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Abstract

As Android devices become increasingly popular worldwide, security issues also be-

come severe. Threats to sensitive resources, such as user privacy violation and premium

service abusing, have become a big concern. Even though the Android system applies a

permission-based model to regulate the resource access by Android applications (apps),

malicious apps still get the chance to abuse the available resources. To address the threats

to sensitive resources, in this thesis we propose new frameworks on the Android platform

to enhance resource protection for diverse demands.

To mitigate the threats to sensitive system resources (e.g., user contacts, location data)

by malicious apps, we propose a virtualization-based framework that provides a sandbox

environment for Android resources. It simulates a virtual but consistent view of the sen-

sitive resources. The resource access by an app is confined inside a virtual view. This

framework provides transparent data protection with high compatibility with the existing

Android apps.

To allow the sensitive data access while ensuring the tight control, we provide a

tightly-controlled and resource-constrained environment. Specially, we build our pro-

totype on the ARM TrustZone architecture, which provides a trusted environment with

strong security guarantee by the hardware-level protection. It provides a standalone con-

strained runtime environment which is completely separate with the Android OS.

Finally, to provide more comprehensive understanding about the potential threats to

sensitive resources by a given app, we design a scalable static analysis mechanism on how

real-world apps utilize sensitive data, specifically, the impact of a set of operations on the

sensitive data. With this comprehensive knowledge regarding resource usage, users are

enabled to assess potential threats of unknown apps to their sensitive resources and rank

them according to usage patterns to sensitive resources.

With the proposed solutions, we are able to reinforce the resource protection on the

existing Android platform with different levels of security guarantees.
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Chapter 1

Introduction

Smartphones are evolving into one of the most important computing and communication

tools in our daily life. Compared to traditional mobile phones, smartphones have stronger

connectivity capability and more advanced hardware sensors. Therefore, with their pro-

vided flexibility, mobility and rich functionality, smartphones become a platform that in-

tegrates a rich collection of sensitive data (e.g., phone state, location, user contacts, SMS,

calendar, external storage) and services (e.g., sending/receiving SMS, making phone call,

establishing network connections), which we refer to as resources in this thesis. They also

allow users to extend their functionality through a rich selection of third-party mobile ap-

plications (apps). Most popular mobile platforms, such as Android and iOS, provide app

stores that allow third-party apps to be downloaded and installed onto mobile devices. It

becomes popular for people to use their smartphones to do social networking, share per-

sonal photos and even make online payment transactions, which increases the chance of

sensitive data damage or leakage on the mobile platform.

The Android OS [14], released at 2008, keeps increasing in the worldwide smartphone

market share. Gartner’s statistics [36] shows that Android’s market share has increased

from 66.4% in 2012 to 84.6% in 2014. Android-based software development also keeps

increasing at a fast speed. Statistics from AndroLib [15] shows that the number of avail-

able apps in the official Android market (i.e., Google Play Store) has already surpassed 1.2
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million in July 2014, and the total number of app downloads has exceeded one billion.

Low expense of hardware and rich support of software make Android devices increas-

ingly popular worldwide. However, as the Android platform gains a large user base, it

also becomes a favorite target for attackers.

Security Threats on the Android Platform. Figure 1.1 illustrates the overview of the

Android ecosystem. Due to the openness of app stores and a large developer community

for the Android platform, the security of publicly available apps is hardly guaranteed by

app stores. Developers can easily publish vulnerable apps or deliberately design malware,

and upload them to app stores. Users store sensitive data into their mobile devices, and

also install third-party apps that are downloaded from the Android market to manage

those sensitive data. The mobile device provides a platform for loosely-controlled apps to

manage user sensitive data, which often exposes the user sensitive resources to untrusted

apps.

The threats to sensitive resources are severe in the Android ecosystem. Malicious apps

usually harvest sensitive information or abuse sensitive services, which becomes the main

threats on the Android platform. According to the Android malware dissection [111],

most of them harvest various information from infected devices, such as device ID, loca-

tion, user contacts, SMS, and then leak them to a third-party remote server through hidden

channels. Recent research [37, 56, 113] has revealed that a large portion of apps expose

phone states or location information. Some of them also stealthily send SMS to premium

numbers, which causes financial loss of victim users. Malicious apps can also capture

stealthy audio/video through microphone and camera services [88, 102]. Furthermore,

well-known spyware and rootkits, such as Gingerbreak, Android/Multi.dr, HongToutou,

DroidDream and DroidKungFu, can gain the root privilege by exploiting OS-level vul-

nerabilities and thus hold unlimited control over victim devices, raising high threats to

sensitive resources. They are likely repacked into new popular legitimate apps to disguise

themselves.

Problem Analysis. To regulate the resource access, the Android system provides a
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Application 
Sandbox

Figure 1.1: User, Device, App Store in the Android Ecosystem

kernel-level resource-centric sandbox environment for restricting the capability of in-

stalled apps. The application sandbox environment provides access only to allowed sys-

tem resources with strict isolation among apps. The access to sensitive resources out of

the sandbox, such as user contacts, has to be performed through dedicated protected APIs.

These protected APIs are regulated by a permission-based model. An app needs to ex-

plicitly request the corresponding permission for accessing a particular resource, and this

permission has to be explicitly granted by users at app installation time. For example, in

order to access user contacts, the app must specify the READ CONTACTS permission in

its configuration file. During app installation, the Android system prompts the list of per-

missions to users and obtains their permission to install. Although end users seem to be in

control to protect their own resources, it is challenging in practice to guarantee resource

security.

First, the default protection mechanism relies on users to make a one-for-all decision

for all the resources requested by an app, which is not enough to satisfy diverse demands

to protect different types of resources. For example, the SD card storage resource provides

a general support for storing data shared by all the installed apps. When granting the

storage access to one app, we may wish that this app is not going to corrupt other apps’

data on the storage. However, for more critical resources, such as credit card number and

user credentials, we require a strong protection guarantee that these critical data can only
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be accessed by selected users or apps. Therefore, based on the importance of the resources

and their usage scenarios, we need diverse system mechanisms to provide different levels

of resource protection guarantees.

Second, the permission requests only inform users about what resources one app re-

quires, which is not sufficient for users to assess the potential threats to these granted

resources. For example, if one app requests both location permission and network per-

mission, it could divulge users’ location data to a malicious tracking system. In order to

help users to assess the app threats and make proper security decisions, it is necessary to

provide more comprehensive understanding about the internal resource usage inside one

app.

By reviewing the current security design on the Android platform from the resource

angle, in this thesis, we propose new effective and practical system mechanisms and anal-

ysis techniques to enhance the protection for diverse resources on the Android platform. It

is a big challenge to design practical protection mechanisms for diverse demands, which

at the same time balances security and usability.

Resource-centric Enhancement. Many existing work [40, 74, 20, 113, 75, 35, 23, 24]

has made efforts to extend the default permission-based protection in Android by either

enforcing fine-grained access control or supporting rich-semantic constraints on access.

Nevertheless, these solutions either are ad-hoc or increase the complexity of user deci-

sions, resulting in poor usability. It is non-trivial for end users to deal with complex poli-

cies and make proper security-related decisions. Therefore, we need new mechanisms to

enhance resource protection on the Android platform while still preserving good usability

for diverse resources.

For general system resources that are commonly shared by multiple apps in Android

devices, such as user contacts, location and external storage, to confine the access by un-

trusted apps, the view of these resources to mutually untrusted apps should be separated.

To be transparent to existing Android apps and thus gain high compatibility, we design

a virtualization-based isolation mechanism that only provides a virtual copy of resources

4



to a particular group of apps. It allows multiple virtual environments to be coexisting but

mutually isolated on top of physical resources.

For more critical sensitive resources, such as user credentials and credit card num-

bers, apps require direct access on them to function properly. Instead of providing a

virtual copy of them to apps, we have to unavoidably grant apps the access to the real

sensitive data. Therefore, we create a dedicated trusted execution environment that pro-

vides stronger protection over these critical data access. It is isolated from the Android

OS with hardware-level protection guarantee but supports a primitive set of sensitive data

operations.

To assess the threats to sensitive resources from an app, we design a mechanism that

analyzes resource usage in Android apps. This approach can be adopted by app stores to

rank apps according to their behaviors of accessing resources.

1.1 Thesis Overview

In this thesis, we propose three mechanisms to enhance resource protection on the An-

droid platform to satisfy diverse protection demands for sensitive resources. More specif-

ically, we develop a virtualization-based isolation mechanism to provide transparent pro-

tection for resource access, a hardware-level isolation mechanism to provide a tightly-

controlled and resource-constrained environment, and a resource-usage-based ranking

system for Android apps.

Transparent Protection through Resource Virtualization. To isolate system resources

shared among apps, we provide a virtualization-based mechanism to provide a virtual

copy of resources to apps. We group the installed apps and provide separate virtual set of

resources to each particular group. Apps cannot access the virtual resources that belong

to other groups. We reinforce the Android system by adding a new layer between the

apps and various types of sensitive data and services. This layer mediates all the sensitive

resource access and provides a virtual resource view to apps, such as a virtual SD card and
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a virtual user contact database. It is completely transparent to Android apps. Intuitively,

we simulate a fresh device environment for running risky apps, so that the potential dam-

age on the sensitive resources by an unknown app is constrained inside its own virtual

environment.

Strong Protection with Tightly-controlled Resource Access. For critical resources,

such as user credentials, we have to expose them to an app for functionality, instead of

a virtual copy. In this case, to prevent arbitrary access, we design a mechanism by tak-

ing advantage of a separate trusted environment that ensures tightly-controlled resource

access. Inside the trusted environment, we allow the operations on the raw sensitive data

but ensure tight control on the accessing authorities and supported operations. To provide

a strong protection guarantee, we leverage a hardware-level protection mechanism, the

ARM TrustZone architecture. It supports the concept of red/green systems, in which the

hardware resources (e.g., memory and storage) are partitioned into a general-purpose un-

trusted (red) environment and a highly-constrained trusted (green) environment. The red

partition with rich hardware resources available (such as memory and storage) is used for

running the Android OS, while the green partition with constrained resources is used for

running our trusted environment. Our trusted environment is completely separate with the

Android OS, thus preventing any threats from even a compromised Android OS. Based

on this root of trust, our trusted environment leverages cryptographic-based techniques to

ensure that only authorized code can operate on the raw sensitive data.

Understand Resource Usage for Threat Assessment. To provide more comprehensive

knowledge regarding the resource usage for threat assessment, we propose an analysis

mechanism to reveal how apps utilize sensitive data. For example, we should be able

to inform users of the difference between an app that sends the raw user location to third

parties, and another app that only provides a yes/no answer to whether the user is presently

at a certain museum or not. We use a sequence of operations on the sensitive data, named

as the resource usage pattern. We build an analysis tool to automatically extract location

data usage patterns from real-world Android apps. According to different usage patterns,
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we rank the potential risks on location data given an unknown app.

Summary of Contributions. By investigating techniques to protect sensitive resources

on the Android platform, this dissertation makes the following contributions.

• For system resources shared by installed apps, we propose a virtualization-based re-

source protection mechanism to provide a transparent and highly-compatible environ-

ment for resource access.

• For critical resources, we reinforce the Android platform with hardware-assisted pro-

tection to provide a tightly-controlled trusted environment that supports stronger data

protection and feasible data operations.

• We design an analysis mechanism for evaluating real-world apps to provide compre-

hensive understanding about their location resource usage.
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Chapter 2

Background and Literature Review

2.1 Android Infrastructure

The Android software architecutre includes an operating system, a middleware layer, an

application framework and applications, illustrated as Figure 2.1. It is a Linux-based

mobile platform. The middleware, written in C/C++ and Java, provides access to na-

tive libraries and third-party libraries for the upper layer, such as OpenGL and Webkit.

For ease of development, Android provides an application framework which provides

well-defined interfaces for apps to manage system resources conveniently. Applications,

mostly written in Java language (also possibly including native code), run in a separate

Android customized Java virtual machine, Dalvik.

Android Application. An Android app is usually packaged into one apk format file, an

vairant of JAR file. Although apps are developed in Java language, they do not run as

Java .class format in standard Java virtual machine. Java source code will be firstly

compiled into standard Java bytecode, and then optimized to .dex format which is the

Android-specific bytecode format. The dex format is designed to be more memory-

efficient than Java standard class file. Then the bytecode is packaged into one apk package

with other resource files including the manifest file, UI layout, localization, etc. Android

also provides several built-in Android apps, such as email, SMS, browser, contacts and
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others.

Application Framework. The application framework layer, written in Java language,

simplifies app development and provides well-defined user interfaces for developers to

ultilize the underlying functionality. For example, content provider component provides

interfaces of accessing contact data from apps. Resource manager provides access to

non-code resources such as layout files, and so on. Developers have full access to the

framework APIs. They can also publish their own components which other apps may

reuse to build rich and innovative apps.

Android Middleware. Apps run on top of the Android middleware that is written in

C/C++ and Java language. It provides Java interfaces for apps to directly invoke native

system components written in C/C++. It includes libraries that provide various services,

such as data storage, screen display, multimedia and web browsing, and also implements
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device-specific functions, so that the upper layer does not need to concern variations be-

tween various Android devices. Third-party libraries, such as OpenGL, Webkit, can also

be loaded to provide rich and convenient integrated functionality. It also contains the

Dalvik virtual machine and core Java application libraries. Dalvik is an Android-specific

virtual machine. As described above, Android apps are compiled into dex bytecode

format that will be interpreted in Dalvik VM at runtime, which is a register-based archi-

tecture, as opposed to Java VM which is a stack machine. Each app runs in its own Dalvik

VM. Core libraries written in Java provide a substantial subset of standard Java packages

as well as Android-specific libraries.

Default Protection on the Android Platform. As a Linux-based system. Android sets

up a kernel-level application sandbox based on UNIX-style protection mechanisms, such

as user separation of processes and file permissions. The Android system assigns a unique

user ID to each Android app, and thus the kernel separates apps through standard Linux

facilities. By default, an app cannot interact with other apps or access data that belong

to other apps, unless through protected Android-specific APIs. These protected APIs are

the only way for apps to interact with other apps and access a limited range of system

resources. Android applies a permission-based model as a specific security mechanism

to restrict apps from accessing protected resources (e.g., user contacts, SMS, location and

external storage) through these protected APIs. To access protected resources, each app

needs to request the corresponding permissions explicitly during installation. Users have

to decide whether they want to trust third-party apps and grant dangerous permissions,

such as network permission and contact read/write permission.

However, the permission-based model is not sufficient for resource protection. First,

it relies too much on users to make wise security-related decisions. Given a list of permis-

sions, it is not apparent to know whether an app is benign. For example, a combination of

READ CONTACTS and INTERNET permissions indicate that the app to be installed may

read user contacts and then send them to a remote server. Second, its “all-or-none” op-

tion is not sufficient. Users can either allow all the permissions requested by a risky app

10



during the installation, or deny the installation. Though the Android 4.3/4.4.1 releases

have a hidden feature, Apps Ops, which allows users to dynamically revoke permissions

for an app, a simple permission removal may break app functionality, or even crash the

app [59]. Therefore, instead of providing attractive flexibility as expected, it may break

apps after permission removal, resulting in bad user experience. This feature also makes

the security decisions more complicated for users. Thus Google has completely disabled

this feature since the Android 4.4.2 release.

2.2 Literature Review

Existing techniques have been proposed to reinforce the Android software stack from

various angles. In this section, we discuss research on resource protection and analysis

on the Android platform.

2.2.1 Enhance the Android Permission Model

Android applies a permission-based mechanism to confine the resource access of An-

droid apps. In this mechanism, one app has to request the corresponding permission to

access certain sensitive resource. During installation time, the package installer prompts

all the permissions required by this app. The Android system only gives users an “all-

or-none” choice to grant permissions to an app. When installing an unknown app, users

have to either grant all the dangerous permissions or deny the installation. Users cannot

selectively grant a subset of permissions requested by one app during installation. After

an app gets installed, users cannot later manage a granted permission. Several existing

solutions aim to enhance the permission-based protection mechanism by either enforc-

ing more fine-grained access control or supporting rich-semantic constraints on access.

Below we discuss these two main categories for enhancing the default permission-based

model in Android.
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2.2.1.1 Flexible Permission Management

The following solutions propose flexible permission management that allows users to flex-

ibly manage the apps’ permissions at any time and even enlarge the options of currently

defined permissions.

Kirin [40] modifies the package installer to additionally check whether the permis-

sions requested by the installing app violate a given system-centric policy. The main goal

of Kirin is to mitigate malware contained within a single app. For example, to prevent

malware from tampering with incoming SMS messages, it defines a security rule that an

app must not have RECEIVE SMS and WRITE SMS permission labels, and enforces the

policy at the installation time. The expressibility of Kirin is still limited to the existing

Android permissions due to the static nature of their enhanced model.

Apex [74] enhances package installer to allow users to permit a subset of requested

permissions during the installation. It modifies the Android framework to enforce runtime

reference monitor on the permission check. Therefore, due to the flexibility of their dy-

namic reference monitor framework, it even expands pre-defined Android permissions to

support advanced policies, for example, users can not only grant SEND SMS permission

as before to allow an app to send SMS, but also can specify the maximum number of SMS

messages that can be sent in one day.

TISSA [113] enriches the existing permission-based model towards taming information-

stealing problem. In the existing permission-based system, users grant READ CONTACTS

permission to a single app to allow its access to the user contacts. TISSA additionally

gives users a further option to only let it view a bogus or empty contacts list, instead of

the real data. It defines a privacy mode for each app. In this mode, the Android system

intercepts the resource access and uses fake sensitive data to prevent untrusted apps from

stealing private information.
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2.2.1.2 Enhance Constraint on Inter-component Communication (ICC)

Android provides well-defined interfaces for different components to communicate with

each other. One component in one app can also interact with components belonging to

another app, as long as the permission checking succeeds. Due to this feature, Davi et

al. [33] address another weakness of the permission-based model in Android, i.e., the

privilege escalation problem (high-privileged apps can process high-privileged tasks re-

quested by other low-privileged ones). Especially, confused deputy attack is a special

type of privilege escalation attack where a malicious app abuses the interfaces of a trusted

app to perform unauthorized operations. Therefore, a lot of research has been done to

strengthen the constraints on the ICC.

Saint [75] implements a reference monitor framework on the ICC and supports fine-

grained constraints on both the caller and the callee components at runtime. An ICC is

only permitted when the caller and the callee components satisfy user pre-defined condi-

tions, e.g., apps’ holding permissions, signatures, release versions and even context-based

conditions (such as location and date). App developers have to assign appropriate secu-

rity policies for each communication interface to specify the properties that the other side

(either caller or callee) should hold. It provides a flexible framework for benign security-

critical apps to apply strict policies for preventing potential dangerous communication

with other untrusted apps. However, considering the practicability, it is non-trivial for

developers to consider all security threats into the policies for each individual app.

QUIRE [35] is another Android security extension that prevents confused deputy at-

tack by validating the original app who issues the ICC. It instruments the Android Binder

IPC which is a low-level support module in the Android middleware for ICC. QUIRE

tracks and records the IPC chain to figure out the original app that starts it. It enables apps

to propagate the call-chain context to downstream callees and to authenticate the origin

of data that they receive indirectly. Therefore, it allows endpoints that protect sensitive

resources to reason about the complete IPC call-chain before granting access to the re-

questing app. In their design, the additional security context is passed explicitly as an

13



argument in the IPC which is manageable by apps and enables an app to exercise a priv-

ilege if it genuinely wishes so. However, it cannot prevent colluding apps that may drop

the caller in IPC chain deliberately and act on their own behalf.

XManDroid [23] is another reference monitor system that extends the Android appli-

cation framework layer to detect and prevent application-level privilege escalation attacks

at runtime based on system-centric policies (such as an app that has read access to user

contacts must not communicate to an app that has network access). Specifically, it uses

a graph representation of the system to illustrate all possible communication channels

among installed apps and system built-in components, and determines whether an action

at runtime will incur an edge that would establish a policy violating channel in the graph.

By runtime monitor and analysis of communication links across apps, XManDroid can

also effectively detect the channels established through the Android system services and

content providers, and even prevent the privilege escalation caused by collusion attacks

via covert channels. However, it requires the policies for decision making to be clearly

and widely defined to prevent all sorts of attacks that exploit ICC channels.

Above solutions indeed offer more flexibility for users to confine the resource ac-

cess and communication among apps, but also increase the complexity of the default

permission-based model. Most of them eventually rely on the proper policies to be effec-

tive in practice. It is non-trivial to define these policies. Thus, instead of fighting with the

permission-based model, another direction for resource protection starts from the point of

view of the resources to be protected.

2.2.2 Reinforce Data Protection through Isolation-based Approaches

While a system supports versatile functions and integrates rich resources, the isolation

technique plays an important role in sensitive resource protection. This technique is ma-

ture in the conventional desktop environment. Below we will first introduce the brief idea

of traditional isolation-related techniques. We also discuss the needs and variations for

such techniques to be migrated into the mobile platform.
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2.2.2.1 Sandboxing

Sandboxing techniques target at building a secure and tightly-restricted environment for

execution of untrusted applications. Any access across the environment boundary is either

denied or regulated. Here we introduce a few closely related system call interposition-

based sandboxing approaches in the traditional desktop environment.

Janus [49], proposed by Goldberg et al., is one framework for sandboxing the execu-

tion environment for helper applications. They created several policy modules to check

each matched system call whether it should be allowed or denied. The available policy

modules are selected by the configuration file for specific application. For example, path

module checks whether file access is allowed according to the file location, and tcpcon-

nect module restricts the allowed TCP connections. Each policy module is responsible

for specific functionality and could contain several related system calls. One system call

could occur in more than one policy module. According to their policies, the privileges

of untrusted helper applications are restricted under one file folder, and any priviledge

elevation, like setuid operation, is simply discarded.

Systrace [81], proposed by Provos, is an extensible system call interposition tool. It

provides flexible interfaces to dynamically generate security policies automatically and

interactively. Additionally, privilege elevation is also integrated into policies for single

system call. It intercepts at system call entry and exit, and enforces security policies

during application execution. Any system call path which deviates the security policies

will be denied and recorded. The security policies are generated automatically in the

training phase, which could include most possible benign behaviors of an application.

Policies are listed according to different types of system calls by enumeration, so it is easy

to append new policies dynamically. Users could also interact and refine the policies or

terminate the application when any uncovered system call path is executed before security

policies are finalized. To avoid the complexity of the policy language, they define their

own policy statement rules to satisfy the application needs by only permitting necessary

system calls. Each system call has a list of policy statements. Unlike other intrusion
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systems which only audit a sequence of system call names, their policy statements include

more system call semantics. Once matched, policy statements relevant to the matching

system call will be checked in order. The first matched policy statement either denies or

permits this system call, or asks users to determine explicitly.

Etrace [65], proposed by Liang et al., is another extensible system call interposi-

tion framework. It intercepts each system call made by the monitored process and all its

children. One advantage is that it hides the low-level details and extracts general interpo-

sition interfaces. Therefore, it is portable across platforms as long as developers rewrite

the architecture-dependent implementation. It also provides interfaces for developers to

introduce their own extensions into the Etrace framework so that they can handle each

system call event and enforce their security policies conveniently.

Towards the mobile platform, essentially the concept of sandboxing has already been

integrated into the design of the Android platform. The Android platform, in which all

the apps are executed in their own separate contexts, has made lots of efforts on pro-

cess isolation. Each process can only access its own files, except those files shared with

others explictly by users. Each app has to request strict permissions to ultilize system re-

sources, such as acessing files and sending network packets. However, it is not sufficient

to fully isolate untrusted apps from tampering or disclosing users’ private information.

