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Abstract 

Dengue virus (DENV) continues to put billions at risk of life-threatening disease 

annually. Infection is enhanced when DENV is opsonized with sub- or non-neutralizing 

antibodies that augment entry into monocytes and dendritic cells through Fc-gamma 

receptors (FcγRs), a process termed antibody-dependent enhancement (ADE) of DENV 

infection. It has been suggested that besides augmenting entry, ADE occurs through other 

intrinsic factors activated by FcγR-mediated signaling. However, the nature of this 

pathway and its mechanism of action remain poorly defined.  

This thesis explored the molecular pathways governing ADE using two subclones 

of THP-1 with differential susceptibility to ADE despite similar infection rates. The 

findings show that co-ligation of activating FcγR leads to Syk phosphorylation, which in 

turn upregulates the expression of interferon stimulated genes (ISGs) by directly 

phosphorylating STAT-1. Upregulation of the ISGs led to reduced DENV replication. To 

overcome this early antiviral response, this thesis demonstrates that DENV co-ligates the 

inhibitory leukocyte immunoglobulin-like receptor B1 (LILRB1) to inhibit FcγR 

signaling for ISG induction. Co-ligation of LILRB1 results in the recruitment of the 

phosphatase SHP-1 that dephosphorylates Syk to attenuate the expression of ISGs, 

leading to enhanced DENV replication.  

As Syk is also a key intermediate of the signaling pathways that control 

phagosomal trafficking and maturation, we also tested the hypothesis that reduced Syk 

signaling would lead to differences in the compartmentalization of DENV-containing 

phagosomes, which may influence the outcome of ADE. Indeed, increased Syk activity 

led to faster phagocytic trafficking of DENV immune complexes through Rab-5, Rab-7 
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and LAMP-1 compartments during ADE. This also resulted in higher levels of 

phagosomal acidification and activation of lysosomal hydrolases like Cathepsin D. 

Conversely, co-ligation of LILRB1 reduced levels of phagosomal acidification, which 

could represent a potential viral strategy to escape the phagolysosomal pathway, thus 

allowing more time for viral fusion. 

Collectively, this thesis shows that LILRB1 serves as an important co-factor 

during antibody-enhanced dengue infection. DENV co-ligates LILRB1 to both attenuate 

the expression of ISGs and the rapid acidification in the phagolysosomal pathway, 

ensuring its intracellular survival. 
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Chapter 1. INTRODUCTION 

1.1 Dengue 

1.1.1 Dengue epidemiology 

Dengue is currently the most prevalent arthropod-borne viral disease worldwide. A 

recent estimation of the global distribution of dengue using cartographic approaches 

approximated 390 million infections annually, more than three times the disease 

burden reported by World Health Organization, and of which 96 million infections 

resulted in apparent clinical manifestations (Bhatt et al, 2013). Dengue is most 

prevalent in the tropical and sub-tropical regions of the world, where approximately 

half of the world’s population are at risk for dengue transmission (Guzman et al, 

2010). More countries are now hyperendemic for dengue with all four serotypes co-

circulating at any time, in contrast to observations made 30-40 years ago where co-

circulation of virus serotypes was limited to only two at most (Mackenzie et al, 2004). 

Hyperendemicity as well as the geographical expansion of the mosquito vectors have 

culminated in the global re-emergence of dengue which has led to more frequent 

epidemics that are larger in scale and linked to more severe clinical outcomes 

(Gubler, 1998; Gubler, 2002).  

Dengue virus (DENV) originated from forest sylvatic cycles in Africa and 

Asia involving transmission of DENV between Aedes mosquito vectors and non-

human primates (Gubler, 1998). The emergence of an urban transmission cycle in the 

last three centuries, involving Aedes mosquitos and humans, and obviating the need 

for an enzootic vector, has firmly established dengue as a major public health 

challenge in urban centres (Gubler, 2002). Its primary vector is the domesticated 
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Aedes aegypti, which feeds on and can infect multiple individuals in a single 

gonotrophic cycle, rendering it an efficient epidemic vector (Gubler, 1998; Platt et al, 

1997). The geographic expansion of both Aedes aegypti and its secondary vector, 

Aedes albopictus has largely been driven by increased international trade and travel, 

thus amplifying regions where DENV could cause epidemics (Simmons et al, 2012). 

  

1.1.2 Clinical manifestations of dengue     

Dengue infection can lead to a full spectrum of clinical manifestations, ranging from 

asymptomatic infections to dengue fever (DF), or the clinically severe dengue 

hemorrhagic fever (DHF) and dengue shock syndrome (DSS). A large proportion of 

infections are asymptomatic in nature. Symptomatic individuals develop acute illness 

following an incubation period of 3 to 7 days. DF presents with the following 

symptoms: high fever of sudden onset, accompanied with severe headache, muscle 

and joint pains, nausea, pain behind the eyes, vomiting or rash (Simmons et al, 2012). 

These symptoms typically persist for 2 to 7 days, with most individuals recovering 

without complications.  

In a small proportion of patients, their condition deteriorates quickly around 

the time of defervescence. This phase is characterized by vascular leakage, 

thrombocytopenia (platelet count below 100,000 cells/mm3), and hemorrhagic 

manifestations (petechiae, capillary fragility, or bleeding from the mucosa or 

gastrointestinal tract). Increased vascular permeability leading to plasma leakage into 

interstitial spaces could result in hypovolemic shock that can be life threatening in 

patients. The altered vascular permeability is short-lived and is resolved within 48 to 
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72 hours. During the recovery phase, patients are expected to make rapid 

improvements in their symptoms although fatigue may persist in adults after recovery 

(Whitehead et al, 2007).      

There are currently no available vaccines or antiviral therapies that can treat 

this disease. Treatment for the disease remains supportive, with fluid management 

being the mainstay for reducing mortality to 1% of severe cases (WHO, 2009). There 

is wide consensus that early and anticipatory treatment can reduce complications and 

deaths arising from severe dengue. The symptoms that accompany dengue are similar 

to those observed with other febrile illnesses; hence clinical diagnosis relies on using 

permutations of a list of symptoms or signs. Dengue case definition in the 2009 WHO 

classification scheme expands the criteria for severe dengue, which includes severe 

hemorrhage and organ impairment, in addition to DSS. This revised scheme (Figure 

1-1) is expected to aid in triage and better clinical management of dengue infection.  
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Figure 1-1. Guidelines for dengue case classification. The criteria for dengue (with 
and without warning signs) and severe dengue will aid in the clinical decision as to 
how intensively the patient is observed and triaged. However, it should be noted that 
patients without warning signs could still progress to severe dengue. Figure adapted 
from WHO, 2009.     
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1.1.3 Dengue genome and virion structure 

Dengue is a member of the Flaviviridae family, which includes other clinically 

important viruses such as West Nile, yellow fever and Japanese encephalitis viruses. 

DENV comprises 4 antigenically related but immunologically distinct serotypes 

which share 65-70% homology. The DENV genome is 11kb in size and consists of a 

single open reading frame which encodes a polypeptide which must be cleaved by 

viral and host proteases to yield 3 structural (capsid (C), membrane (M) and envelop 

(E) proteins) and 7 non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, 

NS4B, NS5) (Figure 1-2) (Mukhopadhyay et al, 2005). While the structural proteins 

provide an architectural form for the virion, the non-structural proteins are essential 

for viral RNA replication, virus assembly and modulating host cell responses. It is 

flanked by the 3’ and 5’ untranslated regions which are imperative in virus replication 

and regulation of translation (Clyde & Harris, 2006).  

The infectious virion is approximately 50nm in diameter. The positive strand 

RNA genome is complexed with capsid proteins, and is surrounded by a lipid bilayer 

membrane. Anchored on the outer surface of the membrane are the M and E proteins. 

The viral surface is composed of 180 copies of E protein (Figure 1-3). The pH of the 

environment modulates E protein conformation: at alkaline pH, the E proteins are 

arranged in dimers exhibiting a herringbone pattern and lie flat on the surface. An 

acidic environment prompts the extrusion of the E proteins into a trimeric 

conformation, which facilitates fusion of the viral and host cell membranes and 

release of the viral genome into the cytoplasm (Figure 1-4) (Perera & Kuhn, 2008). 
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Newly synthesized immature virus budding into the endoplasmic reticulum 

(ER) lumen has trimers of E-prM heterodimers on the surface, giving the immature 

virus its characteristically spiky appearance (Zhang et al, 2003). As the immature 

virus undergoes maturation in the trans-Golgi network, the reduction in pH leads to 

the rearrangement of E proteins into a flat, dimeric conformation, so that it now has a 

smooth appearance (Modis et al, 2004). Furin cleavage leads to dissociation of prM 

and extracellular secretion of the mature virus.    
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Figure 1-2. Organization of DENV genome. DENV is translated as a polyprotein 
and cleaved by viral and host proteases (denoted by arrows). The 3 structural proteins 
are released by signalase cleavage in the ER. The non-structural proteins are mostly 
cleaved by the NS2B-NS3 viral protease in the cytoplasm, except NS1 which is 
released into the ER by an unidentified protease. The NS proteins are essential for 
viral replication, assembly and modulation of host cell responses. Figure adapted from 
Perera and Kuhn, 2008.   
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Figure 1-3. E protein organization on surface of DENV. DI, DII, DIII and fusion 
loop on DII are coloured in red, yellow, blue and green respectively. E protein dimers 
lie flat on DENV surface and are arranged in a herringbone pattern. E proteins are 
organized in icosahedral symmetry, and the black triangle indicates one asymmetric 
unit. Figure adapted from Lok, 2014.   
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Figure 1-4. E protein conformations in environments of varying pH. (a) Surface 
of immature virus has trimers of prM-E heterodimers, giving the virus a 
characteristically spiky appearance. (b-c) As the immature virus transits through the 
trans-Golgi network (TGN), the reduction in pH causes prM-E proteins to dimerize 
and adopt a flat conformation, giving the virion a smooth appearance. Furin cleavage 
causes the dissociation of prM protein into M and pr peptide, the latter which remains 
capped on E protein and the former embedded beneath the E protein (not shown in 
figure) in the viral membrane. (d) As the pH increases to 7, pr protein is released from 
the mature virus. Figure adapted from Perera and Kuhn, 2008. 
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1.2 Immune responses to DENV infection 

1.2.1 Challenges facing DENV vaccine development 

Despite more than 70 years of effort, the development of a safe and efficacious 

dengue vaccine has been elusive. There are considerable challenges facing this 

daunting task, and with both humoral and cellular responses following DENV 

infection still under investigation, the paucity of accurate immune correlates of 

protection has complicated vaccine development (Thomas, 2014). Although vaccine 

developers have relied on neutralizing antibody titers as an immune correlate of 

protective efficacy, in vitro detection of neutralizing antibodies may not accurately 

correlate with protection in vivo, as exemplified by results of the phase 2b and phase 3 

clinical trial for Sanofi Pasteur’s CYD-TDV, the most advanced dengue vaccine 

candidate (Capeding et al, 2014; Sabchareon et al, 2012). Of note, the efficacy 

observed in the trials appears to be serotype-specific, with lower efficacy observed 

against DENV-2. The higher overall efficacy of 56% observed with the phase 3 trial, 

compared to 33% with the phase 2b trial may be due to the lower prevalence of 

DENV-2 in the phase 3 trial (Capeding et al, 2014; Sabchareon et al, 2012). While the 

results of the phase 3 trial in Latin America are yet to be published, it is likely that 

this vaccine offers good protection against DENV-3 and -4, moderate protection 

against DENV-1 but marginal protection against DENV-2. 

 This suggests that in order for a vaccine to offer optimal in vivo protection, it 

should induce both humoral and cellular immunity. Thus far, there is incomplete 

understanding of whether components of cellular immune responses, such as T cell 
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responses and interferon (IFN)-γ secretion, are involved in DENV vaccine-induced 

protection.  

An efficacious dengue vaccine should confer protection against all four 

dengue serotypes. However, a significant concern with dengue is antibody-dependent 

enhancement (ADE), the observed enhancement of disease severity, especially 

following secondary infection with a heterologous dengue serotype. An ill-conceived 

dengue vaccine that induces sub-protective levels of anti-DENV antibodies could thus 

place the vaccine recipient at greater risk of severe disease, although this risk has not 

yet been demonstrated in field studies (Sabchareon et al, 2012). In addition, the 

protective antibody response following vaccination should be durable, or else waning 

levels of the protective antibodies induced could potentially cause ADE in vaccine 

recipients. 

 

1.2.2 T cell responses  

T cell responses constitute an important arm of cellular immunity, mediating viral 

clearance. T cells recognize viral epitopes presented on infected cells by major 

histocompatibility complex (MHC) molecules, which directs cytotoxicity and release 

of pro-inflammatory cytokines that restrict viral replication. CD4+ T cells are 

important in amplification of B cell and CD8+ T cell responses. They enhance the 

production of pro-inflammatory cytokines, mediate direct cytotoxicity and promote 

memory responses (Sant & McMichael, 2012).  CD8+ T cells restrict viral infection by 

direct cytotoxicity or via the production of pro-inflammatory cytokines such as IFN-γ 

and TNF-α (Remakus & Sigal, 2013). A recent study has also highlighted the 
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different protein targets of the CD4+ and CD8+ T cell responses against DENV 

(Rivino et al, 2013). While CD8+ T cell responses preferentially target non-structural 

proteins like NS3 and NS5, CD4+ epitopes are skewed towards E, C and NS1, which 

are also targets of the human antibody response against DENV (Rivino et al, 2013). In 

addition, the serotype of infection also prompts differential antigen 

immunodominance in the T cell response. While the primary DENV-3 response is 

directed predominantly towards structural proteins like E and prM, the structural 

proteins constitute a minor component of the primary DENV-2 response (Weiskopf et 

al, 2014).   

 

Pathogenic T cell responses 

The original antigenic sin hypothesis has also been used to explain the increased 

disease severity associated with secondary DENV infections (Duangchinda et al, 

2010; Mongkolsapaya et al, 2003). It is hypothesized that cross-reactive T cells raised 

during a secondary heterologous infection is skewed to the initial infecting serotype. 

The resultant low avidity cross-reactive memory T cells then dominate the T cell 

response during secondary infection, more so than naïve T cells which would be of 

higher avidity for the new DENV serotype. Because of the lower avidity for the 

secondary infecting virus, they are unable to control the DENV infection  

(Mongkolsapaya et al, 2003) but instead contribute to the cytokine storm and resultant 

DENV pathogenesis (Weiskopf & Sette, 2014). However, recent data has 

demonstrated that during heterologous infections (DENV-2/DENV-3 and DENV-

3/DENV-2 infections), the recognition of conserved or cross-reactive epitopes was 
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either constant or expanded compared to that in homologous infections (Weiskopf et 

al, 2014). These results seem to suggest that antigenic sin does not impair the quality 

of T cell responses significantly during secondary infections.  

While the role of T cells in the pathogenesis of dengue remains to be fully 

elucidated, T cells alone cannot fully explain the epidemiological trends observed 

with DHF/DSS in infants. Infants at 6-12 months of age appear to be at increased risk 

of DHF/DSS compared to either younger infants or toddlers (Chau et al, 2008; 

Halstead et al, 2002; Kliks et al, 1988). This phenomenon has been attributed to the 

presence of DENV-specific maternal antibodies, which is transferred across the 

placenta and enhance disease after decaying to sub-neutralizing levels (Chau et al, 

2008; Halstead et al, 2002; Kliks et al, 1988). In contrast, maternal lymphocytes 

typically do not cross the placental barrier, thus T cells are not required to produce 

severe dengue in infants who lack DENV-specific memory T cells. A recent study 

also showed that there is a temporal mismatch with the production of CD8+ T cells to 

the time of onset of vascular leakage in children with dengue, suggesting that the 

mechanism that triggers vascular leakage in children with DHF is independent of 

CD8+ T cell responses (Dung et al, 2010). However, the possibility that T cell 

responses could contribute to pathogenesis during secondary infections in older 

children or adults cannot be excluded at this stage. 

 

Protective T cell responses 

Several studies have assessed the protective role of T cells during DENV infection in 

humans, by demonstrating the contribution of DENV-specific CD4+ and CD8+ T cell 
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responses during secondary DENV infections. In a prospective study that compared 

the T cell responses of individuals who were subsequently hospitalized or not during 

secondary DENV infection, levels of IFN-γ to the infecting serotype were 

significantly higher in non-hospitalized individuals (Mangada et al, 2002). Higher 

frequencies of DENV-specific T cells were also found in children with subclinical 

infection, compared to those who developed symptomatic secondary DENV infection 

(Hatch et al, 2011). The significance of cellular immunity for vaccine-induced 

protection was also demonstrated in a study which used viral replicon particles 

(VRP), consisting of a Venezuelan equine encephalitis virus (VEEE) vaccine 

expression vector encoding the DENV-2 E protein ectodomain, for immunization of 

wildtype mice (Zellweger et al, 2013). As AG129 mice (type I and II IFN receptor-

deficient mice) are extremely susceptible to DENV infection, they were then used as a 

challenge model to assess the contribution of transferred cells or serum from VRP-

immunized wildtype mice. Both passive transfer of VRP-immune serum and adoptive 

transfer of VRP-immune B cells could increase viral load in AG129 mice upon 

infection, whereas transfer of T cells from wildtype mice reduced viral load in mice 

(Zellweger et al, 2013). This study thus demonstrated that vaccine-induced protection 

should induce both cellular and humoral components of the immune system, and 

suggests that the role of T cell responses during vaccination should not be ignored. 

T cells also play a role in controlling DENV infection, as suggested by studies 

that associate variations in human leukocyte antigen (HLA) alleles with DENV 

disease susceptibility or severity (Loke et al, 2001; Malavige et al, 2011; Nguyen et 

al, 2008). In a study that examined CD8+ responses in a general Sri Lankan 
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population, involving measurement of ex vivo IFN-γ responses associated with more 

than 400 T cell epitopes, memory T cell responses was found to be protective against 

DENV. This was demonstrated by the higher magnitude and more polyfunctional 

responses for HLA alleles associated with decreased susceptibility to severe disease 

(Weiskopf et al, 2013a). 

The positive role for T cell responses in controlling DENV infection as well as 

in mediating vaccine-induced protection provides an additional dimension to our 

understanding of dengue pathogenesis. Perhaps the combination of protective HLA 

alleles and robust antibody response could contribute to optimal protection against 

DENV. The protective and pathological roles of anti-DENV antibodies will be 

discussed in the next section. 

 

1.3 Paradoxical role of FcγR signaling during DENV infection 

1.3.1 Antibody-mediated protection  

Protective antibody responses following DENV infection 

The human antibody response to DENV infection has been studied extensively in the 

hope of identifying neutralizing epitopes that may aid development of a dengue 

vaccine or therapeutic antibodies. Immunoglobulin M (IgM) antibodies are produced 

around 5-6 days after a primary DENV infection, peaking around 2 weeks after fever 

onset and declining to undetectable levels over 2-3 months. Dengue-specific IgG 

antibodies are first detected 1 week after fever onset and titers increase over time 

(Guzman et al, 2010). These antibodies are mostly developed against the E, prM and 

NS1 proteins (de Alwis et al, 2011; Lai et al, 2008). In contrast, during secondary 
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infections, high levels of cross-reactive IgG antibodies are detected during the acute 

phase and titers increase rapidly over time. The rapid rise in dengue-specific IgG is 

attributed to memory B cells that are reactivated upon secondary infection.   

Initial studies to characterize the targets of neutralizing antibodies were 

performed using mouse monoclonal antibodies, and E protein domain III (EDIII) was 

identified as a major antigenic target (Crill & Roehrig, 2001; Shrestha et al, 2010; 

Sukupolvi-Petty et al, 2007). Although EDIII-specific antibodies were found to be 

potently neutralizing in vitro and in vivo, subsequent studies with human immune sera 

showed that depletion of EDIII-specific antibodies did not lead to significant 

reduction in neutralization potency (Wahala et al, 2012; Williams et al, 2012). These 

studies were the first indication that humans produce neutralizing antibodies that 

mostly do not bind EDIII. Instead, immune sera collected from DENV infected 

individuals revealed the antibody response is dominated by weakly neutralizing and 

cross-reactive antibodies (Dejnirattisai et al, 2010). Only a small fraction of human 

antibodies are serotype-specific and potently neutralize DENV (Beltramello et al, 

2010; de Alwis et al, 2011). These antibodies mostly bind quaternary epitopes on 

DENV envelope. Examples include 1F4, a potent neutralizing antibody that binds the 

EDI and EDII hinge region, and HM14c10, a potently neutralizing antibody that 

recognizes a discontinuous epitope spanning adjacent surfaces of E-protein dimers on 

DENV-1 (de Alwis et al, 2012; Teoh et al, 2012). Identification of neutralizing 

conformational epitopes has not been exclusive to DENV – potent neutralizing 

antibodies against West Nile Virus (WNV) recognize the flexible DI-DII hinge 

region, which prevents pH-induced rearrangement of the E protein for virus fusion 
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(Vogt et al, 2009). Lifelong immunity against the homologous DENV serotype is 

mediated by neutralizing antibodies that develop following acute infection. Thus, 

continued investigation into identifying neutralizing dengue epitopes could translate 

into the development of therapeutic antibodies as potential antivirals for DENV.  

 

“Multiple hit” phenomenon for DENV neutralization 

DENV neutralization is a “multiple hit” phenomenon, in which virions are required to 

bind multiple antibodies at a stoichiometry that exceeds a required threshold (Pierson 

& Diamond, 2008; Pierson et al, 2008; Pierson et al, 2007). Molecular modeling 

studies on E16, a WNV-specific monoclonal antibody (mAb), have estimated the 

stoichiometric threshold for flavivirus neutralization at 30 mAbs (Pierson et al, 2007). 

However, this number may vary depending on epitope accessibility and antibody 

affinity, both of which are principal determinants for neutralization (Figure 1-5).   

Epitope accessibility refers to the number of epitopes available for binding and 

can be influenced by steric constraints from the virus structure, size of the antibody, 

structural dynamics of the virus and different oligomeric states during virus 

maturation (Dowd & Pierson, 2011). For example, the neutralizing mAb 1A1D2, 

binds hidden epitopes in EDIII that are transiently exposed following dynamic 

movement of DENV E protein at 37°C (Lok et al, 2008). Antibody affinity refers to 

the fraction of epitopes bound by antibodies at non-saturating concentrations and has 

been found to correlate with neutralizing potential in vitro. Neutralizing activity of 

antibodies has been shown to vary against different virus strains of the same DENV 

serotype, and this is attributed to differences in antibody affinity (Sukupolvi-Petty et 
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al, 2010; Wahala et al, 2010).  Collectively, antibodies that bind highly accessible 

epitopes may exceed the stoichiometric threshold for neutralization by binding the 

virus at low occupancy, while binding at higher occupancy may be required for 

antibodies targeting poorly accessible epitopes (Pierson et al, 2007). 
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Figure 1-5. Occupancy requirements and epitope accessibility are determinants 
for DENV neutralization. A significant percentage of poorly accessible epitopes 
must be bound by antibodies to exceed the threshold for neutralization. In contrast, 
only a fraction of highly accessible epitopes must be bound by the same amount of 
antibodies for neutralization. Figure adapted from Pierson and Diamond, 2008.    
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Mechanisms of antibody-mediated neutralization 

Antibodies can neutralize DENV at different stages of the virus life cycle - either by 

blocking viral attachment to cellular receptors (Crill & Roehrig, 2001) or by 

inhibiting intracellular viral fusion (Gollins & Porterfield, 1986). Many of the most 

potent neutralizing antibodies inhibit infection by disrupting virus attachment to 

cellular receptors. mAb A12 has been found to be cross-neutralizing against 

polioviruses of serotypes 1 and 2, and does so by binding the recognition site for the 

cellular poliovirus receptor CD155 (Chen et al, 2013)  

There is a lack of consensus in the field for a bona fide cellular receptor for 

DENV – candidate receptors include mannose receptor (Miller et al, 2008), C-type 

lectin domain family 5, member A (CLEC5A) (Chen et al, 2008), heparan sulphate 

(Chen et al, 1997), CD14 (Chen et al, 1999) and dendritic cell-specific intercellular 

adhesion molecule-3-grabbing non-integrin (DC-SIGN) (Tassaneetrithep et al, 2003). 

Identifying antibodies that could block cellular attachment or uptake into host cells as 

a therapeutic option has been challenging, particularly since most of these studies did 

not utilize cells that are the main targets of dengue infection in humans. Moreover, 

there is a possibility that these antibodies, when opsonized to DENV, could enhance 

infection in myeloid cells via FcγR-mediated phagocytosis. This suggests that 

antibodies that serve to inhibit intracellular viral fusion could be a more efficacious 

mechanism for antibody-mediated DENV neutralization.  

Antibodies that inhibit intracellular viral fusion prevent nucleocapsid 

uncoating and release of viral RNA into the cytosol. In the absence of viral fusion, 

which occurs in Rab-7 positive late phagosomal compartments (van der Schaar et al, 
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2008), DENV is entrapped in the phagocytic pathway. Subsequent phagosome-

lysosome fusion can lead to the degradation of DENV upon exposure to lysosomal 

hydrolases and the production of superoxide and nitric oxide radicals (Haas, 2007).  

DENV serotype-specific antibodies, which are associated with long-term immunity in 

humans, are able to neutralize DENV in the presence of FcγR-mediated phagocytosis 

(Chan et al, 2011). This reinforces the notion that neutralizing antibodies for DENV 

should inhibit intracellular viral fusion, in order to serve as a viable therapeutic option 

(Chan et al, 2013). Antibodies that permit intracellular neutralization have also been 

demonstrated for viruses such as WNV and human respiratory syncytial virus (RSV). 

Humanized antibody E16, which binds to EDIII of WNV, is strongly neutralizing as it 

can block pH-dependent viral fusion (Thompson et al, 2009). Palivizumab, a 

clinically approved mAb for RSV, neutralizes RSV intracellularly by inhibiting cell-

cell or virus-cell fusion (Huang et al, 2010b).  

 

1.3.2 Antibody-dependent enhancement (ADE) of DENV infection 

Epidemiological evidence for ADE  

Infection with any one serotype confers lifelong serotype-specific protection against 

re-infection by the same serotype, but offers limited and short-lived cross-protection 

to the remaining three serotypes (Sabin, 1952) During World War II (1944-1945), 

Albert Sabin conducted experimental human challenge studies in which individuals 

were infected with dengue, in an attempt to develop a dengue vaccine and diagnostic 

tools. Sabin’s work indicated that the duration of cross-protection from a secondary 

infection was approximately 8 weeks, with significant individual variation (Sabin, 
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1952). The duration of cross-protection was likely dependent on viral factors and host 

immune response, although the mechanism to explain this short-lived heterotypic 

immunity remains to be elucidated. Sabin had described these findings in his 

publication in broad terms without showing specific data (Sabin, 1952). Recently, 

Sabin’s original laboratory notebooks were reviewed. One of the interesting findings 

were that patients with secondary infections had a 3-5 day shorter incubation period, 

compared to primary infections (Snow et al, in press). Although there was no 

evidence of disease enhancement in the patients with secondary infection, this 

observation does suggest that cross-reactive antibodies enhance the efficiency of 

DENV infection. To date, these studies by Sabin represent the most groundbreaking 

work for investigating the degree of cross-protection and immune enhancement, 

during secondary infection with a heterologous serotype, at various intervals 

following a primary infection. 

ADE is hypothesized to occur when sub-neutralizing levels of antibody, either 

acquired from a previous DENV infection or from maternal-fetal transfer, form 

immune complexes with DENV of a heterologous serotype. The resultant DENV 

immune complexes are then preferentially taken up by phagocytes and antigen 

presenting cells through FcγRs, leading to enhanced viral uptake and replication and 

more severe clinical outcomes (Figure 1-6) (Murphy & Whitehead, 2011).  

Epidemiological observations and in vitro studies have widely associated 

secondary infections with a higher risk (15-80 times) of severe clinical outcome. 

Early studies done in Thailand showed that 14% of children with a primary infection 

and 41% of children with a secondary infection subsequently developed DSS 
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(Halstead, 1970; Halstead et al, 1970). These observations were later confirmed in a 

different setting, the 1981 Cuba DENV-2 epidemic, which was preceded by a mild 

epidemic of DENV-1 in 1977. The DENV-1/DENV-2 sequence of secondary 

infections accounted for 98% of DHF/DSS cases. Furthermore, DHF/DSS was absent 

in children born after the 1977 epidemic as they were only at risk of primary 

infections (Guzman et al, 1987; Kouri et al, 1989). In the last 20 years, secondary 

infections as a risk factor for ADE have been reported in studies from Southeast Asia, 

the Americas and the Western Pacific (Table 1-1).  

Conversely, DHF/DSS cases occurring during primary infections as well as 

the absence of severe clinical disease following secondary infections have also been 

reported. In Iquitos, Peru, where a DENV-1 epidemic in 1990 was followed by a 

DENV-2 epidemic in 1995, secondary infections with the American DENV-2 

genotype resulted in mild disease (Kochel et al, 2002). Kochel et al. hypothesized that 

antibodies to DENV-1 acquired from the earlier primary infection were protective 

against the DENV-2 virus, instead of causing ADE. Indeed, they observed that sera 

positive for DENV-1 antibodies neutralized the American DENV-1 and DENV-2 

viruses more effectively than Asian DENV-2 viruses. This could probably account for 

the absence of severe dengue in Iquitos during the DENV-2 epidemic in 1995 (Kochel 

et al, 2002). In a study of 614 patients with confirmed dengue during the 1998 dengue 

epidemic in Nicaragua, in which the majority of cases stemmed from DENV-3 

infections, secondary infections were not significantly associated with DHF/DSS 

(Harris et al, 2000).  
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The sequence of DENV infections has been purported to modulate disease 

severity during secondary infections. We know from epidemiological observations 

that not all sequences of infections exhibit the same likelihood for severe disease. 

Early studies in Thailand demonstrated that secondary DENV-2 infection was 

associated more frequently with DHF than secondary infections with other serotypes 

(Anantapreecha et al, 2005; Sangkawibha et al, 1984; Vaughn et al, 2000), and this 

observation has also been corroborated in studies outside Thailand (Guzman et al, 

2000; Thomas et al, 2008; Yeh et al, 2006). In contrast, secondary DENV-3 infections 

have showed low prevalence of severe disease (Harris et al, 2000; Libraty et al, 2009). 

It is possible that DENV serotypes may benefit differentially from ADE, with a 

caveat that disease severity is also determined by factors such as genotype of infection 

and host immunity. 

ADE and its resultant clinical outcome of severe dengue is perhaps most 

uniquely demonstrated in infants with primary infections accompanied by DHF born 

to dengue-immune mothers (Chau et al, 2008; Halstead et al, 2002; Hammond et al, 

2005; Simmons et al, 2007). At birth, these infants possess dengue-specific antibodies 

which are cross-neutralizing in vitro. These maternal antibodies are catabolized with a 

half-life of 40 days, waning to levels that are no longer neutralizing, but instead 

enhance dengue infection in vitro. (Kliks et al, 1988). In healthy Vietnamese infants, a 

strong temporal association was demonstrated in the enhancing activity of neat serum 

and the age-related epidemiology of severe dengue (Chau et al, 2008). These studies 

in infants are illuminating, as they enable the protective efficacy of dengue–specific 

antibodies to be studied in a setting whereby interference from pre-existing cellular 
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immunity can be discounted. Recently, a mouse model of ADE has provided direct 

experimental evidence for the role of maternal antibodies in enhancing dengue disease 

severity (Ng et al, 2014). DENV-2 infected mice born to DENV-1 immune mothers 

resulted in earlier death, accompanied with higher viremia levels and increased 

vascular leakage, as compared to DENV-2 infected mice born to naïve mothers. This 

model of ADE also managed to recapitulate earlier epidemiological observations, 

with an age-dependent propensity for disease enhancement in mice born to DENV-1 

immune mothers.   

However, not all human studies support the ADE hypothesis.  In a prospective 

nested case-control study involving infants infected with DENV-3 in Philippines, the 

role of maternal antibodies in ADE was challenged as the authors found no 

correlation between viremia levels and disease severity (Libraty et al, 2009). 

