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Summary 

When excavating jointed rocks underground, unstable rock blocks may be 

formed due to unfavorable orientation of the rock joints. The characteristics of 

unstable rock block define the magnitude of rock support and reinforcement 

required in the design of underground rock excavations. Variation in rock 

parameters may result in uncertainties on the identification of these unstable 

rock blocks. In view of the above, this study aims to investigate the effects of 

variation in rock parameters on rock block identification. Reliability-based 

design with probability of failure is adopted to evaluate the stability of rock 

block in underground excavations. The effects of scatter of various rock 

parameters are examined in detail using Monte Carlo simulation. It is found 

that the occurrence of non-symmetrical distributed joint sets is dominant with 

15 joint sets out of 21 joint sets gathered in the field from Singapore and 

overseas. The commonly assumed Fisher distribution fails to simulate these 

non-symmetrical joint sets. Thus, a more flexible Kent distribution was 

investigated for joint orientation simulation. A parametric study has been 

conducted and the results show that joint set concentration, ovalness and 

position have significant effects on the failure mode and volume of unstable 

rock blocks. As such, Kent distribution which can handle non-symmetrical 

data should be adopted for joint orientation simulation instead of Fisher 

distribution. In addition, reliability assessment of reinforced rock block shows 

that rock reinforcement design using conventional deterministic rock block 



vi 

 

analysis with a Factor of Safety (FoS) may not be reliable. Reliability-based 

design with considering Probability of Failure (PoF) was investigated and a 

parametric study has been conducted revealing that increasing rock bolt length, 

bolt capacity and decrease in bolt spacing will result in a more stable rock 

block. The results of probabilistic block analysis and parametric study are 

presented as an aid to conduct reliability-based rock reinforcement design. 
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Chapter 1 Introduction 

In many urban areas, ground space has become increasingly precious. It is 

hence attractive to relocate less productive surface facilities (e.g. warehouse) 

underground so as to free up the surface land for housing or commercial 

buildings. In addition, due to land use restriction, it becomes necessary to 

place potentially noxious operations to underground (Berthelsen, 1992).  For 

example, rock caverns can be built to meet the liquid hydrocarbons storage 

needs. Large scale underground rock excavations are built in countries such as 

Norway and Sweden. Safety is a prime consideration of cavern development. 

As rock caverns are built deep below ground, rock mass is good often and 

there is little stability. However, if rock parameters become highly variable, 

adequate design of reinforcement becomes a major challenge. Reinforcement 

design without proper consideration to rock conditions will lead to economical 

loss or fatal accidents. For example, a tunnel collapse due to rock fall in 

Siberia Russia was reported with three miners trapped (RIAnovosti, 2012). As 

such, it is important to consider all possible rock parameter variation when 

designing rock reinforcement. 

When an excavation was performed on jointed rocks, an unstable rock block 

may fail either by falling or sliding. This occurs when rock joint orientations 

are unfavorable (as shown in Figure 1.1). The primary concern when 

designing reinforcement is the size and the failure mode of rock blocks formed  
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by the rock joints and the excavation face. In order to create a safe working 

environment, unstable rock masses are usually reinforced by rock bolts before 

or immediately after excavation. The required bolt capacity, spacing and 

length depend largely on characteristics of key blocks. For example, the 

design capacity of anchors embedded in fractured rock depends largely on key 

block size (Mauldon, 1995). However, rock block features are largely affected 

by the natural fractures of jointed rocks (such as discontinuity spacing, 

persistence and orientation). Therefore, a close study on rock joint 

characteristics is an important element for unstable block identification. 

Block could fail 

Tunnel roof 

Non-overhanging 

wedge 

Blocks could slide if unstable 

Vertical wall 

Figure 1.1 Unstable rock wedges 
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It is well known that discontinuities have a degree of natural scatter in joint 

orientation due to rupturing of the rock material. (Mandl, 2005). The 

orientation of discontinuities, though not always parallel, is also not purely 

random. Usually, many of the discontinuities recorded in a borehole coring are 

approximately parallel to one or several planes. These discontinuities, which 

have approximately the same orientation, could be gathered as a joint set. 

Traditionally, joint sets are usually analyzed using mean joint orientation 

value. However, the dispersion of joint orientation was found to have an 

important effect on unstable rock block volume and failure mode prediction 

(Leung and Quek, 1995). When studying the effect of joint orientation 

dispersion, Priest (1993) stated that Fisher distribution (Fisher, 1953) can be 

assumed if statistical property of the distribution was required. In geotechnical 

engineering, joint sets are often modeled using Fisher distribution (Priest, 

1993; Song et al., 2001; Kemeny and Post, 2003; Engelder and Delteil, 2004). 

However, some researchers (Peel et al., 2001; Whitaker and Engelder, 2005) 

reported that Fisher distribution is not suitable for non-symmetrical rock joint 

orientation data. Whitaker and Enelder (2005) concluded that if a non-

symmetrical joint distribution is modelled using a Fisher distribution, 

significant errors could occur. Therefore, a more flexible distribution such as 

the Kent distribution which can handle non-symmetrical density contours 

should be considered for joint orientation simulation. 
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Block size is largely affected by variation of jointed rock parameters. In 

conventional block stability assessment, it is customary to use the mean joint 

orientation of each joint set to determine the block shape and use the 

excavation span to estimate the block size across the tunnel width. The rock 

support is designed based on the factored span limited block size. The scale 

factor is commonly derived based on field observations or engineering design. 

This leads to the major limitation where traditional deterministic analysis is 

unable to identify all possible block types and geometries. In addition, the 

support reinforcement design from deterministic result may not be adequate 

for all circumstances. Conventional deterministic reinforcement design based 

on mean values might be less stable if joint orientation dispersion was 

considered. Therefore, probabilistic design on reinforcement is necessary.  

Variation of rock parameters and unavailable ground information make it 

difficult for unstable block identification. Therefore, it is necessary to use 

some sort of criterion in deciding whether a design is acceptable. A factor of 

safety (F.S or FoS) is commonly used in engineering to consider the 

uncertainties involved in design. Since safety is of prime importance in cavern 

development, a high FoS value is commonly selected for rock reinforcement 

design. However, Dunn (2013) noted design with a higher FoS may have a 

higher chance to fail when the standard deviation increases. Therefore, the 

reinforcement design criteria should be carefully selected and the reliability of 

proposed design should be assessed. 
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1.1 Research Objective  

The successful design of rock bolt reinforcement depends upon two factors: 

the identification of blocks that are free to move into the excavation, and the 

installation of rock bolts that are long enough and of sufficient capacity to 

anchor the block. However, scatter of rock parameters have a great effect on 

unstable rock wedge determination. Conventional rock support design based 

on deterministic wedge analysis may not reliable. Hence, the objectives of this 

thesis are as follow: 

1. To determine a suitable distribution for rock joint parameters 

simulation based on available actual field data from (Singapore or 

overseas) and to evaluate the effect of scatter of joint parameters on 

unstable rock block size determination.  

2. To assess the reliability of rock support design based on deterministic 

wedge analysis 

3. To propose a suitable scheme for rock support design in the feasibility 

study stage using probabilistic wedge analysis. 

1.2 Thesis Organization 

Chapter 1: This chapter gives a brief introduction to the research and the 

arrangement of the thesis. 

Chapter 2: This chapter introduces the basic concept for joint data recording in 

joint mechanics and reviews previous studies including rock reinforcement 

design, unstable rock block identification and scatter of joint parameters. 
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Chapter 3: In this chapter, the basics on directional statistics are introduced. 

The need for directional statistics in describing joint orientations was 

thoroughly explained. The Fisher distribution and the Kent distribution are 

described in detail. Different parameter estimation procedures and 

randomization of vectors based on two distributions are compared. Besides, 

goodness of fit test is used to exam real rock joint data worldwide. The two 

models are verified in terms of their accuracy in characterizing the distribution 

of joint orientation.  

Chapter 4: In this chapter, several examples are conducted for block size 

analysis. Results from both conventional deterministic approach and 

probabilistic approach are compared to illustrate the importance of 

probabilistic approach considering joint parameter dispersions.  

Chapter 5: In this chapter, rock support design method is discussed in detail. 

The reliability of rock support design based on both deterministic and 

probabilistic analysis results are assessed. A more rigorous rock support 

design based on probability of failure is attempted. 

Chapter 6: In this chapter, the findings and contributions of this thesis are 

presented. 
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Chapter 2 Literature Review 

2.1 Introduction 

Underground facilities are usually built for a long service life and safety is the 

prime concern in rock engineering. Adequate supporting system should be 

carefully designed. A successful design of rock support depends on the proper 

identification of potential rock instability and a proper design and installation 

of rock bolts to stabilize such instability (Tyler et al, 1991). Therefore, 

identification of unstable block features such as size and failure mode is 

essential in reinforcement design. Current rock support design can be broadly 

divided into two categories: (1) empirical design with design indices and 

charts (2) analytical design such as key block analysis. Key block analysis can 

be further categorize into conventional deterministic analysis and probabilistic 

analysis which considering variations of rock parameters. However, as 

mentioned in Chapter 1, statistical dispersion of rock parameters such as joint 

orientation has a great impact on rock block identification. Monte Carlo 

simulation is commonly adopted to include statistical variation of parameters 

on rock block identification or to assess reliability of a proposed design. Each 

rock parameter data is represented by its Probability Density Function (PDF) 

defined with key statistics such as mean and standard deviation. Various 

distributions have been assumed for these rock parameters simulations 

(Latham et al., 2006). However, block analysis with misspecified distribution 

could lead to error. For example, if non-symmetrical joint orientation data is 
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forced into the symmetrical Fisher distribution, significant errors would occur 

(Whitaker and Enelder, 2005). Besides, a preliminary reinforcement scheme 

has to be proposed prior to excavation. Parameters such as trace length which 

cannot be quantified before excavation must be reasonably assumed. 

Therefore, this chapter shall review the literature related to rock reinforcement 

design methods and rock parameter distributions. 

2.2Rock Reinforcement Design Methods 

Adequate reinforcements need to be provided for underground excavation. 

However, design with different methods might lead to different reinforcement 

schemes. Therefore, the pros and cons of each reinforcement design methods 

need to be carefully studied.  

2.2.1 Empirical Method 

Reinforcement design based on empirical chart is commonly practiced in the 

industry as it is easy to implement. Rock features are normalized to indices 

and are then recommended reinforcement parameters can be determined from 

empirical charts. The most common empirical methods are Rock Mass Rating 

(RMR) and Q system.  

2.2.1.1 RMR Classification System 

The RMR system or Geomechanics Classification was developed by 

Bieniawski (1974). It is commonly used for rock mass classification. Five rock 

features (i.e. rock strength, RQD, spacing of discontinuities, condition of 
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discontinuities and ground water) are considered and rated as shown in Table 

2.1. Sum of the rated values of these rock properties is defined as RMR for a 

specific rock. Then, this RMR value can be used for rock reinforcement 

estimation based on empirical charts or tables. RMR can also be used to 

crudely estimate the deformation modulus of rock mass. The overall rating 

system is as follow 

1 2 3 4 5RMR A A A A A B           (2.1) 

where A1=rating for uniaxial unconfined compressive strength of the rock 

material; A2 = rating from rock quality designation (RQD); A3 = rating for 

spacing of joints; A4 = rating for condition of joints; A5 = rating for ground 

water conditions and B = rating for orientation of joints. 

Changes and modifications have been made over the years. However, 

reinforcement design tables are only developed for tunnels of 10m span. 

Therefore, Bieniawski (1989) noted that a great deal of judgment is needed in 

the application of RMR for rock reinforcement design.  



10 

 

Table 2.1 Rock Mass Rating System (After Bieniawski, 1989) 

 

1
0
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Table 2.1 (con’t) Rock Mass Rating System (After Bieniawski, 1989) 

1
1
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2.2.1.2 Q system 

The Q system is another empirical design method for estimating rock support. 

Barton et al. (1974) of Norwegian geotechnical institute proposed the Q 

system based on a large database of tunnel projects. Q system is popular in 

industry application. The Q value is determined from the following 

relationship: 

wr

n a

JJRQD
Q

J J SRF

     
       

    
    (2.2) 

where RQD  = rock quality designation; nJ  = joint set number; rJ  = joint 

roughness; aJ  = joint alteration; wJ  = joint water; SRF = stress reduction 

factor. / nRQD J  represents the block size, /r aJ J   represents the minimum 

inter-block shear strength and /wJ SRF  represents the active stress. Q system 

is applicable to various tunnel span and height. Once the tunnel span is fixed, 

reinforcement required can be determined from Figure 2.1.  

Empirical classification systems (RMR and Q system) are useful in estimating 

the need for reinforcement element in preliminary design stages, when very 

little detailed information on the rock mass is available (Palmstron and Broch, 

2006). However, Loset (1990) pointed out that the rock classification methods 

only give an indication of the kind of support to be applied in a tunnel and the 

details of design (such as instance the placing of rock bolts) is not covered by 

the empirical classification system. In addition, the input parameters of Q 
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Figure 2.1 Applicability of Q rock support chart (after Palmstron and Broch, 

2006) 

 

system are critiqued by many researchers. RQD is found not sufficient to 

provide an adequate description of rock mass (Bieniawski, 1984; Milne et al., 

1998). RQD/Jn is not suitable to indicate block size (Grenon and 

Hadjigeorgiou, 2003; Palmstron and Broch, 2006). Palmstron and Broch (2006) 

carried out a critical evaluation of the parameters used in the Q system and 

pointed out that the Q system can only work well within a limited range as 

shown in Figure 2.1. If Q value is outside the arrange, supplementary methods 

or evaluations should be applied (Palmstrom et al., 2002). Palmstron and 

Broch (2006) stated that important rock features (i.e. joint orientation, joint 

size, joint persistence, joint aperture, rock strength) should be included in rock 
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analysis. Besides, Pell and Bertuzzi (2007) also pointed out tunnel design 

should be done by methods of applied mechanics, like any other structural 

design.  

2.2.2 Analytical Design Methods 

In the analytical design approach, rock reinforcement scheme is proposed to 

stabilize the predicted unstable rock block. Thus, identification of unstable 

block is essential in analytical design. Conventional deterministic block 

analysis is commonly used to predict the key rock block. Important rock 

features such as joint orientation, size and spacing are considered. The mean 

value of each rock features is commonly adopted for key rock block 

identification. The stereographic projection technique is used for rock block 

stability analysis and identification of key rock block features (Hoek and 

Brown, 1980; Brady and Brown, 1993; Goodman and Shi, 1985; Priest, 1985). 

However, statistical dispersion of rock parameters has a great impact on rock 

block identification (Leung and Quek, 1995). Therefore, the probabilistic rock 

block analysis which considers variation of rock parameters is also studied by 

many researchers (Tyler, et al., 1991; Dunn, et al., 2008; Grenon and 

Hadjigeorgiou, 2012). 

2.2.2.1 Representation of geological data 

In rock block analysis, the most important parameter is joint orientation (Hoek 

and Brown, 1980). There are several types of spherical projection which can 

be used for the representation of joint orientation. The equal area and equal 
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angle projection techniques are the most commonly used projection methods 

for the interpretation of joint orientation data. In rock engineering, equal angle 

projection is commonly used due to its simplicity to draw and formulate based 

on Goodman and Shi (1985). However, equal area projection is good at 

showing the joint density distribution. Equal area projection preserves areas 

which allows user to more accurately compare joint sets on the projection 

without distortion of area. In terms of programming, there is no significant 

advantage in either method. Therefore, equal area projection is selected and 

used throughout this thesis for data plotting due to its accuracy in contouring. 

Discontinuity planes are recorded by the dip angle and dip direction. Dip angle 

is an acute angle measured vertically between a given plane and the horizontal 

and dip direction is geographical azimuth measured in clockwise rotation from 

North containing the given line of dip. The great circle which is traced by the 

intersection of the plane and the sphere will define uniquely the inclination 

and orientation of the plane in space. Since the same information is included in 

the upper and lower parts of the sphere, only one of them needs to be used and 

the lower hemisphere is used in this study. In addition to great circle, the 

inclination and orientation of the plane can also be defined by pole of the 

plane. The pole is the intersection of discontinuity plane normal which pass 

through the center of reference sphere with the reference sphere surface, as 

shown in Figure 2.2. 
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Figure 2.2 Equal area projection (After Brady and Brown, 1993) 

 

Three dimensional presentation of discontinuity plane or pole is difficult to 

shown on two dimensional paper. Therefore, hemispherical projection is 

proposed to represent joint discontinuity orientations. As shown in Figure 2.3, 

point A on the surface of the sphere is projected to point B by swinging it in 

an arc which is centered at the point of contact of the sphere and a horizontal 

surface upon which stands. If this process is repeated for a number of points, 
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defined by the intersection of equally spaced longitude and latitude circles on 

the surface of the sphere, an equal area net will be obtained. The stereonets 

used in rock engineering are shown in Figures 2.4 and 2.5. 
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Figure 2.3 Equal area projection (DIPS) 
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Figure 2.4 Equal area stereonet 
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Figure 2.5 Equal area stereonet 
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Figure 2.6 Data plotting on stereonet 

  

To present orientation data in a stereonet, it is convenient to work with poles 

rather than great circles. This is because the poles can be plotted directly on a 

polar stereonet as shown in Figure 2.6. After all the orientation data have been 

plotted on the stereonet, the pole density is determined by using a counting 

cell to count the number of the poles that fall in the cell. The points with the 
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same pole density are connected to form a contouring diagram, as shown in 

Figure 2.7. Details of the procedure are given in Priest (1985). 

 

Figure 2.7 Contour plot for joint orientation 

 

Statistically significant discontinuity clusters can be visually observed from 

the contour plot. With the aid of a computer software, joint cluster based on 

classification can be identified using algorithms such as the K-means (Forgy, 
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1965; McQueen, 1967), improved K-means (Zhang et al., 2008), the Fuzzy C 

mean (Hammah and Curran, 1998) and the Gustafson-Kessel algorithm 

(Gustafson and Kessel, 1978). The basic concept of these pattern recognition 

algorithms is to minimize the defined objective function which is used for 

distance measurement. Data points from the same cluster should produce the 

minimum error. A predefined number of clusters is required to initiate the 

calculation. After joint classification is performed, the validity indices can be 

used as a criterion to determine the optimal number of joint sets. However, 

different algorithms with different validity indices may produce different 

results. Therefore in the field, joint set clustering produced by experienced 

engineer is treated as the accurate result. In this thesis, visual identification is 

adopted for joint clustering. 

Once the major joint sets are classified, the mean discontinuity orientation is 

commonly used to represent each joint set. Stereographic projection technique 

can be applied for subsequent stability analysis which will be elaborated in 

Section 2.2.2.2. Figure 2.8 shows a wedge of rock falling from the roof of an 

excavation. The vertical line l drawn through the apex of the wedge O must 

fall within the base of the wedge AB. This also means that the center of 

stereonet must fall within the closed area formed by 3 great circles on the 

stereographic projection plot. However, if a wedge is formed in the roof or 

sidewalls of an underground excavation but the vertical line l through its apex 

does not fall within its base AB, then sliding may occur along one of the 

discontinuity or along the intersection of two discontinuities. The 



23 

 

stereographic plot of this condition indicates that intersection figure formed by 

the three great circles falls to one side of the center of the net. Another 

condition for failure is that the sliding plane or line of intersection must be 

steeper than the angle of friction angle. This condition is satisfied if at least 

part of the intersection figure falls within the friction circles shown in Figure 

2.9. In this case, the wedge formed will fail by sliding. When the entire 

intersection figure falls outside the friction circle, as shown in Figure 2.10, the 

weight of the block is not enough to overcome the frictional resistance of the 

plane and sliding failure would not take place. Under these conditions, the 

wedge is stable. Therefore, cohesion and friction of joint discontinuities have a 

great impact on rock block stability. Representative mean orientations should 

be derived from stereographic projection analysis. With a predefined tunnel 

width, the excavation span limited block size could be determined with 

conventional wedge analysis. 
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Figure 2.8 Gravity Fall Wedge (after Hoek and Brown, 1980) 
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Figure 2.9 Sliding Wedge (after Hoek and Brown, 1980) 

 

Figure 2.10 Stable Wedge (after Hoek and Brown, 1980) 

O 

l 

A B 
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2.2.2.2 Determination of size and shape of rock block 

Stereographic plot can not only be used to perform simple stability checks, but 

can also be used to estimate the size and shape of a potentially unstable wedge. 

Ubiquitous approach is commonly assumed in rock block analysis (Hoek and 

Brown, 1980). It assumes that rock discontinuities and excavation surface can 

occur everywhere and anywhere in spacing. This assumption makes it possible 

for discontinuity planes to intersect with each other to form rock blocks.  The 

representative orientations of classified joint sets are used to determine the 

excavation span limited block size which is the largest potential unstable rock 

block. Unstable rock wedges may range from tetrahedral through to high order 

polyhedral. Many researchers (e.g. Grenon and Hadjigeorgiou, 2003; Windsor, 

1999; Kuszmaul, 1999; Mauldon, 1995) pointed out lower order tetrahedral 

blocks are more likely to be removable compared to polyhedral blocks.  

Therefore, this study focuses on stability of the unstable tetrahedral blocks. In 

addition, stereographical projection technique is very time consuming and 

prone to human errors (Priest, 1985). It is more practical to perform the 

kinematic analysis of stability of a three-dimensional rock block based on 

vector approach as it is programmable. A block analysis program code is 

provided in Hoek and Brown (1980). The principle of block analysis is shown 

in Figure 2.11 and 2.12. 

Three planes are represented by their corresponding great circles in Figure 

2.11. Lines  a, b and c represent the strike lines and Lines ab, ac and bc 
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represent the traces of the vertical planes through the center of the net and 

great circle intersections. The wedge formed by the intersecting planes will be 

free to separate from the surrounding rock masses. A typical tetrahedral rock 

block wedge can be described in Figure 2.12 with X-X as the cross section 

view of tunnel width. The length through the volumetric centroid of the wedge 

to the exposed face is the apex height (h).  Having found the shape of the base 

of the wedge, its area Abase can be obtained. The volume of span limited wedge 

(V) is given by  

1

3
baseV h A                          (2.3) 

The corresponding failure mode can be determined as well. Details are given 

in Hoek and Brown (1980). 

