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SUMMARY 

AMP-activated protein kinase (AMPK) is an evolutionarily conserved 

energy sensor and regulator in mammalian cells, activated upon stress 

conditions including nutrient starvation, oxidative stresses, etc. It has been 

demonstrated that AMPK activity can be positively controlled by upstream 

kinases (liver kinase B1 (LKB1), calmodulin-activated protein kinase kinase 

2 (CaMKKβ/CaMKK2), and transforming growth factor-beta-activated 

kinase 1 (TAK1)), and negatively regulated by phosphatases like protein 

phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C). However, 

regulation of AMPK activity by protein stability is rarely investigated. 

Therefore, the main objective of this study is to investigate the involvement 

of protein stability in AMPK down regulation upon metabolic stress 

condition (glucose starvation), and further to elucidate the role of oxidative 

stress induced by energy deficiency in AMPK protein instability. 

In this study, we first discovered that LKB1-mutant non-small cell lung 

cancer cell line NCI-H460 was particularly hypersensitive to glucose 

starvation. In response to metabolic stress induced by glucose starvation, 

cellular reactive oxygen species (ROS) were significantly elevated, 

accompanied by rapid AMPK phosphorylation and activation. However, 

prolonged depletion of glucose for 3 hours markedly reduced AMPK protein 

level, which cannot be suppressed by proteasome inhibitors and lysosome 
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inhibitors. Only glycolysis inhibitor 2-deoxyglucose (2DG) and antioxidant 

N-acetylcysteine (NAC) were able to reduce ROS level, stabilize AMPK 

protein and eventually protect against cell death. Further studies will focus 

on the molecular mechanism by which AMPK is down regulated upon 

glucose starvation, especially post-translational modification of AMPK. 

Taken together, our data demonstrate that AMPK protein stability and 

activity was negatively regulated under glucose starvation, leading to rapid 

cell death.   
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1.1 AMPK 

1.1.1 Overview of AMPK 

AMP-activated protein kinase (AMPK) is an evolutionarily conserved 

energy sensor and regulator in most eukaryotic cells. As a pivotal checkpoint 

of metabolism, AMPK not only maintains cellular energy homeostasis, but 

also governs multiple cellular processes, including cell growth and 

proliferation, cell cycle, cell polarity, autophagy, mitochondrial biogenesis, 

etc. (Hardie, 2011b) Owing to its vital role in diverse aspects of physiology, 

AMPK stands in an essential position in both normal cells and tumor cells.  

 

1.1.2 Structure of AMPK 

AMPK is a heterotrimeric serine/threonine (Ser/Thr) kinase complex 

consisting of three subunits, a catalytic α-subunit and regulatory β-and 

γ-subunit. Mammalian cells have seven genes encoding AMPK complex, 

two isoforms of α-subunit (α1 and α2 by prkaa1 and prkaa2), two of 

β-subunit (β1 and β2 by prkab1 and prkab2), and three of γ-subunit (γ1, γ2 

and γ3 by prkag1, prkag2 and prkag3) (Chen et al., 2009; Hardie et al., 

2012). This generates 12 combinations, and the expression of each isoform 

varies in different tissue types (Faubert et al., 2013; Hardie, 2011c).  

The typical Ser/Thr kinase domain locates at the amino terminus 

(N-terminus) of the catalytic α-subunit. When the residue Thr172 within the 
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activation loop is phosphorylated by upstream kinases, AMPK will be 

activated (to be described in details below). The kinase domain is followed 

by an auto-inhibitory domain (AID), responsible for maintaining an inactive 

conformation of the kinase in the absence of AMP (Chen et al., 2009). The 

AID is connected to the α-subunit C-terminal domain (α-CTD) by a linker 

peptide.  

The β-subunit harbors a C-terminal domain (β-CTD), which links 

α-CTD and γ-subunit to form the core of the complex (Xiao et al., 2007). 

The carbohydrate-binding module (β-CBM) is responsible for association 

with glycogen particles (Bendayan et al., 2009; Hudson et al., 2003). The 

β-subunits can be phosphorylated and myristoylated, which may affect the 

activation and intracellular localization of AMPK (Oakhill et al., 2010; 

Warden et al., 2001). 

The γ-subunit contains four repeated sequences, termed as CBS 

(cystathionine β-synthase) repeat (Bateman, 1997; Hardie, 2011a), forming a 

flattened disk with four ligand-binding sites for AMP, ADP or ATP in the 

center (Hardie et al., 2012). Site 1 and 3 are responsible for cellular energy 

status sensing by competitively binding to AMP, ADP, and ATP. Site 4 is 

occupied by AMP independent of adenyl nucleotide concentrations (Liang 

and Mills, 2013), while Site 2 is always empty (Hardie et al., 2012). The 

binding of AMP or ADP promotes phosphorylation of α-subunit on Thr172 
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and activation of AMPK (Xiao et al., 2011), whereas ATP binding 

antagonizes the activation. A model to illustrate the subunits of the 

heterotrimeric complex is summarized in Figure 1-1.  

 
 

Figure 1-1 The typical structure of AMPK subunits (Hardie et al., 
2012). 

	  

1.1.3 Regulation of AMPK activity 

1.1.3.1 Control of AMPK activity by phosphorylation and dephosphorylation  

The kinase activity of AMPK is tightly controlled in mammalian cells. 

The canonical mechanisms for AMPK activation involve the increase of 

AMP/ATP or ADP/ATP ratios, or Ca2+ (Hardie et al., 2012). During metabolic 

stresses when ATP consumption is accelerated (e.g. muscle contraction) or 

ATP production is inhibited (e.g. glucose starvation, hypoxia), cellular 

AMP/ATP and ADP/ATP ratios are increased. Binding of AMP to γ-subunits 

triggers conformational changes of AMPK and leads to AMPK activation via 
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the following three distinct mechanisms (Hardie, 2004; Kodiha and Stochaj, 

2011). (1) Phosphorylation of Thr172 by upstream kinases, resulting in 50-to 

100-fold activation (Gowans et al., 2013). The major upstream kinase is liver 

kinase B1 (LKB1)-STE20-related adaptor protein (STRAD)-mouse protein 25 

(MO25) complex (Hawley et al., 2003). (2) Inhibition of Thr172 

dephosphorylation by protein phosphatases (Davies et al., 1995; Gowans et al., 

2013). (3) Allosteric activation of AMPK phosphorylated on Thr172 (Gowans 

et al., 2013; Hardie, 2004). Although AMP is the direct agonist of AMPK, 

recent findings revealed that ADP also has impact on phosphorylation and 

dephosphorylation of Thr172 (Xiao et al., 2011). It has also been reported that 

the initiation of Thr172 phosphorylation requires N-terminal myristoylation of 

the β-subunits, suggesting the critical role of the regulatory subunits in AMPK 

activation (Oakhill et al., 2010).  

Aside from increased ADP/ATP and AMP/ATP ratios, Thr172 can be 

phosphorylated in response to a rise in intracellular Ca2+ concentrations by 

Ca2+/calmodulin-activated protein kinase kinase 2 (CaMKKβ, also known as 

CaMKK2) (Hawley et al., 1995; Woods et al., 2005). Ca2+-dependent AMPK 

activation pathway does not necessarily require changes in adenine 

nucleotide ratios, although they can act synergistically (Fogarty et al., 2010).  

An alternative mechanism for AMPK activation is through TAK1 

(transforming growth factor-beta-activated kinase 1, TGF-β-activated 
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kinase-1, also known as MAP3K7 or MEKK7), a protein kinase activated by 

cytokines and upstream of JNK (MAP kinase) and nuclear factor kappa B 

(NF-κB) signaling. It has been reported that TAK1 phosphorylates Thr172 to 

switch on AMPK (Momcilovic et al., 2006; Xie et al., 2006), with detailed 

mechanisms remaining elusive at present.  

Negative regulation of AMPK involves Thr172 dephosphorylation by 

phosphatases PP2A and PP2C (Moore et al., 1991). Another mechanism is 

the phosphorylation of Ser485 on α1-subunit (equivalent to Ser491 on α2) by 

PKC and possibly Akt (Kodiha and Stochaj, 2011). The regulation of AMPK 

by phosphorylation is summarized in Figure 1-2. 

 

 
 

Figure 1-2 Regulation of AMPK activity by phosphorylation (Kodiha and 
Stochaj, 2011). 
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1.1.3.2 Pharmacological activators of AMPK 

Aside from energy stresses, a variety of pharmacological compounds 

also activate AMPK through AMP-dependent or AMP-independent 

mechanism. For example, AICAR (5-amino-4-imidazolecarboxamide (AICA) 

riboside), a widely used and the first discovered drug for AMPK activation, 

mimics the effect of AMP by generating a less potent analogue of AMP, 

5-amino-4-imidazolecarboxamide ribotide (ZMP). AICAR was 

phosphorylated to ZMP, the mono-phosphorylated form of AICAR, by 

adenosine kinase (Corton et al., 1995; Sengupta et al., 2007). ZMP then 

binds to AMPK γ-subunit similar to AMP (Day et al., 2007). A769662 is a 

direct AMPK activator by mimicking the effects of AMP without binding to 

any of the ligand-binding sites on AMPK subunits, and carries out its 

function independent of AMPK upstream kinases (Göransson et al., 2007). 

Another AMP-independent AMPK activator is A23187, a Ca2+ ionophore, 

which increases cytoplasmic Ca2+ and subsequently activates CaMKKβ 

(Hawley et al., 2005).  