Although variation in study design and methods may hinder direct comparison of 

different studies, there is sufficient evidence to warrant further investigation into the 

contribution of ADE towards DENV pathogenesis.   
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Table 1-1. Secondary infection (SI) as a risk factor for severe dengue. Table 
adapted from Guzman, 2014.  
 
Year Country Results Reference 

1962-
1964 

Thailand Out of 528 children admitted to Bangkok 
Children’s Hospital, 457 had a SI and 71 
had a primary infection. 186 (41%) of the 
former and only 10 (14%) of the latter 
developed DSS. 

(Halstead et al, 
1967) 

1977-
1981 

Cuba The 1977 DENV-1 epidemic (more than 
500, 000 cases reported) in Cuba was 
followed by the 1981 DENV-2 epidemic. 
The DENV-1/DENV-2 sequence of 
secondary infections accounted for 98% 
of DHF/DSS cases in both children and 
adults. Furthermore, DHF/DSS was 
absent in children born after the 1977 
epidemic as they were only at risk of 
primary infections. 

(Guzman et al, 
1987; Kouri et al, 
1989) 

1999-
2001 

Nicaragua DENV-2 was the predominant serotype 
of infection in infants, children, and 
adults with confirmed DENV in three 
hospitals in Managua. In children, SI was 
a risk factor for DHF/DSS. The peak of 
DHF/DSS in infants 4-9 months is 
consistent with the theory of maternal 
antibody enhancement of disease. 

(Hammond et al, 
2005) 

2008 Martinique 146 adult patients with confirmed 
DENV-2 and 4 were studied. The most 
severe cases of dengue resulted from the 
combined effects of DENV-2 and SI. 

(Thomas et al, 
2008) 
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Figure 1-6 Model of antibody-dependent enhancement (ADE) of DENV 
infection.  ADE is hypothesized to occur when sub-neutralizing levels of antibody, 
either acquired from a previous DENV infection or from maternal-fetal transfer, binds 
to the virus but is unable to neutralize the virus. The resultant antibody-opsonized 
DENV can infect circulating monocytes via FcγR-mediated entry, facilitating the 
infection of FcγR-bearing cells that are not readily infected in the absence of 
antibody. This leads to enhanced viral uptake and virus replication, with the resultant 
higher levels of viremia being associated with an increase in disease severity. Adapted 
from Murphy and Whitehead, 2011.  
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Pathological role of antibodies in DENV pathogenesis 

The contradictory role of antibodies in DENV pathogenesis is a distinctive feature of 

the disease. While opsonization of DENV with antibodies at levels above the 

neutralization threshold effectively clears the virus, DENV opsonized with non-

neutralizing or sub-neutralizing levels of antibodies result in ADE in FcγR-bearing 

cells (Halstead & O'Rourke, 1977). This mechanism increases uptake of antibody-

opsonized DENV into FcγR-bearing cells and increases viral replication, leading to 

higher viremia levels and more severe clinical outcomes like DHF or DSS. Indeed, 

several studies have demonstrated that peak viremia is higher during secondary DHF 

cases (Endy et al, 2004; Thomas et al, 2008; Vaughn et al, 2000) and that levels of 

complement and pro-inflammatory cytokines are also higher in patients with DHF 

compared to DF (Wang et al, 2006).  

 Studies characterizing the repertoire of antibodies produced in DENV infected 

individuals have found the preponderance of cross-reactive and weakly neutralizing 

antibodies (Beltramello et al, 2010; de Alwis et al, 2011; Dejnirattisai et al, 2010). 

The majority of antibodies are produced towards the E and prM structural proteins, 

and the NS1 non-structural protein. Sera derived from DENV infected patients 

indicate that the bulk of anti-E antibody response are directed to residues in EDII 

fusion protein (Lai et al, 2008), and that only a small proportion of these antibodies 

produced are protective (de Alwis et al, 2011). Weakly or non-neutralizing anti-E 

antibodies could promote ADE by competing, through steric hindrance, with 

neutralizing antibodies for binding on overlapping epitopes, as previously suggested 

for influenza virus (Ndifon et al, 2009). Both human and murine mAbs directed 
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against EDII fusion protein have been shown to enhance viremia, leading to lethality 

in the AG129 mouse model (Balsitis et al, 2010; Beltramello et al, 2010; Zellweger et 

al, 2010). Passive transfer of an EDII fusion protein-specific mAb 1A5 at sub-

neutralizing concentrations also enhanced DENV infection significantly in juvenile 

rhesus monkeys (Goncalvez et al, 2007). Lastly, antibodies directed against E protein 

have also been reported to enhance infectivity of immature DENV particles. 

Structural analysis have shown that the E protein is exposed in immature DENV and 

indeed, antibodies like E53, an EDII fusion protein-specific mAb that preferentially 

binds spikes in immature forms of both DENV and WNV, are able to significantly 

enhance infectivity of fully immature DENV and WNV in vitro (Rodenhuis-Zybert et 

al, 2011). The same has been observed with other anti-E antibodies that confer 

infectivity on immature DENV and WNV, causing lethal disease in mice (da Silva 

Voorham et al, 2012).  

A surprising majority of antibodies produced are directed towards prM 

(Dejnirattisai et al, 2010), which have been shown to target uncleaved prM on 

immature or partially mature virus particles. Antibodies directed against prM permit 

binding and cell entry of immature DENV particles into FcγR-bearing cells, 

enhancing the infectivity of immature or partially mature virus particles, as 

endosomal furin activity efficiently cleaves prM to M in target cells (Rodenhuis-

Zybert et al, 2010). This finding is significant because of the mixture of immature, 

partially mature and mature virus particles produced in cell culture, which can be 

enhanced in vitro and in mice by anti-prM antibodies (Colpitts et al, 2011; 

Rodenhuis-Zybert et al, 2010). It is imperative that antibodies with enhancing activity 
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in immune sera be identified, so that vaccines can be designed with minimal potential 

for disease enhancement in recipients. 

 Other than structural proteins, antibodies can also be directed against NS1, a 

secreted glycoprotein that accumulates to high levels in plasma from DENV-infected 

individuals. Higher levels of NS1 antigenemia in plasma are frequently observed in 

children with DHF as compared to those with DF (Libraty et al, 2002; Vaughn et al, 

2000). NS1 antibodies have been shown to elicit autoantibodies that react with 

platelet and extracellular matrix proteins (Falconar, 1997; Oishi et al, 2003; Sun et al, 

2007), causing platelet destruction that serves as an additional explanation for 

thrombocytopenia during severe dengue. However, autoimmunity mediated by anti-

NS1 antibodies is incompatible with the clinical picture of immune thrombocytopenia 

(ITP), an autoimmune condition that results in acute or chronic thrombocytopenia (Lo 

& Deane, 2014). While chronic ITP can persist longer than 12 months (Lo & Deane, 

2014), chronic manifestation of thrombocytopenia associated with DENV infection 

has never been reported despite lifelong persistence of anti-NS1 antibodies (Murphy 

& Whitehead, 2011).  

Anti-NS1 antibodies also cause damage to endothelial cells via induction of 

nitric-oxide mediated apoptosis (Lin et al, 2002). The expression of cytokines and 

chemokines like interleukin (IL)-6, IL-8 and monocyte chemoattractant protein 

(MCP)-1 are upregulated in endothelial cells following treatment with anti-NS1 

antibodies in vitro (Lin et al, 2005), which could contribute to pro-inflammatory 

responses that underlie the vasculopathy in severe DHF/DSS. Soluble NS1 has been 

shown to bind glycosaminoglycans like heparan sulphate and chondroitin sulphate E 
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on lung and liver endothelium tissue, and can be targeted by cross-reactive NS1 

antibodies. This is hypothesized to contribute to selective vascular leakage during 

severe disease (Avirutnan et al, 2007). Anti-NS1 antibodies have also been 

demonstrated to enhance the activation of complement, and the increased plasma 

levels of MAC and anaphylatoxins observed in patients with DSS could contribute to 

the pathogenesis of vascular leakage (Avirutnan et al, 2006). The production of 

antibodies cross-reactive to self-antigens during DENV infection could enhance 

disease severity through mechanisms such as enhancement of vascular permeability 

and thrombocytopenia. However, it is difficult to reconcile the kinetics of anti-NS1 

antibodies with the short duration of vascular leakage leading to shock, hence the 

autoimmune hypothesis has remained contentious. Further studies to identify putative 

self-antigens that could be recognized by anti-DENV antibodies could guide vaccine 

development, ensuring that memory IgG responses are not triggered against self.   

 Taken together, it is evident that antibodies targeted to DENV have a dual role 

in protection and pathogenicity. Continued inquiry into the role of antibodies in 

DENV pathogenesis could identify fundamental requisites of protective immunity.  

 

1.3.3 FcγR usage in neutralization and disease enhancement 

The family of FcγRs 

FcγRs are a family of cell surface receptors that specifically bind the Fc region of 

antibodies. They mediate a myriad of immune responses through simultaneous 

triggering of activating and inhibitory signaling pathways, allowing fine-tuning of the 

immune response. As receptors for antigen-antibody immune complexes, they bridge 
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the innate and adaptive immune systems, serving as a conduit to activate and regulate 

immunity (Nimmerjahn & Ravetch, 2008).      

  Human FcγRs are differentiated according to their affinity for the Fc region of 

antibodies and the signaling pathways they induce (Nimmerjahn & Ravetch, 2011). 

They can be broadly classified into activating receptors (FcγRI, FcγRIIA and 

FcγRIIIA) and inhibitory receptors (FcγRIIB) (Figure 1-7). Both activating and 

inhibitory FcγRs are widely expressed in innate immune effector cells such as 

monocytes, macrophages, dendritic cells and mast cells. Immune cells that only 

express activating or inhibitory receptors include natural killer (NK) cells, which 

solely express activating FcγRIII and B cells, which only express the inhibitory 

FcγRIIB. 

Engagement of activating receptors leads to phosphorylation of the 

immunoreceptor tyrosine activating motif (ITAM), which triggers activation of 

downstream signaling cascades. FcγRI, a high affinity receptor for both monomeric 

IgG and immune complexes, signals through a dimer of γ-subunits containing the 

ITAM motif. FcγRIIA and FcγRIIIA, which are low affinity receptors that bind only 

immune complexes, signal through ITAM in the cytoplasmic tail of these receptors. 

Following aggregation of activating FcγRs by IgG or immune complexes, proto-

oncogene tyrosine-protein kinase Src mediates tyrosine phosphorylation of the ITAM. 

This leads to recruitment of spleen tyrosine kinase (Syk) and phosphorylation of 

kinases in the downstream signaling cascade (Nimmerjahn & Ravetch, 2008). In 

contrast, co-aggregation of inhibitory FcγRIIB with activating FcγRs leads to Src 

kinase Lyn-mediated tyrosine phosphorylation of the immunoreceptor tyrosine 
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inhibitory motif (ITIM) in its cytoplasmic tail (Smith & Clatworthy, 2010). SH2-

domain-containing inositol phosphatases (SHIPs) and SH2-domain-containing protein 

tyrosine phosphatase 1 (SHP1) are recruited and mediate dephosphorylation of 

kinases in the activating FcγR signaling cascade.  
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Figure 1-7. The family of FcγRs. FcγRs vary according to their affinity for the Fc 
protion of the antibody, the signaling pathways induced and their cellular expression. 
They can be broadly classified into activating receptors (FcγRI, FcγRIIA and 
FcγRIIIA) and inhibitory receptors (FcγRIIB). While FcγRI and FcγRIIIA signal 
through the ITAM in the γ-chain, FcγRIIA signals through the ITAM in its 
cytoplasmic tail. In contrast, the inhibitory FcγRIIB signals through the ITIM in its 
cytoplasmic tail to counteract activating FcγR signaling. Adapted from Smith and 
Clatworthy, 2010. 
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FcγR usage in DENV neutralization 

While previous studies focused on whether antibodies block viral attachment to 

cellular receptors or inhibit intracellular viral fusion, more recent studies have 

examined the contribution of activating and inhibitory FcγR to DENV neutralization. 

Indeed, the type of FcγR can change the stoichiometric requirement for neutralization. 

Initial work showed that CV-1 cells transfected with either FcγRI or FcγRIIA, 

required less and more antibodies for neutralization, respectively, as compared to 

FcγR-negative untransfected CV-1 cells (Rodrigo et al, 2009). This was validated by 

Chawla and colleagues, who used THP-1 cells that naturally express FcγR and found 

that uptake via FcγRI required less antibodies for neutralization, compared to 

FcγRIIA (Chawla et al, 2013).   

The molecular mechanisms for the difference in stoichiometric requirement 

with different FcγRs are not well understood. A recent work demonstrated that FcγRI-

mediated phagocytosis led to activation of phospholipase-D1 and sphingosine kinase-

1 to induce trafficking to late endosomes or lysosomes for antigen presentation and 

the induction of pro-inflammatory cytokines (Dai et al, 2009). In contrast, FcγRIIA-

mediated phagocytosis led to increased intracellular calcium levels via activation of 

phospholipase C-gamma-1 (Dai et al, 2009). It also led to trafficking of immune 

complexes to intracellular compartments that impaired antigen presentation and pro-

inflammatory cytokine response (Dai et al, 2009).  

Looking at FcγR usage as an auxiliary parameter for DENV neutralization is a 

timely move as measurements of neutralizing antibody on epithelial cells result in 

different titers compared to assays using FcγR-bearing cells (Moi et al, 2010; Rodrigo 
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et al, 2006). The field lacks an effective tool to determine protective immunity and 

this has hampered vaccine developments. A recent study indicated that cross-reactive 

but not serotype-specific antibodies require high antibody concentration to co-ligate 

FcγRIIB and inhibit phagocytosis of DENV immune complexes (Chan et al, 2011). 

The ability to distinguish serotype-specific antibodies, which confer lifelong 

protection, from cross-reactive antibodies, that mediate short-lived humoral 

protection, could thus be inferred in the presence of FcγR-mediated phagocytosis. 

This strategy was validated with clinical samples, and found to be able to clarify 

serologically the serotype of infection more accurately than traditional plaque 

reduction neutralization tests (PRNTs) (Wu et al, 2012). This could be transformative 

to how candidate dengue vaccines are assessed for protective immunity and could 

also inform on therapeutic antibody selection for further development.   

 

FcγR usage in DENV infection enhancement 

The interaction between anti-DENV antibodies and FcγRs is one that has been 

imperative in modulating disease enhancement. Whether or not this interaction is with 

activating or inhibitory FcγRs also has divergent implications for ADE.  

FcγR-mediated uptake of DENV immune complexes can be inhibited by 

altering the Fc portion of anti-DENV antibodies, blocking the interaction of anti-

DENV antibodies with FcγRs, or by co-ligation with the inhibitory FcγRIIB. When 

antibodies with Fc modifications were administered in mice and in rhesus monkeys, 

therapeutic efficacy against ADE was achieved (Balsitis et al, 2010; Goncalvez et al, 

2007). Similarly, blocking FcγRs with monoclonal antibodies in peripheral blood 
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mononuclear cells (PBMCs) also reduced ADE (Boonnak et al, 2011; Kou et al, 

2008).  Since the inhibitory FcγRIIB serves to downregulate activating FcγR-

mediated phagocytosis and also immune complex induced inflammation, it is 

tempting to envision a role for FcγRIIB in inhibiting ADE (Tridandapani et al, 2002). 

Indeed, Chan and colleagues recently demonstrated that DENV opsonized with high 

concentrations of weakly neutralizing, cross-reactive antibodies forms large viral 

aggregates that permit co-ligation of FcγRIIB, inhibiting FcγR-mediated phagocytosis 

and thus ADE (Chan et al, 2011). Importantly, the inhibitory activity of FcγRIIB has 

been attributed to the ITIM in its cytoplasmic tail, a key feature that discriminates 

inhibitory from activating FcγRs, which instead contain a cytoplasmic ITAM. Cells 

engineered to express “swapped” versions of the FcγRII (FcγRIIA-ITIM and 

FcγRIIB-ITAM) showed equal binding of DENV immune complexes. However, 

FcγRIIA-ITIM inhibited ADE while FcγRIIB-ITAM restored ADE, showing that the 

cytoplasmic ITAM/ITIM is a major determinant for ADE (Boonnak et al, 2013).   

FcγRIIA seems to be most permissive for ADE (Chawla et al, 2013; Rodrigo 

et al, 2006) and this could be attributed to divergent internalization pathways 

following uptake via these receptors. Differences in receptor trafficking and antigen 

processing have been observed following FcγRI and FcγRIIA-mediated phagocytosis, 

with antigens taken up by FcγRI trafficked to late endosomal/lysosomal 

compartments (Dai et al, 2009). Accordingly, DENV immune complexes taken up by 

FcγRI may be trafficked into compartments that promote virus degradation, while 

those taken up by FcγRIIA trafficked into compartments that permit viral replication 

(Chawla et al, 2013).  
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FcγRIIA has also been hypothesized to play a supporting role in concentrating 

the DENV immune complex on the cell surface, requiring interaction with other 

cellular receptors for virus entry (Chotiwan et al, 2014). Chotiwan et al. did not 

observe enhancement of viral titers when CV-1 cells transfected with FcγRIIA were 

infected under ADE conditions (Chotiwan et al, 2014). The possibility that 

downstream mediators of FcγR signaling may not be intact and thus impair FcγR–

mediated phagocytosis in CV-1 cells, a FcγR-negative cell line, precludes the authors’ 

assessment that FcγRIIA is insufficient for ADE-mediated DENV entry. Since no 

experiments were performed to visualize the role of FcγRIIA in concentrating the 

immune complex on FcγRIIA, this hypothesis is at most, speculative. Experiments to 

investigate DENV internalization and infection under ADE conditions must attempt 

to use cell lines or primary cells that naturally express the full spectrum of FcγRs, in 

order to capture a relevant picture of ADE-mediated DENV infection.  

That FcγRs are mechanistically involved in both neutralization and 

enhancement of DENV infection, underscores the diverse signaling pathways that can 

be triggered upon engagement of different FcγRs. Both activating and inhibitory 

FcγRs contribute to the resultant signaling pathway, and this serves as an additional 

layer of regulation to fine-tune FcγR-mediated immune responses. Recent literature 

seems to suggest that FcγRI and FcγRIIA are preferentially used for neutralization 

and enhancement of DENV infection respectively. Although both receptors contain an 

intracellular ITAM, its location on the associated gamma chain of FcγRI and the 

cytoplasmic tail of FcγRIIA suggests that this may lead to differences in FcγR-

mediated uptake of DENV immune complexes. Differential compartmentalization, 
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and thus intracellular fate of DENV immune complex which arises from these distinct 

signaling pathways is an interesting notion that hitherto has not been investigated. 

 

1.3.4 Role of antibody effector functions during DENV pathogenesis 

Besides removal of immune complexes, antibodies also mediate host defence by 

recruitment of other FcγR-dependent mechanisms like activation of the classical 

complement pathway and antibody-dependent cell-mediated cytotoxicity (ADCC) 

(Jiang et al, 2011). Antibody effector functions undergird their roles in pathogen 

clearance and protective immunity, as well as deleterious immune reactivity such as 

allergic reactions and antibody-mediated enhancement of infections.   

Protection conferred by neutralizing antibodies has been examined almost 

singularly from the variable region of the antibody. However, there is renewed insight 

into how antibody effector functions could provide ancillary mechanisms for 

antibody-mediated neutralization (Burton, 2002), thus allowing even antibodies that 

neither block virus-receptor attachment nor fusion with endosomal membranes to 

confer protection. 

 

Complement 

An important antibody effector activity is complement dependent cytotoxicity (CDC). 

The Fc region of the antibody can activate the classical complement pathway by 

binding the C1q component, a vital initial step of the complement cascade that 

facilitates CDC. Fixation of complement on virion surface by virus-specific 

antibodies mediates direct virolysis (Figure 1-8) by triggering the complement 
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cascade and formation of the membrane attack complex (MAC) C5b-9 (Nakamura et 

al, 1993). Subsequent binding of antibody- or complement-coated viruses to FcγR or 

complement receptors leads to phagocytic uptake and clearance of the virus in 

intracellular compartments (McCullough et al, 1988).  

C1q was shown to bind to the Fc region of antibody-opsonized DENV 

(Mehlhop et al, 2007). Because C1q is a large multimeric protein (Kishore & Reid, 

2000), and the binding sites for C1q and FcγR are in close proximity on the Fc region 

(Idusogie et al, 2001), Mehlhop et al. hypothesized that C1q binding to Fc would 

consequently interfere with Fc-FcγR interaction, accounting for how C1q could 

restrict ADE in vitro and in vivo (Mehlhop et al, 2007). Addition of commercial rabbit 

complement or fresh sera from healthy humans was also shown to abolish enhancing 

activity of mouse mAbs against DENV-2 and DENV-4 in vitro (Yamanaka et al, 

2008). This finding was abrogated when C1q or C3 was depleted from serum or when 

heat inactivated serum was used (Yamanaka et al, 2008). Collectively, the classical 

complement pathway can both augment antibody-mediated neutralization as well as 

reduce ADE of DENV infection. Protective immunity accorded by the classical 

complement pathway is not limited to DENV and has also been observed in 

antibodies against measles (Iankov et al, 2006) and influenza (Mozdzanowska et al, 

2006).  

Soluble and membrane-associated DENV NS1 protein activates complement 

in the presence of antibodies against NS1 (Avirutnan et al, 2006). The presence of 

high concentrations of NS1, the complement anaphylatoxin C5a and MAC C5b-9 was 

detected in pleural fluids from DSS patients, and plasma levels of NS1 and C5b-9 also 
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correlated with disease severity (Avirutnan et al, 2006). Elevated levels of 

complement proteins C3, C3a and C5a are important in the recruitment of mast cells 

and the release of histamine, which locally increases vascular permeability 

(Dalrymple & Mackow, 2012). C3a and C5a activate platelets, leading to the release 

of soluble factors with inflammatory properties like matrix metalloproteinase-9 

(MMP-9), which enhances the permeability of endothelial cells (Luplertlop et al, 

2006). C5a also triggers the release of cytokines like IL-1, IL-8 and TNF-α from 

monocytes, all of which activate endothelial cells and enhance vascular permeability 

(Martina et al, 2009). Taken together, complement activation could drive proliferation 

of the “cytokine storm” and other soluble mediators that are involved in enhancing 

permeability of endothelial cells, a property that underlies vascular leakage in dengue 

pathogenesis. 

 

Antibody-dependent cell-mediated cytotoxicity 

During ADCC, DENV surface antigen expression on infected cells modulates the 

binding of DENV antibodies, whose Fc region is recognized by FcγRs on effector 

cells such as natural killer (NK) cells, macrophages, DCs and T cells, which can 

trigger effector cell-mediated ADCC of infected cells (Figure 1-8) (Kurane et al, 

1984). In addition to causing cytolysis of the infected cell, ligation of FcγRs can also 

lead to the release of antiviral cytokines that aid in pathogen clearance (Russell & 

Ley, 2002), and this effect can be quantified by either measuring the cytotoxic effect 

on infected cells or as antibody-dependent cell-mediated virus inhibition (ADCVI) 
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which considers virus reduction as a result of cytotoxicity, production of antiviral 

cytokines and other secondary factors (Overbaugh & Morris, 2012). 

In dengue infections, studies of ADCC activity for DENV pathogenesis have 

been relatively few. In a prospective cohort study of Thai school children, ADCC 

activity was found to correlate with plasma neutralizing antibody levels in both 

secondary DENV-2 and DENV-3 infections (Laoprasopwattana et al, 2007). 

However, ADCC was only protective during secondary DENV-3 infections, with 

lower viral loads attributed to higher ADCC activity (Laoprasopwattana et al, 2007). 

While ADCC may control viremia levels in vivo early after secondary DENV-3 

infection, no significant correlation between ADCC activity and plasma viremia 

levels were observed in secondary DENV-2 infection (Laoprasopwattana et al, 2007).  

Recently, the role of non-neutralizing antibodies that rely on Fc-FcγR 

interaction to mediate neutralization of HIV-1 has also been investigated. The RV144 

HIV-1 vaccine trial in Thailand, which reported a vaccine efficacy of 31.2% despite 

the absence of neutralizing antibodies or cytotoxic T cell responses, raised the 

hypothesis that Fc effector functions of non-neutralizing antibodies could have 

contributed to the vaccine efficacy (Haynes et al, 2012). High levels of ADCC 

activity were found to correlate with decreased risk of infection in RV144 secondary 

immune correlate analysis (Haynes et al, 2012), corroborating previous reports of an 

inverse correlation between HIV-1 gp120-specific ADCC antibodies and disease 

progression (Baum et al, 1996). Moreover, ADCC responses in HIV-1 infected elite 

controllers with undetectable viremia were higher as compared to infected individuals 

with viremia (Lambotte et al, 2009). Non-neutralizing antibodies induced following 
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RV144 vaccination also showed highly coordinated Fc-mediated effector responses 

by selective induction of highly functional IgG3 (Chung et al, 2014). V1V2-specific 

IgG3 antibodies were also associated with broad antiviral responses and correlated 

with decreased risk of infection in the RV144 trial (Yates et al, 2014). These studies 

agree that antibody subclass and antibody effector functions of non-neutralizing 

antibodies, coupled with FcγR-mediated adaptive and innate immune functions, could 

contribute significantly to HIV-1 neutralization. 

Recent work by DiLillo and colleagues has also shed light on how broadly 

neutralizing antibodies (bNAbs) mediate protection against influenza. Antibodies 

against influenza virus target the two major domains of hemagglutinin (HA): the head 

domain, where most antigenic variation occurs, and the stalk domain, which is 

conserved between influenza virus subtypes (Wang & Palese, 2011). Broadly 

neutralizing antibodies are typically targeted to the stalk domain, allowing it to 

neutralize different subtypes of influenza virus. The mechanism of action for anti-HA 

stalk bNAbs involved disruption of the fusion process and efficient interaction with 

FcγR, conferring protection through NK cell activation and cytotoxicity of infected 

cells (DiLillo et al, 2014). In contrast, the anti-HA head immune complexes did not 

interact with FcγRs, and could not mediate cytotoxicity of infected cells (DiLillo et al, 

2014). Interestingly, at high bNAb doses, in vivo protection is FcγR independent and 

thus ADCC independent (DiLillo et al, 2014). It is possible that at low doses of the 

bNAb, its ability to block fusion may be inefficient in vivo. This was raised as a 

possibility following a prospective cohort study that correlated detection of ADCC 

antibodies to children with clinical influenza (Co et al, 2014). Anti-stalk antibodies 
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may represent only a small portion of the ADCC antibodies detected and multiple 

exposures to influenza may be required before protective levels of anti-stalk 

antibodies are developed (Co et al, 2014). The interaction of bNAbs with FcγRs to 

mediate ADCC of infected cells thus contributes towards optimal in vivo protection. 

Collectively, this work manages to delineate the multiple paths of antiviral protection 

taken by anti-HA head and stalk antibodies, which elevates our understanding of how 

antibody effector functions can be harnessed to enhance mAb-mediated antiviral 

therapeutics. 
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Figure 1-8. Antibody effector functions against DENV. (A) The Fc region of 
DENV-specific antibodies mediates the deposition of complement on the virion 
surface, which can rupture the virion envelope and lead to direct virolysis of DENV. 
(B) DENV-specific antibodies can activate complement and NK cells, leading to lysis 
of infected cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Adapted 
from Chan, 2013.  
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1.4 Modulation of host innate immunity during ADE 

1.4.1 Intrinsic ADE 

During ADE, host innate immunity is suppressed to favour higher levels of viral 

replication, a phenomenon termed “intrinsic ADE” by Halstead and colleagues 

(Halstead et al, 2010). DENV can be detected by pattern recognition receptors like 

Toll-like receptors (TLRs), transmembrane proteins that recognize viral nucleic acid 

components either outside of cells or in cytoplasmic vesicles, and are involved in 

priming host innate immunity upon viral infection (Takeuchi & Akira, 2009). The 

expression of TLR3, 4 and 7 and TLR signaling molecules like TRAF-6 and TRIF 

were reduced in the presence of DENV infection under ADE conditions in THP-1 

cells. In contrast, negative regulators of TLR signaling, sterile α-armadillo motif 

containing protein (SARM) and TRAF family member-associated NF-κB activator 

(TANK), were upregulated, leading to increased viral replication and suppression of 

innate immunity (Modhiran et al, 2010). This observation was recapitulated in 

PBMCs of DHF but not DF patients, correlating the suppression of innate immunity 

with increased disease severity in DHF patients. The expression of TLRs and 

production of interferon-β (IFN-β) was restored when ADE-infected cells were 

pretreated with anti-FcγR antibodies, reinforcing the point that FcγR-mediated uptake 

of antibody-opsonized DENV downregulates TLR signaling and IFN-β production 

(Modhiran et al, 2010).    

Once viral RNA is released into the cytoplasm, it can be detected by 

cytoplasmic RNA helicases like retinoic acid-inducible gene I (RIG-I), and melanoma 

differentiation-associated gene 5 (MDA5), which serve to activate type I IFN 
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production. Infection under ADE conditions in THP-1 cells enhanced expression of 

dihydroxyacetone kinase (DAK) and autophagy-related 5-autophagy-related 12 

(Atg5-Atg12), negative regulators of RIG-I/MDA5 signaling. This led to suppression 

of type I IFN production and inhibition of IFN-mediated antiviral responses (Ubol et 

al, 2010). Similarly, PBMCs obtained from DHF patients displayed suppressed levels 

of RIG-I, MDA5, mitochondrial antiviral signaling protein (MAVS), a downstream 

adaptor of RIG-I/MDA5 signaling, and plasma levels of IFN-β, as compared to 

PBMCs obtained from DF patients (Ubol et al, 2010). However, when Rolph and 

colleagues examined infection under ADE conditions in primary monocyte-derived 

macrophages, they did not observe a significant reduction in RIG-I or MDA5 

expression compared to infection with DENV only (Rolph et al, 2011). It is possible 

that differential mechanisms and mediators for ADE exist in different cell types. 

Careful consideration must be conducted before generalizing results from one cell 

type, or even one DENV strain, to another.  

Intrinsic ADE is frequently accompanied by suppression of type I IFN 

production (Rolph et al, 2011; Ubol et al, 2010). However, in line with the 

observation that there exist cell type-specific mediators of ADE, different primary 

myeloid target cells were found to support variable levels of type I IFN production. In 

primary human macrophages, peak enhancement of viral titers corresponded to 

reduced type I IFN levels (Boonnak et al, 2011). However, levels of IFN-β correlated 

with levels of DENV infection in primary human DCs (Boonnak et al, 2011). Type I 

IFNs were not detected in primary human monocytes during infection with DENV 

alone or under ADE conditions (Boonnak et al, 2011), while Kou et al. observed with 
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a vesicular stomatitis virus (VSV) infection inhibition bioassay that type I IFN levels 

were induced early after infection with DENV alone and to a greater magnitude under 

ADE conditions (Kou et al, 2011). However, VSV is extremely sensitive to type I 

IFNs and the higher levels of VSV inhibition observed could merely reflect increased 

type I IFN production due to higher proportion of DENV-infected to uninfected cells 

under ADE compared to virus only infection. Thus, type I IFN production may still be 

lower in an individual cell infected under ADE compared to virus only conditions.  

The production of type I IFNs triggers the activation of the Janus kinase/signal 

transducer and activator of transcription (JAK/STAT) signaling pathway, leading to 

nitric oxide (NO) synthesis and the activation of transcription factors like STAT-1 for 

the induction of antiviral interferon stimulated genes (ISGs). NO is a free radical 

typically found elevated in the sera of DF but not DHF patients (Neves-Souza et al, 

2005). While NO has been shown to possess antiviral activity on DENV-infected cells 

(Takhampunya et al, 2006), lower levels of NO are detected in THP-1 models of ADE 

infection, due to suppression of STAT-1 and interferon regulatory factor-1 (IRF-1), 

which are both transcription factors for ISGs (Chareonsirisuthigul et al, 2007; Ubol et 

al, 2010).  

