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Summary 

There has been intense research interest in ZnO due to its attributes of wide direct band gap (3.37 

eV), high exciton binding energy (60 meV) and piezoelectric properties, which have made it to 

be an extraordinary material for many applications, especially in optoelectronic devices. As a 

semiconductor material, doping of ZnO is crucial in tuning the various properties of ZnO. 

However, the various kinds of doping (intrinsic and foreign, p-type and n-type) and their effects 

on ZnO are far from fully understood now but are highly desirable from the perspectives of 

excellent ZnO based devices.  

In this thesis, we have studied the doping and its effects on the electrical and optical properties of 

ZnO film and nanostructures synthesized by pulsed laser deposition (PLD) and solution method 

(microwave and conventional water bath heating). Firstly, through the study of Ga-doped n-type 

ZnO films grown by PLD at different doping levels, it is found that the doping concentration has 

strong effect on the electron effective mass and scattering time. When the electron concentration 

is increased from 5.9×10
17

 cm
-3

 to 4.0×10
19

 cm
-3

, the electron effective mass varies from 0.23m0 

to 0.26m0. The study was accomplished by a combination of THz-TDS and Hall measurement 

techniques for the first time, which possesses the advantages of ease of measurement, accuracy 

and wide accessibility. It is also noticed that the electron mobility determined by THz-TDS can 

be 7 times greater than that obtained by Hall measurement and explained for the first time by the 

effect of carrier localization. 

Next, intrinsic doping in ZnO nanorods grown by solution method is studied, with the effects of 

pH and post annealing treatment. It is found that within the pH range of 10.3 – 10.9, the main 

intrinsic doping contributors are oxygen interstitials and zinc vacancies. A comparison between 
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the ZnO nanorods grown by traditional heated water bath method and microwave synthesis is 

also presented. It is found that with microwave heating, the growth introduces a lower intrinsic 

doping level and a more uniform spatial distribution of nanorods than that of conventional water 

bath method. Combined with the fast growth rate and low cost, microwave heating synthesis will 

benefit the manufacturing of ZnO devices with high throughput on wide variety of substrates, 

such as plastic, polymer, paper as well as traditional ones.  

Lastly, p-type doping in ZnO by potassium is investigated. By varying the growth environment 

through precursor concentration, pH, annealing temperature, stable and reliable p-type ZnO film 

growth conditions have been optimized. The acceptor concentration obtained for as-grown ZnO 

is 2.6 × 10
16

 cm
-3

, which increases to 3.2×10
17

 cm
-3

 after being annealed at 700°C for 30 

minutes. An ionic equilibrium model is also provided, which gives an insight of the majority 

species present in the growth solution and the part they play in the growth. The synthesis route of 

K-doped p-type ZnO by low temperature aqueous solution paves the way of reliable p-type ZnO 

for future device applications. 
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Chapter 1 Introduction 

1.1 Introduction 

In this chapter, a historical background and some basic properties of ZnO are introduced. An in-

depth overview of the current status and challenges on the doping of ZnO for n-type, p-type and 

intrinsic doping will be presented. Finally, the motivation and organization of this thesis will be 

addressed.  

1.2 Background  

A tremendous amount of research effort and progress has been made in the field of oxide-based 

functional materials. Among these oxide materials, zinc oxide (ZnO) has attracted substantial 

attention in the scientific community since 1935 [1] due to its availability of a variety of growth 

methods, a diverse configurations of nanostructures [2], relatively biosafe and biocompatible [3], 

radiation hard, amenable to wet chemical etching and hence low processing cost which appeals 

to commercialization and industry applications [4]. Although ZnO has been a research focus for 

many years, the resurgent interest in ZnO from mid-1990s onwards is fueled by its potential for 

photonic and electronic applications, such as light-emitting diodes (LEDs), laser diodes, solar 

cells, photodetectors, field effect transistors, piezoelectric nanogenerators and gas and chemical 

sensors [5, 6]. Together with the availability of single crystal ZnO substrates, thin films and a 

variety of novel nanostructures, ZnO is an ideal candidate to be used for integrated high density 

multi-functional devices. However, as many of these devices require both donor and acceptor 

doping above 10
17 

cm
-3

 to form a p-n junction, widespread development of ZnO-based devices 

has been inhibited due to the difficulty in achieving reproducible and stable p-type ZnO. The 
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difficulty of p-doping does not stop the research passion and interest in ZnO, but encourage 

researchers to explore more in ZnO. In order to overcome the bottleneck of p-type doping in 

ZnO, the research community adopts two research strategies. One insists in obtaining 

homojunction ZnO devices by improving the stability and reproducibility of p-type ZnO through 

understanding the reaction pathways, attempting various dopants and numerous post growth 

treatments. The other focuses on building up heterojunction by using other substitutional p-type 

materials, such as p-GaN, p-SiC, and polymers [7]. Even some exotic devices which can get rid 

of junction, such as quantum cascade laser, are also proposed. However, for these heterojunction 

or junction-free devices, the requirement of the n-type doping ZnO layer is demanding in terms 

of doping level, conductivity as well as crystal quality. On top of that, no matter which strategy 

is taken, minimizing the intrinsic doping level is desired for the precise control of carrier 

concentration and crystal quality. Several exhaustive reviews on the recent progress of ZnO have 

been published [1, 8, 9].  

1.2.1 Crystal Structure 

Before going deep into the defects, a review of the crystal structure of ZnO is beneficial. ZnO, II-

VI binary compound semiconductor, with a direct wide band gap of 3.37 eV and a large exciton 

binding energy of 60 meV at 300 K, typically crystallizes in a wurtzite crystal structure which is 

a thermodynamically stable phase under ambient conditions. The wurtzite structure has a 

hexagonal unit cell with two lattice parameters a and c in the ratio of c/a = 1.633, where a = 

3.2495 Å and c = 5.2069 Å. The density of ZnO is 5.605 g·cm
-3

 [10]. A schematic diagram of the 

wurtzite ZnO structure is shown in Figure 1.1(a). 
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Figure 1.1 (a) The schematic diagram of ZnO wurtzite crystal structure and (b) its common 

planes. 

 

In the wurtzite structure, each Zn
2+

 is surrounded tetrahedral by four O
-2

 and vice versa. This 

tetrahedral coordination characterizes covalent bonds with sp3 hybridization. It is known that 

when moving from the group IV to the III-V and from II-VI to the I-VII semiconductors, the 

ionic bonding becomes stronger. Thus, ZnO shows a substantial amount of ionic bonding (61.6%) 

[11]. The bottom of the conduction band is formed essentially from the 4s levels of Zn
2+

 and the 

top of the valence band from the 2p levels of O
2-

 [12]. In addition, the tetrahedral coordination 

gives a polar symmetry along the c-axis. This polarity is responsible for its piezoelectricity, 

spontaneous polarization, anisotropic crystal growth habit, etching behavior and defect 

generation. 

The common polar and non-polar planes in the wurtzite structure are shown in Figure 1.1(b). 

Common polar face terminations of wurtzite ZnO are the Zn-terminated (0001) and O-terminated 

 1000  faces which are both c-axis oriented. The common non-polar faces are  0211  which are 

a-axis oriented. Both  0110  and  0211  faces both have equal number of Zn and O atoms. 
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1.3 Doping in ZnO  

In order to realize the full range of applications of ZnO, it is desired to have a low level of 

intrinsic doping (defects) and a high and stable n- and p-type doping concentration (above 10
17 

cm
-3

). Doping is very critical to a semiconductor material as it can tune its properties, such as 

structural phase transition [13], electrical conductivity, optical emission and magnetic properties 

[14]. Thus, it is important to understand the doping issue from both the material and device 

perspectives. In this section, we will give a brief introduction of the doping mechanism, dopant 

energy levels, state-of-the-art achievements and remaining challenges for n- and p-type doping 

as well as intrinsic doping, which will help the readers to gain an insight into understanding 

Chapters 3, 4 and 5 of this thesis. 

1.3.1 Intrinsic doping (defects) 

Intrinsic dopants in oxide materials usually refer to defects with a break in the periodicity of a 

crystalline lattice. It extensively exists in crystalline materials in different forms, such as point 

defects (vacancies, interstitial atoms, off-center ions and antisite defects), line defects 

(dislocations), planar defects (grain boundaries and stacking faults), and even bulk defects (voids 

or impurity clusters). ZnO has predominantly ionic bonds and is prone to a variety of cationic 

and anionic point defects.  

Generally, intrinsic doping in ZnO is contributed by the following three causes: 

Vacancies: absence of atoms in the lattice, such as oxygen vacancies (Ov), zinc vacancies (Znv). 
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Interstitials: additional atoms occupy the space in between the regular atoms in the lattice, such 

as oxygen interstitials (Oi) and zinc interstitials (Zni). 

Antisites: an oxygen atom replaced by zinc atom in the lattice or vice versa, such as oxygen 

antisites (Zno) and zinc antisites (Ozn). 

Besides the doping of oxygen and zinc, hydrogen is easily incorporated into ZnO as a donor in 

all the synthesis methods and because of its high mobility, it is easy to diffuse into ZnO. Usually, 

it is tightly bounded to oxygen to form an OH bond at a bond length of 1 Å and a formation 

energy of 1.56 eV [15]. Hydrogen also exists in p-type ZnO. In fact, the incorporation of 

hydrogen can suppress the defects arising from compensation and increase the acceptor solubility 

by forming H-acceptor complexes, such as Hi-LiZn, Hi-NaZn and Hi-KZn [16]. By post-annealing, 

H atoms are easily dissociated with the complex and the acceptors are reactivated for p-type 

conductivity. Addition to single element dopants, the clusters of intrinsic doping are also formed 

by the combination of two point defects or one intrinsic point defect and one extrinsic element, 

such as VoZni cluster consisting of Zni and Vo [17].  

The dependence of intrinsic doping densities on their formation energies can be obtained through 

density-functional calculations based on the following equation (1.1), which is valid at the 

thermodynamic equilibrium and in diluted cases (defects isolation) [18]:  








 


Tk

E
Nc

B

f

sites exp ,

                                                      (1.1)

 

where c is the intrinsic doping concentration, Nsites is the number of available sites the defects can 

occupy, Ef is the formation energy which depends on the growth environment and the annealing 



6 

 

condition, kB is the Boltzmann constant and T is the temperature in Kelvin [19]. The energy level 

of each intrinsic dopant reported by different groups is depicted in Figure 1.2 [17].  It is noticed 

that the energy levels of these intrinsic dopants reside in the forbidden gap, which are the origin 

of the deep-level emission bands in the photoluminescence spectrum of ZnO. Different reports 

have assigned intrinsic dopants to different energy levels with different emission origins.  

 

Figure 1.2 The energy states of intrinsic doping element in ZnO reported by different groups 

from reference [17]. The charged deep levels are denoted by “+” and “–” sign on top of the 

abbreviation. 

 

Table 1.1 ZnO photoluminescence color and its associated intrinsic doping/defects. C.B. and 

V.B. are the acronyms of conduction band and valence band, respectively [17]. 

Emission color (nm) Proposed deep level transition 

Violet Zni to V.B. [20] 

Blue Zni to Vzn or C.B. to Vzn [20], [21] 

Green 
C.B. to Vo, or to Vzn, or C.B. to both Vo and Vzn 

[22],[23],[24] 

Yellow C.B. to Li, or C.B. to Oi [25], [26], [27] 

Orange C.B. to Oi or Zni to Oi [20] 

Red Lattice disorder along the c-axis (i.e. due to Zni) [28] 
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Table 1.1 above summarizes the most thoroughly investigated defects and their well accepted 

assignments of the energy levels from photoluminescence measurements, although some of them 

are still under debate. The detail of the photoluminescence characterization will be discussed in 

section 2.3.2. 

ZnO naturally exhibits n-type conductivity due to the presence of unintentional intrinsic doping 

by constituent elements in various synthesis methods. Table 1.2 summarizes the intrinsic doping 

concentration of ZnO films using different methods on different substrates. 

Table 1.2 Intrinsic doping concentration of ZnO films grown by different methods taken from 

reference [29]. 

Type of film Growth method Intrinsic electron 

conc. (cm
-3

) 

Substrate Ref. 

Polycrystalline 
Magnetron 

sputtering 
10

19
 

glass and 

sapphire 
[30] 

Polycrystalline MOCVD 10
17

-10
18

 sapphire [31] 

Polycrystalline 
Aqueous 

solution 
10

19
 MgAl2O4 (111) [32] 

Single crystal 
Hydrothermal 

at 300-400°C 
10

13
-10

14
 ZnO seed [33] 

Single crystal PLD 10
15

-10
16

 sapphire [34] 

 

 

It is noticed that compared to polycrystalline ZnO, single crystal ZnO has a lower intrinsic 

doping density applicable to various methods. In addition, the solution method can achieve a 

comparable intrinsic doping level as the vapor phase methods. Recently, a novel approach of 

solution phase growth, using microwave heating, can assist ZnO to grow even faster, with 

greater uniformity, and saving energy compared to conventional thermal heating. However, the 

microwave heating has not been fully explored, especially in term of the intrinsic doping into 

ZnO synthesized by it. The advantages of microwave heating provide strong impetus for the 
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investigation of the differences between the microwave and conventional water bath heating 

methods, regarding the intrinsic doping properties. The results will be presented in Chapter 4.  

1.3.2 n-type doping  

Compared to unintentionally doped ZnO by intrinsic elements, extrinsic n-type doping of ZnO is 

favored due to their stability and controllability for a specific doping concentration. Up-to-date, 

n-type doping from Group-III elements (B, Al, Ga and In) substituted on the Zn sites as shallow 

donors in ZnO are well established. At the same time, elements from group-VII (F, Cl, Br) 

substituted on the O sites also demonstrated a high n-type conductivity [35]. The n-type doping 

with group III and VII elements have been investigated by many groups and the ionization 

energy of some elements have also been well studied. The results are compiled in Table 1.3. 

Table 1.3 Carrier concentration, growth method and ionization energy of n-type dopants of ZnO 

from group III (Al, Ga, In) and VII (F, Cl). 

Dopant Electron conc.(cm
-3

) Growth method Ionization energy 

Al 

3×10
19

 RF magnetron sputtering [36] 
51 meV [37] 

53 meV [38] 

55 meV [39] 1.5×10
21

 
Photo-assisted MOCVD  [40] 

PLD [41] 

 Ga 

1.1~3×10
20

 

 

MBE[42] 

                     CVD[43] 54.6 meV[42] 

54.5 meV[38] 
5×10

20
 RF magnetron sputtering [36] 

In 1.7×10
19

 RF magnetron sputtering [44] 63.2 meV[45] 

F 5×10
20

 

Atmospheric pressure  

chemical vapor deposition 

(APCVD)[46] 

80 meV[47] 

Cl ~10
20

 MOCVD [48]  
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Group VII element has relatively lower solubility than that of group III element (7%)  due to the 

lower vapor pressures of Group III compared to Group VII [49]. In addition, another issue with 

Group VII element doping is that after using Cl and iodine from Group VII under low-pressure 

deposition environment, the concentration of residual electron remains at a high level known as 

the memory effect [42]. E. Chikoidze achieved a maximum doping level of 4×10
20

 cm
-3

 using 

MOCVD under chlorine pressure of 84 Pa which almost reach the solubility of Cl. Among 

Group III elements, the oxidation of Al source is a severe issue in MBE growth but Ga and In 

have lower reactivities with oxygen compared to Al [50]. Mercedes Gabás found that the Ga 

cation has a higher doping efficiency than Al. Their experiment proved the hypothesis that Ga 

behaves as perfect a substitutional dopant but Al cation has the chance of occupying the 

interstitial sites [36]. Ko et al. proved that due to the large ionic radius of In, the bond length of 

In-O (2.1 Å) easily causes the deformation of ZnO (1.97 Å) lattice, the same case as Zn-Cl bonds 

(2.3 Å) [42]. Fortunately, the bond length of Ga-O (1.92 Å) is more suitable to fit into the ZnO 

lattice and only results in small deformation. Therefore, Ga is the optimum candidate for high 

concentration of n-type doping without sacrificing the crystal quality. 

Besides group III and group VII elements, rare earth metals from group IIIB (Sc and Y) [50], 

group IV (Si [51], Ge [52] and Sn [53]) also have been attempted as n-type dopants but have not 

been widely adopted.  

1.3.3 p-type doping 

Compared to n-type ZnO, the stable and reproducible p-type ZnO has been proven difficult to be 

achieved, which inhibited the development of ZnO based junction devices [54]. One of the main 

reasons was the strong self-compensation effect due to the inherent intrinsic n-doping 
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characteristics and hydrogen impurities as discussed in section 1.3.1. In addition, the solubility of 

p-type dopants in ZnO are relative low and even those potential acceptors inside ZnO have a 

very high chance to form deep impurity levels instead of shallow acceptor levels [50, 51].   

Such a doping asymmetry problem is also seen in other wide-bandgap materials, such as GaN, 

and other II-VI semiconductors, such as ZnS, ZnSe and ZnTe. Researchers have put enormous 

and continuous effort in improving p-type ZnO and come up with many promising strategies to 

overcome the p-type doping difficulty after numerous experiments and theoretical studies 

conducted since 1997. Primarily, three different approaches have been proposed for pursuing p-

type ZnO with high acceptor concentration, shallow ionization energies and minimal 

compensation: (1) Group IA elements (Li, Na, K) and Group IB elements (Cu, Ag, Au) 

substituting on Zn atoms; (2) Group VA elements (N, P, As, Sb) substituting on O atoms; (3) co-

doping of dual acceptors or donor-acceptor pairs. Table 1.4 gives an overview of the ionic radius 

and defects energy levels of some representative ZnO dopants from group IA, IB and group VA, 

obtained by theoretical calculation and experiment [57]. It is noticed that Li and N have the most 

closed ionic radius to the bond length of ZnO (1.93 Å). In addition, Group IA elements exhibit 

shallower ionic energies compared to those of group IB and group VA elements. Thus, from a 

theoretical point of view, group IA elements, especially Li, would be the most ideal p-type 

dopant.  

However, the experimental results turn out to be the other way around. Due to the high 

diffusivity and self-compensation of group IA elements, they prefer to occupy interstitial 

positions, instead of substitution sites and contribute to donors other than acceptors [38]. On the 

other hand, Group VA elements, particularly, N is the most promising element for acceptors as 
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its creation of an acceptor level of 0.167 eV, obtained experimentally, is much lower than the 

theoretical prediction of 0.4 eV. In addition, its ionic radius (1.68 Å) is the closest to Zn-O bond 

length compared to other group VA impurities, although it has the issues of insufficient 

incorporation into the ZnO lattice sites and the formation of molecular N2 centers on O sites as 

donors.   

Table 1.4 Values of ionic radius and ionization energy Ei for each of the single element acceptor 

of ZnO obtained from theoretical calculations and experiment measurements and also acceptor 

complexes of Group VA elements and their calculated ionization energies Edef [58]. 

Group Element 

Ionic 

Radius 

(A) 

Ionization energy Ei (eV) Proposed acceptor 

center and 

calculated ionization 

energy Edef (eV) 
Theory Experiment 

Group IA 

Li 2.03 0.09[59] 0.150/0.250[60]  

Na 2.10 0.17[59] 0.164[61]  

K 2.42 0.32[59]   

Group IB 

Cu - 0.74[62] 3.2[63]  

Ag - 0.40[62]   

Au - 0.50[62]   

Group VA 

N 1.68 0.40[59] 0.165[64]  

P 2.12 0.93[59] 0.18[65] Pzn-2Vzn (0.18)[66] 

As 2.23 1.15[59] 0.12[67] Aszn-2Vzn (0.15)[68] 

Sb 2.45 1.10[69] 0.14[70] Sbzn-2Vzn (0.16)[68] 

 

As mentioned before, the co-doping is also an alternative to enhance the incorporation of 

acceptors in p-type ZnO. Its ionization energy is lower than the single element. Yamanoto and 

Hiroshi initiated N codoped with Al, Ga or In to improve p-type ZnO carrier concentration [55]. 

Other researchers adopted the same concept but implemented through different doping sources. 

J. Wu proposed K-N dual-acceptor codoping for p-ZnO with an acceptor shallow level at 0.24 

eV based on first-principle study [71].  



