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Abstract

Proving the total correctness of large-scale software systems with complex

safety and liveness properties is a great challenge in program verification. To

specify these properties and verify or analyze them successfully, the software

verification systems usually require expressive specification logics with

scalable verification techniques to be developed. However, recent advances in

software verification mainly focus on partial correctness with safety properties.

The aim of this thesis is to develop methodologies to enhance

expressiveness, focusing on program termination and non-termination

reasoning, and scalability, focusing on the concept of modularity, of total

correctness proofs in program verification.

Firstly, we propose a logical framework for specifying and verifying

termination and non-termination properties of programs. These properties are

defined as resource capacity of execution length and reasoned about in terms of

resource reasoning. This approach allows the termination and non-termination

assertions to be seamlessly integrated into available logics for functional

properties to conduct more intricate termination and non-termination proofs.

Its result is a unified framework, which can verify both partial correctness,

termination and non-termination of various programs, including

heap-manipulating programs. Experimental evaluation shows the

expressiveness, usability and practicality of our approach on over 300
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challenging programs.

Secondly, we propose a modular inference mechanism for summarizing

termination and non-termination behaviors of each method in programs. We

extend the proposed termination logic with second-order termination

predicates and leverage the available Hoare-style verification infrastructure to

collect a set of relational assumptions on them. We then solve these

assumptions with case analysis to determine both termination and

non-termination behaviors of analyzed methods. The inference result is

expressed in a compatible logic form of the underlying verification system, so

that they can be re-verified. Experimental evaluation on the benchmark suite of

a recent termination competition shows the scalability and efficiency of our

mechanism against state-of-the-art termination analyzers.

Lastly, we propose a formal framework for proof slicing in verification that

can aggressively reduce the size of the discharged proof obligations as a means

of performance improvement. Our proposal is built on top of existing

automated theorem provers and can be viewed as a re-engineering effort in

proof decomposition that attempts to avoid large-sized proofs for which these

provers may be particularly inefficient. Our theoretical development is

supported by experimental results, which show significant improvements in the

verification of complex programs.
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Chapter 1

Introduction

Nowadays, computer systems play a crucial role in many areas, which vary

from scientific research, industrial manufacturing, financial transaction, etc. to

our daily activities. Of significance are computers that are being used to control

safety-critical systems, such as fly-by-wire airplanes, spacecrafts and

health-care systems. Ensuring that the softwares of these systems behave

correctly and reliably is a very important and long standing problem in

software engineering practice since any failure from their operations might

result in fatal consequences, which cost time, money and even human lives.

For example, in 1996, a faulty exception-handling routine in the software

system of the Ariane 5 satellites launcher made the rocket explode right after its

lift-off [108]. The accident caused a loss of billions of dollars and a decade of

research and development. This is an example where serious repercussion are

being caused by software bugs. Some other well-known software failures are

listed in [142].

In most current day scenarios, software testing has been a common method

to find the presence of bugs in programs but is not sufficient to guarantee that

the programs are bug-free [53]. This highlights the importance of software
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verification which aims to prove bug absence by mathematical techniques. In

software verification, the correctness of a system with respect to the specified

requirements is formally proven for all possible executions. As a result, the

users can be assured that the system is safe to execute; i.e., no unexpected

behavior occurs during its execution.

There are two main formal approaches [39] in software verification to

prove program correctness: model-based approach with model checking [40]

and proof-based approach with theorem proving [135]. In both approaches, a

specification Φ in the form of an appropriate logic, namely specification

language, is provided for each software system to specify the desired

properties of this system. However, these approaches differ from the way the

software system is being represented and on how the given specification is

proven.

In a model-based approach, the software system is described by a model

M. The model checkers, such as SPIN [82], UPPSLA [96] and BLAST [23],

then exhaustively check that this model meets the given specification Φ.

In a proof-based approach, the software system is represented by a set of

logical formulas Γ. Program verifiers, such as HIP/SLEEK [38], Dafny [106],

Frama-C [50], KeY [4] and Boogie [13], then automatically generate a set of

verification conditions to formally prove the specification Φ given the premises

Γ. These verification conditions are finally discharged by automated theorem

provers, like Z3 [52] and CVC family [14–16, 140] or interactive theorem

provers, like ACL2 [89] and Coq [1].

In this thesis, we focus on program verification with Hoare logic. Hoare

logic, first proposed by Floyd [60] and Hoare [76], is an important proof-based

approach to specify and verify functional correctness properties (i.e., the
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input-output behaviors) of sequential programs. The fundamental concept of

Hoare logic is the Hoare triple in the form of {P}c{Q}, which describes how a

program state is changed due to the execution of the code segment c via a

specification with precondition P and postcondition Q. The assertions P and

Q, expressed using logical formulas over the input and output of the program,

denote abstract program states, where each abstraction represents a set of

concrete program states.

For each programming language, Hoare logic provides a set of axioms,

which are Hoare triples defined for the basic statements of the language.

However, a variant of Hoare logic together with an appropriate logical

framework can be additionally constructed to express and reason about a

specific feature of the programming language. For example, separation logic,

introduced by Ishtiaq and O’Hearn [84] and Reynolds [133], is an extension of

Hoare logic for specifying and verifying functional properties as well as

proving memory safety of programs with shared mutable data structures. A big

advantage of separation logic is that the information about nonsharing

resources allocated on the heap can be concisely and precisely captured by the

separating conjunction ∗. A heap space satisfies the assertion p1 ∗ p2 if and

only if this heap can be partitioned into two disjoint sub-heaps which

respectively satisfy the assertion p1 and p2. With separation logic, explicitly

handling all possible aliasing information of nonsharing portions of heap is not

necessary. In addition, as local reasoning is enabled with the frame rule,

separation logic also avoid scalability issues of the traditional Hoare logic

when reasoning with heap-based programs [134]. Moreover, separation logic is

also expressive and powerful enough to be further extended to reason about

concurrency [25, 67, 117, 145], overlaid/sharing data structures [80, 103] and

3



even object-oriented programs [37, 122].

The correctness of a program c with respect to a formal specification is

distinguished into either (i) partial correctness, which assumes the termination

of the code c when proving the given specification, or (ii) total correctness,

which requires a termination proof in addition to the partial correctness proof.

Given the precondition P and the postcondition Q, the partial correctness proof

of the program c aims to show that the Hoare triple {P}c{Q} holds. That is, if

c is executed from a concrete prestate satisfying the abstract state P and it

terminates then the concrete poststate after the execution can be captured by Q.

Without proving the termination of c, a successful partial correctness proof

cannot assure that this program is responsive and eventually returns the

computational results upon to its termination. Non-termination is also

considered as a software bug [70, 131] but more difficult to detect. For

example, a non-termination bug in the Microsoft Zune’s clock driver, which

causes the devices to hang on the New Year’s Eve of a leap year, had not been

discovered until it occurred in 2008. Obviously, software testing is not capable

of finding non-termination bugs. In [66], the authors proposed a special

technique to do testing on legally non-terminating systems from reactive

systems, not to detect non-termination per se.

To overcome this problem, Hoare logic for total correctness [9], denoted by

the Hoare triple [P ]c[Q], requires the code fragment c to be shown terminating

under the given precondition P in addition to satisfying the postcondition Q

after its execution. The termination of a while-loop statement or a recursive

method can be proven by showing that the given termination measure1, a

mathematical function over program variables, is decreased with respect to a

1Another term is ranking function or loop variant (only for while-loop), which can be used
interchangeably.
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well-founded relation. To do that, the Hoare rules for partial correctness of

these constructs are modified to incorporate the decreasing and bounded checks

on the termination measure into the proof. For comparison, we show below the

Hoare rule of while-loop for partial correctness proof [PAR−WHILE] and for

total correctness proof [TOT−WHILE].

[PAR−WHILE]

` {P ∧ C} S {P}

` {P} while C do S {P ∧ ¬C}

[TOT−WHILE]

` [P ∧ C ∧ (V = V0)] S [P ∧ (V < V0)]

` P ∧ C ⇒ (V ≥ 0)

` [P ] while C do S [P ∧ ¬C]

In the rule [TOT−WHILE], V denotes a loop variant (i.e., the termination measure

for a while-loop) and V0 captures the initial value of V at the beginning of a

loop iteration. To reduce the annotation burden, loop variants can be inferred

automatically by [41, 42, 126]. Furthermore, the program termination can be

separately proved by termination analysis approaches, such as [27, 102, 120,

128].

On the other hand, the non-termination of a code c can be specified by the

postcondition false as a partial correctness property. That is, the Hoare triple

{P}c{false} denotes the fact that the statements after c are unreachable, thus

c does not terminate, for satisfiable instances of P , assuming that there is no

“assume (false)” statement inside c. A non-termination specification

mechanism is important to construct more comprehensive specifications for a

better program understanding. In addition, it helps to clearly distinct expected

non-terminating behaviors and failure of termination proofs.
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1.1 Thesis Objectives

The overall aim of this dissertation is to enhance total correctness proofs for

program verification in two dimensions: expressiveness of specification

languages and scalability of proof techniques. These are two important

dimensions for program verification to adapt toward the growth of large-scale

software systems with various complex properties.

The research in this thesis is inspired from the success of separation

logic [84, 133], which initiates a fruitful line of research on both theory and

tool development for the verification of heap-manipulating

programs [18, 19, 38, 54, 85, 105, 109, 125, 147], concurrent

programs [25, 31, 78, 79, 117, 144, 145] and object-oriented

programs [37, 119, 122]. In addition, separation logic is not only expressive, it

also helps to build scalable tools and methods for program

verification [22, 34, 57, 86, 141, 149]. However, the main theme of this thesis

focuses on the other aspect of total correctness proofs; that is, developing an

expressive and scalable logical framework for reasoning about program

termination and non-termination.

The first study conducted in this thesis originates from the lack of a logic

to properly specify the termination and the non-termination of a program in its

specification. Although the Hoare triple [P ]c[Q] of total correctness denotes that

the code c terminates, the termination measure involved in the proof rule is never

explicitly declared in the triple (e.g., see the rule [TOT−WHILE]). This is due to

the termination measure being a mathematical function, not a logical assertion,

so that it cannot be part of the pre/post specifications. This fact runs contrary to

Cliff Jones’ well-regarded expectation [87]. As a result, the termination proof

is currently considered as being logically distinct from the partial correctness

6



proof.

Moreover, because non-termination obviously cannot be specified by a total

correctness specification, i.e., 0 [P ] while C do S [false] and requires partial

correctness proof, termination and non-termination proof are separate.

Therefore, the termination reasoning might not take non-termination into

account, leading to inaccurate verification results.

To overcome these shortcomings, we propose a specification logic in which

program termination and non-termination as well as functional correctness

properties are specified and reasoned about in the same unified verification

framework. In this logic, program termination and non-termination are

specified by so-called temporal predicates. Their semantics are defined in

terms of resource reasoning, which allows them to be soundly and seamlessly

integrated into underlying logics for functional correctness. We expect that this

proposal would result in an expressive specification language that can specify

different termination and non-termination behaviors of each method in a

modular fashion.

In the second part of this thesis, we propose an automated termination and

non-termination inference to enhance the scalability of the above verification

framework. Our aim is not to develop distinct termination and non-termination

analyses which are separate from the verification process. Instead, we propose

a unified mechanism that can simultaneously derive the preconditions for both

termination and non-termination behaviors of a program. Moreover, this

inference mechanism is proposed to be modularly built on top of existing

verification systems and/or other (orthogonal) inference mechanisms for safety

properties, so that it can handle a wider class of programs. These two proposals

distinguish our mechanism from the current inference approaches which only
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prove either termination [21, 29, 46, 48, 74, 92, 129] or

non-termination [30, 35, 70, 94, 123, 146] for specific classes of programs.

As our termination and non-termination inference mechanism leverages on

existing verification systems, we propose to improve the performance of the

verification process as a means to further enhance the scalability of our

framework, especially on large code bases. In the last part of this thesis, we

develop a formal framework which accepts various proof slicing mechanisms

to detect and filter irrelevant information in proof obligations generated during

the verification process. This proof slicing framework is prover-independent

and tailored to program verification, so that not only the termination and

non-termination reasoning but also other verification and inference

mechanisms would benefit from it. Moreover, the proposed framework also

provides a common environment for further investigation and development of

modular and extensible slicing mechanisms.

1.2 Contributions of the Thesis

The contributions of this thesis can be summarized by three main themes:

A Resource-based Logic for Termination and Non-Termination Proofs

(Chapter 3, first presented in [98])

− A new resource logic that can capture lower and upper bounds on resource

usage via the concept of resource capacity, together with an entailment

procedure to support correctness proofs with resource-related properties.

− A temporal logic that is abstracted from the resource logic to reason

about both program termination and non-termination. We introduce three
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new temporal constraints, its entailment and Hoare rules lifted from the

resource logic.

− A successful integration of both resource and temporal logics into an

existing separation logic based verifier, namely HIP/SLEEK system [38].

The new temporal logic is expressive enough to specify and successfully

verify the (non-)termination behaviors for about 300 benchmark

programs collected from a variety of sources, including the SIR/Siemens

test suite [55] and problems from the Termination Competition [111].

Termination with Non-Termination Specification Inference (Chapter 4,

first presented in [100])

− A novel use of unknown pre/post predicates for inferring termination and

non-termination properties.

− An inference of base-case termination preconditions from the absence of

post-predicate.

− A concept of inductive unreachability to infer definite non-termination.

− A ranking function synthesis for termination from relational assumptions

derived by pre-condition proving.

− An abductive case splitting to divide input spaces into terminating and

non-terminating scenarios.

A Proof Slicing Framework for Program Verification (Chapter 5, first

presented in [99])

− A formal and general framework for uniformly describing different proof

slicing mechanisms. We prove the proposed slicing mechanisms to be
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both sound and convergent, in the sense that, while non-deterministic,

the framework always produces the same result for a given input. To

showcase the framework, we introduce the formalism of a complete

slicing as one of its applications.

− An annotation scheme for slicing that is suitable for a variety of logics.

This is aimed at allowing parts of formulas to be identified as carrying

information linking distinct properties. Then, an aggressive proof slicing

mechanism can leverage on annotation schemes to achieve greater

reductions of the proof slices. This also creates the opportunity for

applying proof caching, which is particularly effective for smaller-sized

proofs.

− An implementation of the both proof slicing mechanisms within

HIP/SLEEK verification system. Our experiments show compelling

performance gain of about 61% for complete proof slicing, and a further

gain of 74% for aggressive proof slicing.

1.3 Organization of the Thesis

The thesis is organized as following.

Chapter 2 describes the technical background of our proposals. In this

chapter, we introduce the programming language, the specification logic as

well as the verification process of the HIP/SLEEK system [38], on which we

will build the prototype for our proposals.

Chapter 3 presents a resource-based logic for specifying and reasoning about

program termination and non-termination via a Hoare-style verification.

Chapter 4 introduces an inference mechanism that leverages on relational
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assumptions over unknown termination behaviors of mutually recursive

methods to construct a comprehensive summary of their termination and

non-termination characteristics.

Chapter 5 presents a formalism of proof slicing mechanisms and

demonstrate its application in the HIP/SLEEK verification system to achieve

impressive improvement on verification time.

Chapter 6 concludes the thesis and discusses future research directions.
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Chapter 2

HIP/SLEEK Verification System

In this chapter, we introduce the HIP/SLEEK verification system [38], on which

we build a prototype for the proposals in this thesis.

HIP is a general-purpose automated verification system. By providing a

rich specification language, the system allows users to specify the functional

correctness as well as various safety properties of both numerical programs and

heap-manipulating programs. In order to prove the partial correctness of a

program with respect to a given specification, the system firstly relies on Hoare

logic with forward verification rules to automatically construct a set of

verification conditions and then discharges them by off-the-shelf theorem

provers, such as the Omega calculator [132], the Z3 SMT solver [52], the

monadic second-order logic prover MONA [90] and the Reduce/Redlog

algebra system [56].

Specifically, the HIP verifier uses separation logic [84, 133] in the

verification of heap-based programs. The shape and other pure properties (e.g.,

size and bag) of complex data structures can be modeled via inductive heap

predicates. To discharge proof obligations in the form of heap entailments, the

system develops its own separation logic prover, namely SLEEK, with the

13



Prog ::= tdecl mdecl

tdecl ::= data c { field }
t ::= c | bool | int | void

field ::= t v

mdecl ::= t mn([ref] t v) spec {e}
e ::= null | kt | v | v.f | v:=e | v1.f :=v2 |

new c(v) | e1; e2 | t v; e | mn(v) |
if v then e1 else e2 | return v

where c is a data type name; mn is a method name;
kt is a primitive constant with type t; f is a field name; v is a variable

Figure 2-1. A Core Imperative Language

capability of frame inference for unconsumed heap space. The underlying

entailment procedure of HIP can be described in the general form

Φa ` Φc;Φr denoting that Φa entails Φc with the residue Φr. In this form, the

residue Φr of an entailment containing only pure constraints is simply the

antecedent Φa.

We now summarize the overall system in three aspects: the supporting

programming languages, the specification language and the verification

procedure.

2.1 Programming Languages

To facilitate the verification for programs in multiple front-end imperative

programming languages (such as C and Java), the HIP/SLEEK system provides

a core strict language in Fig. 2-1 with usual constructs, such as type/data

structure declaration tdecl , method declaration mdecl with imperative

statements like method call, assignment, etc. inside its body. A program

consists of a set of data declarations and method declarations while a method

declaration also contains a specification spec beside its prototype and body. We

14



spec ::= requires Φpr ensures Φpo

hpred ::= pred c(v) ≡ Φ inv π
Φ ::=

∨
(∃v · κ ∧ π)

κ ::= emp | v 7→d(u) | c(v) | κ1 ∗ κ2
π ::= φ | b | a | π1 ∧ π2 | ¬π | ∃v · π
b ::= false | v | b1 = b2
a ::= e1=e2 | e1<e2 | v=null

e ::= k | v | k × e | e1 + e2 | −e
φ ::= v∈B | B1=B2 | B1<B2 | ∃v∈B · π
B ::= B1tB2 | B1uB2 | B1−B2 | {} | {v}

where emp represents empty heap; k is a constant; v is a variable

Figure 2-2. HIP/SLEEK’s Specification Language

use the overlie symbol m to indicate a set or a list of m.

For simplicity, this core language does not support loop constructs but it

assumes an automatic translation of (nested) loops into tail-recursive methods

with call-by-reference parameters (prefixed by the keyword ref). As a result,

we only need to construct a general verification procedure for (recursive)

method calls.

2.2 Specification Language

The syntax of HIP/SLEEK’s specification language is given in Fig. 2-2. The

basic form of a specification is a pair of precondition Φpr and postcondition

Φpo, which are logical formulas in disjunctive normal form. Furthermore, the

specification language of HIP/SLEEK can be extended to multiple pre/post

specification [36] or structured specification with case analysis [63] to capture

more behaviors of the verified programs.

Each disjunct in the pre and postconditions consists of a heap formula κ

and pure (heap-free) formula π. For specifying heap properties, the HIP/SLEEK

15



system uses a fragment of separation logic with the separation conjunction ∗

to denote the disjointness of heap parts and the heap predicate hpred to denote

various data structures. On the other hand, the system uses first-order logic with

Presburger arithmetic and set theory for specifying pure properties of heap or

constraints over program variables.

For example, given the data declaration

data node { int val; node next; },

a list segment from root to p comprising n data nodes can be described by the

inductive heap predicate

pred lseg(root, p, n) ≡ root=p ∧ n=0

∨ ∃v, q · root7→node(v, q) ∗ lseg(q, p, n−1)

inv n ≥ 0;

The pure invariant property n≥0 in the predicate declaration indicates that the

list’s size is always non-negative. Later, the predicate lseg(root, p, n) can be

used to specify either null-terminating lists (when p = null) or circular lists

(when p = root) for some examples in the next chapters.

2.3 Forward Verification Rules

The HIP verifier uses a set of standard Hoare-style forward verification rules to

systematically check that the implementation of a method does not violate the

given specification. The Hoare judgment for each program statement of the core

language is formalized in Fig. 2-3 in the form of a triple ` {Φpr} e {Φpo}. In

these rules, the primed version of a variable v, i.e. v′, denotes the latest value of

16



[FV−IF]

` {Φ ∧ v′} e1 {Φ1} ` {Φ ∧ ¬v′} e2 {Φ2}
` {Φ} if v then e1 else e2 {Φ1 ∨ Φ2}

[FV−BLK]

` {Φ} e {Φ1}
` {Φ} t v; e {∃v, v′ · Φ1}

[FV−ASSIGN]

` {Φ} e {Φ1} Φ2 ≡ ∃res · (Φ1 ∧ v′=res)

` {Φ} v := e {Φ2}

[FV−SEQ]

` {Φ} e1 {Φ1} ` {Φ1} e2 {Φ2}
` {Φ} e1; e2 {Φ2}

[FV−VAR]

Φ1 ≡ (Φ ∧ res = v′)

` {Φ} v {Φ1}

[FV−CONST]

Φ1 ≡ (Φ ∧ res = kt)

` {Φ} kt {Φ1}

[FV−RET]

Φ1 ≡ (Φ ∧ res = v′)

` {Φ} return v {Φ1}

[FV−CALL]

t0 mn(t v) (Φpr,Φpo) {e}∈Prog
Φ ` Φpr;Φ1 Φ2 ≡ Φ1 ∧ Φpo

` {Φ}mn(v) {Φ2}

[FV−METH]

` {Φpr} e {Φ} Φ ` Φpo;Φr

` {true} t0 mn(t v) (Φpr,Φpo) {e} { }

Figure 2-3. Hoare-style Forward Verification Rules

this variable at a verification point.

Based on the given rules, the verifier can perform an interprocedural

verification in a modular fashion with the most important rule [FV−METH] for

method declarations. That is, for each method declaration, the verifier initially

assumes the given precondition and then sequentially computes the poststate

after each program statement inside its body with regard to the respective

verification rule in Fig. 2-3. Specifically, at each method call, the verifier

checks that the callee’s precondition is satisfied before adding its postcondition

into the poststate (see the rule [FV−CALL]). Finally, the verifier uses the

poststate obtained at the end of the method to prove the declared postcondition.

The HIP/SLEEK verification system currently focuses on proving partial

correctness of programs. In this thesis, we shall extend it to reason about

program termination and non-termination. A traditional approach for such

extension is the Hoare logic for total correctness, which additionally include

17



the termination proofs into the verification rule of loops. In the next section, we

will give an overview about some verification system which are based on this

approach.

In contrast to these verifiers, our proposal is to model the program

termination and non-termination properties as logical assertions and uniformly

integrate both termination and non-termination reasoning into the entailment

procedure. As a result, the set of verification rules still remain in their

standard-looking form. Moreover, by enhancing the entailment procedure for

reasoning about termination and non-termination, we can easily leverage the

available verification infrastructures to construct a termination specification

inference mechanism for a wider class of programs. Lastly, we improve the

performance of the entailment procedure with proof slicing mechanisms as a

means to enhance the scalability of the verification system.
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Chapter 3

A Resource-Based Logic for

Termination and Non-Termination

Proofs

In this chapter, we introduce a unified logical framework for specifying and

proving both termination and non-termination of various programs. Our

framework is based on a resource logic which captures both upper and lower

bounds on resources used by the programs. By an abstraction, we evolve this

resource logic for execution length into a temporal logic with three predicates

to reason about termination, non-termination or unknown. We introduce a new

logical entailment system for temporal constraints and show how Hoare logic

can be seamlessly used to prove termination and non-termination in our unified

framework. Though our focus is on the formal foundations for a new unified

framework, we also report on the usability and practicality of our approach by

specifying and verifying both termination and non-termination properties for

about 300 programs, collected from a variety of sources. This adds a modest

5-10% verification overhead when compared to underlying partial-correctness
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verification system.