Inhibition of NO synthesis during ADE underscores the immune suppressive 

state during ADE, which is also amplified by inhibitors of JAK/STAT signaling and 

the production of immunosuppressive cytokines. Higher levels of suppressor of 

cytokine signaling-3 (SOCS-3) have been observed during ADE in both THP-1 cells 

and primary monocyte-derived macrophages, which was mediated by increased levels 

of IL-10, an immunosuppressive cytokine (Rolph et al, 2011; Ubol et al, 2010). IL-10 



 

 63   

 

blocks both NF-κB and JAK/STAT signaling, effectively impeding both TLR and 

type I IFN-mediated antiviral responses. Ligation of FcγRs by antibody opsonized-

DENV leads to IL-10 production early after ADE infection, which results in low 

levels of type I IFN production that suppresses the transcription and translation of IL-

12, IFN-γ and tumour necrosis factor-α (TNF-α) (Chareonsirisuthigul et al, 2007). 

Both IL-10 and SOCS-3 have been detected at higher levels in PBMCs of DHF rather 

than DF patients (Ubol et al, 2010).  

IL-10 expression, however, during ADE can be modulated by both cell-type 

specificity and host genetic polymorphisms. ADE did not augment IL-10 production 

in primary monocytes, macrophages or DCs (Boonnak et al, 2008; Kou et al, 2011; 

Rolph et al, 2011). A modest increase in IL-10 production was only observed 72 

hours after infection in primary monocytes, which cannot account for the increased 

virus production observed early after ADE infection (Kou et al, 2011). In a study that 

did observe IL-10 production during ADE infection of primary monocytes, no 

significant reduction in ADE infection of cells was seen. This led the authors to 

hypothesize if IL-10 may modulate ADE via bystander effects, such as inhibiting DC 

maturation, antigen presentation and general suppression of immune responses. IL-10 

promoter polymorphisms also varied IL-10 production, but not viral infectivity of 

primary monocytes during ADE infection. Donors with a GCC IL-10 promoter 

haplotype showed highest levels of IL-10 production, while ACC and ATA donors 

showed intermediate and low levels of IL-10 production respectively. Blocking the 

activating FcγRs abrogated IL-10 production and markedly reduced ADE infection. 

(Boonnak et al, 2011).  
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Host innate immunity is modulated rapidly in response to viral infections. 

During ADE, the ligation of FcγRs by antibody-opsonized DENV and subsequent 

FcγR-mediated uptake of the DENV immune complex triggers the activation of 

signaling cascades whereby kinases are phosphorylated within minutes (Crowley et 

al, 1997). Single particle tracking of DENV has also revealed that DENV fusion from 

within late endosomes takes place within 30min of binding to cell surface (van der 

Schaar et al, 2008). However, the design of experiments to address the hypothesis of 

intrinsic ADE frequently measures mediators of antiviral activity at late time points 

(12 hours post-infection or later), which may not be representative of the early innate 

immune responses during viral entry. Intrinsic ADE could be better addressed by 

investigating expression of innate immune mediators within the first 6 hours of 

infection. This would fill important gaps in our understanding of how innate 

immunity is modulated during ADE. 

 

1.4.2 Role of FcγRs in modulating innate immunity  

FcγRs are broadly expressed in innate immune effector cells such as monocytes, 

macrophages, neutrophils, NK cells and mast cells. They determine the activation 

threshold of innate immune cells and serve to bridge humoral and cell-mediated 

immunity. Impaired regulation of antibody-mediated effector functions by FcγRs 

leads to either hyperreactivity or unresponsiveness to either foreign or self-antigens.  

The immunomodulatory function of FcγRs has perhaps been most clearly 

characterized in models of antibody-mediated autoimmune diseases like systemic 

lupus erythematosus (SLE) and rheumatoid arthritis (RA). FcγR polymorphic variants 
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of low and high responders have been correlated to the pathogenesis of chronic 

inflammatory diseases, serving as genetic risk factors for disease prognosis 

(Bournazos et al, 2009). Low responder variants are usually associated with 

autoimmune pathologies characterized by the presence of circulating immune 

complexes like SLE. The reduced efficiency of Fc-FcγR interaction compromises the 

clearance of these immune complexes, which leads to their deposition on peripheral 

tissues and exacerbation of inflammatory processes (Bournazos et al, 2009; Karassa et 

al, 2002). Various meta analyses have demonstrated a significant association between 

the FcγRIIA R131 allele and increased risk of SLE (Karassa et al, 2002; Magnusson 

et al, 2004; Yuan et al, 2009). The FcγRIIA R131 allele is an example of a low 

responder variant of FcγRs, which confers reduced binding of IgG2 to FcγRIIA 

(Parren et al, 1992) and therefore compromises the clearance of immune complexes 

from circulation. The deposition of immune complexes on various tissues results in 

inflammation and damage via complement activation (Li et al, 2009). 

Conversely, high responder variants result in prolonged Fc-FcγR interactions, 

which reduce the threshold for effector functions, promoting leukocyte infiltration 

into tissues accompanied by release of cytotoxic compounds that amplify 

inflammation and tissue damage (Bournazos et al, 2009). The high responder variant, 

FcγRIIA H131 has been shown to bind and enable phagocytosis of IgG2-coated 

particles. (Warmerdam et al, 1990) It confers enhanced capacity for clearance of 

immune complexes in circulation and increased activation of leukocytes. The 

FcγRIIA H131 variant has been associated with increased susceptibility to Guillain-

Barré syndrome (GBS), a syndrome characterized by nerve infiltration of leukocytes 
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and autoantibodies directed against nerve components (van der Pol et al, 2000; van 

Sorge et al, 2005). Patients with GBS frequently have high levels of autoantibodies 

against ganglioside GM1 in the serum, which interact with FcγRs to trigger effector 

functions like cytotoxicity, phagocytosis and cytokine release (van Sorge et al, 2003), 

leading to demyelination and nerve damage. The allelic polymorphism at residue 131 

(H/R) in FcγRIIA is clearly demonstrated to affect IgG binding in autoimmune 

diseases.  

There is a possibility that this FcγRIIA polymorphism could also affect the 

binding and subsequent FcγR-mediated phagocytosis of the DENV immune complex. 

This could be an important contributing factor for susceptibility to ADE during 

secondary infection. Indeed, the H/H131 genotype was significantly associated with 

DF and DHF in Cuban individuals, relative to individuals with subclinical infection 

(Garcia et al, 2010). This was complemented by a separate study in which an 

association was reported between the R/R131 genotype and reduced risk of DHF/DSS 

in Vietnamese children (Loke et al, 2002). 

 The inhibitory FcγRIIB serves as a negative regulator of immune complex 

triggered activation, and suppresses autoimmunity by downregulating B cell 

responses and effector functions. Gene deletion studies have demonstrated that in H-

2b mice, which are non-permissive to type II collagen induced arthritis (CIA), deletion 

of FcγRIIB was sufficient to render mice susceptible to CIA (Kleinau et al, 2000; 

Yuasa et al, 1999). The maximal arthritis index was comparable to DBA/1 mice, a 

strain of mice susceptible for CIA induction (Yuasa et al, 1999). CIA is a model for 

RA in humans. The development of arthritis is associated with high levels of 
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autoantibodies to synovial antigens, leading to leukocyte infiltration and induction of 

inflammatory cytokines such as TNF-α and IL-1 at the joints (Ji et al, 2002; Takai, 

2002).  

In addition to IgG-FcγR interactions that prompt the release of pro-

inflammatory cytokines or induction of cytotoxicity against target cells, recent 

research has also suggested that the balance of activating and inhibitory FcγRs is 

important for modulating the type I IFN response programme in human monocytes 

and DCs (Dhodapkar et al, 2007). Manipulating this balance via antibody-mediated 

blockade of the inhibitory FcγRIIB in the presence of activating ligands has 

distinctive effects on gene expression and activation of human monocytes and DCs, 

including the induction of ISGs and inflammation-related cytokines and chemokines 

which, interestingly, was not associated with an increase in the expression of the type 

I IFNs, or addition of exogenous IFNs (Dhodapkar et al, 2007).  

IFN-independent induction of ISGs is an example of how the innate immune 

system utilizes redundant induction pathways for the induction of type I IFNs and 

ISGs, thus serving as a countermeasure for the viral evasion strategy of IFN 

antagonism. Like other viruses, DENV has evolved to evade innate immunity by 

inhibiting various steps of the innate immune response through the expression of viral 

proteins that also serve to antagonize type I IFN production and signaling (Morrison 

et al, 2012). The proteolytic activity of the NS2B/3 complex has been shown to 

inhibit type I IFN production in human monocyte derived DCs by cleaving stimulator 

of the interferon gene (STING), an adaptor molecule that induces the IFN-β promoter 

(Aguirre et al, 2012). NS2A, NS4A and NS4B can also inhibit STAT-1 
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phosphorylation, which directly regulates type I IFN production (Munoz-Jordan et al, 

2003). Finally, NS5, which encodes an RNA-dependent RNA polymerase, can also 

serve as an ISG antagonist in flaviviruses. DENV NS5 binds to and targets STAT-2 

for proteasome-mediated degradation (Ashour et al, 2009). Similar mechanisms of 

NS5-mediated IFN antagonism have been observed in West Nile Virus (Laurent-

Rolle et al, 2010) and Japanese encephalitis virus (Lin et al, 2006).  

The induction of ISGs upon activating FcγR signaling is mediated by STAT-1 

phosphorylation (Dhodapkar et al, 2007), and this is in turn likely activated by 

upstream adaptors of FcγR signaling such as spleen tyrosine kinase (Syk). Syk is a 

tyrosine kinase protein that is recruited by the cytoplasmic ITAMs upon ligation of 

the activating FcγRs. Binding of Syk to phosphorylated ITAM results in Syk 

phosphorylation and allows Syk to phosphorylate downstream substrates of the FcγR 

signaling cascade. Phosphorylated Syk has also been shown to directly bind and 

phosphorylate STAT-1, which stimulates production of IFN-α and ISGs (Dhodapkar 

et al, 2007; Tassiulas et al, 2004).  

Multiple reports have indicated that co-ligation of the inhibitory FcγRIIB by 

DENV immune complexes requires high antibody concentration, and such co-ligation 

inhibited the entry of DENV immune complexes into monocytes (Boonnak et al, 

2013; Chan et al, 2011). At low antibody concentrations where ADE occurs, the 

inhibitory FcγRIIB is not co-ligated (Chan et al, 2011). In accordance with 

observations by Dhodapkar et al., ligation of activating FcγRs by DENV opsonized 

with sub-neutralizing levels of antibody would thus induce the expression of ISGs. As 

ISGs are known to inhibit viral replication (Jiang et al, 2010), entry through activating 
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FcγR would place DENV in an intracellular environment unfavorable for enhanced 

replication. It is curious how enhancement of DENV infection is permitted, given that 

cross-linking of activating FcγRs signals an early antiviral response by induction of 

ISGs (Dhodapkar et al, 2007).  

Like all other inhibitory immunoreceptors, the inhibitory FcγRIIB contains an 

ITIM in its cytoplasmic tail. Ligand engagement by ITIM-bearing receptors results in 

ITIM phosphorylation by Src and recruitment of phosphatases like SHP-1 and SHIP, 

which contribute to downregulation of activating pathway effectors. It is conceivable 

that in addition to FcγRIIB, the presence of other ITIM-bearing receptors on the cell 

surface may serve as a negative regulator of activating FcγR-mediated signaling if 

they are at close enough proximity to be co-ligated. However, this notion has not been 

examined before, and it will be interesting to investigate if engagement of other 

ITIM-bearing receptors could account for how DENV successfully evades the early 

antiviral response for enhanced infection. 
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1.5 Gaps in knowledge in FcγR signaling and ADE 

This thesis seeks to delineate the distinct FcγR-mediated signaling cascades that are 

activated following ligation of activating FcγRs by DENV immune complex during 

ADE. The cross-linking of activating FcγRs has been shown to upregulate the 

expression of ISGs, unless the inhibitory FcγRIIB is co-ligated (Dhodapkar et al, 

2007). Co-ligation of FcγRIIB by DENV immune complexes requires high antibody 

concentration, and leads to inhibition of FcγR-mediated uptake of the DENV immune 

complex (Chan et al, 2011). During ADE, the low antibody concentration is 

insufficient to form a large enough immune complex to co-ligate the inhibitory 

FcγRIIB (Chan et al, 2011). Activating FcγR-mediated uptake would thus place 

DENV in an intracellular environment unfavourable for enhanced replication. A 

mechanistic understanding of how DENV escapes the early induction of ISGs in the 

absence of FcγRIIB signaling is thus the main objective of this thesis.    

The involvement of a variety of activating and inhibitory FcγR also raises a 

second possible effect that could regulate the outcome of ADE of DENV infection. 

Intracellular compartmentalization was recently suggested to be a form of cell-

autonomous immunity. By trafficking pathogens to specific cellular compartments, 

the composition of compartments as well as the borders between them helps govern 

cellular self-defence, conferring effective protection against various pathogens 

(Randow et al, 2013). It is not known if internalization of DENV immune complexes 

by distinct activating FcγRs results in differential compartmentalization and thus 

intracellular fate of the DENV immune complex. The signaling pathways governing 

these differences in compartmentalization may provide insights on how DENV 
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subverts innate immunity for enhanced replication during ADE. This could constitute 

an “intrinsic ADE” event, shedding light on additional cell-intrinsic events which 

could enhance DENV replication.  

The specific aims of this thesis are therefore: 

1. Elucidate the FcγR signaling events during ADE of DENV infection in 

monocytes. 

2. Investigate if ITIM-bearing cell surface receptors (other than FcγRIIB) could 

be involved in enabling DENV to evade the early antiviral response in 

monocytes.  

3. Explore how DENV immune complexes could benefit from differential 

compartmentalization and how this would affect their intracellular fate. 
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Chapter 2. LEUKOCYTE IMMUNOGLOBULIN-LIKE RECEPTOR B1 IS 

CRITICAL FOR ANTIBODY-DEPENDENT DENGUE 

2.1  Introduction 

Cross-linking of activating FcγRs would lead to induction of downstream signaling 

cascades and the upregulation of ISGs, unless the inhibitory FcγRIIB is co-ligated 

(Dhodapkar et al, 2007). Activating FcγR-triggered upregulation of ISG responses 

was found to be independent of type I IFN secretion, and this is hypothesized to lower 

the threshold for basal IFN signaling in monocytes (Dhodapkar et al, 2007; Taniguchi 

& Takaoka, 2001). Engagement of activating FcγRs thus serves as a constitutive 

signal which ‘primes’ the monocyte for a rapid and robust immune response, allowing 

the immune cell to overcome challenges to host defence, such as infection by 

pathogens (Taniguchi & Takaoka, 2001). FcγR usage or FcγR polymorphisms that 

affect the binding of immune complexes, factors that alter the balance of activating 

and inhibitory FcγR signaling, could have a direct impact on the level of basal IFN 

signaling in the absence of pathogens.  

Ligation of activating FcγRs by antibody-opsonized DENV mediates viral 

entry into monocytes, and also triggers activating FcγR signaling during ADE. In 

accordance to findings by Dhodapkar et al, this should trigger upregulation of ISG 

expression, since the inhibitory FcγRIIB is not co-ligated during ADE (Chan et al, 

2011; Dhodapkar et al, 2007).  Entry through activating FcγR would thus place 

DENV in an intracellular environment unfavourable for enhanced replication, as ISGs 

are known to inhibit DENV replication (Jiang et al, 2010).  
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In this chapter, we seek to elucidate the early FcγR signaling events during 

ADE of DENV infection in monocytes. Furthermore, to address the conundrum of 

how DENV evades an early antiviral response in the absence of co-ligation of 

inhibitory FcγRIIB, we investigated if antibody-opsonized DENV could co-ligate 

other ITIM-bearing cell surface receptors to downregulate ISG expression for 

enhanced viral replication. 
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2.2 Materials and Methods 

2.2.1 Cells  

THP-1 and K562 was purchased from ATCC. THP-1 was subcloned by limiting 

dilution. From ~50 subclones, we selected two (THP-1.2R and THP-1.2S) which 

showed enhanced uptake of DiD-labelled DENV as compared to THP-1. Primary 

monocytes were isolated from different individuals under approval by National 

University of Singapore-Institutional Review Board (Approval Number: NUS 1584). 

Informed consent was obtained from all subjects. Primary monocytes were cultured as 

described previously (Zhang et al, 2010). Cell lines used were negative for 

mycoplasma contamination (Mycoalert, Lonza).  

 

2.2.2 Viruses 

DENV-1 (06K2402DK1), DENV-3 (05K863DK1) and DENV-4 (06K2270DK1) are 

clinical isolates from the EDEN study (Low et al, 2006). DENV-2 (ST) is a clinical 

isolate from the Singapore General Hospital. Viruses were propagated in the Vero cell 

line, harvested 96h post infection and purified through 30% sucrose. Virus pellets 

resuspended in HNE buffer were stored at −80 °C until use.  

 

2.2.3 Virus infection 

3H5 and 4G2 chimeric human/mouse IgG1 antibodies were constructed as previously 

described (Hanson et al, 2006). DENV was incubated with media, h3H5 (0.39µg/ml), 

h4G2 (1.56µg/ml) or serum for 1hr at 37˚C before adding to cells at indicated moi.  
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2.2.4 Virus uptake and replication 

Uptake was assessed using DiD or Alexa 488 labelled DENV as previously described 

(Chan et al, 2011; Zhang et al, 2010). Virus replication was assessed at indicated 

time-points using qPCR. Cells were washed thrice in PBS, followed by RNA 

extraction using RNAeasy kit (Qiagen), cDNA synthesis (Biorad) and real-time qPCR 

(Roche) according to manufacturer’s protocol. DENV primers used were:  

DEN-F 5’-TTGAGTAAACYRTGCTGCCTGTAGCTC,  

DEN-R 5’-GAGACAGCAGGATCTCTGGTCTYTC. 

Primers used for ISGs and GAPDH were from Origene, and all RNA levels were 

measured relative to GAPDH. At 72hpi, virus in the culture supernatant was 

quantified with plaque assay (Chan et al, 2011).  

 

2.2.5 Microarray analysis  

Following RNA extraction, microarray was performed at the Duke-NUS Genome 

Biology Core Facility. cRNAs were hybridized to Illumina Human HT-12 v4 

Beadchips, according to manufacturer’s instructions. Data analysis was performed 

using Partek software and normalized against GAPDH. 

 

2.2.6 Flow cytometry  

Cells were resuspended in staining buffer (10% fetal calf serum, 15mM HEPES and 

2mM EDTA in PBS). To 1x106 cells per well, human FcγR block (1:10, eBioscience 

14-9161) was added and incubated for 25min on ice, followed by a single wash with 

staining buffer. Subsequently, human monoclonal antibodies, Anti-HLA-
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A,B,C(W6/32)FITC (1:25, Biolegend); Anti-CD206(19.2)PE (1:25, BD Pharmingen); 

Anti-CD274/PD-L1(MIH1)PE (1:50, BD Pharmingen); Anti-CD86(FUN-1)PE-Cy7 

(1:50, BD Pharmingen); Anti-CD11b(ICRF44)PE-Cy7 (1:100, BD Pharmingen); 

Anti-HLA-DR(L243)APC (1:200, BD Pharmingen); Anti-CD11c(S-HCL-3)APC 

(1:200, BD Pharmingen); Anti-CD80(L307.4)AF700 (1:25, BD Pharmingen); Anti-

CD40(5C3)AF700 (1:50, BD Pharmingen); Anti-CD14(M5E2)Pacific Blue (1:100, 

BD Pharmingen); Anti-LILRB4(ZM 4.1)PE (1:50, eBioscience); 7-AAD Viability 

Staining Solution (1:25, eBioscience) and Anti-CD16 (CB16)eFluor®605NC (1:20, 

eBioscience) were incubated with cells for 30 minutes on ice. Anti-LILRB1 (1:200, 

Abcam ab67532) was incubated with cells for 30 minutes on ice before Alexa 488-

conjugated anti-mouse secondary antibody (1:200, A-21202, Life Technologies) was 

added. Flow cytometry was performed with LSRFortessa™ cell analyzer (Becton 

Dickinson), acquired with BD FACSDiva and analyzed using FlowJo. Calibration 

was completed with SPHERO™ Rainbow Calibration Particles (Sphereotech Inc) to 

maintain consistency between experiments and to remove background fluorescence.  

 

2.2.7 Immunoprecipitation and Western blotting  

After incubation at indicated time points with DENV-2 or h3H5-opsonized DENV-2, 

cells were washed once in PBS and resuspended in lysis buffer (1% Nonidet P-40, 

150mM NaCl, 50mM Tris, pH 8.0) in the presence of protease inhibitors (Sigma). 

Total cell extract (100μg) was incubated with mouse anti-Syk monoclonal antibody 

(1µg, 4D10, Abcam ab3113) at 4°C overnight and then with 50μl of Protein G–

sepharose (Pierce) for 2h. For Western blot, proteins were separated by SDS-PAGE, 
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transferred to PVDF (Millipore) and probed with primary antibody, followed by 

HRP-conjugated anti-mouse (1:1000, Dako P0447) or anti-rabbit (1:3000, Abcam 

ab6721) antiserum. Primary antibodies for LAMP-1 (1:500, eBioscience 611043), 

LILRB4 (1:500, Biolegend 333002), FcγRIIB (1:500, Abcam ab123240), LILRB1 

(1:500, Abcam ab67532), SHP-1 (1:500, Abcam ab2020), pSHP-1 (1:500, Abcam 

ab51171), Syk (1:1000, Abcam ab3113), 4G10 (1:500, Millipore #05-321), MAVS 

(1:1000, Abcam ab25084), GAPDH (1:3000, Abcam ab8245), IRF3 (1:3000, Cell 

Signaling 4302) and TRIF (1:3000, Cell Signaling 4596) were used. Thereafter, blots 

were developed by enhanced chemiluminescence detection reagents (Amersham).  

 

2.2.8 Interferon treatment  

THP-1.2S was treated with 500 U/ml IFN-α (Millipore) 30min after incubation with 

h3H5-opsonized DENV-2. ISG expression was assayed 6hpi using real-time qPCR. 

 

2.2.9 Receptor blocking 

2x105 cells/ml were pre-treated with 15µg/ml of anti-interferon alpha receptor 

(IFNAR), 10µg/ml of anti-LILRB1 or their respective isotype controls for 1hr at 4ºC. 

Subsequently, cells were washed once with maintenance media before adding h3H5-

opsonized DENV-2, DENV-2 or 500 U/ml IFNα. 

 

2.2.10 Drug assays 

2x105 cells/ml of THP-1.2R were pre-treated for 6hrs with piceatannol (15.6 µg/ml) 

or DMSO control before adding DENV-2 or h3H5-opsonized DENV-2. For sodium 
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stibogluconate (0.138 mM) treatment, 2x105 cells/ml of primary monocytes were 

treated for 6hrs before adding DENV or h4G2-opsonized DENV. Cell viability was 

assessed using CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS, 

Promega) according to manufacturer’s protocol. 

 

2.2.11 Cloning and competition with soluble LILRB1 

The extracellular domain of LILRB1 was amplified from cDNA derived from 

Origene (SC127469) using the primer pairs: 5’-

CTAGGCGGCCGCATGCATCATCACCATCACCACATTGAAGGGCGCACCCC

CATCCTCACGGTC-3’ and 5’-

CTAGGCGGCCGCCTAGTGCCTTCCCAGACCACTC-3’. The purified PCR 

fragments were then digested with NotI and ligated into pCMV-XL5 (Origene). To 

express the protein, these cloned products were transiently transfected in HEK293T 

with 2µg of the DNA in 6-well plates using JetPRIME® transfection reagent, as 

described by the manufacturer (Polyplus). 48 hours after transfection, cell pellets were 

resuspended in ice-cold lysis buffer for 30min, followed by centrifugation at 14,680 

rpm for 10min at 4ºC. Proteins were subsequently purified with HisPurTM Cobalt 

Purification kit (Thermo Scientific) according to manufacturer’s protocol. Following 

which, the eluted fractions were desalted using ZebaTM spin desalting columns 

(Thermo Scientific) and analysed for yield and purity using SDS-PAGE and Western 

blot. For competition studies, DENV-2 or h3H5-opsonized DENV-2 were incubated 

with indicated concentrations of the purified extracellular domain of LILRB1 or 
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200µM BSA for 1h at 37ºC before adding to THP-1.2S. Infectious titers were 

assessed using plaque assay 72 hpi.  

 

2.2.12 siRNA transfection and overexpression 

Knockdown and overexpression studies were performed as previously described 

(Chan et al, 2011). siRNA targeting FcγRIIB (Qiagen), LILRB1, MAVS, IRF3 and 

TRIF (SABio) were used while overexpression studies were performed with either 

empty plasmid, plasmid encoding LILRB1 (Origene) or tyrosine mutant LILRB1, or 

LILRB4. To generate mutant LILRB1, DNA fragments with nucleotides mutated 

from tyrosine to phenylalanine in the ITIM tail were synthesized by Bio Basic 

Canada. Thereafter, restriction enzymes SbfI and BsmI (New England Biolabs) were 

used to clone the DNA fragment into the plasmid originally encoding for LILRB1. 

 

2.2.13 ELISA 

Viruses were coated in MaxiSorp™ plate overnight at 4°C. BSA (0.5 ug per well) or 

PBS were used as negative controls. Blocking was done with 5% skimmed milk at 

room temperature (RT) for 2h. Plate was washed with PBS before incubation with 

indicated concentrations of purified LILRB1 (Origene) diluted in PBS at 37°C for 1h, 

followed by RT for 1h. After washing with PBS-T (PBS, 0.1% Tween 20), anti-

LILRB1 pAb (1:1000, Abcam ab3113) was added to wells for 2h at RT followed by 

incubation with HRP-conjugated anti-mouse IgG (1:1000, Dako P0447) at RT for 1h. 

Antibody binding was visualized by addition of 50µl of TMB followed by addition of 

50 µl of 1M HCl. The absorbance was read at 450 nm using a plate reader.  
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2.2.14 Statistical analysis 

All experiments were conducted with at least 3 biological replicates and repeated at 

least twice. To compare between any two means, two-tailed unpaired Student t test 

was performed using GraphPad Prism v5.0 (GraphPad Software Inc) (P<0.05).   
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2.3 Results  

2.3.1 Isolation of THP-1 subclones with increased uptake of DENV immune 

complex 

Our work was enabled by the isolation of subclones of THP-1 cells with different 

phenotypes to ADE. The low rate of FcγR-mediated phagocytosis in THP-1 cells 

(~5%) (Chan et al, 2011) had led us to reason that this cell line is genetically 

heterogeneous, either through the method in which it was derived (Tsuchiya et al, 

1980) or through genetic instability resulting from aneuploidy (Sheltzer et al, 2011). 

Using limiting dilution and in vitro expansion, we obtained around 50 subclones that 

were screened for enhanced phagocytic uptake of DENV immune complexes.  

Screening of our newly isolated subclones with DiD (1, 1’-dioctadecyl-3, 3, 

3’, 3’ – tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) labelled 

DENV-2 alone or opsonized with sub-neutralizing concentrations of humanized 3H5 

monoclonal antibody (h3H5) identified two clones (labelled as THP-1.2R and THP-

1.2S) that showed increased uptake of DENV immune complexes compared to 

parental THP-1 (Fig. 2-1A). Monocyte surface marker analysis indicated no 

significant difference in the expression of FcγRs (FcγRI/CD64, FcγRII/CD32, 

FcγRIII/CD16) in these sub-clones (Fig. 2-1B). Expression of FcγRIIA, FcγRIIB and 

FcγRIIC were similar in these subclones, as determined by qPCR (Fig. 2-1C) and 

Western blot (Fig. 2-1D). Both subclones were also heterozygous for 131H/R 

FcγRIIA polymorphism (Fig. 2-1E and F). Identical HLA haplotyping confirmed that 

both subclones were derived from THP-1 and not the result of a contamination with 

another cell line (Table 2-1). 
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Figure 2-1. Isolation of 2 THP-1 subclones with increased uptake of dengue 
immune complex. (A) Percentage of internalized DiD-labelled DENV-2 30min post-
infection under DENV-2 or ADE conditions in THP-1, THP-1.2R and THP-1.2S. (B) 
Flow cytometry analysis of THP-1, THP-1.2R and THP-1.2S stained with antibodies 
specific for monocyte surface markers. Live unstained control cells are shaded grey 
while stained cells have an open histogram. (C) Transcript levels of FcγRIIA, 
FcγRIIB, FcγRIIC in THP-1.2R and THP-1.2S, determined by qPCR. (D) Protein 
levels of FcγRIIA and FcγRIIB in THP-1.2R and THP-1.2S, determined by Western 
blot. LAMP-1 served as a loading control. (E) Schematic showing polymerase chain 
reaction with confronting two-pair primers method for genotyping of FcγRIIA 
(131H/R). Using the different specific primers, FcγRIIA, FcγRIIA-131H, FcγRIIA-
131R can be detected as 305bp, 226bp and 119bp bands respectively. This figure is 
adapted from (Vilches et al, 2008). (F) Results obtained with THP-1.2R and THP-
1.2S based on schematic presented in (E). Data expressed as mean ± s.d. from three 
independent experiments. ** P < 0.01. Panel B was kindly provided by Nivashini 
Kaliaperumal and John E. Connolly. 
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Table 2-1. HLA haplotyping for THP-1.2R and THP-1.2S (Data from Prof Chan 
Soh Ha’s Laboratory) 

 

Name of 
cell line HLA-A HLA-A' HLA-B HLA-B' HLA-DR HLA-DR 

THP-1.2R 02G1 - 1511 - 0101/18/20/24 1501/02/05/07 

THP-1.2S 02G1 - 1511 - 0101/18/20/24 1501/02/05/07 

THP-1 02G1 - 1511 - 0101/18/20/24 1501/02/05/07 
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2.3.2 ADE differs in THP-1 subclones  

Despite no significant differences in uptake and production of plaque titers when 

infected with DENV-2 only, infection under ADE conditions resulted in significantly 

different DENV-2 titers in THP-1.2R and THP-1.2S (Fig. 2-2A). Similar observations 

were also made with enhancing titers of convalescent serum (Fig. 2-2B) or other 

DENV serotypes (Fig. 2-2C). Furthermore, early DENV RNA replication diverged in 

these two subclones where a significant difference was observed as early as 6 hours 

post-infection (Fig. 2-2D). Analysis of early gene expression indicated significant 

upreulation of ISGs in THP-1.2R but not THP-1.2S (Fig. 2-3A to E). These included 

MX1, MX2, and viperin, which are potent inhibitors of DENV replication (Jiang et al, 

2010). The upregulation of ISGs in THP-1.2R, however, was not due to h3H5 (Fig. 2-

3F and G) and is independent of interferon (IFN)-α, β and γ signaling as both 

subclones expressed similar IFN transcript levels (Fig. 2-4A). As expected, addition 

of antibodies that blocked IFNα receptor (IFNαR) signaling (Fig. 2-4B) did not 

reduce this early ISG induction in THP-1.2R following infection (Fig. 2-4C). The 

possibility that THP-1.2S had impaired IFNαR-mediated signaling was also excluded, 

as ISGs were significantly upregulated in response to exogenous IFN (Fig. 2-4D). 

