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Summary

Adult scoliosisisdefined asa spinal deformity in askeletally mature patient
with the Cobb angle of more than 10 degrees in the corona plane. Adolescent
idiopathic scoliosis (AlS) is a long-term disease, affecting some 3% to 5% of
children; it is defined as a lateral curvature of the spine greater than 10 degrees
accompanied by vertebral rotation. Usually, a complex three-dimensional (3D)
deformity of the spinewill affect the quality of life during the period of rapid growth,
leading to a damaged self-image, potential back pain, and pulmonary and cardiac
complications in later life. A number of scientists reported that AIS is one of the
most epidemic muscul oskeletal diseases affecting children because of the vertebral
rotation and deformity resulting in rib cage and flank muscle asymmetries. For
diagnosis purposes, most children need to be monitored routinely using X-ray
radiography after assessing by the Adams forward bending test asregularly asevery
three months, resulting in high and frequent exposure of radiation.

In order to reduce X-ray exposure and diagnosis cost, a mechanically-
assisted system is a potential application in scoliosis measurement. The objective
of this research isto build a non-contact and radiation-free system to evaluate and
assess the severity of human spinal deformity. Aninnovative and integrative system
consisting of a Stewart platform, which is a parallel manipulator, a controllable
mechanical frame and motion capture technique is proposed in this research. The
patient’s posture is controlled precisely using the Stewart platform which assiststhe
subject to bend his trunk and spine according to a series of pre-defined angles. The
subject’s bending postures are precisely controlled into 0°, 30°, 45°, 60° and 90°.

For each of the postures, an image of the subject’s back surface is captured with a

viii



stereo camera system. The shapes of the spine and trunk are measured to evaluate
the presence and severity of scoliosis through quantitative and reliable analysis
before the subject is referred to the hospital for further inspection.

To complement the Cobb angle which is a standard parameter for scoliosis
evaluation, two 2D novel evaluation indices, IVAS and MIVAS, for adolescent
idiopathic scoliosis measurement and diagnosis are introduced to complement the
existing assessment index, such as the Cobb angle, the differences of shoulder
height, etc. Besidesthe IVAS and MIVAS parameters, a 3D parameter named
3DIVAS was designed for measuring the severity of scoliosis. A comparison
between the Cobb angle and IVAS, the Cobb angle and MIVAS and the Cobb
angle and 3DIVAS has been conducted in thisthesis. The correlation coefficient
i 0.9284 between IVAS and the Cobb angle, 0.9175 between MIVAS and the
Cobb angle and 0.9116 between 3DIVAS and the Cobb angle. The high
correlation found between the clinical variable (Cobb angle) and topographic
variables (IVAS, MIVAS and 3DIVAYS) shows that although different calculation
methods are used for different deformities, they have the potential to be used as
tools for supporting the traditional scoliosis measurement methods.

A data sample of 30 X-ray images of scoliotic spines from 30 patients
including 22 C-shape spines and 8 S-shape spines was used in this research to
evaluate and examine the usability and validity of the new index. The correlation
between the Cobb angle and the indices was a so determined, and ahigh correlation

is found which demonstrated the usefulness of this proposed indices.
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Chapter 1 Introduction
1.1 Overview

Adolescent idiopathic scoliosis (AlS) is a long-term spinal disease which
affects some 3% to 5% of children in the at-risk population aged between 10-16
years. The human spine scoliosisisdefined asalateral curvature of the spine greater
than 10 degrees accompanied by vertebral rotation. The etiology of this disorder
remains unknown. It isthought to be amulti-gene dominant condition with variable
phenotypic expression. Nowadays, this area is a much pursued research topic as
more researchers and clinical doctors are working on spine scoliosis rehabilitation.

As reported, idiopathic scoliosis is a classic orthopedic disorder in which
the etiology and pathogenesis still remain unidentified, although the genetic factor
and spinal biomechanics have been shown to play an important role. Usualy, a
complex three-dimensional (3D) deformity of the spine will affect the quality of
life during the period of rapid growth, leading to a damaged self-image, potentia
back pain, and pulmonary and cardiac complicationsin later life.

In school screening, in order to check the spinal shape and pre-inspect the
occurrence of scoliosis for teenagers, a physical examination will be conducted in
school before the teenagers need to be referred to hospitals or clinics. The Adams
forward bending test, a popular evaluation technique used for school scoliosis
screenings, is the most basic form of back-shape analysis method used to look for
scoliosis in school-aged youngsters. However, according to reports, the Adams
forward bending test fails to detect a significant number of scoliosis cases,

especially when it is used as the sole screening method. Besides, this method also



suffers from the problem that it is not sensitive to abnormalities in the lower back,
which isavery common site for scoliosis.

In clinics or hospitals, the traditional method for assessing scoliosis is the
Cobb angle measurement. A radiograph of the spine is made in the corona plane
and the angle of any spinal curve is measured. The Cobb angle is an important
measurement index in diagnosing scoliosis and determining the type of treatment.
Severa disadvantages should be noted. Biomechanically, scoliosis is a 3D
deformity of the spine. However, the radiographic Cobb angle measurement only
provides two-dimensional (2D) information, which makes this method unreliable.
In order to track the growth of spinal deformity, the patients have to take
radiographs regularly, which could lead to potential ill effects of radiation leading
to genetic mutation.

In order to overcome the limitation of the traditional methods for human
spine scoliosis measurement, an innovative and new methodology needs to be
developed to reduce the potential radiation exposure and increase the measurement
accuracy, which will be a key element for decision making by both surgeons and
patients.

To sum up, this project aims to develop an innovative, non-contact and
radiation-free system for human spine deformity measurement and assessment
based on stereo vision technology and Stewart platform (SP) manipulation to
precisaly evaluate a patient’s trunk topology, and this system can be considered for
implementation in the schools for teenagers’ health condition examination.

Furthermore, aset of innovative eval uation indices has been established and

introduced for adolescent idiopathic scoliosis measurement and diagnosis for the



complementation of the existing evaluation parameters. The new evaluation index
is based on the phenomenon of the tilt and deviation of the vertebras in a scoliotic
spine, which forms the tile angles between each pair of adjacent vertebras.

To examine and estimate the usability and validity of the new indices, adata
sample of 30 X-ray images of scoliotic spines was used in the preliminary
experiment. The Cobb angle and the new indices were calculated and compared
based on the same data sample. The correlation coefficient between the Cobb angle
and the new indices was aso determined. The correlation coefficient is 0.9284
between IVAS and the Cobb angle, 0.9175 between MIVAS and the Cobb angle
and 0.9116 between 3DIVAS and the Cobb angle. And the high correlation isfound
which demonstrated the usefulness of these proposed indices. In this simulation, it
has been shown that the newly-proposed indices have the potential to be used as a
tool to support the traditiona scoliosis measurement methods.

Using this system, a subject’s bending posture can be obtained with high
repeatability in a series of pre-defined angles, e.g., 0°, 30°, 45°, and 90°. For each
posture, the images of the subject’s back can be captured using stereo cameras and
analyzed quantitatively to determine the presence and severity of scoliosis.
Furthermore, all the data are stored in the database for further monitoring and
assessment.

This research presents the design, development, construction of a spinal
deformity measurement system for 3D spatial investigation of human spine shapes.
To achieve better results and higher precision, three cameras are utilized
simultaneously to attain sufficient redundancy to guarantee high accuracy and

consistency of the measurement. By introducing information-driven assessment



tools, this research can help doctors and surgeons treat individua patients with
greater safety, improved efficacy, and reduced morbidity in the measurement of

scoliosis.

1.2 Background

As one of the mgjor skeletal diseases in adolescents, where in the magjority
of cases it is manifested as a ‘C’ shape or ‘S’ shape (Willner 1974), scoliosis or
spinal curvature occursin three dimensions accompanied with the trunk rotation as
the significant indications usually being changes in body symmetry and back
surface shape. The regular examination by taking X-ray images exposes patients to
high level of ionizing radiation which is potentially harmful to the patients’ health
(Lonstein et a. 1989). Many previous works of orthopedists and researchers have
made agreat contribution to reduce the radiation exposure by exploring non-contact
and radiation-free methods through discovering the correlation between the human
back surface topology and the severity of spinal deformity (Hoffman et al. 1983),
such as (1) a posterior-anterior projection, (2) specially designed leaded acrylic
filters, (3) ahigh-speed screen-film system, (4) aspecially designed cassette-hol der
and grid, (5) abreast-shield and (6) additional filtration in the x-ray tube. However,
these techniques have not gained wide acceptance in the hospitals and clinics as
they are assessed to be prone to biases caused by patients’ movements, breathing,
posture and sway, limiting their practical utility.

In this thesis, the application of a combination of surface topology
generation technique and a mechanical platform is described as a potential

alternative vauation for adolescent idiopathic scoliosis patients. For most of the



patients, seemingly the inspiration of looking for treatment is to improve the
appearance of the back and body shape rather than to correct the underlying spinal
disease. Thus, the psychosocia and physical concerns and cosmetic impacts remain
important aspects in the diagnosis decision-making process. Due to the current
medical statistics, thereisagrowing need to quantify the body asymmetry and back
surface shape aiming for producing a widely agreed methodology to be used in
devel oping treatment plans and eval uating treatment outcomes. The purpose of the
research isto develop an original, low cost and safe apparatus using stereo vision
techniques and motion capture technology to acquire multiple locations of markers
on a patient’s back and other feature samples of the back surface shape to provide
accurate results for quantitative and reliable analyses of the cosmetic defect and
underlying impairment.

To examine the adolescent idiopathic scoliosis for school pupils, the
opportunity to quantify routinely and reliably the cosmetic deficiency and decrease
the radiation exposure would motivate more important studies for improving the

quality of life for the affected children all over the country.

1.2.1 Adolescent I diopathic Scoliosis

Different groups have different definitions of scoliosis, which are usually
specified aslarger than 10 degrees|lateral curvature of the spine, as measured using
the benchmark Cobb angle method, typically accompanied by vertebra rotation
(Stokes 1994; Homocystinuria 2001). Nowadays, it is a popular research topic as
increasingly more researchers and clinica doctors have committed to spine

scoliosis rehabilitation. A number of scientists reported that AIS is one of the most



epidemic musculoskeletal diseases affecting children (Narayanan 2008) because of
the vertebral rotation and deformity resulting in rib cage and flank muscle
asymmetries (Dolan et al. 2008). In general, a serious 3D deformity of the spine
will affect the appearance and the quality of life during a person’s growing period,
leading to a self-abased image, potential waist and back pain, and cardiac

complicationin later life (Moe et al. 1983).

1.2.2 Surface Topology Generation Technology

Surface topology (Eigensee et a. 1997) is the terminology most frequently
used to study the properties that are preserved under continuous deformations
including stretching and bending, but not tearing or gluing. The phrase surface
topology is frequently used to explain the technology concentrating on the
description of the position of the feature points in terms of coordinate system
including altitude, latitude and longitude. Besides mathematics, surface topol ogy
generation techniques have been applied to other fields including bioengineering,
rehabilitation research, fluid mechanics, etc.

The availability of motion capture techniques provides an opportunity to
describe accurately the 3D position of multiple points and to investigate novel ways
of enhancing the usefulness of existing topographical descriptions by introducing
the capability of acquiring identified feature samples from distorted shapes and
surfaces. The surface topography generation method was applied to the epidemic
problem of scoliosis measurement by modifying the performance of self-built

equipment and examining the applicability of the system.



Laulund et a. (1982) have attempted to apply the surface topography
generation technology to school screening for structural scoliosis, whichis auseful
technique in the assessment of various trunk disorders, and have developed an
apparatus to take an individual measurement of back surface contour and 3D
information of the reflective markers from teenagers diagnosed with deformed
spinal disease named adolescent idiopathic scoliosis. Many researchers have made
outstanding contributions to the research of scoliosis diagnosis and treatment, such
as the Moiré technique used by Takasaki and his team (Takasaki et a. 1970) and
the ISIS system invented by the Oxford Orthopedics Engineering Centre (Patias et
al. 2006). Although many distinguished scientists and groups have tried to develop
and commercialize the human back surface topology generation apparatus and
systems for use in the evaluation of the impact of scoliosis, none of them have
gained wide clinical acceptance.

The main focus of the research is to monitor the progress of an affected
child’s trunk using radiation-free topology generation technology, and if necessary
provide suggestions to stabilize the skeletal defect to prevent any deterioration
condition. During the past few decades, there has been growing emphasis on the
evaluation of the psychosocial impacts from the changes in body shapes and
physical imbalance in order to generate an appropriate treatment plan. Overal, the
surface topology generation technology could be potentialy useful in the
assessment of back surface shape and the severity of scoliosis through measuring
multiple samples.

1. 3 Objective and Significance of the Research



The popular method of monitoring the progress of scoliosisand quantifying
the degree of spinal deformity isto take measurements from full poster-anterior X-
ray images. The Cobb angle is used as a standard measurement to determine and
track the progression of scoliosis. Dr John Cobb invented this method in 1948
(Cobb 1948). Although the radiography technology and Cobb angle are still
regarded as the “golden standard” against all the other newly developed methods,
the radiography method and Cobb angle index have some limitations. Since the
etiology and pathogenesis still remain unknown, several indirect scoliosisdiagnosis
and measurement approaches and systems have been proposed. The mechanisms
become even more complex when different techniques, such as handheld devices
(Thulbourne 1976; Bunnell 1984; Pun et al. 1987; Pearsall et a. 1992; Pruijset al.
1995), optical-electronic techniques, Moiré fringe technique (Adair et a. 1977;
Ruggerone and Austin 1986; Sahlstrand 1986; Poncet et a. 2001), X-ray
technology, etc., are introduced to investigate the human back topology.

The research gaps of the previous methods of human spinal deformity
measurement and trunk distortion evaluation index are summarized as follows:

 Although the pre-examined method of Adams forward bending test has
been applied in the school screen program as the most commonly used approach, it
bearsthe disadvantage of judgment subjectivity from doctors or orthopedists, which
isusually called theinter-observer and intra-observer variations (Carman et al . 1990;
Morrissy et al. 1990; W. Keessen 1994; Delorme et al. 2002; Stokes and Aronsson
2006). Asreported, it is arguable whether this method is sufficiently reliable.

* In hospitals and clinics, the traditional method for assessing scoliosis,

which usesthe Cobb angle model and regular X -ray radiograph of the spine, ismade



in the corona plane that it is a 2D numerical representation of a 3D deformity,
which is questionable (Stokes and Moreland 1989; Beauchamp et al. 1993).
However, this method suffers from severe shortcomings of inaccuracy, potential
harm from radiation exposure and high cost (Goldberg et al. 1996).

* Currently, there are few studies on methods that could allow the doctors
to bend the patients in postures accurately to acquire fast and accurate results and
to manipulate the output datain adatabase easily. Thereis hardly any reported work
in the field of applying the SP in facilitating the measurement of scoliosis.

The main aim of this study is to develop a radiation-free non-contact
methodology for human spinal deformity measurement based on stereo vision
photography and SP manipulation. The specific objectives of the research are as
follows.

* Propose an dternative method for accurate body trunk deformity
assessment using surface measurement techniques.

e Design and construct a spinal deformity measurement apparatus and
hardware system.

* Investigate the possibility to achieve precise human posture control with
the use of SP.

 Design and validate anew evaluation index and parameter to represent the
severity indication of human spine scoliosis.

The new methodol ogy and results of this present study may have significant
guidance and impact on both providing an aternative approach for human spine
distortion evaluation and offering a new scoliosis evauation indicator in the

following aspects.



* First, the new measurement apparatus provides the methodology and
practical application of using SP for human spine deformity assessment.

 Second, the proposal and theoretical application of specially designed
estimation indices to present the trunk distortion and back surface topology

quantitatively.

1.4 Outline of the Thesis

Chapter 2 gives a review and summary of the medical and orthopedic
literature to describe the development, pathogenesis, observable characteristics of
the adolescent idiopathic scoliosis and engineering literature to introduce the
prevalent measurement technology to evaluate the severity and progression of the
disease. In this chapter, different methods and technologies to assess human back
scoliosis are introduced and the advantages and disadvantages of these methods are
compared. A review of the early efforts by many researchers and doctors to
minimize the ionizing exposure of X-ray radiation to the patients by using surface
topology generation techniques is included in this part. As the SP plays important
rolesin the overall system, a short review on the development, design, and control
of the SP is described. Furthermore, this chapter provides a literature review of
different measurement parameters and indices for spina deformity to assess the
validity and potential usefulness of the existing measures to better describe body
shape and back surface asymmetries.

Chapter 3 describes the design, development and construction of a
mechanical apparatus based on the SP, motion capture techniques and stereo vision

technology that is safe, and capable of obtaining the exact 3D spatial position of the
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bony markers and back surface shape. In this chapter, both the smulation of the
system and construction of the mechanical apparatus are introduced.

Chapter 4 focuses on the development of two novel evaluation parameters,
namely, inter-vertebraangular separation index (IVAS) and modified inter-vertebra
angular separation index (MIVAS), for adolescent idiopathic scoliosis progression
measurement and diagnosis. A new 3D index of 3DIVASisaso developed. A data
sample of several X-ray images of scoliotic spines is used in this research to
evaluate and examine the validity of the new indices. The correlation between the
Cobb angle and the IVAS index, MIVAS index and the 3DIVAS index is aso
determined. The correlation coefficient is0.9284 between IVAS and the Cobb angle,
0.9175 between MIVAS and the Cobb angle and 0.9116 between 3DIVAS and the
Cobb angle. The high correlation demonstrates the usefulness of these indices.

Chapter 5introducesthe performance testing processfor the overall system
and validates the test results to confirm that the apparatus is capable of being
utilized, and the 3D locations of the feature points attached on the model’s back
surface can be reconstructed with clinically acceptable solutions. This chapter
describes the setup of the overall system including the SP, the mechanical frames
and the camera system. A tria experiment is performed using the system and the
results are based on the data samples acquired from a physical spinal model.

Chapter 6 presents the process of system calibration and spinal deformity
evaluation process optimization. The manufacturing and assembly tolerance is
discussed to decrease the effect on the apparatus accuracy. The reflective markers
and stereo cameras are used for positioning the location of the mechanical frame.

The theoretical position of the frame calculated from the forward kinematic

11



algorithm and practical position of the frame are compared. The custom-built
analysis software is designed in Matlab, including the user interface for controlling
the SP, stereo camera system for motion capturing and the results interpretation
interface.

Chapter 7 describes the experiments to evaluate the usability of the system
using the physical spinal model following a series of forward bending angles
precisely controlled by the mechanical frame. This chapter includes the calculation
of the two proposed novel angular separation indices and other conventional
parameters to describe the severity of deformity of back surface topology using the
sample data. From these sample data and the novel angular separation indices,
distorted surface data is constructed to simulate the occurrence of scoliosis.

Chapter 8 reviews the overall accomplishment in this study and discusses
the results obtained. The results are compared with published data from
conventional systems and are found to be comparable. In this chapter, further
research and future potential applications are proposed to strengthen the clinical
usefulness of surface topology generation technology for the evaluation of
adolescent idiopathic scoliosis. References and appendices are presented after the

main body of the thesis, including sample data, figures and tables in this research.
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Chapter 2 Literature Review and Related Work
2.1 Adolescent Idiopathic Scoliosis
2.1.1 Definition and Brief Introduction of Scoliosis

Adolescent idiopathic scoliosis, smply defined as alateral curvature of the
spine, has been recognized clinically for centuries. The deformity is actually much
more complicated, and to describe more completely and quantify scoliosis
deformity, three planar and 3D terminology and measurements are required (Stokes
1994). However, for practical purposes, the deformity can be measured most
conventionally from the standing coronal plane radiographs using the Cobb angle
technique (Cobb 1948).

For certain patients, an underlying cause can be determined, including
congenital changes, secondary changes related to neuropathic or myopathic
conditions, or later in life from degenerative spondylosis. However, the cause of
most of the scoliosis cases is not known (Kleinberg 1922). Adolescent idiopathic
scoliosis is present in 3-5% of the children between 10 and 16 years of age (I.
Busscher 2010). It is defined as a lateral curvature of the spine greater than 10
degrees accompanied by vertebral rotation. It is thought to be a multi-gene
dominant condition with the variable phenotypic expression. Severe pain, a left
thoracic curve or an abnormal neurologic examination are red flags that point to a
secondary cause for spina deformity. Specialty consultation and magnetic
resonance imaging are needed if red flags are present.

Adolescent idiopathic scoliosis can probably be considered asacomplicated
genetic trait disorder. There is often a positive family history but the pattern of

inherited susceptibility is not clear. Current information suggests that there is
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genetic heterogeneity (Mao et al. 2013). This indicates that multiple potential
factors are acting either dependently or independently in its pathogenesis (Lowe et
al. 2000).

The prevalence of the rate of adolescent idiopathic scoliosis, using an angle
of 10° or more, is approximately 2-2.5% (Kane 1977; Weinstein et al. 2008).
Generaly, 9.2% of the scoliosis has been reported although only 0.23% requires
treatment (Nissinen et a. 1993). The differences that have been found between
specific populations are thought to be due to genetic factors (Giampietro et a. 2003).
In addition, environmental factors may also be apossible factor (Grivaset al. 2005).

The prevalenceisvery dependent on the curve size cut-off point, decreasing
from 4.5% for curves of 6 degrees or moreto only 0.29% for curves of 21° or more.
It is also very dependent on sex, with one girl to one boy for curves of 6-10° but
5.4 girlsto one boy for curves of 21° or more (Rogala et al. 1978).

Theincidence, by year of birth, of treatment (brace or surgery) isremarkably
stable averaging 0.26% (range, 0.14-0.43%) over a 23 year period from 1955
through 1977 (Montgomery and Willner 1997). The female to male ratio in this
treatment (brace or surgery) series was 7 to 1. Although the ratio of braced to
operated patients was not provided, it is generally thought that approximately 0.1%

will warrant surgery (Asher and Burton 2006).

2.1.2 Classification of Spine Defor mity

The Scoliosis Research Society has defined the scoliosis as deformity which

occurs at the lateral side of the spine greater than 10 degrees as measured using the
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Cobb method on a standing radiograph (Kane 1977). Theidiopathic spine curvature
isastructural curve with no clear underlying cause.

Idiopathic scoliosis is classified based on the age of the patient when it is
first identified. Infantile scoliosis has an onset before 3 years of age. The infantile
form accounts for less than 1% of all cases. Juvenile scoliosis contributes to 12%
to 21% of al the patients with scoliosis (Dobbs and Weinstein 1999), which isfirst
detected between 3 to 10 years old. Adolescent idiopathic scoliosis is found
between 10 years old and growth maturity and this stage of spine deformity
accounts for the majority of all the idiopathic scoliosis.

Idiopathic scoliosis has been sub-divided into three groups (James 1954)

based on the practical observation as shownin Table 2.1.