3.1 Overview

Termination proving is an important part of correctness proofs for software

systems as “so-called partial correctness is inadequate: if a program is

intended to terminate, that fact must be part of its specification.” – Cliff

Jones [87]. Thus, total correctness proofs, denoted by the Hoare triple [P ]c[Q],

require the code fragment c to be shown terminating in addition to meeting the

postcondition Q after execution. The termination of a loop or a recursive

method is usually proven by a well-founded termination measure given to the

specification. However, such a measure is not a component of the logical

formulas for pre/post specifications. A reason for this distinction is that

specification logic typically describes program states, while the termination

proofs are concerned with the existence of well-founded measures to bound the

execution length of loops/recursions, as argued by Hehner in [73]. Due to this

distinction, we cannot automatically leverage richer logics that have been

developed for safety properties to conduct more intricate termination and

non-termination reasoning.

For illustration, let us use the Shuffle problem proposed in the Java

Bytecode Recursive category of the annual Termination Competition [111]. In

this problem, an acyclic linked list is shuffled by the shuffle method together

with the auxiliary reverse method, whose source code is shown in Fig. 3-1.

To prove that shuffle terminates, we need to firstly show that reverse also

terminates. While the termination of reverse can be easily proved by current

approaches, such as [21, 32, 102], proving shuffle terminates is harder

because it requires a functional correctness related fact: the reverse method
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public static List shuffle(List xs) {
if (xs==null) return null;
else {
List next = xs.next;
return new List(xs.value, shuffle(reverse(next))); }}

public static List reverse(final List l) {
if (l==null || l.next==null) return l;
final List nextItem = l.next;
final List reverseRest = reverse(nextItem);
l.next = null; nextItem.next = l;
return reverseRest; }

Figure 3-1. The Shuffle problem from the Termination Competition

does not change the length of the list. Based on this fact, it is possible to show

that the linked list’s length is also decreasing across the recursive method call

shuffle; as a result, the method always terminates.

Therefore, without an integration of termination specification into logics

for functional correctness, such as separation logic [133], the termination of

shuffle is hardly specified and proved by verification systems based on the

traditional Hoare logic for total correctness. Note that automated termination

provers, such as AProVE [65] and COSTA [5], are not able to show that

shuffle terminates, even after applying a numeric abstraction on the size

property to shuffle [110], due to the lack of information flow between the

correctness and the termination arguments. We believe that relatively complex

problems, such as Shuffle, highlight the need of a more expressive logic with

the ability of integration into various safety logics for termination reasoning.

Moreover, if the termination proof fails, e.g., when the input list of

shuffle is cyclic, the program will be implicitly assumed to be possibly

non-terminating. That is, definite non-termination is neither explicitly stated

nor proven by Hoare logic. Explicitly proving non-termination has two
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benefits. First, it allows more comprehensive specifications to be developed for

better program understanding. Second, it allows a clearer distinction between

expected non-termination (e.g., reactive systems where loops are designed to

be infinite) and failure of termination proofs, paving the way for focusing on

real non-termination bugs that minimize on false positives.

Some specification languages, such as Dafny [106], ACSL [17] and

JML [101], allow the specification of possible non-termination but their

corresponding verifiers provide limited support for this feature. For example,

the verifier of Dafny (version 1.8.2) only allows such specification on loops or

tail-recursive methods1, while Frama-C verifier of ACSL [50] has not

implemented it. On the other hand, we can use the false postcondition, which

indicates that the method’s exit is unreachable, to specify definite

non-termination. However, such postcondition for partial correctness is not

preferred as it is logically distinct from termination proofs. This distinction

has been designed into Dafny, Frama-C and KeY with JML [4], that makes the

tools fail to take into account non-terminating behavior when proving

termination.

As a case study, Dafny 1.8.2 succeeds in proving the termination of a

recursive method2 though this method contains a call to a non-terminating

method.3 In fact, for termination proofs, these tools simply check that there is

a finite number of mutual recursive calls to the analyzed methods, rather than

the methods’ termination per se. Later, these two problems have been fixed in

Dafny 1.9.1, which only allows a non-termination specification in a

non-terminating context. However, this check is performed syntactically and

1http://www.rise4fun.com/Dafny/PnRX
2http://www.rise4fun.com/Dafny/6FuR
3The examples in ACSL and JML are at http://loris-7.ddns.comp.nus.edu.sg/

˜project/hiptnt/others.zip
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the tool cannot prove the conditional termination of a method under its

terminating cases4.

Our proposal. We propose integrating both termination and non-termination

requirements directly into the specification logic for functional properties. Our

work follows Hoare and He [77] and Hehner [72], in which the termination is

reasoned together with partial correctness proof. In [72], the program is

instrumented with a time variable t and the termination is proven by a finite

bound on the exact execution time t′−t, where t, t′ are the initial, resp. final

time. In [77], a special ghost variable ok is used to signify termination.

However, these approaches presently do not handle non-termination.

As a formal foundation to unify termination and non-termination reasoning

and integrate them into functional correctness proofs, we introduce a new

resource logic which captures the concept of resource capacity; tracking both

minimum and maximum amounts of resources used by some given code. Our

logic uses a primitive predicate RC〈l, u〉 with invariant 0≤l≤u to capture a

semantic notion of resource capacity (l, u) with the lower bound l and the

upper bound u. Through this resource logic, we can specify a variety of

complexity-related properties, including the notions of termination and

non-termination, by tracking the number of calls (and loop iterations) executed

by the given code. Termination is denoted by the presence of a finite upper

bound, while non-termination is denoted an infinite lower bound on the

execution length.

To support a more effective mechanism, we shall derive a simpler temporal

logic from the richer resource logic itself. We define three temporal predicates,

TermM , Loop and MayLoop, where M is a well-founded termination measure,

4http://www.rise4fun.com/Dafny/wnF
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and associate them with each method in a given program to denote the

termination, definite non-termination and possible non-termination of these

methods, respectively. In terms of resource reasoning, these predicates

represent RC〈0, embed(M)〉, RC〈∞,∞〉 and RC〈0,∞〉, respectively, where

embed(M) is a finite bound obtained through an order-embedding of M into

naturals. Using the enriched specification logic, functional correctness,

termination and non-termination of methods can be verified under a single

modular framework. With this unification, the predicate Term M denotes

exactly definite termination, instead of just denoting the bound on the number

of loop iterations or method recursions like the termination measures used in

the traditional Hoare logic for total correctness.

3.2 From Resource to Temporal Logic

We introduce a general resource predicate RC〈l, u〉 where l is a lower bound

and u is an upper bound on resource capacity, with invariant 0≤l≤u. This

resource predicate can be specialized to execution capacity to capture a variety

of complexity-related properties, via lower and upper bounds on the total

number of method calls during the execution of a given piece of code. We shall

give an instrumented semantics for this specific resource logic, and also

specialize it for reasoning about termination and non-termination. To prove

termination, we simply use the predicate RC〈0, u〉 where u is some finite value,

namely u<∞. To prove non-termination, we can use the predicate RC〈∞,∞〉

which signifies an infinite lower bound. Lastly, if we cannot prove either

termination or non-termination, we use the predicate RC〈0,∞〉 which covers all

possibilities.

The resource logic we have outlined is quite expressive, and could
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pred isEvenNat(int n) ≡ n≥0 ∧ ∃m · n=2∗m;
int sumE (int n)
requires isEvenNat(n) ∧ Term [n] ∨

¬isEvenNat(n) ∧ Loop
ensures true;
{ if (n==0) return 0;
else return n + sumE(n−2); }

while (x>y)
requires

x≤y ∧ Term [] ∨
x>y ∧ x<0 ∧ Loop ∨
x>y ∧ x≥0 ∧ MayLoop
ensures x′≤y′;
{ y=x+y; x=x−1; }

(a) (b)

Figure 3-2. Examples on numerical programs

moreover be specialized for reasoning on just termination and non-termination

with the direct handling of infinity∞ value. In order to design a simpler logic,

we introduce a temporal logic with three distinct predicates, as follows: (i)

Term M to denote RC〈0, embed(M)〉, (ii) Loop to denote RC〈∞,∞〉 and (iii)

MayLoop to denote RC〈0,∞〉. Such a temporal logic is considerably simpler

than the more expressive resource logic, since we can omit reasoning with∞.

We can also use a simpler termination measure M , based on depth of recursion

rather than number of calls, but relate to the latter using embed(M). Moreover,

these temporal predicates can be made flow-insensitive, and thus need only

appear in each method’s precondition where they describe execution capacity

required for the method’s execution. This two-level approach simplifies both

the design of a formal semantics, and the development of a verification

framework for (non-)termination.

For illustration, let us look at some numerical examples, starting with the

method sumE in Fig. 3-2(a). This method is required to return the sum of all

even natural numbers that are less than or equal to the input n. However, the

implementation satisfies this requirement only when n is an even natural

number, denoted by the predicate isEvenNat(n); otherwise, the method does

not terminate5. In our approach, these distinct scenarios can be described in a

5The verification system assumes the use of arbitrary precision integers. When finite integers

25



termination-enriched specification by seamlessly integrating the temporal

constraints Term [n] and Loop into a logic with disjunctions.

JML and ACSL also support the specification of several method behaviors.

However, the current ACSL implementation in Frama-C does not allow

fine-grained termination related specification of each behavior and ignores

conditional termination clauses. As a result, it cannot verify all the

(non-)terminating behaviors of sumE together. KeY allows the specification of

termination for each individual method behavior but it cannot disprove the

termination of sumE when n is an odd positive number, because the variant n is

still valid under this precondition.3 In contrast, our unified termination and

non-termination reasoning does not accept the temporal constraint Term [n] in

these prestates because the execution starting from them will eventually reach a

non-terminating execution when n<0. In terms of resource reasoning,

Term [n], denoting a finite resource, is invalid as it cannot satisfy the infinite

resource required by the non-termination.

The next example in Fig. 3-2(b) illustrates a usage of MayLoop constraint.

Starting from any prestate satisfying x>y ∧ x≥0, the execution of the given

loop may reach either the base case (when x≤y, indicated by Term []) or the

non-terminating case (when x>y ∧ x<0, indicated by Loop). We observe that

this MayLoop precondition can be strengthened to the non-linear constraint

4x2+4x+8y+9≥0 for non-termination, but this requires stronger arithmetic

solvers.

Though our proposal is independent of the underlying logics on functional

properties, it can leverage infrastructures of richer logics6 to conduct

termination and non-termination reasoning for more complex domains. For

are used, we may give a different temporal specification for those prestates.
6In comparison with the first-order logic with linear arithmetic for numerical programs.
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data node { node next; }

pred lseg(root, p, n) ≡ root=p ∧ n=0

∨ ∃q · root7→node(q)∗lseg(q, p, n−1)
inv n ≥ 0;

List reverse (List l)
requires lseg(l, null, n) ∧ Term [n]
ensures lseg(res, null, n);

List shuffle (List xs)
requires lseg(xs, null, n) ∧ Term [n]
ensures lseg(res, null, n);

Figure 3-3. A specification in separation logic to verify the correctness of Shuffle’s
methods

example, our proposed temporal constraints are easily integrated into formulas

of separation logic to reason about the termination and non-termination of

heap-based programs.

For the Shuffle problem, we can use the predicate lseg denoting linked

list segments in the pre and postconditions of its two methods reverse and

shuffle to describe their input-output relations, as shown in Fig. 3-3. The

specification of each method indicates that the method’s result res is a linked

list with the same size n as the input list. From these safety specifications, the

temporal constraint Term [n] integrated into the precondition of each method is

able to specify that the depth of recursion is bounded by the size of the input

list, thus indicating the method’s termination.

From the perspective of resource reasoning, a temporal constraint in the

precondition of a method defines the bounds of available resource allowed for

program executions from prestates satisfying (safety part of) this precondition.

This idea is similar to Atkey’s logic [12], a type-based amortized resource

analysis for imperative programs, which associates a piece of resource with

each element of the data structures prior program execution. However, Atkey’s

approach only tracks the upper bound of resource usage, so that it cannot
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reason about non-termination. This shortcoming also applies to other

type-based approaches for termination reasoning, such as [3, 148]. In addition,

while the amortized resource analysis accounts for individual time-step (or

heap chunk), we use termination measures, which are much simpler, to

facilitate termination proofs. For example, to analyze shuffle, Atkey’s logic

requires the global length property to present the polynomial resource

associated with the input list using the technique of Hoffmann and

Hofmann [81], which is much harder than locally reasoning about each node of

the list as stated in his paper. Finally, this logic is built on top of just separation

logic, rather than being generic as our proposal.

3.3 A Logic for Resource Reasoning

In proving termination and non-termination, our goal is to use resource

reasoning based on execution capacity to provide a means for quantitatively

assessing the execution length of a program. For this purpose, we introduce a

resource logic to formally assess the minimum and a maximum bounds on a

program’s resource consumption. We first extend the program state model with

a mechanism to track resource capacities of the underlying machine. Since the

particular consumed resource is countable and possibly infinite, we use the set

N∞, short for N ∪ {∞}, as its domain.

3.3.1 Resource Capacity

Definition 1 (Program states) A program state σ is a triple (s, h, r) of stack

s ∈ S (locals), heap h ∈ H (memory) and r ∈ R, resource capacity where r is

a pair (rl, ru) of bounds in N∞, with 0≤rl≤ru, denoting the allowed minimum

and maximum resource consumption for executions starting from the current
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program state.

Intuitively, a program state’s resource capacity (rl, ru) ensures that any

execution starting from this state must consume at least rl and at most ru of the

tracked resource.

Definition 2 (Resource Capacity Ordering) Let (≤c) ⊂ N∞×N∞ be the

resource capacity ordering, such that (bl, bu)≤c(al, au) iff al≤bl and bu≤au.

The resource capacity (al, au) is considered larger (or more general) than

(bl, bu) if al≤bl and bu≤au. The intuition is that under this condition, any

execution which guarantees the capacity (bl, bu) also guarantees the capacity

(al, au). Based on this observation, (0,∞) is the largest resource capacity. In

fact, it indicates an unconstrained resource consumption.

In order to properly define an operational semantics in terms of the

proposed program state model, we also need to be able to express resource

consumption. To this end we define a splitting operation over the resource

capacity. We will say that a capacity (al, au) can be split into capacities (bl, bu)

and (cl, cu), written (al, au) 	 (bl, bu) = (cl, cu), if whenever an execution that

guarantees the capacity (bl, bu) starts from a state with the capacity (al, au)

then the remaining capacity is (cl, cu). In other words, the executions allowed

by (al, au) can be decomposed into executions required by (bl, bu) followed by

executions required by (cl, cu).

Definition 3 (Resource Capacity Splitting) Given resource capacities

(al, au), (bl, bu) with bu≤au and al+bu≤au+bl then (al, au)	 (bl, bu) = (cl, cu)

where

cl = min{xl ∈ N∞ | xl + bl ≥ al} and cu = max{xu ∈ N∞ | xu + bu ≤ au}.
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(s, h, r) |=Ψ1∨ Ψ2 ≡ (s, h, r) |= Ψ1 or (s, h, r) |= Ψ2

(s, h, r) |=Ψ1∧ Ψ2 ≡ (s, h, r) |= Ψ1 and (s, h, r) |= Ψ2

(s, h, r) |=∃xi·Ψ ≡ ∃ν∗i ·(s[(xi 7→νi)], h, r) |= Ψ

(s, h, r) |=ρ ≡ (s, h) |= ρ

(s, h, r) |= RC〈al, au〉 ≡ (s, h) |= rl = al ∧ ru = au where r=(rl, ru)

(s, h, r) |= θ1 I θ2 ≡ ∀r′·if (s, h, r′) |= θ1 then (s, h, r 	 r′) |= θ2

Figure 3-5. Semantics of Assertions in the Resource-Aware Logic

From Defn. 3, (cl, cu) is the largest resource consumption allowed for any

execution following executions satisfying (bl, bu) such that the overall resource

consumption is described by (al, au). Under this interpretation it follows

naturally that when bu>au the splitting operation is undefined as cu does not

exist. In addition, when al+bu>au+bl, the splitting operation is also undefined

as it would lead to cl>cu.

3.3.2 Assertion Language and Semantics for a

Resource-Aware Logic

To support resource reasoning, we extend a minimalistic assertion language with

two resource assertions θ, as shown in Fig. 3-4. Recall that we use v and v for

denoting variables and sequences of variables, f(v) for functions from variables

to N∞. The resource-free formulas is represented by ρ and Φ. For example, in

the HIP/SLEEK system, the formula ρ comprises two parts: the heap formula κ

and the pure formula π, as shown in Fig. 2-2.

The resource assertion θ ranges over (i) atomic resource assertions RC〈al, au〉,

where al, au are functions from variables to N∞; and (ii) splitting resource

assertions θ1 I θ2, which holds for states that allow executions to be split into

two execution fragments, on which ρ1 and ρ2 hold respectively.
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Ψ ::=
∨

(∃v · ρ∧ θ)

Φ ::=
∨

(∃v · ρ)

θ ::= RC〈al, au〉 | θ1 I θ2

a ::= f(v)

Figure 3-4. The Assertion
Language

We concisely list in Fig. 3-5 the semantic

model for the assertion language. We

observe that the usual semantics of the

logical connectives, e.g., conjunctions and

disjunctions, lifts naturally over resource

assertions. The semantics of the resource-

free assertions is straightforward: a resource-free formula ρ holds for all states

(s, h, r) such that (s, h) |= ρ with respect to the semantics of the corresponding

underlying logic. Note that the operator |= is overloaded for both the underlying

logic and the resource-aware logic.

We point out that we have chosen to model the RC〈al, au〉 assertion as a

precise predicate. That is, a program state σ satisfies a resource constraint θ if

the resource capacity in σ is equal to the evaluation, in the context of σ, of the

upper and lower functions associated with θ. This modeling relation ensures

that the resource assertion θ is precise with regards to the resource capacity,

where (s, h, r) |= θ does not imply (s, h, r′) |= θ whenever r′ is larger than r,

i.e., r′ ≥c r. Consequently, RC〈al, au〉 ` RC〈bl, bu〉 iff (s, h) |= al=bl ∧ au=bu.

Additionally, RC〈al, au〉 ∧ RC〈bl, bu〉 ≡ RC〈al, au〉 iff al=bl ∧ au=bu; otherwise,

RC〈al, au〉 ∧ RC〈bl, bu〉 ≡ false.

To provide a precise modular resource reasoning, we lift the semantic split

operation into a resource splitting assertion θ1 I θ2. This enables our proof

construction to follow the same style of other resource manipulating logics,

such as separation logic. The intuition behind the splitting resource assertions

is that θ1 I θ2 holds for any program state from which it is possible to

consume as many resources as θ1 requires and end in a state that satisfies ρ2.

Or equivalently, θ1 I θ2 holds for all states whose resource capacity can be
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split into two portions, such that the resulting capacities satisfy θ1 and θ2,

respectively. In addition, we can use I to add a resource capacity θ1 into the

current available resource capacity θ, resulting in θ I θ1. The semantics of

θ1 I θ2 is also given in Fig. 3-5.

3.3.3 Resource-Enhanced Entailment with Frame Inference

Based on the semantics of resource assertions and the standard definition of the

logical entailment relation (i.e., Ψ1 ` Ψ2 iff ∀σ · if σ |= Ψ1 then σ |= Ψ2), it is

possible to define an entailment for resource constraints of the form θ ` θ1 I θ2

as follows:

Lemma 1 (Resource Entailments) Given resource assertions θ, θ1 and θ2, θ `

θ1 I θ2 iff ∀s, h, r, r1· if (s, h, r) |= θ and (s, h, r1) |= θ1 then (s, h, r	r1) |= θ2.

Proof. The proofs of all lemmas in this chapter can be found in Appendix A.1.

It follows that given 	f , a lifting of resource capacity splitting to functions,

then:
(θ2l , θ

2
u) = (θl, θu)	f (θ1l , θ

1
u)

RC〈θl, θu〉 ` RC〈θ1l , θ1u〉 I RC〈θ2l , θ2u〉

Entailments of the form θ ` θ1 I θ2 are of particular interest in the context

of program verification as they naturally encode the restriction imposed at a

method call and the remaining restriction after the execution of this method.

For the proposed resource logic, we construct a general entailment system with

frame inference by merging the entailment of resource constraints presented

earlier with the entailment system corresponding to the underlying logic. Let

the underlying entailment system be of the general form Ψ ` Φ;Φr denoting

that Ψ implies Φ with frame Φr. In sub-structural logics such as separation logic,

the frame captures any residual state that is not required by the entailment. In
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pure logics where the program states are not changed, the frame is simply the

antecedent of the entailment.

To support logics with disjunctions, the entailment system firstly

deconstructs disjunctive antecedents (e.g., using the rule [ENT−DISJ−LHS]) and

consequents until formulas of the form ρ ∧ θ with a single resource constraint7

are encountered in both sides of the sub-entailments. The judgment system

then applies the rule [ENT−CONJ] that is slightly changed to handle resource

constraints by splitting an entailment into two parts, namely logical part and

resource part. The logical goal is solved by the entailment system

µa ` µc;Φr of the underlying logic. The resource goal is solved by using the

resource entailment rules presented above. The solving process for the

resource part leverages the entailment outcome Φr from the underlying logic,

which is simply added to the antecedent of the resource entailment, to check

the condition stated in Defn. 3 for the resource capacity splitting operation to

be defined.

[ENT−DISJ−LHS]

Ψ =
∨
∃vi · (ρi ∧ θi)

∀i · (ρi ∧ θi) ` Φ;Ψi
r

Ψ ` Φ;
∨
∃vi ·Ψi

r

[ENT−CONJ]

ρa ` ρc; ρr

ρr ∧ θa ` θc I θr

ρa ∧ θa ` ρc ∧ θc; (ρr ∧ θr)

3.3.4 Hoare Logic for Resource Verification

Language. We use the core strict imperative language of HIP/SLEEK system

(see Fig. 2-1). For simplicity, this core language does not support while-loop

constructs. A preprocessing step shall be applied to automatically translate

while-loops into tail-recursive methods with reference-type parameters.

7A conjunction of resource constraints can be simplified to either a single resource constraint
or false as discussed in Sec. 3.3.2.
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The pre and post conditions of a method are specified by the requires and

ensures keywords, followed by logic formulas in the assertion language in

Fig. 3-4. Resource-related assertions always appear in the method

preconditions to denote resource requirements imposed on the caller for its

execution. In contrast, resource assertions in the postconditions denote

unspent/generated fuel returned to the caller, so that these assertions may not

appear in the postconditions, depending on the analyzed resource. For

example, as execution length (i.e., a temporal resource) can only be consumed,

it is safe and convenient to assume that the method consumes all the initially

required resource; thus we can avoid the need for execution length related

assertions in postconditions.

Hoare Logic. We observe that the resource consumption of each program

statement is dependent on the tracked resource. As a result, the resource-aware

Hoare logic needs to be adapted accordingly for each resource type. In terms of

termination and non-termination reasoning, we are interested in the execution

length as the tracked resource capacity. In the next section, we will construct a

specific Hoare logic to reason about this resource.