These subclones thus serve as exquisite tools to decipher the signaling requirement to 

overcome the early antiviral responses for successful ADE.  
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Figure 2-2. ADE differs in THP-1 subclones. (A) Plaque titers of THP-1, THP-1.2R 
or THP-1.2S when infected with DENV-2 opsonized with different h3H5 
concentrations 72 hours post-infection (hpi). Dotted lines indicate plaque titers 
following DENV-2 only infection, with no significant differences observed between 
the cell lines. (B) Infectious titer of DENV-2 in the culture supernatant of THP-1.2R 
(blue) and THP-1.2S (red) incubated with DENV-2 (moi 10) reacted with serial two-
fold dilutions of convalescent serum. (C) Peak enhancement titers for DENV-1, 
DENV-3 or DENV-4 (moi 10) opsonized with h4G2 in THP-1.2R or THP-1.2S. 
Plaque titers were determined 72hpi. (D) Time course of viral RNA copy numbers in 
THP-1.2R or THP-1.2S under ADE conditions. Data expressed as mean ± s.d. from 
three independent experiments. ** P < 0.01, * P < 0.05. 
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Figure 2-3. ISGs are upregulated in THP-1.2R. (A) Heat map showing fold change 
of ISG expression in THP-1.2R and THP-1.2S at 6hpi under ADE conditions. (B-E) 
Validation of microarray data in (A) by qPCR. (F) Expression of ISGs 6hpi in THP-
1.2R that were either uninfected or mock treated (h3H5 only, without DENV-2). (G) 
Expression of ISGs 6hpi in THP-1.2S that were either uninfected or mock treated 
(h3H5 only, without DENV-2). Data expressed as mean ± s.d. from three independent 
experiments. * P < 0.05. 
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Figure 2-4. IFN signaling contributes minimally to ISG induction. (A) Fold 
change in transcript levels of interferons in THP-1.2R and THP-1.2S 6hpi under ADE 
conditions. (B) ISG expression in THP-1.2R in the presence of isotype or anti-IFNαR 
antibodies under 500 U/ml IFN-α treatment. (C) ISG (MX1, MX2, IFI44, viperin) 
expression in THP-1.2R in the presence of isotype or anti-IFNαR antibodies under 
DENV-2 or ADE conditions. (D) THP-1.2S treated with or without 500 U/ml IFN-α 
30min after incubation with h3H5-opsonized DENV-2. All ISG expression was 
assayed 6hpi using real-time qPCR. Data expressed as mean ± s.d. from three 
independent experiments. ** P < 0.01, * P < 0.05.  
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2.3.3 Early ISG expression during ADE is independent of RIG-I/MDA5 signaling 

Differences in viral entry through ADE and DENV-2 only conditions could have 

resulted in different intracellular antigenic load and hence resulted in differential ISG 

expression in the subclones. To identify the specific signaling pathway responsible for 

early ISG induction in THP-1.2R during ADE infection, we titrated the multiplicity of 

infection (moi) for DENV-2 only that resulted in equivalent level of infection as ADE 

(moi 10) to serve as an antigenically equivalent control (Fig. 2-5A and B). 

Interestingly, lower and higher plaque titers were observed in THP-1.2R and THP-

1.2S, respectively, during ADE relative to DENV-2 only (moi 60) conditions (Fig. 2-

5C), which corroborates the notion that THP-1.2R has reduced susceptibility to ADE. 

Immunofluorescence imaging showed nuclear translocation of pSTAT-1 at 3 hours 

post ADE in THP-1.2R but not in THP-1.2S or during antigenically equivalent DENV 

only infection (Fig. 2-5D). This early nuclear translocation of pSTAT-1 is transient as 

little co-localization could be observed at 6 hours post infection.  

With similar intracellular antigenic load in ADE and DENV-2 only conditions, 

we determined if trafficking of DENV-containing phagosomes to cellular 

compartments enriched with pattern recognition receptors was an explanation for ISG 

induction in THP-1.2R. This was not the case as reduced expression of adaptor 

molecules (mitochondrial antiviral signaling protein/MAVS and interferon regulatory 

factor 3/IRF3) of retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-

associated protein 5 (MDA5) resulted in significantly increased early DENV 

replication under DENV-2 only but not ADE conditions (Fig. 2-5E). Reduced TIR-

domain containing adapter-inducing interferon β (TRIF) did not result in significant 

change in DENV replication under either condition (Fig. 2-5E). Collectively, these 
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results indicate that the early induction of ISG in THP-1.2R is unique to infection 

under ADE condition and is not mediated by RIG-I/MDA5 dependent type-I 

interferon expression.  
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Fig. 2-5. Early ISG induction during ADE is independent of RIG-I/MDA5-
contingent IFN signaling. (A) Uptake of Alexa 488-labelled DENV-2 under virus 
only (moi 10 to 60) and ADE (moi 10) conditions 6hpi. (B) Mean fluorescence 
intensity under virus only (moi 60) and ADE (moi 10) conditions 6hpi. All 
subsequent experiments were performed under DENV-2 only (moi 60) or ADE (moi 
10) conditions. (C) Plaque titers of THP-1.2R and THP-1.2S when infected with 
DENV-2 only or ADE conditions. (D) Co-localization of pSTAT-1 with DAPI 3hpi 
and 6hpi under DENV-2 only or ADE conditions. (E) Viral RNA expression 
determined 6hpi in siRNA treated cells infected under DENV-2 only or ADE 
conditions. Data expressed as mean ± s.d. from three independent experiments. ** P < 
0.01, * P < 0.05. 
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2.3.4 Activating FcγR-signaling mediates early ISG induction during ADE 

The independence of ISG expression from RIG-I/MDA5-mediated signaling thus 

suggests that activating FcγR signaling (Dhodapkar et al, 2007) through spleen 

tyrosine kinase (Syk) activation (Tassiulas et al, 2004) is critical in THP-1.2R. We 

thus quantified Syk activation by Western blot with densitometric measurements. 

Significant difference in Syk phosphorylation was observed as early as 10min post-

infection under ADE but not DENV-2 only conditions in THP-1.2R (Fig. 2-6A). In 

contrast, no significant difference in Syk phosphorylation was observed under DENV-

2 only and ADE conditions in THP-1.2S. Pre-treatment of THP-1.2R with 

piceatannol, a Syk-selective tyrosine kinase inhibitor resulted in greater reduction of 

ISG expression under ADE conditions (Fig. 2-6B) and a correspondingly greater 

increase in DENV replication (Fig. 2-6C) compared to DENV-2 only. Increase in 

DENV replication was also greater in THP-1.2R than THP-1.2S. These findings 

suggest that early ISG expression in THP-1.2R is conditioned upon activating FcγR 

signaling through phosphorylated Syk (Dhodapkar et al, 2007).   



 

 93   

 

 

Figure 2-6. Early ISG induction following ADE requires Syk phosphorylation. 
(A) Western blot and quantitative densitometry of pSyk levels using 
immunoprecipitation with Syk antibody. (B) ISG expression in DMSO- or 
piceatannol-treated (15.6µg/ml) THP-1.2R under DENV-2 only or ADE conditions 
6hpi. (C) Fold change in DENV RNA copy numbers in THP-1.2R and THP-1.2S pre-
treated with piceatannol relative to DMSO control. Data expressed as mean ± s.d. 
from three independent experiments. ** P < 0.01, * P < 0.05. 
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2.3.5 Identification of LILRB1 as a co-receptor for inhibition of ISG induction 

 As activating FcγR signals through immunoreceptor tyrosine-based activation motif 

(ITAM), we postulated that DENV co-ligates an immunoreceptor tyrosine-based 

inhibition motif (ITIM)-bearing receptor to inhibit Syk activation (Steevels & 

Meyaard, 2011) in THP-1.2S. Examination of the gene expression data identified two 

such possible receptors. LILRB1 (also known as CD85j or immunoglobulin-like 

transcript-2) and LILRB4 were upregulated pre-infection in THP-1.2S relative to 

THP-1.2R (Fig. 2-7A). Flow cytometry analysis, however, showed that only LILRB1 

(Fig. 2-7B and C) displayed higher surface expression on THP-1.2S. Since one of the 

effects of ITIM phosphorylation is the recruitment and phosphorylation of SHP-1 

(Fanger et al, 1998; Scharenberg & Kinet, 1996), we measured phosphorylated SHP-1 

in the two subclones. Higher pSHP-1 levels were found in THP-1.2S than THP-1.2R 

under ADE conditions (Fig. 2-7D and E), suggesting that pSHP-1 dephosphorylated 

Syk in THP-1.2S.  
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Figure 2-7. LILRB1 signals through phosphorylated SHP-1 to downregulate ISG 
induction. (A) Relative expression of ITIM-bearing receptors in THP-1.2S and THP-
1.2R determined by microarray. (B) Surface expression of LILRB4 in THP-1.2R and 
THP-1.2S determined using flow cytometry. (C) Western blot, % LILRB1+ cells, and 
representative flow cytometry plots of LILRB1 in THP-1.2R and THP-1.2S. Cells 
were either stained with isotype (grey) or polyclonal anti-LILRB1 antibody (open 
histogram). (D) Western blot of pSHP-1, SHP-1 and GAPDH at different time points 
after infection under mock, DENV-2 only and ADE conditions. (E) Quantitative 
densitometry of pSHP-1 levels under ADE conditions. Data expressed as mean ± s.d. 
from three independent experiments. ** P < 0.01, * P < 0.05. 
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2.3.6 Co-ligation of LILRB1 is required for ADE  

If LILRB1 is necessary for ADE, then antibody-opsonized dengue should co-ligate 

LILRB1. Indeed, all 4 DENV serotypes bind to LILRB1, more strongly with whole 

virus than with E protein ectodomain (Fig. 2-8A and B), suggesting that LILRB1 

binds to a quaternary structure-dependent epitope. Furthermore, the addition of 

soluble extracellular domain of LILRB1 (Fig. 2-8C) successfully competed with 

native LILRB1 on THP-1.2S to reduce ADE but not DENV-2 only infection in a 

dose-dependent manner (Fig. 2-8D). As expected, soluble LILRB1 ectodomain did 

not alter the rate of viral entry as this receptor functions by modulating the antiviral 

state of the cell rather than increasing DENV entry (Fig. 2-8E and F). 

Likewise, reduced LILRB1 expression in THP-1.2S resulted in reduced 

DENV replication under ADE conditions (Fig. 2-9A), without altering the rate of 

viral entry (Fig. 2-9B). The lack of any change in DENV replication with FcγRIIB 

expression also reinforces the notion that sub-neutralizing levels of antibody are 

insufficient to aggregate DENV to co-ligate FcγRIIB (Chan et al, 2011). Similar 

observations were made with knockdown of LILRB1 expression in another unrelated 

human myelogenous leukemia cell line, K562 (Fig. 2-9C and D). 

Conversely, over-expression of LILRB1 in THP-1.2R resulted in increased 

DENV replication under ADE conditions (Fig. 2-9E). As a control, we also over-

expressed LILRB4 but this did not result in increased DENV replication. Critically, 

mutation of the 4 tyrosine residues in the ITIM tail to phenylalanine (Fig. 2-10) 

abrogated the increased DENV replication (Fig. 2-9E). Taken collectively, these 

findings indicate that DENV co-ligates LILRB1 to inhibit FcγR-activated early ISG 

expression for ADE. 



 

 97   

 

 

Figure 2-8. Antibody-opsonized DENV co-ligates LILRB1. (A) Binding of 
LILRB1 to whole DENV or DENV E protein ectodomain. (B) Coomassie blue 
staining of DENV E protein ectodomain used for ELISA assay in (A). (C) Coomassie 
blue staining of soluble LILRB1 ectodomain used for competition assay in (D). (D) 
Plaque titers following DENV-2 or ADE infection in the presence of soluble LILRB1 
ectodomain (2µM, 20µM, 200µM), 200µM BSA, or no protein control. (E) 
Percentage positive uptake and (F) MFI of Alexa 488-labelled DENV-2 6hpi in the 
presence of various concentrations of soluble LILRB1 ectodomain (2µM, 20µM, 
200µM), 200µM BSA or no protein control. Data expressed as mean ± s.d. from three 
independent experiments. ** P < 0.01. Panel A was kindly provided by Qian Zhang 
and Shee Mei Lok. 
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Figure 2-9. Co-ligation of LILRB1 is essential for ADE. (A) Plaque titers following 
DENV-2 or ADE infection after LILRB1 or FcγRIIB knockdown. Numbers below 
Western blot indicate levels of proteins relative to LAMP-1. (B) Uptake (% positive 
and MFI) of Alexa 488-labelled DENV-2 6hpi in LILRB1 knockdown cells. (C) 
Expression of LILRB1 in K562 cells transfected with siRNA control or siRNA 
against LILRB1, assessed by flow cytometry. (D) DENV RNA copy numbers 6hpi 
under DENV-2 or ADE conditions in K562 cells transfected with siRNA control or 
siRNA against LILRB1. (E) Plaque titers following DENV-2 or ADE infection in 
THP-1.2R transfected with empty vector, vector expressing LILRB1, mutant LILRB1 
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(LILRB1MUT) or LILRB4. Numbers below Western blot indicate levels of proteins 
relative to LAMP-1. Data expressed as mean ± s.d. from three independent 
experiments. ** P < 0.01. 
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Figure 2-10. Amino acid sequence of LILRB1 and LILRB1 mutant. Identical 
amino acid residues are marked by dashes, and tyrosine residues in the ITIM 
cytoplasmic tail which were mutated to phenylalanine are highlighted in red. 
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2.3.7 Inhibition of LILRB1 signaling abrogates ADE in primary monocytes 

The mechanistic requirement for LILRB1 in ADE suggests that interfering with this 

pathway would abrogate ADE in primary monocytes. We studied CD14hiCD16- 

inflammatory monocytes that express both FcγRs and LILRB1 (Fig. 2-11A and B), 

which form the majority of the circulating monocytes (Passlick et al, 1989). Indeed, 

pretreatment with sodium stibogluconate, a SHP-1 inhibitor resulted in a dose-

dependent reduction in DENV-2 replication under ADE conditions (Fig. 2-11C) 

Likewise, plaque titers following ADE infection of the other 3 DENV serotypes on 

primary monocytes obtained from different healthy donors were significantly lower in 

sodium stibogluconate treated cells as compared to untreated cells (Fig. 2-11D to F). 

No significant reduction in primary monocyte cytotoxicity was detected with the drug 

concentrations used (Fig. 2-11G). Pretreatment of primary monocytes derived from 

peripheral blood mononuclear cells (PBMCs) from 12 different healthy human 

volunteers with anti-LILRB1 antibodies also resulted in significantly reduced DENV 

replication compared to isotype antibodies (Fig. 2-11H). Collectively, these findings 

indicate that co-ligation of LILRB1 is a critical first step for successful antibody-

dependent DENV infection (Fig. 2-12). 
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Figure 2-11. Inhibition of LILRB1 signaling abrogates ADE in primary 
monocytes. (A) Gating strategy employed for primary monocyte characterization. (B) 
Expression of FcγRs (CD16, CD32, CD64) and LILRB1 in primary monocytes using 
gating strategy displayed in (A). Cells were either stained with isotype (grey) or 
indicated antibodies (open histogram). (C) Plaque titers following DENV-2 only and 
ADE infection of primary monocytes treated with sodium stibogluconate (SSG) or 
PBS control (dashed lines, shaded areas reflect s.d.). (D to F) Plaque titers following 
DENV-1 (D), -3 (E) or -4 (F) only and ADE infection of primary monocytes treated 
with SSG (0.138mM) or PBS control. (G) Viability of primary monocytes after 
treatment with SSG (H) Plaque titers in primary monocytes derived from PBMCs 
harvested from 12 healthy individuals and infected in vitro with either DENV-1 
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(n=3), DENV-2 (n=3), DENV-3 (n=3) or DENV-4 (n=3) opsonized with h4G2 
antibodies at 72hpi. PBMCs were either pretreated with polyclonal anti-LILRB1 
antibody or isotype antibody control. Data expressed as mean ± s.d. from three 
independent experiments. ** P < 0.01, * P < 0.05. Panels A and B were kindly 
provided by Nivashini Kaliaperumal and John E. Connolly. 
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Figure 2-12. Schematic representation of proposed role of LILRB1 in antibody-
dependent infection. Activating FcγR is represented here as FcγRIIA but should 
apply to FcγRI as well. However, it remains to be conclusively established whether 
there is a difference in the outcome of infection when viral entry is mediated through 
FcγRI or FcγRIIA. 
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2.4 Discussion 

2.4.1 Role of LILRB1 in ADE of DENV infection 

Dhodapkar and colleagues had observed that ligation of activating FcγRs induces 

expression of ISGs, which could be suppressed only upon co-ligation of the inhibitory 

FcγRIIB (Dhodapkar et al, 2007). Since the inhibitory FcγRIIB is not co-ligated 

during ADE (Chan et al, 2011), we addressed how antibody-opsonized DENV could 

overcome ISG responses triggered upon ligation of activating FcγRs. DENV co-

ligates LILRB1, which leads to SHP-1 recruitment and dephosphorylation of Syk, and 

downregulates the ISG response. This provides a mechanistic explanation for how 

DENV evades an early antiviral response for enhanced viral replication during ADE 

(Fig. 2-12).  

LILRB1 belongs to the family of leukocyte immunoglobulin-like receptors, 

which comprise activating and inhibitory receptors that differ in their transmembrane 

and cytoplasmic domains. LILRB1 is expressed on monocytes, dendritic cells and 

subsets of NK, B and T cells (Dietrich et al, 2000). It consists of 4 extracellular Ig-

like C2-type domains and expresses ITIMs on its cytoplasmic tail, similar to the 

inhibitory FcγRIIB. LILRB1 is an inhibitory receptor, which serves to prevent 

excessive activation of the immune response. Binding of LILRB1 to major 

histocompatibility class I (MHC-I) molecules leads to ITIM phosphorylation, which 

serves as a docking site for the SH2-domain containing phosphatase SHP-1 (Colonna 

et al, 1997). SHP-1 recruitment activates negative feedback mechanisms such as 

inhibition of B cell receptor signaling in B cells, and inhibition of cell killing by NK 

and T cells (Colonna et al, 1997). When LILRB1 is cross-linked to activating 

receptors, SHP-1 recruitment dephosphorylates signaling effectors and downregulates 
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signaling from activating receptors. In experiments using specific monoclonal 

antibodies to cross-link LILRB1 and FcγRI on monocytes, Fanger and colleagues 

observed inhibition of tyrosine phosphorylation of the Fcγ chain and Syk, and reduced 

intracellular calcium mobilization (Fanger et al, 1998).  

The inhibitory FcγRIIB inhibits phagocytosis when cross-linked to activating 

FcγRs, via recruitment of SHIP (Ono et al, 1996; Tridandapani et al, 2002). 

Overexpression of SHIP leads to inhibition of FcγR-mediated phagocytosis in 

macrophages (Cox et al, 2001). Furthermore, macrophages that expressed 

catalytically inactive SHIP or reduced levels of SHIP demonstrated enhanced 

phagocytosis (Cox et al, 2001). Although LILRB1 and FcγRIIB are both ITIM-

bearing receptors, LILRB1 did not alter the rate of viral entry (Fig, 2-8E, Fig. 2-9B) 

in our experiments. This is because LILRB1 mediated signaling leads to recruitment 

of SHP-1 instead of SHIP (Ono et al, 1996). The recruitment of differential 

phosphatases by LILRB1 and FcγRIIB thus determines qualitatively the downstream 

signaling pathways that are modified. We determined that LILRB1 signaling during 

ADE modulated the antiviral state of the cell rather than increasing DENV entry, and 

this was mediated by dephosphorylation of Syk by pSHP-1, resulting in reduced ISG 

induction (Fig. 2-3A, Fig. 2-7D).    

Studies have shown that overexpression of SHP-1, but not catalytically 

inactive SHP-1, results in downregulation of NFκB-dependent gene transcription in 

THP-1 cells activated by clustering FcγRIIA (Ganesan et al, 2003). In dendritic cells, 

LILRB1 ligation inhibited secretion of cytokines like IL-10, IL-12p70 and TGF-β 

(Young et al, 2008). LILRB1-ligated DCs were also deficient in stimulating T-cell 

proliferative responses (Young et al, 2008). Our findings that co-ligation of LILRB1 
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by DENV immune complex during ADE leads to SHP-1 recruitment and 

downregulation of ISGs thus extends on the observed attenuation of immune 

responses by this receptor.  

Co-ligation of LILRB1 by DENV during antibody-dependent infection 

suggests that LILRB1 polymorphism may influence outcome of infection. Previous 

studies have shown that this gene is highly polymorphic (Kuroki et al, 2005). This 

could influence the diversity of immune responses, as individuals carrying different 

polymorphic variants of LILRB1 could have altered binding affinity to DENV. Since 

co-ligation of LILRB1 is crucial for downregulation of ISG responses, functional 

LILRB1 polymorphisms could thus modulate an individual’s susceptibility to ADE. 

The LILRB1 gene can also be alternatively spliced to produce soluble isoforms of 

LILRB1 (Jones et al, 2009). By expressing the extracellular domain of LILRB1 as a 

soluble protein, we showed that soluble LILRB1 competed successfully with native 

LILRB1 on THP-1.2S to inhibit ADE in a dose-dependent manner (Fig. 2-8D). 

Soluble LILRB1 could thus serve as a negative regulator of LILRB1 signaling, and 

individuals with higher levels of soluble LILRB1 could be protected from ADE. 

However, a recent genome-wide association study did not reveal a significant 

association between LILRB1 and dengue shock syndrome (Khor et al, 2011). This is 

not surprising because, although LILRB1 activation is critical for initial replication 

with FcγR-mediated entry, multiple other host and viral factors contribute to eventual 

disease outcome (Modhiran et al, 2010; OhAinle et al, 2011; Ubol et al, 2010).  

Our findings also suggest that generation of antibodies to quaternary structure-

dependent epitopes on DENV that block LILRB1 interaction can reduce ADE. One of 

the key safety concerns in the development of a dengue vaccine is the enhancement of 
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dengue infection in FcγR-bearing cells by heterotypic antibodies. Hence, a vaccine 

that can generate high-titer antibody that binds the quaternary structure-dependent 

epitopes on DENV to prevent LILRB1 ligation could reduce the risk of vaccine-

induced ADE. However, care must be taken in selecting a suitable in vivo model as 

the LILRB1 gene is deleted in laboratory strains of mice (Kubagawa et al, 1997). 

Further studies to clarify this could include cryo-electron microscopy (EM) 

approaches and epitope mapping studies that would allow us to understand how 

LILRB1 binds DENV. This would be instrumental in creating new opportunities for 

therapeutic intervention and vaccine development.  

 

2.4.2 Role of ITIM-bearing receptors in viral immune evasion  

DENV is not the only virus to exploit LILRB1 to modulate the host response to 

enable an environment more favorable for replication. Although our study focused on 

inhibitory signaling in monocytes, viruses and other pathogens are known to exploit 

inhibitory receptor signaling pathways in NK cells, T cells and DCs to evade host 

immunity. This creates a favourable intracellular environment for replication and 

transmission, especially if the virus is known to cause persistent infections.   



 

 

Table 2-2 Immune inhibitory receptors 
 

Receptor Cellular 
distribution Functional relevance Reference 

LILRB1 Myeloid, B, 
subset T, NK 

Normal role 
• Prevents excessive activation of immune system 
• LILRB1 recognizes MHC-I molecules on target cells to inhibit 

killing by NK cells 
• Downregulates B cell proliferation and B cell receptor signaling 
• LILRB1 inhibits T cell proliferation and T cell activation 

Role in viral evasion 
• Downregulates ISG responses for enhanced viral replication during 

ADE for DENV infection 
• Binds UL18 to limit antiviral effector functions and NK cell 

cytotoxicity during HCMV infection 
• Reduced cytokine secretion and cytotoxicity during persistent EBV 

infections 

 
 
(Navarro et al, 1999) 
 
(Brown et al, 2004) 
(Dietrich et al, 2001) 
 
(Chan et al, 2014) 
 
(Cosman et al, 1997) 
 
(Poon et al, 2005) 

LILRB2 Myeloid, B, 
subset T, NK 

Normal role 
• Binds MHC-I to downregulate immune responses and limit 

autoreactivity 
Role in viral evasion 
• Binds B*3503 with high affinity, leading to DC dysfunction in vitro; 

DCs from HIV-1 carriers of B*3503 have impaired functional 
properties 

 
(Colonna et al, 1999) 
 
 
(Huang et al, 2009) 
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CD94/NKG2A NK, T Normal role 
• Binds HLA-E to reduce NK cell activation and killing 
• Binds MHC-I ligands to dampen T cell cytotoxicity and cytokine 

production 
Role in viral evasion 
• Increases HLA-E expression and reduces NK cell cytotoxicity during 

HCMV infection 
• Upregulation of CD94/NKG2A in chronic HCV-infected patients. 

NK cells from these donors were deficient in activating DCs. 

 
(Borrego et al, 2002) 
(Vivier & Anfossi, 
2004) 
 
(Tomasec et al, 2000) 
 
(Jinushi et al, 2004) 

KIR3DL2 NK, T Normal role 
• Binds HLA-A alleles to inhibit NK cell lysis 

Role in viral evasion 
• KIR3DL2 recognizes HLA-viral peptide complexes which prevents 

NK cell lysis of EBV-infected cells 

 
(Ravetch & Lanier, 
2000) 
(Hansasuta et al, 2004) 

PD-1 NK, T, B Normal role 
• Downregulates B cell proliferation and B cell receptor signaling 
• Reduces T cell proliferation and IFN-γ secretion 

Role in viral evasion 
• The HCV core protein upregulates expression of programmed death 

ligand 1 (PD-L1) on Kupffer cells, which ligate PD-1 to promote T 
cell dysfunction and development of viral persistence 

• Upregulation of PD-1 and PD-L1 in monocytes and macrophages 
during HIV-1 infection impairs CD4+ T cell activation 

(Ravetch & Lanier, 
2000) 
(Barber et al, 2006) 

 
(Tu et al, 2010) 

 
 

(Said et al, 2010) 
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TIM-3 Subset of T 
cells 

Normal role 
• Binds galactin-9 to reduce IFN-γ secretion through induction of cell 

death 
• Induction of peripheral tolerance 

Role in viral evasion 
• Increased levels of TIM-3 are correlated with T cell dysfunction and 

reduced production of  IFN-γ and TNF-α during HCV infection 
• Upregulated on HIV-1 specific CD4+ and CD8+ T cells, reduced T 

cell proliferation and impaired cytokine secretion 

 
(Zhu et al, 2005) 
 
(Sabatos et al, 2003) 
 
(McMahan et al, 2010) 

 
(Jones et al, 2008) 

DCIR DCs, B, 
monocytes 

Normal role 
• Reduced cytokine secretion in DCs 
• Inhibits B cell receptor signaling and intracellular calcium release 

Role in viral evasion 
• Attachment factor for HIV-1 to promote infection of DCs and CD4+ 

T cells  

 
(Meyer-Wentrup et al, 
2009) 
 
(Lambert et al, 2008) 
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Human cytomegalovirus (HCMV) 

Human cytomegalovirus (HCMV) is a highly prevalent β-herpesvirus that causes life-

long latent infections. The long co-evolution between the virus and its human host has 

resulted in the virus possessing an arsenal of genes for subversion of the human immune 

system. As a strategy to evade the host immune response, HCMV expresses UL-18, a 

MHC class I (MHC-I) homologue which has approximately 25% homology to classical 

MHC-I. Despite the low sequence identity, its secondary structure remarkably resembles 

MHC-I molecules (Beck & Barrell, 1988; Chapman & Bjorkman, 1998).  

Like other MHC-I molecules, UL-18 binds endogenously derived peptides and β-

microglobulin (Browne et al, 1990; Fahnestock et al, 1995). However, it binds with 

>1000-fold greater affinity to LILRB1 relative to other MHC-I molecules, and this is 

postulated to arise from local differences in LILRB1 contact residues between the α3 

domains of MHC-I and UL-18 (Chapman et al, 1999; Wagner et al, 2007b). The 

frequency of LILRB1+ NK and T cells are elevated in sero-positive HCMV patients 

(Guma et al, 2004), which presumably allow HCMV to evade the host immune system. 

Binding of UL-18 to LILRB1 triggers an inhibitory signaling pathway that limits antiviral 

effector functions and protects HCMV-infected cells from NK cell-mediated cytolysis 

(Cosman et al, 1997; Prod'homme et al, 2007; Yang & Bjorkman, 2008). In T cells, 

increased LILRB1 expression is also associated with reduced cytokine secretion and 

cytotoxicity (Saverino et al, 2000), and purified UL18Fc proteins inhibited production of 

IFN-γ (Wagner et al, 2007a).  

UL-18 has 13 potential N-liked glycosylation sites, and this distinguishes it from 

MHC-I molecules that only have 1 N-glycan attached. UL-18 is predicted to be fully 

glycosylated, with the exception of the binding site for LILRB1 and docking site on β-
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microglobulin (Yang & Bjorkman, 2008). The glycan shield for UL-18 prevents itself 

from antibody-mediated neutralization and preserves the binding site for LILRB1, 

allowing UL-18 to compete successfully with host ligands for LILRB1 to evade the host 

immune response. Such a strategy is also exemplified by viruses like HIV and influenza 

(Julien et al, 2012), which have highly glycosylated envelope proteins for reducing 

immunogenicity in the host. 

The expression of UL-18 in clinical isolates of HCMV underscores its importance 

for viral survival in the host. UL-18 from different clinical isolates bind LILRB1 with 

different affinities, compared to AD169, a laboratory strain of CMV (Cerboni et al, 2006; 

Vales-Gomez et al, 2005), indicating that the immune response to HCMV may be 

differentially modulated in patients. 

Apart from LILRB1 engagement, HCMV also suppresses NK cells through the 

inhibitory CD94/NKG2A receptor complex. A nonameric peptide derived from the UL-

40 glycoprotein serves as a ligand for HLA-E, increasing HLA-E expression on the 

surface of HCMV infected cells (Tomasec et al, 2000). This facilitates the interaction 

between HLA-E and CD94/NKG2A receptor, which confers resistance to NK-cell lysis 

(Tomasec et al, 2000; Wang et al, 2002).  

Taken together, HCMV utilizes an array of strategies for the engagement of host 

inhibitory receptors to undermine the host NK cell response. 

 

Epstein-Barr virus (EBV) 

EBV belongs to the gammaherpesvirus group of viruses, and infects over 90% of the 

world’s population, establishing life-long persistence in immunocompetent hosts. 

Analysis of LILRB1 expression in EBV-specific CD8+ effector T-cells during the 
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primary and persistent phases of EBV infection revealed low LILRB1 expression during 

the primary phase of infection. However, LILRB1 expression increases during persistent 

EBV infections, and results in reduced cytokine secretion and cytotoxicity (Poon et al, 

2005).  

Furthermore, EBV also uses an inhibitory NK receptor to elude the host immune 

system. The EBV viral protein, EBNA-3A, supplies peptides that bind certain HLA-A 

allotypes. These HLA-peptide complexes are recognized by inhibitory NK receptor 

KIR3DL2, which then prevents NK cell lysis of EBV-infected cells (Hansasuta et al, 

2004).  

 

Hepatitis C virus (HCV) 

Acute cases of HCV infection are typically asymptomatic, and persistent infections are 

usually undetected until chronic liver disease or cancer develops. Underlying the viral 

persistence in HCV are dysregulated immune responses in NK cells, DCs and T cells.  

Inhibition of NK cells may be particularly relevant for chronic infections caused 

by hepatotrophic viruses like HCV as up to half of all innate lymphocytes in the 

intrahepatic immune system are NK cells (Doherty & O'Farrelly, 2000). Interaction 

between HLA-E on DCs and the inhibitory NK cell receptor CD94/NKG2A leads to 

inhibition of NK cell activation. Both the HCV core protein and cytokines like IFN-γ are 

known to stabilize HLA-E expression (Cerboni et al, 2001; Nattermann et al, 2005). The 

expression of inhibitory NK cell receptor CD94/NKG2A was upregulated in chronic 

HCV-infected patients. NK cells from these donors were deficient in activating DCs, and 

produced IL-10 and TGF-β when cultured with hepatic cells expressing HLA-E (Jinushi 
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et al, 2004). High serum levels of TGF-β in chronic HCV patients also led to upregulation 

of CD94/NKG2A in NK cells (Bertone et al, 1999). 

Broad multitypic CD4+ and CD8+ T cell reponses are critical for viral clearance, 

and this is undermined by immune exhaustion during chronic infection. In persistent 

HCV infections, anergy and T cell exhaustion is frequently demarcated by the 

upregulation of inhibitory receptors like programmed cell death protein 1 (PD-1) and T 

cell Ig and mucin domain-containing molecule 3 (TIM-3), markers for functionally 

impaired cytotoxic CD8+ T cells (Golden-Mason et al, 2007). The dual expression of PD-

1 and TIM-3 on cytotoxic CD8+ T cells is a predictive marker for viral persistence in 

patients with acute HCV infections (McMahan et al, 2010). Increased levels of PD-1 and 

TIM-3 are correlated with T cell dysfunction, reduced production of  IFN-γ, TNF-α, and 

CD107a, a marker for cytolytic T cells, as compared to PD-1lo/TIM-3lo CD8+ T cells 

(McMahan et al, 2010).  

