLI), 2008. (Vol. 2, pp. 2872-2877). IEEE.

Yanasse, H. H. (1994). A search strategy for the one-size assortment problem.

European Journal of Operational Research, 74(1), 135-142. doi:

http://dx.doi.org/10.1016/0377-2217(94)90211-9

Yang, H., & Shi, J. (2010, 22-24 Jan.). A hybrid CD/VND algorithm for three-

dimensional bin packing. Paper presented at the Second International

Conference on Computer Modeling and Simulation (ICCMS), 2010. (Vol.

3, pp. 430-434). IEEE.

Zhang, X., Yuan, Y., & Yuan, X. (2012, 25-27 July). Correlation between

average waste space and box size in online next-fit bin-packing. Paper

presented at the 31st Chinese Control Conference (CCC), 2012. (pp. 2498-

2502). IEEE.

http://dx.doi.org/10.1016/0377-2217(94)90211-9