3.4 (Non-)Termination Proofs via Resource

Reasoning

For termination and non-termination reasoning, we have proposed three

temporal constraints to capture: guaranteed termination Term X , guaranteed

non-termination Loop and possible non-termination MayLoop, where X is a

ranking function built from program variables. First, we define these

constraints as resource capacity assertions, using the more general RC
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predicate. Next, we leverage the resource logic in Sec. 3.3, specialized in

execution capacity, to construct a logic for termination and non-termination

reasoning. A resource-based definition for the proposed temporal constraints is

as follows:

Definition 4 (Temporal Constraints) Temporal constraints are resource

assertions over program execution lengths, such that Term X ≡ RC〈0f , $〉,

Loop ≡ RC〈∞f ,∞f〉 and MayLoop ≡ RC〈0f ,∞f〉 where 0f and ∞f denote

the constant functions always returning 0 respectively ∞. $ is a function of

program variables to naturals, imposing a finite upper bound on the execution

length of a terminating program.

Using the definition of resource entailments in Lemma 1, we formalize the

set of valid entailments for temporal constraints below:

MayLoop ` MayLoop I MayLoop

MayLoop ` Term X I MayLoop

MayLoop ` Loop I MayLoop

Loop ` MayLoop I Loop

Loop ` Term X I Loop

Loop ` Loop I MayLoop

µ⇒ Y ≤d X

µ∧Term X ` Term Y I Term X−dY

where ≤d and −d are the ordering and the subtraction operation on the domain

of the termination measures X and Y , respectively. All other decomposition

attempts, such as Term X ` MayLoop I and Term X ` Loop I , describe

unfeasible splits. Thus in those cases, the entailment fails and an error is

signaled.
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3.4.1 From Termination Measures to Execution Capacity’s

Finite Upper Bounds

In Defn. 4, as X denotes a termination measure, a bounded function that

decreases across recursive method calls, the resource upper bound $ must also

follow. Thus, the mapping function from X to $ must be an order-embedding

denoted by embed(X). In our approach, the termination measure X is a (finite)

list of arithmetic formulas over naturals [e] whose order is based on the

lexicographic ordering <l as defined below.

Definition 5 (Lexicographic Ordering)

[]<l e:

(e1 < e2) ∨ (e1 = e2 ∧ es1<l es2)

e1:es1<l e2:es2

where e:es denotes a non-empty list with e and es as its head and tail,

respectively.

We choose this formulation since it is simpler to write than a single but

more complex termination measure and it can be used for a wider range of

programs. In general, an order-embedding of lists of unbounded elements

requires ordinals. However, transfinite ordinals are not suitable to model finite

computational resources denoted by Term X .

By a co-inductive argument that every execution of a terminating method

only computes finitely many different values, it follows that every non-negative

element of a lexicographic termination measure applied to states of the

corresponding call tree is upper-bounded. We then show that there always

exists an order-embedding L from the codomain of a termination measure (i.e.,

tuples of bounded naturals) to naturals, such that embed(X) = L ◦X .
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Lemma 2 If the termination of a program can be proven by a given

lexicographic termination measure, then for each call tree τ of the program,

every element of the termination measure applied to the program states

corresponding to the nodes in the call tree τ is bounded.

If every element xi, where 0 ≤ i ≤ n − 1, of a lexicographic termination

measure [xn, xn−1, . . . , x0] corresponding to a given call tree τ is bounded by a

constant k, we can use the base b=k+1 to construct a possible order-embedding

functionD([xn, xn−1, . . . , x0]) = xn ∗ bn +xn−1 ∗ bn−1 + . . .+x0. The function

D preserves the order of the given measure along every trace of τ , as stated by

Lemma 3.

Lemma 3 For all xn, . . . , x0, yn, . . . , y0 ∈ N such that ∀i ∈ {0..n−1}·xi, yi <

b, [xn, . . . , x0] >l [yn, . . . , y0] iff D([xn, . . . , x0]) > D([yn, . . . , y0]), where >l

is the lexicographic ordering.

In general, such a bounded constant k for a call tree τ can be determined by

a function K of initial values of the call tree’s variables. Since the execution

of a loop has only a single trace, the order-embedding D, constructed from the

constant k, would be enough to ensure the sufficiency of execution capacity for

the loop. However, in order to give a proper estimate of the execution capacity

for more complex recursion patterns, especially when the termination measures

are based on the depth of recursion, we propose using a more refined embedding

for a call tree, that is L =

 D ,N ≤ 1

ND ,N > 1
, whereN is the maximum number

of children for each node of the call tree.

Therefore, given the termination measure X of a terminating program, there

always exists an order-embedding L from the codomain of X to naturals. The

function L can be constructed from initial values of program variables and the
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CheckMin(Ψ1) CheckMin(Ψ2)

CheckMin(Ψ1 ∨Ψ2)

ρ ` ρl = 0

CheckMin(ρ ∧ RC〈ρl, ρu〉)

[FV−CALL]

t0 mn(t v) (ΨPre,ΦPost) {code}∈Prog
Ψ ` RC〈1, 1〉;Θ Θ ` ΨPre ;Φ Ψr = Φ ∧ ΦPost

` {Ψ}mn(v∗) {Ψr}

[FV−RET]

CheckMin(Ψ)

` {Ψ} return v {Ψ ∧ res = v′}

Figure 3-6. Hoare Verification Rules: Method Call and Return

call trees corresponding to these initial values. As a result, embed(X) = L◦X is

a function from program variables to naturals, which describes an upper bound

on the number of method calls taken by any execution of the program.

3.4.2 Termination and Non-Termination Verification

Here we elaborate on the construction of both termination and non-termination

proofs based on Defn. 4 and the verification framework in Fig. 3-6 for tracking

execution length as resource. Although execution length can be tracked at

various levels of granularities, we choose to track it only at method calls (i.e.,

as the total number of method calls) in order to simplify the verification rules

and the operational semantics. In Fig. 3-6, we only outline the Hoare logic

rules for the method call and the return statements, which are especially

relevant to the verification of execution lengths as they encode the resource

consumption. The Hoare rules for other constructs are standard because they

do not interact with the resource of interest.

As a standard preprocessing step, we check that all predicate invariants are
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satisfied, including the invariants of resource constraints: the resource assertion

RC〈ρl, ρu〉 in precondition ΨPre is consistent if 0≤ρl≤ρu, that is, for each

disjunct µ ∧ RC〈ρl, ρu〉 of ΨPre it follows that µ ` ρu≥ρl ∧ ρl≥0. We observe

that the invariant check on Term X requires that every element of X be

non-negative to ensure a non-negative upper-bound L◦X , so that the execution

capacity satisfies the invariant 0≤0f≤L◦X .

In the method call rule [FV−CALL], the available execution capacity is first

decreased by one step, denoted by RC〈1, 1〉, to account the cost of method call,

followed by a check that the callee’s requirements are met. This check is

translated into an entailment for proving the method precondition. Finally, the

poststate after this method call is computed. With the help of the

resource-enhanced entailment system introduced in Sec. 3.3.3, both logical and

resource proving are combined into one entailment, resulting in a

standard-looking Hoare rule for method call.

In addition, specifically for temporal constraints, two entailments

Ψ ` RC〈1, 1〉;Θ and Θ ` ΨPre ;Φ can be combined into Ψ ` ΨPre;Φ by

using a new entailment `t for temporal constraints.

Definition 6 (Unit Reduction Temporal Entailments) Given temporal

constraints θ, θ1 and θ2, θ `t θ1 I θ2 iff ∀s, h, r · if (s, h, r) |= θ

then (s, h, r 	 (1, 1)) |= θ1 I θ2.

Therefore, if θ is Loop or MayLoop then θ `t θ1 I θ2 iff θ ` θ1 I θ2. If θ is

Term X then µ ∧ Term X `t Term Y I Term ((X−d1d)−dY ) if µ⇒Y <dX ,

where 1d is the unit of termination measures’ domain. Basically, the check

Y <dX is equivalent to the check that termination measures are decreasing

across recursive method calls in the traditional termination proof. By

introducing the temporal entailment `t, we obtain a resource-based temporal
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logic which is related to only the temporal constraints and thus the underlying

resource reasoning becomes implicit.

In the method return rule [FV−RET], the CheckMin predicate, which is also

defined in Fig. 3-6, ensures that the specified minimum computation resource

has been completely consumed when the method returns. Note that if the

method does not terminate, the minimum guaranteed execution length is

always satisfied since the actual return point is never reached. For temporal

constraints, CheckMin holds for any Term X and MayLoop as the lower bounds

in their execution capacities are always 0. In non-termination cases,

CheckMin(µ ∧ Loop) only holds when µ is unsatisfiable. This check ensures

that a return statement cannot be executed/reachable from a state satisfying

Loop.

We now state the soundness of this resource-aware Hoare logic as follows:

Theorem 1 The standard Hoare rules (e.g., assignment, conditional, sequential

composition) and the Hoare rules for method call and return are sound.

Proof. The proof can be found in Appendix A.2.

3.4.3 Flow-Insensitive Temporal Logic

Observe that the current formulation of the temporal logic with temporal

constraints is flow-sensitive since the entailment θ `t θ1 I θ2 might return a

residue θ2 distinct from θ. However, with the following observations, we can

formalize a flow-insensitive version of the temporal logic and provide a further

abstraction on the resource-based framework presented so far.

First, it is possible to refine the granularity of the termination and

non-termination verification by tracking only execution lengths of (mutually)

recursive method calls. Second, using König’s lemma [91], it is sufficient to
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inspect individual execution traces in the call tree for deciding just termination

or non-termination, instead of tracking the total execution length of all traces in

the call tree. That is, a program terminates iff every execution trace is finite;

otherwise, the program is non-terminating.

Based on these observations, the tracked resource will be abstracted to

capture the execution capacity required for the longest trace in the call tree,

instead of the execution capacity required for the remaining program. With

this, the resource (for the longest trace allowed) remains unchanged after each

splitting operation, which determines the residue resource needed for

subsequent method calls. Thus, for every method, we endeavor to provide a

single abstract resource that is sufficient for executing a given method call and

also its remaining code sequences.

By using this abstraction, we can obtain a formulation on temporal

entailment that ensures θ `t θ1 I θ whereby the temporal constraint in residue

is always identical to the one in the antecedent. Hence, the operator −d can be

fully circumvented. Moreover, the finite upper bound $ used for the definition

of Term X in Defn. 4 can be determined as $ = D ◦ X , instead of the larger

L ◦ X . As a result, without any change to the Hoare rules, during a method’s

verification, the same initial resource capacity is used for the verification of call

traces and thus facilitating a simpler verification procedure for temporal

constraint. As a direct outcome of this abstraction, the temporal assertions

Loop, MayLoop and Term X are now flow-insensitive, and therefore closer to

the pure logic form, as opposed to the sub-structural form of resource logics.

Note that flow-insensitive label applies to only the temporal constraints. In

general, program states (e.g., denoted by separation logic as the underlying

logic) remain flow-sensitive since they might be changed due to changes on
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Benchmarks Programs Term Loop MayLoop PC(s) TC(s) Overhead (%)

Invel 59 137 81 12 14.88 15.96 6.77
AProVE 124 534 120 8 15.73 17.21 8.60

Pasta 44 219 10 3 4.95 5.79 14.51
Others 48 194 32 22 7.35 8.78 16.29

Totals/(%) 275 1084 (79.0%) 243 (17.7%) 45 (3.3%) 42.91 47.74 10.12%

Figure 3-7. Termination Verification for Numerical Programs

heap state and program variables.

3.5 Experiments

We have implemented the proposed termination and non-termination reasoning

into the automated verification system HIP/SLEEK and named the prototype

HIPTNT, which is available at

http://loris-7.ddns.comp.nus.edu.sg/∼project/hiptnt/.

The integration of the termination logic into an existing system allows us to

utilize the infrastructure that has been developed for some richer specification

logics, such as separation logic, beyond a simple first-order logic.

Consequently, we are able to specify and verify both termination and

non-termination properties, in addition to correctness properties for a much

wider class of programs, including heap-manipulating programs. In this

system, the final proof obligations are automatically discharged by

off-the-shelf provers, such as Z3 [52]. The expressivity of our new integrated

logic is shown in the following experimental results, in which the lexicographic

order is needed for about 25% of our experimental programs.

3.5.1 Numerical Programs

The verification system was evaluated using a benchmark of over 200 small

numerical programs selected from a variety of sources: (i) from the literature,
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such as [32, 43], (ii) from benchmarks used by other systems (that are

AProVE [65], Invel [146] and Pasta [58]) and (iii) some realistic programs,

such as the Microsoft Zune’s clock driver that has a leap-year non-termination

bug. Most of the methods in these benchmark programs contain either

terminating or non-terminating code fragments, expressed in (mutual) recursive

calls or (nested) loops. To construct these benchmarks we added the novel

termination specifications to the original examples from the analysis tools for

termination and non-termination. We have chosen these benchmarks in order to

show the usability and practicality of our approach. A comparison with these

tools at this time would be of less relevance as our proposal in this chapter

focuses on verifying the given specifications rather than infer them.

Fig. 3-7 summarizes the characteristics and the verification times for a

benchmark of numerical programs. Columns 3-5 describe the number of

preconditions that have been specified and successfully verified as terminating,

non-terminating or unknown, respectively. As hoped for, the number of

preconditions annotated by MayLoop occupies the smallest fragment (about

3%) of the total number of preconditions. Such MayLoop constraints were only

used in some unavoidable scenarios as discussed in Sec. 3.2. In contrast, the

Term constraints (with the given measures) are in the majority because most of

the methods are expected to be terminating, except for the Invel benchmark

which focuses on mostly non-terminating programs.

Our verification system can perform both correctness and termination

proofs. Column 7 (TC) gives the total timings (in seconds) needed to perform

both termination and correctness proofs for all the programs in each row, while

column 6 (PC) gives the timings needed for just correctness proofs. The

difference in the two timings represents the small overheads needed for
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Programs LOC Proc. Term Loop MayLoop PC(s) TC(s) Overhead (%)

AVL 390 13 18 0 0 13.89 14.66 5.25
Linked List (LL) 135 13 13 0 0 0.28 0.29 3.45

Sorted LL 480 13 15 0 0 1.33 1.38 3.62
Circular LL 80 4 4 4 0 1.04 1.18 11.86
Doubly LL 174 11 12 0 0 0.41 0.46 10.87
Complete 112 6 7 0 0 2.58 3.53 26.91
Heap Tree 214 5 6 0 0 14.82 15.12 1.98

BST 165 6 6 0 0 0.93 1.04 10.58
Perfect Tree 83 5 5 1 0 0.32 0.33 3.03

Red-Black Tree 556 19 25 0 0 6.22 6.40 2.81
BigNat 235 18 18 0 0 15.13 15.42 1.88

Totals/ 2624 114 129 5 0 56.95 59.81 4.78%
(%) (96.3%) (3.7%)

Figure 3-8. Termination Verification for Heap-manipulating Programs

termination and non-termination reasoning.

3.5.2 Heap-manipulating Programs

As illustrated in Fig. 3-8, we have also conducted termination reasoning on our

own benchmark of heap-based programs using various data structures with a

small overhead. The modular structure of the resource reasoning framework in

Sec. 3.3 facilitates the embedding of temporal constraints into a richer

specification mechanism based on separation logic, automatically extending it

to proving termination or non-termination properties over heap-manipulating

programs. The temporal entailment judgment in the [ENT−CONJ] rule can

leverage the power of the separation logic entailment engine to discharge the

temporal constraints in a heap-related entailment.

For example, consider the following entailment, which might be

encountered when verifying a method call with heap arguments (e.g., the

length method of linked lists),

ll(x, n) ∧ x6=null ∧ Term [n] ` x7→node( , y)∗ll(y, n1)∧Term [n1]

The entailment prover for separation logic can infer the constraint n1=n−1 (e.g.,

by the unfolding mechanism and explicit instantiation mechanism introduced
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in [116]) when checking the spatial part of the entailment, which is a necessary

condition to ensure the validity of the eventual temporal entailment judgment

x6=null ∧ n1=n−1 ∧ Term [n] `t Term [n1] I Term [0]

Due to the tight integration with the underlying logic, this task of

specifying and verifying the termination properties was easy even though some

of the programs use non-trivial data structures (e.g., Red-Black and

AVL-trees), or non-linear constraints (e.g., the BigNat program, which

implements infinite precision natural numbers (by linked lists) with procedures

for some arithmetic operations, in addition to a fast multiplication method

based on the Karatsuba algorithm).

We have successfully determined that none of the above methods have any

unknown termination behaviors. All the methods were terminating, except for

some methods in circular list and perfect tree. In the case of the latter, a

method to create a perfect tree would go into an infinite loop if a negative

number was given as its height. Furthermore, during the verification of

termination properties, we discovered a bug in our own merge method (for two

AVL trees) that went into a loop due to wrong parameter order. The partial

correctness proof did not detect this problem. It was later corrected into a

terminating method, a courtesy of our newly integrated feature.

In addition, the termination verification has also been done on some

medium programs taken from the SIR/Siemens test suite [55] and selective

problems from the Termination Competition [111] as shown in Fig. 3-9.

Beside heap data structures, some programs in this benchmark also use arrays

in their implementation (e.g., tcas and replace programs), thus requiring the

proposed logic to be integrated into a verification system with array arithmetic.
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Programs LOC Proc. Term Loop MayLoop PC(s) TC(s) Overhead (%)
TPDB Benchmark
Shuffle 20 2 2 0 0 0.23 0.26 11.54
LessLeavesRec 22 2 2 0 0 0.30 0.36 16.67
Alternate 23 2 2 0 0 0.37 0.39 5.13
SortCount 32 3 6 0 0 3.06 3.45 11.30
UnionFind 39 5 8 0 0 0.51 0.53 3.92
DivTernary 55 9 12 0 0 0.77 0.87 11.49
WorkingSignals 126 17 23 0 0 8.74 9.50 8.00
MinusUserDefined 21 2 10 0 0 0.30 0.36 16.67
MultiLasso 14 1 3 1 1 0.12 0.13 7.69
Totals/(%) 352 43 68 1 1 14.40 15.85 9.15%

(97.14%) (1.43%) (1.43%)
SIR/Siemens Benchmark
printtokens 726 18 41 0 0 15.92 19.51 18.40
printtokens2 570 19 36 0 0 52.14 53.70 2.91
replace 564 21 44 0 0 74.37 76.45 2.72
schedule 412 18 25 0 0 13.94 14.04 0.71
schedule2 374 16 27 0 0 8.44 8.94 5.59
tcas 173 9 9 0 0 12.55 13.21 5.00

Totals/(%) 3171 144 250 1 1 191.76 201.70 4.93%
(99.20%) (0.40%) (0.40%)

Figure 3-9. Termination Verification for the SIR/Siemens and TPDB Benchmark

Moreover, for the printtokens programs of the benchmark, some of their

methods required a precondition that the size of input files was finite for their

termination; otherwise they might not terminate as indicated by failures of the

termination verification. As can be seen, the termination of all programs in this

benchmark is also verified successfully with a small overhead (about 5%).

3.6 Discussion

There exists a rich body of related works on automatic analysis for

termination [28, 46, 102], non-termination [30, 70, 146], and both [65].

However, they consider termination and non-termination reasoning as distinct

from functional correctness reasoning. Therefore, these works cannot leverage

the result of functional correctness analysis to conduct more intricate

(non-)termination reasoning. Recently, Brockschmidt et al. [29] propose a

cooperation between safety and termination analysis to find sufficient

supporting invariants for the construction of termination arguments but not

considering non-termination. Chen et al. [35] introduce a similar approach for
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proving only non-termination. Our proposal complements these works since

our aim is to construct a logic where termination and non-termination

properties are directly integrated into specification logics, and thus utilize the

available infrastructure on functional correctness proofs. We have achieved

this, and have also successfully evaluated its applicability on a wide range of

programs, covering both numerical and heap-based programs.

Related to resource verification, [10] introduces a resource logic for a

low-level language. While this logic avoids the need of auxiliary counters, it

redefines the semantic model of the underlying logic to track the resource

consumption via logical assertions, making the proposal harder to retrofit to

other logics. Moreover, this logic only targets partial correctness, so that it does

not take into account infinite resource consumption.

There are some works that are based on the well-foundedness of inductive

definitions of heap predicates [21, 32] or user-defined quantitative functions

over data structures [68] to prove termination of heap-manipulating programs.

On one hand, they do not require any explicit ranking function. On the other

hand, these approaches might have problems with programs like the Karatsuba

multiplication method, in which the arguments of the recursive calls are not

substructures of the input lists. In addition, the automated tools, such as

AProVE and COSTA, cannot prove the termination of this method. In contrast,

our approach is more flexible as it allows explicit termination measures, that

are possibly non-linear, for proving programs’ termination. These termination

measures can be constructed from not only the heap structures but also the

values of the data structures’ elements. For example, we use the actual value of

the natural presented by a linked list to bound the execution of the Karatsuba

method. Moreover, we also allow non-termination to be specified and verified

47



for these programs. We believe that relatively complex examples, such as the

Karatsuba method, highlight the benefits of our approach, which trades a lower

level of automation but gains additional power.

The comparison of our approach with the other specification languages, i.e..

Dafny [106], JML [101], etc., has been discussed in Sec. 3.1. Another closely

related work to ours is that of Nakata and Uustalu [114]. In this work, a Hoare

logic for reasoning about non-termination of simple While programs (without

method calls) was introduced. The logic is based on a trace-based semantics,

in which the infiniteness of non-terminating traces is defined by coinduction.

However, induction is still needed to define the finiteness of traces. In contrast,

with resources, we can unify the semantics of the proposed termination and

non-termination temporal constraints and allow the Hoare logic for functional

correctness to be enhanced for termination and non-termination reasoning with

minor changes. Moreover, our logic allows interprocedural verification in a

modular fashion.
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Chapter 4

Termination and Non-Termination

Specification Inference

Techniques for proving termination and non-termination of imperative

programs are usually considered as orthogonal mechanisms. In this chapter, we

propose a novel mechanism that analyzes and proves both program termination

and non-termination at the same time. We first introduce the concept of

second-order termination constraints and accumulate a set of relational

assumptions on them via a Hoare-style verification. We then solve these

assumptions with case analysis to determine the (conditional) termination and

non-termination scenarios expressed in the specification logic form proposed in

Chapter 3. In contrast to current approaches, our technique can construct a

summary of terminating and non-terminating behaviors for each method. This

enables modularity and reuse for our termination and non-termination proving

processes. We have tested our tool on sample programs from a recent

termination competition, and compared favorably against two state-of-the-art

termination analyzer(s).
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4.1 Introduction

For the last ten years, we have seen a fruitful line of research on proving

termination [20, 21, 26, 28, 29, 43–49, 61, 71, 74, 92, 95, 102, 104, 126, 127, 129]

and non-termination [11, 30, 35, 70, 94, 123, 146] of imperative programs.

However, the problems of proving program termination and non-termination

are often considered separately, and not analysed simultaneously by the same

tool (as far as we are aware). When a termination prover cannot prove

termination, it might deploy its own non-termination analysis mechanism to

obtain feasible counterexamples. However, the current techniques for proving

non-termination are standalone techniques to existing termination proving

mechanisms.

To capture the termination and non-termination behaviors of each program,

we have proposed a specification logic with three temporal predicates TermM ,

Loop and MayLoop, which denote, respectively, the scenarios for definite

program termination (with a lexicographic ranking measure M made of a list

of positive integers), definite non-termination (with an unreachable

post-condition) and indefinite (unknown) non-termination. However, this

framework requires temporal specifications to be given by programmers.