Table 2.1: classification of idiopathic scoliosis patients according to age

Groups | Infantile Scoliosis | Juvenile Scoliosis | Adolescent Scoliosis

Age Age before 3 Age5to 8 Age 10 until end of growth

Thisisthe most widely used classification (Pehrsson et al. 1992; Robinson
and McMaster 1996). Among all the cases of scoliosis, 80% or more is of the
adolescent variety (Riseborough and Wynne-Davies 1973). As it is often not
possible to determine the age of onset, it is likely that there is an overlap at the
classification of infantile/juvenile interface and at the classification of
juvenile/adolescent interface. The most common infantile curves presented are the
left thoracic apex, and males are affected more frequently. The most common
juvenile curves are the right thoracic apex and females are more frequently affected

(McMaster 1983).
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2.1.3 Effects of Spinal Defor mity

Some of the bonesin a scoliotic spine may have rotated slightly, making the
person’s waist or shoulders appear uneven. The scoliotic spine can cause serious
effects on human breathing and heart function. Regarding the effects of scoliosis
on bones, it can engender osteoporosis, a type of disease which makes one’s bones
extremely weak. Normally, the effect of scoliosis depends on how severe the
curvatureis. One thing for sureisthat it is not life threatening.

In the mid-type of scoliosis, where the curvature is less than 20 degrees,
there is no effect on the lungs whereas in the moderate type of scoliosis (25 to 70
degrees) there is some difficulty while exercising. In the case of severe scoliosis,
problems can occur in the heart and lungs, e.g., one may experience problemswhile
breathing and it can also cause pressure on the lungs (Dobbs and Weinstein 1999).

One example of a patient with scoliosisis shown in Figure 2.1.

Figure 2.1: An example of comparison before and after treatment of scoliosis

(http://bepainfreeforlife.com/2010/07/14/egoscue-and-scoliosi /)
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2.1.4 Indicatorsfor Spinal Deformity Diagnosis

Once a diagnosis of scoliosis has been decided, the primary concerns are
whether there is an underlying cause and if the scoliosis will progress and
deteriorate. There are several parametersto determinethe spine deformity diagnosis.

In summary, the three main determinants of progression are patient gender,
future growth potential and the curve magnitude at thetime of diagnosis. In all cases,
females have arisk of curve progression 10 times higher than males (Miller 1999).

Evaluation of growth potential is done by assessing the Tanner stage and
the Risser grade. Tanner stages 2 to 3 occur just after the onset of the pubertal
growth spurt and are the time of maximum progression of scoliosis (Renshaw 1993).
The Risser grade (from 0 to 5) gives a useful estimate of how much skeletal growth
remains by grading the progress of bony fusion of the iliac apophysis. The iliac
apophysis ossifies in a predictable fashion from anterolateral to posteromedial
along the iliac crest. Risser grades are used as follows: grade O signifies no
ossification, grade 1 signifies up to 25% ossification, grade 2 signifies 26% to 50%
ossification, grade 3 signifies 51% to 75% ossification, grade 4 signifies 76% up to
100% ossification and grade 5 signifies complete bony fusion of the apophysis
(Lonstein 1994). Figure 2.2 isan example of Risser gradesfrom 0to 5. In one study
(Lonstein and Carlson 1984), the Risser grade was found to be directly correlated

with the risk of curve progression.

17



Figure 2.2: Risser grades 0 to 5. Grading is based on the degree of bony fusion of
theiliac apophysis, from grade O (no ossification) to grade 5 (complete bony

fusion) (Reamy et a. 2001)

The most commonly used clinical method to measure spine deformity is the
Cobb angle, which is derived from a standard radiograph of the spinein a standing
posture. This measurement istaken by first finding the most affected vertebrain the
curve, called the apical vertebra. The apical vertebrais the spinal bone that has the
most rotation and displacement from itsideal alignment. It also hasthe least amount
of tilt, as measured by the angle of the endplates (top and bottom edges of vertebral
body).

To come up with anumber for the Cobb angle, the top and bottom vertebrae
of the curve are identified. These bones have the most tilt, but the least amount of
rotation and displacement.

In an X-ray radiograph, aline is drawn along the edge of the vertebrae and
extended out. On the top bone, the line starts at the high side, and is drawn aong

the top edge and slopes downward according to the angle of the vertebra. On the
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bottom vertebra, thelineisdrawn along the bottom edge and will slopein an upward
direction. Perpendicular lines are then drawn from both lines so that they meet each
other at the level of the apical vertebraidentified in the first step and this processis

shown in Figure 2.3.

o

Figure 2.3: The Cobb angle method of measuring the degree of scoliosis. The
physician chooses the most tilted vertebrae above and bel ow the apex of the curve

(http://www.e-radiography.net/radpath/c/cobbs-angle.htm).

The Cobb angle is found by measuring the angle of the two intersecting
perpendicular lines. If the Cobb angleis 15 degreesor less, it islikely that one will
need regular check-ups to see if the curveis progressing. If it is between 20 and 40
degrees, one will probably need a back brace. If it is over 40 degrees, the doctor

will likely recommend surgery.
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2.1.5 Adolescent Scoliosis Treatment

Adolescent idiopathic scoliosis is diagnosed and treated worldwide, and
treatment approaches vary internationally. The treatment with bracing is to prevent
progression of the curve until the patient reaches skeletal maturity, at which time
the risk of curve progression (and hence the risk of surgery) greatly diminishes.

Figure 2.4 shows an example of ateenager before and after brace implantation.

@ (b) (©) (d)

Figure 2.4: Radiographs of a teenager with progressive AlS treated by posterior

instrumentation by hybrid (rods, hooks, and screws) (a) Preoperative standing
posterior-anterior (PA); (b) preoperative standing lateral; (c) postoperative standing

PA; and (d) postoperative standing lateral (Weinstein et al. 2008).

2.1.6 Spinal Screening in Schools
School spina screening has been developed to identify adolescents with
small spinal curves and refer them for treatment before these curves become too

severe. The school spinal screening for students uses school nursesand other trained
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adultsto screen all students. Careful training and understanding of spinal screening
is essential for the success of this program.

The screening process identifies students who have some physical findings
that suggest a spina curve. However, the screening process does not diagnose a
spinal deformity. A student showing these findings is referred to a physician who
completes an extensive examination and takes x-rays to confirm whether or not the
student has an abnormal spinal curve. At that point, the physician can provide
recommendations for treatment.

The Adams forward bending test is the most commonly used method in
schools for spinal screening.

The children bend forward dangling the arms, with the feet closed together
and knees straight. The curve of structural scoliosisis more apparent when bending
over. In a child with scoliosis, the examiner may observe an imbalanced rib cage,
with one side being higher than the other, or other deformities.

A scoliometer is one type of inclinometer that is used to measure distortion
of the torso. The scoliometer is placed on the back of the subject and it measures
the apex (the highest point) of the upper back curve. The subject continues bending
until the curve can be seen in the lower back (lumbar area). The apex of this curve
IS also measured.

After theregular assessment in the school for adol escent idiopathic scoliosis,
the students and pupils who need further diagnosis will be sent to the hospitals for

professional clinical tests or surgery if necessary.

2.2 Existing Human Back Surface M easurement Techniques
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The human back surface measurement technologies are used for surface
topology generation and detection before adolescent idiopathic scoliosis is
diagnosed. As reported, for many patients with scoliosis and their family, the most
important concern is directly related to the effects of their back shape and back
surface cosmetic deformity rather than correction and treatment of the curvature.
Therefore, the focus of human back surface measurement with potentially unneeded
radiation exposure has encouraged many scientists and doctors to search for ways

of quantifying deformity based on body shape and back asymmetry.

2.2.1 Smple Handheld Devices

Surface measurement techniques range from observational approaches to
optic-electronic methods. A simple angle measurement device which is caled a
scoliometer for measuring the length of the human spine was first invented by
Bunnell in early 1984 (Bunnell 1984; Bunnell 1993) in an attempt to compute the
severity of deformity by measuring spine irregularity when a child is undertaking
an Adams forward bending test. A scoliometer is a ruler with a U-shape concave
gap as shown in Figure 2.5. Although this device is easy-to-use and inexpensive
and could readily be used by experienced orthopaedic surgeons as an indicator for
further diagnosis and treatment, it has the disadvantages of doctor’s subjectivity and
is inherently prone to postural and breathing bias, with significant inter and intra

observer error (Coté et a. 1998).
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Figure 2.5: An example of scoliometer for forward bending test

(http://www.orthol utions.com/scoliosis-rsc-brace-treatment/measure-scoliosis-

bunnell-adams-test-cobb/)

Distortions of the torso is another indicator for measuring scoliosis. An
inclinometer (Scoliometer) measures distortions of the torso. The patient is asked
to bend over, with arms dangling and palms pressed together, until a curve can be
observed in the thoracic area (the upper back). The Scoliometer is placed on the
back and used to measure the apex (the highest point) of the curve. In Figure 2.6,
the method of measuring scoliosis has been presented including the Adams forward
bending test using a scoliometer.

Pruijs and his colleagues (Pruijs et a. 1995) designed a new simple device
named spinal rotation meter in 1995. Together with the scoliometer, the spinal
rotation meter was applied to school screening programs in the Netherlands.
However, both devices have the disadvantages that they are prone to be posturally
affected with inter-observer and intra-observer variation and errors. These devices

cannot replace the X-ray method to measure spinal changes over time.
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(@ (b)
Figure 2.6: (a) Adams forward bending test. (Left) As the patient bends over, the
examiner looks from behind and from the side, horizontally along the contour of
the back. (Right) A rotational deformity known as arib hump (arrow) can be easily
identified. (b) Measurement of trunk rotation with a scoliometer with patient in the

forward bending position (Reamy et al. 2001).

2.2.2 Spinal Contour Detection Devices

During 1970’s, another type of simple device has been developed with the
purpose of assessing scoliosis through quantifying the rib hump on the back.
Thulbourne and Gillespie (Thulbourne and Gillespie 1976) introduced a device
consisting of several detachable and moveable parts and the shape of the rib hump
can be generated when pressed against a subject’s back and skin together with the
Adam forward bending test. Pun et al. (1987) designed a similar device used
together with two or more inter-independent manipulators measuring a single
subject through a flexible curve detector. Although these spinal contour detection
devices are easy to use and understand, they are time-consuming and may be
subjective because the results are copied by hand to paper for analysis, and are not

applied in most hospital and clinical diagnosisfor long term observation.
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2.2.3 Goniometers, Magnetometers and Ultrasonic Devices

Besides the ssimple handheld devices, numerous researchers have tried to
exploit commercially avail able goniometers, magnetometers and ultrasonic devices
and equipment to assess the 3D human body contour and deformed spine shape.

Goniometers are devices that are capable of quantifying the motion of rigid
body in three-dimensiona space. In 1996, Mior and his team (Kopansky-Giles et
al. 1996) evauated the goniometers of the Metrocom Skeletal Analysis System
produced by Far Medical Technologies Inc., which can present signals to provide
an accurate 3D positional measurement of feature points on the back surface. They
reported that the el ectro-goniometric device was not suitable generally for long term
clinical applications since the apparatus could not provide sufficiently precise
position of the points and it could not acquire any surface topographical data
including the measurement of the rib hump which has been assessed to be of limited
practical value.

Similarly, ultrasonic-based equipment (Letts et al. 1988) and magnetic-
based equipment (LeBlanc et a. 1997) were also clinically assessed to be prone to

biases caused by patient’s movement thus limiting their practical utility.

2.2.4 Moiré Patternsin Measuring Surface Topology

The Moiré (Willner 1979) pattern is an “interference pattern” created by
intersecting lines, grids and shapes, and this phenomenon is caused by the optical
interference when two graphic patterns are superimposed onto each other from

different directions, and this pattern has applications in the generation of textiles
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that originate a watery shape appearance and as a surface topography measurement
tool. In late 1960’s, a framework of horizontally parallel lines with equal distance
wasfirst described by Chiang (Chiang 1969) and this system generatesimages with
the combination of parallel shadows projected onto a plane. Through mathematical
relationships, the curve shape and the surface topology of an object can be deduced
from the Moiré pattern for back shape analysis. Figure 2.7 presents an example of
Moiré topography apparatus and Figure 2.8 shows an example of Moiré topology

of ascoliosis patient (Kotwicki et a. 2007).
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Figure 2.7 an example of Moiré topography apparatus (T.M.L Shannon 2008)
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Figure 2.8 an example of Moiré topography of a scoliosis patient

(Kotwicki et al. 2007)

Takasaki and histeam (Takasaki et a. 1970) devel oped an application based
on the observation of the contour lines of an object using Moiré technique to
measure the deformity of body surface. This technology has been used for scoliosis
evaluation in Canada in 1977 (Adair et a. 1977) and Japan in 1981 (Harada et al.
1981). In their investigation, this method was proven to be more sensitive and
accurate than the Adam’s forward bending test. Besides, the results of the Moiré
topography for individual patients can be permanently stored for future analysis.

The quantitative analysis of the Moiré topography usually involves the
comparison of the relevant left and right maps of the back surface. Some
quantitative linear and angular measurements are then derived. In order to analyze
the surface Moiré topology, Stroke and Moreland (1989) constructed tangential

lines across corresponding fringes on both the left and right sides of the patient back
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whichisshownin Figure 2.9. Their research aims to detect the presence, direction,

magnitude and the therapeutic method of scoliosis.

Figure 2.9 Moiré topography analysis: two tangent lines are drawn from
corresponding contours and the angles between these contours are cal culated

(Stokes and Moreland 1989).

Some investigators reported that this method could identify most of the
scoliosis casesreliably with high precision (Daruwallaand Bal asubramaniam 1985),
and the other advantage over the Adam’s forward bending test is that the processis
less influenced by the doctors’ or nurses’ subjective judgment for correct decision
making (Suzuki et al. 1992). However, the Moiré technology suffers several
problems. The formation of the Moiré fringes depends on the patient’s body shape
and standing posture and a slight change of the patient’s stance may affect the
results considerably, which may weaken this method and even become misleading.

Thus, most researchers (Moran and Lipczynski 1994) have concluded that this
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method has not found wide acceptance in the hospital and clinic examination

environment but is still helpful for school screening programs.

2.2519S System

The 1SIS (Integrated Shape Imaging System) was one of the earliest
designed and extensively applied commercial systems for optical scanning and
measuring human back shape in the clinical environment (Turner-Smith and De
Roguin 1984; Turner-Smith et al. 1988; Weisz et a. 1988; Carr et a. 1991). In the
early 1980s, the Oxford Orthopedics Engineering Centre, University of Oxford
devel oped this system and later was commercialized by Oxford Metric Limited, UK
(Turner-Smith 1988; Sweatt et al. 1998; Patias et al. 2006).

The ISIS apparatus consists of a projector to project a structured light
pattern onto the scoliotic patient’s back surface using digital and video camera
technology with micro-processors and personal computers. The projector emits a
horizontal blade of light which is swept beyond the back surface from the neck to
the buttocks and a camerais mounted below the projector to capture the 3D position
of the light blade, and the spatial coordinates are digitalized. Figure 2.10 showsthe
commercial ISIS system. The advantage of this system is that by placing the
scanning apparatus with the projector and camera, it allows patients with severe
scoliosis and kyphosis to be measured; reducing the overall inspection timeto less
than 10 seconds, hence decreasing the influence of sway and breathing. In the
commercia 1SIS system, bony landmarks are a so used to establish the shape of the
patient’s back surface by calculating the orientation and coordinates of the

landmarks.
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Figure 2.10 The commercial 1SIS system (Berryman et a. 2008)

The ISIS system has been proven to be a useful method in the evaluation of
scoliosis and has been supported by some researchers (Weisz et al. 1988; Theologis
et a. 1997). The system could al so support the nurses by producing a printed report
(Legaye et a. 1992). The production of the ISIS system began in 1985 and endsin
1988 with only 60 systems purchased all over the world. This system has not been
widely accepted by the clinics and hospitals because Oxford Metrics Limited was
unable to obtain medical insurance imbursement codes in United States for the
technology and the researchers were dubious if this system could become a

substitute to radiography completely (Weiss and Seibel 2008).

2.2.61S1S2 System
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The 1SIS2 system comes from the origina ISIS system. The ISIS system
has been modified and redesigned with new evaluation parameters (Berryman et al.
2008), and has been utilized at the Nuffield Orthopaedic Centre (Oxford) in 2006
and at the Royal Orthopaedic Hospital (Birmingham) in 2008.

The I1SIS2 system consists of a projector, a digital camera, a telescopic
column and actuator, a personal computer to control the projector and the camera.

The 1SIS2 system overcomes the major disadvantage of the original ISIS
system in that it uses adigital camerato take photographs every 100ms rather than
using the structured light to scan the back surface every 0.5s, which could minimize
the impact and errors from breathing and sway during the process of measurement.
During the measurement, the patient is asked to put on a black neckband and apron
to provide a clean and clear background for taking the photograph. The clinicians
attach several small coloured paper-made stickers on the prominent positions of the
scoliotic subject’s back. In general, 7 to 12 stickers with the size of 9 x15mm? are
used (Berryman et al. 2008) and Fourier transform profilometry is also applied to
convert the distortion of the paralel grid into a 3D map of the back surface
(Berryman 2004).

The I1SIS2 system has not been commercialized but is now in use for
research within the Nuffield Orthopaedic Centre (Oxford, UK) since 2006. Similar
to the original ISIS system, 1SIS2 provides quite a useful and complementary tool
for radiographic examination (Zubovi¢ et al. 2007; Pynsent et a. 2008), but it can

still be influenced by breathing, stance and postural variations.

2.2.7 Quantec System
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In the early 1990s, Quantec Image Processing Ltd. (Liverpool, United
Kingdom) developed the Quantec system (Curran and Groves 1990; Wojcik et al.
1994) employing raster stereography technology and using a pattern of horizontally
structured lines onto the subject’s back surface (Oxborrow 2000). This system also
uses bony markers attached over the prominent pointsof T1, T12, posterior superior
iliac spines (PSIS) and other spinal processes. The Quantec system can capture the
whole body areain less than one second, which is a considerabl e advantage beyond
the I1SIS system in order to better decrease the effect of breathing and sway
variations. The system could produce a point cloud of bony markers to present the
3D surface together with the clinical parameter calculations for spina deformity
evaluation of lordosis, kyphosis and scoliosis (Liu et a. 2001).

Some of the clinicians and researchers studying comparable investigation
have established the relationship between the Quantec parameters, scoliometer and
the Cobb angle (Thometz et al. 1999; Liu et al. 1999; Lamdan et al. 2000). However,
the apparatus seldom considers the orientation of the patient related to the reference
plane and the camera, which may introduce variations to the measurement process.
Algorithms have been devel oped by averaging some output resultsto overcome the
system deficiency (Goldberg et a. 1997; Griffithset al. 1997; Goldberg et al. 1999).
However, due to these shortcomings, the Quantec system has not been widely
accepted in routine clinical diagnosis although some enthusiasts still use it until

today.

2.2.8 Formetric System
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In 1999, Dierse Internationa GmbH (Schlangenbad, Germany) designed
and manufactured the Formetric 3D system for human back topology generation.
Goh and his team (Goh et a. 1999) tested and evaluated this system for thoracic
kyphosis measurement. It was found that the reliability and feasibility of the
Formetric 3D system relies largely on the subject’s postural and breathing. The
commercialized Formetric 3D system is based on the study from Hierholzer et al.
(Frobin and Hierholzer 1982; Drerup and Hierholzer 1987; Frobin and Hierhol zer
1991; Drerup and Hierholzer 1994) at the Centre of Orthopaedics at the University
of Minster (Germany). Intheir research, the raster stereography techniquewas used
by projecting structured light and pattern of horizontal grids onto the subject’s back
to simulate the back surface through analyzing distorted line patterns.

Diers International GmbH has developed another Formetric 4D system
which permits rapid static and dynamic optical measurement of human back and
spine and the Formetric 4D Motion system to visualize the complex motion pattern
of the spine and pelvic during walking and running. Figure 2.11 shows an example

of the Formetric human back surface measurement system.
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Figure 2.11 DIERS 4D motion® system for dynamic spine and posture analysis

(http://www.diersmedical .com/ProductPage.aspx?p=23)

2.2.9 Other Systems

Some other techniques including laser scanning for surface anaysis
(Aliverti et al. 1993; Aliverti et a. 1995; Ronald 1999; Treuillet et al. 2002) have
been used in the system design for spinal deformity evaluation. However, high cost
and low scanning speed restrict their application in routine diagnosis. Furthermore,
a few commercia 3D scanning systems are also available, such as the COMOT

system (www.metos.org), LASS, Vitus 3D Body Scanner (Daniell 2007), Minolta

Vivid Laser Scanner, Cyberware Rapid 3D Prototype, Inspeck Scanning System,
etc.
The research team from the University of Alberta and the Glenrose

Rehabilitation Hospital in Edmonton Canada (Durdle et a. 1995) developed a
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surface modeling system running on an IBM RISC6000 engineering workstation
using triangulation based on multiple cameras. Work by Ajemba and his group
found that torso deformity plays an important role in connecting back surface
changes to inner spina scoliosis (Ajembaet a. 2007; Ajemba et al. 2008; Ajemba
et al. 2009).

However, al these existing commercial systems and systems in
development are not publicly used in routine clinical application because of the
complexity of the implementation, high equipment cost and the likelihood to be
affected by the patient’s breathing, sway and stance posture during the
measurement process.

Besides the system for spinal curvature measurement, some parameters or
indices are necessary and helpful to define the severity of the scoliosis. A review
about the existing scoliosis measurement parameters was introduced in the next

section.

2.3 Review of Existing Scoliosis M easur ement Indices

As an epidemic spinal syndrome, adolescent idiopathic scoliosis affects
approximately 3% to 5% of children worldwide. The occurrence of scoliosis
happens in three dimensions in the sagittal and coronal planes with rotation in the
transverse plane, and with initial indications of body asymmetry and back shape
unbalance. For most of the cases, the motivation in seeking treatment is to correct
the trunk deformity and improve the cosmetic appearance. Formal structured
training programs may help the patients enhance their medical knowledge and

maintain good spine care. The understanding of the physical and psychological
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concerns of scoliosis plays an important role in the clinical decision-making
procedure.

One of the most important questions about the numerous types of spinal
shapes is the method to define and examine the severity of the scoliotic spine.
Different scoliosis evaluation indices have been created, such as the Cobb angle
(Cobb 1948), factors that affect shoulder balance Hong et al. (2013), Sun et al.
(2011) designed and developed the “X-factor” index for evaluation of adolescent
idiopathic scoliosis correction. Samagh et a. (2011) and Mangone et al. (2012)
considered the important role of spinal axia rotation and the methods of
determination of axial rotation center. Benneker et al. found that radiographic
evaluation parameters were able to distinguish different stages of degeneration,
whereas MRI evaluation parameters could only detect the advanced stages of disc
degeneration (Benneker, et al. 2005). The aim of an evaluation index for scoliosis
isto provide an indication of the progression of scoliosis, assess treatment outcomes
and attempt to establish the relationship between the back shape and the underlying
skeletal deformity. Most of the existing indices are calculated using the 2D images.
Until recently, the conventional and most widely-used method for assessing the
degree of scoliosisis the Cobb angle, which is considered the golden standard for
the spinal deformity measurement. Other existing spina deformity indicesalso play
important roles in assisting scoliosis diagnosis and assessment, such as the 3D
evaluation method for lumbar mobility and overall back shape (Tuong et a. 1998)
which can help the patients and their families assess trunk deformity cost-

effectivel y with reduction of X-ray exposure when monitoring spinal shape changes.
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There are severa scoliosis eval uation parameters using surface topol ogy techniques
other than the radiography images and they will be reviewed next.