12 

 

Although many controversies of p-type ZnO have been raised and some researchers still doubt 

the real existence of p-type in ZnO, convincing results have been accumulated in establishing p-

type ZnO. In 2007, Ryu et al. obtained an electrically pumped UV lasing in ZnO laser diodes 

[72]. In 2010, K. Nakahara et al. demonstrated MgxZn1-xO/ZnO single heterostructure ultraviolet 

light-emitting diodes on ZnO substrates by nitrogen doping [73]. In 2012, Chua’s group reported 

room temperature (RT) UV electroluminescence (EL) in ZnO coaxial nanorods p-n 

homojunction LED fabricated by aqueous solution method by K-doping [74]. All these recent 

progresses corroborate the existence of p-type conductivity in ZnO. Currently, the most difficult 

task is to have a more robust and stable p-type ZnO. In terms of stability, Li doping gives a 

comparable or better doping results than N, as there is no change in the p-type characteristics of 

Li doped ZnO for up to 60 days [75]. Lin et al. successfully demonstrated stable p-type 

conductivity (in the range of 10
16

 to 10
18

 cm
-3

) of Na-doped ZnO film using PLD which can be 

maintained for 6 months. All these results together with the theoretical studies for acceptor 

energy levels, H–group-I-acceptor complexes show the possibility of using group I elements as 

stable p-dopants despite earlier difficulties.  

Huang et al. proposed K as the best candidate for p-type doping compared to other nominal p-

type dopants (HZn, LiZn, NaZn, KZn, AgZn, NO, PO, AsO, SbO, BiO) based on their first-principle 

calculations and previous results [76]. 

Based on our previous study on K-doped p-type ZnO film and homojunction UV-LED, Chapter 

5 of this dissertation gives a comprehensive thermal stability study of the K-doped p-type ZnO 

synthesized by aqueous solution method under different precursor concentrations and annealing 

temperatures.  
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1.4 Motivation and Objectives 

From the above review of ZnO, doping is essential to understand the behavior of the material and 

to tailor its numerous physical properties and technological applications. A summary of the 

reasons why doping of ZnO was chosen for this study is presented below: 

A. For n-type ZnO, the reliable donors for substitution have been established which can be 

incorporated very well to a very high concentration and shown to be shallow donors from 

the strong evidence of photoluminescence (PL) spectra. However, there is still a plenty of 

room for n-type ZnO to improve in order to have a good control of the doping level, 

stoichiometry, crystal quality and interface property for advanced applications of unipolar 

conductivity, such as quantum cascade laser. On top of this, the understanding and 

measurement of the physical parameters which are important for the design and 

fabrication of the devices are urgently needed.   

B. Regarding intrinsic doping, it is very easily incorporated into ZnO during growth, which 

makes ZnO so variable in its properties. In spite of numerous experimental studies and 

theoretical simulations, there is still a debate on which intrinsic doping mechanism is 

responsible to the specific feature of ZnO. In order to have the full control of the rich 

intrinsic defects in ZnO, a basic physical understanding of the doping mechanism and its 

correlation of ZnO properties are essential. On the other hand, in some circumstances, the 

existence of the intrinsic doping as defects degrades the device performance and makes 

the doping level difficult to be controlled, especially the self-compensation issue for p-

type doping. Therefore, a cheap and fast synthesis method that can decrease the intrinsic 

doping level without sacrificing the crystal quality is desired. 
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C. In the case of p-type ZnO, it is the most critical and challenging issue to resolve for living 

up to its potential applications in homojunction devices. Although many strategies of p-

type doping have been attempted to overcome this bottleneck, a consistent, stable, and 

reliable high p-type conductivity ZnO is still far from being achieved and both 

experimental and theoretical study are required. H passivated acceptor complexes have 

been found can greatly enhance the solubility of acceptors and significantly reduces the 

self-compensated interstitials. Thus, intentional codoping with H in p-type ZnO is desired 

and solution method can easily incorporate H into ZnO through the careful design of the 

growth environment.     

This thesis presents an exploratory study on understanding the doping mechanism and their 

effects on ZnO properties at the level of theory development, synthesis and characterization. The 

specific objectives are to: 

A. Develop a simple and widely accessible technique to investigate the dependence of 

carrier concentration of n-type ZnO films on the important parameters for device design 

and fabrication. 

B. Study the differences between microwave and water bath assisted ZnO growth in terms 

of intrinsic doping and its effects on ZnO morphology and optical properties. 

C. Explore the growth chemistry, doping mechanism and thermal stability of K doped ZnO 

by solution synthesis to achieve reliable p-type conductivity. 

1.5 Organization of the thesis 

In order to target the objectives, this thesis consists of six chapters addressing the issues and 

challenges in ZnO doping (n-type, p-type and intrinsic) from the aspects of theoretical study, 
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synthesis and characterization to improve the ZnO physical properties for various applications. 

Besides the current chapter (Chapter 1) on ZnO background, the remaining chapters are 

organized in the following manner: 

Chapter 2 describes the growth techniques (pulsed laser deposition and aqueous solution), 

growth mechanism, features and reasons of using each growth technique in this thesis. The 

growth procedures discussed here will be used in the rest of chapters. The working principles 

together with the parameters and specification of characterization tools used in the thesis are also 

explained in details.  

Chapter 3 investigates the properties of Ga-doped n-type ZnO by employing a new and easily 

accessible technique to determine the carrier effective mass and carrier scattering time using 

THz-TDS and Hall measurement, which is believed to be vital in developing ZnO and related 

materials for optical devices. The physics behind the carrier concentration dependent effective 

mass and the discrepancy of the mobility obtained from Hall and THz-TDS are also discussed in-

depth.     

Chapter 4 focuses on intrinsically doped ZnO nanorods grown on Si(100) through facile 

microwave assisted aqueous solution method. A detailed comparison between microwave and 

waterbath assisted synthesized ZnO in terms of morphology, defects and optical properties 

across a range of pH from 10.3 to 10.9 will be carried out. The microwave route presents a better 

approach, leading to a more uniform distribution of nanorods with a lower native defect 

concentration of oxygen interstitials and zinc vacancies. 
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Chapter 5 proposes a theoretical model to identify the influence of growth environment 

chemistry on the main type and nature of potassium defects in ZnO film grown by solution 

method. The post growth thermal treatment effect on the doping concentration of K doped ZnO 

samples fabricated according to the theoretical model was presented.   

Chapter 6 draws a conclusion of the thesis and provides recommendations for the future work. 
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Chapter 2 Experiment techniques for growth and characterization 

of ZnO 

2.1 Introduction 

In this chapter, the first part describes the growth methods (PLD and aqueous solution method) 

of ZnO film and nanorods used throughout this thesis. In the second half of this chapter, 

important characterization techniques for material properties studied are discussed. The specific 

parameters for growth condition and characterization setup and equipment models used in the 

work of this thesis are also addressed.  

2.2 Growth of ZnO 

ZnO can be synthesized by various methods which can be classified into two categories: vapor 

phase growth and solution phase growth. Each approach has its own features and advantages. In 

this thesis, in order to fit the needs of different applications, aqueous solution method and pulsed 

laser deposition have been adopted as the main synthesis methods. The background of the 

techniques, equipment setup, growth mechanism and advantages of each growth method will be 

introduced. In addition, the reason for choosing each of the methods to meet specific objective 

together with growth details will be presented. 

2.2.1 Growth by aqueous solution method 

Since the first report from Verges’s group on the successful demonstration of the aqueous 

solution growth of ZnO in 1990 [77], aqueous solution method has been widely adopted for ZnO 
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synthesis, as it is a green, low cost and non-toxic route. It can be easily scaled up and is able to 

achieve various novel nanostructures without the use of catalyst and high pressure. Various 

precursors, such as zinc nitrate and Hexamethylenetetramine (HMT) used by Vayssieres et al. 

[78], zinc acetate and ammonia demonstrated by Tay et al. [79], zinc nitrate, thiourea, 

ammonium chloride and ammonia implemented by Wang et al. [80], are selected as the aqueous 

medium to synthesize ZnO, achieving numerous morphology ranging from nanorods to 

nanotubes and nanosprings. Several comprehensive reviews of ZnO solution synthesis have been 

done by Agnieszka, Schmidt-mende, Weintraub and Heo et al. [78, 81, 82, 83]. 

One of the most attractive points of the solution synthesis is that some dopant can achieve higher 

doping concentration compared to that of the vapor phase method due to their higher solubility in 

solution, which provide the opportunities to the research community to overcome the challenge 

of p-type doping. Chapter 5 will explore how reliable the p-type ZnO doped by K can be 

obtained through the solution method. In order to further improve p-type doping, the good 

control of background (intrinsic) doping of ZnO is critical. This is highlighted in Chapter 4 

where the solution growth assisted by microwave heating and water bath yield different intrinsic 

doping concentrations. 

Owing to these advantages, various routes of solution phase synthesis have been attempted to 

obtain ZnO nanostructure and films, such as microemulsion, hydrothermal, water bath and the 

recent developed microwave assisted heating [82].  

In order to fully utilize the advantages of the solution synthesis and achieve high quality ZnO, an 

understanding of the fundamental growth mechanism and chemical reaction are essential.  
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2.2.1.1 Growth mechanism 

A. Supersaturation 

Supersaturation is the state of a solution that contains more of the dissolved material than what 

solubility allows. It is the driving force for nucleation and growth, which is not only critical for 

solid phase formation but it also determines its crystal size and shape [84]. To illustrate the 

concept of supersaturation, we use glucose as an example. The same methodology applied to 

ZnO. The solubility of glucose in 100ml water at 25°C is 91 g, which is the maximum amount of 

glucose that can be dissolved in 100ml water. The solution is saturated at this point and its 

concentration is denoted as C* [85]. If we increase the temperature to 50°C, the solubility of the 

glucose is increased to 244 g in 100 ml water according to the second law of thermodynamics. It 

is noted that the solubility is strongly dependent on temperature rather than pressure. At 50°C, 

100 g of glucose dissolves in 100 ml water then the solution is unsaturated. If the mixture is 

cooled down to 25°C, 9 g glucose should precipitate from solution, however glucose molecules 

may need some time to find proper position in a solid structure before precipitating from the 

solution. In this case the system has a higher amount of glucose (100 g) than the solubility limit 

(91 g) at 25°C. As the solution dissolves more solute than the solubility limit, the solution meets 

the supersaturation condition as illustrated in Figure 2.1. Supersaturation is a measure of the 

difference between the actual concentration (C) and the solubility concentration (C*) of solvent 

at a certain temperature. The degree of supersaturation is given by
*C

C
S 

.
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Figure 2.1 Illustration of the concept of supersaturation and solubility obtained from reference 

[84]. 

 

If S<1, the solution is unsaturated and no nucleation occurs. If S=1, the solution reaches the 

solubility concentration. Once S is beyond 1, the supersaturation condition is satisfied. Several 

kinds of nucleation, such as homogenous nucleation, heterogeneous nucleation and secondary 

nucleation which will be introduced in the following section B will gradually take place 

depending on whether S is greater than 1 as shown in Figure 2.2. The concept of supersaturation 

and solubility applies to ZnO growth in solution method will also be explained in the section B. 

The nucleation of ZnO crystal starts with S>1. 

B. Nucleation 

As mentioned in the previous section, the supersaturation is a key to drive the nucleation process. 

Different nucleation processes can occur according to the degree of the supersaturation of the 

solution. Nucleation process can also be classified by whether it is assisted by the presence of the 

crystal of solute in the solution as illustrated in Figure 2.2. In fact, the nucleation is a form of 



21 

 

phase transformation. For the phase transformation to occur, the free energy of the new phase 

should be lower than that of the initial phase. The common feature for all nucleation mechanisms 

is that in order to form the clusters of a critical size, enabling the new solid phase (embryo) to 

grow spontaneously, the free energy barrier needs to be surmounted. The barrier height could be 

different for each nucleation process [86, 87]. Several classic books giving a very clear picture 

on crystallization and related topics are recommended here [84, 88]. 

 

Figure 2.2 Classification of nucleation based on supersaturation and vicinity of crystal 

assistance. 

 

(a) Homogenous nucleation 

Homogenous nucleation happens when there is neither the presence of a solid foreign interface 

nor the crystal of solute in the supersaturated solution. In solution, the collision between ions or 

molecules will form embryos, which are intrinsically unstable against re-dissolution. The 

embryos will grow by the adsorption of ions.  

As the embryos are not stable, there is a probability for them to either grow into a stable nucleus 

or be re-dissolved, which is determined by the balance between the surface energy required to 
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form the embryo ( SG ) and the volume energy released when a spherical stable nucleus is 

formed ( VG ). Theoretically, it is expressed as: 

                                    vVS GrrGGG  32

3

4
4  ,                                  (2.1)

         
 

where G  is the total excess free energy, r is the radius of the nucleus, γ is the surface energy 

per unit area, and G is the free energy change of the transformation per unit volume. G is a 

function of the degree of supersaturating S, given by )ln(S
V

kT
Gv  , where k is the 

Boltzmann constant, T is the growth temperature and V is the molecular volume where 
3

3

4
rV  . 

 

Figure 2.3 Change of the free energy with respect to the size of nucleus r [87]. 
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SG and VG  are competing mechanisms and have opposite signs ( VG is negative), which 

result from equation (2.1) giving a maximum value of G  denoted by critG , and the 

corresponding minimum size of a stable nucleus with radius rc shown in Figure 2.3, given by the 

condition 0


dr

Gd
 

2

3

22

2

)(ln3
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 ,                   
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




2
,

                               (2.2)

 

(b) Heterogeneous nucleation 

It is noticed that critG is inversely proportional to S, which indicates that homogenous 

nucleation are more favorable to occur due to the greater value of S. Therefore, in order to 

prevent the precipitation of ZnO (homogenous nucleation) from taking place during ZnO growth 

resulting in the waste of the precursor and the contamination of the ZnO grown on the substrate 

and precise control of growth condition, such as temperature and S, are important according to 

equation (2.2) to have larger critG .  

Homogeneous nucleation refers to the formation of nuclei through self-generation from ions or 

molecules collisions in the solution, while heterogeneous nucleation occurs when foreign 

interfaces are present in the supersaturated solution. It is noticed that both homogenous and 

heterogeneous nucleation occur without the crystal of solute and are recognized as primary 

nucleation classified in Figure 2.2. From the thermodynamic point of view, the understanding of 

homogeneous nucleation can be applied to the heterogeneous nucleation. As indicated in 

equation (2.2), both critG  and rc are dependent on surface energy γ, thus any change in γ leads 
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to a variation in the nucleation process. As the energy for nucleation between the embryo and 

foreign interface (heterogeneous nucleation) is less than that between the embryo and solution 

(homogenous nucleation), a decrease of γ occurs when foreign interface is involved in the 

nucleation process. γ is minimized when the best match between the foreign interface and the 

crystalized substance happens. This special situation is satisfied, when both foreign interface and 

the crystallizing substance are the same (perfect lattice match) known as the secondary 

nucleation. 

(c) Secondary nucleation 

As mentioned above, the secondary nucleation is often observed when nuclei starts at a 

supersaturation stage S where the foreign interface and the crystallizing substance are the same 

material. In other words, the nucleation happens with the crystal of solute. This mechanism 

requires an even lower energy barrier and therefore it is much easier to nucleate at even smaller 

S than the case for homogenous and heterogeneous nucleation as indicated in Figure 2.2. 

For the case of solution based ZnO synthesis used in this thesis, ZnO precipitates (homogeneous 

nucleation) as well as ZnO nucleation on the wall of vessels, sample holders (heterogeneous 

nucleation) need to be suppressed to avoid the waste of precursors and at the same time to 

promote the growth of ZnO on the substrate (heterogeneous nucleation or secondary nucleation). 

Depending on the substrate selected and supersaturation stage, the growth condition can be 

designed and controlled. In order to ease the nucleation and reduce the energy barrier, the 

secondary nucleation environment (1<S<<1) is favored, where the ZnO seed layer is selected as 

coating on the foreign substrate, such as Si(100) and sapphire(0001) before growth of ZnO in the 

solution. We will fully elaborate this idea in Chapters 4 and 5 of this thesis.  
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2.2.1.2 Chemical reaction 

Based on the previous discussion, the growth mechanism of ZnO crystals starts with the 

formation of an embryo and the embryo incorporating into the crystal lattice through a 

dehydration reaction. ZnO crystallization can be achieved through hydrolysis of Zn salts in a 

base solution which can be formed using either strong or weak alkalis, such as NaOH, KOH, 

NH4OH. In this thesis, we use zinc acetate and ammonia as growth precursors. Zinc acetate 

provides the zinc ions to form embryos in the solution and ammonia, as a weak alkali, can be 

used to control the degree of supersaturation and the pH of the solution [89]. The main chemical 

reactions involved in the growth are illustrated in the following equations [90]:  

Initially, cations Zn
2+

 are dissolved in water and form the hydrated Zn
2+ 

ions: 

  2

22

2 ])([ nOHZnOnHZn ,
                                        (2.4) 

The hydrated Zn
2+

 ions have stronger attractive forces to the electron from the oxygen of the 

attached water molecules. Since oxygen is electron deficient, it starts to attract the electron in the 

O-H bond. This process makes the O-H bond weaken and easier to break, which is known as 

hydrolysis of the hydrated Zn
2+

 ion as illustrated in Figure 2.4.   
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Figure 2.4 Hydrolysis of hydrated Zn
2+

 ions in solution. The Zn
2+

 ions with large positive 

charges attracts the electron from O-H bond of the water molecule, are more likely to cause the 

break of the O-H bond and dissociate H
+
 ion into the solution. 

 

A wide range of Zinc hydroxide complexes formed through hydrolysis such as  [Zn(OH2)n-

p(OH)p]
(2-p)+

 shown below: 





  OpHOHOHZnOpHOHZn p

ppnn 3

)2(

22

2

2 ])()([])([ ,
                   (2.5) 

The above equation can be simplified if the water is omitted, 

  )2(2 ])([ p

pOHZnpOHZn ,                                      (2.6)                 

In order to develop into ZnO particles, condensation reactions need to take place right after 

hydrolysis. Olation and oxolation are the two key condensation processes being postulated. In 

the olation process, an “ol” bridge (–OH–) is formed between two Zn
2+

 centers through the 

reaction of a hydroxo- (Zn-OH) and aqo-species (Zn-OH2):  

OHZnOHZnOHZnOHZn 22  ,                          (2.7) 

In the oxolation process, an “oxo” bridge (–O–) is also formed between two Zn
2+

 centers is 

constructed through the dehydration of hydroxo-species ( Zn2(OH)2 ) shown in reaction (2.8): 
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OHZnOZnOHZn 222 ])([  .                                          (2.8) 

In the equations (2.4) to (2.8), the ideal reaction processes of ZnO synthesis are presented. 

However, in the real aqueous solution, the growth environment is more complex than the 

simplified scenario [91]. For instance, the discussion above did not take into consideration the 

presence of oxygen molecules. However, Wang Zhonglin’s group found that the concentration of 

the dissolved oxygen plays an important role in the real case, which affects the crystal quality of 

the ZnO [90].  

Since ZnO has a wurtzite structure as shown in Chapter 1, it is hexagonal in configuration with 

the polar space group of P63mc. In the absence of centro-symmetric structure, it creates an 

uneven distribution of charge states in the opposite sides of the basal plane (c-plane) as shown in 

Figure 2.5. The c+ surface terminated with Zn dangling bond has a net positive charge, whereas 

the c- surface terminated with O dangling bond has a net negative charge which results in a polar 

surface [92]. From the thermodynamics point of view, polar surfaces are less stable and the 

atoms try to minimize the surface energy through rearrangement. It is easier for defects to form 

at these polar surfaces as their uneven charge distribution will attract the new in-coming species 

to grow into crystal. Dem’yanets proposes the effect of Li
+
 ions on polar ZnO growth mechanism. 

Through doping Li into the )1000( , the negative charge could be reduced and promote the 

growth in the ]1000[  direction [93]. In Chapter 5, we will give an insight of the growth 

mechanism of potassium doped ZnO and its influence on the electrical and optical properties of 

ZnO. 
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Figure 2.5  Uneven charge distribution in the opposite sides of ZnO c-plane, from reference [91]. 