We propose in this chapter a modular inference framework that can analyze

both the termination and non-termination of each method in a program. This

approach is novel in that it guides us to perform suitable case-splits on

pre-conditions that lead to definite non-termination or definite termination,

where possible. If a definite termination (or non-termination) case is not yet

attained, we may perform a further case-split or decide to finish with a

MayLoop classification to signify an unknown outcome. For each method, our

inference mechanism incrementally constructs a summary of its termination,
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non-termination or unknown behaviors, so that it can be reused in the inference

of the remaining methods higher-up in the calling hierarchy.

void foo (int x, int y)

requires Upr(x, y)

ensures Upo(x, y);

{ if (x < 0) return;

else foo(x + y, y); }

Figure 4-1. The foo example

To support termination and

non-termination inference, we introduce

unknown temporal pre- and post-predicates

in our specification logic to capture

termination or non-termination behaviors

(that are to be resolved by our inference).

For example, in Fig. 4-1, the unknown

pre-predicate Upr(x, y) in the precondition

of method foo denotes that the termination or non-termination status of foo is

currently unknown. While the pre-predicate Upr(x, y) in precondition of the

method guides the overall inference process with suitable case-splits, the

post-predicate Upo(x, y) in its postcondition is meant to capture the reachability

or unreachability of the method’s exits. This post-predicate will be

strengthened to false in scenarios where foo is definitely non-terminating.

This post-predicate can also be used to trivially determine base-case scenarios

with immediate termination property. This combined use of unknown pre- and

post-predicates is somewhat novel, since it allows us to modularly analyze each

method (with the help of case-splits where needed) to obtain a comprehensive

summary of the method’s termination and non-termination characteristics.

4.2 Overview of Our Approach

Specification Language. In the previous chapter, we proposed three

temporal predicates, Term M , Loop and MayLoop, to help reason about

program termination and non-termination. For the current evaluation, we adopt
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these predicates as well as a rich underlying specification proposed by [133]

that is able to express both heap properties with separation logic (κ in Fig. 4-2)

and pure (non-heap) properties with Presburger arithmetic (π in Fig. 4-2). This

logic uses a fragment of separation logic with the separation conjunction ∗ to

denote the disjointness of heap parts and the heap predicate hpred (Fig. 4-2) to

specify various data structures. Moreover, to simplify the presentation, we

express a specification as a pair of pre- and post-condition (see spec in Fig.

4-2). In our example programs, specifications will be written using the usual

requires...ensures... form for better readability. Specifically for termination

reasoning, we have designed the termination measure M as a (finite) list of

arithmetic expressions [e] whose order is based on the lexicographic ordering

<l (recall Defn. 5) and e:es denotes a non-empty list with e and es as its head

and tail, respectively.

[]<l e:

(e1 < e2) ∨ (e1 = e2 ∧ es1<l es2)

e1:es1<l e2:es2

To facilitate termination and non-termination inference, we allow the use of

unknown temporal pre-predicate Upr(v) and post-predicate Upo(v) in the

specification language to indicate the unknown termination status of a

program. The solutions of these unknown predicates would be then derived by

the inference mechanism, as shown next. Note that the inferred result for each

unknown pre-predicate Upr(v) will be of the form
∨

(π ∧ θ) with θ ranging over

{Term [e], Loop, MayLoop}; while the inferred result for each unknown

post-predicate Upo(v) will be in a guarded conjunction
∧

(π⇒ post) with post

being true or false. Such a guarded form is equivalent to a disjunctive form∨
(π ∧ post) when the set of guards are complete.
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hpred ::= c(v) ≡
∨

(∃u · ρ)
spec ::= (ΨPre,ΦPost)
ΨPre ::=

∨
(∃u·(ρ∧θ))

ΦPost ::=
∨

(∃u·(ρ∧Upo(v)))

θ ::= Term [e] | Loop |
MayLoop | Upr(v)

ρ::= κ ∧ π
κ::= emp | v 7→d(u) | c(v) |κ1∗κ2
π ::= b | a |π1∧π2 | ¬π | ∃v·π
b::= false | v | b1=b2
a::= e1=e2 | e1<e2 | v=null

e::= k | v | k×e | e1+e2 | −e
where emp denotes an empty heap; v 7→d(u) specifies a heap node

of data type d; k is a constant; u, v are variables

Figure 4-2. A Specification Language with Unknown Predicates for Inference

Illustrating Example. We now demonstrate how our inference mechanism

derives the preconditions for termination and non-termination of method foo

in Fig. 4-1. Initially, the termination and non-termination behaviors of method

foo are captured by a pair of unknown pre-predicate Upr(x, y) and unknown

post-predicate Upo(x, y). Like the other known temporal predicates for

termination and non-termination reasoning, these unknown predicates are part

of the specification logic’s formulas and can therefore be reasoned in the same

way via a Hoare-style verification. With the help of an enhanced entailment

procedure, we shall prove that the precondition of each method call is always

satisfied and the postcondition always holds at the end of the method body.

For example, the verification conditions (VCs) encountered by Hoare-style

forward verification of method foo are:

(c1) x<0 ∧ Upr(x, y) ` Upo(x, y)

(c2) x≥0 ∧ x′=x+y ∧ y′=y ∧ Upr(x, y) ` Upr(x′, y′)

(c3) x≥0 ∧ x′=x+y ∧ y′=y ∧ Upr(x, y) ∧ Upo(x′, y′) ` Upo(x, y),

The first VC (c1) is obtained from the base-case scenario when the

post-condition of the foo method is being proven. The second VC (c2)

captures the proving of precondition for the recursive call, while the last VC
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(c3) captures the entailment proving of the postcondition of method foo in the

recursive branch. These VCs capture the unknown termination behaviors of

both the caller (i.e. denoted by the pair of predicates Upr(x, y) and Upo(x, y))

and the callee (i.e. denoted by Upr(x
′, y′) and Upo(x

′, y′)).

For these unknown predicates, we attempt to derive the strongest possible

post-predicate, where possible. As we intend to capture the unreachability of

each post-predicate, the strongest post-predicate in our analysis is actually

false. If our inference for falsity of post-predicates fails, we denote its

possible reachability by true instead and then attempt to infer the weakest

pre-predicate, where possible. The temporal pre-predicates are ordered by the

following implication hierarchy MayLoop⇒r Loop and MayLoop⇒r Term [e].

Amongst them, MayLoop is considered as the strongest one, which is analogous

to false in the domain of logical specification. The intuition is that MayLoop

can be used to denote the termination property of any program though such a

use would form a rather poor specification, similar to how false could be

naively (and redundantly) used as the precondition for any program. On the

other hand, the Loop and Term [e] predicates are incomparable since they

denote disjoint classes of programs (i.e. definitely non-terminating vs.

definitely terminating programs, respectively). Our inference thus attempts to

discover the weaker Loop and Term [e] for its unknown pre-predicate, where

possible.

From the earlier VCs, we infer three relational assumptions where

unknown pre-predicate Upr(x
′, y′) is related inductively to an earlier

pre-predicate Upr(x, y) (see (a02)), while unknown post-predicate Upo(x, y) is

either expressed in base-case form (see (a01)) or related inductively to an earlier

occurrence of the post-predicate Upo(x
′, y′) (see (a03)).
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(a01) x<0∧true⇒ Upo(x, y)

(a02) x≥0 ∧ x′=x+y ∧ y′=y∧Upr(x, y)⇒ Upr(x
′, y′)

(a03) x≥0 ∧ x′=x+y ∧ y′=y∧Upo(x′, y′)⇒ Upo(x, y),

We derive inductive definitions for these unknown predicates, in order to

give the best possible interpretations to their temporal predicates. In the case

of post-predicate, we attempt to determine its reachability or unreachability, so

that we can immediately decide on either (base-case scenario for) termination

or (inductive-case scenario for) definite non-termination. From the relational

assumption (a01), we can immediately infer a base-case scenario x<0 where the

foo method would terminate. The other two relational assumptions occur under

a different scenario x≥0 which neither indicates definite termination nor definite

non-termination. From these partial instantiations on the two unknown temporal

predicates, we refine them to the following definitions:

Upr(x, y) ≡ x<0 ∧ Term ∨ x≥0 ∧ U1pr(x, y)

Upo(x, y) ≡ (x<0⇒ true) ∧ (x≥0⇒ U1po(x, y))

where two auxiliary unknown predicates are introduced for the input scenario

x≥0. Note that Term, short for Term [ ], is used to denote base-case termination

scenario where its lexicographic ranking measure is trivially empty. Our

unknown pre-predicate is being expressed as a disjunction on either known or

unknown temporal resource constraints, while the post-predicate is being

expressed as a guarded conjunction of either reachability (true), unreachability

(false) or unknown. That is the two predicates are currently known for the

input scenario x<0 but unknown for the scenario x≥0. This can also be
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expressed as a case structured specification:

case{ x < 0 → requires Term ensures true;

x ≥ 0 → requires U1pr(x, y) ensures U1po(x, y); }

As the precondition is now partially known, we could refine each (a0i )

through a substitution with the partial definition of Upr(x, y) and Upo(x, y) to get

the new relational assumptions (trivially valid assumptions are omitted here):

(a02a) x≥0 ∧ x′=x+y ∧ y′=y ∧ x′<0∧U1pr(x, y)⇒ Term

(a02b) x≥0 ∧ x′=x+y ∧ y′=y ∧ x′≥0∧U1pr(x, y)⇒ U1pr(x
′, y′)

(a03a) x≥0 ∧ x′=x+y ∧ y′=y∧(x′≥0⇒Upo(x
′, y′))⇒ (x≥0⇒Upo(x, y)).

The relational assumption (a02a) describes the reachability of the base-case

condition (i.e. x′<0), denoted by Term, under the input scenario x≥0. As this

base-case condition is feasible in the current context, we have a possibly

terminating scenario that signifies a termination proof which tries to synthesize

a ranking function but this proof fails. We then try a non-termination proof by

examining the relational assumption (a03a) on unknown post-predicate to

determine a pre-condition for unreachability. Such condition would ensure that

the base case is not reached in the next recursion, i.e. x′≥0, and we refer to this

as potential non-termination pre-condition. The condition x+y≥0 would be a

trivial potential non-termination pre-condition for the relational assumption

(a03a) (as x′=x+y). However, our inference engine would attempt to discover

more precise conditions for definite non-termination with the help of abductive

inference [124] and in this case it suggests y≥0. With this, a case-split with the

condition y≥0 and its negation y<0 is used to refine the definitions for
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U1pr(x, y) and U1po(x, y) into

U1pr(x, y) ≡ y≥0 ∧ U2pr(x, y) ∨ y<0 ∧ U3pr(x, y)

U1po(x, y) ≡ (y≥0⇒ U2po(x, y)) ∧ (y<0⇒ U3po(x, y))

and consequently the following six specialized assumptions are derived from

the earlier ones (a02a), (a02b) and (a03).

(a11) x≥0∧x′=x+y∧y′=y∧x′<0∧y≥0∧U2pr(x, y)⇒ Term

(a12) x≥0∧x′=x+y∧y′=y∧x′≥0∧y≥0∧U2pr(x, y)⇒ U2pr(x
′, y′)

(a13) x≥0∧x′=x+y∧y′=y∧(x′≥0∧y′≥0⇒U2po(x
′, y′))⇒ (x≥0∧y≥0⇒U2po(x, y)),

(a14) x≥0∧x′=x+y∧y′=y∧x′<0∧y<0∧U3pr(x, y)⇒ Term

(a15) x≥0∧x′=x+y∧y′=y∧x′≥0∧y<0∧U3pr(x, y)⇒ U3pr(x
′, y′)

(a16) x≥0∧x′=x+y∧y′=y∧(x′≥0∧y′<0⇒U3po(x
′, y′))⇒ (x≥0∧y<0⇒U3po(x, y))

The first three relational assumptions, (a11) − (a13), form a group which will

be analyzed together for the given input scenario x≥0∧y≥0. The next three

relational assumptions, (a14) − (a16), form another group that will be analyzed

together for the input scenario x≥0∧y<0.

The first group of relational assumptions, (a11) − (a13), allows us to confirm

a definite non-termination scenario, since we can use (a13) to determine the

unreachability of its post-predicate U2po(x, y). By using the hypothesis

U2po(x, y)≡false for both occurrences of the post-predicate U2po(x, y) in (a13),

we can inductively determine the falsity (or unreachability) of U2po(x, y). This

hypothesis declares that post-predicate is unreachable (false) under the

pre-condition x≥0∧y≥0. Note our use of inductive reasoning here which

assumes the hypothesis that U2po(x, y) is unreachable under pre-condition

x≥0∧y≥0 (by the recursive call), in order to prove the same hypothesis.
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The second group of relational assumptions, (a14) − (a16), suggests us to

prove the method’s termination under the precondition x≥0∧y<0 first, since

its base case (captured by (a14)) is possibly reachable under this condition. This

termination scenario is confirmed, once we have derived a lexicographic

ranking measure [x] that is bounded and would moreover decrease with each

recursive invocation for the pre-predicate U3pr(x, y) using (a15).

As a summary of our combined analyses, we have effectively derived the

following definitions for the two unknown predicates:

Upr(x, y) ≡ x<0∧Term ∨ x≥0∧y<0∧Term[x] ∨ x≥0∧y≥0∧Loop

Upo(x, y) ≡ (x<0⇒ true) ∧ (x≥0∧y<0⇒ true) ∧ (x≥0∧y≥0⇒ false)

Note how the unknown temporal predicates U2pr(x, y) and U2po(x, y) are being

resolved to be Loop and an unreachable false for input scenario y≥0,

respectively. In contrast, the unknown predicates U3pr(x, y) and U3po(x, y) are

being resolved to be Term [x] and a reachable true state for input scenario

y<0, respectively.

Using the inferred predicate definitions, we can construct the following

case-based specification which fully captures termination and non-termination

behaviors for method foo.

case {

x < 0→ requires Term ensures true;

x ≥ 0→ case {

y < 0→ requires Term [x] ensures true;

y ≥ 0→ requires Loop ensures false; }}
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int Ack (int m, int n)
requires true

ensures res ≥ n+1;
{ if (m == 0) return n + 1;
else if (n == 0) return Ack(m− 1, 1);
else

return Ack(m− 1,Ack(m, n− 1)); }

int Mc91 (int n)
requires true

ensures res ≥ 91;
{ if (n > 100) return n− 10;
else

return Mc91(Mc91(n + 11)); }

(a) (b)

Figure 4-3. Functions with Nested Recursion: Ackermann function (a) and McCarthy
91 function (b)

4.2.1 Other Examples

Our termination and non-termination inference is completely automated. By

allowing unknown temporal predicates into functional correctness

specifications, our inference mechanism can freely leverage on prior

infrastructures to (i) handle a wider class of programs, and to (ii) improve the

accuracy of the inference results. Note that prior specifications for the analyzed

methods might be manually given or be automatically derived by other

inference mechanisms, but they are orthogonal to our current proposal.

We list below some interesting examples to demonstrate how our inference

mechanism works with programs that already have some safety specifications.

Nested Recursion. Some knowledge about the output of methods with

nested recursion, such as the Ackermann function and the McCarthy 91

function in Fig. 4-3, is crucial for the inference of their termination and

non-termination properties. Without any specification, our inference

mechanism returns incomplete summaries on the terminating and

non-terminating behaviors of these two functions. The result for the
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Ackermann function is summarized as:

case {

m=0 → requires Term ensures true;

m<0 ∨ n<0 → requires Loop ensures false;

m>0 ∧ n≥0 → requires MayLoop ensures true; }

While the inference shows that this function is terminating when m=0 (base

case) or non-terminating when m<0 ∨ n<0, it cannot prove the termination of

the function under the input scenario m>0∧n≥0 since the value of the second

argument in the last recursive call is unknown (or unbounded). However, with

the stronger specification given in Fig. 4-3(a), with an upper bound res ≥ n+1

on the function’s returned value, denoted by res, our inference mechanism can

replace MayLoop in scenario m>0∧n≥0 by Term [m, n] where [m, n] is a valid

lexicographic ranking function. Similarly, without specification, the inference

only shows that the McCarthy 91 function terminates in it base case when

n>100. However, with the specification given in Fig. 4-3(b), our inference can

prove that the function terminates for all inputs.

While our termination inference mechanism does not directly infer

bounded postconditions, it can be (and has been) made to work with other

automated postcondition inference sub-systems, such as [69, 130]. Such

postcondition inference sub-systems are orthogonal to our proposal, and can be

leveraged to provide a more comprehensive solution for fully automated

termination and non-termination inference.

Heap-Manipulating Programs. Our inference mechanism can be also

integrated into existing verification frameworks (such as [38], or even shape

inference system [97]) that reason about safety properties of heap programs via
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data node { node next; }
pred lseg(root, q, n) ≡ root=q∧n=0

∨ root7→node(p) ∗ lseg(p, q, n−1)

pred cll(root, n) ≡
root7→node(p)∗lseg(p, root, n−1)

void append (node x, node y)
requires lseg(x, null, n)∧x6=null

ensures lseg(x, y, n);
requires cll(x, n) ensures true;
{ if (x.next == null) x.next = y;
else append(x.next, y); }

Figure 4-4. Specification with Implementation for append method of two linked lists

separation logic [133]. This extension could help prove the termination and

non-termination of heap-manipulating programs.

For example, Fig. 4-4 shows the specification and implementation (for the

verification) of the method append that concatenates two linked lists x and y.

With the separation conjunction ∗ and the points-to operator 7→ of separation

logic, the heap predicate lseg(root, q, n) represents a list segment from root

to q with n elements. This predicate can then be used in the declarations of other

predicates, such as cll(root, n) for circular lists. Using these predicates, we

can capture two safety specifications of append in Fig. 4-4.

In the first scenario when the input x is a null-terminating list with size n,

our inference mechanism is able to show that the method append always

terminates with the ranking function [n]. In the second scenario where x is a

circular linked list, our inference can show that append is definitely

non-terminating, after confirming (by induction) that its postcondition can be

strengthened to false. These examples highlight the modular nature of our

non-termination and termination inference mechanism, which can be built on

top of other inference mechanisms.
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4.3 From Verification to Inference

So far we have illustrated a unified specification logic with three known

temporal predicates: Term [e], Loop and MayLoop. Semantically, these

predicates can be defined using resource capacities (on lower and upper

bounds) of execution length, i.e. Term [e] =df RC〈0, f([e])〉,

Loop =df RC〈∞,∞〉, and MayLoop =df RC〈0,∞〉. The resource predicate

RC〈L,U〉 specifies a resource capacity with a lower bound L and an upper

bound U . It is satisfied by each program state whose resource capacity (l, u) is

subsumed by (L,U), i.e. l≥L and u≤U . Note that the function f([e]) obtains a

finite bound through an order-embedding of [e] into naturals.

Verification conditions involving these temporal predicates can be

discharged by a resource consumption entailment `t, that is used to account for

(lower and upper bound) resources that are utilized by each code fragment.

Such entailment can be used to analyze termination or non-termination

property for some given method via resource reasoning. Given the temporal

constraint θa associated with the current program state ρ and the temporal

resource constraint θc (of some code fragment that must be executed), the

entailment ρ ∧ θa `t θc I θr firstly checks whether the execution resource

required by constraint θc can be met by the execution resource of constraint θa

or not. In the former case, the entailment will return the remaining execution

resource that is denoted by residue θr.

In terms of the actual execution capacity, this consumption entailment can

be formalized by the following rule:

ρ⇒ Uc≤Ua Lr = La−lLc Ur = Ua−uUc ρ⇒ Lr≤Ur

ρ ∧ RC〈La, Ua〉 `t RC〈Lc, Uc〉 I RC〈Lr, Ur〉

where two subtraction operators are designed to cater to an integer domain
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extended with the∞ value (i.e. N∞):

L1 −l L2 ≡ min{r ∈ N∞ | r + L2 ≥ L1}

U1 −u U2 ≡ max{r ∈ N∞ | r + U2 ≤ U1}, if U1≥U2

These two operators are essentially integer subtraction operators, except that

their results are never negative and such that ∞−l∞ = 0 and ∞−u∞ =∞.

They are formulated in this way to give the best (or largest) possible lower and

upper bound values to denote the execution capacity of residue. In addition, the

subtraction Ua −u Uc requires a check for upper bound execution capacity,

namely ρ⇒ Uc≤Ua. This check is important to ensure that resource

consumption is within the specified upper bound, and will also ensure that the

residue is a valid resource capacity.

The resource implication operator⇒r on execution capacity, which is used

earlier in the implication hierarchy of known temporal predicates, can be

defined based on the following subsumption relation, in which the lower and

upper bound exhibit dual (opposite) properties.

L1≤L2 U2≤U1

RC〈L1, U1〉 ⇒r RC〈L2, U2〉

From this definition, MayLoop is the strongest pre-predicate in the

subsumption hierarchy since it has the maximum execution capacity (0,∞) to

be able to subsume either Loop (with execution capacity (∞,∞)) or Term [e]

(with execution capacity (0, f([e]))) predicates. Note that the implication

operator ⇒r is only weakly related to the resource consumption entailment

operator, `t, as follows:

(θa ⇒r θc)⇒ ∃θr · θa `t θc I θr

For termination and non-termination inference, we have introduced

unknown predicates Upr(v) for precondition and Upo(v) for postcondition for
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each method, with Upr(v) denoting some execution capacity, and Upo(v)

specifying reachability of a method with a set of formal parameters v. To

support its inference, we will have to extend the resource entailment procedure

to handle entailments between known and unknown temporal constraints.

The most general form of temporal entailment is ρ ∧
∧
i U

i
po(vi) ∧ θa `t

θc I (θr,R), where each Uipo(vi) is an unknown post-predicate accumulated

into the program state after a recursive method call. The temporal constraint θa

in the antecedent of the entailment might be an unknown pre-predicate Upr(v)

or a known temporal predicate. The temporal constraint θc can be either an

unknown post-predicate Upo(v) or a known predicate. The residue constraint θr

denotes the residual capacity after entailment. Each relational assumptionR for

the unknown temporal predicates is a pre-requisite to ensure the validity of the

entailment when either θa or θc is unknown. It is defined as below.

Definition 7 The temporal relational assumptionR in the residue of a temporal

entailment ρ ∧
∧
i U
i
po(vi) ∧ θa `t θc I (θr,R) can be defined as follows:

(i) R ≡ true, if both θa and θc are known predicates from

{Term [e], Loop, MayLoop}.

(ii) R ≡ ρ∧
∧
iU
i
po(vi)⇒ θc, if θc is an unknown post-predicate.

(iii) R ≡ ρ∧θa⇒ θc, otherwise.

This temporal entailment can be integrated into an entailment system with

frame Ψ ` Φ ; Ψr, to obtain a new entailment procedure of the form Ψ `

Φ ; (Ψr,S), that also captures in its residue the set of relational assumptions

S generated by the temporal sub-entailments. The rules to discharge entailments
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of logic formulas with disjunctions are:

[ENT−DISJ−LHS]

Ψ =
∨
i ∃vi · (ρi∧

∧
jθ
j
i ) ∀i · (ρi∧

∧
jθ
j
i ) ` Φ; (Ψi

r,Si)

Ψ ` Φ; (
∨
i ∃vi ·Ψi

r,
⋃
i Si)

[ENT−CONJ]

ρa ` ρc; ρr ρr ∧
∧
i U
i
po(vi) ∧ θa `t θc I (θr,R)

ρa∧
∧
i U
i
po(vi)∧θa ` ρc∧θc; (ρr∧

∧
i U
i
po(vi)∧θr, {R})

4.4 Generation of Temporal Relational

Assumptions

In this section, we show how our new entailment procedure is incorporated into

Hoare logic to generate a set of relation assumptions over the unknown temporal

constraints.

To support inference, Hoare judgment is formalized in the form

` {ΨPre} e {ΦPost,S}, where S is a generated set of temporal assumptions.