Many pharmacological activators activate AMPK indirectly, mainly 

through inhibition of mitochondrial ATP production and thus altering 

cellular AMP/ATP ratios. Examples include classical mitochondrial 

inhibitors oligomycin and dinitrophenol (DNP) that are known to inhibit the 

mitochondrial respiratory chain (Hawley et al., 2010). Two major classes of 
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anti-diabetic drugs, guanidines and thiazolidinediones (TZDs) have also been 

reported as indirect activators of AMPK (Fryer et al., 2002). Metformin 

inhibits the mitochondrial electron transport chain complex I, leading to a 

rise in the intracellular ADP and AMP and subsequently activation of AMPK 

(El-Mir et al., 2000). Thiazolidinediones activate AMPK by two mechanisms, 

one is through inhibition of mitochondria ATP synthesis, and the other 

through promoting release of adiponectin from adipocytes via activation of 

the adipocyte transcription factor peroxisome proliferator-activated receptor 

gamma (PPARγ ) (Hardie, 2011c; Kubota et al., 2006; Lehmann et al., 1995). 

Other AMPK activators include glycolysis inhibitor 2-deoxyglucose (2DG), 

the barbiturate phenobarbital (Rencurel et al., 2005), nutraceuticals berberine 

(Lee et al., 2006), resveratrol (Baur et al., 2006), epigallocatechin-3-gallate 

(Hwang et al., 2007), and cytokines like leptin (Minokoshi et al., 2002), etc. 

The mechanisms for AMPK activation by pharmacological compounds are 

summarized in Figure 1-3.  
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Figure 1-3 AMPK activation by pharmacological compounds (Hawley et al., 
2010). 

 

1.1.3.3 Activation of AMPK by oxidative stress  

Previous studies have indicated that AMPK activation can be triggered 

by reactive oxygen species (ROS) through decreasing cellular ATP levels 

(Choi et al., 2001). Some groups showed that ROS can phosphorylate LKB1 

and induce AMPK phosphorylation at Thr172 (Cao et al., 2008; Han et al., 

2010). Moreover, recent findings demonstrated that ROS can directly 

activate AMPK without altering cellular AMP/ATP or ADP/ATP ratios 

(Zmijewski et al., 2010). Exposure to physiologically relevant concentrations 

of H2O2 activates AMPK by oxidative modification, S-glutathionylation of 

cysteine residues of AMPK α-subunit (Zmijewski et al., 2010). Another 

phenobarbital 
berberine 
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group identified ROS-induced ataxia-telangiectasia mutated (ATM) 

activation of AMPK possibly through LKB1 (Alexander et al., 2010).  

However, it is controversial for the correlation between ROS 

accumulation and insensitivity of AMPK to various stimuli (Reznick et al., 

2007; Saberi et al., 2008; Shao et al., 2014). For instance, Shao et al. showed 

that AMPK is oxidized by ROS stress, which prevents phosphorylation and 

activation of AMPK (Shao et al., 2014). Thus, the involvement of ROS and 

oxidation in AMPK activation remains intricate and requires further 

investigation. 

 

1.1.4 AMPK and its diverse functions  

1.1.4.1 Regulation of cellular metabolism 

As a major controller of cellular metabolism, AMPK phosphorylates a 

variety of downstream targets in order to maintain energy homeostasis. 

Generally, in response to energy stress, AMPK up-regulates catabolic 

pathways for ATP generation while down-regulates anabolic pathways for 

ATP consumption. The function of AMPK is achieved by acute effects 

through phosphorylation of downstream metabolic enzymes, and by long-term 

effects through phosphorylation of transcription factors and co-activators to 

regulate gene expression (Hardie, 2007).  
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Multiple catabolic pathways are promoted by AMPK. Glucose uptake is 

significantly enhanced by AMPK via translocation of glucose transporter type 

4 (GLUT4) from intracellular storage vesicles to the membrane 

(Kurth-Kraczek et al., 1999), activation of GLUT1 located at the plasma 

membrane (Barnes et al., 2002), or transcriptional up-regulation of GLUT4 

gene (Zheng et al., 2001). Similarly, AMPK accelerates fatty acid uptake via 

translocation of fatty acid transporter cluster of differentiation 36 (CD36) to 

cellular membrane (Habets et al., 2009). Moreover, AMPK also facilitates 

glucose catabolism via glycolysis pathway through phosphorylation of 

6-phosphofructo-2-kinase (Hardie, 2007; Marsin et al., 2002). As for fatty 

acids catabolism, AMPK phosphorylates and inactivates the isoform of 

acetyl-CoA carboxylase (ACC2) to enhance uptake of fatty acids into 

mitochondria for β-oxidation (Hardie, 2004; Merrill et al., 1997). In addition, 

AMPK also promotes mitochondrial biogenesis via activation of peroxisome 

proliferator-activated receptor-γ co-activator 1α (PGC1α) to increase 

mitochondrial gene expression (Jäger et al., 2007; Zong et al., 2002).  

On the other hand, AMPK is known to inhibit various anabolic pathways, 

including (i) fatty acid synthesis via ACC1 (Davies et al., 1992), (ii) 

cholesterol synthesis via 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) 

reductase (Clarke and Hardie, 1990), (iii) glycogen synthesis via glycogen 

synthase (Jørgensen et al., 2004), (iv) protein synthesis via mammalian target 



	   12 

of rapamycin (mTOR) (Gwinn et al., 2008; Inoki et al., 2003), and (v) 

ribosomal RNA synthesis via transcription initiation factor IA (TIFIA) (Hoppe 

et al., 2009).  

 

1.1.4.2 Regulation of autophagy and mitophagy 

Another crucial process regulated by AMPK is autophagy, a lysosomal 

degradation pathway involved in the breakdown and turnover of cellular 

organelles and macromolecules (to be discussed in detail later). In response to 

low energy status, activation of AMPK can stimulate autophagy through 

inhibition of mTOR by phosphorylation of TSC1/TSC2 (Inoki et al., 2003) or 

phosphorylation of a subunit of mTORC1, regulatory associated protein of 

mTOR (Raptor) (Gwinn et al., 2008), or direct phosphorylation of Ulk1 (Egan 

et al., 2011; Kim et al., 2011). Moreover, LKB1-AMPK pathway 

phosphorylates cyclin-dependent kinase inhibitor p27Kip1, resulting in 

autophagy induction (Liang et al., 2007). AMPK activated by TAK1 is also 

capable of inducing cytoprotective autophagy in untransformed human 

epithelial cells treated with tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL) (Herrero-Martín et al., 2009).  

Furthermore, AMPK has been demonstrated to induce mitophagy, a 

special form of autophagy targeting dysfunctional mitochondria (Egan et al., 

2011). As the major site for cellular ROS generation, mitochondria are 
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particularly susceptible to oxidative damage. Therefore, clearance and 

recycling of damaged mitochondria as well as generation of new 

mitochondrial is important to maintain cellular ATP-generating capacity 

(Hardie, 2011b).  

 

1.1.4.3 Other aspects of cell functions 

Apart from its best-known effects on metabolism, AMPK also has 

multiple functions on cellular processes, such as inhibition of cell growth and 

proliferation via cell cycle arrest by phosphorylation of p53 (Imamura et al., 

2001) or phosphorylation of cyclin-dependent kinase inhibitor p27Kip1 (Liang 

et al., 2007) or up-regulation of cyclin-dependent kinase inhibitor p21WAF1 

(Jones et al., 2005), maintenance of cell polarity (Mirouse et al., 2007). The 

diverse functions of AMPK are summarized below in Figure 1-4.  

 
 

Figure 1-4 Functions of AMPK through downstream targets (Mihaylova and 
Shaw, 2011). 
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1.1.5 AMPK and cancer 

As a central metabolic regulator allowing cells to cope with 

environmental stresses, especially typical tumor microenvironment like 

nutrient deprivation and hypoxia, AMPK is required for cancer cell survival 

and oncogenic transformation (Faubert et al., 2014b). However, under 

metabolic stresses, AMPK inhibits cell growth and proliferation, suggesting 

the tumor suppressor activity of AMPK (Faubert et al., 2014b). In addition, 

AMPK is a crucial downstream target of a well-identified tumor suppressor 

LKB1, carrying out tumor suppression functions of LKB1 mainly through 

LKB1/AMPK/mTOR pathway. Thus, the controversial role of AMPK in 

tumorigenesis and metabolism remains to be elucidated. 

 

1.1.5.1 Genomic disruption of AMPK in cancer  

AMPK is rarely mutated in human cancers, with less than 3% mutation 

for any subunit (Liang and Mills, 2013). Instead, they are more frequently 

amplified in human cancers (Liang and Mills, 2013). So far, no evidence has 

ever been found for germline cancer predisposition syndrome involving 

AMPK subunits (Liang and Mills, 2013).  

Complete deficiency of AMPK function is embryonically lethal in mice, 

and loss of the two catalytic isoforms AMPKα1 and α2 alone is insufficient 

to initiate tumorigenesis in mice (Liang and Mills, 2013). However, it is 
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reported that AMPK loss can cooperate with oncogenic drivers. For example, 

deletion of AMPKα1 promotes the Warburg effect and accelerates 

Myc-driven lymphomagenesis (Faubert et al., 2013). Genetic ablation of 

AMPKα2, rather than the dominant isoform AMPKα1, displays increased 

susceptibility to H-RasV12 transformation in murine embryonic fibroblast 

and tumor growth in vivo (Phoenix et al., 2012).   

 

1.1.5.2 Genetic deficiency of LKB1/AMPK signaling in cancer 

The serine-threonine kinase liver kinase B1 (LKB1, encoded by gene 

STK11), the major upstream activator of AMPK, has been reported as an 

important tumor suppressor (van Veelen et al., 2011). Heterozygous 

loss-of-function mutations in STK11 were first discovered in inherited cancer 

Peutz-Jeghers syndrome (PJS) (Hemminki et al., 1998), which is associated 

with increased risk of malignant tumors. STK11 is also frequently mutated in 

sporadic cancers, including 15-35% of non-small-cell lung cancer (NSCLC) 

(Ji et al., 2007; Shackelford and Shaw, 2009) and 20% of cervical 

carcinomas (Shackelford and Shaw, 2009; Wingo et al., 2009).  