 

In addition, impurities in solutions may cause the change in molecular diffusion, atomic 

absorption on the surface of crystal, which will also affect the crystal growth kinetics. Since ZnO 

crystal is anisotropic, even very few impurities can lead to growth rate variation in some 

particular axis, which results in point or line defects. Due to the polarized material property of 

ZnO, the impurities concentration also varies in different sectors of the polar crystal, which 

means that the growth rate, impurity concentration and morphologies are different for the 

positive polar surfaces and negative polar surface. The details of the theoretical model has been 

suggested in the hand book of crystal growth [92]. In this thesis, Chapters 4 and 5 will give real 

experiment examples to investigate how the intrinsic element and potassium doping behave and 

affect the growth and properties of the ZnO crystals grown in aqueous solution. 

2.2.1.3 Synthesis methodology  

The growth of ZnO carried out in this thesis can be divided into four steps: 

(a) First step: ZnO seed layer 
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If the substrate material has a big lattice mismatch with ZnO, the pre-coating of a buffer layer on 

the substrate is required. As explained in section 2.2.1.1, by introducing the buffer, lattice 

mismatch could be eliminated, and the surface energy per unit area γ and the free energy for 

nucleation can be minimized, which will promote the growth of ZnO. Table 2.1 shows the 

lattice parameters, thermal coefficient of expansion of ZnO, Si (100), and c-plane sapphire and 

the corresponding lattice mismatches used in this thesis.  

 

Table 2.1 Parameters of ZnO and related substrates [94]. 

 
 

In our experiment, the pre-coating solution consisting of 0.005 M zinc acetate dihydrate 

(Zn(CH3COO)2·2H2O) in ethanol is spin-coated onto the substrate at 3000 rpm for 30 sec/round. 

This step is repeated twice. After each round, the coated substrate is rinsed in ethanol for 10 sec 

and then blown dry with nitrogen. Then the coated substrate goes through the annealing process 

at 350°C in air for 20 mins for ZnAc2 to decompose into ZnO. This method is first introduced 

by Yang’s group [95]. Compared to our previous growth using Pacholski’s method [96], it is 

rather simple but has the capability to fabricate high-density vertical wire arrays free of 

intermediate thin films or nanoparticle layers as shown in Table 2.2 and Figure 2.6.  
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Table 2.2 The preparation of the stock solution of ZnO nanoparticles from Yang’s method and 

Packolski’s method. 

Yang Peidong’s method Pacholski’s method 

a. 0.005 M zinc acetate dehydrate in 

ethanol 

b. The stock solution was 

concentrated by evaporation of the 

solvent and heated to 350°C in air 

for 20 minutes to yield layers of 

ZnO islands with their (0001) 

planes parallel to the substrate. 

a. 0.01 M zinc acetate dihydrate was 

dissolved in 125 mL methanol under 

vigorous stirring at about 60°C. 

b. 0.03 M solution of 65 mL KOH in 

methanol was added dropwise at 60°C. 

c. The reaction mixture was stirred for 2 

hours at 60°C. 

d. The stock solution was concentrated 

by evaporation of the solvent and 

heated for different lengths of time to 

obtain ZnO nanoparticles. 

 

 

 

 

         

Figure 2.6 ZnO nanorods grown on silicon (a) coated with a seed layer of ZnO nanoparticle (b) 

coated with a layer of Au catalyst from reference [93]. 

 

(b) Second step: growth of ZnO nanorods 

The growth starts with the preparation of the growth solution. In our ZnAc2-NH3 system, ZnAc2 

and NH3 are used as precursors and dissolved in deionized water at room temperature. The exact 

amount of each precursor used depends on the solubility desired and are given in subsequent 

chapters. For the case of p-type ZnO study, potassium is also added into the growth solution. In 

order to have good control in the consistency of our experiment, especially for comparisons 

among the samples, stock solution for each of the chemical (ZnAc2, diluted ammonia, and 
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potassium) are prepared and later mixed with each other based on the experiment design. In this 

way the error within the same set of experiment is relatively small. Precaution needs to be taken 

to control the ammonia concentration in the solution as it is critical for determining the pH as 

well as Zn solubility. Ammonia evaporates very easily. Thus, the glass bottle needs to be kept 

closed to have a good control of the experiment. After the chemicals are fully dissolved in the 

solution, the substrate is placed into a Teflon sample holder at an angle of 60° as shown in 

Figure 2.7. Then the sample is immersed into the growth solution facing downwards and the 

bottle is sealed tightly. The bottle is placed into either a water bath or a microwave heater to 

maintain a certain growth temperature. For the case of microwave heated samples, an additional 

adjustable parameter is the microwave power. Without adding any surfactant, the growth is in a 

3D mode in NH3 environment, resulting in the growth of ZnO rods. Therefore in Chapter 4, 

where the study of the properties of ZnO nanorods grown in waterbath and microwave are 

undertaken, the samples are grown as described above. 

 

Figure 2.7 The setup of microwave heater (CEM Discover), water bath heater (PolyScience) and 

glass bottle. 
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(c) Third step: ZnO films coalescence 

If ZnO films instead of rods, are desired, a second round of growth is essential. It is almost the 

same as the first round but the only difference is that there is no NH3 in the growth solution. As 

NH3 makes the solution more alkaline, it can promote ZnO to grow out of the plane. Without 

introducing NH3, the lateral growth will be encouraged, which leads to the coalescence of the 

rods to achieve a ZnO film. The detail will be discussed in Chapter 5. 

(d) Fourth step: post treatment 

After the growth is completed, the bottles are taken out of the water bath or microwave heater 

and cooled down naturally in air to room temperature. Then the samples are taken out from the 

bottle and rinsed with DI water several times to get rid of the ZnO nanoparticles adsorbed on the 

surface and blown dry with nitrogen. If necessary, the samples go through thermal annealing 

under different ambient and temperatures for a certain duration to investigate the intrinsic or 

external doping properties of ZnO, such as self-diffusion or migration.  

2.2.2 Growth by pulsed laser deposition 

Although there are many attractive characteristics of aqueous solution methods as discussed in 

previous session 2.2.1, it is also noted that due to the much lower growth temperatures typically 

less than 100°C in the aqueous solution methods, growth units may not have enough kinetic 

energy to diffuse across the surface to obtain a smooth film. This method is not the perfect 

choice for applications which requires a smooth film surface or a sharp interface to form 

heterostructures such as for use in quantum cascade laser. To obtain sharp interfaces, pulsed 

laser deposition is a good candidate, as it can produce the epitaxial growth of ZnO film with a 
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smooth surface due to high supersaturation and high nucleation density. In the following section, 

we will introduce the PLD growth technique. 

2.2.2.1 Background of PLD 

In 1965, Smith and Turner conducted the first demonstration of PLD using a ruby laser [97]. In 

the following 20 years, there is no much breakthrough of PLD technique until the high power 

lasers with sufficiently high pulse energy and short pulse length were introduced together with 

the successful growth of the high-temperature oxide superconductor films using this technique. 

In 1987, Venkatesan and Dijkamp demonstrated the superior quality of YBa2Cu3O7 films grown 

by PLD compared to those grown by other techniques, which made PLD attain its reputed fame 

and attract wide spread interest all over the world [98]. Up to now, PLD has become an 

established growth technique for many materials that are normally difficult to be deposited by 

other methods, especially multi-element oxides. A considerable improvement has been done to 

scale up the PLD to a large area and to meet industrial needs [99]. 

2.2.2.2 PLD system Setup 

Compared to many other vapor phase deposition techniques, the basic setup of a PLD system is 

simple as shown in Figure 2.8. It consists of an excimer laser source, optics, deposition 

chamber, load lock chamber, vacuum pumps (mechanical pump and turbo pump), heater and 

pressure controller. 
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Figure 2.8 The schematic diagram of a PLD system [100]. 

 

2.2.2.3 Mechanism of PLD 

Compared to the simple setup of the PLD system, the deposition process is complex and 

involves a wide range of physical phenomena. In general, the thin film is deposited by the 

ablation of one or more targets irradiated by a focused pulsed-laser beam. The fundamental 

processes during a PLD experiment will be briefly reviewed in the following [101,
 
102]:  

1) Laser ablation (photon induced sputtering) 

Upon the irradiation of the excimer laser (λ=248 nm) with a short pulse (pulse duration of 5-40 

ns), a strong electromagnetic field, created within the outmost 10nm of the target material, can 

break the atomic bonds and cause electrons ejected from the bulk material of the penetrated 

volume. Collisions of these free electrons with the atoms of the bulk material transfer energy to 

the lattice, which is sufficient for the surface of the target to be heated up to the evaporation 

temperature. 
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2) Plasma expansion 

The localized high temperature at the target surface assists the plasma formation in the form of a 

plume. Due to the strong Coulomb repulsion from the target surface, the plume expands 

perpendicularly from the target surface towards a heated substrate. A variety of energetic species, 

including atoms, molecules, electrons, ions, clusters, particulates and also melted globules, was 

contained in the plume. The spatial distribution of the plume depends on the background 

pressure of the PLD chamber. During the expansion of the plume, higher energetic species are 

slowed down much faster with increment in background pressure. 

3) Deposition 

This stage is critical to the quality of the deposited film. At this stage, the high energetic species 

ablated from the target impinge onto the substrate surface and induce damage to the surface by 

sputtering off atoms from the surface. The sputtered species from the substrate and the particles 

emitted from the target form a collision region, which serves as a source for condensation of 

particles. When the condensation rate is high enough, a thermal equilibrium can be reached and 

the film grows on the substrate surface. Once several small clusters are formed through 

nucleation, subsequent coming particles can directly attach to these clusters. In the same time, 

there also has possibility that the particles in the clusters dissociate and re-evaporate out. The 

balance between the competing processes of film growth and dissolution is guided by the Gibbs 

free energy of the system. 

During the PLD process, many growth parameters can be tuned, such as laser parameters ( laser 

fluence, wavelength, pulse duration and repetition rate), target surface temperature, target to 

substrate distance as well as background gas and pressure, which have strong impacts on the 

nucleation and growth of the film. During the pulse duration, the high supersaturation of the 
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target material occurs on the substrate, which creates a high density of nucleation. The nucleation 

and growth on the surface of the substrate can be described by models. Similar to other physical 

vapor deposition methods, three growth modes can take place: three-dimensional island 

(Volmer–Weber), two-dimensional full monolayer (Frank–van der Merwe), and two-dimensional 

monolayer growth followed by three-dimensional islands (Stranski–Krastanov) [103]. A smooth 

surface control of the deposited film down to a sub-monolayer is achievable with PLD depending 

on the growth rate per laser pulse. Suppose 2 Å per pulse, 5-10 laser pulses are required for the 

growth of one atomic monolayer [104].  

For the study of n-type doping of the ZnO films, the targets used are made of a mixture of Ga2O3 

(99.999%) and ZnO (99.999%) powder purchased from Sigma-Aldrich with different atomic 

percentage to get different doping levels. The mixed powder goes through two cycles of grinding, 

pressing into 1 inch pellets and annealing in ambient atmosphere at 1250°C for 10 hours. The 

high-quality and high homogenous target is critical to obtain a high crystalline and smooth film. 

The heart of the PLD system is a KrF excimer laser (Lamda Physik Compex 205) with 

wavelength centered at 248 nm, laser pulse energy of 180 mJ/cm
2
, pulse duration of 25 ns and 

pulse repetition rate ranging from 1-10 Hz. The laser beam is focused onto the target at an 

incident angle of 45°. Up to 6 targets can be mounted in the chamber, which can be rotated and 

chosen for the deposition of heterostructure. The distance between the substrate and target is 8 

cm. The background pressure is 5x10
-8

 Torr. During the deposition, the oxygen partial pressure 

can be controlled from 10
-3

 to 10
-5

 Torr. The substrate temperature can be adjusted from room 

temperature up to 1000°C monitored by a thermal couple. 
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2.2.2.4 Comparison between PLD and solution method 

Compared to other deposition methods, PLD has other advantages besides the simplicity of the 

setup. It is a versatile, reliable and fast method. The deposition rate is in the order of tens of nm 

per min. The thickness can be precisely controlled by the number of pulses applied and complex 

multi-component materials can be deposited in a wide variety of gas environment over a broad 

range of gas pressures. The unique ability to synthesize metastable materials and to form films 

from species existing only in the laser plasma is also among the advantages of PLD.   

Compared to the solution method, PLD has fewer impurities involved due to the high vacuum in 

the chamber, high purity targets (up to 99.999%) used for accurate stoichiometry transfer and 

position of the energy source for ablation, which is located outside the deposition chamber. PLD 

is a good candidate to study the doping effect of specific elements [105]. 

In addition, PLD has the precise control of the doping level, alloy composition (x, as in ZnxMg1-

xO), film thickness as well as the growth modes with the assistance of reflection high-energy 

electron diffraction (RHEED). By utilizing the 2D growth mode of PLD, the crystal quality of 

the epilayer can be greatly enhanced. These properties make it suitable to serve our long term 

objective to grow the MgZnO/ZnO heterostructure for mid-IR quantum cascade laser.  

Nevertheless, PLD allows the deposition of all kinds of different materials especially for oxide 

material, as it can transfer the target stoichiometry into the deposited film accurately and 

efficiently. Currently, in the solution phase, it is still difficult to get ZnMgO compound; however, 

there is no bottleneck in PLD deposition. These are the main reasons why PLD is used, instead 

of the solution method, for the specific piece of work described in Chapter 3, although PLD is 

relatively high cost as it requires high temperature and high vacuum compared to the solution 

method. 
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2.3 Characterization of ZnO 

2.3.1 Field-emission scanning electron microscopy (FESEM) 

FESEM is a kind of electron microscopes which provides topographical and elemental 

information of samples by scanning it with a focused beam of electrons. Being invented for 60 

years, FESEM is a fundamental tool widely applied in scientific research nowadays. Benefited 

from an extremely thin and sharp tungsten needle as a cathode, FESEM is able to achieve a high 

spatial resolution, less electrostatically distorted images compared to convention SEM. 

Compared to an optical microscope, the FESEM can provide a better resolution since the 

electron beam has a much shorter wavelength (de Broglie wavelength) compared to that of light. 

The principle of FESEM is schematically illustrated in Figure 2.9. The electrons in the beam are 

accelerated from a field-emission cathode after experiencing the voltage difference between the 

anode and cathode (0.1 keV to 50 keV). Focused by condenser lenses and passing through pairs 

of scanning coils or pairs of deflector plates, the primary beam of electrons scans the surface of 

the sample. A large variety of signals are emitted during the electron-specimen interactions of 

which the important ones are back-scattered electrons, secondary electrons, characteristic X-rays, 

cathodoluminescence, and transmitted electrons. As low-energy (<50 eV) secondary electrons 

originate from sample surface and a few nanometers underneath, the angle and velocity of 

secondary electrons are determined by the surface structure of the sample. Thus, in the most 

common imaging mode, the secondary electrons are detected and utilized to construct images. 

As the number of backscattered electrons is related to the atomic number of the surface element, 

backscattered electrons are able to finger print each element. 
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In this work, the JEOL FESEM 6700 in Institute of Materials Research and Engineering was 

used to examine the surface morphology, length and diameter of ZnO nanorods and thickness of 

ZnO films. The resolution of the system could reach 30nm.  The acceleration voltage applied is 

in the range of 5 to 30 kV. The working distance (WD) is set at 6 mm/8 mm by taking into 

consideration the attainable resolution, depth of field, sample tilt and local electric field. For non-

conductive samples, surface charging effect could be minimized through lower acceleration 

voltage (lower contrast) or Au coatings. 

 

Figure 2.9 The schematic diagram of FESEM from reference [106]. 

 

2.3.2 Photoluminescence spectroscopy (PL) 

PL results from the spontaneous emission of photons from a material under optical excitation.  

The electrons are excited to a higher energy state by external light and then return to a lower 

energy state with the emission of a photon. The photon energy is determined by the energy 
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difference between the excited electron state and equilibrium state. The intensity of the peak, 

correlating to the number of photons re-radiated from the material, depends on the population of 

the states which correspond to the transitions and the efficiency of the recombination process. It 

is a nondestructive and sensitive fluorescent measurement. Thus, this characterization tool is 

intensely used in this thesis to investigate a variety of ZnO parameters, such as the identification 

of the impurity levels and quality of the surfaces.  

Basic photoluminescence properties of ZnO are exhibited in the two main emission bands for 

both solution and PLD grown ZnO: the UV emission band and a visible emission band. Many 

possible radiative recombination mechanisms take place in these two bands. For the UV band 

emission, it is mainly from band-edge recombination of excitons and their phonon replicas, 

which is usually named as near band edge (NBE) emission. The visible band emission, which 

results from defects or impurities states located in the band gap of ZnO, is also referred to as 

deep-level emission (DLE). The maximum intensity usually occurs in the green to yellow range 

of the spectra. 

2.3.2.1 Band structure of ZnO 

As shown in Figure 2.10, ZnO is a direct bandgap semiconductor, where the minimal-energy 

state in the conduction band (CB) and the maximal-energy state in the valence band (VB) hold 

the same crystal momentum (k=0) located at the center of the Brillouin zone Γ point. At room 

temperature, ZnO has a bandgap (Eg) of 3.37 eV, which is defined as the energy difference 

between the conduction band minimum and the valence band maximum.   
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The conduction band minimum is formed by the empty 4s states of Zn
2+

 or the antibonding sp
3
 

hybrid states with an electron effective mass of me = 0.24mo [107]. The valence band maximum 

consists of the 2p orbital or the bonding in sp
3
 orbitals of the O

2-
. The valence band is split into 

three two-fold degenerate sub-bands, A, B and C due to the hexagonal crystal field and the spin-

orbit interaction. The most well adopted valence band symmetry ordering is A-Γ7, B-Γ9, and C-

Γ7 [108]. The effective mass of holes in ZnO is 0.59mo for A and B bands, but is anisotropic in C 

bands with value of 0.31mo and 0.55mo for the wave vector perpendicular and parallel to the c-

axis, respectively.     

 

Figure 2.10 Schematic band structure of ZnO. 

 

An understanding of the origins of NBE and DLE are necessary to interpret the results of 

luminescence characteristics of ZnO presented in chapters 4 and 5.  
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2.3.2.2 Band edge emission 

Free excitons (FXs), excitons bound to acceptors and donors, and their two-electron satellite 

states, and donor–acceptor pairs as well as phonon replicas usually participate in the band edge 

emission as illustrated in Figure 2.11. The nature of these excitons will be discussed below. 

 

Figure 2.11 Free and bound exciton recombination in the PL spectra of ZnO band edge emission 

region [107]. Selected transitions are indicated by vertical lines. The different areas mark the 

energy range of free excitons (FX), ionized donor bound excitons (D
+
X), neutral donor bound 

excitons (D
0
X), acceptor bound excitons (A

0
X), deeply bound excitons (Y), and two electron 

satellites (TES) of shallow and deeply bound excitons in their 2s and 2p states [109]. 

 

2.3.2.3 Free excitons 

When ZnO is excited by a light source with photon energy higher than or equal to its band-gap 

energy, an electron is excited into the conduction band and a hole is left in the valence band. Due 

to the Coulomb attraction, this electron and hole are bound together as a pair named exciton. The 

free excitons are charge neutral. Energy state of exciton could be expressed by the Schrödinger 

equation given below [110]: 
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where me and mh are electron and hole effective mass, respectively, ε is the dielectric constant of 

ZnO, reh is the distance between electron and hole, Eex is the eigenvalue of the energy. By solving 

equation (2.9), the quantized energy states of the exciton can be obtained:  
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where Eg is the bandgap of ZnO, Ry is the Rydberg unit of energy (Ry=13.61 eV),  is the 

reduced mass of excitons 
he

he

mm

mm


, meh is the total exciton mass heeh mmm  ,  is the Planck 

constant, ɛr is the relative permittivity. 