The HCV core protein upregulates expression of programmed death ligand 1 (PD-

L1) on Kupffer cells, which can ligate PD-1 to promote T cell dysfunction and 

development of viral persistence (Tu et al, 2010). Reduced PD-1 expression on HCV-

specific CD4+ and CD8+ T cells is correlated to sustained response to combination IFN-

based antiviral therapy (Golden-Mason et al, 2008). In addition to PD-1, coexpression of 

other inhibitory receptors like 2B4, CD160 and KLRG1 has been observed in T cells that 

have impaired proliferation and cytokine production (Bengsch et al, 2010).     

 

Human immunodeficiency virus type 1 (HIV-1) 

Infection with HIV-1 leads to a rapid and progressive immune deficiency in most 

individuals, leading to a decline of CD4+ T cells and inhibition of functional properties of 
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plasmacytoid and myeloid DCs (Doitsh et al, 2014; Donaghy et al, 2003). Recent 

evidence has shown that the disease outcome hinges upon a complex interplay of 

immunomodulatory mechanisms, which can determine the rate of disease progression. 

Inhibitory receptor signaling is an integral component of the regulation of immune 

responses against HIV-1 and can be manipulated by HIV-1 to subvert host immunity for 

viral replication.  

DC dysfunction begins early during disease onset, and differentiates HIV-1 

infected individuals from elite controllers, which are a subset of patients with 

spontaneous control of HIV-1 replication in the absence of antiretroviral therapy. 

Differential interaction between HLA allele subtypes and MHC-I receptors on DCs have 

been shown to contribute to HIV-1 disease progression and viral manipulation of host 

immunity. The B*35-Px molecule, B*3503, was found to bind to LILRB2 on DCs with 

high affinity, leading to DC dysfunction in vitro, which was corroborated by ex vivo 

assessment that DCs from HIV-1 carriers of B*3503 had impaired functional properties 

(Huang et al, 2009). Overall, the data indicates that HLA-B*35-Px subtype could 

accelerate disease progression in HIV-1 infected individuals through LILRB2-dependent 

inhibition of DCs. 

Conversely, inhibitory receptors like LILBR1 and LILRB3 have been shown to be 

elevated on circulating myeloid DCs of elite controllers, who are able to spontaneously 

control HIV-1 replication. Blocking LILRB1 and LILRB3 using siRNA or monoclonal 

antibody approaches led to reduced capacity for antigen presentation, while blocking 

LILRB1 led to reduced secretion of proinflammatory cytokines like IL-12p70, IL-6 and 

TNF-α (Huang et al, 2010a). Although LILRB1 and LILRB3 are ITIM-bearing receptors 

conventionally associated with the transduction of inhibitory signals, they seem to 
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enhance antigen presentation on DCs in elite controllers. This suggests that cellular 

context is crucial in determining the function of ITIM-bearing receptors. 

Inhibitory receptors like DCIR have also been implicated as an attachment factor 

for HIV-1, facilitating viral replication in DCs and transmission to CD4+ T cells. Binding 

of HIV-1 to dendritic cell immunoreceptor (DCIR), an ITIM-containing C-type lectin, 

promotes HIV-1 infection of DCs and CD4+ T cells (Lambert et al, 2008; Lambert et al, 

2010). HIV-1 drives expression of DCIR on CD4+ T cells, which is accompanied by 

enhancement of virus attachment and entry, viral replication and infection of bystander 

cells (Lambert et al, 2010). In addition to serving as a receptor for viral entry, it is 

tempting to speculate that DCIR-mediated signaling could contribute to immune evasion 

by HIV-1 since endocytosed DCIR has been shown to inhibit the production of IL-12 and 

IFN-α (Meyer-Wentrup et al, 2008; Meyer-Wentrup et al, 2009), both of which are 

important in inhibition of HIV-1 replication (Hosmalin & Lebon, 2006; Mirani et al, 

2002).   

Inhibitory signaling events at the interface of DCs and T cells can also lead to T 

cell inhibition during HIV-1 infection. The inhibitory receptors PD-1 and TIM-3 are 

coexpressed on CD4+ and CD8+ T cells in chronic HIV-1 and HCV patients (Golden-

Mason et al, 2007; Migueles et al, 2002). The HIV-1 accessory protein, Nef, 

transcriptionally induces PD-1 expression during infection of CD4+ T cells (Muthumani 

et al, 2008). Upregulation of PD-1 on T cells allows HIV-1 to evade the T cell response, 

and even cause T cell exhaustion (Day et al, 2006). Increased levels of its cognate ligand, 

PD-L1 was found on CD4+ T cells and macrophages, and ligation to PD-1 can trigger 

inhibitory signaling that downregulates T cell responses in vivo (Latchman et al, 2004). 

Control of HIV-1 replication is correlated to reduced levels of PD-1 on CD8+ T cells, and 
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blocking PD-1 enhances T cell proliferation (Brown et al, 2003). In monocytes and 

macrophages, both PD-1 and PD-L1 are upregulated upon HIV-1 infection, and can 

activate PD-1 inhibitory signaling on monocytes to induce high levels of IL-10, which 

can impair CD4+ T cell activation (Rodriguez-Garcia et al, 2011; Said et al, 2010).  

TIM-3 is another inhibitory receptor upregulated on HIV-1 specific CD4+ and 

CD8+ T cells, as well as T cells pulsed by HIV-1 infected DCs. (Jones et al, 2008; 

Shankar et al, 2011). T cells that express TIM-3 proliferate poorly and are impaired in 

cytokine secretion (Jones et al, 2008). Blocking PD-1 and TIM-3 pathways 

simultaneously in vivo leads to a reversal of T cell exhaustion and control of viral 

replication (Jin et al, 2010).  

 

Multiple examples abound in the literature investigating how viruses exploit inhibitory 

receptor-mediated signaling pathways for enhanced viral replication. That co-ligation of 

LILRB1 by DENV immune complex during ADE leads to downregulation of ISG 

induction and enhanced viral replication underscores the importance of this strategy 

adopted by viruses to evade host immune responses. We are just starting to gain a 

mechanistic understanding of how antibody-opsonized DENV subverts host immunity 

early after infection during ADE. It would be interesting to test if other viruses that 

benefit from ADE like HIV-1 could utilize LILRB1-mediated suppression of immune 

signaling for viral replication in the host (Beck et al, 2008). In addition to identifying 

novel therapeutic targets, knowledge of how the immune system is modulated during 

ADE could also have important implications for strategies to minimize ADE during 

vaccine development.  
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2.4.3 Role of ITIM-bearing receptors in modulating antibody effector functions 

Antibody effector functions are triggered upon binding of Fc region of antibody to 

effector molecules or FcγRs expressed on immune effector cells like monocytes, 

macrophages, DCs, NK cells and T cells. This can include antibody-dependent cell-

mediated cytotoxicity, complement-dependent lysis (CDC), phagocytosis, release of 

reactive oxygen intermediates and inflammatory mediators and antigen presentation. The 

magnitude of antibody effector functions is dependent on the balance of activating and 

inhibitory receptor signaling. While the inhibitory FcγRIIB plays a pivotal role in the 

regulation of antibody effector functions, the lack of FcγRIIB expression on cell subsets 

like T cells and NK cells (Ravetch & Lanier, 2000) suggest that other ITIM-bearing 

receptors may play a role in dampening antibody effector functions arising from 

activating FcγR signaling. 

 

Antibody-dependent cell-mediated cytotoxicity (ADCC) 

ADCC is a mechanism through which FcγR-bearing cells can recognize and kill 

antibody-coated target cells expressing pathogen- or tumour-derived antigens on their 

surface. This typically leads to the release of cytotoxic granules that kill target cells via 

the perforin or granzyme cell death pathway.  

NK cells are the primary effector cells capable of eliciting ADCC, which occurs 

through cross-linking of the activating FcγRIIIA. This triggers Syk phosphorylation and 

the activation of downstream pathways involved in calcium mobilization and NK cell 

granule polarization and release for ADCC activity. Although ADCC is also mediated by 

FcγRI and FcγRIIA on monocytes, macrophages and neutrophils, less is known about the 

regulation of signal transduction pathways in these cells. 
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NK cells facilitate the cytolysis of target cells through the release of lytic granules 

and mediate apoptosis of target cells by secretion of tumor necrosis family (TNF) ligands 

and cytokines like IFN-γ. The balance of activating and inhibitory receptors is thus 

crucial for regulation of NK cell cytolytic activity. To this end, NK cells express an array 

of inhibitory receptors like leukocyte immunoglobulin-like receptors (LILRs), killer 

immunoglobulin-like receptors (KIRs) and C-type lectin receptors (CD94/NKG2A) to 

downregulate FcγRIIIA-mediated ADCC activity. 

KIR recognition of MHC-I ligands on target cells inhibits FcγRIII-mediated 

ADCC by NK cells (Fanger et al, 1999), but this can be abrogated by overexpression of a 

dominant-negative mutant of SHP-1 in NK cells (Binstadt et al, 1996). Ligation of KIR 

leads to SHP-1 recruitment, and subsequent dephosphorylation of ZAP-70 and PLC-γ 

(Binstadt et al, 1996). However, the precise substrates of SHP-1 associated with KIR 

signaling have not been determined. Tumour-derived antigens on multiple myeloma cells 

bind KIRs on NK cells as a means of immunoevasion. Blocking inhibitory KIR signaling 

could thus augment NK cell cytotoxicity against multiple myeloma cells. The anti-KIR 

antibody IPH2101 has demonstrated safety in a phase 1 trial in patients with multiple 

myeloma and should provide greater impetus for development of anti-cancer therapeutics 

that block inhibitory signaling (Benson et al, 2012). While KIRs recognize allele-specific 

MHC-I molecules, LILRs interact with a broad range of classical and nonclassical MHC-I 

molecules (Chapman et al, 1999). LILRB1 can recognize MHC-I molecules on the target 

cell, and this inhibits FcγRIII-mediated NK cell cytotoxicity via the recruitment of SHP-1 

(Colonna et al, 1997). 
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Complement 

IgG immune complexes can lead to activation of all 3 complement pathways resulting in 

the generation of C3 and C5 cleavage products that ligate complement receptors (CRs) on 

immune cells. CRs are often co-expressed with FcγRs on immune cells, and there is 

increasing evidence that cross-talk between these two signaling systems ensures both 

synergistic co-operation and feedback control to keep the immune response in check. 

 Cross-talk between the C5a receptor, C5aR and FcγRs has demonstrated how the 

complement and FcγR signaling systems are mutually responsive. C5aR acts upstream of 

FcγRs and is able to modify the ratio of activating to inhibitory FcγRs to alter the 

threshold for FcγR effector function. In alveolar macrophages, activation of C5aR after 

induction of C5a led to upregulation of activating FcγRIIIA and downregulation of the 

inhibitory FcγRIIB, lowering the activation threshold for cytokine production and 

neutrophil recruitment (Shushakova et al, 2002). This was subsequently attributed to Gai2- 

and PI3K-dependent signaling downstream of the G-protein coupled C5aR which was 

critical for regulating the expression of FcγRs (Skokowa et al, 2005). This signaling is 

bidirectional, as galactosylated IgG1 immune complexes that promote the association of 

FcγRIIB and dectin-1, led to Syk- and SHIP-dependent inhibition of C5aR signaling in 

macrophages and neutrophils (Karsten et al, 2012). Administration of galactosylated 

IgG1 immune complexes was able to prevent C5a-mediated inflammation in vivo 

including development of skin blisters in experimental epidermolysis bullosa acquisita, an 

autoimmune skin disorder (Karsten et al, 2012). 

An increased understanding of how the complement system collaborates with 

FcγR signaling will allow us to harness these two powerful effector systems for 

development of therapeutic solutions for human diseases. While augmenting cytotoxicity 
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and inflammation would benefit therapeutic interventions against cancer or infectious 

diseases, the converse would be true when devising treatments against autoimmune 

diseases. 

 

Phagocytosis  

Activating FcγR-mediated phagocytosis is important for removing immune complexes or 

pathogens from circulation. Phagocytosis is frequently coupled with the production of 

reactive oxygen intermediates and inflammatory cytokines, which help to resolve the 

infection. However, excessive production can also lead to tissue damage. This process is 

thus subject to regulation by inhibitory FcγRIIB and other intracellular phosphatases, 

including SHIP-1 and SHP-1, that dampen activating FcγR-mediated signaling back to 

basal levels. 

 The ITIM-bearing FcγRIIB inhibits signaling pathways triggered by the ITAM-

bearing activating FcγRs. Macrophages deficient in FcγRIIB had enhanced phagocytic 

capacity of IgG-opsonized particles relative to wildtype macrophages (Clynes et al, 

1999). FcγRIIB inhibits phagocytosis by recruitment of SHIP-1, which hydrolyzes 

PI(3,4,5)P3 (Gupta et al, 1997). This inhibits the activation of key enzymes involved in 

phagocytosis like Vav, a guanine nucleotide exchange factor for Rho GTPases required 

for particle internalization, and Bruton’s tyrosine kinase, which is involved in 

intracellular calcium mobilization (Patel et al, 2002; Scharenberg et al, 1998).  

 Signal regulatory protein α (SIRPα), an ITIM-bearing surface glycoprotein found 

on NK cells, macrophages and DCs has also been implicated in downregulation of FcγR-

mediated phagocytosis (Jaiswal et al, 2010). Upon binding of SIRPα to CD47, a 

ubiquitously expressed transmembrane protein, the ITIM of SIRPα is phosphorylated and 
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recruits SHP-1 to the plasma membrane. This precludes the accumulation of myosin at 

the cell surface, inhibiting phagocytosis (Tsai & Discher, 2008). In cancer cells, the 

upregulation of CD47 serves as an antiphagocytic signal to prevent tumor cell destruction 

by macrophages, with increased levels of protein expression correlated to the ability to 

evade phagocytosis in vivo (Jaiswal et al, 2010). Blockade of the SIRPα-CD47 interaction 

using anti-CD47 antibodies has been shown to enhance rituximab treatment, promoting 

phagocytosis and elimination of lymphomas in a human non-Hodgkin lymphoma 

xenotransplant mouse model (Chao et al, 2010). Engineered SIRPα variants with high 

affinity binding to CD47 have shown remarkable synergy with tumor-specific 

monoclonal antibodies by enhancing phagocytosis in vitro and increasing tumor 

regression in vivo (Weiskopf et al, 2013b).  

 

Inhibitory receptors play a key role as a rheostat of immune cell modulation and are 

strongly involved in the regulation of antibody effector functions, which could be 

deleterious to the human host if left unchecked. Unfortunately, viruses have been able to 

exploit these receptors to evade immune responses that would otherwise limit its spread. 

This thesis has demonstrated the role that LILRB1 plays in downregulating the ISG 

response early after DENV infection through the recruitment of SHP-1 to 

dephosphorylate Syk, thus permitting enhanced viral replication during ADE.  A deeper 

understanding of how inhibitory receptors regulate both immunity and tolerance could 

offer novel strategies for immunotherapy against infectious diseases, autoimmune 

diseases and cancer. In conclusion, DENV co-ligates LILRB1 to downregulate the 

activating FcγR-mediated early ISG expression for successful antibody-dependent 

infection. 
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Chapter 3. SYK-ING PATHWAYS FOR ANTIBODY-ENHANCED DENGUE 

INFECTION 

3.1 Introduction 

3.1.1 Compartmentalization as a means of host defence 

Host immunity is governed by the signaling networks and effector functions triggered 

within specialized immune cells when they are faced with a potential threat. However, 

this view underplays the capacity of non-immune cells to protect themselves against the 

threat of potential pathogens. This intrinsic form of self-defence, ubiquitous in most cell 

lineages across phyla, is also known as cell-autonomous immunity (Randow et al, 2013). 

The production of cytotoxic gases like nitric oxide is an example of a cell-autonomous 

effector function conserved in organisms as diverse as Gram-positive bacteria (Gusarov et 

al, 2009), flies (McGettigan et al, 2005) and humans (MacMicking, 2012). This portion of 

the thesis will focus on cellular compartmentalization following FcγR-mediated 

phagocytosis as a platform for cellular self-defence. This is encompassed by the presence 

of phagosome borders that serve as a physical barrier for invading pathogens. In addition, 

the expression of pattern recognition receptors on these borders as well as potent anti-

pathogen effectors restricted within the phagosome represent “rigged” warning systems 

for the cell to respond to pathogen invasion (Randow et al, 2013).  

 

3.1.2 FcγR signaling and phagocytic trafficking 

Ligation of activating FcγRs leads to initiation of the downstream signaling cascade. 

Firstly, FcγR cross-linking upon receptor ligation leads to activation of Src family 

kinases, which phosphorylate the tyrosine residues on ITAM. These serve as docking 

sites for the dual SH2 domains of the non-receptor tyrosine kinase Syk, resulting in 
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enzymatic activation of Syk and downstream signal transduction (Mocsai et al, 2010). 

Other than the FcRγ chain, ITAM-bearing proteins include the TCRζ and CD3γ/δ/ϵ 

chains of T cell receptors (TCRs), the Igα/β chains of B cell receptors and the DNAX 

activation protein 12 (DAP12) of activating NK receptors. Signaling through any of these 

receptors or accessory proteins contributes to Syk activation and can induce a productive 

adaptive immune response (Mocsai et al, 2010).  

Syk is highly expressed in haematopoietic cells and is comprised of a kinase 

domain and dual SH2 domains. Importantly, initial ITAM binding triggers activation of 

Syk and this also catalyzes autophosphorylation of tyrosine residues in its linker region, 

which leads to sustained Syk activation and downstream signaling, even after transient 

ITAM phosphorylation (Furlong et al, 1997; Mocsai et al, 2010). Syk activation can be 

counteracted by phosphatases like SHP-1, and the balance of Syk and SHP-1 activity 

contributes to the eventual signaling output (Veillette et al, 2002). Syk can also be 

ubiquitylated and degraded by the E3 ubiquitin ligase Casitas B-lineage lymphoma (CBL) 

(Lupher et al, 1998).  

Src kinases and Syk are critical for FcγR-mediated phagocytosis, and this has 

been shown in both primary mouse bone marrow-derived macrophages and primary 

human monocytes. Macrophages from mice deficient in Src kinases Lyn, Hck and Fgr 

endocytose soluble IgG-containing immune complexes normally, but are defective in 

phagocytosis of IgG-coated erythrocytes and activation of Syk (Fitzer-Attas et al, 2000). 

Some functional redundancy may be present in Src kinases as bone marrow-derived 

macrophages from mice deficient in Hck and Fgr express higher levels of other Src 

kinases and Syk, which are subsequently activated during phagocytosis of IgG-coated 

targets (Majeed et al, 2001). Finally, macrophages derived from mice deficient in Syk 
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were defective in phagocytosis of IgG-coated targets, and phosphorylation of downstream 

substrates (Crowley et al, 1997). Furthermore, treatment of human monocytes with 

piceatannol, a Syk inhibitor, led to reduced FcγR-mediated phagocytosis but not 

endocytosis (Huang et al, 2006).  

 During FcγR-mediated phagocytosis, Syk recruitment is followed by mobilization 

of signaling adaptors such as phosphatidylinositol 3-kinase (PI3-K) and phospholipase C-

gamma (PLCγ) which promote lipid modifications during reorganization of the 

membrane and cytoskeleton for particle internalization during phagocytosis (Goodridge et 

al, 2012). Local synthesis of phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), a 

byproduct of  PI3-K catalyzed phosphorylation of phosphatidylinositol-4,5-bisphosphate 

(PI(4,5)P2), is required to direct actin remodeling for pseudopod extension during 

engulfment, by recruiting the actin motor protein myosin X (Cox et al, 2002; Cox et al, 

1999). In addition, Syk interacts with Rho GTPases like cell division control protein 42 

(Cdc42), Rac1 and Rac2 which regulate intracellular actin dynamics for particle 

engulfment and phagocytic trafficking (Beemiller et al, 2010; Hoppe & Swanson, 2004). 

Rab and ADP-ribosylation factor (Arf) GTPases regulate transport between membrane-

bound organelles, binding to effector proteins that recruit additional machinery for 

phagosome maturation (Flannagan et al, 2009). Finally, SNARE (soluble NSF-attachment 

protein receptor) proteins including VAMP3 and VAMP7 mediate vesicle fusion during 

the successive steps of phagosome maturation (Flannagan et al, 2009). 

 Phagosome maturation involves the sequential fusion of the nascent phagosome 

with early endosomes, late endosomes and lysosomes. This is accompanied by membrane 

remodeling and the acquisition of an acidic and degradative environment in the eventual 

phagolysosome. Phagosomal acidification is marked by the recruitment of V-ATPase 
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proton pumps and the enrichment of mature lysosomal hydrolases. Together with the 

production of reactive oxygen species (ROS) by the NOX2 NADPH oxidase on the 

phagosome membrane, these strategies contribute to the elimination of pathogens within 

phagolysosomes. The involvement of Syk in regulating phagosome maturation through 

phagosome acidification has been documented more substantively in recent literature 

regarding Dectin-1, a C-type lectin receptor important for antifungal immunity. Like 

FcγRs, Dectin-1 ligation leads to activation of the Src kinases and Syk, and signal 

transduction is mediated through an ITAM-like motif in its cytoplasmic tail (Rogers et al, 

2005; Underhill et al, 2005).  Dectin-1 is critical for recognition of fungal β-glucans and 

elimination of fungal pathogens, and also triggers phagocytosis through pseudopod 

extension for internalization of its target particle (Goodridge et al, 2012). Together with 

FcγRs, transfection of these receptors is sufficient to instruct phagocytosis of specific 

targets on non-phagocytic cells (Brown & Gordon, 2001; Indik et al, 1991).  

Dectin-1 has been shown to activate Syk in macrophages and is important for 

reactive oxygen production (Underhill et al, 2005). Activation of Dectin-1 by β-glucan 

also regulates phagolysosomal maturation via Syk activation as Syk inhibition led to 

prolonged retention of Dectin-1 on the phagosome and arrest of β-glucan-containing 

phagosomes at an early endosomal stage (Mansour et al, 2013). As the phagosomal 

retention of Dectin-1 upon Syk inhibition was correlated to reduced phagosomal 

acidification (Mansour et al, 2013), Syk phosphorylation may have a role in phagosomal 

acidification, a hallmark of phagosome maturation. This is in agreement with a separate 

study showing that Syk inhibition led to defects in CD63 recruitment, an acidification-

dependent process (Artavanis-Tsakonas et al, 2006), onto Aspergillus fumigatus 
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phagosomes upon infection of primary monocytes and THP-1 differentiated macrophages 

(Kyrmizi et al, 2013).  

 

3.1.3 ITIM-mediated inhibition of phagocytic trafficking 

The inhibitory FcγRIIB is a negative regulator of activating FcγR-mediated phagocytosis. 

Macrophages deficient in FcγRIIB show enhanced phagocytosis of IgG-opsonized targets 

compared to wildtype macrophages (Clynes et al, 1999). In addition, while transfection of 

COS-1 fibroblast cells with ITAM-containing FcγR led to efficient phagocytosis of IgG-

opsonized particles, the co-transfection of FcγRIIB led to a decrease in phagocytic 

efficiency (Hunter et al, 1998). This also suggested that the outcome of phagocytosis 

depended on the balance of activating and inhibitory FcγR signaling. The mechanism by 

which FcγRIIB mediates inhibition of phagocytosis involves ITIM phosphorylation by 

Src kinases and recruitment of Src homology 2 domain-containing inositol phosphatase-1 

(SHIP-1) (Gupta et al, 1997). SHIP-1 hydrolyzes PI(3,4,5)P3, which is required for the 

activation of key enzymes involved in phagocytosis like Bruton’s tyrosine kinase (BTK), 

involved in intracellular calcium mobilization (Scharenberg et al, 1998), and Vav, a 

guanine nucleotide exchange factor (GEF) for Rho GTPases which is required for Rac 

activation and particle internalization (Patel et al, 2002).  

Ligation of LILRB1 leads to ITIM-mediated recruitment of SHP-1, a protein 

tyrosine phosphatase (PTP) that could also have important functional consequences for 

FcγR-mediated phagocytosis. SHP-1 has been shown to inhibit FcγR-mediated 

phagocytosis through suppression of Rac activity and dephosphorylation of CBL (Kant et 

al, 2002). Recent work has also begun to understand the role of SHP-1 in phagosome 

maturation. SHP-1 is recruited to nascent phagosomes and phagosomal acidification is 
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impaired in macrophages derived from mice deficient in SHP-1 (Gomez et al, 2012). 

Although this is consistent with the role of other PTPs in regulating signaling and 

membrane fusion events during phagosome trafficking (Huynh et al, 2004), the 

mechanism by which SHP-1 modulates phagosomal acidification remains to be clearly 

elucidated. While Gomez and colleagues suggest that SHP-1 may positively regulate 

phagosomal acidification by activating membrane fusion events that recruit V-ATPase to 

the phagosome membrane, others have shown that PTPs can also negatively regulate 

phagosomal acidifcation. An example for this is the mycobacterial PTP, PtpA, which was 

shown to dephosphorylate vacuolar protein sorting protein 33B (VPS33B), a key 

regulator of membrane fusion (Wong et al, 2011). This led to exclusion of V-ATPase 

from the phagosome during Mycobacterium tuberculosis infection, resulting in inhibition 

of phagosomal acidification (Wong et al, 2011).  

Hence, the role of SHP-1 for the maintenance of phagosomal acidification 

remains controversial. Given that Gomez and colleagues addressed the role of SHP-1 in 

phagolysosome biogenesis through the use of bone marrow-derived macrophages from 

SHP-1 deficient mice, evaluating the role of SHP-1 in a human monocytic cell line or 

human primary monocytes could provide us with new insights on the role of SHP-1 in 

phagosome maturation following FcγR-mediated phagocytosis. 

Based on our observed dephosphorylation of Syk when LILRB1 was co-ligated 

during ADE (Chan et al, 2014), we hypothesized that recruitment of phosphatases like 

SHP-1 during LILRB1-mediated signaling could modulate phagosome maturation. It is 

possible that reduced Syk signaling would result in DENV being trafficked into 

phagocytic compartments more congenial for replication, thus influencing the outcome of 

ADE. 
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3.2 Materials and Methods 

3.2.1 Purification of DENV-containing phagosomes on a step sucrose gradient 

Isolation of DENV phagosomes was performed using a protocol previously used for the 

isolation of latex bead phagosomes (Desjardins et al, 1994). Briefly, DENV was 

incubated with media or h3H5 (0.39µg/ml) for 1hr at 37˚C before adding to cells at 

indicated moi. THP-1.2R and THP-1.2S were incubated with DENV immune complex at 

4°C for 20min before transferring to 37°C for 2h. After 2h, cells were washed 3 times 

with PBS before resuspending in homogenization buffer (8.55% (w/v) sucrose in HNE 

buffer, 3mM imidazole, 1% protease inhibitor solution, pH 7.4). To isolate phagosomes, 

cells were homogenized on ice in 25 strokes using a 30-G syringe. The homogenate was 

spun down at 2000 rpm for 5min to remove cell debris and nuclei. The supernatant was 

collected and mixed with an equivalent volume of 62% (w/v) sucrose to bring it to a final 

concentration of 40% sucrose. DENV phagosomes were then isolated on a discontinuous 

sucrose gradient, which was prepared as follows: 3ml 62% sucrose, 2ml of 40% sucrose 

phagosome suspension, 2ml of 35% sucrose, 2ml of 25% sucrose and 2ml of 10% 

sucrose. Centrifugation was performed at 4°C in a swinging bucket rotor (SW41; 

Beckman Instruments) for 1h at 100, 000 x g. Fractions at the interfaces of step sucrose 

gradients were collected, with 140μl subjected to viral RNA extraction using QiaAmp 

Viral RNA Mini kit (Qiagen). The phagosomes were resuspended in 10ml cold PBS 

containing protease inhibitors and pelleted by ultracentrifugation (40,000 x g, 30min) at 

4°C in an SW41 rotor. Supernatant was removed and the phagosome pellet was 

resuspended in 80 to 100μl lysis buffer (1% Nonidet P-40, 150mM NaCl, 50mM Tris, pH 

8.0) in the presence of protease and phosphatase inhibitors (Sigma). The protein 

concentration of the phagosome preparation was determined using Pierce BCA Protein 
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Assay Kit (Pierce). Phagosome lysates (3µg) were separated on a SDS-PAGE gel for 

Western blot analysis. For nanoparticle tracking analysis (NTA), washed phagosomes 

were resuspended at an appropriate dilution in HNE buffer before injection into the LM 

unit with a 1ml syringe.   

 

3.2.2 Purification of DENV-containing phagosomes on a continuous sucrose gradient 

For isolation of DENV phagosomes on a continuous sucrose gradient, sucrose gradient 

was first formed by careful layering of 10% to 60% sucrose in 10% increments, starting 

with the densest at the bottom. The gradient was allowed to linearize overnight at 4°C. 

Cell homogenate was layered above the continuous sucrose gradient for 

ultracentrifugation. After ultracentrifugation, 250μl fractions were collected and subjected 

to viral RNA extraction using QiaAmp Viral RNA Mini kit (Qiagen). 

 

3.2.3 Sucrose gradient purification of latex bead-containing phagosomes 

Deep blue dyed latex beads of 0.24μm (Sigma, L1273) were first washed 3 times in PBS 

before use. 100μl of 10% latex bead suspension was resuspended in 7.5ml of coupling 

buffer (0.1M 2-(N-Morpholino) ethanesulfonic acid (MES) in PBS, pH 6.1). 

Opsonization of 6μg human IgG to latex beads was performed overnight at 4°C with 

constant mixing. Beads were centrifuged (14, 680 rpm, 10min) and washed with PBS 3 

times before they are diluted to obtain a 1% latex bead suspension. The 1% bead 

suspension is then added to 1x107 cells, and incubated at 37°C for 30min for 

internalization to take place. Thereafter, cells were washed 3 times in PBS (1000 rpm, 

3min) to remove non-internalized beads.  Cells were further incubated at 37°C for a chase 

period ranging from 30min to 5.5h to obtain mature phagolysosomes. At the end of the 
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chase period, cells were washed in PBS 3 times, with a final wash in 8.55% (w/v) sucrose 

homogenization buffer. The isolation of latex bead containing phagosomes was 

performed in a manner similar to previously described steps for isolation of DENV 

containing phagosomes. After ultracentrifugation, latex bead containing phagosomes 

were collected at the 10%-25% sucrose interface. The phagosomes were resuspended in 

10ml cold PBS containing protease inhibitors and pelleted by ultracentrifugation (40,000 

x g, 30min) at 4°C in an SW41 rotor. Supernatant was removed and the phagosome pellet 

was resuspended in 80 to 100μl lysis buffer (1% Nonidet P-40, 150mM NaCl, 50mM 

Tris, pH 8.0) in the presence of protease and phosphatase inhibitors (Sigma). The protein 

concentration of the phagosome preparation was determined using Pierce BCA Protein 

Assay Kit (Pierce). Phagosome lysates (3µg) were separated on a SDS-PAGE gel for 

Western blot analysis. 

 

3.2.4 Nanoparticle tracking analysis (NTA) 

The Nanosight LM10 utilizes a single-mode red laser diode with illumination of 638nm 

wavelength and laser power of 25mW to visualize nanoparticles ranging from 10 to 

1000nm in size. It was also customized with a 692nm bandpass filter for use under 

fluorescence mode. The red laser illuminates DiD-labelled nanoparticles in suspension 

diluted to between 107 and 109 particles per ml in light scatter mode or fluorescence 

mode. A high sensitivity scientific CMOS camera tracks individual particles moving 

under Brownian motion and particle distribution and size, as calculated using the Stokes-

Einstein equation, was analyzed with the NTA 2.3 analytical software (Nanosight). The 

camera settings (shutter, gain, detection threshold and sensitivity) were optimized for 
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individual samples. For each sample, 5 videos of 90s duration were recorded, with a 5s 

delay between recordings and chamber temperature recorded at the end of each video.  