We can not fully rely on customers’ choices to grant permissions to third-party apps that

may be greedy to require excessive and unnecessary permissions. Previous desktop-based

sandboxing solutions [81, 49, 66] propose system call level interposition to provide fine-

grained constraints on system resources. However, little research has yet targeted on ap-

plying similar techniques into the Android platform to enforce tightly-controlled security

policies for untrusted apps. Providing a tightly-controlled sandbox environment is still an

interesting explorable area in the mobile platform.
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2.2.2.2 Virtualization

Virtualization is an important technique to achieve isolation. Through systematic virtual-

ization, we can duplicate several virtual and separate environments, which are transpar-

ent to the apps running inside them. In this way, we do not need to change the default

permission-based model in Android, which gains a good compatibility with the existing

framework. Below we introduce a few representative solutions in this direction.

L4Android [64] runs the Android system completely in an independent virtual ma-

chine on top of a micro-kernel. Based on the L4Android micro-kernel, multiple Android

systems can exist simultaneously and independently, each one inside a separate virtual

machine. In their framework, the micro-kernel acts as the secure foundation and is aug-

mented with a user-mode runtime environment that implements basic major operating

system infrastructure and offers generic and known interfaces to applications. The frame-

work supports a unified corporate and private mobile phone by multiplexing shared de-

vices by both Android instances, such as smartcard, graphics hardware and input devices.

However, L4Android’s heavy overhead makes it not ready for resource-limited mobile

devices.

Cells [16] proposes a virtual phone (VP) environment through light-weight operat-

ing system virtualization in one system instance. Cells introduces device namespace

through both kernel-level and user-level device virtualization, and controls the device

usage through wrapping device drivers, such as framebuffer/GPU, various sensors and

even telephony subsystem (supporting multiple phone numbers by paring Cells with a

VoIP service). One VP represents an isolated environment with several available virtual

hardware devices. A physical phone can have several VPs. Users can easily switch among

VPs by selecting one as the foreground VP while keeping the rest running in the back-

ground. The system can even force the switch as a result of an event, such as an incoming

call or text message.

AirBag [100], a light-weight OS-level virtualization, isolates and prevents malware

from infecting the system or stealthily leaking private information. It builds a restricted

17



execution environment for untrusted apps and also virtualizes various device drivers, such

as file system, framebuffer/GPU and input devices. The goal is to mediate the access

to various system resources or phone functionalities by malicious apps through instru-

menting related API calls to the native Android runtime and multiplexing context-aware

devices. It provides a separate namespace and filesystem to restrict and isolate the capa-

bilities of processes running inside by leveraging Linux kernel containment features. To

boot up AirBag, it launches the same subset of service processes or daemons (e.g., void,

binder) as when the Android system is loaded, thus owning a separate Android framework

in its own runtime.

TrustDriod [25] proposes an even light-weight virtualization architecture by inter-

cepting the communication and data access in both middleware layer and kernel layer,

without duplicating the Android software stack. It groups apps into two different do-

mains, trusted corporate domain and untrusted domain. It designs a coloring mechanism

to separate and distinguish apps and user data that belong to different domains. The com-

munication among domains is restricted to prevent the data leakage. Additionally, if any

data is written into the system services or content providers by one app, only apps in the

same domain with it can read the data, otherwise can get a pseduo or null value alterna-

tively. TrustDroid also applies this rule on the system-wide shared file system so that a

system-wide readable file can be only read by another app of the same color as the writer.

This solution is rather light-weight, but does not provide imperceptible transparent vir-

tualization on certain resources, such as one domain still perceives the existence of files

belonging to the other.

Above solutions propose virtualization-based solutions in different levels. They build

a separate virtual environment for executing apps and accessing resources. However, for

most of them, the cost to create such an environment (including the environment ini-

tialization, extra memory and storage) is a concern, especially on the resource-restricted

mobile platform. TrustDroid is rather light-weight, but fails to gain the virtualization on

certain resources (e.g., file system) due to their access-control-based design. Towards the
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goal of resource protection, we can further reduce the virtualization cost by only focus-

ing on the sensitive resources, instead of designing a complete full-fledged virtualization

framework.

2.2.2.3 Partition

Partition is an alternative concept to separate sensitive resources into a different parti-

tion where we can apply a tight-control mechanism on the resource access. Based on

this concept, a few solutions have been proposed and applied in various contexts, such

as separation between ads and the main process, separation through a trusted execution

environment.

AdSplit [92] extends Android to allow an app and its advertising libraries to run in

separate processes, eliminating the need for apps to request permissions on behalf of their

advertising libraries and also preventing forging the user interaction and stealing money

from advertiser by malicious apps. In their framework, ads libraries and their hosting

app have different user-ids, which are recognized as two separate apps by the Android

system. All advertising libraries are loaded alongside the hosting app but with different

user-ids. Therefore, the separation of the runtime environment (including the permission,

process, private data) is provided by default by the existing Android sandbox mechanism.

It designs the mechanism for screen sharing and authenticated user input by leveraging

the QUIRE framework.

AdDroid[76] separates the advertising libraries and the hosting apps by migrating the

advertising support into the Android framework. Therefore, with the extended Android

API, apps only need to specify in the configuration to indicate from which advertising

network to fetch ads. Different with AdSplit that starts lots of new processes for load-

ing ads libraries, AdDroid adds a new dedicated system service in the Android system

which is only responsible for receiving advertising requests from apps via the extended

API and returning ads. In this way, apps only need to issue an ICC request to this dedi-

cated service for advertising. They propose additional permissions ADVERTISING and
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LOCATION ADVERTISING to restrict the ICC with the AdDroid service, which are the

only permissions requested for advertising in apps, thus mitigating the overprivilege prob-

lem caused by advertising libraries.

Additional to the context of partition between advertising libraries and hosting apps,

partition is also applied to provide new architectures for separate trusted execution envi-

ronment, especially on the hardware level. The recent ARM-based architecture supports

a new security extension, named as ARM TrustZone, which partitions the hardware re-

sources on the platform into trusted secure world and untrusted normal world, and enables

CPU to run in either of the mode and switch between the worlds. This is a promising secu-

rity framework that provides strong isolation guarantees for the trusted components with

high security requirements, such as online payment module and credential management.

Our root of trust only relies on a small runtime environment which is completely separate

with any commodity OS running inside untrusted domain, thus gaining a small trusted

computing base (TCB) and high resistance to threats from even a compromised Android

OS. Limited research has been done to take advantage of this architecture for resource

protection on the Android platform. Below we introduce a few designs by recent work

based on this architecture to propose general frameworks for the ARM-based system.

TLR [85] (Trusted Language Runtime) is such a design on the ARM TrustZone archi-

tecture but for .NET mobile apps. It protects confidentiality and integrity of .NET mobile

apps from OS security breaches. It enables separating an app’s security-sensitive logic

from the rest of the app, and isolates it from the OS and other apps. The secure world

provides a runtime environment for a customized .NET micro framework supporting high-

level languages like C# for ease of programming. It only supports computation with no

access to peripherals to keep a small TCB. In their programming model, developers must

instantiate an instance of the secure runtime environment (Trustbox) for security-sensitive

part (Trustlet) of an app. The interaction for the two worlds is wrapped as the way of

a simple procedure call for apps through pre-defined library interfaces, which hides the

complicated procedure for connecting the two separate parts of an app, such as world
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switching, interrupt handling and call routing.

ObC [62] (On-board Credentials) designs an architecture for the credential manage-

ment on the ARM TrustZone architecture, currently only for Symbian OS on Nokia

phone, and provisions credential secrets that are only accessible to specific pre-authorized

programs inside the secure environment. Many current systems for user authentication ei-

ther require users to memorize passwords or rely on dedicated hardware tokens, suffering

from bad usability. Towards this problem, ObC designs a credential management system

using the ARM TrustZone secure hardware that balances flexibility and high levels of

protection. Users do not need to struggle with the passwords or tokens with the design of

ObC in which all the credentials are protected by the underlying secure hardware. Due

to the resource limitation in the secure world (e.g., limited RAM), they deploy a simple

bytecode interpreter for Lua as the secure runtime environment. Only credential programs

are allowed to execute inside ObC interpreter and thus perform sealing/unsealing actions.

It also provides the provisioning architecture based on PKI (Public Key Infrastructure)

mechanism, which allows the openness of provisioning new credential secrets and pro-

grams to users’ devices without any third-party approval while still preventing malicious

credential programs from stealing other credentials on the same device.

These hardware-assisted partition-based solutions provide strong isolation guarantee

for the secure environment. The secure environment usually only contains limited re-

sources and inevitably has limitation of supported functionality. We can only deploy a

small portion of security-sensitive code into the secure environment. For example, in

above solutions, they choose to customize and shrink the secure runtime environment

through either limiting the access to peripherals or using a slimmed down version of

simple interpreter. Existing research related with trusted execution environment on the

Android platform is rather limited. This is an explorable and promising domain that can

be further applied as a strong support for resource protection on the Android platform.
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2.2.3 Common Android Malware Detection

Most of existing mobile anti-virus softwares rely on known malware samples for sig-

nature extraction. Traditional signature-based scanning is efficient but also has limited

effectiveness. Such signature scanning is easily defeated with encryption and polymor-

phism. Behavior-based analysis is the most common approach to spot zero-day Android

malware. Considering the energy constraints on the mobile platform, traditional heavy

host-based detection is limited. Thus, an emerging proposal to sidestep the energy con-

straints uses offloaded architectures. Furthermore, on the Android platform, it is common

that known trojans are repackaged into popular legitimate apps and spread in the mar-

ket. Thus, some emerging techniques have been proposed towards detecting and distin-

guishing the repackaged malware. Next, we will discuss the representative work towards

malware detection.

Paranoid [47], proposed by Protokalidis et al., provides a creative offloaded archi-

tecture in which all the events in the host are kept synchronized with a well-provisioned

server in the cloud. On the server, it runs an emulator to replay the trace file received

from the host Android device. Therefore, all the further security checks are performed

on the powerful server. It is even compatible with heavy desktop-based security model,

like dynamic program analysis, without any concern about the restriction on energy con-

sumption. To reduce redundant and unnecessary network transmission, they only report

undetermined system call operations to the cloud and also give an optimization for lazy

transmission when huge amount of data are generated, like files and photos. However,

in general, these offloaded architectures rely on a stable network channel with remote

servers and also incur extra power expenditure due to data upload, which are hardly ap-

plied widely in the current smartphone market.

RiskRanker [52] is a kind of static behavior-based analysis to scalably and accu-

rately sift through a large number of apps from the existing Android market to uncover

zero-day malware. It analyzes whether a particular app exhibits dangerous behavior (e.g.,

launching a root exploit or sending SMS messages in the background) and produces a
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prioritized list of reduced apps that merit further investigation. Specifically, it proposes a

two-order risk analysis to assess the security risks of Android apps and classify them into

high- or medium-risk based on the malicious behavior patterns. The first-order sift is de-

signed to handle non-obfuscated apps in a straightforward manner. For example, it treats

apps as high-risk if they match the signature of known platform-level exploits (e.g., As-

root, Exploid, GingerBreak), and treats apps as medium-risk if they charge users’ money

surreptitiously or update undeniably private information to a remote server through both

control- and data-flow analysis techniques. To deal with obfuscated code, they further de-

velop second-order analysis to collect and correlate various signs or patterns of behavior

to identify encrypted native code execution and unsafe Dalvik code loading. By apply-

ing their technique on 118,318 apps with less than four days, they uncover 718 malware

samples and 322 of them are zero-day malware. They also measure the false negative,

which is mainly due to the unmatched behavior pattern or the difficulty of distinguishing

malicious and legitimate apps from the common behavior such as information collection.

Crowdroid [26], proposed by Burguera et al., is a dynamic behavior-based detection

approach, providing a framework to distinguish between apps that, having the same name

and version, behave differently. Capturing and analyzing the system calls at the kernel

level produces accurate information about the apps’ behavior. System call sequence mon-

itoring has been widely used in intrusion detection system. Therefore, Crowdroid collects

related information (like opened and accessed files, execution time stamps and the count

of invocation for each system call number) about all the system calls based on the Strace

tool, and sends them to a dedicated centralized server for information processing. By

calculating the vector distance of the collected system call feature vectors with benign

traces, Crowdroid effectively distinguishes the malicious traces generated by repackaged

malware samples, and also summarizes a few favorite system calls by trojanized apps.

In general, signature scanning and behavior analysis are the two main approaches for

malware detection. Most of anti-virus softwares only apply signature scanning to achieve

efficiency. However, they are susceptible to common evasion techniques, such as obfusca-
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tion, encryption and repackaging. DroidChameleon [83] evaluates the most popular anti-

virus softwares against transformation attacks and reveals that all of them are vulnerable

to common transformations. A considerable amount of them only check checksums and

configuration files without any code-level analysis. Behavior-based analysis essentially

aims to distinguish malware from benign apps according to different behavior patterns.

However, it falls into false negative for common behavior, such as information collection

which also frequently occurs in benign cases.

2.2.4 Analyze How Applications Use Sensitive Data

To make thoughtful security-related decisions against threats to resources, we need more

comprehensive understanding regarding the resource usage inside Android apps, in addi-

tion to signature-based information. Having the knowledge of how apps use the sensitive

data, we can determine the potential risks of a given app on sensitive data, and thus con-

clude at which scenario or to what kinds of apps we should grant the resource access.

Android markets can also use this knowledge as an important reference to check the po-

tential risks of newly submitted apps and take effective measures to suspend suspicious

apps from being widely spread at the first place. In this section, we elaborate data oriented

analysis from different angles in present work.

2.2.4.1 Taint-based Data Flow Analysis

Taint is one important technique in the area of information flow analysis. It keeps tracking

the information flow during data propagation. Below we list the representative work on

both dynamic and static taint-based solutions.

TaintDroid [37], proposed by Enck et al., proposes an integrated tainting solution to

track private information and monitor whether privileged applications are handling pri-

vate data properly. This is similar with the conventional desktop-based tainting analysis,

but a variant to satisfy strict requirement in smartphone hardware. It leverages four gran-

ularities of taint propagation: variable-level, method-level, message-level and file-level,
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in terms of performance and accuracy. They mark private data with taint tags and pro-

pogate taint tags within the VM interpreter. They also instrument the Android framework

libraries to initialize the taint marking and detect whether any suspicious function, like

the network send API, is invoked to disclose tainted private data.

AppFence [56] extends the TaintDroid framework and prevents sensitive data leak-

age at runtime. It proposes data shadowing and exfiltration blocking techniques to protect

resources. It blocks network APIs when detecting sensitive data being sent out through

sockets, and alternatively shadows the content provider with an empty set and other prim-

itive data (such as location and device ID) with certain fixed values. Specially, they

evaluate the effectiveness of their approach on real-world samples. It shows that their

countermeasure is a promising privacy control to reduce sensitive data exposure. 66% of

apps in their testbed (50 in total) are compatible without side effects, while the rest have

a direct conflict between the desired functionality and the privacy constraint.

FlowDroid [17] is a static taint analysis tool for Android apps, which aims to achieve

high precision compared to existing other taint-based analysis. Therefore, their data flow

analysis is designed to be context-, flow-, field- and object-sensitive for achieving high

precision, and also takes the model of the Android-specific app lifecycle into account

to properly handle callbacks invoked by the Android framework. FlowDroid leverages

the callgraph and flow analysis by SOOT, an existing framework for optimizing Java

bytecode, and then analyzes if there is a source-to-sink connection.

Generally, it is inevitable for taint-based solutions to suffer from either taint explo-

sion or taint loss. Additionally, it aims to detect the presence of a flow from pre-defined

sources to sinks, which only partially reflects the way of data usage. Users still have little

knowledge about the apps’ internal logic on utilizing certain sensitive data, which is also

a helpful indicator, such as whether apps leak the raw sensitive data or only a little of

them.
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2.2.4.2 Symbolic-execution-based Analysis

Another line of work for privacy leakage detection is the symbolic-execution-based tech-

nique. It can be used to analyze under what conditions the data can be leaked.

SymDroid [57] designs a symbolic executor for Dalvik bytecode. SymDroid can be

used to determine the conditions under which certain privileged calls (such as a privileged

call that uses READ CONTACTS permission) would be invoked by a chosen activity. They

first translate Dalvik (supporting more than 200 instructions) into a simple version, i.e., µ-

Dalvik, which has only 16 instructions. Dalvik bytecode is designed to reduce the overall

size of apps and runtime performance in a resource-constrained environment, while µ-

Dalvik provides as clean and simple semantics as possible for symbolic execution that is

a possibly expensive off-device analysis. They model some key portions of the Android

platform (common libraries and lifecycle control code) and design a small number of

standard and quite straightforward operational semantics rules for the symbolic executor.

Due to lack of a complete system model, it only passes 26 of the test cases in their testbed

(93 in total).

AppIntent [106] proposes a more efficient event-space constraint guided symbolic ex-

ecution approach, considering the special event-driven paradigm in Android. They claim

that whether a data transmission indicates privacy leakage should eventually depend on

users’ intention. Therefore, they first use static taint analysis to identify all possible trans-

mission paths, and then use symbolic-execution-based solution to extract app inputs to

trigger a given sensitive data transmission path. The path condition helps analysts to de-

termine whether a transmission of sensitive data is user-intended or not and thus identify

the privacy leakage more comprehensively. Specially, to deal with the path explosion

problem in symbolic-execution-based solutions, they propose an event-space constraint

guided symbolic execution mechanism by leveraging the Android event-driven system.

SpanDex [84] borrows techniques from symbolic execution to precisely quantify the

amount of information (e.g., users’ passwords) that a process’ control flow reveals. It

enhances TaintDroid to handle the implicit flows and applies pre-defined heuristics along
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the data flow to calculate the possibility of revealing the sensitive password from the result

of a mathematical or branch operation. It ensures that the amount of secret information

revealed through a process’ control flow does not exceed a safe threshold. However, the

solution is rather limited to handle real-world complex scenarios, such as cryptographic

libraries, bit-wise and array-indexing operations, and even multiplication and division.

Symbolic execution is usually time-consuming for a full-fledged analysis to explore

all the feasible paths in one app. It needs an interpreter to maintain the program state. If

we target only on how apps use data, this technique is relatively heavy and impractical to

handle large-scale real-world Android apps.

2.2.4.3 Program-slicing-based Analysis

Program slicing is a common technique for data dependency analysis, which is relative

light-weight comparing to above solutions. Some existing work applies this technique on

data dependency in bytecode-level.

SAAF [55] is a slicing-based bytecode-level static analysis framework for Android

apps. They consider it to be suspicious if an interesting method uses a constant as its pa-

rameter. For example, SMS sending API sends a message to a fixed phone number. It aims

to create program slices in order to perform data-flow analysis to backtrack parameters

used by a given method. SAAF unpacks the Android apps and disassembles all classes

into Smali format, an “assembly-like format” for the Android bytecode. SAAF then parses

the Smali files and creates appropriate representations for all the contents, such as basic

blocks of the methods, fields and all opcodes. SAAF performs their customized program

slicing logic for backtracking analysis. SAAF backtracks the parameters of pre-defined

interesting APIs and checks whether the parameters are related with constants.

Program slicing is an alternative direction for data usage analysis. It reveals the data

dependency in a program slice, which can represent what kinds of operations are per-

formed on the sensitive data. Due to its light-weight nature, it is suitable for large-scale

analysis. It is worth thinking about how to balance the analysis granularity and the valu-
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able information extracted from the apps regarding how apps use the sensitive data.

2.3 Summary

In this section, we briefly introduce the Android infrastructure and the existing solutions

along the direction of resource protection on the Android platform. We discuss the related

work on enhancement and analysis frameworks from four angles, which are 1) enhanc-

ing the existing permission-based model in Android; 2) achieving data protection through

isolation-based approaches; 3) detecting malware threats to sensitive resources; 4) de-

termining the nature of an app on how it uses sensitive data. Especially, we discuss the

present work and the promising direction in virtualization-based and partition-based ap-

proaches for data protection. This leads us to the thought of a better trade-off between

data protection and the sacrificed usability and overhead. The existing work on data us-

age analysis also helps us to think of other important complementary metrics, such as the

impact of a set of operations on sensitive data indicating whether they leak more or less

of user privacy, which are also key factors for users to better understand the apps’ data

usage.
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Chapter 3

A Light-weight Software Environment

for Confining Android Malware

3.1 Introduction

Mobile devices (e.g., smartphones and tablets) have become increasingly general-purpose

and versatile. A mobile device integrates the functionality of several special-purpose de-

vices, such as a mobile phone, a GPS, a game console, an e-book reader and an Internet

tablet. While such functional integration significantly improves user experience, it also

increases system complexity. In such highly-integrated devices, as the physical barrier

between many types of resources disappears, mobile applications (apps) may exploit vul-

nerability and misconfiguration to access important resources that they should not have

accessed. Recent research [37, 56, 113] has revealed that a large portion of apps expose

phone state or location information. Malicious apps can be designed to covertly extract

private information, such as user contacts, or stealthily capture audio/video through mi-

crophone and camera services [88, 102]. Even worse, trojans, such as Geinimi and Droid-

Dream [7], are repackaged into popular games and get widespread, which almost gain

full control over infected Android devices. Although the official Android market actively

detects malicious apps, malware has been spotted from time to time in widely used apps.
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Malware is a more severe problem in third-party markets, where resources for detecting

malware are limited.

To regulate an app’s access to the resources on mobile devices, the Android system

uses a permission-based security mechanism. Apps need to explicitly request permissions

for resources, and the requests will be decided by users during the installation time. Under

this mechanism, users only have two options to refuse installation of a suspicious app or

to completely grant all the permissions requested by the app. Since users are often not

knowledgeable enough to understand the Android permissions, malicious apps can misuse

resources unintended by users.

To improve the default permission-based model in Android, recent solutions [74, 20]

have extended it to support more flexible permission control on apps and allow users to

selectively grant permissions or re-adjust permissions for an app after installation. How-

ever, it is tedious for users to selectively grant permissions and also impractical for users

to make all security-related decisions. Even with properly configured permissions, mali-

cious apps can misuse resources through vulnerabilities in the Android inter-component

communication (ICC). Although recent work [51, 35, 23] proposes solutions to detect and

prevent ICC vulnerability, they are not general for confining resource-abusing apps with-

out ICC channels involved. A stronger security guarantee is provided by virtualization-

based solutions — Cells [16], L4Android [64], and AirBag [100] propose OS-level virtu-

alization and isolated execution environment by virtualizing hardware devices. However,

they require heavy environment initialization and extra storage to achieve strong isolation.

In this work, we propose a light-weight virtualization solution which balances between

the security and usability for confining resource-abusing Android apps.

To effectively mitigate the resource-abusing problem and manage the complexity of

protecting Android resources, we propose an approach based on the idea of resource vir-

tualization. It creates a resource virtualization layer (RVL), which sits between the mo-

bile apps and physical resources (e.g., the raw external storage and user contacts). Apps

can only obtain a virtual view of the resources, instead of directly accessing the physi-
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cal ones. Our approach confines apps within an isolated software environment, a virtual

device, in which apps get a “private” copy of system resources. Our solution supports

multiple isolated environments and allows users to customize each of them. Therefore,

a general-purpose device can play roles of a virtual e-book reader and a virtual Internet

tablet simultaneously without affecting each other.