As illustrated in Figure 2.12, the energy levels of exciton are quantized, and all fall below that of 

the free electron. The energy difference between unbound electron-hole pair and free excitons 

are known as exciton binding energy b

exE , which are given by:  
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Figure 2.12 Exciton energy levels with respect to quantum number n [111]. 
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ZnO has a high exciton binding energy (60 meV) which is much higher than the thermal energy 

at room temperature (25 meV). As excitons in ZnO are stable at room temperature, ZnO has a 

high excitonic luminescence efficiency. The free exciton peak observed in the room temperature 

PL can be deduced from equation (2.10). 

2.3.2.4 Bound excitons 

Bound excitons refer to those free excitons being trapped in the defects centers, such as donor or 

acceptor. So it can be classified as donor bound excitons and acceptor bound excitons. 

Depending on the charge state of the donor or acceptor, they can form different kinds of bound 

exciton complexes, such as neutral donor bound excitons (D
0
X), neutral acceptor bound 

excitons (A
0
X), and ionized donor/acceptor bound excitons (D

+
X/A

-
X), as shown in Figure 2.13. 

 

 

Figure 2.13 Illustration of free exciton (FX), neutral donor bound excitons (D
0
X), ionized donor 

bound excitons (D
+
X) and neutral acceptor bound excitons (A

0
X). 

 

The excitons bound to ionized acceptors are not stable in general. For the case of neutral donor 

bound exciton (D
0
X), sometimes during the process of recombination, the donor is possible to 

be excited to an ionized state, and the emitted photon energy is smaller than the normal D
0
X 
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emitted photon by the energy difference between the donor excited state and its ground state. 

This transition is known as two electron satellites (TES).  

The emission from neutral DBE, LO phonon replicas and also TES dominate the near-band-

edge emission of ZnO at low temperatures, where 11 peaks (denoted I0-I11) in Figure 2.11 could 

be identified. An illustration of the bound excitons peaks in the low temperature PL 

measurement of ZnO is shown in Figure 2.14. As the temperature increases, the bound excitons 

start to release and gradually disappear above 80K while the free exciton emission becomes the 

main contributor at higher temperatures.   

 

 

Figure 2.14 Bound-excitonic region of the PL spectrum of annealed ZnO substrate measured at 

10 K [112]. 

 

2.3.2.5 Deep level emission 

Besides the band edge emission, the emissions of ZnO from visible and infrared spectral regions 

(1.6 - 2.8 eV) are often observed. They are attributed to the deep levels inside ZnO bandgap due 

to intentionally dopant, Li, N, Cu as well as intrinsic defects, such as oxygen and zinc interstitials 
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and vacancies as discussed in section 1.3. Figure 2.15 represents a DLE spectrum of one of the 

ZnO samples measured at 20 K as an example. The broadness of the DLE band is due to the 

superposition of various deep levels emission. 

Numerous assignments of the defects-related luminescence bands are reported in literature, some 

of which are still controversial. One example is the green emission which is the most commonly 

observed defect emission in ZnO thin film as well as in ZnO nanostructure. Green emission is 

assigned to oxygen vacancies, but other hypothesis includes antisite oxygen, zinc interstitials, 

copper impurities, and donor-acceptor transitions. Yellow emission due to oxygen interstitials is 

widely accepted, although Li impurities also have been proposed as the origin of the yellow 

emission in ZnO. Besides, yellow and green emissions, orange-red emissions are also observed 

which was attributed to oxygen interstitials as well as surface dislocations [113].  

 

Figure 2.15 The DLE spectrum of ZnO nanorods by solution method with 0.02 M zinc acetate, 

0.6 ml ammonia and 20ml H2O at 90°C for 20 minutes. 

 

The visible emission could be effectively controlled by performing thermal annealing. Thus, 

post-annealing is a good way to reduce the defects densities and improve the quality of material. 

1.6 1.8 2.0 2.2 2.4 2.6 2.8

P
L

 I
n

te
n

s
it

y
 (

a
.u

.)

 Photon Energy (eV)



47 

 

Various annealing ambient and temperatures are adopted to identify the origin of the defects 

emission. Chapter 4 of this thesis will focus on the study of DLE of the ZnO nanorods and the 

effect of thermal annealing in vacuum on the origin of the DLE.  

In this project, the PL is routinely used to check the ZnO crystal quality, strain induced bandgap 

shift and defects. The PL system used in this work is Renishaw 2000. A helium-cadmium (He-

Cd) laser centered at 325 nm (3.81 eV) is used as the excitation source which emits the photons 

of energy greater than ZnO bandgap. Thus, ZnO can be excited non-resonantly. The penetration 

depth into ZnO is around 60-70 nm [114]. The system is under back scattering configuration and 

the scan range of the spectrum is from 350 nm to 800 nm. A spectral resolution of 0.03 nm can 

be achieved. The laser spot size on the sample is 4-6 µm. For the low temperature PL, the sample 

is mounted in the cryostat and attached to a cooling tube through a copper stage. An external 

helium gas condenser and a pump are connected to the cooling tube, which enables the cryostat 

to reach 15 K. A thermal couple and pressure meter are used to monitor the temperature and 

vacuum level inside the cryostat.      

2.3.3 X-ray photoelectron spectroscopy (XPS) 

XPS, also named as electron spectroscopy for chemical analysis (ESCA), is a surface sensitive 

technique to investigate the stoichiometry of the surface. The basic working principle of the XPS 

is the photoelectric effect enunciated by Einstein in 1905 [115]. The ZnO sample is irradiated 

with monoenergetic soft x-rays which are absorbed by the outmost atomic layers (0-10 nm). The 

absorbed energy excites the electrons in the core levels of atom to transit to vacuum level as 

illustrated in Figure 2.16, becoming photoelectrons with a certain kinetic energy. By measuring 

the number of the electrons as a function of kinetic energy, a photoelectron spectrum can thus be 
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obtained for all the elements except H and He. The system is usually operated in an ultrahigh 

vacuum environment (P < 10
−9

 millibar) 

 

Figure 2.16  Schematic diagram showing the working principle of XPS.  

 

If the excitation X-rays has a photon energy of hυ, based on the conservation of energy, the 

kinetic energy KE(e
-
) of the photoelectron can be expressed as [116]: 

  )]()([ AEAEheKE    ,                                      (2.12) 

where )]()([ AEAE  is the difference in energy between the ionized and neutral state of the 

atom, which is identified as the binding energy (BE) of photoelectrons.  

By measuring the KE(e
-
), the BE of the photoelectron can be obtained: 

     )]()([ AEAEheKE ,                                (2.13) 
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where   is the spectrometer work function which refers to the minimum energy an electron 

needs to have in order to escape from the sample surface and   is the peak shift due to surface 

charging.    should be zero in a well calibrated system.  

In this work, we used the VG ESCA LAB-220i XL XPS system in IMRE, as shown in Figure 

2.17. It uses monochromatic aluminum Kα X-rays as the excitation source, which has photo-

energy of 1486.6 eV and spot size of 700 µm. The incident angle and analysis angle are 37.5 

degree and 90 degree to the sample surface, respectively. The resolution for the BE can reach 

0.02-0.03 eV in the range of 0 to 1000 eV. Pure Au, Ag and Cu are commonly used to calibrate 

the XPS BE through setting Au 4f7/2, Ag 3d5/2, and Cu 2p3/2 at binding energies of 83.98, 

368.26, and 932.67 eV, respectively [117]. It is also equipped with an in-situ annealing stage in 

the ultra-high vacuum (UHV) chamber and an ion beam etching stage for surface contamination 

removal or depth profiling. In this thesis, the XPS was mainly used to study the stoichiometry of 

ZnO samples as well as oxygen and zinc defects inside the ZnO nanostructures synthesized by 

microwave assisted heating and conventional water bath.  

 

Figure 2.17 Main components of VG ESCA LAB-220i XL XPS setup in IMRE. 
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The XPS chamber, with a base pressure of 1x10
-10

 Torr, was directly connected to a VG ESCA 

220i-XL imaging XPS system, the specific place of interest in ZnO samples can be visualized 

and located. The chemical states of each element from the ZnO samples were analyzed through 

the binding energy position. If the ZnO samples are not conductive, electron emission from the 

surface of the sample may cause positive sample charging, known as surface charging, which 

results in the shift and broadening of the binding energy. In order to minimize surface charging 

effect, an electron–flood gun was introduced to compensate the photoemission charge on the 

sample surface. In this work, the criteria of optimizing the electron-flood gun setting is to 

maximize the peak intensity and minimize the FWHM of the peaks simultaneously [118]. 

Besides neutralization by electron-flood gun during the measurement, the XPS spectrum still 

requires to be aligned to the C 1s binding energy at 285.0 eV at the analysis stage with the help 

of Thermo Avantage software. In order to determine the stoichiometry of the ZnO sample, the 

individual integrated peak areas (Ii) are divided by their respective atomic sensitivity factor (Si) 

and normalized to 100% to get an atomic fraction of element A, CA by



ii

AA
A

SI

SI
C

/

/

 

[119]. For 

ZnO samples, the O 1s (530 eV) and Zn 2p3 (1022 eV) peaks are with relative sensitivity factors 

(RSF) of 0.66 and 4.8, respectively [120].  

2.3.4 Terahertz time-domain spectroscopy (THz-TDS) 

2.3.4.1 Background of THz-TDS 

Terahertz spans the wavelength range from infrared to microwave radiation (0.3 to 20 THz), 

which was a mystery for researchers for several decades. With breakthroughs in materials 

science and engineering, modern terahertz spectroscopy systems are able to flourish. In turn, 
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terahertz spectroscopy has become a powerful tool for applications in a diverse range of fields 

such as biomedical sciences, tomographic imaging, astronomy and analytical science, 

characterization of semiconductors and biomolecules [121, 122].  

The development of THz-TDS is spurred by ultrafast optoelectronics using low temperature 

GaAs and electro-optic crystals [123]. First sub-picosecond pulse triggering semiconductor 

switch is used to drive a dipole antenna, generating picosecond microwave pulses in free space 

[124]. With shorter laser pulses, higher electromagnetic radiation is achievable with smaller 

radiating structures made using VLSI lithography [124]. The invention of terahertz beams which 

can be collimated and focused as simply as light beams in a spectrometer is another big 

milestone in THz-TDS history. Several reviews about THz-TDS and THz technology could be 

found in literature [125, 126]  

2.3.4.2 Applications of THz-TDS 

Three decades after the invention, THz-TDS has developed into a powerful characterization 

technique that can give insightful information on free carriers transport and dielectric properties 

of semiconductor materials [127, 128]. The pivotal advantage of THz-TDS lies in the fact that 

the amplitude and phase of the spectral components can be obtained simultaneously. It is also 

noninvasive, dispensed with the need of making electrical contacts, and has a high signal-to-

noise ratio benefiting from the coherent synchronous detection scheme [129]. The technique has 

been used to characterize transport property as well as dielectric response of various 

semiconducting materials, such as n-ZnO films and rods [130, 131], Si nanowires [132], InGaN 

film [133], GaAs [134], CdS nanobelts [135], and Bi (001) ultra-thin films [136]. 
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2.3.4.3 THz-TDS setup 

The schematic diagram of THz-TDS used to explain its basic working principles is shown in 

Figure 2.18. A femtosecond pulse generated from a laser source was beam split into pump 

pulses and gating pulses. The pump pulses were impinged onto a photoconductive antenna, 

which was patterned on a low temperature grown GaAs (LT-GaAs) to generate THz pulses. 

There is an instantaneous photo-induced current change in semiconductor materials after being 

illuminated by fs laser pulses. The sudden change in current results in the electromagnetic 

radiation. Due to the short carrier lifetime of LT-GaAs, the duration of the emitted THz pulses is 

only around 2 ps. This emitted short THz pulses were collimated and focused onto the sample by 

a pair of off-axis paraboloidal mirrors and then directed to the photoconductive detector. On the 

other hand, the gate pulse was used to detect the THz pulses. The working mechanism of the 

detector is similar to that of emitter but no bias was applied to the antenna. When gate pulses 

illuminated the detector, photo-carriers were generated at the surface of the semiconductor. The 

electric field associated with THz wave drive these photo-generated carriers to the electrodes 

resulting in a current flow. After the current was further amplified, it was recorded as the 

corresponding THz electric field. Due to the short lifetime of LT-GaAs carriers, only an 

extremely narrow region of the entire THz electric field signal was sampled. A delay stage was 

introduced to delay the gate pulse which controls the temporal overlap between the THz wave 

and gate pulse. By varying the delay time, which was the gating time of the detector, the real 

time electric field signal of the THz wave transmitted through samples was collected.  

In this thesis, THz transmission spectra of ZnO films doped with different carrier concentrations 

were obtained from TeraView TPS3000 THz-TDS system, which contains a mode-locked 

Ti:sapphire laser generating ~100 fs pulses centered at 800 nm with a repetition rate of 76 MHz. 



53 

 

The entire experiment setup was kept in dry nitrogen ambient to eliminate noise caused by water 

vapor absorption. As mentioned, during the THz-TDS measurement, the THz pulse passes 

through the ZnO samples and the time domain electric field of the transmitted THz signal E(t) is 

obtained. In order to obtain transmission properties in frequency domain, Fourier transform on 

E(t) needs to be applied based on the equation    dttEeE ti






 




2

1
. Further discussion on 

the application of this technique is presented in Chapter 3. 

 

 

Figure 2.18 Schematic diagram of THz-TDS setup, adopted from [137]. 
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Chapter 3 THz-TDS characterization of n-type ZnO:Ga grown by 

PLD 

3.1 Introduction 

This chapter focuses on an integrated technique using THz TDS and Hall measurement to obtain 

the effective mass and scattering time of n-type Ga-doped ZnO film. Firstly, a theoretical 

background of transmission coefficient and the Drude model are given to understand the new 

method in deriving effective mass and scattering time. The preparation of the n-type ZnO films 

by PLD with different carrier concentrations and the experimental setups used in this work will 

be described. The results of the carrier concentration dependent effective mass, scattering time as 

well as mobility obtained from this new method will be presented. Lastly, the physics behind the 

discrepancy in the carrier mobility extracted from Hall and THz-TDS measurements will be 

explained. 

3.2 Background 

Effective mass m*, carrier concentration N0, and scattering time τ are important parameters to 

characterize the free carriers transport properties in semiconductors. Recently THz-TDS has been 

developed as a powerful characterization technique that can give insightful information on free 

carriers transport and dielectric properties of semiconductor materials as discussed in section 

2.3.4.
 
However, in the conventional THz-TDS characterizations, the carrier effective mass, 

which is a key parameter in extracting dielectric properties from THz transmission/reflection 

measurements, is assumed as a constant and its dependence on the carrier density is completely 
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ignored. In fact, as a fundamental parameter in semiconductor physics, the electron effective 

mass (which is determined by the curvature of the E-k diagram) has a substantial influence on 

other physical quantities, such as density of states, carrier density, current and mobility [138]. 

Effective mass is also crucial in devices structure design, which determines the electron/hole 

energy levels of heterostructure. Unfortunately, THz-TDS alone is not sufficient to determine the 

carrier effective mass independently as it only provides two quantities (i.e. amplitude and phase), 

unless an additional excitation source is introduced, such as in terahertz time-domain magneto-

optical ellipsometry [139]. 

In this chapter, we present a new and easily accessible approach to determine carrier 

concentration dependent effective mass and carrier scattering time by THz-TDS. The derivation 

of electron effective mass for n-ZnO with different carrier concentrations is illustrated as an 

example and the method can be applied to other semiconductors. By utilizing the carrier 

concentration value obtained from Hall measurement and manipulating the parameters of carrier 

dynamic extracted from THz-TDS through a single-variable linear curve fitting, the electron 

effective masses of n-ZnO films with different carrier concentrations are obtained, which show a 

positive correlation with carrier concentration. The carrier concentration dependent character is 

attributed to the non-parabolicity of the conduction band.  
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3.3 Theoretical model 

3.3.1 Transmission coefficient  

 

Figure 3.1 Schematic diagram of the THz signal transmitted through bare sapphire substrate 

(reference) and sample with ZnO film on top of it. 

 

As shown in Figure 3.1, when the THz wave is transmitted through the sapphire substrate, the 

transmittivity from air to sapphire and from sapphire to air is denoted as t01 and t10, 
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The electric field after passing through the bare sapphire substrate (reference) and the thickness d 

of air could be expressed as: 
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,                                                (3.2) 

Where 
0E


is the amplitude of the electromagnetic field of the incident beam. Due to the different 

refractive indices of ZnO film and sapphire substrate, reflection occurs at the interface. The 
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reflectivity at the ZnO/air interface and ZnO/sapphire interface are respectively given by 20r and 

21r is: 
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As the electric field can be reflected at the ZnO/sapphire as well as the ZnO/air interfaces, we 

denote the electric field emerging from the ZnO surface after the first and successive reflections 

at the ZnO/sapphire interface as 1E


, 2E


, 
3E


…….The electric field 1E


at the top surface of the 

ZnO on sapphire substrate is given by: 
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The electric field 2E


at the top surface of the ZnO on sapphire substrate is given by: 
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The total electric field for the sample with ZnO film on top of sapphire substrate is the sum of 

the geometric progression, and thus can be expressed as: 
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Transmission coefficient )(t  is defined as the ratio of the transmitted THz electrical field 

through the n-ZnO film, denoted by Esam(ω) to that through the bare sapphire substrate reference 

Eref(ω). The coefficient is obtained by substituting the expressions in equations (3.2) and (3.6), 



58 

 

 
 
  )]/2exp())(1())(1[(

]/)1(exp[)1(2

22222

22

_1 cdninnnnnn

cdninn

E

E

E

E
t

ss

s

ref

out

ref

sam
























.        (3.7)

 

3.3.2 Drude model 

Drude model is a classical model used to calculate the motion of electron and dielectric function 

of a material. In Drude model, the motion of electron simply follows classical mechanics, i.e., 

Newton’s law, while all the quantum mechanics behavior of an electron is represented by the 

effective mass used, instead of real mass of an electron. The electrons in metal or 

semiconductors move under the influence of an electric field. Under the influence of an external 

electric field, an electron is displaced from its original place by a distance r


. Considering an 

electromagnetic wave 
tieEE  0


 with amplitude E0 and frequency ω impinging onto a 

semiconductor, the equation of motion of the electron gas as following:  
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where m
*
 is the effective mass of free electrons, Γ is the collision coefficient of electrons 

resulting in the damping of the motion. Considering harmonic motion of electrons given by the 

expression
tiertr  0)(


, the above equation yields:  
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The displacement of electron from its original position results in a dipole moment re


 .The 

cumulative effect of the dipole moment from all the electrons results in a polarization rneP


 , 

where n is the electron concentration. It is well known that polarization is also defined as:
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where )/( *

0

2 mnep   is the volume plasma frequency.  

3.4 Samples preparation and experimental details 

As mentioned in Chapter 1,
 
ZnO has the large bandgap of 3.37eV at room temperature and on 

top of that ZnO/MgZnO heterostructures have a large band offset, thus it is a good candidate for 

inter-subband (ISB) devices. Especially recently ZnO has been proposed as a promising material 

mid-IR ISB quantum cascade laser (QCL) and photodetector operating at room temperature since 

the invention of GaAs/AlGaAs QCL 20 years ago. Compared with QCL in mid-infrared using 

GaAs/AlGaAs system, ZnO/MgZnO exhibits a weaker temperature dependence of the 

population inversion due to large ZnO optical phonon energy of 72 meV [140]. Comparing to 

III-V materials such as GaN, ZnO-based structures has a larger iconicity and results in shorter 

carrier lifetime and faster ISB carrier relaxation, which benefits ZnO-based ISB devices for high 

speed applications. Furthermore, the higher effective mass of ZnO compared to GaN (0.19mo) 

could reduce the dark current and improve the sensitivity of ISB detectors [129]. Effective mass 

is a fundamental parameter which determines many other physical characteristics of a material 

and it is also crucial in devices designing such as QCL and photodetector, since electron energy 

levels in ZnO/MgZnO QWs are sensitive to effective mass. From the perspectives of both 
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fundamental physics and device applications, it is greatly desired to know the electron effective 

mass of ZnO and its dependence on carrier concentration.
18-20 

To serve this purpose, gallium 

doped n-ZnO films with different carrier concentrations were investigated in this work. Two 

ZnO films with different carrier concentrations were grown on c-plane sapphire substrate by 

pulsed laser deposition (PLD) as described in Chapter 2 and the specific growth condition for 

this work is shown below.  

