
NAVIGATION OF UNMANNED AERIAL VEHICLES

IN GPS-DENIED ENVIRONMENTS

Jinqiang Cui

(M.Eng., Northwestern Polytechnical University, 2008)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that the thesis is my original work

and it has been written by me in its entirety. I have

duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

JINQIANG CUI

February 24, 2015

i

Acknowledgments

First, my sincere gratitude goes to my supervisor, Professor Ben M. Chen, for his con-

stant support and guidance during my Ph.D. study. Having been working in the MEMS

industry for five years, I have found it extremely hard to pick up new knowledge in the

UAV discipline. Prof. Chen has allowed me enough time to grasp the knowledge points

and achieve a better understanding of the UAV technology. The encouragement and

patience I have received from Prof. Chen are the key buoyancies which keep my Ph.D.

boat from sinking in the past four years. Invaluable opportunities to take part in in-

ternational competitions are not possible without Prof. Chen’s support, through which

I have gained much insights into the UAV area.

I am grateful to my co-supervisors, Professor Tong H. Lee and Dr. Chang Chen,

for their kind encouragement and generous help. Prof. Lee has provided me with great

teaching assistant opportunities, which have helped me think out of the box – ‘teaching

is indeed the best way for learning’.

I would also like to thank my thesis advisory committee chair, Professor Shuzhi Ge,

for his insightful comments to my research work.

Special thanks go to the NUS Unmanned Aircraft Systems Group. Working with

the kind and talented fellow researchers has been a rewarding experience. In particular,

I would like to thank my seniors: Dr. Feng Lin has helped propose the project for UAV

navigation in forests; Prof. Biao Wang and Dr. Guowei Cai have provided generous help

modeling the coaxial helicopter; Dr. Xiangxu Dong and Peidong Liu have helped on

many onboard software issues; the discussions with Dr. Fei Wang have brought new ideas

towards my first autonomous flight. In addition, Mr. Shupeng Lai has developed the path

planning algorithm. The cooperation with Dr. Kevin Ang and Dr. Swee King Phang in

other UAV competition events have led to lots of insights for this PhD research. I am

also thankful for the generous help from all other group members and friends including

ii

Dr. Shiyu Zhao, Kun Li, Jing Lin, Kangli Wang, Xiang Li, Limiao Bai, Zhaolin Yang,

Di Deng, Tao Pang, Yijie Ke, Yingcai Bi and Jiaxin Li.

Moreover, I am grateful to my wife Wei Zhang and my parents-in-law. I sincerely

thank my wife for the years of support and companion, from China to Germany and to

Singapore. My parents-in-law have supported me in the financial and mental aspects

ever since I met my wife.

Finally, I would like to thank my parents and my sister, for their everlasting love

and care. My parents have been supportive for my decisions in my journey of education

and research. My sister has shared the responsibility of taking care of the family.

iii

Contents

Summary vii

List of Tables viii

List of Figures xii

1 Introduction 1

1.1 Introduction . 1

1.2 Literature Review . 2

1.2.1 GPS-denied Navigation . 2

1.2.2 Laser Data Scan Matching . 4

1.2.3 Simultaneous Localization and Mapping 5

1.3 Challenges of This Study . 7

1.4 Thesis Outline . 8

2 Design of UAV Platforms 10

2.1 Introduction . 10

2.2 UAV Bare Platform Design . 11

2.2.1 Review of UAV Platform Configuration 11

2.2.2 Comparison of VTOL Platforms 14

2.2.3 Platform Selection and Design 16

2.3 Avionics System Design . 20

2.3.1 UAV Function Blocks . 20

2.3.2 Avionics System Components . 21

2.3.3 Avionics System Integration . 29

2.4 Conclusion . 32

iv

3 Modeling and Control of UAV Platforms 34

3.1 Introduction . 34

3.2 Modeling of Coaxial Helicopter . 35

3.2.1 Comprehensive Dynamics Model Structure 35

3.2.2 Linear Dynamics Model and Parameter Identification 42

3.3 Modeling of Quadrotor . 48

3.3.1 Overview of Quadrotor Model . 48

3.3.2 Linearized Model Identification 50

3.3.3 Control Law Design . 55

3.3.4 Flight Test Results . 58

3.4 Conclusion . 59

4 UAV State Estimation Using Laser Range Finder 62

4.1 Introduction . 62

4.2 Feature Extraction . 64

4.2.1 Laser Range Finder Model . 64

4.2.2 Feature Extraction Procedure . 65

4.2.3 Scan Segmentation Algorithm . 67

4.2.4 Geometric Descriptors . 69

4.2.5 Feature Extraction Result . 73

4.3 Scan Matching . 74

4.3.1 Iterative Closest Point Matching 74

4.3.2 Data Association . 76

4.3.3 Rigid Transformation Estimation 79

4.3.4 Experiment Evaluation . 81

4.4 IMU-driven State Estimation . 84

4.5 Autonomous Flight Test . 88

4.6 Conclusion . 89

5 Offline Consistent Localization and Mapping using GraphSLAM 92

5.1 Introduction . 92

5.2 GraphSLAM System Structure . 93

5.3 GraphSLAM Back-end . 95

v

5.3.1 GraphSLAM Formulation . 95

5.3.2 Loop Detection . 97

5.3.3 Graph Optimization . 100

5.3.4 Error Linearization for 2D Poses 103

5.4 Offline GraphSLAM Evaluation . 104

5.4.1 GraphSLAM Software Development 104

5.4.2 Consistent Mapping with Synthetic Data 106

5.4.3 Loop Closure Detection . 107

5.4.4 GraphSLAM Parameter Tuning 110

5.5 Conclusion . 113

6 Autonomous Flights with Online GraphSLAM 115

6.1 Introduction . 115

6.2 Online GraphSLAM using Sliding Window 116

6.3 Online Path Planning . 119

6.4 Onboard Software Development . 123

6.5 Experiment Results . 125

6.5.1 Autonomous Fight with Online GraphSLAM 125

6.5.2 Autonomous Flight in Small Scale Forest 127

6.5.3 Autonomous Flight with Online GraphSLAM and Online Path

Planning . 129

6.6 Conclusion . 132

7 Conclusions and Future Works 133

7.1 Contributions . 133

7.2 Future Works . 135

Bibliography 145

List of Author’s Publications 146

vi

Summary

This thesis studies the navigation and control of unmanned aerial vehicles (UAVs) in

GPS-denied cluttered environments, such as forests. Research on modeling and control,

state estimation, and simultaneous localization and mapping (SLAM) has been carried

out with actual implementation and tests in real forest environments. Quadrotor and

coaxial helicopter platforms are constructed and utilized in the flight experiments. A

UAV state estimation framework has been presented to fuse the outputs of an inertial

measurement unit (IMU) with that of scan matching. Taking forests as an example,

tree trunks are extracted from data collected by the laser range finder based on a group

of geometric descriptors. They are used as feature points in the scan matching algo-

rithm to produce incremental velocity measurements. These measurement are then fused

with the acceleration of the IMU in a Kalman filter. To achieve consistent mapping,

GraphSLAM techniques are developed to formulate all the poses and measurements in a

nonlinear least squares problem. Both an offline and an online GraphSLAM algorithms

are developed, with the former one for the algorithm evaluation and the latter one for

real-time flight control. The online GraphSLAM is based on a sliding window technique

with constant time complexity. The proposed navigation system has been extensively

and successfully tested in indoor and foliage environments.

vii

List of Tables

2.1 Comparison of three VTOL configurations 15

2.2 Overview of the specifications of popular IMUs. 23

2.3 Typical specifications of range sensors. 24

2.4 Summary of three LionHubs. 32

3.1 Physical meaning of control input variables 36

3.2 Physical meaning of state variables . 38

3.3 Parameters for roll-pitch dynamics. 44

3.4 Identified parameters of coaxial helicopter. 48

4.1 Hokuyo UTM-30LX specification . 64

4.2 List of geometric threshold for tree trunk extraction. 70

5.1 GraphSLAM parameter tuning table . 112

viii

List of Figures

2.1 Two single rotor UAV platforms. 11

2.2 Autonomous landing of Boeing’s Unmanned Little Bird 12

2.3 List of coaxial UAV platforms. 13

2.4 List of quadrotor UAV platforms. 15

2.5 Kaa-350 coaxial helicopter. 17

2.6 The coaxial platform fuselage head. 17

2.7 Close view of the coaxial helicopter. 18

2.8 Coaxial helicopter flying in the air. 18

2.9 NUS quadrotor virtual design. 19

2.10 NUS quadrotor platform. 19

2.11 UAV functions with the required avionics system 21

2.12 UAV avionics system diagram. 22

2.13 State-of-the-art IMUs suitable for UAV applications. 23

2.14 List of range sensors. 24

2.15 Two 3D laser scanners from Velodyne and SICK. 25

2.16 List of vision sensors. 26

2.17 The SLAM sensor suite developed by ETH. 27

2.18 High performance onboard computer Mastermind. 28

2.19 Gumstix Overo Fire computer-on-module. 28

2.20 Two-board configuration of servo control board. 29

2.21 One-board configuration of servo control board: UAV100. 30

2.22 A typical avionics system configuration for coaxial helicopter. 31

2.23 LionHub V1: first design featuring low cost and compact volume. 32

2.24 LionHub V2 and its application in T-Rex 90. 32

2.25 LionHub V3 and its application in quadrotor. 33

ix

3.1 Fuselage head of coaxial helicopter with labeled key components. 36

3.2 Model structure of coaxial helicopter. 37

3.3 Definition of NED frame On and body frame Ob. 37

3.4 Testing of moment of inertia using trifilar pendulum. 40

3.5 Frequency response from roll input to roll angular rate. 44

3.6 Frequency response from pitch input to pitch angular rate. 45

3.7 Time domain verification from roll input to roll angular rate. 45

3.8 Time domain verification from pitch input to pitch angular rate. 46

3.9 Frequency response for Heave dynamics model identification. 46

3.10 Yaw rate feedback controller structure. 47

3.11 Overview of quadrotor model structure. 49

3.12 Quadrotor body frame definition. 49

3.13 Response comparison using frequency-sweep input {δail, δele} − {φ, θ}. . 51

3.14 Roll angle time domain model verification. 52

3.15 Roll angle time domain error between model prediction and experiment. 52

3.16 Time domain error from roll angle to y velocity. 53

3.17 Time domain comparison of yaw angle. 54

3.18 Time domain comparison of yaw angular rate. 54

3.19 Time domain comparison of heave velocity. 55

3.20 Control structure of the quadrotor UAV. 55

3.21 x direction tracking performance. 59

3.22 y direction tracking performance. 60

3.23 z direction tracking performance. 60

3.24 Yaw direction tracking performance. 61

4.1 The architecture of the IMU-driven Kalman filter. 63

4.2 Image and laser scanner data for a testing scenario. 64

4.3 Laser range finder measurement model. 66

4.4 Test scenario with UAV flying in the air. 66

4.5 Typical laser measurement in a foliage environment. 67

4.6 Segmentation threshold determination. 69

4.7 Two circle fitting methods using the bounding angle of clusters. 72

x

4.8 Comparison of three circle fitting algorithms 73

4.9 One raw scan with the labeled clusters. 74

4.10 Clean scan with extracted circles. 75

4.11 Close view of three extracted circles. 75

4.12 Procedures of the ICP algorithm. 76

4.13 Initial transformed synthetic data. 77

4.14 Change of error in each iteration. 78

4.15 The aligned datasets after ICP. 78

4.16 The indoor test scenario for verifying scan matching. 81

4.17 Motion and path estimate at the start of path. 83

4.18 Motion and path estimate at the end of path. 83

4.19 Velocity and incremental heading angle estimates from scan matching. . 84

4.20 Comparison between dead reckoning, scan matching and Kalman filter. 88

4.21 The testing scenario with the flying quadrotor. 89

4.22 Position tracking in x-y plane with the tracking error. 90

4.23 Position reference tracking in x-y plane. 90

5.1 GraphSLAM system structure. 93

5.2 System schematics illustrating front-end and back-end. 94

5.3 Composition of a graph. 95

5.4 GraphSLAM illustration [74]. 96

5.5 Loop closure after traveling a certain time. 97

5.6 Global and local search in loop detection. 99

5.7 Comparison of information matrix between local and global search. . . . 100

5.8 The pose-graph structure in GraphSLAM. 100

5.9 Optimized trajectory comparison between Matlab and C++ 106

5.10 Optimized map and trajectory in simulation environment. 107

5.11 Optimized tree contour projected on the optimal pose. 108

5.12 x position difference with respect to ground truth. 108

5.13 y position difference with respect to ground truth. 108

5.14 Heading angle difference with respect to ground truth. 109

5.15 Drifted map before loop closure. 110

xi

5.16 Consistent map after loop closure. 111

5.17 Map details before and after loop closure. 111

5.18 Close view of optimized map compared to initial map. 113

5.19 Tree contour details for indoor forest using GraphSLAM. 114

6.1 System diagram of UAV navigation system. 115

6.2 Sliding window diagram with poses being pushed in and popped out. . . 117

6.3 A timing graph between front-end and back-end. 118

6.4 A Gaussian cost map in polar coordinate. 121

6.5 UAV response together with reference in map. 122

6.6 Software structure of UAV navigation system. 124

6.7 Indoor test scenario for GraphSLAM verification. 126

6.8 Comparison of initial map and optimized map using GraphSLAM. . . . 126

6.9 Close view of the optimized map compared to the initial map 127

6.10 UAV flying in the small scale forest in front central library of NUS. . . . 128

6.11 Optimized map and trajectory in small forest. 129

6.12 Miscellaneous tree trunk conditions. 129

6.13 Consistent map with obstacle avoidance trajectory. 130

6.14 Onboard trajectory tracking performance with obstacle avoidance. . . . 131

xii

List of Symbols

Latin variables

Fb aerodynamic forces vector

Fbx body frame x axis aerodynamic force component

Fby body frame y axis aerodynamic force component

Fbz body frame z axis aerodynamic force component

g the acceleration of gravity

h NED frame altitude

Jxx rolling moment of inertia

Jyy pitching moment of inertia

Jzz yawing moment of inertia

KI integral gains of the embedded controller

KP proportional gains of the embedded controller

Mb moment vector

Mbx body frame rolling moment component

Mby body frame pitching moment component

Mbz body frame yawing moment component

m mass of helicopter

p body frame rolling angular velocity

Pn position vector in NED frame

q body frame pitching angular velocity

r body frame yawing angular velocity

Vb velocity vector in body frame

Vn velocity vector in NED frame

w body frame z axis velocity

xiii

Greek variables

δlat aileron servo input

δlon elevator servo input

δcol collective pitch servo input

δped rudder servo input

δ̄ped intermediate state in lower rotor dynamics

θ pitching angle in NED frame

φ rolling angle in NED frame

ψ yawing angle in NED frame

Acronyms

CG center of gravity

CIFER comprehensive identification from frequency responses

COTS commercial off-the-shelf

CPU central processing unit

DOF degree-of-freedom

DR dead reckoning

ESC electronic speed controller

EKF extended Kalman filter

FPGA field-programmable gate array

GCS ground control station

GPS global positioning system

GNC guidance, navigation and control

ICP iterative closest point

IMU inertial measurement unit

INS inertial navigation system

KF Kalman filter

Li-Po lithium-polymer

LiDAR light detection and ranging

LRF laser range finder

MAV micro aerial vehicle

NDT normal distributions transform

xiv

NED north-east-down

NUS National University of Singapore

PWM pulse-width modulation

RAM random-access memory

RC radio-controlled

RPM rotations per minute

RS232 recommended standard 232

SISO single-input/single output

SLAM simultaneous localization and mapping

SVD singular value decomposition

TPP tip-path-plane

UAV unmanned aerial vehicle

UGV unmanned ground vehicle

UKF unscented Kalman filter

USB universal serial bus

WiFi wireless fidelity

VTOL vertical takeoff and landing

2D two-dimensional

3D three-dimensional

xv

Chapter 1

Introduction

1.1 Introduction

Unmanned aerial vehicles (UAVs) are being applied to more applications, such as disas-

ter monitoring, environment and traffic surveillance, search and rescue, aerial mapping,

and cinematography [63]. With the increasing awareness of the UAV potentials, the re-

quirements for UAVs are becoming more demanding and versatile. For example, UAVs

are required to operate in obstacle-strewn environment, such as urban canyons and

forests, without the aid of the global positioning system (GPS). Such requirements have

led to the research goal of this study: To develop an advanced navigation system for

UAVs to enable them to autonomously navigate in uncertain and cluttered outdoor en-

vironments, such as hostile buildings, radiation contaminated areas and forests. Most

current research efforts for outdoor navigation of UAVs focus on the obstacle-free en-

vironments. The development of UAVs in obstacle-strewn environments is still in its

infancy. Obstacle-strewn environments usually affect the reliability of inertial navigation

systems due to the loss of GPS signals. Because of the large operation range in outdoor

environments, long-range obstacle sensing technologies and map generation techniques

are required. The limited payload capability of UAVs also greatly complicates the design

of onboard systems, making it difficult for the system to achieve specified navigation

tasks and obstacle avoidance.

In this thesis, we propose to develop an advanced outdoor navigation system for

UAVs to achieve autonomous navigation in outdoor GPS-denied environments, such as

forests. To develop the navigation system, several main topics need to be investigated,

1

including advanced sensing technologies, sophisticated navigation approaches and simul-

taneous localization and mapping (SLAM) techniques. A variety of sensing technologies

are considered in the research, including electro-optical (EO) sensors, light detection and

ranging (LiDAR) sensors and IMUs. The fusion techniques are investigated to combine

the measurements of these sensors to realize robust navigation and obstacle detection

without GPS. Special attention is paid to the SLAM problem in large-scale environ-

ments. In addition, a path planning scheme is studied to determinate a safe path for

UAVs to successfully carry out required missions. All the algorithms developed in this

thesis are verified by actual flight tests in forests.

1.2 Literature Review

1.2.1 GPS-denied Navigation

The navigation of mobile robotics platforms in GPS-denied environments has been in-

tensively studied in the research community, in environments such as indoor offices

[82, 68, 67], underwater [59] and urban canyons [28]. Without GPS signals, the robot

platform has to rely on its onboard sensors for state estimation. The two most popular

techniques are laser odometry [72] and visual odometry [65, 26]. Both methods are

based on the 2 dimensional (2D) or 3 dimensional (3D) point cloud matching approach,

which seek to match two sets of points to extract incremental transformation.

The use of vision perception techniques to aid UAV localization and mapping has

been heavily investigated in the literature, and is still a hot research topic. Vision sens-

ing is attractive due to its induced rich information and the light weight of the camera

systems. The bottleneck limiting its applications is the intensive computation required

by the vision processing pipeline, including feature detection and tracking, etc. The

techniques used in the vision community can be categorized according to the camera

configuration: the stereo camera configuration or the single camera configuration. Re-

searchersin MIT [1] are the pioneers who first evaluated the possibility of integrating

stereo vision odometry on a quadrotor for indoor applications. In 2013, Schmid et al.

[66] reported about their stereo-based autonomous navigation of a quadrotor in indoor

and outdoor environments, in which field-programmable gate array (FPGA) is used to

process the stereo images using a semi-global matching algorithm [34]. For UAV naviga-

2

tion based on mono cameras, researchers in ETH1 have produced some very promising

results [64]. Using a hexacopter equipped with a single onboard downward-facing cam-

era and an IMU, efficient state estimation and mapping of the environment have been

achieved with three UAVs. However, the camera orientation is confined to pointing

downward for feature detection and tracking on the ground. This means that the UAV

has to fly high above the ground to get a large image overlap. This solution is thus not

yet applicable to cluttered environments such as urban canyons and forests.

Laser sensing provides accurate range and bearing measurements, making it an ideal

choice for mobile platforms. Early successful uses of laser range finders are mainly for

obstacle detection and environment mapping. For example, Thrun et al. of Stanford

University used five SICK laser range finders on a Volkswagen Touareg R5 for the

DARPA Grand Challenge 2005 [75]. The laser range finders are extensively used for

terrain mapping and obstacle detection, whereas the position of the vehicle is estimated

using the GPS assembled on top of the car. The use of a light-weight scanning laser

range finder on a quadrotor to achieve autonomous navigation are reported in [5, 67].

More relevantly, Wang et al. [82, 79] in National University of Singapore have produced

interesting results for UAV navigation in indoor environments. A laser range finder

and a monocular camera are used for the autonomous navigation of a quadrotor with a

heuristic wall-following strategy.

The navigation of UAVs in outdoor GPS-denied environments, especially in forests,

is rarely covered in the research community. Outdoor GPS-denied environments exhibit

their own challenges, including complex terrain conditions, cluttered environment, etc.

The navigation of ground vehicles in foliage environments has been addressed in [33, 32]

reporting a car equipped with a laser range finder driving through Victoria Park in

Sydney, Australia. The steep terrain, thick understorey vegetation, and abundant debris

characteristic of many forests prohibit the deployment of an autonomous ground vehicle

in such scenarios. Achieving autonomous flight of UAVs in forests has been attempted

using a low-cost IMU and a monocular camera [41], in which an unscented Kalman

filter (UKF) was used to estimate the locations of obstacles and the state of the UAV.

Their experiment verification was carried out with a radio-controlled (RC) car running

in a synthetic outdoor environment. More recently, Ross et al. [60] realized autonomous

1http://www.asl.ethz.ch

3

flight through forests by mimicking the behavior of a human pilot using a novel imitation

learning technique. The application of the learning technique is innovative, but the

system suffers from a relatively high failure rate which a practical UAV cannot afford.

Ultimately, a UAV with autonomous navigation capability in foliage environments would

be of paramount importance for forest surveys, exploration, and reconnaissance [17].

1.2.2 Laser Data Scan Matching

Laser range finders are popular and promising sensors because of the accurate 3D point

cloud they can generate, either by rotating a 2D laser scanner or an inherent 3D laser

scanner. An accurate 3D point cloud is the cornerstone of extracting the relative trans-

formation between two 3D scans. To align two 3D scans, two dominant methods are the

iterative closest point (ICP) [8, 16] and the normal distributions transform (NDT) [9].

Starting with an initial guess, ICP obtains the transformation by repeatedly gener-

ating pairs of corresponding points and minimizing an error metric. The seminal work

[61] separates ICP into six stages, four of which are point selection, point matching,

error metric assignment and error minimization. A large number of ICP variants exist

based on different strategies in any of the six stages. The two main steps are point

selection and error minimization. Selecting the points for scan matching is the first

critical step in ICP, affecting its accuracy and speed. There are different strategies:

using all the available points [8], uniform subsampling of all the points [77], random

sampling of the points [52], or using points with high intensities plus illumination in-

formation [83]. Using all the points is infeasible in practice due to the large number

of measurement points, especially for 3D range scans. Subsampling or feature extrac-

tion is thus always desirable. The most popular error metrics are point-to-point error

metric [8] and point-to-plane error metric [16]. The point-to-point error metric leads

to a closed-form solution for determining the rigid-body transformations while minimiz-

ing the error. The point-to-plane error metric can be solved using a generic nonlinear

method (e.g. Levenverg-Marquardt) [61].

Specifically, extracting features from laser range scans before scan matching is always

preferable for onboard implementations. Indoor environments have structured walls and

pillars, from which corners and lines can be extracted as features for scan matching [80].

In foliage environments, using tree stems as features for navigation has been studied by

4

researchers. Tree stems are assumed to be circular in shape, and can thus be extracted

from the laser measurement points. In [32], the circle parameters are estimated with

the clustered point together with Kalman filter-based tracking. In [6], the tree model

is derived from the cluster bounding angle and the minimum range. Natural landmark

extraction based on adaptive curvature estimation has been proposed in [58]. This

curvature estimation applies only to segments with more than 10 points. This condition

constrains its application to forest environments, as trees with small diameter cannot

produce enough measurement point for the curvature estimation. In [70], the authors

used static 3D laser range images to extract tree diameters and axes, but this is not

applicable to UAVs which they are constantly moving.

The normal distributions transform is another promising alternative to register two

sets of points. Given a first set of points, the space is divided into grids of equal size,

and the probability of a point at a certain position is modeled by a collection of normal

distributions [9]. Points from the second set are transformed to the first scan frame

using the initial rigid transformation and an error metric is chosen to be the sum of

the local normal distribution. NDT for 3D datasets has also been developed [50] and

compared with ICP [51]. The NDT method is faster than ICP since normal distribution

is used as the matching criteria, instead of the point-to-point nearest neighbor search.

However, the NDT is reported to only work well in environments with enough structure,

like indoor offices and mine tunnels. Outdoor environments such as urban canyons or

forests may return sparse laser range data, making the NDT less appropriate.

1.2.3 Simultaneous Localization and Mapping

The navigation of UAVs requires the availability of both poses and maps at the same

time. The research issue of estimating the map and pose at the same time is often re-

ferred to as the simultaneous localization and mapping (SLAM) problem. Localization

and mapping are two interleaving processes: to better localize itself, a robot needs a

consistent map; to acquire the consistent map, the robot requires a good estimate of its

location. Any uncertainty in either localization or mapping increases the uncertainty of

both processes. There are various SLAM approaches to tackle this dilemma, and the

mainstream methodologies can be categorized into three formulations: extended Kalman

filters (EKF-SLAM), particle filters (FastSLAM) and graph-based nonlinear optimiza-

5

tion (GraphSLAM). A comprehensive overview of the SLAM algorithms is presented in

[22, 7]. All the three methods have their own merits and drawbacks.