Our approach achieves a balance between usability and security guarantee without in-

curring heavy overhead. Our goal is to provide an isolated clean environment by default,

instead of restricting any functionality by permission removal. We further allow advanced

users to customize the virtual view of the resources inside each environment. Comparing

to figuring out the meaning of the permissions requested by various apps, it is easier for

users to understand what resources should be provided for the expected functionality. For

example, when a user wants to download a media player app, he can create a virtual media

player device with only storage and Internet support. Then he can simply install several

media player apps into the virtual media player device without struggling with the per-

missions for each app and worrying about the potential resource-abusing problem. Our

solution can also be flexibly applied into centralized enterprise management in which the

administrator pre-defines a set of apps along with the environment configurations. Com-

paring with other OS-level virtualization solutions, RVL does not duplicate any physical

resource, such as the external storage and user contacts. Additionally, creating a new vir-

tual device environment only requires small changes on configuration files, without heavy

environment initialization or booting process. Therefore, RVL incurs negligible storage

and memory overhead. It only shows 0.25%∼3.87% runtime performance overhead in

our performance evaluation on popular Android benchmarks.

We prototype RVL in the Android system and evaluate it using real-world Android

apps. Our experiments show that RVL can effectively virtualize Android resources and

successfully isolate Android apps while preserving their functionality.

In summary, our contributions are as follows:

• We design a light-weight resource virtualization layer, RVL, in the Android system
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to mitigate the resource-abusing problem. It balances security and usability.

• We evaluate RVL using real-world Android apps (including both benign and mal-

ware samples). RVL can effectively prevent malicious behaviors without compro-

mising the usability of these apps.

3.2 Approach Overview

In this section, we introduce the resource protection mechanism in the Android system

and the resource-abusing attacks. We then give an overview of our solution.

3.2.1 Android Resource Protection

The Android system enforces a permission-based security model. An app needs to de-

clare a list of permissions that must be granted for accessing resources. For example, in

order to gain the capability of sending SMS, the app must specify the SEND SMS label in

the AndroidManifest.xml configuration file. During app installation, the Android system

prompts this permission list, and users must decide whether to grant all the permissions

to install this app, or refuse the permissions to deny the installation. The Android system

also checks permissions at runtime at a number of places, such as starting an activity and

binding to a service.

However, the current permission-based security model is insufficient in the following

aspects.

1) It relies on users to make proper security decisions. Users decide whether to install

an app by examining its permission list. It is extremely difficult for end users to under-

stand the precise meaning and security implication for each permission. Even if some

users do have good understanding on these permissions, it is still hard to decide whether

an app can be harmful, given only the list of requested permissions.

2) Users cannot selectively grant a subset of permissions requested by one app during

installation. After an app gets installed, users cannot later revoke a granted permission. It
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means that once an app gets installed, users have no control over how it utilizes granted

permissions and whether it performs malicious activities. For example, if one app re-

quires both location and network permissions, it can easily leak location information to a

third-party. Even though the Android 4.3/4.4.1 releases have a hidden feature “Apps Ops”

which allows users to dynamically revoke permissions for an app, this feature is not com-

plete yet and may break certain apps after permission removal. Thus Google completely

disables this hidden feature in the Android 4.4.2 release.

3) Permission labels are coarse grained and not expressive enough for certain scenar-

ios. For example, most Android devices support SD card as the external storage. In order

to gain a full access to the SD card, an app must hold WRITE EXTERNAL STORAGE

permission. However, the SD card resource is shared among all the apps with that per-

mission on the device. Consequently, if a malicious app obtains this permission, it can

corrupt other apps’ data or code in the SD card. Users cannot grant access to a portion of

the SD card file system to an app and deny its access to the rest of the SD card.

4) Apps can reuse components provided by other apps, thus resulting in permission

escalation problem. Through the ICC between apps, a malicious app can escalate its

privilege or inject malicious input to corrupt other benign apps [51, 24, 35, 75, 23]. For

example, a privileged app having the permission of sending SMS can send SMS for other

unprivileged apps, so that malicious apps can request this privileged app to send SMS

through the ICC channel without requesting SMS-related permissions by themselves.

Thus, even though an app seems benign by itself, it may bring hidden vulnerable channels

and reduce security of the whole system after being installed into a device.

Resource-abusing Application Example. According to [110, 111], the majority of real-

world malware samples (about 86%) are from repackaging existing legitimate apps with

malicious payloads. For example, Geinimi trojan [7] is repackaged into popular game

apps, e.g., Monkey Jump 2, to attract users. Once infecting a device, the trojan steals sensi-

tive data, such as user contacts, SMS messages and location data. Usually, the repackaged

games request more dangerous permissions for those sensitive resources during installa-

33



Profile: 
Untrusted

Profile: 
Trusted

Physical 
Resource

Content
Provider Location Phone 

State SD Card Services

Resource 
Virtualization

Application

Figure 3.1: Android Resource Virtualization

tion than normal games. One intuitive detection method is to examine the permissions

requested by the apps. However, it is difficult to decide whether an app is malicious

simply based on the requested dangerous permissions. A malicious app only behaves ma-

liciously at some point during its execution. Therefore, we need a systematic protection

mechanism to mitigate the threats to an Android device from installing a malicious app.

3.2.2 RVL Overview

The main idea of our approach is to virtualize resources on the Android platform, such as

the user contacts database and the SD card file system, and to provide a separate resource

virtualization layer. Installed apps will access system resources through this virtualization

layer, instead of directly accessing the physical resources. Based on this virtualization

layer, users can define profiles to isolate apps. Apps in each profile share the same view

of resources, and apps in different profiles can neither share resources nor communicate.

Threat Model. Our goal is to mitigate resource-abusing problems with minimal mod-

ifications to the Android system. The TCB (Trusted Computing Base) for our solution

includes the OS kernel and the Android framework, which is equivalent to the TCB of the

original Android security model. This implies that a malicious app with root exploits is

out of the scope of this approach.

In the example illustrated in Figure 3.1, we show two profiles, Untrusted profile
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and Trusted profile. Note that we just use this example to demonstrate one applica-

ble scenario of the profiles, not to discuss how to group apps based on app trust. Our

solution can also be applied in other scenarios, such as Work and Personal profiles

for BYOD (bring-your-own-device) paradigm. By default, each profile is an isolated vir-

tual device environment with its own virtual private copy of sensitive Android resources,

such as the user contacts and external storage. For example, to the Angry Bird app in the

Untrusted profile, it seems as if it runs in a physical device with sensitive Android

resources available, except for perceiving the existence of apps in the other profile. Apps

in one profile cannot access resources of the other. Modifications made by an app only

take effect within its own profile.

RVL provides a separate virtual view of physical resources for different profiles based

on profile configurations. The default configuration guarantees that each profile has its

own private virtual copy of resources. Users can also flexibly customize the default con-

figuration on resource access, so that they can manually group the installed apps based

on app trust or specific resource control, such as whether to allow the network/contact

access or not. The resources of a profile can be dynamically changed, such as on-demand

privileges. Users can create multiple customized virtual devices running simultaneously

above the physical one. Through RVL, apps in different profiles will have different views

of phone resources.

RVL is transparent to the confined apps. For compatibility of existing apps, RVL does

not conflict with the existing Android permission-based security mechanism. It just wraps

physical phone resources. Apps will not see any change from the interfaces they depend

on. For example, in Figure 3.1, if the Angry Bird app in the profile Untrusted wants

to access the user contacts database, it still needs to claim READ CONTACTS permission

label in its AndroidManifest.xml explicitly. Even if the permission is granted by the user,

the app can only access the virtual contacts database in the Untrusted profile.
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3.3 Resource Virtualization in Android

In this section, we describe our resource virtualization based approach in detail. We first

summarize various types of sensitive resources in Android and then describe the technique

to virtualize each type of them.

3.3.1 Resources in Android

The Android system is built up on the Linux kernel. Android apps are developed in

Java language and compiled into dex code, a variant of standard Java bytecode. Each

app runs in a separate custom Java runtime environment, the Dalvik virtual machine.

To simplify app development, Android adds a middleware layer, which wraps local C

libraries and provides well-defined Java interfaces for upper layer apps. Android also

supports restricted JNI interfaces, which allow apps to directly import C libraries, such

as those accessing file system and network. Resource access is controlled either by the

Linux security mechanism — UNIX-style file access control, or by the Android-specific

security mechanism — app permissions.
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3.3.1.1 Linux System Resources

File system is one type of important resource protected by the Linux kernel. Usually, each

app is assigned with a unique Linux user ID during installation. Linux associates each file

with the app’s user ID and group ID, and protects files using standard Linux file system

permissions.

In Android, the device storage has two parts: internal storage and external storage. For

the internal storage, most files belong to either the user system or the user root. These

files can only be accessed by system services with high privilege. By default, Android

assigns one separate private folder on the internal storage for each app. Usually, an app

stores its own data, such as app-specific credentials and resources, in this private folder.

Files created by the app will be assigned with the same user ID as the app. These files are

not accessible by other apps with different user IDs.

Android devices also support the external storage as an extension to the internal

storage. It can be a mounted SD card or non-removable storage media. The external

storage is shared among all the apps. Typically, it is mounted and accessible through

the /mnt/sdcard folder. The SD card file system is associated with the group ID

sdcard rw, where users inside group sdcard rw have full read and write permis-

sions. Android provides Java interfaces for accessing the SD card, and even supports

JNI interfaces for apps to access the SD card directly using C libraries. If an app is

granted the permission WRITE EXTERNAL STORAGE, the system will add the app into

the sdcard rw group, so that this app’s SD card access will be allowed by the Linux

kernel.

In addition, system drivers can create device files, so that communication with system

drivers can be achieved in the same way as accessing an ordinary file. For example, rild

is the system driver responsible for all the communication from the Android telephony

services, such as SMS dispatch and phone call. The Android system creates a device file

and only assigns the write permission to apps in the radio group. Android apps without

the telephony privilege will not be added into the radio group so that the Linux kernel
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can prevent them from accessing the telephony device file.

The network access is also confined by the Linux kernel in a similar way, that is,

checking whether the running process is inside the inet group or not. The Android

system adds apps with the INTERNET permission into the inet group and the Linux

kernel ensures that only processes in the inet group can have the network access.

3.3.1.2 Android-specific Resources

Android apps can be decomposed into components. Four primary components are defined

in the Android system: Activity, Service, Broadcast Receiver, and Content Provider. The

Android system contains several built-in components, which are built into a device with

the system image. These components take responsibility of managing different impor-

tant resources, such as user contacts, calendar and SMS. For example, user contacts are

maintained in a built-in content provider ContactsProvider, while an app needs to bind

the built-in ISMS service to send SMS. Android provides well-defined interfaces for these

components. For example, Android defines SMSManager for upper layer apps to easily

send SMS without handling internal service binding. For most resources, an app has no

privilege for direct access. The corresponding built-in component is the only interface

for accessing them. An app does not need to understand the internals of each built-in

component. It just needs to make a request to the corresponding component through pre-

defined APIs. The component will check whether the requesting app has permissions for

the requested resource. For example, IccSmsInterfaceManagerProxy registers one system

service ISMS, which is in charge of sending SMS. If one app needs to send SMS, it must

bind the ISMS service and ask the service to send SMS on its behalf through the SMSMan-

ager API provided by the Android framework. Similarly, if it needs to read user contacts,

it must make a query to ContactsProvider, which is a built-in content provider component

for managing contacts data. In Figure 3.2, we list those components that manage sensitive

resources.
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3.3.2 Light-weight Resource Virtualization

Integrating resources into one physical device introduces extra security risks, especially

when users have little control on installed apps. Even though the permission-based secu-

rity mechanism requests apps to explicitly apply permissions for resource access, it is still

insufficient to effectively protect all local resources. We propose to virtualize physical

resources and only provide a virtual view to upper layer apps. Apps running in such a

virtual environment can only view virtual resources. We can virtualize multiple indepen-

dent environments simultaneously above the physical device. For example, instead of all

apps sharing the whole SD card and one single user contacts list in the standard Android

system, we create multiple private copies of these resources and allocate one for each

virtual environment, so that each virtual environment has its own external storage, user

contacts, phone states, etc. Besides, apps running in one virtual environment are not able

to view other environments’ resources or communicate with any apps that belong to other

environments.

Through resource virtualization, upper layer apps will obtain a virtual view of physi-

cal resources. We propose three virtualization mechanisms applied on different kinds of

resources.

• For complicated resources, such as the external storage and the content provider,

they are shared among many installed apps with read/write permissions. We pro-

pose to fully virtualize them to maintain consistency among installed apps.

• For simple resources managed by certain services, such as the location service man-

aging the location information, the telephony service managing the phone state in-

formation and the camera, microphone services, they are read-only resources to

apps. We propose to virtualize sensitive data by making simple changes.

• For other communication resources such as send/receive SMS, make/receive phone

call and network, we will decide whether to support them in a profile.
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Virtualizing External Storage. The SD card is an external storage device currently sup-

ported by most Android devices. The SD card storage device is mounted in a public

world-readable and world-writable folder, /mnt/sdcard. As long as an app is granted

the WRITE EXTERNAL STORAGE permission, it can arbitrarily create new files or mod-

ify existing files created by other apps. Resources in the SD card are shared among all

apps holding the permission, so if one app stores sensitive information into the SD card,

other apps can directly corrupt or leak it. In addition, Android supports dynamically load-

ing dex code during runtime from a given path using a standard API DexClassLoader.

If an app simply uses an insecure path, like the SD card, to store dex code, it potentially

gives other malicious apps a chance to replace the dex binary in the SD card with their

own malicious dex code, so that malicious code can be executed on behalf of the victim

app, as discussed by Poeplau et al. [78].

To mitigate the disadvantage from open access to the SD card, our approach provides
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a virtual view of the SD card, so that apps are not given full control on the SD card.

Figure 3.3 illustrates the virtualization of the SD card file system. RVL intercepts all the

access from apps to the SD card file system and creates multiple separate and consistent

virtual SD card file systems. Each virtual SD card file system aggregates one or more

physical folders in the SD card. RVL redirects read/write operations of the virtual SD card

to the corresponding physical folders and maintains a consistent view. For example, we

use a physical folder /mnt/sdcard/Untrusted for apps in the profile Untrusted.

All apps in the profile Untrusted will use /mnt/sdcard/Untrusted as the root

directory of the external storage and cannot access beyond this folder’s boundary. The

processing is completely transparent to those apps. In this way, only apps within the same

profile can share data in the SD card.

To ensure complete protection, we base our file system virtualization on the OS-level

mechanism, i.e., system call interception to monitor the apps’ processes. Through inter-

cepting system calls for the file system access, we can constrain all access into a spe-

cific folder. In particular, our approach intercepts all file-system-related system calls of

an app. The SD card in Android does not support link operations (such as symbolic

links). It is usually mounted as the FAT file system. Since the Android version 4.2,

it is more commonly mounted as a FUSE daemon but still without supporting link op-

erations. Therefore, for files on the SD card, they have one-to-one mapping with the

pathname. We can achieve a complete virtualization of the SD card by simply regu-

lating the pathname of the file-system-related system calls. When a system call is in-

voked in the app, the system call is intercepted and forwarded to a file system virtual-

ization engine. For a file-system-related system call, the file system virtualization en-

gine checks whether the app belongs to any profile that is configured to constrain the

SD card access. If so, it updates the pathname of the system call accordingly. Af-

ter changing the pathname, it resumes the intercepted system call. For example, if an

app in the Untrusted profile invokes an open system call to create a file with the

pathname /mnt/sdcard/temp.txt, the open system call will be intercepted and
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redirected to the file system virtualization engine, which then automatically maps it to

/mnt/sdcard/Untrusted/temp.txt with a pathname mapping. In the physi-

cal file system, the app creates a file /mnt/sdcard/Untrusted/temp.txt. If

an app within another profile, such as Trusted, invokes access system call to read

/mnt/sdcard/temp.txt, similarly the file system virtualization engine will map its

pathname to /mnt/sdcard/Trusted/temp.txt. In this way, the SD card file sys-

tem is virtualized and isolated.

Virtualizing Content Provider. A content provider is one type of Android components

that manages data in the SQLite database format. The Android system provides sev-

eral separate built-in content providers to manage user contacts, user accounts, call logs,

calendar, SMS messages, browser history, subscribed feed, etc. Each content provider

offers database-related operations, i.e., query/insert/update/delete, for apps to process the

database. Each operation is also protected by the default permission-based mechanism in

Android. For example, if one app wants to read the user contacts, it needs to request the

permission READ CONTACTS explicitly in its manifest file.
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Our virtualization mechanism enhances default permission-based security of content

providers by supporting tagging items in the database and regulating database access with

respect to the tags. Therefore, two apps both with the READ CONTACTS permission, but

in different profiles, fetch different results through the same query on the same content

provider. These tags are not visible to apps within any profile. If an app in a profile

explicitly queries the tag information, it will get an Android SQLiteException indicating

no such column.

Figure 3.4 illustrates the virtualization on content providers. Taking contacts in-

formation as an example, when an app in the Untrusted profile and an app in the

Trusted profile access the contacts content provider through RVL, they will get differ-

ent views that include different contact items. In the physical contacts content provider,

items are marked with tags. The tag U indicates the corresponding item is visible to

the Untrusted profile, while T for the Trusted profile. Assuming different profiles

are querying all contact items, RVL revises the queries by adding one extra condition on

those tags, and fetches different matching items for different profiles according to the pro-

file configurations. In Figure 3.4, the Untrusted profile fetches all the items marked

with the tag U while the Trusted profile fetches all the items marked with the tag T.

Each profile is initially assigned an empty contact list, and when any app wants to insert

a new item into the user contacts database, RVL automatically attaches the tag attribute,

e.g., the item inserted by the Untrusted profile is marked with the tag U in the physical

contact list, so that each profile can only view contact items created by apps in itself.

Virtualizing Simple Services. The Android system has many built-in system services

which automatically launch during system boot time. Some of these services manage

sensitive data, such as the location and phone state. Such services can be virtualized in a

simple way, discussed below.

Location is the sensitive data managed by the LocationManager. To access it, apps

need to request corresponding permissions and be explicitly granted by users during in-

stallation. Different from data in content providers, the location data is read-only to apps.
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The GPS location information is generated by the GPS sensor, including latitude and lon-

gitude values. Apps registered as location receivers are notified through Java callbacks.

To give separate virtual views, our approach assigns different values or reduces the ac-

curacy of the raw GPS data, such as replacing partial of these data with ’0’ before being

returned to apps. The inaccuracy degree depends on the profile configuration. For exam-

ple, as the inaccuracy degree grows from low to high, the latitude value 37.422006 will

be replaced as 37.422006, ..., 37.0, ..., until 0.0. When a user searches for restau-

rants within around 500 meters using apps in the Untrusted profile while he does not

want to leak his accurate location, he can configure in a way that apps in the Untrusted

profile can only get the location information with certain degree of noise to be added.

A similar virtualizing mechanism is applied on the phone state information, which

includes phone number, device ID (such as IMEI for GSM phones), etc. Some game

clients use the device ID as user identification for the leaderboard on the server side.

Sometimes, an app may take it for granted that the phone state information is available

after being granted the READ PHONE STATE permission, so if we simply deny the access

in a profile, the app may break. Even though users grant the phone state permission to

a game app, they may just intend to agree that the app can use the device ID as user

identification, while they may not expect the app to leak it out for other purposes. In this

scenario, users can configure a separate virtual view on the phone state resource based on

their requirements. For example, the Untrusted profile can only read inaccurate values

or the hash values of the device ID and the phone number.

Camera and microphone are two services to collect media data. Considering prac-

ticality and performance, to virtualize the camera and microphone, we simply return a

pre-selected image for camera and a pre-recorded audio for microphone.

Handling Communication Services. For sensitive resources, including making/receiv-

ing phone call, sending/receiving SMS and network, etc., we simply allow or deny them.

In this way, we can mimic different virtual views of physical functionality support.

Apps need to go through Android-specific components in the middleware to access
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these resources, such as starting an activity for making phone call and binding the cor-

responding service for sending SMS. Specially, for network access — Linux system re-

source, Android apps can directly access network without going through the Android

framework layer. We need to rely on the OS-level mechanism to ensure the effective-

ness through system call interception. We need simple confinement giving an allow/deny

answer for network-related system calls.

3.3.3 Profile Configuration

P := (ID,AS,RS)

AS := {Ai|i ∈ 1 . . . NA}

RS := {Ri|i ∈ 1 . . . NR}

Each profileP is represented as a tuple. ID represents the identification of one profile.

AS represents the application set grouped into the profile P , where NA is the number of

applications in the setAS. One app can only belong to one profile at one time, but can be

switched among profiles. RS indicates the virtual resource set insideAS, whereNR is the

number of different kinds of sensitive resources. Ri in RS represents the configuration

policy for one type of resources at the index i.

Table 3.1 lists the available configuration options for different kinds of resources. SD-

card View has three options none, partial, full. Option none indicates that the correspond-

ing profile is disallowed for any access to the SD card, while full indicates the full access

to the SD card. Option partial means that the profile is given a virtual SD card view gen-

erated through RVL. Note that RVL is an additional protection layer in Android, and thus

apps still have to satisfy the permission requirements for accessing sensitive resources

even being grouped into a profile configured with partial or full. ContentProvider View

includes configurations for all different content providers, and users can configure sepa-

rately for Contacts View, UserAccounts View, etc. Similarly, ContentProvider View also

has three options. Option none indicates denying all access to a certain content provider,

while full indicates the profile can view the full content provider. Option partial indi-
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cates that RVL generates a partial view of the physical content provider according to our

tagging mechanism as described earlier in Section 3.3.2. For the location and the phone

state, we provide three different accuracy levels: accurate, inaccurate, customized. Op-

tion accurate represents the accurate location information, while customized indicates a

customized way for replacing the raw data, such as using a fixed value or the hash value.

Option inaccurate means partially replacing the raw data. For example, 37.422006, 37.0,

0.0 represents accurate, inaccurate, customized separately for 37.422006. For camera,

microphone, phone call, send/receive SMS and Internet, we give two options yes and no

to indicate whether the profile supports such functionality or not. Option no indicates

only exposing fake services instead of the real ones.

3.3.4 Profile Isolation

The Android platform facilitates component re-use to simplify app development. Besides

the built-in components, apps can also provide new components for others to use. One

app can take advantage of not only the built-in components in the Android framework

layer, but also components of all the installed apps. It can also provide interfaces for

others. For example, one app can ask a browser app to open a URL address, without

being granted the network permission. The Android platform provides well-defined in-

terfaces for the ICC. The ICC can cross the boundary of apps if it satisfies the permission

checking. Based on the four basic types of Android components, ICC includes four com-

mon actions: starting an activity, binding a service, receiving a broadcast and accessing

a content provider. Apps can pass an Intent message (an Android-specific data structure)

to each other through the ICC. To ensure consistency of the virtual resource view inside

each isolated environment, any cross-profile ICC is not permitted.

RVL checks whether the sending and handling components of an intent are in the

same profile. It denies all the cross-profile ICCs. Specially, we treat the Android built-in

apps and components as system resources, which do not belong to any specific profile.