The Cobb Angle. The Cobb angle was originaly used by the American
orthopaedic surgeon John Robert Cobb in 1948 to determine corona plane
deformity in the classification of scoliosis (Berryman et a. 2008). To calculate the
Cobb angle, the apical vertebrais first identified, which is the most likely to have
displaced and rotated with the least tilted vertebra. The top and end vertebra are
then identified, which are the most superior and inferior vertebra that are least
displaced and rotated and have the maximally tilted the end plates. Two lines are
drawn aong the superior end plate of the superior end vertebra and along the
inferior end plate of the inferior end vertebra. If the end plates are indistinct, the
lines may be drawn through the pedicles. The angle between these two lines (or
lines drawn perpendicular to them) is measured as the Cobb angle as shown in

Figure 2.12.

Figure 2.12 The Cobb angle index (62 degrees for this example) (Syndrome

Homocystinuria 2001)
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The Walter Reed Assessment Scale. The Walter Reed Assessment Scale
(Turner-Smith et al. 1988) isagroup of figures symbolizing seven aspects of spina
deformity. The scale describes the body curve, rib prominence, flank prominence,
therelative position of the head to therib cage and to the pelvis, therelative position
of the head to the pelvis, the shoulder level, and the scapular rotation. For each
aspect, five levels of figures according to the order of increasing levels are scored
from left to right. The final result is calculated as the sum of the seven aspects and

Figure 2.13 shows the Walter Reed Assessment Scale (Polly Jr et al. 2003; Bago et

al. 2007).
Body Curve Head Pelvis
| I ﬁ I
Rib Prominence Shoulder Level
b @ | @' Vi
Flank Prominence Scapula Rotation

Head Rib Pelvis

Figure 2.13 Walter Reed Assessment Scale (Polly Jr et al. 2003; Bago et a. 2007)

The Posterior Trunk Symmetry Index (POTS). The Posterior Trunk

Symmetry Index (POTSI) was first introduced by Suzuki et al. (1999) to assess
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body asymmetry in scoliotic patients. This method includes several indices for
trunk deformity evaluation as shown in Figure 2.14 and Figure 2.15. In Figure 2.14,
the Frontal Asymmetry Index (FAI) is measured by calculating the medio-lateral
differences at the axilla and the difference between the locations of the vertebra
prominence and gluteal furrow. The FAI-C7 is the imbalance index, which is
calculated by dividing the distance between the vertebras prominences (C7) to the
central line by the width of the back defined as the distance between the two axillae.
The axillaindex FAI-A is defined by dividing the absolute value of the distance
from the axillae to the vertical central line by the axillawidth. Thetrunk index FAI-
T is calculated by dividing the absolute value of the distance from the back edge to
the vertical central line by the back width. In Figure 2.15, the Height Differences
Index (HDI) is presented. The HDI-S is the height difference between the two
shoulders. The HDI-A is caculated as the height difference between the two
positions of the axillae. The HDI-T is defined as the height difference between the
trunk and it is calcul ated as the height difference between the narrowest parts of the

trunk.
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Frontal Asymmetry Index:

i
FAI — C7: C7 =——x 100
c+d
. |c —d
FAI — A: Axilla = —— x 100
c+d
l]a — b
FAI — T: Trunk = — x 100
a+b

Figure 2.14 Frontal Asymmetry Index (FAI-C7, FAI-A, FAI-T) (Suzuki et

al. 1999)

Height Asymmetry Index:
h
HDI — S: Shoulder = s x 100

HDI — A: Axilla = % x 100

f
HDI — T: Trunk = . X 100

Figure 2.15 Height Asymmetry Index (HDI-S, HDI-A, HDI-T) (Suzuki et al.

1999)
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The posterior trunk symmetry index (POTSI) is cal culated as the summation
of the FAI and HAI, which includes six indices, as follows.
POTSI =

[(FAI-CT7) + (FAI-A) + (FAI-T) + (HDI-S) + (HDI-A) + (HDI-T)] x 100% (1)

In 1999, Inami et al. (1999) found that although the correlation between
POTSI and the benchmark method of the Cobb angle was weak, r=0.435 and
p<0.0001, where “r” is the correlation coefficient and p is the P-value in
Significance Test, POTSI is till a quantifiable and useful indicator in clinical

diagnosis to evaluate scoliosis treatment with the emphasis on cosmetic defects.

Deformity in the Axial Plane Index (DAPI). In 2007, Minguez et a. (2007)
introduced another series of indiceswhich do not depend on the radiography images.
DAPI indices are built by computing the differences in the surface depths at the
position of the scapulae and the waist |ocation to define the level of severity of the
deformity, as shown in Figure 2.16. In Figure 2.16, the meanings of some symbols

are shown.
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Deformity in the Axial Plane Index:

I: the distance between the vertebras prominence
C7 and the apex of the inter gluteal furrow.

A: Most prominent point on the right scapula.

B: Most prominent point on the left scapula.

C: Most prominent point on the line AB.

D: Least prominent point on the right waist.

E: Least prominent point on the left waist.

/ F: Most prominent point on the line DE.

LG: Most prominent point on the left gluteus.

RG: Most prominent point on the right gluteus.

Figure 2.16 Deformities in the axial plane index (DAPI) (Asher et a. 2004)

Theindex of deformity in the axial plane includes the scapulaindex and the
wai st index, which are defined asfollows (JA-C| and |D-F| are the absol ute di stances

of the value between the two points).

Scapula Index = @ x 100% (2

Waist Index = “—J];H X 100% 3)

The Deformity in the Axia Plane Index is the summation of the two
elements.

—"“f' + —'”;“") 100%  (4)

DAPI = Scapula Index + Waist Index = (

It was found that the DAPI scoliosis index has high correlation with the

POTSI and the Cobb angle (Perdriolle and Vidal 1985). The coefficients for DAPI
to the Cobb angle is r=0.668, which indicates that the DAPI is a useful parameter

for human spinal deformity evaluation.
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In order to obtaining the coordinates of the markers to interpolate the spinal
shape, the hardware and apparatus were designed in the system. The hardware and
apparatusisatype of parallel robotic manipulator which is named Stewart platform.

A review about the parallel robotic manipulator was introduced in the next section.

2.4 Review of Parallel Robotic Manipulator and Stewart Platform

In this research, a parallel robotic manipulator is used to control the overall
movement of the hardware system. Currently, there are three epidemic types of
robotic mechanisms, which are serial manipulators, paralel manipulators and
hybrid manipulators.

A seria manipulator is the most common robotic mechanism which is
designed to link the fixed base to the end-effector using a series of links connected
by motor-driven joints. A parallel manipulator is a mechanism that uses several
parallel chains or parallel linear actuators to support the end-effector to achieve a
spatial movement. A hybrid manipulator is a serial-parallel connection robot that
givesriseto amultitude of highly articulate robotic manipulator. In this research, a
parallel manipulator, or generally called a Stewart platform (SP) or Gough-Stewart
platform, is applied to control the movement of the system and the posture of the
scoliotic subject.

It is helpful to introduce the benefits and advantages of using the Stewart
platform (SP) in the system over the other robotic arms.

€4 Comparing to other 6-DOF robotic arms, SP which is atype of parallel

manipulator has high load/weight ratio because SP could distribute its load to the

six legs and joints. This mean SP can support higher load with small mass of the
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manipulator. In this research, the SP supports the weight of the mechanical frame
and the patient’s weight.

€ Comparing to other 6-DOF robot arm, SP has the benefit of owning high

rigidity and inherent stiffness. A high rigidity may be obtained with a small mass
of the manipulator. This allows high precision and high speed of movements, and
motivates the use of parallel manipulatorsin medical usages and applications.

€4 Comparing to the other type of parallel manipulator, SPis most widely

used and in a centra status in the literature on parallel manipulator in the past
twenty years and has been applied to various fields such as robotics, numerically
controlled machine, etc.

€ Inthisresearch, the generalized Stewart platform is used, which could

be considered as the most general form of parallel manipulators with six DOFsin

certain sense.
€ The SP system or similar apparatus is necessary in this research and it

can bring advantages. The routine approach in evaluating and monitoring the
progress of scoliosisisthe forward bending test which is not accurate. Using the SP
apparatus, the patients’ bending angles can be precisely controlled by the SP and

computer.

2.4.1 The Origin and Definition of Stewart Platform

The Stewart platform isaclassic mechanical design for position and motion
control. This device is originally designed and proposed by Stewart in 1965 as a
flight smulator, and is still commonly used for this purpose (Stewart 1965). A wide

range of applications have benefited from the usage of the Stewart platform, e.g.,
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aerospace technology, automotive industry and machine tools manufacturing. The
Stewart platform has also been used to simulate flight, model a lunar rover, build
bridges, support vehicle maintenance, design crane hoist mechanisms, and position
satellite communication dishes and telescopes, among other tasks. The Stewart
platform consists of a base, amoving platform, six links or legs, severa joints and
actuators as shown in Figure 2.19. By changing the lengths of each of the six legs,
the orientation and position of the moving platform can be controlled.

The invention of the first parallel manipulator has triggered developments
in many research and industry fields, such as satellite positioning, underwater
explorations, medical operation, flight simulators, etc. Another well-known parallel
platform structure is the Gough Platform (Gough and Whitehall 1962) shown in

Figure 2.17.

Figure 2.17 Thefirst octahedral hexapod or the original Gough platform (Proc.

IMechE, 1965-66)

The structure of a Stewart platform is similar to the Gough platform. Other

types of motion manipulators based on the same principle as the Stewart platform
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have been proposed. Some researchers have demonstrated that the Stewart platform
could be implemented not only as motion generators, but other forms of simulators.
In the last few decades, many scientific works on the characteristics and physical
behaviors of parallel manipulators have also been reported. Stewart platform, the
most prevalent parallel mechanical structure, has been extensively studied and
applied in many fields, such as in machining motion planning. The Ingersoll

Octahedral Hexapod machining centreis shown in Figure 2.18.

Figure 2.18 The Ingersoll Octahedral Hexapod machining center

(Shankar et al. 1998)

The motivation behind designing machine tools based on parallel structures
can be found in their outstanding characteristics. Currently, most common types of
machine tools consist of asuccession of rigid bodies, links or joints, each connected
to its predecessor by ajoint. In the serial kinematic chains, each leg has to support

the load in addition to the weight of the components of the platform. This is
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especially critical in multi-axis machining that requires more degrees of freedom
(DOFs), thusrequiring longer chains and more space from the base to the tool. With
aparallel mechanism or parallel kinematic chains, the construction of the multi-axis
machine tool requires fewer numbers of chains. In the Stewart platform, each legis
composed of the same components and only supports the weight of the moving
platform plus the load. Therefore, it offers higher stiffness, accuracy and payload
astheload is divided among the legs. An example of a SP mechanism is shown in

Figure 2.19.

— Platform

- Extensible
Leg

Figure 2.19 A schematic diagram of the SP manipulator mechanism

(Guo and Li 2006)

As compared to serial mechanical structures of comparable size, the

workspace of aparallel manipulator is smaller. In addition, parallel structures have

other disadvantages including difficulties in designing the control strategies,
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complicated forward kinematics, variable performance over the workspace and the
occurrence of singular configurations.

The general structure of the SP mechanism is composed of a moving plate
on which the six legs are attached. As shown in Figure 2.20, the other ends of the
legs (also referred to as actuators) are connected to the base plate of the platform.
Each actuator links the moving plate to the base by either a 3-DOF joint with a 2-
DOF joint, or two 3-DOF joints. The 6-DOF positioning capabilities of the SP is
contributed by the linear extension and retraction of the six legs, including three

rotational DOF (rall, pitch and yaw) and three trandational DOF (X, Y and Z axes).

2.4.2 Hybrid Manipulators

Some researchers have designed and explored the combination of parallel
and serial manipulators to obtain the advantages from both the parallel and seria
structures. SP is one kind of parallel manipulator that possesses many connections
between the base and the tool, thus providing for a much stiffer structure while
sacrificing workspace relative to serial manipulators.

Some promising results have been reported, such as the Logabex L X4 robot
(Cortés and Siméon 2005) (Figure 2.20 (a) and (b)) and the robotic arm designed at
Cdlifornia Institute of Technology (Tanev 2000) (Figure 2.20 (c)). These
mechanical manipulators consist of acombination of identical parallel mechanisms,
leading to alarger workspace and a good ratio of |oad capacity to manipulator mass.

Recently, more hybrid manipulators have been applied in a wide range of
applications, such as micro-machining, medical surgery, deep-sea mining and

assembly operations (Chai and Y oung 2001; Callegari and Suardi 2003; Zheng, et
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al. 2004; Carbone and Ceccarelli 2005; Harib et a. 2007). In some combinations of
SPs, the mechanism is usualy designed such that one platform performs pure
orientation and the other performs pure translation so as to simplify the control
algorithm (Lallemand et al. 1997; Tsai and Joshi 2002). Nevertheless, research on

hybrid structuresis still in the early stage and limited literature has been published.

(@ (b) (©)
Figure 2.20 (a) (b) Model of the robot Logabex-L X4, composed of four Gough-
Stewart platforms connected in series, and trace of a collision-free path (Cortés

and Siméon 2005); (c) Operational model of hybrid robotic arm (Tanev 2000)

2.4.3 Kinematics of the Stewart Platform

The kinematics of the SP mechanism, like all robotic manipulators in
generd, is astudy of the physical geometry of the motions of the end-effectors and
the actuating joints, and the relationships between the motions of the mechanical
inputs and the motions of the end-effectors without considering the forces and
torques. There are two types of kinematics, namely, forward kinematics and inverse

kinematics for these hexapod parallel manipulators.
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Inverse kinematics for hexapod parallel manipulators can be defined as
finding the leg lengths of three or six legs needed to position the moveable platform
in a certain position with a desired orientation. The solution to this problem is
straightforward and not complex for parallel kinematics machines (PKM).
Furthermore, the computation of the length for each leg can be carried out
independently in parallel, which can speed up the process.

On the contrary, the forward kinematics or direct kinematics of a paralel
mani pulator involves finding the position and orientation of the moveable platform
when the three or six leg lengths are given. This problem has no known closed form
solution for the most general 6-6 form of hexapod manipulators (with six joints on
the base and six joints on the mobile platform). For a general SP, 40 assembly
modes (i.e., direct model solutions) can exist (Dietmaier 1998). In practice, the use
of numerical methods has been proposed, which assume that an estimated solution
isknown (Nguyen et al. 1991; Parikh and Lam 2005; Wang 2006). Another method
is to use a larger number of sensors than the number of DOFs so that additional
information can be used to improve the direct kinematics algorithm (Cheok et al.
1993; Parenti-Castelli and Di Gregorio 1999; Parenti-Castelli and Di Gregorio 2000;
Chen and Fu 2006). It has been shown that the computation of forward kinematics

is more efficient with an additional off-line pre-processing phase (Tarokh 2007).

2.4.4 Calibration and Accuracy
Parallel kinematic manipulators (PKMs) are introduced because of their
higher accuracy as compared to conventional robots and better stiffnessin the same

range as the machine tools. Due to the complicated kinematic chainsin a PKM, it
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is difficult to achieve the required accuracy. Masory (Masory et a. 1996) has
studied the influence of the sensor errors and the manufacturing tolerances on the
locations of the joint centres. A more thorough analysis has been proposed by
Ehmann et a. (Patel and Ehmann 1997; Wang and Ehmann 2002), which includes
the location errors of the passive joint centres, errors in the leg lengths, and the
imperfect motions of the ball joints. Tischler and Samuel (1998) proposed a
numerical approach for determining the influence of the backlash of the joints,
while Meng and Li (2005) and Wolhart (1999) proposed an analysis of the effect of
the joint clearances on the trgjectories followed by serial and parallel manipulators.
Other sources of errors, such as thermal errors, gravity induced errors, and
dynamics errors (Pritschow et al. 2002; Niaritsiry et a. 2004; Clavel et a. 2005),
have also been studied.

The method of kinematic calibration can reduce the geometric errors, which
is aso called the kinematic errors. In kinematic calibration, various methods have
been proposed, e.g., optimization methods (Zhuang and Roth 1993), linearization
method (Geng and Haynes 1994), and partial differentiation (Ropponen and Arai

1995). Merlet (2006) distinguished three main types of calibration methods:

1. External calibration: an external measurement device is used to determine
(completely or partially) the real pose of the platform for different desired
configurations. The difference between the measured pose and the desired pose
gives an error signa that is used for the calibration.

2. Constrained Calibration: methods that rely on a devoted mechanical system

that constrains the robot motion during the calibration process.
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3. Auto-calibration or self-calibration: the platform has extra sensors and only
the manipulator measurements are used for the calibration.

In addition, there is another group of calibration methods that make use of
interesting geometrical properties. Huang et a. (2005) proposed using specific
motion characteristics, e.g., flathess and strai ghtness which can be measured easily
using dial gauges. Takedaet al. (2004) proposed using a double-ball-bar measuring
device. In the machining field, calibration can be conducted using machining
experiments (Chanal et al. 2007). Recent research shows atrend of using computer
vision methods for calibration, which can produce good accuracy with relatively
low cost (Andreff et al. 2004; Dallg et a. 2006; Daney et a. 2006; Renaud et al.

2006; Tanakaet al. 2006).

2.4.5 Motion Planning and Redundancies

Motion planning is a classical problem to avoid obstacles. For parallel
manipulators, many factors should be considered, such as the limited workspace,
singularities, and other performance requirements. Figure 2.21 shows the
simulation of motion planning on a SP.

Merlet (1994) presented a method for checking whether a trgectory lies
within the workspace of a manipulator. Harris (1995) dealt with motion planning
between two poses, looking for the parameters of the screw motion linking the two
poses, and reckoned that this motion should be able to minimize the changesin the
link lengths. Gosselin and Angeles (1990) presented an algorithm that can find the
orientation of the manipulator with the best accuracy in some specific poses along

the path. Recently, probabilistic path planning has emerged as one of the most
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promising approaches for path planning of manipulators with large DOFs. A most
prominent research in this field for parallel manipulators is the probabilistic
roadmap approach (Cortes and Simeon 2003), but this approach does not consider
singularity or multiple solutions for the direct kinematics, which may prohibit the

use of the trgjectory.
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Figure 2.21 A design of GUI for the ssmulation of motion planning

Redundant manipulators are of significant importance because of their
advantages when task versatility and manipulator performances are required.
Redundant manipulators possess ‘additional inputs’ that offer a means to improve
their performance and increase their versatility. Marquet, et a. (2001) distinguished

three different types of redundancies:

1. Kinematic redundancy: at least one of the legs is a motion generator with
a larger number of DOFs than necessary. This is used for enlarging the

workspace (Liu et al. 2001).
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2. Actuation redundancy: the end-effector is over constrained by the
actuators. The number of actuators is more than the number of DOFs. Such
redundancy is mostly used for singularity avoidance (Wang and Gosselin
2004).

3. Measurement redundancy: the number of sensors is larger than the
number of actuated joints. This redundancy plays a role in solving the
forward kinematic problem to reduce the positioning errors and for
calibration (Marguet et al. 2002).

With the application of one SP manipulator to control a patient during spine
deformity measurement, there are too many DOFs caused by the three positional
DOFs and three rotational DOFs working altogether. Thus, there is a need to

determine the best use of these DOFs.

2.4.6 Dynamics and Control

Dynamics is the determination of the relationship between the generalized
accelerations, velocities, coordinates of the end-effector and the joints. Dynamics
analysis of PKMs is complicated by the existence of multiple closed-loop chains.
The earliest research regarding this can be found in the work by Fichter (Fichter
1986), where the leg inertia and the joint friction are assumed to be negligible.

There were three major approaches for computing the dynamics, including
the Newton-Euler formulation (Codourey and Burdet 1997; Dasgupta and
Choudhury 1999; Harib and Srinivasan 2003), the Lagrangian formulation (Nguyen
and Pooran 1989; Geng et al. 1992; Liu et al. 1993), and the principle of virtua

work (Wang and Gosselin 1998; Tsai 2000; Gallardo et a. 2003). Some researchers
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(Reboulet and Berthomieu 1991; Kim and Lee 1992; Kock and Schumacher 2000)
concluded that the dynamics model needs to be simplified in order to be used in a
real-time control system. Different methods can be applied depending on the
situation and the requirements, i.e., whether the dynamics has to be calculated for
control, evaluation or simulation purposes.

Accurate control of a SP manipulator is till an open research issue and the
works reported are not rigorous. In the field of machine tools, the trend is to adopt
existing hardware for controlling the parallel manipulators. However, the use of
existing hardware for controlling these manipulators will drasticaly penalize the
performance of the system in the long term. Some researchers have suggested that
each actuator can be controlled independently and robustly with a control law other
than the smple PID control (Chiacchio et al. 1993). Another approach implemented
an optimization scheme on top of aPD control (Yurt et a. 2002). Wang et a. (1995)
and Geng and Hayes (1993) presented aneura network control scheme and showed
its superiority over kinematic control. A model reference adaptive control scheme
has been proposed (Li et a. 2003) to control a machine tool, and the Popov
hyperstable theory is utilized as the adaptive control law. Recently, a more
advanced tracking control scheme has been proposed (Huang et a. 2004; Huang
and Fu 2004) and feedback using a camera (visual-serving) has been implemented
(Zuo et a. 2002; Dallg et al. 2006; Andreff et al. 2007). Lastly, the combination of
more than one single control strategy that takes advantage of multiple coordinated
parallel structures (hybrid manipulators) is another important field that is relatively

unexplored.
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2.5 Significance of the Study

The goal of the research on a human spinal deformity measurement system
is to be able to identify the small progressive curvatures of the human spine. This
system is developed to identify adolescents with small spinal curvature and refer
them for treatment before the curvature becomes too severe.

Although the Adams forward bending test is widely implemented, it still
suffers from some problems. It is not sensitive to abnormalities in the lower back,
which is a very common site for scoliosis. Since the test misses about 15% of
scoliosis cases, many experts do not recommend it as the sole method for screening
for scoliosis. In addition, the nurses or trained technicians need to go to schools to
conduct the screening program which is human resource intensive.

Using a stereo vision camera system, the system could obtain the 3D
information easily about back surface. By implementing marker-based tracking, the
operator could attain the contour of a spine with image processing technology.
Much work has been done on measuring the surface of the human back for assessing
the degree of deformity in scoliosis patients. After obtaining the shape contour of
the human spine, some evaluation parameters rel ated to the severity of human spine
deformity can be created or designed. The spinal curvature can be assessed by
calculating these evaluation parameters.