In normal conditions, inactive LKB1 locates in nucleus. Upon 

activation, LKB1 interacts with the STE20-related adaptor protein α 

(STRADα) and scaffolding mouse protein 25 (MO25). The heterotrimer is 

then translocated to the cytoplasm where LKB1 carries out its kinase activity 
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on AMPK. Upon phosphorylation and activation by LKB1, AMPK conducts 

multiple tumor suppression functions, especially through suppression of the 

tuberous sclerosis complex (TSC)/mTOR pathway, a canonical signaling 

pathway regulating cell metabolism and cell growth (Inoki et al., 2003). 

However, high level of AMPK activation is also observed independent of 

LKB1 in lung cancers, probably via CaMKKβ, TAK1, or other mechanisms 

(William et al., 2012). In addition, apart from AMPK, LKB1 also 

phosphorylates a family of AMPK-related kinases, like brain-specific 

serine/threonine-protein kinase 1/2 (BRSK1/2), novel (nua) kinase 1/2 

(NuAK1/2), salt-inducible kinase 1/2/3 (SIK1/2/3), MAP/microtubule 

affinity-regulating kinase 1/2/3/4 (MARK1/2/3/4), SNF (sucrose 

non-fermenting protein)-related serine/threonine-protein kinase (SNRK) 

(Lizcano et al., 2004). Therefore, although AMPK and LKB1 are closely 

associated, they may carry out different functions during tumorigenesis.  

 

1.1.5.3 The complex role of AMPK in cancer 

At present, the exact role of AMPK in cancer appears to be complex 

and controversial. On the one hand, there is evidence suggesting the 

pro-cancer function of AMPK. For instance, under nutrient deprivation 

conditions (a common microenvironment for cancer cells), activated AMPK 

promotes energy homeostasis via inhibiting anabolic pathways like lipid 
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synthesis, mTOR-dependent protein synthesis, while stimulating catabolic 

pathways, like lipid oxidation and glycolysis (Hardie, 2007). Moreover, 

AMPK induces autophagy, a catabolic process for removal of damaged 

cellular components in stresses, through direct phosphorylation of ULK1 and 

inhibition mTOR via TSC1/2 or Raptor (discussed earlier). Thus, functional 

LKB1/AMPK signaling is required for cancer cells to survive metabolic 

stresses, whereas lacking LKB1/AMPK probably causes programmed cell 

death of tumor cells in energy crisis.  

On the other hand, there is accumulating evidence demonstrating the 

anti-cancer function of AMPK. For example, AMPK negatively regulates the 

Warburg effect (Faubert et al., 2013), a well-characterized metabolic 

reprogramming when tumor cells shift to aerobic glycolysis to generate more 

metabolic intermediates to meet the high demands of proliferation (Vander 

Heiden et al., 2009; Warburg, 1926). Since glycolysis generates far less ATP 

per molecule of glucose compared to oxidative phosphorylation, tumor cells 

specifically relies on glucose metabolism with high rates of glucose uptake 

and lactate production (Vander Heiden et al., 2009). AMPK can reverse 

Warburg effect via promoting mitochondria biogenesis and mitochondrial 

tricarboxylic acid (TCA) cycle enzymes (discussed earlier) (Hardie, 2011a). 

The surprising results from Faubert et al. indicated that silence of AMPK, 

even LKB1, promotes the Warburg effect as observed by increased glucose 
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uptake, redirection of carbon flow toward lactate, and glycolytic flux. This 

metabolic effect requires hypoxia-inducible factor-1α (HIF-1α) (Faubert et 

al., 2013). Recently, this group demonstrated that similar to AMPK, loss of 

LKB1 also promotes HIF-1α-dependent metabolic reprogramming in cancer 

cells (Faubert et al., 2014b). Further, mTORC1 activation is also critical in 

Warburg effect as well as cell growth and cell proliferation. Loss of AMPK, 

an important negative regulator of mTORC1 activity, can lead to unchecked 

mTOR activity (Faubert et al., 2014b). Taken together, these results support 

the tumor suppressor role of AMPK.  

 

1.1.5.4. Use of AMPK agonists for cancer therapy 

The use of AMPK agonists has been proposed as an anti-cancer 

approach. Metformin, a widely used drug for treatment of Type II diabetes, 

has been found to be associated with low occurrence of cancer in diabetes 

patients (Decensi et al., 2010; Evans et al., 2005). Other AMPK activators, 

such as phenformin (El-Masry et al., 2012; Petti et al., 2012), AICAR 

(El-Masry et al., 2012; Petti et al., 2012; Choudhury et al., 2014), 2DG 

(Dong et al., 2013), and A-769662 (Huang et al., 2008; Choudhury et al., 

2014) are also shown to perform anti-tumor activity in vitro or in vivo. 

Although most AMPK agonists do not activate AMPK directly, which will 

not rule out AMPK-independent mechanisms involved in anti-cancer effects, 
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these results provide the rationale for cancer therapy by targeting AMPK.  

 

1.2 Cellular pathways controlling protein degradation  

Eukaryotic cells have two major protein degradation systems to 

maintain protein homeostasis: the ubiquitin-proteasome system (UPS) and 

the lysosome system. The proteasome pathway degrades intracellular 

proteins primarily aberrantly folded or short-lived proteins, while the 

lysosome digests extracellular and membrane proteins delivered via 

endocytosis and cytosolic components delivered via autophagy (Shen et al., 

2013b).  

 

1.2.1 The ubiquitin-mediated protein degradation system 

The ubiquitin-proteasome system (UPS) is a complicated and tightly 

regulated system responsible for degrading 80-90% of intracellular proteins 

(Shen et al., 2013b). The UPS system consists of several components, 

ubiquitin (Ub), a highly evolutionarily conserved small protein of 76 amino 

acids, the Ub-activating enzyme (E1), a group of Ub-conjugating enzymes 

(E2) or approximately 50 members, a large group of Ub ligases (E3) of more 

than 500 members, the 26S proteasome, and the deubiquitinases (DUBs) 

(Shen et al., 2013b).  

The UPS protein degradation pathway involves two discrete and 
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successive steps: (1) ubiquitination, which tags multiple Ub molecules to 

targeted substrates by covalent conjugation and (2) proteasomal degradation, 

which degrades tagged protein by the 26S proteasome complex (Glickman 

and Ciechanover, 2002). During ubiquitination, Ub is first activated by E1 

forming a high-energy thiol ester intermediate between Ub and E1 in an 

ATP-dependent manner. Then activated Ub is transferred to E2 via the 

formation of another high-energy thiol ester bond between Ub and E2, and 

finally transferred to E3-bound substrate directly or through a third thiol 

ester intermediate between Ub and E3. E3 catalyzes the covalent attachment 

of Ub to the targeted protein. Multiple cycles of ubiquitination leads to the 

synthesis of a polyubiquitin chain, which is recognized by 26S proteasome. 

The poly-Ub chain will be removed and recycled and the targeted proteins 

are degraded into small peptides (Glickman and Ciechanover, 2002; Hershko 

and Ciechanover, 1998; Komander and Rape, 2012; Naujokat and Sarić, 

2007). The UPS system is summarized in Figure 1-5. 

Evidence has strongly suggested that endogenous AMPK can be 

regulated at the level of protein stability by Cidea-mediated ubiquitin 

proteasome degradation in brown adipose tissue (Qi et al., 2008). 
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Figure 1-5 The UPS system (Glickman and Ciechanover, 2002). 
	  

1.2.2 Autophagy 

Autophagy is an evolutionarily conserved degradation system when 

intracellular components are engulfed into autophagosome and delivered to 

lysosome (Mathew et al., 2007). Although the proteasome system serves as 

the major provider of amino acids for cellular renovation under nutrient-rich 

conditions, autophagy is readily induced by stresses such as starvation. 

Autophagy is divided into three categories: macroautophagy (referred as 

autophagy hereafter, the major type of autophagy), microautophagy and 

chaperone-mediated autophagy (CMA). 

As shown in Figure 1-6, autophagy is a complex cellular process 

proceeding through sequential steps: (1) initiation/induction, (2) nucleation 

at the phagophore assembly site (PAS), (3) elongation/expansion of the 

phagophore to form autophagosome, (4) fusion with late endosome and 
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lysosome to form autolysosome, and (5) degradation of cargo and recycling 

of resulting molecules (Yang and Klionsky, 2010a).  

 
    PSA    phagophore  autophagosome    fusion     autolysosome 

 

Figure 1-6 Schematic depiction of the autophagy pathway (Shen and 
Mizushima, 2014). 

	  

Autophagy is tightly regulated by a complex signaling network in 

mammals. One of the most critical regulator of autophagy is mTOR, 

integrating amino acids, growth factors and energy status, forms two distinct 

protein complexes, mTORC1 and mTORC2 (Soulard and Hall, 2007). 

During amino acid starvation, mTORC1 is inactivated, leading to the 

activation of the Unc-51-like kinases (ULK)-Atg13-FIP200 (scaffold focal 

adhesion kinase (FAK)-family-interacting protein of 200 kDa)-Atg101 (an 

Atg13-binding protein) complex, thus initiating the autophagy machinery. 

Activation of growth factor receptors triggers the activation of Class I 

PtdIns3K-PKB/Akt-TSC1/TSC2-mTORC1 pathway and Raf-1/MEK/ERK 

signaling cascade, leading to autophagy activation (Yang and Klionsky, 

2010b). In response to low energy status (as discussed earlier), activated 

AMPK inhibits mTORC1 through phosphorylation of TSC1/TSC2 (Inoki et 
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al., 2003), or mTORC1 subunit Raptor (Gwinn et al., 2008). AMPK can also 

induce autophagy via direct phosphorylation of Ulk1 (Egan et al., 2011; Kim 

et al., 2011). mTORC2 inhibits autophagy via phosphorylation of PKB 

(Sarbassov et al., 2005). Bcl-2 or Bcl-XL can inhibit autophagy via binding 

to Beclin 1 and disrupting the Beclin 1-associated Class III PtdIns3K 

complex (Yang and Klionsky, 2010a). The signaling pathways involved in 

autophagy regulation are summarized in Figure 1-7. 