These built-in apps and components either manage sensitive resources or handle basic
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Table 3.1: Resource Configuration Option

Resource ConfigurationRi Option

SDcard View

none: disallow SD card usage

partial: use subfolder as root directory

full: allow full access

ContentProvider View

none: disallow all access

partial: partial virtual view

full: access on full content provider

Location Accuracy

customized: customized value

inaccurate: partially replaced with zero

accurate: accurate value

PhoneState Accuracy

customized: customized value

inaccurate: partially replaced with zero

accurate: accurate value

Camera Support
yes: support camera

no: fake camera

Microphone Support
yes: support microphone

no: fake microphone

PhoneCall Support
yes: allow phone call

no: disallow phone call

SendReceiveSMS Support
yes: allow send/receive SMS

no: disallow send/receive SMS

Internet Support
yes: allow Internet

no: disallow Internet

system events. Therefore, to have a high compatibility, any profile can communicate with

the built-in apps and components, and any ICC with built-in apps and components is not

treated as cross-profile. For example, the built-in ContactsProvider manages the contacts
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information for all the profiles; the built-in Launcher launches an app when a user taps

on the icon on the home screen; an app can use the ICC to load a URL into the built-in

web browser. The sensitive resources managed by these built-in apps and components are

virtually visible to all the profiles by applying the corresponding resource virtualization

mechanisms as described in Section 3.3.2. In the example illustrated in Figure 3.1, the

Angry Bird app can communicate with built-in components, such as ContactsProvider,

but not banking apps in the other profile. With RVL, apps in one profile cannot expose

any interfaces to other apps in different profiles, and therefore permission re-delegation

attacks can be effectively prevented.

3.4 RVL Design

3.4.1 Architecture Overview

Figure 3.5 illustrates the overview of RVL architecture. RVL extends the Android system

in both the Android middleware layer and the system call layer. The resource virtual-

ization layer intercepts all the resource access and virtualizes them according to profile

configurations. In the Android middleware layer, the monitor manager intercepts the

resource access. In the system call level, the system call interceptor handles file-system-

related and network-related system calls.

In the Android middleware layer, we add one extra built-in Android content provider,

called monitor provider, which manages all the profile configurations, and define two new

permission labels for it: READ MONITOR and WRITE MONITOR. We set protection level

of both newly claimed permissions as signatureOrSystem1 to make sure that third-

party apps do not have direct read/write access to the monitor provider. We add a new

system service, called monitor manager service, which is dedicated to communicate with

1Android defines four protection levels for permission labels (i.e., normal, dangerous,
signature, signatureOrSystem), among which signatureOrSystem means that it only al-
lows built-in apps or apps signed with the same certificate as the system image to require corresponding
permissions.
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the monitor provider and provide APIs for policy management. It simply allows all read

operations to the monitor provider. For write operations, it ensures that the calling app

must hold the WRITE MONITOR permission, which is only possible for built-in apps.

We add the monitor manager which provides convenient APIs for other components to

use the monitor manager service. We define the Hook API to insert hooks into existing

components. It first collects related information of a running app before the app accesses

protected resources, and then internally binds to the monitor manager service to send a

query on whether this access should be allowed or denied. The monitor manager service

receives the remote query issued from the monitor manager and handles it accordingly.

We also add a built-in app, called monitor, which allows users to configure profile policies

through APIs supported in the monitor manager.

In the system call level, the system call interceptor intercepts system calls and makes a

decision based on policies. The policy manager provides APIs in C language for directly

accessing policy database file.

Taking sending SMS as an example, when an app invokes the sendTextMessage func-

tion, it finally binds to the ISMS service registered by IccSmsInterfaceManagerProxy

class and remotely calls the sendText function supported by ISMS (step 1, as shown in

Figure 3.5). We insert one hook into sendText through the Hook API provided by the

monitor manager. The Hook API collects information including package name of the

calling app, the function’s name (i.e., IccSmsInterfaceManagerProxy.sendText) and its

parameters (step 2). The monitor manager further connects with the monitor manager

service and remotely invokes the getPolicy function to query the related policy for this ac-

tion (step 3). The getPolicy then parses the collected information and queries the monitor

provider (step 4). The monitor provider manages the real policy database file and returns

the policy back. After fetching the policy, ISMS service then selects corresponding virtu-

alization mechanism to virtualize the resource. For sending SMS service in this case, we

just make an allow/deny decision.
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3.4.2 Implementation

System Call. We build a dedicated kernel module to intercept system calls and make de-

cisions based on profile configurations. Our tool allows developers to insert custom exten-

sions to support more advanced functionality. We monitor system calls related to the SD

card and network access by Android apps. Our extension also communicates with the pol-

icy manager and virtualizes resources according to the profile configurations. To virtualize

the external storage, our extension updates the pathname parameter of file-system-related

system calls after it successfully intercepts all the system calls of monitored processes.

We intercept 20 system calls which are frequently used to create/access/delete files in

the SD card, including sys mkdir, sys open, sys stat64, sys access, sys rmdir, sys unlink,

sys utimes, etc. If one app accesses the SD card through any of the above system calls,

we redirect the pathname parameter to the corresponding physical sub-folders in the SD

card. Similarly for the network access, we intercept 15 related system calls, including

sys socket, sys bind, sys connect, sys listen, sys accept, etc., and our extension makes an

allow/deny decision based on profile configurations.

Content Provider. Content Provider is one type of Android-specific components. It

stores data in an SQLite database, and exposes query/insert/update/delete interfaces for

other components. For example, contacts information is maintained by the built-in provider

ContactsProvider. It uses three main tables (contacts, raw contact, and data) to store all

the contacts information. We add one extra field security tag in each table indicating to

which profile each item in the table is accessible. This field cannot be modified by apps

confined in the profiles.

We intercept the contacts access in ContentResolver, a class that provides query/in-

sert/update/delete interfaces for apps to access data stored inside content providers. Uri is

one parameter of these APIs indicating which content provider should handle this request.

Other parameters like projection, selection and values are passed to the content provider

and then composed together as an SQL statement which is further handled by local C

libraries. To virtualize the content provider resource, we revise the selection and values
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parameters and enforce them to consider the security tag field additionally. For example,

in the modified insert API, we add security tag field into the parameter values and then

send the modified request to the content provider. We modify the built-in Contacts app

to support modifying the security tag. For query API, we add one more condition in the

selection parameter related to the security tag to make sure that one app can only view

the item whose security tag matches the profile of the calling app.

Service. Apps use APIs defined in SMSManager, such as sendText, sendData and send-

MultipartText, to send SMS messages. These APIs are further handled in the IccSmsIn-

terfaceManagerProxy internal service, registered as ISMS in the Android service man-

ager. We modify related APIs in the IccSmsInterfaceManagerProxy service and enforce

policies defined in profile configurations. Here we only make an allow/deny decision of

sending SMS. Similar modification is applied on camera and microphone services.

Apps get location information through the LocationManager. We modify the get-

LastKnownLocation API which returns most recently updated location information. In

this case, we directly mask the returned location information. Additionally, apps can use

requestLocationUpdates to register a listener inside LocationManagerService as one Re-

ceiver. Then the Receiver will receive location updates from system drivers and notify

registered apps of location update events later through the callLocationChangedLocked

callback. We add one extra variable mask depth inside the Receiver structure to indicate

how to mask the location information later and assign mask depth inside requestLoca-

tionUpdates during the listener registration according to profile configurations. When

Receiver triggers the callback to notify location updates to apps, we mask the returned

location values based on the mask depth. Similar modification is applied on Telephony-

Manager.

Activity and Broadcast Receiver. The phone call API is not directly visible to third-

party apps, so they have to delegate this task to a built-in activity through the intent

ACTION CALL or ACTION DIAL. In the Android framework, the Activity Manager Ser-

vice (AMS) resolves the intent messages and searches all the matching target components
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to handle the requests. For SMS receiving and phone calls, apps first register one broad-

cast receiver with the action android.provider.Telephony.SMS RECEIVED and

android.intent.action.PHONE STATE in the AMS. When a new SMS arrives,

the AMS passes an intent message with the incoming SMS and phone call information to

the registered receiver. For these two special cases, we modify the AMS to constrain the

target components of the intent messages according to profile configurations.

ICC Constraint. Two Android components can communicate with each other through

well-defined APIs; for example, an app can use the startActivity API to start a new activity.

The AMS resolves the request and builds up the connection between the caller and the tar-

get components. The AMS is the centralized service for resolving all the requests across

components. It provides startActivity, bindService, broadcastIntentLocked and getCon-

tentProvider APIs, each for handling one of the four basic types of ICC. Specifically,

when multiple activities matches one intent, it calls the ResolverActivity class to resolve

the intent and provide users with all the available choices. To ensure profile isolation, we

intercept these APIs and only allow the ICC when the caller and the target component are

within the same profile or one of them is a built-in component.

3.5 Evaluation

We implement our solution RVL in the Cyanogenmod Android version 2.3.7 and evaluate

it on Samsung Galaxy Tablet GT-P1000. Our modification to the Android middleware is

658 LOC only. The modified functions are common in all the Android versions from v1.6

to v4.4, so it is easy to port RVL to other Android versions.

3.5.1 Effectiveness & Compatibility

To measure RVL’s effectiveness, we selected seven apps which cover all different kinds

of protected resources. These apps include PicsArt, Voice Recorder, Wikipedia, Go SMS

Pro, Call Blocker, File Manager and Bump. We put them into the Untrusted profile,
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Table 3.2: Effectiveness on Applications inside the Default Profile

Applications Main Functionality RVL Effect

PicsArt taking/beautifying photos camera area only shows black display

Voice Recorder voice recording record nothing during time counting

Wikipedia surfing Wikipedia articles showing Article not available page

Go SMS Pro SMS tool block sending and receiving SMS

Call Blocker block unwanted phone calls block making/receiving phone calls

File Manager navigating SD card only navigate inside restricted folder

Bump social app for sharing only a subset of contacts are accessible

a virtual device environment that virtualizes all the local resources. Table 3.2 lists the

results of the resource access for each app. It shows that RVL can effectively virtualize

the related resources. PicsArt only gets a black area in the camera display, while Voice

Recorder actually records nothing during the time counting. File Manager navigates into

the root directory /mnt/sdcard showing the path /mnt/sdcard in the title bar, while

actually it is in the /mnt/sdcard/Untrusted folder. Bump provides an interface to

share information with friends in the contacts list. It only displays the contacts with the

security tag U in ContactsProvider.

RVL supports multiple profiles simultaneously running on one device. Each profile

has its own virtual resources, such as the external storage and user contacts; the profiles

should be isolated with each other. To examine the SD card isolation, we test File Man-

ager app in both Trusted and Untrusted profiles. File Manager app acts as if it nav-

igates into the root directory /mnt/sdcard of the SD card, even though it is physically

in the folder /mnt/sdcard/Trusted or /mnt/sdcard/Untrusted. According

to our definition of profile isolation, apps in one profile should not be able to start any

activity that belongs to other profiles. To verify profile isolation, we selected two apps Go

SMS Pro and PicsArt. Go SMS Pro supports sending picture SMS. It shows a Capture

Picture button, and after clicking that button, it actually prompts the user a list of all
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1 Android Without RVL:

2 PTID=33050001&IMEI=357453042422576&sdkver=10.7&SALESID=0006

3 &IMSI=1234567890&longitude=103.77395618&latitude=1.2933376

4 &DID=2001&autosdkver=10.7&CPID=3305

5 ----------------------------------------------------------------

6 Android With RVL:

7 PTID=33050001&IMEI=000000000000000&sdkver=10.7

8 &SALESID=0006&IMSI=1234567890&longitude=0.0&latitude=0.0

9 &DID=2001&autosdkver=10.7&CPID=3305
� �
Figure 3.6: RVL Effect on Geinimi Trojan

the installed apps which can handle the picture-capture action. After the user selects one

from the list, the selected app takes a picture and then returns back to Go SMS Pro. We

put Go SMS Pro into the Trusted profile, and PicsArt app into the Untrusted pro-

file. Our experiment showed that after separating them into different profiles, PicsArt

disappeared from the app list prompt after clicking the Capture Picture button in

Go SMS Pro.

However, profile configurations sometimes may directly violate apps’ main function-

ality. For example, blocking the network access will disable the main functionality of

Wikipedia. We can adjust RVL to balance usability and security better. For Wikipedia, we

can use a whitelist to only allow the network access to the Wikipedia server. In this case,

it is safe to view Wikipedia articles while no communication with other remote servers

can occur. Go SMS Pro loses a very important functionality in a virtual device without

supporting sending SMS. It is difficult to differentiate whether an SMS is triggered by

users or by malicious code. Users need to disable sending SMS support to block apps

from making any unintended cost. However, we can still enable the receiving SMS sup-

port to balance more usability, similar with Call Blocker. It is flexible to adjust RVL to

effectively virtualize resources without losing much app usability.

We also evaluate a malware set from [111]. Table 3.3 shows the detected malicious
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Table 3.3: Malware Behavior Evaluation

Local Resources Malware Samples

SD card

ADRD, AnserverBot, Asroot, BaseBridge, BeanBot, BgServ,

CoinPirate, DroidCoupon, DroidDream, DroidDreamLight,

DroidKungFu1, DroidKungFu5, FakeNetflix, FakePlayer, Geinimi,

GingerMaster, GoldDream, HippoSMS, Jifake, KMin, Pjapps,

RogueLemon, RogueSPPush, Walkinwat, YZHC, zHash, Zsone (27)

Contacts DroidDreamLight, Gone60, RogueSPPush, Walkinwat (4)

Phone State

ADRD, AnserverBot, BgServ, CoinPirate, CruseWin, DroidCoupon,

DroidDream, DroidDreamLight, DroidKungFu5, Geinimi,

GingerMaster, Gone60, KMin, Pjapps, Plankton, RogueLemon,

RogueSPPush, SndApps, Walkinwat, zHash, Zitmo (21)

Location BgServ, Geinimi, GoldDream, Walkinwat, Zsone (5)

SMS(send/receive)

ADRD, AnserverBot, BaseBridge, BeanBot, BgServ, CoinPirate,

CruseWin, DogWars, DroidDreamLight, Endofday, FakePlayer,

GGTracker, GoldDream, Gone60, GPSSMSSpy, HippoSMS, Jifake,

KMin, Lovetrap, Pjapps, Plankton, RogueLemon, RogueSPPush,

SndApps, Walkinwat, Zitmo, Zsone (27)

behaviors inside the Untrusted profile. RVL can effectively prevent malware from

divulging local sensitive resources. For example, Monkey Jump 2 infected by the Gein-

imi trojan sends the device info and location data to remote servers every five minutes

according to a stored server list. The information is used to identify the locations of

all infected devices. Remote servers then send malicious commands back to remotely

control the infected devices. We created a mock server to monitor the communication be-

tween an infected device and the malicious server. After we put Monkey Jump 2 into the

Untrusted profile, our mock server received different information. Figure 3.6 shows

the decrypted data. RVL successfully virtualized the phone state and location data accord-
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Table 3.4: Performance Evaluation for Various Resources

Operations Without RVL RVL

SD card (read) 22.90 ms 226.10 ms

SD card (write) 310.00 ms 661.60 ms

Contacts 7.83 ms 24.61 ms

Phone State 0.84 ms 18.28 ms

Location 0.43 ms 19.78 ms

ing to our configuration. With RVL, Monkey Jump 2 only got an IMEI (the device ID for

GSM phones) and a location with all the virtual values 0.0. RVL successfully protected

the phone state and location information from being leaked by malware. We detected four

pieces of malware accessing the user contacts and 27 pieces of malware accessing the SD

card. With RVL, the Untrusted profile was assigned a private virtual copy of the user

contacts and the SD card, so that malware was not able to corrupt the physical resources.

RVL also successfully prevented 27 malware samples from either sending or receiving

SMS by disabling the SMS-related service and blocking the SMS RECEIVED broadcast

event.

3.5.2 Performance

We build a custom app to measure the performance overhead for each type of resource

access. Table 3.4 shows the results for four different types of resources. For each type

of resources, we access 1000 times and calculate the average access time. In particular,

we use a 1M file to measure the overhead of SD card read/write access; for the contacts

access, we test a contact list containing 6 entries, and the time shown in the table is for

querying the database and parsing each entry. This overhead is acceptable by most of

Android apps for their low-density sensitive resource access.

To evaluate the runtime performance overhead for the whole system, we run RVL

on popular Android benchmarks, AnTuTu Benchmark, Quadrant Standard Edition, RL

57



AnTuTu

Quadrant

RL: SQLite

Caffein
eM

ark

Vella
mo Mobile

Web

1

1.01

1.02

1.03

1.04

P
er

ce
n
t

of
B

a
se

li
n

e

1

Figure 3.7: Benchmark Results

Benchmark: SQLite, CaffeineMark Benchmark and Vellamo Mobile Web Benchmark,

measuring Java performance, graphics, networking, CPU/memory, database I/O, and the

SD card read/write etc. The results are shown in Figure 3.7. The overhead of RVL on

most benchmarks is negligibly small. The score from the RL benchmark shows a 3.87%

overhead, which is mainly from the content provider I/O due to the virtualization on

the content providers. However, most real-world Android apps do not involve frequent

database I/O. To further improve performance, we can dispatch the centralized hook point

in ContentResolver into multiple points in each content provider for optimization.

3.6 Related Work

Permission Control. Android uses a permission-based mechanism to restrict the capa-

bility of installed apps and protect local resources. During the installation, the package

installer prompts users all the permissions required by the app. However, it is quite diffi-

cult for users to evaluate the safety only based on the permission list. Stowaway [41] has

revealed that one-third of apps from the official Android market require more permissions
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than what they need, and those extra permissions even confuse app developers. Mean-

while, Android does not allow users to selectively choose a subset of these permissions

or revoke certain permission after the installation. Past efforts have been made to design

more flexible permission systems, such as MockDroid [20] and Apex [74], which allow

users to revoke granted permissions at runtime. Protecting resources through the per-

mission system requires users to have detailed knowledge of the Android system, which

is a common problem for usability. Moreover, users may make mistakes in the permis-

sion configuration. Vulnerability in ICC will also result in resource-abusing attacks. In

contrast, our approach provides stronger security guarantee through isolation. It also has

improved usability.

Virtual Environment. Many virtualization-based solutions have been proposed to sup-

port multiple environments at different system levels in the Android OS, such as L4Android [64],

Cells [16] and AirBag [100]. Comparing with our approach, these solutions focus on

building up an isolated execution environment for apps. They achieve stronger environ-

ment isolation, however, the data and services must have multiple physical copies, such

as user contacts, location service and telephony service. Our solution aims to virtual-

ize the resources only for confining resource-abusing apps, and therefore it simplifies the

environment setup and incurs lower overhead considering the power and storage.

There are many solutions that perform light-weight virtualization on desktop systems,

such as [67, 93, 107]. Compared to such solutions, our approach addresses challenges

from virtualizing Android-specific resources, such as the content provider.

Private Data Protection in Android. Several solutions focus on preventing sensitive

data from being leaked by third-party apps. For example, TaintDroid [37] is a dynamic

information-flow tracking system which detects whether sensitive data are sent out through

the network interface. TISSA [113] defines a privacy mode for each app, in which the

Android system uses fake sensitive data to prevent untrusted apps from stealing privacy

information. In contrast, the focus of our solution is to virtualize complex Android re-

sources such as the file system and the content provider, so that it can provide a consistent
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view for Android apps.

Inter-component Communication Constraint. Android provides well-defined inter-

faces for different components to communicate with each other. One component in one

app can also interact with components belonging to another app, as long as the permis-

sion checking succeeds. Potentially through the ICC, high-privileged apps can process

high-privileged tasks requested by other low-privileged ones. To detect potential transi-

tive permission usage attacks, Woodpecker [51] statically detects capability leaks through

a path-sensitive data flow analysis. Many existing solutions [75, 35, 23, 24] also apply

dynamic analysis by extending the Android middleware layer to monitor the call-chain

of the ICC and add additional restriction based on the ICC history. In our solution, this

problem is addressed by isolation between different profiles.

3.7 Summary

As smart mobile devices integrate more resources, the physical boundary among re-

sources disappears. Therefore critical resources are exposed to resource-abusing apps.

Existing solutions fail to balance security and usability. In this work, we propose RVL

which can systematically protect resources through light-weight resource virtualization.

RVL defines profiles containing a set of virtual resources to confine Android apps. Pro-

files with virtual resources alleviate users’ burden in weighing permissions requested by

untrusted Android apps, and thus improve usability; isolation between profiles ensures

stronger protection. We show the compatibility, effectiveness and performance through

evaluation on real-world apps.
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Chapter 4

DroidVault: A Trusted Data Vault for

Android Devices

4.1 Introduction

The rapid adoption of mobile devices poses an imminent threat to the sensitive data

in enterprises and cloud services. Mobile OSes and apps form a large, complex and

vulnerability-prone software stack, which is witnessing a sharp rise in malware and OS

vulnerabilities [111]. In addition, Android users often install untrusted apps or make

modifications (e.g., via “rooting”) to the Android OS to bypass restrictions set by ven-

dors, thereby increasing the risk of compromising the software stack. This gives rise to a

practical dilemma for data owners: should they trust users’ devices and permit the use of

sensitive data in devices outside their control, or should they enforce strong control over

the sensitive data by banning untrusted devices. Data owners often choose to blindly trust

the commodity mobile OSes and user-installed mobile apps.

Trusted Data Vault. Ideally, if mobile platforms can provide mechanisms for data owners

to control the usage of the sensitive data, strong data protection can be achieved in existing

mobile devices. To enable this, we introduce the concept of trusted data vault — a small

trusted engine that data owners can trust to securely manage the storage and usage of
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the sensitive data in untrusted devices. A trusted data vault must balance the misaligned

incentives between data users and data owners — data users want unfettered control of the

apps and the OS, while data owners need strong control over the sensitive information.

Existing work [62, 108, 99, 34] has been dedicated into building an isolated secure

environment in the mobile devices. On-board credentials platform [62] designs an archi-

tecture for the credential management via a hardware-assisted secure environment. Other

work [108, 99, 34] implements the Mobile Trusted Module, a secure element specified by

Trusted Computing Group, through either software-based or hardware-based approaches.

However, these solutions either only support limited functionality than secure storage and

verification, or rely on a large trusted computing base (TCB) to perform operations on

sensitive data.

Approach. In this work, we propose DroidVault, a trusted data vault for Android de-

vices. DroidVault ensures that all the sensitive data remains encrypted throughout its

lifetime in the untrusted Android device, and also supports an execution environment for

trusted code to operate on the encrypted data. To extend the trust from the data owner’s

workspace (e.g., the enterprise workspace or cloud storage services) to the mobile client,

we expose four important services in DroidVault: secure network communication, secure

data storage, secure input and output, secure data processing environment.

The main challenge in designing a practical data vault is to enable limited but sufficient

functionality with a minimal TCB. Existing secure hardware platforms, such as ARM

TrustZone, TPM, M-shield, JavaCard and NGSCB [77], only provide limited available

resources for secure environment, such as limited memory and storage, and thus to make

a practical deployment, the TCB of the data vault must be kept as small as possible.

We prototype DroidVault as a small trusted hardware-assisted engine through the

novel use of hardware security features supported by recent ARM CPUs, namely ARM

TrustZone. It is being widely adopted in ARM-based embedded devices. Unlike software

virtualization mechanisms which multiplex two executions on the same CPU, the ARM

TrustZone architecture isolates the CPU core and MMU subsystem at the hardware level
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and creates two environments with different security privilege levels. It supports red/green

systems [63, 77, 97], which partition hardware resources into a highly-constrained trusted

(green) environment and a general-purpose untrusted (red) environment. Therefore, it

enables DroidVault to co-exist with a completely untrusted Android software stack. We

prototype DroidVault in the trusted environment which holds a higher security privilege

but only limited resources, and thus DroidVault behaves as a tiny trusted engine for han-

dling sensitive data operations in the same device that hosts a separate untrusted Android

OS.