In addition, a complete integrated system from measurement to data

interpretation and diagnosis, storage, and record building will be developed. The
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data has to be presented according to the specifications required by the orthopedic

Ssurgeons.
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Chapter 3 Research Methodology and Development of Apparatus

The proposed spina deformity measurement system is built by combining
the mechanical and hardware sub-system and the control sub-system. The
mechanical and hardware sub-system is used to achieve the functions of controlling
the postures and motions of the subjects, taking stereo pictures, processing the
images for information extraction, etc. The control sub-system is mainly designed
for manipulating the SP and the mechanical frame, and storing and editing the
measurement output data. One user can log in to the central server database, from
which a standard diagnosis report is available, to check his/her results and follow

his/her spinal deformity progress.

3.1 Spinal Defor mity M easuring System Design
3.1.1 System Architecture

The mechanica and hardware sub-system of the spina deformity
measurement system is composed of a SP manipulator which movement is
controlled using the MatLab program, a stereo vision camera from Natural Point,
Inc. (Oregon, US), a specially designed mechanical frame for positioning the
subject and a personal computer for processing spine images and data storing using
MatLab program and visual C++. Figure 3.1 shows the components of the system
and the system architecture is also shown in Figure 3.2.

In the commonly used diagnosis and measurement methods for human spine
scoliosis, such as the Adam forward bending method or the X-ray radiography, the
patient isusually in a static state or posture (Fairbank 2004). As the patient moves,

such as stooping down, the human back and spine shape may present relatively
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different topologies. If the subject bends into different angles from the standing
position to bending forward, the curve of structure scoliosis becomes more distinct
and can display different patterns. The patients’ forward bending angles and

postures are controlled precisely by the movement of the SP.
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Figure 3.1 Components of the spinal deformity measurement system

In this system, the model’s posture is controlled accurately by a specially
designed apparatus and equipment. The model is standing in front of the apparatus,
holding the handles on the side of the apparatus with his’her hands and hanging
down onto the moveable frame of the apparatus. The apparatus is designed to
achieve accurate bending movements at various bending angles.

The SP system or similar apparatusisused in thisresearch and it has several

advantages. The routine approach in evaluating and monitoring the progress of

59



scoliosis at school or in clinicsisthe forward bending test which is not accurate and
subjective. Using the SP apparatus, the patients’ bending postures can be precisely
controlled by the SP and computer. In the system, SP provide accurate postures and
positions for the patients during movement, in which the subject’s spinal contour is
probably different.

Comparing to serial robotic manipulator, this type of paralel manipulator
has high load/weight ratio, high rigidity and inherent stiffness, which means that
the SP could support the subject’s weight with high stabilization. In summary, SP
is used in the integrated system to accurate control the patient’s forward bending
postures.

During the test for scoliotic spinal deformity, the bending is needed and
necessary because when the patient tries best to bend hard, the asymmetry of the
back and imbal ance of the shoul ders become more and more obvious and prominent.
The forward bend test is used most often in schools and doctor's offices to screen
for scoliosis. During the test in school, the subject bends forward with the feet
together and knees straight while dangling the arms. Any imbalancesin therib cage

or other deformities along the back could be asign of scoliosis.
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Figure 3.2 The architecture design for the spina deformity measurement system

In the system, a commercial stereo camera system is used for capturing the
shape of the subject’s spine. The motion-capturing system which is composed of
three OptiTrack cameras and severa round reflective markers are used to obtain the
tragjectory of the human movement. The markers are made from reflective material
that can be tracked by the cameras, and they are attached to the articulation of the
human spine. In order to track the markers, three OptiTrack cameras are arranged
to have overlapping fields of view. For best calibration and tracking results, it is
necessary to avoid placing all the three cameras aligned or in the same plane, but to
position the cameras at different angles. This creates an area called a captured
volume in which tracking can occur. A design illustration of the system with the

part namesis shown in Figure 3.3.
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Figure 3.3 Design illustrations for the spinal deformity measurement system

In this research, the process of spinal deformity measurement follows the
flow diagram and steps shown in Figure 3.4.

In the first step before the spinal measurement process starts, the SP and the
3D camera system are set up and trial movements are carried out to ensure the
system works smoothly. The SPis calibrated by adjusting the length of six legs and
the camera system is next calibrated by swinging the OptiWand Kit and processing
by the pre-programmed algorithm in the camera system to improve the accuracy
and precision of the image capturing process.

The calibration process of the SP generally consists of four basic steps,
namely (1) development of a kinematic model that contains a set of parameters to
determine the relationship between the actuated joint angles and the end-effector
pose, (2) measurement and recording of the manipulator poses, (3) error
minimization through searching for the optimum kinematic model parameters of

the manipulator from the pose measurements and manipul ator actuated joint angles,
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and (4) correction for the geometric parameter errors in the manipulator kinematic
model. And the calibration of the camera system is done automatically in the
OptiTrack system by inputting large number of sample marker points with error
compensation a gorithm.

The second step is the preparation stage, where the subject or patient would
need to remove the shirt and expose the bare back for measurement. 8 to 10 round
reflective markers are prepared and attached onto the prominence points of the

subject’s back.
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Figure 3.4 The flow diagram and process followed in the measurement process
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The system is then activatedand the subject is bent in series of angles of 0°,
30°, 45°, 60°, and 90° by precisely controlling the movement of the SP. When the
patient bends in 0°, this means that the patient is standing upright on the ground,
and bends in 90° would mean the patient is amost lying down onto the frame. For
each bending angle and posture, the back images are captured using the three 3D
cameras. In each image captured, the position and orientation of each reflective
marker areidentified to indicate the spinal prominence. The spine shape and degree
of spina deformity are presented by analyzing the marker positions and orientations.
Finally, all the data is stored in the patient’s database which can be analyzed for
monitoring the progression of the deformity.

When the subject bends into 90°, some markers on the subject’s back may
be blocked, the three cameras are put higher facing to the patient’s back with a
downward tilt angle. Thisassures that when the subject bendswith largeangle, field

of view of the cameras can still cover the whole back.

3.1.2 Requirements and Specifications of Apparatus Development
Based upon the research and previous work published on existing surface
measurement techniques and apparatus construction (Sanes and Zipursky 2010;
Chen et a. 2000), the proposed mechanical and hardware apparatus has the
following requirements and specifications:
1) Inherently safe and does not introduce any ionizing radiation.
2) Minimize the inclusion of any measurement error and variation during data

acquisition.
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3) The subjects are alowed to stand, pose and move naturaly within the
defined capture volume by the cameras without compromising measurement
accuracy.

4) During acquisition, the comfort of the subject or patient should be ensured.

5) The accuracy of the bony markers recognition and surface measurement
reconstruction do not exceed Imm mean and standard deviation in al the
three axes.

6) Pre-defined, independently validated and measureable parameters need to
be defined.

7) During each bending session for image capture, the time for capturing the
bony markers and generating the back surface shapeis within 30 seconds.

8) The overall time of the spinal deformity measurement process is limited to
be no more than 10 minutes in acquisition duration (the time includes the
process of patient’s height measurement and preparation, attaching the
markers and spinal shape measurement. The spine measurement process
will be controlled within 5 minutes).

9) In the apparatus development, low cost, readily available materials will be
used to commensurate with the measurement requirements and

specifications.

3.2 Stewart Platform and Specially-Designed Frames

3.2.1 Design of the Stewart Platform and Mechanical Frames

In this research, the components of the hardware of the human spine

deformity measurement system include the SP, a moveable mechanical frame,
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OptiTrack stereo vision cameras and image processing packages. The posture of
themodel is controlled using the SP, which activates the movable mechanical frame.
The components are described next. By operating the customized apparatus, the
subject could bend his or her back accurately in precise angles. The design of the

system is shown in Figure 3.5.
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Figure 3.5 The design illustration of overall human spine deformity measurement

system

In the SP, the six legs are controlled and activated by individual actuators
to achieve six DOFs, which are the three linear movements along the x-axis, y-axis,
and z-axis and the three rotational movements, namely pitch, roll and yaw. The
specially designed moveable frame is placed on top of the mobile plate of the SP
which controls the movement of the subject who is holding onto the handle of the
frame.

As the SP moves horizontally, the rectangular duminum frame is

manipulated to rotate along the hinge such that the intersection angle between the
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rectangular aluminum frame and the horizontal plane can be controlled accurately

as shown in Figure 3.6, and Figure 3.7 shows the details of the structure of the SP.

Figure 3.6 Simulation of the dynamic movement of the Stewart platform with

standing position and the rectangular aluminum frame
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Figure 3.7 Model of Structure of the Stewart Platform

In the design of the existing SP system, the mechanical frame leads the
subject bend into serial of angles as shown in Figure 3.6. The subject stands closely
to the frame and lay down his or her body onto the frame. During the measurement,
the subject holds the handles and tries to be relax.

However, the mechanical frame probably also restrict the bending of the
upper part of the subject’s body. While the frame moves, the upper body of the
subject lay down onto the frame and become aflat rigid body. Therefore, in order
to include the movement of rotation of the subject’s body, not only the bending
postures, a new conceptual design is proposed.

Figure 3.8 shows a new system design and this design includes both the
bending motion and rotation motion of the subject’s upper body. In thisis design,
the subject’s upper body can freely bending and rotating, whilethe waist is attached
to the frame which is a saddle-shape component. Figure 3.9 shows the comparison

of the existing design of the system and conceptua design 2 of the system. In
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conceptual design 2, the frame is replace by smaller frame. During the test, the
subject stands at the position of footprint and make the subject’s waist attach to the
saddle-shape component. Using this design, the movement of forward bending and

rotation of the upper body are included.

Figure 3.8 A new design of the system to include the forward bending and

rotation movement of the subject’s upper body

Figure 3.9 The comparison of the existing design of the system and anew

conceptual design of the system
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3.2.2 Motion Control of the Stewart Platform

Thetrgjectory control of the apparatusisachieved using forward and inverse
kinematics. It is the motion analysis of an object without considering forces and
torques (Tsai 1999). The kinematics of a rigid body is determined by the
configuration of the joints and the position, while the velocity and acceleration of
therigid body are investigated in motion control.

The forward kinematics algorithms are used to control the motion of the SP
and calculate the position and orientation of the mobile platform while knowing the
joint positions and the six leg lengths. The inverse kinematics algorithms are
applied in this study to compute the six leg lengths given the orientation and
position of the end-effector of the SP. In short, forward kinematics and inverse
kinematics are the mapping of the vectors of the joint coordinates and the vectors

of the mobile plate.

a) Forward Kinematics
In the definition of the motion of the SP using forward kinematics

(Jakobovic and Jelenkovic 2002), the rotation angles of the mobile platform (end-
effector) is defined by the roll-pitch-yaw vector (a,,y), which means the
consecutive rotations around the X, y, and z axes respectively. The positiona
coordinates of the centre of the mobile platform is defined by the vector t as:

tx

t= \ty] (3.1

t,

Assumethelocal coordinates of the mobile platform and the base are shown

in Figure 3.10.
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Figure 3.10 Local coordinate system of the Stewart platform

As shown in Figure 3.7, the six joints on the base and mobile platform are

defined as six vectors. The coordinates of the joints on the base are represented by

B and the coordinates of the joints on the mobile platform are represented by P.

Since the base and mobile platform are assumed to be flat, the z-coordinates of the

vectors B and F are 0 from the top view.

B|x PiX
' =|B,|and P=|R,|,i=1,..,6 (3-2)
0 0

The vectors of the links or legs of the SP can be expressed as fi (Jakobovic

and Jelenkovic 2002).

[[=-B,+t+R-B,i=1,..,6 (3.3)
R is the rotational matrix representing the orientation of the centre of the

mobile platform. The resultant Eulerian rotation was introduced by Craig (2004).
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The length of each of the leg can be calculated and derived from the
Euclidean distance function between two vectors.

,=d(B,t+R-P),i=12..6 (3.5)

By calculating the summation of the squares of the disparity between the

actual and theoretical positions of the mobile platform, the kinematics errors can be

expressed and the first optimization function can be written as follows.
- 5 ) 212
Fl = i6_1 ld(B“ t+R- Pl) - ii J (36)
The trandation and orientation vector of the platformis X.

X=[twtytuy,a B}T (3.7)

b) Inver se Kinematics
Inverse kinematics refers to the solution of the kinematics equations of the
SP to determine the joint parameters that provide a desired position of the end-

effector. There are anumber of methods to find the solution.

Each of the six joints on the base is described by the position vector, B_P>

according to the local coordinate system, and each of the six joints on the mobile
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platform is denoted by Eﬁ. The left superscripts b and p represent the vector that is
referenced to the base coordinate system and the mobil e platform coordinate system.

The most important set of parametersinclude the minimal and maximal leg
lengths of the links which are defined as (I;,, ,1;,, ), the radii of the base and
mobile platform (ry, r;, ), thejoint placement which is defined as the angle between
the closest joints for both the platform and the base, the workspace and the moving
volume of the SP. As assumed previously, the vector B; represents the coordinates
of the joints on the base and P, represents the coordinates of the joints on the mobile

platform. The inverse kinematics algorithm is described as follows.

P

t+ R-P; (3.8)
ii = d(P)ilB)i) (39)

The matrix Riswritten in the following format (Innocenti 2001).
aX BX YX
R = ay By Yy (310)
aZ BZ YZ

The orientation of the base with respect to the platform, RP, is derived as:

Oy Oy O

Bx By B,
Yx Yy Ya

RP =R !=R!= (3.12)

The vector of the ith leg or ith link is expressed from the mobile platform
joint ﬁ, to the base joint §i , which meansﬁ is referenced to the base coordinate
system.

I, = d(P,B;) = P — B (3.12)

Hence, from equations 3.8 and 3.12,

| =B —B = t+R- — B, (313



In the design of the SP, assume the radius of the base plate isrg and the
radius of the mobile platformisrp. Asshown in Figure 3.7, the six universal joints
are located at the base and the six spherical joints at the mobile platform with 15°
symmetry on both sides of each of the 120° line of the platform. Each pair of the
adjacent mobile platform joints pi with 30° disparity forms a triangle with two
adjacent base joints b; of 90° disparity. Thus,

B; = rB[cos(AngleBi), sin(AngleBi), 0} (3.19)
P=rp [cos(Anglepi), sin(Anglepi), 0} (3.15)

Therefore, the coordinates of the position of thelink |; isderived inthe scalar
function as follows.
ly =r1p [ax . cos(AnglePi) + By - sin(Anglepi)} + Ty —1y- cos(AngleBi) (3.16)

iy =1p [(xy : cos(AnglePi) + By - sin(Anglepi)} + Ty —rg- cos(AngleBi)
(3.17)

l;, = rp[OLZ : cos(Anglepi) + B, sin(Anglepi)} + T,

(3.18)

Thelength of leg | is calculated as the magnitude of the component vectors.

Il = Jlif I (3.19)

3.2.3 User Interfacefor the Control of the Stewart Platform

A graphic user interface (GUI) has been designed and developed to control
the position and movement of the SP for achieving the postures of the scoliotic
subject. Before designing the GUI, all the internal control algorithms have been

accomplished as previously introduced in the “Kinematics” part in Section 3.2.2.
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The GUI integrates different modular programs into one single window which is
written in Visual C++. In thisincorporated environment, four control modules are
involved and integrated in which the doctors or technicians could observe and
mani pul ate the motion of the SP and the connecting mechanical frame.

a) Motion Control Window

In the motion control modul e, the spatial position and orientation of the end-
effector of the SP and the lengths of the six legs are calculated using the forward
and inverse kinematics. By inputting the six leg lengths, the orientation (roll, pitch
and yaw) and coordinates (x-axis, y-axis and z-axis) of the end-effector are
determined by applying the forward kinematics. By inputting the orientation and
coordinates of the end-effector of the SP, the length of each individual of the six
legs is calculated using inverse kinematics. The system can be also controlled by
inputting the parameters of the extension or motion velocity of each individual
actuator or by inputting the leg length of each individual leg. Furthermore, areal -
time feedback section to control the position, velocity and acceleration of the
actuators from the encoder of the actuatorsisalso integrated. Figure 3.11 isthefirst
version of the motion control user interface and Figure 3.12 is the second version
of the control interfaceto view the velocity, spatial position, and acceleration of the
actuators including the sequential operation steps to guide the user how to

manipul ate the SP.
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In the new version of the motion control user interface, the left column is
the Spinal Deformity Interface to display the result of spinal deformity index and
parameter as well as the shape and deformity of the scoliotic spine. The middle
column of the control interface is the real-time display of the status of the SP. The
right column of the interface is the control buttons and sequential steps to control
the status of the SP. In Step 1, three SPs in the laboratory can be selected and for
the purpose of human spinal deformity measurement, the largest SPis used. In Step
2, severa control methods are provided in this program, such as joystick control,
single point-to-point control, trgjectory control, etc. The scalefactor can be adjusted
in Step 3. The moving period of time can be adjusted in Step 4 in order to control
the velocity of the platform. Step 5 is used to input the X, y, z spatia coordinates
and roll, pitch, yaw rotation parameters of the end-effector. Ay applying theinverse
kinematics algorithm, the six leg lengths are determined. In Step 6, two control
models are provided. The simulation model is designed to simulate the motion and
posture of the SP and when this model is activating, only the virtual model of SP
will move and the real SP does not move. The rea-time and simulation model can
control both the virtual SP model and thereal SP. In Step 7, four types of constraints
are selected and checked to ensure the security of the system, namely, theleg length
should be in the motion range and does not damage the platform; The Sph. Ang.
constraint means the angles of the movement of the legs should be in the motion
range; leg collision means that in the movement of the platform, the legs should not
collide with the other legs; leg velocity constraint isto limit the velocity of the legs
in the acceptable range to avoid damaging the legs. The last two rows are the input

parameters of leg lengths for each leg with the application of forward kinematics
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and the spatial coordinates and rotation parameters for the plate with the application

of inverse kinematics.

b) Sensor Control Interface

Figure 3.13 shows the sensor control interface which is designed for the
exterior measurement sensor to be applied to the actuators of the SP. The exterior
sensors are used to calibrate the platform and monitor the actual position and
orientation of the mobile plate of the SP. After the real data of the position and
orientation of the mobile plate has been obtained, the data can be presented and

stored in this GUI.

Figure 3.13 Exterior sensor control user interface

During the stroke of the actuator, the analog value of the wire extension of

the wire sensor is switched to digital values calculated using the Nationd
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Instrument DAQ card. The digital valuein the DAQ card is represented by voltage
which is proportional to the length of the wire drawn from the wire sensors. The
feedback values are used to balance and minimize the variance and error of the

position and orientation of the mobile plate using forward kinematics.

c) Motion Control Feedback Window
The motion control feedback window is developed to read al the feedback
values of the positions, velocities and accelerations of the encoder which is

illustrated in Figure 3.14.

ASDN Commard

Figure 3.14 Interface of motion control feedback window

The ASCII dialog window is designed for the user to enter direct command

codes to the SP which is efficient for the user to control the system when simple

motion is required.
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3.2.4 Assembly and Construction of the System

The SP is built with commercially available materials. Some of the
mechanical components are fabricated in the Advanced Manufacturing Laboratory
in the Department of Mechanical Engineering, National University of Singapore.

Figure 3.15 (a) shows the dimensions of the base plate of the SP and Figure
3.15 (b) shows the dimensions of the mobile plate. At the corners of the base plate,
four handles areinstalled for easy lifting. The baseis hollowed out at the centre to
reduce its weight so as to increase the mobility of the platform. In the mobile plate,
there are arrays of tapped holes on top of the platform, allowing accessories to be

assembled for different applications.

70cm

Figure 3.15 (a) Dimension of the base plate of the SP; (b) Dimension of the

mobile plate of the SP

In the construction process of the SP, in order to ensure the saf ety of the SP,
the force acting on each of the leg is evaluated. The force in each leg is 20.59N

when aweight is applied. The force exerted on the legs increases to 83.89N when
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ashear force is applied. Thus, when the platform reaches its maximum height, the
force loading on the legs is 20.34N and 116.6N with respect to the vertical force
and shear force.

On the base of the legs, linear actuators of UBA1 RV C400 with DC motors
are fixed and mounted to control thelegs movements. The linear actuator isthe ball
screw type with maximum dynamic and static loads of 1750N and 4000N
respectively. Figure 3.16 shows the linear actuator with motor and Figure 3.17
shows the motor with drive. The motion systems stepper motor with drive
MDMF2231-4 is selected to drive the actuator. The driving force is transmitted
using belts running on the pulleys. The digital encoder of each motor also provides

feedback for the position control.

Figure 3.16 the linear Figure 3.17 the motor with drive
actuator with motor

The moveable mechanical frame is a detachable part assembled using

several aluminum sections which the subject rests against. Figure 3.18 shows the
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assembly of the mechanical frame. A foot step mark is attached at the front of the

SP to indicate the position for the user to stand as shown in Figure 3.19.

Figure 3.18 Aluminum bar and the assemble  Figure 3.19 Sign of the foot step
of the mechanical moveable plate
Figure 3.20 shows the final construction of the platform and Figure 21
shows the final manufacture of the saddle-shape component used at the position of
subject’s waist. Figure 3.22 shows parts for constructing the moveable frame. It is

a detachable part assembled using aluminum sections and two universal joints.

Figure 3.20 The components and final cdﬁructi on of the SP
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sections and the overall system

3.3 Stereo Vision Camera System and Bony Markers Arrangement

In the design of the human spinal deformity measurement system, the stereo
vision camera system with reflective markersis used to provide and identify the 3D
information of the position and orientation of each vertebrain order to generate the
spinal shape by interpolating the vertebras.

Three OptiTrack V100:R2 motion capture cameras (Corvalis, OR, USA)

are used in this system for patient’s human back topology generation which can
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offer integrated image capturing, dataprocessing, and motion tracking in apowerful,
compact package. TheV100:R2 camerais capable of capturing fast moving objects,

real-time streaming and customized user interface with its global shutter imager and

100 frames per second (FPS) capture speed. By maximizing its 640 x 4380 VGA

resolution through advanced image processing algorithms.

Figure 3.23 shows the configuration of the camera used in the system. By
applying the OptiTrack camera system in the spinal distortion assessment research,
desktop-friendly motion capture images and the spatial position and orientation
information of the human back can be obtained. Table 3.1 lists the camera

specifications.

Table 3.1 Specifications of the OptiTrack V100:R2 Camera Used in this Study

Specifications of the OptiTrack V100:R2 Camera

Frame Rate 100 FPS (frame per second) Resolution 640x480
Width 45.2 mm Pixel Size 6%6 um
Height 74.7 mm Latency 10 ms
Depth 36.6 mm Lens HFOV 45-60°
Weight 120g Ultra Bright F# 1.6
1.78 inches 1.44 inches
45.2 mm J6.6 mm
M3
3 i Mounting
Holes

2.94 inches
74.7 mm
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Figure 3.23 Configuration of the OptiTrack stereo camera with 6-32 mounting

holes on the back

Used together with the cameras, some specialy designed markers are
included in the process for human spine deformity measurement. The markers are
standard one inch round balls which are made by reflective materials. Figure 3.24
shows the 7/16" diameter hard markers with mounting holes used in this study.