Using EKF in SLAM has been proposed in the seminal paper [69] and later applied

to a ground vehicle navigation [44]. The state vector of the EKF includes both the

robot pose and the landmarks’ coordinates. A covariance matrix of the same size as the

augmented state is kept to represent the estimate uncertainty. Successful applications

of EKF have been achieved in a wide range of practical mapping problems, including

various robotic vehicles in the air, on the ground and underwater [73]. The primary

drawback of the EKF-SLAM is the quadratic growth of the covariance matrix in the

motion and the measurement update processes with the increasing number of features in

the map. This limits EKF-SLAM to relatively scarce maps with less than 1,000 features;

otherwise it is difficult for the data association. Another shortcoming of EKF-SLAM

is the Gaussian noise model assumption of the motion model and the measurement

model. This assumption is in practice not realistic, thus additional techniques to deal

with spurious landmarks have to be adopted.

The second paradigm of SLAM is based on the Rao-Blackwellized particle filters

[55, 56, 30]. The aim is to represent the state and map using a group of particles.

Each particle represents one guess of the robot’s pose and map in the environment.

The curse of dimensionality is even worse for particle filter-based SLAM because the

particle filters scale exponentially with the number of dimensions. The curse is released

by assuming that the cross-correlation between landmarks are independent if the robot’s

path is known. This is the prerequisite for applying the Rao-Blackwellized particle filters

to SLAM, or the FastSLAM [55]. FastSLAM uses particle filters to estimate the robot’s

path, each particle stores a guess of the robot’s pose and a list of mean/covariance pairs

of the landmark locations. The key advantage of FastSLAM is the robustness of data

association, because the posterior is based on the voting of multiple data association

in each particle. Another advantage of FastSLAM lies in the fact that particle filters

can cope with nonlinear robot motion models. But the disadvantage of FastSLAM lies

the resampling step, in which the low-probability particles are discarded and the high-

probability ones are duplicated. This resampling strategy means that the correlation

information between landmarks is gradually lost over time, causing problems when a

large loop closure is required.

6

Graph-based nonlinear optimization techniques serve as the third major SLAM

paradigm, i.e., GraphSLAM [74]. The basic idea is to optimize all the poses on the

trajectory such that the maximum likelihood measurement is achieved. To form the

graph, all the robot’s poses and landmarks at a particular time represent nodes of a

graph. The spatial constraints between the poses represent the edges. Once such a

graph is constructed, the goal is to find a spatial configuration of the nodes that is

most consistent with the constraints provided by the edges [46]. This involves solving a

large error minimization problem. The state-of-the-art algorithms take advantage of the

development of direct linear solvers and the sparseness of the graph constraints. Frame-

work such as iSAM [36] and g2o [40] are available to serve as the non-linear optimization

tools. From the perspective of users, only the construction of the graph is required.

1.3 Challenges of This Study

Navigation of UAVs without the help of GPS is itself a difficult task. It becomes even

harder if there are obstacles in the vicinity of UAVs, requiring a range of autonomous

capabilities including robust and perfect control, real-time path planning, and accurate

motion estimation, etc. The main challenges for this study are identified as follows:

• GPS-denied environment: urban canyons and foliage environments render the

GPS signals unreliable and inconsistent, making it impossible to navigate using

GPS signals. Artificial beacons can be placed in advance but this is not feasible

for most practical applications. To tackle this problem, localization of UAVs using

onboard sensors, such as IMUs, laser range finders and vision sensing techniques,

is to be evaluated and assessed.

• Unknown map: no prior map of the environment is provided for the UAV navi-

gation, either in urban canyons or forests. This poses great challenges for onboard

path planning and obstacle avoidance. The path planning algorithm must be fast

enough to deal with unexpected objects, such as dynamic objects in the environ-

ment itself. The obstacle avoidance module is required to be reactive enough to

avoid any obstacles measured by the onboard sensors.

• No human intervention: the UAVs are required to be fully autonomous once

7

started. The whole mission cannot be helped by any human intervention, meaning

that all the developed algorithms have to be intelligent and comprehensive enough.

Developing real-time onboard computing using the limited computing units is

considered a big challenge.

• Cluttered environment: environments like urban canyons and forest are quite

different from structured environments like indoor offices. The 2.5D assumption

is not met since the environment consists of objects not consistent in the vertical

direction. Using only a 2D laser range finder is thus not applicable in this case.

The state-of-the-art 3D laser scanner is still too heavy for small-scale UAVs. The

possible solution is either to spin a 2D laser scanner or use a stereo camera system.

• Complex terrain condition: the terrains of urban canyons and forests are un-

even and covered with small and light objects like fallen leaves. The uneven terrain

makes it even more challenging as the path planning has to guide the UAVs in

the vertical direction besides the horizontal plane. The small objects may be

blown away while the UAV flies by, causing dynamic objects to be captured in the

onboard sensors, and making state estimation and obstacle avoidance even harder.

• Limited payload: the UAV platform has to be compact enough to fly through

confined environments. Thus the avionics system, including the sensing modalities

and computing units, cannot be too bulky or heavy. Only sensors with limited

range capability and embedded computers with small footprints can be considered.

The system integration of hardware and software is expected to be demanding.

1.4 Thesis Outline

This Ph.D. study has been dedicated to solve the problem of UAV navigation in GPS-

denied environments with limited onboard payload capability. Each chapter in this

thesis covers different topics, such as design and construction of platform, modeling and

control of UAVs, and state estimation, etc. The outline of the thesis is as follows:

1. Chapter 2 addresses the topic of platform design, including the bare platform

selection and the avionics system design. A wide range of state-of-the-art platforms

are reviewed with the conclusion that coaxial and quadrotor are the two most

8

promising platforms. Then the requirements of the avionics components are given

according to the UAV navigation tasks requirements. Available products suitable

for this study are reviewed and selected. To achieve efficient system integration,

a customized board is designed and developed to host the essential avionics.

2. Chapter 3 identifies the models for the coaxial and quadrotor UAVs. The model

structure is formulated as the inner-loop rotation dynamics and the outer-loop

translation dynamics. The rotation dynamics is stabilized by commercial au-

topilot. A robust and perfect tracking autonomous control law is designed for

the outer-loop dynamics of the quadrotor, whose performance is verified by au-

tonomous flights based on GPS.

3. Chapter 4 presents the state estimation of the UAV using a laser range finder.

The estimation is based on a Kalman filter to fuse the acceleration measurements

of IMU and the laser range finder. Data collected from the laser range finder are

segmented to produce features for a scan matching process. The feature-based scan

matching method estimates the incremental transformation between consecutive

scans. The proposed state estimation solution is verified in actual flight tests.

4. Chapter 5 aims to develop a consistent mapping framework using the GraphSLAM

technique. Procedures to build and optimize the graph are studied. The consistent

mapping framework is verified using off line data collected during flight tests.

5. Chapter 6 presents autonomous flight test results with the online consistent map-

ping and online obstacle avoidance. A sliding window technique is applied for

constant time GraphSLAM optimization. Software integration issues and onboard

obstacle avoidance problems are addressed. All the techniques developed in pre-

vious chapters are integrated and verified in actual autonomous flight tests.

9

Chapter 2

Design of UAV Platforms

2.1 Introduction

The ultimate purpose of this research is to enable UAVs to fly autonomously in obstacle-

strewn GPS-less environments. The testbed platform has to be investigated and con-

structed first so that flight tests can be performed to verify the navigation algorithms.

In cluttered environments with obstacles, an ideal UAV platform should be able to take-

off vertically and hover in the air at anytime to avoid the possible collision. Platforms

with such capabilities are often referred to as the vertical take-off and landing (VTOL)

UAVs. They are often categorized by the number of rotors, i.e., single rotor helicopters,

coaxial helicopters, and quadrotors. In order to find a suitable platform for the future

algorithms verification, we review the popular VTOL UAV platforms in each category

and compare them with respect to several performance indexes. The comparison con-

cludes that coaxial helicopters and quadrotors are the potential solutions. Hence, we

design two platforms of each type and construct them.

In addition, to equip the bare platforms with intelligence capability, various avionics

components need to be assembled onto UAVs support different navigation tasks. The

guidance, navigation and control tasks are identified for UAVs. Corresponding to each

task, a wide range of avionics modules, including processors, sensors, hardware-related

controllers, etc., are reviewed and evaluated. A dual-computer structure with an IMU

and a laser range finder is designed and tested. To facilitate easy integration of these

components, three versions of motherboards connecting all the essential avionics modules

are designed and assembled to various UAV platforms.

10

2.2 UAV Bare Platform Design

2.2.1 Review of UAV Platform Configuration

Single Rotor UAV Platforms

Single rotor helicopters have been adopted as UAV platforms due to their conventional

design. The accumulative technologies developed in large manned helicopters have made

the modeling and control of such UAV platforms very popular. Earlier research about

UAVs has been focused on this type of platform. Fig. 2.1 lists two representative UAVs

from industries and universities. Yamaha RMAX (Fig. 2.1(a)) is one of the early suc-

cessful UAVs which is widely used in agriculture and industry applications. Later re-

searchers begin to build their own customized UAVs based on radio-controlled (RC)

model helicopters 2.1(b). A comprehensive study is reported by [12], in which the hard-

ware configuration, software integration, aerodynamic modeling and automatic control

system are extensively covered.

(a) YAMAHA Rmax (b) NUS Helion

Figure 2.1: Two single rotor UAV platforms.

Single rotor UAVs have a typical fuselage size of 2.5 - 4 meters, making them ideal

platforms for long-endurance flight with larger payload capabilities. The larger fuse-

lage size also makes them more stable. For example, researchers [18] in Carnegie Mel-

lon University have realized autonomous landing using Boeing’s Unmanned Little Bird

(Fig. 2.2). Operating such a large UAV requires a team of human operators to aid the

missions, and its size limits its application in confined environments.

11

Figure 2.2: Autonomous landing of Boeing’s Unmanned Little Bird

Coaxial UAV Platforms

Coaxial helicopter is another popular type of VTOL platform. Compared with single

rotor helicopters, coaxial helicopters tend to be more compact by removing the tail rotor.

They also produce less noise since there is no interaction between the airflow from the

main rotor and tail rotors. They also produce better lift efficiency since all the rotors

are used to lift the fuselage. Besides, they avoid the dissymmetric lift during forward

flight, making them ideal UAV platforms with large payload and sufficient compactness.

The Russian Kamov helicopter design bureau has initiated and led the design of

coaxial helicopters in the industry. Fig.2.3(a) is a coaxial UAV named Kamov Ka-37,

which is designed for aerial photography, television and radio broadcasting, and several

military roles. It uses an engine with 45 kW power, lifting 250 kg total weight with a

operation range of 530 km and 45 minutes endurance.

Infotron from France has developed another coaxial UAV - IT180 (Fig. 2.3(b)), which

has been designed for military and civil security purposes. IT180 has a rotor diameter

of 1.8 m and can fly up to 120 minutes. It is propelled either by a 46 cc, 2 - stroke engine

or a brushless electric motor. The gasoline version IT180 allows for a maximum payload

of 5 kg (3 kg for the electrical version) which can be fastened on the top and/or at the

bottom of the structure.

A commercial coaxial UAV from Skybotix named as ‘CoaX’ is shown in Fig. 2.3(c).

The CoaX helicopter is the product of research project ‘muFly’ from ETH [25]. It is now

a micro UAV targeted at the research and educational markets. Weighing at 320 g, the

12

helicopter includes an IMU, a downward-looking and three optional sideward-looking

sonars, pressure sensor, color camera, and Bluetooth or WiFi communication1.

Fig. 2.3(d) shows a coaxial helicopter from National University of Singapore [81]. It

is fully customized from a toy helicopter named as ‘ESky Big Lama’. Onboard avionic

modules are customized and assembled to realize autonomous flight capabilities. Prelim-

inary indoor navigation is achieved using an onboard laser range finder. The modeling of

the helicopter is very complex since the blades are not rigid, and it is further complicated

by the aerodynamic interaction between the top rotor and the lower rotor.

(a) Ka-37 (b) France IT180

(c) Skybotics Coax (d) NUS FeiLion

Figure 2.3: List of coaxial UAV platforms.

Quadrotor UAV Platforms

Quadrotor platforms have become popular choices for UAV hobbyists and researchers.

Compared with single rotors and coaxial helicopters, they have relatively simpler me-

chanical structure by removing the linkages from motors to rotor blades. This makes

1http://www.ros.org/news/robots/uavs

13

the design and maintenance of the vehicle less time-consuming. Small-scale quadrotors

can also be assembled with protection frames enclosing the rotors, allowing for flights

through more challenging environments with a lower risk of damaging the vehicle or its

surroundings. Amateur pilots usually use this type of platform to mount high resolution

cameras for aerial photography, whereas researchers use this kind of platform to explore

high level algorithms, such as SLAM, path planning, etc.

Based on the quadrotor ‘Pelican’ from Ascending Technologies (Fig. 2.4(a)), re-

searchers in Technische Universität München (TUM) and MIT have mounted a stereo

vision camera and a laser range finder into ‘Pelican’. The quadrotor is capable of carry-

ing 500 g payload and continuously flying for 10 minutes. More creatively, the front rotor

is placed below the arm to avoid camera obstruction while keeping the center of gravity

low (see Fig. 2.4(c)). A laser range finder is mounted at the middle of the platform

which is in charge of sensing surrounding obstacles. It is also the main sensor to collect

information for mapping the environment. This UAV can perform fully autonomous

navigation and exploration in indoor environments, including take-off, flying through

windows, exploration and mapping, and searching for objects of interest. The whole

system has been proven to be robustly stable and practically realizable [1]. Using a

similar platform and sensor configuration, researchers in University of Pennsylvania [67]

have realized indoor multi-floor exploration (Fig. 2.4(d)). Another noteworthy quadro-

tor platform is the AR.Drone from Parrot shown in Fig. 2.4(b). It is equipped with two

cameras pointing forward and downward respectively, making it an ideal platform for

researchers in the computer vision community [24].

2.2.2 Comparison of VTOL Platforms

Table. 2.1 summarizes various performance indexes of the three VTOL configurations.

The table is adapted from [11] where a more comprehensive comparison of VTOL plat-

forms is given. The comparisons show that the coaxial configuration is the most stable

and least maneuverable near hover condition, while the quadrotor configuration is the

least stable and most maneuverable. Choices of the platform configuration depend on

the mission requirements. If maneuverability is of concern, the coaxial configuration

should be discarded. If payload and duration of flight are critical, the coaxial con-

figuration is the choice. In this thesis, the potential UAVs should have large payload

14

(a) Ascending Tech Pelican (b) AR.Drone from Parrot

(c) Quadrotor from TUM and MIT (d) Quadrotor used in Upenn

Figure 2.4: List of quadrotor UAV platforms.

capability with relatively low flight speed, as the UAV has to carry payload comparable

to its own weight and perform autonomous flights in confined environments, especially

forests. Therefore, we choose the coaxial helicopter and the quadrotor configuration.

Table 2.1: Comparison of three VTOL configurations (1 = bad, 4 = very good).

Single rotor Coaxial Quadrotor

Power cost 2 2 1
Control cost 1 4 3
Payload volume 2 4 3
Ease of payload packing 2 2 4
Maneuverability 4 2 3
Mechanics simplicity 1 2 4
Aerodynamics complexity 1 1 4
Low speed flight 4 4 4
High speed flight 2 1 3
Miniaturization 2 4 3
Survivability 1 2 2
Stationary flight 4 4 4
Total 26 32 38

15

2.2.3 Platform Selection and Design

To build a functional UAV platform, the bare platform’s frame and the avionic system

are the first two things to prepare. Focusing on the navigation capabilities of UAV, we

try to minimize the effort spent on the platform construction. For coaxial helicopters, we

take advantage of the development of RC model helicopters and select the commercially

available helicopter ‘Kaa-350’ as the basis. For quadrotors, it is straightforward to build

such a platform using basic parts, such as carbon tubes, electric motors, autopilots, etc.

We design and build the quadrotor platform from scratch. What’s more, the avionics

system design is of paramount importance and deserves special treatments, which shall

be illustrated in Section 2.3.

Coaxial UAV Platform

The ‘Kaa-350’ is a coaxial helicopter made in Germany according to the design of full

scale coaxial helicopters from the Kamov Design Dureau. This helicopter has a rotor

diameter of 0.7 m and weighs 990 g without battery. Its rotor head is equipped with

integrated hinges and shock resistant dampers. With the recommended configuration of

motors, ESCs and blades, it can fly safely with a total weight of 2.3 kg. Fig. 2.5 shows

the bare helicopter flying in the air by manual remote control. To increase its payload

capability, the ESCs and motors are changed to allow for a larger take-off weight.

This helicopter mechanics possesses the typical characteristics of a full-scale coaxial

helicopter. As shown in Fig. 2.6, the rotor blades are not assembled in order to better

illustrate the structure. The helicopter consists of two counter-rotating rotors: the

upper rotor and the lower rotor. The pitch angles of the two rotors are controlled by

the top and lower swashplates respectively. The two swashplates are always parallel to

each other since they are mechanically connected by three linkages which rotate with

the top swashplate. The upper rotor is equipped with a stabilizer bar through a Bell-

Hiller mixer which also influences the cyclic pitch of the upper rotor. The upper rotor

and lower rotor are driven by the same brushless direct current (DC) electric motor

through a chain of gears. The rotation speeds of the upper rotor and the lower rotor

are thus always the same. The main power source is a 3-cell lithium-polymer battery.

The collective and cyclic inputs from servos are transferred to the lower swashplate and

upper swashplate simultaneously, resulting in the dynamic movement of the helicopter

16

in the heave or pitch-roll direction. The yaw direction control is realized by changing

the collective pitch angle of the lower rotor. Fig. 2.7 shows the integrated platform after

upgrading the bare platforms and assembling the avionics system. Fig. 2.8 describes the

UAV flying in the air.

Figure 2.5: Kaa-350 coaxial helicopter.

H
Gy
Headlock
yroscope

Up

Top

Y

pper Rotor

p Swashpla

Lower Rot

Lower Sw

Moto

S

Yaw Contr

te

tor

washplate

r

Stabilizer b

ESC

ol

bar

Figure 2.6: The coaxial platform fuselage head.

Quadrotor Platform

The quadrotor platform is another UAV fully customized (Fig. 2.9 - 2.10) by NUS UAV

Team. The platform is designed to be applicable in both indoor and outdoor environ-

ments, such as suburban towns and forested areas. The platform is composed of carbon

fiber plates and rods with a durable acrylonitrile butadiene styrene (ABS) landing gear

17

Figure 2.7: Close view of the coaxial helicopter.

Figure 2.8: Coaxial helicopter flying in the air.

to reduce the bare platform weight. The overall dimensions are 35 cm in height and

86 cm from tip to tip. Different configurations of the rotor blade and the motor are

compared before an optimal design is achieved. The motors used for the platform are

740 KV T-Motors with Turnigy Plush - 25 A Bulletproof ESCs. The propellers are APC

12×3.8 clockwise and anti-clockwise fixed pitch propellers. Each motor and propeller

setup could generate 15 kN static thrust. The final bare platform’s main body weighs

1 kg. Its maximum total take-off weight reaches 3.3 kg with a 4 cell 4300 mAh lithium

polymer battery. We have tested that the platform was able to fly at 8 m/s for a period

of 10 to 15 minutes depending on the onboard payload weight and the battery volume.

The platform is also fully customizable in terms of sensor arrangement and is scal-

able such that additional computational boards could be mounted with a stack-based

18

Figure 2.9: NUS quadrotor virtual design.

Figure 2.10: NUS quadrotor platform with two onboard laser range finders.

design. As shown in Fig. 2.10, the platform is equipped with two scanning laser range

finders and other avionic systems. The above one is for detecting the environment in

the horizontal plane, and the bottom one is for scanning the vertical plane to measure

the height of the UAV. A front-facing camera is mounted for surveillance purpose. One

noteworthy thing is that the whole avionics system is mounted on the platform through

four mechanical isolators (CR1-100 from ENIDINE). Experiment results show that the

noise of acceleration measurements in x, y, z axis of the IMU decreases by 5 times com-

pared with that without any vibration isolation. The reduced noise of the acceleration

improves the accuracy of future state estimation. The vibration isolation also benefits

the laser range finder which can only withstand 20 g shock impact for 10 times.

19

2.3 Avionics System Design

2.3.1 UAV Function Blocks

A fully autonomous UAV should be able to accomplish the assigned missions without

any intervention of a human operator or external system help. This defines that all the

tasks in guidance, navigation and control (GNC) have to be carried out autonomously.

According to the level of autonomy defined in [37], the task elements in guidance have

the highest level of autonomy, while the task elements in navigation and control have

middle and lowest level of autonomy respectively.

Based on the level of autonomy, there are two approaches to design and develop a

functional UAV system: the top-down method and bottom-up method. The top-down

method starts with the highest level of autonomy, researching on tasks such as reasoning,

mission assignment, etc. This method treats the lower level tasks in navigation and

control as a black-box and assumes a simple point-mass model with some dynamic

constraints. On the other hand, the bottom-up method starts with the lowest level of

autonomy, dealing with the practical UAV platforms first. The usual working principles

follow a sequence including construction of UAV platforms, design of the avionics system,

modeling and control of the developed UAV, and so on. These two approaches are

adopted by different research groups and neither of these approaches has produced fully

autonomous UAVs yet.

In this research, we adopt the bottom-up method, dealing with the platform and

the avionics system first. Fig. 2.11 lists the major task elements in GNC on the left

and identifies the required avionics modules on the right. In different level of autonomy,

there are different required avionics modules. First, the tasks in guidance, such as

decision making and path planning, usually involve complicated state machines and

algorithms. Thus a high-performance computer is required, preferably with high CPU

frequency, large RAM space with minimum weight in a small size factor. Second, tasks

in navigation include perception and navigation. Perception tasks, such as mapping and

obstacle detection, also require high computation power. Furthermore, perception tasks

need various sensors, including laser range finders, sonars, stereo vision, etc. Tasks in

navigation require GPS, IMU and a mid-performance computer. Third, flight control

tasks require embedded autopilot, servo control board together with sensors used in the

20

navigation tasks like GPS and IMU. The details of the related avionics modules are

presented in section 2.3.2.

• Reasoning and cognizance
• Decision‐making
• Path planning
• Waypoint sequencer

Guidance

• Perception

• State estimation

Navigation

 Obstacle detection
 Mapping
 Object recognition

 GPS‐based
 GPS‐less

• 3D position and velocity
• Attitude control

Flight Control

Inertial measurement unit

Servo control board

Perception sensors:
• Laser range finder
• Radar
• Sonar
• Monocular camera
• Stereo vision

High‐performance computer

GPS/INS

Embedded auto‐pilot

Mid‐performance computer

GNC tasks Avionic modules

UAV functional blocks with corresponding required avionic modules

Le
ve
l o
f a
ut
on

om
y

Figure 2.11: UAV functional blocks with the corresponding required avionics modules.

2.3.2 Avionics System Components

Fig. 2.11 has identified the required avionics components for a functional UAV system.

They are mainly categorized into three groups: the perception group, the processing

group and the implementation group. The perception group includes interoceptive sen-

sors, such as IMUs and magnetometers, and exteroceptive sensors, such as GPS, sonars

and laser range finders. The processing group includes onboard computing units of

various CPU processor (Intel i7 or ARM A15, etc.) and failsafe-related modules. The

implementation group includes other modules related to practical considerations such

as motors, servos, power regulators and level shifters. This section presents an overview

of the state-of-the-art avionics modules suitable for UAV applications.

21

Avionic System Stucture

IMU	Sensor

Range	Sensor

Vision	Sensor

Servo	Controller

RC	Receiver

Fail‐safe	

Motors

Servos

Unit	1

Unit	2

Embedded	
Computer

Perception Processing	1 ActuationProcessing	2

Figure 2.12: UAV avionics system diagram.

Inertial Measurement Units

An IMU is the key sensor to detect the linear acceleration and angular rate of the plat-

form, providing the essential measurements for future modeling and control of UAVs.

Due to the development of MEMS technology, the state-of-the-art IMUs usually incor-

porate accelerators and gyroscopes to measure the 3-axis accelerations and the 3-axis

angular rates. Besides the raw sensor outputs, modern IMUs often include attitude

estimation algorithms to output the 3-axis attitude (roll, pitch, yaw) of the platform.

Fig.2.13 shows four state-of-the-art IMUs from different companies. Table 2.2 compares

the specifications of the four IMUs in terms of measurement range, update rate, weight,

and so on. All of them are of small size and light weight, making them attractive for

real-time applications for small-scale UAVs.

Range Sensors

Range sensors are devices that capture the relative position of the surrounding envi-

ronment with respect to the UAV body. The range information could be measured at

a single point, across a scanning range or a full depth image at every point. Different

types of range sensors utilize various types of waves, including infrared wave, ultrasonic

wave and laser (light) wave, etc. An object is said to be detectable with respect to a

particular kind of wave means the object surface can reflect that kind of wave effectively.

The distance from the sensor to the interested object can be calculated by multiplying

the wave speed and the return time (from emitting to reflecting to receiving) of the wave

and divided by two. Table 2.3 lists the typical specification of range sensors used for

mobile robots and Fig. 2.14 shows four representative sensors of each type.

22

(a) 3DM-GX3 from MicroStrain (b) Colibri from Trivisio

(c) IG - 500N from SBG (d) ArduIMU from DIY Drones

Figure 2.13: State-of-the-art IMUs suitable for UAV applications.

Table 2.2: Overview of the specifications of popular IMUs.