	  

 
 

Figure 1-7 Signaling network involved in autophagy regulation (Yang and 
Klionsky, 2010a). 

	  

Autophagy has multiple functions to maintain cellular homeostasis. 

First, autophagy eliminates unwanted organelles and macromolecules for 
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constitutively cellular turnover. Second, autophagy recycles energy and 

materials including amino acid, lipid and glycogen for cellular utilization, 

especially under stress conditions. However, the role of autophagy in cancer 

remains controversial, being regarded as a double-edged sword with both 

pro-survival role and pro-death role (White and DiPaola, 2009). On the one 

hand, autophagy functions as a tumor suppressor maintaining cellular 

integrity and genomic stability (Liu and Ryan, 2012; Ryan, 2011), with 

several related genes identified as tumor suppressors, such as beclin 1 (Liang 

et al., 1999) and Atg4C (Mariño et al., 2007). On the other hand, autophagy 

has an oncogenic role in tumor progression. Autophagy is induced in 

response to anti-cancer reagents for therapy resistance and metabolic stress 

as an adaptive mechanism (Brech et al., 2009; Mathew et al., 2007). 

Although autophagy plays a paradoxical and complex role in tumor initiation 

and progression, it has been increasingly recognized that autophagy 

suppresses early stage of tumor but promotes subsequent tumor development 

including progression (Liu and Ryan, 2012).  

 

1.3 Programmed cell death 

Programmed cell death (PCD) is a controlled cellular mechanism for 

clearance of damaged and disordered cells to maintain tissue homeostasis 

and normal physiological development, defending against immunological 
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disorders, inflammation and tumorigenesis (Fuchs and Steller, 2011). PCD 

has been classified into three categories: apoptosis (type I PCD), autophagic 

cell death (type II PCD) and programmed necrosis (necroptosis, type III PCD) 

(Sun and Peng, 2009). 

 

1.3.1 Apoptosis 

Apoptosis, an evolutionary conserved program of cell death, is 

characterized by morphological and biochemical hallmarks, including cell 

shrinkage, nuclear condensation and fragmentation, and membrane blebbing 

(Kerr et al., 1972; Long and Ryan, 2012). Apoptosis is executed through two 

pathways: the extrinsic pathway stimulated by extracellular death ligands 

and cell death receptors, and the intrinsic pathway triggered by intracellular 

stimuli, both of which converge at executioner caspases and cell death (Long 

and Ryan, 2012). 

The extrinsic apoptotic pathway is initiated by the binding of death 

ligands to death receptors, such as tumor necrosis factorα (TNFα) to TNFα 

receptor 1 (TNFR1), and TNF-related apoptosis-inducing ligand (TRAIL) to 

TRAIL receptor 1 (TRAILR1) and TRAIL2, FAS/CD95 ligand 

(FASL/CD95L) to FAS/CD95 (Long and Ryan, 2012). The ligation of death 

receptors and their ligands promotes receptor trimerization and the formation 

of the death-inducing signaling complex (DISC), consisting of multiple 
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adaptor molecules such as Fas-associated death domain (FADD), 

TNFR-associated death domain (TRADD), and TNFR-associated factor 2 

(TRAF2). Subsequently, these adaptor molecules recruit initiate 

pro-caspase-8 to the DISC (Fulda and Debatin, 2006; Lavrik et al., 2005; 

Long and Ryan, 2012). Upon DISC formation, pro-caspase-8 is activated 

through self-cleavage. Active caspase-8 then stimulates downstream 

executioner caspases such as caspases-3, 6 and/or -7, or induces 

mitochondrial outer membrane permeabiliziation (MOMP) (Galluzzi et al., 

2012; Long and Ryan, 2012), ultimately resulting in apoptotic cell death. 

The intrinsic apoptotic pathway is stimulated by intracellular stress 

conditions, such as oxidative stress, DNA damage, excessive cytosolic Ca2+, 

endoplasmic reticulum (ER) stress, growth factor starvation, etc. (Galluzzi et 

al., 2012; Long and Ryan, 2012). These lethal signals activate MOMP, 

leading to mitochondrial proteins leakage. The release of cytochrome c (cyt c) 

from mitochondria promotes apoptosis protease-activating factor-1 (Apaf-1) 

oligomerization and formation of cyt c/Apaf-1/caspase-9 apoptosome (Cain 

et al., 2000), causing activation of initiator caspase-9. Caspase-9 further 

cleaves and activates effector caspases-3, 6 and/or -7, eventually leading to 

cell death.  
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Figure 1-8 The extrinsic and intrinsic apoptosis pathways (Tait and Green, 
2010). 

	  

1.3.2 Necroptosis 

Necrosis is morphologically characterized by an early onset plasma 

membrane permeabilization, organelle swelling and finally rupture of the 

cells, causing leakage of intracellular contents, but the nuclei remain intact 

(Vandenabeele et al., 2010). Necrotic cell death can be induced by multiple 

stimuli, like DNA damage, ROS, excitotoxins, etc. (Galluzzi et al., 2012) 
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Although necrosis has long been considered as an accidental cell death 

mechanism, it is now demonstrated a regulated form of necrosis mediated by 

death receptor via the receptor interacting protein (RIP) family, RIP1 and 

RIP3, termed as “necroptosis”.  

Upon binding with TNFα, TNFR1 trimmers form a complex (referred 

as complex 1) by recruiting signaling molecules including RIP1, cellular 

inhibitor of apoptosis 1 (cIAP1), cIAP2, TRADD, TNFR-associated factor 2 

(TRAF2) and TRAF5 (Vandenabeele et al., 2010). Proteins in complex 1 are 

ubiquitylated by E3 ligases (cIAP1 and cIAP2) for further recruiting 

signaling proteins responsible for NF-κB survival (Long and Ryan, 2012; 

Vandenabeele, 2010). RIP1 can be deubiquitylated and form a complex II 

with RIP3, TRADD, FADD and caspase-8, which induces cell death signal 

and decides to go through apoptosis or necroptosis pathway. 
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Figure 1-9 TNFR1-elicted signaling pathways (Vandenabeele et al., 2010). 

 

1.4 Objectives of the study  

The main objectives of this study are as follows: 

1. To study cell death in response to glucose starvation in NCI-H460 

cells; 

2. To investigate the role of AMPK protein stability in glucose 

starvation-induced cell death.  

The present study discovered an LKB1-deficient non-small cell lung 
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cancer (NSCLC) cell line NCI-H460 hypersensitive to glucose 

starvation-induced cell death. In this cell line, cellular ROS was significantly 

elevated, and AMPK was rapidly phosphorylated and activated. However, 

prolonged glucose starvation for 3 hours markedly reduced AMPK protein 

level. 2-deoxyglucose (2DG) and antioxidant N-acetylcysteine (NAC) were 

able to reduce ROS level, stabilize AMPK protein and eventually protect 

against cell death. Further studies will focus on the molecular mechanism by 

which AMPK is down regulated upon glucose starvation, especially 

post-translational modification of AMPK. 

In summary, our data demonstrate that AMPK protein stability and 

activity was negatively regulated under glucose starvation, leading to rapid 

cell death. These results provide the rationale for cancer therapy targeting 

AMPK protein stability as well as activity, which was important to cancer 

cell survival. The potential of a novel therapeutic target for cancer treatment 

will benefit cancer patients, especially NSCLC.  
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CHAPTER 2 MATERIALS AND METHODS 
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2.1 Cell lines and cell culture 

NCI-H460, NCI-H1299, A549 and HeLa cell lines were purchased from 

American Type Culture Collection (ATCC). NCI-H460 and A549 were 

cultured in DMEM-F12 Ham medium (Sigma, #D8437), HeLa cells were 

cultured in DMEM medium (Sigma, #D1152), and H1299 were cultured in 

RPMI-1640 medium (Sigma, #R8758). All types of medium were 

supplemented with 10% fetal bovine serum (FBS, Hyclone, #SV30160.03), 1% 

penicillin-streptomycin (Invitrogen, #15140-122) and maintained in an 

incubator with 5% CO2 at 37 °C.  

The following media were used for different forms of starvation: 

DMEM (Sigma, #D1152) without FBS, DMEM without glucose (Gibco, 

#11966-025) supplemented with 10% dialyzed FBS, DMEM without 

glutamine (Gibco, #11960-044) supplemented with 10% dialyzed FBS, and 

amino acid free DMEM (protocol provided by Noboru Mizushima, 

University of Tokyo) supplemented with or without 10% dialyzed FBS. The 

protocol of amino acid free DMEM is as follows: 

NaHCO3 7.4 g 

NaCl 12.12 g 

KCl 0.8 g 

MgSO4·7H2O 0.4 g 

CaCl2·2H2O 0.528 g 
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10 mg/mL Fe(NO3)3 20 µL 

D-glucose 2 g 

MEM vitamin solution (×100) 80 mL 

1M HEPES (pH7.5) 30 mL 

NaH2PO4·2H2O 0.22 g 

Phenol red 0.03 g 

Add ddH2O to 2 L  

Adjust pH to 7.2-7.6  

 

2.2 Reagents and antibodies 

The following reagents used in this study were purchased from 

Sigma-Aldrich: 2-deoxyglucose (2DG, Sigma, #D6134), AICAR (Sigma, 

#A9978), metformin hydrochloride (Sigma, #1396309), Compound C 

(Sigma, #P5499), chloroquine diphosphate (CQ, Sigma, #C6628), 

bafilomycin A1 (BAF, Sigma, #B1793), Rapamycin (Sigma, #R0395), 

MG-132 (Sigma, #7449), N-acetylcysteine (NAC, Sigma, #A9165). Other 

chemicals were necrostatin-1 (Merck, #480065), and Bortezomib (Santa 

Cruz, #sc-217785).   