To significantly minimize the TCB of DroidVault, we leverage the network and file

system modules from the untrusted Android OS. In our implementation, DroidVault has a

TCB of about 12K lines of unoptimized code — this is within the range of systems which

can be formally checked by existing verification tools [61]. Note that as a prototype for

now, we only use a serial console and a hardware keyboard to simulate the secure display

and input. The touchscreen feature, adopted by most recent mobile phones, has already

been proven practical to support the secure display and input on the ARM TrustZone ar-

chitecture, and also has been demonstrated by many existing research and commercial

products [9, 10, 1]. In this work, we focus more on the design of a feasible trusted data

vault on top of the ARM TrustZone architecture and the analysis of its security guaran-

tees. Thus, we simply use the serial console as our current prototype implementation

and treat the touchscreen support as our future work. We have evaluated that the USB

touchscreen driver in the Android source code has only 1.1K lines of code (LOC). There-

fore, the TCB will not increase too much if including the touchscreen driver in the future

implementation.

In summary, we claim the following contributions:

• We propose the concept of a trusted data vault and design DroidVault, a usable data

vault for the Android platform. To the best of our knowledge, DroidVault is the first

end-to-end platform that guarantees sensitive data protection for data owners (note

that, we refer data owners to remote data-hosting servers instead of end users) in
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untrusted Android devices.

• Many commercial vendors build virtualization systems on top of the ARM Trust-

Zone architecture. In contrast, we build a red/green system without relying on vir-

tualization, instead on partitioning. Further, previous commercial systems do not

give details of their security design and implementation. Our work is the first in this

aspect to our knowledge.

• DroidVault finds a sweet spot between allowing full-fledged functionality and hav-

ing a small TCB for strong security. We propose a novel combination of using the

ARM TrustZone primitives and reusing a large fraction of the untrusted Android

stack. DroidVault has a small TCB of roughly 12K LOC (only 0.046% of the stan-

dalone Android OS).

• We evaluate the applicability of DroidVault to work on the protected data without

sacrificing the data privacy and integrity. We also test the performance overhead of

file downloads. The results show that it only incurs around 1s overhead to download

a 10M sensitive file, which is acceptable in practice.

4.2 Overview

Consider that a user Alice who uses an Android device as a client for accessing sensitive

files from trusted environments, such as her enterprise server. As an example, Alice needs

to retrieve files from her enterprise server via her personal Android device, and process

them on the device. In this scenario, the personal Android device, if compromised, gives

malicious apps access to Alice’s sensitive data. Though recent research [80, 98, 79] and

commercial solutions [3, 13] have enabled protection for sensitive data using encryption,

the files still need to be decrypted on the untrusted Android device. Therefore, the sensi-

tive data is exposed in its raw form to a large and complex software stack. The data owner

(note that the data owner in our example is Alice’s enterprise server, not Alice) has little
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control over which apps and operations can access the sensitive data.

4.2.1 Threat Model & Scope

In our threat model, the scope of our approach encompasses a broad spectrum of attacks

that steal or corrupt sensitive data by exploiting vulnerabilities in the Android software

stack, both at the user level and at the kernel level. Such attacks include misusing permis-

sions [43], escalating privileges [39, 33, 43], exploiting vulnerable apps [46, 69], includ-

ing malicious libraries [50], exploiting Android OS vulnerabilities [51] and compromising

the Android kernel [22].

DroidVault aims to provide a trusted environment for receiving and processing sen-

sitive files, which extends security guarantees from remote storage servers to the local

Android devices. Therefore the sensitive data mentioned in this work only refers to sensi-

tive files, excluding data in other forms, such as device attributes (e.g., GPS location and

device ID).

DroidVault does not aim to protect against denial-of-service attacks or against hard-

ware attacks. A compromised Android OS can still deny services to DroidVault or simply

delete the local copy of encrypted data. DroidVault relies on a trusted execution envi-

ronment that cannot be compromised in our threat model. DroidVault guarantees that

only trusted code signed by the data owner can operate on the sensitive data in the trusted

execution environment. However, it is out of scope if the trusted code itself behaves suspi-

ciously, such as executing an infinite loop or intentionally leaking sensitive data publicly.

To gain a strong guarantee, we prototype DroidVault via the ARM TrustZone hardware

protection to defeat even threats from a compromised Android OS. However, DroidVault’s

integrity may be subverted by using hardware attacks (such as the Direct Memory Access

attack or peripherals [27]), cold-boot attacks [53, 5] or by compromising the hardware

integrity — these attacks are beyond the scope of DroidVault.
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4.2.2 Trusted Data Vault

To counter a large threat landscape, we introduce the concept of a trusted data vault, a

trusted engine that securely enables operations on sensitive data in Android devices. In

our motivating example, sensitive data are decrypted before being accessed in the un-

trusted Android software stack. In contrast, in a trusted data vault, sensitive data are

always protected with encryption techniques when the data are outside of the trusted data

vault. The operations on the decrypted data can only be successfully executed inside the

trusted data vault. The trusted data vault has the following security primitives:

• Secure Data Transmission and Storage. DroidVault provides secure network com-

munication and secure local storage for sensitive data. Through authenticated en-

cryption mechanisms, it guarantees the confidentiality and the integrity of sensitive

data throughout their lifetime (including transmission and storage) in the untrusted

OS.

• Secure Display and Input. DroidVault guarantees a trusted path to the end display

for rendering sensitive data. Similarly, it provides a trusted path from sensitive

inputs to the designated code.

• Operations on Sensitive Data. DroidVault only allows the authorized code to oper-

ate on the decrypted data. Any unauthorized code can only invalidate or destroy the

sensitive data.

There are a few practical challenges in designing a trusted data vault in mobile devices.

First, the size of the TCB in the trusted data vault should be small to be trustworthy.

Second, it should be space-efficient due to resource restrictions. To minimize the size

of the TCB, our trusted data vault (i.e., DroidVault) supports only limited functionality,

which rules out the option of using a virtual machine to host the trusted data vault. We

combine the use of new hardware partitioning primitives implemented in recent ARM

CPUs (i.e., TrustZone), to support a small TCB and achieve these goals.
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To protect the sensitive data, any result derived from the sensitive information inside

the DroidVault cannot be leaked to the Android OS. Although this limits the functionality

that DroidVault currently supports, the size of the TCB is significantly reduced. We show

that DroidVault is sufficient to support several common apps which have a clear boundary

between their sensitive parts and non-sensitive parts and thus can execute separately in

two environments without data exchange, such as file downloading and simple document

processing (described in Section 4.5). We do not provide any interface for the Android OS

to retrieve any sensitive data from DroidVault. Only authorized code can be loaded into

DroidVault from the Android OS and operate on the sensitive data. To minimize the size

of the TCB, we restrict the sensitive data and their corresponding computational results

inside the trusted data vault in our work, unless the authorized code explicitly exposes its

own sensitive data to the Android OS.

4.3 DroidVault Design

We design DroidVault on the Android platform while taking advantage of the hardware-

assisted isolated environment. We focus on analyzing its minimal requirements and secu-

rity guarantees.

4.3.1 DroidVault Components

Figure 4.1 illustrates the design of DroidVault. To reduce the performance overhead and

the size of the TCB, we choose to design DroidVault as a partitioning-based red/green

system rather than a virtualization layer. DroidVault is a trusted engine which is isolated

from the Android OS. It contains the following main components: the Data Processing

Module (DPM), the Input/Output (I/O) module and the bridge module, which are de-

scribed below. DPM is the secure data processing environment and also supports secure

user interaction through the I/O module. The bridge module provides interfaces for com-

munication between DroidVault and the Android OS.
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Figure 4.1: DroidVault Design

DPM. DPM is the core module for sensitive data transmission and data operations. It

maintains a secure channel with the remote storage server to securely transmit sensitive

data. Sensitive data are then encrypted before leaving the DroidVault environment into

the Android file system. When Android apps, such as the client app in Figure 4.1, need

to access the encrypted sensitive files, they must load authorized code into DPM for op-

erations on the sensitive data. DPM module verifies whether the loaded code is signed

by the data owner. Data owners take the responsibility to develop and sign the code for

processing the sensitive data. DPM provides a tightly controlled runtime environment for

supporting limited operations. Section 4.5 lists a few scenarios for basic data operations.

DPM returns no sensitive information in plaintext to the untrusted world. The result can

only be displayed inside DroidVault through the secure I/O module.

Bridge Module. To facilitate communication between DroidVault and the untrusted An-

droid OS, DroidVault introduces the bridge module. The bridge exposes interfaces to

make certain permitted function calls from one world to the other, and allows passing se-

rializable primitive data between worlds via the shared memory. For example, the bridge

module provides a single API LoadCode for the Android OS to load the signed code

into DPM. The bridge also enables DroidVault to use resources belonging to the Android

system, such as the network and the file system. DroidVault ensures that untrusted in-

puts cannot compromise the TCB and that the security-critical data leaving DroidVault is
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encrypted.

I/O Module. The I/O module in DroidVault enables secure user input and display. DPM

can request the I/O module to display sensitive data directly to users and receive user

inputs.

4.3.2 Initial setup

DroidVault assumes the availability of two standard hardware primitives — secure per-

sistent storage [96] that cannot be accessed by the untrusted Android system, and secure

boot [2]. These primitives are available on existing ARM-based architectures in different

ways [96, 4]. To establish trustworthy connections with authenticated servers, Droid-

Vault stores a root certificate that identifies the root certificate authority and therefore

verifies other digital certificates using a chain of trust. To prevent the untrusted Android

system from masquerading as the DroidVault environment, mutual authentication is re-

quired. Data owners need to make sure that the protected files should only be received

by the intended DroidVault environment. For this purpose, each DroidVault has a unique

public/private key pair (Kpub, Kprv). The public key Kpub should be certified as a public

key belonging to a compliant DroidVault system by a trusted authority, such as the de-

vice manufacturer or other trusted intermediaries (e.g., the enterprise internal certificate

server). The private key Kprv is stored in the secure persistent storage which is only ac-

cessible inside the secure environment. We have two preparatory steps for deploying this

key pair, as described below.

One Time Registration. To establish a secure channel with a remote server, a user needs

to notify the data owner with his Kpub through one time registration. In enterprise en-

vironment, employees can register their public keys with the help of administrator. For

data-hosting cloud service providers, users can log in to their accounts and then upload

their public keys through particular web interfaces. Users need to contact either the ad-

ministrator or the service provider if they want to change the uploaded public key in

future.
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Mutual Authentication. After the public key registration, mutual authentication between

a remote server and a compliant DroidVault system can be achieved by following the stan-

dard client-authenticated Transport Layer Security (TLS) handshake protocol. DroidVault

stores the root certificate in its secure storage and uses it to verify whether the remote

server’s certificate is from a trustworthy certificate authority. The remote server also au-

thenticates the incoming connection using the public key registered by the user. The

failure of mutual authentication indicates one of the following scenarios: 1) the remote

server’s certificate is fake; 2) the incoming connection is not from a compliant Droid-

Vault environment; 3) the registered public key is incorrect. As to the scenarios 1) and

2), attackers cannot successfully download any sensitive data. As to the scenario 3) that

attackers may change the registered public key with their own (e.g., contact the admin-

istrator by impersonating a victim), the victim can verify the registered public key by

checking its hash through secure display in the secure world and make an update in time.

4.3.3 DroidVault Services

In this section, we discuss the new security services supported by DroidVault components

and the security guarantees that DroidVault provides. We illustrate how the security goals

stated in Section 4.2.2 are achieved.

4.3.3.1 Secure Network Communication

Due to the goal of a small TCB, DroidVault does not include the network driver in the

secure world. Thus it needs to securely upload/download files to/from remote servers

through the untrusted Android environment.

DroidVault supports secure communication by leveraging TLS. The corresponding

data operations in TLS generally have two types: data encryption and data transmission.

DroidVault handles the data encryption in the secure world, which prepares the data to be

transmitted based on encryption. For this purpose, DroidVault provides different types of

cryptographic APIs in the secure world, such as the symmetric cryptographic algorithm
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(e.g., AES-GCM) and the asymmetric cryptographic algorithm (e.g., RSA). DroidVault

holds the root certificate in its secure storage to build a chain of trust for other digital

certificates and therefore authenticates remote servers.

In the data transmission phase, DroidVault requests network-related system calls (e.g.,

socket, connect and gethostbyname) from the untrusted Android OS through the

bridge module. The received data from the untrusted Android OS are sanitized by Droid-

Vault to protect against exploits from inputs. Note that the sensitive data in the network

are encrypted before they leave the secure world. Therefore, the untrusted software stack

in the Android OS does not threaten the confidentiality and integrity of the sensitive data.

4.3.3.2 Secure Data Storage

The secure environment only provides limited secure storage, which is not practical to

store all the sensitive data. Therefore, we need to extend the secure data storage with

the help of the Android file system — an untrusted but relatively large storage space. To

store sensitive data in the untrusted file system, DroidVault encrypts the data and invokes

file-system-related system calls through the bridge module, which include open, read,

write and close. The sensitive data are in encrypted form in the untrusted Android

file system. Thus DroidVault also avoids including the file system driver into its TCB.

4.3.3.3 Secure Display and Input

To provide an end-to-end channel that directly interacts with device users, DroidVault

ensures that the sensitive display and input can never be accessed by untrusted Android

drivers. This requires a secure overlay which securely renders any sensitive information

on the screen under the complete control of DroidVault. Unlike the design for secure

network communication and data storage primitives, where DroidVault can delegate most

of the task to the untrusted Android OS, secure display and input must be independently

supported by DroidVault through direct control over the display and input devices. We

add drivers inside DroidVault to control the display and input. DPM provides the API
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Table 4.1: DPM APIs

Operations DPM APIs

Integer Compare(Stream s1, Stream s2)

Stream Concat(Stream s1, Stream s2)

Integer IndexOf(Stream s1,

Stream s2, Integer fromIndex)

Data Stream SubStream(Stream s,

Operations Integer beginIndex, Integer endIndex)

Stream Replace(Stream s,

Stream regex, String replacement)

Integer Length(Stream s)

Descriptor HttpsConnect(Stream url)

Network Integer HttpsSend(Descriptor net, Stream s)

Communication Stream HttpsReceive(Descriptor net)

Integer HttpsClose(Descriptor net)

Descriptor FileOpen(Stream fileName, Integer mode)

Stream FileRead(Descriptor file, Integer length)

Integer FileSeek(Descriptor file,

File System Integer offset, Integer whence)

Integer FileWrite(Descriptor file, Stream data)

Integer FileClose(Descriptor file)

Screen Display Integer Display(Stream data)

User Input Stream Keyboard()
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Display to create a secure display session, and the API Keyboard to receive inputs.

4.3.3.4 Secure Data Processing

DroidVault encrypts sensitive files to achieve confidentiality. To support operation on

protected data, DPM is the key component, which allows the authorized code signed

by data owners to operate on the sensitive data. Sensitive data are securely transmitted

from a remote storage server into DPM, and then encrypted before stored in the untrusted

Android OS. We use metadata to record the information which is used to decrypt and

authenticate the encrypted sensitive data. The metadata is also encrypted and associated

with the corresponding sensitive data in the Android OS.

DPM only allows the authorized code to be executed. Existing work [62, 85] has built

adequate frameworks which support popular programming languages (such as Lua and

C#) in an isolated secure environment for the ease of third-party development. However,

considering the goal of minimizing DroidVault’s TCB, it is not necessary to include a

whole functional code environment into DroidVault’s TCB. The size of the TCB even-

tually depends on the functionality to be supported. To minimize the code environment,

we only provide several common functions including a set of APIs for data operations,

network communication, file system access and secure display/input, listed in Table 4.1.

We list the detailed description of these APIs as below.

• Integer Compare(Stream s1, Stream s2)

Description Compares two streams s1 and s2. If there is an index at which the two

streams differ, the result is the difference between the two characters at the lowest such

index. If not, but the lengths of the streams differ, the result is the difference between

the two streams’ lengths. If the streams are the same length and every character is the

same, the result is 0.

• Stream Concat(Stream s1, Stream s2)
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Description Returns a new stream which is the concatenation of the stream s1 and the

stream s2.

• Integer IndexOf(Stream s1, Stream s2, Integer fromIndex)

Description Returns the next index of the given stream s2 in the stream s1, or -1. The

search starts at the given offset fromIndex and moves towards the end of the stream s1.

• Stream SubStream(Stream s, Integer beginIndex, Integer endIndex)

Description Returns a stream containing the given subsequence of the stream s.

• Stream Replace(Stream s, Stream regex, String replacement)

Description Replaces all matches for the regular expression regex within the stream s

with the given replacement.

• Integer Length(Stream s)

Description Returns the number of characters in the stream s.

• Descriptor HttpsConnect(Stream url)

Description Builds an https connection with the address url and returns a network file

descriptor that contains details about the connection.

• Integer HttpsSend(Descriptor net, Stream s)

Description Sends the data stream s to the network file descriptor net.

• Stream HttpsReceive(Descriptor net)

Description Receives a data stream from the network file descriptor net.

• Integer HttpsClose(Descriptor net)

Description Closes the network file descriptor net and returns the corresponding state.

• Descriptor FileOpen(Stream fileName, Integer mode)
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Description Opens a file with the path fileName in the given mode and returns a file

descriptor.

• Stream FileRead(Descriptor file, Integer length)

Description Reads data of the given length from the file descriptor file.

• Integer FileSeek(Descriptor file, Integer offset, Integer whence)

Description Repositions the offset of the open file associated with the file descriptor

file to the argument offset according to the directive whence. The argument whence

can be SEEK SET (the offset is set to offset bytes), SEEK CUR (the offset is set to its

current location plus offset bytes), SEEK END (the offset is set to the size of the file

plus offset bytes).

• Integer FileWrite(Descriptor file, Stream data)

Description Writes the stream data into the file descriptor file and returns the corre-

sponding state.

• Integer FileClose(Descriptor file)

Description Closes the file descriptor file and returns the corresponding state.

• Integer Display(Stream data)

Description Displays the stream data and returns the corresponding state.

• Stream Keyboard()

Description Pops up a keyboard and returns the user input stream.

Note that the encryption and decryption processes for secure network communication

and secure data storage are transparent to the DPM code. For example, FileRead di-

rectly returns the plaintext of an encrypted file without requiring any further decryption in

the DPM code. Any runtime environment which supports these corresponding functions

can be fit into DPM (we do not argue which programming language is the most suitable
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one). The DPM APIs are designed for the code running inside DPM. The authorized code

is loaded from the Android OS into DPM through the bridge module API LoadCode.

Next, we will show the details about how sensitive data are securely transmitted from

a remote server to an Android OS through DPM, and how DPM processes the sensitive

data.

Secure Channel. Data transmission follows successful mutual authentication (described

in Section 4.3.2) between the remote server and the DroidVault execution environment.

After establishing a secure channel, both sides share a secret key for further data trans-

mission. Shown in Figure 4.2, the sensitive data are then securely transmitted from the

remote server to DPM (step 1). The Android OS is not able to decrypt the sensitive data

without the shared secret key even though the connection goes through its network stack

(shown as dash line in Figure 4.2).

After receiving the sensitive data, DPM encrypts it and then stores it in the untrusted

Android OS. Key Generator randomly1 generates a key KAE and sends the key as an

input to Authenticated Encryption Module. This module encrypts the sensitive data with

KAE and then outputs the ciphertext and the authentication tag (step 2). The ciphertext

(i.e., the encrypted sensitive data) is directly stored into the untrusted Android OS. To

maintain the information which is used to decrypt the ciphertext in future, we define

a metadata structure which contains the authentication tag, KAE and the data authority

(XYZ in Figure 4.2). Metadata Generator takes these three pieces of information as inputs

to compose the metadata and then encrypts it with Kpub, the public key belonging to

DroidVault (step 3). Therefore, the metadata can only be viewed as plaintext in DPM. The

encrypted metadata is then associated with the encrypted sensitive data in the Android OS.

Data Processing. DroidVault only allows execution of the code signed by the data owner.

The code can be loaded into DPM from the Android OS, or remotely downloaded from

the server as Figure 4.2. The code is sent to Code Authority Verifier to check its integrity

and authority (i.e., XYZ). The verifier makes sure that the code comes from the authority

1The random number generator can be implemented in either software or hardware manner.
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XYZ (step 4). Before loading the encrypted sensitive data to be operated on, DPM firstly

loads the encrypted metadata into Metadata Decryption Module. After decrypting the

metadata with Kprv, the private key belonging to DroidVault, DPM retrieves the data’s

authority (step 5). DPM checks whether the data’s authority matches the code’s authority

(step 6). Only when there is a match, it continues to load the encrypted data. Authen-

ticated Decryption Module decrypts the encrypted data with the authentication tag and

KAE extracted from the metadata (step 7). The code can then operate on the plaintext of

the sensitive file. The sensitive data are only decrypted inside DPM which is inaccessible

by the untrusted Android OS.

4.3.3.5 Security Analysis

Considering our motivating example, the client on Alice’s Android device loads a piece

of code signed with the enterprise server’s authority into DPM for downloading her doc-

ument. DroidVault ensures that the document is securely downloaded from the server,

marked with the enterprise authority and then locally encrypted before stored into the

Android file system.

Now we give a security analysis from the perspective of data integrity and authenticity

guarantees. We use metadata to maintain the keys which are used to decrypt sensitive

files. The metadata is distributed into the untrusted Android OS along with the encrypted

sensitive data and is only loaded when necessary. This design significantly reduces the

burden of a central key management, considering the limited secure storage in the secure

environment. DroidVault only needs to store an initial public/private key pair which is

used to encrypt/decrypt the metadata. Each encrypted file has a corresponding piece of

metadata. The mapping between the encrypted file and its metadata can be maintained in

a simple way (e.g., the metadata uses the same file name with the encrypted file but with

an additional suffix). If attackers corrupt this mapping, they get no benefit but the failure

of file decryption.

We choose the authenticated encryption to ensure data integrity and authenticity. Con-
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sidering that it is not practical to fit large volume files into DroidVault’s memory, the

encrypted sensitive data are read block by block for processing. The metadata is first

read into memory for the authority certificate matching phase (step 6 in Figure 4.2). The

encrypted file is loaded only after the matching succeeds. Attackers may replace the en-

crypted file by loading cipher blocks with other authorities (Time-of-check to Time-of-use

attacks). DroidVault must be able to authenticate each cipher block and also identify the

correct order of these blocks. Therefore, the encryption algorithm for protecting sensitive

data requires a counter mode block cipher which combines both confidentiality and au-

thenticity, such as CCM and GCM. In our work, we choose GCM for the authenticated

encryption. It is possible for attackers to replace both the metadata and the encrypted

sensitive data with different ones that hold the same authority as the code. In this sce-

nario, we argue that both the data and the code belong to the same authority so that no

sensitive information is leaked in plaintext unexpectedly. The code itself can identify the

corresponding data to be operated on if necessary.