Specification / Model 3DM-GX3 Colibri IG-500N ArduIMU

Accelerometer range (g) 5 16 5 3

Gyroscope range (deg /s) 300 1500 300 300

Static accuracy (deg) 0.5 0.5 0.5 N.A

Dynamic accuracy (deg) 2.0 2.0 1.0 N.A

Update rate (Hz) 1000 100 100 50

Interface options
USB 2.0

USB
RS232

TTL
TTL TTL

Supply voltage (V) 3.1 5.5 5 3.3 30 5

Power consumption (mW) 400 200 800 200

Weight (g) 11.5 22 48 6

Size (mm) 40× 20× 9 30× 30× 13 49× 36× 25 39× 29× 3

The most accurate range sensor is the scanning laser range finder (Fig.2.14(d)). Laser

beams are well focused and reliable. When a non-maximum range value is detected, it is

certain there is an object at the specified point. The working principle of a laser range

finder often operates on the time of flight principle. A laser pulse in a narrow beam is

first sent towards the object. The beam is reflected by some targets and returned to the

23

Table 2.3: Typical specifications of range sensors.

Type
Ultrasonic Infrared

LiDAR Radar
Sensor Sensor

Wave type 20 - 50 KHz 700 - 1400 nm 600 - 1000 nm 2.7 - 4.0 mm
Range (m) 15 0.1 - 0.8 < 250 < 250
Power (W) < 1 < 0.2 4− 36 < 10
Weight (kg) < 0.8 < 0.01 0.16− 4.5 < 1

(a) GP2D12 IR Sensor from Sharp (b) Roke miniature radar altimeter

(c) Ultrasonic sensor from MaxBotix (d) Hokuyo UTM-30LX Laser Scanner

Figure 2.14: List of range sensors.

sender. It’s by measuring the time difference that the distance to the target is derived. If

a mirror reflects the laser beam and rotates in a certain frequency, it becomes a scanning

laser range finder. The Hokuyo UTM-30LX shown in Fig.2.14(d) is the state-of-the-art

scanning range finder, which is widely used in UAV platforms.

There are also 3D laser scanners available in the market. Fig. 2.15(a) is a new product

just announced in Sept. 2014 from Velodyne2. It has low power consumption (< 10 W),

light weight (about 600 grams), compact footprint (100 mm× 65 mm), and dual return

2http://velodynelidar.com/lidar/lidar.aspx

24

option. Due to these promising specifications, it is believed to be a revolutionary laser

scanner which will be used in UAV applications extensively in future. Fig. 2.15(b) shows

another 3D laser scanner which scans four planes simultaneously with a weight of 1 kg,

which is normally equipped in ground vehicles.

(a) Velodyne Puck (b) SICK LD-MRS

Figure 2.15: Two 3D laser scanners from Velodyne and SICK.

Vision Sensors

Compared with the aforementioned active sensors in Fig. 2.14, the non-active range

sensing technologies have gained popularity, especially the vision sensing technologies.

Vision sensing technologies possess a series of advantages: they can provide rich infor-

mation of objects of interest and the surrounding environments, such as color, structure

of scene and shape of objects; they require natural light only and do not depend on

any other signal source, such as beacon stations or satellite signals; they are generally

low-cost and light-weight compared to other sensing systems such as radars.

Small and light cameras are becoming essential components for miniature and micro

UAVs. Images captured by the onboard camera are either processed online or transmit-

ted to the ground station where they are processed with the powerful ground stations.

Some cameras are equipped with wireless communication function (see Fig. 2.16(a))

which could send the image sequence to the ground station for further vision processing.

The computed results are then sent back to the onboard avionics system for control

purposes. This approach is broadly used because vision processing algorithms usually

require intensive computation that normal embedded computers cannot handle. The

other approach is to process images with onboard embedded computers. This approach

25

requires powerful embedded computers as well as efficient vision processing algorithms.

Fig. 2.16(b) shows a camera which communicates with the embedded computers directly.

On the other hand, an omni-directional camera can also be used to capture all vision

information around the air vehicle with 360◦ field of view (Fig. 2.16(c)).

(a) 2.4 GHz wireless CMOS camera (b) E-CAM32 OMAP GSTIX

(c) Omnidirectional camera (d) Bumblebee2 from Point Grey

Figure 2.16: List of vision sensors.

The most straightforward approach to generate 3D depth map is the stereo vision

technology. By projecting the same point in a scene to two inter-calibrated cameras

and finding the disparity of the matching projected points in the two images, the depth

information could be extracted using simple calculation. Even though building a stereo

head with two calibrated camera is a trivial task itself, processing the two images and

getting accurate 3D depth information require intensive computation and tremendous

effort in the parameter tuning in different environment. Fortunately, there are available

stereo vision systems in the market, such as Bumblebee2 produced by Point Grey3 shown

in Fig. 2.16(d). There is another customized stereo camera system equipped with an

IMU for SLAM applications (Fig.2.17). It is developed by researchers in ETH [57] to

provide FPGA-preprocessed data, such as visual keypoints, high-quality rate gyrocope

3http://ww2.ptgrey.com/stereo-vision/bumblebee-2

26

and accelerometer measurements, and hardware-synchronized calibrated images. This

device is still under development4 and it is believed to be an ideal sensor suite for UAVs.

A Synchronized Visual-Inertial Sensor System with FPGA
Pre-Processing for Accurate Real-Time SLAM

Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl,
Stefan Leutenegger, Paul T. Furgale and Roland Siegwart1

Abstract— Robust, accurate pose estimation and mapping
at real-time in six dimensions is a primary need of mobile
robots, in particular flying Micro Aerial Vehicles (MAVs), which
still perform their impressive maneuvers mostly in controlled
environments. This work presents a visual-inertial sensor unit
aimed at effortless deployment on robots in order to equip them
with robust real-time Simultaneous Localization and Mapping
(SLAM) capabilities, and to facilitate research on this important
topic at a low entry barrier.

Up to four cameras are interfaced through a modern ARM-
FPGA system, along with an Inertial Measurement Unit (IMU)
providing high-quality rate gyro and accelerometer measure-
ments, calibrated and hardware-synchronized with the images.
This facilitates a tight fusion of visual and inertial cues that
leads to a level of robustness and accuracy which is difficult to
achieve with purely visual SLAM systems. In addition to raw
data, the sensor head provides FPGA-pre-processed data such
as visual keypoints, reducing the computational complexity of
SLAM algorithms significantly and enabling employment on
resource-constrained platforms.

Sensor selection, hardware and firmware design, as well
as intrinsic and extrinsic calibration are addressed in this
work. Results from a tightly coupled reference visual-inertial
SLAM framework demonstrate the capabilities of the presented
system.

Index Terms— Visual-Inertial SLAM System, Camera, IMU,
FPGA, Calibration, Sensor Fusion.

I. INTRODUCTION

Many mobile robots require on-board localization and
mapping capabilities in order to operate truly autonomously.
Control, path planning, and decision making rely on a timely
and accurate map of the robots surroundings and on an
estimate of the state of the system within this map.

Accordingly, Simultaneous Localization and Mapping
(SLAM) has been an active topic of research for decades
[1]. Tremendous advances led to successful employments of
SLAM systems on all sorts of platforms operating in diverse
environments. Different interoceptive and exteroceptive sen-
sors such as 2D and 3D laser scanners, wheel odometry,
cameras, inertial sensors, ultrasonic range finders, and radar,
amongst others, provide the necessary data.

Yet it is often a challenge to equip a platform with a
reliable and accurate real-time SLAM system that fulfills
payload, power, and cost constraints. A “plug-and-play”
SLAM solution that achieves all requirements and runs ro-
bustly under the given conditions is seldom readily available,

1 Janosch Nikolic and Joern Rehder contributed equally to this work. All
authors are with the ETH, the Swiss Federal Institute of Technology Zurich,
Autonomous Systems Lab (www.asl.ethz.ch), Tannenstrasse 3, CLA, CH-
8092 Zurich, Switzerland.

Fig. 1: The SLAM Sensor unit in a fronto-parallel “stereo”
configuration(front- and side-view). The sensor interfaces
up to four cameras and incorporates a time-synchronized
and calibrated inertial measurement system. Access to high
quality raw- and pre-processed data is provided through
simple interfaces.

and thus significant engineering efforts often have to be
undertaken.

Visual SLAM systems that rely on cameras have re-
ceived particular attention from the robotics and computer
vision communities. A vast amount of data from low-cost,
lightweight cameras enables incredibly powerful SLAM or
structure-from-motion (SfM) systems that perform accurate,
large-scale localization and (dense) mapping in real-time [2],
[3]. However, SLAM algorithms that rely only on visual cues
are often difficult to employ in practice. Dynamic motion, a
lack of visible texture, and the need for precise structure and
motion estimates under such conditions often renders purely
visual SLAM inapplicable.

Augmenting visual SLAM systems with inertial sensors
tackles exactly these issues. MEMS Inertial Measurement
Units (IMUs) provide valuable measurements of angular
velocity and linear acceleration. In tight combination with
visual cues, this can lead to more robust and accurate
SLAM systems that are able to operate in less controlled,
sparsely textured, and poorly illuminated scenes while un-
dergoing dynamic motion. However, this requires all sensors
to be well calibrated, rigidly connected, and precisely time-

Figure 2.17: The SLAM sensor suite developed by ETH [57]. The suite provides visual keypoints
provided by onboard FPGA together with rate gyroscope and acceleration measurements.

Embedded Computers

Due to the size and weight constraints of small-scale UAVs, the onboard embedded

computers have to be light and small. The embedded computers are responsible for all

the computation tasks: taking in information from the sensors (IMU sensor, range sensor

and vision sensor), applying data fusion, executing control laws, outputting control

signals to the servo controller, online data logging, and communication with the GCS.

In this research, we adopt a dual-computer configuration: one for the intensive

hight-level tasks and the other one for the low-level tasks. For the high-level computer,

Mastermind (Fig. 2.18) from Ascending Technologies is used. It features Intel i7 pro-

cessor with 4 GB RAM with a weight of 325 g. It offers a wide range of interfaces, such

as FireWire, USB 2.0 & 3.0, which could be used to connect different peripheral devices

including cameras, laser range finders, and so on. The high-level computer is mainly for

tasks requiring intensive computation, such as path planning, vision processing.

4http://www.skybotix.com/

27

The low-level tasks use a Gumstix Overo Fire computer-on-module as shown in

Fig. 2.19. It incorporates Texas Instruments OMAP3530 processor with 720 MHz

speed in a very compact size (58 mm× 17 mm× 4.2 mm). The Gumstix module in-

cludes 802.11b/g WiFi which can be used for online debugging and communication to

the ground control station. The low-level tasks include control law implementation,

trajectory generation, sensor fusion, etc.

Figure 2.18: High performance onboard computer Mastermind.

Figure 2.19: Gumstix Overo Fire computer-on-module.

Servo Controllers

The autonomous control signals from the embedded computer do not directly control

the motors and servos. The outputs of the embedded computer need to be transfered

28

to a servo controller via TTL serial signal and converted to multiple channels pulse-

width modulation signals (PWM). Besides the signal conversion, the servo controller

also provides a fail-safe function. The servo controller takes in the outputs of the re-

mote controller and the autonomous controller at the same time. A switch signal from

the remote controller controls whether the servo controller outputs autonomous control

signal or manual control signal. This fail-safe function makes sure human intervention

is instantly triggered in case of emergency or program malfunction. The manual con-

trol functionality is also necessary for system model identification, in which a sinusoidal

manual input is required to stimulate the UAVs in roll, pitch, yaw and heave directions.

There are two versions of servo controller used in the UAV platforms. Fig. 2.20(a)

and 2.20(b) show a two-board configuration controller where the signal conversion and

multiplexing are implemented on two individual boards. These two boards are commer-

cial of-the-shelf products costing less than $20 each. Fig. 2.21 shows another type of

servo control board developed by Pontech5, which is a customized board, integrating

the signal conversion and multitasking into a single PCB. Both versions of the servo

controller have been used in our UAV platforms.

(a) Micro Serial Servo Controller (b) Fail-safe multiplexer

Figure 2.20: Two-board configuration of servo control board.

2.3.3 Avionics System Integration

To integrate the modules presented above is not a trial process. A typical avionics

system is shown in Fig. 2.22, including sensors such as an IMU, a magnetometer, a GPS,

a scanning laser range finder, a camera and two central processing units. Every arrowed

5http://www.pontech.com/details/138

29

Figure 2.21: One-board configuration of servo control board: UAV100.

line in Fig. 2.22 represents one or more physical wires connecting the two components.

Serial communication is established between the two gumstix units. One gumstix is for

the autonomous control of the helicopter while the other one is for processing image

sequences captured by the camera. Serial communication requires three wires: Rx, Tx

and GND. The control gumstix also reads the outputs of onboard sensors, in which the

IMU need four wires for serial communication and the laser range finder requires four

wires for USB communication. The control gumstix also generates autonomous control

signals which are passed to the servo controller using serial port, requiring three more

wires. Manual control signals from a human pilot are transmitted to the receiver via a

2.4 GHz radio and fed into the multiplexer using four servo cables. Connecting all these

components using jump wires is very messy and the connected system is prone to failure

due to the vibrations in flight.

To simplify the assembly process of these components, a type of motherboard called

LionHub is designed to connect them and provide essential powers, reducing the messy

wires among these components. LionHub connects the main processor, IMU, servo

controller and provides ports for power supply, serial communication and servo output.

Various assembly holes are designed to mount the above modules. The LionHub also

improves the robustness of the avionics system against mechanical vibration during

flight. With the introduction of LionHub, messy jump wires are minimized to improve

the reliability of the system.

Design of the avionics system has to cater to different requirements. Three versions

of LionHubs have been developed to facilitate the research work both in this report and

30

Receiver

Control

Gumstix

2.4GHz radio

Vision Gumstix

Multiplexer

Servo Controller

IMU GPS Magnetometer

Tail Servo

Ground Control Station Manual Control

WiFi

Camera

Laser

 Scanner

LionHub

Headlock

Three Servos

to swashplate

Figure 2.22: A typical avionics system configuration for coaxial helicopter.

other academic activities in NUS UAV group. Table. 2.4 summarizes the key compo-

nents of all the three LionHubs. LionHub V1 (Fig. 2.23) is a low-cost avionics system

featuring ArduIMU as the main IMU. It is targeted for applications requiring low ac-

curacy measurement and compact size. It has been used in early projects such as the

indoor coaxial helicopters developed in [79]. LionHub V2 (Fig. 2.24(a)) is a high per-

formance avionics system featuring IG-500N as the IMU and other abundant interface

options, such as USB and serial ports. It has been used in both quadrotors and sin-

gle rotor helicopters. Fig. 2.24(b) presents one of its application in an Align T-Rex 90

scale helicopter with other avionics components such as a scanning laser range finder

and vision computers. This helicopter took part in the 2nd AVIC Cup International

UAV Grand Prix6, Beijing, in September of 2013 and won the 1st place in the final

round. Fig. 2.25(a) shows LionHub V3 with similar functions but has a much smaller

footprint. This is specifically designed for IMAV20147 held in Delft, the Netherlands,

2014. In this competition, five quadrotors are equipped with LionHub V3 with different

peripheral device configurations. All the five quadrotors have flied autonomously in the

competition and helped our team to win the 1st place in IMAV2014. In conclusion,

the developed LionHubs in this study have been proven to be robust and user-friendly,

laying the foundation for high-level algorithm design and implementation.

6http://uav.ece.nus.edu.sg/uavgp.html
7http://www.imavs.org/2014/

31

Table 2.4: Summary of three LionHubs.

LionHub V1 LionHub V2 LionHub V3

Processor Gumstix Overo Fire Gumstix Overo Fire Gumstix Overo Fire
Extension Gumstix Summit Gumstix Pino-TH Gumstix Pinto-TH
Power input 4.5-6 V 13-18 V 13-18 V
Onboard power 5V 12 V, 5 V 12 V, 5 V
IMU ArduIMU IG-500N Pixhawk8

Interface
N.A

Serial TTL, USB Serial TTL, USB
option RS-232 RS-232
Size 60 mm×100 mm 110 mm×140 mm 90 mm× 90 mm

Figure 2.23: LionHub V1: first design featuring low cost and compact volume.

Flight control computer
Gumstix

Servo controller
UAV100

Navigation sensor
IG500N

(a) LionHub V2

Vision computer

IMU

Laser scanner

Camera

LionHub V2

(b) LionHub V2 on helicoptor for UAVGP 2013.

Figure 2.24: LionHub V2 and its application in T-Rex 90.

2.4 Conclusion

In this chapter, we have presented the design of UAV platforms, including the bare

platform evaluation and the design of onboard avionics system. For the bare platform

development, three common VTOL concepts are evaluated: single rotors, coaxial heli-

copters and quadrotors. A comparison of the three configurations leads to the conclusion

32

(a) LionHub V3

LionHub V3

(b) LionHub V3 on quadrotor for IMAV2014

Figure 2.25: LionHub V3 and its application in quadrotor.

that coaxial helicopters and quadrotors are two promising platforms deserving more in-

vestigation. Two UAV platforms are then designed and constructed, including a coaxial

helicopter and a quadrotor. The coaxial UAV is based on a COTS RC helicopter –

‘Kaa-350’. Modification of ESC, blade and motor are performed to increase the payload

capability. The quadrotor is built from scratch due to its simple mechanical structure.

Then we present the design of UAV onboard avionics system. The requirements

for the avionics system according to the GNC tasks of UAV are identified. Various

tasks need different avionics modules, ranging from IMUs, range sensors, embedded

computers to servo controllers. A review of the state-of-the-art avionics components is

performed to analyze their applicability to small scale UAVs. With the selected avionics

components, an integrated board ‘LionHub’ is designed to reduce the wiring and to

increase the system robustness against vibration during flight. Three versions of boards

have been designed to meet different mission requirements, including routine flight tests

and international competitions.

33

Chapter 3

Modeling and Control of UAV

Platforms

3.1 Introduction

For UAV navigation in obstacle-strewn and GPS-denied environments, the UAV plat-

form itself needs to maintain high attitude stability and achieve waypoint tracking capa-

bility at the same time. As most modern control techniques are model-based, a precise

dynamic model of the UAV needs to be derived first. Although it is always desirable

to derive a nonlinear dynamic model to cover all flight conditions, it is practically fea-

sible to obtain linear models at different operation points. In cluttered environments,

the controlled UAV usually operates in a near-hover condition and avoids a high flight

speed due to an extremely short time-to-collision. A single linearized model at this par-

ticular flight condition in thus sufficient. To derive a linear model of a UAV platform,

the first-principle modeling method and the system identification method are adopted

in a complementary manner. The first-principle method focuses on the mathematical

formulation of the system based on the law of physics, giving a clear structure of the

dynamics model, while the system identification method seeks to identify the model

parameters in the region of operating point by processing the recorded flight data.

We apply the above two techniques for the modeling of the coaxial helicopter and the

quadrotor constructed in the last chapter. Coaxial helicopters have more complex models

than quadrotors, since they rely on the flapping of the blades to achieve horizontal

movements. The same movements for quadrotors are obtained by adjusting the rotation

34

speed of the four rotors. Besides, the complex interaction of the upper rotor and the

lower rotor in coaxial helicopters has made modeling of them quite challenging. We avoid

the study of the aerodynamics of coaxial helicopters and derive a linear model using the

two modeling techniques. Starting from the first principle approach, the model structure

is analyzed in detail in Section 3.2 and the model parameters of the subsystem dynamics

are identified in the frequency domain.

Quadrotor platforms have gained more popularity in research labs [68, 5, 31], which is

mainly due to the simple dynamics model and the wide availability of quadrotor autopilot

systems. Driven by four motors, the quadrotor can be easily maneuvered by changing

the rotation speed of the four rotors. The mechanical symmetry of quadrotor ensures

a decoupled dynamics model. The vast availability of attitude controllers for quadrotor

also accelerates its development, some of them are even open source in both hardware

and software, such as Pixhawk from ETH1 and Arducopter2. Our developed quadrotor

uses ‘NAZA-M2’ to stabilize the angular dynamics, thus only the outer-loop model and

control need to be investigated. The outer-loop model exhibits typical second order

system dynamics which are to be extracted using the frequency domain identification.

Once the model is available, the autonomous control law based on robust perfect tracking

is designed. Experiment results of the quadrotor following some predefined way points

are given in Section 3.3.4. Part of the work about the quadrotor modeling and control

has been presented in [80, 19].

3.2 Modeling of Coaxial Helicopter

3.2.1 Comprehensive Dynamics Model Structure

The coaxial helicopter has two rotors driven by the same electric motor and the rotating

speed of the two rotors can not be adjusted during flight. The motion of the helicopter

is achieved by changing the pitch angles of the upper rotor and the lower rotor in various

combinations. Fig. 3.1 shows the helicopter main body. With the control inputs denoted

in Table. 3.1, we can connect the control input to the corresponding helicopter motions.

The upper rotor and lower rotor are connected by two swashplates. The two swashplates

are always parallel to each other since they are connected by three mechanical linkages.

1https://pixhawk.ethz.ch/
2http://copter.ardupilot.com/

35

The collective input lifts the swashplates high or pulls them down to change the collective

pitch angles of the upper and lower rotors, causing the helicopter to move in the heave

direction. The yaw motion is achieved by adjusting the collective pitch angle of the

lower rotor using another servo. One point to note is that the yaw channel control δped

is first mixed with the output of the headlock gyro before it is applied to the lower rotor.

This block serves to stabilize the yaw angular rate for easy manual control. The cyclic

inputs δlat and δlon tilt the upper and lower swash-plates and generate flapping motion

for both rotors, creating the longitudinal and lateral movements of the helicopter.

H
Gy
Headlock
yroscope

Up

Top

Y

pper Rotor

p Swashpla

Lower Rot

Lower Sw

Moto

S

Yaw Contr

te

tor

washplate

r

Stabilizer b

ESC

ol

bar

Figure 3.1: Fuselage head of coaxial helicopter with labeled key components.

Table 3.1: Physical meaning of control input variables

Variables Physical meaning Range

δlat control deflection for lateral cyclic pitch of main blades [−1, 1]
δlon control deflection for longitudinal cyclic pitch of main blades [−1, 1]
δcol control deflection for collective pitch of upper and lower blades [−1, 1]
δped control deflection for collective pitch of the lower blades [−1, 1]
δ̄ped control deflection for yaw-stability-augmentation controller [−1, 1]

The nonlinear model of the coaxial helicopter is expressed in the following compact form,

ẋ = f(x,u,w) , (3.1)

36

Headlock
controller

Lower rotor
flapping dynamics

Upper rotor

Fuselage

Lower rotor

+ 6‐DOF
rigid‐body
dynamics

Forces and Moments

Fb

Mb
Kinematics

, ,

Vwind
‐

, ,

, ,

mg

,

, ,

̅

,

Upper rotor
flapping dynamics

	
,

,

Figure 3.2: Model structure of coaxial helicopter.

where x is the state vector, u is the input vector, and w is the wind velocity,

x = (x y z u v w φ θ ψ p q r aup bup adw bdw rf)
T,

u = (δlat δlon δcol δped)T,

w = (wu wv ww)T.

The physical meanings of the state are listed in Table 3.2. There are two coordinate

frames in Table 3.2 including the north-east-down (NED) frame and the body frame.

They are defined as Fig. 3.3 for the sake of navigation expression. The NED frame is

stationary with respect to a static observer on the ground and the body frame is fixed

at the center of gravity of the helicopter.

Figure 3.3: Definition of NED frame On and body frame Ob.

To build a mathematic model of the system in Fig. 3.2, all the subsystems in the

chain from the left side input to the right side output have to be analyzed. The 6

degree of freedom (DOF) rigid body dynamics and the kinematics are general principles

37

Table 3.2: Physical meaning of state variables

Symbol Physical Meaning Unit

x
pn, position in the local NED frame my

z
u

vb, linear velocity in the body frame m/sv
w
φ roll

pitch
yaw

 attitude angle radθ
ψ
p

ωb, angular velocity in body frame rad/sq
r
aup longitudinal

lateral

}
flapping angle of upper blades rad

bup
adw longitudinal

lateral

}
flapping angle of lower blades rad

bdw
rf controller state of yaw stability augmentation NA

which govern all rigid body motions. It is the mechanisms producing the force Fb

and the moment Mb that make modeling coaxial helicopter special. In the following

sections, the rigid body dynamics and kinematics are first covered. We then analyze

each subsystem in detail and identify the parameters.

Rigid Body Dynamics and Kinematics

The kinematics model transforms the translational and rotational motions from the

body coordinate to the local NED coordinate. The translational motion transformation

between body frame and local NED frame is,

ẋ

ẏ

ż

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

︸ ︷︷ ︸

Rn/b

u

v

w

 (3.2)

where Rn/b represents the transformation matrix from the body frame to the local NED

frame and s∗ = sin (∗), c∗ = cos (∗). The transformation of rotational motion from body

frame to the local NED frame is given by:

38

φ̇

θ̇

ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

︸ ︷︷ ︸

S−1

p

q

r

 , (3.3)

where t∗ = tan (∗), which does not hold for θ = ±90o. Eq. 3.3 suffices when the heli-

copter mainly operates in near-hover conditions, otherwise a quaternion representation

is recommended.

The body frame translation and rotation can be formulated using the Newton-Euler

equations, which describe the relations between the forces and moments on the rigid

body and its induced translation and angular velocity.

u̇

v̇

ẇ

 =
1

m

Fx

Fy

Fz

−

p

q

r

×

u

v

w

 , (3.4)

ṗ

q̇

ṙ

 = J−1

Mx

My

Mz

−

p

q

r

× J

p

q

r

 , (3.5)

where Fx, Fy, Fz are projections of the net force, Fb, onto the body-frame x-, y-, z-axis,

and Mx, My, Mz are projections of the net torque, Mb, onto the body-frame x-, y-,

z-axis and ‘×’ denotes cross product of vector. m is the helicopter mass and J is the

tensor of inertia matrix defined as,

J =

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 , (3.6)

where the off-diagonal elements Jxy, Jxz, Jyz are negligible for small-scale helicopters.