For illustration, we show the new rule for method call:

[FV−CALL]

t0 mn(t v) (ΨPre,ΦPost) {e}∈Prog

Ψ ` ΨPre; (Φ,S1) Ψr = Φ ∗ ΦPost S2 = filter(S1)

` {Ψ} mn(v) {Ψr,S2}

To facilitate the termination inference, at method calls, we collect only

nontrivial assumptions of unknown temporal constraints. We list below trivial
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relational assumptions, which will be removed by the function filter as

shown in the rule [FV−CALL].

Firstly, the relational assumption ρ∧θa⇒ θc is trivial for any θa and θc if the

context ρ is unsatisfiable. Secondly, the assumptions ρ∧Loop⇒ θc and

ρ∧MayLoop⇒ θc are trivially valid for any program state ρ because the

constraints Loop and MayLoop can accept any temporal constraints in the RHS.

Finally, ρ∧θa⇒ TermM is trivial if the callee n, whose termination is denoted

by the temporal constraint Term M , and the caller m are not in the same

strongly (mutually) connected component (scc for short) of the program’s call

graph.

Note that assumptions of the form ρ∧U1pr(v1)⇒ U2pr(v2) are not trivial for

any caller m and callee n. However, when m and n are in two different scc

groups, this kind of assumptions can be avoided if we do a bottom-up

verification and inference in which the (non-)termination of the callee n is

inferred and the unknown U2pr(v2) is instantiated before the caller m is

processed. This mechanism allows us to aggressively resolve trivial

assumptions.

For each method declaration, we collect a set of relational assumptions S

during the verification of its body, and another set of relational assumptions T

at the method’s exit points via the entailment for proving the post-condition, as

shown in the rule below:

[FV−METH]

` {ΨPre} e {Ψ,S} Ψ ` ΦPost; (Ψr, T )

t0 mn(t v) (ΨPre,ΦPost) {e} {S, T }

The termination and non-termination inference engine is invoked when a
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1: procedure solve(M)
//M = {ti mni(t v) (Uipr, U

i
po) {e} {Si, Ti} | 1≤i≤n}

2: Θ← {Uipr ≡ Uipr, U
i
po ≡ Uipo | 1≤i≤n}

// Initial defns for unknown pre/post predicates
3: for each mni inM do
4: β ← syn base(Si, Ti)
5: Θ← refine base(Θ, Uipr, U

i
po, β)

6: S ←
⋃
Si; T ←

⋃
Ti; iter← 0

7: S ← spec relass(S,Θ); T ← spec relass(T ,Θ)
8: G ← reach graph(S)

// Reachability graph for unknown pre-predicates
9: for each scc in G do

10: (r,Θ)← TNT analysis(G, scc, T ,Θ)
11: if ¬r ∧ iter < MAX ITER then iter++; goto 7
12: if iter ≥ MAX ITER then break
13: T ← spec relass(T ,Θ)
14: G ← graph update(G,Θ)

15: return finalize(Θ)

Figure 4-5. Overall Inference Algorithm

whole group of mutually recursive methods are verified and their sets of

relational assumptions are collected, as shown in the rule [FV−INF] below.

[FV−INF]

Mscc = {t0i mni(ti vi) (Uipr(vi), U
i
po(vi)) {e} {Si, Ti} | 1≤i≤n}

Mscc solve(Mscc)

The solve procedure infers definitions for unknown temporal predicates and

will be depicted in detail next.

4.5 A Mechanism for Termination and

Non-Termination Inference

This section is devoted to the solve procedure used to infer the definitions for

the unknown pre/post-predicates, based on the set of relational assumptions
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generated by Hoare-style verification. The overall algorithm is shown in Fig.

4-5.

In this algorithm, Θ is used to store the set of definitions inferred thus far

for the unknown temporal predicates. Since a key idea of our inference

mechanism is case analysis that incrementally separates the terminating and

non-terminating behaviors of the analyzed methods, the definition for each

unknown predicate might be split into multiple scenarios, for which

termination is either known or unknown.

Definition 8 (Unknown Temporal Predicates) During the inference process,

the definitions for a pair of unknown pre-predicate Upr(v) and post-predicate

Upo(v) are of the form Upr(v) ≡
∨
i(πi ∧ θipr) and Upo(v) ≡

∧
i(πi ⇒ θipo) where

each θipr is either a known or unknown pre-predicate and θipo is either true,

false or an unknown post-predicate. The set of guards {π1, . . . , πn} must be

(1) feasible, i.e. ∀i · SAT(πi), (2) exclusive, i.e. ∀i, j·i 6=j ⇒ UNSAT(πi∧πj),

and (3) exhaustive, i.e. π1∨π2∨. . .∨πn ≡ true.

The initial form of each unknown predicate is the predicate itself with guard

condition true, e.g. Upr(v) ≡ true∧Upr(v). At the end of the analysis, all θipr

and θipo become known.

The inference deals with two groups of temporal relational assumptions

collected by rule [TNT−METH], namely

1. Pre-assumptions S collected when proving preconditions at method calls.

They can be used to infer (i) ranking functions for termination proving,

and (ii) temporal reachability graph that guides our search for proving

termination vs. non-termination.

2. Post-assumptions T collected when proving postconditions contain
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information about unknown post-predicates. They can be used to infer (i)

termination base cases, (ii) inductive unreachability to prove

non-termination or (iii) new conditions for the case analysis.

The algorithm in Fig. 4-5 first derives the base case of each analyzed method

(line 4), and then refines the definitions of unknown temporal predicates in Θ

with these newly inferred cases (line 5). After updating the set of relational

assumptions (line 7), our algorithm (re-)builds the temporal reachability graph

G from the latest S (line 8).

For each scc of the graph G in the bottom-up topological order, the analysis

attempts to prove either termination or non-termination or to infer new cases for

case-splitting and then updates the set Θ with the inferred result (line 10). If

every unknown temporal predicate corresponding to the current scc is resolved

into known predicates, the inference continues with the next sccs after updating

the post-assumptions in T (line 13) and the graph G (line 14) with the new

inferred known predicates. Otherwise, it restarts the core algorithm (line 11)

with the updated Θ, whose elements have been refined into new sub-cases.

The algorithm halts when every unknown predicate has been resolved or the

number of iterations reaches the maximum MAX ITER pre-set by users. In the

latter case, the remaining unknown predicates in Θ will be marked as MayLoop

by an auxiliary procedure finalize. Next we will explain each inference step

in some detail.

4.5.1 Inferring Base Case Termination

Identifying the conditions for base-case termination is an important first step

before any other analyses. Formally:
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Definition 9 (Base Case Pre-Condition) Each base case termination

precondition of a method must satisfy the following three conditions:

(i) Its method’s exit is reachable.

(ii) No mutually recursive method call is met in executions starting from this

pre-condition.

(iii) All other method calls encountered from this pre-condition must have been

proven to terminate.

While a syntactic-based approach that identifies base-case termination from

its control-flow may be sufficient, we propose a semantics-based approach

which infers a method’s base case precondition from the two sets of

assumptions S and T collected from the method, as follows:

ρ =
∨
{(ρi/{v}) | ρi∧Upr(v)⇒ θic ∈ S}

% =
∨
{(βj/{v}) | βj∧true⇒ Upo(v) ∈ T }

syn base(S, T ) = % ∧ ¬ρ

where ρ/{v} ≡ ∃(FV(ρ)−{v}) · ρ. Using our running example, we have

S = {a02} and T = {a01, a03}:

(a01) x<0∧true⇒ Upo(x, y)

(a02) x≥0 ∧ x′=x+y ∧ y′=y∧Upr(x, y)⇒ Upr(x
′, y′)

(a03) x≥0 ∧ x′=x+y ∧ y′=y ∧ true∧Upo(x′, y′)⇒ Upo(x, y),

Each post-assumption βj∧true⇒ Upo(v) ∈ T , whose antecedent does not

contain any unknown post-predicate, capture a potential base-case termination

condition. Due to over-approximation, the actual base-case condition (over the
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method’s parameters v) must be formed by such conditions (
∨
βj), conjoined

with the negation of contexts (¬ρ) for the recursive calls. By identifying the

base-case condition in {a01} and conditions for recursive pre-assumption in {a02},

we can precisely infer syn base(S, T ) = x<0∧¬(x≥0).

With the inferred base case β = syn base(S, T ) (line 4), we can now

invoke the procedure refine base (line 5) to refine (or specialize) the

unknown predicates Upr(v) and Upo(v), before updating their definitions in Θ

(via the operator ⊕) as shown below.

∨
µi ≡ ¬β

∆pr = (Upr(v) ≡
∨

(µi ∧ Uipr(v)) ∨ (β ∧ Term))

∆po = (Upo(v) ≡
∧

(µi ⇒ Uipo(v)))

Ω =
⋃
{Uipr(v) ≡ Uipr(v), Uipo(v) ≡ Uipo(v)}

refine base(Θ, Upr(v), Upo(v), β) = Θ⊕ ({∆pr,∆po} ∪ Ω)

Since the method’s termination status in the remaining condition µ = ¬β is

unknown. In the new definitions of Upr(v) and Upo(v), each pair of fresh

predicates Uipr(v) and Uipo(v) is associated with a disjunct µi in the disjunctive

normal form of µ. For our running example, this refinement leads to:

Upr(x, y) ≡ x<0 ∧ Term ∨ x≥0 ∧ U1pr(x, y)

Upo(x, y) ≡ x<0⇒ true ∧ x≥0⇒ U1po(x, y)

After the unknown predicates have been updated with base-case termination

conditions, we transform the sets of relation assumptions by using the procedure

spec relass (line 7) described next.
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4.5.2 Specializing Relational Assumptions

Whenever some unknown predicates in Θ receive new definitions, our

inference algorithm will update its sets of relational assumptions with the

procedure spec relass. Its first parameter is a set of relational assumptions.

Its second parameter Θ contains the definitions of unknown predicates.

For each relational assumption with unknown predicates, the procedure

spec relass finds the current definitions of these unknown predicates in Θ

and substitutes them directly into the assumption. As the definition of each

unknown predicate consists of exclusive and complete guards, we can further

split each substituted assumptions into multiple specialized assumptions. We

show below just one example where spec relass is called with a new

pre-assumption with two unknown predicates.

U1pr(v1)≡
∨n
i=1(ρ1i∧θ1ipr)∈Θ U2pr(v2)≡

∨m
j=1(ρ2j∧θ

2j
pr)∈Θ

C = {ρ∧ρ1i∧ρ2j∧θ1ipr⇒ θ2jpr | 1≤i≤n, 1≤j≤m}

spec relass({ρ∧U1pr(v1)⇒ U2pr(v2)} ∪ S,Θ) =

C ∪ spec relass(S,Θ)

For our running example, the relational assumption (a02) was specialized by

its earlier partial definition into two more specialized assumptions: (a02a) and

(a02b).

4.5.3 Resolving Temporal Reachability Graph

The core of our inference algorithm (in Fig. 4-5) incrementally resolves the

unknown predicates present in the (specialized) relational pre-assumptions. If

its attempt fails, it would also derive conditions for the next case analysis. This

core algorithm uses a reachability graph G, constructed from pre-predicates in
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S, to guide its proof search. Formally:

Definition 10 (Temporal Reachability Graph) Given a set of

pre-assumptions S , a temporal reachability graph G = (V,E) is constructed

from a set of vertices V and a set of labeled edges E, as follows. For each

pre-assumption ρ∧θa⇒ θc ∈ S, we add two vertices θa and θc into V and an

edge (θa, ρ, θc) from θa to θc labeled by ρ into E.

U1pr Term

ρ(a02b)

ρ(a02a)

G1

U2pr U3pr Term

ρ(a15)

ρ(a14)

ρ(a12)

G2

For example, the two graphs G1 and G2 are built for the inference of the

running example. G1 is constructed from pre-assumptions (a02a) and (a02b)

obtained after base case inference. The edges of G1 are labeled by ρ(a02a) and

ρ(a02b), the contexts in (a02a) and (a02b) resp., e.g.

ρ(a02b) ≡ (x≥0∧x′=x+y∧y′=y∧x′≥0). The self-loop edge on node U1pr

denotes the case when the latest values of program variables (i.e. x′≥0), are

still in the same loop condition as their initial values (x≥0). The edge from U1pr

to Term indicates the base case is reached when x′<0. Similarly, the graph G2

is constructed from pre-assumptions (a14), (a15) and (a12) after a new case split

y≥0 and y<0 has been inferred.

Our core algorithm firstly partitions G into strongly connected components

(scc), (e.g. dashed boxes in G1 and G2), whereby each unknown temporal

predicate denotes an unknown behavior. Moreover, this unknown predicate is

mutually dependent on the other predicates in the same scc. Using a bottom-up

approach, the inference mechanism processes each scc in a topologically sorted
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16: procedure TNT analysis(G, scc, T ,Θ)
17: r ← true

18: O ← scc succ(scc,G)
19: if O = {} then
20: if scc has one node Upr without cyclic edge then
21: Upo ← the post-pred corresponding to Upr
22: Θ← Θ⊕ {Upr ≡ Term, Upo ≡ true})
23: else (r,Θ)← prove NonTerm(scc, T ,Θ)

24: else if ∀θ ∈ O · θ ≡ Term [e] then
25: (r,Θ)← prove Term(G, scc,Θ)
26: if ¬r then (r,Θ)← prove NonTerm(scc, T ,Θ)

27: else (r,Θ)← prove NonTerm(scc, T ,Θ)

28: return (r,Θ)

Figure 4-6. Core TNT Inference Algorithm

order. With this approach, termination and non-termination proofs for

phase-change programs [43] and that for mutual recursion are easily supported.

Definition 11 (scc’s successors) Given a graph G, the outside successors of a

scc in G is the set of all successors of any vertex in this scc but excluding the scc

itself,

scc succ(scc,G) =
⋃
{succ(v,G) | v ∈ scc} \ scc

where succ(v,G) returns all successors of the vertex v.

Our core algorithm, named TNT analysis, for manipulating each scc is

outlined in Fig. 4-6. After this analysis, if all vertices in the scc can be resolved

as known temporal predicates, our procedure returns the result r=true.

Otherwise, it returns r=false to allow inference mechanism to restart for the

next iteration (from line 7 in Fig. 4-5). Moreover, upon termination of this

procedure, some unknown pre- and post-predicates in store Θ, are updated with

their new definitions.

Our procedure (Fig. 4-6) uses the set O of the scc’s successors to determine

whether termination proof (by sub-procedure prove Term), or non-termination
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29: procedure prove Term(G, scc,Θ)
30: C ← {gen(e)|e≡(Uipr, ρ, U

j
pr)∈G(E) ∧ Uipr, U

j
pr∈scc}

31: Γ← syn rank(C)
32: if Γ 6= {} then
33: D ← subst rank(scc,Γ)
34: return (true,Θ⊕D)
35: else return (false,Θ)

Figure 4-7. Procedure for Proving Termination over a scc

proof (by sub-procedure prove NonTerm), should be applied to resolve the

unknown temporal predicates. Specifically, when the scc has only one

unknown node Upr without any cyclic edge and successor (line 20), we resolve

the unknown pre-predicate Upr ≡ Term and its corresponding post-predicate

Upo ≡ true for trivial termination (line 22). Moreover, when the set O is

nonempty, the procedure invokes prove Term with ranking function synthesis

only if every element of O is a known Term [e] predicate (line 24-25).

For the running example, the procedure applies termination proofs for the

left scc in G1 and the middle scc in G2. For the left scc in G2, it applies a

non-termination proof directly. In the next sub-sections, we present the sub-

procedures for proving termination and non-termination over a scc.

4.5.4 Inferring Ranking Function

For proving termination on a scc, we implement the procedure prove Term

(sketched in Fig. 4-7) to find a linear ranking function for each unknown pre-

predicate in this scc by using a constraint-based technique [69,136] with Farkas’

lemma [137].

Initially, we create a unique ranking function template for each unknown

pre-predicate Upr(v1, .., vn) ∈ scc by the procedure gen rank, defined as

gen rank(Upr(v1, . . . , vn)) = c0 +
∑n

i=1 civi
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where c0, c1, . . . , cn are unknown coefficients of the ranking function. Next,

we generate a set of constraints over these ranking functions from every edge

in G that connects two nodes in the scc (line 30). That is, given an edge e ≡

(Uipr(vi), ρ, U
j
pr(vj)) ∈ G(E) s.t. Uipr(vi), U

j
pr(vj) ∈ scc, the constraint generated

from it is

ri(vi)=gen rank(Uipr(vi)) rj(vj)=gen rank(Ujpr(vj))

gen(e) = ∀vi, vj · ρ⇒ (ri(vi) > rj(vj) ∧ ri(vi) ≥ 0)

This constraint indicates that the ranking function ri(vi) is bounded and

decreasing across a (mutually) recursive method call under the call context ρ.

For example, the constraint generated from the middle scc in G2 is

∀x, y · x≥0∧x′=x+y∧y′=y∧x′≥0∧y<0⇒

r(x, y)>r(x′, y′) ∧ r(x, y)≥0

which is then solved by syn rank to obtain the ranking function r(x, y) = x.

The method syn rank (line 31) solves the generated constraints by applying

Farkas’ lemma on them to obtain another set of constraints over their unknown

coefficients, which can be solved by a nonlinear solver, such as [88], to get the

actual values of these unknowns. The result is a substitution Γ which maps each

unknown coefficient to its actual value.

If the ranking function synthesis succeeds, we update each unknown

pre-predicate in this scc into Term with an actual ranking function (line 34 in

Fig. 4-7). Otherwise, we prove non-termination on this scc (line 26 in Fig.

4-6). The ranking function for a pre-predicate can be obtained by applying the

substitution Γ to its ranking function template, as shown below. Note that
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36: procedure prove NonTerm(scc, T ,Θ)
37: for each Uipr ∈ scc do
38: Ti ← filter rel(T , Uipr)
39: Ci ←

⋃
{abd inf(t) | t ∈ Ti}

40: r ←
∧
i(Ci 6= {} ∧ ∀c ∈ Ci · (c ≡ true))

41: if r then D ← {Uipr ≡ Loop, Uipo ≡ false | Uipr∈scc}
42: else D ←

⋃
i subst unk(Ci, Uipr, Uipo)

43: return (r,Θ⊕D)

Figure 4-8. Proc. for Proving Non-Termination over a scc

subst rank({},Γ) = {}.

r = Γ(gen rank(Upr(v))) Upr(v) ≡ Term [r] Upo(v) ≡ true

subst rank({Upr(v)} ∪ U ,Γ) = {Upr(v), Upo(v)} ∪ subst rank(U ,Γ)

We also support the synthesis of lexicographic ranking functions, details are

omitted for simplicity of presentation.

4.5.5 Inferring Inductive Unreachability

Procedure prove NonTerm(scc, T ,Θ) finds non-termination on a scc by

unreachability of its post-predicates in T . For each Upr(v)∈scc, the method

filter rel(T , Upr) selects a set of post-assumptions Ts ⊆ T such that their

RHS post-predicate is the corresponding Upo(v). The general form of such

post-assumptions is either:

1. ρ∧true⇒ (µ⇒Upo(v)), or

2. ρ∧
∧

(ηi⇒false) ∧
∧

(µj⇒Ujpo(vj))⇒ (µ⇒Upo(v)).

These post-assumptions capture possible non-termination of its method due

to predicate Upo(v) being unknown, under the condition ρ ∧ µ where the

context ρ is satisfiable. The first post-assumption describes a base-case
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scenario. In order to ensure unreachability of its post-predicate, we must check

that ρ ∧ µ is unsatisfiable. The second post-assumption shows that we can meet

a non-terminating method call (with the postcondition false) if the condition

ηi is satisfied by ρ∧µ. In addition, we can meet a (mutually) recursive call

whose termination is unknown if µj is satisfied, and thus the respective

pre-predicate of Ujpo(vj) also belongs to the analyzed scc. We call the

conditions ηi, µj and µ potential non-termination conditions as they could lead

to an actual non-termination.

By induction, we prove that a caller is definitely non-terminating under a

condition µ, assuming that one of its callee is definitely non-terminating under

the same condition. Given a set of post-assumptions Ts, we prove that if each

unknown post-predicate in their LHS is false then every unknown

post-predicate in their RHS is also false. This is done by the procedure

abd inf (line 39).

− For t ≡ ρ∧true⇒ (µ⇒Upo(v)), Upo(v)≡false iff ρ∧µ is unsatisfiable. So

the proof succeeds and abd inf(t) returns {true} if ` ρ∧µ⇒false.

− For t≡ ρ∧
∧

(ηi⇒false)∧
∧

(µj⇒U
j
po(vj))⇒(µ⇒Upo(v)), given that

∀j · Ujpo(vj)≡false, we have Upo(v)≡false iff ρ∧µ⇒
∨
ηi∨

∨
µj , this

means that under the precondition µ, at least one of the callees’

non-termination conditions is satisfied, so that the caller is also

non-terminating. The proof succeeds and abd inf(t) returns {true} if

` ρ∧µ⇒
∨
ηi∨

∨
µj .

If the proof succeeds for all pre-predicates in scc (signified by r in line 40),

we mark the unknown termination status as definitely non-terminating. This

procedure thus refines, where possible, each unknown pre-predicate as

Upr(v) ≡ Loop and its post-predicate as Upo(v) ≡ false (line 41) and updates Θ

78



before returning (true,Θ).

For our running example, (a01) and (a03) from T would cause

prove NonTerm(scc, T ,Θ) to return false, but provide an abductive condition

y≥0 that facilitates case-splitting (see next sub-section). In contrast, (a13) would

be used to show that U2po(x, y) is inductively false (or unreachable).

4.5.6 Abductive Case-Splitting

If non-termination proving fails, the method abd inf abductively infers new

sub-conditions from the failed proof to refine the potential non-termination

condition by case-split.

In the case t ≡ ρ∧true⇒ (µ⇒Upo(v)), if the proof fails, i.e.

0 ρ ∧ µ⇒ false, abd inf(t) simply returns {} as any condition that makes the

entailment to hold would contradict with the antecedent ρ∧µ.

If t≡ρ∧
∧

(ηi⇒false)∧
∧

(µj⇒U
j
po(vj))⇒(µ⇒Upo(v)), and the proof fails, i.e.

0 ρ∧µ⇒
∨
ηi∨

∨
µj , abd inf(t) returns a set of conditions Ct such that: for each

βk ∈ {ηi}∪{µj} s.t. ρ∧η∧βk is satisfiable, there exists αk∈Ct such that (i)

ρ∧η∧αk is satisfiable and (ii) ` ρ∧η∧αk⇒βk. That is, if the potential

non-termination condition µ of the caller is strengthened by αk then the

(potential) non-termination condition βk of a callee is satisfied.

For each condition βk, the solution αk ≡ βk is a trivial but the weakest

solution for αk. For a more effective case-split, we aim to derive a stronger

abductive condition αk. By the same constraint-based approach used for the

ranking function synthesis, we assume the template αk ≡ c0+
∑n

i=1 civi≥0,

where v1, .., vn≡v and c0, .., cn are unknown coefficients. We might solve these

unknown coefficients with additional optimal constraints, e.g. the number of

zero-coefficients is maximum, so that we can obtain a better solution with

79



minimum number of program variables.