 

3.2.5 Dual labelling of DENV with pHrodo Red and Alexa Fluor 488 

Fresh labelling buffer (0.2M sodium bicarbonate buffer, pH 8.3) was prepared and filter 

sterilized with 0.2μm syringe filters prior to DENV labelling. Purified DENV was diluted 

to approximately 3x108 PFU in 1ml of labelling buffer. Both lyophilized Alexa Fluor 488 

(AF488) succinimidyl esters and pHrodo Red succinimidyl esters were reconstituted to 

2mM in labelling buffer or DMSO respectively, immediately prior to the labelling 

reaction. pHrodo Red dye was added to the diluted virus at final concentrations of 90μM, 

100μM, 110μM, 120μM, 140μM and 150μM, while stirring gently with the pipette tip. 

The labelling reaction mix was incubated at room temperature for 30min in the dark and 

mixed by gentle inversions every 15min. Next, AF488 dye was added to the diluted virus 

at final concentrations of 50μM, 60μM, 80μM, 90μM, 100μM and 110μM, while stirring 

gently with the pipette tip. The labelling reaction mix was incubated at room temperature 

for an additional 1h in the dark and mixed by gentle inversions every 15min. Excess dye 

was removed by gel filtration on a PD-10 column (GE Healthcare). Briefly, the column 

was equilibrated with 25ml of HNE buffer (5mM Hepes, 150mM NaCl, 0.1mM EDTA, 

pH 7.4) before use. The labelled virus was applied to the top of the column and collection 

of flow-through began once the labelled virus entered the matrix. The first 3.25ml of 

flow-through was discarded, while the following 2ml of labelled virus fraction was 

collected. The pHrodo/AF488-labelled DENV was stored in 100μL aliquots at −80 °C, 

away from light source, retitrated by plaque assay, and tested for fluorescence using 

immunofluorescence assay on Vero cells before use in experiments. 
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3.2.6 Immunofluorescence of virus infection on Vero cells 

Equal volumes of pHrodo/AF488-labelled dengue virus were incubated with Vero cells 

plated on coverslips for 10 minutes at 37°C, washed, fixed with 3% paraformaldehyde 

(PFA) and permeabilized with 0.1% saponin. The cells were then incubated for 1 hr with 

anti-E protein h3H5 monoclonal antibody, at room temperature. The cells were washed 

three times in PBS, followed by incubation with AF647 anti-human IgG antibody for 

45min at room temperature. Cells were then washed three times in PBS, rinsed once in 

deionised water and mounted on to glass slides with Mowiol 4-88. Cells were visualized 

at 63x magnification on a Zeiss LSM710 confocal microscope and co-localization 

coefficients were calculated using Zeiss ZEN2011 program. Images were exported in 

individual colours for processing in Adobe Photoshop CS6 version 13, which involved 

adjustment of the contrast on the images for clarity. Images in individual colours were 

then merged using ImageJ.  

 

3.2.7 Assessing phagosomal acidification with pHrodo- or pHrodo/AF488-labelled 

DENV 

pHrodo-labelled or pHrodo/AF488-labelled DENV were incubated with sub-neutralizing 

concentrations of h3H5 (0.391μg/ml) for 1h at 37°C before adding to THP-1.2R, THP-

1.2S or primary monocytes (moi 10). Primary monocytes were treated with indicated 

concentrations of sodium stibogluconate or PBS control for 6h before infection with 

pHrodo/AF488-labelled DENV. Cells were synchronized on ice for 20min, followed by 

2h infection at 37°C and fixed with 3% PFA for 30min at room temperature. Cells were 

subjected to cytospin at 800rpm for 3min. After washing with PBS, cells infected with 
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pHrodo-labelled DENV were permeabilized with 0.1% saponin for 30min and incubated 

with anti-E protein antibody at 4°C overnight. Cells were washed with PBS, and 

incubated with AF647 anti-human IgG antibody for 45min at room temperature. Cells 

were then washed three times in PBS, rinsed once in deionised water and mounted on to 

glass slides with Mowiol 4-88. Cells were visualized at 63x magnification on a Zeiss 

LSM710 confocal microscope and quantification of the fluorescence intensities of 

pHrodo, AF488 and AF647 in THP-1.2R, THP-1.2S and primary monocytes was carried 

out using Zeiss ZEN2011 program. Briefly, fluorescence intensities of DENV 

phagosomes in 25 to 30 randomly selected cells were calculated. Only DENV 

phagosomes with AF488 or AF647 fluorescence intensity more than 20 were included in 

the analysis. 

 

3.2.8 Immunoblotting 

Phagosome lysates (3µg) were separated on a SDS-PAGE gel for Western blot analysis 

and probed with primary antibody, followed by HRP-conjugated anti-mouse (1:1000, 

Dako P0447) or anti-rabbit (1:3000, Abcam ab6721) antiserum. Primary antibodies for 

Rab-5 (1:1000, Abcam ab13253), Rab-7  (1:1000, Abcam ab50533), LAMP-1 (1:1000, 

eBioscience 611043), Cathepsin D (1:500, Abcam ab6313), EEA-1 (1:1000, Santa Cruz 

sc33585), BiP (1:1000, Abcam ab21685), calnexin (1:1000, Abcam ab22595), PMP70 

(1:500, Abcam ab3421), GM130 (1:10,000, Abcam ab52649) and HSP60 (1:20,000, 

Abcam ab59457) were used. Thereafter, blots were developed by enhanced 

chemiluminescence detection reagents (Amersham).  
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3.3 Results 

3.3.1 Higher degree of phagocytic maturation in THP-1.2R   

Since LILRB1 signals through phosphorylated SHP-1 to inactivate Syk in the activating 

FcγR signaling pathway, co-ligation of LILRB1 during ADE by DENV immune complex 

could modulate other host responses. Syk is a key regulator of downstream FcγR 

signaling; in addition to its role in ISG induction, it also triggers signaling pathways that 

regulate calcium signaling (Kurosaki & Tsukada, 2000), cytoskeletal rearrangement and 

phagocytosis (Crowley et al, 1997; Greenberg et al, 1996; Majeed et al, 2001), and ROS 

production (Kyrmizi et al, 2013; Underhill et al, 2005).   

We first tracked the transition of DENV using immunofluorescence imaging. 

Results showed that DENV-containing phagosomes transited through Rab-5, Rab-7 and 

LAMP-1 compartments more rapidly in THP-1.2R relative to THP-1.2S during ADE. We 

observed reduced co-localization of Alexa fluor 488 (AF488)-labelled DENV with Rab-7 

in THP-1.2R relative to THP-1.2S 3 hours post-infection under ADE conditions (Fig. 3-

1A).  At the same time, increased co-localization of AF488-labelled DENV was observed 

with LAMP-1 in THP-1.2R relative to THP-1.2S during ADE (Fig. 3-1A). In contrast, the 

transition of DENV-containing phagosomes was comparable in THP-1.2R and THP-1.2S 

under DENV-2 only conditions (Fig. 3-1B). The higher degree of phagosome maturation 

in THP-1.2R corroborates the higher levels of phosphorylated Syk that were observed in 

THP-1.2R relative to THP-1.2S during ADE (Fig. 2-6A). These findings reinforce the 

notion that phagosome maturation is a Syk-dependent process. 
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Figure 3-1. Higher degree of phagocytic maturation in THP-1.2R. (A) Co-localization 
of DENV-2 with Rab-5, Rab-7 and LAMP-1 3h post-infection under ADE conditions. (B) 
Co-localization of DENV-2 with Rab-5, Rab-7 and LAMP-1 3h post-infection under 
DENV-2 only conditions. Panel was kindly provided by Summer Zhang. 
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3.3.2 Use of latex bead-containing phagosomes as a surrogate to investigate role of 

differential Syk phosphorylation on compartmentalization  

We reasoned that the higher degree of DENV phagosome maturation in THP-1.2R could 

be due to differences in DENV compartmentalization as a result of differential levels of 

Syk phosphorylation. The isolation of latex bead-containing (LBC) phagosomes has been 

used successfully to study FcγR-mediated phagocytosis (Majeed et al, 2001) and the 

proteomic characterization of phagosomes (Stuart et al, 2007).  We thus adapted a 

protocol developed by Desjardins and colleagues (Desjardins et al, 1994) for phagosome 

isolation to examine compartmentalization during ADE. Briefly, unopsonized blue-dyed 

latex beads (LB) or blue-dyed latex beads opsonized with IgG (LB-IgG) were added onto 

THP-1.2R cells pre-treated with DMSO or piceatannol, a Syk-selective inhibitor. LBC 

phagosomes were then isolated via flotation on a step sucrose gradient, and could be 

visualized as a blue layer at the 10%-25% sucrose interface. Phagosomes isolated in this 

manner have been shown to be devoid of contamination by other cellular organelles 

(Desjardins et al, 1994) due to the low density of latex.  

To verify the purity of isolated LBC phagosomes, we probed the expression of 

endosomal and organelle markers. As expected, phagosomal fractions (F1) isolated at all 

indicated time points expressed Rab-7, LAMP-1 and Cathepsin D (Fig. 3-2A). However, 

phagosomes isolated from piceatennol-treated cells faced deficits in acquiring Rab-7 (Fig. 

3-2A). The prolonged retention of Rab-5 in these phagosomes at 1 hour post-uptake (Fig. 

3-2A), although transient, is further indication that the Rab-5 to Rab-7 transition is 

inhibited by piceatannol treatment.   

While we did not detect the expression of HSP60 (mitochondria) or GM130 

(Golgi apparatus), the expression of calnexin and BiP, endoplasmic reticulum (ER) 
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membrane and lumen proteins respectively, were detected in the isolated phagosomes 

(Fig. 3-2B). Rather than contamination with the ER, the presence of ER proteins in LBC 

phagosome preparations could be attributed to contribution of ER membrane to the 

maturing phagosome (Gagnon et al, 2002; Garin et al, 2001), although this has been 

controversial (Touret et al, 2005).  

However, piceatannol treatment of THP-1.2R cells may have unintended off-

target effects, as demonstrated by reduced expression of organelle markers (HSP60, 

GM130 and BiP) in the non-phagosomal fraction (F3) (Fig. 3-2B). Since this could 

potentially confound downstream analysis of how differential levels of Syk 

phosphorylation affect compartmentalization, we decided to substitute the approach of 

using piceatannol treatment to disrupt Syk activity, with isolation of DENV-containing 

phagosomes in THP-1.2R and THP-1.2S, in which Syk phosphorylation levels had 

previously been characterized post-infection (Fig. 2-6A).    
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Figure 3-2. Western blot analysis of subcellular fractions. (A) Western blot of 
membrane-bound endosomal markers, Rab-5, Rab-7 and LAMP-1, and a lysosomal 
hydrolase, Cathepsin D. (B) Western blot of organelle markers for mitochondria 
(HSP60), Golgi apparatus (GM130), ER membrane (Calnexin) and ER lumen (BiP). 
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3.3.3 Isolation and characterization of DENV phagosomes 

We adapted the protocol developed by Desjardins and colleagues (Desjardins et al, 1994) 

for isolation of DENV phagosomes. As this protocol had not been validated for isolation 

of DENV phagosomes, this protocol was first tested to ensure reproducible and accurate 

isolation of DENV phagosomes. Briefly, DENV or DENV opsonized with sub-

neutralizing levels of h3H5 were added onto THP-1.2R and THP-1.2S cells. DENV 

phagosomes were then isolated via flotation on a step sucrose gradient. As a control, 

similar fractions from uninfected THP-1.2R and THP-1.2S cells were also collected after 

flotation on a step sucrose gradient. Fractions isolated at step sucrose interfaces were 

subjected to viral RNA extraction and highest recovery of viral RNA was detected in 

Fraction 3, followed by Fraction 2 and Fraction 1 (Fig. 3-3A).  

To validate the viral RT-PCR findings, we used Nanosight, a technology that 

enables sizing and quantification of nanoparticles, to characterize isolated fractions from 

cells infected with DiD-labelled DENV under DENV-2 or ADE conditions. As Nanosight 

utilizes a high intensity laser beam against a low background optical configuration, it 

allows particles of sub-micron dimensions to be visualized. Biological samples like 

endosomes and vesicles typically have a lower refractive index and depending on their 

size, they may be below the detection threshold of 300nm for most commercially 

available flow cytometers (Dragovic et al, 2011). Since Nanosight determines particle 

size from Brownian motion, this measurement is independent of the particle’s refractive 

index (Dragovic et al, 2011). Ultrastructural analysis and super resolution imaging of 

endosomal and lysosomal compartments have determined the sizes of these subcellular 

organelles to range from 200nm to 600nm (Firdessa et al, 2014; Shim et al, 2012), and the 

use of Nanosight to characterize purified subcellular fractions should allow tracking of 
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DENV with cellular endocytic machinery.  

DENV was first labelled with a lipophilic fluorescent dye, DiD, at concentrations 

high enough to quench fluorescence intensity. Upon fusion of the viral and host cell 

membranes, the fluorescence unquenches and this can be detected using Nanosight under 

fluorescent mode. As fusion events during phagosome maturation allow the transfer of 

DiD dye onto lipid membranes, this enables the tracking of particles that enagaged in 

prior fusion events with DiD-labelled DENV. Operation of the Nanosight under 

fluorescence mode allows discrimination of DiD-particles from non-labelled particles, 

allowing us to probe the size and number of DiD-particles. The modal size of DiD-

particles was 2 to 3 fold larger than modal size of nanoparticles detected under light 

scatter mode (Fig. 3-3B to E). The modal size of 246nm and 274nm for DiD-particles 

isolated following DENV only and ADE infection respectively also suggests the 

possibility that DENV is contained within endosomal or lysosomal compartments (Fig. 3-

3D to E).  Importantly, the majority of DiD-particles were detected in Fraction 3 during 

DENV-2 and ADE infection (Fig. 3-3D to E), which corresponds to the bulk of viral 

RNA recovery from Fraction 3 (Fig. 3-3A).  

To ensure the reproducibility of isolating DENV phagosomes using a sucrose 

gradient, we also validated this protocol using a continuous sucrose gradient that would 

allow flotation of DENV phagosomes at their buoyant density. Recovery of viral RNA 

peaked at Fractions 7 and 14, indicating that DENV phagosomes are isolated in fractions 

with greater density (Fig. 3-3F). This also corroborates the recovery of viral RNA being 

highest in Fraction 3 (Fig. 3-3A), the densest fraction collected using a step sucrose 

gradient. As the yield of viral RNA recovery during purification of DENV phagosomes 

with a step sucrose gradient was considerably higher, this method was subsequently used 
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for further experiments. 

Western blot probing for the expression of endosomal markers indicated that 

fractions collected expressed low levels of EEA-1 and Rab-5, markers for early 

endosomes, but higher levels of Rab-7 and LAMP-1, markers for late endosomes (Fig. 3-

3G). When considered with the size of DiD-particles from isolated fractions, it suggests 

the recovery of DENV associated with late endosomal or lysosomal compartments. The 

expression of endosomal markers was also enriched in the purified fractions relative to 

whole cell lysate (Fig. 3-3G), providing further validation that isolation of DENV 

phagosomes can be performed using purification on a step sucrose gradient. Organelle 

markers were also used to verify the purity of the DENV phagosome isolation. Although 

we did not detect any expression of GM130 (Golgi apparatus) and PMP70 (peroxisomes), 

HSP60 (mitochondria) expression could be detected in Fractions 2 and 3 in THP-1.2R 

and THP-1.2S at enriched levels relative to whole cell lysate (Fig. 3-3H). Although it is 

not known if HSP60 associates with DENV phagosomes, there is evidence that HSP60 

could be important for DENV replication, as siRNA knockdown of HSP60 in U937 

monocytic cells led to reduced viral replication and increased IFN-α production (Padwad 

et al, 2009). Calnexin and BiP, ER membrane and lumen markers could also be detected 

in Fractions 1 to 3, but at similar levels relative to whole cell lysate (Fig. 3-3H).  
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Figure 3-3. Isolation of DENV-containing phagosomes from fraction 3 of step 
sucrose gradient. (A) Recovery of viral RNA from step sucrose gradient purified 
fractions collected from THP-1.2R or THP-1.2S infected under DENV-2 only or ADE 
conditions. (B-C) Size and concentration of all nanoparticles from fractions collected 
from THP-1.2S under DENV-2 only (B) or ADE (C) conditions. (D-E) Size and 
concentration of DiD-labelled nanoparticles from fractions collected from THP-1.2S 
under DENV-2 only (D) or ADE (E) conditions. (F) Recovery of viral RNA from 
continuous sucrose gradient purified fractions collected from THP-1.2R infected under 
ADE conditions. (G-H) Western blot analysis of subcellular fractions, probed for 
endosomal markers (G) and organelle markers (H).  
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3.3.4 Higher levels of phagosomal acidification in THP-1.2R 

Since the degree of phagocytic maturation was higher in THP-1.2R (Fig. 3-1), we 

hypothesized that this could also be accompanied by phagosomal acidification, which is 

considered a hallmark of phagosome maturation. To gain a functional insight into 

phagosomal acidification, we probed the expression of cathepsin D (CatD), a lysosomal 

aspartic endopeptidase that is processed to its catalytically active form only upon 

acidification. After synthesis in the ER, the 52kDa proCatD is targeted to endosomes, 

phagosomes and lysosomes. Acidic endosomal and lysosomal compartments cause the 

protein to be cleaved to its 47kDa intermediate active form and further proteolytic 

processing yields the 34kDa active CatD. Western blot probing the expression of CatD 

showed higher levels of active CatD in THP-1.2R compared to THP-1.2S (Fig. 3-4A), 

consistent with the other data showing higher degree of phagocytic maturation in the 

former subclone. 

In order to probe levels of phagosomal acidification in DENV-containing 

phagosomes, we designed a new approach that enabled us to obtain a relative measure of 

pH changes in the phagosome. Our approach entailed labelling DENV with the pH-

sensitive pHrodo dye, and counterstaining DENV E protein with a pH-insensitive AF647 

anti-human IgG antibody to indicate intracellular presence of DENV. Since acidification 

of the environment increases the fluorescence intensity of pHrodo but not AF647, the 

ratio of fluorescence intensities between pHrodo and AF647 can serve as a quantitative 

readout of phagosomal acidification. This ratiometric measurement of phagosomal 

acidification has previously been used to measure the pH of bacteria-containing 

compartments (Ip et al, 2010), but our approach has broadened the application of such a 

method to investigate changes in phagosomal pH in virus-containing compartments.  
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When pHrodo-labelled DENV was used to infect cells, it co-localized strongly 

with E protein, indicating that infectivity of pHrodo-labelled DENV was retained post-

labelling (Fig. 3-4B). pHrodo-labelled DENV also co-localized with LAMP-1 positive 

compartments in both THP-1.2R and THP-1.2S under DENV and ADE conditions (Fig. 

3-4B). To measure the fluorescence intensities of pHrodo and AF647, a line is drawn 

across the profile where fluorescence intensity is to be measured. An intensity plot for the 

profile is generated and the intensity of pHrodo corresponding to peak intensity of AF647 

was measured (Fig. 3-4C). By calculating fluorescence intensities of DENV phagosomes 

in 25 to 30 randomly selected cells, phagosomal acidification was found to be higher in 

THP-1.2R infected under ADE conditions (Fig. 3-4D). This also corroborates the higher 

degree of phagosomal maturation observed in THP-1.2R under ADE conditions (Fig. 3-

1A).  
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Figure 3-4. Higher levels of phagosomal acidification in THP-1.2R. (A) Western blot 
showing higher levels of active CatD (34kDa) in THP-1.2R. (B) Co-localization of 
pHrodo-labelled DENV-2 with E protein (AF647) and LAMP-1 in THP-1.2R or THP-
1.2S 2h post-infection under DENV only or ADE conditions. (C) Schematic showing 
how fluorescence intensity was measured. Numbered red arrows indicate the profile 
where fluorescence intensity was measured and these are represented on the right as 
intensity plots (1 to 4). For each profile, pHrodo intensity corresponding to peak AF647 
intensity was measured. (D) Relative fluorescence intensity of pHrodo and AF647 (E 
protein) in DENV-containing phagosomes in THP-1.2R or THP-1.2S infected under virus 
only or ADE conditions. Data expressed as mean ± s.e.m. *** P < 0.001. 
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3.3.5 LILRB1 signaling attenuates phagosomal acidification during ADE 

The ratiometric assessment of phagosomal acidification using pHrodo-labelled DENV 

with AF647 secondary antibody against anti-E protein antibody was indeed promising 

and revealed higher levels of phagosomal acidification in THP-1.2R as compared to THP-

1.2S during ADE. However, to enhance the specificity of probing phagosomal 

acidification, we labelled DENV with both pHrodo and AF488. Direct labelling of DENV 

with both fluorophores has clear advantages. It eliminates the additional step of 

counterstaining DENV with a pH-insensitive fluorescent conjugated secondary antibody, 

which could increase the size of DENV by up to 30nm, or 160% of the size of a virus 

particle. Moreover, using the same batch of labelled virus would ensure precision and 

reproducibility over different experiments, as indirect labeling of DENV would not be 

required. 

Furthermore, a potential application of the smaller sized pHrodo/AF488-labelled 

DENV would be in super resolution microscopy like stimulated emission depletion 

(STED) microscopy or stochastic optical reconstruction microscopy (STORM). These 

systems allow image capture with a higher resolution than the light diffraction limit and 

are gaining traction in studying virus entry and replication. The role of CD81 in influenza 

A virus uncoating during virus budding was studied recently and it was revealed through 

the use of STORM that CD81 was recruited to sub-viral locations during virus assembly 

and may thus play a role in scission of budding virions from the plasma membrane (He et 

al, 2013). STORM has also been used to demonstrate recruitment of HIV-1 envelope 

proteins to viral assembly sites near the surface of infected cells, suggesting a role for 

envelope proteins that extends beyond its well-characterized functions in viral entry 

(Muranyi et al, 2013). The smaller size of dual labelled DENV would permit imaging at 
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higher resolution and more accurate tracking of the virus as it is internalized and 

trafficked in host cells. Specifically, it could be applied to answer the critical question of 

whether pH changes in the phagosome result in degradation or viral fusion, which would 

determine the intracellular fate of DENV that is taken up via activating FcγRs. 

 To determine the optimum concentrations of AF488 and pHrodo for labelling 

DENV to obtain maximum fluorescence and minimal loss in viable virus titers, different 

combinations of AF488 and pHrodo concentrations were tested. The infectivity of 

pHrodo/AF488-labelled DENV was assessed by immunofluorescence staining. Vero cells 

seeded on coverslips were incubated with equal amounts of DENV labelled with different 

concentrations of pHrodo and AF488. Cells were fixed, stained for E protein and 

visualized using confocal microscopy.  Fluorescence intensities of pHrodo/AF488-

labelled DENV were best achieved at final concentrations of either 80μM AF488 and 

120μM pHrodo or 110μM AF488 and 90μM pHrodo (Fig. 3-5A). To quantify the co-

localization with E protein, we sampled 30 randomly selected cells and calculated the co-

localization coefficient. In both of these labelling conditions, AF488 and pHrodo 

fluorescence co-localized well with E protein staining (Fig. 3-5B). DENV labelled with 

different concentrations of pHrodo and AF488 was also re-titrated by plaque assay. 

Approximate 100 to 429-fold reductions in titers were obtained when DENV was labelled 

with either 80μM AF488 and 120μM pHrodo or 110μM AF488 and 90μM pHrodo (Fig. 

3-5C).  

In other AF488 and pHrodo concentrations tested, there was a reduction in DENV 

infectivity, as observed from low fluorescence intensity of AF488 and pHrodo, as well as 

E protein staining (Fig. 3-5A and B). Upon re-titration of titers by plaque assay, labelled 
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DENV either failed to form plaques or underwent substantial fold reductions in titers 

(Fig. 3-5C).   

With our dual-fluorophore labeling strategy on DENV, we tested the hypothesis 

that lower levels of phagosomal acidification in THP-1.2S during ADE (Fig. 3-4D), is 

due to the dephosphorylation of Syk by pSHP-1 as a consequence of LILRB1 signaling. 

We pre-treated primary monocytes with different concentrations of sodium 

stibogluconate (SSG), a SHP-1 selective inhibitor, or PBS before infection under DENV 

only or ADE conditions. Representative confocal images indicated that similar to what 

we had observed with Vero cells, pHrodo/AF488-labelled DENV also infected primary 

monocytes with strong fluorescence, and co-localized with LAMP-1 positive 

compartments (Fig. 3-6A). Indeed, measuring the ratio of pHrodo and AF488 

fluorescence intensities revealed a dose-dependent increase in phagosomal acidification 

when SSG-treated primary monocytes were infected under ADE conditions (Fig. 3-6B). 

Statistically significant changes in endosomal acidification were also observed under 

DENV-2 only infection although these were not dose-dependent (Fig. 3-6C). 
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Figure 3-5. Viability of DENV post pHrodo and AF488 labelling. (A) Representative 
confocal images to test fluorescence intensity of DENV labelled with different 
concentrations of AF488 and pHrodo. Vero cells were seeded on coverslips one day 
before infection with labelled DENV for 10 minutes at 37°C. Cells were fixed and 
labelled with anti-E antibody, and examined for co-localization of E protein (cyan) with 
AF488 (green) and pHrodo (red) labelling. Scale bar is 10μm. (B) Quantification of co-
localization between AF488 and pHrodo on labelled DENV, AF488 and E protein, and 
pHrodo and E protein. Fluorescence intensity not detected (N.D.) in some labelling 
conditions. Data expressed as mean ± s.d. (C) Infectious titers of DENV determined post-
labelling by plaque assay. Plaque titers not detected (N.D.) in some labelling conditions. 
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Figure 3-6. SHP-1 inhibition results in increased phagosomal acidification in 
primary monocytes during ADE. (A) Representative confocal images of 
pHrodo/AF488-labelled DENV co-localized with LAMP-1 in PBS or sodium 
stibogluconate (SSG)-treated primary monocytes 2h post-infection under DENV only 
or ADE conditions. Scale bar is 2μm. (B-C) Relative intensity of pHrodo/AF488-
labelled DENV in SSG-treated primary monocytes infected under ADE (B) or 
DENV-2 only (C) conditions. Data expressed as mean ± s.e.m. *** P < 0.001, ** P < 
0.01. 
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3.4 Discussion 

3.4.1 Role of LILRB1 in modifying DENV compartmentalization during ADE 

Chapter 2 has shown that antibody-opsonized DENV ligates activating FcγR and that 

the ITAM signaling from FcγRs leads to Syk phosphorylation. Apart from inducing 

antiviral responses, Syk is also known to regulate phagocytosis, cytokine secretion 

and reactive oxygen species production depending on its binding to downstream 

substrates (Mocsai et al, 2010). As Syk mediates diverse biological functions, we 

tested the hypothesis that reduced Syk signaling could lead to differences in DENV 

compartmentalization, which could also influence the outcome of ADE. Data in this 

chapter showed that higher levels of phosphorylated Syk permitted faster phagocytic 

trafficking of DENV immune complexes through Rab-5, Rab-7 and LAMP-1 

compartments during ADE (Fig. 3-1). Furthermore, using pHrodo-labelled DENV, we 

demonstrated that LILRB1 co-ligation reduced levels of phagosomal acidification 

(Fig. 3-4D), and this could be reversed by SHP-1 inhibition in primary monocytes 

(Fig. 3-6B). This work has now expanded knowledge of how co-ligation of LILRB1 

allows DENV to evade host immune responses – allowing DENV to both overcome 

the early ISG response (Chan et al, 2014) and possibly avoid degradation via the 

phagolysosomal pathway for enhanced viral replication.  

The finding that LILRB1-mediated signaling could inhibit phagosomal 

acidification has important implications for pathogen replication and degradation, 

which are both pH-dependent processes. Pathogens typically exploit endocytic 

machinery for cellular uptake, and the acidic environment of endocytic vesicles serve 

as a trigger for fusion for many viruses, allowing efficient entry into the cytosol 

(White et al, 2008). Low pH is the sole trigger for viral fusion for orthomyxo-, flavi-, 
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alpha-, rhabdo-, arena-, and bunyaviruses. These viruses enter host cells via 

endocytosis and fuse from within early or late endosomes, depending on the pH that 

elicits key conformational changes for fusion to occur (White et al, 2008). Single 

particle tracking of individual virus particles has revealed that DENV fusion occurs in 

acidic compartments of the late endosome (van der Schaar et al, 2008). An additional 

cue for DENV fusion is the lipid composition of endosomal membranes, as fusion 

requires the target membrane to contain anionic lipids like 

bis(monoacylglycero)phosphate, which is predominantly found within late endosomes 

(Zaitseva et al, 2010). These studies were however performed in the absence of 

antibodies. It is not known if FcγR-mediated entry delivers antibody-opsonized 

DENV with the same entry route used during DENV only infection or if phagocytic 

trafficking diverts DENV into a different pathway. We compared the levels of 

phagosomal acidification using pHrodo-labelled DENV under both DENV only and 

ADE infection and found higher levels of phagosomal acidification in THP-1.2R 

compared to THP-1.2S during ADE (Fig. 3-4D). Next, we examined if co-ligation of 

LILRB1 could be responsible for the reduced levels of phagosomal acidification by 

inhibition of SHP-1. Indeed, we found that SHP-1 inhibition with sodium 

stibogluconate led to dose-dependent increase in phagosomal acidification in primary 

monocytes during ADE but not DENV only infection (Fig. 3-6B and C).   

Pathogens have evolved strategies to modify their intracellular 

compartmentalization to subvert phagosome maturation pathways and ensure survival 

in host cells. Some of these strategies include preventing phagosomal acidification 

and restricting phagolysosomal fusion to create an intracellular niche for survival in 

the host. Mycobacterium tuberculosis (Mtb) secretes a protein tyrosine phosphatase 
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(PtpA) that binds the macrophage vacuolar-H+-ATPase (V-ATPase) complex to 

inhibit phagosomal acidification (Wong et al, 2011). PtpA also inhibits 

phagolysosomal fusion by inactivating the host vacuolar protein sorting 33B 

(VPS33B), which regulates membrane fusion in the endocytic pathway (Bach et al, 

2008). It is thus conceivable that recruitment of SHP-1 following ligation of LILRB1 

could also lead to dephosphorylation of similar classes of substrates that regulate 

DENV phagosome maturation. While we have established that SHP-1 inhibition 

increases phagosomal acidification during ADE in primary monocytes (Fig. 3-6B), 

future work should aim towards elucidating the pathway for how LILRB1-mediated 

signaling inhibits phagosome acidification and maturation.    

 

3.4.2 Possible roles of Syk in regulating phagosome maturation 

Phagosome acidification is an essential component of phagosome maturation. The 

acquisition of V-ATPase proton pumps, hydrolytic enzymes, and the production of 

reactive oxygen species (ROS) by the NADPH oxidase complex contribute to rapid 

acidification of the phagosome. The role of Syk in regulating phagosomal 

acidification has gained traction in recent studies detailing how Syk activity following 

phagocytosis of fungal pathogens regulates phagosome maturation. Inhibition of Syk 

following dectin-1 ligation by Candida albicans led to prolonged retention of dectin-1 

on the phagosome and reduced phagosomal acidification (Mansour et al, 2013). 

Similarly, in Candida glabrata, Syk activation decayed faster in macrophages with 

viable Candida glabrata that had resided in non-matured phagosomes (Kasper et al, 

2014). It is possible that Syk activation is required for full phagosome maturation of 

viable Candida glabrata containing phagosomes.  
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The V-ATPase proton pumps harness energy from ATP hydrolysis for active 

transport of protons across the phagosome membrane and serve as the main 

determinant for phagosome acidification. Recently, synaptosomal associated protein 

of 23kDa (SNAP-23), a plasma membrane-localized soluble NSF attachment protein 

receptor (SNARE) was found to regulate phagosome formation and maturation on 

macrophages (Sakurai et al, 2012). Overexpression of SNAP-23 led to increased ROS 

production and enhanced FcγR-mediated phagocytosis, as well as functional 

recruitment of V-ATPase proton pumps and NADPH oxidase complex to phagosomes 

(Sakurai et al, 2012).  

The influx of protons leads to a gradual build-up of electrical potential 

difference, increasing the resistance for translocation of protons into the phagosome. 