 A target of ceramic ZnO/Ga2O3 (98/02 wt.%) with 99.99% purity.  

 A 20 Hz pulsed laser with pulse energy of 300 mJ was focused onto the target and the 

target-substrate distance was 8 cm. 

 Oxygen partial pressure varies from 4.2mTorr to 7mTorr.  

 Substrate temperature changes from 300˚C to 800˚C.  

 

The thicknesses of ZnO samples 1 and 2 were 490 nm and 550 nm respectively as measured 

from the micrographs obtained with a FESEM. The carrier transport properties of the two as-

grown samples were measured by four-point probe Hall measurements (HL5500PC Hall Effect 

System) at room temperature using van der Pauw configuration. Ti/Au (15 nm/50 nm) was used 

as an ohmic contact to n-ZnO films to minimize contact resistance. The electron concentrations 

for samples 1 and 2 were found to be 4.0×10
19

cm
-3

 and 4.3×10
18

cm
-3

, and their mobilities were 

20.1 cm
2
/Vs and 22.8 cm

2
/Vs, respectively. 

The THz transmission spectra of the two as-grown ZnO samples were characterized by a THz-

TDS system as described in section 2.3.4. 
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3.5 Results and discussion 

Figures 3.2(a) and (b) show the THz signals in time-domain and their corresponding Fourier-

transformed frequency domain spectra, respectively, after passing through the bare sapphire 

substrate, samples 1 and 2. The time-domain window was truncated such that additional pulses 

originated from multiple reflections from sample-air interfaces were not included in analysis and 

the curves in time domain have been shifted horizontally for easy observation. The transmitted 

THz signal through the bare sapphire substrate served as a reference throughout the whole 

experiment. It clearly shows that the transmitted signal through the reference has the highest 

amplitude compared to that of ZnO samples 1 and 2, as the intrinsic substrate barely absorbs the 

THz energy.  

It is worth to mention that as the investigated ZnO films are thin, special precautions were taken 

during THz-TDS characterization to minimize the systemic errors. The thickness variation of 

sapphire substrates is normally on the same order or larger than the thickness of ZnO films 

investigated, which may undermine the validity of measurement results. To eliminate this effect, 

the THz transmission properties of the sapphire substrates on which the ZnO were to be grown 

were measured first. After ZnO films deposition, THz-TDS was performed again to measure the 

transmittance of the same sapphire deposited with ZnO. To minimize the effect of THz-TDS 

system instability, which was mainly caused by the inaccuracy and non-perfect repeatability of 

the delay line stage, ZnO deposition and THz-TDS re-measurement, was performed within three 

days after the THz-TDS characterization of the bare sapphire substrates. A control sapphire 

sample (cut from the adjacent area to those used for growing the ZnO films) introduced to 

monitor the variation in the two time-separated THz-TDS measurements, indicated a relative 
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error of less than 5% caused by the system instability in amplitude and phase of the Fourier-

transformed THz waves. 

 

 

Figure 3.2 Transmitted THz signals in (a) time domain and (b) frequency domain (0.1-2 THz). 

The transient pulses in (a) have been shifted horizontally for easy observation. 

 

The analysis of carrier concentration dependent effective mass begins with the numerical 

computation of the complex refractive index )(n of n-ZnO films from the transmission 

coefficient )(t  via the following equation derived earlier in section 3.3 [141]:
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where Esam(ω) and Eref(ω) are the transmitted THz electrical field through the n-ZnO film on 

sapphire substrate and through the bare sapphire substrate reference, respectively.  1

ctrlE and

 2

ctrlE  are the THz electrical field measured respectively for the control sample at the time the 

reference sample was measured and remeasured at the time when the reference sample deposited 

with ZnO was measured. ns and n are the refractive indices of sapphire substrate and n-ZnO film 

respectively, d is the thickness of the n-ZnO film, c is the speed of light in vacuum and ω is the 

angular frequency of the THz radiation. The ratio     21 / ctrlctrl EE  provides for the correction 

factor due to system instability. Δd is introduced in case there is the thickness difference between 

different spots on the sapphire substrate. ns was taken as 3.11 from the analysis of THz 

transmission through sapphire substrate. With n(ω) at hand, the computation of the complex 

dielectric function ε(ω) and complex conductivity σ(ω) proceed easily through the well-

established relationship: 

             0

2 iin DCir  ,                             (3.12) 

where εr and εi are real and imaginary parts of the dielectric function respectively, εDC is the static 

dielectric constant (7.46 for ZnO), and ε0 is the free space permittivity [142]. In the THz 

frequency range, the dielectric response of n-ZnO films is adequately described by Drude model 

via )()( 22  ipDC  , where a gas of free electrons of concentration N0 moves against 

fixed positive ion cores with the motion being damped by carrier scattering occurring with the 
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characteristic collision frequency  /1 , where τ is the free carrier scattering time and 

*0

2

0

2 meNp    is the plasma frequency of n-ZnO film. It is evident that τ and p  are 

necessary to get m*.  

Free carrier scattering time τ was extracted directly from the complex conductivity (), which 

was already obtained from equation (3.12) after knowing the value of n(ω). In order to verify the 

applicability and effectiveness of our proposed method over a wider range, the result on n-ZnO 

film of thickness 3.73 μm grown by MOCVD with a lower carrier concentration of 5.87×10
17 

cm
-3 

and mobility 102.0 cm
2
/Vs reported by Zhang et al. is included in the following analysis 

(Sample 3) [131]. By substituting the dielectric function ε(ω) from Drude model into equation  

(3.12), the conductivity () can be expressed as 

    i 1)( 0 ,                                          (3.13) 

where
*2

00 / meN   is the DC conductivity. Instead of adopting the non-linear multi-variable 

fitting to get τ used previously by other groups [131, 134, 143], we introduce a single-variable 

linear fitting by taking the ratio of the imaginary part to real part of the conductivity in equation 

(3.13), resulting in:  

  





)Re(

)Im(
.                                                           (3.14) 

Figure 3.3 shows the linear relationship of the ratios Im() /Re( ) against  for ZnO samples, 

where the slope is the free carrier scattering time τ. For  >10
13

 rad/s (~1.6 THz), the small 

discrepancy of samples 2 and 3 from the expected linear behavior indicates that τ is slightly 

dependent on frequency. Free electron scattering time τ for samples 1, 2 and 3 was determined to 

be 8.92 fs, 23.2 fs and 68.0 fs, respectively from linear curve fitting using least squares method 
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as shown in Figure 3.3. It is worthy to note that ZnO sample 1 has the shortest free carrier 

scattering time, which is attributed to the more frequent scattering resulting from higher carrier 

concentration, as measured by Hall experiment [144]. 

 

Figure 3.3 The ratio between imaginary part and real part of conductivity (Im(σ)/Re(σ)) as a 

function of angular frequency ω for sample 1(red circle), sample 2(blue square) and sample 

3(green triangle). Fitted linear lines whose slopes reveal electron scattering time are also shown. 

 

Finally, the electron effective mass was obtained via the determination of plasma frequency of 

ZnO film. Since the frequency of THz radiation is 2 orders of magnitude smaller than the 

electron collision frequency of ZnO samples ( << γ), i.e. ~1 THz compared to ~100 THz, the 

imaginary part of the dielectric function i  in Drude model can be simplified as: 










2

22

2

)(

pp

i 


  ,                                              (3.15) 

By taking the logarithm on both sides of the equation (3.15), it becomes:  
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)log()log()log( 2  pi   .                                     (3.16) 

Plotting )log( i against log() as shown in Figure 3.4, straight lines with negative unity slope 

were obtained. Again, a linear-curve fitting technique based on the least squared method was 

applied. The plasma frequency p of ZnO samples 1, 2 and 3 determined from the vertical axis 

intercept was found to be 1p =6.96×10
14 

rad/s, 2p =2.32×10
14 

rad/s and 3p =9.00×10
13 

rad/s. It 

can be seen that the plasma frequency of ZnO film, which lies in the infrared range of 

electromagnetic spectrum, reduce with the decrease of carrier concentration. By substituting the 

electron concentration N0 obtained from Hall measurement into the equation )( 0

*2

0

2
 meNp  , 

the electron effective masses for samples 1, 2 and 3 are calculated to be 0.26m0, 0.25m0 and 

0.23m0, respectively.  

Values of the dielectric and carrier transport parameters for ZnO samples 1, 2 and 3 are 

summarized in Table 3.1. It reveals that at higher electron concentrations (samples 1 and 2), the 

effective masses are larger than the prevalently used value 0.24mo [145]. These larger values 

obtained are reasonable by taking the heavier polaron into consideration, as the measurement 

was performed at frequencies below the highest longitudinal optical phonon frequency of ZnO 

(590 cm
-1

) [146]. 
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Table 3.1 Summary of the transport and dielectric properties of n-ZnO samples obtained from 

Hall and THz-TDS measurement. 

Sample 

No. 

d 
(μm) 

N0 
(cm-3) 

μ 
(cm2/Vs) 

μ 
(cm2/Vs) 

τ 
(fs) 

γ 

(10
14 

rad/s) 

ωp 

(10
14 

rad/s) 
m*/m0 

 SEM Hall Hall TDS TDS     TDS   TDS TDS 

Sample 1 

(PLD) 
0.49 4.0×10

19
 20.1 59.5 8.92 7.04 6.96 0.26 

Sample 2 

(PLD) 
0.55 4.3×10

18 
22.8 161.7 23.2 2.71 2.32 0.25 

Sample 3   

(MOCVD)
4
 

3.73 5.9×10
17

 102.0 493.0 68.0 0.92 0.90 0.23 

 

 

Figure 3.4 The imaginary part of dielectric function εi as a function of angular frequency ω for 

sample 1(blue), sample 2(red) and sample 3(green) in double log plot. Fitted linear lines by 

Drude model are also shown. 

 

Moreover, the electron effective masses obtained from three samples show clearly a positive 

correlation with carrier concentration N0, i.e. ZnO sample with higher carrier concentration has a 

larger electron effective mass. This correlation agrees well with reported experimental results 

and theoretical calculations [139]. At higher electron concentration, the probability of higher 
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energy states in the conduction band being occupied by electrons increases. Since the conduction 

band is non-parabolic and the curvature of the E-k curve decreases with energy, a higher carrier 

concentration results in a higher effective mass of the conduction electrons.  

In addition, it is well known that the effective mass is related to mobility and carrier scattering 

time by 

*me  .                                                                       (3.17) 

By substituting the effective mass and free carrier scattering time extracted above into equation 

(3.17), the mobility of samples 1, 2 and 3 is obtained as 59.5, 161.7 and 493.0 cm
2
/Vs 

respectively. It is noticed that the mobility obtained through this approach follows the same trend 

of the dependence on carrier concentration as Hall measurement, although the agreement in 

absolute value with that obtained from Hall measurement is poor. This discrepancy in mobilities 

can be ascribed to free carrier localization. This is the first report to give an insightful study of 

the difference in carrier transport mechanism between Hall and THz-TDS measurement. In Hall 

measurement, free electrons move under the driving DC electric field. However, during the long-

distance transportation of free electrons, one part of them would be trapped as a result of certain 

scatterings such as with grain boundaries or defects, resulting in carrier localization [147, 148]. 

The localized electrons cannot travel over a long distance and do not contribute to Hall mobility. 

Thus, the mobility measured by Hall Effect showed relatively smaller value than by THz-TDS.  

3.6 Summary  

In summary, we have demonstrated a new and easily accessible approach to determine carrier 

effective mass and carrier scattering time due to free carrier and carrier localization mechanisms 
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by THz-TDS and Hall measurements. It is found the electron effective masses of n-ZnO films 

varies from 0.23m0 to 0.26m0 as the electron concentration changes from 5.9×10
17

 cm
-3 

to 

4.0×10
19

 cm
-3

, which show a positive correlation with carrier concentration. The carrier 

concentration dependent character is attributed to the non-parabolicity of conduction band. Free 

carrier scattering time measured by THz-TDS decreases with carrier concentration. The mobility 

obtained from Hall measurement is smaller in value than would otherwise be obtained from free 

carrier scattering alone due to carrier localization. THz-TDS combined with Hall measurement 

has been demonstrated as a simple but powerful approach to study carrier transport properties of 

ZnO film, which is also applicable to other semiconductor materials. 
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Chapter 4 Intrinsic doping of ZnO nanorods grown by solution 

method  

4.1 Introduction 

Synthesis and characterization of intrinsically doped ZnO nanorods are the main focuses of this 

chapter. The solution growth method - microwave and water bath assisted heating – introduced 

in Chapter 2 is described in detail here, explaining the mechanism of ultrafast microwave 

synthesis method with a comparison to the conventional water bath assisted synthesis. The effect 

of pH in the growth process will also be addressed. A comprehensive and systematic study on 

the fundamental difference between the water bath and microwave synthesized ZnO nanorods in 

terms of the intrinsic doping density, and its effect on the lattice structure and optical properties 

will be presented. The result of post heat treatment is also discussed as it would assist to 

understand the behavior of intrinsic doping. 

4.2 Background 

4.2.1 Microwave heating and its growth mechanism 

Microwave heating effect was first discovered accidentally by an engineer named Percy LeBaron 

Spencer in 1945. During his work on microwave for radar application, he noticed that a 

chocolate in his pocket got melted [149]. Since then microwave has become a powerful, reliable 

energy source that has been adopted in various applications, such as irradiating coal to remove 

sulfur and other pollutants, rubber vulcanization, solvent extraction as well as home use. 

Microwave covers the frequency range from 300MHz to about 300GHz. Within this region, the 
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electromagnetic energy only affects molecular rotation instead of molecular structures as shown 

in Figure 4.1. 

 

Figure 4.1 Diagram of the electromagnetic spectrum, showing various properties across the 

range of frequencies and wavelengths [150]. 

 

Among the available frequencies for military, industry, scientific or medical applications, 2.45 

GHz is preferred since it has the right penetration depth to interact with laboratory scale samples, 

and the power sources are available at this frequency to generate microwaves [150]. As the 

microwave photon energy at 2.45 GHz is 0.978 J/mol and the typical energy to cleave molecular 

bonds is 334.72 - 502.08 kJ/mol, the energy of microwave is not sufficient to break the 

molecular bonds. Generally, there are two heat transfer mechanisms for microwave. One is the 

dipole rotation where polar molecules in the solution or substrates try to align themselves with 

the rapidly changing electric field of the microwave. The other is the ionic conduction which 

takes place when free ions or ionic species are present. The electric field of microwave drives 

ions to move. Due to the alternating nature of the electric field, the ions change direction 
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periodically. During the motion, collision occurs,  resulting in the local temperature heating [150, 

151]. In the microwave assisted solution growth, water is one of the most popular solvents to be 

used. The water molecule is a dipole which responses to the microwave radiation as shown in 

Figure 4.2 [149].  

 

Figure 4.2 Water molecules experience the changing of electric field under microwave radiation 

[149]. 

 

The ability of a certain material or solvent to convert microwave energy into heat at a specific 

frequency and temperature is determined by the loss tangent ( tan ): 

  /tan ,                                                               (4.1) 

where   is the dielectric loss, which refers to the conversion efficiency of the electromagnetic 

radiation into heat, and    is the dielectric constant, representing the polarization of the material 

in the electric field [152, 153, 154]. A higher tan  of a reaction medium at a specific 

microwave frequency means better absorption and higher efficiency in heating, which is the 

criterion for solvent selection. Water is one of the most commonly used solvents in solution 

synthesis. The loss tangent of water at 2.45 GHz is 0.123 at room temperature. The optimal 

frequency for water to absorb microwave energy and convert to thermal energy is at 18 GHz 
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which is the frequency for satellite communication. The amount of ionic salt added into the water 

could significantly increases its tan  [154, 156]. 

There are several differences between the microwave heating and traditional water bath heating. 

For the traditional water bath synthesis, it requires a heat conductive vessel and heat is 

introduced into the reactants through heat diffusion, which is a slow process and usually takes a 

long time. As a result, there is a temperature gradient across the whole system. The whole 

process is rather slow and inefficient, causing inhomogeneity and poor control of temperature. It 

is also difficult to be scaled up. On the other hand, microwave couples directly with the 

molecules in the reaction mixture, which leads to a rapid and homogenous temperature increase. 

As the process is not dependent on the thermal conductivity of the vessel materials, it allows 

localized instantaneous heating with better parameter control and energy saving as shown in 

Figure 4.3.  

 

Figure 4.3 Comparison between conductive heating and microwave heating. The key features of 

each heating are listed. 
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During the solution based synthesis, chemical reaction occurs. The energy change of a typical 

chemical reaction in solution with respect to the reaction time is plotted in Figure 4.4. In a 

typical reaction coordinate, the process starts with reactants A and B. In order to complete the 

transformation, the system must absorb energy Ea (activation energy) from the environment, 

which is supplied by microwave. Once enough energy is absorbed, the reactants quickly react 

and move to a lower energy state Ep as a final product. Microwave radiation does not change the  

Ea, but provides the momentum to overcome this barrier (ETS - ER = Ea) and complete the 

reaction much faster with higher throughput compared to conventional heating methods. As the 

typical microwave energy transfer time (10
-9

 s) is much shorter than kinetic molecular relaxation 

time (10
-5 

s), it leads to non-equilibrium conditions and a high instantaneous temperature to 

enhance the reaction rate and product yield. However, there is still an intense debate regarding 

the nature of microwave heating on the reaction rate, whether there are non-thermal microwave 

effects, such as increase in collision efficiency, rotation or vibration transitions excitement and 

their effects on activation energy [152, 156]. 

 

Figure 4.4 The energy change of a chemical system with respect reaction time [150]. 
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Microwave-assisted synthesis has been recommended as one of the environmentally friendly 

methods in a review article “viable methodologies for the synthesis of high-quality nanostructure” 

by Patete [158]. The microwave assisted synthesis has been proved to achieve an order of 

magnitude enhancement in reaction rate, uniformity, selectivity and energy saving as compared 

to the water bath synthesis. Katsuki et al. demonstrated that the conventional heating system 

consumed 6 times more energy than microwave heating system in the synthesis of cubic BaTiO3 

nanoparticles [159]. Idalia et al. explained the reason why microwave irradiation accelerated 

ZnO nanoparticle formation compared to conventional heating from kinetic and thermodynamic 

aspects using zinc acetate and benzyl alcohol solution with different temperature (120 to 180°C) 

and duration (0.5 to 35 minutes). They found that the rate constant of dehydration process is 

enhanced by 10 times and the rate constant of crystal growth is increased from 3.9 nm
3
 /min 

(conventional heating) to 15.4 nm
3
/minute (microwave heating) [160]. Richardson et al. also 

investigated that the increase in nucleation and growth rate of the epitaxial ZnO films on spinel is 

attributed to the high heating rate of microwave assisted growth based on the classical nucleation 

theory [161].  

While, a common concern of microwave synthesis is whether its attractive advantages come with 

a penalty in crystal quality and defect density of the systemized material. However, an accurate 

and systematic comparison on the defect and optical quality of ZnO nanostructures synthesized 

by both methods has yet been reported, which is highly desirable and is therefore the motivation 

of the work in this chapter. 
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4.2.2 Effect of pH in solution growth  

In the solution synthesis, pH is an important parameter, which controls the growth habit of ZnO  

through charges on the surfaces and especially affects the hydrolysis and condensation process of 

the solution [162]. The pH of a solution is defined as the negative logarithm of the hydrogen ion 

concentration in the solution: 

]log[  HpH ,                                                            (4.2) 

where [H
+
] is the concentration of the hydrogen, the square bracket denotes the concentration 

which is measured in molar from here onwards. Molar is defined as the number of moles of ions 

per liter water. At 25ºC, the ion product of water is [H
+
][OH

-
]=10

-14
 and [H

+
] and [OH

-
] have the 

same concentration of 10
-7 

M. Thus, the pH of pure water is 7 at this temperature. The pH of a 

solution can be controlled by the concentration of acids and alkali, which supplies the excess of 

H
+
 or OH

-
.  