Given a set of collective abductive conditions C, the procedure subst unk

(line 42) refines the pair of (Upr(v), Upo(v)) with these new sub-cases for the

update of Θ.

split(C) = {µj}mj=1 µm+1 = ¬µ1 ∧ . . . ∧ ¬µm

∆1=(Upo(v)≡
∧

(µj⇒U
j
po(v))) ∆2=(Upr(v)≡

∨
(µj∧Ujpr(v)))

Ω =
⋃
{Ujpr(v) ≡ U

j
pr(v), Ujpo(v) ≡ U

j
po(v)}

subst unk(C, Upr(v), Upo(v)) = {∆1,∆2} ∪ Ω

As the conditions in C might be overlapping, we use the function split

defined below to partition these conditions into the new set of mutually

exclusive conditions {µj}mj=1 such that
∨
C ≡

∨
{µj}. We also add into the

new set the condition µm+1 = ¬µ1 ∧ . . . ∧ ¬µm, if it is satisfiable, to cover the

missing case, so that {µj}m+1
j=1 is complete. Note split({}) = {}.

C2=split(C1) C3={ci | ci∈C2∧UNSAT(ci∧c1)}

C4 = {ci | ci∈C2∧SAT(ci∧c1)} c = c1∧
∧
{¬ci | ci∈C4}

C5 = {ci∧c1 | ci∈C4} ∪ {ci∧¬c1 | ci∈C4∧SAT(ci∧¬c1)}

split({c1}∪C1) = if SAT(c) then {c} ∪ C3 ∪ C5 else C3 ∪ C5

4.6 Experiments

We have built the proposed inference mechanism on top of the existing

verification system HIPTNT that can also verify both termination and

non-termination specifications given by users. Our inference system, namely

HIPTNT+ can be run online at
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Benchmark crafted crafted-lit numeric memory-alloca Total

Y N U T/O Time Y N U T/O Time Y N U T/O Time Y N U T/O Time Y N U T/O
AProVE 19 0 17 4 169.7 104 0 24 22 1913.1 68 0 0 0 511.8 69 0 10 7 3385.9 260 0 51 33

ULTIMATE 21 15 3 1 561.7 112 17 14 7 1080.6 56 0 9 3 382.5 41 6 7 32 3073.2 230 38 33 43
HIPTNT+ 19 13 8 0 39.2 114 19 17 0 109.6 61 0 7 0 29.1 66 6 14 0 201.5 260 38 46 0

Figure 4-9. Termination Outcomes on SV-COMP 2015’s C Programs.

http://loris-7.ddns.comp.nus.edu.sg/∼project/hiptnt/plus/

To evaluate our approach, we compare our system against two state-of-the-art

systems, ULTIMATE [74] and AProVE [64]. The latter is a recent winner for

several categories of problems in the annual Termination Competition 2014.

We made our preliminary comparison based on a set of numerical and

pointer-based C programs selected from four benchmarks used for the

termination category of the Competition on Software Verification (SV-COMP)

2015 [2]. These benchmarks were largely contributed by the teams of AProVE

and ULTIMATE. We have excluded 55 programs with arrays and strings from

the total 399 programs in 4 benchmarks, since these two aspects1 have not yet

been handled by our specification inference and verification system. The

experiments were performed on a machine with the Intel Xeon X5650

(2.67GHz) processor and 24GB of RAM.

In Fig. 4-9, we report the number of programs whose main methods’

termination or non-termination were proven successfully in columns labeled by

Y (for termination) or N (for non-termination), respectively. The columns U

(i.e. unknown) show the number of programs in which the tools cannot decide

whether they are definitely terminating or non-terminating. The number of

unsuccessful cases in which the tools give no answer after a timeout is

provided in the columns T/O. As in the competition, we set a wall-clock

timeout of 300 seconds for the proving process on each program. Finally, the

last column in each benchmark presents the total time (excluding timeouts)
1These are orthogonal to termination and non-termination reasoning.
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void loop(int x, int m) {
if (x 6= m) {
if (x > m) x = 0;
else x = x + 1;
loop(x, m); }}

void main() {
int x; int m;
assume (m ≥ 0);
loop(x, m);
loop(x,−m); }

Figure 4-10. A simple non-terminating program adapted from [48]

each tool took to prove the termination and non-termination of the whole

benchmark. In this evaluation, we only report the wall-clock time instead of the

consumed CPU time of all the verifier’s processes because CPU time of tools

executing jobs in parallel, such as AProVE, would be much higher otherwise.

The overall result shows that our HIPTNT+ can efficiently (without any

timeout) infer more (non-)termination properties than the other tools. Note that

all answers (specifications inferred) that were returned by our tool have been

successfully re-verified by an underlying automated verification system. Thus,

our tool does not have any false positive nor negative for this set of

benchmarks. For the other two analyzers, we also manually check their

answers and see that they also do not have any unsoundness.

To illustrate the advantages of our approach, let us highlight two small but

challenging examples next.

4.6.1 Tricky While Program

In Fig. 4-10, we use a simple program adapted from [48] to demonstrate how

our inference mechanism handles programs with complex termination behavior.

Given the input m≥0, the approach in [48] failed to prove the termination of

loop with a lexicographic ranking function. However, by using a Ramsey-based

disjunctive well-founded termination argument [46], their T2 prover can show

that this method always terminates under the given precondition. On the other
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hand, the tool can also prove that this method does not terminate when m<0.

However, it cannot prove the non-termination of main under the assumption

m≥0.

For this example, our modular inference mechanism would construct the

following comprehensive summary on the termination and non-termination

scenarios of the method loop.

case {

x ≤ m→ requires Term [1, m− x] ensures true;

x > m→ case {

m < 0→ requires Loop ensures false;

m ≥ 0→ requires Term [2] ensures true; }}

This summary can later be used to prove either termination or non-termination

of loop under different preconditions, not just m≥0. Therefore, it facilitates the

non-termination proof for main. With case-splitting, our inference mechanism

segments the terminating behavior of loop into two distinct phases: the case

when x>m ∧ m≥0 and its successor phase x≤m. In addition, our approach is

able to show that this method never terminates when x>m ∧ m<0. Such

nontermination precondition cannot be derived by other approaches, such

as [35, 70], as the loop’s body has a disjunctive transition relation.

4.6.2 Phase Change Recursive Programs

Our inference method can handle not only simple loops but also mutually

recursive programs with complex recursion patterns. Moreover, with case

analysis, phase-change programs are naturally recognized by our approach,

even if they were expressed in mutual-recursive form, as shown in Fig. 4-11,
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void f(int x, int y) {
if (x < 0) return; else g(x + y, y + 1); }

void g(int x, int y) {
if (x < 0) return; else f(x, y− 2); }

Figure 4-11. A phase-change recursive program

which is inspired from the phase-change loop:

while (x≥0) {x = x + y; y = y− 1; }

from [43], in which the value of y is decreasing toward 0 before the value of x

starts to decrease. However, unlike this loop, the value of y in our example is

not continuously decreasing so that the supporting condition y<0 cannot be

observed easily. Moreover, since the approach proposed in [43] is designed

only for the while loops with transition relation, it cannot handle this recursive

program. The size-change approach [7, 102] can show that y is decreasing

across the recursive chain but it is unable to prove program termination because

a necessary supporting condition y<0 cannot be derived by such size-change

analysis.

The inferred termination specification of the method f and g by our approach

is:
void f(int x, int y)

case {

x < 0→ requires Term ensures true;

x ≥ 0→ case {

y < 0→ requires Term [1, 2x− 1] ensures true;

y ≥ 0→ requires Term [2, 2y + 2] ensures true; }}
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void g(int x, int y)

case {

x < 0→ requires Term ensures true;

x ≥ 0→ case {

y ≤ 0→ requires Term [1, 2x] ensures true;

y > 0→ requires Term [2, 2y−1] ensures true; }}

Here, the termination behaviors of these two methods are also partitioned into

distinct phases, numbered by the prefix 1 and 2, with suitable ranking function

for each phase.

4.7 Discussion

Over the last decade, there has been a large body of work on proving program

termination. Most of these termination provers, such as TERMINATOR [46] and

its successor T2 [29, 48], ARMC [129], TAN [92] and ULTIMATE [74], either

show that a program terminates for all (given) inputs or return a

counterexample to termination upon the failure of termination proofs.

However, due to the incompleteness of termination-based techniques, these

provers cannot guarantee that every returned counterexample (from failed

termination proofs) leads to a definitely non-terminating execution. Thus, each

tool might deploy a separate non-termination proving technique to prove that

the counterexample is feasible. Also, each such counterexample is only an

under-approximation of its program execution, so that it does not capture the

wider scenarios for non-terminating behaviors of the analyzed program.

We have also seen much related work on proving program non-termination,

e.g. [11, 30, 35, 70, 94, 123, 146]. Non-termination provers, such as TNT [70]

and INVEL [146], attempt to disprove program termination by searching for
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some initial configurations that act as witnesses for non-termination. To find a

wider class of non-termination bugs, these approaches attempt to discover

sufficient pre-conditions for non-termination. Nevertheless, since

non-termination proving techniques are also incomplete, the analyzed program

is not guaranteed to terminate under the complement of the inferred

pre-condition for non-termination.

The dual problem of conditional termination, first addressed in [43],

identifies initial configurations that ensure termination. In [43], such

termination preconditions are derived from potential ranking functions, which

are bounded but not decreasing. Later, the tools FLATA [26] and ACABAR [61]

infer the sufficient precondition for termination from (the negation on

over-approximation of) the set of initial states from which the program might

not terminate. However, FLATA differs from ACABAR by limiting itself to

classes of loops with restricted forms in which the precise non-termination

conditions are definable.
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Chapter 5

A Proof Slicing Framework for

Program Verification

In the context of program verification, we propose a formal framework for

proof slicing that can aggressively reduce the size of proof obligations as a

means of performance improvement. In particular, each large proof obligation

may be broken down into smaller proofs, for which the overall processing cost

can be greatly reduced, and be even more effective under proof caching, since

multiple instances of smaller sub-proofs of a large original proofs usually occur

frequently. Our proposal is built on top of existing automatic provers, including

the state-of-the-art prover Z3, and can also be viewed as a re-engineering effort

in proof decomposition that attempts to avoid large-sized proofs for which

these provers may be particularly inefficient. In our approach, we first develop

a calculus that formalizes a complete proof slicing procedure, which is

followed by the development of an aggressive proof slicing method. Retaining

completeness is important, and thus in our experiments the complete method

serves as a backup for the cases when the aggressive procedure fails. The

foundations of the aggressive slicing procedure are based on a novel
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lightweight annotation scheme that captures weak links between sub-formulas

of a proof obligation; the annotations can be inferred automatically in practice,

and thus both methods are fully automated.

5.1 Overview

A significant challenge in the area of program verification is posed by the ever

increasing number and complexity of proof obligations that need to be

discharged by automated theorem provers. To overcome this challenge, a

number of previous investigations have considered the approach of “shrinking”

the generated proof obligations as a means of speeding up the solvers. [107]

splits the proof obligations based on control flow to get smaller

proofs. [113, 138, 139] detect and discard information that is not relevant to the

problem at hand, thus streamlining the proof process. When this streamlining

is performed aggressively, the size of the resulting proof obligations may be

greatly reduced, leading to opportunities for significant performance

improvement. In this context, an important technique is that of proof

caching [83], which reuses proof results when multiple instances of the same

sub-formulas are encountered. While the idea of proof slicing is not new in the

context of automatic theorem provers, we believe that the procedure is more

effectively carried out in the larger scope of program verification. In this

regards, we make new contributions in three key directions, namely (i) the

development of a formal foundation for proof slicing mechanisms, (ii) a

general application of proof slicing that is prover-independent and tailored to

program verification, and (iii) an annotation scheme that allows a more

aggressive application of the mechanism, leading to improved performance.

A formal foundation in proof slicing is important for providing an avenue
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towards a more rigorous investigation into the field. To that end, we first develop

a complete calculus for automatic slicing, which serves as a foundation for the

implementation of our tool. Importantly, apart from completeness, this calculus

also enjoys properties of convergence and completeness, which are crucial for

its trustworthiness, and its potential for efficient implementation.

One important application area is that of program verification, whereby a

typical approach is to employ a program verifier that processes the code of

interest, annotated with pre/post-conditions, in order to produce a set of proof

obligations that are subsequently passed on to off-the-shelf theorem prover.

These proof obligations are fundamentally of the form P⇒Q, whereby each P

is an antecedent that captures some current program state, while Q is a goal (or

assertion) that has to be proven. Since proof slicing remains complete only

when the antecedent is satisfiable, and since satisfiability checks typically add a

non-negligible overhead, existing state-of-the-art theorem provers, with

formula reduction techniques such as relevancy propagation [51], or labelled

splitting [59], do not employ this mechanism. However, with our slicing

mechanism placed in-between the verifier and the theorem prover, we ensure

that the satisfiability checks of antecedents are incremental and with low

overhead, which is key to good performance.

As a further improvement, we designed an annotation scheme that captures

constraint linking properties, that is, variable-sharing dependencies between

interpreted atoms (i.e., constraints) of a proof obligation; this scheme enables

an aggressive slicing procedure. We believe that such an approach allows

proof slicing to be viewed as a modular and extensible mechanism, rather than

as a black box with limited functionality. This point is particularly poignant, as

a good annotation scheme is also the basis for effective annotation inference
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mechanisms. These mechanisms can, in general, be completely automatic;

several examples can be found in the experimental results section.

5.2 Proof Slicing for Program Verification

Depending on the context, we shall use the term “slicing” to denote either

formula slicing or proof slicing. Formula slicing is the partitioning of a

formula into “slices” – sub-formulas that group together related constraints.

Two slices are said to be disjoint if they do not share any common variables,

otherwise they are said to be overlapping. Proof slicing is the partitioning of a

proof obligation into smaller sub-proofs to reduce the proof’s complexity, thus

improving performance of discharging proofs.

In the context of program verification, there are typically two major kinds

of proof obligations, namely: (i) Entailment checking, of the form P`Q and

(ii) Unsatisfiability checking, of the form UNSAT(P ) or P`false. For

unsatisfiability checking, the proof slicing mechanism partitions the initial

formula P into a set of disjoint slices {P1, . . . , Pn} whereby P↔P1∧ · · · ∧Pn,

and then incrementally applies unsatisfiability checks on some of these slices,

i.e., the slices that have been recently modified since the last unsatisfiability

checks.

For entailment checking, proof slicing is the division of an initial, large

entailment formula into smaller ones, obtained by slicing the original formula’s

antecedent with respect to each of its consequent. Given an antecedent P and a

conjunctive consequent Q1∧· · ·∧Qn, we partition P into possibly overlapping

slices {P1, . . ., Pn} such that each slice Pi is sufficient to prove the

corresponding consequent Qi. That is, the original entailment is replaced by a

set of smaller entailments {Pi`Qi}ni=1. Importantly, this slicing step assumes
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that the sequent’s antecedent is satisfiable, i.e., it has been subjected to a prior

unsatisfiability check. Loss of completeness occurs when weakening an

unsatisfiable antecedent into a satisfiable one, and is the main reason for the

limited adoption of this optimization in mainstream theorem provers.

Let consider the implication checks of the form P1∧· · ·∧Pn⇒Q1∧· · ·∧Qm.

Without proof slicing, a theorem prover needs to prove the unsatisfiability of

P1∧· · ·∧Pn∧(¬Q1∨· · ·∨¬Qm). Due to the possibility of P1∧· · ·∧Pn being

unsatisfiable, the prover could not drop any constraint of the antecedents,

unless it is willing to risk a loss of precision. By explicitly distinguishing

between two kinds of proof obligations, our framework can avoid this problem

by a prior unsatisfiable checking of the antecedents. Moreover, this distinction

also allows us to exploit more aggressive pruning of irrelevant constraints from

the antecedents with a novel annotation scheme (see Sec. 5.5).

Let us demonstrate how proof slicing can be applied to help with verifying

the code snippet in Fig. 5-1(a). The pre- and post-conditions are provided by

the assume and assert statements, respectively. To prove the total correctness

of this program, we use the loop invariant x=2y ∧ n≥0 for partial correctness

proof, and the variant n as a well-founded measure for termination proof. The

set of generated verification conditions are shown in Fig. 5-1(b). Observe that

in these verification conditions, the constraints of x and y and the constraints of

n are disjoint. As a result, they can be proven independently by the proof slicing

mechanism, resulting in simpler proof obligations. For example, the verification

condition VC4 can be split into two separate entailments

VC4a : x=2y ` x+2=2(y+1) VC4b : n≥0 ∧ n>0 ∧ n=N0 ` n−1≥0 ∧ n−1<N0

by partitioning the antecedent into two slices (i) x=2y and
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1 : assume(n ≥ 0);
2 : x = 0; y = 0;
3 : while (n > 0) {
4 : x = x + 2;
5 : y = y + 1;
6 : n = n− 1; }
7 : assert(x = 2∗y ∧ n=0);

Inv(x, y, n) ≡ x=2y ∧ n≥0

VC1 : x=0 ∧ y=0 ∧ n≥0 ` Inv(0, 0, n)
VC2 : Inv(x, y, n) ∧ ¬(n>0) ` x=2y ∧ n=0

VC3 : Inv(x, y, n) ∧ n>0 ` n≥0
VC4 : Inv(x, y, n) ∧ n>0 ∧ n=N0

` Inv(x+2, y+1, n−1) ∧ n−1<N0
(a) (b)

Figure 5-1. A code snippet and its verification conditions for total correctness proof

(ii) n≥0 ∧ n>0 ∧ n=N0. Prior to the entailment checks, each new antecedent is

subjected to a satisfiability check, if its slice has changed when compared to an

earlier program point. We note that only formula slice (ii) has changed, with its

invariant strengthened by the extra constraints n>0 ∧ n=N0. Thus, for VC4, we

only need to check the satisfiability of the slice (ii), instead of the whole

antecedent.

In summary, the division of proof obligations into two classes, of entailments

and unsatisfiability checks, both of which benefit in performance from proof

slicing, distinguishes our work from the techniques employed in current theorem

provers. In entailment checks, the size of the antecedent can be greatly reduced

when subjected to a prior unsatisfiability check. A similar mechanism is used for

unsatisfiability checks, where only changed slices need be re-checked. Without

this early analysis on the potential satisfiability of antecedents, current theorem

provers would have to process much larger sets of constraints1 when discharging

proof obligations produced by a verification system.

1A theorem prover might group relevant constraints into classes, such as congruence
classes in the theory of equality, or classes of different theories in the Nelson-Oppen theory
combination, or more generally, classes of constraints which share some common symbols.
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5.3 A Framework for Proof Slicing

The starting point of our formalization is that of entailment or unsatisfiability

obligations whose left hand side is an unquantified conjunction of constraints

and uninterpreted predicates. For reasons of simplicity, we shall confine our

presentation to unquantified formulas; the system is, nevertheless, capable of

handling quantifiers. Informally, the slicing mechanism will preprocess the

input by always floating outwards the constraints that appear under quantifiers

but are independent of the corresponding quantified variables, and treat the

remaining quantified constraints as atomic.

(∧N)
Xi0=X ′j0∧

iXi ∨
∧
jX
′
j ↪→ Xi0∧(

∧
i 6=i0Xi ∨

∧
j 6=j0X

′
j)

(∧R)
P ` Q1 P ` Q2

P ` Q1 ∧Q2

(∨L)
P1 ` Q P2 ` Q

P1 ∨ P2 ` Q

Consequently, we consider a first-order language with equality and

interpreted function symbols. The atoms of the language are formed in the

usual way, and denote constraints, i.e., predicates that have a fixed

interpretation with respect to an external automated reasoning tool. Sequents

are denoted by P ` Q, where P and Q are formulas. Our slicing mechanism is

specified by the rules in Fig. 5-2, and works by taking in a sequent, and

outputting a set of sliced sequents that are meant to be discharged by

off-the-shelf provers. However, the input sequent must first undergo a

pre-processing stage with the beside rewrite rule (∧N) and two structural rules

(∧R) and (∨L), which yields a set of sequents in a form where the effect of the

slicing rules in Fig. 5-2 is maximized, while retaining completeness. The result
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[SPLIT−E1]

SPLIT({}) = {}

[SPLIT−E2]

SPLIT(P ) = R P1 = {Q ∈ R | ∃β ∈ Q.SAMESLICE(α, β)}
P2 = {Q ∈ R | ¬∃β ∈ Q.SAMESLICE(α, β)}
SPLIT({α} ∪ P ) = P2 ∪ {{α}∪

⋃
X∈P1

X}

[GETCTR−E1]

GETCTR0(Q,PS) = {}

[GETCTR−E2]

{S ∈ PS | ISRELEVANT(Q,S)} = {}
GETCTRn(Q,PS) = {}

[GETCTR−E3]

S1 = {S ∈ PS | ISRELEVANT(Q,S)}
R =

⋃
X∈S1

X R′ = GETCTRn−1(R,PS \ S1)

GETCTRn(Q,PS) = R ∪R′

[P−ENTAIL]
SPLIT({Pi}mi=0) = PS
GETCTRn(Q,PS)⇒Q∧m

i=0 Pi ` Q

[P−UNSAT]
SPLIT({Pi}mi=0) = PS

∃X∈PS · GETCTRn(X,PS)⇒false

UNSAT(
∧m

i=0 Pi)

Figure 5-2. Framework for Proof Slicing Mechanisms

of this decomposition is a set of sequents whose LHS is a conjunctive formula

and RHS is either a disjunctive or atomic formula. However, to avoid

increasing the number of sub-sequents when these rules are applied, that may

lead to some performance loss, rule (∧N) should take precedence over rules

(∧R) and (∨L), if applicable, and rule (∧R) can be stopped early if the pair of

conjunctive consequents in the RHS share the same set of variables.

We distinguish between two calculi: a complete slicing calculus, and an

aggressive slicing calculus. Both calculi formalize mechanisms for partitioning

the conjuncts of a sequent, yielding sets of smaller sequents whose discharge is

sufficient for establishing the proof of the original sequent. The assumption

here is that the total effort of proving the set of smaller sequents by means of

external provers is, in general, lighter than the effort of proving the original

sequent by the same means. In the optimal case, the application of slicing

decomposes the entailment P1 ∧ . . . ∧ Pn |= Q into several sub-formulas, of

the form
∧
P∈Xi

P |= Q, such that the sets Xi satisfy three properties: (i)
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inclusion: ∀i.Xi⊆{P1, . . . , Pn}, (ii) relevance: all Xi constraints are relevant

to Q, i.e., ∀R.R ∈ Xi →
∧
P∈Xi\{R} P 2 Q and (iii) correlation: for each pair

of constraints P, P ′ ∈ Xi, there exists a chain P = P1, . . . , Pk = P ′ such that

every two consecutive constraints Pj, Pj+1 are overlapping. Similarly, an

unsatisfiability check for a formula P1 ∧ . . . ∧ Pn is sliced into several

unsatisfiability checks for
∧
P∈Xi

P such that Xi satisfies the inclusion and

correlation properties.

Unfortunately, this formulation is not practical, as even establishing the

relevance for a given slice is costly, let alone discovering the slices. Our

proposal relies on a more syntactic formulation for the relevance and

correlation properties, by using two meta-predicates, ISRELEVANT and

SAMESLICE, as approximations of the relevance and correlation tests. The

actual definitions dictate the slicing strategies each calculus uses. In the

following sections, we expand more on their formulation and usage.

The complete and aggressive slicing calculi share the set of rules given in

Fig. 5-2, which we shall call the slicing framework and differ in the definitions

used for the two meta-predicates. Specifically, to obtain the complete (or

aggressive) slicing calculus, we add the rules in Fig. 5-3 (or in Fig. 5-7, resp.)

to the framework. We shall discuss the framework in the remainder of this

section, and we shall devote Sec. 5.4 and 5.6 to each of the two calculi.