Counter-ion movement can dissipate the increased electrical potential difference by 

facilitating the efflux of cations or influx of anions. Macrophages derived from cystic 

fibrosis transmembrane conductance regulator (CFTR)-null mice possessed defects in 

phagosome acidification, which was attributed to reduced chloride (Cl-) conductance 

(Di et al, 2006). The role of chloride ion in opposing the build-up of electrical 

potential that would inhibit proton accumulation was further demonstrated when 

knockdown of Cl-/H+ antiporter ClC-7 inhibited acidification of lysosomes in vivo, 

and was found to be the primary chloride permeation pathway in lysosomes (Graves 

et al, 2008). This also suggests that limiting counter-ion movement could lead to a 

stunted pH gradient and insufficient phagosome acidification.  

Syk phosphorylation leads to the activation of phospholipase C-gamma 

(PLCγ) and an increase in cytosolic calcium levels. This triggers calmodulin, which 

recruits Vps34 to the phagosome membrane and leads to production of PI(3)P that is 
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necessary for the recruitment of SNAREs that mediate vesicle fusion (Vergne et al, 

2003). It is possible that by regulating calcium signaling and the activity of SNARE 

proteins, Syk can also indirectly mediate the recruitment of V-ATPase proton pumps 

and anion/H+ antiporters like ClC-7 for enhanced phagosome maturation.  

Syk phosphorylation following FcγR-mediated phagocytosis also leads to 

activation of the NADPH oxidase complex, which is responsible for ROS production. 

Downstream effects of Syk phosphorylation include mobilization of 

phosphatidylinositol 3-kinase (PI3-K), which catalyzes the synthesis of 

phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) on the phagocytic cup (Cox et 

al, 1999). The production of PI(3)P can occur via breakdown of phagosomal 

PI(3,4,5)P3 by phosphatases like SHIP-1 or by calcium signaling which triggers 

calmodulin-mediated recruitment of Vps34 on the phagosome membrane (Thi & 

Reiner, 2012; Vergne et al, 2003). PI(3)P binds the p40phox subunit of NADPH 

oxidase complex and is crucial for timing the oxidative burst on phagosomes. This 

was aptly shown in a study in which point mutations of p40phox that disrupted PI(3)P 

binding led to abrogation of FcγRIIA-stimulated NADPH oxidase activity (Suh et al, 

2006). 

Besides regulating phagosome acidification, Syk also plays a role in endocytic 

trafficking of immune receptors like FcεRI and was shown to be required for 

internalization of FcεRI complexes and their trafficking to lysosomes for eventual 

degradation. Syk was shown to phosphorylate hepatocyte growth factor-regulated 

tyrosine kinase substrate (Hrs), a component of the endosomal sorting complex 

required for transport (ESCRT-0) (Gasparrini et al, 2012). Phosphorylated Hrs was 

targeted to membrane compartments, allowing Hrs to regulate the sorting of 
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ubiquitylated cargo to multivesicular bodies (Gasparrini et al, 2012). In this context, 

Syk may also regulate phagosome maturation by activating adaptors of endocytic 

trafficking for fusion with late endosomes or lysosomes. 

Examples from the literature have demonstrated possible mechanisms in 

which Syk could modulate phagosome maturation, one of which is through the 

activation of acid hydrolases. There is also significant overlap in how Syk-mediated 

calcium signaling and PI3-K pathways could result in phagosome maturation through 

their roles in vesicle fusion, recruitment of adaptors of endocytic or phagocytic 

trafficking, and phagosome acidification. Future work should seek to clarify Syk-

driven molecular events for regulating phagosome maturation. 

 

3.4.3 Festina lente – a model to explain DENV compartmentalization during ADE 

The Roman emperor Augustus used the phrase “festina lente” to discourage his 

military commanders from making rash decisions that led to failures on the 

battlefield. Here, the findings in this thesis suggest that festina lente could be a model 

employed by DENV to escape the phagolysosomal pathway, ensuring its intracellular 

survival during ADE. We showed that activating FcγR-mediated phagocytosis of 

antibody-opsonized DENV triggers Syk phosphorylation, leading to higher degree of 

phagosomal maturation and acidification in DENV-containing phagosomes. This 

activates lysosomal hydrolases like CatD and other potential candidates (Table 3-1) 

that are activated only in an acidic microenvironment, which could degrade DENV in 

the phagolysosomal pathway. Conversely, co-ligation of LILRB1 leads to recruitment 

of SHP-1 and dephosphorylation of Syk, which results in reduced phagosomal 

acidification and maturation. While the reduced or slower acidification would also 
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delay trimerization of DENV E protein for successful uncoating of the nucleocapsid, 

the overall effect of LILRB1 co-ligation may favor DENV as the virus would be less 

likely to encounter activated enzymes that would otherwise digest it. This may accord 

DENV the opportunity to overcome an initial barrier for intracellular survival.  

Festina lente may thus capture the essence of the early events of ADE. 

 



 

     

 

 
Table 3-1. pH-dependent lysosomal enzymes. Out of an estimated 60 proteins found in the lysosomal matrix (Lubke et al, 2009), this 
list has been curated from the following references (Guha & Padh, 2008; Lubke et al, 2009; Schroder et al, 2010; Sleat et al, 2007) to 
include lysosomal enzymes that work at an acidic optimum pH and could inactivate DENV trapped in the phagolysosomal pathway. 

 
Protein Gene Protein function 
Arylsulfatase A ARSA Hydrolysis of cerebroside sulphates 
Arylsulfatase B ARSB Hydrolysis of the four-sulphate groups of chondroitin and dermatan sulphate 
N-acetylglucosamine-6-sulfatase GNS Hydrolysis of 6-sulphate groups 
N-acetylgalactosamine-6-sulfatase GALNS Hydrolysis of 6-sulphate groups, relevant for degradation of chondroitin 

sulphate and keratan sulphate 
α-N-acetylgalactosaminidase NAGA Glycosidase; Removes terminal α-N-acetylgalactosamine 

residues from glycolipids and glycopeptides 
Lysosomal α-glucosidase GAA Glycosidase; degradation of glycogen 
β-hexosaminidase subunit α HEXA Glycosidase; degradation of GM2 gangliosides 
β-hexosaminidase subunit β HEXB Glycosidase; degradation of GM2 gangliosides 
Lysosomal α-mannosidase MAN2B1 Glycosidase; cleaves α-linked mannosyl residues with broad specificity 
α-galactosidase A GLA Glycosidase; hydrolysis of terminal α-D-galactosyl residues in α-D-galactosides 
α-N-acetylglucosaminidase NAGLU Glycosidase; degradation of heparan sulphate 
β-galactosidase GLB1 Glycosidase; cleaves terminal galactosyl residues from gangliosides, 

glycoproteins and glycosaminoglycans 
β-glucuronidase GUSB Degradation of dermatan and keratan sulphates 
Cathepsin B CTSB Proteolysis  
Cathepsin D CTSD Proteolysis 
Cathepsin H CTSH Proteolysis 
Cathepsin L CTSL Proteolysis 
Cathepsin S CTSS Proteolysis 
Cathepsin Z CTSZ Proteolysis 
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Acid ceramidase ASAH1 Lipase; Hydrolysis of ceramide into sphingosine and free fatty acid 
Deoxyribonuclease II DNASE2 Hydrolysis of DNA 
Hyaluronidase HYAL1 Degradation of hyaluronate 
Lysosomal acid phosphatase  ACP2 Phosphatase activity 
Tissue α-L-fucosidase FUCA1 Hydrolysis of α-1,6-linked fucosyl residues in glycopeptides 
Tripeptidyl-peptidase I TPP1 Release of N-terminal tripeptides from polypeptides 
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Chapter 4. CONCLUSION AND FUTURE DIRECTIONS 

 

This thesis provides new insights into the early molecular events during DENV infection 

under ADE conditions. During ADE, antibody-opsonized DENV cross-links activating 

FcγRs, which rapidly signals to trigger an antiviral response by inducing ISGs, unless 

suppressed by co-ligation of the inhibitory FcγRIIB (Dhodapkar et al, 2007). However, 

earlier work from our laboratory demonstrated that co-ligation of FcγRIIB requires high 

concentrations of cross-reactive antibodies that form viral aggregates, which also 

inhibited FcγR-mediated phagocytosis of DENV immune complexes. At sub-neutralizing 

levels of antibody, FcγRIIB is not co-ligated. In the absence of FcγRIIB-mediated 

inhibition, entry through activating FcγR would lead to induction of ISGs, which are 

known to inhibit viral replication. We have shown that in order to overcome this early 

antiviral response, DENV co-ligates an inhibitory receptor LILRB1, which recruits the 

phosphatase SHP-1 to dephosphorylate Syk and hence downregulate ISG expression, 

thus favouring DENV replication. As Syk is a key intermediate of signaling pathways 

that control phagosomal trafficking and maturation, co-ligation of LILRB1 also appears 

to modulate DENV compartmentalization during antibody-enhanced DENV infection. 

Indeed, increased Syk activity led to faster phagocytic trafficking of DENV immune 

complexes through Rab-5, Rab-7 and LAMP-1 compartments during ADE. This also 

resulted in higher levels of phagosomal acidification and activation of lysosomal 

hydrolases like CatD. However, engagement of LILRB1 reduced levels of phagosomal 

acidification, which could be a potential viral strategy for escaping the phagolysosomal 
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pathway to allow more time for viral fusion. A schematic to illustrate these findings is 

shown in Figure 4-1. Collectively, this thesis has demonstrated that LILRB1 serves as a 

co-factor for antibody-enhanced DENV infection.  

Our findings suggest that identification of epitopes on DENV that interact with 

LILRB1 could facilitate the generation of antibodies that block LILRB1 interaction, 

reducing ADE. This could guide vaccine development to generate vaccines that induce 

robust immunity and minimize the risk of ADE following vaccination, even when 

neutralizing antibodies wane to levels insufficient to prevent infection. Further studies to 

determine how DENV binds LILRB1 could include generating truncated fragments of the 

LILRB1 ectodomain and performing ELISA to test for binding against the four serotypes 

of DENV. Site-directed mutagenesis could also be performed to pin-point the amino acid 

residues involved in binding DENV. Alternatively, cryo-electron microscopy approaches 

could be used to map the interaction of quaternary structure dependent epitopes between 

LILRB1 and DENV.  

LILRB1 signaling also dysregulates Syk-mediated phagosomal maturation and 

acidification of DENV-containing phagosomes. Our data currently shows that SHP-1 

inhibition increases phagosomal acidification during ADE, and we aim to further 

characterize how LILRB1 signaling could govern phagosome maturation. We recently 

completed a mass spectrometric analysis of DENV phagosomes isolated under DENV 

only and ADE conditions which could provide us with possible candidates that mediate 

this process. We will focus on candidates that modify phagocytic trafficking, phagosome 

acidification and the activation or abundance of antimicrobial effectors. These are factors 
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that could modulate the intracellular fate of DENV following activating FcγR-mediated 

uptake. The use of these approaches could be instrumental in improving our 

understanding of the pathogenesis of ADE and how DENV exploits LILRB1 to evade 

host immunity. This will create new opportunities for therapeutic intervention and 

contribute to the design of vaccines that boost immunity while tackling the risk of 

antibody-enhanced dengue.  
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Figure 4-1. Schematic illustrating key findings. At sub-neutralizing antibody 
concentrations, DENV immune complexes ligate activating FcγRs, triggering Syk 
phosphorylation and ISG induction. DENV overcomes this early antiviral response by co-
ligating the inhibitory LILRB1, which recruits the phosphatase SHP-1. SHP-1 
dephosphorylates Syk and reduces ISG expression, resulting in enhanced viral replication 
during ADE. Syk also mediates phagosomal trafficking and maturation, activating 
lysosomal hydrolases that degrade phagosomal cargo. During ADE, co-ligation of 
LILRB1 reduces phagosomal acidification, which could delay the activation of 
lyososomal hydrolases. This allows DENV to escape the phagolysosomal pathway, but 
benefit from the mildly acidic environment for viral fusion and replication.  
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Viruses must evade the host innate defenses for replication and
dengue is no exception. During secondary infection with a heter-
ologous dengue virus (DENV) serotype, DENV is opsonized with
sub- or nonneutralizing antibodies that enhance infection of
monocytes, macrophages, and dendritic cells via the Fc-gamma
receptor (FcγR), a process termed antibody-dependent enhance-
ment of DENV infection. However, this enhancement of DENV in-
fection is curious as cross-linking of activating FcγRs signals an
early antiviral response by inducing the type-I IFN-stimulated
genes (ISGs). Entry through activating FcγR would thus place
DENV in an intracellular environment unfavorable for enhanced
replication. Here we demonstrate that, to escape this antiviral re-
sponse, antibody-opsonized DENV coligates leukocyte Ig-like re-
ceptor-B1 (LILRB1) to inhibit FcγR signaling for ISG expression.
This immunoreceptor tyrosine-based inhibition motif-bearing recep-
tor recruits Src homology phosphatase-1 to dephosphorylate spleen
tyrosine kinase (Syk). As Syk is a key intermediate of FcγR signaling,
LILRB1 coligation resulted in reduced ISG expression for enhanced
DENV replication. Our findings suggest a unique mechanism for
DENV to evade an early antiviral response for enhanced infection.

early innate immune response | innate immune signaling | immune evasion

Despite long-lived serotype-specific immunity upon initial
infection, predicted global prevalence of dengue now sur-

passes World Health Organization estimates by more than
threefold with 390 million cases annually (1). Furthermore, the
risk of severe disease is augmented by cross-reactive or sub-
neutralizing levels of antibody (2, 3), which opsonize dengue
virus (DENV) to ligate Fc-gamma receptor (FcγR) for entry into
monocytes, macrophages, and dendritic cells, a phenomenon
known as antibody-dependent enhancement (ADE) of DENV
infection (4, 5). The resultant greater viral burden leads to in-
creased systemic inflammation that precipitates plasma leakage,
a hallmark of dengue hemorrhagic fever (6). However, ligation
of the activating FcγRs by immune complexes has been shown to
induce type-I IFN stimulated genes (ISGs), independent of auto-
crine or paracrine IFN activity, unless the inhibitory FcγRIIB is
coligated (7). We and others reported recently that coligation of
FcγRIIB by DENV immune complexes requires high antibody
concentration, and such coligation inhibited the entry of DENV
immune complexes into monocytes (8, 9). At low antibody con-
centrations where ADE occurs, the inhibitory FcγRIIB is not
coligated (9). Ligation of the activating FcγRs by DENV opson-
ized with subneutralizing levels of antibody would thus induce the
expression of ISGs and hinder DENV replication (10). Here, we
demonstrate that DENV employs a unique evasive mechanism by
coligating LILRB1 to down-regulate the early antiviral responses
triggered by activating FcγRs for ADE.

Results
ADE Differs in THP-1 Subclones. Our work was enabled by the
isolation of subclones of THP-1 cells with different phenotypes
to ADE. The low rate of FcγR-mediated phagocytosis in THP-1
cells (∼5%) (9) had led us to reason that this cell line is genet-
ically heterogeneous, either through the method in which it was
derived (11) or through genetic instability resulting from aneu-
ploidy (12). Screening of our newly isolated subclones with DiD
(1, 1’-dioctadecyl-3, 3, 3′, 3′ – tetramethylindodicarbocyanine,
4-chlorobenzenesulfonate salt) labeled DENV-2 alone or opson-
ized with subneutralizing concentrations of humanized 3H5
monoclonal antibody (h3H5) identified two clones (labeled as
THP-1.2R and THP-1.2S) that showed increased uptake of
DENV immune complexes compared with parental THP-1 (Fig.
1A). Monocyte surface marker analysis indicated no significant
difference in the expression of FcγRs (FcγRI, FcγRII, FcγRIII)
in these subclones (SI Appendix, Fig. S1A). Expression of FcγRIIA,
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FcγRIIB, and FcγRIIC were similar in these subclones (SI Ap-
pendix, Fig. S1 B and C). Both subclones were also heterozygous
for 131 H/R FcγRIIA polymorphism (SI Appendix, Fig. S1E).
Identical HLA haplotyping confirmed that both subclones were
derived from THP-1 and not the result of a contamination with
another cell line (SI Appendix, Table S1).
Despite no significant differences in uptake and production of

plaque titers when infected with DENV-2 only, infection under
ADE conditions resulted in significantly different DENV-2 titers
in THP-1.2R and THP-1.2S (Fig. 1B). Similar observations were
also made with enhancing titers of convalescent serum (SI Ap-
pendix, Fig. S2A) or other DENV serotypes (SI Appendix, Fig.
S2B). Furthermore, early DENV RNA replication diverged in
these two subclones, where a significant difference was observed
as early as 6 h postinfection (Fig. 1C). Analysis of early gene
expression indicated significant up-regulation of ISGs in THP-
1.2R but not THP-1.2S (Fig. 1 D and F–I). These included MX1,
MX2, and viperin, which are potent inhibitors of DENV repli-
cation (10). The up-regulation of ISGs in THP-1.2R, however,
was not due to h3H5 (SI Appendix, Fig. S3) and is independent of

IFN-α, -β, and -γ signaling as both subclones expressed similar
IFN transcript levels (Fig. 1E). As expected, addition of antibodies
that blocked IFNα receptor (IFNαR) signaling (SI Appendix, Fig.
S4A) did not reduce this early ISG induction in THP-1.2R fol-
lowing infection (SI Appendix, Fig. S4B). The possibility that THP-
1.2S had impaired IFNαR-mediated signaling was also excluded,
as ISGs were significantly up-regulated in response to exogenous
IFN (SI Appendix, Fig. S4C). These subclones thus serve as ex-
quisite tools to decipher the signaling requirement to overcome
the early antiviral responses for successful ADE.

Early ISG Expression During ADE Is Independent of RIG-I/MDA5
Signaling. Differences in viral entry through ADE and DENV-
2–only conditions could have resulted in different intracellular
antigenic load and hence resulted in differential ISG expression
in the subclones. To identify the specific signaling pathway re-
sponsible for early ISG induction in THP-1.2R during ADE
infection, we titrated the multiplicity of infection (MOI) for
DENV-2 only that resulted in equivalent level of infection as
ADE (MOI 10) to serve as an antigenically equivalent control

Fig. 1. ADE differs in THP-1 subclones. (A) Percentage of internalized DiD-labeled DENV-2 30 min postinfection under DENV-2 or ADE conditions in THP-1,
THP-1.2R, and THP-1.2S. (B) Plaque titers of THP-1, THP-1.2R, or THP-1.2S when infected with DENV-2 opsonized with different h3H5 concentrations 72 h
postinfection (hpi). Dotted lines indicate plaque titers following DENV-2–only infection, with no significant differences observed between the cell lines. (C)
Time course of viral RNA copy numbers in THP-1.2R or THP-1.2S under ADE conditions. (D) Heat map showing fold change of ISG expression in THP-1.2R and
THP-1.2S at 6 hpi under ADE conditions. (E) Fold change in transcript levels of interferons in THP-1.2R and THP-1.2S 6 hpi under ADE conditions. (F–I) Val-
idation of microarray data in D by quantitative PCR. Data are expressed as mean ± SD from three independent experiments. **P < 0.01, *P < 0.05.
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(Fig. 2 A and B). Interestingly, lower and higher plaque titers
were observed in THP-1.2R and THP-1.2S, respectively, during
ADE relative to DENV-2–only (MOI 60) conditions (Fig. 2C),
which corroborates the notion that THP-1.2R has reduced
susceptibility to ADE. Immunofluorescence imaging showed
nuclear translocation of pSTAT-1 at 3 h post ADE in THP-1.2R
but not in THP-1.2S or during antigenically equivalent DENV-
only infection (Fig. 2D). This early nuclear translocation of
pSTAT-1 is transient as little colocalization could be observed at
6 h postinfection.
With similar intracellular antigenic load in ADE and DENV-

2–only conditions, we determined whether trafficking of DENV
containing-phagosomes to cellular compartments enriched with
pattern recognition receptors was an explanation for ISG in-
duction in THP-1.2R. This was not the case as reduced expres-
sion of adaptor molecules [mitochondrial antiviral signaling
protein (MAVS) and IFN regulatory factor 3 (IRF3)] of retinoic
acid-inducible gene I (RIG-I)/melanoma differentiation-associ-
ated protein 5 (MDA5) resulted in significantly increased early

DENV replication under DENV-2–only but not ADE conditions
(Fig. 2E). Reduced TIR-domain containing adapter-inducing
IFN β (TRIF) did not result in significant change in DENV
replication under either condition (Fig. 2E). Collectively, these
results indicate that the early induction of ISG in THP-1.2R is
unique to infection under ADE condition and is not mediated by
RIG-I/MDA5–dependent type-I IFN expression.

Early ISG Induction Is Mediated by Activating FcγR. The independence
of ISG expression from RIG-I/MDA5–mediated signaling thus
suggests that activating FcγR signaling (7) through spleen tyro-
sine kinase (Syk) activation (13) is critical in THP-1.2R. We thus
quantified Syk activation by Western blot with densitometric
measurements. Significant difference in Syk phosphorylation
was observed as early as 10 min postinfection under ADE but
not DENV-2–only conditions in THP-1.2R (Fig. 3A). In con-
trast, no significant difference in Syk phosphorylation was ob-
served under DENV-2–only and ADE conditions in THP-1.2S.
Pretreatment of THP-1.2R with piceatannol, a Syk-selective tyrosine

Fig. 2. Early ISG induction during ADE is independent of RIG-I/MDA5-contingent IFN signaling. (A) Uptake of Alexa 488-labeled DENV-2 under virus-only
(MOI 10–60) and ADE (MOI 10) conditions 6 hpi. (B) Mean fluorescence intensity under virus-only (MOI 60) and ADE (MOI 10) conditions 6 hpi. All subsequent
experiments were performed under DENV-2–only (MOI 60) or ADE (MOI 10) conditions. (C) Plaque titers of THP-1.2R and THP-1.2S when infected with DENV-
2–only or ADE conditions. (D) Colocalization of pSTAT-1 with DAPI 3 hpi and 6 hpi under DENV-2–only or ADE conditions. (E) Viral RNA expression determined
6 hpi in siRNA-treated cells infected under DENV-2–only or ADE conditions. Data are expressed as mean ± SD from three independent experiments.
**P < 0.01, *P < 0.05.
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kinase inhibitor resulted in greater reduction of ISG expression
under ADE conditions (Fig. 3B) and a correspondingly greater
increase in DENV replication (Fig. 3C) compared with DENV-2
only. Increase in DENV replication was also greater in THP-1.2R
than THP-1.2S. These findings suggest that early ISG expression
in THP-1.2R is conditioned upon activating FcγR signaling through
phosphorylated Syk (7).

Coligation of LILRB1 Inhibits ISG Induction. As activating FcγR sig-
nals through immunoreceptor tyrosine-based activation motif
(ITAM), we postulated that DENV coligates an immunore-
ceptor tyrosine-based inhibition motif (ITIM)-bearing receptor
to inhibit Syk activation (14) in THP-1.2S. Examination of the
gene expression data identified two such possible receptors.
LILRB1 (also known as CD85j or Ig-like transcript-2) and
LILRB4 were up-regulated preinfection in THP-1.2S relative to
THP-1.2R (SI Appendix, Fig. S5A). Flow cytometry analysis,
however, showed that only LILRB1 (Fig. 3D and SI Appendix,
Fig. S5B) displayed higher surface expression on THP-1.2S.
Because one of the effects of ITIM phosphorylation is the re-
cruitment and phosphorylation of SHP-1 (15, 16), we measured
phosphorylated SHP-1 in the two subclones. Higher pSHP-1
levels were found in THP-1.2S than THP-1.2R under ADE
conditions (Fig. 3 E and F), suggesting that pSHP-1 dephos-
phorylated Syk in THP-1.2S.

If LILRB1 is necessary for ADE, then antibody-opsonized
dengue should coligate LILRB1. Indeed, all four DENV sero-
types bind to LILRB1, more strongly with whole virus than with
E protein ectodomain (Fig. 4A and SI Appendix, Fig. S6A),
suggesting that LILRB1 binds to a quaternary structure-depen-
dent epitope. Furthermore, the addition of soluble extracel-
lular domain of LILRB1 (SI Appendix, Fig. S6B) successfully
competed with native LILRB1 on THP-1.2S to reduce ADE but
not DENV-2–only infection in a dose-dependent manner (Fig.
4B). As expected, soluble LILRB1 ectodomain did not alter the
rate of viral entry as this receptor functions by modulating the
antiviral state of the cell rather than increasing DENV entry (SI
Appendix, Fig. S6 C and D). Likewise, reduced LILRB1 ex-
pression in THP-1.2S resulted in reduced DENV replication
under ADE conditions (Fig. 4C), without altering the rate of
viral entry (SI Appendix, Fig. S6E). The lack of any change in
DENV replication with FcγRIIB expression also reinforces the
notion that subneutralizing levels of antibody are insufficient to
aggregate DENV to coligate FcγRIIB (9). Similar observations
were made with knockdown of LILRB1 expression in another
unrelated human myelogenous leukemia cell line, K562 (SI
Appendix, Fig. S7).
Conversely, overexpression of LILRB1 in THP-1.2R resulted

in increased DENV replication under ADE conditions (Fig. 4D).

Fig. 3. Early ISG induction following ADE requires Syk phosphorylation. (A) Western blot and quantitative densitometry of pSyk levels using immunopre-
cipitation with Syk antibody. (B) ISG expression in DMSO- or piceatannol-treated (15.6 μg/mL) THP-1.2R under DENV-2–only or ADE conditions 6 hpi. (C) Fold
change in DENV RNA copy numbers in THP-1.2R and THP-1.2S pretreated with piceatannol relative to DMSO control. (D) Western blot, % LILRB1+ cells, and
representative flow cytometry plots of LILRB1 in THP-1.2R and THP-1.2S. Cells were either stained with isotype (gray) or polyclonal anti-LILRB1 antibody (open
histogram). (E ) Western blot of pSHP-1, SHP-1 and GAPDH at different time points after infection under mock, DENV-2–only, and ADE conditions. (F )
Quantitative densitometry of pSHP-1 levels under ADE conditions. Data are expressed as mean ± SD from three independent experiments. **P < 0.01,
*P < 0.05.
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As a control, we also overexpressed LILRB4, but this did not
result in increased DENV replication. Critically, mutation of
the four tyrosine residues in the ITIM tail to phenylalanine (SI
Appendix, Fig. S8) abrogated the increased DENV replication
(Fig. 4D). Taken collectively, these findings indicate that DENV
coligates LILRB1 to inhibit FcγR-activated early ISG expres-
sion for ADE.
The mechanistic requirement for LILRB1 in ADE suggests

that interfering with this pathway would abrogate ADE in pri-
mary monocytes. We studied CD14hiCD16− inflammatory mono-
cytes that express both FcγRs and LILRB1 (SI Appendix, Fig. S9
A and B), which form the majority of the circulating monocytes
(17). Indeed, pretreatment with sodium stibogluconate, a SHP-1
inhibitor resulted in a dose-dependent reduction in DENV-2
replication under ADE conditions (Fig. 4E), with no significant
reduction in primary monocyte cytotoxicity (SI Appendix, Fig. S9C).
Likewise, plaque titers following ADE infection of the other 3
DENV serotypes on primary monocytes obtained from different
healthy donors were significantly lower in sodium stibogluco-
nate treated cells compared with untreated cells (Fig. 4F). Pre-
treatment of primary monocytes derived from peripheral blood
mononuclear cells (PBMCs) from 12 different healthy human
volunteers with anti-LILRB1 antibodies also resulted in signif-
icantly reduced DENV replication compared with isotype anti-
bodies (Fig. 4G).

Discussion
The ADE hypothesis has been widely used to explain the epi-
demiological association between secondary DENV infection
and severe dengue (18, 19). However, entry through the acti-
vating FcγR pathway would pose no replicative benefit to DENV
unless it is able to overcome the ITAM–Syk–STAT-1 signaling
axis that leads to ISG induction (7, 13). The findings here thus
indicate that coligation of LILRB1 is a critical first step for
successful antibody-dependent DENV infection (SI Appendix,
Fig. S10).
LILRB1 is expressed on monocytes, dendritic cells, and sub-

sets of T and NK cells. Its natural function is to activate negative
feedback mechanisms upon binding to major histocompatibility
complex class I (MHC-I) molecules (20). Consequently, it is
conceivable that viruses exploit this pathway to create an in-
tracellular environment more favorable for replication. Besides
dengue, human cytomegalovirus (HCMV) also binds LILRB1
through the glycoprotein UL-18 to trigger an inhibitory signaling
pathway that limits antiviral effector functions (21, 22). Fur-
thermore, increased LILRB1 expression in CD8+ effector T-cells
is associated with reduced cytokine secretion and cytotoxicity in
persistent HCMV and Epstein–Barr virus infections (22, 23). It
would be interesting to test if LILRB1-mediated suppression of
immune signaling is also exploited by other viruses.
Coligation of LILRB1 by DENV during antibody-dependent

infection suggests that LILRB1 polymorphism may influence
outcome of infection. Previous studies have shown that this gene
is highly polymorphic (24) and can be alternatively spliced (25).
However, a recent genome-wide association study did not reveal
a significant association between LILRB1 and dengue shock
syndrome (26); this is not surprising because, although LILRB1
activation is critical for initial replication with FcγR-mediated

Fig. 4. Coligation of LILRB1 is essential for ADE. (A) Binding of LILRB1 to
whole DENV or DENV E protein ectodomain. (B) Plaque titers following
DENV-2 or ADE infection in the presence of soluble LILRB1 ectodomain
(2 μM, 20 μM, 200 μM), 200 μM BSA, or no protein control. (C) Plaque titers
following DENV-2 or ADE infection after LILRB1 or FcγRIIB knockdown.
Numbers below Western blot indicate levels of proteins relative to LAMP-1.
(D) Plaque titers following DENV-2 or ADE infection in THP-1.2R transfected
with empty vector or vector expressing LILRB1, mutant LILRB1 (LILRB1MUT),
or LILRB4. Numbers belowWestern blot indicate levels of proteins relative to
LAMP-1. (E) Plaque titers following DENV-2–only and ADE infection of pri-
mary monocytes treated with sodium stibogluconate (SSG) or PBS control
(dashed lines, shaded areas reflect SD). (F) Plaque titers following DENV-1–,

-3, or -4–only and ADE infection of primary monocytes treated with SSG
(0.138 mM) or PBS control. (G) Plaque titers in primary monocytes derived
from PBMCs harvested from 12 healthy individuals and infected in vitro with
either DENV-1 (n = 3), DENV-2 (n = 3), DENV-3 (n = 3), or DENV-4 (n = 3)
opsonized with h4G2 antibodies at 72 hpi. PBMCs were either pretreated
with polyclonal anti-LILRB1 antibody or isotype antibody control. Data are
expressed as mean ± SD from three independent experiments. **P < 0.01,
*P < 0.05.
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entry, multiple other host and viral factors contribute to eventual
disease outcome.
Our findings also suggest that generation of antibodies to

quaternary structure-dependent epitopes on DENV that block
LILRB1 interaction can reduce ADE. That heterotypic anti-
bodies can enhance dengue infection in FcγR-bearing cells rep-
resents a safety concern in the development of a dengue vaccine.
Hence, a vaccine that can generate high-titer antibody that binds
the quaternary structure-dependent epitopes on DENV to prevent
LILRB1 ligation could reduce the risk of vaccine-induced ADE.
Further studies would be needed to clarify this, although care
must be taken in selecting a suitable in vivo model as the LILRB1
gene is deleted in laboratory strains of mice (27).
In conclusion, DENV coligates LILRB1 to down-regulate the

activating FcγR-mediated early ISG expression for successful
antibody-dependent infection.

Materials and Methods
Cells. THP-1.2R and THP-1.2S were subcloned from THP-1 by limiting dilution.
Primary monocytes were isolated from healthy donors and cultured as de-
scribed (9).

Viruses.DENV-1 (06K2402DK1),DENV-3 (05K863DK1), andDENV-4 (06K2270DK1)
are clinical isolates from the EDEN study (28). DENV-2 (ST) is a clinical isolate
from the Singapore General Hospital.