The following antibodies were purchased from Cell Signaling: AMPKα 

(Cell Signaling, #2532), phospho-AMPKα1 (Thr 172) (Cell Signaling, 

#2535), phospho-AMPKα1 (Ser485) (Cell Signaling, #2537), ACC (Cell 
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Signaling, #3662), phospho-ACC (Ser79) (Cell Signaling, #3661), LKB1 

(Cell Signaling, #3050). Anti-LC3 (Sigma, #L7543), anti-α-tubulin (Sigma, 

#T6199) were purchased from Sigma Aldrich. Goat anti-rabbit (Thermo 

Fisher, #31460) or anti-mouse (Thermo Fisher, #31430) horseradish 

peroxidase-linked antibodies were used as secondary antibodies. 

Antibodies were prepared as follows: 0.5 g of bovine serum albumin 

(BSA, Sigma, #A9418) was dissolved in 10 mL of 1 X Tris Buffered Saline 

with Tween 20 (TBST). Then NaN3 was added into 5% BSA to make up to 

0.01% NaN3 solution to prevent bacterial contamination. All primary 

antibodies were diluted by 1:1000 except anti-α-tubulin (1:5000), and 

secondary antibodies were diluted by 1:5000. All antibodies were stored at 

4 °C. 

 

2.3 Western blot 

After designated treatments, cells were collected and lysed in Laemmli 

SDS buffer (62.5 mM Tris at pH 6.8, 25% glycerol, 2% SDS, phosphatase 

inhibitor and proteinase inhibitor cocktail). After determination of protein 

concentration, an equal amount of protein was resolved by sodium 

SDS-PAGE and transferred onto PVDF membrane (Bio-Rad). After blocking 

with 5% non-fat milk for 30 min, the membrane was probed with designated 

first antibodies overnight at 4°C, washed by TBST and probed with second 



	   35 

antibodies for 1 hour at room temperature. The membrane was developed with 

the enhanced chemiluminescence method (Pierce and Merck) and visualised 

using Kodak Image Station 440CF (Kodak) and ImageQuant LAS500 (GE 

Healthcare).  

 

2.4 Propidium iodide (PI) live cell exclusion staining for cell viability 

 Cells were cultured in 24-well plate overnight. After designed treatments, 

the medium in each well was collected and cells were harvested with trypsin. 

Then, cell pellets obtained were resuspended in 1× phosphate buffer saline 

(PBS) containing PI at a final concentration of 5 µg/mL and incubated for 10 

minutes at 37°C. Ten thousand cells from each sample were analysed with 

FACS Calibur flow cytometry (BD Bioscience) using CellQuest software. 

 

2.5 CM-H2DCFDA for cellular ROS 

Chloromethyl 2',7'-dichlorodihydrofluorescein diacetate 

(CM-H2DCFDA) (Life technologies, #C6827) was used for detection of 

intracellular ROS production. Cells were first cultured in 24-well plate 

overnight. After the designated treatments, cells were incubated with 1 µM 

CM-H2DCFDA in PBS for 10 min. Then the CM-H2DCFDA was removed 

and the cells were washed with PBS twice. The cells were harvested with 

trypsin and fluorescence intensity was measured by FACS Calibur flow 
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cytometry (BD Bioscience) using CellQuest software.   

 

2.6 Microscopy image 

    Cell were cultured in overnight and treated with designed experiments. 

The morphological changes were detected under phase-contrast microscopy, 

and representative cells were selected and photographed. 

 

2.7 Statistical analysis 

The image data were representatives from at least three repeated 

experiments. All numeric values were expressed as mean ± SD from at least 

three independent experiments. The p-value was calculated using Student’s 

t-test with p-values<0.05 (*p<0.05) or p-values<0.01 (**p<0.01) is considered 

to be statistically significant.  
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3.1 NCI-H460 cells are hypersensitive to cell death induced by glucose 

starvation  

    To measure the cell death sensitivity to different nutrients starvation, 

NCI-H460 cells were treated with various starvation conditions for 3, 6 and 9 

hours, including glucose starvation, amino acid starvation, serum starvation, 

glutamine starvation, and double starvation (deprived of amino acid and 

serum). First, we examined the cellular morphology upon different starvation 

treatments. As shown in Figure 3-1A, dead cells with rounded shapes were 

floating over the medium, whereas live cells remained attached to the culture 

dish. Obvious cell death was observed only in cells under glucose starvation. 

Then we quantified the cell death through PI exclusion test coupled with 

flow cytometry (Figure 3-1B). Under glucose starvation, the percentage of 

viable cells was significantly reduced to 66.12% (3 hr), 19.67% (6 hr) 2.68% 

(9 hr), while the other starvation conditions showed little effects on cell 

survival. Therefore, data from this part of our study demonstrate the 

hypersensitivity of NCI-H460 cell line to glucose starvation. The statistical 

analysis of cell death was summarized in Figure 3-1C.  
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C 

 
 
 
Figure 3-1 NCI-H460 is hypersensitive to glucose starvation-induced cell 
death. (A) Morphological representatives of NCI-H460 cells in different 
starvation conditions for indicated time points. NCI-H460 cells were treated 
with full medium, glucose free medium, amino acid (AA) free medium, 
serum free medium, AA and serum free medium, or glutamine (Gln) free 
medium for 3, 6 and 9 hours. Cells were photographed under a light 
microscope. Scale bar, 200 µm. (B) Dotplot of PI live exclusion assay for 
quantification of cell viability. NCI-H460 cells were treated as indicated in 
(A) and the cell death was measured by flow cytometry using PI (5 µg/mL) 
staining (circle, a representative of viable cells). (C) Statistical analysis of 
the percentage of viable cells of three independent experiments performed as 
in (B) (mean ± SD). 
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Accumulating evidence has indicated that tumor cells lacking functional 

LKB1 are susceptible to metabolic stress (Dupuy et al., 2013; Faubert et al., 

2013, 2014a; Shaw et al., 2004b). Shaw et al. showed that LKB1-deficent 

MEFs are defective in AMPK activation and sensitive to apoptosis in 

response to elevated AMP conditions by AICAR (Shaw et al., 2004b), 

suggesting that LKB1-deficient tumor cells may be sensitized to cell death 

when cellular AMP/ATP or ADP/ATP ratios are increased by stimuli. It has 

been reported that HeLa and A549 are LKB1-deficient cell lines, confirmed 

by examination of mRNA and protein expression (Tiainen et al., 1999; 

Sanchez-Cespedes et al., 2002; Hawley et al., 2003; Ma et al., 2014). 

Therefore, we used HeLa and A549 for comparison. As confirmed by 

western blot (Figure 3-2A), LKB1 was not detected in NCI-H460, HeLa and 

A549, while NSCLC cell line NCI-H1299 expressed high level of 

endogenous LKB1 as a positive control. Then NCI-H460, HeLa and A549 

cell lines were treated with glucose starvation for 6 hours. As showed in 

Figure 3-2B and C, significant cell death upon glucose starvation for 6 hours 

in NCI-H460 and A549 cells was observed, but there was no significant cell 

death in HeLa cells. Although NCI-H460 was more susceptible to glucose 

starvation than A549, one possible mechanism of the hypersensitivity to cell 

death is the identical LKB1 nonsense mutation at codon 37 of these two cell 

lines (Carretero et al., 2004; Sanchez-Cespedes, 2007).  
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Figure 3-2 NCI-H460 is more sensitive to cell death induced by glucose 
starvation than HeLa. (A) LKB1 deficient and wide type cells. NCI-H460, 
A549, HeLa and NCI-H1299 were collected after seeded overnight in full 
medium and cell lysates were used for western blotting. Tubulin was used as 
loading control. (B) Dotplot of PI live exclusion assay for quantification of 
cell viability. NCI-H460, A549 and HeLa were treated with or without 
glucose free medium for 6 hours and the cell death was measured by flow 
cytometry using PI (5 µg/mL) staining (circle, a representative of viable 
cells). (C) Statistical analysis of the percentage of viable cells of three 
independent experiments performed as in (B). (mean ± SD, *p<0.05, 
**p<0.01). 
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To investigate whether glucose supplementation can rescue cell death 

upon glucose starvation in NCI-H460, we added glucose for indicated 

concentrations to glucose free medium (4500 mg/mL (100%), 90 mg/mL 

(2%), 45 mg/mL (1%), 22.5 mg/mL (0.5%), 11.25 mg/mL (0.25%), and 4.5 

mg/mL (0.1%)). According to the morphological changes and cell death 

quantification (Figure 3-3A and B), we found that glucose supplementation 

can potently reverse glucose starvation-induced cell death in a 

dose-dependent manner. It is to be noted that 1% (45 mg/L) of glucose can 

fully protected NCI-H460 from cell death, further confirming the importance 

of glucose in survival of NCI-H460. 
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Figure 3-3 Glucose supplement can inhibit glucose starvation-induced cell 
death in a dose-dependent manner. (A) Morphological representatives of 
NCI-H460 cells upon glucose supplementation. NCI-H460 cells were treated 
with full medium or glucose free medium for 3 hours. Indicated 
concentrations of glucose were added back in glucose free medium. Cells 
were photographed under a light microscope. Scale bar, 200 µm. (B) 
Statistical analysis of PI live exclusion assay for quantification of cell 
viability. Cells were treated as indicated in (A). The percentage of viable 
cells was measured with PI (5 µg/mL) staining by flow cytometry. (mean ± 
SD).  
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3.2 Apoptosis, necroptosis or autophagy is not the major cell death 

mechanism upon glucose starvation in NCI-H460  

Previous findings have indicated the protective role of AMPK in 

response to poor nutrient environments, and defective AMPK signaling may 

render tumor cells sensitive to apoptosis under metabolic stress (Faubert et 

al., 2013; Svensson and Shaw, 2012). Thus, to explore the type of cell death 

in NCI-H460 subjected to glucose starvation, we used the pan-caspase 

inhibitor Z-VAD, which was not able to inhibit glucose starvation-induced 

cell death (Figure 3-4A), suggesting that apoptosis may not be the major 

form of cell death. Additionally, necrostatin-1, a specific necrosis inhibitor 

functioning through suppression of RIP1, was unable to protect against cell 

death under glucose starvation (Figure 3-4A). Moreover, the combination of 

Z-VAD and necrostatin-1 presented no effect on glucose starvation-triggered 

cell death (Figure 3-4A), implying that NCI-H460 does not go through 

apoptosis or necrosis when deprived with glucose. 