The commercial software UNWEDGE programme (Rocscience, 2005) which 

applies Goodman and Shi (1985) block theory can be used to assess the 

stability of wedges. This software can be used to analyze block failure due to 

excavations in hard rock. UNWEDGE is restricted to analyze rock block 

formed by three discontinuity planes. Combined with tunnel axis and tunnel 

opening dimensions, UNWEDGE can calculate the maximum sized wedges 

which can form around an excavation. The user can scale the size of the 

wedges based on experience and field observations. Then, the block properties 

can be used for reinforcement design. However, the procedure to scale the 

analysis result can be rather empirical.  
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Figure 2.11 Three Intersecting Planes forming a Wedge (after Hoek and 

Brown, 1980) 

 

Figure 2.12 Wedge Dimensions Generated Within Tunnel Span (after Hoek 

and Brown, 1980) 
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When designers apply different scale factors, the designed volume can vary 

tens or hundreds of cube meters. In addition, as mentioned in Chapter 1, rock 

discontinuity is formed by rupturing of the rock material. Moreover 

uncertainty is involved in rock parameters and the mean orientation may not 

be able to capture the discontinuity distribution. If a rock reinforcement design 

is proposed based on the deterministic theory, there is no way to ascertain the 

reliability of the design. Therefore, various joint orientation values such as the 

worst values are adopted to determine block size. The predicted rock block 

could be very different from the analysis with mean values. The use of worst 

case values can result in a very conservative design (Diederichs et al., 2000; 

Thompson and Windsor, 2007). In addition, it is necessary to conduct multiple 

analyses on combinations of planes if more than three discontinuity planes are 

present. UNWEDGE can only take three representative discontinuities from 

each joint cluster as inputs for unstable block determination without 

considering variation of joint orientations. This is the main weakness of 

UNWEDGE as well as deterministic analysis approach.  

2.2.3 Probabilistic Approach   

Traditionally a combination of empirical and deterministic approaches has 

been used for tunnel support design (Dunn et al 2008). Recent support design 

reviews (Earl, 2007; Watson, 2007) presented an opportunity to include a 

probabilistic approach to determine potential block sizes and frequency. 

Probabilistic key block analysis has been applied to overcome simplification 
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limitations of deterministic analyses by many researchers (Tyler et al., 1991; 

Dunnet al., 2008; Grenon and Hadjigeorgiou, 2012). The advantage of 

probabilistic method is that the probability distribution for the rock bolt design 

is obtained if the Probability Density Function (PDF) of input parameters is 

assessed precisely and correlation between the input parameters is estimated. 

The overall procedure of probabilistic analysis is as follow. 

A deterministic model for unstable rock block identification is required for 

unstable block analysis. The Hoek and Brown (1980) model is commonly used 

to determine tetrahedral block properties. After calculation model is selected 

and the probabilistic properties of input parameters are assumed, the 

probability of failure can be evaluated by many different risk analysis 

procedures. The Monte Carlo simulation method is commonly used to 

evaluate reliability of rock support system when direct integration of the 

system function is not practical. The PDF of each component variable is 

completely prescribed. In this procedure, values of each rock parameter are 

generated randomly by its respective PDFs and then these values are used to 

determine characteristics of unstable rock block. By repeating this calculation, 

the probability of critical parameter for rock bolt design such as rock bolt 

capacity, length and installation pattern can be estimated. This probabilistic 

approach can provide great flexibility to take parameter uncertainties into 

consideration. This will be discussed in detail in chapter 4. 
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The conventional deterministic model only considers discontinuity 

orientations for stability analysis. The block size restriction depends on the 

scale factor used which is selected based on experience or field observation.  

However, prediction of representative size is important for rock bolt design. 

Therefore, discontinuity size should be considered for unstable block size in 

probabilistic analysis. Disc model proposed by Baecher et al (1977), is 

commonly used for joint plane simulation. It assumes all joints are finite 

circular planes distributed in space. Windsor (1999) gave a detail description 

on how to use circular joint to determine the potential unstable rock blocks. 

They are as follow. 

The basic assumption is that discontinuities are circular and a maximum 

possible trace length can be estimated for each set. This result in 

discontinuities of either infinite or finite radii defined by the maximum trace 

length attributed to each of the associated sets. Figure 2.13 shows the 

intersection of three circular-shaped discontinuities in plan view. The 

discontinuities are arranged to intersect on their extreme edges at the point 

(Cijk). There are three lines of mutual intersection of the planes, radiating from 

Cijk to the other three bounding intersections between each pair of planes at Cij, 

Cjk and Cki. These lines are vectors with magnitudes given by the distance 

from the point of common intersection Cijk to Cij, Cjk and Cki respectively and 

orientations and senses given by the three unit vectors Iij, Ijk and Iki 

respectively, as shown in Figure 2.13(b). 
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Figure 2.13 The intersection of three circular discontinuities in plan (a and b) 

and in isometric (c) (After Windsor, 1999) 

 

The three vectors form a vector triple and an open tetrahedral shape – ‘open’ 

because the fourth plane of Cijk is such that all three vectors do intersect the 

excavation face (labelled l) in Figure 2.13(c) at the points Cij, Cjk and Cki 
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respectively; then the open tetrahedral is completed and becomes a fully 

formed tetrahedron block with apex. The shape and size of the block is fully 

defined by the orientation of the four planes (i, j, k and l) and by the block 

edge vectors Iij, Ijk and Iki. 

The position of point Cijk, the three discontinuities and the excavation surface 

are all assumed to be ubiquitous. This allows the three discontinuities to 

intersect at their extreme edges at Cijk and the excavation plane to intersect the 

circular planes i, j and k anywhere. The intersection of plane l with plane i 

produces a line in plane i of given direction. The intersection of plane l with 

the other two lines of intersection (associated with the other two planes j and k) 

forms two corners Cijl and Cikl. The three corners form the triangular face of a 

potential block. There are 3 triangular areas Ai, Aj and Ak that can form within 

discontinuities i, j and k, one of these will control the trace length limited 

block (Windsor, 1999).  

Three candidate block volumes can be determined from the maximum plane 

triangular areas of faces i, j and k and a scaling parameter K. The minimum 

block size from the three solutions defines the maximum trace length limited 

block size. This is usually found to be controlled by the persistence of one of 

the joint sets. The maximum trace length limited block size is defined in 

Figure 2.13 by setting the discontinuity diameters to the maximum trace length 

and having them intersect at their extremities. This arrangement is extremely 

unlikely but not impossible. In fact, if the characteristics of the discontinuities 
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are independent, their trace lengths may vary independently and the point of 

common intersection Cijk may occur anywhere within the plane and boundary 

of each. This has significant implications for the magnitudes of the vectors 

representing the lines of intersection between the planes and the ability of the 

vector triple and the excavation surface to form a valid, closed tetrahedral 

shape. 

Trace length variation together with variations in orientation form the basis of 

the probabilistic simulation. Both variations can affect block sizes and must be 

considered when determining potential unstable block size. If the maximum 

trace length can used, an upper bound of unstable block size can be obtained.  

Rock bolt length is the major design factor and it is based on the total 

thickness of unstable strata. Bolt length design is related to apex height of the 

target unstable block. Lang and Bischoff (1982) proposed a relationship 

between bolt length and roof span as shown in Figure 2.14, which is usually 

used as a guideline to determine bolt length. It shows that required bolt length 

increases with excavation span. Biron and Arioglu (1982) simplified this 

relationship to be linear. Tyler et al. (1991) proposed a probabilistic rock 

support design for underground tunneling. Rock parameters (e.g. joint 

orientations, trace length, spacing) are generated systematically from their 

PDFs. Their results showed that the apex height of unstable rock block 

distribution tends to be stable after maximum critical block volume is 

achieved, if trace length and spacing distribution were considered. In other 
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words, rock bolt length design has an upper limit. Beyond this maximum 

length, increase of rock bolt length does not enhance the stability of the block. 

Based on their field observations, they found that probabilistic analysis fits 

field observation much better than the empirical methods. Tyler et al.(1991) 

established correlations to determine rock bolt length with considering 

factored risk and drive width. However, rock bolt diameter and capacity are 

also important parameters for rock bolt design which are closely related to 

unstable rock block size and weight. They can be further studied with 

consideration to rock parameter variation. 

 

Figure 2.14 Relationship between bolt length and roof span (after Lang and 

Bischoff, 1982) 

 

2.3 Variation of Rock Parameters 

Different distributions are used to capture variation of rock parameters in rock 

block identification. Such that, JBlock program is used for rockfall hazard 
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evaluation (Estherhuizen, 1996; Esterhuizen and Streuders, 1998; Dun et al., 

2008). Minimum, mean and maximum values of each rock parameter are 

needed as inputs. Windsor (1999) assumed Fisher distribution for joint 

orientation and exponential distribution for trace length in his probabilistic 

rock support analysis. Grenon and Hadjigeorgiou (2003) found Fisher 

distribution fits their joint orientation data and lognormal distribution shows a 

good fit for trace length distribution. These assumptions are necessary as durns 

the design stage, parameters such as trace length and spacing cannot be 

quantified before excavation and has to be reasonably assumed. Therefore, the 

distribution of rock parameters has to be investigated when performing 

probabilistic block analysis. 

2.3.1 Joint Orientation 

It is well known that rock discontinuities were formed by tectonic movement. 

Unfavorable joint orientation can lead to rock blocks sliding or falling during 

excavation. Discontinuity orientation is considered to be one of the controlling 

factors in key block analysis (Hoek and Brown, 1980). Joint orientations have 

a relatively high degree of natural scatter; therefore, it has usually been 

performed using mean values are adopted in conventional deterministic 

analysis. Priest (1993) suggested that Fisher distribution can be assumed if 

statistical property of the distribution was required. Fisher distribution is 

usually assumed for joint orientation simulation due to its simplicity (Leung 

and Quek, 1995; Song et al., 2001; Kemeny and Post, 2003; Engelder and 
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Delteil, 2004). However, some researchers treated joint orientation as two 

variables: dip angle and dip direction. Dip angle and dip direcction are 

simulated separately from a normal distribution or uniform distribution and 

then combine together as joint orientation (Tyler et al., 1991; Esterhuizen, 

1996; Esterhuizen and Streuders, 1998; Dunn, 2008). This method forces a 3 

D distribution which distributed on the reference sphere into a 2 D plane 

distribution. Distortion is inevitable. Therefore, Fisher distribution is still 

recommended in literature. However, very few researchers (e.g. Grenon and 

Hadjigeorgiou, 2003) provided goodness of fit test to show the 

appropriateness of using Fisher distribution in their case study.  

2.3.1.1 Fisher distribution 

In geotechnical engineering, past studies have often modeled joint sets using 

Fisher distribution (e.g. Priest, 1993; Song et al., 2001; Kemeny and Post, 

2003; Engelder and Delteil, 2004).  The Fisher distribution is defined as 

follows: each directional vector Ω represents the trend and plunge of the 

normal of each rock discontinuity plane. In this thesis, a Ω vector is used to 

represent discontinuity normal consistently. A unit random vector Ω could 

follow the 3-dimensional Fisher distribution and its probability density 

function is given by Mardia & Jupp (2009) as 

   
T

pf C exp sin                                            (2.4) 
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where Id  denotes the modified Bessel function of the first kind and order d 

where d=p/2 -1. If p=3 the normalizing constant 𝐶𝑝(𝜅) can be simplified as 

 
 4 sinh

pC



 

                                           (2.6) 

where μ is a unit mean vector pointing into the center of the target cluster and 

its spherical coordinates are given by 

 0 0 0 0 0     
T

sin cos sin sin cos                                   (2.7) 

The concentration parameter κ is a measure of the concentration of the 

distribution about the mean orientation vector. In other words κ indicates the 

degree of directional dispersion. Since the Fisher distribution is the analogue 

of the Gaussian distribution on the sphere, it has to relate to some of its 

properties. In particular, 1/   plays the same role as the variance in a 

Gaussian normal distribution. Hence, as κ increases, the distribution becomes 

more concentrated in a specific direction. As 𝜅 approaches infinity, the scatter 

becomes extremely non-isotropic and concentrates in the mean orientation 

specified by 𝜃0, 𝜑0; and when κ=0 uniform scattering occurs (Mammasis and  

Stewart, 2009). Therefore, κ controls the radius of circular contour shape on 

the surface of the reference sphere. Taking the product of μ and Ω yields  

0 0 0( )T sin sin cos cos cos                               (2.8) 

By substitution of the 𝜇𝑇Ω term into Equation (2.4), the Fisher distribution 

PDF is given by 
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 
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sin sin cos cos
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      


 

                      (2.9) 

Equation (2.9) is the general form of Fisher distribution (Mammasis and 

Stewart, 2009). The form of distribution is dependent on the mean orientation 

(axis of symmetry) as specified by μ. The concentration parameter κ and the 

sample mean orientation are key statistics of Fisher distribution. 

For the Fisher distribution, there is an interesting property that the azimuth and 

colatitude are independently distributed only if the mean orientation vector 𝜇 

points towards the North Pole,[0 0 1], of the coordinate system. To derive this, 

let us assume that (𝜃0, 𝜑0) = (0°, 0°), which implies that the axis of symmetry 

is the z-axis with Cartesian coordinates. This fact greatly simplifies the Fisher 

PDF expression in Equation (2.9) which can be rewritten as follows 

 4 sinh

cosf exp sin 


 
                                (2.10) 

where θ denotes the angle between the mean orientation and ‘true orientation’. 

Equation (2.10) is known as the standardized form of the Fisher distribution.  

The Fisher distribution works well with rotational symmetric data. Geological 

and engineering studies have often modeled joint sets using the Fisher 

distribution; however, any joint set with statistically greater variation in either 

the strike or dip direction does not meet this criterion. Some researchers (e.g. 

Peel et al., 2001; Whitaker and Engelder, 2005) pointed out that Fisher 

distribution is not suitable for non-symmetrical joint data. Whitaker and 
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Enelder (2005) concluded that if a non-symmetrical joint distribution is 

modelled using Fisher distribution, significant errors could be involved. 

Therefore, a more flexible distribution which can accommodate non-

symmetrical density contours has to be considered. 

2.3.1.2Kent distribution 

The Fisher-Bingham 5-parameter distribution (also known as the Kent 

distribution) can provide greater flexibility in non-symmetric joint data 

representation (Kent, 1982). More parameters are involved in describing joint 

clustering. The Kent distribution is a generalization of the Fisher distribution 

(which is a spherical analogue of the general bivariate normal distribution). It 

allows for distributions of any elliptical shape, size, and orientation on the 

surface of the sphere.  

The density function of Kent distribution is defined as follow 

            
2 21 ' ' '

1 2 3
, expf c      

    
  

x x x x            (2.11) 

where 

3 2 2 2

1 2 3: 1R x x x   x                             (2.12) 

where 𝒙̅  denotes a point on the unit sphere in 𝑅3 , κ ≥ 0  represents the 

concentration, 𝛽 ≥ 0 describes the ovalness, 𝛾(1) is the mean direction or pole, 

𝛾(2)  is the major axis and 𝛾(3) is the minor axis. 𝛾(1), 𝛾(2) 𝑎𝑛𝑑 𝛾(3)  are 

perpendicular to each other, therefore a (3 × 3)  orthogonal matrix 𝛤 =
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(𝛾(1), 𝛾(2) , 𝛾(3)) could be formed. If the original distribution is rotated to the 

frame of reference defined by the orthogonal matrix  𝛤  to the population 

standard frame of reference, the probability density function 𝑓(𝑥) could take a 

simple form. Transform from origin data point 𝒙 to 𝒙∗=𝛤′𝒙. The probability 

density function for 𝒙∗takes the form 

     1 * *2 *2

1 2 3, expf x c x x x   


                        (2.13) 

In terms of polar coordinates (θ, φ), where 0 ≤ 𝜃 ≤ 𝜋  is plunge of 

discontinuity normal and 0 ≤ 𝜑 ≤ 2𝜋 is the trend of discontinuity normal. 

* * *

1 2 3, ,x cos x sin cos x sin sin                          (2.14) 

The probability density function takes the form 

     
1 2, , exp cos βsin 2g c cos       


                 (2.15) 

0 , 0 2                           (2.16) 

The normalizing constant of Kent distribution is given by 

    
1

2, 2 2 2c e      


                   (2.17) 

If concentration parameter κ is large and 𝜅 > 2𝛽. 

In short, Kent distribution is the general form of Fisher distribution and 

involves more parameters to describe the shape and location of directional 

data. If the shape factor β reduced to zero, the eccentricity of the elliptical 

contour would equal to 1. The Kent distribution will then be simplified to a 
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Fisher distribution. Kent distribution can describe non-symmetrical joint data 

unlike Fisher distribution is only suitable for symmetrical data. Lewis and 

Fisher (1982) proposed a convenient probability plot to judge whether a data 

set is originated from Fisher distribution. A statistical goodness to fit test was 

also proposed by Mardia and Jupp (2009). Kent and Hamelryck (2005) 

developed an effective method for data generation following Kent distribution. 

Data points were simulated by acceptance-rejection using an exponential 

envelope on an equal area stereonet, and then reject data points out of 

stereonet circumference. The details of simulation will be discussed in Chapter 

3. 

2.3.2 Size Parameters 

The excavation span limited block size is the largest block that can move into 

the excavation by assuming rock discontinuity size is infinite and rock 

discontinuity can happen anywhere along excavation. It is customary to use 

the factored excavation span limited block size for design. However, in many 

circumstances the maximum block size is governed by the trace length limited 

block size. A block larger than the trace length limited block size will only be 

partially formed. Furthermore, the spacing value limited block size could also 

be smaller than the trace length limited block size. The spacing value limited 

block size defines the largest individual block size for the given block shape. 

However, uncertainties are involved in both parameters and has to be 

estimated for unstable rock block identification.  
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2.3.2.1 Trace length 

Joint discontinuities are 3-dimensional planes. Their size are not finite and 

they do not cut through entire rock mass.  If a rock block face is greater than 

the largest discontinuity plane of the corresponding joint set. The unstable 

block can only be partially formed, which means that the tetrahedral block 

cannot be formed to fall or slide into excavation. Therefore, size of rock 

discontinuities is important for potential unstable rock block volume 

prediction. However, it is impossible to obtain the size of 3-dimensional 

discontinuity through borehole sampling. It is because borehole coring 

diameter is commonly 75mm to 300mm. It can be treated as a 1-dimensional 

sampling and it is impossible to derive the rock information in the other two 

dimensions. Therefore, some simplifications and assumptions are necessary 

(such as using 2-dimensional trace length to calculate joint discontinuity size).  

Trace length is defined as the intersection length of rock discontinuity and the 

sampling face (it is usually excavation wall or roof). Trace length distribution 

can be used to estimate rock size distribution. There are two types of sampling 

method which can be used to measure trace length: Sampling the traces that 

intersect a line drawn on the exposure, which is known as scanline sampling 

(Priest and Hudson, 1981). The principle of this method is to place a line 

which is near right angle to discontinuities and record trace length of all 

discontinuity lines which intersect this sampling line. This method is usually 

adopted by exposure rock sampling. However, it can be difficult for 
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underground excavation due to limited sampling orientation and size. It is 

difficult to draw a sample line containing sever hundred discontinuities to 

provide a meaningful overall picture or the rock mass. Alternatively sampling 

the traces within a finite size area (usually rectangular or circular shape) on the 

exposure, which is known as window sampling can be adopted (Pahl, 1981). 

The principle for window sampling is to measure all discontinuities that have a 

portion of their trace length within a defined area of rock face, rather than only 

those intersect the scanline. Circular windows are preferred to rectangular 

cells, because they eliminate orientation bias along the mapped surface 

(Mauldon et al., 2001).  

The trace length distribution in the field has been studied by many researchers 

(Tyler et al., 1991; Song et al., 2001; Park and West, 2001; Hadjigeorgiou et 

al., 2002; Grenon and Hadjigeorgiou, 2012). Lognormal distribution was 

found adequate to represent trace length distribution in most cases 

(Hadjigeorgiou and Grenon, 2003). On the other hand, Park and West (2001) 

stated that trace length distribution follows an exponential distribution. Tyler 

et al, (1991) found that different joint sets collected from same borehole may 

follow different distributions. In their goodness to fit test, 2 out of total 3 joint 

sets follow lognormal distribution; while the other one follows a negative 

exponential distribution. 
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2.3.2.2 Joint Spacing 

Joint spacing limits the largest block that can form without it being intersected 

by additional discontinuities that may result in other blocks being formed 

within that block. An estimate of this volume is determined by considering the 

spacing values of the discontinuity sets. For each discontinuity set, one 

discontinuity is placed to intersect the apex and form the block face associated 

with that set. The block is then scaled such that the vertex opposite the first 

discontinuity lies in the plane of a second discontinuity from the same set. 

This second discontinuity is placed at a perpendicular distance from the first 

equal to the set spacing. If the spacing chosen is minimum likely spacing, it is 

unlikely that this block volume will be penetrated by additional discontinuities 

from this set. Spacing determines the maximum individual block which might 

form during excavation. However, the normal distance between two 

discontinuities is not equal. Therefore, some uncertainty is involved. In 

literature, spacing distribution is commonly assumed in the design stage 

(Windsor, 1999). Exponential (Grenon and Hadjigeorgiou, 2003), lognormal 

(Tyler et al., 1990; Parker and West, 2001) or more rarely uniform distribution 

(Windsor, 1999) were all used for describing spacing distribution (Latham et 

al., 2006). However, negative exponential distribution is usually assumed 

proper for joint spacing simulation (Lu and Latham, 1999). 
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2.4 Summary  

Rock reinforcement design methods have been reviewed. Empirical 

classification systems (RMR and Q system) are useful in estimating the need 

for reinforcement element in preliminary design stages. However, empirical 

classification method can only give indication of what kind of support to be 

applied in an excavation without detailed design (Loset, 1997). Whereas, 

conventional deterministic approach can give a good estimation of key block 

shape and largest possible block size based on mean joint orientations. 

However, scatter is inherent in each rock parameter. Results from 

conventional deterministic design may not be representative or even 

conservative. In addition, rock size parameters (trace length and spacing) have 

great effect on potential unstable rock block identification. If trace length is 

taken into consideration, the excavation span limited rock block may only be 

partially formed, whereas joint spacing may further restrain block volume to 

smaller size. Therefore, the probabilistic approach is applied to overcome the 

over-simplification of the empirical approach and deterministic approach 

(Tyler et al., 1991; Dunnet al., 2008; Grenon and Hadjigeorgiou, 2012). The 

fisher distribution is commonly assumed for joint orientation distribution in 

literature and it may fail to capture the joint orientation distribution (Peel et al., 

2001; Whitaker and Engelder, 2005). The use of Fisher distribution for joint 

orientation simulation has to be further investigated. In addition, the reliability 
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aspect of preliminary reinforcement design is not carried out in literature and 

is investigated in this thesis. 

2.4 Scope of Work 

An adequate rock reinforcement design is related closely to the identification 

of unstable block characteristics. However, variation of rock parameters has a 

great impact on unstable block prediction. Rock features need to be carefully 

studied and the reliability of proposed design needs to be assessed. Therefore, 

the scope of work of this study is as follow: 

 To investigate whether Fisher distribution is capable to capture the 

variation of rock discontinuity orientations through probability plot and 

statistical goodness to fit test based on available actual data form 

Singapore and overseas.  