Virus Infection. Endotoxin-free (LAL Chromogenic Endotoxin Quantitation kit,
Pierce) 3H5 and 4G2 chimeric human/mouse IgG1 antibodies were con-
structed as described (29). DENV was incubated with media, antibodies, or
serum for 1h at 37 °C before adding to cells at indicated MOI. Uptake was
assessed using DiD and Alexa 488-labeled DENV as described (9, 30). For drug

assays, cells were pretreated with piceatannol (Sigma-Aldrich) or sodium
stibogluconate (Santa Cruz Biotechnology) 6 h before infection. Cell viability
was assessed using CellTiter 96 AQueous One Solution Cell Proliferation
Assay (MTS, Promega) according to the manufacturer’s protocol. Subse-
quently, virus replication was assessed using quantitative PCR at indicated
time points and plaque assay at 72 h postinfection. Protein and protein
phosphorylation levels were assessed using Western blots and analyzed
with ImageJ.

Microarray Analysis. Following RNA extraction, microarray was performed at
the Duke-NUS Genome Biology Core Facility. cRNAs were hybridized to
Illumina Human HT-12 v4 Beadchips, according to manufacturer’s instruc-
tions. Data analysis was performed using Partek software and normalized
against GAPDH.

Competition with Soluble LILRB1 Ectodomain. The extracellular portion of
LILRB1 was cloned into pCMV-XL5 (Origene) and transfected into HEK293T
cells for protein expression. The expressed proteins were then purified and
incubated with DENV-2 or h3H5-opsonized DENV-2 for 1 h at 37 °C before
adding to THP-1.2S.

siRNA Transfection and Overexpression. siRNA transfections and overex-
pression were performed as described (9). siRNA targeting FcγRIIB (Qiagen),
LILRB1, MAVS, IRF3, and TRIF (SABio) were used, and overexpression studies
were performed with either empty plasmid, plasmid encoding LILRB1 or ty-
rosine mutant LILRB1, or LILRB4.
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Therapeutic antibodies as a
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Dengue is the most prevalent mosquito-borne viral disease globally with about 100 million cases
of acute dengue annually. Severe dengue infection can result in a life-threatening illness. In the

10absence of either a licensed vaccine or antiviral drug against dengue, therapeutic antibodies
that neutralize dengue virus (DENV) may serve as an effective medical countermeasure against
severe dengue. However, therapeutic antibodies would need to effectively neutralize all four
DENV serotypes. It must not induce antibody-dependent enhancement of DENV infection in
monocytes/macrophages through Fc gamma receptor (FcgR)-mediated phagocytosis, which

15is hypothesized to increase the risk of severe dengue. Here, we review the strategies and
technologies that can be adopted to develop antibodies for therapeutic applications. We also
discuss the mechanism of antibody neutralization in the cells targeted by DENV that express Fc
gamma receptor. These studies have provided significant insight toward the use of therapeutic
antibodies as a potentially promising bulwark against dengue.

KEYWORDS: antibody • antibody-dependent enhancement • dengue • neutralization • therapeutics

25Dengue is the most prevalent mosquito-borne
viral disease globally [1]. Infection with any of
the four dengue virus serotypes (DENV-1-4)
can result in a range of syndrome, from self-
limiting febrile illness to severe dengue [2]. Out

30of an estimated 400 million infections that occur
globally each year, a quarter of these develop
into acute illness [1]. The escalating number of
dengue cases worldwide is fuelled by the
increased geographical distribution of the mos-

35quito vector from international movement of
human and cargo, unplanned and uncontrolled
urbanization, migration of dengue susceptible
individuals into dengue endemic cities, inad-
equate domestic water supplies and poor vector

40control measures in most areas of the
tropics [3–6]. Infection with one of the four
DENV serotypes results in long-term immunity
to the homologous serotype but provides only
temporary protection against the remaining

45three heterologous serotypes [7,8]. Consequently,
secondary infections with a heterologous DENV
serotype, which can increase the likelihood of
severe dengue, are increasingly prevalent [9–12]

These trends culminate in dengue becoming a
50major and growing public health problem

throughout the tropical world.
Although dengue transmission can be

reduced by vector control, many dengue
endemic areas do not employ effective vector

surveillance and control programs. This is
partly due to the lack of long-term political
and financial support for national mosquito
surveillance and control programs [13]. Over-
reliance on chemical control and poor partici-
pation from the community also resulted in
short-lived effectiveness in disease preven-
tion [14]. Furthermore, low vector density may
not necessarily result in sustainable reduction
in dengue incidence. For instance, despite
active entomologic surveillance and source
reduction efforts in Singapore, the incidence
of dengue surged in the 1990s and remains
high even at present. Multiple factors contrib-
ute to this re-emergence of dengue in Singa-
pore despite vector control. These include
lowered herd immunity [15], a shift in virus
transmission from a domestic to non-domestic
setting [16], more clinically overt infections in
adults and reduced emphasis on surveillance in
the present vector control program [17]. All of
these are a direct consequence of the vector
control program [17], which collectively under-
scores the need for a safe, effective and afford-
able vaccine for sustainable prevention against
dengue.

Although safe and effective vaccines have
been developed for other flaviviruses such as
yellow fever virus (YFV), Japanese encephalitis
virus (JE) and tick-borne encephalitis virus, no
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55 licensed dengue vaccine is currently available. The development
of an effective dengue vaccine has been challenging because of
the need to protect against all four DENV serotypes simultane-
ously. Furthermore, as non-neutralizing or sub-neutralizing lev-
els of antibodies may opsonize DENV and engage fragment

60 crystallisable receptors (FcgR) in myeloid cells for enhanced
cellular entry and infection [18,19], the induction of antibodies
has to be at levels sufficient to prevent antibody-dependent
enhancement (ADE) of DENV infection. This hypothesis is
the leading explanation for the association between secondary

65 infection and increased risk of severe dengue. The current lead-
ing vaccine candidate is Sanofi Pasteur’s ChimeriVax-DENV
vaccine, which uses the yellow fever virus 17D vaccine strain as
a live vector for the pre-membrane (prM) and envelope (E)
genes of the four different DENV serotypes [20,21]. However,

70 although excellent immunogenicity and safety profile of
ChimeriVax-based vaccine candidates have been observed [21–23],
the recent phase 2b trial on Thai school children indicated that
vaccine efficacy was only 30.2% [24], suggesting significant
room for improvement. Without sustainable vector control

75 measures or licensed preventive vaccines, management of
dengue cases is critical to minimize the disease burden.

Currently, clinical management of dengue is primarily sup-
portive. No licensed antiviral drug against dengue is available.
Therapies that can effectively reduce the risk of severe dengue

80 could be transformative to the field. An option to be consid-
ered is therapeutic antibodies. Indeed, lifelong immunity
against the homologous DENV serotype is largely mediated by
the neutralizing antibodies that develop following acute infec-
tion [7,8]. This suggests that timely administration of neutraliz-

85 ing antibodies could lower DENV viremia, high levels of
which has been shown to be associated with severe dengue [25].
Furthermore, the expanding knowledge on dengue neutralizing
epitopes and the increasing popularity of therapeutic antibodies
as a treatment option for infectious diseases also work in favor

90 of such an approach to the treatment of dengue.
The main advantages of therapeutic antibodies are that they

are well-established and are generally well tolerated by
humans [26]. As they are increasingly used as treatment for
other infections or diseases, the production cost of therapeutic

95 antibodies has also reduced over the years. Moreover, these
antibodies can be modified to improve their efficacy [27,28]. In
recognition of these possible benefits, there is an increasing
attention to identify and develop therapeutic antibodies against
dengue. In this article, we describe the potential of using thera-

100 peutic antibodies against dengue and the epitopes that can be
targeted to generate potent neutralizing antibodies. With an
improved mechanistic understanding of DENV neutralization
and ADE, we also describe how recent findings in this area can
be applied to augment therapeutic efficacy of these antibodies.

105 Therapeutic monoclonal antibodies for infectious
diseases
Several human serum immunoglobulin (IgG) preparations have
been licensed as passive immunotherapy for a wide range of

viruses, indicating that antibody therapy can be effective thera-
110peutically [29,30]. The main advantage of using polyclonal anti-

body preparations is that they contain a large and diverse
population of antibodies that recognize different viral epitopes.
These different antibodies can have strong antiviral activity as
the presence of different neutralizing antibodies can exert addi-

115tive or even synergistic effects on neutralization. Targeting mul-
tiple epitopes to neutralize DENV also reduces the risk of
emergence of neutralization escape mutants. However, polyclo-
nal preparations have batch to batch variations and may carry
the risk of blood-borne pathogen transmissions. Moreover, as

120the vast majority of DENV-specific antibodies are non-
neutralizing [31–33], polyclonal preparations will have to be indi-
vidually screened to ensure that they contain sufficiently high
titers of neutralizing antibodies, so as to eliminate any potential
risks arising from ADE. Monoclonal antibodies (mAbs), in

125contrast, can be produced in large quantities and with high
consistency. As mAbs can bind to their antigens with high
affinity and specificity, the adverse events associated with the
use of these antibodies can be greatly reduced.

Rapid production of mAbs suitable for clinical use has been
130enabled by mouse hybridoma technology [34] as well as trans-

genic mice engrafted with human immune system or carrying
human immunoglobulin genes [35]. The development of meth-
ods such as microbial surface display [36] and human memory
B-cell immortalization [37] have also contributed to the produc-

135tion of humanized and chimeric antibodies. Several mAbs have
been developed for different viruses, including human respira-
tory syncytial virus (RSV), rabies virus, West Nile virus (WNV)
as well as severe acute respiratory syndrome coronavirus. These
are currently at different stages of clinical evaluation [29]. The

140most successful mAb approved for prophylactic use is palivizu-
mab, a humanized mAb that specifically targets the fusion pro-
tein of RSV, hence preventing viral entry and infection [38].
Based on two Phase III clinical trials in children, palivizumab
prophylaxis in infants was found to significantly reduce the risk

145of hospitalization due to RSV infection by 55% [39] and
45% [40], respectively. In addition, the palivizumab-treated
group had shorter hospitalization with few adverse events, sup-
porting the use of mAbs for prophylaxis in infants. The use of
therapeutic antibodies against viruses has also gained popularity

150in the past decade. The recent use of m102.4 against Hendra
virus [41] in humans based only on in vitro and in vivo efficacy
in animal models strengthens the potential of therapeutic mAbs
against viruses, particularly during epidemics.

Targeting neutralizing dengue epitopes
155The development of therapeutic antibodies as antivirals has

been accelerated by display and screening platforms enabling
rapid mapping of neutralizing and non-neutralizing viral epito-
pes using viral structural proteins as ‘bait’. More recently,
various groups have succeeded in generating panels of DENV-

160specific humanized monoclonal antibodies (TABLE 1). Besides its
therapeutic applications, these studies also provide insights on
the human antibody response to DENV.
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DENV is a positive-sense single-stranded RNA virus. Its
10.7-kb RNA genome encodes for three structural proteins,

165 namely capsid (C), pre-membrane/membrane (prM/M) and
envelope (E) as well as seven non-structural proteins (NS1,
NS2a, NS2b, NS3, NS4a, NS4b, NS5). Its nucleocapsid core
is surrounded by 180 monomers of E protein organized into
90 tightly packed dimers that lie flat on the surface of the viral

170 membrane [42]. Individual subunits of the E protein form three
beta-barrel domains, domains I (EDI), II (EDII) and III
(EDIII), with the hydrophobic viral fusion peptide located at
the tip of EDII and the receptor binding sites at EDIII [43].
The DENV E protein is the major neutralization target in the

175 human antibody responses following dengue infection. Anti-
bodies against dengue can either be serotype-specific or cross-
reactive as the E proteins of the four serotypes are approxi-
mately 72–80% identical at the amino acid level [44].

Since long-term immunity to DENV is serotype-specific,
180 much work has focused on characterizing neutralizing antibody

responses against the homologous DENV serotype. Using
mouse mAbs, several studies have reported that antibodies tar-
geting the lateral ridge or A-strand of EDIII are potent neutral-
izing antibodies, strongly inhibiting infection in vitro and

185 in vivo [45–48]. Similarly, by mapping the E protein-specific
responses in humans, potent neutralizing mAbs that target the
lateral ridge and the A-strand have been identified [49]. How-
ever, these antibodies represent a surprisingly small fraction of
the antibodies that bind recombinant E-protein [49]. This was

190 substantiated by studies showing that the neutralization activ-
ities of sera before and after depletion of EDIII-specific anti-
bodies had no reduction in neutralization potency in vitro [50]

and in vivo [51]. Hence, unlike mice, humans produce neutraliz-
ing antibodies that mostly do not bind EDIII epitopes [48].

195 Instead of EDIII, highly potent mAbs in DENV human
immune sera bind quaternary epitopes on DENV envelope [52].
de Alwis and colleagues identified a potent neutralizing anti-
body that binds the hinge region between EDI and EDII [52].
Teoh and colleagues isolated a potent neutralizing mAb

200 HM14c10 that recognizes a discontinuous epitope spanning
adjacent surfaces of E-protein dimers on DENV-1 [53]. These
conformational neutralizing epitopes are not only limited to
DENV. Potent neutralizing antibodies against WNV have also
been reported to recognize the flexible DI-DII hinge region,

205 preventing pH-induced re-arrangement of the E-protein
required for virus fusion [54,55]. Therefore, besides using human-
ized mAbs derived from mouse EDIII-specific antibodies,
human antibodies that recognize neutralizing conformational
epitopes like the hinge region between EDI and EDII could

210 also be used therapeutically against homologous serotype
of DENV.

Neutralizing epitope variation
An important consideration for the use of mAb as a therapeutic
agent is the diversity of DENV strains. The replication of

215 DENVs RNA genome is error prone, which does give rise to
diversity in the E protein sequence, including EDIII, within

each of the four DENV serotypes [56]. These differences in the
E protein can directly influence antibody binding and hence,
the efficacy of therapeutic antibodies [44,56]. Compared with

220EDIII mAbs, however, those that target the complex structural
epitopes on EDIII [48] or the hinge region between EDI and
EDII [53] can retain strong binding and neutralizing activity
against multiple strains within each of the four DENV sero-
types. This suggests that antibodies that target the hinge region

225between EDI and EDII may act against strain differences
more effectively.

Another pitfall that has to be addressed is the possible emer-
gence of neutralization escape mutant viruses. Therapeutic
mAb could exert a selection pressure on those strains that are

230able to escape neutralization. This is supported by in vitro stud-
ies demonstrating that resistant viruses can emerge within three
rounds of passaging in cell culture [57]. In the context of acute
dengue, the possibility of resistant virus emerging is reduced as
viremia, which is typically short-lived. However, to negate this

235possibility, it may be necessary to consider an antibody cocktail
consisting of two or more mAbs for each DENV serotype.
Alternatively, bi-specific antibodies or the antibody variable
region-based bi-specific dual affinity re-targeting molecules that
targets two spatially distinct epitopes on each serotype could be

240considered [58].

Models & mechanisms of dengue virus neutralization
Besides binding suitable epitopes, antibody neutralizes DENV
only when a sufficient proportion of the epitopes are bound by
antibodies [59,60]. This stoichiometric threshold for DENV neu-

245tralization is determined by both antibody affinity and epitope
accessibility [61–63]. Antibody affinity is defined by the fraction
of epitopes bound by antibodies at non-saturating concentra-
tions. Epitope accessibility, in contrast, is the number of epito-
pes that is accessible for binding. It is affected by steric

250constraints from virion structure, structural dynamics of virus,
differences in oligomeric states during virion maturation and
antibody size [60]. Reduced epitope accessibility results in an
increased fraction of epitope occupancy required for virus neu-
tralization. Some of the E protein-specific antibodies also rely

255on the dynamic movement of protein molecules, binding to
hidden epitopes that are transiently exposed. For example, opti-
mal binding of mAb 1A1D2 to EDIII requires incubation at
37˚C, as these epitopes are transiently exposed at such tempera-
tures [64]. These studies suggest that antibodies that have high

260affinity to highly accessible epitopes should be prioritized for
therapeutic development.

Another consideration that has to be made for selecting anti-
body for therapeutic development is how the antibody neutral-
izes DENV. Antibody blocks DENV infection at different

265stages of the virus life cycle. MAbs can neutralize DENV by
either blocking attachment to cellular receptors [47] or blocking
viral fusion intracellularly [65]. However, multiple receptors
have been identified as candidates for DENV entry. This
reflects a lack of consensus in the field for a bona fide cellular

270receptor for DENV. Candidate receptors include heparan
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sulfate [66], heat-shock protein 90 [67], CD14 [68] and C-type
lectins such as CLEC5A [69], dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) [70]

and mannose receptor [71]. Hence, identifying mAbs that block
275 attachment of DENV to target cells can be potentially chal-

lenging, especially since most of these studies did not utilize
cells, which are the primary targets of DENV in human infec-
tion. Moreover, when opsonized with antibodies, DENV can
enter myeloid cells through FcgR-mediated phagocytosis. Thus,

280 therapeutic antibodies must be able to inhibit viral fusion in
phagosomes. Indeed, serotype-specific antibodies, which are
associated with long-term immunity in humans, appear to be
able to neutralize DENV in the presence of FcgR-mediated
phagocytosis [72]. In the absence of virus fusion, which typically

285 occurs in Rab7-positive late phagosomal compartments, DENV
remains trapped in the phagocytic pathway [73]. Subsequent late
phagosome-lysosome fusion leads to degradation of DENV via
lysosomal hydrolases and the production of superoxide and
nitric oxide radicals [74]. Potent mAbs that inhibit intracellular

290 neutralization have also been shown for other viruses such as
WNV and RSV. Thompson and colleagues showed that
humanized antibody E16, which binds to EDIII of WNV, is
strongly inhibitory because it was able to block pH-dependent
viral fusion [75]. The clinically approved mAb, palivizumab has

295 also been shown to neutralize RSV intracellularly by preventing
cell-to-cell or virus-to-cell fusion [38].

Besides mediating uptake by professional phagocytes, the Fc
region of antibodies also exerts antiviral effects by interacting
with other immune cells (FIGURE 1). Virus-specific antibodies can

300 bind to DENV antigens displayed on infected cells to result in
natural killer (NK) cell-mediated antibody-dependent cell-
mediated cytotoxicity (ADCC) [76]. In addition, virus-specific
antibodies can mediate complement deposition on the virion
surface to result in direct virolysis [77]. The complement com-

305 ponent C1q can also bind to the Fc region of antibody-
opsonized DENV and activate the classical pathway, triggering
a cascade of events that leads to the formation of the mem-
brane attack complex C5b-9. This leads to pore formation in
the plasma membranes of virus infected cells, resulting in

310 complement-dependent cytotoxicity (CDC). C1q can also bind
Fc to reduce Fc–FcgR interaction, thus minimizing the risk of
ADE [78,79]. Collectively, therapeutic antibodies could reduce
DENV replication by involving multiple arms of the immune
response, thus leading to improved viral clearance.

315 The use of serotype-specific or cross-reactive antibodies
for therapeutics
Although mAbs can provide great therapeutic potential, careful
selection of these antibodies are required to reduce the risk of
ADE. The plaque reduction neutralization test (PRNT), first

320 developed by Russel and Nisalak in 1967 [80,81], has been
widely used to measure DENV neutralization. However,
PRNT is mostly performed on kidney cell lines such as LLC-
MK2, Vero and BHK-21. The ability of antibody to prevent
DENV infection of these kidney cells may not necessarily

325inform on the ability of these same antibodies to prevent infec-
tion of myeloid cells through FcgR-mediated phagocytosis.
Indeed, Endy and colleagues observed in a prospective study
that children remained susceptible to dengue despite having
neutralizing antibodies, as measured by PRNT, prior to the

330infection [82]. Since human monocyte is one of the primary tar-
gets of DENV, perhaps monocytes may be a more suitable cell
to measure DENV neutralization [83]. We have shown that
neutralization of homologous DENV serotypes was observed to
occur at titers that permit FcgR-mediated phagocytosis while

335neutralization of heterologous DENV serotypes occur only at
titers that aggregate DENV to co-ligate FcgRIIB in human
monocytes [72]. These observations were further validated clini-
cally with 30 other convalescent sera [84], suggesting that this
approach could better distinguish serotype-specific antibodies

340from cross-reactive antibodies. That serotype-specific antibody

Virolysis

Complement
activation 

ADCC

Complement
activation 

NK-cell

Infected cell

Infected
cell lysis

ComplementA

B

Figure 1. Effector functions of antibodies against DENV.
(A) The Fc region of DENV-specific antibodies mediates the
deposition of complement on the virion surface, which can rupture
the virion envelope and lead to direct virolysis of DENV immune
complexes. (B) DENV-specific antibodies can activate complement
and NK cells, leading to lysis of infected cells via complement-
dependent cytotoxicity (CDC) and antibody-dependent cell-
mediated cytotoxicity (ADCC).
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can inhibit viral uncoating even in the presence of FcgR-
mediated phagocytosis, suggests that serotype-specific mAbs
should be considered for therapeutic antibodies (FIGURE 2).

Cross-reactive therapeutic mAbs
345 While serotype-specific antibodies have been shown to contrib-

ute to long-lasting immunity, cross-reactive antibodies do pro-
vide transient protection of approximately 2–3 months [7]. This
suggests that antibodies that neutralize more than one DENV
serotype may be present at low levels or that neutralization of

350 multiple serotypes require high concentrations of such antibod-
ies. Either possible explanation, however, could be harnessed
for therapeutic application.

The possibility that the transient immunity observed by
Sabin is due to low prevalence of broadly cross-neutralizing

355 antibody could make isolation of such mAb difficult. Such a
problem could potentially be overcome by antibody engineer-
ing. Recently, using computational design, Tharakaraman and
colleagues were able to identify and change specific nucleotide
residues on the gene encoding an existing antibody to obtain a

360 approximately 450-fold increase in affinity to DENV-4 while
preserving binding to the other three dengue serotypes [85].
This demonstrates the possibility of engineering antibodies for
broad-spectrum application. Improvements in computer-aided

antibody design that can further increase binding and specific-
365ity of these mAbs could hence play a major role in the future

of therapeutic antibody development.
Besides neutralizing multiple serotypes of DENV, cross-

reactive neutralizing mAb could also be used to displace non-
neutralizing antibodies produced during dengue infections and

370reduce the risk of ADE. Such a property was embodied by a
modified moderately neutralizing antibody that recognizes the
fusion loop. This mAb could compete with and displace non-
neutralizing antibody that bind to epitopes in the vicinity
through stearic hindrance, resulting in reduction of ADE, both

375in vitro and in vivo [86].
Another approach to using cross-reactive mAbs therapeuti-

cally is to administer at a dose sufficient to aggregate DENV.
We have shown recently that in addition to blocking binding
to receptor or viral fusion with endosomal membranes, anti-

380bodies can also aggregate DENV to co-ligate the inhibitory
receptor, FcgRIIB. This receptor signals through an immunore-
ceptor tyrosine-based inhibition motif (ITIM), which recruits
and activates the Src homology 2 (SH2) domain-containing
inositol 5’-phosphatase (SHIP) and SH2 domain-containing

385phosphatase (SHP) that inhibit FcgR-mediated phagocytosis
and hence DENV entry into monocytes [72] (FIGURE 2). This
mechanism of inhibiting DENV infection, which is dependent
on high antibody concentration, may explain the transient
cross-reactive immunity observed by Sabin [7]. Exploiting

390FcgRIIB-mediated signaling with high dose of mAb could thus
be a useful strategy.

An added advantage of exploiting the FcgRIIB pathway ther-
apeutically is that this receptor also signals to down-regulate
the pro-inflammatory response. Indeed, intravenous immuno-

395globulin (IVIG) preparations, which are composed of polyva-
lent IgG derived from more than a thousand blood donors,
have been shown to be effective in reducing TNFa production
by inhibiting NF-kB activation [87]. How IVIG mediates this
anti-inflammatory effect is less clear. It appears to be dependent

400on Fc sialylation [88], which suggests that the anti-inflammatory
effect is mediated through interaction of Fc with specific recep-
tors. One possible candidate is FcgRIIB. IVIG treatment has
also been shown to up-regulate FcgRIIB, which can alter the
threshold of activation of inflammatory cells and reduce pro-

405inflammatory response of monocytes [89]. Therefore, high dose
neutralizing antibody could not only serve to impede ADE but
also reduce the pro-inflammatory response that underlies patho-
genesis of severe dengue [90,91]. Studies testing this strategy for
the treatment of dengue could thus be particularly fruitful.

410Fc modifications to reduce risk of ADE &
improve half-life
As the administration of dengue antibodies could potentially
enhance infection through Fc-FcgR interaction, Fc modifica-
tions that reduce interaction with activating FcgRs could allevi-

415ate this risk [92,93]. Although Fab fragments could be used
therapeutically, their smaller size and hence shorter half-life lim-
its their usefulness [94]. To extend the terminal half-life of these

Virus aggregation:

Inhibit uncoating

Inhibit virus
uptake 

Endosome

RNA

Serotype-specific
antibodies

Cross-reactive
antibodies

FcγRI/
FcγRIIA

FcγRIIB

Legend:

Figure 2. Mechanisms of DENV neutralization in cells
expressing FcgR. DENV neutralization in FcgR-bearing cells can
be mediated by inhibiting virus uptake or intracellular viral fusion.
Serotype-specific antibodies neutralize at levels that mediate DENV
uptake by inhibiting intracellular viral fusion with host endosomal
membrane and viral uncoating, leading to eventual phagosomal
degradation of DENV. Cross-reactive antibodies, in contrast,
neutralize DENV by forming viral aggregates, which co-ligate
FcgRIIB to inhibit phagocytosis of DENV immune complexes.
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Fab fragments, these molecules can be coupled with molecules
such as IgG, serum albumin or with polyethylene glycol [26].

420 Alternatively, mAbs could be expressed as IgG4 isotype, which
has significantly reduced binding to FcgRs compared with
IgG1 [95] and has been used in humans [96]. Other mutations or
deletions in the Fc-region have also been shown to reduce the
risk of ADE of dengue infection in vivo. These variations

425 include deletions of nine amino acids [97], mutation of aspara-
gine to glutamate at position 297 (N297Q) [53,86,93] and muta-
tions at positions 234 and 235 from leucine to alanine to form
LALA mutants [32]. The modified antibodies were shown to
retain binding characteristics to DENV, exhibiting prophylactic

430 and therapeutic efficacy in vivo. Such modifications, however,
would reduce the other effector immune functions mediated by
antibodies, such as ADCC and complement pathways. Future
studies will be needed to test the potential of using these modi-
fied antibodies for therapeutics in humans.

435 Besides using mAbs as an antiviral agent, mAbs can be used
prophylactically to protect individuals with dengue infection.
However, these mAbs will have to be maintained at sufficiently
high levels to minimize the risk of ADE. In this case, the Fc-
region of mAbs can be exploited to extend the half-life of anti-

440 bodies, thereby reducing the need for repeated dosing. Anti-
body half-life can be extended by engineering Fc regions that
change binding affinity to its salvage receptor, FcRn. After
internalization of antibodies into acidic endosomal compart-
ments in the cells, binding to FcRn diverts antibodies for recy-

445 cling back to circulation, preventing lysosomal degradation and
hence prolonging the serum half-life. Fc mutations at
His310 and His435, which bind acidic residues on the surface
of FcRn should be avoided to preserve the half-life of mAbs, as
an acidic pH environment (pH 6.0–6.5) is critical for the inter-

450 action between Fc and FcRn. Based on molecular models from

the rat Fc–FcRn complex [98], it was predicted that residues
250, 314 and 428 can have significant effects on Fc–FcRn
interactions. Indeed, mutations at positions 250 (Thr250Gln)
and 428 (Met428Leu) were found to significantly increase the

455binding to FcRn and extend the half-life of the antibodies in
rhesus monkeys by approximately twofold [99,100], without
affecting antigen binding, ADCC and CDC. These mutations
indicate that the half-life of these antibodies can be increased
without compromising the effector functions of these

460therapeutic antibodies.
Lastly, as the presence of complement component C1q can

inhibit ADE of dengue infection, amino acid substitutions that
enhance C1q binding can potentially improve the therapeutic
efficacy of dengue mAbs. Importantly, mutations at residues

465326 (Lys326Trp) and 333 (Glu333Ser) located in the C1q
binding epicenter were observed to enhance C1q binding and
CDC activity by fivefold without influencing the ADCC activ-
ity [101]. These mutations can thus potentially improve the ther-
apeutic efficacy of dengue mAbs while retaining antigen

470binding activity. Taken together, Fc modification of antibodies
can potentially enhance effector functions while reducing the
risk of ADE (FIGURE 3). However, as most of these functional
studies were either performed in monkeys or mice, additional
human studies will be required to assess the utility and effec-

475tiveness of these Fc modified antibodies.

Conclusion
Treatment of dengue using therapeutic mAbs can be challeng-
ing. Therapeutic mAb preparations must neutralize DENV
without increasing the risk of ADE. Nonetheless, its ability to

480both neutralize DENV and elicit an anti-inflammatory response
could be the double-edged sword needed for the treatment
of dengue.

Heavy chain

Light chain

Fab

Fc

Antigen
binding site 

Antigen
binding site 

Increased affinity and specificity 
of antigen binding site
- Reduced risk of ADE
- Improve ADCC

Fc modification
- Reduce binding to Fc-receptors
  to reduce risk of ADE  
- Improved pharmacokinetics
  (FcRn) 
- Enhance C1q binding

Figure 3. Modifications that can increase therapeutic efficacy of mAbs. Fab or Fc regions of antibodies that can be modified to
improve antibody effector functions, pharmacokinetics and reduce risk of antibody-dependent enhancement (ADE).
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Expert commentary
Current methods to control dengue epidemics primarily rely

485 on vector control, which has been shown to be ineffective
over the past decade. The development of an effective dengue
vaccine will hence remain a priority for sustainable dengue
prevention. In the continued absence of an effective dengue
vaccine, antivirals that reduce viremia to alleviate risk of

490 severe dengue would contribute significantly to reducing the
overall burden of dengue. Monoclonal antibodies have
become an attractive therapeutic option against infectious dis-
eases and have been shown to be well tolerated by humans.
Therapeutic antibodies developed against DENV should be

495 able to inhibit infection in cells expressing FcgR, which are
the primary targets of infection in humans. With the expand-
ing knowledge on neutralizing and non-neutralizing epitopes,
as well as technologies in antibody modification, we believe
that therapeutic mAbs against DENV could be developed in

500 the near future. This will be useful for disease management,
particularly during dengue epidemics.

Five-year view
Serotype-specific therapeutic antibody to DENV-1 has been
recently identified. Further identification of therapeutic anti-

505bodies against the other 3 DENV serotypes will permit cocktail
formulations that will be useful for disease management.
Improvements in computational design of antibodies that
improve binding affinity and specificity across all four DENV
serotypes could greatly enhance the development of a cross-

510reactive therapeutic mAb for dengue. The development of
potent therapeutic mAbs could also inform on the design of a
dengue vaccine for effective dengue prevention.
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520
Key issues

• Global prevalence of dengue remains high due to ineffective vector control. There is currently no licensed vaccine or antiviral drug

against dengue.

525 • Therapeutic antibodies are increasingly used for the treatment of infectious diseases as they are well-established and well tolerated by humans.

• Human antibodies that potently neutralize dengue virus (DENV) bind quaternary epitopes on DENV E protein and could be used

therapeutically against homologous serotype of dengue.

• Administering an antibody cocktail may lower the risk of neutralization escape viruses. Inclusion of antibodies targeting complex

epitopes may act against viral strain differences more effectively.

530 • DENV neutralizing antibodies prioritized for therapeutic development should possess high affinity for accessible epitopes, and prevent

intracellular viral fusion.

• Measurement of DENV neutralization in monocytes better distinguishes serotype-specific from cross-reactive antibodies.

• Serotype-specific antibodies are a good candidate for therapeutic antibodies as they inhibit intracellular viral fusion, and reduce risk of

antibody-dependent enhancement (ADE).

535 • High dose administration of cross-reactive antibodies can also impede ADE and reduce pro-inflammatory responses that underlie

severe dengue.

• Fc modifications to improve therapeutic antibody half-life and C1q binding can enhance effector function of antibodies and reduce the

risk of ADE.
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