Ammonia was chosen to control the pH of the solution in this work. The equilibrium of ammonia 

in water is given by   

  OHNHOHNH 423
 .                                          (4.3) 

In a water solution, ammonia dissolves into hydroxide ions, thus an ammonia solution is alkaline. 

The relationship between ammonia concentration and pH can be obtained from the equilibrium 

constant, K. In general, K can be calculated from reaction equilibrium: 

hHfFeEdDbBaA  ......  
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dba

hfe

DBA

HFe
K

]...[][][

]...[][][
 ,                                                             (4.4) 

For the case of ammonia dissolution, K at 25ºC can be calculated based on equation (4.4):  

5

3

4 1076.1
][

]][[ 



NH

OHNH
K      (at 25ºC).                                          (4.5) 

If ammonia concentration is assumed to be 1 M ( ]NH[ 3 =1), ]NH[ 4

  and ]OH[   have the same 

concentration of 4.210
-3

 M as obtained from equation (4.5). By substituting [OH
-
] into the ion 

product of water, [H
+
][OH

-
]=10

-14
 at 25ºC, the concentration of [H

+
] could be found and the pH 

of the solution is obtained as 11.62 according to equation (4.2) [163]. Thus, with different 

concentrations of ammonia, the pH of the solution is varied accordingly.  

As discussed in Chapter 2 regarding the growth and nucleation of ZnO, the ionization of 

hydroxyl groups determines the surface charge of ZnO. In the presence of water, the surface 

groups can be ionized in the following manner: 

  OHOHZnOHOHZnOHOZn 223 .                     (4.6) 

In solution, the dehydration process of Zn
2+ 

cations is completed via the adsorption of H2O. Due 

to the strong attraction of the electrons in H2O by the positively charged Zn
2+

, the H
+
 ions 

become loosely bonded in H2O and under certain conditions, one H
+
 dissociates and an OH

-
 is 

remained on the Zn
2+

 surface. The remaining H
+
 in the OH

-
 requires a higher energy to dissociate 

from the O-H bond, depending highly on the pH of the solution. In an acidic solution with low 

pH, H
+
 in the O-H bond on the surface is more difficult to dissociate into the solution where the 

concentration of H
+
 is high. In contrast, under a higher pH, the concentration of H

+
 drops in the 
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solution and it is much easier for the H
+
 to dissociate from the OH

-
 into the solution, leaving O

2-
 

alone with Zn
2+

. Another Zn
2+

 from the solution is attached to the remaining O
2-

 through charge 

attraction. Then the new round of dehydration process takes place. As a result, a higher pH can 

promote the growth rate of ZnO with a higher rate of the Zn
2+

 adsorption and the related OH
-
 

dissociation [164]. Depending on the pH of solution, the net surface charge of the ZnO can be 

positive, neutral and negative. The particular pH at which ZnO surface has a net neutral charge is 

defined as the point of zero charge (PZC) as shown in Figure 4.5. The value of PZC has been 

reported to be in the range of 8.7 - 9.7 [160, 161]. It has been found that as the pH moves far 

away from PZC, the interface energy γ becomes small, which leads to a minimal critG for 

nucleation of ZnO to take place according to equation (2.2) [160, 161]. 

 

Figure 4.5 pH determines the surface charge of ZnO, adopted from reference [168]. 

 

(a) pH and defects 

Akhavan et al. has studied the effect of pH in the range of 7.5 to 11.44 using zinc nitrate and 

NaOH as precursors. They found that the ZnO nanorod diameter increased with pH but a blue 

shift of the bandgap emission was observed as the pH increased due to the higher defects density 

through fast growth rate [162]. Tay C.B et al. studied the correlation between pH, growth rate 
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and defects of ZnO nanorods grown by the aqueous solution method with the same precursors 

zinc acetate and ammonia as we used here [169]. With a higher ammonia concentration, the 

higher pH leads to a higher concentration of OH
-
 and more negatively charged growth units in 

the solution. A much stronger attraction between H
+
 ions and the solution pulls H

+
 ions away 

from the ZnO surface, which results in fewer H
+
 defects and higher growth rate since more free 

sites are available for zinc cations. In addition, the higher growth rate cannot provide sufficient 

time for dehydration of excess hydroxyl groups. As a result, excess oxygen from the hydroxyl 

groups contributes to the oxygen interstitials and zinc vacancies [170]. A verification of such 

defect creation hypothesis will be discussed in the following sections of this chapter and 

extended to the microwave assisted synthesis.  

4.3 Sample preparation and experimental procedure 

The ZnO nanorods were grown on Si (100) substrates using two different aqueous solution 

routes: microwave synthesis and heated water bath. Due to the large lattice mismatch between 

ZnO and Si, the seed layer is needed to promote the secondary nucleation to take place. Thus, all 

the four steps of the growth procedure (a)-(d) listed below, which were introduced in Chapter 2, 

are compulsory here. Since this is a comparison experiment, the details of the experiment control 

and the specific parameters of growth, such as ammonia concentration, are emphasized below. 
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a) Bare Si (100) substrates were cleaned with acetone, IPA and deionized (DI) water, followed 

by spin-coating of a ZnO seed layer and rapid thermal annealing for 20 minutes in air at 350 
º
C.  

b) The substrates were submerged facing downwards into 20 ml of stock aqueous synthesis 

solution, which consist of 0.02 M ZnAc2 with varying concentrations of ammonia ([NH3]).  

c) The different [NH3] used were 0.255, 0.503, 0.748, 0.988 and 1.222 M. A stock solution was 

prepared for each [NH3] to ensure that the chemical composition of the growth solutions for 

microwave and heated water bath are the same.  

d) In microwave and heated water bath setups, growth temperature and duration were kept 

constant at 90ºC and 20 min. After the growth, the samples were cooled down to room 

temperature naturally, rinsed thoroughly in DI water and blown dry with nitrogen gas.  

The morphology of samples was characterized by field emission scanning electron microscopy. 

XPS measurements were also performed on the as-grown and post-growth annealed samples. 

The as-grown samples were annealed in-situ under the high vacuum conditions (<1x 10
-8

 Torr) in 

the XPS chamber at 500
º
C for 10mins. Low temperature photoluminescence measurements 

(LTPL) were performed at 20 K using the micro-PL system.  

4.4 Results and discussion 

4.4.1 Comparison of microwave and waterbath growth 

Early studies show that the solubility of Zn in aqueous solution is strongly pH dependent and 

influences the growth rate, morphology and type of native defects in the ZnO nanorods [167]. 

Good coverage of ZnO nanorods on a variety of substrates has been routinely obtained in the pH 

range of 10.07 to 10.9, where the pH is larger than the known PZC of ZnO. In this growth 

regime, surface adsorbed H2O molecules readily hydrolyzes to release H
+
 into OH

-
 rich 

environment, allowing the negatively charged major growth units 2

4)OH(Zn  to be adsorbed onto 
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the positively charged polar Zn face, leading to a fast anisotropic growth rate along the c-axis of 

ZnO. With higher [NH3], the higher pH leads to an increased solubility of Zn (
*

ZnC ) according to 

the ionic equilibrium [164, 167] , which results in two effects. The first effect is the lowering of 

the supersaturation degree of ZnO (S, where 
*C

C
S  ), leading to a lower initial nucleation rate 

as discussed in section 2.2.1.1, which is typically visualized as a lower areal density of nanorods 

on the substrate. The second effect is the availability of a larger reservoir of soluble Zn growing 

on fewer nucleation sites, which leads to longer nanorods with larger diameters [171]. Figure 4.6 

(a) to (e) show the top views of the nanorods from samples M1 to M5 which were obtained using 

a microwave synthesizer with the microwave power of 100W while Figure 4.6 (f) to (j) show 

samples W1 to W5 which were obtained using a heated water bath under [NH3] of 0.255 M, 

0.503 M, 0.748 M, 0.988 M and 1.222 M. It is observed that both heated water bath and 

microwave synthesized samples show a similar trend of decreasing areal density of nanorods, 

increasing diameter and lengths with the increase of [NH3] from 0.255 to 1.222 M. This suggests 

the underlying chemistry and interface properties remains intact as expected.  

 

Figure 4.6 Top-view SEM images of the as-grown ZnO nanorods samples by microwave 

synthesizer (first row samples: M1 to M5) and heated water bath (second row samples: W1 to 

W5 ) respectively at 90ºC for 20 minutes with different [NH3] (0.255 M, 0.503 M, 0.748 M, 

0.988 M and 1.222 M) and 0.02 M ZnAc2. 
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Close comparison of the SEM images of M1-M5 against W1-W5 respectively shows that 

microwave synthesized samples M1-M5 have a slightly higher density and smaller diameter than 

heated water bath samples W1-W5. Figure 4.7 statistically compares the average diameter of the 

nanorods as a function of [NH3]. Particularly, the diameters of samples M4 and M5 from 

microwave synthesizer are much smaller than the corresponding samples W4 and W5 grown in 

heated water bath at a high ammonia concentration. 

 

Figure 4.7 The summary of statistical analysis of ZnO nanorods diameter and length grown by 

microwave synthesis and heated water bath (samples M1 to M5 and W1 to W5). 

 

 

Figure 4.8 The top view of the ZnO nanorods grown with (a) microwave synthesis (M4) and (b) 

heated water bath (W4). The inset is the high magnification of the tip of the nanorods (top right) 

and the statistics of the nanorods diameter for sample M4 and W4 (bottom right) respectively. 
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Furthermore, as shown in Figure 4.6 and Figure 4.8, the tips of the M4 - M5 nanorods were flat 

in comparison to the tapered ends of W4-W5. The tapering of the top of the ZnO nanorods 

grown from solution is attributed to the faster growth rate along the [0001] direction than those 

along other directions. One possible explanation is that growth proceeded at a much faster rate in 

microwave synthesis than heated water bath, leading samples M4-M5 to undergo dissolution in 

the presence of high concentrations of OH
-
. The following chemical reactions could take place in 

the solution, which leads to a simultaneous deposition and dissolution of ZnO, 

 OHNHZnOOH)NH(ZnOHNHZn 23

2

4323

2 


 .                  (4.7) 

In this reaction, the 
2

43)NH(Zn  ions react with OH
-
 to form ZnO, pushing the equilibrium in the 

above equation (4.7) to the right hand side at a higher temperature above 75ºC. At the end-of-

growth, the concentration of 
2

43)NH(Zn is reduced, pulling the above equilibrium (4.7) back 

towards the left and resulting in the dissolution of ZnO, thus the ends of the microwave 

synthesized nanorods becoming flat [172]. The result reveals that the microwave heating is able 

to achieve end-of-growth condition faster than that with conventional heated water bath method 

due to the fast growth rate.
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Figure 4.9 (a) XPS survey spectrum of ZnO nanorods. (b) The integrated peak area of O 1s and 

Zn 2p for as-grown samples under different ammonia concentration. (c) The quantified 

percentage of O 1s in ZnO of as-grown and annealed samples grown by microwave synthesis 

and heated water bath. 
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The XPS spectra of samples M1-M5 and W1-W5 show the high purity of the grown ZnO 

nanorods, with the presence of carbon impurity only shown in Figure 4.9(a). In Figure 4.9(c), for 

the as-grown samples the percentage of oxygen in ZnO rises from 60-70% to 80% as the [NH3] 

increases from 0. 255 to 1.222 M for as-grown samples. The trend of increasing O ratio relative 

to Zn with respect to the [NH3] can be attributed to the increased concentration of oxygen 

interstitials (Oi) or zinc vacancies (VZn). As mentioned in section 4.2.2, with a higher [NH3], the 

higher pH leads to a higher concentration of OH
-
 and more negatively charged growth units in 

the solution. A much stronger attraction between H
+
 ions and the solution pulls H

+
 ions away 

from the ZnO surface, which provides more available sites for Zn
2+

 cations due to fast 

dissociation of H
+
 ions. In addition, the higher growth rate cannot provide sufficient time for 

Zn
2+

 to occupy every available site or dehydration of excess hydroxyl groups. As a result, the 

lack of zinc in the lattice formation and excess oxygen from the hydroxyl groups contribute to Oi 

and Vzn. Regarding the annealed samples, the O ratio is much lower compared to that of the as-

grown samples and tends towards the stoichiometric 50%. Since the reported migration barriers 

of VZn and Oi are 1.4 eV, and 0.23-1.98 eV respectively, depending on the migration paths and 

defect charge states [170, 171], the presence of low migration paths with low migration barrier 

energies for both VZn and Oi intrinsic defects leads to the out-diffusion of Oi and VZn after a 

thermal anneal at 500C and thus the observed improvement in stoichiometric ratio.  
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Figure 4.10 (a) O 1s peak from XPS deconvoluted into three Gaussian-Lorentz peaks (O1, O2 

and O3 assigned in the plot) for sample M1. (b) Percentage of O2 in the total O 1s peak for as-

grown microwave and water bath assisted heating samples. 

 

A closer examination of the asymmetric O 1s peak shows three Gaussian components as shown 

in Figure 4.10(a) for sample M1. The lowest binding energy component O1 at 530 eV is related 

to the O
2-

 ions in the ZnO lattice. The second component O2 at 531 eV is assigned to O-related 

defects such as Oi. Finally, the third component O3 at 532.3 eV is usually attributed to adsorbed 

water [172, 173, 174]. The ratio of the second component O2 to the entire O 1s peak is plotted in 

Figure 4.10(b). It is shown that both microwave and water bath grown samples have an 

increasing ratio of O2 peak with a higher [NH3], which means more Oi defects at a higher pH. 

This is in agreement with results presented in Figure 4.9 and also reported results by others 

[167], which explained the role of higher pH in accelerating the growth rate, leading to higher 

incorporation of O-defects in an O
-
-rich environment as we discussed in section 4.2.2. 

Interestingly, Figure 4.10(b) also suggests that the use of microwave results in a lower 

concentration of O-related defects, possibly due to the higher rotational kinetic energy leading to 

reorientation of 2

4)OH(Zn  growth units. 
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Figure 4.11 Low temperature photoluminescence spectra of ZnO nanorods normalized to band 

edge peak at 3.37 eV at 20 K for (a) as-grown heated water bath samples (b) as-grown 

microwave synthesis samples (c) annealed heated water bath samples and (d) annealed 

microwave synthesis samples as a function of [NH3]. 

 

When optical measurement conditions are kept as constants, the ratio of visible to UV PL 

emission is a useful gauge to compare defect concentrations between different growth 

conditions. Figure 4.11(a-b) show the LTPL spectra of as-grown water bath and microwave 

samples respectively, while Figure 4.11(c-d) present the corresponding annealed samples. There 

are three peaks of interest: the UV band edge at 3.37 eV (368 nm), the green emission at 2.55 eV 

(486 nm) due to VZn [178] and the orange emission at 2.04 eV (608 nm) due to Oi [179]. The 

dependence of the orange and green emission ratio is plotted in Figure 4.12 (a) and (b) 

respectively.  
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Figure 4.12 The ratio of (a) orange and (b) green emission to the band-edge emission for as-

grown and annealed samples by both microwave and water bath assisted heating. 

 

The ratio of orange emission to that of the band edge emission for both microwave and water 

bath increases with pH. In addition, the microwave synthesized ZnO has a weaker orange 

emission (lower density of Oi) compared to the heated water bath which is in good agreement 

with the XPS data, reinforcing the conclusions from the component fitting of O 1s peak in Figure 

4.10 (b). It is important to note that the green emission also increases with pH, thus suggesting 

that VZn is the cause of the high O to Zn ratio, consistent with the XPS data shown in Figure 

4.9(b) displaying the integrated peak area of O and Zn for as-grown samples under different 

[NH3]. After annealing, the ratios of orange and green PL emission are reduced significantly with 

respect to the as-grown samples, suggesting out-diffusion of Oi and VZn and thus leading to a 
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more stoichiometric ratio of Zn to O as seen earlier in Figure 4.9(c). The above two findings 

agree with the trend of XPS O2 peak with [NH3] shown in Figure 4.10(b).  

The samples were further studied by ultraviolet Raman scattering. The result was shown in 

Figure 4.13(a) and the Lorentzian peak fitting was employed to extract A1 (LO) phonon, which 

records the vibration of atomic displacements of Zn-O bond along the c-axis [179]. The peak at 

the lower frequency is recognized as surface optical phonon mode which is due to the columnar 

nature of the film [180]. As the absorption of 325 nm laser in ZnO is strong, the effect of the 

surface layer (a few mono-layers) on Raman scattering is enhanced due to the Frohlich 

interaction.  

 

Figure 4.13 (a) The A1(LO) and SO peak of Raman scattering for as-grown W1 measured at 

room temperature. (b) The actual measured (scattered) and fitted (line) A1(LO) peak position for 

both microwave synthesized and heated water bath samples in different [NH3]. 

 

It is noticed that the peak shift of Raman A1(LO) against the [NH3] is plotted in Figure 4.13(b). 

The A1(LO) frequency increases (blue shift) with the [NH3] for both microwave synthesized and 

heated water bath samples, which is most possibly ascribed to the phonon localization by defects 

or impurities. Correlating with the oxygen and zinc defects analysis of the XPS O 1s and Zn 2p3 
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spectra as well as the LTPL orange and blue emission peaks, it is apparent that the dominant 

mechanism for the shift in A1(LO) peak is because of the presence of Oi and VZn. As Oi and Vzn 

both lead to a shorter Zn-O bond length, it results in a larger compressive strain, and thus a blue 

shift of A1(LO) peak frequency as [NH3] increases [180]. This applies to both microwave and 

water bath grown ZnO samples. However, there is a difference about 0.9cm
-1

 between 

microwave and waterbath sample, which may be due to the faster growth rate with microwave 

synthesisor resulting in a higher compresive strain compared to those grown by the water bath. 

Further investigation is needed to confirm the results.   

In order to make an in-depth comparison of the defects and crystal quality betweeen microwave 

and water bath samples from Raman, the FWHM of the A1(LO) peak of ZnO samples were 

examined, since the FWHM of the A1(LO) peak is a good indicator of the crystal quality of the 

material. The broader A1(LO) linewidth implies poorer the crytal quality which was attributed to 

more intrinsic defects incorporated into the lattice [181]. As shown in Figure 4.14, the FWHM 

of the A1(LO) phonon for microwave synthesized samples are smaller than those of the heated 

water bath samples using the same [NH3], which indicated that the microwave synthesized 

samples have fewer defects and better crystal quality as compared to the heated water bath 

samples grown using the same precusors.  
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Figure 4.14 The FWHM of the A1(LO) peak from Raman scattering measurement for the as-

grown ZnO samples by microwave synthesis and heated water bath with different [NH3]. 

 

4.5 Summary 

A detailed comparative study between the microwave synthesis and heated water bath for the 

growth of ZnO nanorods has been carried out. Compared to the heated water bath, the 

microwave synthesis produces a faster growth with more uniform size distribution of nanorods 

due to the unique ability of simultaneously heating the entire volume of solution. Due to the fast 

growth rate, the dissolution of the nanorods also occurs earlier (within 20 minutes). The 

rotational energy delivered by the 2.45 GHz microwaves allows the growth units to orientate 

themselves on the surface, leading to lower intrinsic doping such as Oi and VZn, which can be 

easily removed by a post-growth thermal anneal at 500C in vacuum. Microwave synthesis 

presents a promising new approach to grow ZnO with low defects level at a low temperature. It 

is attractive to the applications where low-cost polymer substrates are favorable as they cannot 

withstand high temperature process. It also leads to new growth strategies for controlling the 

functionalities and morphologies of a wide range of metal oxide nanostructures.   
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Chapter 5 Optimized route towards stable p-type potassium doped 

ZnO by low temperature solution growth method 

5.1 Introduction 

This chapter starts with the calculation of the ionic equilibrium concentration of the dominant 

ionic species present in the ZnAc2 and KAc system. Five ZnO samples with different potassium 

doping concentrations were fabricated, followed by the study of the structural, optical, and 

electrical characteristics of the ZnO films to demonstrate the influence of the chemistry of the 

growth environment on the type and nature of the incorporated K defects. Finally, the effect of 

thermal annealing from 200°C to 700°C on the optical and electrical properties of the film is 

investigated and the doping mechanism is elucidated.  