Under nutrient starvation, cells initiate a cellular protective mechanism 

known as autophagy to maintain energy homeostasis. The regulation of 

autophagy by AMPK-mTOR signaling pathway in response to glucose 

starvation has been well studied (Egan et al., 2011; Gwinn et al., 2008; Inoki 

et al., 2003; Kim et al., 2011). So we next examined changes of mTOR 

activity and the classical autophagy marker LC3 under glucose starvation. As 
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shown in Figure 3-4C, No significant changes of p-S6 were found upon 3 

hours glucose starvation treatment. We then used PI3K inhibitor wortmannin 

to suppress autophagy. Notably, wortmannin did not protect against glucose 

starvation-induced cell death (Figure 3-4A). Therefore, it is believed that 

apoptosis, necrosis or autophagic cell death is not the major mechanism in 

glucose starvation-induced cell death in NCI-H460, and an alternative 

mechanism might be involved in this particular form of cell death.  
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Figure 3-4 Cell death inhibitors cannot protect NCI-H460 from glucose 
starvation-induced cell death. (A) Dotplot of PI live exclusion assay for 
quantification of cell viability. NCI-H460 were treated with Z-VAD (10 
mM), necrostatin-1 (30 mM), wortmannin (100 mM), and combination of 
Z-VAD (10 mM) and necrostatin-1 (30 mM), with or without glucose free 
medium for 3 hours. The cell death was measured by flow cytometry using 
PI (5 µg/mL) staining (circle, a representative of viable cells). (B) Statistical 
analysis of the percentage of viable cells of three independent experiments 
performed as in (A) (mean ± SD). (C) Cells were treated as indicated in (A) 
and cell lysates were analyzed by western blotting. Tubulin was used as 
loading control.  
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3.3 AMPK activity and protein stability is changed upon glucose 

starvation  

AMPK is activated in response to declining cellular ATP level, 

especially when glucose supply is limited (Hardie et al., 2012). Activated 

AMPK promotes catabolic pathways while suppresses anabolic pathways to 

maintain cellular homeostasis (Hardie, 2011b). However, NCI-H460 has 

been identified with LKB1 nonsense mutation (Koivunen et al., 2008), 

suggesting the possibility of defective AMPK activation in response to 

nutrient starvation. To address this question, we examined AMPK activation 

upon glucose starvation by western blot. NCI-H460 cells were subjected to 

glucose free medium for different periods of time (15 min, 0.5 hr, 1 hr, and 3 

hr). Interestingly, as shown in Figure 3-5A, phosphorylated AMPKα (Thr172) 

was first increased (15 min) then decreased upon glucose starvation, 

suggesting the inability of sustained AMPK activation under prolonged 

metabolic stress. To further determine the activation of AMPK, we examined 

the phosphorylation of one of its critical downstream targets, acetyl CoA 

carboxylase (ACC). In Fig 3-5A, in early time points (15 min and 0.5 hr), no 

significant increase of p-ACC was observed under glucose starvation. 

However, in 1 hr and 3 hr time points, the level of p-ACC was reduced, 

which was consistent with p-AMPKα (Thr172). The early activation of 

AMPK may be result of other AMPK upstream kinases such as CaMKKβ 
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and TAK1, which may not be sufficient to stimulate AMPK activation with 

persistent glucose starvation. Moreover, total AMPKα level also declined 

under prolonged glucose starvation treatment (for 3 hr), suggesting the 

protein instability of AMPKα during glucose starvation.  

To further confirm the role of AMPK activity and protein stability in 

glucose starvation, we investigated whether glucose supplementation can 

reactivate AMPK and restore AMPKα protein level. As shown in Figure 

3-5B, AMPKα protein level and p-AMPKα was increased by glucose 

supplementation dose-dependently. These results demonstrated the critical 

role of AMPK in cell survival under glucose starvation, and suggest that 

AMPK protein instability upon prolonged glucose starvation may be the 

cause of defective AMPK activation. 
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Figure 3-5 AMPK level changes during glucose starvation. (A) NCI-H460 
cells were treated with or without glucose free medium for 15 min, 0.5 hr, 1 
hr, 3 hr. Cell lysates were analyzed by western blotting. Tubulin was used as 
loading control. AMPKα was normalized to control, and p-AMPKα was 
normalized to total AMPKα. (B) NCI-H460 cells were treated with or 
without glucose free medium for 3 hours. A gradient of concentrations of 
glucose were added back to glucose free medium. Cell lysates were analyzed 
by western blotting. Tubulin was used as loading control. 
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3.4 AMPK activator 2DG stabilizes AMPK protein level and protects 

against glucose starvation-induced cell death  

Next, we used classical AMPK activators AICAR and metformin to 

investigate whether AMPK can be reactivated under glucose starvation 

condition, and whether cell death can be suppressed. AMPK inhibitor 

Compound C was used as a negative control. We found that both 

pharmacological activators of AMPK cannot trigger AMPK activation under 

glucose starvation, as evidenced by changes of p-AMPKα (Figure 3-6A). In 

addition, AICAR and metformin showed no effect on glucose 

starvation-induced cell death as quantified by flow cytometry (Figure 3-6B). 

One possible explanation is that both AICAR and metformin require LKB1 

to fully activate AMPK. AICAR generates AMP analogue ZMP, which binds 

to AMPK γ-subunit in the same manner as AMP (Day et al., 2007). 

Metformin suppresses mitochondria ATP synthesis to increase cellular 

ADP/ATP and AMP/ATP rations (Hardie et al., 2012).  
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Figure 3-6 AMPK activators cannot protect against glucose 
starvation-induced cell death. NCI-H460 cells were treated metformin 1 mM, 
AICAR 0.5 mM, Compound C 10 mM, with or without glucose free medium 
for 3 hours. (A) Cell lysates were analyzed by western blotting. Tubulin was 
used as loading control. (B) Dotplot of PI live exclusion assay for 
quantification of cell viability. NCI-H460 cells were treated as indicated in 
(A) and the cell death was measured by flow cytometry using PI (5 µg/mL) 
staining (circle, a representative of viable cells). (C) Statistical analysis of 
the percentage of viable cells of three independent experiments performed as 
in (B). (mean ± SD). 
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Further, we replaced glucose with the non-metabolizable glucose 

analogues 2-deoxyglucose (2DG). 2DG enters the cells by glucose 

transporters and is phosphorylated by hexokinase to 2DG-6-P, which cannot 

be further metabolized. Thus, 2DG-6-P is trapped and accumulated in cells, 

resulting in competitive inhibition of glycolysis at the step of 

phosphorylation of glucose by hexokinase (Aft et al., 2002; Pelicano et al., 

2006). Glycolysis inhibition can lower cellular ATP level, leading to AMPK 

activation (Kodiha and Stochaj, 2011). As a glycolysis inhibitor, 2DG has 

been reported as a promising antitumor strategy. For example, it has been 

reported that 2DG increases cytotoxicity for human cancer cells (Li et al., 

2014). In our study, surprisingly, 2DG showed potent ability to protect 

against cell death induced by glucose in LKB1-deficient NCI-H460 cell line 

(Figure 3-7A). Unlike AICAR and metformin, 2DG directly activated 

AMPK independent of LKB1 and restored total AMPKα  level during 

glucose starvation (Figure 3-7C). These results are consistent with the 

previous findings that 2DG inhibits LKB1-deficient cells A549 mainly 

through direct activation of AMPK and partial utilization in the pentose 

phosphate pathway (Jeon et al., 2012). 
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Figure 3-7 2DG significantly inhibit glucose starvation-induced cell death. 
(A) Dotplot of PI live exclusion assay for quantification of cell viability. 
NCI-H460 cells were treated 2DG 10 mM, with or without glucose free 
medium for 3 hours. The percentage of viable cells was measured with PI (5 
µg/mL) staining by flow cytometry (circle, a representative of viable cells). 
(B) Statistical analysis of the percentage of viable cells of three independent 
experiments performed as in (A). (mean ± SD, *p<0.05, **p<0.01). (C) 
NCI-H460 cells were treated 2DG 10 mM, with or without glucose free 
medium for 0.5, 1, and 3 hours. Cell lysates were analyzed by western 
blotting. Tubulin was used as loading control. AMPKα was normalized to 
control, and p-AMPKα was normalized to total AMPKα.   
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Intriguingly, we found that 2DG promotes, instead of protecting, HeLa 

cell from glucose starvation-induced cell death. As shown in Figure 3-8A, B 

and C, 12 hours combined treatment of 10 mM 2DG and glucose starvation 

showed significant increase of cell death in HeLa cells. Prolonged treatment 

of 2DG for 24 hours presented higher level of cell death in HeLa (Figure 3-8 

C). However, 2DG alone had no effect on HeLa cell survival, even in 24 

hours treatment.  
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Figure 3-8 2DG cannot protect HeLa from glucose starvation-induced cell 
death. (A) Morphological representatives of HeLa cells treated with 2DG 10 
mM, with or without glucose free medium for 12 hours. HeLa cells were 
photographed under a light microscope. Scale bar, 200 µm. (B) Dotplot of PI 
live exclusion assay for quantification of cell viability. HeLa cells were 
treated 2DG 10 mM, with or without glucose free medium for 12 hours. The 
percentage of viable cells was measured with PI (5 µg/mL) staining by flow 
cytometry (circle, a representative of viable cells). (C) Statistical analysis of 
the percentage of viable cells of three independent experiments for indicated 
periods of time. (mean ± SD). 
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3.5 The down-regulation of AMPK is independent of lysosome- or 

proteasome-mediated pathways 

Since glucose starvation-induced cell death is accompanied with the 

loss of AMPK, we are therefore determined to examine the molecular 

mechanisms controlling AMPK protein stability in this particular cell line. 