 To select a suitable distribution for joint orientation simulation and 

develop Matlab code for statistical distribution parameter estimation 

and data generation  

 To develop Matlab code for probabilistic block analysis with 

considering the effect of  trace length and joint spacing on rock block 

size determination  

 To evaluate the effect of variation of joint parameters on unstable rock 

block identification with case studies 

 To compare different criteria used in rock reinforcement design and to 

determine suitable design criterion for underground excavation 
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 To assess the reliability of rock reinforcement design based on 

conventional deterministic block analysis 

 To determine the proper rock reinforcement design parameters based 

on parametric study of the effect of rock parameter variation. 
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Chapter 3 Joint Orientation Simulation 

3.1 Introduction 

As mentioned in the previous chapter, uncertainty is inevitable in rock 

parameters. Variation in joint orientation has shown tremendous impact on 

rock block identification (Leung and Quek, 1995).  Thus, joint orientation 

dispersion has to be properly simulated. In literature, Fisher distribution is 

commonly assumed for joint orientation simulation (Priest, 1993). However, 

Fisher distribution is only suitable for data that is symmetric in nature. If non-

symmetrical joint orientation data assumed to follow a symmetrical Fisher 

distribution, significant errors in unstable rock block prediction can occur 

(Whitaker and Enelder, 2005). Therefore, a more flexible distribution such as 

Kent distribution should be used for joint orientation simulation. Kent 

distribution is a general bivariate normal distribution which is suitable for the 

simulation of non-symmetrical data. It allows for distributions of any elliptical 

shape, size, and orientation on the surface of a sphere. Inferential statistics is 

adopted to test whether Kent distribution is suitable for a particular rock joint 

orientation distribution simulation as compared to Fisher distribution. 

Goodness of fit tests were performed. A case study was established to test the 

goodness of fit of chosen distribution. The properties of Kent distribution and 

parameter estimation are also presented. 
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3.2 Methodology 

Discontinuity orientation data is commonly presented graphically on a 

stereonet by hemispherical projection. Sub-parallel discontinuities are grouped 

as joint sets. These joint sets have an important influence on the behavior of 

the rock mass (Priest, 1985). Different joint set classifications can lead to 

different result for rock block stability analysis. Hence, joint set classification 

should be carefully carried out. Many classification algorithms had been 

developed for auto-identification of joint sets (Shanley and Mahtab, 1976; 

Hammah and Curran, 1998; Gustafson and Kessel, 1978; Bahuka and Veen, 

2002). However, as discussed in Chapter 2, the use of different algorithms 

with different validity indices can produce different results. As a result of this 

disparity, joint set clustering produced by an experienced engineer in the field 

is often as accurate and preferred over these algorithms. Therefore, visual 

identification is used for joint set classification in this research. Subsequently, 

the suitability of Fisher distribution for joint orientation simulation should be 

investigated. Probability plot from Lewis and Fisher (1982) is used to test the 

fitness of Fisher distribution and statistical goodness of fit test from Mardia 

and Jupp (2009) are commonly adopted to test whether a particular joint set 

originates from Fisher distribution or Kent distribuion (Peel, et al., 2001). The 

formulation details shall be provided in Section 3.4. In modern Monte Carlo 

statistical methods, distributions such as Kent distribution are simulated with a 

large number of iteration, and efficient algorithms are needed to simulate from 

such distribution. Kent and Hamelryck (2005) proposed an exact simulation 
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method with good efficiency properties for the whole range of concentration 

(κ) and ovalness (β) values. Their method is adopted in this study. This is 

discussed in detail in Section 3.7. A case study is presented to compare Fisher 

distribution and Kent distribution. 

 

3.3 Joint Set Classification 

For most joint data available from the field, the joint set can be easily 

identified. However, if two concentrated sets are opposite to each other in dip 

direction and are distributed along the circumference of stereonet, precaution 

must be taken to avoid erroneous results. This is because the two sets may 

belong to the same joint set. This condition occur when dip angle of joint 

planes are nearly vertical (plunge of its pole is near horizontal) and only lower 

pole is used to record joint direction during site investigation. If a joint set sit 

on the equator of reference sphere, data points in the upper hemisphere sphere 

were replaced by their opposite lower poles. That is the reason why two 

conjugate clusters which are opposite to each other along the stereonet 

circumference may belong to one joint set. However, it is necessary to 

combine conjugate sets for later goodness of fit test and data fitting. In the 

literature, few conjugate sets were studied to check if the sets is to be 

combined. Tyler et.al (1991) treated conjugate sets separately during 

simulation without prof. Figure 3.1 shows an example of lower hemispherical 

stereographic projections of discontinuity data mapped on the South Crofty 
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mine (Tyler et.al., 1991). Three main joint sets were visually identified. Joint 

set 1 was deliberately divided into conjugate sets 1a and 1b. Then these two 

conjugate sets were simulated separately by their dip angle and dip direction 

distribution. it is to note that the same joint set is usually formed during the 

same tectonic activity and in this case it may be improper to analyze a joint set 

by two conjugate sets. This is further complicated by the effect of sampling 

during data recording. Here, we check if the conjugate joint sets need to be 

combined before data analysis. Then it can be combined with the other set to 

form back the original single joint set for joint data analysis. 

Let us assume N1=(𝛼11, 𝛽11), (𝛼12, 𝛽12), …, (𝛼1𝑛, 𝛽1𝑛) are lower poles from 

conjugate set 1 and N2=(𝛼21, 𝛽21), (𝛼22, 𝛽22), …, (𝛼2𝑛, 𝛽2𝑛),  are lower poles 

from conjugate set 2. 𝛼1𝑛 and  𝛽1𝑛 are dip direction and dip angle of conjugate 

set 1.  𝛼2𝑛 and  𝛽2𝑛  are dip direction and dip angle of conjugate set 2.  

Conjugate set 1 and 2 belong to the same joint set. 

The following equations can be used to determine the opposite upper pole of 

the conjugate set 1 and conjugate set 2 

 

   

   

   

   

11 1
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22 2

180  (0  360 )

90  (0  90 )

180  (0  360 )
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nn upper n upper

nn upper n upper

nn upper n upper

  

  

  

  

      

     

      

     

    (3.1) 

The lower poles of conjugate set 1 and upper poles of conjugate set 2 are 

combined to form a complete joint set Ω12 which is distributed on the whole  
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(a) Scatter plot  

 
 (b) Contour plot 

 

Figure 3.1 Pole plot and contour plot of stereographic projection of 

discontinuity data mapped on the South Crofty mine (after Tyler et al., 1991) 
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reference sphere. Otherwise, the conjugate set 2 with upper poles of conjugate 

set 1 are combined to form joint set Ω21. Ω12 and Ω21 that are opposite to each 

other on the reference surface. Thus, they carry the same joint orientation 

information. Either joint set Ω12 or Ω21 can be used for joint data analysis. 

3.4 Goodness of Fit Test 

As mentioned in Chapter 2, Fisher distribution is commonly assumed for joint 

data analysis. However, the suitability of Fisher distribution to describe joint 

scatter needs to be investigated. Inferential statistics is involved in this case. 

Inferential statistics is concerned with the use of statistical concepts in order to 

make inferences regarding some unknown property of a population. Whereas, 

descriptive statistics tends to describe the basic features of data gathered from 

field study and provide summary measures about the samples. On the contrary, 

statistical inference addresses the problem of inferring properties of an 

unknown distribution from data generated by that distribution. The most 

common type of inference involves approximating the unknown distribution 

with a distribution from a restricted family of distributions. Statistical 

inference includes point estimation and hypothesis testing. Priest (1985) 

provided details of point estimation using the maximum likelihood method. 

This method is adopted for estimating Fisher distribution generation. 

Probability plots are used to test whether a sample was generated from a 

particular distribution or not. In the following section, graphical hypothesis 
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testing for the Fisher distribution and formal formulation of the goodness of fit 

test are briefly introduced. 

Let us assume points 𝛺1  and 𝛺2  on 𝑆2  with 𝛺1 ≠ 𝛺2 . The point 𝛺1  can be 

rotated to point 𝛺2 by multiplying it with matrix 𝐻(𝛺1, 𝛺2) as follows 

 
  1 1 1 1

1 1

1 1

,
1

T

pT
H I

   
   

 
                          (3.2) 

Assume  𝛺1, 𝛺2, … , 𝛺𝑁 are points on unit sphere which might have come from 

Fisher distribution. Further, let (𝜃𝑛
′ , 𝜑𝑛

′ ) denote the spherical polar coordinates 

of the sample data point 𝛺𝑛  and the sample mean direction vector 𝛺̅0is the 

north pole. A particularly useful arrangement is as the spherical polar 

coodinates of 𝐻(𝛺̅0, 𝑧)𝛺𝑛, where 𝐻(𝛺̅0, 𝑧) is the rotation given (3.2), it takes 

the sample mean orientation vector to the north pole with coordinates 𝑧 =

( 0 , 0 , 1 )𝑇  . Now define a second data point 𝛺𝑛  on the unit sphere whose 

spherical polar coordinates are now given by (𝜃𝑛
′′, 𝜑𝑛

′′). In this case, however, 

the sample mean direction vector has spherical polar coordinates given by 

(𝜃0
′′, 𝜑0

′′) = (π/2,0). More specifically, we define a rotation matrix A by  

  

    sin      

 0

      

sin cos sin cos

A sin cos

cos cos cos sin sin

    

 

    

 
 

 
 
  

                    (3.3) 

where 

            0

sin cos

sin sin

cos

 

 



 
 

 
 
  

                            (3.4) 
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The spherical polar coordinates (𝜃𝑛
′′, 𝜑𝑛

′′) are defined by  

'' ''

'' ''

''

n n

n n n

n

sin cos

A sin sin

cos

 

 



 
 

   
 
 

                                 (3.5) 

with 𝜑𝑛
′′ in the range (-π,π]. It is now easy to construct the probability plots for 

a Fisher distribution to test whether a data set has originated from this 

distribution. The probability plots can be constructed using the following 

graphical plot assessments (Lewis and Fisher, 1982): 

a) Co-latitude plot: plots the ordered values of 1-cos 𝜃𝑛
′

 against –log(1-

(n-0.5)/N). If κ is not too small (κ>2), this plot should be close to a 

straight line through the origin with slope 1/κ. 

b) Azimuth plot: otherwise known as longitude plot, plots the ordered 

values of 𝜑𝑛
′

 against (n-0.5)/N. This follows the symmetry of Fisher 

distribution that this plot should be close to a straight line through the 

origin with unit slope gradient. 

Mammasis and Stewart (2009) used this probability plot to test whether the 

electrical signal from an antenna fits Fisher distribution. This graphical 

goodness of fit test works well with electrical signal. Rock joint orientations 

were tested by this method as well. Figure 3.2 shows the pole plot of 

sedimentary rock data from Kent Ridge, Singapore. There are 162 rock 

discontinuities recorded in the borehole core. After contouring is performed, 4 

joint sets are classified. They are shown on Figure 3.2 and the detailed joint 
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orientation data is shown in Table 3.1. Joint sets 2 and 1 are used as examples 

and the results are shown in Figure 3.3 and Figure 3.4 accordingly.  

 

 

 

 

Figure 3.2 Steronet plotting for Kent Ridge rock joint data 

 

 

 

 

 

Joint Set 1 

Joint Set 2 

Joint Set 3 

Joint Set 4 



58 

 

 

Table 3.1 Joint set classification result 

 

Joint set 1 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

85 158 84 153 86 147 82 145 78 142 

82 155 86 153 82 146 78 145 76 142 

85 155 82 150 88 146 75 145 82 141 

86 155 85 150 78 146 86 144 80 141 

79 155 87 150 88 145 80 143 86 140 

77 155 87 148 84 145 86 142 82 140 

81 153 81 148 80 145 84 142 80 140 

78 140 87 137 85 135 78 134 80 131 

76 140 85 137 80 135 76 134 78 131 

78 139 81 137 83 134 88 134 76 131 

76 139 80 137 84 134 84 132 85 130 

80 139 78 137 81 134 86 131 83 130 

88 137 73 137 80 134 83 131 80 130 

73 130 88 125 80 125 86 120 82 114 

85 127 82 125 79 125 81 120 87 110 

83 110 80 110       

Joint set 2 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

80 179 88 179 75 174 87 170 80 187 

83 179 84 174 80 171 81 165 82 184 

78 181         

Joint set 3 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

85 229 81 224 81 219 84 215 69 220 

74 229 82 223 77 218 81 210 67 220 

79 210         

Joint set 4 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

Dip 

angle° 

Dip 

direction° 

76 272 80 281 77 286 77 291 80 293 

78 272 80 285 79 289 77 293 81 294 

76 281 87 285       
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(a) Colatitude plot 

 

 
 

(b) Longitude plot 

 

Figure 3.3  Graphical test for Kent Ridge data set 2 
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(a) Colatitude plot 

 

 

 

(b) Longitude plot 

 

Figure 3.4 Graphical test for Kent Ridge data set 1 
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Figure 3.3(a) showed the colatitude plot and the trend of order statistics plot is 

close to a straight line through the origin with a gradient about 1/120. The 

dispersion parameter κ is estimated to be 118.4. The longitude plot shows that 

the trend is close to a straight line through the origin with a unit slope gradient. 

Therefore, one can conclude that the points of Kent Ridge joint set 2 data 

follow Fisher distribution with a concentration parameter about 120 from 

probability plot. Whereas, the graphical test result of set 1 data is shown in 

Figure 3.4. The colatitude plot tends to curve up and the longitude plot does 

not start from the origin with unit slope gradient. The probability plots show 

that set 1 could not follow Fisher distribution. This result is reasonable 

because the discontinuity data is not of rotational symmetry (as shown in 

Figure3.2). If data points from set 1 were assumed to fit into a Fisher 

distribution, errors could occur (Whitaker and Enelder, 2005). As such, Fisher 

distribution should not be assumed to fit all data set. A more general Kent 

distribution, which can describe data distribution with an ellipse shape, is 

investigated in the present study. Although the graphical goodness of fit test 

using probability plots is convenient to judge by engineers, it involves human 

judgment and can interrupt simulation process. Therefore, a statistical 

goodness of fit test should be used. 

Mardia and Jupp proposed a test that can be used to compare the goodness of 

fit of the data for Fisher and Kent distributions (Mardia and Jupp, 2009). To 

assess the goodness of fit of the Kent model as opposed to the Fisher models, a 

test statistic was created as follows 
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where n denotes the number of samples. 𝐼0.5(𝜅)  and 𝐼2.5(𝜅)  represent the 

modified Bessel function of the first kind and order 0.5 and 2.5 respectively. 

Von Misesness (hypothesis that the data comes from a Fisher distribution) is 

rejected at the 100α% significance level if  𝐾 > −2 log(𝛼). This test statistic 

assumes that all the clusters are independent. The significance level was 

usually set to 0.05.  

Although the results from probabilistic plots can provide a direct impression 

on joint orientation distribution, it cannot be quantified and hence is difficult 

to implement for large data set. Therefore, the statistical goodness of fit test 

from Mardia and Jupp (2009) can be used. The following example is used to 

test whether the graphical and statistical approaches can produce the same 

results. The Mardia and Jupp (2009) method was applied to Kent Ridge data 

sets 1 and 2 with a significance level of 𝛼 = 0.05. The results of testing with 

set 1 data show that K=237.035 which is greater than −2 log(𝛼) which is 5.99. 

This means that the null hypothesis would be rejected and joint set 1 follows 

Kent distribution. The same test is applied to joint set 2 data. K is found to be 

1.52 which is less than 5.99, which means that Fisher distribution is capable to 

simulate the joint data set. The result is identical to that from probability plot. 

Another 21 joint sets obtained from 6 discontinuity data from Singapore and 

other countries were tested using graphical and statistical approaches. Results 
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are shown in Table 3.2. Except for 6 joint sets originate from Fisher 

distribution,  

Table 3.2 Probability plot result and Goodness of fit test result by Mardia and 

Jupp (2009)’s method 
 

Data 

name 

Joint set 

number Km Ko κ β 

Probability 

plot 

Goodness 

of fit test 

Kent Ridge 1 237.04 5.99 119.04 44.77 Kent Kent 

 2 1.52 5.99 181.66 31 Fisher Fisher 

 3 0.7 5.99 89.17 10.03 Fisher Fisher 

 4 26.36 5.99 229.36 82.17 Kent Kent 

Jurong1A1 1 29.72 5.99 73.28 11.45 Kent Kent 

 2 750.92 5.99 19.23 6.84 Kent Kent 

 3 4.46 5.99 28.72 2.86 Fisher Fisher 

HS 1 24.22 5.99 20.37 3.97 Kent Kent 

 2 11.8 5.99 37.17 9.01 Kent Kent 

 3 117.91 5.99 28.88 9.69 Kent Kent 

Fld 1 445.42 5.99 68.68 30.08 Kent Kent 

 2 52.71 5.99 97.99 32.57 Kent Kent 

 3 97.4 5.99 30.94 10.17 Kent Kent 

 4 4.07 5.99 281.54 64.47 Fisher Fisher 

Dipeg 1 1.93 5.99 81.13 9.41 Fisher Fisher 

 2 23.16 5.99 44.36 11.28 Kent Kent 

 3 6.84 5.99 30.47 4.64 Kent Kent 

 4 0.11 5.99 32.15 0.77 Fisher Fisher 

Jurong1A9 1 155.11 5.99 48.69 16.62 Kent Kent 

 2 159.17 5.99 35.76 9.9 Kent Kent 

 3 28 5.99 37.79 6.42 Kent Kent 

 

whereas the other 15 joint set are from Kent distribution. In summary, both 

methods can differentiate Fisher distribution from Kent distribution well. 

Although the graphical method can show directly the trend of colatitude plots, 
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human judgment is often required after plotting. On the other hand, Mardia 

and Jupp (2009)’s method is more quantitative and objective.  

3.5 Parameter Estimation of Kent Distribution 

For simulation purposes, statistical parameters of a distribution need to be 

estimated beforehand as inputs. In statistics, point estimation involves the use 

of sample data to estimate an unknown population parameter of the 

distribution of interest. One example of the parameter is the concentration 

parameter κ. The estimation of this unknown population parameter is known 

as the point estimate. There are various methods for deriving point estimates, 

for example maximum likelihood estimation and minimum mean squared 

error. The maximum likelihood estimation is a statistical method used to fit a 

mathematical model to data. The modeling of actual field data using the 

maximum likelihood method offers a way to estimate the unknown parameters 

in the model. It is an optimization technique which continually seeks 

improvements in the point estimates. 

A convenient moment estimator of parameter of Kent distribution is proposed 

by Kent (1982) for a single Kent distribution from a sample (𝜃1, 𝜑1)𝑇 , . . . , 

(𝜃𝑛, 𝜑𝑛)𝑇 . Let (𝑦11, 𝑦21, 𝑦31)𝑇  , . . . , (𝑦1𝑛, 𝑦2𝑛, 𝑦3𝑛)𝑇  denote the respective 

directional cosines. Then the momoment estimates are calculated as follow. 

First a rotational orthogonal matrix H is formed to rotate the mean direction 

vector to the North pole (0,0,-1). 
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where 𝜃̅ and 𝜑̅ are the polar coordinates of the mean direction. They can be 

calculated by  

1 1

,
n n

j j

j jn n

 
 

 

        (3.8) 

and  

2 2 2 2

1 2 3y y yR S S S        (3.9) 

where
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    (3.10) 

and then matrix B is given by 

TB H SH                    (3.11) 

Then α is defined by  

  1

23 22 33

1
tan 2 /

2
b b b       (3.12) 

The matrix K is computed, where 

1 0 0

0       

0

K cos sin

sin cos

 

 

 
 

 
 
  

    (3.13) 
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The moment estimate of the parameter matrix Γ is  

1 2 3( , ,ˆ ˆ ˆ )HK             (3.14) 

where 𝜉1, 𝜉2 and 𝜉3 are 3 × 1 column vectors. Then calculate  

TV S         (3.15) 

and 

22 33W v v        (3.16) 

where 𝑣𝑖𝑗 denotes the element of matrix V in the ith row and jth column. 

When κ is large, the parameter estimates of κ and β are given approximately 

by  

   
1 1

2 2 2 2R W R W
 

          (3.17) 

1 11
[(2 2 ) (2 2 ) ]

2
R W R W          (3.18) 

and the mean direction is denoted by 𝜉1. 𝜉2 and 𝜉3representing the major and 

minor axis. 

Implementing the algorithm proposed by Kent and Hamelryck (2005) for 

generating pseudo-random samples from Kent distribution, the parameters was 

estimated. A thousand pseudo-random samples from Kent distribution with 

parameter κ=100, β=15, and μ=[0  0.7071  0.7071] were generated and using 

the algorithm, the moment estimates were found to be κ̃ = 101.5, β̃=12.6 and  

0.00206 0.07845 0.99692

0.71063    0.70151    0.053735

0.70356 0.70833 0.057194

 
 

 
 
   

 



67 

 

respectively. This indicates a very good estimation provided by Kent’s 

algorithm. 

A total of 21 joint sets from 6 joint orientation data were tested. Estimated 

parameter κ is always greater than 2β (Figure 3.5) which means all joint sets 

are unimodally distributed. Therefore, Equation 2.17 which is 

    
1

2, 2 2 2c e      


      is suitable for 𝑐(𝜅, 𝛽) estimation. 

 

Figure 3.5 Concentration parameter κ vs ovalness β 
 

 

3.6 Simulation of Kent Distribution 

In modern Monte Carlo statistical methods, data point from distributions such 

as Kent distribution are iterated in a large amount, and efficient algorithms are 

needed to simulate from such distribution. Kent and Hamelryck (2005) 

𝜅 = 2𝛽 
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proposed an exact simulation method with good efficiency properties for the 

whole range of κ and β values i.e. 0 ≤ 2𝛽 ≤ 𝜅.  

The Kent distribution, where κ and β are real concentration parameters and Γ 

is a 3 3  orthogonal matrix representing orientation, was introduced in Kent 

(1982) and defines a statistical model on the unit sphere in R
3
 were defined. Its 

probability density function in polar coordinates is given by  

   2, exp cos sin 2f cos sin                     (3.19) 

where θ ∈ [0, π] denotes the colatitude and φ ∈ [0,2π) denotes the longitude. 

Euclidean coordinates are defined by  

1

2

3

u sin cos

u u R sin sin

u cos

 

 



   
   

 
   
      

    (3.20) 

One can write 𝑢~𝐹𝐵5(𝜅, 𝛽, 𝑅) . The concentration parameters are usually 

required to satisfy 

0,0 / 2          (3.21) 

and we shall restrict attention to this situation in this study. In this setting, the 

exponent  {𝜅 cos 𝜃 +𝛽𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠2𝜑}  is a non-increasing function with 

θ ∈ [0, π] for each φ (on the other hand, if 𝛽 ≥ 𝜅 2⁄ , the pdf increases and 

then decreases in θ when φ=0). Figure 3.5 shows 𝜅 ≥ 2𝛽 is valid for all tested 

joint sets. 