5.2 Ionic equilibrium model of KAc-ZnAc2 

As discussed in detail in section 2.2.1.3 on the growth procedure for ZnO films, the ZnO films 

fabricated in this work were grown in two phases. The first growth phase produced a thin layer 

of nanorods on the substrate, typically with lengths of about 400 to 500 nm and diameters of 

about 80 to 150 nm. This thin layer of nanorods formed an important template that allowed the 

secondary growth to continue and eventually coalesced into a film, typically 1 - 2 μm thick, in 

the second growth phase. The precursor solution used in the second growth phase consisted of 

only ZnAc2 and KAc, resulting in a typical pH of less than 7, depending on the relative amounts 

of ZnAc2 and KAc that were added. The choice of a relatively low pH compared to the 

“standard” growth pH of 10 - 11 was deliberate [182], as it has been proved that this range of pH 
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produces a slow growth rate of ZnO that results in a lower concentration of native defects and 

better optical properties [183].  

In order to determine the types of majority species in the growth solution, the ionic equilibrium 

of the ZnAc2-KAc solution was computed for a range of KAc concentrations using temperature 

dependent equilibrium rate constants K1-K9 shown in the following reaction equations (5.1) to 

(5.9) [184]. 

756.4log 1   KAcHHAc   (5.1) 

10.6log 2   KAcKKAc    (5.2) 

3.1log)( 3

2   KAcZnAcZn    (5.3) 

8.0log)( 42   KAcZnAcZnAc    (5.4) 

83.7log)( 5   KOHZnHZnO   (5.5) 

09.10log)( 622  KOHZnOHZnO   (5.6) 

81.9log)(2 732   KHOHZnOHZnO   (5.7) 

78.12log2)(3 8

2

42   KHOHZnOHZnO   (5.8) 

173.11log2 92

2   KOHZnHZnO   (5.9) 

In addition, the total amount of acetate added into the solution is equal to the amount of acetate 

in the solution for mass balance: 

                                     )]([])([2])([][ 2 AcKAcZnAcZnAcCAc  
.                               (5.10) 

In the solution, the charge should also be balanced or neutral which means that the total number 

of positive charges should be equal to the total number of negative charges: 

])[(])[(])([2])([

][][])([])([][2

2

43

2









OHAcOHZnOHZn

HKAcZnOHZnZn

.

                          (5.11) 
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The ionic equilibrium for the solution can be obtained by solving simultaneously the reaction 

equations (5.1) to (5.9), the mass and charge balance equations (5.10) to (5.11). There are in total 

eleven unknowns (K
+
, Zn

2+
, Ac , Zn(Ac)

+
, ZnO, Zn(OH)2, 



3)OH(Zn , Zn(OH)
+
, 2

4)OH(Zn , H
+
, 

OH ) which can be solved by the eleven equations. The known quantities are KAc and ZnAc2 in 

molar concentration.  

Using the model described above, the ionic equilibrium of the ZnAc2-KAc in solution can be 

calculated for various KAc precursor concentrations and temperatures by keeping the ZnAc2 

concentration at 0.03M.  

An important process parameter in solution growth is the solubility of zinc, denoted as
*

ZnC , 

which is defined as the total amount of zinc ions in the precursor solution and can be easily 

obtained by the sum of all the zinc species in the solution: 

  
2

1

)2(
4

1

)2(2* ])([])([][ p

p

m

mZn AcZnOHZnZnC .                         (5.12) 

Figure 5.1(a) shows the 
*

ZnC and the pH ([H
+
]) as a function of the concentration of KAc.

 
*

ZnC  

decreases with KAc. For a low value of *

ZnC , the growth does not take place on the pre-coated 

substrate, but precipitates in the solution make it cloudy. This is explained in section 2.2.1.1. 

Thus, the KAc concentration must not be too high and in the experiment KAc was chosen to be 

less than 0.24M.  

As discussed in section 4.2.2, the charge on the oxide surface in solution depends on the pH. 

Figure 5.1(a) shows that the pH increases towards the PZC at a pH of 8.7 - 9.7 with KAc 
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concentration. At the same time, as seen in Figure 5.1(b), with the increase of concentration of 

KAc, there is a rapid increase in the ratio of K
+
/Zn

2+
. This corresponds to a change from a H-rich 

growth environment to K-rich growth environment. For the case of the low concentration ratios 

of K
+
/Zn

2+
 where the pH is less than 6, which is far from the PZC, the hydrated ZnO surface has 

a positive net charge and a highly saturated surface concentration of hydrogen. This case of low 

pH represents a growth environment that is H-rich and K-poor, which theoretically favors the 

formation of neutral KZn-Hi complexes. On the other hand, at a high concentration ratio of 

K
+
/Zn

2+
 that is about 2 orders of magnitude larger than the first case, the pH is closer to the PZC, 

leading to a less positive net surface charge and a lower surface concentration of hydrogen on 

ZnO surface. This case of high pH represents an H-poor and K-rich environment, which 

theoretically favors the formation of neutral KZn-Ki complexes. With the objective of 

demonstrating the critical influence of K
+
/Zn

2+
 concentration ratio and the growth pH, five 

different concentrations of KAc (0, 0.03, 0.05, 0.08, 0.13, and 0.18 M) were chosen and the 

samples were labeled A-E, respectively.  

  

Figure 5.1 (a) Plot of growth solution pH and 
*

ZnC  against the concentration of KAc. (b) Plot of 

concentration of K
+
, Zn

2+
 and the ratio of K

+
/Zn

2+
 against the concentration of KAc. The 

concentration ratios of K
+
/Zn

2+
 for samples A, B, C, D, and E, which correspond to 0, 0.03, 0.05, 

0.13, and 0.18 M KAc, are marked accordingly in the plot. 
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5.3 Experimental procedure 

The growth was conducted using single-side polished c-plane sapphire substrates and the growth 

procedure listed below follows the one discussed in section 2.2.1.3. 

 

 

 

 

 

In the steps (v) and (vi) of the procedure listed above for preparing ZnO films, five different 

concentrations of KAc (0, 0.03, 0.08, 0.13 and 0.18 M) were used. They spanned across these 

two extreme cases, with the growth environment transitioning from a lower K
+
/Zn

2+
 with a high 

hydrogen concentration attached to ZnO surface to a higher K
+
/Zn

2+
 ratio with a lower hydrogen 

concentration attached to ZnO surface. The five samples are labeled as A, B, C, D and E for KAc 

concentrations of 0, 0.03, 0.08, 0.13 and 0.18 M, respectively. 

In order to study the dependence of the post-growth thermal treatment on the doping 

concentration, annealing was carried out in an ULVAC RTA system. The annealing chamber 

was pumped down to a vacuum pressure of less than 5 × 10
-5

 mTorr before a steady flow of 

nitrogen at 20 sccm was flowed into the chamber. The samples were annealed at temperatures of 

200, 300 and 700°C for a duration of 10 minutes and 700°C for 30 minutes. The rate of 

i. Sapphire substrates were ultrasonically-cleaned sequentially in acetone, methanol, and 

deionized water.  

ii. The clean substrates were spin coated three times with a thin layer of ZnO nanoparticles 

at 3000 rpm for 30 s.  

iii. To improve film adhesion and promote formation of ZnO, the substrates were subjected 

to a thermal annealing in air at temperatures 350°C for 20 minutes. 

iv. Densely-packed short nanorods of lengths less than 1m, were grown in the solution 

consisting of 0.03 M ZnAc2, 0.4 M NH4OH, and a certain amount of KAc for 30 minutes 

at 90°C in water bath. 

v. Coalesced flat-topped nanorods were grown in the solution consisting of 0.03 M ZnAc2 

and a specified amount of KAc.  

vi. The film step was repeated three times to allow the rods to coalesce and form a 

continuous film. Between each step, the substrate was rinsed thoroughly with deionized 

water. 
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temperature rise and fall were kept constants at 100°C/minute. The flow of nitrogen was 

maintained until the samples are cooled down completely to room temperature. 

Hall measurements were carried out using a 4 inch electromagnet from Newport Instruments. 

The magnetic field was measured by a calibrated magnetic sensor attached to an Empire 

Scientific Corp Gaussmeter model 904. Current injection and voltage measurement were carried 

out using Keithley Model 6430 sub-femtoamp sourcemeter and HP 34401A digital multimeter. 

The transient waveform of the Hall voltage for highly resistive samples was monitored to ensure 

that steady state conditions have been reached before readings were taken. In/Zn dots were used 

to make ohmic contacts at the corners of the samples, typically 1 cm by 1 cm, to form Van der 

Pauw configurations. 

Resonance Raman scattering measurements were recorded in a backscattering configuration 

using a Renishaw Ramascope 2000 with a He-Cd laser as excitation source. A SIMS depth 

profile was obtained using TOF-SIMS IV, with a high current Ga ion beam for surface sputtering, 

and a low current Ar ion beam for surface analysis. The film morphology was observed using a 

JOEL 6700 FE-SEM as described in Chapter 2. Crystal structures were examined by the XRD 

technique using Bruker D8 Discover (CuKa = 1.54060 Å) system.  

In-situ XPS measurements and thermal annealing under UHV were performed in XPS analysis 

chamber as described in the Chapter 2. All XPS spectra were obtained in a constant pass energy 

mode where only electrons of a given energy can pass through the electric field of the 

hemispherical analyzer and reach the detector slits with high sensitivity survey scans (pass 

energy of 150 eV) and high resolution narrow scans (pass energy of 10 eV), respectively. 
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5.4 Results and discussion 

The ZnO films, grown on sapphire, were formed upon the coalescence of nanorods as shown in 

Figure 5.2. A maximum thickness of 2.8 µm was obtained for 0.03 M KAc. The solutions from 

which samples A, B and C are grown decrease in solubility. With reduction in solubility, the 

driving force for nucleation is larger, thus resulting in a faster growth rate. Since the samples 

were grown for the same duration, thickness decreases from samples A to C. However, as 

mentioned earlier, when the solubility drops too much, homogeneous nucleation takes place, 

leading to the precipitation of ZnO powders in the solution. Thus, the film thickness began to 

decrease from samples D to E.  

 

Figure 5.2 SEM images showing the top and cross-sectional views of samples A, B, C, D and E 

which were grown in 0, 0.03, 0.08, 0.13 and 0.18 M KAc respectively. The thickness of each 

ZnO film is shown on the upper right corner of the cross-sectional image. 
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Figure 5.3 shows the XRD 2 scan of the films. The dominant peaks belonged to ZnO (002) and 

(004) at 34.32° and 72.59° respectively (JCPDS Card No 36-1451). Observation of (00l) peaks 

indicated that the film has a c-axis orientation. The (002) peak was the strongest at 0.13 M KAc 

probably due to the best coalescence of columns as seen in the SEM cross-section in Figure 5.2. 

 

Figure 5.3 XRD spectra of as-grown samples A, B, C, D and E which were grown in 0, 0.03, 

0.08, 0.13 and 0.18 M KAc respectively. 

 

A comparison of the K concentrations in the as-grown samples A, B, C, D and E is shown from 

the SIMS depth profile of Figure 5.4. The increase of K in ZnO films for samples A to C  

corresponds to the increase in K
+
 ion concentration from 0 to 0.08 M KAc in the precursor  

growth solution. Above 0.08 M KAc, the concentration of K in the film was saturated. This 

suggests an upper limit to the amount of K that can be incorporated into the film using aqueous 

solution method. Due to the fact that K is highly soluble in the aqueous solution, this limit is 

likely to be related to the maximum surface concentration of K that can be adsorbed onto the 

oxide surface during the growth. 
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Figure 5.4 SIMS depth profile of potassium concentrations in the as-grown samples A, B, C, D 

and E which are grown in 0, 0.03, 0.08, 0.13 and 0.18 M KAc respectively. Although the 

concentration ratio of K
+
/Zn

2+
 increases from C to E, the amount of K incorporated in the ZnO 

lattice is relatively unchanged. 

 

The carrier concentrations of the as-grown A to E films obtained from Hall measurements are 

shown in Figure 5.5. An optimum hole concentration of 4 × 10
16

 cm
-3

 is obtained for sample B 

(0.03 M KAc) with a lower concentration of K in the lattice as shown by SIMS compared to that 

of samples C, D and E. Although the SIMS depth profile shows that films grown in 0.08, 0.13 

and 0.18 M KAc have roughly the same concentration of K incorporated in the ZnO film, their 

effective hole concentrations measured by Hall decreased with the KAc concentration in the 

solution.  
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Figure 5.5 Hall effect carrier concentrations for as-grown samples A, B, C, D and E which were 

grown in 0, 0.03, 0.08, 0.13 and 0.18 M KAc respectively. A break at 10
10

 cm
-3

 is inserted along 

the vertical axis in order to improve clarity of the plot at higher carrier concentrations. 

 

It is known that K can be incorporated as an acceptor, donor or as an electrically neutral complex 

in the form the substitutional, interstitial site or stable complex such as KZn-Ki and KZn-Hi 

respectively [183, 185, 186], depending on the growth environment. The schematic diagrams of 

KZn-Ki and KZn-Hi complexes are shown in Figure 5.6. For Sample B with a lower concentration 

of K in the film, a majority of K was incorporated as KZn, leading to net p-type conductivity. 

From samples B to E, with the increase of KAc concentration, the growth environment changed 

from H-rich/K-poor to H-poor/K-rich. Although the concentration of K in the film increased 

from B to C and saturated for D and E as seen in Figure 5.4, an increasing proportion of it was 

incorporated as Ki, instead of KZn. This caused the transition from p-type in B to a highly 

compensated films in C and D, and finally an n-type film in E. Similar trends can be observed 

from direct Hall effect measurements of 1 - 5% sputtered Li-doped [187] and 0 - 30% sol-gel 

deposited Na-doped ZnO films [188].  
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Figure 5.6 Schematic diagram of KZn-Hi complex and KZn-Ki complex in ZnO. 

 

Further evidence for the K transition from Kzn to Ki sites was provided by resonance Raman 

Scattering data of the as-grown samples as shown in Figure 5.7(a). The inset of Figure 5.7(b) 

shows the A1(LO) peak which is typically asymmetrical and consists of two components: the 

main A1(LO) component and a lower frequency surface mode component which has been 

attributed to the columnar nature of the film [189]. After subtracting a linear background and 

fitting the lower frequency shoulder as a surface mode component, the peak positions of the 

A1(LO) against the concentrations of K are plotted in Figure 5.7(b). Since the A1(LO) reflects the 

vibration of the Zn-O bond along the c-axis [190], a lower wavenumber indicates a longer bond 

length, i.e. an expansion along the c-axis. The undoped ZnO film had its A1(LO) peak centered at 

574 cm
-1

 while the K-doped films had their A1(LO) peaks in the range of 562-565 cm
-1

. The 

significant decrease in frequency implies an expansion of the lattice to accommodate the larger K 

atoms which are incorporated in the film (bond length is 0.242 nm for K-O compared to 0.193 

nm for Zn-O [191]).  
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Figure 5.7 (a) Room temperature resonance Raman scattering spectra and (b) plot of peak 

positions of A1(LO) against the concentration of KAc for as-grown samples A, B, C, D and E 

which are grown in 0, 0.03, 0.08, 0.13 and 0.18 M KAc respectively. The inset of (b) shows the 

fitted components consisting of the A1(LO) peak and its surface mode for sample C. 

 

Examination of the A1(LO) peak positions from B, C, D to E showed a trend with a minimum 

point at C (0.08 M KAc) where maximum lattice strain occurred. The likely scenario involves 

the increased incorporation of KZn from B to C, leading to the increased strain and reduced 

A1(LO) peak frequency. Thereafter, the proportion of Ki relative to KZn increased although the 

concentration of incorporated K remains as constant. Since the ZnO lattice is relatively open, the 

strain due to Ki is less than that of KZn, and thus slightly relieves the strain and leads to increase 

in A1(LO) peak frequency from samples C, D to E. This scenario agrees with both the growth 

environment as well as the measured carrier concentrations from Hall and SIMS. From samples 

B to E, the grown environment transits from being K-poor/H-rich to K-rich/H-poor, with the 

former favoring the formation of KZn and Hi and the latter KZn and Ki. This explains why, 

although sample C had a higher concentration of K than sample B, it did not lead to a higher hole 

concentration. Similarly, from samples C to E, with the same concentration of K in their lattices, 
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the conductivity became less p-type in D and eventually n-type in E. These results underline the 

critical role of the growth environment toward realizing the p-type conductivity. 

5.5 Effect of thermal annealing 

In order to understand the effect of thermal annealing on the evolution of K atoms in the ZnO 

film, sample C was placed in an annealing chamber where its XPS spectra were measured in-situ. 

The typical XPS spectra of the ZnO film grown on GaN substrate in 0.08 M KAc is shown in 

Figure 5.8(a). The annealing temperature was varied from room temperature to 600°C. Figure 

5.8(b) shows the detailed XPS scan of the K 2p peak for 300°C and 600°C. From the narrow 

scan of the K 2p peak, the atomic percentage of K was quantified for various annealing 

temperatures and plotted in Figure 5.8(c). At low temperatures up to 200°C, a slight dip in the K 

atomic percentage from 0.5 to 0.3% was detected, suggesting depletion by out-diffusion of K 

atoms from the surface of the film. At 300°C, a sharp increase in the atomic percentage of K 

from 0.3% to 1.0% was attributed to the thermal dissociation of KZn-Ki complex in the bulk of 

the film followed by thermal diffusion of free Ki to the surface, where its accumulation showed 

up as a sharp increase in atomic percentage. Extrapolating from Wardle's estimation of 

dissociation temperatures of Li and Na complexes at 450°C and 119°C respectively [186], the 

dissociation temperature of K-based complexes (KZn-Ki and KZn-Hi) was expected to be well 

below 120°C. The migration barrier of Ki along the c-axis was estimated to be about 1.49 eV 

[192] and appeared to be the limiting factor that prevents the removal of Ki at temperatures 

below 300°C.  
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Figure 5.8 (a) XPS survey scan spectra of as-grown sample C (0.08 M KAc) at 25, 300 and 

600°C. (b)The narrow scan of K 2p peaks at 300 and 600°C. (c) The plot of quantified atomic 

percentage of K from the narrow scan XPS spectra against the annealing temperature. 

 

The reduction in lattice strain arising from the out-diffusion of K at 300°C was observed in the 

shifts in the A1(LO) peak positions after the thermal annealing as shown in Figure 5.9. A clear 

blue shift of the A1(LO) peak positions from 562 - 565 cm
-1

 to 568 - 572 cm
-1

 in all K-doped 

samples (B, C, D and E) towards that of the undoped film (A) highlighted in red was observed 

upon heat treatment at 300°C. After extended heat treatment at 700°C for 30 min, the A1(LO) 
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peak position of the K-doped ZnO film remained lower in value than that of the undoped film, 

indicating that the residual lattice strain arising from KZn and Ki are still remained in the lattice. 

 

Figure 5.9 Plot of peak positions of A1(LO) against various annealing temperatures for samples 

A, B, C, D and E. The samples were subjected to annealing temperatures of 100, 200, 300 and 

700°C for 10 minutes, and a final 700°C for 30 minutes, indicated at 700-30 in the plot. The 

sample plotted in red was without K-doped sample. 

 

The measured Hall carrier concentrations with respect to annealing temperature, shown in 

Figure 5.10, provided information on the electrically-active K dopants in the film. The 

corresponding values of carrier concentration and mobility are summarized in Table 5.1.  The 

as-grown K-doped films (B, C, D and E) are highly intrinsic in the range of 10
14

 - 10
16

 cm
-3

, 

reflecting the high degree of compensation resulting from the presence of both acceptors (KZn) 

and donors (Hi or Ki). It is only after the heat treatment at 300°C that the dissociated Ki are 
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driven out of the film and a clear p-type conductivity is established in samples B and C with hole 

concentrations of 1.03 × 10
16

 and 1.98 × 10
15

 cm
-3

, and hole mobilities of 56 and 44 cm
2
V

-1
s

-1
 

respectively. Samples D and E remain as n-type possibly due to a higher concentration of Ki 

which could not be fully diffused out of the film after 10 minutes of annealing. 