From Eq. 3.2 to Eq. 3.5 the only two parameters need to identify are the helicopter

massm and the platform moment of inertia J. The mass of the platform can be measured

by a weighing scale. The moment of inertia can be measured by the trifilar pendulum

method [13]. As explained in Fig. 3.4, the UAV is suspended by three flexible lines

39

UAV

(a) Trifilar pendulum method. (b) Measurement setup of trifilar pendulum.

Figure 3.4: Testing of moment of inertia using trifilar pendulum.

with equal length l. The distances between the attached points and CG are l1, l2, and

l3, respectively. The UAV is perturbed along the line direction and oscillates around

the body-frame axis (z axis in Fig.3.4(b)). The oscillation period tI is recorded. The

moment of inertia along this axis is given by,

Jzz =
mg l1 l2 l3 t

2
I

4π2 L
· l1 sinα1 + l2 sinα2 + l3 sinα3

l2 l3 sinα1 + l1 l3 sinα2 + l1 l2 sinα3
. (3.7)

The same procedure can be applied to x and y axes.

Compositions of Forces and Moments

The rigid-body dynamics listed in Eq.3.4 - 3.5 has built the connection between the forces

and motions with the body frame translational and rotational velocity. The next task

is to identify the composition of the forces and moments so that the complete model is

derived. The two coaxial rotors provide the main lift for the helicopter and the moments

are also induced by tilting the rotating disk. Other effects such as the gravity and the

body resistance relative to the air should be also considered. The forces applied on the

40

body can be expressed as Eq. 3.8, in which the first term on the right side corresponds

to the summed thrust generated by the upper and lower rotor Ti, (i ∈ {up, dw}). The

second term is the projection of gravity force mg on the body frame. The third term is

the fuselage force which is mainly caused by the air resistance in the horizontal direction

and the downwash effect from the lower rotor in vertical direction.
Fx

Fy

Fz

 =
∑

Ti +mg

−sθ

sφcθ

cφcθ

+

Xfs

Yfs

Zfs

 , (3.8)

Mx

My

Mz

 =
∑

li ×Ti +
∑

Kβ

bi

ai

0

+
∑

Qd,i, (3.9)

When the upper and lower rotor are tilted by the swashplates, the thrust of vectors

Ti does not pass through center of gravity, creating torques related in the roll and

pitch direction. They are expressed as lup ×Tup and ldw ×Tdw, where lup and ldw are

the distance from the upper rotor and lower rotor to the center of gravity respectively.

Flapping of the upper rotor and lower rotor causes torques on the rotor hub, which can

be described in the second term of Eq. 3.9, where Kβ is the spring constant for both

the upper and lower rotor. In addition, the rotation of the upper rotor and the lower

rotor both have the drag torque besides the lift forces, which are denoted as Qd,up and

Qd,dw respectively.

To build the comprehensive nonlinear model of the coaxial helicopter, the key lies in

accurate aerodynamic analysis of the coaxial rotors. The relations between the pitch an-

gle of the blade with the lift and drag force generated on the blade need to be presented

using mathematics equations. Details of the aerodynamics analysis of the coaxial heli-

copter can be found in [43], in which the authors use blade element momentum theory

(BEMT) to develop in analytical formulation for propeller analysis. Interested readers

can refer to the paper for the details. For our case, the UAV does not need to perform

any aggressive maneuvering. At hover condition, the total thrust of the coaxial rotors

is approximately the same as the gravity force of the platform mg.

41

3.2.2 Linear Dynamics Model and Parameter Identification

There are four subsystem dynamics of the coaxial helicopter, including roll, pitch, heave

and yaw dynamics. Due to the flapping of the tip-path-plane (TPP), there are strong

coupling effects between the roll and pitch dynamics. The two dynamics are usually

lumped to the same subsystem to capture the angular responses of helicopter to the

cyclic inputs. It constitutes the core of helicopter dynamics [54] as lateral an longitudinal

movement are more important for UAV navigation. The heave and the yaw dynamics

are independent, which can be treated separately. They are less important in the sense

that the UAV flying in the air will maintain its heading and height for most of the time.

In the following sections, the three subsystems’ dynamics will be presented with the

identification of the corresponding parameters.

Roll Pitch Dynamics

The coaxial platform consists of two contra-rotating rotors. The top rotor includes

a stabilizer bar coupled to the top rotor blade through Bell-Hiller mixer. The lower

rotor contains only two blades without stabilizer bar. The upper rotor and the lower

rotor receive the same cyclic input (δlon, δlat) since the top and bottom swash-plates

are always parallel via the mechanical linkages. To minimize the overall complexity

of the model, the two counter rotating rotor discs are treated as one equivalent rotor

disc and their flapping angle are unified as as and bs. This assumption is valid with

the condition that the helicopter does not perform rapid maneuvering. It also makes

it simpler for the modeling of the roll-pitch dynamics, while still maintaining moderate

accuracy. According to [13], the flapping dynamics subsystem could be represented in

the following state space model:

ṗ

q̇

ȧs

ḃs

=

0 0 0 Lb

0 0 Ma 0

0 −1 −1

τ

Ab
τ

−1 0
Ba
τ
−1

τ

p

q

as

bs

+

0 0

0 0

0 A′lon

B′lat 0

δlat
δlon

 , (3.10)

where Lb and Ma are obtained by combining Eq.3.5 and Eq.3.9. The total thrust from

the coaxial rotor is assumed to be equal to the gravity force mg.

42

Lb =
mgHmr +Kβ

Jxx
, Ma =

mgHmr +Kβ

Jyy
, (3.11)

where Hmr is the average of the upper rotor hub distance lup and the lower rotor hub

distanceldw to the center of gravity. The rotor spring constant Kβ, the lateral and

longitudinal control derivatives B′lat, A
′
lon, the lateral and longitudinal control delay

τlat, τlon, and the equivalent flapping time constant τ are to be identified via frequency

domain identification. The coupling terms Ab and Ba are neglected.

The flapping dynamics identification makes full use of a toolkit called CIFER de-

veloped by the U.S. Army and NASA specifically for rotorcraft applications [54]. It

incorporates a range of utilities to support the various steps of the identification process.

Flight tests featuring frequency-sweep input in the longitudinal and lateral directions

are performed multiple times. During the flights, the control inputs and the helicopter

angular rates are recorded online with a sampling rate of 50 Hz. CIFER identifies the

model parameters by searching for the best-fit parameters to match frequency responses

between the flight test data and the hypothetic model. Fig. 3.5-3.6 shows two on-axis

angular rate responses to the cyclic input. The coherence for both on-axis directions

remain above 0.6 up to 30 rad/s. This good coherence indicates the good linearity of

the helicopter in hover flight [76]. Table. 3.3 lists the value of the identified parameter

together with their Cramer-Rao percent and insensitivity. The Cramer-Rao percent and

insensitivity are less than 15% and 5% respectively, indicating the high accuracy of the

identified parameter. Time-domain verification is also performed with another set of

flight test data which is not used in the identification process. Figs. 3.7 - 3.8 show ex-

cellent agreement between the model simulation and the flight data in both longitudinal

and lateral directions.

Heave Dynamics

Similar to the Newton-Euler motion equations used for the longitudinal and lateral

dynamics, the heave dynamics can be represented as:

ẇ = (−vp+ uq) +
Fz

m
, (3.12)

43

Table 3.3: Parameters for roll-pitch dynamics.

Parameter
Cramer-Rao

Insensitivity(%) Physical meaning
Percent(%)

Lb = 675.8 s−2 7.171 2.433 Lateral rotor spring derivative
Ma = 794.7 s−2 7.525 2.589 Longitudinal rotor spring derivative
τ = 0.068 s 9.301 3.537 Equivalent flapping time constant
A′lon = 0.898 rad/s 4.152 1.962 Longitudinal control derivative
B′lat = 1.069 rad/s 4.157 1.935 Lateral control derivative
τlat = 0.03355 s 12.08 4.477 Lateral control delay
τlon = 0.03390 s 12.17 4.440 Longitudinal control delay
Kβ = 11.5029 Nm NA NA Rotor spring constant

10
1

10
2

−20

0

20

M
ag

ni
tu

de
 (

D
B

)

δ
lat

 −− p

Experiment
Simulation

10
1

10
2

−200

−100

0

P
ha

se
 (

de
g)

10
1

10
2

0.2

0.4

0.6

0.8

1

1.2

C
oh

er
en

ce

Frequency(Rad/Sec)

Figure 3.5: Frequency response from roll input to roll angular rate.

where u, v, p, q ≈ 0 at hovering condition and Fz is a combination of thrust force, UAV

weight, and air frictional force. The liner model is assumed to be related the collective

input δcol and the heave velocity w,

ẇ = − w
τw

+Kwδcol, (3.13)

44

10
1

10
2

−20

0

20

M
ag

ni
tu

de
 (

D
B

)

δ
lon

 −− q

Experiment
Simulation

10
1

10
2

−200

−100

0

P
ha

se
 (

de
g)

10
1

10
2

0.2

0.4

0.6

0.8

1

1.2

C
oh

er
en

ce

Frequency(Rad/Sec)

Figure 3.6: Frequency response from pitch input to pitch angular rate.

0 2 4 6 8 10 12
−2

−1

0

1

2

p
(r

ad
/s

)

Experiment
Simulation

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

Time(s)

δ la
t

Figure 3.7: Time domain verification from roll input to roll angular rate.

45

0 2 4 6 8 10 12
−2

−1

0

1

2

q
(r

ad
/s

)

Experiment
Simulation

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

δ lo
n

Figure 3.8: Time domain verification from pitch input to pitch angular rate.

10
−1

10
0

10
1

10
2

−20
0

20

M
ag

ni
tu

de
 (

D
B

) δ
col

 −− w

Experiment
Simulation

10
−1

10
0

10
1

10
2

−400

−300

−200

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
2

0.2
0.4
0.6
0.8

1
1.2

C
oh

er
en

ce

Frequency(Rad/Sec)

Figure 3.9: Frequency response for Heave dynamics model identification.

Fig.3.9 shows the system identification results for the heave dynamics. We can see that

the coherence level remains above 0.8 from 1 to 40 rad/s, indicating the high fidelity of

the heave dynamics model.

46

Yaw Dynamics

The yaw direction motion is caused by changing the collective pitch angle of the lower

rotor, creating torque difference between the upper rotor and lower rotor. It is conven-

tional to have an internal yaw-rate controller to facilitate manual control of the platform.

The yaw-stability-augmentation controller is assumed to be of proportional-integral (PI)

controller with the system diagram shown in Fig. 3.10. The transfer function from the

yaw control δped to the augmented yaw control δ̄ped is,

δ̄ped =

(
Kp +

Ki

s

)
(Kaδped − r). (3.14)

Breaking Eq.3.14 into more details, we get

er = Kaδped − r, (3.15)

ṙf = Kier, (3.16)

δ̄ped = rf +Kper, (3.17)

where er is the tracking error of yaw rate r, rf is the augmented internal state for yaw

controller, Ka is the feed forward gain, Kp and Ki are the gain for the PI controller. The

three internal gains Ka, Ki and Kp need to be identified. From Eq.3.15, we see that Ka

is the static gain from δped to yaw rate r. The helicopter is manually piloted to perform

hovering turn when the control input and the measured yaw rate r are recorded. At

constant rotating motion in yaw direction, the ratio of r to δped is Ka. Kp and Ki can

be identified as follows: we place the helicopter on the table without moving, a step

input δped with known value is given to the PI controller. We record the output (δ̄ped)

of the PI controller using an oscilloscope and observe the change of the pulse width.

The initial ratio between the output and the input is Kp/Ka and the slope of the step

response is Ki/Ka. The identified parameters are listed in Table.3.4

Ka

−
Ki

Kp

1

s

Yaw rate
dynamics

δped er ṙf rf δ̄ped r

Figure 3.10: Yaw rate feedback controller structure.

47

Table 3.4: Identified parameters of coaxial helicopter.

Parameter Physical meaning

m = 2.080 kg Total mass of platform

g = 9.781 m · s−2 Earth gravitational constant

Jxx = 0.0250 kg ·m2 Rolling moment of inertia

Jyy = 0.0294 kg ·m2 Pitching moment of inertia

Jzz = 0.0158 kg ·m2 Yawing moment of inertia

lup = 0.235 m Distance from upper rotor to center of gravity

ldw = 0.135 m Distance from lower rotor to center of gravity

Hmr = 0.185 m Distance from equivalent rotor to center of gravity

Lb = 675.8 s−2 Lateral rotor spring derivative

Ma = 794.7 s−2 Longitudinal rotor spring derivative

τ = 0.068 s Equivalent flapping time constant

A′lon = 0.898 rad/s Longitudinal control derivative

B′lat = 1.069 rad/s Lateral control derivative

τlat = 0.03355 s Lateral control delay

τlon = 0.03390 s Longitudinal control delay

Kβ = 11.5029 Nm Rotor spring constant

Ka = 2.415 Scaling factor of the headlock gyro

Kp = 0.263 Proportional gain of the headlock gyro

Ki = 0.149 Integral gain of the headlock gyro

3.3 Modeling of Quadrotor

3.3.1 Overview of Quadrotor Model

The model structure of the quadrotor platform follows the hardware configurations,

which is illustrated in Fig. 3.11. The normalized control inputs (δail, δele, δthr, δrud) are fed

into the Naza-M controller, which is an all-in-one stability controller specially designed

for multi-rotor flying platforms. With a standard quadrotor frame construction, the

default control gains built in Naza-M can already stabilize the inner-loop dynamics very

well. Naza-M controller outputs pulse-width modulation (PWM) signals (m1, m2, m3,

m4) to drive the four rotors to generate the thrust forces, which not only lift the platform

but also maintain its attitude stability. From the perspective of Naza-M, the four inputs

correspond to the control references for the roll angle φ, pitch angle θ, yaw angular rate

r, and the UAV body-frame vertical axis velocity w.

In the outer-layer dynamics, the quadrotor heading ψ is the integration of yaw rate

r, and its vertical axis position z is the integration of vertical velocity wg in local NED

48

Naza-M
Quadrotor
inner-layer

model

Quadrotor
outer-layer

model

𝛿ail

𝛿ele

𝛿thr

𝛿rud

𝑚1

𝑚2

𝑚3

𝑚4

𝜙

𝜃

𝑟

𝑤

𝑥

𝑦

𝑧

𝜓

Figure 3.11: Overview of quadrotor model structure.

frame, which is almost the same as the body frame z velocity w at hover and steady

flight conditions. For the lateral and longitudinal motion, non-zero (φ, θ) angles will

induce accelerations in the UAV body-frame x- and y-axis. If transformed to the NED

frame, they integrates to the NED velocity (ug, vg) and integrates again to extract the

NED position (x, y).

The quadrotor body coordinate frame is defined as the so-called ‘X’ mode, shown in

Fig. 3.12, where the x-axis is 45 degrees to the physical arms of the frame. Following the

right-hand rule, the y-axis is set to point rightward and the z-axis to point downwards.

Since the structure configuration of the platform and the design of the onboard system

are highly symmetric, it is reasonable to assume that the longitudinal and lateral dy-

namics of this platform are exactly the same, and the model is completely decoupled

among all four channels. Hence, we can identify the dynamic models of the four channels

independently. The overall system dynamics can be obtained by concatenating the four

subsystem dynamics diagonally.

x

y
z

Figure 3.12: Quadrotor body frame definition.

49

The model identification process is performed in frequency domain, using the stan-

dard software–CIFER. It first converts the collected input-output data to frequency-

domain responses. Then the frequency domain data are fed into NAVFIT, which is a

low-order transfer function fitting module in CIFER. This is justified since the quadro-

tor model is decoupled and the subsystem dynamics are assumed to be low order linear

time invariant systems.

3.3.2 Linearized Model Identification

Roll Pitch Channel Model Identification

Due to the symmetric structure of of the quadrotor platform, the roll and pitch dynamics

share the same model structure as well as parameters. When the platform is perturbed

in the aileron or elevator channels, the onboard avionics system can record down the

responses of roll angle φ (or pitch angle θ), the corresponding body-frame linear velocities

v (or u), and the synchronized control inputs δail (or δele). The ultimate goal is to

identify the dynamic model from control inputs to the body-frame velocities. However,

we can divide this task into two sub-tasks, i.e., identify the model from control inputs

to attitude angles and identify the model from angles to velocities. The former part

contains information of inner-loop bandwidth and steady-state gain, while the latter

part can be used to connect the outer-loop control outputs to the inner-loop control

references. The details will be explained in Section 3.3.3.

Model from Control Input to Attitude Angle

Using NAVFIT in CIFER, the transfer function from the aileron (or elevator) control

input δail (or δele), to the roll φ (or pitch θ) angle can be well fitted by the following 4th

order linear process model:

φ(s)

δail(s)
=

θ(s)

δele(s)
=

9688

s4 + 27.68 s3 + 485.9 s2 + 5691 s+ 15750
. (3.18)

This transfer function has a bandwidth of 3.89 rad/s and a steady-state gain of 0.6151.

The frequency response comparison between the identified model and the flight data is

shown in Fig. 3.13. The third sub-plot Fig. 3.13 shows the coherence value of the model.

At frequencies below 20 rad/s, the coherence value remains above 0.8, indicating that

the system is well characterized by a linear process in this frequency range.

50

10
−1

10
0

10
1

10
2

−10
2

−10
1

−10
0

M
ag

(d
B

)

Input to Angle Frquency Response

10
−1

10
0

10
1

10
2

−400

−300

−200

−100

0

P
ha

se
(d

eg
)

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency(rad/sec)

Experiment
CIFER

Figure 3.13: Response comparison using frequency-sweep input {δail, δele} − {φ, θ}.

Time domain verification of the model using a different set of experimental data is

performed also. The input signal from the verification data set is fed into the model

and its predicted output is compared with the experimental output. Fig. 3.14 shows the

model performance for a series of chirp signals, and Fig. 3.15 shows the error difference

between the model output and the experimental output. It can be seen that the error

is very small, indicating that the obtained model is very reliable.

Model from Attitude Angle to Linear Velocity

Using the same approach, the transfer function from roll φ (or pitch θ) angle to the

lateral (or longitudinal) velocity can be obtained by fitting a first order transfer function

51

45 50 55
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(s)

A
ng

le
 (

ra
d)

Roll Time Domain Verification

Measurement
Model

Figure 3.14: Roll angle time domain model verification.

0 50 100 150 200 250 300 350
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Roll Angle Error

Time(s)

A
ng

le
 (

ra
d)

Figure 3.15: Roll angle time domain error between model prediction and experiment.

as below:

v(s)

φ(s)
=
u(s)

θ(s)
=

8.661

s+ 0.09508
. (3.19)

This relationship will be used later in Section 3.3.3 to connect the inner-loop and outer-

loop control layers. The time domain verification results are shown in Fig. 3.16.

52

0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6
Roll Angle−Velocity Time Domain Verification

Time(s)

V
el

oc
ity

 (
m

/s
)

Measurement
Model

Figure 3.16: Time domain error from roll angle to y velocity.

Yaw Channel Model Identification

Since the inner-loop dynamics in the yaw channel is extremely fast, thanks to the superb

performance from Naza-M, the relationship between the rudder input δrud and the yaw

rate r can be treated as a static gain. If we consider the outer-layer dynamics in this

channel also, then the transfer function from rudder input δrud to the yaw angle ψ is

just an integration of a constant:

ψ(s)

δrud(s)
=

3.372

s
. (3.20)

Fig. 3.17 and Fig. 3.18 show the time domain verification results for both the yaw angle

and angular rate. In both figures, the experimental data agrees well with that predicted

by the identified model.

Heave Channel Model Identification

The transfer function from the throttle input δthr to the body-frame z-axis velocity w

is identified as:

w(s)

δthr(s)
= − 13.35

s+ 2.32
. (3.21)

53

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Yaw Angle Comparison

Time (s)

Y
aw

 A
ng

le
 (

ra
d)

Model
Measurement

Figure 3.17: Time domain comparison of yaw angle.

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3
Angular Rate Comparison

Time (s)

A
ng

ua
lr

R
at

e
(r

ad
/s

)

Model
Measurement

Figure 3.18: Time domain comparison of yaw angular rate.

The negative sign is due to the opposite definition of positive direction for the input and

output. When the throttle stick is pushed up, all four motors speed up. The generated

force will lift the UAV platform upwards. However, this upward motion is actually seen

as a negative velocity as defined in the z-axis of the UAV body frame. Fig. 3.19 shows

the time domain verification results for the heave velocity.

54

160 180 200 220 240 260 280 300 320
−4

−3

−2

−1

0

1

2
Heave Velocity Comparison

Time (s)

H
ea

ve
 V

el
oc

ity
 (

m
/s

)

Model
Measurement

Figure 3.19: Time domain comparison of heave velocity.

3.3.3 Control Law Design

As the platform is already stabilized in the attitude dynamics by the Naza-M controller

(see Inner-loop controller in Fig. 3.20), only the outer-loop controller (see Outer-loop

controller in Fig. 3.20) can be customized to achieve the reference tracking function.

The outer-loop controller enables the UAV to follow external references, including the

linear position and the heading angle. To achieve this, the robust and perfect tracking

(RPT) controller is adopted from [15, 45], from which the design procedures of the RPT

controller for the state feedback case is followed. The applications of RPT to a single

rotor UAV have been presented in [14, 78].

𝐑𝑏/𝑔

𝐹𝑥

𝐹𝑦

𝐑𝑏/𝑔

𝐹𝑧

𝐆𝑐

Naza-M Outer-loop
dynamics

𝑎𝑥𝑔𝑥

𝑎𝑦𝑔𝑥

𝑎𝑧𝑔

𝑢𝑔

𝑣𝑔

𝑤𝑔𝑥

𝑚1

𝑚2

𝑚3

𝑚4

𝜙𝑥

𝜃𝑥

𝜓𝑥

𝑤𝑏𝑥

𝒙x 𝑎𝑥𝑏𝑥

𝑎𝑦𝑏𝑥 𝒙y

𝒙z

measured

Outer-loop controller Inner-loop controller Inner-loop command generator

Figure 3.20: Control structure of the quadrotor UAV.

55

According to the study of [53], the outer dynamics of the quadrotor is differentially

flat. That means all its state variables and inputs can be expressed in terms of algebraic

functions of flat outputs and their derivatives. A proper choice of flat output is

σ = [x, y, z, ψ]T. (3.22)

The four outputs, x, y, z and ψ are independent. The UAV can be considered as a mass

point with constrained velocity, acceleration, jerk, and so forth. A stand-alone RPT

controller based on multiple-layer integrator in each individual axis can be designed.

Control law design for x-y direction

For precision control, it’s desirable to include an integrator to ensure zero steady state

error in case of step input. We propose an RPT controller which considers the integration

of position tracking error as an augmented state. The system with state-augmentation

is formulated as,

Σxy
AUG :

˙̃xxy =

0 −1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

x̃xy +

0

0

0

0

0

1

uxy

ỹxy = x̃xy

h̃xy =

[
1 0 0 0 0 0

]
x̃xy

(3.23)

where x̃xy = [
∫
e rp rv ra p v]T ; rp, rv, ra are the position, velocity and acceleration

references; p, v are the actual position and velocity; e = p − rp is the tracking error

of position. Since there is error integration
∫
e in the augmented states, the feedback

control law would contain a term of Ki

∫
e. Following the steps in [45], a linear state

feedback control law of the form (3.24) is acquired,

uxy = Fxy(ε) x̃xy , (3.24)

56

where

Fxy(ε) =

[
−kiω2

n

ε3
ω2
n + 2ζωnki

ε2
2ζωn + ki

ε

1 − ω2
n + 2ζωnki

ε2
− 2ζωn + ki

ε

]
, (3.25)

where ε is a design parameter to adjust the settling time, ωn, ζ, ki are the parameters

that determine the desired pole locations of the infinite zero structure of Σxy
AUG through:

p(s) = (s+ ki)(s
2 + 2ζωns+ ω2

n) . (3.26)

In principle, when the design parameter ε is small enough, the RPT controller gives

arbitrarily fast response. However, in practice, due to the constraints of physical system

and inner loop dynamics, we would like to limit the bandwidth of the outer loop to be

at least one third of the inner loop system bandwidth. The roll/pitch dynamics has a

bandwidth of 3.82 rad/s. For roll/pitch outer loop controller, we select the parameters

in Eq. 3.27 to have a bandwidth of 0.83 rad/s:

ωn = 0.4, ζ = 1.2, ε = 1, ki = 0.8 . (3.27)

Control law design for heave and yaw direction

For the outer loop controller in the heave dynamics and the yaw dynamics, the inner

loop controller already controls the heave velocity w and the yaw angular velocity r. We

only need to design a controller to control the height z and the yaw angle ψ. Similarly,

the integral of tracking error is augmented to the original system and forms another

augmented system Σhy
AUG:

Σhy
AUG :

˙̃xhy =

0 −1 0 1

0 0 1 0

0 0 0 0

0 0 0 0

x̃hy +

0

0

0

1

uhy

ỹhy = x̃hy

h̃hy =

[
1 0 0 0

]
x̃hy

(3.28)

57

where x̃hy = [
∫
e rp rv p]T ; rp, rv are the position, velocity references; p is the actual

height or yaw angle; e = p− rp is the tracking error of height or yaw angle.