The FB5 distribution was created to provide a spherical analogue for the 

bivariate normal distribution. The parameter β measures anisotropy. If I   
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in (3.19), the distribution is standardized so that the mode lies in the u3 

direction, and the principal axes are given by the u1 and u2 axes, respectively. 

Under large concentration, the distribution follows an asymptotic bivariate 

normal distribution when orthogonally projected onto the tangent plane of the 

sphere.  

For simulation purposes, it is helpful to use an equal area projection. Set 

 1 2, ,    sin / 2x rcos x rsin wherer         (3.22) 

where (2𝑥1, 2𝑥2) represents an equal-area projection of the sphere.  

In (𝑥1, 𝑥2) coordinates, the Jacobian factor sinθ disappears and the PDF (with 

respect to 𝑑𝑥1𝑑𝑥2 in the unit disk 𝑥1
2 + 𝑥2

2 < 1) takes the form  

 

     

      

 

2 2 4 2 2

1 2

2 2 2 2 2 2

1 2 1 2 1 2

2 2 4 4

1 2 1 2

, exp 2 4

exp 2 4 1

1
exp αx bx γ x x

2

f x x r r r cos sin

x x x x x x

   

 

    

      
 

        

 (3.23) 

 

where the new parameters 

   4 8 , 4 8 ,  8b              (3.24) 

satisfy 0 ≤ 𝛼 ≤ 𝑏 and 𝛾 ≤ 𝑏 2⁄ . Here we have used the double angle formulas:

 21 2 / 2cos sin    and    2sin / 2 cos / 2sin    . 

Note that the PDF splits into a product of a function of 𝑥1 alone and 𝑥2 alone. 

Hence 𝑥1 and 𝑥2 would be independent except for the constraint𝑥1
2 + 𝑥2

2 < 1. 
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Our method of simulation is to simulate |𝑥1|  and |𝑥2|  separately by 

acceptance-rejection using a (truncated) exponential envelope, and then 

additionally to reject any values lying outside the unit disk. 

Wood (1987) has also developed a simulation algorithm for the Fisher-

Bingham distribution. His method is more general because it includes a wider 

range of parameter β values and also includes the more general FB6 

distribution (Wood, 1987). However, the Kent distribution proposed by Kent 

and Hamelryck (2005) is simpler to implement when Equation (3.21) is 

satisfied ( Kent and Hamelryck, 2005). 

The starting point for our simulation method is the simple inequality 

 
21

0
2

w        (3.25) 

For any parameters σ, 𝜏≥0 and for all w, hence 

2 2 21 1

2 2
w w          (3.26) 

After exponentiation, this inequality provides the basis for simulating a 

Gaussian random variable from a double exponential random variable by 

acceptance-rejection. For 𝑥1 we need to apply Equation (3.26) twice, first with

1/2 , 1      and 2

1w x  , and second with  
2

1/22 , 1       and 1w x  , 

to get 

   2 4 1/2 2

1 1 1 1 1 1

1 1 1
2

2 2 2
x x x c x              (3.27) 

where 
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 
1/2

1/2

1 11,  2c          (3.28) 

 

To develop a suitable envelope for 𝑥2, recall that 0 2 b   . To begin with 

suppose b>0. From Equation (3.26) with    
1/2 1/2, ( / )b b b        , and

2

2w x  , 

   2 4 2

2 2 2 2 2 2

1 1

2 2
bx x a x c x            (3.29) 

where 

   1/2

2 2/ 2 1,c b b b         (3.30) 

If b=0 (and so γ=0), then Equation (3.29) continues to hold with 𝜆2 = 0 and 

𝑐2 = 0 

In order to obtain the ellipses in the original position before rotation to the 

North Pole, the data were first rotated using the Γ matrix, i.e.: 

'

'

'

i i

i i

i i

x x

y y

z z

   
   

    
     

       (3.31) 

This procedure aligns the principal components of the data with the azimuth 

and elevation axes, centered about the pole. The standard deviations along the 

axes are then calculated and an ellipse about the North Pole with major and 

minor axes one standard deviation in size in computed. The ellipse is then 

rotated back to the mean position using the Γ matrix to produce the plotting 
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coordinates of an ellipse centered about the mean direction with major and 

minor axes in the principal directions of data variance. 

The above Kent and Hamlryck method was programed in Matlab, named as 

kentgen, to simulate the behavior of Kent distribution. An example of Kent 

distribution and it ovalness β effect on data distribution is shown in Figure 3.6. 

A total of 1000 samples were drawn from the Kent distribution with 

concentration parameter κ=100, ovalness parameters β=50,30,10,0, and mean 

direction vector μ=[0 0.7071 0.7071]. It shows clearly that for the same 

concentration, the simulated points can dissipate more along the major axis 

when β increases. In short, Kent distribution can provide a more powerful way 

to model a single rock joint cluster for different shape contours. 

 

 

 

 

 

 

 

 

 

 

 

 

β=50 κ=100 β=30 κ=100 

β=15 κ=100 β=0 κ=100 
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3.7 Rotation Matrix 

As mentioned in Section 3.4, data points are generated following Kent 

distribution around the mean orientation [0,0,-1] with major axis in [0,1,0] 

direction and minor axis in [1,0,0] direction.  In order to rotate the generated 

data back to the real mean position, a rotation matrix Γ which contains the 

mean, major and minor axis information is required. Euler equation for 3-

dimensional rotations is adopted. The basic rotation matrices rotate vectors 

about the Cartesian coordinate in three dimensions are as follows: 

     

1 0 0 0   0

0       0    1  0         0 

0      0      0 0   1   

x y x

cos sin cos sin

R cos sin R R sin cos

sin cos sin cos

   

      

   

     
     

   
     
          

  (3.32) 

For column vectors, each of these basic vector rotations appears counter-

clockwise and the coordinate system is right-handed. This matrix can be 

thought of a sequence of three rotations, one about each principal axis. For 

general rotations, we can use matrix multiplication for the above three 

equations. Since matrix multiplication does not commute, the order of axes 

which one rotates about will affect the result. For this analysis, we will rotate 

about the x-axis first, then the y-axis and finally the z-axis. Such a sequence of 

rotations can be represented as the matrix product, 

Figure 3.6 Effect of ovalness β 

http://en.wikipedia.org/wiki/Column_vector
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     x y zR R R R       (3.33) 

α, β and γ represent rotation, yaw, pitch and roll angle respectively. The Euler 

angles (α, β, γ) are the amplitudes of these elemental rotations. For instance, 

the target orientation can be reached as follows (also shown in Figure 3.7): 

 The XYZ-system is rotated by an angle of α about its Z-axis to the new 

position ' ' 'X Y Z   

 The XYZ-system is rotated about the 'X axis by β to the position of

'' '' ''X Y Z . The Z-axis is now in its final orientation z .  

 The XYZ-system is rotated a third time about the new ''Z  -axis by γ to the 

final position of xyz system. 

 

 

 

 

 

 

 

 

 

  

  

  

  
  

  

  

  

  

  

    

Figure 3.7 Euler angle for 3D rotation 
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The above-mentioned notation can be summarized as follows: the three 

elemental rotations of the XYZ-system occur about Z, 'X  and ''Z  . Indeed, 

this sequence is often denoted as 'Z X Z   . It can be represented in right 

hand Cartesian coordinate as follows: 

       , , z x zM R R R           (3.34) 

after matrix multiplication: 

 

             

, ,                           

   

cos cos cos sin sin cos cos sin cos sin sin sin

M cos sin cos cos sin cos cos cos sin sin cos sin

sin sin cos sin cos

           

              

    

   
 

   
 
  

 (3.35) 

The above 3 by 3 matrix could be used as rotation matrix Γ for randomized 

points for data simulation. This rotation matrix is also important for 

hypothetical case generation. 

3.8 Case Study 

As discussed in Section 3.3, if the conjugate joint sets occur at the 

circumference of stereonet, they should be combined and form a complete 

joint set for goodness of fit test and data simulation. The statistical goodness 

of fit test from Mardia and Jupp (2009) is used to judge whether the Fisher 

distribution is suitable for joint orientation simulation. If Fisher distribution 

cannot be used, Kent distribution will be used instead. The simulation results 

of the two different distributions are compared.  

http://en.wikipedia.org/wiki/Euler_angles#Alternative_definition
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The joint survey of DIPS program file EXAMPFLD is used as an example. 

This joint survey was conducted for highway road cut in folded strata in 1992. 

A total of 175 rock joints were recorded. Lower hemispherical projection is 

adopted for data plotting. DIPS program from Rocscience is used for this 

purpose. The joint data is in the Strike (right) and dip format (see Table 3.3). 

Lower poles are used for data plotting. The contour plot and joint set 

classification are shown in Figure 3.8. It is evident that the 4 major joint 

clusters can be identified by visual identification. Joint sets 1 and 2 are simple 

single sets. Set 3 and set 4 consist of conjugate sets which are separated by 

circumference of the stereonet. As mentioned earlier, it is necessary to 

combine two conjugate sets which belong to the same joint set together for 

data fitting and simulation purposes. Joint set 3 is selected for demonstration. 

Data points of joint set 3 are shown in Table 3.4. They are in dip angle and dip 

direction form. The opposite upper pole of conjugate set 3(a) are calculated 

and combined with conjugate set 3(b) to form the combined joint set 3 for data 

fitting. The combined procedure has been discussed in Section 3.2. The same 

procedure is applied to conjugate set 4. Figure 3.9 shows the processed data 

before and after conjugate sets combination. These 4 joint sets can then be 

used for data testing. Mardia and Jupp Goodness of fit test and Kent parameter 

estimation are applied. The results are shown in Table 3.5. Three joint sets are 

originated from Kent distribution and Joint set 4 is originated from Fisher 

distribution. Fisher distribution is treated as a special case for Kent distribution; 

therefore, if a set of data which is originated from Fisher distribution was 
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simulated by a to Kent distribution, no bias would be resulted. After all 

parameters are estimated, the simulation could be performed. The Kent and 

Hamelryck (2005) method is used for data generation. As mentioned in 

Section 3.5, data are generated on the equal area stereonet and then they will 

be mapped to 3 D reference sphere. After that, rotation matrix is applied to 

rotate generated data points to the origin position. Generated points are plotted 

on stereonet with lower projection method. Simulation results for 

EXAMPFLD are shown in Figure 3.10 (a). 
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Figure 3.8  Lower hemispherical projection of EXMPFLD data 
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Table 3.3 Joint orientation of EXAMPFLD 
 

Strike 

(right) ° 

Dip 

angle° 

Strike 

(right) ° 

Dip 

angle° 

Strike 

(right) ° 

Dip 

angle° 

Strike 

(right) ° 

Dip 

angle° 

Strike 

(right) ° 

Dip 

angle° 

66 29 240 69 221 50 149 53 10 41 

253 89 117 38 264 89 333 61 136 52 

335 54 272 83 266 78 173 52 280 76 

272 85 8 41 83 87 22 85 2 36 

48 81 258 84 251 75 101 83 258 67 

140 54 257 83 95 58 112 73 250 89 

4 39 159 52 243 72 266 84 38 59 

86 90 16 86 167 41 240 76 244 80 

86 90 241 71 267 42 146 74 10 43 

46 44 8 33 239 68 103 75 257 82 

274 87 4 36 216 52 185 51 325 84 

342 51 251 82 356 29 192 44 261 86 

29 53 344 47 345 53 219 52 188 86 

246 75 348 50 263 84 189 50 149 53 

358 46 358 43 199 45 189 50 199 88 

346 51 358 43 175 87 182 44 201 45 

66 34 351 39 106 77 51 82 155 50 

344 41 6 38 170 81 28 29 342 52 

336 19 188 86 91 86 10 42 327 71 

175 50 154 90 97 81 86 90 113 68 

45 47 252 77 196 84 86 90 113 67 

279 69 97 81 352 28 46 44 107 78 

3 49 256 73 144 54 274 87 262 89 

279 74 173 52 344 47 342 51 157 60 

38 48 99 74 80 88 193 89 97 79 

12 43 194 88 91 83 246 75 102 78 

354 43 10 88 201 88 358 46 101 83 

319 17 141 52 205 51 346 51 112 73 

16 89 109 76 263 84 66 34 266 84 

345 43 304 55 80 85 344 41 240 76 

181 68 288 86 344 47 336 19 146 74 

3 41 101 79 74 24 211 57 103 75 

185 73 139 60 168 53 97 77 212 45 

153 48 313 48 49 81 279 74 181 50 

80 90 248 75 108 31 14 89 326 80 
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Table 3.4 Joint orientation of Joint Set 3 
 

Conjugate set 3(a) Conjugate set 3(b) 

Dip 

angle° 

Dip 

Direction° 

Dip 

angle° 

Dip 

Direction° 

Dip 

angle° 

Dip 

Direction° 

Dip 

angle° 

Dip 

Direction° 

90 169 85 163 89 336 73 339 

90 169 79 180 85 355 86 11 

81 180 78 185 87 357 86 344 

74 182 83 184 75 329 89 347 

76 192 73 195 69 2 78 349 

79 184 75 186 74 2 75 334 

68 196 83 184 76 3 72 326 

67 196 73 195 67 341 68 322 

87 166 75 186 89 333 84 346 

77 189 90 169 80 327 84 346 

86 174 90 169 82 340 89 345 

81 180 77 180 69 323 84 349 

88 163 90 163 83 355 76 323 

83 174 78 190 84 341 84 349 

    

83 340 76 323 

    

71 324 87 357 

    

82 334 75 329 

    

77 335 75 331 

    

74 2 
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Table 3.5 Parameter estimation and Goodness of fit test results 
 

 κ β Km Ko Γ Goodness of fit test 

Set 1 68.68 30.09 445.4 5.99 0.9881 0.0324 0.1503

0.1323 0.6771 0.7239

0.0783 0.7352 0.6733

 
 


 
  

 

Kent 

Set 2 101.17 31.70 38.4 5.99 0.8657   0.4728  0.1643

0.2553  0.6994  0.6676

0.4306  0.5360    0.7262

 
 


 
    

 

Kent 

Set 3 33.73 11.92 106.2 5.99 0.1604     0.0657    0.9849

0.7813     0.6013      0.1674

0.6023     0.7963      0.0451

  
 
 
   

 

Kent 

Set 4 281.54 64.47 4.4 5.99 0.9049        0.4037        0.1348

0.1183        0.0657        0.9908

0.4089        0.9125        0.0117

  
 
 
   

  

Fisher 

 

  

8
0 
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Figure 3.9 Rock joint data before and after conjugate set combination  
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Figure 3.10 Data simulation with Kent distribution (a), Fisher distribution (b) 

(b) 

(a) 

Set 4(b) 

Set 2 

Set 3(b) 

Set 1 Set 4(a) 

Set 3(a) 

Set 3(b) 

Set 4(a) Set 1 

Set 3(a) 

Set 2 

Set 4(b) 
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In order to compare the simulation results between Fisher distribution and 

Kent distribution, 4 sets of data are assumed to fit a Fisher distribution for this 

joint orientation simulation. Priest (1985) provided a parameter estimation 

technique which is used in this study. The data generation method for Fisher 

distribution can be found in Jung (2009). Their methods are used in this study 

and the results are shown in Figure 3.9.  

 

Results and Discussion 

For the simulation of joint set 4, the results from Fisher distribution and Kent 

simulation are similar. This is because joint set 4 follows Fisher distribution as 

confirmed by the goodness of fit test. Fisher distribution is in fact a special 

case of Kent distribution when the shape factor β is zero. Therefore the Kent 

distribution is capable to capture the Fisher distribution contour properties 

well. The result for joint set 1 shows no visual significant difference, although 

goodness of fit test shows that joint set 1 follows Kent distribution. This is 

because the contour shape is circular other than elliptical shape. For visual 

inspection, it is difficult to distinguish Fisher and Kent distribution.  

For joint set 2 (single ellipse) and 3 (conjugate ellipse), Fisher distribution 

cannot generate points with the same properties as well as the original data. In 

contrast, Kent distribution can handle elliptical data well (compare Figure 

3.9(a) with Figure 3.7(a) and it is evident that Kent distribution is better than 

Fisher distribution for joint orientation simulation, especially when elliptical 

distributed clusters occur. If joint sets were assumed to follow Fisher 
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distribution, errors may occur. As Kent distribution is a general form of Fisher 

distribution it is recommended for joint orientation simulation. 

3.9 Summary 

In this chapter, Fisher distribution is compared with Kent distribution in joint 

set data fitting. Precaution should be made when conjugate sets occur. 

Conjugate sets need to be combined before data analysis. Both graphical 

probability plot and formal goodness of fit test were conducted on different 

rock joint orientation data sets from field measurements in Singapore and 

overseas. The results show that both methods can be used to investigate the 

validity of Fisher distribution and Kent distribution on evaluating the scatter of 

joint orientation. Mardia and Jupp method is adopted in the analysis owing to 

its simplicity and ease of programming. The goodness of fit test results of 21 

field joint sets show that most of the tested joint sets (15 out of 21) are non-

symmetrical and belong to Kent distribution. As Kent distribution is a general 

form of Fisher distribution, Kent distribution could be applied for joint set 

simulation. Descriptive measures of Kent distribution such as sample mean 

direction vector, sample mean resultant length as well as scatter factors are 

explained in detail. The results show that concentration parameter κ is always 

greater than 2β for all the tested cases. Therefore, the Kent and Hamelryck 

(2005) method for Kent distribution simulation can be adopted. Rotation 

matrix was introduced which can rotate the generated joint cluster from North 

Pole of reference sphere to the target position. A case study using example 
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data from DIPS also shows that Kent distribution is more suitable for joint set 

data simulation. 
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Chapter 4 Unstable Block Identification 
 

4.1 Introduction 

In order to provide sufficient rock reinforcement to prevent unstable rock 

block from failure during excavation, unstable block characteristics such as 

block shape, size and stability need to be carefully investigated. This is 

because these unstable block characteristics define the rock support required 

and provide the necessary information for reinforcement design. However, as 

many rock parameters (such as rock joint orientation, trace length and spacing) 

are uncertain, the predicted unstable block may vary by a large range. 

Therefore, the design of rock reinforcement requires a probabilistic solution 

that takes into account the variation in the rock parameters. This chapter will 

focus on unstable rock block determination through probabilistic analysis to 

identify potential instability that may occur during excavation. Monte Carlo 

simulation is adopted and possible discontinuities combinations are carefully 

studied. The occurrence of unstable block shape, size and stability of potential 

rock block are evaluated. The overall simulation steps are shown in Figure 4.1. 

Besides, Chapter 3 showed that Fisher distribution is not capable to simulated 

non-symmetrical joint orientation data. If a non-symmetrical joint data is 

modeled by Fisher distribution, errors might involve in unstable block 

identification (Whitaker and Enelder, 2005). Therefore, the effect of using 

different joint orientation models for block size determination should be 

investigated. A parametric study is performed to study the effect of each 
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statistical parameter of the joint orientation distribution used on block size 

determination. 

  
Joint set identification 

Goodness of fit test 

Statistical distribution parameter 

estimation 

Probabilistic joint combination N 

N ≥1 

Choose one combination 

Input parameter generation 

Block analysis Update number 

of iteration 

N-1 ≥1 

End 

Output: rock support design 

parameter 

Choose another 

combination 

Predefined number of iteration 

Yes  

No 

Figure 4.1 Probabilistic simulation steps 
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4.2 Methodology for Probabilistic Unstable Block Identification  

When direct investigation of a failure mechanism is not applicable, Monte 

Carlo simulation is commonly adopted to evaluate the probability of failure. In 

Monte Carlo simulation, the value of each variable (such as discontinuity 

orientation, trace length, spacing) is generated randomly from their measured 

distributions. All variables are independent of each other and are then 

combined with fixed input data (such as excavation orientation, excavation 

dimension) to form a set of input data for deterministic model which is used to 

determine potential unstable block characteristics (such as block size, apex 

height and excavation face area). Details are discussed in Section 4.4. After 

performing a sufficiently large number of iterations, rock block volume, apex 

height and excavation face area distributions can be derived.  

Discontinuity orientation data is plotted on stereonet followed by visual 

identification of dominant joint sets (discussed in Chapter 3).  DIPS6 program 

from Rocscience is used to aid in contour plot generation. Discontinuity data 

of each identified joint sets are stalled in separated data files to be used for 

other programs. As discussed in Chapter 3, three discontinuity planes from 

three different joints can form a tetrahedral block. However, if the number of 

joint sets is more than three, probability of combination need to be considered. 

Leung and Quek (1995) proposed a simple resultant vector approach to 

calculate the probability of joint orientation combinations. Their method is 

adopted and will be discussed in details in Section 4.5. Mardia and Jupp (2009) 

goodness of fit test (discussed in Chapter 3) is adopted to determine the best fit 
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distribution for joint orientation distribution. Unavailable rock parameters 

(such as trace length and spacing) need to be reasonable assumed based on 

existing studies (This will be discussed in Section 4.3). After that, Monte 

Carlo simulation can be created for probabilistic unstable block identification. 

After running deterministic model for a sufficient number of times, statistical 

parameters of unstable block characteristics distribution could be derived.  

However, large number of iteration means longer computation time which is 

not effective, whereas, insufficient number of iteration could not achieve the 

confidence criteria for unstable block prediction. Therefore, the minimum 

required number of iteration for unstable block simulation needs to be 

carefully determined. This is discussed in detail in Section 4.6.  

 

4.3 Basic Assumptions and Rock Parameter distributions 

If the exact position and size of each discontinuity is known apriori, the 

location of unstable rock block and corresponding block features (such as size 

and shape) can be readily determined. Unfortunately, rock parameters (such as 

trace length and spacing) cannot be collected until excavation has been carried 

out. Therefore, they need to be reasonably assumed to process probabilistic 

block analysis in design stage. In addition, the measured values of 

discontinuity characteristics such as orientation, size, friction, water pressure 

could be highly variable. They need to be carefully modelled with reasonable 

distributions which can reflect the same distribution pattern of the origin rock 
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data. Probability Density Function (PDF) of each rock parameter should be 

determined carefully. 

4.3.1 Ubiquitous Approach 

In rock block analysis, the most important concern is the location of each 

discontinuity and whether unstable blocks could be formed by these 

discontinuities (Windsor, 1999). The exact location of discontinuities remains 

unknown prior to the underground excavation. In order to consider all possible 

discontinuity combinations into consideration, a ubiquitous approach is 

commonly assumed for rock block analysis (Windsor, 1999). It assumes that 

rock discontinuities and excavation surface can occur everywhere and 

anywhere in space. This assumption means that all possible combinations of 

discontinuities and excavation faces are considered. Hemispherical projection 

proposed by Priest (1985) and block theory proposed by Goodman and Shi 

(1985) use ubiquitous approach as the basic assumption. To date, many 

researchers (Leung and Quek, 1995; Dunn, 2008) adopt this ubiquitous 

approach for rock block analysis.  