 

Figure 5.10 Plot of Hall carrier concentrations for as-grown samples A, B, C, D and E after 

annealing treatment. The horizontal axis indicates the heat treatment: as-grown, 300°C 10 

minutes, 700°C 10 minutes and 700°C 30 minutes. 

 

When annealed at 700°C for 10 min, a high n-type conductivity on the order of 10
18

 cm
-3

 was 

obtained in undoped sample A and was attributed to the activation of the hydrogen donor [193]. 

These donors are known to originate from the dehydration of adjacent hydroxyl groups 

incorporated during growth in aqueous solution [194]. In K-doped films, these hydroxyl groups 

were present together with the KZn-Hi complexes. While the KZn-Hi complexes can be 

dissociated and the Hi donors can be out-diffused at 300°C, the hydroxyl groups were only 

removed after the thermal annealing at temperatures of 700°C and above. The removal of 

hydroxyl groups and the subsequent activation of the hydrogen donors led to overcompensation 
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and inversion from p-type to n-type as seen in samples B and C with electron concentrations in 

the order of 7 - 9 × 10
17

 cm
-3

. 

Table 5.1 Summary of the measured Hall carrier concentrations for samples A, B, C, D and E 

for various thermal annealing treatments. A positive and negative sign indicates hole and 

electron concentration (cm
-3

) respectively, while numbers in parentheses indicate the mobility 

(cm
2
V

-1
s

-1
). 

Annealing 

treatment 

A  

(No KAc) 

B  

(0.03 M) 

C  

(0.08 M) 

D  

(0.13 M) 

E  

(0.18 M) 

As-grown 
-3.99 × 10

14 

(14) 

+2.64 × 10
16 

(0.29) 

+3.23 × 10
13 

(117) 

+1.07 × 10
13 

(85) 

-1.89 × 10
14 

(56) 

300°C 10 

min 

-8.28 × 10
15 

(31) 

+1.03 × 10
16 

(56) 

+1.98 × 10
15 

(44) 

-1.70 × 10
17 

(110) 

-6.65 × 10
13 

(198) 

700°C 10 

min 

-9.79 × 10
17 

(13) 

-7.68 × 10
17 

(8.9) 

-8.41 × 10
17 

(5.6) 

-1.18 × 10
16 

(172) 

-1.04 × 10
17 

(17) 

700°C 30 

min 

-3.09 × 10
18 

(0.74) 

+3.18 × 10
17 

(1.7) 

+2.72 × 10
17 

(3.5) 

+3.70 × 10
16 

(9.7) 

-1.82 × 10
16 

(9.0) 

 

Extending annealing duration at 700°C from 10 to 30 minutes drove out the Hi and Ki, and 

recovered the p-type conductivity with B and C with hole concentrations of 3.2 and 2.8 × 10
17

 

cm
-3

, and mobilities of 1.7 and 3.5, respectively. The carrier concentrations for both D and E also 

shifted from n-type towards p-type as a result of extended annealing duration, but at a slower rate 

than B and C. The difference in p-type recovery rate could also be understood from the 

difference in type of K complexes arising from the initial growth conditions. As mentioned 

earlier, the main form of neutral K complexes changed from KZn-Hi to KZn-Ki for samples from 

B to E. When these neutral K complexes dissociated, they formed compensating donor and 
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acceptor states, resulting in highly compensated films. The p-type conductivity could only be 

observed when these Hi or Ki donors were driven out. Ki only began diffusing at about 300°C 

while Hi, is very small in size, diffused at a much lower temperature. This resulted in the first 

onset at 300°C of p-type conductivity in sample B, which has the lowest concentration of Ki, and 

last at in sample D which has the higher Ki concentration. 

Quantification of XPS spectra from as-grown K-doped ZnO films has routinely shown that the 

atomic percentage of K is less than 0.5%. The XPS atomic percentage is larger than the 

percentage derived from measured Hall-effect hole concentrations which is usually in the mid 

10
17

 cm
-3

, corresponding to an atomic percentage of around 0.05% which is an order of 

magnitude lower. This suggests that a majority of the K atoms incorporated into the film were 

electrically inactive, and/or they existed in compensating forms such as KZn and Ki. Therefore, 

the key to p-type conductivity is to successfully dissociate the neutral K complexes and drive out 

the Ki atoms while preserving the K at the substitutional sites. Our results indicate that the best 

way to achieve these is to use a growth environment that has a low K
+
/Zn

2+
 concentration ratio, 

followed by a thermal annealing step of 300°C for 10 minutes to dissociate K-based neutral 

complexes and out-diffused Ki from the film. Alternatively, if a higher annealing temperature is 

required, for example for the formation of an ohmic contact on the p-type film, an annealing step 

at 700°C for an extended duration of 30 min is needed to out-diffuse the H-donors created from 

the removal of hydroxyl groups. 

Finally, it is interesting to note a recently published result, using calibrated SIMS on 

hydrothermally grown ZnO which has been grown in a high concentrations of KOH and LiOH, 

typically above 1 M,  has also demonstrated moderate dopant concentrations in the range of 1 × 
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10
17

 to 1 × 10
18

 cm
-3

 [195]. In our work, the saturation of K concentration in the film began when 

at least 0.08 M KAc was added into the growth solution. After the thermal annealing for 

extended periods at 700°C, the final hole concentrations were in the middle range of 10
17

 cm
-3

, 

which is in the same range of the calibrated SIMS measurements. This suggests a fundamental 

limit for K incorporation using the aqueous solution route where the maximum concentration of 

K that can be incorporated is about 10
17

 - 10
18

 cm
-3

. 

5.5 Summary 

A model for the ionic equilibrium concentrations of different species was presented for the 

aqueous growth solution using ZnAc2 and KAc as precursors. The concentration ratio of K
+
/Zn

2+
 

and solution pH affects the type of dominant K defects incorporated in the lattice. For low 

K
+
/Zn

2+
, K is incorporated predominantly as KZn and KZn-Hi while for high K

+
/Zn

2+
, K is 

incorporated predominantly as KZn and KZn-Ki. Both KZn-Hi and KZn-Ki complexes dissociate at 

low temperatures below 300°C, but the Ki larger in size only begins to diffuse at 300°C. Due to 

the lower diffusion barriers for Hi compared to Ki, the p-type conductivity of the low K
+
/Zn

2+
 

samples can be obtained at a lower annealing temperature of 300°C compared to that of high 

K
+
/Zn

2+
 samples which requires an annealing temperature of 700°C.  

The p-type conductivity is obtained in the range of 0.03 - 0.08 M KAc for both as-grown and 

700°C 30 minutes annealed samples. The best as-grown hole concentration of 2.6  10
16

 cm
-3

 is 

obtained for 0.03 M KAc while for 700°C at 30 min annealed samples, hole concentrations of 

3.2  10
17

 cm
-3

 for 0.08 M KAc. Results also suggested that the upper limit for p-type doping 

using this route is about mid-10
17

 cm
−3

. 
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The best conditions for obtaining p-type conductivity is to use a low K
+
/Zn

2+
 growth 

environment followed by a thermal annealing of 300°C for 10 minutes to dissociate K-based 

neutral complexes and diffuse out Ki from the film. Alternatively for a higher annealing 

temperature of 700°C, a longer duration of 30 minutes is needed to out-diffuse the H-donors 

created from the removal of hydroxyl groups. 
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Chapter 6 Conclusions and outlook 

In this thesis, we have studied in detail the various dopings (intrinsic and foreign, p-type and n-

type) and their effects on the properties of ZnO films and nanorods through three explicit 

examples, which are summarized as following: 

Firstly, Ga doped n-type ZnO films with different doping levels have been studied by a simple 

and widely accessible approach combining THz-TDS and Hall measurement techniques. It is 

found that doping concentration (carrier concentration) has substantial influence on the effective 

mass and carrier scattering time. Drude model and its derivatives have been used to extract the 

effective mass and carrier scattering time from the measured transmission spectra of ZnO films 

by THz-TDS in the range of 0.1-2 THz. The result shows that electron effective mass varies from 

0.23m0 to 0.26m0 when the electron concentration changes from 5.9×10
17 

cm
-3

 to 4.0×10
19 

cm
-3

. 

The carrier concentration dependent characteristic is ascribed to the non-parabolicity of 

conduction band. It is also noticed that the electron mobility determined by THz-TDS can be 7 

times higher than that obtained by Hall measurement, which was explained by free carrier 

localization mechanism. This work is the first to demonstrate that the effective mass can be 

obtained from a combine THz-TDS and Hall measurement.  

Secondly, the intrinsic doping and their effects on the optical properties of ZnO nanorods grown 

by low temperature (90°C) solution method have been studied. Two heating methods, i.e. 

conventional water bath and microwave heating are used and compared. The morphology, 

intrinsic doping and optical properties of the nanorods obtained within the pH range of 10.07 to 

10.9 is investigated in detail using scanning-electron microscopy, photoluminescence, and X-ray 

photoelectron spectroscopy. It is found that the microwave synthesized ZnO nanorods grow 
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faster with a more uniform size distribution, which is the result of the instantaneous and uniform 

heating by microwave. For both microwave and water bath assisted synthesis, the dominant 

native defects are Oi and Vzn. Through 500°C post annealing treatment in vacuum, the out-

diffusion of Oi and VZn take place, which leads to the improvement in stoichiometric ratio of 

oxygen to zinc from 70% - 80% to 55% - 65%. The results show that intrinsic defects density is 

effectively reduced by microwave assisted synthesis. Together with the fast growth rate, it 

provides an attractive approach to fabricate less defective and more uniform size distribution of 

ZnO nanorods on various substrates with high throughput, especially on those substrates that can 

only survive in low temperature growth environment, such as plastics, polymer and paper. In 

addition, it has the potential to achieve higher p-type doping concentration, since the self-

compensation effect is minimized with lower intrinsic doping level. 

Thirdly, a stable p-type ZnO film doped by potassium is presented. The growth condition is 

optimized through varying the growth parameters like precursor concentration, pH and annealing 

temperature. It is shown that the concentration ratio of K
+
/Zn

2+
 and the solution pH determine 

the dominant potassium defects incorporated into the ZnO lattice, where low ratio of K
+
/Zn

2+
 

leads to the formation of KZn and KZn-Hi while high ratio leads to KZn and KZn-Ki. The result also 

shows that the post thermal annealing at 300°C is decisive in obtaining stable p-type doping as it 

helps to dissociate the KZn-Hi neutral complexes and out-diffuse Hi and Ki from the ZnO film. 

With a higher annealing temperature at 700°C for 30 minutes, the H-donors originating from the 

hydroxyl groups are also out-diffused. The p-type conductivity was obtained in the KAc 

concentration range of 0.03 - 0.08 M for both as-grown samples and samples annealed at 700°C 

for 30 minutes. For the as-grown samples, the highest hole concentration obtained is 2.6 × 10
16
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cm
−3

 with 0.03 M KAc. While, for samples annealed at 700°C for 30 minutes, the highest hole 

concentration was 3.2 × 10
17

 cm
−3

 with 0.08 M KAc.  

To conclude, this work provides a comprehensive study on the doping of ZnO films and 

nanorods by targeting on the current challenges and issues facing each doping type. The results 

obtained in the n-type ZnO films provide an effective way in obtaining carrier concentration 

dependent effective mass, which has not been measured before and which are important for 

accurate design of optoelectronic devices. Another contribution is the systematic comparison of 

the properties of ZnO nanorods prepared by conventional water bath synthesis and novel 

microwave synthesis in solution which is done for the first time. The p-type ZnO doped by 

potassium in solution suggests a simple, robust, and low-cost method for stable p-type doping in 

ZnO films, with good promise for use in optoelectronic device.  

Finally, some of the possible directions for the future work of this study are recommended: 

• Microwave assisted synthesis has been proven to be able to grow ZnO with lower defect 

density. As the microwave system is equipped with a pump, which can provide good circulation 

of air and it is able to cool down the solution from 90°C to 60°C in less than three minutes. As it 

can heat up and cool down fast, multi-cycles of growth by alternating the growth temperature 

between high and low will be an effective way to lower the defect density and further improve 

the crystal quality, as the low temperature promotes the growth while high temperature growth 

helps to decrease the defect density.  

• The solubility of K
+
 in solution is only mid-10

18
 cm

-3
, which is not sufficient to provide a 

good p-type conductive layer for device application. Co-doping with sodium is a good approach 
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to obtain ZnO film with a higher hole concentration. Sodium citrate as well as potassium acetate 

and zinc acetate will be chosen as the precursors. Sodium citrate not only provides the promising 

p-type acceptor Na to the ZnO film but also serves as a surfactant which promotes lateral growth 

of ZnO. So a high quality p-type ZnO film with high carrier concentration is expected to be 

obtained, which will be desirable for device application.  

• The ultimate goal of the community in investigating p-type doped ZnO is to achieve 

fascinating electronic and photonic devices. With the potassium and sodium co-doped p-type 

ZnO film in hand, it is attractive to fabricate p-n junction based photonics devices such as light 

emitting diodes to examine the performance. The success of our group in demonstrating 

homojunction ZnO nanorods LEDs with K-doped ZnO as p-layer on GaN substrate makes the 

ZnO film based LEDs more appealing and promising. 
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Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. 

Phys., vol. 98, no. 4, p. 041301, Aug. 2005. 

[2] Cole W. Litton, Thomas C. Collins, Donald C. Reynolds, Zinc Oxide Materials for 

Electronic and Optoelectronic Device Applications. ISBN: 978-0-470-51971-4, John 

Wiley & Sons, Mar. 2011. 

[3] Y. Liu, M. Zhong, G. Shan, Y. Li, B. Huang, and G. Yang, “Biocompatible ZnO/Au 

nanocomposites for ultrasensitive DNA detection using resonance Raman scattering.,” J. 

Phys. Chem. B, vol. 112, no. 20, pp. 6484–9, May 2008. 

[4] H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 

ISBN: 9783527623945, John Wiley & Sons, Sep. 2009. 

[5] A. Di Trolio, C. Veroli, A. M. Testa, and D. Fiorani, “Ferromagnetism above room 

temperature in Mn-doped ZnO thin films,” Superlattices Microstruct., vol. 46, no. 1–2, pp. 

101–106, Jul. 2009. 

[6] Y.-S. Choi, J.-W. Kang, D.-K. Hwang, and S.-J. Park, “Recent Advances in ZnO-Based 

Light-Emitting Diodes,” IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 26–41, Jan. 

2010. 

[7] M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. 

Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid 

Devices,” Materials (Basel)., vol. 3, no. 4, pp. 2643–2667, Apr. 2010. 

[8] C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and 

H. Kalt, “65 years of ZnO research - old and very recent results,” Phys. status solidi, vol. 

247, no. 6, pp. 1424–1447, Apr. 2010. 

[9] Z. C. Feng, Handbook of Zinc Oxide and Related Materials: Volume One, Materials. 

Taylor & Francis, Sep. 2012. 

[10] William M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Edition. CRC Press, 

Jun. 2012. 

[11] J. C. Phillips, Bonds and bands in semiconductors. Academic Press, 1973. 

[12] C. Klingshirn, “ZnO: material, physics and applications.,” Chemphyschem, vol. 8, no. 6, 

pp. 782–803, Apr. 2007. 



117 

 

[13] W. Lu, P. Yang, W. D. Song, G. M. Chow, and J. S. Chen, “Control of oxygen octahedral 

rotations and physical properties in SrRuO3 films,” Phys. Rev. B, vol. 88, no. 21, p. 

214115, Dec. 2013. 

[14] J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. 

Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. 

Wee, Y. P. Feng, and J. Ding, “Ferromagnetism in Dilute Magnetic Semiconductors 

through Defect Engineering: Li-Doped ZnO,” Phys. Rev. Lett., vol. 104, no. 13, p. 

137201, Mar. 2010. 

[15] C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Phys. B Condens. Matter, 

vol. 308–310, pp. 899–903, Dec. 2001. 

[16] E.-C. Lee and K. Chang, “Possible p-type doping with group-I elements in ZnO,” Phys. 

Rev. B, vol. 70, no. 11, p. 115210, Sep. 2004. 

[17] M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. 

Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid 

Devices,” Materials (Basel)., vol. 3, no. 4, pp. 2643–2667, Apr. 2010. 

[18] C. Kittel, Introduction to solid state physics. New York: Wiley, 2005. 

[19] C. G. Van de Walle, “First-principles calculations for defects and impurities: Applications 

to III-nitrides,” J. Appl. Phys., vol. 95, no. 8, p. 3851, Mar. 2004. 

[20] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, “A comparative 

analysis of deep level emission in ZnO layers deposited by various methods,” J. Appl. 

Phys., vol. 105, no. 1, p. 013502, Jan. 2009. 

[21] Z. Fang, Y. Wang, D. Xu, Y. Tan, and X. Liu, “Blue luminescent center in ZnO films 

deposited on silicon substrates,” Opt. Mater. (Amst)., vol. 26, no. 3, pp. 239–242, Aug. 

2004. 

[22] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation 

between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., 

vol. 68, no. 3, p. 403, Jan. 1996. 

[23] Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, “Deep-level 

emissions influenced by O and Zn implantations in ZnO,” Appl. Phys. Lett., vol. 87, no. 

21, p. 211912, Nov. 2005. 

[24] T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. 

Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. 

Phys. Lett., vol. 89, no. 26, p. 262112, Dec. 2006. 



118 

 

[25] D. Zwingel, “Trapping and recombination processes in the thermoluminescence of Li-

doped ZnO single crystals,” J. Lumin., vol. 5, no. 6, pp. 385–405, Dec. 1972. 

[26] O. F. Schirmer and D. Zwingel, “The yellow luminescence of zinc oxide,” Solid State 

Commun., vol. 8, no. 19, pp. 1559–1563, Oct. 1970. 

[27] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and 

cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. 

Phys. Lett., vol. 78, no. 16, p. 2285, Apr. 2001. 

[28] M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, “Photoluminescent and Structural 

Properties of Precipitated ZnO Fine Particles,” Jpn. J. Appl. Phys., vol. 42, no. Part 1, No. 

2A, pp. 481–485, Feb. 2003. 

[29] C. B. Tay, “Growth Of Zinc Oxide Nanostructures and Films and p-Doping Of Films In 

Aqueous Solution,” p. 8, 2009. 

[30] T. Minami, H. Sato, K. Ohashi, T. Tomofuji, and S. Takata, “Conduction mechanism of 

highly conductive and transparent zinc oxide thin films prepared by magnetron 

sputtering,” J. Cryst. Growth, vol. 117, no. 1–4, pp. 370–374, Feb. 1992. 

[31] Y. Ma, “Control of conductivity type in undoped ZnO thin films grown by metalorganic 

vapor phase epitaxy,” J. Appl. Phys., vol. 95, no. 11, p. 6268, May 2004. 

[32] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, “Lateral Epitaxial 

Overgrowth of ZnO in Water at 90 °C,” Adv. Funct. Mater., vol. 16, no. 6, pp. 799–804, 

Apr. 2006. 

[33] D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, and T. Fukuda, 

“Solvothermal growth of ZnO,” Prog. Cryst. Growth Charact. Mater., vol. 52, no. 4, pp. 

280–335, Dec. 2006. 

[34] M. Lorenz, E. M. Kaidashev, H. von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, 

G. Benndorf, H. Hochmuth, A. Rahm, H.-C. Semmelhack, and M. Grundmann, “Optical 

and electrical properties of epitaxial (Mg,Cd)xZn1−xO, ZnO, and ZnO:(Ga,Al) thin films 

on c-plane sapphire grown by pulsed laser deposition,” Solid. State. Electron., vol. 47, no. 

12, pp. 2205–2209, Dec. 2003. 

[35] H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 

Wiley, 2009. 

[36] M. Gabás, A. Landa-Cánovas, J. Luis Costa-Krämer, F. Agulló-Rueda, A. R. González-
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S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound excitons in ZnO: Structural 

defect complexes versus shallow impurity centers,” Phys. Rev. B, vol. 84, no. 3, p. 

035313, Jul. 2011. 

[110] R. Elliott, “Intensity of Optical Absorption by Excitons,” Phys. Rev., vol. 108, no. 6, pp. 

1384–1389, Dec. 1957. 

[111] C. F. Klingshirn, Semiconductor Optics. Springer Science & Business Media, p. 837, 

2007. 
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