First, we tested whether AMPK is degraded via lysosome by using lysosome 

inhibitors bafilomycin A1 (BFA), a specific inhibitor for the lysosomal 

V-ATPase, and chloroquine (CQ) that is capable of neutralizing lysosomal 

pH (Zhou et al., 2013). However, both inhibitors showed no protective effect 

against glucose starvation-induced cell death or the decrease of AMPK 

protein level (Figure 3-9A, B and C), suggesting that lysosome-dependent 

degradation pathway is not involved in the down-regulation of AMPK under 

glucose starvation.  

The ubiquitin-proteasome system (UPS) is an alternative protein 

degradation mechanism responsible for 80-90% of intracellular proteins 

(Shen et al., 2013b). One interesting paper from Qi et a earlier study has 

demonstrated the ubiquitination-mediated degradation of AMPK mediated 

by Cidea through interaction with the β-subunit of AMPK (Qi et al., 2008). 

Thus we examined the involvement of proteasomal degradation of AMPK in 

cell death triggered by glucose withdraw. We used MG-132 

(carbobenzoxy-Leu-Leu-leucinal) and Bortezomib to block the proteolytic 
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activity of the 26S proteasome (Shen et al., 2013b). However, both inhibitors 

did not protect NCI-H460 from rapid cell death stimulated by glucose 

starvation (Figure 3-9A and B). Even the combination of proteasome 

inhibitor MG-132 and lysosome inhibitors showed no effect on cell death 

quantification. Importantly, proteasome inhibitors did not significantly 

change AMPK protein level under glucose starvation (Figure 3-9D). 

Therefore, these results exclude the possibility that AMPK is down regulated 

through lysosome-dependent or proteasome-mediated degradation pathways 

upon glucose starvation. 
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Figure 3-9 Lysosome inhibitors or proteasome inhibitors cannot inhibit 
glucose starvation-induced cell death. (A) Dotplot of PI live exclusion assay 
for quantification of cell viability. NCI-H460 cells were treated with 
Bafilomycin (BAF) 50 mM, Choloroquine (CQ) 50 mM, MG-132 10 µM, 
combination of 50 mM BAF and 10 µM MG-132, combination of 50 mM 
CQ and 10 µM MG-132, with or without glucose free medium for 3 hours. 
The percentage of viable cells was measured with PI (5 µg/mL) staining by 
flow cytometry (circle, a representative of viable cells). (B) Statistical 
analysis of the percentage of viable cells of three independent experiments 
for indicated periods of time. (mean ± SD). (C) NCI-H460 cells were treated 
with BAF and CQ and rapamyin for indicated concentrations, with or 
without glucose free medium for 3 hours. Cell lysates were analyzed by 
western blotting. Tubulin was used as loading control. (D) NCI-H460 cells 
were treated MG-132 and Bortezomib for indicated concentrations, with or 
without glucose free medium for 3 hours. Cell lysates were analyzed by 
western blotting. Tubulin was used as loading control.  
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3.6 Higher level of intracellular ROS in glucose starvation-induced cell 

death 

ROS refers to the chemical species generated upon incomplete oxygen 

reduction, including superoxide anion (O2 -), hydrogen peroxide (H2O2), and 

hydroxyl radical (HO·) (D'Autréaux and Toledano, 2007). ROS function as 

not only a mediator of oxygen toxicity, but also intracellular signaling 

molecules (D'Autréaux and Toledano, 2007). The imbalance between 

accumulated ROS and inadequate antioxidant defenses will lead to oxidative 

stress. At present, there is convincing evidence that glucose starvation is able 

to induce oxidative stress (Wu et al., 2013). Thus we examined cellular ROS 

level during glucose starvation by CM-H2DCFDA staining coupled with 

flow cytometry. As shown in Figure 3-10A, intracellular ROS was 

significantly increased when treated with glucose free medium for 1 hour. 

Antioxidant NAC (N-acetylcysteine) was able to reverse accelerated ROS 

level upon glucose starvation (Figure 3-10A). We further observed a 

significantly protective role in glucose starvation induced cell death by NAC, 

evidenced by PI staining (Figure 3-10B and C). In addition, NAC was able to 

stabilize AMPK protein level, as shown in Figure 3-10D, highlighting 

functional relevance of cellular ROS to AMPK stability in cells under 

glucose starvation. Since 2DG can stabilize AMPK in glucose starvation, we 

further investigated whether 2DG affected increased ROS level. Consistently, 
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we found that 2DG significantly inhibited ROS production during glucose 

starvation (Figure 3-10A). These results suggest the involvement of cellular 

ROS in AMPK stability upon glucose starvation. 
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Figure 3-10 NAC and 2DG can reverse elevated cytosolic ROS upon 
glucose starvation. (A) Cells were treated with 5 mM NAC and 10 mM 2DG, 
with or without glucose free medium for 1 hour or 3 hours. Cells were 
stained with DCFDA 1 mM for 15 min. (B) Dotplot of PI live exclusion 
assay for quantification of cell viability. Cells were treated NAC 5 mM, with 
or without glucose free medium for 3 hours. The percentage of viable cells 
was measured with PI (5 µg/mL) staining by flow cytometry (circle, a 
representative of viable cells). (C) Statistical analysis of the percentage of 
viable cells of three independent experiments performed as in (B). (mean ± 
SD, *p<0.05, **p<0.01). (D) Cells were treated with 5 mM NAC, with or 
without glucose free medium for 0.5, 1, 3 hours. Cell lysates were analyzed 
by western. Tubulin was used as loading control.  
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AMPK is an evolutionarily conserved energy sensor and regulator in 

mammalian cells, activated upon stress conditions including nutrient 

limitation, oxidative stresses, etc. (Hardie, 2011b) However, regulation of 

AMPK activity by protein stability is rarely investigated. In this study, we 

discovered that a non-small cell lung cancer cell line NCI-H460 is 

particularly susceptible to glucose starvation. In response to metabolic stress 

induced by glucose starvation, cellular ROS is significantly elevated, 

accompanied by rapid AMPK phosphorylation and activation. However, 

prolonged depletion of glucose (for 3 hours) induces loss of AMPK protein 

stability and activation, which cannot be suppressed by proteasome and 

lysosome inhibitors. Only glycolysis inhibitor 2-deoxyglucose and 

antioxidant NAC are able to stabilize AMPK, reverse ROS level and 

eventually protect against cell death. Further studies will focus on the 

molecular mechanisms by which AMPK is down-regulated upon glucose 

starvation, especially via post-translational modifications of AMPK.  

 

4.1 NCI-H460 is heavily dependent on glucose for survival 

In this study, we used five types of nutrient starvation, namely glucose, 

glutamine, growth factor (serum), amino acid, and double starvation (no 

amino acid, no serum), to determine the major nutrient requirement of 

NCI-H460. Cancer cells undergo metabolic reprogramming to satisfy their 
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energetic and synthetic requirements in the limiting circumstances, when 

much of the glucose enters the aerobic glycolytic pathway which is less 

efficient for ATP generation but supports macromolecule synthesis, instead 

of the citric acid cycle (Soga, 2013). In order to compensate for the 

metabolic changes and to sustain citric acid cycle, glutamine metabolism is 

elevated, providing cancer cells with glutamate hydrolyzed and subsequent 

production α-keto-glutarate for citric acid cycle and biosynthesis (Erickson 

and Cerione, 2010). Thus, cancer cells are often regarded as “glutamine 

addicted” due to the sensitivity to glutamine starvation, especially in low 

glucose/hypoxia conditions (Le et al., 2012; Teicher et al., 2012).  

Additionally, deprivation of amino acids, growth factors (serum 

starvation) or glucose will lead to mTORC1 inactivation, and consequently 

repression of anabolic processes and promotion of catabolic processes, 

especially autophagy (Dibble and Manning, 2013; Shaw and Cantley, 2006).  

To our surprise, NCI-H460 is specifically sensitive to glucose starvation, 

and the onset of cell death induced by glucose starvation is rapid, suggesting 

that NCI-H460 cells are heavily dependent on glucose for survival. In 

glucose-starved cells, ATP is highly required for survival and AMPK is 

activated by increased AMP/ATP ratio. Su et al. observed that AMPK 

activity was persistently increased by glucose stimulation after 24 hours 

glucose starvation in NCI-H460, with ATP level increased and lactate level 
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decreased, suggesting the inhibition of glycolysis (Su et al. 2010). These 

results indicated that glucose functions as a key factor for regulating energy 

status in NCI-H460. 

 

4.2 LKB1 is frequently mutated in NSCLC 

NCI-H460 is derived from large cell lung cancer, one subtype of 

NSCLC. NSCLC cell lines are reported to have high frequency of somatic 

alterations of LKB1/STK11 tumor suppressor, mainly nonsense mutations 

(Sanchez-Cespedes et al., 2002; Matsumoto et al., 2007). A homozygous 

nonsense LKB1 mutation at codon 37 has been identified in NCI-H460, 

which is identical to A549 (Carretero et al., 2004; Sanchez-Cespedes, 2007). 

A recent report has showed that the nonsense LKB1 mutation in lung cancer 

cell line NCI-H460 solely produced catalytically inactive isoform of LKB1 

with an N-terminal truncation (named ΔN-LKB1), which is not able to 

interact with LKB1 binding partners, STRADα and MO25 (Dahmani et al., 

2014). ΔN-LKB1 has a dominant-positive effect on AMPK activity through 

binding to the AID domain of AMPKα, which requires a functional LKB1 

catalytic activity (Dahmani et al., 2014). 