4.3.2 Discontinuity Orientation 

Discontinuity orientation is considered as the most important parameter for 

unstable block shape and failure mode determination. As discussed in Chapter 

3, discontinuity data are fitted into a more general Kent distribution instead of 

traditional Fisher distribution and associated statistical parameters (κ, Γ, β) are 

used for the simulation of rock discontinuity sets. 
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4.3.3 Trace Length 

Trace length and spacing are considered as the size parameters of a rock 

discontinuity. However, these parameters can only be collected until 

excavation has been carried out. Therefore, an appropriate trace length 

distribution needs to be reasonably assumed during design stage. The trace 

length distribution in the field has been studied by many researchers (Tyler et 

al., 1991; Song et al., 2001; Park and West, 2001; Hadjigeorgiou et al., 2003; 

Grenon and Hadjigeorgiou, 2012). A lognormal distribution was found 

adequate to represent trace length distribution in most cases (Song and Lee, 

2001; Hadjigeorgiou and Grenon, 2003). On the other hand, Park and West 

(2001) stated that trace length distribution follows an exponential distribution. 

Tyler et al. (1991) observed that different joint sets collected from same 

borehole may follow different distributions in their case study at the South 

Crofty tin mine. In their goodness of fit tests with K-S test, 2 out of total 3 

joint sets follow lognormal distribution; while the other one follows a negative 

exponential distribution. In summary, a lognormal distribution or exponential 

distribution could fit a trace length distribution. In the present probabilistic 

analysis, a lognormal distribution with appropriate statistical parameters is 

selected as the Probability Density Function (PDF) for trace length distribution. 

An average trace length between 1m to 1.7m with a standard deviation from 

0.62m to 2m was established by Grenon and Hadjigeorgiou (2003) in their 

study of an underground mine site in northeastern Canada. Since trace length 

distribution for Singapore rock formation is not available in the feasibility 
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study stage, a lognormal distribution with a mean value of 2m and 2m 

standard deviation is assumed for conservative consideration in the present 

study. 

4.3.4 Discontinuities Spacing  

Discontinuity spacing can be used to determine the largest individual block. 

Thus it should be considered in unstable rock block analysis. However, as 

mentioned in previous section, spacing data can only be collected after 

excavation has been constructed. Therefore, discontinuity spacing need to be 

assumed in design stage for probabilistic unstable block analysis. In the field, 

exponential, lognormal or more rarely uniform distribution were used for 

discontinuity spacing simulation (Latham et al., 2006). Table 4.1 shows 

distributions used by different researchers. Grenon and Hadjigeorgiou (2003) 

established that a negative exponential distribution with a mean value between 

0.34m to 1.2m can fit discontinuity spacing distribution well. Therefore, in 

this research, an exponential distribution with mean value of 1m is considered 

as the appropriate PDF for joint spacing distribution simulation. 

Table 4.1 Spacing distribution model used in literature 
 

Distribution Name Research studies on the distribution 

Uniform Windsor, 1999 

Lognormal Tyler et al., 1991 

Parker and West,2001 

Exponential Grenon and Hadjigeorgiou, 2003 

Hadjigeorgiou et al., 2002 
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4.3.5 Friction Angle and Cohesion 

Discontinuities are formed by tectonic movements. Discontinuity plane 

roughness and cohesion are not consistent due to different infills in the 

discontinuity. Friction angle distribution is commonly assumed as a normal 

distribution based on experimental test by Park (1999). Hoek (1997) suggested 

a truncated normal distribution should be used for friction angle distribution 

simulation, because a complete normal distribution can produce unreasonably 

low or high values. Based on the observation by Park and West (2001), there 

is very low possibility (about 0.3%) that friction angle would be less than 30° 

or greater than 50°. A mean (40°) and standard deviation (3.78°) of friction 

angles for joints were measured in their case study of Highway project in 

North Carolina, USA. However, a normal distribution with 30 ±2.5°  was 

determined based on direct shear test on mine sample in northeastern Canada 

(Grenon and Hadjigeorgiou, 2003). Since friction angle distribution for deep 

Singapore sedimentary rock is unavailable, a truncated normal distribution 

with a mean value of 30°  and 2.5 °  standard deviation is conservatively 

assumed in this study. The maximum and minimum of friction angle is set as 

35° and 25° accordingly. 

Cohesion value of different type of rocks are different. Windsor (1999) 

assumed a normal distribution with mean values of 0, 2.5, 5, 7.5, 10 kPa for 

cohesion simulation. However, some researchers assumed cohesion to be zero 

for conservative consideration (Tyler, et al, 1991; Park and West, 2001). In 
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this study, cohesion is also neglected for rock stability analysis for the same 

reason. 

4.3.6 Water Pressure 

Water pressure is an important parameter in rock stability analysis because 

water fills rock discontinuity and affects the the resisting forces (Park and 

West, 2001). Since deep ground water pressure is not easily measured or 

predicted, water pressure is usually treated as constant for all joint sets in rock 

stability analysis.  

It should be noted that roughness, cohesion and water pressure will only 

influence the stability of rock block formed, but they will not affect rock block 

shape or size determination. Therefore, in rock block analysis, the 

discontinuities can be assumed as persistent, planar and the excavation 

boundary can be treated as a number of discrete planar faces. In the present 

analysis, friction angle and water pressure are assumed to follow assigned 

distribution with reasonable statistical values. 

4.4 Deterministic Block Analysis Model 

Deterministic block analysis with mean value of each rock parameter is 

commonly practiced in rock engineering. UNWEDGE program from 

Rocscience can be used to conduct this deterministic block analysis. The 

largest block size, apex height and excavation face area could be determined. 

However, as discussed in Chapter 2, scale factor needs to be applied to derive 

the representative rock block based on experience and field observations. In 
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probabilistic block analysis, deterministic model is adopted for unstable block 

characteristics calculation. This deterministic model needs to be called 

thousands times to achieve the confidence criteria which will be discussed in 

detail in Section 4.6. However, UNWEDGE cannot do iterative calculation; 

therefore, a Matlab program, Vcal, is programmed for deterministic block 

analysis based on Hoek and Brown (1980) which is discussed in Chapter 2. 

Vcal is used here as the deterministic model in probabilistic block analysis. 

After each rock parameter is generated from their PDFs, Vcal could be used to 

calculate span limited block size and corresponding failure mode. Other rock 

block characteristics such as apex height and excavation face area are also 

important for rock reinforcement design (such as rock bolt length relates 

closely to block apex height) and Hoek and Brown’s approach is not capable 

to determine these two parameters. Therefore, some modification has been 

done on the original code to include block geometry and provide integration to 

the Vcal program. The analysis outcome of Vcal will list the largest possible 

block volume and corresponding apex height and excavation face area to be 

used by other programs in the simulation sequence. 

4.4.1 Scaling Factor 

In deterministic analysis, discontinuity planes are assumed to be persistent and 

planar. Therefore, only the largest span limited block size will be derived from 

deterministic analysis. If rock support was designed based on this span limited 

block size, the design is over conservative. Therefore, size parameters are 
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essential in predicting the possible unstable rock block. If discontinuity size is 

not sufficient large, the span limited rock block can only be partially formed or 

in a smaller scale. That is the reason why scale factor need to be applied in 

UNWEDGE. Therefore, size parameters (such as trace length and spacing) 

should be considered for potential unstable block determination. 

4.4.1.1 Scaling factor determined by trace length 

Trace length is commonly used to determine the possible unstable blocks. This 

is because trace length related closely with discontinuity size. Discontinuity 

planes are usually assumed as circular discs in space as discussed in Chapter 2. 

Trace length determines the diameter of this circular disc. Therefore, trace 

length can be used to restrain the size of unstable block. A simple calculation 

method is proposed as follow. 

The apex coordinate O of tetrahedral block is assumed as origin (0, 0, 0). 

Coordinates of the other 3 corners A (ax, ay, az), B (bx, by, bz) and C (cx, cy, 

cz) can be determined accordingly based on vector approach. Ubiquitous 

approach assumes all discontinuity planes can occur anywhere in space. This 

allows the three discontinuities to intersect at their extreme edges to form the 

largest tetrahedron. This largest block volume is commonly governed by size 

of the critical discontinuity plane. For example, Figure 4.2(a) show three 

discontinuity disc plane i, j and k possess the same diameter and intersect with 

each other by the extreme edges. The largest tetrahedral block OABC can be 

formed. However, in reality, if discontinuity plane size change, the size of  
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block OABC changes accordingly. For example, if disc plane k processes a 

smaller size Figure 4.2(b), the largest triangle shape could be formed within 

plane k will be smaller. Since the block shape only depends on discontinuity 
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Figure 4.2 Trace length limited block size 
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orientations, the block can be scaled to a smaller size with same shape 

geometry (Block OA’B’C’). Discontinuity disc diameter distribution is 

assumed to be the same with trace length distribution. Therefore, trace length 

could be used in unstable rock block size determination. As all vertex 

coordinates of tetrahedral block can be determined through wedge analysis, 

the necessary disc diameter of each joint set could be calculated through 

geometry relationship. A Matlab function circlefit3d was used to determine 

the center and diameter of discontinuity disc (Korsawe, 2013). Then, the ith 

joint set trace length limit scaling factor 𝛾𝑡𝑖 could be calculated as 

i
ti

ti

t

d
         (4.1) 

where i is discontinuity plane number 1,2,3 that form the tetrahedral block. 𝑡𝑖 

is the simulated or given trace length value of discontinuity plane i. 𝑑𝑡𝑖 is the 

disc diameter of discontinuity plane i determined by circlefit3d for span 

limited block. The general trace length limit scaling factor 𝛾𝑡is determined as 

 1 2 3, , ,  1, 1   t t t t t tmin if            (4.2) 

Then, scaling factors are applied to the unstable block volume, block free face 

area and apex height are (𝛾𝑡)3, (𝛾𝑡)2 and 𝛾𝑡  accordingly.  A Matlab code 

scaletl was programmed for trace length determined scaling factor calculation. 

4.3.1.2 Scaling factor determined by spacing 

The spacing limited block is the largest individual block that can be formed 

without it being intersected by additional discontinuities. Therefore, rock 
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block can only be formed between two adjacent joint discontinuities. As 

shown in Figure 4.3, the block is scaled such that the vertex (A) opposite the 

first discontinuity (i) lies in the plane of a second discontinuity from the same 

set. This will produce the largest individual block. Any rock block which is 

larger than spacing limited block OA’B’C’ will be intersected by other 

discontinuities. The perpendicular distance between the first and second 

discontinuity is defined as normal joint set spacing. Therefore, spacing value 

of joint set which discontinuity plane i belongs to can be used to restrain the 

size of rock block formed. Similar events could happen on plane j and k as 

well.  

The ith joint set spacing limit scaling factor 𝛾𝑠𝑖 could be determined as: 

i
si

si

s

d
        (4.3) 

where i is discontinuity plane number 1,2,3 that form tetrahedral block. 𝑠𝑖 is 

the simulated or given spacing of discontinuity plane i. 𝑑𝑠𝑖 is the perpendicular 

distance between discontinuity plane i and the opposite vertex. The general 

spacing limit scaling factor 𝛾𝑠is determined as follow 

 1 2 3, ,  ,  1, 1s s s s s smin if          (4.4) 

The spacing limit scaling factors are applied to the unstable block volume, 

block free face area and apex height are (𝛾𝑠)3, (𝛾𝑠)2 𝑎𝑛𝑑 𝛾𝑠 accordingly. A 

Matlab code scalesl was programmed for spacing determined scaling factor 

calculation. 
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Figure 4.3 Spacing limited block size 
 

 

4.4.2 Case Study- Louvicourt Mine in Northeastern Canada 

The Louvicourt Mine is hard rock mine in Northwestern Quebec, Canada. It is 

a poly-metallic ore body of copper, zinc, silver and gold. This volcanogenic 

massive sulfide deposit lies at a depth of 475m from the ground surface, and is 

part of the Abitibi Greenstone belt within the Precambrian shield of Eastern 

Canada. The mine uses transverse blasthole open stopes, 50m in length, 15m 

in width and 30m in height (Grenon and Hadjigeorgiou, 2003).  

Scanline mapping was used for rock parameters (such as joint orientation, 

trace length and spacing) collection. Statistical analyses of three site data were 

given in Grenon and Hadjigeorgiou (2003). Statistical analysis result of the 

first site data was used as an example to conduct this deterministic unstable 

block analysis. There are 4 major joint sets were characterized by visual 

identification (Figure 4.4), the mean normal spacing, mean trace length and 

B 

Second 

discontinuity plane 

of joint set 1 

First discontinuity 

plane of joint set 1 

O 

C 

Normal spacing  
j 

A 

i 
k 

Unstable block 



102 

 

standard deviation were evaluated for every joint set. The statistical analysis 

result is shown in Table 4.2. 

 

 
 

Figure 4.4 Contour plot of Louvicourt mine data (Grenon and Hadjigeorgiou, 

2003) 
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Table 4.2 Statistical analysis result of site #1 of Louvicourt mine 
 

 Orientation (°) K Average trace 

length (m) 

Trace length 

stdev (m) 

Normal 

spacing (m) 

Set 1 22/238 26 1.20 1.20 0.34 

Set 2 64/009 29 1.00 0.90 0.43 

Set 3 76/128 47 1.50 1.20 1.20 

Set 4 90/234 26 1.50 1.50 0.56 

 

As discussed in Chapter 2, tetrahedral blocks are more unstable than 

polyhedral blocks. Therefore, this study only focuses on tetrahedral rock 

blocks. A tetrahedral block can be formed by 3 discontinuities and an 

excavation free face. Four dominant joint sets were identified; therefore, a 

total 4 different combinations of joint sets are possible. The probability of 

joint set combinations was studied by Leung and Quek (1995) and details will 

be discussed in Section 4.4. In this example, the first 3 joint sets are selected 

for deterministic analysis demonstration. A hypothetical 10×10 m horizontal 

rock tunnel was assumed to be constructed in this area. The excavation axis is 

0 ° /0 °  (North direction). Friction angle, cohesion and water pressure are 

neglected for block size analysis. 

The Unwedge program from Rocscience is used to verify the result and the 

result obtained from Vcal shows the same result from Unwedge program. The 

span limited unstable rock block has a volume of 28.53m
3
 with apex height of 

2.38 m and excavation face area is 36 m
2
. The corresponding failure mode is 

fallout. Stereonet analysis and 3-dimensional plot are shown in Figure 4.5. In 
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reality, such a large block is unlikely to occur. This is because the actual size 

of discontinuity planes may not be large enough to form the large block. 

Therefore, trace length and discontinuity spacing need to be considered for 

block size prediction. Mean trace length and mean spacing value of each joint 

set are used for block size determination. Programs scaletl and scalesl are used 

to calculate the corresponding scaling factors. The analysis result shown in 

Table 4.3 reveals that both trace length and spacing will restrain the unstable 

rock block to a more reasonable smaller size.  In addition, apex height and 

excavation face area will be limited to a smaller size as well. For this case, 

spacing limited block characteristics are smaller than that of trace length 

limited block. If mean spacing value of each joint set is larger, the spacing 

limited block may have a larger volume than deterministic analysis with trace 

length value. In summary, trace length and spacing have a great effect on 

unstable rock block size determination.   

 

Table 4.3 Deterministic analysis result with size parameters 
 

 

 

Volume 

(m
3
) 

Apex height 

(m) 

Excavation 

face area (m
2
) 

Failure 

mode 

Span limited 28.53 2.38 36 Fallout  

Trace length 

limited 

0.0263 0.232 0.341 Fallout 

Spacing limited 0.0087 0.16 0.163 Fallout 
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Figure 4.5 Deterministic analysis result 

Tunnel wall 

Tunnel roof 

Unstable tunnel roof block 
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4.5 Probability of Joint Set Combination 

Three intersected discontinuity planes from 3 different discontinuity sets 

combine with excavation free face will form a tetrahedral block. However, if 

the number of identified joint sets (𝑁) is more than 3, probability of different 

joint set combinations will be involved. Leung and Quek (1995) proposed a 

risk model to examine the stability of rock blocks using a probabilistic concept. 

They assumed that once the orientations of the discontinuities have been 

identified for a certain location, the characteristics of the rock mass can be 

well represented solely by the mean discontinuity normal to each of these N 

clusters. The probability of a rock block b123 formed by the excavation free 

face and discontinuity set 1, 2 and 3 is termed as P(b123) and given by the 

product of the probability of three discontinuity normals 

   n1 n2 n3

123 N N N

ni nj nki 1 j 1 k

r r r
P b                                         4.5

r r r
j  



  
  

where vector rni is discontinuity normal and its magnitude is |rni|. This 

probability of joint combination method is adopted in this study. 

If a projection satisfied the kinematic conditions of projection for a given face, 

any spherical triangle on this projection formed by three non-parallel planes of 

any orientations, will be kinematically congruent with a feasible tetrahedral 

block at the face. In general, if there are N discontinuity sets, the number of 

different tetrahedral blocks t is given by 

    t N!/ 6 N 3 !                                                      4.6    
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Figure 4.6 Spherical triangles produced by five planes that mutually intersect 

 

Figure 4.6 shows how the great circles of five non-parallel planes intersect to 

give ten different spherical triangles. In general, N non-parallel planes always 

intersect to give t spherical triangles, and each of which is associated with a 

different tetrahedral block. Thus the probability of rock block failing in a 

certain mode also depends on the probability of occurrence of rock block and 

the frequency of the rock block failing by this mode. The probability of rock 
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block containing discontinuities 1, 2 and 3 sliding on any discontinuity is 

termed as P(b123)fallout and defined as  

   
 

 123 123fallout
123

number of fallout failure
P b P b     4.7

number of combinations of rock block b generated

 
   

 

  

The probability of failure in terms of wedge failure involving block sliding on 

the line of intersection of two discontinuities P(b123)intersection, and for block 

slide failure, P(b123)slide, can be defined in a similar manner. However, in order 

to determine the probability of a failure mode of one joint set combination, 

probabilistic analysis is necessary to determine the number of that particular 

failure mode and the number of combinations of rock block generated.  

4.6 Iteration Times for Monte Carlo Simulation 

Monte Carlo simulation is usually adopted to simulate the problem when 

direct investigation is not applicable. The more iterations are performed, the 

closer the simulation result is to the real case. However, large number of 

iteration means longer computation time. For example, Figure 4.7 shows the 

computation time of Vcal program with different number of iteration. 

Quadratic relationship can be observed. In order to perform a cost effective 

analysis, the minimum required number of iteration which could give a decent 

simulation result needs to be derived. Confidence limit is usually adopted to 

determine how close the population is from the sample statistics. Therefore, 
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confidence limit can be used as a criterion to decide the minimum number of 

iteration for a particular error percentage. The details are as follow. 

 

Figure 4.7 Time vs number of iteration 

 

In statistics, mean µ𝑥 and standard deviation 𝜎𝑥 are usually used to describe a 

distribution. However, in reality, one can only derive the sample mean 𝑥̅ and 

the sample standard deviation 𝑆𝑥 with limited samples. The mean and variance 

of a sample with N numbers are defined by 

 1 2

1

1 1N

i N

i

x x x x x
N N

        (4.8) 

     
2 2 22

1 2

1
Var

1
x NS x x x x x x

N
       
 

     (4.9) 

The confidence intervals for the mean can be written as  
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x
c

S
x z

N
       (4.10) 

where 𝑧𝑐  is value of confidence coefficient. Table 1 shows 𝑧𝑐  values for 

different confidence levels. 

By considering the confidence interval to represent twice this maximum error 

one can write 

x
max c

S
error z

N
       (4.11) 

Table 4.4 Values of zc for different confidence levels 
 

Confidence 

Level % 

99.75 99 98 96 95.5 95 90 80 68 50 

zc 3 2.58 2.33 2.05 2 1.96 1.645 1.28 1 0.6745 

The percentage error of the mean α becomes 

α c xz S

x N
       (4.12) 

Rewrite for N yields 

 

2

N c xz S

x

 
  
 

      (4.13) 

An example is provided in Driels and Shin (2004) to test the practicability of 

Equation 4.13. They assume statistical result of a simulation has a mean value 

(𝑥̅) 0.2158 and a standard deviation (𝑆𝑥) of 0.5216. 95% is set as confidence 
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limit and the maximum allowable error percentage to the mean value is 5%, 

the required number of iterations can be calculated as 8977 from Equation 

4.13. In other words, if the simulation is run 8977 times, there is 95% 

confidence to say that the simulated sample mean will not differ more than 5% 

from the true value.  

Figure 4.8 shows the required number of iteration calculated by Equation 

(4.13) with the statistical parameters (𝑥̅ = 0.2158 and 𝑆𝑥 = 0.5216) versus n 

trials. One can observe that the required number of iteration tends to be 

stabilized around 9000. In order to test whether the minimum number of 

iteration can achieve the criteria (95% confidence to say sample mean value 

will not differ more than 5% from the true value), the previous example is 

simulated 10 times with 8977 times of iteration. The error percentage to the 

mean value can be determined by Equation 4.11 and they are 4.9227, 4.9473, 

5.0112, 5.0274, 4.8880, 4.6608, 4.9525, 4.9098, 4.9899, and 5.0412. 

Therefore, Equation 4.13 works well to determine the minimum number of 

iteration. 
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Figure 4.8 Number of iterations required vs. Trial simulation number 

4.7 Case Study 

The first three case studies with actual field data are used to demonstrate the 

importance of considering variations of rock parameters in unstable block 

identification. Results from deterministic analysis with mean value of each 

rock parameter are compared with results from probabilistic analysis. In 

addition, Chapter 3 shows that Fisher distribution fails for non-symmetrical 

data simulation; however, non-symmetrical joint sets often occur in jointed 

rocks and Fisher distribution is still commonly assumed for joint set 

simulation. Therefore, case study 4 is used to investigate the effect on unstable 

block size determination if Fisher distribution is misused for a non-

symmetrical joint set simulation. Besides, two parametric studies are 
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conducted to investigate the effect of statistical parameters of distribution used 

for joint orientation (concentration κ, ovalness β and rotation matrix Γ) on 

block size determination. 

4.7.1 Louvicourt Mine in Northeastern Canada 

The same example for deterministic analysis demonstration (Section 4.4.2) is 

used again to conduct the probabilistic analysis. The origin rock joint data is 

not given in Grenon and Hadjigeorgiou (2003). Therefore, the first 3 steps 

which are shown in Figure 4.1 (joint classification, goodness of fit test and 

statistical parameter estimation) cannot be performed. However, statistical 

analysis result of each joint set parameter is provided (Table 4.2) and they are 

treated as accurate. Fisher distribution is used for joint orientation simulation. 

Lognormal and negative exponential distributions are used for trace length and 

spacing distribution accordingly. Four dominant joint sets are classified. There 

are 4 possible joint combinations by Equation (4.6). However, Equation (4.5) 

is not applicable without the original discontinuity orientation data, because 

discontinuity normal and its magnitude are required to perform this calculation. 