The conjunct partitioning procedure SPLIT calculates PS, a set of slices,

from a set of conjuncts. Each slice is either extended with a new conjunct or

not, in accordance with the SAMESLICE meta-predicate. This meta-predicate’s

role is to establish if two conjuncts should be kept in the same slice or not.

Intuitively, it works by checking how information is shared between its two

arguments. The result of applying the SPLIT relation to a formula P is a set of
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sets of constraints that represent the partitioning into slices of P . Each set of

constraints can be interpreted as a formula that is formed by a conjunction of its

constraints. Propertywise, we have:

⋃
SPLIT(P )=P ∧ (∀X, Y ∈SPLIT(P )·X 6=Y →X∩Y={})

The formulation of [SPLIT−E2] allows for arbitrary slicing decisions from

the picking of α. Nevertheless, the slicing mechanism needs to be convergent,

that is, to yield the same set of sliced sequents upon termination. Slicing

convergence can be ensured by requiring the rewrite system formed by [SPLIT]

to be confluent. In the following sections, we shall investigate convergence

properties for the complete and aggressive slicing calculi.

Another operation of interest is the computation of relevant slices for a

given formula from a set of slices. [GETCTR−E3] and [GETCTR−E2] describe a

family GETCTRn of such functions that differ only in the exhaustiveness of the

relevance computation. All start by picking the slices that are in the

ISRELEVANT relation with the input formula Q. This step can be repeated

using each of the previously selected slices as input for the next iteration. Such

a refinement is important because, depending on the actual definition used for

SAMESLICE, a single step might not be sufficient to gather all relevant

constraints2. The default GETCTR function to use is GETCTR1, but we can

gradually increase its coverage through GETCTR2, GETCTR3, . . ., if needed.

This family of operators satisfies the following two properties

(i) GETCTRn(Q,PS) ⊆ PS (ii) GETCTRn(Q,PS) ⊆ GETCTRn+1(Q,PS)

2Such is the case for the aggressive slicing calculus with an annotation scheme that will be
introduced later.
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Continuing on with the description of the slicing rules in Fig. 5-2, the rule

[P−UNSAT] defines slicing for unsatisfiability obligations. The formula P is first

partitioned, and then a search is performed for an unsatisfiable slice. Each slice

is considered together with its relevant counterparts as computed by GETCTRn.

The⇒ notation signifies the invocation of an external prover.

Similarly, [P−ENTAIL] defines the treatment of entailment obligations. The

rule prescribes partitioning of the antecedent and the consequent, pairing

consequent slices with relevant antecedent slices, and enforcing the implication

relation on the resulting pairs. The [P−ENTAIL] rule corresponds to the

conjunction introduction rules of Gentzen’s sequent calculus [33]. Intuitively, a

sequent with conjunctions on the right hand side can be split into separate

sequents, each retaining one conjunct. Similarly, sequents with conjunctions on

the left hand side can have any number (desirably, all but one) of conjuncts

discarded. We state the lemma for soundness as follows, where its proof can be

found in Appendix B.

Lemma 4 (Soundness) All sequents proven using the rules of the slicing

framework are true.

5.4 Complete Proof Slicing

In this section we introduce a completely automatic slicing mechanism. This

mechanism uses the slicing framework rules given in Fig. 5-2, together with the

meta-predicates SAMESLICE and ISRELEVANT given in Fig. 5-3. Essentially,

this mechanism produces slices whose sets of free variables are disjoint. This is

based on the idea that if a hypothesis and the conclusion of a proof obligation

have disjoint sets of free variables, then the hypothesis cannot be directly

contributing to the proof of the conclusion, and can thus be discarded.
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[AS−CORRELATION]
SAMESLICE(P1, P2) = V(P1) ∩ V(P2) 6= {}

[AS−RELEVANCE]
ISRELEVANT(Q,P ) = V(Q) ∩ V(P ) 6= {}

Figure 5-3. Complete Slicing Mechanism

Whenever two conjuncts of the hypothesis share free variables, we say that

they are correlated, and under the current slicing scheme, they should belong

to the same slice. This is reflected in the rule [AS−CORRELATION], where the

meta-predicate SAMESLICE is defined to keep two conjuncts together if their

sets of free variables are correlated. Here, the symbol V denotes a function that

returns the set of free variables from its input.

Similarly, if a conjunct in the hypothesis shares variables with the

consequent, we say that the conjunct is relevant to proving the conclusion. The

definition of the meta-predicate ISRELEVANT given in the rule

[AS−RELEVANCE] captures precisely this idea. We have taken the approach of

utilizing these two rules to make our proof slicing framework more general. In

the next section, we shall define a new variant of our proof slicing framework

with annotation guidance, by simply redefining these two rules, without having

to change any of the rules in Fig. 5-2.

In the previous section, we mentioned that [SPLIT] rules are expected to

be convergent. This can be ensured by the convergence of our calculi. The

following lemma substantiates this claim.

Lemma 5 [SPLIT] with [AS−CORRELATION] is confluent.

An important property of the complete slicing mechanism is that it does not

alter the level of completeness of the underlying solver. The slicing mechanism
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converts provable sequents into new sequents that are still provable in the same

logic, provided that the antecedent of the sequent at hand is satisfiable. To

formalize this claim, we assume that the underlying prover is formalized as a

calculus LKT , obtained from Gentzen’s calculus LK [33], augmented with a

theory T capable of handling the interpreted symbols of the language.

Moreover, we assume that the axioms of T do not discharge sequents of the

form P ` Q when V(P ) ∩ V(Q) = {}.

Lemma 6 (Relative completeness) Let P ′ ` Q be the sequent obtained by

applying the complete slicing rules to the sequent P ` Q, where Q is atomic.

Let LKT be a sequent calculus obtained from LK by augmenting it with rules

from a theory T that can handle the interpreted symbols of our formulas. If

P ` Q is provable, and P is satisfiable in LKT , then P ′ ` Q, is also provable

in LKT .

5.5 An Annotation Scheme for Proof Slicing

The complete proof slicing mechanism is particularly effective in the case of

formulas that can be neatly partitioned into disjoint slices. It is, however, not as

effective in the presence of constraints that seemingly link together

sub-formulas that would otherwise be disjoint; for such cases, slicing needs to

be applied more aggressively. To highlight this need, let us now consider a

more expressive logic, capable of specifying and verifying heap-manipulating

programs, with the possibility of generating more complex proof obligations.

Consider the definitions of a binary tree node and an inductive predicate that

specifies an AVL tree rooted at its first argument and height-balanced in Fig.

5-4.
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data node { int val; node left; node right; }
pred avl(root, n, h, B) ≡ root=null∧n=0∧h=0∧B={}
∨ ∃v, p, q, n1, n2, h1, h2 · root7→node(v, p, q)
∗ avl(p, n1, h1, B1) ∗ avl(q, n2, h2, B2)
∧ n=1+n1+n2 ∧ h=1+max(h1, h2)∧−1≤h1−h2≤1
∧ B={v}∪B1∪B2∧(∀a∈B1·a<v)∧(∀b∈B2·v≤b)

inv n≥0 ∧ h≥0 ∧ n≥h;

Figure 5-4. The avl heap predicate

This predicate captures four aspects of the AVL tree property. Parameter

root is a pointer to the root of the tree, whereas n, h, and B (and their

subscripted variants) capture, respectively, numbers of nodes in trees, their

heights, and their sets of values. The constraint −1≤h1−h2≤1 states that the

tree is nearly height-balanced, whereas the quantified set constraint

(∀a∈B1·a<v)∧(∀b∈B2·v≤b) enforces the binary search tree property. Recall

that the formula specified after the inv keyword denotes the invariant property

that holds for all instances of the predicate. Moreover, the separating

conjunction operator ∗ (cf. [118]) is used to concisely capture the memory

disjointness property.

To prove an invariant of the AVL predicate (e.g., n≥0), the entailment proof

(e.g., avl(x, n, h, B) ` n≥0, resp.) can be discharged inductively by applying

the definition of the predicate avl. For example, the below LHS is the resulting

proof obligations (after each points-to 7→ is approximated by a non-null

constraint, and each predicate is approximated by its invariant) while RHS is

the same two entailments after applying complete proof slicing. For brevity, we

use ni, hi≥0 to denote the conjunction ni≥0∧hi≥0.

Though sound, the second (sliced) entailment is unnecessarily verbose due

to the presence of constraints n1≥h1 and n2≥h2 which act to link the

constraints relating to size and height for the avl predicate. We refer to such
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x=null ∧ n=0 ∧ h=0 ∧ B={} ` n≥0

x6=null

∧(n1, h1≥0∧n1≥h1)∧(n2, h2≥0∧n2≥h2)
∧ n=1+n1+n2
∧ h=1+max(h1, h2)∧−1≤h1−h2≤1
∧ B={v}∪B1∪B2
∧ (∀a∈B1·a<v)∧(∀b∈B2·v≤b)
` n≥0

n=0 ` n≥0

(n1, h1≥0∧n1≥h1)∧(n2, h2≥0∧n2≥h2)
∧ n=1+n1+n2
∧ h=1+max(h1, h2)∧−1≤h1−h2≤1

` n≥0

constraints as weakly linking constraints, and propose to deploy a more

aggressive proof slicing mechanism that can selectively disregard the

relationship between variables occurring in such linkages. Though this

decision may suffer from a risk of losing completeness, it would allow for a

more aggressive application of the slicing mechanism. Applying this

mechanism, we are able to obtain the following more compact entailment proof

(e.g., n1≥0 ∧ n2≥0∧ n=1+n1+n2 ` n≥0). To provide a systematic way to

deal with weakly linking constraints, we propose the following annotation

scheme.

Informal Definition 1 (Weakly Linking Constraint) A constraint φ can be

annotated as a weakly linking constraint φ# if it is a weak constraint, such as

inequality constraint (e.g., ≤ or 6=), that links together multiple variables from

disjoint properties.

In addition, for proving the invariant n≥h of the AVL predicate, our

annotated proof slicing mechanism would keep the constraints related to both

the size and the height properties and their weakly linking constraints, as

follows:

n1, n2≥0 ∧ h1, h2≥0 ∧ (n1≥h1)# ∧ (n2≥h2)#

∧ n=1+n1+n2 ∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1 ` n≥h

Aside from weakly linking constraints, we propose to support two additional
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kinds of weak linkages, namely:

Informal Definition 2 (Weakly Linking Variable) A variable occurrence v

can be annotated as a weakly linking variable v# if it does not belong to any

particular property, but appears in the constraints of multiple distinct

properties.

Informal Definition 3 (Weakly Linking Expression) An expression e can be

annotated as a weakly linking expression e# if its definition has been captured

by another variable, in a constraint such as v=e. This variable (or property) is

only weakly linked with variables inside the linking expression.

We note here that each weakly linking annotation is added only once (mostly

in predicate definitions and specifications), with the intent of being used across

the entire program verification process.

In summary, the key points on the use of weakly linking annotations in

support of more aggressive proof slicing are: (i) Proof obligations containing

multiple weakly linked properties are commonly generated from richer

specifications. (ii) The use of weakly linking annotations leads to loosely

connected partitions that can be split when necessary, thus easily regaining the

performance benefits of proof slicing. (iii) Multiple instances of the same

(small) slice are frequently encountered in practice, which are shown in our

experiments; thus, the use of proof caching would yield further performance

gains.

Moreover, in a goal driven approach, it is possible to select only a small set

of (loosely connected) partitions that have a higher chance of being relevant for

the current proof obligation. Should this attempt fail, the algorithm can retry

with a broader set of partitions, preserving the precision of the approach. Since

failure rate is small in practice, this aggressive approach yields a significant
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π ::= αL | ¬αL | π1∧π2
αL ::= α | (α)# vL ::= v | v#
α ::= true | fL(v∗L) | vL=fL(v∗L) | vL1=vL2
fL(v∗L) ::= f(v∗L) | (f(v∗L))#
where # is the annotated slicing label;

α denotes atomic predicates;
π denotes pure formulas; v is a variable;
vL is a variable with or without # label;
fL is an interpreted symbol, possibly labeled;

Figure 5-5. Support Logic with Annotation Scheme

improvement in efficiency. In our experiments, we have obtained multi-fold

reductions in prover execution times.

5.6 Aggressive Proof Slicing

In this section, we propose a novel annotation mechanism, capable of

pinpointing locations where proof slicing can be applied more aggressively.

5.6.1 Annotation Scheme

As mentioned in Sec. 5.3, the target of our framework is a first-order language

with equality and interpreted function symbols. This language, more precisely

described in Fig. 5-5, imposes no restrictions on the versatility of our

framework. Without loss of generality we can safely assume that the

annotations described in Sec. 5.5 will be transparently translated into

annotations in our target language.

5.6.2 Annotation Reduction

To simplify the formulation of our core calculus, we shall restrict our

annotations for proof slicing to only weakly linking variables. Through a

preprocessing step, we can transform each weakly linking constraint and each
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redβ(π1 ∧ π2) ⇒ redβ(π1)∧redβ(π2)
redβ(¬αL) ⇒ ¬redβ(αL)
redβ((α)#) ⇒ redtrue(α)
redβ(true) ⇒ true

redβ(f(v∗L)) ⇒ f(redβ(v∗L))
redβ((f(v∗L))#) ⇒ f(redtrue(v

∗
L))

redβ(fL(v∗L)) ⇒ fL(redβ(vL)∗)
redβ(vL=fL(v∗L)) ⇒ redβ(vL)=fL(redβ(vL)∗)
redβ(vL1=vL2) ⇒ redβ(vL1)=redβ(vL2)
redβ(v#) ⇒ v#
redtrue(v) ⇒ v#
redfalse(v) ⇒ v

Figure 5-6. Rules for Annotation Reduction

weakly linking expression into weakly linking variables, by transferring the

weakly linking annotation to the free variables of a linking constraint or linking

expression. Such a translation, named red, is formalized in Fig. 5-6.

With this translation scheme, the free variable set of each constraint is

divided into two disjoint sets, namely weakly and strongly linking variables.

The set of weakly linking variables of a constraint can be computed by a simple

function VW over the structure of the constraint α that picks up all (weakly)

annotated variables, VW(v#) = {v} while the set of strongly linking variables

of a constraint α is its complement, namely VS(α) = V(α) \ VW(α), where

V(α) returns the free variable set (without annotation) of the constraint α.

The translation scheme described above converts away all non-variable

annotations. Nevertheless, a weakly linking constraint can still be

distinguished from a constraint with weakly linking expressions or a constraint

with a mix of weakly and strongly linking variables. At this point, we can

make the following general observations: (i) a strongly linking constraint

expresses knowledge specific to one property, and does not have any weakly

linking variables; (ii) a weakly linking constraint encodes only weakly linking
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[FS−CORRELATION]

SAMESLICE(P1, P2) =
VW(P1) = VW(P2) ∧
VS(P1) ∩ VS(P2) 6= {}

[FS−RELEVANCE]

ISRELEVANT(Q,P ) =
(V(Q) ∩ VS(P ) 6= {}) ∨
(VS(P ) = {} ∧ VW(P ) ⊆ V(Q))

Figure 5-7. Annotated Slicing Mechanism

information, and thus has an empty set of strongly linking variables; (iii)

constraints with weakly linking expressions or some weakly linking variables

will express some relation between weakly linking entities and some other

variables; thus neither set of weakly or strongly linking variables is empty.

These observations allow us to support a uniform way of handling different

kinds of linkages using a simpler variable-only annotation scheme.

5.6.3 Slicing Criterion

To take advantage of weakly connected components, our aggressive slicing

mechanism will create partitions (or slices) by ignoring links that are due to

solely weakly linking variables. This is achieved by allowing two constraints to

be in the same slice if they satisfy the following two conditions: (i) they share

one or more strongly linking variables, and (ii) they have the same set of

weakly linking variables. These two conditions are captured in a new definition

for the SAMESLICE meta-predicate in Fig. 5-7. According to this definition,

each weakly linking constraint will be kept as a separate slice. Furthermore,

two constraints that share the same set of weakly linking variables will only be

kept in the same slice if they share one or more strongly linking variables.

The following lemma establishes the convergence of our splitting procedure
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in the presence of the new meta-predicate.

Lemma 7 [SPLIT] with [FS−CORRELATION] is convergent.

5.6.4 Relevance Criterion

In the case of complete proof slicing, the constraints referring to a given property

are spread across multiple slices. To have a good balance between precision and

efficiency, we should ideally find the smallest set of hypotheses that ensure the

success of the entailment check, whenever possible. To properly exploit the

weakly linking annotations, we propose a two-step approach to finding relevant

hypotheses. First, we employ aggressive slicing, which uses GETCTR2, in order

to obtain constraints that are most closely linked to the given goal. In case this

first step fails, we may apply a subsequent exhaustive search step in order to

identify additional constraints using a higher-level operator GETCTRn, where n

is the cardinality of our set of slices. Using n as a limit, our aggressive proof

slicing mechanism has a similar behavior to that of complete proof slicing. We

can formalize these two steps as instances of the slicing framework defined in

Sec. 5.3.

Given a goal Q, the aggressive slicing mechanism would consider a slice

relevant if either of the following holds:

1. It contains strongly linking variables that overlap with the free variables

of Q.

2. It contains weakly linking constraints whose set of variables are entirely

subsumed by the set of free variables of Q.

In order to collect these two categories of constraints, the calculus need only

use GETCTR2 in the aggressive search mechanism. The formalization of the
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aggressive search relevance check is given by [FS−RELEVANCE] in Fig. 5-7.

The condition VS(P ) = {} in the meta-predicate ISRELEVANT indicates that P

is a slice of a weakly linking constraint.

5.7 Experiments

We have integrated the proposed proof slicing mechanisms into a separation

logic-based program verification system [116], where proof obligations are

soundly approximated by formulas in heap-free pure logic that can be

discharged by off-the-shelf back-end theorem provers. The theorem provers

used in our current evaluation are the Omega Calculator [132], MONA [90],

Reduce/Redlog [56] and Z3 [52]. The proof slicing mechanisms are

implemented as intermediate layers between the verifier and the theorem

provers, effectively acting as prover-independent pre-processors for the

back-end. In our measurements, we were careful to quantify the sole effect of

applying the slicing procedures on the running time of the theorem provers

(including overheads of the proof slicing mechanisms, if any) and show the

relative comparison (on percentage) of timings by charts. For brevity, we use

NS, CS and AS to indicate no, complete or aggressive proof slicing

mechanism, respectively.

We used several benchmarks for evaluating the resulting system. The first

benchmark includes a set of heap-manipulating programs, implementing typical

operations for singly and doubly linked lists, as well as more complex tree data

structures such as AVL and Red-Black trees. The benchmark also includes the

BigInt program, which uses linked list to implement infinite precision integers

and their arithmetic operations as well as the Karatsuba’s fast multiplication

method. The program is verified with non-linear constraints, which currently
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Figure 5-8. Relative Comparison (%) of CS over NS with various theorem provers.

can only be handled by the Redlog prover. The second benchmark consists of

programs taken from the SIR/Siemens test suite [55] with some data structures

mentioned above and arrays.

Fig. 5-8 shows the comparison on percentage between the time spent on

each underlying prover plus slicing overhead when CS is on (indicating by the

prover name with the postfix (c)) and the time spent on the same prover without

proof slicing mechanism (NS) for the first two benchmarks. 3 As can be seen,

CS benefits all provers in general, especially on complex programs (e.g., BigInt

and SIR) with over 60% reduction. Moreover, on less scalable provers like

Omega, MONA or Redlog, CS helps to reduce about 90% of the total prover

time (or 10x faster). Those significant improvements come from the reduction

on proof size for both unsatisfiability and entailment proofs by the effect of

proof slicing. For Z3, the total reduction on the prover time is about 60%

despite its own optimization mechanisms (e.g., the relevancy propagation

technique). Because our proof slicing mechanisms focus on the higher level

tasks of checking entailments and detecting unsatisfiability, they are able to

filter out irrelevant constraints more effectively whenever the relationships

3We did not pay attention to the verification overhead because it is almost constant across
different provers with and without proof slicing.
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Figure 5-9. Comparison of CS (c) and AS (a) over NS on examples with Weakly
Linking Components (s: size, h: height, b: balance factor, t: sets, n#: number of
(annotated) weakly linking components)

between constraints are preserved. Moreover, with proof slicing, the

unsatisfiability checks on the antecedents of entailment proofs are performed

incrementally and non-redundantly, thus bringing more performance gains.

The next set of experiments concerns annotated formulas, and the

application of AS. The inductive predicates of data structures used in this

benchmark are augmented with additional linking constraints that enhance

their precision to move towards verification of full functional correctness but

also greatly increase the complexity of the derived proof obligations.

Annotations for those linking constraints are inferred automatically, via a

number of heuristics. For example, each parameter of a heap predicate is

regarded as an independent property, unless it is mutually-dependent on

another parameter, leading to an approach where every constraint between two

distinct properties is always marked as weakly linking. Fig. 5-9 illustrates the

performance benefits of AS over CS in the relative comparison with NS. It

shows that in the presence of more complex specifications, AS performs better

than its complete counterpart. In these examples, proof obligations with set

constraints are discharged by MONA.

The fourth benchmark, called Spaguetti, came from the SLP tool [115]. It

includes a set of heap-based test cases; each of them comprises 1000
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randomly-generated, parameterized by the number of heap variables, UNSAT

checks of the form F ` false with the success rate about 50%. The SLP tool is

an optimized paramodulation prover, hardwired to support only the list

segment predicate, together with equality and disequality constraints on heap

addresses and thus yielding a very good performance (under 3 seconds for each

Spaguetti test case). With the help of AS together with a simple heuristic that

automatically marks each disequality as a weakly linking constraint, our

general-purpose separation logic-based prover is expected to achieve

comparable performance while allowing a much more expressive specification

language.
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Figure 5-10. Comparison (%) of CS and AS over NS on the Spaguetti Benchmark
with the number of heap variables from 10 to 20 (+ indicates caching used)

Unfortunately, as shown in Fig. 5-10, while the use of CS helps reduce the

prover times with Z3 (by about 76.2% in total), AS has only little extra effect

due to high numbers of (smaller) proofs generated. To obtain further

improvements, we have augmented our proof slicing framework with a simple

proof caching mechanism that memoizes on string representations of

normalized proof obligations. This brought about over 90% reduction (after

including overheads of both caching and slicing) when AS is used; thus the

performance is now comparable to the SPL tool. This outcome is supported by

a much higher hit rate (over 99%) from caching of smaller proofs generated by

AS, as compared to the hit rate from the combination of proof caching and CS.
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This effective result highlights the synergistic interplay between the proof

caching and AS although the idea of proof caching is not new. Moreover, with

the help of AS, an obsolete prover like Omega can catch up the performance of

the advanced prover Z3 because the number of disequalities, which are

expensively handled by Omega, is considerably reduced.