4.4 Implementation

We implement the DroidVault prototype in the Android Gingerbread 2.3 version on the

Freescale i.MX53 Quick Start Board (QSB). We leverage the memory manager and the

interrupt handler provided by Open Virtualization [9], which is an ARM TrustZone open

source project currently only supporting the source code for ARM Versatile Express

Board and Realview Evaluation Board. Additionally, we implement the basic execution

environment for DroidVault including DPM, basic I/O, string library, encryption library,

etc., and also port PolarSSL2, a light-weight SSL/TLS library. The overall LOC is only

12,171, including the unoptimized PolarSSL library which has 8857 LOC. Comparing to

the Android source code, our DroidVault’s TCB is much smaller than the whole Android

OS (26,710,217 LOC, 0.046%) or Dalvik (232,232 LOC, 5.24%). In this section, we

2PolarSSL: available at https://polarssl.org/
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describe the implementation challenges when prototyping DroidVault.

Background on ARM TrustZone. ARM TrustZone is a new security extension in the

ARM architecture, which has been supported since ARMv6. This feature is increasingly

being utilized in emerging enterprise mobile security solutions (e.g., Samsung KNOX).

The TrustZone technique is designed to support red/green systems which partition hard-

ware resources into a secure (green) world and a normal (red) world. The two worlds

are separated by hardware mechanisms, and both worlds support different privilege levels

(unprivileged user level and privileged kernel level). Any interrupt can be configured to

be delivered to either of the worlds, but not both. This mechanism can be used to trap all

the interrupts into the secure world before they are delivered to the normal world (similar

to interrupt handling in the virtualization based system [99]) or to partition the interrupt

handlers (as in partitioning based systems [77, 97]). Context switches from the normal

world to the secure world, which we refer to as inter-world calls, are activated through a

special software interrupt generated by the SMC instruction. The secure world can initi-

ate a context switch to the normal world by writing a special value to the SCR register.

Context switches are handled by software code handlers (rather than hardware as in x86

CPUs). DroidVault handles these context switches with software handlers. The secure

world can read and write arbitrary memory of the normal world, while the normal world

can only operate on its assigned memory regions. This allows the secure world to build

one-way memory isolation, which can be used as a mechanism to share data in the inter-

world call. There are other mechanisms supported for secure boot — we do not discuss

them here as these are not the focus of DroidVault’s core design. Next, we describe the

key techniques during prototyping DroidVault on the ARM TrustZone architecture.

World Switch. In the ARM TrustZone architecture, the SMC instruction is dedicated to

generate a software interrupt that activates a world switch between the secure world and

the normal world. SMC is only executable inside the kernel space with the privileged

mode. It triggers the CPU to enter a special CPU mode, Monitor Mode, newly introduced

by the ARM TrustZone architecture for interfacing two worlds. In monitor mode, we
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implement the SMC handler (256 LOC), which stores all the registers of the current world

and then restores the state of the other world.

The ARM microprocessor has 16 general-purpose registers (R0-R15). R0-R7 are used

as either temporary registers or argument registers while the rest are preserved for other

special purposes. In the ARM TrustZone architecture, all the registers are accessible in

the secure world. Some privileged registers are forbidden or blanked in the normal world.

To activate an inter-world call in the kernel space, the bridge module is implemented

as a loadable kernel module which adds a handler to the ioctl system call in the Android

system. When an Android app requests services of the secure world, we use registers

R0-R3 to share arguments between the two worlds. R0 and R1 are used to identify the

requested service and store the return value from DroidVault to the Android OS, while

R2 and R3 are used to store the information about the shared memory between the two

worlds, including physical addresses of the input and the output buffer registered by the

bridge and the length of each buffer.

When the secure world requests resources belonging to the Android system, we pass

all the arguments to the buffer shared with the Android OS, and use registers R0 and R1

to identify the call back request and the system call type. After switching to the normal

world, the bridge module takes over and handles the request from DroidVault by parsing

the arguments and invoking the corresponding system call. After finishing the system

call in the Android system, the bridge module writes the result back to the shared buffer

and then uses the SMC instruction to switch back to DroidVault. After the world switch,

DroidVault restores its previous state and continues the execution.

Porting DroidVault in Secure World. We implement the basic execution environment

for the secure world on Freescale i.MX53 QSB, including the initialization code, the

UART3 driver and the interrupt handler. We support file-system-related and network-

related system calls in the secure world. To reuse the Android file system and network

stack for minimizing TCB, these system calls in the secure world are only wrapper inter-

3Universal Asynchronous Receiver/Transmitter translates data between parallel and serial forms.

81



faces which are further handled in the Android OS using our inter-world calling mech-

anism. We also port PolarSSL in the secure world. Therefore, the secure world can es-

tablish TLS channels with remote servers via the Android network stack. For the secure

display and user input, we use a serial console to simulate the secure display and a hard-

ware keyboard as the secure input device. Open Virtualization has supported the display

and user input in the secure world on Samsung(R) Exynos 4412, so these two features

are not fatal obstacles when porting DroidVault into the ARM TrustZone architecture.

Supporting secure display on Freescale i.MX53 QSB is part of our future work.

4.5 Evaluation

In this section, we discuss the functionality and applicability of our DroidVault prototype.

We integrate it with real-world apps and services. We also evaluate the performance of

DroidVault.

4.5.1 New Applications Enabled by DroidVault

We successfully adapt Dropbox app as a cloud service provider to work with DroidVault.

To evaluate the capability of the DPM module, we also develop a few applets for parsing

simple documents.

Dropbox File Manager. We build a Dropbox file manager based on the Dropbox SDK

to enable secure management of files on Dropbox using an untrusted Android device.

This app allows users to securely log in to their Dropbox accounts, browse the Dropbox

file system (assuming the file/directory names are not sensitive), upload/download files

and search strings in the files. After receiving the user name and password from the

secure input, it constructs an HTTP post message to send the password to the server and

receive the response via DPM APIs HttpsSend and HttpsReceive. When a file

reaches DroidVault, the file manager encrypts it in the secure world and stores it in the

file system. The file manager also allows users to search a string of text in the encrypted

82



file. The secure world generates the grep-style output by invoking IndexOf API with

the particular strings, and displays the result to users on the secure display by invoking

Display API.

Using DroidVault services, this file manager enables secure file management and

string search operation in an untrusted Android device without leaking sensitive data to

the device.

Zip Archiver. Zip is a common archive file format. In the zip format, each file record is

a file entry, which includes the file header and contents; at the end of the zip file, central

directory contains all the offsets of these entries.

A zip parser typically follows the following steps.

1. Read a file header and check whether it is valid or not by signature matching. If so,

obtain attributes of the file in the header.

2. Use the file size, the file name size and the extra data size to get file contents. Move

to the next file header.

We investigate the source code of an open source Zip Viewer4 (written in Java) to

evaluate the feasibility of processing zip files through DroidVault. We encrypt a set of zip

file samples5 and modify Zip Viewer to decrypt them inside DroidVault. We develop the

code running inside DPM to decrypt the files and extract the file entry names in the zip

files through data operations and file-system-related operations listed in Table 4.1. It uses

FileRead to read the plaintext of the encrypted file header and then parses the header

via Compare, IndexOf and SubStream. We consider the file entry names as non-

sensitive and thus explicitly return them back to the Android OS. We only need to rewrite

2613 LOC mainly inside ZipInputStream.java to request data processing in DroidVault

and handle the return results. When the Zip Viewer starts to parse one encrypted zip file

for extracting the file entry names, we intercept and load our code into DPM to decrypt

4Zip Viewer: available at http://code.google.com/p/zipviewer/
5These files are collected from real-world project files in Google Code: 1) guestbook 10312008 2)

schema-upgrades003 019 3) google-secure-data-connector-1.2-0-bin 4) connector-otex-2.6.12-src
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Table 4.2: The Performance of Zip Viewer when Running with DroidVault (measured in
millisecond)

Projects 1 2 3 4

# of Files / 12 29 72 162

Size of TAR / 20K 60K 4.8M 1.0M

Size of ZIP / 4.5K 16K 4.3M 264K

TAR

Without DroidVault 79 95 118 373

With DroidVault 118 190.3 319.3 1037

Overhead 49.37% 100.32% 170.59% 178.02%

ZIP

Without DroidVault 60 65 87 235

With DroidVault 99.4 160 306.8 718

Overhead 65.67% 146.15% 253.64% 205.53%

and parse the zip file. DroidVault returns a list of file entry names back to the Android OS

and then Zip Viewer continues to use these results for display.

We also extend Zip Viewer to handle the tar format. Similarly in tar format, each file is

organized as one or multiple content blocks, preceded by a header block which describes

its metadata, such as the file name and the size. Each of the block has 512 bytes. Two

sequential blocks filled with 0 indicate the end of a file. We only need to slightly adjust

77 LOC.

4.5.2 Performance

We build an app that downloads files of various sizes from a remote server with Droid-

Vault. For each file, we download 1000 times and calculate the average download time.

Table 4.3 shows the download time for files of different sizes.

Comparing with the normal case of file downloading, our solution has three extra

steps: 1) after retrieving encrypted data from the TLS channel, the Android OS needs

to copy the data into the shared memory with the secure world (Shared Memory Copy);
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Table 4.3: The Performance of File Downloading inside DroidVault (measured in mi-
crosecond)

Size of File 1K 10K 100K 1M 10M

Without DroidVault 4084 5342 17815 148971 1335257

With DroidVault 4366 7008 33518 280805 2663760

Overhead 6.90% 31.19% 88.14% 88.50% 99.49%

2) the Android OS triggers a context switch; (Context Switch); 3) after the secure world

decrypts the data in the shared memory, it encrypts it locally (Data Encryption). Note

that we do not consider the decryption part as an extra step since the normal case also

needs to decrypt the data retrieved from the TLS channel. To compare the weight of these

three factors, we create our own micro-benchmark to measure the overhead of each step.

We measure the time for shared memory copy inside the normal world and the time for

data encryption inside the secure world. To evaluate the time for context switch between

the two worlds, we modify DroidVault to return to the normal world without any opera-

tion inside the secure world. By running 1000 times, we get the average time for context

switch around 8.4 microseconds including SMC interrupt and context save/restore. Ta-

ble 4.4 shows our results. The main overhead comes from the context switch and data

encryption. The time for context switch depends on hardware platform, which is hard to

reduce. However, we can optimize it by increasing the shared memory buffer and thus

reducing the number of context switches. The overhead on data encryption depends on

the encryption method and the implementation. In the prototype, we have not optimized

the code. The performance can be improved by several optimizations, such as adjusting

the block size. It can also be significantly improved by hardware implementations [19].

As an optimization to this specific case of file downloading, we can even avoid the extra

data encryption step by directly utilizing the encrypted data retrieved from the TLS chan-

nel and using the TLS session key to generate the corresponding metadata. We plan to

optimize our implementation in the near future.
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We also evaluate Zip Viewer to report the performance overhead introduced by Droid-

Vault, which is incurred by encryption/decryption, context switch and data copy between

the two worlds. During our experiment, we execute Zip Viewer to read archive files of

various sizes in our sample set. Our result is shown in Table 4.2. Most of the overhead

(50%∼2x) is caused by the context switches during the interaction between the app and

DroidVault. Because the overall time is small (less than 1sec), we do not perceive signif-

icant delay while interacting with the app.

4.6 Discussion

Secure Environment Indicator. It is challenging to inform users whether they are inter-

acting with the secure display rendered by DroidVault. Overlaying the secure display on

the top of the non-secure display (Gadget2008 [6]) makes it difficult for users to verify

the secure display. Software indicators, such as M-GUI [91], are not suitable for Droid-

Vault to identify the trusted environment because DroidVault needs to frequently switch

with the untrusted Android OS for handling system calls (e.g., during file downloading in

our motivating example). Therefore, the untrusted Android OS may completely control

the GPU framebuffer during the switching and spoof the secure display. Thus we rely

on hardware indicators, such as a red-green dual-color LED or a buzzer [114, 97], addi-

tionally with a time threshold T. DroidVault indicates a stable environment for secure UI

only if there is no switch back to the untrusted Android OS for at least T secs. During

fast switching while file downloading, DroidVault does not indicate the secure display to

the user. Therefore, DroidVault does not recommend any secure UI-related actions during

the file system access and network transactions. Comparing with [91, 114, 97] without

allowing the switches with the untrusted domain during the secure code execution, one

benefit of this design is that users do not have to wait inside the secure domain for file

downloading, which gains better user experience.

Functionality Extension. In our prototype design, DPM supports only a set of primi-
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Table 4.4: The Performance of Our Micro-Benchmark Test (measured in microsecond)

Size of File 1K 10K 100K 1M 10M

Shared Memory Copy 5 18 202 1523 11818

Context Switch 76 680 6707 67160 683347

Data Encryption 201 968 8794 63151 633338

tive APIs for minimizing TCB. We evaluate a few parsing apps and libraries for popular

file formats, such as ZIP/TAR, CSV, PDF, XML and BMP. From our observation, it is

sufficient to support parsing these file formats only by string comparison and delimiter

searching. As one of our future work, we consider porting a small runtime environment

for existing programming languages into DPM considering the ease of third-party devel-

opment and the compatibility with existing third-party libraries, similar to existing work

supporting Lua [62] and C# [85].

It is also challenging to extend the service supported in DroidVault while keeping

the minimal TCB. In this work, we design four primitive services in DroidVault. These

services are sufficient to support synchronization of sensitive documents with a remote

server and data parsing and user interaction. We consider balancing between supporting

functionality and the minimal TCB requirement when designing DroidVault. The design

in commercial products is to run a RTOS inside the secure world, such as MobiCore [8]

and PikeOS [11], with the goal of supporting rich functionality in the secure world. They

usually include lots of device drivers into the secure world’s TCB. However, as a goal

of data protection in our work, we cut down unnecessary services to achieve minimal

TCB while preserving sufficiently interesting functionality. For each selected preserved

service, we further shrink the TCB as much as possible. For example, for secure network

channel, we encrypt sensitive data before it goes into network channel. Therefore, it

is unnecessary to include the network software stack into our TCB. For each service,

we extract the core sensitive code base and delegate the rest back to the Android OS.

Inevitably we need to include the drivers which directly handle the sensitive information,
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such display and user input. We can also extend the secure communication channel via

Bluetooth, NFC and USB similarly in the future.

We design secure display as a primitive service to meet a generic requirement of user

interaction. The display driver which handles the sensitive display information must be

added into DroidVault. To extend the services to support functionality provided by other

device drivers such as the audio driver, these drivers which directly handle sensitive data

must be also be added into DroidVault. Currently we only consider the display function-

ality as a primitive service.

Platform Extension. We prototype DroidVault in the ARM TrustZone architecture.

However, the design of DroidVault does not rely on any specific architecture. Droid-

Vault aims to extend the trust of data-hosting servers to untrusted clients. The design

of DroidVault is extensible to other platforms. The concept of trusted data vault can be

adopted widely in commodity trusted execution environment, built on top of technologies

such as TPM, M-shield, Java Card, Secure Element, even the software-based hypervisor.

It can even delegate the trust to a trusted third party, and be prototyped in a remote end.

Applicability Extension. DroidVault is a small trust engine designed for client devices

which provides a trusted channel with data-hosting servers. Additionally, the design also

fits other communication situations, such as web-based apps and mobile network com-

munication. For example, secure SMS can be achieved by establishing a trust channel

between mobile network operators and mobile clients. Banking transaction information

can be securely transferred and viewed in the DroidVault through building trusted con-

nection with web-based services. DroidVault can also be further extended to build trust

between two clients (sharing secrets with friends) with the precondition of mutual authen-

tication.
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4.7 Related Work

Extending Android to Protect Sensitive Data. Several solutions extend the Android

platform to protect the sensitive data. TaintDroid [37], AppFence [56], MockDroid [20],

Apex [74], Saint [75], Constroid [89], TreeDroid [32], Kynoid [90], TISSA [113], Aura-

sium [103] and [58] enable the runtime enforcement to support rich-semantic control on

sensitive data; for example, an app can specify that any other app granted the network

access permission cannot read its sensitive data. Another line of research protects the

sensitive data in Android by isolating the code segment according to their sources or se-

curity levels. AdDroid [76] and AdSplit [92] separate the code from different origins.

They extract libraries out of the host app and use a separate process as a container to

isolate them. Some existing work also protects the sensitive data by encryption. For ex-

ample, CleanOS [95] is a prototype to mitigate the threat of device lost by encrypting

sensitive data and evicting the encryption key to the trusted cloud in time. All above solu-

tions in this category rely on the trust of the Android OS. In contrast, DroidVault enables

the sensitive data protection in an untrusted Android system.

Virtualization on Android Devices. L4Android [64], Cells [16], AirBag [100] and

TrustDroid [25] propose virtualization-based solutions to support multiple separate en-

vironments at different system levels in the Android OS. These virtualization-based solu-

tions achieve the sensitive data protection, but the TCB is quite large, including the whole

Android software stack. Even though the resources are isolated, they are still exposed to

the malicious apps or the compromised OS.

Data-oriented Protection. A few abstractions are designed for data-oriented protection.

Lie et al. [68] prevent memory tampering through an abstract of execution-only memory.

DataSafe [30] uses memory encryption to protect data, achieving the concept of data

capsules [70]. These solutions allow operations on sensitive data under the control of a

policy. However, they cannot prevent information leakage through implicit flows and side

channels. In contrast, DroidVault provides a stronger guarantee to secure sensitive data

with a hardware-assisted isolated environment. Another related work of policy-sealed
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data [86] provides a new trusted computing abstraction to protect customer data hosted by

cloud services, based on that the sealed customer data can only be unsealed by nodes that

match the customer-defined policy. Similar with our solution, these approaches also use

encryption to protect sensitive data and only allow decryption on demand, thus reducing

the potential data leakage. However, DroidVault supports richer functionality to operate

on the encrypted data.

Trusted Execution Environment. On-board credentials platform [62] designs an archi-

tecture for the credential management via a hardware-assisted secure environment and

provisions credential secrets that are only accessible to specific pre-authorized programs

inside the secure environment. However, our DroidVault design aims to establish a se-

cure channel with remote data-hosting servers and support secure interaction with end

users, which they do not address. NGSCB [77] developed by Microsoft provides an ex-

ecution environment with high isolation assurance on both software and hardware base.

DroidVault can be adapted into the NGSCB architecture. Existing research has provided

trusted execution environment based on the virtualization (Terra [45], Proxos [94], etc.)

and trusted hardware (Flicker [72], vTPM [21], etc.). The idea is to establish trust in the

system based on a small root of trust. Mobile Trusted Module is a platform-independent

approach for trusted computing, similar to TPM [12]. It allows a wide range of imple-

mentations, such as based on SELinux [108] or hardware support (ARM TrustZone and

Secure Element [99, 34]). However, all above solutions mainly focus on the integrity of

applications. They do not preserve the application usability by allowing operations on

the sensitive data. Our solution is additionally designed to support useful data operations

on protected sensitive data. [114] proposes a solution of trusted path on x86 computers

which establishes a protected channel between a user’s I/O device and a program. Their

solution is a hypervisor-based design which is claimed to be portable onto the ARM plat-

form in the future. However, instead of building trust between a user’s I/O device and a

program, DroidVault aims to extend the trust with remote servers.
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4.8 Summary

We present DroidVault, a trusted engine on the Android platform, to ensure the confi-

dentiality of the sensitive data. It establishes the trust between data-hosting servers and

Android devices, and provides a trusted execution environment for processing the sen-

sitive data. We prototype DroidVault on the ARM TrustZone architecture to rigorously

isolate the sensitive data from the untrusted Android OS. DroidVault has a significantly

reduced TCB compared to the present Android OS. Through our evaluation, we demon-

strate that DroidVault can be adopted by legacy cloud storage services and support popular

operations on sensitive data.
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Chapter 5

Privacy-ranking Sensitive Data Usage in

Android Applications

5.1 Introduction

The Android system relies on a permission-based model to protect sensitive resources on

mobile devices. However, the existing permission-based model relies heavily on users’

perception of the permissions. A recent study shows that the Android permissions are

insufficient for users to make correct security decisions [42]. Users have little idea about

how an app would use the granted permissions. For example, to use the advertised fea-

tures of an app, users may simply grant the dangerous permission to access their loca-

tions. In fact, the app may directly leak location information to an external third-party

domain, or carelessly open new interfaces for other apps to escalate their privileges to

access it [33]. Although several existing mechanisms have been proposed to analyze the

permission usage in Android apps by detecting what and where permissions are used, they

do not provide comprehensive information for users to understand how one app utilizes

sensitive data after being granted permission to access. Instead, we need a solution which

is both technically comprehensive and sufficiently intuitive to end users. Such a solution

should help users to make wise choices to protect their privacy when they are installing
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new apps.

One well-explored direction in understanding the permission usage is to apply data

flow analysis on Android apps [37, 51, 101, 48, 69, 28, 87]. However, most of them

only determine whether a flow to leak sensitive resources exists or not, but lack precise

description regarding the internal data processing logic, i.e., whether the data usage leaks

a lot of information or only a little. Thus, they are unable to inform users of the difference

between an app that sends the user location to third parties, and another app that only

provides a yes/no answer to whether the user is presently at a certain museum or not.

Therefore, a desirable approach should deliver more insight to users regarding how their

sensitive data are processed and to what extent they are leaked to other parties.

Quantitative information flow (QIF) is an emerging technique for quantifying the in-

formation leakage. Various information-theoretic metrics have been proposed, such as

through one particular execution path [71] or publicly observable states [54]. Ideally, QIF

could be a suitable tool to evaluate how apps use sensitive resources and how much of

such information is leaked. Unfortunately, the performance and scalability of existing

QIF algorithms and tools are rather limited in practice. In addition, the Android-specific

event-driven paradigm heavily involves asynchronous system callbacks and user interac-

tion, which makes it even more difficult to apply existing QIF mechanisms. Considering

the huge number of Android apps and their frequent updates, we need a more efficient

and scalable approach.

Our Approach. In this work, we propose a lightweight and efficient approach to ranking

apps based on how they use sensitive resources. In particular, we take the location data of

the mobile device as a starting point. Meanwhile, the technique is also applicable to other

data types, such as the device ID and the phone number. The idea is to summarize the se-

quence of key operations on the location data into a data usage pattern, which represents

the app’s internal logic of the location data usage. By comparing the usage patterns by

different apps, we group apps with similar functionality and rank them according to their

potential leakage of the location information.
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Compared to existing data flow analysis techniques that only detect the presence of

sensitive data flows, we focus on identifying the important operations on the sensitive data

in such flows. Specifically, we propose PatternRanker, which statically analyzes how an

app utilizes the location data by analyzing its Dalvik bytecode, and extracts a general and

comprehensive pattern representing the location data usage by identifying key operations

on the location data. We collect all the possible operations by leveraging static program

slicing and taint-based techniques, and then generate the data usage patterns through pre-

defined heuristics (shown in Section 5.3.1). We evaluate PatternRanker on 100 top free

apps that request the location permission. Our experiments show that PatternRanker ef-

fectively extracts the data usage pattern for ranking apps. PatternRanker also achieves an

average analysis time of 27s per app, which is sufficiently small for analyzing real-world

apps.

The applicability of the data usage pattern is not limited to app ranking. It can also

efficiently assist further analysis, such as accelerating existing QIF solutions by applying

their current mechanisms on our extracted patterns instead of on the raw logic of apps. It

is also helpful to making suggestions on permission evolution in the Android ecosystem.

It is not necessary to grant apps full access to the sensitive data in certain scenarios.