Therefore, only the first 3 joint sets are selected for the probabilistic analysis. 

Ten thousand times of iteration is used for the first trial unstable block 

simulation. The statistical analysis result of generated unstable block size 

shows that the block size distribution has a mean of 132.35 m
3
 with a standard 

deviation 191.19m
3
. If the confidence limit is set to be 95% and error 
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percentage to the mean value is set to be 5%, the required number of iteration 

can be calculated by Equation (4.13), which is 3207.  

Block size analysis that considers trace length distribution and spacing 

distribution are performed. Size parameters (trace length and spacing) are used 

to scale the determined block proportionally (discussed in Section4.4.1). The 

block shape will not change after scale factor is applied. Therefore, the 

corresponding failure mode of determined unstable block is unchanged as well. 

Table 4.5 shows probability of occurrence of each failure mode. Due to scatter 

of joint orientation, fallout failure only consists about 20% of total simulation 

iterations. The dominant failure mode is sliding along intersection of plane 1 

and plane 2 (about 50%). Sliding along intersection of plane 2 and plane 3 

(about 17%) and sliding along plane 2 (about 8%) are the minor failure modes. 

In summary, failure modes other than that from deterministic analysis could 

occur if variation in joint orientations is considered. Failure mode predicted by 

deterministic analysis (with mean value of each rock parameter) may not be 

the dominant failure mode if scatter of joint orientation is taken into 

consideration. 

On the other hand, trace length and spacing can have a significant effect on 

block size determination. Figure 4.9 shows Cumulative Distribution Functions 

(CDF) of total block volume distribution by considering size parameters. 

Span-limited block size varies from several to thousand cubic meters. Large 

blocks are predicted. This is because the discontinuity plane is assumed to be 
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persistent. As discussed in Chapter 2, only tunnel span can restrain the largest 

rock block 

Table 4.5 Probability of each failure mode out of total simulation number (%) 
 

Failure mode Span limited 

size 

Trace length 

limited size 

Spacing 

limited size 

Sliding along plane 1
*
 3.12 2.89 3.06 

Sliding along plane 2 8.65 8.31 7.89 

Sliding along plane 3 0.03 0.01 0.05 

Sliding along intersection 12
*
 45.84 50.24 50.80 

Sliding along intersection 13 0.23 0.46 0.34 

Sliding along intersection 23 16.05 17.89 17.77 

Fallout 20.51 20.20 20.00 

Total 100 100 100 

* Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. 

Sliding along intersection 12 means unstable block will fail by sliding along the intersection 

of discontinuity planes from joint set 1 and joint set 2. 

 

that could form during excavation. However, large block is seldom fully 

formed and they are usually intersected by other discontinuities. Therefore, if 

trace length and spacing are considered, the largest possible rock block size 

will be limited to a smaller volume. Figure 4.9 shows that after scaling factors 

are applied, the block size distribution will shift to a smaller range. This is 

because that if discontinuity size (disc diameter which is determined by trace 

length) is small, the largest block volume will be restrained by trace length. 

On the other hand, if joint discontinuity planes are close, the largest individual 



116 

 

rock block can only be formed within spacing. Therefore, rock block size will 

be smaller if size parameters are taken into consideration. Trace length limited 

block size is smaller than spacing limited block size; however, this is not 

necessary for all cases. It depends on block shape and size parameter applied. 

Apex height and excavation face area will also vary due to change in block 

size. Figure 4.10 and Figure 4.11 show that span limited block parameters are 

always larger than that of trace length limited block and spacing limited block.  

  

 

Figure 4.9 CDF of block size considering different size parameters 
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Figure 4.10 CDF of apex height considering different size parameters 
 

 

Figure 4.11 CDF of excavation face area considering different size parameters 

 

  

Excavation face area (m
2
) 
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Figure 4.12 Volume distribution CDF according to different failure mode (a) 

span limited analysis result (b) trace length limited analysis result (c) spacing 

limited analysis result 

a) 

c) 

b) 
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Figure 4.12 shows the probability of different failure modes in rock block 

analysis considering size parameters. It is easy to find that relative position of 

CDFs of different failure modes change if size parameter is considered. For 

example, size distribution of slide along intersection of plane 2 and 3 in Figure 

4.12(a), has a larger mean value compared with that of fallout failure. 

However, if trace length is taken into consideration, although the probability 

of different failure modes is unchanged, the mean value of size distribution of 

fallout failure is larger than that of sliding along planes 2 and 3 (Figure 

4.12(b)). This is because scaling factor is determined by trace length with 

depends largely on the triangle formed on tetrahedral block face. For example, 

Figure 4.13 shows two possible unstable blocks with the same block size V, 

one fallout failure and one sliding failure. In order to form the blocks which 

are shown in Figure 4.13, a minimum discontinuity disc diameter D1i is 

required for block1 face i and D2i for block 2 face I (D2i>D1i). If the same trace 

length D is found on plane i for both blocks, scaling factor determined for 

sliding along intersection will be smaller than that of fallout block 

(
1 2i i

D D

D D
  ). Therefore, slide along intersection block after scaling, will have 

a smaller size than fallout block. The same principles apply to spacing limited 

block size. If the shape of a potential rock block is elongated, the spacing 

value of the base plane will have a huge effect on scaling factor determination. 
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Block 1 

Block 2 

Discontinuity 

plane with disc 

diameter D1i 

Tunnel excavation face  

 

Discontinuity 

plane with disc 

diameter D12 

Unstable block fail by Sliding 

on single discontinuity plane 

with block size V 

Tunnel excavation face  

Unstable block fail by 

fallout failure with block 

size V 

Figure 4.13 Same volume block in different failure modes 
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4.7.2 Singapore Jurong Formation 

Jurong formation covers the west of Singapore with a variety of sharply 

folded sedimentary rock including sandstone, shale, mudstone and limestone. 

It was deposited during the late Triassic to early or middle Jurassic. The 

formation has been severely folded and faulted in the past as a result 

of tectonic movement (Rahardjo et al., 2004). The feasibility of building 

underground cavern in this Jurong formation is investigated. Vertical borehole 

was drilled for site investigation. Borehole was drilled to a depth of 205m 

from ground surface. The first 48m are soil and fractured rock and rock coring 

was conducted below this depth. Fracture plane orientation, type, roughness, 

infilling, alteration and weathering condition were investigated. A total of 952 

discontinuity data are recorded through borehole coring. DIPS6 from 

Rocscience is employed for stereonet plotting (Figure 4.14). Three dominant 

joint sets can be identified by visual classification (Joint sets 1, 2 and 3 are 

shown on Figure 4.14). Since tetrahedral blocks could be formed by 3 

discontinuities from 3 different joint sets; therefore, only one joint set 

combination is available. Goodness of fit test is used to test each joint set 

whether they are from a Fisher distribution or Kent distribution. The result is 

shown in Table 4.6.  
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Table 4.6 Goodness of fit test result and statistical parameter estimation 
 

Set κ β Km KO Γ Goodness 

of fit test 

1 48.69 16.63 155.1 5.99 
[

0.8286       
−0.5579       
−0.0459       

−0.1798       
−0.1877       
−0.9656       

0.5301
0.8084

−0.2559
] 

Kent  

2 35.76 9.90 159.2 5.99 
[

0.0397       
−0.9337       

 −0.3560     −

0.8142       
0.2367     
0.5301       

0.5792
−0.2688
0.7696

] 
Kent  

3 37.79 6.42 28.0 5.99 
[

0.0989       
−0.9773       
−0.1875       

0.7637       
−0.0463       
0.6440       

−0.6380
−0.2069
0.7414

] 
Kent  

 

 

Figure 4.14 Contour plotting and joint set identification (pole plot) 

Joint set 3 

Joint set 2 

Joint set 1 
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Trace length distribution is not available in borehole sampling and only one 

set of spacing data can be collected through borehole coring which is 

insufficient to determine the PDF of spacing distribution. As discussed in 

Sections 4.2.3 and 4.2.4, trace length distribution and spacing distribution 

need to be reasonably assumed. A lognormal distribution with mean value 2 m 

and standard deviation 2m is used for trace length distribution simulation. A 

negative exponential distribution with mean 1 m is assumed for spacing 

distribution simulation. A 10 m excavation span is used for span limited block 

analysis. The deterministic analysis result is shown in Table 4.7.   

Table 4.7 Deterministic analysis result 
 

 Block size 

(m
3
) 

Apex height 

(m) 

Excavation face area 

(m
2
) 

Span limited 21.29 2.68 34.83 

Trace length 

limited 

0.0337 0.313 0.473 

Spacing limited 0.0825 0.422 0.860 

 

Probabilistic analysis was conducted based on estimated distributions. A total 

of 10,000 iterations are conducted. The overall block size has a mean value of 

25.12 m
3
 and a standard deviation of 35.51 m

3
. Based on Equation 4.13, the 

required number of iteration should be 7.5 × 104  to achieve 95% of 

confidence within 5% error. Therefore, the number of iteration increases to  

7.5 × 104 and probabilistic analysis is repeated.  
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Table 4.8 Probability of each failure mode out of total simulation number (%) 
 

Failure mode Span limited 

size 

Trace length 

limited size 

Spacing limited 

size 

Slide along plane 1
*
 88.29 88.03 88.27 

Slide along plane 2 0.01 0.02 0.01 

Slide along plane 3 0.01 0.03 0.02 

Slide along intersection 12
*
 2.53 2.63 2.58 

Slide along intersection 13 0.51 0.46 0.57 

Slide along intersection 23 0.01 0.02 0.02 

Fallout 9.63 8.82 8.54 

* Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. 

Sliding along intersection 12 means unstable block will fail by sliding along the intersection 

of discontinuity planes from joint set 1 and joint set 2. 

 

Table 4.8 shows that deterministic analysis predicts the dominant failure mode 

of probabilistic analysis (88%). However, the previous Louvicourt mine 

example shows that deterministic analysis fails to predict the dominant failure 

mode in probabilistic analysis. This is because the relative position and 

concentration of joint sets are different for both case studies. It is difficult to 

conclude in what conditions failure mode from deterministic analysis will 

match the dominant failure mode from probabilistic analysis. However, in 

general, if the concentration parameter of joint set is low and the joint set 

position is close to stereonet circumference, the deterministic analysis is 

unlikely to predict the dominant failure mode of probabilistic analysis. Figures 

4.15 to 4.18 show the probabilistic analysis results. It is evident that span 

limited block analysis always predict a larger value for rock bolt design 
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parameters. If size parameters are taken into consideration, rock blot design 

parameters distribution will be restrained to a small range.  

 
Figure 4.15 CDF of block size considering different size parameters 

 
Figure 4.16 CDF of apex height considering different size parameters 
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Figure 4.17 CDF of excavation face area considering different size parameters  

Excavation face area (m
2
) 
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Figure 4.18 Volume distribution CDF according to different failure mode (a) 

span limited analysis result (b) trace length limited analysis result (c) spacing 

limited analysis result 

b) 

c) 

a) 
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4.7.3 Singapore Kent Ridge data 

Feasibility study of constructing underground facilities in Singapore Kent 

Ridge area is conducted in 1980s. The same Jurong formation was found in 

this area. Jointed limestone and siltstone are the major rock types below 40m 

from ground surface. Vertical borehole was used for site investigation. 

Borehole was drilled to a depth of 150m. Altogether 162 discontinuity planes 

were observed and the 4 dominant joint sets classified by visual identification 

are shown in Figure 4.19. Goodness of fit test and statistical distribution 

parameter estimation result are shown in Table 4.9. Set 2 and set 3 are 

originated from Fisher distribution. As discussed in Chapter 3, Kent 

distribution is the general form of Fisher distribution. It involves more 

parameters to describe the shape and location of directional data. Therefore, 

Kent distribution can still be used instead of Fisher distribution for joint set 

simulation. As 3 discontinuity planes from 3 different joint sets combining 

with excavation face can form tetrahedral block; therefore, 4 possible joint set 

combinations are determined by Equation 4.6. The deterministic results of all 

combinations are shown in Table 4.10. The probability of each combination 

can be determined by Equation 4.5. The analysis result is shown in the last 

column of Table 4.11. Since size parameters do not influence block shape 

determination, the probability of each failure mode in a certain combination 

could be derived by Equation 4.7. 
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Table 4.9 Goodness of fit test result and statistical parameter estimation 
 

Joint set κ β Km KO Γ Goodness of fit 

test 

1 119.04 44.77 237.0 5.99 
[

0.6702       
−0.7417       
−0.0263       

0.0894       
0.1158       

−0.9892       

0.7368
0.6607
0.1439

] 
Kent 

2 181.66 31.00 1.5 5.99 
[
−0.0031       

0.9723    
 −0.2338   

  0.1498       
−0.2307     
−0.9614   

−0.9887
−0.0381
−0.1450

] 
Fisher 

3 89.17 10.03 0.7 5.99 
[

0.5854       
0.4500       

−0.6744       

0.3268       
0.6303       
0.7042       

0.7420
−0.6326
0.2219

] 
Fisher 

4 229.36 82.17 26.4 5.99 
[
−0.9643       
0.2387       

−0.1144       

−0.0624       
0.2149       
0.9746       

0.2572
0.9470

−0.1923
] 

Kent 

 

 
Figure 4.19 Contour plotting and joint set identification

Joint set 1 

Joint set 2 

Joint set 3 

Joint set 4 
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Table 4.10 Deterministic analysis result 
 

 

Combination Failure 

mode 

Size parameter Volume (m
3
) Apex height (m) Excavation face area 

(m
2
) 

123
*
 Slide along plane 2 Span 319.67 43.87 21.86 

Trace length 1× 10−5 0.1386 2.18 × 10−4 

Spacing 1.1063 6.6368 0.50 

124 Slide along plane 2 Span 276.51 25.29 32.80 

Trace length 3.46 × 10−4 0.2727 0.0038 

Spacing 0.4526 2.9806 0.4556 

134 Slide along plane 3 Span 641.03 35.80 53.71 

Trace length 3.39 × 10−8 0.2896 0.0035 

Spacing 0.2932 2.7586 0.3188 

234 Slide along 

intersection of 

plane 2 and 3 

Span 1605.5 134.56 35.79 

Trace length 8.75 × 10−8 0.0510 5.14 × 10−6 
Spacing 1.9508 14.36 0.4076 

* Combination 123 means the tetrahedral block which is formed by 3 discontinuity planes comes from joint set 1, 2 and 3 accordingly. 

 

1
2

9
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Table 4.11 Probability (%) of rock blocks failure under different joint combinations 
 

 

Combination 1
st
 &2

nd
 1

st
 &3

rd
 2

nd
&3

rd 
1

st
 2

nd
 3

rd
 Fallout Total 

123
*
 6.54 4.47 2.29 1.46 18.14 0.71 0.87 35.09 

124 8.08 1.52 0.01 0.03 14.56 0.08 0.68 25.23 

134 2.95 2.1 3.22 0.20 24.78 0.08 0.78 35.12 

234 0.81 1.59 0.08 0.01 1.75 0.02 0.11 4.56 

Total 33.66 61.82 2.44 100 

* Combination 123 means the tetrahedral block which is formed by 3 discontinuity planes comes from joint set 1, 2 and 3 accordingly. 

1
3

0
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Table 4.11 shows that for all different joint set combinations, all the failure 

modes could happen with different probabilities. Joint set combinations, 123, 

124 and 134 will be the major combinations. Block bounded by discontinuity 

1, 2 and 3 has a probability of 18.14% of sliding failure along discontinuity 

plane 2, which is coincident with the result of the deterministic analysis. The 

same circumstances occurred in combination 124 and combination 134. Major 

failure mode of each combination is the same with deterministic result. 

However, for discontinuity combination 234, deterministic analysis shows the 

failure mode should be sliding along intersection of plane 2 and plane 3. On 

the other hand, probabilistic analysis shows sliding along discontinuity plane 3 

and sliding along intersection of plane 2 and 4 have a major proportion of 1.75% 

and 1.59% accordingly. However, combination 234 consists only 4.56%. 

Therefore, in this case, deterministic analysis still can predict the dominant 

failure mode in probabilistic analysis for this case.  

4.7.4 Hypothetical Case 

As discussed in Chapter 3, Fisher distribution is not capable to simulate non-

symmetrical data. If a non-symmetrical joint set data is modelled by Fisher 

distribution, errors might involve (Whitaker and Enelder, 2005). Therefore, 

this case study will study the effect of using different joint orientation 

distribution models on block size determination. Joint orientation data will be 

modelled by pure Fisher distribution and pure Kent distribution and then 

parametric study of statistical distribution parameter will be conducted. 
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Figure 4.20 Contour plotting and joint set identification 

 

Based on given rock joint orientation data, the joint set classification on 

contour plot is shown in Figure 4.20. Three dominant joint sets can be 

identified by visual classification. Table 4.12 shows the goodness of fit test 

results and statistical parameters estimations. Joint set 1 and joint set 2 follow 

Kent distribution whereas joint set 3 follows Fisher distribution, a special case 

of Kent distribution.  

  

Joint set 2 

Joint set 3 

Joint set 1 
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Table 4.12 Goodness of fit test result and statistical parameter estimation 
 

Joint set κ β Mean 

orientation 

Γ Goodness 

of fit test 

1 71.91 31.24 44.61/1.66 
[
−0.1248       
−0.9889       
−0.0806       

−0.7099       
0.1457       

−0.6891       

0.6932
−0.0288
−0.7202

] 
Kent 

2 46.77 17.30 45.44/89.27 
[
−0.2770       
0.6821       

 −0.6768     

−0.9608       
−0.2028     
0.1888       

−0.0085
−0.7025
0.7116

] 
Kent 

3 106.26 14.73 45.76/289.70 
[

0.2037       
−0.7477       
−0.6321       

−0.9491       
0.0077       

−0.3149       

0.2403
0.6640

−0.7081
] 

Fisher 

 

 

Since trace length distribution and spacing distribution are not available in this 

case study, the excavation span is used to determine the largest unstable block 

size. Deterministic analysis shows that the unstable block volume is 277.39m
3
 

and the corresponding failure mode is sliding along discontinuity plane 1 

which is a discontinuity from joint set 1. The probabilistic analysis results with 

pure Fisher distribution and Kent distribution are shown in Tables 4.13 and 

4.14, respectively. Both block size analysis predict the same dominant failure 

mode which is sliding along plane 1. While probabilistic block analysis with 

pure Fisher distribution shows a dominant failure mode is 70.42%; 82.36% is 

shown for the simulation with pure Kent distribution. Besides, the minor 

failure modes fallout failure and sliding along intersection of planes 1 and 2 

drop from 6.18% to 1.41% and 17.12 to 12.60% accordingly. Model with 

Fisher distribution also predicts sliding along plane 3 (0.2%) and sliding along 

intersection of planes 1 and 3 (2.43%); however, the model with Kent 
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distribution shows that these two failure modes have no chance to occur. The 

span limited block size distributions derived from two simulations are shown 

in Figure 4.21. In this case, it is evident that the model with Kent distribution 

generally predicts a larger block size than that with Fisher distribution. If rock 

bolts with maximum capacity 5400kN (27kN/m
3
 ×  200 m

3
) and with 

sufficient length and rock bolt spacing are assumed to be used to stabilize the 

unstable block, the probability of failure (PoF) would reduce to about 10% 

(Figure 4.21). This is due to the assumption of an inappropriate distribution 

(Fisher distribution) in joint orientation simulation. As such, distributions used 

do have an impact on block size determination and rock bolt design. It is 

hence be worthwhile to conduct a parametric study for statistical parameters 

used in joint orientation simulation. 

 

Table 4.13 Probabilistic block analysis with pure Fisher distribution 

Failure mode Mean Median Stdev Percentage (%) 

Sliding along plane1 170.36 150.54 135.15 70.42 

Sliding along plane2 0.00 0.00 0.00 0.00 

Sliding along plane3 4.17 4.17 2.59 0.20 

Sliding along plane12 420.26 406.50 205.93 3.65 

Sliding along plane13 235.54 211.12 206.87 6.18 

Sliding along plane23 299.11 231.96 254.92 2.43 

Fallout 37.08 22.88 67.27 17.12 

 

*Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. 

Sliding along intersection 12 means unstable block will fail by sliding along the intersection 

of discontinuity planes from joint set 1 and joint set 2. 
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Table 4.14 Probabilistic block analysis with pure Kent distribution 
 

Failure mode Mean Median Stdev Percentage (%) 

Sliding along plane1 198.60 169.36 148.09 82.36 

Sliding along plane2 0.00 0.00 0.00 0.00 

Sliding along plane3 0.00 0.00 0.00 0.00 

Sliding along plane12 482.16 454.68 208.23 3.63 

Sliding along plane13 184.11 107.39 209.83 1.41 

Sliding along plane23 0.00 0.00 0.00 0.00 

Fallout 51.35 13.74 117.51 12.60 

  

*Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. 

Sliding along intersection 12 means unstable block will fail by sliding along the intersection 

of discontinuity planes from joint set 1 and joint set 2. 

 
Figure 4.21 Comparison of unstable block size (span limited) generated by 

simulation with pure Fisher distribution and simulation with pure Kent 

distribution 
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4.7.4 (a) Parametric Study of Statistical Distribution Parameters on one 

Joint Set 

Fisher distribution only has two statistical parameters: mean orientation and 

concentration factor, whereas more parameters are needed to describe Kent 

distribution. Besides mean and concentration, Kent distribution needs to 

consider ovalness of distribution contour and rotation matrix which comprise 

the major axis and minor axis of an elliptical distributed contour. In order to 

perform a case study on the effect of each statistical parameters, only one joint 

set (joint set 1) is assumed as distribution, whereas the other two joint sets 

(joint set 2 and 3) are assumed to possess extremely high concentration which 

can be assumed as fixed points. Therefore, 3 statistical parameters (such as 

concentration κ, ovalness β and rotation matrix Γ) are investigated in this 

parametric study. 
i  means the rotation matrix which can rotate the origin 

data points anti-clockwise i around its corresponding mean orientation. The 

results are shown in Figures 4.22 to 4.24. 
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Figure 4.22 Block size distributions β = 50 and   with different κ values 

 

 

 

Figure 4.23 Block size distribution κ = 100 and  with different β values 



139 

 

 

 

Figure 4.24 Block size distribution κ = 100 β =50 with different Γ 

 

Figure 4.22 shows the effect of concentration parameter κ on block size 

determination with the value of the other two parameters (β= 50 and 
0 ) 

unchanged. As discussed in Chapter 3,  value is never less than 2  in 

unimodal Kent distribution. Therefore,  is increased to beyond a value of 100. 

When  value increases from 100 to 200, the joint set data are more 

concentrated around its mean value. Unstable block size distributes around the 

deterministic analysis result (277.39m
3
).  If  is very large (such as κ=5000), 

the block size will distribute very closely to its deterministic answer. This 

result makes sense that high concentrated parameters will produce a less 

scatter result. Besides, it is clearly to see that when κ increases from 100 to 

120, the scatter of block size distribution reduces significantly. After that, 

Joint set 2 Joint set 3 

Joint set 1 with different orientations 

Stereonet  
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although the block size distribution becomes more concentrated, the trend is 

not significant. 