Oncogenic KRAS or BRAF mutations often occur concurrently with 

LKB1 mutation in NSCLC cell lines (Sanchez-Cespedes et al., 2002; 

Carretero et al. 2004; Koivunen et al., 2008; González-Sánchez et al., 2013). 
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It is well established that LKB1-AMPK signaling pathway functions as an 

essential checkpoint in cellular energy homeostasis to maintain cell survival, 

growth and proliferation (Zheng et al., 2009). Phosphorylation of LKB1 

through RAF-MEK-ERK signaling impairs the ability of LKB1 to interact 

with and phosphorylate AMPK at Thr172, thereby suppressing AMPK 

activation even under conditions of increased AMP/ATP or ADP/ATP ratios 

(Zheng et al., 2009). A feed back loop between RAF-MEK-ERK and 

LKB1-AMPK has been identified, by which AMPK activation in response to 

energy stress attenuates BRAF-regulated mitogenic effects through 

phosphorylation of BRAF (Shen et al., 2013a). LKB1 deficiency causes 

hypersensitive to apoptosis in response to AICAR treatment, mimicking 

elevated AMP conditions by generating AMP analogue ZMP (Shaw et al., 

2004b). A possible explanation is aberrant activation of mTOR due to the 

absence of LKB1-AMPK signaling under stresses like nutrient deprivation 

and low energy, resulting in apoptosis. AMPK phosphorylates upstream 

inhibitor of mTOR tuberous sclerosis complex TSC2 tumor suppressor 

(Corradetti et al., 2004) or directly phosphorylates mTOR binding partner 

raptor (Gwinn et al., 2008), contributing to mTORC1 suppression. The 

classical inhibitor of mTOR, rapamycin, is shown to potently inhibit 

apoptosis in LKB1-deficient MEFs under 24 hr glucose withdraw (Shaw et 

al., 2004a). However, mTOR inhibition by rapamycin cannot protect the 
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sensitivity to glucose starvation of LKB1 deficient cell line A549 (Jeon et al., 

2012; Sanchez-Cespedes et al., 2002). 

 

4.3 Cellular ROS is increased in glucose starvation-induced cell death 

AMPK is known to regulate cellular ATP level under energy stress 

conditions. Nutrient deprivation can promote Warburg effect through the 

AMPK-dependent pathway to delay apoptosis induced by nutrient starvation 

(Wu et al., 2013). The absence of LKB1 or AMPK activation renders cancer 

cells to cell death induced by glucose starvation. However, the mechanism 

by which AMPK inactivation causes increased cell death remains elusive. In 

the present study, we observed time-dependent decrease of AMPK protein 

level under glucose starvation (Figure 3-7A), supporting the critical role of 

AMPK inactivation in cell death. However, whether reduction of AMPK 

protein level is the consequence or cause of cell death remains to be further 

investigated. Surprisingly, AMPK activators AICAR and metformin and 

inhibitor Compound C showed little effect on glucose starvation-induced cell 

death (Figure 3-6 B and C), while glycolysis inhibitor 2DG and antioxidant 

NAC can effectively inhibit cell death (Figure 3-7 B and C; Figure 3-10B 

and C). A recent study showed that in addition to regulation of ATP 

homeostasis, AMPK functions to maintain cellular NADPH level through 

inhibition of acetyl-CoA carboxylases ACC1 and ACC2 in response to 
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energy stress (Jeon et al., 2012). They found that LKB1-AMPK deficient 

cells are susceptible to glucose starvation due to impaired generation of 

NADPH in pentose phosphate pathway (PPP) by glucose starvation, H2O2 

elevation and AMPK inactivation (Jeon et al., 2012). 2DG can maintain 

NADPH level by potently stimulating AMPK activation even without 

functional LKB1 (Jeon et al., 2012). Also, antioxidant NAC protects 

LKB1-deficient cells from glucose starvation-induced cell death by 

inhibiting oxidative stress (Jeon et al., 2012). These results are consistent 

with our findings and provide possible explanation why 2DG and NAC can 

protect LKB1-deficient cells against cell death under glucose starvation.  

On the contrary, the results from Wu et al. suggest the protective role of 

ROS production and AMPK activation in cell death mediated by nutrient 

starvation, evidenced by results that antioxidants BHA, NAC and TEMPO and 

AMPK inhibitor Compound C accelerated nutrient deprivation 

(HBSS)-induced apoptosis at in HeLa cells (Wu et al., 2013). They also 

indicated that ROS are upstream of AMPK phosphorylation upon nutrient 

depletion, based on the observation that NAC inhibits starvation-induced 

AMPK activation. However, in the present study, we found that NAC 

treatment leads to stabilization of AMPK protein level and protection of 

NCI-H460 cells against glucose starvation-induced cell death (Figure 3-10). 

The discrepancy between these two findings may be attributed to different 
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starvation conditions and cell lines utilized, implying that although HeLa and 

NCI-H460 are both LKB1 deficient, there may be an alternative mechanisms 

involved in AMPK protein stability. 

 

4.4 AMPK protein stability is impaired under glucose starvation 

At present relatively little is known whether AMPK can be regulated at 

the level of protein stability. The significance of AMPK ubiquitination begins 

to attract scientists’ attention recently. Qi et al. have found that Cidea (cell 

death-inducing DFFA-like effector a) forms a complex with AMPK through 

specific interaction with β-subunit, and such interaction increases 

ubiquitination-mediated proteasome degradation of AMPK, resulting in 

reduced AMPK activity (Qi et al., 2008). These results are the first evidence to 

show ubiquitin-dependent degradation of AMPK in brown adipose tissue, but 

the underlying mechanism by which Cidea controls AMPK degradation 

remains intricate. A recent paper from Pineda et al. described a mechanism to 

degrade AMPKα1 by a cancer-specific MAGE-A3/6-TRIM28 E3 ubiquitin 

ligase, causing hypersensitization to AMPK agonists (metformin and AICAR) 

(Pineda et al., 2015). However, they did not examine whether MAGE-A3/6 

expressing cells are sensitive to glucose deprivation. In our study, proteasome 

inhibitors MG-132 and Bortezomib are not able to inhibit the decrease of total 

AMPK upon glucose starvation (Figure 3-9D), suggesting that AMPK may 
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not be degraded by proteasome system. Furthermore, two lysosome inhibitors 

BAF and CQ have no effects on AMPK protein level or cell death under 

glucose starvation (Figure 3-9A, B and C), suggesting that AMPK is unlikely 

to be degraded by lysosome. Moreover, since the PI3K inhibitor wortmannin, 

as well as BAF and CQ, is unable to suppress glucose starvation-induced cell 

death, suggesting that autophagy may not be the key factor in glucose 

starvation-induced cell death. 

Interestingly, in our study we observed that AMPK displays a smear 

upon glucose starvation (Figure 3-5B), suggesting a post-translational 

modification of AMPK. Besides ubiquintination and phosphorylation, 

AMPK has been also reported to be a redox-sensitive kinase, which can be 

negatively regulated by oxidation at α-subunit (Shao et al., 2014). In 

response to glucose starvation, AMPK forms aggregates through 

intermolecular disulfide bonds at Cys130/Cys174 in α-subunit, preventing 

LKB1-dependent AMPK activation (Shao et al., 2014). Thioredoxin1 (Trx1) 

converts AMPK to the reduced form by cleaving the disulfide bonds between 

AMPK aggregates, thus promoting AMPK activation mediated by LKB1 

(Shao et a, 2014). In addition to oxidation, AMPK activity can be regulated 

by acetylation/deacetylation at α-subunit. For instance, deacetylation of 

AMPK promotes AMPK activation through enhanced interaction with LKB1 

(Lin et al., 2012). One possible explanation why in our study the total and 



	   82 

phosphor-AMPK become undetectable upon glucose starvation is that the 

post-translational modifications of AMPK render it hard to be recognized by 

antibody. Further investigation is required to determine whether AMPK is 

modified and which type of modification occurs in glucose starvation 

conditions, and whether this modification will eventually cause AMPK 

degradation.   

 

4.5 Future work and summary 

Since glucose metabolism and AMPK activity are essential targets in 

cancer therapy, the striking phenomenon discovered in this study provides 

insight into the critical role of AMPK in determining the susceptibility of 

cancer cells to metabolic stress. Although we observed some morphological 

characters of apoptosis, like rounded shapes and undetached cells, apoptosis 

inhibitor Z-VAD did not inhibit cell death, nor did necroptosis inhibitor 

necrostatin. Which type of the three programmed cell death plays the major 

role in this particular cell remains to be elucidated. Therefore, further studies 

will focus on the following four aspects: 1) to identify the specific type of 

cell death caused by glucose starvation; 2) to confirm whether AMPK 

protein is degraded under glucose starvation and discover the degradation 

mechanism; 3) to determine whether and how AMPK is post-translational 

modified upon glucose starvation; and 4) to check the genetic background of 
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NCI-H460 cell line and identify the potential upstream target which causes 

the hypersensitivity to glucose starvation through AMPK protein stability.  

In summary, our results demonstrate that a unique NSCLC cell line 

NCI-H460 is heavily depend on glucose for survival. Under glucose 

starvation, NCI-H460 undergoes rapid cell death, which cannot be protected 

by apoptosis, necroptosis or autophagy inhibitors. This cell death is 

accompanied by increased ROS production and decreased AMPK protein 

level. Pharmacological activators AICAR and metformin are unable to 

protect cell death, but glycolysis inhibitor 2DG and antioxidant NAC can 

stabilize AMPK protein level and block cell death. Our findings thus provide 

novel approaches or strategies for human cancer therapy by targeting AMPK, 

especially in NSCLC.  
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