To investigate the portability of our proof slicing mechanisms, we have

equipped AS for the Frama-C verification system [50]. For evaluation, we

designed a family of contrived procedures, parameterized by the number of

their parameters, that do computation on these independent variables, so as to

illustrate the potential of AS. A version comprising two parameters is shown in

Fig 5-11. Our AS (without proof caching) is interposed between the Frama-C

verifier and the default Alt-Ergo prover. AS is supported by an annotation

heuristic marking simple constraints of the form v=2 as weakly linking

constraints. As can be seen from Fig. 5-12, the use of AS achieved good

performance gains in conjunction with the default prover. We have also

evaluated our proof slicing mechanism on a set of 20 small examples obtained

from the Frama-C distribution, on which the use of proof slicing did not yield

any noticeable gain. It remains our thesis that larger, more complex examples

would, in general, benefit more from our proof slicing methods.

void spring2 (int ∗x0, int ∗x1)
/∗@ requires ∗x0>2 ∧ ∗x1>2;

ensures ∗x0=old(∗x0)+2

∧ ∗x1=old(∗x1)+2 ∗/
{ int v = 2;
∗x0=∗x0+v; ∗x1=∗x1+v;
if (∗x0>4) {
∗x0++; ∗x1++;
if (∗x1>4) {
∗x0−−; ∗x1−−; }}}

Figure 5-11. A simple contrived
procedure
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on the Spring Benchmark with Frama-C. The
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the number of generated proof obligations are
given in the parentheses.
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5.8 Discussion

The problem of filtering irrelevant information has been studied under different

guises in several research areas. In [93], the authors focus on filtering out

non-relevant information in knowledge bases. They discuss the concept of free

variable independence for a conservative partitioning scheme and the concept

of forgetting constraints, by which they eliminate irrelevant variables and

produce the strongest consequent of the initial formula containing only relevant

variables. However, the lack of an aggressive slicing mechanism (which in our

case was supported by annotating weak links between distinct properties)

leads to higher overheads in both the elimination and the solving phases.

Huang et al. [83] focus on slicing proofs for the infeasibility of

counterexamples generated from a model checking process. The insight of this

work is that global proofs can be sliced into independent proofs of atomic

predicates, and memoization can be used to store the smaller proofs. While the

general slicing technique has also been refined via a myriad of proposals (such

as combined with abstract interpretation [138]), no mechanism has been

proposed to allow a more flexible tradeoff of effectiveness versus conservatism

in the slicing process.

Yet another direction of related research focuses on conservatively slicing

formulas in connected components in order to simplify the satisfiability and

entailment checks. In [6], Amir et al. introduce a methodology for representing

large knowledge bases, namely sets of axioms, as trees of loosely connected

partitions. They also define a message passing mechanism for reasoning over

individual partitions. This has the effect of maintaining the linking information,

but leading to higher overheads.

Simpler schemes, e.g., conservative partitioning, have been proposed for
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SAT solvers. The benefits of an union-find approach over the depth first search

in identifying partitions are emphasized in [24]. In [143], a hypergraph cut

method partitions the problem, then checks individual partitions and

corroborates the results based on the assignments of the linking variables.

In [121], SAT solvers are employed for each subproblem while delaying the

assignments of linking variables to reduce the search space. In contrast to these

methods, our approach refrains from converting implication checks into SAT

checks, thus doing a better job at identifying weak linking constraints, and

consequently yielding smaller proof slices. We also introduce customizable

formula slicing capabilities that facilitate the exploration of new strategies. Our

experiments shows that the approach is capable of speed gains without loss of

completeness.

Finally, we mention Craig interpolation-based approaches, such as [75],

that use interpolation to infer relevant predicates as a way of implementing

abstraction refinement more efficiently. In these approaches, the notion of

relevance is encoded in entailments and detected by an interpolating

prover [112]. In contrast, relevance detection in our approach is largely

syntactic, allowing the development of a generic proof slicing framework for

automated program verification that would be effective for a broad range of

off-the-shelf theorem provers used as back-end.
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Chapter 6

Conclusions

The main aim of this thesis was to enhance the expressiveness and the scalability

of total correctness proofs in program verification, especially termination and

non-termination analysis. These enhancements would benefit the verification of

large software systems with various complex program properties.

The first contribution of this study is a resource-based logic for termination

and non-termination reasoning. Although termination reasoning has been

intensively studied in the past, it remains a challenge for the technology

developed there to keep up with improvements to specification logic

infrastructure, and vice versa. We propose an approach that would combine the

two areas more closely together, through a tightly coupled union. Our unique

contribution is to embed both termination and non-termination reasoning

directly into specification logics, and to do so with the help of a temporal

entailment, developed in the form of resource reasoning. We show how the

termination properties can be captured by a resource logic based on execution

capacity, and how they could be abstracted into a flow-insensitive temporal

logic. This approach has several benefits. Its expressiveness is immediately

enhanced by any improvement to the underlying logics. It can also benefit from
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infrastructures that have been developed for the underlying logics, including

those that are related to program analysis. In particular, this approach allows us

to use the safety specifications as a basis for termination specification

inference. Last, but not least, it has placed termination and non-termination

reasoning as a first-class concept, much like what was originally envisioned by

Hoare’s logic for total correctness.

The second contribution of this study is a modular inference framework for

program termination and non-termination. By incorporating unknown pre/post

temporal predicates into the specification logic for program

termination/non-termination, our framework employs a Hoare-style forward

verification to collect a set of relational assumptions to help soundly discover

termination and non-termination properties. One major advantage of our

technique is that it analyzes program termination and non-termination at the

same time, and constructs a summary of termination behaviors for each

method. This enables better modularity and reuse for our proving processes.

Furthermore, it is integrated with a verification system allowing us to use

partial correctness specification and to re-check our inference outcome. We

have tested our implementation on a set of benchmark programs from a recent

termination competition, and found our approach to compare favorably against

the state-of-the-art termination analyzers.

The third contribution of this study is a formal proof slicing framework that

allows the development of modular and extensible proof slicing mechanisms to

enhance the scalability of verification systems. Relying on this general

framework, two different proof slicing mechanisms have been constructed:

− the complete proof slicing mechanism, which is totally automated and

− the aggressive proof slicing mechanism, which is based on a lightweight
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annotation scheme to achieve an even better performance. This

mechanism can be automated with the development of annotation

inference.

These mechanisms have been shown to be efficient and scalable by multi-fold

reductions in verification times for each of the state-of-the-art theorem provers

used as back-end of verification systems. The proof slicing framework is

believed to be important for automated verification systems that are geared

towards full functional correctness, where generated proof obligations are not

only large and complex but may also be highly intertwined.

6.1 Future Work

For future work, we shall expand the existing verification infrastructure for

broader application of the research presented in this thesis. There are several

interesting directions for further investigation:

A possible avenue for future work is a verification framework for programs

with real numbers and/or non-linear arithmetic, on top of which we develop a

specification logic and inference mechanism for proving termination and non-

termination of such programs. This framework would facilitate the application

of our proposal to new areas, such as hybrid systems. With the recent progress

on non-linear SMT solvers [62, 88], the construction of a verification system

supporting nonlinear arithmetic would be feasible and promising.

Another interesting area for future work is the extension of current

termination and non-termination analysis to array- and string-manipulating

programs with or without pointer arithmetic. This extension is needed to

complete our experiment with the SV-COMP’s benchmarks. Like other
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aspects, our starting point would be a verification and specification inference

system for programs with arrays and strings. Based on the current

infrastructure for separation logic in HIP/SLEEK system, we believe that the

support for string and array would be straightforward and feasible once

appropriate pure domain and segmented heap structures are suitably supported.

Lastly, the generation of counterexamples to termination should be

investigated in future. However, we aim to provide a general framework that

can generate and verify counterexamples to not only termination but also

several other safety properties, such as memory safety. Based on the point of

view that counterexamples are under-approximations which will be consumed

when errors occur, the development of this feature in HIP/SLEEK would be

useful for highlighting real bugs and how they were triggered.
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[115] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic
+ superposition calculus = heap theorem prover. In ACM SIGPLAN Conf.
on Programming Language Design and Implementation, pages 556–566,
2011.

[116] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin.
Automated verification of shape and size properties via separation
logic. In Int. Conf. on Verification, Model Checking, and Abstract
Interpretation, pages 251–266, 2007.

128



[117] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[118] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local
reasoning about programs that alter data structures. In Int. Workshop
on Computer Science Logic, pages 1–19, 2001.

[119] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation
and information hiding. ACM Trans. Program. Lang. Syst., 31(3), 2009.

[120] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl.
Automated Termination Analysis of Java Bytecode by Term Rewriting.
In Int. Conf. on Term Rewriting and Applications, pages 259–276, 2010.

[121] Tai Joon Park and Allen Van Gelder. Partitioning methods for
satisfiability testing on large formulas. In Int. Conf. on Automated
Deduction, pages 748–762, 1996.

[122] Matthew J. Parkinson and Gavin M. Bierman. Separation Logic,
Abstraction and Inheritance. In ACM Symposium on Principles of
Programming Languages, pages 75–86, 2008.

[123] Étienne Payet and Fausto Spoto. Experiments with Non-Termination
Analysis for Java Bytecode. Electr. Notes Theor. Comput. Sci.,
253(5):83–96, 2009.

[124] Charles Sanders Peirce. Collected papers of Charles Sanders Peirce.
Harvard University Press., 1958.

[125] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating
Separation Logic with Trees and Data. In Int. Conf. on Computer-Aided
Verification, pages 711–728, 2014.

[126] Andreas Podelski and Andrey Rybalchenko. A Complete Method for
the Synthesis of Linear Ranking Functions. In Int. Conf. on Verification,
Model Checking, and Abstract Interpretation, pages 239–251, 2004.

[127] Andreas Podelski and Andrey Rybalchenko. Transition Invariants. In
IEEE Symposium on Logic in Computer Science, pages 32–41, 2004.

[128] Andreas Podelski and Andrey Rybalchenko. Transition predicate
abstraction and fair termination. In ACM Symposium on Principles of
Programming Languages, pages 132–144, 2005.

[129] Andreas Podelski and Andrey Rybalchenko. ARMC: The Logical Choice
for Software Model Checking with Abstraction Refinement. In Int.
Symposium on Practical Aspects of Declarative Languages, pages 245–
259, 2007.

129



[130] Corneliu Popeea and Wei-Ngan Chin. Inferring Disjunctive
Postconditions. In Asian Computing Science Conf., pages 331–345, 2006.

[131] Corneliu Popeea and Wei-Ngan Chin. Dual analysis for proving safety
and finding bugs. In ACM Symposium on Applied Computing, pages
2137–2143, 2010.

[132] William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing, pages 4–13,
1991.

[133] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In IEEE Symposium on Logic in Computer Science, pages
55–74, 2002.

[134] John C. Reynolds. An overview of separation logic. In Int. Conf. on
Verified Software: Theories, Tools, Experiments, pages 460–469. 2008.

[135] Alan JA Robinson and Andrei Voronkov. Handbook of automated
reasoning, volume 2. Elsevier, 2001.

[136] Andrey Rybalchenko. Constraint Solving for Program Verification:
Theory and Practice by Example. In Int. Conf. on Computer-Aided
Verification, pages 57–71, 2010.

[137] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

[138] Hyoung Seok Hong, Insup Lee, and Oleg Sokolsky. Abstract Slicing: A
New Approach to Program Slicing Based on Abstract Interpretation and
Model Checking. In IEEE Int. Workshop on Source Code Analysis and
Manipulation, pages 25–34, 2005.

[139] Uffe Sørensen. Slicing for Uppaal. Technical report, AALBORG
University, 2008.

[140] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating
Validity Checker. In Int. Conf. on Computer-Aided Verification, pages
500–504, 2002.

[141] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Modular
Reasoning About Separation of Concurrent Data Structures. In European
Symposium on Programming Languages and Systems, pages 169–188,
2013.

[142] Gang Tan. A Collection of Well-Known Software Failures. http://www.

cse.lehigh.edu/˜gtan/bug/softwarebug.html, 2009.

130

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html


[143] Jose Torres-Jimenez, Luis Vega-Garcia, CA Coutino-Gomez, and
FJ Cartujano-Escobar. SSTP: An Approach to Solve SAT Instances
Through Partition. WSEAS Trans. on Computer, 3:1482–1487, 2004.

[144] Viktor Vafeiadis. Concurrent separation logic and operational semantics.
Electron. Notes Theor. Comput. Sci., 276:335–351, 2011.

[145] Viktor Vafeiadis and Matthew J. Parkinson. A Marriage of
Rely/Guarantee and Separation Logic. In Conf. on Concurrency Theory,
pages 256–271, 2007.

[146] Helga Velroyen and Philipp Rümmer. Non-termination checking for
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Appendix A

A.1 Proofs for Lemmas

Lemma 1 (Resource Entailments) Given resource assertions ρ, ρ1 and ρ2, ρ `

ρ1 I ρ2 iff ∀s, h, r, r1 · if (s, h, r) |= ρ and (s, h, r1) |= ρ1 then (s, h, r	 r1) |=

ρ2.

Proof. We have

ρ ` ρ1 I ρ2

≡ ∀s, h, r · if (s, h, r) |= ρ then (s, h, r) |= ρ1 I ρ2

(Defn. of logical entailment)

≡ ∀s, h, r · if (s, h, r) |= ρ then ∀r1·

if (s, h, r1) |= ρ1 then (s, h, r 	 r1) |= ρ2 (Semantics of ρ1 I ρ2)

≡ ∀s, h, r, r1 · if (s, h, r) |= ρ and (s, h, r1) |= ρ1 then (s, h, r 	 r1) |= ρ2 2

Lemma 2 If the termination of a program can be proven by a given

lexicographic termination measure, then for each call tree τ of the program,

every element of the termination measure applied to the program states

corresponding to the nodes in the call tree τ is bounded.

Proof. As the program can be proven to terminate by the measure

[Xn, Xn−1, . . . , X0], the corresponding evaluation call tree is finite. The reason
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is that if the call tree is infinite then by König’s lemma [91], there is an infinite

evaluation path, which means that the program is non-terminating.

Let Si be the set of evaluating values ofXi andN be the finite number of the

tree’s nodes. Then, for all i, the cardinality |Si|≤N or Si is finite. As a result,

the set S =
⋃
Si is also finite. The maximum value k of S is the upper bound

of every element of the given termination measure. 2

Lemma 3 For all xn, . . . , x0, yn, . . . , y0 ∈ N such that ∀i ∈ {0..n−1}·xi, yi <

b, [xn, . . . , x0] >l [yn, . . . , y0] iff D([xn, . . . , x0]) > D([yn, . . . , y0]), where >l

is the lexicographic ordering.

Proof. (⇒) From the premise, we have

∃i∈{0..n} · xn=yn∧ . . .∧xi+1=yi+1∧xi>yi. Consequently, xi−yi≥1.

Moreover, because ∀i · 0≤xi, yi<b, we also have 1−b ≤ xi−yi ≤ b−1. Let

consider

D([xn, xn−1, . . . , x0])−D([yn, yn−1, . . . , y0])

= (xi − yi) ∗ bi + (xi−1 − yi−1) ∗ bi−1 + . . .+ (x0 − y0)

≥ bi + (1− b) ∗ (bi−1 + . . .+ 1) = bi + (1− bi) = 1 > 0

Thus, D([xn, . . . , x0]) > D([yn, . . . , y0]).

(⇐) By contradiction, assume that [xn, . . . , x0] <l [yn, . . . , y0]. Similarly to

the above proof, we have D([yn, . . . , y0]) > D([xn, . . . , x0]), which is a

contradiction. Moreover, if ∀i · xi=yi then D([xn, . . . , x0])=D([yn, . . . , y0]).

As a result, [xn, . . . , x0] >l [yn, . . . , y0]. 2

A.2 Soundness Proofs

Our goal here is to prove the soundness of our resource-aware Hoare logic for

execution lengths. First, we outline an operational semantics for the verified
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strict imperative language. Second, we define a Hoare triple with respect to

this operational semantics and prove the soundness of our Hoare rules, i.e., the

operational semantics would get stuck on executions starting in states that falsify

the resource assertions.

Operational semantics. We have modified a standard small-step operational

semantics to incorporate the execution capacity. In Fig. A-1, we list only the

method call and return steps; the other steps do not interact with the execution

capacity in any interesting way. As mentioned previously, our core language

does not have loops. Therefore, execution capacity is only consumed at method

calls.

The formulation of the method call step ensures that at least one execution

step is still allowed by the current execution capacity, via the capacity

subtraction r	(1, 1), corresponding to the first entailment in the verification

rule [FV−CALL] in Fig. 3-6. As a result, the semantics will not allow (e.g.,

eventually get stuck on) executions which requires more resource than the

available resource upper bound in the initial states. For example, the semantics

will not allow infinite executions from states in which the capacity has finite

values.

The return operational rule ensures that executions do not finish if the

resource lower bound has not been consumed all. That is, the operational

semantics prohibits the return step if the call stack has height 1 and the

execution capacity has a non zero lower bound, which would equate with a

return from the outermost method before all the required steps have been taken.

Hoare Triples. We define the Hoare triple in a continuation-passing style as

in Appel and Blazy [8]. A configuration is a pair of code k and state σ. We say

135



t0 mn((t v)∗) {code}∈Prog
<(s, h, r),mn(w ∗)>↪→<([v 7→s[w]]∗:s, h, r	(1, 1)), code>

<(st:s, h, r), return v> ↪→ <s |res7→st[v], h, r,nop>

r = (0, )

<([st], h, r), return> ↪→ <[], h, r,nop>

Figure A-1. Key Rules in Operational Semantics

a configuration is safe, written safe(k, σ), if all reachable states are safely halted

or can continue to step:

safe(k, σ) ≡ ∀k′, σ′ · <σ, k> ↪→∗ <(s′, h′, r′), k′>→

((k′ = nop ∧ s′ = [] ∧ r′ = (0, ) ∨ ∃σ′′, k′′ ·<σ′, k′> ↪→ <σ′′, k′′>)

We say that a formula P guards code k, written guards(P, k) when the code k is

safe on any state accepted by P :

guards(P, k) ≡ ∀σ · σ |= P → safe(k, σ)

We now define the Hoare triple {Ψ}c{Φ} in a continuation passing style using

guards:

{Ψ}c{Φ} ≡ ∀k · guards(Φ, k) → guards(Ψ, c; k)

Note that we dramatically simplified Appel and Blazy’s Hoare tuple to

include just enough detail to indicate how the temporal assertions fit into the

setup without overwhelming the presentation. We conclude by stating the key

soundness theorems.

Theorem 2 (Safety) If ` {Ψ} c {Φ} then ∀σ · σ � Ψ→ safe(c, σ).
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Proof. For all σ, safe(nop, σ), so for all Φ, guards(Φ,nop). If we instantiate

k = nop in the Hoare triple definition then safety follows immediately. 2

In addition, by guaranteeing that the Hoare tuple {Ψ}c{Φ} holds, the safety

theorem also implies that the postcondition holds after the execution of the code

c. More precisely, this style of Hoare tuple implies the expected soundness

property for any decidable postcondition.

Proposition 3 If ` {Ψ} c {Φ} then Φ holds after the execution of the code c.

Proof. To show that if the Hoare tuple {Ψ}c{Φ} holds then the postcondition

Φ holds, we design the continuation k as a “tester” program that tests the

resulting state and gets stuck if the test fails, otherwise does nothing. For

example, consider a postcondition Φ = x>3, we can use a continuation k:

k = if (x > 3) then skip else get stuck

such that k will be safe iff the state of the machine after c’s execution satisfies

Φ. Thus, we know Φ guards k. We can feed that fact into our Hoare tuple to get

Ψ guards c; k. Therefore we know that either: (i) c does not terminate, or (ii) c

does terminate, and the resulting state is enough to make k safe, which implies

(by k’s construction) that Φ holds after c terminates. 2

Theorem 4 The standard Hoare rules (e.g., assignment, conditional,

sequential composition) are sound with respect to the semantics of our Hoare

judgment.

Proof. In [8], it is proven sound a set of Hoare rules very similar to ours for

a language that has many of the same features, e.g., load/ store/ assignment/

conditional, making the proofs of these features very similar. 2
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Theorem 5 The Hoare rules for method call and return are sound.

Proof. The proof of the return rule is standard, except in the case of returning

from a method requiring the resource assertion RC〈l, u〉whose the lower bound l

is larger than the actual execution length of the method. In this case, operational

semantics must get stuck. The Hoare rule for return requires that the CheckMin

predicate holds, meaning that return is not executed with any such precondition.

That is, the Hoare rule prohibits the execution of a return from a program state

with r = (l, ) where l > 0, which describes a superset of the states in which the

operational semantics would block when executing a return step. Specifically,

a proper Hoare derivation guarantees that non-terminating code never returns

since the lower bound l =∞ has never been consumed all.

The proof for the method call rule hinges on the proof that the precondition

guarantees that there exists an execution capacity with a smaller upper bound

that suffices for the callee. The resource-enhanced entailment from Sec. 3.3.3

and the Hoare rule for method call guarantee exactly this, meaning that a

proper Hoare derivation guarantees that all function calls requires smaller

upper bounds in their execution capacities than the available resource in the

current program state. Hence, this guarantees the upper bound requirement of

the resource assertion is never violated. 2

We have used an operational semantics enriched with execution counters to

show that a proper Hoare derivation guarantees that the operational semantics

never blocks in accordance with the resource specifications. However, the

execution counters do not have a counterpart in a “real machine” as modelled

by a standard operational semantics. Below we will outline one such standard,

erased semantics and show that our enriched semantics is a strict subset of the

erased semantics. Thus the soundness results for our resource logic with
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regards to the enriched semantics simply carry to the erased semantics.

t0 mn((t v)∗) {code}∈Prog

<(s, h),mn(w ∗)> ↪→ <([v 7→s[w]]∗:s, h), code>

<(st:s, h), return v> ↪→ <(s |res 7→st[v], h),nop>

Theorem 6 (Erasure) The set of executions allowed by the enriched

operational semantics is a subset of the set of executions allowed by the erased

operational semantics.

Proof. Each rule in the enriched operational semantics directly corresponds

to a rule in the erased operational semantics that has precisely a subset of its

premises. Since the enriched state never affects the erased state (except for

perhaps making the machine get stuck more often), any execution (sequence of

operational steps) in the enriched semantics corresponds directly to an execution

in the erased semantics. 2
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Appendix B

Lemma 4 (Soundness) All sequents proven using the rules of the slicing

framework are true.

Proof. Rule [P−UNSAT] is a syntactic conversion of a unsatisfiability

obligation into an implication obligation. Rule [P−ENTAIL] is an instance of

conjunction introduction rule of the sequent calculus [33]. Thus, every proof of

the slicing framework is a proof of the sequent calculus, and consequently, the

slicing framework rules are sound. 2

Lemma 5 [SPLIT] with [AS−CORRELATION] is confluent.

Proof. Firstly, due to the set intersection operator being symmetric, the

[AS−CORRELATION] relation is symmetric as well. Secondly, note that the

[SPLIT] rule considers every constraint in the initial constraint set. The only

possibility for the outcomes to be different is if the order is important. However

due to the symmetry of the [AS−CORRELATION] and the fact that P1∪P2 covers

all the elements in the partially constructed slicing R, the partitioning ensures

that all previously considered constraints that are in the [AS−CORRELATION]

relation with the current constraint will be part of the same slice. 2

Lemma 6 (Relative completeness) Let P ′ ` Q be the sequent obtained by
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applying the complete slicing rules to the sequent P ` Q, where Q is atomic.

Let LKT be a sequent calculus obtained from LK by augmenting it with rules

from a theory T that can handle the interpreted symbols of our formulas. If

P ` Q is provable, and P is satisfiable in LKT , then P ′ ` Q, is also provable

in LKT .

Proof. The slicing mechanism will first convert P into the conjunction P ′∧P ′′,

where V(P ′′) ∩ V(Q) = {}. It can then be decided that P ′′ can be discarded,

and P ′ ` Q is retained as a viable proof obligation. At this point, we have

to make use of the statement that a sequent R1 ∧ R2 ` R can be reduced to

R1 ` R if V(R2) ∩ V(R) = {}, and R1 ∧ R2 is satisfiable. This statement can

be proved by structural induction on the proof tree of R1 ∧ R2 ` R. Based on

this statement, repeated eliminations of irrelevant hypotheses would not change

the LKT provability of P ′ ` Q, which establishes the original claim. 2
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