A linear state feedback control law of the form (3.29) is acquired,

uhy = Fhy(ε) x̃hy , (3.29)

where

Fhy(ε) =

[
−ω

2
n

ε

2ζωn
ε2

1 − 2ζωn
ε2

]
. (3.30)

For heave controller:

ωn = 0.5, ζ = 1.1, ε = 1 . (3.31)

For yaw angle controller:

ωn = 1, ζ = 1, ε = 1 . (3.32)

Command generator

From Fig. 3.20, it can be seen that the output from the outer-loop controller in physical

meaning is the desired accelerations in xy-axis and the desired velocity in z-axis, both

in global frame. However, the inner-loop controller is looking for attitude references (φr,

θr, ψr) and the body-frame z-axis velocity reference. A conversion is needed to link the

two control layers together. This leads to another functional block called the inner-loop

command generator, in which a rotational conversion from the global frame to the body

frame Rb/g is needed and another matrix Gc is used to convert the desired acceleration

references to the desired attitude angles. For all quadrotor UAVs,

Gc ≈

 0 1/g

−1/g 0

 , (3.33)

where g is the gravity constant.

3.3.4 Flight Test Results

A full envelope trajectory is designed to validate the performance of the control law. The

flight test is performed in open space where GPS signals are consistently available. Using

GPS signal to provide absolute position estimate could isolate the potential problems

58

caused by other state estimates such as laser odometry or visual odometry. Flight in

clear space also removes the need for obstacle avoidance. The full envelope trajectory

includes taking off and ascending to 100 m, navigating to 4 waypoints, returning home

and landing on the original take-off position.

Figures from Fig. 3.21 to Fig. 3.24 show the flight position, velocity and heading

estimates in x, y, heave and yaw directions. The corresponding references are also plotted

to show the tracking performance of the outer-loot control law. Before 75 seconds, the

UAV ascends to 100 m during which the x, y and yaw remain constant. After reaching

the 100 m height, the UAV begins to fly to the first waypoint. After finishing all four

waypoints, the UAV goes back to the origin and lands. As shown in Fig. 3.21-3.22,

during the waypoint navigation, the tracking error in both x and y directions are below

1 m. The height tracking tracking error is below 5 m as shown in Fig. 3.23. The height

measurement undergoes fast drop or jump due to the wind disturbance as shown in 90

seconds and 130 seconds.

0 50 100 150 200 250 300 350
−40

−30

−20

−10

0

10
x−axis

time (s)

x−
ax

is
 p

os
iti

n
&

 v
el

oc
ity

 (
m

 &
 m

/s
)

x
x−ref
ug
ug−ref

Figure 3.21: x direction tracking performance.

3.4 Conclusion

This chapter has discussed in detail the model and control of UAV platforms, including

a coaxial helicopter and a quadrotor. The coaxial helicopter has more complex model

than the quadrotor due to the complicated aerodynamics interaction between the upper

rotor and the lower rotor. Thus we derives the coaxial helicopter model in detail by

analyzing each its subsystem. With the model structure identified, we avoid deriving

59

0 50 100 150 200 250 300 350
−40

−30

−20

−10

0

10

20

30

40
y−axis

time (s)

y−
ax

is
 p

os
iti

n
&

 v
el

oc
ity

 (
m

 &
 m

/s
)

y
y−ref
vg
vg−ref

Figure 3.22: y direction tracking performance.

0 50 100 150 200 250 300 350
−120

−100

−80

−60

−40

−20

0

20
z−axis

time (s)

z−
ax

is
 p

os
iti

n
&

 v
el

oc
ity

 (
m

 &
 m

/s
)

z
z−ref
wg
wg−ref

Figure 3.23: z direction tracking performance.

a complete nonlinear model for our coaxial helicopter since our designed UAV work

only in near-hover conditions. By assuming that the total thrust of the coaxial rotor

is equal to the gravity force of the platform, we identified a linear model consisting of

roll-pitch dynamics, heave dynamics, and yaw dynamics. The parameters in the model

are identified either by direct measurements or by system identification method.

During the modeling of the coaxial helicopter, we realize that it tends to not meet

the navigation requirements. As discussed in the last chapter, our avionics system

includes at least one laser range finder. But the fuselage of the coaxial helicopter is

60

0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100
Heading

time (s)

Y
aw

 a
ng

le
 (

de
g)

ψ
ψ−ref

Figure 3.24: Yaw direction tracking performance.

right beneath the two rotating rotors, making it impossible to assemble the laser range

finder without occlusion from the fuselage. Besides, there are lots of work to be done

in order to make the coaxial helicopter maintain its stability. Since our focus is on

the navigation algorithm development, which is independent of the platform itself, we

turn to the quadrotor for our platform. However, coaxial helicopters still remain their

unique advantages, especially the high energy efficiency and the compact size. Once the

navigation algorithms are fully verified, implementing them on the coaxial helicopter will

lead to a UAV with the same intelligence but a smaller footprint and longer endurance.

The quadrotor, because of its symmetric structure, has a very simple decoupled

model structure, which is separated into the inner-loop and the outer-loop. Commercial

inner-loop controllers have greatly reduced the work in quadrotors modeling. We need to

only model and control the decoupled out-loop dynamics. The linear model of quadrotor

is again derived from the system identification method. A robust perfect tracking control

law is designed to control the quadrotor to track changing trajectory references. Fully

autonomous flights based on GPS have been performed to verify the model and the

control law developed in this chapter.

61

Chapter 4

UAV State Estimation Using

Laser Range Finder

4.1 Introduction

Navigation of UAVs requires the states to be estimated at every time step to facilitate the

autonomous control and the path planning. With respect to an inertial frame, the states

of UAVs include the 3-axis position, velocity and orientation of the UAV body. The

orientation can be estimated accurately with the onboard IMU and magnetometer. But

for the velocity and position, pure integration of the acceleration would soon render the

signal out of bound because of the bias and noise of accelerometers. It is conventional to

use external absolute measurement, such as GPS or beacons, to fuse with the acceleration

measurement to obtain real-time velocity and position estimates. The fusion of IMU

and GPS is widely adopted in long range navigation of UAVs.

However, when GPS signal is not available, other sensing modalities have to be

considered. Relative sensing techniques, based on wheel encoders, cameras, and laser

range finders, are commonly adopted. Wheel encoders are universally applied in ground

vehicles and produce acceptable results, but the uneven terrains or the wheel slippages

affect their accuracy. Vision sensing is another choice, in which optic flow is a standard

technique to obtain 2D velocity estimation. Vision sensing, however, requires specific

illumination conditions of the environment. Laser range finders are the practically ideal

and feasible method because they measure both the bearing and the distance of the

environment relative to the UAV.

62

Laser scanner

IMU

Barometer

Magnetometer Scan Matching

Kalman Filter
, ,

50	

50	Hz

10	Hz

50	Hz

,

Feature Extraction

Change to n frame with rm font

Figure 4.1: The architecture of the IMU-driven Kalman filter.

This chapter presents the UAV state estimation framework based on the laser odom-

etry. As shown in Fig. 4.1, the framework consists of laser feature extraction, laser scan

matching and sensor fusion using a Kalman filter. To extract features from forests

environment, the range scan is processed in three steps: preprocessing, segmentation

and extraction. The preprocessing step removes any invalid measurement points below

20 mm and above 10 m. The segmentation step separates the range scan to clusters with

various numbers of points. The candidate clusters are evaluated based on a series of

geometric descriptors, which help select the clusters corresponding to tree trunks. The

estimated tree centers are treated as the feature points used for scan matching. The

details about the laser feature extraction will be explained in Section 4.2.

For matching two consecutive scans, iterative closest matching (ICP) is widely used.

There are several modular steps in the ICP process, in which the point selection, the

data association and the rigid motion estimation are the three critical steps to make the

scan matching fast and accurate. We will address these details in Section 4.3.

Feature-based scan matching produces incremental translation and rotation between

two consecutive scans at a low update rate, hence a Kalman filter is required to fuse

the velocity of scan matching with the high update rate acceleration measurement from

the IMU. We discuss the details of the design and implementation of the Kalman filter

in Section 4.4. Finally, the developed real-time scan matching and Kalman filter are

integrated in a quadrotor and performed autonomous flights in a small forest. We present

the results of the flights in Section 4.5.

63

4.2 Feature Extraction

4.2.1 Laser Range Finder Model

We use a Hokuyo UTM-30LX laser range finder (LRF) in this research for acquiring a 2D

scan of the environment. Laser scanners are the most attractive sensors for localization

and mapping on mobile robots due to the accurate measurement. The specification of

the Hokuyo UTM-30LX is listed in Table. 4.1.

Table 4.1: Hokuyo UTM-30LX specification

Supply Voltage 12 VDC±10%

Supply Current Max: 1 A, Normal: 0.7 A

Power Consumption <8 W

Detection Range 0.1∼30 m

Measurement Resolution 1 mm, 0.1 - 10 m, σ < 10mm, 10 - 30 m, σ < 30mm

Scan Angle 270◦

Angular Resolution 0.25◦

Scan Speed 25 ms (Motor speed: 2400rpm)

Interface USB 2.0 full speed (12Mbps)

Weight 230 g (with customized cable)

Mechanical Dimension 60 mm×60 mm×85 mm

Figure 4.2: Image and laser scanner data for a testing scenario.

With respect to forest navigation, preliminary tests have been carried out to evaluate

the performance of Hokuyo UTM-30LX. The visualization of one scan from the outdoor

test scenario is shown in Fig. 4.2, where the UAV is surrounded by several trees and

clusters of bushes. The scanning map is zoomed into 10 meters and the sensor is exposed

to strong and direct sunlight. The range measurement returned by the laser scanning

64

range finder is spatially sparse, where clusters of points with different number of points

are present. Intuitively it makes sense to assume each cluster correspond to one object

in the environment, either tree trunks, bushes or ground strikes.

In order to extract salient features from the range scan, the sensor measurement

model needs to be identified. The laser range finder has a measurement range of up

to 30 m with a 270◦ scanning angle. The laser range image is expressed in the polar

coordinate in the form of {(pi, θi), i = 1 . . .N}, where N is the total number of measure-

ment points in each scan, pi is the object distance to the origin of the LRF at angle θi.

Fig. 4.3 illustrates the measurement model, which is defined in a body-fixed coordinate

system, in which x axis points forward and y axis points rightward, whereas the z axis

points into the paper to comply with the right-hand rule. The angular position of each

measurement point (pi, θi) is defined as the angle between x axis and the laser beam.

In the body frame b, the Cartesian representation of the range scan is,

xbi
ybi

 =

pi cos(θi)

pi sin(θi)

 , i = 1...N. (4.1)

In a local NED navigation coordinate system n, the coordinate of the body frame

origin is defined as O(xno , y
n
o) and the yaw angle as ψ. The range image is represented

in the NED frame as, xni
yni

 =

xno + pi cos(θi + ψ)

yno + pi sin(θi + ψ)

 . (4.2)

4.2.2 Feature Extraction Procedure

The foliage environment is more complex and unstructured compared to indoor envi-

ronments. Regular features like lines and corners are absent. Fortunately, the forest

is always full of trees, which can serve as the salient features. Fig. 4.4 shows a typical

forest environment with close-to-vertical tree trunks in the surrounding environment.

One scan of the area at the flight height of approximately 1.5 m is plotted in Fig. 4.5.

The small clusters of points of circular contour correspond to the tree trunks while the

long and wide clusters of line shape correspond to ground strikes or bushes. This section

discusses the procedures of extracting tree features in complex range scans.

65

��
��
��
��

�
�
�
�

�
�
�
�

��������������

����

����

��

θn

θn+m

Y

X

O

r

pn

(pi, θi)

pn+m

Figure 4.3: Laser range finder measurement model.

Figure 4.4: Test scenario with UAV flying in the air.

To extract the validated trees, the laser range scans are processed in three steps:

preprocessing, segmentation and extraction. In the preprocessing step, the range points

beyond 10 m range are removed due to two reasons. First, the laser range finder has

different noise specification below and above 10 m as listed in Table. 4.1. Therefore,

using points beyond 10 m requires two different noise models of the laser range finder.

Second, the UAV needs to fly under the tree canopies, limiting its flight height to be

less than 2 m. Large range points are more likely to be the points striking the ground.

For example, assuming a planar ground plane, if the UAV flies at a height of 2 m and

the UAV pitches forward by 11.5 degrees, the range points at 10 m will hit the ground.

The second step is segmentation. We separate the whole laser range scan into small

clusters with different number of points. Clustering the range scan is preferable in

66

the case when the range scan is not continuous. The key step is the selection of the

segmentation threshold. Unrealistic threshold will lead to redundant or insufficient

clusters. The details are discussed in Section 4.2.3.

The third step is to examine the clusters in a series of geometric descriptors to

produce the validate tree trunk centers. The geometric descriptors consist of the number

of points, the cluster width, convexity, etc. The estimated centers of validated clusters

are treated as the salient features for future state estimation. The details are discussed

in Section 4.2.4.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Raw Scany

y (m)

 x
 (m

)

Figure 4.5: Typical laser measurement in a foliage environment.

4.2.3 Scan Segmentation Algorithm

In indoor environment, the laser scan data can be very dense since every point in the

scan may represent a distance to a certain object. It is a different case in outdoor

environment where some beams of laser scan may not hit any objects. In forested areas,

tree stems and bush clusters demonstrate significant spatial discontinuity as shown in

Fig. 4.2. Making use of the spatial discontinuity, the range scans can be clustered. It is

popular to cluster a set of data using k-means [48], which partitions the observed data

to the cluster with the nearest centroid. However, this method need to fix the number

of clusters a priori, which is not practically feasible because the laser range finder is

67

scanning at different places while the UAV platform is moving. On the other hand,

although the measurement points from one scan are spatially disconnected, but their

index are consecutive spanning from 1 to 1081. We take this factor in to a account

and use a single-linkage clustering algorithm [27]. This algorithm states that any two

consecutive points that are closer to each other than a threshold are considered to belong

to the same cluster.

For any two consecutive points in a laser scan in polar coordinates, (p1, θ1) and

(p2, θ2), the distance between these two points is defined as:

D =
√
p21 + p22 − 2p1p2 cos(θ1 − θ2). (4.3)

Since we only evaluate the distance of the neighboring points, (θ1 − θ2) in Eq. 4.3 is

equal to the laser scanner’s angular resolution (0.25◦). For fast onboard computation,

cos(θ1− θ2) can be precomputed and save as a constant. The detailed realization of the

algorithm is shown in Algo.1

Algorithm 1: Laser Scanner Data Clustering

Input: Laser range data y, angle θ
Output: Cluster with various number of points

1 Initialize the number of cluster to 1;
2 Initialize the number of points each cluster to 0;
3 foreach point in y do
4 Calculate the distance D between the current point and the next point ;
5 if D < dth & D > 0 then
6 Add the current point to the current cluster;
7 Increase current cluster point counter by 1;

8 else
9 Increase number of cluster by 1;

10 end

11 end
12 return Clusters of points

The distance threshold in step 5 is important in the segmentation process. We will

analyze the determination of the threshold in next section. An unrealistic segmentation

threshold will group points of different objects together or separate points which are

actually on the same continuous surface. Referring to Fig. 4.3, we assume the shape

of tree stems is circular. A realistic segmentation threshold is able to group points

{pn ... pn+m} to the same cluster, which corresponds to a single tree stem with radius r.

68

With the circular surface assumption of tree stems, the segmentation threshold

should be larger than the maximum consecutive distance difference of all the points

{pn ... pn+m}. It is clear that the maximum distance difference occurs at the tangent

line of the circle, between point pn+m and pn+m−1. On the other hand, the maximum

distance varies at different tree radius and distance to the measurement origin. In or-

der to find a suitable threshold, the distance and radius of tree stems are enumerated

respectively. The tree radius ranges from 0.1 m to 0.4 m, and the tree distance to the

measurement origin ranges from 0.6 m to 10 m. Every combination of tree radius and

distance generates one maximum consecutive distance. Fig. 4.6 visualizes the matrix

of the maximum consecutive distance, which clearly indicates that the maximum point

occurs at the largest tree radius 0.4 m and distance of 10 m. The maximum distance

difference is 0.1851 m labeled as the red eclipse in Fig. 4.6. In practice, the segmentation

threshold is chosen to be 0.2 m, which is larger than the upper limit of the maximum

distance difference matrix.

0.1

0.2

0.3

0.4

0

5

10
0

0.05

0.1

0.15

0.2

X: Tree radius(m)

Threshold determination

Y: Tree center distance (m)

Z
: M

ax
im

um
 d

is
ta

nc
e(

m
)

X: 0.4
Y: 10
Z: 0.1851

Figure 4.6: Segmentation threshold determination.

4.2.4 Geometric Descriptors

The segments generated from the segmentation process may be tree stems, cluster of

bushes or ground strikes. It is indispensable to distinguish the tree stems from other

69

segments. Referring to the feature list for people leg detection in [3], we assign a group

of parameters which represent the characteristics of each segment. The geometric de-

scriptors are defined as follows:

1. Number of points.

2. Jump distance to the next adjacent segments: the Euclidean distance between the

current segment centroid to the next segment centroid.

3. Radius and center of the circle: fitting a circle using the points in the cluster.

4. Width: distance from the first point to the last point of the segment.

5. Average angle position: the mean angular position of a segment.

6. Average distance: the mean distance to the center of laser range finder.

7. Convexity: all the points of one segment should lie between line segment of the

extracted circle center and the body frame origin. If any measurement points go

beyond the extracted circle center, the current cluster is believed to be non-convex

from the perspective of the body origin.

8. Flag: this is a flag to show whether the corresponding segment is a valid tree stem.

The candidate tree segments are validated through the series of threshold listed in

Table 4.2. The thresholds are chosen by analyzing the data from flight test. Tuning of

thresholds is critical since a too relax threshold cannot reject false tree candidate while

a too strict threshold may remove potential features.

Table 4.2: List of geometric threshold for tree trunk extraction.

Feature Lower limit Upper limit

Number of points 3 50
Distance to adjacent segment 0.3 m 30 m
Tree radius 0.1 m 0.5 m
Width 0.1 m 0.7 m

The most important geometric descriptors are the circle radius and center. Fitting

a circle model from a cluster of points can be realized using various methods. In this

study, we have evaluated three methods: one uses least square fitting and the other two

70

use bounding angle of the cluster. These methods produce different results with respect

to the circle position and radius.

Fitting circle using least square

Refering to Fig. 4.7(a), for each cluster, let a circular stem represented in Cartesian

coordinates to be (x − xc)2 + (y − yc)2 = r2c , where (xc, yc) is the origin and rc is the

radius. The unknown vector is formulated as x = (xc yc x
2
c +y2c −r2c)T. For the n points

in the segment, the over determined system Ax = b is

A =

−2x1 −2y1 1

−2x2 −2y2 1

...
...

...

−2xn −2yn 1

b =

−x21 − y21

−x22 − y22
...

−x2n − y2n

. (4.4)

When n is larger than 3, the system solution is given by

x = (ATA)−1ATb , (4.5)

the matrix ATA may be singular or ill-conditioned when the number of measurement

points are too small or the points in the segment are close to line. In practice, the con-

dition number needs to be checked before the inverse operation. This method produces

accurate results if the measurement points lie closely on the contour of circular tree

trunks in the least square sense.

Fitting circle using bounding angle

Using bounding angle to estimate the tree position and radius was first introduced by [6],

which is illustrated as Fig. 4.7(a). Suppose a cluster consists of points spanning from

angle θ1 to θ2 with the minimum range rm. The circle lies at (xc, yc) with a diameter

of rc. According to simple trigonometry,

sinα =
rc

rc + rm
, (4.6)

where α = θ2−θ1
2 . With α and rm calculated for each cluster, the circle radius is,

rc =
rm sinα

1− sinα
. (4.7)

71

,

,

,

,

(a) Bounding angle fitting method 1

(b) Bounding angle fitting method 2

Figure 4.7: Two circle fitting methods using the bounding angle of clusters.

Then in polar coordinate, the center of origin can be expressed as,

Circle B1 :

rp = rm + rc =

rm
1− sinα

θp =
θ2 + θ1

2

(4.8)

Another fitting method using bounding angle is shown in Fig. 4.7(b), which estimates

the diameter of the circle first instead of the radius,

Circle B2 :

D =

(R1 +R2)(θ1 − θ2 + β)

2

r0 = rm + 0.5D

θ0 =
θ1 + θ2

2

(4.9)

where D is the circle diameter, (r0, θ0) is the polar coordinate of the circle center, and

β is the minimum angle resolution of the laser range finder (0.25 deg).

The above three methods produce similar estimated circle center and radius in the

cases when the number of measurement points are sufficient and they are of an arc

shape. However, in practice, the two conditions cannot be always met due to the influ-

ence of noise and the small size of the circles relative to the laser range finder. Noisy

72

0.5 1 1.5 2

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

x (m)

y
(m

)

Tree detector comparison

Laser points
Cirle LS
Cirlce B

1
Cirlce B

2

1

2

3

(a) Circle fitting example 1.

0.5 1 1.5 2

-7

-6.5

-6

-5.5

x (m)

y
(m

)

Tree detector comparison

Laser points
Cirle LS
Cirlce B

1
Cirlce B

2

4

6

5

(b) Circle fitting example 2.

Figure 4.8: Comparison of three circle fitting algorithms.

measurement points may cause the circular arc shape to turn into a line shape or even

an opposite direction arc. It is difficult to estimate a circle from the insufficient mea-

surement points if the tree is far from the UAV or the trees are too small. Fig. 4.8

compares three methods discussed above, which are denoted as ‘Cirlce LS’, ‘Circle B1’

and ‘Circle B2’ respectively. Fig. 4.8(a) shows that for clusters with enough number

of points, ‘Cirlce LS’ produces the largest circles while the other two methods using

bounding angle are more conservative. Referring to Fig. 4.8(b), the estimated circle

centers of 5 and 6 flip to the opposite side for ‘Cirlce LS’. The sensitivity to noise limits

its application in practice even though it is the most accurate in mathematical sense.

The bounding angle methods produce similar results in all cases with the ‘Circle B1’ a

bit more conservative than ‘Circle B2’. Therefore, we use ‘Circle B1’ method to estimate

the cirlce center and radius in this study.

4.2.5 Feature Extraction Result

The raw laser scanner data is recorded in a small forest where the tree trunks distribute

very densely with minimum tree-to-tree distance of 0.3 m. The diameters of three trunks

at the flight height range from 0.15 m to 0.5 m. The quadrotor equipped with the LRF

is manually piloted through the area while the onboard avionic system records both the

laser range data and the IMU measurement. One raw laser scan is shown in Fig. 4.9, in

which the initial segmentation process has created 62 segments. Not all the segments

73

correspond to tree stems, such as the segments (23-44) in the upright corner of Fig. 4.9.

They might come from the measurement of ground plane when the platform is pitched

for more than a certain angle. All scan segments are fed to the feature extraction

procedure using the thresholds listed in Table 4.2. Fig. 4.10 shows the 19 extracted

features with their radius and origin plotted. Fig. 4.11 zooms into three adjacent trees

to show the performance of the circle fitting.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1
2

345
6789

10
1112

13 1415
16

171819

2021
22

23242526
272829

30

31

323334

3536

373839

4041424344

4546
47

48

4950

5152

5354

55
5657

58

59
60

6162

Raw Scan and Segmentation

Y (m)

X
 (

m
)

Figure 4.9: One raw scan with the labeled clusters.

4.3 Scan Matching

Various scan matching methods have been presented in literature. Algorithms based on

ICP, with a wide range of variants[61], are most widely employed. The variants differ in

such aspects like selection of points, matching strategy, error metric selection, etc. For

each specific application, special modifications are needed to produce acceptable results.

This section presents a specially designed ICP algorithm for UAV navigation in forests.

4.3.1 Iterative Closest Point Matching

The ICP algorithm seeks to extract iteratively the rigid transformation (rotation and

translation) from a group of measurement points to another group of reference points [4].

74

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Clean Scan and Extracted Feature

Y (m)

X
 (

m
)

9
13 1415

16

22

31

36

3746
47

48515255
57

59 6162
9

13 1415
16

22

31

36

3746
47

48515255
57

59 6162

Figure 4.10: Clean scan with extracted circles.

−1.8 −1.6 −1.4 −1.2 −1 −0.8

1.8

2

2.2

2.4

2.6
Close View of three extracted features

Y (m)

X
 (

m
)

48

51

52

Figure 4.11: Close view of three extracted circles.

Fig. 4.12 presents the basic procedures of ICP. With two sets of input points, an error

function is selected, which is usually the sum of the squared errors. The goal of the

algorithm is to minimize the error function so that the optimal rotation and translation

are obtained. First, the measurement points sets are transformed using an initial guess of

the rotation and translation. Then a data association process (nearest neighbor search)

75

is employed to find pairs of corresponding points in the two data sets. The error function

is then calculated and checked against a predefined threshold. If the error is smaller

than the threshold, the iteration stops with the optimal transformation obtained. If not,

the algorithm repeats again until the error is smaller than the threshold or the number

of iterations is reached.

Calculate correspondence

Calculate alignment

Apply alignment

Update error

Initialize error and alignment

Yes
If error > threshold

No

Return: ,

Figure 4.12: Procedures of the ICP algorithm.

4.3.2 Data Association

The correspondence searching aims to find the matching pairs according to a predefined

distance metric (Euclidean or Mahalanobis distance). The searching algorithm is dif-

ferent with respect to different strategies in the selection of points: raw measurement

or feature-based. For raw measurement points, searching a nearest neighbor in another

dataset is often too intensive to use brutal force search. A k-dimensional (k-d) tree can

accelerate the search process, with the extra cost of building up the k-d tree. Using

raw measurement has another disadvantage: the nearest neighboring points in a pair

may not correspond to the same physical object. This is due to the fact that the sensor

measurement is always discrete. On the other hand, using features for data association

reduces computation in searching dramatically at the expense of extra process for feature

76

extraction. Features can be points, lines or surfaces, etc. The inter-distance among the

features are normally large enough so that the data association always produces correct

correspondence pairs. Besides, the feature descriptors for different features also help re-

duce the possibility of wrong data association. Therefore, feature-based data association

is preferable when the feature extraction process is not computationally intensive.