Figure 4.23 shows the effect of ovalness factor β on block size determination 

with the other two parameters (κ=100 and 
0 ) unchanged. As β value 

decreases from 50 to 0, which implies that the joint set distribution contour 

shape changes from ellipse to circle, the block size is distributed more towards 

its deterministic result. When β reduces from 50 to 40, the dispersion of block 

size distribution reduces significantly. However, when β reduces further from 

40 to 0, the increase in block size distribution concentration is not obvious.  

Figure 4.24 shows the effect of rotation matrix Γ on block size determination 

with the fixed concentration (κ=100) and ovalness (β=50) values. Four 

rotation angles (0°, 45°, 90°, 135°) are used to rotate origin joint set 1 anti-

clockwise around its mean orientation. The results show that 45 °  anti-

clockwise rotation of joint set 1 is the most favorable joint set orientation, 

which produces the most concentrated rock block size distribution. A rotation 

of 135° will result in the most dispersed block size distribution. 

In summary, statistical parameters (κ, β, Γ) play important roles in joint 

orientation simulation of this case study. Increase in joint orientation 

concentration (κ increases) can result in a less distributed block size 

distribution. Decrease in ovalness β value will lead to a more concentrated 

block size distribution. When β=0, Kent distribution will be simplified to 

Fisher distribution. Therefore, if a non-symmetrical joint orientation is 

modelled by a Fisher distribution (β value is assumed as zero), block size 
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would be more concentrated than that modelled with Kent distribution. Thus, 

uncertainty in block size determination will be reduced. If reinforcement 

design is proposed based on this result, high risk could be involved. Besides, 

rotation matrix also has an impact on block size distribution. If a joint set has 

an unfavorable orientation, the block size can distribute further in a larger 

range. Therefore, the scatter of joint orientation should be appropriately 

modelled in rock block analysis. 

Owing to time limit of this study, parametric study of varying two joint sets 

and three joint set statistical parameters is not included. Nevertheless, the 

parametric study of these single joint set statistical parameters has 

demonstrated the importance of joint orientation simulation. Further studies 

are clearly needed on this subject matter. 

4.7.4 (b) Parametric Study of Concentration Parameter κ on three Joint 

Sets 

The parametric study in Section 4.7.4 (a) shows the importance of joint 

orientation simulation by varying statistical parameters of single joint set. This 

section will focus on parametric study of the concentration parameter κ and 

study the effect on unstable block size determination when more than 1 joint 

set concentration change while the other two statistical parameters (ovalness β 

and rotation matrix Γ) remain constant. Eight possible combinations can be 

determined by varying determined concentration parameter κ (shown in Table 
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4.12) with very high concentration (κ=5000). They are listed in Table 4.15 and 

corresponding analysis results are shown in Appendix  Figures 1 to 8. 

 

Table 4.15 Combinations of varying concentration parameter κ 
 

Case 

number 
𝜅1 𝜅2 𝜅3 Results 

1 71.91 46.77 106.26 Appendix 1 Figure 1 

2 5000 5000 106.26 Appendix 1 Figure 2 

3 5000 46.77 5000 Appendix 1 Figure 3 

4 71.91 5000 5000 Appendix 1 Figure 4 

5 71.91 46.77 5000 Appendix 1 Figure 5 

6 5000 46.77 106.26 Appendix 1 Figure 6 

7 71.91 5000 106.26 Appendix 1 Figure 7 

8 5000 5000 5000 Appendix 1 Figure 8 

*𝜅1 is the concentration parameter of joint set 1;  𝜅2 is the concentration 

parameter of joint set 2 and 𝜅3 is the concentration parameter of joint set 3 

 

Figure 4.25 compares block size distribution with different κ values for each 

joint set. Case 8 assumes joint concentration parameter (κ) of 3 joint sets is 

5000 which means the joint set is very concentrated with small variation 

(simulation result is shown in Appendix). Probabilistic analysis shows that 

block size distributes in a narrow range around its deterministic analysis result 

which is 277.39 m
3
. However, block size still can differ from 180 m

3
 to 320 

m
3
. The normal concentration parameter κ in nature rock is only 5 to 300 

(Leung and Quek, 1995). Therefore, larger variation in block size is expected 
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if determined concentration parameters (shown in Table. 4.12) are used for 

rock block 

 

* 𝜅1 is the concentration parameter of joint set 1;  𝜅2 is the concentration parameter of joint 

set 2 and 𝜅3 is the concentration parameter of joint set 3 

Figure 4.25 Block size distribution by vary concentration parameter κ of each 

joint set 

 

determination. Block size of case 2, 4, 7 also distribute around the 

deterministic analysis result but in a larger range. Applying determined 𝜅3 in 

block analysis (Case 2) leads to a larger variation in block size than applying 

determined 𝜅1 in block analysis (Case 4). In the meanwhile, applying both 𝜅2 

and 𝜅3 in block analysis (Case 7) will result in the largest variation as shown 

in Table 4.16. In these cases, 𝜅2 value keeps unchanged as 5000. Varying of 

𝜅1 and 𝜅3  value can cause dispersion of block size around its deterministic 
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analysis block size. However, case 1, 3, 5 and 6 predicts similar block size 

distribution, but they are much different from case 2, 4, 7 and 8. One can 

observe that case 1, 3, 5 and 6  
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Table 4.16 Percentage of each failure mode and statistical parameter of different case 
 

 Statistical parameter Failure mode (%) 

 Mean 

block 

size (m
3
) 

Standard 

deviation 

(m
3
) 

Sliding 

along 

plane 1 

Sliding 

along 

plane 2 

Sliding 

along 

plane 3 

Sliding 

along 

plane 12 

Sliding 

along 

plane 13 

Sliding 

along 

plane 23 

Fallout Total 

Case 1 187.16 155.28 83.10 0 0.03 3.93 2.04 0.05 10.86 100 

Case 2 295.46 134.74 99.6 0 0 0 0.03 0 0.37 100 

Case 3 169.57 113.16 90.53 0 0.05 1.14 0 0 8.27 100 

Case 4 269.45 60.71 99.07 0 0 0.23 0.70 0 0 100 

Case 5 174.07 125.17 86.74 0 0.05 4.6 0.74 0.02 7.84 100 

Case 6 184.75 145.34 88.14 0 0.05 0.90 0.04 0 10.87 100 

Case 7 302.85 145.36 97.10 0 0 0.34 2.12 0.01 0.43 100 

Case 8 262.29 18 100 0 0 0 0 0 0 100 

Deterministic 

analysis 

277.39 - 100 - - - - - - 100 

1
4

4
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adopt the determined 𝜅2 value. No matter how 𝜅1 and 𝜅3 vary, the determined 

block size distributions are very similar. Therefore, one can conclude that 

variation in joint orientation concentration of joint set 2 has a greater influance 

on block size identification for this case. 

4.8 Summary  

In this chapter, probabilistic analysis for unstable block identification is 

presented. Ubiquitous approach is assumed to consider all possible unstable 

blocks which may be formed during excavation. Monte Carlo simulation was 

created with reasonable rock parameter distributions. After sufficient number 

of iterations, unstable block characteristics can then be determined. Case 

studies are provided for probabilistic analysis. The probabilistic analysis 

results show that more failure modes with different probabilities are predicted 

compared to deterministic analysis as shown in Section 4.7. Besides, 

deterministic analysis predicts failure mode that may not be the dominant 

failure mode in probabilistic analysis. This depends on relative position and 

concentration of each joint set. Although the probability of different failure 

modes remains unchanged with/without considering size parameters, size 

parameters have a great significant on rock block size determination. Rock 

block size would be significantly smaller if size parameters are taken into 

consideration.  

If Fisher distribution is misused for non-symmetrical data simulation, unstable 

rock block size distribution and probability of each failure mode will change. 
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Parametric studies are used to investigate the effect of joint orientation 

simulation with different distributions on bock size determination. Statistical 

parameters (κ, β, Γ) play important roles in joint orientation simulation and 

variation of each of these statistical parameters can lead to changes in unstable 

block volume. Small variation in joint orientation can result in block size 

varying in a large range. As shown in case study presented in Section 4.7.4, 

the statistical parameters of a particular joint set (joint set 2) may have greater 

impact on block size determination compared with that of other joint sets.  
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Chapter 5 Rock Support Design 

5.1 Introduction 

Safety is a prime concern in rock engineering. An adequate reinforcement 

system that supports unstable rock blocks has to be carefully designed. A 

successful design of rock support depends on the proper identification of 

potential unstable rock block (discussed in Chapter 4) and the installation of 

sufficient rock bolts to counter any form of instability (Tyler et al, 1991). 

Rock bolt design parameters such as bolt length, capacity and installation 

spacing are the major considerations in rock reinforcement design. As shown 

in Figure 5.1, these parameters are closely related to the predicted rock block 

characteristics. However, variation in rock parameters can have tremendous 

impact on rock block identification. Thus, designer may not be able to provide 

a set of reliable reinforcement parameters using deterministic analysis. In 

addition, rock reinforcement design criteria need to be established to check 

whether a design is acceptable. A factor of safety (FS) is commonly used to 

ensure that the design is safe. Despite conventional belief, a design with a 

higher FS does not necessarily mean that the design has lower risk. The 

probability of failure (PoF) might in fact be higher due to the large variability 

and uncertainty associated with loading conditions (Dunn, 2013). Therefore, 

the reliability-based design is investigated in this chapter and a parametric 

study on rock reinforcement design is performed. 
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Figure 5.1 Procedure for reinforcement design of single blocks 
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Figure 5.2 A tetrahedral block with its associate reinforcement (after Windsor 

and Thompson, 1992) 
 

 

Figure 5.3 The reinforcement design length relative to block size (after 

Windsor and Thompson, 1992) 
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5.2 Reinforcement Design 

5.2.1 Rock Bolt Length 

Bolt length plays an important role in tunnel roof reinforcement design. Rock 

bolt is installed into adjacent stable strata to hold the unstable block. Rock bolt 

length is determined based on the total thickness of unstable strata. A 

minimum reinforcement length is required to achieve target bolt capacity 

(Figure 5.2). However, the portion of rock bolt within the unstable zone may 

not be sufficient to contribute sufficient bolt capacity. Therefore, minimum 

anchorage length in stable zone is required to ensure that adequate bolt force 

could be generated (Figure 5.3). 

The minimum anchor length, 1L , can be calculated by (Hanna, 1982) 

1
A

bond

P
L

d 
       (5.1) 

where AP   is the bolt load; bond  is the average working bond stress between 

grout and borehole wall or grout and bolt; d is the diameter of borehole if bond   

is the average working bond stress between grout and borehole; or the 

diameter of bolt if bond   is the average working bond stress between grout and 

bolt. 

The total rock bolt length can be calculated by  

1 2lB L L        (5.2) 
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where 𝐵𝑙 is the length of bolt; 𝐿1 is the length of anchor; 2L  is the length in 

zone to be stabilized. The apex height of the unstable block wH  is usually 

chosen as the depth of the stable zone (as shown in Figure 5.4). However, the 

results from probabilistic analysis in Chapter 4 show that wH  varies with a 

large range due to the uncertainty of rock parameters. Therefore, the rock bolt 

length has to be carefully designed. Tyler et al. (1991) proposed a regression 

analysis of apex height with different levels of risk. The minimum rock bolt 

length can be calculated from the factored risk based on the best fit equation. 

Details are given in Tyler et al. (1991).  

 

 

 

 

 

 

 

 

 

 

 

Falling block 

𝐿2 

𝐿1 

𝐻𝑤 

Rock bolt 

Figure 5.4 Design of length of rock support (after Chen, 1994) 
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5.2.2 Number of Bolts 

A sufficient number of rock bolt should be applied to stabilize the target block. 

The total resistance force required to stabilize the unstable block can be 

calculated using block force equilibrium. Then the required number of bolts, 

bN  can be calculated using  

s t
b

b

F F
N

A
       (5.3) 

where sF  is factor of safety; tF  is the resultant force; bA  is the cross section 

of a single bolt;   is the tensile strength of bolts if support is required to 

prevent a wedge falling directly from the roof;   is the shear strength of bolts 

if support is required to prevent sliding from the roof or the walls on one or 

two joint planes.  

In rock tunnel construction, the position of rock bolts has to be specifically 

defined. Reinforcement are usually designed for tunnel segment and the 

reinforcing elements are installed at constant spacing over a designed section. 

However, the number of active reinforcing element per block can vary. As 

shown in Figure 5.5, the number of active rock bolt on the block may reduce 

from 4 to 2 because of different rock bolt positions relative to the given shape. 

In addition, the block excavation face can also change with variation in rock 

parameters. The number of reinforcing element per block and the excavation 

face area of the block will govern the spacing for rock bolt design (Windsor 

and Thompson, 1992). Besides, the number of rock bolt on each block is 

important for stability assessment of a reinforced rock block. Hence, it should 
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be carefully determined. Windsor and Thompson (1992) and Windsor (1999) 

emphasized the importance of considering variation of number of rock bolt on 

each block, but they did not mention how to tackle the problem. Therefore, a 

simple method to determine active rock bolt number on each block is proposed 

and it will be discussed in detail in Section 5.5. 

 

 

Figure 5.5 Varying the relative position of the block with in a reinforcement 

array (after Windsor, 1999) 
 

5.2.3 Resultant Force 

The resultant force is important for determining reinforcement capacity and 

number of bolts. It is defined as the sum of all forces acting on the unstable 

block. The resultant force is mainly caused by self-weight of the unstable 

block and is closely related to block failure mode. The probabilistic analysis 

presented in Chapter 4 had shown that more failure modes would be 

Collar positions 
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Reinforced 
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Rock bolt 
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encountered if variation in rock parameters is considered. Therefore, the 

resultant force has to be carefully considered using block failure mode on the 

basis. 

5.2.3.1 Resultant force of a fallout failure 

If an unstable block has the tendency to fail by fallout, the resultant disturbing 

force (Ft) is its self-weight as shown in Figure 5.6. 

tF W      (5.4) 

where W is the dead weight of block. The displacement vector is vertically 

downward and separation will occur on all discontinuities. Frictional force and 

cohesion do not need to be considered in the computation of resultant force 

acting on rock block. 

 

 

Figure 5.6 Fallout failure 
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5.2.3.2 Sliding along a single discontinuity 

If an unstable block has the tendency to fail by sliding along one discontinuity 

planes, the forces acting on the block are its self-weight, friction and cohesion. 

The resultant force comprising of normal compression and sliding are shown 

in Figure 5.7.  

The total resultant disturbing force can be calculated by 

 t i i i i riF W sin cos tan C A          (5.5) 

where 𝐹𝑡 is the resultant force in the sliding direction; W is the weight of the 

wedge; 𝛼𝑖 is the dip of the ith plane; i  is the friction angle of the i-th plane; 

iC  and riA   are the cohesion coefficient and area of the i-th plane, respectively. 

                 

 

Figure 5.7 Sliding along a single discontinuity 

(a) 3 D view 
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5.2.3.3 Sliding along intersection of two discontinuities 

If an unstable block fails by sliding along the intersection of two 

discontinuities as shown in Figure 5.8, the resultant force is acting along this 

intersection. In order to find 𝑅𝑖 and 𝑅𝑗, the equilibrium equation is established 

horizontally and vertically as  

i i j jR cos R cos                (5.6) 

i i j j ijR sin R sin Wcos           (5.7) 

where 𝑅𝑖 and 𝑅𝑗 are the normal reactions provided by planes i and j; 𝜓𝑖 and 𝜓𝑗 

are the angle between planes i and j and the vertical plane passing through the 

intersection of planes i and j respectively; and 𝛾𝑖𝑗  is the dip angle of the 

intersection along which the wedge slides. 

 

                      

Figure 5.8 Sliding along intersection of two discontinuities (after Hoek and 

Bray, 1979) 
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Solving Equations (5.6) and (5.7) and let
ij i j     , Equations (5.8) and 

(5.9) obtains 

/i ij i ijR Wcos cos sin        (5.8) 

/j ij j ijR Wcos cos sin        (5.9) 

The resultant force, Ft, can be found using  

 ij

t ij i i j j i i i j

ij

Wcos
F Wsin cos tan cos tan C A C A

sin


  



 
       

  

    (5.10) 

where i   and 
j   are the friction angles of planes i and j respectively; iC  

and 
jC   are the cohesion of plane i and j respectively ; and iA  and 

jA  are the 

areas of planes i and j respectively. 

5.2.4 Rock Bolt Capacity 

The single rock bolt capacity depends on bolt diameter and steel strength. 

Once the number of rock bolt applied on each unstable block is determined, 

the diameter of bolt can be estimated (Biron and Arioglu, 1983) 

2 s

a

R F
d




       (5.11) 

where sF  = Factor of Safety; R  = allowable axial force in bolt; and a  = 

yield strength of steel 

Equation (5.11) determines the maximum capacity of a single rock bolt. 

However, as discussed in Section 5.2.1, the bolt carrying capacity is 

determined by not only the bolt diameter and steel strength but also by the 



159 

 

anchorage capacity. Hence, the bearing capacity of a rock bolt is the minimum 

of single bolt capacity and bolt anchorage capacity.  

5.2.5 Bolt Angle 

Bolt installation angle has a significant effect on bolt bearing capacity. Rock 

bolts should be installed in the direction that the maximum bolt capacity can 

be reached (such as tension bolts achieve their maximum capacity in the 

direction of displacement vector and shear bolts achieve their maximum 

capacity in the direction normal to the sliding plane). However, as mentioned 

in Section 5.2.2, rock bolt are installed uniformly along a tunnel section. The 

bolt installation angle varies due to variation in rock block failure modes 

(discussed in Chapter 4). If a rock bolt is not installed in the optimal direction, 

the effective rock bolt capacity has to be reduced from its nominal capacity. 

The block displacement vector and the orientations of the block faces are 

commonly used to assess the effectiveness of reinforcement installed at 

different orientations (Figure 5.9). The reinforcement effectiveness factor E 

can be determined by 

t

s

E



       (5.12) 

where t  is axial tension of reinforcement; B is block displacement resolved 

onto the discontinuity; and s  is block displacement vector resolved onto the 

discontinuity. 
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Figure 5.9 Rock bolt deformation with unfavorable bolt angle (after Windsor 

and Thompson, 1992) 
 

5.2.6 Rock Bolt Spacing  

Beside bolt length, bolt spacing is another important parameter in rock support 

design. If the bolt spacing is too small, more rock bolts are required to be 

installed and cost of design will increase. On the other hand, if spacing is too 

wide, the unstable block cannot be effectively stabilized. Thus, a reasonable 

bolt spacing has to be determined. In general, ground condition such as strata 

thickness, bolt characteristics can affect bolt spacing. Therefore, past research 

studies had attempted to relate spacing design with rock or tunnel 

characteristics. Many empirical approaches were proposed. Stillborg (1986) 

proposed that bolt spacing, Bs, should be designed as 3s pB S  (where pS  is 

joint spacing) in a jointed rock mass and half the bolt length in other rock 
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conditions. Coates and Cochrane (1970) related bolt length and roof span to 

rock bolt spacing design: 

2
B

3
s l      or     

2

9
b L     (5.13) 

where b  = Bolt spacing; l  =Bolt length; and L  =Roof span. 

A general rule to obtain the maximum bolt spacing is that the maximum 

spacing is the least of one half of the bolt length; one and one-half the width of 

the critical and potentially unstable rock blocks; and 6 feet (1.83m). The 

minimum bolt spacing should not be less than 3 feet (0.914m) (Luo, 1999). 

5.4 Design Criteria 

5.4.1 Introduction 

As discussed in Chapter 4, parameter uncertainty is inevitable in rock support 

design. Besides, conceptual uncertainty in failure mechanism may also be 

involved. Therefore, it is necessary to establish some criteria to decide 

whether a design is acceptable. A reasonable acceptance criterion should be 

applied to capture the various uncertainties associated with a particular design. 

In geotechnical engineering, the factor of safety (FS) is commonly used. FS is 

a deterministic measure of the ratio between the resisting forces (capacity) and 

driving forces (demand) of a failure mechanism (Wesseloo and Tead, 2009). 

The key block from deterministic analysis is commonly used for 

reinforcement design. However, deterministic analysis might predict the major 

failure mode wrongly as shown in Chapter 4. As a result, the FS used in 

reinforcement design may not guarantee that the design is 100% safe. 
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Therefore, probability of Failure (PoF) is increasingly used in engineering 

design to consider variations in capacity and demand (Dunn, 2013). The 

degree of confidence in the capacity depends on the variability in the material 

properties; testing errors; installation practices; quality control procedures and 

others. Similarly, the degree of confidence in demand depends on removable 

block size; loading conditions; etc. (Dunn, 2013). Figure 5.10 shows the basic 

concept of PoF. Failure occurs only when the capacity function curve is less 

than the demand function curve shown as shade area. FS can be used as an 

indicator to evaluate the system failure rate. If FS is less than 1, the system is 

considered unstable. The PoF (FS<1) is shown by the shaded area in Figure 

5.11. 

 

Figure 5.10 Probability of Failure concept 
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Figure 5.11 PDF of FS distribution 

  

5.4.2 Factor of Safety vs. Probability of Failure 

A large FS indicates a larger difference between demand and capacity. This 

means that design is safer. However, if the FS used is small as shown in 

Figure 5.12, the failure area will be large. The choice of a suitable FS value for 

design indicates the risk tolerance that a design engineer is prepared to bear. 

Currently, the selection of an appropriate design FS value is empirical. Hoek 

et al., (1995) suggested a FS value of 1.3 for temporary openings and 1.5 to 

2.0 should for permanent excavations. It is to be noted that a design with a 

large FS value may not mean that there is a lower risk. Using a slope design 

example, Dunn (2013) showed that the PoF for a design with FS value of 1.5 
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can be higher than that of the design with a FS value of 1.35 (Figure 5.13). It 

was also found that it is equally applicable to rock excavation design.  

 

Figure 5.12 High probability of failure 

  

 

Figure 5.13 Variation effect on PoF with different FS 
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Although the use of PoF is increasing (Fenton, 1997; Phoon, 2004), the most 

widely used acceptance criterion is still FS in engineering practice (Priest and 

Brown, 1983; Lunder, 1994; Carter and Miller, 1995). PoF is not commonly 

used in ground support design in underground mining (Dunn, 2013), because 

more detail rock information is required for PoF analysis. However, designing 

with PoF is more reliable. Therefore, a reliability-based design is studied in 

Section 5.6 through case study. 