The software used in this research is the Tracking Tool motion tracking
software. The free OptiTrack SDK provides complete access to the powerful
capabilities of controlling OptiTrack V100:R2 camera. It is easy to use APl and
included sample applications to create customized tracking applications rapidly.
The Tracking Tools software is used to achieve robust multi-camera 3D tracking in
this research.

Another issue is the arrangement of these three cameras. The OptiTrack
system is modular and it reduces the initia investment in motion tracking
technology. The design of camera arrangement and Camera Installation and Data

Obtain Process is shown in Figure 3.25.

Figure 3.24 7/16" diameter hard reflective markers with 6-32 mounting holes and

the OptiWand calibration tool with three markers

86



caplure volume

Camera Fixing

Camera Cdlibration

Figure 3.25 Camera arrangement and data acquisition process
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Chapter 4 Surface M easurement Parameters and Indicesfor Adolescent

I diopathic Scoliosis Progression Assessment and Diagnosis

In order to describe the body shape acquired numerically from subjective
visual assessment algorithms and surface topology apparatus (Inami et a. 1999;
Suzuki et al. 1999), recent studies have highlighted the rel ationship between surface
topology and the changes of the bony distortion using the scoliosis evauation
parameters and indices which are applied to define the cosmetic defect and to

provide a non-invasive indicator for scoliosis progression.

4.1 Proposed Human Spinal Deformity M easurement I ndices and Parameters
4.1.1 Spinal Visible Characteristicsand Principles of Optimal Indices
In the early stage of the spinal deformity, the symptoms are not apparent in
most cases. Until the underlying trunk curvature becomes significant, the pain starts
to become severe. The very first signs or indications of the scoliosis are that the
patient’s clothes are not suitably fit, the pleats may hang unevenly or the patients
may walk with abnormal gait.
The quantitative analysis for scoliosis requires more detailed physical
examinations such as:
e The position of the head is not centered above the shoulders.
e The prominent points of the scapula are not symmetrical.
e One shoulder may be higher than the other.
e Thespineand rib cageis deformed at “C” shape or “S” shape curvesin the

coronal plane.
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e |t appearsthat alonger distance between the elbow and trunk on one side of
the body and a shorter distance between the elbow and trunk on the other
side.

e Theentire body leansto one side.

e The structure of muscles may change and uneven musculature may trend to
one side of the spine.

e Asymmetric size and location of the breasts among females.

e Thetexture and looking of the skin overlying the spine area may changes.
Patias et al. (2010) provided a set of nine principles that should be followed

to design an optimal index to evaluate the severity of ascoliosis curve. However, it

is challenging to satisfy all these principles completely, and thus they can be used
as guidelinesinstead. The nine principles are:

a.  Indices should be measured with maximum achievable accuracy and in adirect
manner. For instance, the coordinates and angles are direct measurements
whereas the areas and volumes are calculated indirectly from other direct
measurements. Therefore, indices based on direct measurements are more
accurate and preferred.

b. Indices should be independent of the measurement techniques of the trunk
deformities; else they cannot be used universally and will be highly dependent
on the measurement methodol ogy used.

c. Indices should be based on robust procedures and automatic processing
techniques, eliminating as far as possible human intervention, human induced

errors and objectivity.
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Indices should be based on automatically detectable and uniquely identifiable
anatomical landmarks. Landmarks used and the measured points on the back
surface should be positioned unambiguously so that they can be detected
automatically and easily.

Indices should require simple measuring protocols. Complicated protocols(e.g.,
patient position relative to the sensor, lighting conditions, etc.) are sources of
errors.

Indices should be normalized in order to be comparable among patients, and
should not depend on the trunk size, width of waist or length of arms. In this
respect, they should be united or in the form of percentages.

Indices should provide a stable datum for progress monitoring over time. This
means that they should either be coordinate-system-free or refer to acoordinate
system that is stable over time.

Indices should be able to distinguish between different types of surface
deformities (i.e.,, Coronal/Transverse/Sagittal, Left/Right semi-trunk,
Single/Double curves Thoracic/Thoraco-Lumbar/Lumbar).

Indices should provide a clear and safe difference in magnitude between
normality and pathology, so that pathology can be safely distinguished and
diagnosed. This actually means increased sensitivity and specificity, and there

isminimal error relative to the smallest detectable change.

4.1.2 Thelnter-Vertebra Angular Separation (IVAYS)

The human spine composes 33 vertebrae, from which the upper 24 vertebrae

are connected when evaluating the severity of scoliosisin thisresearch. Theseform
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the cervical (top), thoracic (middle) and lumbar (bottom) regions of the spinal
column. Each vertebrais separated by the upper and lower inter-vertebral discsthat
alow dlight movement of the vertebrae and act as a ligament to hold the vertebrae
together. Figure 4.6 shows an X-ray of a normal human spine, in which the
horizontal and flat inter-vertebral discs between adjacent vertebrae can be clearly

observed.

Figure 4.1 X-ray images of normal and scoliosis spines

(Source: http://commons.wikimedia.org/wiki/File:Scoliosis (15-year-old).jpg)

However, for ascoliotic spine, not all the inter-vertebral discsare horizonta

and flat. Figure 4.1 aso shows an X-ray image of a scoliotic spine with a typical
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‘C-shape’ curve in the thoracic region due to the curvature of the spinal column.
The vertebrae are observed to deviate most from a vertical plumb line near the
cervical-to-thoracic and thoracic-to-lumbar transition regions. At these specified
regions, the inter-vertebral discs are found to rotate on the corona plane, hence
forming an angular separation between the pair of adjacent vertebrae.

Since these angular separations reflect a curvature in the spine, they can be
summed up along the entire spinal column to provide an index that can be compared
with the Cobb angle. The larger the total angles of separation, the more severe is
the deformity. A proportional relationship between IVAS and the Cobb angle is
sought in order to establish the IVAS method as a complementary tool to support
the Cobb angle. This means that the severity of the scoliosis can be evaluated
accurately using IVAS before the need for intrusive X-rays for the calculation of
the Cobb angle.

The formulation of the proposed index of IVASisfollows:

IVAS = Yi' ;(angle between the ith and (i + 1)th vertebrae) (5)

For evaluating the feasibility of the IVAS index, 30 X-ray images of
scoliotic spine (The source of the x-ray images sampleis
http://www.pi nter est.com/spinecor/scoliosis-x-ray/) were used. The Cobb angle
and the IVAS index for each of the 30 scoliotic spine subject were calculated. The
correlation between the Cobb angle and the IVAS index were established in this
research, which has shown the potentialy high usefulness of the IVAS index.

In the 30 X-ray samples which were sourced for analysis, a breakdown is

shown in Table 4.1. The mix of “‘C’-shape and “S’-shape scoliotic curvesand arange
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of mild, moderate and severe curves will allow for a more rigorous evauation of
the comprehensibility and versatility of the IVAS method in evaluating different

types of curves.

Table 4.1 Breakdown of X-ray samples

Breakdown No. of Samples | Total
‘C’-shape 22

‘S’-shape 8 30
Mild (<20°) 4

Moderate (20°-70°) | 23 30
Severe (>70°) 3

(In the table, the definition of “Mild” scoliosis means that the Cobb angle of the
spineisless than 20° deviation, "M oderate” scoliosis means that the Cobb angle
of the spineislarger than 20° and less than 70° and ”Severe” scoliosisis larger
than 70°.)

The type of curves, the lateral flexion values and the degree of vertebral
rotation were analyzed from the posterior-anterior rachis radiograph taken while
the patient was standing. The maximum value and minimum value of the Cobb
angle of the scoliosis spine sample are 95.5° and 12° respectively. The mean Cobb
angle of the scoliosis spine sample is 44.75° with standard deviation of 19.34°. The
classes of curves are established following the Ponseti classification (Negrini and
Negrini 2007) as shown inthe Figure 4.2. Thelateral flexion is decided by the Cobb
angle and the subjects are classified into five classes (the Cobb angle larger than

50°, between 30° and 40°, between 20° and 30°, and between 10° and 20°).
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m 10°-19°
m 20°-29°
m 30°-39°
m 39°-49°

m >50°

Figure 4.2 Radiographic Parameters of the Cobb Angles of the 30 Subjects

In order to quantify the asymmetry in the axial plane, the new IVAS index
Is devised and basically consists of the angular differences between each pair of
adjacent vertebrae. Using the same 30 data sample of X-ray images of the scoliosis
spine, the IVAS index is calculated using the following procedures:

1) Project the chosen X-ray sample onto astandard grid to obtain a preliminary
estimate of the 2-D coordinates governing the shape of the spinal curve.

2) Determine the inter-vertebra disc area and the upper and lower edges of the
vertebrae from the X-ray samples.

3) Apply the IVAS index method on radiographic images to obtain
corresponding total angular separation (TAS) between each pair of adjacent
vertebrae.

4) Repeat measurement with the IVAS method for the 30 selected X-ray

samples.
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5) Plot the Cobb angle and the IVAS index on the same set of axesto visualize
thelir relationship.

6) Plot the Cobb angle against the IVAS index to obtain the best-fit trend-line.

7) Finaly, using the Correl function in Microsoft Excel to obtain the

correlation coefficient for these two sets of data.

4.1.3 Modified Inter-Vertebra Angular Separation (MIVAYS)

The IVAS index is a parameter designed for the human spinal deformity
assessment to complement the Cobb angle and the computed results are shown in
the next section. However, it is not easy to recognize the upper and lower edges of
the vertebrae in the X-ray images due to the fuzzy color in the bone and muscle
parts, and this limits the automatic computation potential in clinical applications.
Thus, amodified IVASis proposed in this section.

The MIVASindex isdevised based on the nature of the interpolated curves,
where the vertebrae and hence the inter-vertebrae discs, are not necessarily visible
along the curves. Hence, the previous IVAS method has been modified for use on
aline curve, without altering the governing principle of the evaluation method (i.e.,
to obtain the angular separation between two lines at landmarks along the spine).
Similar to IVAS, the modified IVAS is calculated as the summation of the angles
formed between the perpendicular lines through each pair of the adjacent vertebra.

In this case, the modified IVAS method consists of first drawing lines that
are perpendicular to the curve at estimated fixed intervals, of which the feature
points between the intervals are selected on the spina curve. The positions of the

subject’s vertebra are selected as feature points. Next, the curve fitting algorithm of
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the ‘Spline’ algorithm is applied in the MatLab to outline the spinal curve. Through
each of the feature points, a normal line which is perpendicular to the tangent
direction isdrawn along the spine curve. Thereafter, the angular separation between
each pair of lines is measured and summed up along the entire curve to obtain
MIVAS - a representation of the total angular separation measured using the
modified IVAS method. Figure 4.3 shows an example of a scoliotic spine from an

X-ray image and interpolation of the spinal curve.

(@ (b)
Figure 4.3 Example of a scoliotic spine and curve fitting algorithm applied to the

spinal curve

The MIVAS does not consider the inter-vertebra disc. The steps of

calculating the MIVAS include:
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1)

2)

3)

4)

5)

6)

7)

8)

Project the chosen X-ray sample onto a standard grid to obtain apreliminary
estimate of the 2D coordinates governing the shape of the spinal curve.
Obtain the positions and coordinates of the vertebras of the subject’s spine
image.

Interpolate the points of the vertebrato form the spinal curveto simulate the
shape of the scoliotic spine.

Through each position of the vertebra point on the curve, draw a
perpendicular line to the curve.

Calculate the angles between the pair of adjacent perpendicular lines.

The modified index of MIVAS is defined as the average of the angles
between the pair of the perpendicular lines.

Plot the Cobb angle against the modified MIVAS measurements to obtain
the best-fit trend-line.

Finally, using the Correl function to obtain the correlation coefficient for

these two sets of data.

With the input of the preliminary coordinates, Figure 4.3(b) shows the

interpolated curve of one of the X-ray samples obtained using the *“Interpolant

(Cubic)” algorithm in MatLab; this curve is determined to be able to represent a

scoliosis spine shape most accurately. The curve is observed to resemble closely

the actual spinal curve shown in the X-ray in Figure 4.3(a).

The next step involves applying the modified method of MIVAS to the

interpolated curve. Figure 4.4 shows a visua representation of the entire

measurement process aong the length of the curve, where eight lines are drawn at
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an estimated fixed distance apart with each line being perpendicular to the curve at
that vertebra point. Since in a scoliotic spine, the drawn lines along the normal
direction are observed to be unparallel with each other, there is an angle between
each pair of adjacent lines that can be measured and summed up aong the entire

length of the spine to obtain MTAS.

Angular
Speration
(MTAS))

Figure 4.4 Modified MIVAS method applied on interpolated curve of an X-ray

image

The formulation of the modified index of MIVAS is follows;

MIVAS = Y}i! ;(angle between the ith and (i + 1)th normal lines) (6)

For evaluating the feasibility of the MIVAS, the same data sample of 30 X-

ray radiographic images are used to find the correlation between the Cobb angle
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and the MIVAS, and the comparison shows a high correlation coefficient between

the two indices.

4.2 Calculation Results of the Newly Proposed Spinal Deformity I ndices
4.2.1 Calculation of the New-Proposed Index of IVAS

For the 30 scoliosis spinal data, the lVASvalues obtained are 45.23°+19.19°
and the Cobb angles obtained are 44.75°+19.34° (in y+o format).

Table 4.2 lists the measurements, in ascending order, on the 30 interpolated
curves of the X-ray samples using the original IVAS index. The Cobb angles used
were measured directly from the X-ray samplesinstead so as to provide a means of
comparison of the feasibility with the IVAS index. Likewise, the larger the Cobb
angle was used as the measured angle for ‘S’-shaped curves as it represents greater
severity of the scoliosis.

From Table 4.2, it can be seen that when the Cobb angle becomes larger,
the IVAS index also becomes larger. A linear correlation exists between the Cobb
angle and the IVAS index. The Cobb angle and the IVAS valuesin Table 4.2 are
plotted in an ascending order on the same axes, as shown in Figure 4.5. Although
the absolute values of both methods are dlightly different, as the Cobb angle
increases, the IVAS index also increases. This positive correlation is further
analyzed using the linear regression algorithm based on the least square approach.

By inputting the Cobb angles as ‘y-axis’ and the IVAS; values as ‘x-axis’, the

computed correlation coefficient is R? = 0.8619 and R = 1/0.8619 = 0.9284 .

Figure 4.10 shows the plot of the IVAS index against the Cobb angle. When the
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Cobb angles are plotted against the IVASI values, as shown in Figure 4.6, agradient

of 0.6537 of the linear trend-line further affirms the positive correlation.

Table 4.2 Measured Cobb angles and IVAS index using the same data sample

Sample . . The Cobb o
Number Spinal Shape Type | Severity Angle (%) IVAS (°)
16 C 12.0 125
14 C ) 16.0 20
23 S Mild 18.0 25
7 C 185 18
12 C 23.0 22

8 C 27.0 25

5 C 30.0 33

3 S 34.0 25.5
4 C 35.0 215
21 C 35.0 40
30 S 37.0 43
17 C 38.0 34

9 C 39.0 35
15 C 42.0 60
20 S 425 48

1 S M oderate 45.0 51
25 C 47.0 59.5
13 S 48.0 46
19 C 49.0 51
10 C 51.0 48
18 S 535 59
22 C 54.5 53
28 C 54.5 535
2 S 55.5 50

6 C 56.0 52
27 C 60.5 63
29 C 62.0 58.5
24 C 79.5 85
26 C Severe 84.0 90.5
11 C 95.5 74.5

100



100
90
80
70
60
50
40
30
20
10

The Cobb Angle

IVAS Index vs. the Cobb Angle

PS
y = 0.9357x + 2.4273 ”
R2=0.8619 o
*
«® <
2
@ *
& /
(.{f
0 20 40 60 80 100
IVAS

Figure 4.5 Plot of the IVAS index against the Cobb angle with R?=0.8619
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Figure 4.6 Bar chart of the IVAS index against the Cobb Angle
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The high positive correlation between the Cobb angle and the IVAS index
method is highlighted in Figure 4.6 with the regression equation of y = 0.9357x +
2.4273, where the line graph representing IVAS increases in tandem with the bar
chart representing the Cobb angle measured. The computed correlation coefficient
of 0.9284 isvery closeto the value of 1, thusimplying a strong positive correlation
between these two indices. This shows that the proposed index of IVAS has

potentially high usefulness and feasibility.

4.2.2 Calculation of the Modified Newly Proposed Index of MIVAS

The same data sample of 30 X-ray images of the scoliosis spine are used in
the calculation of the modified index of MIVAS. The calculation showsthe MIVAS
valueof 117.69°+45.09° and the Cobb angle of 44.75°+19.34° (also in pyxo format).

Table 4.3 shows the results, in ascending order, for the 30 interpolated
curves of the X-ray samples using the modified index of MIVAS. The Cobb angles
are measured directly from the X-ray samples, and the larger Cobb angle is taken
to be the angle for *S’-shape curves as it represents greater severity of the scoliosis.
The MIVAS index is calculated using the feature point interpolation algorithm and
the results are shown in Table 4.3.

Table 4.3 shows that the MIVAS index is quite different from the original
IVAS. The MIVAS index is usually nearly three times as large as IVAS index.

When the value of the Cobb angle increases, the MIVAS index increases.

Table 4.3 The Cobb angles and MIVAS index based on same data sample
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e %‘g‘:’ SNaPe | severity (co:)Obb Andle | v ivas ()
16 C 12.0 20.31
14 C . 16.0 70.75
23 S Mild 18.0 66.8
7 C 18.5 52.55
12 C 23.0 74.01
8 C 27.0 91.57
5 C 30.0 83.37
3 S 34.0 99.67
4 C 35.0 110
21 C 35.0 91.81
30 S 37.0 119.93
17 C 38.0 81.55
9 C 39.0 104.52
15 C 42.0 133.66
20 S 425 116.59
1 S Moderate 45.0 148.51
25 C 47.0 116.49
13 S 48.0 117.01
19 C 49.0 108.13
10 C 51.0 121.96
18 S 53.5 120.46
22 C 54.5 148.91
28 C 54.5 111.9
2 S 55.5 111.2
6 C 56.0 168.98
27 C 60.5 167.95
29 C 62.0 118.19
24 C 795 180.24
26 C Severe 84.0 239.28
11 C 95.5 225.39

Similar to the correlation between the Cobb angle and the IV AS index, there
is alinear correlation between the Cobb angle and the MIVAS index. The Cobb
angle and the MIVAS valuesin Table 4.3 are plotted in an ascending order on the
same axes, as shown in Figure 4.7. The value of the MIVAS; is much larger than

the Cobb angle and the original IVAS; index value. It can be seen that the absolute
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values of both methods are quite distinct, and as the measured Cobb angleincreases,
the MIVAS measured also increases. Similarly, the linear regression algorithm was
applied and analyzed in the comparison of the MIVAS index and the Cobb angle
and a positive correlation was found. The MIVAS is set as the ‘x’ value and the
Cobb angle index as the ‘y’ value in Figure 4.7. The computed correlation
coefficient between MIVAS and the Cobb angle is R? = 0.8418 andR =
+/0.8418 = 0.9175. Figure 4.7 shows the scatter plot of the MIVAS index against
the Cobb angle.

When the Cobb angle values are plotted against the MIVAS values, as
shown in Figure 4.8, agradient of 0.3935 of the linear-trend line further affirmsthe

positive correlation.

MIVAS Index vs. the Cobb Angle
100
90 y = 0.3935x - 1.5624 ¢
R2=0.8418 .
. 80 ¢
< 70
)]
c 60 ¢
.
~
S 40
2 3
|_
20
10
0 T T T T T 1
0 50 100 150 200 250 300
MIVAS (°)

Figure 4.7 Plot of the MIVAS index against Cobb angle with R>=0.8418
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MIVAS Index vs. the Cobb Angle Relationship
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Figure 4.8 Bar chart of the MIVAS index against the Cobb angle

The positive correlation between the Cobb angle and the MIVAS index
method is quite high (>0.9) which is shown in Figure 4.8 with the regression
equation of y = 0.3935x-1.5624, where the line graph representing MIVAS
increases in tandem with the bar chart representing the measured Cobb angle. The
new correlation coefficient for MIVAS against the Cobb angle of 0.9175 is quite
closeto 1, i.e, thereisastrong positive correl ation between these two indices. This

suggests the modified index of MIVAS is potentialy useful.

4.3 Calculation of 3DIVAS Index for Measuring Spinal Defor mity

4.3.1 3D Inter-vertebra Angular Separation Index (3DIVAS Index)

The 3DIVAS is designed based on the IVAS index and MIVAS index.
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As a predictor for the risk of sustaining incident vertebral deformity, the
spinal deformity index is a convenient tool to quantify the number and the severity
of prevaent vertebral fractures. However, most of the indices are calculated or
estimated based upon X-ray images, such as Cobb’sangle, IVAS or MIVAS. Since
this quantification must be taken into account to improve management of patients,
the regular actions of taking X-ray images may potentially bring harmful to the
patients.

This 3DIVAS is designed as a three-dimensional and radiation-free
parameter to assess the severity of spinal deformity. The basic idea of calculating
3DIVASissimilar to theideaof calculating IVAS and MIVAS, which is based on
inter-vertebra angular separation. Comparing to the two-dimensional indices of
IVAS and MIAVS, 3DIVAS s athree-dimensional index.

The steps of calculating the 3DIVAS are:

1. Pre-processing and preparation. The patients need to expose bare back
to the nurse or orthopedist and necessary equipment, such as reflective
markers, camerasystem, computers etc., need to be set up and calibrated.

2. Vertebra center-point estimation. Using the markers to highlight the
spinal vertebras centerline. Attaching the reflective markers onto the
prominent points of the spine.

3. Obtaining the coordinates of the vertebra points (marker points) using
the camera system.

4. Spina centerline extraction. Using Interpolan (Cubic) curve fitting
algorithm (genera equation: f(x) = piecewise polynomial), the vertebra

points are interpolated into 3D curve.
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5. Through each vertebra point, the plane which is perpendicular to the
curve is generated. The angular separation between the adjacent pair of
planes are cal culated and summed up.

6. The3DIVASiscaculated as:

n
3DIVAS = Z(angle between the ith and (i + 1)th normal planes)

i=1

Figure 4.9 shows an overview of the proposed method for measuring the

three-dimensional and radiation-free index of 3DIVAS.
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Figure 4.9 an overview of the proposed method to calculate the index of 3DIVAS.

2T

(1) Pre-processing, preparation and an example of attaching the markers onto the
patient’s back; (2) Vertebra centre-point estimation; (3) Spinal centerline
extraction using the coordinates of the markers; (4) 3D Inter-vertebra angular

separation measurement; (5) avisual sketch of the shape based on the 3DIVAS

In order to estimate the feasibility and reliability, the previous data set is
used. The data set includes totally 30 spinal data samples in which there is 22
samples from C-shape scoliotic spines and 8 samples from S-shape scoliotic

patients.
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In the data set, the coordinates of the vertebras are cal culated based on the
profile paper and thus are 2D coordinates. Lacking of the 3D data sets for the
experiment and cal culation, a column of z-axis coordinates are arbitrarily added to
the 2D data and transform it into 3D data. In the thoracic part of the spinal data
sample, apositive number of the z-axisvalueis added to data set. And in the lumbar
part of the spinal data sample, positive or negative number of z-axisvalueis added

to the data set.