Determining whether two points are matched to each other is another crucial prob-

lem. Two strategies have been evaluated in this thesis: the closest point search and the

limited range closest point search. The closest point search is to search all the points

in another dataset given a point in the current dataset. This may be time consuming if

the size of the dataset is large. Also the closest point may not be the correct correspon-

dence, because sometimes the two datasets coincide with each other. The two points in

the interconnection of the two datasets will certainly be the closest, but they are not

the same points at all. The limited range closest point search can solve this problem,

by limiting the angular searching range only in the vicinity of the current points. The

introduction of searching range increases the computation speed and the possibility of

the correct data association.

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
Original transformed datasets

X (m)

Y
 (

m
)

Original Data
Transformed Data

Figure 4.13: Initial transformed synthetic data.

To compare the two data association strategies, a dataset with 50 random points are

rotated -5 degrees first and then translated by 5 m in x and y directions. The two initial

datasets are shown in Fig. 4.13. The optimal transformation is estimated based on the

77

procedures in Fig. 4.12. The residual sum of squares is calculated at each step. The

trend of the error function is plotted in Fig. 4.14. Both matching strategies can provide

correct transformation but the limited range closest point searching strategy takes 2

iterations less than that of the normal closest point. The extent of speed improvement

may be different for various datasets, but the improvement behavior is always observed.

Fig. 4.15 shows the aligned datasets by projecting the transformed data back to the

initial dataset. It can be seen that the extracted transformation is perfect when the

data association is correct.

0 2 4 6 8 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Residual sum of squares in each iteration

Iterations

E
rr

or
 (

m
2)

Closest Point
Limited Closest Point

Figure 4.14: Change of error in each iteration.

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
Aligned datasets

X (m)

Y
 (

m
)

Original Data
Aligned Data

Figure 4.15: The aligned datasets after ICP.

78

In forest, the laser scanner have detected the tree trunks as described in Section 4.2.

Each tree trunk is identified by its 2D central location and diameter, thus the features

could be regarded as point features. The sparsity of tree trunks suggests that the

relative distance between trees are above a certain threshold. The data association is

implemented as a limited range nearest neighbor search discussed in this section.

4.3.3 Rigid Transformation Estimation

General 3D Rigid Transformation Estimation

With the correspondence pairs obtained, the alignment calculation procedure tries to

calculate the optimal transformation. A wide range of methods have been developed

and reviewed in [62]. These techniques are either iterative or closed form. The iterative

methods have a series of problems: no convergence guarantee, local minima of the error

function or the strict requirement of the initial estimate. Closed form solutions are

preferable to iterative methods in terms of efficiency and robustness. Eggert et al.[23]

compared four closed form algorithms for 3D rigid motion estimation and concluded that

singular value decomposition (SVD) method [4] is most stable. Details of the mathematic

derivation of the 3D transformation estimation using SVD is covered in [71].

For the purpose of comprehensiveness, the main steps of SVD-based 3-D trans-

formation estimation are summarized in this section. Let P = {p1,p2, . . . ,pn} and

Q = {q1,q2, . . . ,qn} be two sets of data points whose correspondence has been figured

out. A rigid body transformation is found so that the weighted residual sum of squares

as in Eq. 4.10 is minimized,

F (R, t) = argmin
n∑
i=1

wi||(Rpi + t)− qi||2, (4.10)

where wi > 0 is a weighting factor for each matched pair of points, which is chosen to

be 1 in practice for data from the laser range finder. The following calculation steps are

based on the fact that the optimal transformation of the weighted centroid of P is equal

to the weighted centroid of Q.

1. Calculate the weighted centroid of the two datasets:

p̄ =

∑n
i=1wipi∑n
i=1wi

, q̄ =

∑n
i=1wiqi∑n
i=1wi

, (4.11)

79

2. Remove the weighted centroid from the original datasets and generate two new

datasets: X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn}, where,

xi := pi − p̄ , yi := qi − q̄. (4.12)

3. Compute the 3× 3 covariance matrix,

S = XWYT, (4.13)

where X and Y are the 3 × n matrices which have xi and yi as their columns,

respectively, and W = diag(w1, w2, . . . , wn).

4. Compute the singular value decomposition S = UΣVT. The rotation matrix can

be obtained as,

R = V

1 0 0

0 1 0

0 0 det(VUT)

UT. (4.14)

5. The optimal translation is expressed as

t = q̄−Rp̄. (4.15)

Closed-form Solution for 2D Point-based Matching

For 2D point-based features, if their correspondence has been specified, the relative

translation and rotation could be derived in closed form [47]. Closed form solution is

preferable since SVD operation is not needed so that onboard matrix inverse is avoided.

Set the number of matched points to be n, and P (xi, yi), Q(x′i, y
′
i) represents the feature

point in the two consecutive scans.

By minimizing the distance function in Eq. 4.10, the closed form solution for rotation

angle ω and translation (Tx, Ty) are given as follows:

ω = arctan
Sxy′ − Syx′
Sxx′ + Syy′

(4.16)

Tx = x̄′ − (x̄ cosω − ȳ sinω) (4.17)

Ty = ȳ′ − (x̄ sinω + ȳ cosω) (4.18)

80

where

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi (4.19)

x̄′ =
1

n

n∑
i=1

x′i, ȳ′ =
1

n

n∑
i=1

y′i (4.20)

Sxx′ =
n∑
i=1

(xi − x̄)(x′i − x̄′), Syy′ =
n∑
i=1

(yi − ȳ)(y′i − ȳ′) (4.21)

Sxy′ =
n∑
i=1

(xi − x̄)(y′i − ȳ′), Syx′ =
n∑
i=1

(yi − ȳ)(x′i − x̄′) (4.22)

4.3.4 Experiment Evaluation

In order to validate the scan matching algorithms and test the customized assumptions,

real flight tests have been carried out to collect data. The testing scenario is shown

in Fig. 4.16 where a group of man-made trees are placed together to form a small

synthetic forest. The trees possess ideal circular outer shapes, producing accurate circle

parameters in the feature extraction process. Pillars with perpendicular corners and

walls are also present in the scenario. The onboard laser scanner scans the environment

and obtains measurement points, corresponding to trees, walls, and pillars. The feature

extraction presented in Section 4.2 has solved this problem.

Figure 4.16: The indoor test scenario for verifying scan matching.

In the test, the UAV was piloted through the forest, following a close-to-rectangle

shape of trajectory. The laser measurement data were recorded online and processed

81

offline using the scan matching method developed in this section. At the first scan, the

UAV position is set to origin where the translation and rotation are set to zero. Then

the incremental translation and rotation are obtained by matching each scan with the

last scan. Accumulating these transformation increments produces a position and a

heading estimates of the UAV in the horizontal plane. These estimates are also referred

to as pseudo-absolute estimates since they are integrated from the increments. With

pseudo-absolute pose estimated, each measured scan is projected to the same frame

using the pose. Fig. 4.17 and Fig. 4.18 show the projected map and trajectory. The

blue dots are the trajectories of the UAV while the red plots are the accumulated plots

of the laser scans. Fig. 4.17 shows the accumulated path and map for the first 100

scans, in which the clear circular contour of trees can be seen. Fig. 4.18 shows the path

and map at the end of the path after 280 scans. Comparing Fig. 4.17 and Fig. 4.18,

the map remains consistent after 280 scans, corresponding to 28 seconds in time. This

demonstrates that the scan matching algorithm can provide usable estimate for a short

time. Meanwhile, we notice that the pose estimates have larger drifts at the end than

that of the beginning, since the red contours of trees in Fig. 4.18 are more mixed up than

the ones in Fig. 4.17. This drifting issues determine that scan matching can only be used

for short time navigations. More advanced algorithms need to be developed to solve the

drift issue. We will present our solution in the next chapter using the GraphSLAM.

Fig. 4.19 shows the estimated velocity in x and y directions and the incremental

heading estimate. The UAV is originally piloted in the forest at a reasonably fast

speed. In the first two subplots, the maximum velocity in both directions do not exceed

1 m/s, which indicates the speed is a safe flight speed for UAV operations in obstacle-

strewn environment. Since the onboard laser scanner updates at 10 Hz, the incremental

translation is below 0.1 m, setting an upper bound for incremental translation. From

the third subplot, the incremental yaw angle is below 2 degrees, setting the upper limit

of rotation angle. These translation and rotation bounds set the range to search for

nearest neighbor in the data association process. In practice, the two bounding values

are inflated two times to account for the effects of noise.

Fig. 4.19 also shows that the velocities estimated directly from scan matching are

not smooth. For example, the x velocity at time 14.5 seconds exhibits a sudden jump.

The jumps render the velocity estimate not directly applicable to onboard control. A

82

0 1 2 3 4 5 6 7

−4

−3

−2

−1

0

1

2

3

4

Position (m)

P
os

iti
on

 (
m

)

Tree Map and UAV Path

Figure 4.17: Motion and path estimate at the start of path.

0 1 2 3 4 5 6 7

−4

−3

−2

−1

0

1

2

3

4

Position (m)

P
os

iti
on

 (
m

)

Tree Map and UAV Path

Figure 4.18: Motion and path estimate at the end of path.

83

smoothing mechanism needs to be implemented before feeding them to the control loop.

Two popular solutions are considered: a low-pass filter or a Kalman filter. We choose

to use the Kalman filter because it can not only smooth the velocity measurement, but

also increase the estimate accuracy by fusing multiple sensor information.

0 5 10 15 20 25 30
−2

−1

0

1

2
X velocity measurement from scan matching

Time (s)

V
el

oc
ity

 (
 m

/s
)

0 5 10 15 20 25 30
−2

−1

0

1

2
Y velocity measurement from scan matching

Time (s)

V
el

oc
ity

 (
 m

/s
)

0 5 10 15 20 25 30
−2

−1

0

1

2
Yaw angle estimate from scan matching

Time (s)

Y
aw

 A
ng

le
 (

 d
eg

)

Figure 4.19: Velocity and incremental heading angle estimates from scan matching.

4.4 IMU-driven State Estimation

Kalman filter is one of the most popular filters to fuse measurement from multiple

sensors. In this study, we propose a Kalman filter to fuse the velocity measurement from

scan matching and the acceleration measurement from the IMU. In the current filter

design, the orientation measurements from the IMU are assumed to be accurate enough

and need no further filtering. Initially, the acceleration and incremental translation are

all represented in the body frame. Using the orientation from the IMU, they could

84

be transformed to the local NED frame. The global acceleration measurements are

considered as the driving force for the process model, thus we call it an IMU-driven

Kalman filter. The incremental velocities transformed to the local NED frame are used

as the measurement input.

To design a Kalman filter, the process model and measurement model are first iden-

tified. Let Pn be the 3-axis position, vn be the 3-axis velocity in local NED frame. The

process model is described by,

Ṗn

v̇n

 =

 vn

Rn/b(ab + wa)

 , (4.23)

where ab is the acceleration measurement, wa is the acceleration measurement noise

vector with normal distribution, ab +wa is the IMU acceleration measurement in body-

fixed frame, and Rn/b is the rotation matrix from the body frame to the local NED

frame which is expressed as:

Rn/b =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 , (4.24)

where φ, θ and ψ are the roll, pitch and yaw angle respectively with s∗ = sin (∗),

c∗ = cos (∗).

For the measurement model, the planar velocities and the vertical height form the

measurement vector,

y = (zn, un, vn)T, (4.25)

where zn is the height measurement, un and vn are the incremental velocity from scan

matching which have been transformed to the local NED frame using Eq.4.24. The

height measurement can be obtained from any range sensing modality, such as a barom-

eter, a sonar and a laser range finder.

For implementation of the Kalman filter in computer, the discrete-time process

model Eq.4.23 and the measurement model Eq.4.25 are discretized using zero-order-

hold method as follows,

85

x(k + 1) = A x(k) + B(an(k) + wn(k)), (4.26)

y(k) = C x(k) + v(k), (4.27)

where x, y are the state and measurement vector respectively,

x = (xn, yn, zn, un, vn, wn)T, (4.28)

y = (zn, un, vn)T. (4.29)

The input vector (an(k) + wn(k)) is the acceleration sequence in the local NED frame.

v and wg are the measurement noise vector and process noise vector with normal distri-

bution. The discrete system matrices A, B, C are determined by discretizing Eq. 4.23

and Eq. 4.25 with 50 Hz sampling frequency,

A =

1 0 0 0.02 0 0

0 1 0 0 0.02 0

0 0 1 0 0 0.02

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, B =

0.0002 0 0

0 0.0002 0

0 0 0.0002

0.02 0 0

0 0.02 0

0 0 0.02

, (4.30)

C =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 . (4.31)

The following procedure is a standard Kalman filter process with alternate time

update and measurement update [10]:

Time Update:

x̂k,k−1 = Ax̂k−1 + Buk−1, (4.32)

Pk,k−1 = APk−1A
T + BQBT. (4.33)

86

Measurement Update:

Hk = Pk,k−1C
T(CPk,k−1C

T + R)−1, (4.34)

x̂k = x̂k,k−1 + Hk(yk −C x̂k,k−1), (4.35)

Pk = (I−HkC)Pk,k−1, (4.36)

where x̂k,k−1 and Pk,k−1 are the a priori state estimate and error covariance at step k,

x̂k and Pk are the a posteriori state estimate and error covariance, Hk is the gain to

decide how much the measurement is to be trusted. The optimal gain Hk in Eq.4.34

minimizes the a posteriori error covariance Pk. I is the identify matrix with proper size.

Q and R are the process noise covariance and measurement noise covariance.

Tuning of the Kalman filter can be achieved by adjusting the relative diagnal com-

ponents of Q and R. The initial Q and R are determined by processing the offline

acceleration and incremental velocity measurements and take their covariance respec-

tively. Then changing the relative weight of the process covariance Q and the measure-

ment covariance R is able to tune the performance of the Kalman filter. If measurement

covariance R is fixed, increasing Q causes the state estimate to believe more on the mea-

surement update. Any abrupt jump in the measurement will be reflected in the state

estimate. On the other hand, decreasing Q causes the Kalman filter to believe more

on the process prediction. Since the acceleration measurement is continuous, smaller Q

exhibits stronger smoothing effect.

One noteworthy point is that the measurement update rate is 10 Hz while the ac-

celeration measurement updates at 50 Hz. When the measurement is not available, the

state is updated using only the process model as Eq. 4.32 - 4.33.

To evaluate the performance of Kalman filter, we compare it with the other two

methods: IMU dead reckoning (DR) and scan matching. Fig. 4.20 shows the state

estimation results of three methods on the same set of measurement data. The UAV

was manually piloted in a forest as shown in Fig. 4.21 during which the onboard program

recorded the acceleration and the laser scans. For the IMU dead reckoning method, the

accelerations are transformed to the local NED frame and integrated twice to get the

position estimate. The black solid line in Fig. 4.20 represents the path from IMU DR,

whose path traverses the figure border quickly and drifts away. For the scan matching

87

method, feature extraction and scan matching were applied to the laser scans, providing

the incremental translation and rotation estimates. The incremental translation are

divided by the time difference between two consecutive scans to get the velocity. Using

the IMU measurement of orientation, the incremental translation are transformed to

local NED frame and integrated once to get the position estimate. The blue dash-dot

line in Fig. 4.20 presents the path from scan matching. The third method, Kalman filter,

fuses the IMU acceleration and the velocity derived from the scan matching, whose path

is represented by red dashed line in 4.20. Comparing the paths from the three methods,

it is clear to see that the scan matching and Kalman filter can significantly reduce the

drift of position estimate of dead reckoning. The path from the Kalman filter resembles

that of the scan matching because we choose to believe more on the measurement from

scan matching. In the testing scenario, GPS signal is blocked by the dense tree canopies.

We can not compare our estimated path with an external position reference.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Path in local NED frame

x−North (m)

y−
E

as
t (

m
)

KF
Scan matching
IMU DR

Figure 4.20: Comparison between dead reckoning, scan matching and Kalman filter.

4.5 Autonomous Flight Test

We have developed the techniques for UAV state estimation using a laser range finder

in this chapter’s previous sections. They are evaluated either with synthetic data or

with practical data collected during manual flight. The fidelity of the state estimation

88

scheme cannot be justified without real flight test. We performed a series of autonomous

flight test in a small forest (Fig. 4.21), which is in front of central library in National

University of Singapore. To isolate the obstacle avoidance issues from the system, we

designed a trajectory which does not collide with any objects in the environment. But

the state estimation framework does not rely on the absolute position of the trees in the

environment. The predefined trajectory was loaded into the system during power-up.

Upon a single command on the ground control station, the UAV autonomously took

off and started to travel in the forest following the predefined trajectory. At the end

of the trajectory, the UAV landed autonomously in the original taken-off position. In

the whole autonomous flight, the motion estimation scheme provided the position and

velocity estimates for the onboard robust and perfect tracking controller.

Figure 4.21: The testing scenario with the flying quadrotor.

Figure 4.22 shows the position tracking performance. In both x and y direction, the

RPT controller can track the reference very well. The tracking error in x direction is

below 0.2 m and 0.5 m in y direction. This might be caused by the different motion es-

timation accuracy in x and y direction. Fig. 4.23 shows the reference position trajectory

compared with the onboard estimates.

4.6 Conclusion

In this chapter, we have presented the state estimation of UAV for navigation in GPS-

denied environment using laser odometry. The state estimation consists of a feature-

89

0 50 100 150
−15

−10

−5

0

5

Time (s)

x
 p

o
s
it
io

n
 (

 m
)

x

x
ref

0 50 100 150
−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

x
 e

rr
o

r
(

m
)

0 50 100 150
−5

0

5

10

15

20

25

Time (s)

y
 p

o
s
it
io

n
 (

 m
)

y

y
ref

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

Time (s)

y
 e

rr
o

r
(

m
)

Figure 4.22: Position tracking in x-y plane with the tracking error.

−5 0 5 10 15 20 25
−12

−10

−8

−6

−4

−2

0

2

Y (m)

X
 (

m
)

X−Y trajectory

Reference
State

Figure 4.23: Position reference tracking in x-y plane.

based scan matching and a Kalman filter. We performed the flight tests in forest to

evaluate the state estimation performance. On the one hand, tree trunks in forests are

90

extracted as features for scan matching. The range scan from the measurement of the

laser range finder is first segmented using a carefully tuned threshold, separating each

scan into a group of candidate clusters. The clusters are characterized with a series of

geometric descriptors, which effectively distinguish the correct tree trunks from other

objects like ground and bushes. The extracted tree centers serve as the point features for

the closed-form scan matching, producing the measurements for incremental translation

and rotation. On the other hand, a Kalman filter is designed to fuse the acceleration

measurements of IMU with the velocity estimates from scan matching, providing 50

Hz state estimate for the real-time onboard control. The state estimation using laser

odometry is verified by successful autonomous flights in foliage environments. The

estimation framework is, however, not confined to laser odometry. Any other sensing

modalities, like visual odometry, can be easily adopted in this framework.

91

Chapter 5

Offline Consistent Localization

and Mapping using GraphSLAM

5.1 Introduction

We have presented the autonomous flights of UAV in GPS-denied environment in the

last chapter. The scan matching method has been used with the Kalman filter to provide

real-time state estimates for the flight tests. The measurements from laser odometry

are incremental velocities, thus the position estimates from the Kalman filter are not

observabl, which are consequently prone to drift. The drift is acceptable for short

range navigation in a small scale environment, but it is not applicable for long range

navigation. SLAM technologies are often adopted to reduce the drift of position and

achieve consistent mapping of the environment.

In this chapter, we present a consistent estimation framework based on the Graph-

SLAM technique. We decompose the framework into a front-end and a back-end. The

front-end is responsible for interpreting the sensor data to build a graph, and the back-

end is designed to optimize the graph for consistent mapping. We will list the procedures

to build the graph based on the measurement of a laser range finder. The mathematics

formulation of GraphSLAM will also be covered, which is essentially a nonlinear least

squares problem. A standard Gauss-Newton method is illustrated to solve the nonlinear

least squares problem. Implementation issues of the whole framework in Matlab and

C++ will be discussed, with evaluation results given in the end of this chapter.

92

5.2 GraphSLAM System Structure

The standard GraphSLAM algorithms frequently discuss about different solvers to solve

the nonlinear least square problem. The techniques of building up the constraints are

rarely covered. A complete procedure including the process of building up the graph and

optimizing the graph is indispensable to practical UAV navigation using GraphSLAM

techniques. Typical GraphSLAM structure is presented in Fig. 5.1 [39], consisting of the

front-end and the back-end. The front-end aims to obtain the constraints information

based on the collected sensor data. The constraint is a link between two poses which

describes how the two poses are similar to each other. It is related to the extent of

overlap between the two measurements taken on the two poses. Therefore, the robust

and accurate data association is critical to build the constraints. The back-end solves

a nonlinear quadratic optimization problem, giving the optimal configuration of nodes

that maximizing the likelihood of the measurements encoded in the constraints.

Front‐end
(graph‐construction)

Back‐end
(optimization)

Constraints

Poses
Sensor data

Optimized poses

Front‐end
(graph‐construction)

Back‐end
(optimization)

Constraints

Poses
Sensor Data

Optimized poses

Figure 5.1: GraphSLAM system structure.

In Chapter 4, we have discussed about the state estimation using laser scanner in

a Kalman filter framework. We present now a comprehensive and practical system

structure from the front-end to the back-end in Fig. 5.2. The state estimated in the

Kalman filter is prone to drift since only incremental velocities are measured from the

scan matching instead of the absolute position. In the context of GraphSLAM, the

drifting position serves as an initial guess, i.e, a node in the pose graph, which could be

optimized in the back-end.

Front-end: this part processes the sensor information to produce the graph, in-

cluding the initial pose and the pose constraints. First a motion estimation based on

laser odometry is implemented from the consecutive measurement of the laser range

finder. A Kalman filter is designed to fuse the sensor information from the IMU and

the laser range finder. The acceleration measurement from the IMU serves as the input

to the process model. The inputs to the measurement update are the velocity estimates

93

Loop	
Closure?	

6D	
Kalman	Filter

Motion	
Estimation

No

End	?

Pose	
Graph

Yes

Yes

IMU

Laser

Add	Edge
Add	Pose

Optimize	Graph
No

Front-end

Back-end

Figure 5.2: System schematics illustrating front-end and back-end.

from the motion estimation. The output of the Kalman filter is the estimated position

and velocity which are used for autonomous control. The position estimate from the

Kalman filter is only suitable for short time navigation. This is due to the fact that

the planar position is not observable in the measurement equation and thus suffers from

long term drift. Without external absolute position reference, the position estimate has

to be bounded in another way. This is where the GraphSLAM back-end plays its part.

Together with the features seen on the pose, the initial pose is fed into a loop closure

detection block. The loop detection block builds constraints between the current pose

and all the previous poses if sufficient measurement overlap is detected. The constraints

are added to the graph for the future optimization. Detecting the correct overlap is the

key step for loop detection. We use feature-based scan matching in this study because

the tree features we extracted are quite robust during the data association.

Back-end: this part solves the nonlinear-least square problem to derive the optimal

configuration of poses and landmarks. The nonlinear-least square problem is normally

solved in an iterative manner: forming a linear system around the current state estimate,

solving the linear system and iterating. The typical nonlinear optimization problem

could be addressed with standard methods like Gauss-Newton, Levenberg-Marquardt

(LM) [21] or variants of gradient descent algorithms are used to solve this problem.

In Fig. 5.2, we have put the loop closure detection module to the back-end. This

94

makes sense because we utilize the position estimates from the Kalman filter as the

estimate for the real-time autonomous control of the UAV. By putting the loop detection

into back-end, the GraphSLAM back-end operates in a self-contained manner which will

not influence the real time performance of the UAV control. This modular design is

preferable for system development and integration.

5.3 GraphSLAM Back-end

5.3.1 GraphSLAM Formulation

GraphSLAM is a full SLAM problem, which seeks to calculate a posterior solution for the

offline SLAM defined over all poses and all features in the map. It aims to find the most

consistent trajectory configuration which maximizes the measurement likelihood. The

GraphSLAM uses a graph with nodes and edges to represent the information obtained

by the UAV motion model and the measurement model. The graph consists of two types

of nodes and two types edges respectively (Fig. 5.3). Nodes in the graph correspond to

either the UAV poses or the feature positions. Edges in the graph represent the mutual

constraints of the nodes. The edges in the graph are categorized into two types: one type

is the edge describing the constraints between the UAV poses and the other type is the

edges connecting the pose node with the sensed feature nodes at that pose. Each edge

in the GraphSLAM is a non-linear quadratic constraint, where the motion constraints

correspond to the motion model and the measurement constraints conrespond to the

measurement model.

Graph

Edges
Pose - Landmark: measurement model

Pose - Pose: motion model

Nodes
Poses

Landmarks

Figure 5.3: Composition of a graph.