For example, when an app requests the location permission, it may only want to decide

whether the device is currently at home or at work. The app only needs a yes-or-no answer

to satisfy its logic, instead of the raw location data. From the Android system’s point of

view, it is desirable to reveal as little information as possible to apps without sacrificing

functionality. Based on this app’s internal logic, the Android platform can support one

API that only returns an identifier of the raw location and another API that calculates

the distance via these identifiers. Alternatively, the app’s logic can also reflect the app’s

requirement on the location accuracy [73], and thus the Android system can provide new

location-related APIs with various accuracy levels.

To sum up, our work has the following contributions:

• We propose a lightweight and scalable approach to ranking apps’ threats to user
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privacy based on the usage pattern of sensitive information.

• We build a static tool to automatically analyze how Android apps utilize the sensi-

tive data and identify the key operations.

• We evaluate a set of 100 top location-related Android apps, and demonstrate the ef-

fectiveness of our approach in ranking these apps and classifying them into different

categories according to different data usage patterns.

5.2 Approach Overview

In Android, an app is required to declare a list of permissions for accessing sensitive

resources. During the app’s installation, the Android system prompts users with this

permission list, and users must decide whether to grant all the permissions and install this

app, or refuse the permissions to deny the installation. The permission-based model relies

on users to make proper security decisions by examining the app’s permission list. It is

extremely difficult for the users without expertise to understand the precise meaning and

security implication of each permission. Even if some users do have good understanding

on these permissions, it is still hard to decide whether an app can be harmful, only judging

from the list of requested permissions.

5.2.1 Motivating Example

Two apps both requesting the location permission can be significantly different, in terms

of their internal logic of processing the location data. The internal data processing logic

is the key to determining whether an app violates users’ privacy. We use two real-world

apps as an example to illustrate the problem.

• GPS Share. Users can use this app to explicitly share their current GPS locations

with their friends. When users click the Send Location button on the main screen,

the app first invokes the getMyLocation API to get the current location. Then it

95



Operations on GPS in
GPS Share

Operations on GPS in
Auto Profile Switcher

GPS GPSSource

Sink

Source Point

Sink Point

Source Point

Sink Point

Key Operation 1

Key Operation 2

Figure 5.1: Different Operations on Location Data in Two Apps

converts the GPS coordinates into a string and performs a series of string operations,

such as appending a pre-defined string. It finally sets the concatenated string as an

extra field of an intent with the type of text/plain and passes this intent via

startActivity to other handler apps, such as an SMS messenger app.

• Auto Profile Switcher. This app profiles phone states (such as ringtone, volume,

silence mode and wifi) under the condition of the current GPS location. A user first

pre-stores the GPS location for each profile (e.g., work and home). After launch, the

app reads the current GPS via getLastKnownLocation and checks the closest profile

by comparing the current location with pre-stored GPS locations. If the distance to

the closest profile is within the pre-defined range, it automatically applies the closest

profile by changing system states accordingly, such as through setRingerMode in

AudioManager, setWifiEnabled in WifiManager and vibrate.

Apparently, these two apps have different operations on the location data. Different

operations may generate different outputs that convey different amount of sensitive infor-

mation. Figure 5.1 illustrates the difference between them. The width of the grey box
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represents the capacity of the location data, which indicates to what degree the current

output is close to the raw location data. The larger capacity means the output is closer

to the original location data. In the left figure, the capacity remains the same along the

flow, while in the right figure, the capacity is significantly reduced due to two key op-

erations. The first key operation is the distance calculation between the current location

with pre-stored locations, which transforms the raw location data from a accurate point

to a range. The second key operation is distance comparison which further reduces the

observable location-related output to one bit (true or false). The sink API (e.g., setRinger-

Mode) changes the system state accordingly, which indicates one bit of information to

other installed apps. Therefore, it is important to summarize these key operations as a

pattern to express the sensitive data usage in one app. Traditional taint-based analysis

only focuses on detecting the presence of one flow. However, we need to further focus

on identifying the key operations on the sensitive data in one flow. This information can

effectively assist analysts and even end users to understand the apps better and thus rank

the risks of the apps.

5.2.2 Key Design Decisions

We rank one app based on data operation analysis, instead of leaking bits. The con-

cept of capacity, described in our motivating example, does not reflect how many bits

one operation may leak at runtime, but reflects the semantic effectiveness whether one

operation preserves the raw data. For example, Android provides standard APIs distance-

Between/distanceTo for apps to calculate the distance between two points. However, some

apps implement their own methods to complete the same task. For instance, Auto Pro-

file Switcher app implements the getMtBetweenPoints method to calculate the distance

through complex mathematical computation (including toRadians, sin and cos). It is ex-

tremely difficult to statically predict which set of mathematical operations may leak more

bits of raw data. It is also improper to conclude that one is safer for leaking fewer bits of

raw data in one particular run, because they are semantically equal even though they may
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get slightly different results at runtime. Therefore, considering practicality for analyzing

real-world apps, we aim to rank apps through identifying the data usage patterns, more

specifically, a sequence of key operations on the sensitive data along one flow, instead of

finding a metric of calculating number of bits that one app may leak.

5.3 PatternRanker Design

We aim to define a pattern to represent how an app operates on the location data, including

not only a present flow from pre-defined sources to sinks, but also the key operations in

the flow. The data usage pattern indicates two aspects: through which channel and to what

degree the sensitive data are leaked. We use the pattern as our ranking metric. For two

different usage patterns, we assign a higher rank to the one that leaks less information in

the flow, and a lower rank to the one that has a simple data propagation from a source to

a sink. We also consider various sink channels for ranking. For example, it gains a higher

rank to share the sensitive data with a trusted service than an uncertain domain.

Assumption. The Android system provides well-defined Java interfaces for Android apps

to access resources. It also supports NDK that allows developers to design their apps as

native code. However, the native code is usually designed for performance improve-

ment in CPU-intensive scenarios like game engines and physics simulation, instead of

the Android-specific resource access. Hence, the native code is out of the scope in our

analysis. Considering that the native code may be potentially vulnerable, we give a lower

rank if any native code is included. In this section, we detail our design of the data usage

pattern and a static approach to automatically extracting it.

5.3.1 Pattern Definition

We focus on analyzing the types of operations on sensitive data in a data flow. To represent

how close the output of one operation is to the raw sensitive data, we attach an attribute

Capacity to the sensitive data during their propagation. Higher value means the output
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is closer to the original sensitive data. Thus we define the Pattern as a sequence of key

bytecode operations, which aims to expressively identify the changes of the capacity in

one data flow. The sensitive data enter at the source point with the maximum capacity.

During the data flow, an operation may reduce the output’s capacity. We also aim to

use the pattern to indicate the influence of the sensitive data on the control flow, i.e.,

whether a code branch is conditionally triggered by the sensitive data. Thus we classify

the operations into five categories: Source, Sink, Branch, Capacity-preserving and

Capacity-reducing. Next we explain them in detail.

Source/Sink/Branch. The existing work Susi [82] has given a concrete definition for

Android sources and sinks. For sources, we only consider the sources related to the loca-

tion permission1. Additionally, the Android system supports callbacks (e.g., onLocation-

Changed) to pass sensitive data (e.g., GPS). We also consider these sensitive callbacks as

sources. In addition to standard sinks, such as network APIs, we treat system state-related

APIs (e.g., setRingerMode) and IPC channels (e.g., startActivity) as sinks. To avoid du-

plicate analysis on known trusted services and advertising libraries, we also treat these

interfaces as sinks. Branch operations refer to the bytecode operations which are essential

for exploring execution paths, such as if-* and goto.

Capacity-preserving/reducing. Different operations on the sensitive data may generate

outputs with different capacities. According to the capacity of the output, we classify the

operations into capacity-preserving (the output has the same capacity as the input) and

capacity-reducing (the output has lower capacity than the input). When summarizing the

operation sequence for one pattern, we ignore capacity-preserving operations because the

sensitive data have only direct flow without any change of the capacity. Our goal is to

identify those key operations that reduce the capacity of one flow.

Real-world apps commonly convert the data into different types or representations

for programming convenience. For example, the getMtBetweenPoints method takes the

latitude and longitude of two points as parameters, and returns the distance as the re-

1The mapping between the Android APIs and permissions is provided by existing tool [18].
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sult, all in float (F) form. To invoke this method, the app first retrieves the raw lo-

cation coordinates in double (D) form, then converts them into java/lang/String

form through java/lang/Double->toString(D), then into F form through java/lang/Float-

>parseFloat(java/lang/String). During this flow, the raw value may have a loss at run-

time. However, the purpose of the app is just to conveniently calculate the distance, not

intentionally hide the accuracy of the location. Besides, Android provides another repre-

sentation Address, which contains a street address information and can be transformed

with a Location through supported geocoding and reverse geocoding. It is not rea-

sonable to argue that it is safer to leak an Address than a Location, or it leaks less

to use a float than a double or a string. All these data have the same semantics as the

raw location data, even though the leaking bits do vary at runtime. We consider two

scenarios of semantically equal data conversion in our static analysis: one is through

specific bytecode operations of MATH type, such as *-to-* (e.g., double-to-int);

the other is through specific API invocation, such as java/lang/Double->toString(D),

android.location.Geocoder->getFromLocation and java/lang/Float->FloatValue().

Next, we illustrate our idea through a simple snippet of sequential operations below.� �
1 invoke-virtual {v0, v1}, Landroid/location/LocationManager;->

getLastKnownLocation(Ljava/lang/String;)Landroid/location/Location;

2 move-result-object v2

3 ...

4 invoke-virtual {v2, v3}, Landroid/location/Location;-> distanceTo(

Landroid/location/Location;)F

5 move-result v4

6 move v4, v5

7 cmpg-float v5, v5, v6

8 if-gtz v5, :cond_1

9 :cond_1

10 ...

11 invoke-virtual {v7, v8}, Landroid/media/AudioManager;->setRingerMode(I)

V
� �
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In the above code, we can easily identify its source and sink as Line 1 and Line 11.

Line 1 accesses the current location and moves it to v2 (Line 2). Line 4 calculates the

distance between the current location with another point, marked as capacity-reducing

operation (CRO). The result is moved to v4 and then to v5. Then Line 7 compares the

distance with one value, and sets the comparison result in v5. Line 8 uses the comparison

result as a condition to trigger a code branch that contains the sink API. The pattern for

this code snippet is shown as follows.� �
1 E(SOURCE): invoke-virtual, Landroid/location/LocationManager;->

getLastKnownLocation(Ljava/lang/String;)Landroid/location/Location;

2 E(CRO): invoke-virtual, Landroid/location/Location;-> distanceTo(

Landroid/location/Location;)F

3 E(CRO): cmpg-float

4 E(BRANCH): if-gtz

5 E(SINK): invoke-virtual, Landroid/media/AudioManager;->setRingerMode(I)

V
� �
It is challenging to precisely distinguish whether an operation is capacity-preserving

or capacity-reducing because it varies in different contexts due to two main scenarios:

Uncertain Operand and Uncertain Method. Next we describe how we handle them in

detail.

1) Uncertain Operand. Whether one opcode preserves the capacity depends on its

operands. For example, add-int vx,vy,vz calculates vy+vz and puts the result

into vx. Supposing vy is the raw sensitive data, it depends on vz whether the result vx

maintains the same amount of sensitive information. If vz is a random number, then vx

is not sensitive because it does not reveal the raw data vy. The operand may also come

from an external source, such as SharedPreferences, external storage, network and An-

droid specific IPC channels. It is difficult for static analysis to determine these operands,

but fortunately, most above uncertain scenarios are rare to happen among the popular

apps that we have studied. Only a few apps perform string concatenation and mathemat-

ical comparison operations on the sensitive data with a pre-stored default value read via
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SharedPreferences API. SharedPreferences API is commonly used for local storage of

preference settings, which we assume not to change frequently. Thus we treat them as

constant values.

For some opcodes, their outputs’ capacities depend on what their operands exactly

are. For example, and-int vx, vy, vz calculates vy AND vz and puts the result

into vx. In this case, even if we treat vz as a constant, the result vx is still unable to reveal

vy unless vz equals to 0xFFFFFFFF. Taking subString operation as another example,

if it occasionally makes a substring from the beginning to the end of the string, the output

string preserves the same capacity as the input string. However, these scenarios are rare

to happen. Considering the semantics of the common usage of these operations, we treat

them as capacity-reducing.

2) Uncertain Method. For invoke-* operations, we dive into the callee function to

figure out its internal logic. However, if the callee is an external method that is out of

our analysis code base, we are uncertain about what kinds of operations will be possibly

performed on the sensitive data. In this case, we treat the external method invocation

as capacity-preserving (the worse case) by default. To reduce the overestimation, we

semantically identify frequently used libraries, such as String, Math and parts of Android

APIs.

We list the details of our pre-defined tainting rules and operation heuristics for all

opcodes as below.

CONST const, const/*, const-*

1. Taint Propagation Rule. We stop tainting the variable if a constant value overwrites

it.

2. Operation Heuristic. None.

INVOKE invoke-*

1. Taint Propagation Rule. 1) If the method is a source API then we taint the return

result; 2) Otherwise if any input is already tainted, we taint the output in the current
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round and dive into the callee in the next round. Note that the input/output of one

method include not only the parameters and the return value, but also the fields

being accessed inside it; 3) Otherwise, if the method is an external method, we

check whether it is a sink API.

2. Operation Heuristic. For an internal method, we treat it as capacity-preserving

at the first round, and then refine it in the next round. We treat all the external

methods as capacity-preserving. To reduce the false positive, we semantically mark

frequently used Math/String APIs and location-related Android APIs as capacity-

reducing, e.g., android.location.Location->distanceTo/distanceBetween.

NEW INSTANCE new-instance

1. Taint Propagation Rule. We stop tainting the variable if a constant value overwrites

it.

2. Operation Heuristic. None.

MOVE move, move/*, move-*

1. Taint Propagation Rule. We propagate the taint tag during move operations. Spe-

cially, we handle move-result-* operations as a pair with invoke-* opera-

tions.

2. Operation Heuristic. All are capacity-preserving operations.

BRANCH if-*, goto, goto/*, return, return-*, packed-switch,

sparse-switch

1. Taint Propagation Rule. We record this branch operation if any of the involved

registers is tainted. For return operations, we keep tracking in the caller if the

return value is tainted.

2. Operation Heuristic. None.

GET iget, iget-*, sget, sget-*
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1. Taint Propagation Rule. We propagate the taint tag from field to register.

2. Operation Heuristic. All are capacity-preserving operations.

PUT iput, iput-*, sput, sput-*

1. Taint Propagation Rule. We propagate the taint tag from register to field.

2. Operation Heuristic. All are capacity-preserving operations.

MATH cmp-*, cmpl-*, cmpg-*, rem-*, and-*, or-*, neg-*, add-*,

mul-*, div-*, rsub-*, sub-*, shl-*, *-to-*

1. Taint Propagation Rule. If any of involved registers is tainted, the result is tainted.

2. Operation Heuristic. cmp-*, cmpl-*, cmpg-*, rem-*, and-*, or-*,

neg-* are capacity-reducing operations. The rest are capacity-preserving opera-

tions. It is a capacity-reducing operation if it satisfies the following property: even

though the sensitive operand is operated with a constant, the result value is still un-

able to recover the sensitive value. Take and-int vx, vy, vz as an example

which calculates vy AND vz and puts the result into vx. Supposing that vy is

the sensitive operand while vz is a constant 0x00000000, we cannot infer vy

given vx and vz in this scenario. *-to-* operations refer to the data conversion,

such as double-to-int. Although the conversion may lose the accuracy of the

raw data, it semantically behaves like a move operation. Thus we treat *-to-*

as capacity-preserving operations.

ARRAY fill-array-data, array-length, new-array, aput, aput-*,

aget, aget-*

1. Taint Propagation Rule. We use per-field granularity for the whole array. If a

particular field of one object in the array is tainted, then the field for any object in

the array is tainted.

2. Operation Heuristic. array-length is capacity-reducing and the rest are capacity-

preserving.
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SPECIAL check-cast, monitor-enter, monitor-exit, instance-of,

throw

1. Taint Propagation Rule. None.

2. Operation Heuristic. None.

5.3.2 Ranking Metric

Our ranking is based on two factors: 1) through which channel the data are leaked; 2) to

what degree the data are leaked. Note that one app may contain multiple patterns. Here

we demonstrate the metric for ranking one pattern. We use the lowest one to represent

the rank for the whole app. According to the various sinks, we classify patterns into two

main categories: In-App Usage with a higher rank and Sharing with a lower rank.

For the category of in-app usage, we further classify into two subcategories: capacity-

reducing pattern with a higher rank and capacity-preserving pattern with a lower rank.

Considering the Auto Profile Switcher in our motivating example, the sink setRingerMode

in the flow only indicates one bit of information leakage. Even if other apps exclusively

monitor the state of the ringer mode in the phone, they can only infer the profile switching

but no more information. However, for a capacity-preserving pattern, the sink in the flow

outputs the same amount of information as the raw sensitive data. Through our analysis,

we observe that some apps directly log the location-related data to the Android LogCat,

which is publicly accessible for all the installed apps with the READ LOGS permission.

Some apps log the data into their local databases, which are potentially vulnerable to

content pollution attacks addressed by [112]. Thus we assign a lower rank to the capacity-

preserving pattern.

However, it is difficult to justify two capacity-reducing patterns, for it is improper to

claim that two capacity-reducing operations (e.g., subString) leak less information than

one. In future work, we will consider more metrics as references to compare two capacity-

reducing patterns, such as how many bits of information are leaked generally in multiple
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runs, which can be achieved by applying the mechanisms of existing symbolic-execution-

based solutions [57, 60] on our extracted patterns to efficiently simulate multiple runs of

the program and evaluate the effectiveness of these extracted key operations on the sensi-

tive data. For now, as a first step, we only target on identifying these key operations from

large-scale real-world Android apps, and thus give a rough classification while leaving

further analysis as future work.

For the category of sharing, considering the scenario that it is more acceptable for

users to share even the raw location data to trusted services, such as Google Map service,

than to share one bit of information with untrusted domains, we further group them into

three subcategories according to various sharing domains, from high rank to low rank

which are Known Trusted Services, Advertising Libraries and Uncertain Destinations.

We use a whitelist to maintain the known trusted services and advertising libraries. We

give the lowest rank to those apps which transfer the location data to uncertain third party

domains through network APIs, WebView APIs or IPC channels. An app may pass the

location data to other installed apps through the Android IPC channels. We give it a

relatively low rank due to the uncertainty about the handler app and the vulnerability

(e.g., the broadcast eavesdropping risk addressed by ComDroid [31]) of the Android IPC

channels. Usually, apps use dedicated libraries for common services and advertising (e.g.,

Google map), instead of re-implementing their own through raw Android interfaces (e.g.,

network APIs). The uncertain channels are mostly used to share content and resources

with apps’ own third party servers or can only be determined at runtime. Therefore,

even though more information (e.g., the recipient’s network address, phone number and

package name) via these uncertain channels can be mined by applying backward analysis

or dynamic instrumentation, they still fall into the uncertain subcategory. Instead, we

simply categorize the sharing domains through a whitelist-based filter for common trusted

services and advertising libraries collected from large-scale real-world apps.
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Figure 5.2: The Architecture of PatternRanker

5.3.3 PatternRanker Architecture

Figure 5.2 illustrates the overall architecture. The Android apk is parsed into appropriate

object representations for further analysis, such as Smali classes, methods and fields.

Slice Generator uses slicing technique to generate all the program slices that start from

accessing the location data. Pattern Extractor extracts the pattern by identifying the key

operations in each slice. We design a Pattern-based Ranking to rank the apps based on

various patterns. Next we explain each component in detail.

Apk Parser. We design static analysis directly on the Android disassembled Smali

code, an intermediate representation for Dalvik bytecode, which overcomes limitations

of the Dalvik-to-Java bytecode transformation given concerns over the accuracy of ex-

isting translators [38]. The apk is parsed into Smali files and represented as multiple

Smali classes. Each Smali class object is represented as a set of methods and fields. Each

method can be further decomposed into several sequential blocks according to its internal

branches. Therefore, inside one block, the instructions are sequential without any control

flow. The block is treated as a minimum unit for our further analysis.

Slice Generator. We first identify the source points in the app and then perform bottom-

to-top analysis. To explore all possible flow paths, we consider field-sensitive flow and

Android-specific callbacks into the API hierarchy, shown in Figure 5.3. To support field-
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LocationManager locationManager = 
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

Location location = locationManager
.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

if ( location != null )
{

Log.i(“current loc:” + location.getLatitude() + “ “ + location.getLongitude());
//dest is a pre-defined location and C is a pre-defined const value
if ( location.distanceTo(dest) < C )
{

AudioManager audioManager =
(AudioManager)getSystemService(Context.AUDIO_SERVICE);

audioManager.setRingerMode(AudioManager.RINGER_MODE_SILENT);
}

}
return location;

Figure 5.4: Control Flow Relationship among Blocks

sensitive flow analysis, if the sensitive data is put into one field of a Java object in one

method, say M, we also mark all the methods reading that field as top methods of M.

Specially, the Android-specific event-driven paradigm supports asynchronous invocation,

such as Handler, Thread and AsyncTask. We also bridge the data flow for these scenarios.

However, we do not preserve the data flow if it flows outside the app, such as file system,

network and IPC channels.

From bottom to top, we analyze each method in the call chain. Intuitively, we start

tracking the sensitive data from the source point and propagate the taint tags to its top

methods. If one method invocation involves any tainted input, we dive into the method to

figure out its internal logic. Note that to support field-sensitive analysis, the input/output

of one method include not only the parameters and the return value, but also all the object

fields that may be accessed inside it. For efficiency, we do not dive into any method in

the publicly known libraries, such as the Android SDK, advertising/analytics libraries and

other known third-party services.

Now we explain how we analyze inside one method. The method is composed of mul-

tiple blocks. We start tainting the sensitive data from the first block with the per-register

and per-field granularity. At the beginning of our analysis for each block, we allocate a set

of tracked registers and a set of tracked fields. Inside one block, the execution is sequen-

tial and the taint tags are propagated according to our pre-defined tainting rules (shown
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in Section 5.3.1). During the tainting, we dynamically update the tracked register set and

field set. After finishing one block, we go further to its next blocks. The tracked register

set and field set are used as the initial sets for its next blocks. Figure 5.4 demonstrates

how we handle the control flow. It may cause overtainting problem to simply taint all the

next blocks if the branch condition is tainted. In Figure 5.4, we can see that the block

D does not rely on any previous conditions, even though it is the next block of A,B,C.

We cannot semantically conclude that the block D has control flow relationship with the

block B on the condition of location.distanceTo(dest) < C. Thus to balance

the overtainting problem, we only maintain the control flow relationship among blocks

when the next block has only one reachable path, such as A→B and B→C.

Pattern Extractor. After we get the program slices, we post-process them to extract

patterns. As discussed in the motivating examples, the app may simply propagate the raw

data until a certain point where a key operation reduces the capacity of the flow. Each slice

is treated as sequential operations. We identify whether an opcode is capacity-preserving

or capacity-reducing through pre-defined heuristics (shown in Section 5.3.1).

We filter out duplicate patterns if two patterns join at the same first key operation. We

also semantically optimize the pattern. Certain patterns are semantically meaningless to

represent the logic of operations on the sensitive data, such as commonly used null-pointer

checking. Specially for the location data access, we observe that apps usually try several

location providers to get the location if one fails, such as through satellites, cellular radio

and network. This logic can be simplified as a single source point.