4.3.2 Calculation Results of the Newly Proposed 3D Spinal Defor mity Indices

Similar to the calculation of IVAS and MIVAS, for the 30 scoliosis spinal
data, the 3DIVAS vaues obtained are 128.59° -43.72°, while the Cobb angle of
44.74° + 19.34° (in y = o format) which is the same as in IVAS and MIVAS
calculation. Table 4.4 shows the calculation results, in descending order, for the 30
interpolated 3D curves of the samples using the three-dimensional 3DIVAS. The
Cobb angles are measured directly from the data set and the Cobb angles become
larger as the severity of the scoliosis become greater.

From the table 4.4, it shows that 3DIVAS isdifferent from the IVAS index
and similar to the MIVAS index. The 3DIVAS is usually severa times more than

IVAS and similar to MIVAS.

Table 4.4 Measured Cobb angles and 3DIVAS index using the same data sample

Sample Spinal Shape
Number | Type

Cobb Angle

Severity ©)

3DMIVAS (°)
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16 C 12.0 43.006

14 C Mild 16.0 88.964

23 S 18.0 89.974

7 C 18.5 79.530

12 C 23.0 89.363

8 C 27.0 109.095
5 C 30.0 98.8418
3 S 34.0 123.250
4 C 35.0 137.420
21 C 35.0 117.240
30 S 37.0 142.088
17 C 38.0 99.991

9 C 39.0 127.483
15 C 42.0 180.660
20 S 425 139.705
1 S Moderate 45.0 157.694
25 C 47.0 139.843
13 S 48.0 155.260
19 C 49.0 129.723
10 C 51.0 146.079
18 S 53.5 164.842
22 C 54.5 178.521
28 C 54.5 154.598
2 S 55.5 133.431
6 C 56.0 191.975
27 C 60.5 200.798
29 C 62.0 221.671
24 C 79.5 195.578
26 C Severe 84.0 284.415
11 C 95.5 238.143

Similar to the IVAS and MIVAS, the 3DIVAS index is compared to the
Cobb angle and there is a linear correlation between the Cobb angle and the
3DIVAS index. As shown in Figure4.10, the values of the Cobb angle and the
3DINVAS index in Table 4.4 are plotted according to an ascending order on the
same axes. From thefigure, it can be seen that, for the same subject, as the measured

Cobb angle increases, the calculated 3DIVAS a so increases.
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Using the calculated results, the linear regression algorithm was applied and
analyzed in the comparison of the Cobb angle and 3DIVAS index in which a
positive correlation was discovered. The 3DIVAS index is set as the “x” value and
the Cobb angleindex isset asthe ‘y’ valuein Figure 4.10. The computed correlation
coefficient between the 3DIVAS index and the Cobb angle is R? =
0.8311 and R = 1/0.8311 = 0.9116. Figure 4.10 depicts the scatter plot of the
3DIVAS index and the Cobb angle.

When the 3DIVAS index values are plotted against the Cobb angle values,
asshownin figure 4.11, agradient of 000000 of the linear-trend line further proves

the positive correlation.

3DIVAS Index vs. the Cobb Angle
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Figure 4.10 Plot of the 3DIVAS index against Cobb angle with R?=0.8331
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3DIVAS Index vs. the Cobb Angle Relationship
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Figure 4.11 Bar chart of the 3DIVAS index against the Cobb angle

The positive correlation between the Cobb angle and the 3DIVAS index is
high R=0.9116 (>0.9) shown in Figure 4.10, but islower than MIVAS (R=0.9175).
The regression eguation is shown in Figure 4.10 of y = 0.349x - 5.9577, where the
line graph representing the calculated 3DIVAS index increases in tandem with the
bar chart representing the measured Cobb angles. As the coefficient is high with
R=0.9116, it is supported that the 3D index of 3DIVAS s potentialy feasible.

The benefits of using the 3DIVAS index are that this index is a radiation-
free parameter that can avoid the harmful exposure to the X-rays and thisindex is

calculated based on the 3D information of the scoliotic spinal curvature.
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4.4 Conclusion about the New-Proposed Spinal Defor mity Indices

The main factors that have been considered as the foundation for
quantifying and assessing the scoliosis deformity are the severity of left-to-right
asymmetry and the degree of spinal rotation. On the other hand, the degree of |eft-
to-right unbalance and asymmetry is also quite critical for scoliosisevaluation. This
research has proposed three new indices based on the angular separation between
the pair of adjacent vertebra, which is potentially useful for the subject’s body and
spinal deformity evaluation in the coronal plane.

The IVAS, MIVAS and 3DIVAS are calculated and compared with Cobb
angle. The calculation of the IVAS index and MIVAS need to be derived from the
subject’s X-ray images which are 2D images. And the 3DIVAS is designed based
on the 3D information of the spinal curvature and a radiation-free index. They are
used as complementary methods supporting the Cobb angle.

A comparison between the Cobb angle and IVAS, the Cobb angle and
MIVAS and the Cobb angle and 3DIVAS has been conducted in this thesis. The
correlation coefficient between IVAS and the Cobb angle is 0.9284, the correlation
coefficient between MIVAS and the Cobb angle is 0.9175 and the correlation
coefficient between 3DIVAS and the Cobb angle is 0.9116. The high correlation
found between the clinical variable (Cobb angle) and topographic variables (IVAS,
MIVAS and 3DIVAS) shows that although they use different calculation methods
for different deformities, variations in the spinal column appear as variations of the
topographic pattern. In this thesis, it has been shown that the newly proposed
indices of IVAS, MIVAS and 3DIVAS have the potential to be used as tools for

supporting the traditional scoliosis measurement methods.
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Furthermore, a computer program has been developed using MatLab
programming that can automatically determinethe new indices (IVASand MIVAS),
and this simplifies the process of calculating these two indices.

In the future research, more data sets such as X-ray images, CT scan images
or data from 3D camera system could be included in the calculation of the new-

proposed indices for more experiments and tests.

4.5 Discussion of the New-Proposed Spinal Deformity Indices

While the positive gradient of the linear-trend line plotted in Figure 4.12
underlines linear proportionality between the two methods, its value of 0.3935 (i.e.,
large deviation from the value 1) implies that the magnitudes of the measured Cobb
angles are on average, 0.3935 times the magnitude of the MIVAS.

Nevertheless, the relationship between the IVAS and the Cobb angle,
between MIVAS and the Cobb angle and between 3DIVAS and the Cobb angle do
not affect the feasibility of IVAS, MIVAS and 3DIVAS, since in comparing the
indices, the value of importance isthe correl ation coefficient instead of the absolute
measured angles. The proposed evaluation indices would only need to assist in
evaluating the severity of the scoliotic spine by suggesting the same severity asin
the measured Cobb angle. Therefore, in this case, it can be proposed that the
absolutevalueof IVASand MIVASwill besignificantly larger than the Cobb angle
for the same severity of scoliosis.

For next step, more data sample of scoliosis spine images will be used to

determine the feasibility of the IVAS, MIVAS and 3DIVAS indices.
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Chapter 5 Measurementswith a Physical Spinal Model and Preliminary
Experiment Results and Spinal Model Construction

5.1 Physical Spinal Model Preparation for the Imaging Process
In this preliminary experiment, a physical spinal model was used for a
preliminary experiment. . The camera placement, capturing area and participant’s

direction is shownin Figure 5.1.

Figure 5.1 Camera placement, capturing area and participant’s bending direction

(depicted with dotted line)

During the measurement, the spinal model is labeled with round reflective
markers as shown in Figure 5.2. These markers are attached at several prominent
positions of the back corresponding to the locations of the vertebras according to
the following anthropometric points: superior spinous processesof T1, T3, T6, T9,
L1, L3 and L5 and both posterior superior iliac spines (PSIS) (T=thoracic and

L=lumbar).

114



Figure 5.2 Mechanical frame and anthropometric marking position on the physical

spinal model

The markers which are coated with retro-reflective material (3M#7610) are
placed using hypoallergenic tape that reflect incident light directly back to the
infrared cameras (IR). In this system, three IR cameras are used for data capture.
The optical motion capturing system is selected for the main advantages of high
update rates, low latency and scalable to fairly large areas (Medved 2002). The
surrounding environment is designed carefully to reduce ambient noise eg.,
brighter lights and exclusion of shiny background objects.

As reported, the average error of the OptiTrack optica motion capture
cameras is less than 0.4 mm (Bethke et al. 2008) while the resolution of the
OptiTrack camerais 640x480 and the lens HFOV is 45~60°.

A stationary laboratory coordinate system is defined by avertically oriented
Z-axis, an X-axis placed forward in the participant’s facing direction, and a Y-axis
perpendicular to the first two and pointing the direction according to the right-

handed coordinates rules. The image capturing volume is set to be 2.50m, 2.50m
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and 2.20m. For higher precision in marker capturing, a spinal skeleton model is
used first and the tracking rate is of 100 FPS (frame per seconds) for the V100:R2

cameras used in the presented study.

5. 2 Calibration of the 3D Camera System

The SP and the imaging system are assembled using modular aluminum
sections, universal joints and linkages. Three cameras are set up two meters away
from the apparatus in atriangular layout.

Before the measurement process was conducted, the calibration stage and
camera parameter setting was performed. In the view of the cameras, the virtual
camerawas aligned in aline and the objects cannot be detected. The OptiWand kit
(with Calibration Square) and the self-calibration function in the software were used
for the system calibration. The OptiWand kit isan improved three-reflective-marker
camera calibration tool. Figure 5.3 (a) shows the three-marker calibration tool kit
used in the system and Figure 5.3 (b) shows the calibration square used in the
calibration process.

After placing and swinging the OptiWand kit in the overlapping view of the
three cameras, the tool was made to move back and forth for several times. The
three 3D cameras can track the trgjectories of the Optiwand to identify the real
position of the cameras. The camera can recognize the position and orientation of
the markers on the OptiWand. Figure 5.4 shows the process of the calibration in the
camera control program. In the picture, the pink, green and red lines were the

trajectory of the OptiWand kit captured by the three cameras.
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@ (b)
Figure 5.3 (a) The three-marker OptiWand kit calibration tool; (b) the calibration

square with three 5/8” hard markers

AENR s BERN: SEEes

(@ (b)
Figure 5.4 (a) The calibration process in top view; (b) the calibration from the

individual cameras.

Figure 5.5 is the setting and mode of the parameters in the calibration
process. The “Calibration Accuracy” is to set the complexity of the calibration
solver calculations, in which lower complexity will result in a lower quality

calibration, but a significantly faster solution. Valid options are Low (Default),
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Medium, High, Very High. The “Wanding Time” is used to select the amount of
time in seconds allotted for wanding and 10 seconds is used here. The
“Approximate Volume” selects the size of the captured volume that is being
wanded. This option does not restrict the volume size, but is used to constrain the
solver, and should be set as close to the real volume size as possible. The valid
options are: 1 Cubic Meter, 3 Cubic Meters (default) and 6 Cubic Meters. 3 cubic
meters mode is selected here. The “Min Camera Coverage” is designed to select
the minimum number of cameras that must “see” a marker for it to be considered
valid to take asample. Thevalid rangeis set to be 3 to the number of cameras being
calibrating in this study. The “Selection” option means how samples are selected
from the wanding data. The “Camera Group” selects the camera group to be

calibrated. The valid options are all currently assigned camera groups.

B Galibration Options
Calibration Accuracy Low (Fast)
Wanding Time (Second 10
Approximate Volume 3 Cubic Meters
Min Camera Coverage 3
Selection Distnbuted

Camera Group Camera Group #1

Figure 5.5 The setting of the parameters and mode in the calibration process

However, the images become more distorted as experiment continues as
shown in Figure 5.6. As shown, the large circle spots with white color are the noisy
data from the environment. The positions of the markers a'so become inaccurate.

Until more calibration data are included, the calibration process is completed and
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the cameras can identify the position of the markers to form aline using the three

markers.

Figure 5.6 The calibration process when noisy datais present from the

environment

If there are shining articles or noise pointsin thefield of view (like the white
circle spot), the calibration resultswill be also affected. The quality of image needs
to beimproved in order to track the trgjectory of the markers and the coordinates of
the feature points better. When the feature points and markers move in the field of

the camera’s view, the coordinates of the markers can also be extracted.
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During wanding, the wand is moved slowly across the entire captured
volume, covering as much space as possible for sufficient sampling. In order to
obtain better results, the volume iswanded evenly and comprehensively throughout
the space. Figure 5.7 (a) shows an example of proper wanding for a large motion
capture volume. The volume may differ depending on camera setup and aiming in
each session of the experiments. After wanding has been completed, examine the
calibration panel for feedback on the number of samples collected. The window
will show a “sufficiency rating” which defines whether sufficient samples have
been recorded to meet the minimum requirements for low, medium, high, or very
high quality. The rating only takes into account minimum samples, so a higher
sample quantity should be used for larger volumes. In thisthree-camera system, the
cameras are calibrated properly with an average of more than 1000 samplesfor each
camera. In the calibration process, the number of sample data captured by each
camerais 1696 for Camera 1, 1437 for Camera 2 and 1856 for Camera 3 which is
shown in Figure 5.7 (b).

After the calibration process, the system can adjust the virtual camera
positions according to the real camera positions by tracking the position of the
markers. The view of the direction and orientation can aso be changed to top view,
side view, etc. The trgectory and position of the markers can be detected by the
system accurately. Also, the mean error and standard deviation of the error of each

camera are given by the system.
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Camera iSamphs] Spread |

N 1 1696 0.705
i 2 1437 0.728
3 1856 0.582
@ (b)

Figure 5.7 (@) The wanding process using the OptiWand kit for calibration of the

three cameras; (b) the number of data sample captured by each camera

5.3 Test of Proof of Concept

The OptiTrack camera system were designed to obtain the three
dimensional location of markers within a measurement volume. A preliminary
experiment is designed to test the accuracy of the system beforeit is applied to real
subject. Figure 5.8 depicts the test wedge used in the experiment to determine
accuracy of the system using the method of reconstruction distance between marker
centers. Eleven 7/16” (11.11mm) diameter markers on bases are placed onto the
hypotenuse face of the sample and the relative positions measured within the
tolerances of the caliper. And figure 5.9 shows the sketch used in the preliminary
test and table 5.1 lists the relative actual distances between the centers of the
markers. Above the wedge, the markers are ensuring to tightly attach together to
the wedge and the markers have 3mm drilled hole. Thus, the physical height of the
maker centers above the surface of the test wedge is estimated of haf of the

diameter, which is 5.55mm.
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35.26 cm

31.23cm
£2.3°.
16.39 cm.
Figure 5.8 the round markers Figure 5.9 the dimensions of
and the test wedge the wedge

Figure 5.10 shows the position and numbering of the markers, from marker
1 (M1) to marker 11 (M11), which are applied on the hypotenuse surface of the

wedge.

Owp O
M8 MBO M9

M10 M1l

Figure 5.10 the sketch of the position and numbering of the markers
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Table 5.1 The distance between the markers on the wedge

Marker Identification Distances between the markers (mm)
M1-M2 50.24
M2-M3 50.77
M3-M4 49.68
M4-M5 50.27
M5-M6 49.97
M6-M7 50.33
M1-M8 71.10
M1-M9 70.83
M2-M8 68.67
M2-M9 68.54

M7-M10 62.30
M7-M11 62.24
M10-M11 84.04

Table 5.2 shows the actua diameters of the markers and the heights above

the surface of the wedge.

Table 5.2 the marker Diameter and center heights

Marker Heights
Marker Label Marker Diameter (mm) (including fixing tape)
(mm)
M1 11.1125 11.44
M2 11.1125 11.76
M3 11.1125 11.31
M4 11.1125 11.40
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M5 11.1125 11.24

M6 11.1125 11.25

M7 11.1125 11.67

M8 11.1125 11.83

M9 11.1125 11.59

M10 11.1125 11.37

M1l 11.1125 11.29

Mean 11.1125 11.47
Standard Deviation 0 0.2105

Optitrack system assumes that the calculation of coordinates of the markers
is based on the capture of spherical objects. Following routine calibration, the
cameras capture serial images, sequential images every 20 seconds of the test object
with the hypotenuse surface which is normal to the cameras. Calculations are then

made. Table 5.3 shows the actual distances between the markers and measured

distances between the markers which is captured by the cameras.

Table 5.3 Actual and measured distances (by cameras) between the markers

Actual Measured Difference of Actud
Marker Label . . and Measured Data
Distances (mm) Distance (mm)

(mm)
M1-M2 50.24 50.43 -0.19
M2-M3 50.77 50.32 0.45
M3-M4 49.68 49.87 -0.19
M4-M5 50.27 49.70 0.57
M5-M6 49.97 50.26 -0.29
M6-M7 50.33 49.60 0.73
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M1-M8 71.10 70.69 0.41
M1-M9 70.83 70.33 0.5
M2-M8 68.67 68.29 0.38
M2-M9 68.54 69.03 -0.49
M7-M10 62.30 62.74 -0.44
M7-M11 62.24 61.83 0.41
M10-M11 84.04 84.30 -0.26
Mean Error 0.122
S| o

From the experience of body measurements using optical motion capture
systems, it is considered clinically acceptable if the accuracy of marker
reconstruction is less than Imm. This tolerance is considered that it influents the
accuracy less than the magnitude of palpation and the skin sway and movement

(Robert S. Wainner, et a. 2003).

5.4 Imaging Process with the Physical Spinal M odel

During the process of imaging, the physical spinal model islocated in front
of the moveable plate of the apparatus as close as possible to the frame to establish
the necessary reference. Figure 5.11 shows the custom-built aluminum apparatus
and the position of the spina model during the process of measurement.

The spinal model is located upright at the beginning and is made to lean

onto the moveable plate frame, as shown in Figure 5.12.
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Aluminum Cameras

Frame

Stewart
Platform

Figure 5.11 The setup of the custom-built aluminum spinal deformity

measurement apparatus

Figure 5.12 The position of the spinal model in the process of spinal deformity

measurement and assessment

The six leg lengths of the SP are controlled using a MatLab program to

achieve the horizontal movement of the SP. The custom-built moveable plate can
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bend from O degree to 90 degrees. Figure 5.13 shows the schematic movement of

the apparatus to make the model bend in a series of angles.

Figure 5.13 A schematic relationship of the mechanical apparatus

The objective is to find the value of parameter p and the six leg lengths to

make @ equals to 0°, 30°, 45°, 60° and 90°. From the geometrical relationship, it is
known that
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Thus, the relationship between the value of ¢ and p can be obtained. By
knowing the bending angle and the p value, the relationship between the six leg
lengths of the SP and the bending angle of the frame is calculated using inverse
kinematics, which is shown in Table 5.4.

By manipulating the SP, the model is controlled to bend into 0°, 30°, 45°,
60° and 90° and to exhibit the model to the camera. For each bending angle, an

image of the spinal model with the reflective markers is captured. The results and

images are shown in the next section.

Table 5.4 The relationship between the six leg lengths and the bending angle

Six Leg Length (mm)

0] Valueof p | Leg 1l Leg 2 Leg3 Leg4 Leg5 Leg 6

0° | 82.61cm | 914.818 | 790.375 | 801.306 | 864.981 | 844.626 | 905.259

30° | 78.89cm | 895.884 | 784.982 | 794.658 | 851.286 | 833.138 | 877.313
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45° | 70.03cm | 855.628 | 779.171 | 785.720 | 824.531 | 812.007 | 849.618
60° | 57.72cm | 812.523 | 787.744 | 789.805 | 802.258 | 798.195 | 810.520
90° | 31.23cm | 779.899 | 867.310 | 860.477 | 817.575 | 831.890 | 787.431

5.5 Preliminary Experimental Results and Spinal Shape Construction

Therigid bodies in the interface are indicated by the collection of markers.
These markers can be selected in the program and are created as trackabl e objects.
The markers on the prominent points of the spinal model in this arrangement are
considered as arigid body representing the shape of the spine. The real benefit of
establishing a rigid body using the collection of markers is that the program can
provide the position and orientation of the rigid body. Therefore, the spine shape
and trunk deformity can be expressed by the position and orientation of the markers.
Figure 5.14 shows the interface of the imaging program and the position and
orientation of the rigid body of the spinal model. The default point clouds of the
markers are circles in white color.

During the imaging process, when some of the markers are missing or
cannot be detected in the view of the cameras, the program will attempt to assume
the positions of those markers. Thus, the program can still track the rigid body of
themodel even when some of the markers are missing. Figure 5.15 showsthe results

and images from each of the camera separately.
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Figure 5.14 The interface of the imaging program and the position and orientation

of the markers
As shown in Figure 5.15, the group of markers is tracked by each of the
stereo OptiTrack cameras separately. By compiling the images from each camera,

the entire rigid body of the spine can be established.

Figure 5.15 Tracking results and images obtained from camera 1 and camera 2

The program is designed to perform semi-automated offline measurements
from convergent digital images. The x, y and z coordinates and roll, pitch, yaw
rotation matrix of the object points of interest can be obtained. Figure 5.16 (a) shows
the results of the digitizing process of the markers. In the system, the coordinates
of the markers are generated automatically. The distance between every two

markersis also calculated which is shown in Figure 5.16 (b).
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Figure 5.16 (a) Result of digitizing process of the markers; (b) the calculation of
the distance between every two markers

Table 5.5 presents the coordinates of each marker obtained automatically
from the program, and Table 5.6 shows the calculated distance between every two
markers. The results are usable with occasiona noisy data points from the
background. The rigid body of the spinal model is represented by the collection of
markers and the spinal shape can be observed clearly from the sets of cameras. The
coordinates of each marker and the distance between each two markers are col | ected.
This preliminary experiment proves that in the current laboratory environment, the

spinal deformity evaluation system is usable and reliable for trunk distortion

assessment.
Table 5.5 Results of the coordinates of the each marker
X Y z
Marker 1 -0.145008 -0.236902 0.117362
Marker 2 -0.126229 -0.224495 0.130079
Marker 3 -0.140872 -0.182758 0.136821
Marker 4 -0.167695 -0.162210 0.143276
Marker 5 -0.155306 -0.139213 0.148242
Marker 6 -0.159935 -0.154273 0.153394
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Marker 7 -0.142007 -0.142556 0.160575
Marker 8 -0.156304 -0.161728 0.161369

Table 5.6 Calculated distances between every two markers

Markerl and Marker2 75.85mm
Marker2 and Marker3 94.74mm
Distance | Marker3 and Marker4 84.40mm
between | Marker4 and Marker5 76.59mm
thetwo | Marker5 and Marker6 66.58mm
markers | Marker6 and Marker7 72.59mm
Marker6 and Marker8 73.93mm
Marker7 and Marker8 61.50mm

In the next section, besides the construction and setting up of the mechanical
apparatus and the stereo vision cameras system, more sets of experiments will be
conducted using the physical spinal model and take the images for each bending

angle.
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Chapter 6 System Calibration and Evaluation Process Optimization

Manufacturing and assembly tolerance can cause an inherent problem where
the system parameters, such asthe leg lengths of the SP are not exactly equal to the
theoretical valuesin the kinematic simulation. Thus, the system calibration process
is designed to ensure the precision of the system. Generally, kinematic calibration
is aprocess of recognizing the practical values of the kinematic parametersin the
simulation model. Therefore, by iterating the kinematic parameters, the inverse
kinematic computation of the required actuator length and joint angles could
generate more accurate bending angles.