For a linear system, the soft constraints are equivalent to entries in an information

matrix Ω and an information vector ξ. Each measurement in z1:t and each control in

u1:t lead to a local update of Ω and ξ. Given an environment m consisting of features

mj , a robot is driven by a set of controls u1:t, generating a set of poses x1:t and a set

95

x Ω x

x x

m
x 	g u ,	x x 	g u ,	x

x 	g u ,	x x 	g u ,	x

x 	g u ,	x x 		g u ,	x

x 	g u ,	x x 	g u ,	x

z 	h ,	x 	h m ,	x

x

x

x

m

z 	h ,	x 	h m ,	x

z 	h ,	x 	z 	h m ,	x z 	h ,	x 	h m ,	x

Figure 5.4: GraphSLAM illustration [74].

of measurement z1:t with associated correspondence variables c1:t. Referring to Fig.5.4,

the measurement zit provides information between the location of the feature j = cit and

the robot pose xt at time t. The measurement constraint is defined as the error between

the real measurement and the predicted measurement weighted by the inverse of the

covariance matrix, which is defined as follows,

(zit − h(xt,mj))
TQ−1t (zit − h(xt,mj)) , (5.1)

where h is the measurement function and Qt is the covariance of the measurement noise.

For motion constraints, the control ut provides update the robot pose xt−1 to xt

using the robot kinematic model x̂t = g(ut,xt−1). The relative error compared with the

robot pose xt forms the motion constraints,

(xt − g(ut,xt−1))
TR−1t (xt − g(ut,xt−1)) , (5.2)

where Rt is the covariance of the motion noise.

After incorporating all measurements z1:t and controls u1:t, a sparse graph is obtained

similar to the one in Fig. 5.4. The sum of constraints is defined as:

JGraphSLAM = xT
0 Ω0x0 +

∑
t

[xt − g(ut,xt−1)]
TR−1[xt − g(ut,xt−1)]

+
∑
t

[zt − h(mct ,xt)]
TQ−1[zt − h(mct ,xt)]. (5.3)

96

Minimizing Eq. 5.3 means to maximize the measurement likelihood so that the robot

poses on the trajectory are most consistent.

5.3.2 Loop Detection

The loop detection module searches over all the poses in the initial trajectory and con-

nects those two poses with enough overlap. The initial poses are the position estimates

of the Kalman filter. As shown in Fig. 5.5, the initial pose at time t is only related to

the pose xt−1 one time step before. In the context of GraphSLAM, this corresponds

to an initial graph consisting of edges between each pair of consecutive poses. In order

to add more constraints, a pose xt at time t is compared with all the poses before t

to check if an edge could be added. The edge built upon two poses which are far from

each other in time is based on the fact that there are enough overlap of measurements

in the two poses. For example, as the UAV travels a certain distance, it may revisit

the same place which the UAV has visited before. At time t+ 1 the UAV observes the

landmark m1 again. Based on the two measurements of m1 at the two poses xt+1 and

x1, a relative spatial configuration of x1 and pose xt+1 is obtained. If the number of

revisited features is large, a strong spatial constraint between pose x1 and pose xt+1

can be built and added to the graph. This relates the pose xt+1 not only to the most

recent previous pose xt , but also to the poses along the trajectory. The multiple spatial

constraints will in the end bound the current pose to the position which maximizes the

likelihood of the measurements encoded in the constraints.

x
x

m

x

x

x

m
Loop	Closure

Figure 5.5: Loop closure after traveling a certain time.

The details of the loop detection are listed in Algo. 2. The main steps are to compare

the current set of poses and measured features with all the previous poses and the

features on the trajectory. If there are sufficient overlap of measurements, an edge is

97

built up between the two poses. Two issues need to be clarified further: the criteria for

adding new edges and the search window. The first issue is a data association problem.

The matching criteria is selected to be the sum of squares errors, which is defined as

the sum of squares of the Euclidean distance between the matched features. Nearest

neighbor search is first performed to generate a list of matched features. The matched

features of one frame is then transformed to the other frame where a sum of Euclidean

distance is taken. For any two nonconsecutive poses, if the error is smaller than the

initial error provided by the consecutive scan matching, a new edge is added to the

graph. An edge is described by the position error and the information matrix. The

information matrix is essentially the inverse of the covariance matrix, describing the

confidence level of the edges. If there are a large number of features matched between

the two positions, the covariance matrix is small. Therefore, the information matrix is

chosen to be a diagonal matrix with elements proportional to the number of matched

features on the two poses.

Algorithm 2: GraphSLAM loop detection.

Input: Initial poses xi, features at each pose Mi, i ∈ [1, n], n is number of poses.
Output: Constraint set C = 〈eij(·), Ωij〉

1 for i in {1 : n} do
2 for j in {i+ 1 : n} do
3 Get the initial pose difference Dij between xi and xj ;
4 Calculate sum of squares error ssd1 by projecting Mj to the frame of xi

using Dij ;
5 Calculate the transformation Tij between xi and xj using scan matching;
6 Calculate sum of squares error ssd2 by projecting Mj to the frame of xi

using Tij ;
7 if ssd2 <ssd1 then
8 Add the edge eij as the difference between Dij and Tij ;
9 Add the information matrix Ωij to be diagonal matrix with elements

proportional to the number of inliers during scan matching;

10 end

11 end

12 end
13 return Constraint set C = 〈eij(·), Ωij〉;

The other issue is the search window size, which influences the speed and the per-

formance of the back-end optimization. As shown in Fig. 5.6, there are two searching

strategies: searching over all previous poses or searching only in a small time window.

Both methods have their merits and drawbacks. For the global search, the loop de-

tection block searches over all the previous poses along the trajectory and checks for

98

Sliding window Illustration

x x xx x

(a) Global search

x xx xx

(b) Local search

Figure 5.6: Global and local search in loop detection.

possible loop closure. This method incorporate the most comprehensive information

collected on the trajectory and tends to generate the most accurate results. However,

this exhaustive search will become prohibitively intensive after the UAV travels a long

time, which becomes even more intensive if the sensor suites produce 3D feature points

with high dimensional feature descriptors such as 3D LiDAR or stereo vision system.

On the other hand, the local search strategy avoids the increasing size of graph at the

expense of losing some information. A comparison of information matrix of the two

searching methods for the same dataset is given in Fig. 5.7. Black squares in the figures

correspond to edges between the two poses. The local searching method limits the search

window to the most recent 30 poses, creating an information matrix with non-zero ele-

ments only close the main diagonal band (Fig. 5.7(a)). Fig. 5.7(b) shows that the global

searching strategy produces a more dense matrix, indicating more edges are added. The

non-zero off-diagonal elements of the information matrix indicate the existence of large

loop closure between the beginning and end of the trajectory. Therefore, the size of

search window is an important parameter to generate the graph. Large search window

closes larger loops at the expense of longer running time but small search window size

produces near real-time performance while losing some information. Experiment evalu-

ation of the search window is covered in Section 5.4.3. Online GraphSLAM considering

both the global and local search is covered in the next chapter.

99

Information matrix for local search

Column

R
o
w

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

(a) Information matrix for local search (30 poses)

Information matrix for global search

Column

R
o
w

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

(b) Information matrix for global search

Figure 5.7: Comparison of information matrix between local search and global search.

5.3.3 Graph Optimization

As discussed in [74], the information matrix for a graph with pose nodes and landmark

nodes can be factorized to small information matrix, consisting of only poses nodes. The

information between features and poses are shifted to the constraints between the two

related poses. The resultant graph is a pose graph as illustrated in Fig. 5.8. The nodes

are only the robot poses xi and edges represent the spatial constraints between the two

poses. Edges between two consecutive poses correspond to the odometry measurement,

while the other nonconsecutive edges correspond to the spatial constraints arising from

multiple observations of the same sets of features.

, Ω

x

x
x

x x

x x

x

Figure 5.8: The pose-graph structure in GraphSLAM.

Let x = (x1, x2, · · · , xt)T be the vector of poses, zij be the virtual measurement

100

which has been obtained in the factorization of Ω, ẑij be the prediction of the virtual

measurement given the nodes xi and xj . We define the error,

eij(xi, xj) = zij − ẑij(xi, xj) (5.4)

Let C be the set of pairs of indices for which a constraint z exists, the nonlinear opti-

mization problem could be formulated as:

F (x) =
∑

(i, j)∈C

eTij Ωij eij︸ ︷︷ ︸
Fij

(5.5)

x∗ = argmin
x

F (x). (5.6)

Eq. 5.6 could be solved in many ways, either via the standard nonlinear least-square

optimization, Gauss-Newton or the Levenberg-Marquardt algorithms. A good summary

of solutions can be found in [49]. Gauss-Newton method is the most basic method upon

which other methods are developed, thus we present the main procedures of solving

Eq. 5.6 together with the sparse structure of the GraphSLAM formulation.

Given a reasonable initial guess of the robot pose x̆, we illustrate the steps using

Gauss-Newton algorithm to solve Eq. 5.6. First the error function is linearized at the

current initial guess x̆,

eij(x̆i + ∆xi, x̆j + ∆xj) = eij(x̆ + ∆x) (5.7)

' eij + Jij ∆x. (5.8)

here Jij is the Jacobian of eij computed at x̆. Since the error eij depends only on the

node xi and xj , Jij has the following sparse form:

Jij =

(
0 0 Aij︸︷︷︸

node i

0 · · · 0 Bij︸︷︷︸
node j

0 · · · 0
)

(5.9)

Fij(x̆ + ∆x) = eij(x̆ + ∆x)T Ωij eij(x̆ + ∆x) (5.10)

= (eij + Jij∆x)T Ωij (eij + Jij∆x) (5.11)

= eTij Ωij eij︸ ︷︷ ︸
cij

+2 eTij ΩijJij︸ ︷︷ ︸
bij

∆x + ∆xT JT
ij Ωij Jij︸ ︷︷ ︸

Hij

∆x (5.12)

101

= cij + 2bij∆x + ∆xTHij∆x (5.13)

Insert Eq.5.13 into Eq.5.5, we can rewrite the cost function

F (x̆ + ∆x) =
∑

(i, j)∈C

Fij(x̆ + ∆x) (5.14)

'
∑

(i, j)∈C

(cij + 2bij∆x + ∆xTHij∆x) (5.15)

= c+ 2bT∆x + ∆xT H ∆x. (5.16)

The quadratic form in Eq. 5.16 could be solved by solving the linear system

H ∆x∗ = −b (5.17)

where H is the information matrix of the system, which is defined as

H =
∑

(i, j)∈C

Hij (5.18)

=
∑

(i, j)∈C

JTij Ωij Jij . (5.19)

Because the Jacobian Jij has the sparse structure as defined in Eq. 5.9, the block infor-

mation matrix has the form:

Hij =

. . .

AT
ijΩijAij · · · AT

ijΩijBij

...
. . .

...

BT
ijΩijAij · · · BT

ijΩijBij

...
. . .

, bij =

...

AT
ijΩijeij

...

BT
ijΩijeij

...

(5.20)

From Eq. 5.20 we can see that the information matrix H and information vector b

are sparse in their structures. The linear system in Eq. 5.17 can be solved effectively

with Gauss-Newton method described as Alg. 3. Given that the poses are optimally

extracted, the map could be reconstructed by overlapping all the sub maps together.

Mapping techniques like grid maps or features can be used. We use here a feature-based

map which can be easily implemented using a kd tree structure.

102

Algorithm 3: Pose graph optimization using Gauss-Newton method

Input: Initial pose x̆ = x̆1:T , constraints C = 〈eij(·), Ωij〉
Output: Optimal pose x∗, information matrix H∗

1 while not converged do
2 b← 0, H← 0 ;
3 for all constraints 〈eij(·), Ωij〉in C do
4 Calculate Jacobian at the current pose x̆ using Eq.5.9 ;
5 Update the local information matrix Hij at node xi and xj using Eq.5.20;
6 Update the local information vector bij at node xi and xj using Eq.5.20;

7 end
8 Keep the first fixed by H11+ = I ;
9 Solve the linear system with sparse Cholesky factorization,

∆x← solve(H∆x = −b);
10 Update the pose estimation x̆+ = ∆x;

11 end
12 x∗ ← x̆, H∗ ← H ;
13 return (H∗,x∗);

5.3.4 Error Linearization for 2D Poses

There are two types of errors in the GraphSLAM formulation: one is pose difference

error and the other is the landmark measurement error. The position of landmark is

expressed in 2D euclidean space. This type of error is implemented as the vector minus

operation. For the pose error, the pose of UAV can be expressed as xi = (xi, yi, θi)
T in

2D plane, where xi and yi are the positions in the global frame and θi is the heading of

the UAV. The pose parametrization belongs to the special Euclidean group SE(2). To

facilitate motion composition, the pose is expressed in homogeneous coordinate. For a

pose xi, its homogeneous coordinate is,

Xi =

Ri ti

0 1

 , (5.21)

where Ri is a 2 × 2 rotation matrix, and ti is a 2 × 1 translation vector, which are

expressed as

Ri =

cos θi − sin θi

sin θi cos θi

 , ti =

xi
yi

 . (5.22)

103

The inverse of homogeneous transform Eq.5.21 is,

X−1i =

RT
i −RT

i ti

0 1

 . (5.23)

Suppose there are two initial poses from the front-end, Xi and Xj , the initial pose

difference is X−1i Xj . With the measurement between the two poses given as Zij =

(tij , θij)
T, the error function is

eij = Z−1ij (X−1i Xj) =

RT
ij(R

T
i (tj − ti)− tij)

θj − θi − θij

 . (5.24)

We can derive the Jacobian matrix element Aij and Bij of the error function eij at xi

and xj as,

Aij =
∂eij
∂xi

=

−RT
ijR

T
i RT

ij
∂RT

i
∂θi

(tj − ti)

0 −1

 , (5.25)

Bij =
∂eij
∂xj

=

RT
ijR

T
i 0

0 1

 . (5.26)

5.4 Offline GraphSLAM Evaluation

We have presented the GraphSLAM system structure including the front-end and the

back-end. In order to use it for online consistent state estimate for UAV onboard

implementation, we first develop the algorithm in embedded system and verify the offline

algorithm with pre-recorded data. This section aims to presents our work regarding the

software development, the algorithm verification using synthetic data, the loop closure

for real flight data and the paramter tuning of GraphSLAM.

5.4.1 GraphSLAM Software Development

In order to integrate the algorithm in embedded system, we follow a two-phase verifica-

tion process: first we develop the code in Matlab for fast verification and better result

visualization. Then the algorithm is implemented in C++ for the sake of running speed

and the final code integration.

104

Implementation using Matlab

In Matlab, we have implemented a complete SLAM system including the front-end and

back-end. The front-end part consists of the following function block:

• Feature extraction: extract validate tree centers as landmarks;

• Scan matching: data association using nearest neighbor search.

• Sensor fusion: fusing velocity estimate from scan matching and acceleration mea-

surements from IMU. This helps boost the state estimate from 10 Hz to 50 Hz.

In the back-end, the following functions has been implemented:

• Building the graph: the initial poses from front-end are checked with each other.

For any two poses, we use the nearest neighbor search to determine whether the

two scans have sufficient overlap. If yes, the loop is closed and an edge is added

between the two poses. The pose is added to a vector structure storing the poses.

• Solving linearized equation: the error function is linearized at the current state

and formulated as linearized equation. We use the default solver in Matlab to

solve for an optimal state increment.

• Iterate to find the optimal solution.

Implementation in Embedded System

In C++, most of the efforts concentrate on the front-end part. For the back-end part,

thanks to the contribution of researchers in the SLAM community, there are quite a few

open-source software packages available1 suitable for 2D and 3D pose graph optimiza-

tion. Some representative packages are listed as follows:

• Hog-Man [29]: it is a hierarchical optimization framework for online mapping on

manifolds instead of in an Euclidian space. It utilizes a hierarchy of pose graphs to

model the problem at different levels of abstraction. In online operation, only the

coarse structure of the hierarchy is updated. Lower levels of graph are optimized

only when the higher level optimization brings significant changes.

1http://openslam.org

105

• iSAM [36, 35]: it is a library for batch and incremental optimization, recovering

the exact least-squares solution. The library can easily be extended to new prob-

lems, and functions for common 2D and 3D SLAM problems are already provided.

• g2o [40]: it is a general framework for graph optimization. It is customizable in

terms of error function definition and solve selection. Typical problems have been

tackled such as 2D/3D SLAM and bundle adjustment. The framework achieves

performance comparable to iSAM or HOG-Man and sometimes outperforms them.

Extensive comparison of the above-mentioned packages has been performed by re-

searchers [20] and concluded that g2o is slightly better in terms of absolute trajectory

error and the relative pose error. Therefore, we use g2o as the back-end optimization

framework in this study. We have implemented the GraphSLAM algorithm in both

Matlab and C++ languages. We compare the two sets of code for the same dataset we

collected on our UAV. Fig. 5.9 shows the optimized trajectory, in which the agreement

between the two results validates the developed software in C++.

−5 −4 −3 −2 −1 0 1 2 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
Graph Slam Position Comparison

Position (m)

P
os

iti
on

 (
m

)

Matlab
 C++

Figure 5.9: Optimized trajectory comparison between Matlab and C++

5.4.2 Consistent Mapping with Synthetic Data

Building the simulation environment is essential in the sense that it can provide ground-

truth measurement and trajectory, validating the algorithm developed. Random number

106

of trees with various radius are generated in a planar plane. The UAV is modeled as a

mass point and moves according to a set of predefined waypoints. Along the trajectory,

the measurement of laser range finder is logged. The laser range finder is modeled ac-

cording to the practical specification, including the measurement range, resolution and

field of view. The ground-truth position of UAV is also logged together with the laser

range finder measurement. In order to show the effect of SLAM algorithm, we add Gaus-

sian noise to the ground truth trajectory and treat it as the initial trajectory estimation.

Fig 5.10 shows the overlapped map for the three types of trajectories: the ground-truth,

the initial pose and the update pose. Fig 5.11 shows a enlarged view of a contour of

one tree. From the zoom-in we could see that the measurement points projected on

the initial trajectory (marked by green triangle) scatter around the ground truth con-

tour of the tree (black dot). While the measurement points projected on the updated

pose match the ground-truth perfectly. This proves that in Gaussian noise assumption,

the GraphSLAM algorithm provides the optimal trajectory estimation. Fig. 5.12 - 5.14

compare the difference of position and heading angle with respect to the ground truth,

showing again that GraphSLAM produces the optimal trajectory estimation.

0 10 20 30 40 50 60 70
5

10

15

20

25

30

35

40

45

50

55

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Trajectory and map for simulation data

True Pose
Initial Pose
Update Pose

Figure 5.10: Optimized map and trajectory in simulation environment.

107

40.8 41 41.2 41.4 41.6 41.8 42 42.2

24.4

24.6

24.8

25

25.2

25.4

25.6

25.8

26

26.2

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Trajectory and map for simulation data

True Pose
Initial Pose
Update Pose

Figure 5.11: Optimized tree contour projected on the optimal pose.

0 50 100 150 200
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

P
os

iti
on

 (
m

)

X position difference

initial x difference
update x difference

Figure 5.12: x position difference with respect to ground truth.

0 50 100 150 200
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

P
os

iti
on

 (
m

)

Y position difference

initial y difference
update y difference

Figure 5.13: y position difference with respect to ground truth.

108

0 50 100 150 200
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Points

A
ng

le
 (

ra
d)

Yaw angle difference

init yaw difference
Update yaw difference

Figure 5.14: Heading angle difference with respect to ground truth.

5.4.3 Loop Closure Detection

Currently we use point-based scan matching to detect loop closure. Suppose there

are two poses (xa, xb) with two sets of point features Fa, Fb. First a relative pose

difference Dij from xb with respect to xa is calculated. Then, features Fb is projected

to the frame of xa using the initial pose difference Dij , creating feature set Fba. A

nearest neighbor search is conducted between Fba and Fa. If sufficient number of inliers

are found according to a distance threshold, the two poses xa and xb indicate a loop

closure. A new pose difference is determined using scan matching. An update pose x′b

is generated with respect to xa.

Indoor forest dataset is used in loop detection evaluation. Fig. 5.15 shows a map

for poses at time step 1 and 350, denoted as xa and xb respectively. The red plot is

the measurement projected on the first pose xa and the green plot is the measurement

projected on the second pose xb. By examining the plot, we find that the green square

wall and pillars do not coincide with the red ones. We perform a loop closure update

between the two poses and the updated map is shown in Fig. 5.16. The updated map

is more consistent than in Fig. 5.15. Fig. 5.17 depicts the close view of the initial map

and the updated map, in which the square pillars align with each other and the circular

tree contours coincide. Performing the loop closure updates with more previous poses

may further correct the pose to the right one.

In this test, we use point features and scan matching to test loop closure. This is

indeed applicable in cases where the initial trajectory is not far from the optimal one

and the loop is not large. If any of the above assumption fails, loop closure may produce

109

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

25

30

Position (m)

 P
os

iti
on

(m
)

Initial map before loop closure

Figure 5.15: Drifted map before loop closure.

the wrong update. This problem could be alleviated by using more sensor information

and more robust multi-hypothesis data association. Using visual salient features to close

a loop is needed in future development.

5.4.4 GraphSLAM Parameter Tuning

In the application of GraphSLAM, we have used point-based features and scan matching

to build up the graph. The two main parameters to tune are the type of features used

for scan matching and the size of searching window for loop detection.

For the feature point selection, we could select the mean of each cluster or the

estimated center of each cluster. Each cluster is a portion of tree trunk facing the laser

range finder. Assuming a cylinder shape of tree trunks, we could derive the position

of trees as the estimated tree centers. When the cluster has many points and they

show patterns of a circle, it is reasonable to use the estimated center since they remain

constant when viewed from different angle. However, when there is limited number of

points in each cluster, using mean of each cluster is preferable because the estimated

110

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

25

30

Position (m)

 P
os

iti
on

(m
)

Updated map after loop closure

Figure 5.16: Consistent map after loop closure.

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

Position (m)

 P
os

iti
on

(m
)

Initial map before loop closure

(a) Initial map detail

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

Position (m)

 P
os

iti
on

(m
)

Updated map after loop closure

(b) Update map detail

Figure 5.17: Map details before and after loop closure.

center is prone to large error. Using the mean of cluster leads to one problem: the

features may shift a little when seeing from different angle of the cylinder. Therefore,

estimated centers should be used as features as much as possible. But if there are too

111

little measurement points in each cluster, the mean of the cluster measurement are used.

For the loop closure, the window size to search possible loop closure is another

important parameter. When a new pose node is added to the graph, it could search

over all the previous poses in the graph. Or alternatively, the search window can also be

limited to a certain range, such as only the poses in 5 seconds before. Using local window

or global window would generate different consequences for the SLAM algorithm. Using

global window will add all the possible edge constraint to the graph, producing the

optimal estimate of the whole trajectory. The downside of global search window is that

as the trajectory grows long, it becomes more and more expensive to search for loop

closure up to the beginning of the trajectory. On the other hand, using local search

window limits the search range to a fixed size, creating a smoothing SLAM algorithm

which is constant in time complexity. But it is at the expense of discarding all the

constraints beyond the search window. Using local window can be regarded as a sub-

optimal solution.

In this test, we seek to evaluate the effect of the two parameters: feature selection and

search window. There are four combinations as listed in Table 5.1. The GraphSLAM

algorithm is performed for the four cases on the same dataset.

Table 5.1: GraphSLAM parameter tuning table

Case Used Features Search Window

A Average points Local
B Average points All
C Tree centers Local
D Tree centers All

The four sub-pictures in Fig. 5.18 show the overlapped maps for the indoor forest

dataset in the same scale. By comparing the four pictures we can conclude as follows:

• Search window effect: comparing case A and B, which use the same average points

as features, we found that case B produces more consistent maps. The rectangle

pillar in case B is thinner than the one in case A.

• Feature selection effect: comparing case B and D, which both use global search

window, we found that using tree centers as features is better. The circular tree

contours in case D has an apparent hollow space in the tree contour estimation

while case B does not. This also applies to case A and case C.

112

• Accuracy ordering: comparing case A, case B, case C and case D, we found that

their consistency increases. Using tree centers and global search window produce

the most consistent map.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

A: Indoor forest map using GraphSLAM

(a) Case A

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

B: Indoor forest map using GraphSLAM

(b) Case B

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

C: Indoor forest map using GraphSLAM

(c) Case C

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

D: Indoor forest map using GraphSLAM

(d) Case D

Figure 5.18: Close view of optimized map compared to initial map.

Fig 5.19 shows a close view of the map for case D. It can be seen that the red circle

contour is more consistent than the green divergent one. This reemphasizes the fact that

using tree centers as features and global search window produces the optimal trajectory.

In practice, it might not be easy to extract the correct tree centers and search over

global window will increase the computation burden.

113

0.8 1 1.2 1.4 1.6
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Indoor forest tree contour detail using GraphSLAM

Figure 5.19: Tree contour details for indoor forest using GraphSLAM.

5.5 Conclusion

In this chapter, we have presented an offline consistent localization and mapping frame-

work with the GraphSLAM as the back-end optimization technique. The framework is

composed of the front-end Kalman filter and the back-end optimization. The procedures

of interpreting the sensor information in the front-end are listed to help build up a pose

graph, and the mathematic formulation of the graph is also given. The developed frame-

work is implemented first with Matlab to evaluate its performance and then with C++

for faster computation and onboard implementation. The two versions of the frame-

work perform alike on the same dataset. The developed framework has been extensively

evaluated using various datasets from synthetic simulation, indoor and outdoor forests,

to tune the parameters for a better performance. The evaluation results highlight the

importance of reliable feature extraction and loop closure, which should be taken into

account for real-time onboard applications. The evaluation also demonstrates that our

framework significantly improves the consistency of the map compared with the map

obtained by laser odometry.

114

Chapter 6

Autonomous Flights with Online

GraphSLAM

6.1 Introduction

In previous chapters we have developed various techniques for UAV navigation system,

including the avionics system design, the modeling of UAV dynamics, the design of

control law, the motion estimation and the GraphSLAM. To autonomously navigate

a UAV without GPS signals, all those proposed techniques need to be integrated in a

systematic way. We present our system integration framework in Fig. 6.1, showing the

signal flow of different modules, where xest is the estimated states, xref is the trajectory

reference, {P, M} are the estimated trajectory and map respectively.