5.5 Model for Reliability Assessment 

The proposed reinforcement design should be assessed for reliability. Monte 

Carlo simulation is commonly adopted for this reinforced block assessment 

(Dunn, 2013). Three types of rock block distributions (span limited block 

distribution, trace length limited block distribution and spacing limited block 

distribution) can be produced by probabilistic block analysis (shown in 

Chapter 4). The range of block size defer tremendously. Excavation span can 

determine the largest possible rock block during excavation; although, it is 

unlikely to occur. This is because the size of rock discontinuities is finite. Size 

parameters such as trace length and spacing can restrain the rock block size 

(discussed in Chapter 4). Thus, either trace length limited block size or 

spacing limited block size should be used for reliability assessment has to be 

carefully chosen. 

Spacing limited block might be larger than trace length limited block as shown 

in Figure 5.14(a). This condition could only occur when discontinuity size is 
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large enough to form the spacing-limited block. However, if the size of each 

discontinuity is insufficient, the spacing-limited block can only be partially 

formed (such as block 1 shown in Figure 5.14(a)). Partially-formed blocks are 

treated as stable in the stability analysis. Joint discontinuities can intersect 

with each other to form the largest possible block, trace length limited block, 

in the ubiquitous approach. Therefore, trace length limited block should be 

used for reinforcement reliability assessment, if spacing-limited block is larger 

than trace length limited block. 

 

 

Figure 5.14 Size parameter limited blocks 

 

On the other hand, rock discontinuity spacing defines the largest individual 

rock block (Windsor, 1999). It could be smaller than trace length limited block 

(such as case study shown in Section 4.7.2). This means the trace length 
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limited block can be intersected by other discontinuities to form smaller 

individual blocks as shown in Figure 5.14(b). In other words, the trace length 

limited block may consist of several individual spacing limited blocks. 

However, trace length limited block is still the largest block that could form 

during excavation. Therefore, trace length limited block should be used for 

reliability assessment, even though spacing-limited block is smaller than trace 

length limited block. 

Monte Carlo simulation is commonly used to investigate the reliability of the 

proposed design (Tyler et al., 1991; Windsor, 1999). Rock reinforcement is 

applied to all simulated blocks. The demand of each block can be derived by 

considering block dead weight, friction and failure modes. The capacity of 

active rock bolts can be determined based on the number of active rock bolts 

installed and effectiveness of each rock bolt. FS is evaluated to determine 

block stability. If FS is less than 1, the reinforced block is considered to be 

unstable. After a sufficient number of calculation is performed, the PoF can be 

derived. Reinassess is programed in Matlab for this stability assessment. The 

overall analysis process is shown in Figure 5.15 for the stability reliability 

computations. Preliminary reinforcement design parameters such as single bolt 

capacity, installation spacing, and installation angle are required as inputs to 

initiate the reliability assessment. The design needs to be revised until the 

design criteria are achieved. In addition, design optimization is performed to 

determine the most economical design. 
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Figure 5.15 Rock design procedure 
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As discussed in Section 5.2.2, the number of active reinforcing elements for 

each unstable block is important for reinforced block assessment. This number 

may vary depending on the bolt position relative to the block face as shown in 

Figure 5.5. Thus, specific rock bolt position relative to a rock block should be 

considered. Rock reinforcement element matrix should start with a random 

position to simulate the real installation. Figure 5.16 illustrates a simple 

approach to determine the number of active reinforcing elements in the 

stability analysis. The computation steps are: 

Step 1: Move ABC  to A B C     along vector 'AA  , where A   is the origin  

Step 2: Rock bolts are placed with constant spacing in quadrants with positive 

x.  

Step 3: A random movement vector ''AA  ( ,x y  ) is generated, where 

 0,x l   and  0,y l   

Step 4: Move A B C     to A B C     along vector A A   .  

Step 5: The active number of rock bolts could be determined by counting the 

number of rock bolts bounded by triangle A B C    .  
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Figure 5.16 Number of active rock bolt determination 

 

This approach generates a set of random rock bolt position relative to the 

unstable block. The number of active rock bolts can then be derived. A Matlab 

fuction checknum is programmed for this purpose. The capacity of rock bolts 

installed on a block could be determined by 

1

N

i i

i

Capacity C E


      (5.14) 

where N  is the number of effective rock bolts; 
iC  is tension capacity of  ith 

rock bolt, if rock bolt is used for taking axial load.   iC   is shear capacity of  ith 

rock bolt, if rock bolt is used for taking shear load; iE  is the effectiveness of 

the ith rock bolt determined using Equation 5.12. The demand can be 
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determined from calculating the resultant force as discussed in Section 5.2.3. 

Then, the FS of each rock block can be determined. After a sufficient number 

of iterations is performed, the PoF of the proposed design can be derived.   

5.5.1 Model setup Assumptions 

Uncertainty in ground condition and different quality of installations often 

make it difficult to assess the stability of reinforced blocks. As such, 

simplifications and assumptions are necessary to simplify the complicated 

problem at hand. They are: 

 The rock bolt is assumed to be loaded uniformly in each block. Small 

relatively rotation is ignored.  

 If the minimum rock bolt length does not meet the minimum 

reinforcement length (apex height + minimum anchor length), the 

effectiveness of this rock bolt is assumed to be zero. 

 Load-displacement response of the rock bolt is not considered in this 

study. 

 The diameter of rock bolt is assumed be very small 

 All rock bolts are assumed to have good quality control 

 Rock mass is assumed to be a rigid body. Stress reduction during 

excavation is not considered. 
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5.6 Case study  

A factor of safety (FS) is commonly used to ensure that the design is safe. 

However, a design with a higher FS does not necessarily mean that the design 

has lower risk (Dunn, 2013). Therefore, rock reinforcement design based on 

deterministic block analysis with FS is assessed for reliability. Parametric 

study is performed to investigate the effect of rock block parameters (bolt 

length, capacity and spacing) variations on design reliability. 

5.6.1 Singapore Jurong formation (1) 

Block analysis is performed as part of a feasibility study for tunneling in the 

Jurong Formation as presented in Section 4.7.2. Small size parameters are 

chosen based on Grenon and Hadjigeorgiou (2003). The block analysis result 

shows that small rock blocks are likely to form during excavation. Since rock 

bolt is hardly applicable for highly fractured rocks, other reinforcements such 

as concrete lining or meshing with shotcrete need to be considered. However, 

large discontinuity size is also possible in cavern construction.  Rock bolts are 

needed to stabilize the unstable rock block. The rock joint data in Section 4.7.2 

are analyzed again with larger size parameters. A lognormal distribution with 

a mean length of 3m and a 1m standard deviation is assumed as trace length 

distribution. An exponential distribution with a mean 2m spacing is assumed 

as joint spacing distribution. The deterministic results are shown in Table 5.1 

and the probabilistic analysis results are presented in Figures 5.17 to 5.19. 
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Table 5.1 Deterministic analysis result 
 

 Volume     

(m
3
) 

Apex 

height (m) 

Excavation 

face area (m
2
) 

Failure mode 

Span limited        21.292 2.683 34.831 Sliding along plane 1 

Trace length 

limited 

0.114 0.469 1.063 Sliding along plane 1 

Spacing limited 0.012 0.220 0.235 Sliding along plane 1 

 

* Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. 

 

 

 

Figure 5.17 CDF of block size considering different size parameters 
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Figure 5.18 CDF of excavation face area considering different size parameters

 
Figure 5.19 CDF of apex height considering different size parameters 

 

Excavation face area (m
2
) 
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Figure 5.20 Contour plotting and joint set identification (pole plot) 

 

Conventional reinforcement design based on deterministic analysis with FS=2 

is proposed as a preliminary design. The span-limited block size is adopted to 

be conservative. Since the predicted failure mode is sliding along discontinuity 

plane from joint set 1 and joint set 1 has deep dip angles (70° to 84° as shown 

in Figure 5.20), the normal force on sliding plane is small. Thus, the total 

resistance contributed by friction is negligible. Therefore, the vertical tension 

Joint set 3 

Joint set 2 

Joint set 1 
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rock bolt is proposed. Using the equations listed in Section 5.2, the proposed 

design is presented in Table 5.2. 

Reinassess is used to assess the reliability of the proposed design. PoF (FS<1) 

of reinforced block is calculated after 10,000 iterations. The PoF of the 

preliminary design is presented in Figure 5.21. Although the largest span 

limited block with FS of 2 is used for rock bolt design, 62% of reinforced 

blocks are still classified as unstable. Therefore, the preliminary design needs 

to be revised. Parameters such as rock bolt length, capacity and installation 

spacing will affect the stability of reinforced block (Windsor, 1999). Therefore, 

a parametric study is performed using a case study to investigate the effect of 

each rock bolt parameter on the reinforced block stability. The results are 

shown in Figures 5.22 to 5.24. 

Table 5.2 Preliminary design parameters 
 

Rock bolt design parameters Design value 

Bolt length 3m 

Capacity 50kN 

Installation angle Vertical 

Installation pattern 2m by 2m square pattern 
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Figure 5.21 PoF of deterministic design with span limited block 

 

The PoF decreases with increasing bolt length until the maximum bolt 

capacity is achieved. As shown in Figure 5.22, PoF remains at around 10% for 

bolt length greater than 5m. It was pointed out at Section 5.2.4 that the overall 

bolt bearing capacity should be the minimum of the single bolt capacity and 

bolt anchorage capacity. Bolt anchorage capacity is closely related to the bond 

force developed by rock bolt portion in the stable zone. If bolt anchorage 

capacity is less than single bolt capacity, the overall bolt bearing capacity 

increases with bolt length until bolt anchorage capacity equals to single bolt 

capacity. However, if the bolt anchorage capacity is larger than the maximum 

single bolt capacity, the rock bolt properties (such as rock bolt diameter and 

steel strength) will govern the maximum capacity. The overall rock bolt 

Unstable 
Stable 
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bearing capacity will not change with increase in bolt length. Therefore, if 

rock bolt design with sufficient anchorage length is used to stabilize the 

unstable block and this reinforced block is still classified as unstable, thus 

increase in rock bolt length will not enhance the stability of the block.  

 

Figure 5.22 FS distribution of 30kN rock bolt installed with 1m by 1m square 

pattern and various bolt length 
 

 

PoF decreases with an increase in single bolt capacity. As shown in Figure 

5.23, PoF decreases from 65% to 14% as the rock bolt capacity increases from 

10 kN to 30 kN. This observation is attributed to the fact that the total 

resistance on each reinforced block increases as bolt capacity increases. As a 

result, number of stabilized rock block increases. However, the PoF remains at 

around 15% when bolt capacity increases from 30 kN to 50kN. This is because 

the effectiveness of rock bolt (which is related to bolt length) governs the total 
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resistance on a reinforced block. For example, if a rock bolt is shorter than the 

minimum required anchorage length, the rock bolt cannot reach the stable 

zone and the effectiveness of this rock bolt is assumed as zero (basic 

assumption in Section 5.5.1). Therefore, the number of stabilized block does 

not increase with increase of rock bolt capacity. That is why PoF remains at 

about 15%. In addition, small blocks in between rock bolts are still possible to 

form. Rock bolt cannot stabilize them because the minimum spacing of rock 

bolt is 3 feet (0.914m). Therefore, in this case, rock bolt length and rock bolt 

spacing will limit the upper limit of a design. However, FS of single 

reinforced block still can increase with bolt capacity. As shown in Figure 5.23, 

PoF curve shifts to the right. This is because the overall capacity of a 

reinforced stable block increases as rock bolt capacity increases, given the 

same demand.   

Rock bolt spacing has a significant effect on the PoF of a design. A small bolt 

spacing means that there is a higher chance for rock bolts to intersect the 

unstable block. The increase potential of having more active rock bolt on each 

block leads to an increase in total resistance capacity of reinforced block. The 

number of stabilized block out of total simulation will increase. As shown in 

Figure 5.24, PoF decreases from 75% to 17% when rock bolt spacing decrease 

from 2.5m to 1m. Therefore, PoF will drop with decrease in rock bolt spacing. 

However, caution should be taken. In practice, the minimum rock bolt spacing 

should not be less than 1m for installation (Luo, 1999). 
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Figure 5.23 FS distribution of 5 m rock bolt installed with 1m by 1m square 

installation pattern and various bolt capacity 

 

 
Figure 5.24 FS distribution of 5 m rock bolt installed with capacity 30 kN and 

different installation spacing 
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Table 5.3 Alternative design parameters and corresponding POF 
 

Rock bolt design 

parameters 

Design value 

Name Deterministic design Alternative 1 Alternative 2 

Bolt length (m) 3 5 5 

Capacity (kN) 50 50 30 

Installation angle Vertical Vertical Vertical 

Installation pattern 2m by 2m  1.2m by 1.2m  1m by 1m  

POF  62% 15% 15% 

 

 

Figure 5.25 Comparison of PoF for two different designs 
 

 

It is shown from the parametric studies that rock bolt length, bolt capacity and 

installation spacing have significant impacts on design POF determination. 

Each of these rock bolt design parameters can differ the design POF; therefore, 

designer can vary rock bolt design parameters to find design alternatives. For 
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example, a design criterion is chosen as 85% confidence limit for 

demonstration (assume 15% of small rock block). Design alternatives are 

presented in Table 5.3 and associate FS distribution is shown in Figure 5.25. 

Both alternative 1 and alternative 2 can achieve the design criterion (85%). If 

secondary reinforcement (such as shotcrete and meshing) is applied to 

stabilize the small block between rock bolts, rock tunnel can be fully stabilized. 

Both alternatives use 5m rock bolt. However, alternative 1 uses high capacity 

rock bolts (50 kN) with a 1.2 m spacing (high cost of single rock bolt but with 

less total number); whereas, alternative 2 uses low capacity rock bolts (30 kN) 

with 1m spacing (low cost of single rock bolt but with large total number). 

Which alternative is more economical should be further investigated.  

Owing to time limit of this study, cost analysis among design alternatives is 

not included. Grenon and Hadjigeorgiou (2003) emphasized that cost 

difference among design alternatives may be tremendous. Therefore, further 

studies are clearly needed on this subject matter.  

5.6.2 Singapore Jurong Formation (2) 

As discussed in Chapter 4, in some circumstance, deterministic analysis can 

product a reasonable estimation of the mean of rock block size and failure 

mode. If a reasonable factor of safety is applied, the rock reinforcement design 

could be sufficient to stabilize the unstable block. However, in some cases, 

deterministic block analysis can not give a representative block. This case 

study use a actual case to show that results from deterministic block analysis 
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with mean orientations is not suitable for rock reinforcement design. Another 

borehole coring data of Jurong formation is used as example for deterministic 

rock support design. Its joint orientation contour plot is shown in Figure 5.26. 

Deterministic block analysis result is shown Table 5.4 and Figure 5.27. 

 
Figure 5.26 Contour plotting and joint set identification (pole plot) 

 

 
 

Figure 5.27 Span limited block 
 

 

 

Joint set 2 

Joint set 1 

Joint set 3 

Tunnel 

Deterministic analysis 

predicted block 
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Table 5.4 Deterministic block analysis result 

Block size (m
3
) 0.056 

Apex height (m
2
) 0.11 

Excavation face area (m) 1.53 
 

As shown in Figure 5.27, deterministic block analysis with mean orientations 

predicts a very small span limited rock block (0.056 m
3
) and elongated shape. 

The failure mode is sliding along discontinuity from joint set 3. If size 

parameters (trace length and spacing) are considered, the unstable rock block 

will be restrained to an even smaller size. However, if variation in rock 

parameters is considered, possible rock block vary in a large range. The 

probabilistic analysis results are shown in Figures 5.28 to 5.31.  

 

 

Figure 5.28 CDF of block size considering different size parameters 
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Figure 5.29 CDF of apex height considering different size parameters 

 

 

 

 
 

Figure 5.30 CDF of excavation face area considering different size parameters 
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Figure 5.31 Figure 5.31 Volume distribution CDF according to different 

failure mode (a) span limited analysis result (b) trace length limited analysis 

result (c) spacing limited analysis result 
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Table 5.5 Probability of each failure mode out of total simulation number (%) 
 

Failure mode Span limited size 

Sliding along plane 1
*
 0.29 

Sliding along plane 2 0.2 

Sliding along plane 3 49.24 

Sliding along intersection 12
*
 0.08 

Sliding along intersection 13 0.98 

Sliding along intersection 23 1.35 

Fallout 47.35 

Total 100 
* Sliding along plane 1 means unstable block will fail by sliding along discontinuity plane 

from joint set 1. Sliding along intersection 12 means unstable block will fail by sliding along 

the intersection of discontinuity planes from joint set 1 and joint set 2. 

 

Probabilistic analysis shows that only about 5% unstable block is smaller than 

the deterministic predicted block size. Besides, probabilistic analysis also 

shows that the occurrence of fallout failure is about 50% (Table 5.5), whereas, 

deterministic block analysis only predicts sliding along discontinuity from 

joint set 3.Therefore, if rock reinforcement is designed based on this 

deterministic rock block. Although a large factor of safety is used, it is still 

cruel. 

5.7 Summary  

In this chapter, rock support design considerations are presented. Rock bolt 

design parameters such as bolt length, capacity and installation spacing are the 

main design criteria and should thus be carefully proposed. Variation in these 

rock bolt design parameters may have tremendous impacts on rock block 

stability as discussed in Chapter 4. Therefore, a reinforcement design based 
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only on deterministic rock block analysis with a factor of safety is deemed to 

be too cruel and may not be reliable. According to Dunn (2013), a design with 

a higher factor of safety does not necessarily mean that the design has a lower 

risk. Hence, the effectiveness of existing design based on deterministic 

approach is compared to reliability-based design. A case study on Singapore 

Jurong Formation was conducted using these two design approaches. The 

analysis result shows that although the largest span-limited block with a factor 

of safety of 2 is considered in rock bolt design, a 62% of probability of failure 

(high risk) can occur. In other words, deterministic design with factor of safety 

is not reliable for this case. Therefore, reliability-based design with POF is 

adopted to further evaluate the rock block stability. In reliability-based design, 

the rock bolt design parameters are adjusted until POF of reinforced rock 

block is less than the acceptable design criteria (POF less than certain amount 

which depends on the risk level that is acceptable by the designer). 

Subsequently, parametric study is performed to investigate the effects of 

above mentioned variation of rock bolt design parameters on POF 

determination.  The analysis results show that rock bolt design parameters 

have significant effect on reinforced block stability. Generally, increase in 

rock bolt length and capacity and decrease in bolt spacing will lead to a safer 

design. However, it was found that these variations in rock bolt design 

parameters may not be effective under certain conditions such as when a 

single bolt capacity is achieved, increase in bolt length will not enhance the 

block stability. This case study coincides with Tyler et al. (1990)’s finding that 
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the rock bolt length design has an upper limit. Beyond this maximum length, 

increase of rock bolt length does not enhance the stability of the block. 

Therefore, cautions should be taken when adjusting rock bolt design 

parameters to achieve a low POF. It is also observed that rock bolt designs 

with different rock bolt design parameters may be varied by the designer in 

order to achieve the acceptable design criteria. Therefore, cost effective 

analysis should be further investigated to select the most economical 

reinforcement design.  
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Chapter 6 Conclusion 

6.1 Summary of Findings 

The studies presented in preceding chapters aim to study the effect of variation 

in rock parameters on the rock reinforcement design of unstable rock blocks. 

The findings of this study are summarized as follows. 

1) Variation in joint orientation has demonstrated significant impacts on 

unstable rock block identification. All rock parameters should be 

simulated with appropriate distributions. Goodness of fit test results of 

6 locations of rock orientation data from Singapore and overseas with a 

total of 21 joint sets show that over 70% (15 out of 21) of joint sets 

originate from a non-symmetrical distribution. In other words, non-

symmetrical distributed joint sets are usually encountered in rock 

masses. Commonly assumed Fisher distribution fails to simulate non-

symmetrical distributed rock orientation data, whereas, Kent 

distribution can simulate the distribution well. 

2) Probabilistic analysis with Monte Carlo simulation has been conducted 

to consider variations in all rock parameters. The results show that 

more failure modes may occur with different probabilities, if joint 

orientation dispersion is taken account. Whereas, size parameters (joint 

trace length and spacing) have tremendous influence on rock block size 

determination. Rock block size would be significantly smaller if size 

parameters are taken into consideration. Besides, deterministic analysis 
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predicted failure mode may not be the dominant failure mode in 

probabilistic analysis and the corresponding block size is not 

necessarily conservative.  

3) If Fisher distribution is adopted for non-symmetrical joint orientation 

data simulation, unstable rock block size distribution and probability of 

each failure mode may not be appropriate as compared to the more 

robust simulation using Kent distribution. Parametric studies show that 

statistical parameters of Kent distribution (concentration κ, ovalness β, 

rotation matrix Γ) play important roles in joint orientation simulation 

and small variation in each of these statistical parameters can lead to a 

significant variation in unstable block size distribution.  

4) A reinforcement design based only on deterministic rock block 

analysis with a factor of safety is deemed to be cruel and may not be 

reliable. The effectiveness of existing design based on deterministic 

analysis is compared to reliability-based design with a case study on 

Singapore Jurong Formation. The analysis result shows that although 

the largest span-limited block with a factor of safety of 2 is considered 

in rock bolt design, a 62% of probability of failure (high risk) can 

occur. A parametric study is performed to investigate the effects of 

variation in rock bolt design parameters on reinforcement design 

probability of rock block failure.  The analysis results show that rock 

bolt design parameters have significant effect on reinforced block 

stability determination. Generally, increase in rock bolt length and 
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capacity and decrease in bolt spacing will lead to a safer design. 

However, it is found that these variations in rock bolt design 

parameters may not be effective once critical rock block is stabilized. 

6.2 Recommendations for Further Studies 

In this research, several assumptions and simplifications are used for rock 

block simulation. However, some improvements can be made for further 

studies as follows:  

1) Ubiquitous approach is assumed for rock block analysis. It assumes 

rock discontinuity can occur everywhere and anywhere in rock masses 

in order to capture all possible unstable rock block formed by rock 

discontinuities. However, in actual field conditions, the locations of 

rock discontinuities relative to the excavation are specific in rock 

excavation. Rock discontinuities may not intersect with each other to 

form unstable rock block, if the position of rock discontinuity is far 

from each other. Therefore, the position of rock discontinuities can be 

further considered in future probabilistic rock block analysis. 

2) Rock bolt design parameters (e.g. bolt length, capacity and spacing) 

have shown significant impacts on reinforced rock block stability 

analysis. Different combination of these rock bolt design parameters 

can achieve the same design criteria. Grenon and Hadjigeorgiou (2003) 

emphasized that cost difference among design alternatives may be 
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tremendous. Therefore, a cost effective analysis is recommended to 

optimize reinforcement design. 
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Figure 1 Block size analysis result with case 1 
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Figure 2 Block size analysis result with case 2 
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Figure 3 Block size analysis result with case 3 
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Figure 4 Block size analysis result with case 4 
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Figure 5 Block size analysis result with case 5 
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Figure 6 Block size analysis result with case 6 
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Figure 7 Block size analysis result with case 7 
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Figure 8 Block size analysis result with case 8 