The calibration process generally consists of four fundamenta stages,
namely, (a) design and development of akinematic model that includes a collection
of parameters that could be used to determine the correlation between the activated
actuator leg lengths and spatial position; (b) measurement of the manipulator poses
and coordinates; (¢) capturing the practical position and pose using stereo vision
cameras and comparing the two results between the theoretical and practical poses;
(d) error minimization through searching for the optimum kinematic model
parameters of the manipulator from the pose measurements and manipulator
activated actuators; and (e€) correction for the geometric parameter errors in the
manipulator kinematic model.

The kinematics formula is crucia for controlling the pose of the SP to its
pre-set desired location. The main purpose of the calibration is to find the actual
kinematic parameters that have deviated from their nomina values due to the

defective assembly and manufacturing tolerance.
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One of the most important steps of the calibration processis error modelling
which is designed for sketching geometric factors that lead to motion inaccuracy of
the platform. The errors considered in the calibration process are geometric
deviations and are treated as static values or constants.

The configuration of the SP can be fully described with 42 kinematic
parameters. There are seven kinematic parameters for each leg of the Stewart
platform, which are the leg length offset Li (one parameter for each leg), locations
of the spherical joints & (three parameters for each leg) and locations of the
universal joints b (three parameters for each leg). Since there are six legs for the

Stewart platform, there are totally 6 X 7 = 42 parameters to control the SP.

The local coordinate system is defined arbitrarily located at the base of the
Stewart platform denoted by {P} and kinematic parameters can be solved in the
kinematic calibration process. The location of the origins of { P} has no effect on
the error calculation and system calibration. The algorithm of the calibration
processis shown in Figure 6.1.

The six leg lengths of the Stewart platform are set arbitrarily at the
beginning for original input. The theoretical position and coordinates of the mobile
plate of the SP is calculated using the forward kinematic algorithm. Due to
manufacturing and assembly inaccuracy, the real or practical position of the
platform will be different from the theoretical position in the simulation program.
Measurement data are taken from the OptiTrack digital cameras. These cameras
provide additional depth information and 3D coordinates of the feature pointswhich
are used to calibrate the SP. The stereo cameras areinstalled in front of the platform

with reference to the global coordinate system. There is no specific constraint on
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the position of the cameras; however, they must be located where the angle of view

can cover the platform.

Theoretical six
leg length

Forward Kinematics

Theoretical Practical position
position of the of the mechanical
mechanical frame frame

'

Error analysis
Amechanical frame

Iteration
Times = n

If yes» End

If not
Inverse Kinematics

v

ALeg length

Figure 6.1 The algorithm and architecture of the calibration process

An aray of reflective markers is used and attached directly onto the
platform and mechanical frame of the system. In the calibration process, nine
markers are used where six markers are attached on the left and right side of the
frame, two markers are attached on the top and bottom side and one marker is

attached on the center which is shown in Figure 6.2.
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Figure 6.2 Preparations of the markers and apparatus for the calibration

The global coordinates system { W} is set and attached on the floor where
the cameras areinstalled as the reference for the measurement. The comparison (D-
value) between the theoretical and practical positions of the platform is defined as
the errors. Using inverse kinematic algorithms, an iterated set of six leg lengthsis
calculated based on the D-value. The process of iteration ensures the error or D-
value can be reduced. When the D-value becomes sufficiently small, which is less
than & (set value based on a specific application), the final coordinates and position
of the platform can be accepted. Table 6.1 is the original six leg lengths of the
Stewart platform.
The procedure of conducting the calibration processis as follows:
1) Bending the mobile plate into aseries of angles (30 °, 45 °, 60 “and 90°).
2) Calculate the theoretical position of physical bone and markers pi®.
3) Identify the practical position of the markers through OptiTrack g;°.

4) Evaluate the errors between the theoretical and real value using the formula.
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Table 6.1 The origina six leg lengths of the SP

Six Leg Lengths of the SP (mm)
(0} Length 1 Length 2 Length 3 Length 4 Length 5 Length 6
0° 914.818 790.375 801.306 864.981 844.626 905.259
30° 895.884 784.982 794.658 851.286 833.138 877.313
45° 855.628 779.171 785.720 824,531 812.007 849.618
60° 812.523 787.744 789.805 802.258 798.195 810.520
90° 779.899 867.310 860.477 817.575 831.890 787.431

6.2, thefirst three rows show the original input of leg lengthsto bend the frame into
30°. Thetheoretica coordinates of the nine markers are calculated in the simulation
using forward kinematic algorithm, and are shown in the second section of Table
6.2. Theactual positions of the markers are captured by the cameras and the distance
(D-vaue) between the theoretical and actual values is computed. The residua is
calculated as the average of the D-value, which is shown in the last row in Table

6.2. Tables 6.3 to 6.5 show the calibration results when the frame is bent into 45°,

For each bending angle, the residua or the error is calculated as:

Residual; = /(x; —%2)2+ (y1 —y2)2 + (21 — 25 )2

= V(@x)? + (8y»)? + (Az;)?

n
1 —
Residual = HZ Residual;
i-1

60" and 90°.
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Tables 6.2 to 6.5 show theresults of the calibration in oneiteration. In Table




Table 6.2 Result of caibration for bending the frame into 30°

Six Leg Length (mm)

Angle Legl Leg2 Leg3 Leg4 Leg5 Leg 6
30° 895.884 784.982 794.658 851.286 833.138 877.313
Theoretical Position and Coor dinates of the Markers
Marker 1 | Marker 2 [ Marker 3 | Marker 4 | Marker 5 | Marker 6
X-axis 1.7 224 21.7 22.0 -23.0 -22.7
y-axis 55 49 4.3 3.7 49 4.3
z-axis 160.8 141.3 121.8 102.1 141.9 122.0
Marker 7 | Marker 8 | Marker 9
X-axis -22.0 23 20
y-axis 37 3.0 43
z-axis 102.8 82.7 121.8
Practical Position and Coordinates of the Markers Captured by Cameras
Marker 1 | Marker 2 [ Marker 3 | Marker 4 | Marker 5 | Marker 6
X-axis 11 22.1 22.0 21.6 -22.8 -21.9
y-axis 5.8 50 4.4 35 43 4.1
Z-axis 160.1 140.9 120.9 103.7 143.7 122.3
Marker 7 | Marker 8 [ Marker 9
X-axis -22.3 4.0 25
y-axis 37 35 4.2
z-axis 102.4 815 120.8
Distance between the Theoretical Position and Practical Position of Marker 1to9
Marker 1 | Marker 2 [ Marker 3 | Marker 4 | Marker 5 | Marker 6
Distance 10 0.5 0.9 16 19 0.8
Marker 7 | Marker 8 [ Marker 9
Distance 0.6 21 11
Residual 1.155
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Table 6.3 Result of calibration for bending the frame into 45°

Six Leg Length (mm)

Angle Legl Leg?2 Leg3 Leg4 Leg5 Leg6
45° 855.6 779.2 785.7 824.5 812.0 849.6
Theoretical Position and Coordinates of the Markers
Marker 1 [ Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6
X-axis 16 22.1 229 21.7 -23.4 -23.2
y-axis 6.7 6.2 5.6 5.0 5.8 53
z-axis 158.4 138.9 119.5 99.99 137.7 119.8
Marker 7 [ Marker 8 | Marker 9
X-axis -23.0 2.7 2.2
y-axis 4.8 4.4 5.6
z-axis 100.8 80.5 119.5

Practical Position

and Coordinates of the M arkers Captured by Cameras

Marker 1 [ Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6
X-axis 1.6 211 22.0 20.1 -23.9 -23.2
y-axis 6.6 7.0 51 53 51 5.2
Z-axis 157.3 140.0 120.7 100.9 138.8 118.8
Marker 7 [ Marker 8 | Marker 9
X-axis -23.1 24 2.0
y-axis 4.2 4.6 5.7
z-axis 101.1 816 120.8

Distance between the Theor etical Position and

Practical Position of Marker 1t09

Marker 1 [ Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6
Distance 11 17 16 19 14 1.0
Marker 7 | Marker 8 | Marker 9
Distance 0.6 12 14
Residual 1.313

139




Table 6.4 Result of calibration for bending the frame into 60°

Six Leg Length (mm)

Angle Legl Leg?2 Leg3 Leg4 Leg5 Leg6
60° 8125 787.7 789.8 802.3 798.2 810.5
Theoretical Position and Coordinates of theMarkers
Marker 1 [ Marker 2 | Marker 3 | Marker 4 [ Marker 5 | Marker 6
X-axis 157 21.3 21.8 224 -21.8 -21.5
y-axis 7.8 7.2 6.5 5.8 7.5 6.0
Z-axis 156.8 137.3 117.7 98.2 137.3 117.2
Marker 7 [ Marker 8 | Marker 9
X-axis -21.9 22 1.9
y-axis 54 52 6.3
z-axis 99.6 78.7 117.5

Practical Position

and Coordinates of the Markers Captured by Cameras

Marker 1 [ Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6
X-axis 1.8 21.6 21.3 217 -22.6 -21.3
y-axis 7.0 6.5 7.2 6.8 7.1 6.5
Z-axis 156.6 138.0 117.0 99.0 137.9 116.4
Marker 7 [ Marker 8 | Marker 9
X-axis -22.6 11 15
y-axis 6.2 54 6.6
z-axis 98.1 78.1 116.3

Distance between the Theor etical Position and

Practical Position of Marker 1t09

Marker 1 [ Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6
Distance 0.9 1.0 12 14 11 0.9
Marker 7 | Marker 8 | Marker 9
Distance 1.9 12 13
Residual 1.192
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Table 6.5 Result of calibration for bending the frame into 90°

Six Leg Length (mm)

Angle Legl Leg2 Leg3 Leg4 Leg5 Leg 6
90’ 779.9 867.3 860.5 817.6 831.9 787.4

Theor etical Position and Coor dinates of the Markers

Marker 1 | Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6

X-axis 16 22.2 224 22.6 -21.8 -21.9

y-axis 8.0 7.6 7.2 6.7 8.0 1.7

z-axis 154.3 135.9 115.5 96.1 135.3 1154
Marker 7 [ Marker 8 | Marker 9

X-axis -22.2 24 2.0

y-axis 6.8 6.3 7.4

z-axis 96.4 76.6 115.4

Practical Position and Coordinates of the M arkers Captured by Cameras

Marker 1 | Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6

X-axis 2.3 22.1 22.8 21.5 -21.9 -21.0
y-axis 8.0 8.8 7.9 6.1 7.1 7.1
z-axis 155.2 135.9 115.3 96.6 135.7 116.4

Marker 7 | Marker 8 | Marker 9

X-axis -22.7 2.7 12
y-axis 6.1 6.4 7.2
z-axis 97.9 775 116.8

Distance between the Theor etical Position and Practical Position of Marker 1to 9
Marker 1 | Marker 2 | Marker 3 | Marker 4 | Marker 5 | Marker 6

Distance 11 13 0.9 14 10 15
Marker 7 [ Marker 8 | Marker 9

Distance 1.7 1.0 1.6

Residual 1.226

After one iteration, the new input of the six leg lengths of the SP has been
changed and updated. A comparison of theresidual s of the markers positionsamong

different bending anglesis shown in Figure 6.3.
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Figure 6.3 Comparison of residuals of the markers positions for different bending

angles

After five rounds of iterations using the algorithm, the new input of the six
leg lengths of the SP is obtained to reduce the residuas, which are shown in Table

6.6. Using thisinput, the actual position of the platform can be located precisely to

ensure accurate bending angles of the frame.

Table 6.6 New inputs of six leg lengths of the SP after one round of iteration

Six Leg Length of the SP (mm)

(0} Length 1 Length 2 Length 3 Length 4 Length 5 Length 6

0’ 927.361 793.753 815.060 869.133 842.267 909.379

30° 892.848 786.214 826.333 878.061 829.387 874.502

45° 868.004 779.271 838.650 889.426 822.030 844.273

60° 804.287 788.360 849.005 895.277 834.050 808.308

90° 782.356 782.553 860.714 917.762 833.907 779.903
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Cdlibration of a Stewart platform to eliminate its static error is not asimple
task. The calibration of PKMs (Parallel Kinematics Mechanisms) has principally
been evaluated in terms of analysis using forward and inverse kinematic models.
Essentially, the errors are from imperfect manufacturing and assembly. Some
problematic error sourcesthat are difficult to solveincludelocalized heat generation
in the joints and other mechanical parts, nonlinear kinematic mapping or axis
aligning errors. Meanwhile, the calibration issue also affects controller
development and stiffness analysis and these issues also relate to the system

accuracy.
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Chapter 7 Implementation of the Spinal Deformity Evaluation System and
Case Study

For many scoliotic patients, the motivation of receiving treatment is to
improve their physical posture than to correct or stabilize the trunk curvature, thus
psychological effects and cosmetic concerns are some of the most important reasons
for which the treatment methods have been decided. Correspondingly, the emphasis
has been clinically changed to quantifying body asymmetry with the objective of
producing medical treatment plans and assessing the outcome. Recently, most of
the clinicians’ decisions are built on either qualitative evaluation tools such as
Adam’s forward bending test, the Walter Reed Visual Assessment scale, etc. The
devel opment of this dedicated apparatus provides the opportunity to obtain multiple
samples of the landmark locations and positions from a skeletal mature subject in
order to construct baseline levelsand acquire an insight into the variability of values
observed from a range of standard morphological measures. The aim of the
experiment in this chapter is to quantify the impact of the changes in stance and
bending postures during and in between measurements. Another aim is to test the

potential usefulness of the apparatus using the physical spina model.

7.1 Physical Spinal Model Preparation for the Imaging

In the measurement experiments, different “types” of scoliosis spines are
tested according to scoliosis classification system. Scoliosis classifications are used
to facilitate the objective assessment of a disease for different examiners, thus

making the results as uniform and comparable as possible. King classification
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system is used in defining the idiopathic scoliosis in this experiment (J. S. Smith,
2008).

King scoliosis classification defies 5 types of idiopathic scoliosis which is
shown in Figure 7.1, whereby the severity of a case is determined based on the
following parameters:

+ Cobb angle of scoliosis 2D image

« Determination of flexibility index based on bending radiographs
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Figure 7.1 King classification of idiopathic scoliosis

In Figure 7.1, the different types of scoliosis are described as:

+ Kingtypel: Shows an S-shaped curve crossing the midline of the thoracic
and lumbar curves. Thelumbar curveislargerand morerigid than the thoracic curve.
The flexibility index in the bending radiographs is negative.

+ King type Il: Shows an S-shaped curve where both the thoracic major
curve and the lumbar minor curve cross over the midline. The thoracic curve is

larger.
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« King type I11: Shows a thoracic curve where the lumbar curve does not
cross the midline.
+ King type IV: Shows along thoracic curve where the 5th lumbar vertebra

is centered over the sacrum, but the 4th lumbar vertebra is already angled in the

direction of the curve.
+ King type V: Shows a thoracic double curve where the 1st thoracic

vertebra (T1) angles into the convexity of the upper curve.

The spinal model is made to bend into the five types of scoliosis according
to the King system. For each King type scoliosis, the physical spina model is
attached to the mechanica frame and bends into serial bending angles of 0°, 30°,
45° and 60°. For each bending angle, the 3D coordinates of the markers are obtained
by the cameras. The MIVAS index is calculated based on the 3D coordinates
provided by the stereo cameras.

As the Cobb’s angleis calculated based on 2D image and the stereo vision
cameras can only provide 3D image, the z-axis val ues of the marker coordinates are
set 0, which makes the 3D image into 2D image in x-y plane. And then the Cobb’s
angles are calcul ated.

Before the measurement, the spinal model is labeled with round reflective
markers as shown in Figure 7.2, which isaKing type | scoliosis. These markers are
attached at several prominent positions of the back corresponding to the locations
of the vertebras according to the following anthropometric points, namely, superior
spinous processes of T1, T4, T8, L1, L3 and L5 and both posterior superior iliac

spines (PSIS).
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Figure 7.2 Marking positions of anthropometric markers on vertebrae and images

captured from the cameras

Kingtypel Kingtypell Kingtypelll  KingtypelV  KingtypeV
Figure 7.3 shows the physical spina models used in the experiments according to

the King classification system.

7.2 Calibration of the 3D Camera System
The SP and the imaging system are assembled using modular aluminum
sections, universal joints and linkages. Three cameras are set up two meters away

from the measurement area in a triangular layout. Before the measurement,
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calibration is performed. The Optiwand and the self-calibration function in the
program are used for the system calibration. The OptiWand ismoved back and forth
several times in the overlapped region of the three cameras. The three 3D cameras
can track thetrajectories of the OptiWand to identify the real position of the cameras.

After calibration, the position of the system can be adjusted based on the
virtual camera position by tracking the position of the markers. The direction and
orientation of the virtual cameras can also be changed to top and side views to
observe the model. The trgjectory and position of the markers can be detected

accurately.

7.3 Imaging Process with the Physical Spinal M odel
During the imaging process, the spinal model is located in front of and as
close as possible to the frame to establish the necessary reference. Figure 7.4 shows

the setup of the custom-built aluminum frame and the position of the cameras.

during measurement
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The markers can be selected in the program and are created as trackable
objects. The markers on the prominent points on the skeletal model in this
arrangement are considered as arigid body presenting the shape of the spine. The
benefit of establishing a rigid body using the collection of markers is that the
program can provide the position and orientation of the rigid body. Therefore, the
spine shape and trunk deformity can be expressed by the position and orientation
of the markers.

During the measurement process, the bottom of the model is fixed which
cannot move and the upper part of the model is attached to the moveable frame.
Thus, when the SP and the moveable frame moves, the model bends accordingly.

When the model bends, the location of the reflective markers change and
the spinal shape of the model also changes. The coordinates of the markers are

obtained by capturing the image of the model by the stereo cameras.

7.4 Result Analysis and Discussion

7.4.1King Typel Scoliosis

King Type | is S-shape scoliosis that the lumbar curve is larger than the

thoracic curve which is shown in Figure 7.5.
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Figure 7.5 Physical spinal model of King type | scoliosis

As the frame is bent forward, the spinal model bends following its
movement. The coordinates and orientation of each marker are obtained by the
image capturing process using the three cameras.

o Bending 0°. Figure 7.6 (@) shows the measurement process when the spinal
model is upright (bends 0°) and figure 7.6 (b), the spine shape on the right. Table

7.1 presents the coordinates of each marker obtained from the program.

€) (b)

Figure 7.6 (@) Process of the measurement when the physical spinal modd is

unbent, i.e., 0°; (b) the spinal shape aligned and cal culated by the camera
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Table 7.1 Coordinates of each marker for bending the model 0° (no bending)

(unit: meter)

Bending 0° X Y Z
Marker 1 0.0949 0.4214 0.0092
Marker 2 0.0954 0.2941 0.0601
Marker 3 0.0900 0.1749 0.0916
Marker 4 0.0800 0.0545 0.0909
Marker 5 0.0740 -0.0696 0.0793
Marker 6 0.0637 -0.1687 0.0839
Marker 7 0.1666 -0.2631 0.1071
Marker 8 -0.0381 -0.2490 0.1138

o Bending 30°. Figure 7.7 (@) shows the process of the measurement when

the spinal model is bent 30° and Figure 7.7 (b), the spine shape on the right. Table
7.2 presents the coordinates of markers obtained from the program when the model

is bent into 30°.

@ (b)

Figure 7.7 (a) Process of the measurement when the physical spinal model is bent

30°; (b) the spinal shape aligned and calculated by the camera
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Table 7.2 Results of the coordinates of each marker for bending the model into

30° (unit: meter)

Bending 30° X Y Z
Marker 1 0.0684 0.1618 -0.6016
Marker 2 0.0747 0.1087 -0.4843
Marker 3 0.0802 0.0617 -0.3817
Marker 4 0.0805 0.0042 -0.2924
Marker 5 0.0875 -0.0605 -0.1791
Marker 6 0.0805 -0.1434 -0.0801
Marker 7 0.1938 -0.2436 0.0111
Marker 8 -0.0138 -0.2233 0.0240
o Bending 45°. Figure 7.8 (@) shows the process of the measurement when

the spinal model is bent 45° and Figure 7.8 (b) the spine shape on the right. Table

7.3 presents the coordinates of markers obtained from the program when the model

is bent into 45°.

.......

®
2
€) (b)

Figure 7.8 (@) Process of the measurement when the physical spinal model is bent

45°; (b) the spinal shape aligned and calculated by the camera
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Table 7.3 Results of the coordinates of each marker for bending the model 45°

(unit: meter)

Bending 45° X Y Z
Marker 1 0.1270 0.3200 -0.3365
Marker 2 0.1008 0.2474 -0.2570
Marker 3 0.0966 0.1530 -0.1841
Marker 4 0.0866 0.0546 -0.1288
Marker 5 0.0849 -0.0593 -0.0786
Marker 6 0.0793 -0.1513 -0.0288
Marker 7 0.1893 -0.2538 0.0356
Marker 8 -0.0165 -0.2361 0.0470

o Bending 60°. Figure 7.9 (@) shows the process of the measurement when

the spinal model is bent into 60° and Figure 7.9 (b) the spine shape on the right.
Table 7.4 presents the coordinates of markers obtained from the program when the

model is bent into 60°.

€) (b)

Figure 7.9 (a) Process of the measurement when the physical spinal model bends

60°; (b) the spinal shape aligned and calculated by the camera
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Table 7.4 Results of the coordinates of each marker for bending the model into

60° (unit: meter)

Bending 60° X Y Z
Marker 1 0.0577 0.0489 -0.6993
Marker 2 0.0737 0.0369 -0.5751
Marker 3 0.0771 0.0167 -0.4584
Marker 4 0.0752 -0.0198 -0.3494
Marker 5 0.0772 -0.0762 -0.2252
Marker 6 0.0597 -0.1418 -0.0993
Marker 7 0.1739 -0.2419 0.0083
Marker 8 -0.0376 -0.2251 0.0168

Therigid body of the physical spinal model represented by the collection of
markers and the spinal shape can be observed clearly. The coordinates of each
marker and the distance between every pair of adjacent markers are collected. This
experiment proves that in the current laboratory environment, the human spine

deformity system is usable and reliable for trunk distortion assessment.

7.4.2King Typell Scoliosis
King type Il scoliosis presents an S-shape curve where the lumbar curveis

less than the thoracic curve which is shown in Figure 7.10.

Figure 7.10 Physical spinal model of King type 1 scoliosis
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The measurement results of bending the King type Il scoliosis model

(bending angles are 0°, 30°, 45°, 60°) are compiled and shown in Table 7.5.