Pattern-based Ranking. As described in Section 5.3.2, our ranking system is based on

two factors: through which channel and to what degree the data are leaked inside one

pattern. Thus, we classify the extracted patterns by checking their sinks (indicating the

leaking channel and the possible receiver) and their capacities (indicating whether one

pattern contains any capacity-reducing operation). As shown in Figure 5.5, we first clas-

sify the apps into two main categories: in-app usage and sharing, by checking the sinks

of the patterns. For the category of share, we further classify them into three subcate-
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Figure 5.5: Pattern-based Ranking Schema

gories based on different sharing domains by grouping the various sinks. For the category

of in-app usage, we group them into two subcategories: capacity-reducing pattern and

capacity-preserving pattern, by checking whether the capacity of sensitive data at the sink

point is smaller than that at the source point.

5.3.4 Discussion on False Positives

We have two types of false positives. First, the pattern extracted from our static anal-

ysis may not be triggered at runtime. For instance, we manually verified that some

paths are only triggered in debug mode. Second, we may classify a capacity-reducing

app into capacity-preserving category due to our conservative processing. For example,

if the method is out of our analysis base (e.g., native code), we have to treat it as the

worse case to avoid giving the app a high rank. However, all the above scenarios can be

verified through dynamic analysis via existing instrumentation frameworks (e.g., Droid-

Scope [105]). It is not our focus in this work and we consider it as future work.
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5.4 Implementation

We implement a standalone tool via Java, which directly works on disassembled Smali

code. We utilize the apk parser part from the existing tool SAAF [55], which disassembles

Android apks using android-apktool 2 and parses the smali files into appropriate object

representations, such as blocks and fields. We implement the slice generator and pattern

extractor. Specially, SAAF treats the try-catch blocks as neighboring blocks, but we

do not treat this case because the try-catch blocks do not have logically sequential

execution relationship. To avoid loops when generating the slices, we set a threshold

of maximum recursive depth for block analysis. Additionally, we optimize the path by

avoiding duplicated blocks. We also avoid analyzing duplicated paths if the current block

can be concatenated to an existing path.

5.5 Evaluation

We collected 100 top location-related Android apps from the official Android market (i.e.,

Google Play) as our sample set, and ran our PatternRanker prototype on the sample set in

a Debian system on a server of Intel Xeon E5-2640@2.50GHz with 64G memory. Next,

we show our evaluation results in detail.

2android-apktool: available at https://code.google.com/p/android-apktool/
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Table 5.1: Different Categories of Sharing Domains

Known Trusted Services Advertising Libraries

Aponia Map (4) MapQuest Map (1) adfonic (1) google/ads (1) mopub (2)

Geolife SDK (1) Yandex Map (1) admob (2) inmobi (1) revmob (1)

Google Apps API (1) adwhirl (1) imapp (1) scringo (1)

Google Map (24) afnn (3) jumptap (1) sellaring (1)

GPS-DFCI (1) daum (2) madvertise (1) smaato (2)

LuckyCatLabs Sunrise/Sunset API (1) flurry (5) mobfox (2) youmi (1)

5.5.1 Application Analysis on Location Usage

Specifically, we found that 28 apps of them have capacity-reducing patterns for in-app

usage. Sharing is an appealing feature on the mobile platform, especially as the social

networking becomes popular. We observed that a common usage for location data is to

share the raw location data with trusted services and advertising libraries. According to

our ranking design, we list them in the following categories from high rank to low rank,

shown as Figure 5.6. One app may include multiple patterns. Here the statistics for each

category shows the number of apps having that pattern.

1) In-App Usage: Capacity-reducing Pattern. We identified 28 apps that have capacity-

reducing patterns. We observed that 15 of them do the distance calculation operation,

among which 10 use the default distanceTo/distanceBetween Android APIs and the rest 5

implemented distance calculation by themselves using Math libraries. Supposing the An-

droid system provides new location-related APIs that do not require the location permis-

sion, i.e., (int)getLocation returning an identifier of the location and (float)distanceBetween(int

id1, int id2) calculating the distance via two location identifiers, these apps can benefit

from it and remove the location permission from their permission lists following the least

privilege principle. Next we take two examples to demonstrate the extracted patterns from

them.
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Auto Profile Switcher app, with more than 1,000 downloads, allows users to configure

several profiles, such as home and work. It automatically switches the profile based on the

current location. For example, it changes the ringer mode accordingly if the current loca-

tion is within the range of a predefined area. The extracted pattern for it is shown below.

First, they implement the distance calculation through the math library (e.g., atan2 by

themselves and then make a comparison operation. Through manual analysis, we observe

that cmpg-float opcode compares the calculated distance with a value read from local

storage implemented as SharedPreferences. This information can be obtained automati-

cally by applying backward slicing technique [55] on key operands, which we consider it

as future work.� �
1 E(SOURCE): invoke-virtual, Landroid/location/LocationManager;->

getLastKnownLocation(Ljava/lang/String;)Landroid/location/Location;

2 E(CRO): invoke-virtual, Landroid/location/Location;->getLatitude()D

3 E(CRO): invoke-virtual, Landroid/location/Location;->getLongitude()D

4 E(CRO): invoke-static/range, Ljava/lang/Math;->toRadians(D)D

5 E(CRO): ...

6 E(CRO): invoke-static/range, Ljava/lang/Math;->atan2(DD)D

7 E(CRO): cmpg-float

8 E(BRANCH): if-gtz

9 E(SINK): invoke-virtual, Landroid/media/AudioManager;->setRingerMode(I)

V
� �
Another pattern example shows the internal logic of how the GPS data affect the

display. GPS Speedometer is a functional speedometer app with 50,000 - 100,000 down-

loads. It displays the location-related information and users’ travel histories on the screen.

One capacity-reducing pattern extracted from this app is shown below. It reads the bearing

information from the location data. The sink is an Android-specific display API setText.

The pattern shows that the GPS data go through multiple comparisons and branch oper-

ations to finally decide the string to be displayed. From the final output display, we can

only infer a rough movement direction instead of the exact bearing information. Through
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manual analysis, we observe that the app compares the current bearing with a set of con-

stant values and then decides to display a string from N,NE,E,ES,S,SW,W,NW.� �
1 E(SOURCE): Lcom/ape/apps/speedometer/SpeedometerMain;->

onLocationChanged(Landroid/location/Location;)

2 E(CRO): invoke-virtual, Landroid/location/Location;->getBearing()F

3 E(CRO): cmpl-double

4 E(BRANCH): if-gez

5 E(CRO): cmpg-double

6 E(CRO): ...

7 E(BRANCH): if-gez

8 E(SINK): invoke-virtual, Landroid/widget/TextView;-> setText(

Ljava/lang/CharSequence;)V
� �
2) In-App Usage: Capacity-preserving Pattern. Information display is one important

feature for apps to rich their functionality and convenient users. 25 apps displayed GPS-

related information, such as position and signal strength of satellites, accuracy, speed,

acceleration and altitude. We observed the following UI-related sinks: TextView(19),

Canvas(7), Toast(3), RemoteViews(2), EditText(1), Notification(1).

30 apps logged the GPS data locally. 13 of them directly output the data to the

LogCat, which is a public channel for all the installed apps with the READ LOGS per-

mission. However, through manual analysis on the path condition, we found most of them

only logged the GPS data in debug mode. This can be verified through the dynamic in-

strumentation framework [105]. We also observe other logging channels: database(10),

Bundle(4), Java/IO(8) and SharedPreferences(6).

3) Sharing: Known Trusted Services. From our statistic in the category of known

trusted services, 25 apps used Google map service while the rest 9 used other third-party

services, shown in Table 5.1.

4) Sharing: Advertising Libraries. In-app advertising has become an important revenue-

generating model for mobile apps. Many of them requested the GPS location for provid-

ing targeted advertisement. We observed 22 apps include advertising/analytics libraries
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Figure 5.7: Analysis Time Distribution

potentially accessing the location data from 18 different advertising providers, shown in

Table 5.1. Commonly one app includes multiple advertising libraries to increase its ads

revenue.

5) Sharing: Uncertain Destinations. We observed that 8 apps share the GPS via IPC

channels. Detecting intent handlers is not our focus, which can be achieved by existing

instrumentation frameworks [75, 31]. We temporarily marked the intent handlers as un-

certain destinations. We also observed the following sinks: org/apache/*/HttpPost (5),

java/net/DatagramSocket (1), WebView→loadDataWithBaseURL (1) and sendTextMes-

sage (1). We manually analyzed the WebView and SMS scenarios. In the app GPS QIBLA

LOCATOR, it uses the WebView API to load an iframe with a URL composed of a fixed

third party domain and the geolocation as the parameters. Mobile Chase-GPS Tracker reg-

isters an onLocationChanged listener, inside which it composes an SMS message using

the location information and sends it to a phone number stored in the SharedPreferences.
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5.5.2 Analysis Time

Figure 5.7 shows the distribution of analysis time for all the apps. Note that the analysis

time excludes the apk parsing phase handled by the existing tool SAAF [55]. The average

of analysis time is about 27s per app. 35% of apps finished within 1 sec, due to the simple

flow of the GPS data in them. Within one minute, we achieved 87% coverage. Comparing

with other tools [17, 106] at the scale of minutes or larger for real-world apps, the average

analysis time of our approach is sufficiently small for ranking a large number Android

apps.

5.6 Related Work

In this section, we discuss about recent related work in Android regarding the permission-

based model enhancement and the information flow analysis.

5.6.1 Permission Use Analysis

Android uses a permission-based model to restrict the capability of installed apps and

protect local resources. During installation time, the package installer prompts users with

all the permissions required by the installed app. However, it is quite difficult for users to

evaluate the safety only based on the permission list. Existing solutions, such as Mock-

droid [20] and Apex [74], provide flexible permission manager systems which allow users

to dynamically select and revoke permissions. There are lots of research on the capa-

bility leakage problem through static detection, such as Woodpecker [51], SEFA [101],

DroidChecker [28] and PermissionFlow [87], and dynamic monitoring by extending the

Android framework, such as Saint [75], QUIRE [35], XmanDroid [23] and [24]. They en-

hance the permission-based model by extending the existing Android framework. How-

ever, different from them, our goal is to analyze the permission use in one app from the

perspective of data usage.

Stowaway [41] reveals the permission bloat problem, by building the map between
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the APIs to the Android permissions and then statically detecting the API coverage for

large-scale apps in the official Android market. It shows that one-third of apps from the

official Android market request more permissions than what they need, and those extra

permissions even confuse app developers. VetDroid [109] builds a dynamic framework

to construct sensitive behaviors by monitoring what and where permissions are used in

the app. Pegasus [29] statically represents the interplay between the Android event sys-

tem and the permissions in an app, and enforces new permission use polices on event

sequences. Permlyzer [104] proposes a general-purpose framework for dynamically ana-

lyzing the permission use sequence. They evaluate not only where the permission is used,

but also the cause and the purpose by checking the permission invocation sequence (e.g.,

a LOCATION-INTERNET sequence indicates a potential location leakage). The above

permission use analysis more focuses on permission invocation, such as where and under

what condition one permission is invoked. In this work, we focus on detecting what op-

erations are performed on the sensitive data protected by one permission, which is more

comprehensive for users to understand the potential behavior related with their privacy in

one app.

5.6.2 Privacy Leakage Detection

Several solutions focus on preventing sensitive data from being leaked by third-party

apps. Many static taint-based techniques are applied for privacy leakage detection, such

as FlowDroid [17], ScanDroid [44], AndroidLeaks [48], CHEX [69]. However, they only

limit to detect whether there exists one data flow from pre-defined sources to sinks. Our

approach focuses more on what operations are performed along the path and identifies the

key operations on the path.

Another line of work for privacy leakage detection is the symbolic execution tech-

nique. For example, SymDroid [57] designs a symbolic executor based on their defined

simple version of Dalvik VM, i.e., µ-Dalvik. Similarly, ScanDal [60] designs an inter-

mediate language, called Dalvik Core, and collects all the program states during the ex-
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ecution of the program for all the inputs. Considering the Android-specific event-driven

paradigm, AppIntent [106] proposes a more efficient event-space constraint guided sym-

bolic execution. These symbolic execution based approaches aim to precisely detect path

conditions for a flow. However, it is usually time-consuming for full-fledged analysis to

explore all the feasible paths in one app. In our approach, we do not need any interpreter

to maintain the program state, like what symbolic execution based approaches do. In-

stead, we only perform a lightweight slicing analysis on the sensitive data and identify

the key operations that we are interested at.

5.6.3 Quantitative Information Flow

Various information-theoretic metrics have been proposed in the QIF area. For example,

one particular execution path conveys certain amount of sensitive information. Flowcheck [71]

is a dynamic analysis tool for Linux executables, which uses a graph-based analysis to

approximate the total number of different public outputs that one program can produce.

Jonathan et al. [54] build a static tool for quantifying the leakage of system software based

on bounded symbolic model checking (CBMC). They aim to model the input/output be-

havior of a C function. However, Android is an event-driven system and has multiple

entry points for one app. It is hard to precisely decide how much one particular execu-

tion path may convey and model all the behaviors for an event-driven system. Therefore,

we do not focus on deciding how much information one path itself conveys through ob-

serving possible program states. Instead, the data usage pattern, we provide in this work,

represents the key operations inside one particular path and indicates the degree of data

leakage after performing these key operations.

5.7 Summary

To provide users with more intuitive measures to understand how apps treat their privacy,

we build a tool PatternRanker to automatically extract the data usage pattern to express it.
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Comparing to existing taint-based techniques that focus on detecting the presence of one

flow, our approach effectively identifies the key operations in the flow. Our experiments

on the real-world apps demonstrate its effectiveness and efficiency for ranking a large

number of apps.
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Chapter 6

Conclusion

As Android devices are becoming increasingly popular and broadly involved in many

areas, such as on-line banking and social networking, a secure and reliable mobile device

is an urgent need for sensitive resources. The default permission-based protection in

Android requires users to estimate the risks of an app and then assign proper capabilities

to an unknown app, which is a concern in both effectiveness and usability in practice to

satisfy a diverse demand for protecting various types of resources.

To mitigate the threats to sensitive system resources in Android from untrusted apps,

we propose and implement RVL, which spawns a virtual environment for various Android

resources, including premium services and user privacy. RVL shadows physical resources

through resource virtualization, thus preventing untrusted third-party apps and even mal-

ware from abusing these resources. RVL effectively confines apps’ potential threats into

their own virtual environment. Additionally, it is highly compatible with existing Android

apps.

To further provide tight control over the usage of more important resources, such as

user credentials, we propose DroidVault that separates sensitive data and operations into a

trusted standalone environment. In this environment, we ensure that only authorized apps

can perform operations on sensitive data. We have implemented DroidVault prototype on

the ARM TrustZone architecture, and evaluated its applicability with legacy real-world
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apps.

Finally, to provide better understanding on sensitive data usage by real-world apps, we

design PatternRanker which statically analyzes how Android apps utilize sensitive data,

specially, the impact of a sequence of operations on the sensitive data. It informs end users

regarding through which channel and to what extent the sensitive data are leaked by an

app, and thus helps them to make wise decisions to protect their privacy. Our evaluation

on real-world apps demonstrates its effectiveness and efficiency on ranking the risks on

location data for a large number of Android apps.

In summary, we design new resource-centric frameworks for different levels of se-

curity guarantees, and provide system mechanisms for resource-centric protection and

information analysis on the Android platform.

122



Bibliography

[1] An Exploration of ARM TrustZone Technology. http://genode.org/

documentation/articles/trustzone.

[2] ARM Security Technology: Building a Secure System using TrustZone Tech-

nology. http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.prd29-genc-009492c/DABGFFIC.html.

[3] BoxCryptor. https://www.boxcryptor.com/.

[4] CryptoCell for TrustZone: Comprehensive Security Sub-system for Application

Processors with TrustZone. http://www.discretix.com/cryptocell-

for-trustzone/.

[5] Danger on ice: Android info thaws in cold boot attack. http://phys.org/

news/2013-02-danger-ice-android-info-cold.html.

[6] Gadget2008 product design. http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.prd29-genc-009492c/

ch06s03s03.html.

[7] Lookout Mobile Security. http://blog.mylookout.com/blog/2011/

01/07/geinimi-trojan-technical-analysis/.

[8] MobiCore. http://www.gi-de.com/gd_media/media/en/press/

prs_1/pdf_2012/SamsungGalaxyS3_MobiCore.pdf.

123

http://genode.org/documentation/articles/trustzone
http://genode.org/documentation/articles/trustzone
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/DABGFFIC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/DABGFFIC.html
https://www.boxcryptor.com/
http://www.discretix.com/cryptocell-for-trustzone/
http://www.discretix.com/cryptocell-for-trustzone/
http://phys.org/news/2013-02-danger-ice-android-info-cold.html
http://phys.org/news/2013-02-danger-ice-android-info-cold.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch06s03s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch06s03s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch06s03s03.html
http://blog.mylookout.com/blog/2011/01/07/geinimi-trojan-technical-analysis/
http://blog.mylookout.com/blog/2011/01/07/geinimi-trojan-technical-analysis/
http://www.gi-de.com/gd_media/media/en/press/prs_1/pdf_2012/SamsungGalaxyS3_MobiCore.pdf
http://www.gi-de.com/gd_media/media/en/press/prs_1/pdf_2012/SamsungGalaxyS3_MobiCore.pdf


[9] Open Virtualization. http://www.openvirtualization.org/.

[10] Qualcomm Security Solutions. https://www.qualcomm.com/products/

snapdragon/security.

[11] SYSGO Demonstrates PikeOS and Android Running ARMs TrustZone.

http://www.sysgo.com/news-events/press/press/details/

article/sysgo-demonstrates-pikeosTM-and-androidTM-

running-arms-trustzoneR/.

[12] Trusted Computing Group - Trusted Platform Module. http://www.

trustedcomputinggroup.org/developers/trusted_platform_

module.

[13] Viivo: Cloud File Encryption. http://viivo.com/.

[14] Android developers. http://developer.android.com.

[15] Androlib. http://www.androlib.com.

[16] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason

Nieh. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of the

23rd ACM Symposium on Operating System Principles, SOSP ’11, 2011.

[17] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:

Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis

for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’14, 2014.

[18] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing

the Android Permission Specification. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security, CCS ’12, 2012.

124

http://www.openvirtualization.org/
https://www.qualcomm.com/products/snapdragon/security
https://www.qualcomm.com/products/snapdragon/security
http://www.sysgo.com/news-events/press/press/details/article/sysgo-demonstrates-pikeosTM-and-androidTM-running-arms-trustzoneR/
http://www.sysgo.com/news-events/press/press/details/article/sysgo-demonstrates-pikeosTM-and-androidTM-running-arms-trustzoneR/
http://www.sysgo.com/news-events/press/press/details/article/sysgo-demonstrates-pikeosTM-and-androidTM-running-arms-trustzoneR/
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://viivo.com/
http://developer.android.com
http://www.androlib.com


[19] T.Ravichandra Babu, K.V.V.S.Murthy, and G.Sunil. AES Algorithm Implementa-

tion using ARM Processor. In IJCA Proceedings on International Conference and

workshop on Emerging Trends in Technology, ICWET ’11, 2011.

[20] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan.

MockDroid: Trading Privacy for Application Functionality on Smartphones. In

Proceedings of the 12th Workshop on Mobile Computing Systems and Applica-

tions, HotMobile ’11, 2011.
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[108] Xinwen Zhang, Onur Acıiçmez, and Jean-Pierre Seifert. A Trusted Mobile Phone

Reference Architecture via Secure Kernel. In Proceedings of the 2007 ACM Work-

shop on Scalable Trusted Computing, STC ’07, 2007.

[109] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, Xi-

aoyang Sean Wang, and Binyu Zang. Vetting Undesirable Behaviors in Android

Apps with Permission Use Analysis. In Proceedings of the 2013 ACM Conference

on Computer and Communications Security, CCS ’13, 2013.

[110] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged

Smartphone Applications in Third-Party Android Marketplaces. In Proceedings

of the Second ACM Conference on Data and Application Security and Privacy,

CODASPY ’12, 2012.

[111] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and

Evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,

SP ’12, 2012.

[112] Yajin Zhou and Xuxian Jiang. Detecting Passive Content Leaks and Pollution in

Android Applications. In Proceedings of the 20th Annual Network and Distributed

System Security Symposium, NDSS ’13, 2013.

[113] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. Taming

Information-Stealing Smartphone Applications (on Android). In Proceedings of

the 4th International Conference on Trust and Trustworthy Computing, TRUST

’11, 2011.

[114] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. McCune.

Building Verifiable Trusted Path on Commodity x86 Computers. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy, SP ’12, 2012.

137


	Abstract
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Thesis Overview

	2 Background and Literature Review
	2.1 Android Infrastructure
	2.2 Literature Review
	2.2.1 Enhance the Android Permission Model
	2.2.1.1 Flexible Permission Management
	2.2.1.2 Enhance Constraint on Inter-component Communication (ICC)

	2.2.2 Reinforce Data Protection through Isolation-based Approaches
	2.2.2.1 Sandboxing
	2.2.2.2 Virtualization
	2.2.2.3 Partition

	2.2.3 Common Android Malware Detection
	2.2.4 Analyze How Applications Use Sensitive Data
	2.2.4.1 Taint-based Data Flow Analysis
	2.2.4.2 Symbolic-execution-based Analysis
	2.2.4.3 Program-slicing-based Analysis


	2.3 Summary

	3 A Light-weight Software Environment for Confining Android Malware
	3.1 Introduction
	3.2 Approach Overview
	3.2.1 Android Resource Protection
	3.2.2 RVL Overview

	3.3 Resource Virtualization in Android
	3.3.1 Resources in Android
	3.3.1.1 Linux System Resources
	3.3.1.2 Android-specific Resources

	3.3.2 Light-weight Resource Virtualization
	3.3.3 Profile Configuration
	3.3.4 Profile Isolation

	3.4 RVL Design
	3.4.1 Architecture Overview
	3.4.2 Implementation

	3.5 Evaluation
	3.5.1 Effectiveness & Compatibility
	3.5.2 Performance

	3.6 Related Work
	3.7 Summary

	4 DroidVault: A Trusted Data Vault for Android Devices
	4.1 Introduction
	4.2 Overview
	4.2.1 Threat Model & Scope
	4.2.2 Trusted Data Vault

	4.3 DroidVault Design
	4.3.1 DroidVault Components
	4.3.2 Initial setup
	4.3.3 DroidVault Services
	4.3.3.1 Secure Network Communication
	4.3.3.2 Secure Data Storage
	4.3.3.3 Secure Display and Input
	4.3.3.4 Secure Data Processing
	4.3.3.5 Security Analysis


	4.4 Implementation
	4.5 Evaluation
	4.5.1 New Applications Enabled by DroidVault
	4.5.2 Performance

	4.6 Discussion
	4.7 Related Work
	4.8 Summary

	5 Privacy-ranking Sensitive Data Usage in Android Applications
	5.1 Introduction
	5.2 Approach Overview
	5.2.1 Motivating Example
	5.2.2 Key Design Decisions

	5.3 PatternRanker Design
	5.3.1 Pattern Definition
	5.3.2 Ranking Metric
	5.3.3 PatternRanker Architecture
	5.3.4 Discussion on False Positives

	5.4 Implementation
	5.5 Evaluation
	5.5.1 Application Analysis on Location Usage
	5.5.2 Analysis Time

	5.6 Related Work
	5.6.1 Permission Use Analysis
	5.6.2 Privacy Leakage Detection
	5.6.3 Quantitative Information Flow

	5.7 Summary

	6 Conclusion