Table 7.5 Marker coordinates on the King type Il scoliosis model

Bending 0° X Y Z
Marker 1 -0.0927 0.1541 0.996
Marker 2 -0.2268 -0.2118 1.0376
Marker 3 -0.1523 -0.0379 1.0051
Marker 4 -0.1936 -0.372 1.1278
Marker 5 -0.1120 -0.5026 1.2543
Marker 6 -0.1192 -0.6679 1.3457
Marker 7 -0.2030 -0.7659 1.3379
Marker 8 -0.0472 -0.7665 1.4128

Bending 30° X Y Z
Marker 1 -0.2751 -0.1138 1.1496
Marker 2 -0.2646 0.2772 1.1662
Marker 3 -0.2694 0.0862 1.1469
Marker 4 -0.3755 0.4283 1.1690
Marker 5 -0.1036 -0.4094 1.3761
Marker 6 -0.1141 -0.5655 1.4835
Marker 7 -0.1895 -0.6697 1.4733
Marker 8 -0.0439 -0.6541 1.5642

Bending 45° X Y Z
Marker 1 -0.3107 0.0453 1.2472
Marker 2 -0.3639 0.4135 1.3683
Marker 3 -0.3382 0.2377 1.2972
Marker 4 -0.4983 0.5368 1.4130
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Marker 5 -0.1071 -0.2767 1.4263
Marker 6 -0.0937 -0.4453 1.5129
Marker 7 -0.1463 -0.5596 1.4825
Marker 8 -0.0117 -0.5300 1.5859
Bending 60° X Y Z
Marker 1 -0.2420 -0.0581 1.1494
Marker 2 -0.4365 0.2695 1.2125
Marker 3 -0.3740 0.1062 1.1433
Marker 4 -0.4755 0.4169 1.3018
Marker 5 -0.0955 -0.3048 1.2607
Marker 6 -0.0996 -0.4361 1.3983
Marker 7 -0.1537 -0.5524 1.3999
Marker 8 -0.0313 -0.4915 1.5056

7.4.3King Typelll Scoliosis
King type Ill scoliosis presents a C-shape curve where the lumbar curve

does not cross the midline which is shown in Figure 7.11.

Figure 7.11 Physical spinal model of King type Il scoliosis

The measurement results of bending the King type 11l scoliosis model

(bending angles are 0°, 30°, 45°, 60°) are compiled and shown in Table 7.6.
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Table 7.6 Marker coordinates on the King type I11 scoliosis model

Bending 0° X Y Z
Marker 1 -0.4539 0.1510 0.9078
Marker 2 -0.5058 0.0270 0.9184
Marker 3 -0.4676 -0.1941 1.0198
Marker 4 -0.4024 -0.3406 11271
Marker 5 -0.4161 -0.5105 1.2415
Marker 6 -0.4605 -0.6505 1.2716
Marker 7 -0.5570 -0.7514 1.2454
Marker 8 -0.3757 -0.7317 1.2814

Bending 30° X Y Z
Marker 1 -0.2848 -0.7577 1.1291
Marker 2 -0.3017 -0.6854 1.1655
Marker 3 -0.3034 -0.4728 1.1804
Marker 4 -0.3473 -0.2905 1.2039
Marker 5 -0.4271 -0.4085 1.2204
Marker 6 -0.4961 -0.5554 1.2573
Marker 7 -0.5423 -0.6728 1.2321
Marker 8 -0.4054 -0.6829 1.2821

Bending 45° X Y Z
Marker 1 -0.0528 -0.2482 1.1408
Marker 2 -0.0551 -0.2927 1.1829
Marker 3 -0.0594 -0.3795 1.2108
Marker 4 -0.0654 -0.4072 1.2391
Marker 5 -0.0634 -0.4673 1.2465
Marker 6 -0.1451 -0.5880 1.2769
Marker 7 -0.2416 -0.6789 1.2270
Marker 8 -0.0939 -0.6781 1.3392
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Bending 60° X Y Z
Marker 1 -0.2239 -0.1580 11321
Marker 2 -0.4339 0.2673 1.2126
Marker 3 -0.3921 0.1032 1.2482
Marker 4 -0.2760 0.3159 1.3050
Marker 5 -0.1907 -0.3071 1.3553
Marker 6 -0.2909 -0.4366 1.3977
Marker 7 -0.1641 -0.5514 1.4060
Marker 8 -0.1327 -0.4915 1.5097

7.4.4King TypelV Scoliosis

King type IV scoliosis presents alarge C-shape curve that the thoracic curve
is long where the 5th lumbar vertebra is centered over the sacrum, but the 4th

lumbar vertebrais aready angled in the direction of the curve which is shown in

Figure 7.12.

Figure 7.12 Physical spinal model of King type IV scoliosis

The measurement results of bending the King type IV scoliosis model

(bending angles are 0°, 30°, 45°, 60°) are compiled and shown in Table 7.7.
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Table 7.7 Marker coordinates on the King type IV scoliosis model

Bending 0° X Y Z
Marker 1 -0.2962 -0.1049 1.3640
Marker 2 -0.2686 0.0656 1.2934
Marker 3 -0.2987 -0.2256 14141
Marker 4 -0.2159 0.2703 1.2561
Marker 5 -0.2295 -0.3949 15177
Marker 6 -0.3190 -0.7031 1.6060
Marker 7 -0.1586 -0.6611 1.6591
Marker 8 -0.2425 -0.5808 1.6137

Bending 30° X Y Z
Marker 1 -0.4319 0.4346 1.4618
Marker 2 -0.4999 0.2436 1.4004
Marker 3 -0.5190 0.0531 1.3853
Marker 4 -0.4986 -0.0882 1.3862
Marker 5 -0.3984 -0.5119 1.5826
Marker 6 -0.4632 -0.6333 1.6042
Marker 7 -0.4149 -0.3040 1.4429
Marker 8 -0.3010 -0.5803 1.6469

Bending 45° X Y Z
Marker 1 -0.3660 0.0292 1.4780
Marker 2 -0.5160 0.5382 1.5956
Marker 3 -0.4234 0.1637 14784
Marker 4 -0.4853 0.3410 1.5040
Marker 5 -0.2685 -0.1874 1.5556
Marker 6 -0.2548 -0.4114 1.6890
Marker 7 -0.1901 -0.4807 1.7867
Marker 8 -0.3169 -0.5406 1.6824
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Bending 60° X Y Z
Marker 1 -0.5879 0.6757 1.8290
Marker 2 -0.4685 0.3287 1.6507
Marker 3 -0.4063 0.2081 1.6238
Marker 4 -0.5343 0.4948 1.7037
Marker 5 -0.3031 -0.0098 1.6442
Marker 6 -0.2092 -0.3442 1.8194
Marker 7 -0.3495 -0.3985 1.7309
Marker 8 -0.2822 -0.2741 1.7417

7.45King TypeV Scoliosis
King type V scoliosis presents a double curve in thoracic part where the 1st
thoracic vertebra (T1) angles into the convexity of the upper curve which is shown

in Figure 7.13.

Figure 7.13 Physical spinal model of King type V scoliosis

The measurement results of bending the King type V scoliosis model
(bending angles are 0°, 30°, 45°, 60°) are compiled and shown in Table 7.8.

Table 7.8 Marker coordinates on the King type V scoliosis model

Bending 0° X Y Z
Marker 1 -0.3130 0.3596 1.3992
Marker 2 -0.3126 0.1514 1.4442
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Marker 3 -0.3695 -0.0222 1.4398
Marker 4 -0.3866 -0.1758 1.4952
Marker 5 -0.3583 -0.3344 1.6500
Marker 6 -0.3617 -0.4476 1.7196
Marker 7 -0.3083 -0.5694 1.8348
Marker 8 -0.4160 -0.6033 1.7058
Bending 30° X Y Z
Marker 1 -0.4411 0.4935 1.5590
Marker 2 -0.3964 0.3012 1.5214
Marker 3 -0.3506 -0.0382 1.5025
Marker 4 -0.3980 0.1260 1.4929
Marker 5 -0.2396 -0.4982 1.6613
Marker 6 -0.1014 -0.4757 1.7577
Marker 7 -0.2130 -0.2067 1.6080
Marker 8 -0.1853 -0.3456 1.6746
Bending 45° X Y Z
Marker 1 -0.4570 0.3125 1.4877
Marker 2 -0.3974 -0.0335 1.4594
Marker 3 -0.4965 0.4972 1.5329
Marker 4 -0.4529 0.1353 1.4532
Marker 5 -0.2513 -0.2048 1.5556
Marker 6 -0.2218 -0.3415 1.6322
Marker 7 -0.1355 -0.4720 1.7203
Marker 8 -0.2844 -0.4935 1.6403
Bending 60° X Y Z
Marker 1 -0.5078 0.4586 1.5487
Marker 2 -0.5911 0.6023 1.6462
Marker 3 -0.3918 0.1093 14747
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Marker 4 -0.4704 0.2683 1.4826
Marker 5 -0.2051 -0.2017 1.6275
Marker 6 -0.2626 -0.3536 1.6133
Marker 7 -0.2359 -0.0596 1.5654
Marker 8 -0.1206 -0.3374 1.7050

7.5 Result Analysis and a Novel Evaluation Index for Spinal Deformity
Progression Evaluation

In this section, a novel evaluation index for adolescent idiopathic scoliosis
measurement and diagnosis is introduced to complement the existing assessment
indices, such asthe Cobb angle (Cobb 1948) etc. The new evaluation index is based
on the phenomenon of the tilt and deviation of the vertebras in a scoliotic spine,
which forms the tilt angles between each pair of adjacent vertebras.

Figure 7.14 shows an example of a scoliotic spine from the interpolation of

positions of markers to form the spinal curve.

J Figure §
Ta T

B ew et Took Dwshon Wik e
NEES k RESS « 08

. ~ o i
--_ A

Figure 7.14 An example of curve fitting algorithm applied to the spinal curve and

the calculation of the angle between the adjacent perpendicular lines

According to the experiment results, the scoliotic spinal shapes according

to the King classification system are estimated. In the experiments, the coordinates
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of the markers attached on the spine are captured and measured, which is used to
establish the curvature of the spine. In conjunction of the SP and stereo vision
system, the new-designed IVAS index and the standard Cobb angles are cal culated
and compared to estimate the severity of the trunk. Figure 7.15 shows a calculation

example of the parameters.

The Cobb Angle The IVAS Index

Figure 7.15 Calculation of the Cobb angle and IVAS index

In order to calculate and estimate the severity of the five types of King
Classification of scoliosis, different types of spinal model with curvature according
to King Classification method were tested using the system, for each type of spinal
curvature, four tilting angles aretested. In order to compare the new-designed IVAS
index and MIVAS index to the traditional Cobb angle, X-ray images for each type
of King Classification scoliotic model were captured and the Cobb angles are
calculated according to the X-ray images. Figure 7.16 shows the process of

obtaining the Cobb angle and IVAS for each type of King Classification scoliosis.
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Using the physical model in the system, the student managed to achieve the

following tasks:

e The SP and mechanical frame can manipulate the model into different bending
angles accurately. For each bending angle, the spinal shape are successfully
simulated using the camera system and software.

e The Cobb angle for each type of King Classification scoliotic model is
calculated using the X-ray image of the model.

e Theinnovative indices are calculated according to the experiment using the
system to evaluate the severity of the spinal curvature and deformity.

e  The Cobb angle and the IVAS index and MIVAS index are compared.

ng typa | Hlng type ! H'-ng type i K.ng type I Kinr_; typa W

IVAS index and
MIVAS index

Cobb Angle

8

Figure 7.16 Obtaining the Cobb angle and IVAS for King Classification scoliosis

164



Table 7.9 lists the measurements, in ascending order of the four bending

angles, on the interpolated curves of the image of the physical spina model using

the original IVAS index. The Cobb angles used were measured directly from the

2D interpolated curves by setting the y-coordinates as 0 in the data samplesinstead

so as to provide a means of comparison of the feasibility with the IVAS index and

the Stewart platform system.

Table 7.9 Measured Cobb angles and IVAS index using same data

— Bending _ Cobb Angle IVAS Index
Classification . Severity ) )
Angles (°) ) )
0 Mild 105 8.5
King Tvoe| 30 Mild 12.0 175
in e
9P 45 Mild 145 23
60 Mild 13.0 255
0 Mild 195 26.5
) 30 Moderate 215 30.5
King Typell
45 Moderate 30.5 315
60 Moderate 32.0 36.5
0 Mild 15.5 15.5
. 30 Moderate 18.5 24.0
King Type 1l
45 Moderate 35.5 38.5
60 Moderate 51.5 49.5
0 Moderate 215 215
_ 30 Moderate 28.0 34.5
King Type IV
45 Moderate 36.5 38.5
60 Moderate 49.0 49.0
King TypeV 0 Mild 17.0 20.5

165




30 Moderate 285 26.5
45 Moderate 325 335
60 Moderate 35.0 425

From Table 7.5, it can be found that when the bending angles of the spinal

model become larger (from 0° to 60°), the Cobb angle and the IVAS index both

become larger, which means the spinal curve is more distinct. As the IVAS index

and the Cobb angle changein the same direction, alinear correlation exists between

the IVAS index and the Cobb angle.

The Cobb angle and the IVAS Index vaues according to the King

classificationin Table 7.9 are plotted in ascending order on the same axes, as shown

inFigure 7.17 to 7.21.
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Figure 7.17 Plot of the IVAS index against the Cobb angle of King type | spine
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King Type Il Spine: IVAS Indexvs. Cobb Angle
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Figure 7.18 Plot of the IVAS index against the Cobb angle of King Type Il spine

King Type Il Spine: IVAS Indexvs. Cobb Angle
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Figure 7.19 Plot of the IVAS index against the Cobb angle of King Type Il spine
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King Type IV Spine: IVAS Indexvs. Cobb Angle
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Figure 7.20 Plot of the IVAS index against the Cobb angle of King Type IV spine

King Type V Spine: IVAS Index vs. Cobb Angle
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Figure 7.21 Plot of the IVAS index against the Cobb angle of King Type V spine

The high positive correlation between the Cobb angle and the IVAS index
methods is highlighted in Figure 7.17 to 7.21, where the line graph representing

IVAS and Cobb angle change in the same direction. The computed correlation
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coefficients are close to the value of 1, thus implying a strong positive correlation
between these two indices. This shows that the proposed index of IVAS has
potentially high usefulness and feasibility.

In this case, from the measurement of the IVAS index and the Cobb angle,
this spina model presents mild and moderate spinal deformity based on the King

classification system.
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Chapter 8 Conclusions and Recommendations

The routine approach in evaluating and monitoring the progress of scoliosis
in most orthopedic clinicsisto take radiographs continuously of full spinal images.
Thetraditional approach hasanumber of advantages. Aside from frequent exposure
to X-ray radiation and its side effects, and the unreliable use of 2D images to
represent 3D deformity, the measurement method cannot correlate effectively the
spinal deformity evaluation index to the unbalance of the body shape. Much effort
has been expended by many researchersto seek reliable methodsto reduce radiation
hazard and improve the reliability of the correlation between different types of
spinal deformity and changes in the back surface shape. However, most of the
proposed means have been found to be prone to deviation and errors and are not
robust for different cases of scoliosis, thus restricting their acceptance in the
practical environment as a useful alternative to radiography. In this thesis, a novel
method to measure the skeletal deformity, monitor scoliosis progression and
provide surgical outcomes has been developed via a mechanical apparatus and

medical imaging techniques, such as a stereo vision camera systems.

8.1 Summary

The study of surface topography systems has been an epidemic research
topic in recent years in quantifying body shapes and meeting patients’ cosmetic
concerns, physical impairment and quality of life that warrants a re-evaluation of
the medical relevance of non-radiographic measurement techniques. Other surface
measurement methodol ogies are based on observational devices, such asthe Adams

forward bending test, smple hand-held devices, and optical systems, such as
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structured light patterns and Moiré fringe topography. However, most of the
approaches have been criticized to be prone to deviations arising from the standing
position, stance posture, breathing and sway. Currently, only limited studies (Denis
et al. 2004; Duong et al. 2009) have been published that utilize multiple samples to
measure the back shape asymmetry. This thesis reports on the application and
design of an original apparatus and analytic programming with the objectives of
developing a method to quantify the variation of topographical and morphological
appearance and back surface shape measurement to explain and present clinical
results, to quantify any improvementsin the specificity of the current methods, and
to integrate the facility to acquire trunk ranges of motion.

X-ray images from thirty adult subjects representing muscul o-skeletal
disorder are used to compare the results obtained from the system developed. The
calculation of the novel indicesfor spina deformity, IVAS, MIVAS and 3DIVAS,
shows that this system is potentialy useful for scoliosis diagnosis and further
assessment. The results show that the proposed indices are clinically useful to
quantify body symmetry and trunk unbalance. The future objective of the research
is to apply the same methods to pre- and post-operative adolescent idiopathic
scoliosis of individua patients and age-matched the subjects in next-step clinical

studies.

8.2 Conclusions
In this thesis and study, the author has designed and established the
application and performance of a new surface topography measurement apparatus

integrating clinically valuable evaluation indices that are useful during the regular
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examination of the presence and severity of spinal deformity when assessing
psychosocial influence, treatment results and physical impairment among scoliotic
subjects medical analyzed as adolescent idiopathic scoliosis.

In this research, an innovative and integrated system has been designed and
constructed to accomplish an inherently safe, non-contact and reusabl e tool for the
spinal deformity diagnosis and evaluation of scoliosis patients. This is an attempt
toincorporate a Stewart platform, which isaparallel kinematic motion manipulator,
a gpecialy-designed mechanical apparatus and stereo vision techniques of
OptiTrack 3D camera system. The availability of the inherently safe technique and
apparatus focusing mainly on the body shape and spinal deformity establishes the
opportunity to undertake deeper research. Comparing to the traditional methods,
this system has the advantages of radiation-free, high repeatability and high
efficiency, where is can be used in the hospitals and routine school lateral spinal
examination.

In this study, in order to complement the traditional scoliosis evaluation
index, i.e., the Cobb angle parameter, three new indices, IVASindex, MIVASindex
and 3DIVAS index, have been proposed based on the angular separation between
the pairs of adjacent vertebra. The calculation of the IVAS and MIVAS index is
based on the subject’s X-ray images. The index of 3DMIVAS isindependent of the
radiography images and this can reduce the radiation exposure to the subjects. On
the basis of the calculation of the X-ray data sample, a comparison of the Cobb
angle and the IVAS, and the Cobb angle and the MIVAS has been conducted. The
correlation coefficient between IVAS and the Cobb angle is 0.9284, and the

correlation coefficient between MIVAS and the Cobb angle is 0.9175. The high
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correlation found between the clinical variable (Cobb angle) and the topographic
variables (IVAS and MIVAS) shows that although they use different calculation
methods for different deformities, variations in the spina column appear as
variations of thetopographic patterns. In thisstudy, it has been shown that the newly
proposed IVAS and MIVAS indices have the potential to be used as tools for
supporting the traditional scoliosis measurement methods.

Besides providing 3D measurements of the anthropometric markers for
positioning the vertebras and 3D topology of the human back, the technique
provides a user friendly interface and a detachable mechanical frame. A case study
involving the trunk shape of a physical spinal model demonstrates the capability of
the developed system to assess the spinal distortion and frontal angular parameter.
The experiment involving the spina model was conducted in which the postures
and bending angles can be accurately controlled by the Stewart platform. For each
of the bending angles, e.g., 0°,30°,45°,60° and 90 °, the images of the model’s
back surface topography were captured for spina deformity and trunk asymmetry
analysis. By studying the experiment results, it is shown that the system is
potentially useful to assist the doctors and orthopedists in their decision-making

Process.

8.3 Resear ch Contributions

This research incorporates two fields of studies, namely, the design and
development of robot-assisted apparatus consisting of a Stewart platform and stereo
vision techniques, and the subject of spinal deformity evauation index and

parameters. Detailed investigations of the proposed integrated system have led to
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some generally applicable concepts for the tasks that require accurate-controlling

and radiation-free application.

The main contribution of thisthesis consists of the experimental verification
of the proof of concept of using the Stewart platform as the motion controlling tool,
using stereo vision cameras to capture surface topography to generate spinal shape,
and the proposed indices for complementing the existing evaluation parameters for
trunk asymmetry assessment. The research achievements in this thesis are
summarized as follows:

e Application of Stewart platform and stereo vision techniques for human back
deformity and trunk imbal ance measurement.

e Design and construction of a customized mechanical frame for controlling the
bending postures securely and accurately.

¢ Implementation of the user interface to present the presence and severity of the
spinal deformity and trunk unbalance.

e Three spina deformity indices, IVAS, MIVAS and 3DIVAS, based on the
angular separations are introduced and the usefulness of the indices has been
examined.

e Virtual spina shape building with accurate 3D positions of bony markers.

e Experimental case studies based on the King classification system of scoliosis
involving physical spinal model to validate the system were conducted to show

the potential usefulness of the system.
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8.4 Future Research Work

The scope of this study sets the boundary for the research to demonstrate
the validity of the mechanical apparatus with associated stereo vision camera
system and the proposed spinal deformity evaluation indices from the analysis of
data obtained from the collection of skeletally mature adult. Additional studies can
be undertaken through the acquisition and investigation of information involving
the adolescent idiopathic scoliosis patients and comparing age-matched subjects.

Future research can be focused on confirming the functionality of the
application, efficacy and usefulness of the apparatus in adding to the knowledge of
body sway, posture and movements. In addition, scoliosisis a 3D deformity of the
spine. In conventional x-rays, the spinal surgeon measures the frontal plane (Cobb
angle), the sagittal plane (kyphosis, lordosis), and the rotation of the vertebral
bodies based on evaluation of the pedicle rotation (Mehta 1973). Fronta plane
measurements of the scoliotic spine aone do not provide sufficient information for
the management of scoliosis. The next-step research is to apply this approach to a
3D evauation for the spinal shape construction.

Furthermore, the IVASindex and MIVAS index are designed in the corona
plane (frontal plane). However, frontal plane measurements of the scoliotic spine
aone may not provide sufficient information for scoliosis management. This
methodology of using angular separation to define and evauate the severity of
scoliosis can aso be applied to the other two planes for further spinal deformity
evaluation, namely, the sagittal plane (evaluating kyphosis and lordosis) and the

transverse plane (eval uating rotation of vertebrae bodies and rotation of rib cage).
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Last but not |east, another key point for future research would be to compare
the results obtained from pre-operative and post-operative scoliotic children and the
comparing groups of heathy children to establish the impact of the disease and
treatments on the cosmetic appearance. The hypothesis to be tested should be that
before and after the operation of scoliosis, there would be significant improvement
for the spina deformity using the surface measurement techniques. Using the
apparatus and method provided in this thesis, we can regularly examine the effects
of the operation through the non-contact and radiation-free method.

The promise is that the acceptance of the non-contact surface topography
method in the clinical and research communities will stimulate much more
important research and become a useful approach to help improve the quality of life

of many scoliotic adolescent pupils throughout the world.
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