Path Planning

	 ,

Control Law

GraphSLAM

State Estimation
Laser Scanner

IMUMotion Estimation

UAV dynamics
	

	

Figure 6.1: System diagram of UAV navigation system.

GraphSLAM is originally an offline algorithm which optimizes all the poses on the

whole trajectory based on the measurements collected at each pose. However, the global

optimization can only be initiated after all the measurement data are collected, meaning

115

that the UAV can only obtain a globally consistent state estimate at the end of the

flight. This is not desirable as the UAV needs a real-time consistent state estimate for

autonomous control, otherwise the fast drifting pose estimates will soon jeopardize the

navigation. To tackle this problem, we develop an online GraphSLAM using a sliding

window method in Section 6.2.

Fully autonomous navigation of the UAV demands a collision-free trajectory ref-

erence. Path planning is therefore indispensable for autonomous navigation of UAVs,

especially in obstacle-strewn environment. We will present our solution to path plan-

ning in Section 6.3. We implement the developed algorithms on embedded system for

practical flight tests. Multi-threading techniques are applied to organize the algorithms

into different threads. The details of the onboard software system are presented in Sec-

tion 6.4. Real flight tests are performed to verify the proposed UAV navigation solution

in two GPS-denied environments: an indoor environment with synthetic trees and a real

small scale forest. The experiment results of autonomous flights in such environments

are presented in Section 6.5.

6.2 Online GraphSLAM using Sliding Window

GraphSLAM seeks to optimize the poses on the trajectory by maximizing the likeli-

hood of the measurement. The most consistent map and trajectory can be obtained

by checking whether each pair of two poses are overlapped based on the correspond-

ing measurement. If the overlap of the two measurements exceeds a certain threshold,

an edge is established to describe the relative pose difference between the two poses.

In order to achieve the best optimization result, a new pose and its measurement are

compared with all the preceding poses and measurements. The number of poses in the

trajectory grows linearly with the time. The longer the UAV travels, the longer it takes

to perform the global optimization. The increasing computation time of GrpahSLAM

makes it only suitable for offline optimization when all the measurements are collected.

To tackle the problem of linear time increase, we designed a constant time Graph-

SLAM to facilitate onboard optimization. The main idea is to set a sliding window along

the trajectory, limiting the search range only to those poses lying in the time window

from the current pose. As illustrated in Fig. 6.2, the first pose and it’s measurement is

116

denoted as x0. It also serves as a reference origin to which all the future poses will be

referred. As the UAV collects more data, a series of new poses and measurements are

added, including {x2 · · ·xt}. The sliding window is initialized with a capacity of n as the

first pose x0 is pushed into the window. More poses are pushed into the sliding window

before it is full. After that, new pose xt can only be pushed in after the first pose in

the window xn−t is popped out. At each time step t, three operations are performed:

the first pose is popped out, the newest pose is pushed into the window and a local

GraphSLAM optimization in the local sliding window is performed.

Sliding window Illustration

x x xx x

x xxSliding window

Origin

	

Out In

	

, 	, 	

, 	

x x xx x

x xxSliding window

Origin

	

Out In

	

, 	, 	

, 	

Figure 6.2: Sliding window diagram with poses being pushed in and popped out.

The size of the sliding window plays a critical role in the performance of the online

GraphSLAM. As shown in Fig. 6.2, if the sliding window size is large enough to hold all

the new poses and measurements, the online GraphSLAM becomes a full GraphSLAM

with increasingly long computation time. If the window size is too small, only the most

recent several poses are optimized, losing the capability to detect large loop closure when

the UAV travels to a previously-visited place. To balance the computation time and

the optimization performance, extensive comparisons have been performed from which

a time window of 5 seconds is determined to be a practical choice.

The online GraphSLAM based on the sliding window significantly decreases the drift

of the position estimate compared with that of the Kalman filter. However, the introduc-

tion of sliding window is indeed a sacrifice of the optimization performance by limiting

the searching range only in the 5 seconds sliding window. For long time navigation, the

UAV position is still prone to drift without global optimization. Therefore, a two-layer

back-end framework is presented as shown in Fig. 6.3. Poses and features from the

front-end are pushed into the sliding window at each time step. After the local opti-

117

mization, the optimized pose estimate is transfered back to the front-end for real-time

control. At the same time, the locally optimized pose is pushed into a larger container

to store all the poses and measurements, forming a global graph to be optimized after

the mission. This two-layer graph setup makes sure the UAV achieves slow drift in the

pose estimation during flight and eventually obtains a globally consistent trajectory and

map afterwards. This configuration is justified by the fact that the UAV does not need

perfect pose estimate during flight and the slow drift caused by the local sliding window

optimization is acceptable for UAV operations lasting up to 10 minutes.

Graph SLAM Onboard Implementation

9

Kalman filter

Local sliding window

Global pose graph

State for control

Δ Δ Δ Δ

At time , pose:
At time Δ , correction returned: 	Δ

At any time Δ ,
initial pose 						 	 	Δ
update pose Δ Δ Δ

State update scheme

Δ

Front‐end

Back‐end

Figure 6.3: A timing graph showing the interaction between the front-end, the sliding window
local optimizer and the global optimizer.

Due to hardware constraints, the front-end and back-end algorithms are run in two

computers. The front-end algorithms, including the scan matching and the Kalman

filter, run on the Gumstix Overo Fire. While the back-end algorithms, including the

sliding window online GrpahSLAM and the global pose graph construction, run on

Mastermind. The two computers are connected through a serial port. Fig. 6.3 shows

the message interaction between the two computers. Initially, the state P0 is directly

fed to the autonomous control. To optimize the initial state P0, it is sent to Mastermind

with its measurement. The time delay caused by the local optimization, the global pose

construction and the serial communication make it impossible to use P0 directly for

flight control. In particular, experiments show that the delay ∆t between the initial P0

and the optimized pose Pn
0 is 300 ms. Recalling that the main loop in the front-end is

50 Hz, the delay of 15 loops is not negligible for real-time operation. To deal with the

delay, we propose to design a state update scheme to take into account the delay which

works as follows: At time t0, we have an initial pose P0 from the Kalman filter. After

118

time ∆t we receive the pose correction ∆P0 of P0, we have a new pose for time t0,

Pn
0 = P0∆P0. (6.1)

At any time t > t0 + ∆t , the initial pose is,

Pt = P0∆Pt
0, (6.2)

where ∆Pt
0 is the initial pose difference between Pt and P0. The update pose Pn

t of

time t is,

Pn
t = Pn

0∆Pt
0 = P0∆P0∆Pt

0. (6.3)

At time t1 a new initial pose is sent to the back-end for optimization and after time

t the update pose ∆P2 is returned. The update state is again updated using Eq. 6.3,

except that the time index is changed from t0 to t1.

6.3 Online Path Planning

Different methods and techniques for path planning have been proposed and any suc-

cessful approach must satisfy the following requirements: the methods must provide a

collision free and dynamically feasible trajectory that leads the vehicle to the target with

the capability of fast online re-planning to deal with dynamic environments. Histori-

cally, a two-level structure with a global planner and a local planner is widely adopted.

Usually, a coarse and lower-dimension state lattices are used for the global planner to

decrease the searching complexity and increase the computation speed. For the local

planner, various methods have been proposed for ground vehicles, including pure track-

ing controller, dynamic window approach or vector field histogram and their variations.

For air vehicles, due to the complexity and high dimension of the model, it is difficult

to use similar methods to generate a dynamically feasible trajectory. Most successful

application uses motion primitives during the planning process. However, the use of

motion primitives involves building giant look-up tables and thus limits the trajectory

to be combination of these motion primitives. A better solution is to approach the

trajectory generation as a two-point boundary value problem. The trajectory generator

takes in a series of states that the vehicle needs to reach and returns a dynamically fea-

119

sible trajectory. Though some trajectory generators could handle an arbitrary number

of states, they either sacrifice the ability to explicitly specify the dynamic constraints

or simply are too computationally intensive. On the other hand, a trajectory generator

that only consider the initial and final states is a two-point boundary value problem

which is more efficient.

Based on the work mentioned above, we propose a path planning system with global

path planner using A* searching [42] and a local planner using efficient two-point bound-

ary value problem solver [38]. It provides dynamically feasible trajectories to lead the

vehicle from any initial position to any reachable final position. The detailed steps of

the path planning structure are given in Algo. 4.

Algorithm 4: Online path planning framework

Input: Current pose x, obstacle position {mi} in local body frame, i = 1, · · · , n.
Output: Trajectory reference xref

1 Search in the configuration space using A*;
2 Connect the grids using split and merge, generating a series of line segments;
3 Rg ← take the first turning point of the line segment as the line segments;
4 {rj} ← sample multiple local targets around the current vehicle state x and order

them in descending order based on their distance to the global target Rg;
5 for all local targets in {rj} do
6 xref ← Solve the boundary value problem between x and rj ;
7 collision ← check if collision happens between {mi} and xref ;
8 if collision then
9 Delete the current local target and choose the second best local target ;

10 else
11 Break ;
12 end

13 end
14 return xref ;

The above algorithm consists of several main blocks: the global configuration space

search using A* (step 1) and the boundary value problem (step 6). The global configura-

tion space search is to give a rough plan that ignores the complex dynamics of the vehicle

but considers as much topological information as possible. Since there is no prior map

of the environment, a local map based on the current laser range finder measurement

is built up in polar coordinate. The A* path planning algorithm is actually a graph

search algorithm. To run the A* searching algorithm, a polar coordinate map is first

built from the input of a scanning laser range finder. For each obstacle point returned

from the scanning laser range finder, a Gaussian-based cost field is added around it. A

120

preprocessed polar coordinate map is shown in Fig. 6.4. The boundary value problem

seeks to generate a reference trajectory given two sets of conditions on the boundaries.

Reflexxes Motion Libraries [38] provides a general solution to this problem.

−15

−10

−5

0

5

10

15

20

25

−20−15−10−50510

50

100

150

200

250

300

Figure 6.4: A Gaussian cost map in polar coordinate. The color ranging from red to blue
indicates the closeness of the grid to the detected obstacle.

During the A* searching, the algorithm would generate a path with the lowest cost

from the current position of the vehicle to the target point. A typical path is shown in

Fig. 6.4 as the green line. The resulted path normally consists of a series of waypoints

located in each grid in the polar coordinate. In order to find the best direction the

vehicle should aim for, a split and merge algorithm is used to transfer these waypoints

into a series of line segments. The split and merge process finds the first turning point

Rg, which is used to determine the best target point to go. The direction and the

distance of the first turning point are then passed to the local path planner to search

for a collision free path from the current vehicle position to the turning point.

For the local planner, a similar idea close to the vector field histogram (VFH) method

is adopted. In VFH, the vehicle always turns to the direction that is both obstacle free

and also towards the target Rg from the global planner. The behavior is realized by

forming an optimal function that consists of different objectives, such as the distance

to the global target and the angle difference compared to the last direction. We sample

multiple local target points around the vehicle and calculate the resulted trajectory

121

based on the current vehicle states and the local target points. The trajectory that is

both collision free and closest to Rg is selected. Each trajectory starts at the current

vehicle states and ends at the local target points with zero velocity and zero acceleration.

Therefore, the vehicle is always at a safe state so that it could stop and avoid obstacles

when following the initial trajectory.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Position (m)

P
os

iti
on

 (
m

)

Onboard Path planning

State
Reference

Figure 6.5: UAV response together with reference in map.

Fig. 6.5 depicts the simulation results integrating the UAV model and the path

planning module. The initial starting point and the final target position are marked by

the solid black circle and the red solid diamond respectively. The map consists of five

trees marked by green solid circles and the large blue line circles represent the safe zone

of each tree. The UAV has to fly through these trees and reach the target. At every

time instant, a new reference position is obtained based on the current state of the UAV

and the surrounding obstacles. The reference position has to be obstacle free and meets

the UAV dynamics constraints. We could see a safe trajectory reference marked by red

dashed line is generated. The blue solid line is the simulation state estimate using the

UAV dynamics. The agreement in the simulation validates the performance of the path

planning module. In Section 6.5.3, we will present the real flight test results about the

onboard path planning.

122

6.4 Onboard Software Development

The software system of the UAV navigation can be decomposed into two main subsys-

tems, the onboard system and ground control station respectively. The onboard system

deploys the application to realize real time flight tasks while the ground control sta-

tion is for monitoring the UAV state and sending commands to UAVs. We share the

same ground control station developed in NUS UAV research team. Our main efforts

regarding the software development have been focused on the onboard system.

Considering the comprehensive functions and logics implemented on UAV onboard

system, it is further structured into two main modules according to the avionics system

configuration. As shown in Fig. 6.6, two onboard processors are adopted to realize all

the software modules developed in this study: Mission plan processor and Flight control

processor. As mission plan tasks normally involve computationally intensive algorithms

such as path planning, obstacle avoidance and SLAM, a high-end powerful Intel Core

i7 based processor called Mastermind (from Ascending Technologies Germany) with

Ubuntu 12.04 is deployed as the mission plan processor. The Ubuntu operating system

has mature development environment with rich libraries for robotics applications, which

can facilitate the overall development. For the critical flight control, a lightweight yet

powerful OMAP3530 based Computer-On-Module (COM) called Gumstix Overo Fire

is adopted. The flight control system is implemented based on QNX Neutrino real-time

operating system (RTOS). QNX RTOS is developed with a true microkernel architecture

which integrates only the fundamental services including CPU scheduling, interprocess

communication, interrupt and timers. Drivers and user applications are all executed as

user processes. This architecture can provide a quite small yet fully customizable and

manageable user application suits with necessary drivers and libraries.

Based on the specifications from the system structure, tasks to realize the flight

missions are examined. The tasks are assigned, from the high level navigation to the

low level flight control, into the Mission plan processor and the Flight control processor

respectively. Since the Mastermind processor possesses powerful processing capabilities,

high level tasks such as SLAM and Path planning are scheduled. For flight control

subsystem, its subtasks are scheduled into the following order to achieve the closed-

loop control system. Navigation sensors are retrieved first with Laser and IMU. With

123

SLAM

ICMM

Mission plan processor

Path
plan

IMU

DLG

Flight control processor

Laser

CTL

SVO
CMM

Ground
control system

User commands

UAV status

ICMM

Target &
Update pose

State &
Feature

Figure 6.6: Software structure of the UAV navigation system. Robust perfect tracking control is
implemented in CTL, and scan matching in Laser, Kalman filter in IMU, GraphSLAM in SLAM
and obstacle avoidance in Path plan.

the laser data, the scan matching is performed from the two consecutive scan data.

After fused with the IMU, a motion estimation with navigation data is further used

for the control task CTL. With the generated automatic control signal, motor driving

signals are sent to the UAV motors from the SVO task to achieve the 6-DOF movement.

Other auxiliary tasks are also implemented: the communication task CMM is to send

status data back to Ground Control System (GCS) for user monitoring and receive user

commands, the data logging task DLG is used to record flight status data for post flight

analysis. Finally, to pass high level navigation data to Flight control processor and share

UAV status with Mission plan processor, the inter-processor communication task ICMM

is implemented on both processors.

All the tasks are scheduled in a periodic fashion, whose executions follow the order

in Fig. 6.6. On Flight control processor, most of the tasks are scheduled in 50 Hz, except

the CMM and DLG which are executed every one second to for communication to the

ground control station and onboard data logging. Each task is assigned a certain time

for its implementation inside the 20 ms period. The multiple thread management of

QNX schedules the different tasks. The high level algorithms, such as path planning

and SLAM, are designed for navigation purpose and often computationally intensive, a

relative low scheduling frequency of 10 Hz is implemented on the Mission plan processor.

124

6.5 Experiment Results

With the UAV navigation system integrated in the embedded system, we designed sev-

eral flight tests to verify the navigation system in GPS-denied environments. Three

experiments are designed:

1. The first one is autonomous flight in indoor environment with synthetic poles as

features and with online GraphSLAM. A preplanned collision-free path is used as

trajectory reference. The details are in Section 6.5.1.

2. The second test is autonomous flight in a small-scale forest with dense tree canopies

and sparse tree trunks. The whole mission is autonomous with the online Graph-

SLAM being applied to optimize the trajectory. Practical forest exhibits a range

of challenges including the uneven terrain and the slanted tree trunks. The details

are presented in Section 6.5.2.

3. The last flight test aims to verify the online GraphSLAM with the online obstacle

avoidance algorithms. The UAV is required to fly to five waypoints while maneu-

vering around obstacles with the state estimates from online GraphSLAM. The

details are presented in Section 6.5.3.

6.5.1 Autonomous Fight with Online GraphSLAM

The performance of the online GraphSLAM can be assessed in two aspects: whether

the optimized states can be used for the real-time autonomous control and whether the

optimized trajectory is more consistent than the initial trajectory. In order to extract

these two performance indexes, the influence of other ingredients like noisy measurement

and oscillating trajectory must be minimized. The testing scenario as shown in Fig. 6.7

is built up to minimize the influence of measurement noise. The tree trunks are synthetic

paper tubes with perfect cylindrical shapes. The perfect circular shape remains constant

in vertical direction, fulfilling the assumption of vertical uniformity. The trees are placed

at least 3 meters away from each other, making it impossible for wrong data association.

To isolate the path planning algorithm, a collision free trajectory is predefined and loaded

to the computer on the system startup.

Even though this testing scenario consists of synthetic paper tubes, it possesses its

own significant merits when compared with the software simulation environment. First,

125

Figure 6.7: Indoor test scenario for GraphSLAM verification.

all the measurement data come from onboard sensors while the UAV is flying through

the poles. The laser range scans and acceleration measurements from the IMU are still

prone to noise and drift. Second, the environment is complicated, consisting of not only

circular poles, but also square pillars and the direct interior of the walls. This poses

challenges for the onboard feature extraction and motion estimation. Third, the whole

mission is designed to be autonomous, with complete state estimation and onboard

control. Practical constraints like the effects of measurement delays and the noise of

IMUs make it challenging to fly in such environments.

Figure 6.8: Comparison of initial map and optimized map using GraphSLAM.

126

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Indoor forest map using GraphSLAM

(a) Optimized map details 1

0.4 0.6 0.8 1 1.2 1.4 1.6
1.4

1.6

1.8

2

2.2

2.4

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Indoor forest map using GraphSLAM

(b) Optimized map details 2

Figure 6.9: Close view of the optimized map compared to the initial map

The UAV flies autonomously around the poles, following the predefined trajectory.

The laser range measurement and the corresponding initial poses and the optimal poses

are all recorded onboard for data analysis. All the measurements are transformed to

the frame of the first scan using the corresponding pose estimate. Fig. 6.8 shows a

comparison of the maps projected on the initial trajectory and the optimized trajectory

respectively. Since there is no ground truth available in the indoor, we can not quan-

titatively analyze the GraphSLAM performance. We consider the consistency of the

projected map as the criteria. The initial map and trajectory are the results of motion

estimation based on scan matching, marked by the green dot plot. The initial overall

map is not consistent: the corners of the walls and the position of the square pillars all

drift away. The red-dot plot is the optimized map and trajectory. Visual checking of

the red map shows the optimized map is more consistent than the initial green map.

Fig. 6.9 shows the details of the map. Fig. 6.9(a) depicts that the red pillar retains

its rectangular shape while the green pillars drift 1 meter away. Fig. 6.9(a) zooms to

the outer contour of one landmark, indicating that the optimized tree contour is more

consistent than the green initial contour. The red contours remain to fall into a circle

while the green contours spread in a larger area.

6.5.2 Autonomous Flight in Small Scale Forest

After the evaluation of the GraphSLAM algorithm in indoor environment, we performed

autonomous flight in a real small forest with dense tree canopies and sparse tree trunks.

Compared to the indoor forest environment, this environment exhibits several challenges:

127

first, the uneven terrain produces undesired ground strikes of the laser range finder,

making the feature extraction more difficult. Second, the trees in the forest have small

trunk size, irregular shape and slanted orientations. Small size tree trunks cause a

small number of measurement points for each tree segment in the clustered range scan,

reducing the accuracy of the circle fitting. The distribution of the points does not follow

a circle shape due to noise effect and the shape of trees. The slanted tree orientations

violates the vertical uniformity assumption. The data association is more prone to

error than that of the first experiment. Therefore, the scan matching and the online

GraphSLAM using these tree features are challenging problems.

Figure 6.10: UAV flying in the small scale forest in front central library of NUS.

Fig. 6.11 shows the comparison between the initial map and the optimized map for

the forest. The green plot is the initial map from Kalman filter while the red one is the

optimized trajectory and map. It can be seen that there are two neighboring clusters

of green plots while only one cluster of red points. This is the result of GraphSLAM

which corrects the trajectory of the UAV. Due to the complexity of the environment,

there is no hollow tree contours plotted. There are still large clusters of objects which

do not correspond to trees in the environment. This is mainly due to the complex

tree conditions of the forest as shown in Fig. 6.12. The trunk of tree ‘B’ is slanted

about 15 degrees and tree ‘C’ and ‘D’ have more than one thick branches at the flight

height. These complexities cause serious problems in the feature extraction and data

association processes. In conclusion, the GraphSLAM demonstrates its positive effect in

correcting the trajectory. Improvement in the feature extraction and data association

in such complex environment will lead to more consistent map.

128

−5 0 5 10 15 20 25

−10

−5

0

5

10

15

X Position (m)

Y
 P

os
iti

on
 (

 m
)

Update trajectory and map for forest data

Figure 6.11: Optimized map and trajectory in small forest.

A

B

C

D

Figure 6.12: Miscellaneous tree trunk conditions.

6.5.3 Autonomous Flight with Online GraphSLAM and Online Path

Planning

We have validated the performance of the UAV navigation system using online consis-

tent state estimation and robust perfect tracking in the previous two tests. Predefined

trajectory references have been used during the flights. However, in practice, the flight

area is unknown prior to the take-off and the environment is always occupied with ob-

129

stacles. Online path planning is demanded to provide real-time trajectory references

which avoid the obstacles and return to original trajectory plan as soon as possible.

This section reports the experiment results integrating the online path planning.

−5 0 5 10
−5

0

5

10
Trajectory and map for indoor forest data

Y Position (m)

X
 P

o
s
it
io

n
 (

 m
)

w1

Waypoint

Heading

Map

Trajectory

w2 w3

w4
w5

T1

T2

Figure 6.13: Consistent map with obstacle avoidance trajectory. The UAV is required to follow a
rectangle shape trajectory with five waypoints (black circle w1-w5) along the way. At each corner
of the rectangle, the UAV’s heading is shifted 90 degrees clock wise. The red dot trajectory is
the real flight path which avoided obstacles (T1, T2) on the rectangle.

With path planning algorithm laid out in Section 6.3, we designed a flight test to

verify the UAV navigation system including the online GraphSLAM and online path

planning. The UAV is required to travel to five waypoints (w1-w5) which fall on a

rectangle shape, which are labeled as black circles in Fig. 6.13. Once reaching a waypoint,

a hover of 10 seconds is performed. At each corner of the rectangle, the UAV’s heading

is shifted 90 degrees clock wise after the hovering. Without obstacles, the designed

trajectory is a rectangle shape. However, as shown in Fig. 6.13, there are two obstacles

(T1, T2) lying on the connected line of the waypoints. To reach the waypoints, the UAV

must find other feasible path instead of the direct connection between the waypoints.

130

0 50 100 150
−1

0

1

2

3

4

5

6

7
X−axis position tracking

time (s)

x
−

a
x
is

 p
o

s
it
in

 (
m

)

x

x−ref

(a) x position tracking performance

0 50 100 150
−2

−1

0

1

2

3

4
Y−axis position tracking

time (s)

y
−

a
x
is

 p
o

s
it
in

 (
m

)

y

y−ref

(b) y position tracking performance

0 50 100 150
−1

−0.5

0

0.5

1

1.5

2
Z−axis height tracking

time (s)

z
−

a
x
is

 p
o

s
it
in

 (
m

)

z

z−ref

(c) z height tracking performance

0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200
Heading angle tracking

time (s)

Y
a

w
 a

n
g

le
 (

d
e

g
)

ψ

ψ−ref

(d) Yaw angle tracking performance

Figure 6.14: Onboard trajectory tracking performance with obstacle avoidance. The whole
mission is fully autonomous, including take-off, waypoint navigation with online GraphSLAM
and obstacle avoidance, and landing. Fig. 6.14(a) - 6.14(d) show the good tracking performance
in x, y, z, and yaw directions, validating all the algorithms developed in this study: the consistent
state estimation algorithm, the obstacle avoidance and the robust and perfect control.

The whole mission was fully autonomous, including take-off, waypoint navigation,

obstacle avoidance, online GraphSLAM and landing. The flight data were recorded

onboard and plotted in Fig. 6.13. The red dot trajectory is the real flight path which

avoids obstacles nearby the rectangle. The blue dots plot is the accumulative plot of

the environment, including trees, rectangle pillars and walls. The good shapes of walls

and pillars demonstrate the consistency of the estimated trajectory. Fig. 6.14(a)-6.14(d)

show the good tracking performance in x, y, z and heading ψ directions, validating all

the algorithm developed in this study: the consistent state estimation algorithm, the

obstacle avoidance and the robust and perfect tracking control technique.

131

6.6 Conclusion

We have presented the autonomous flight test results with online GraphSLAM and online

path planning in GPS-denied environments in this chapter. First, to achieve the online

GraphSLAM, a sliding window technique is applied to store the most recent poses in

the last 5 seconds and optimize them with the GraphSLAM method. We present the

system structure to describe the interaction between the front-end Kalman filter and

the back-end optimization. At each time step, the initial pose from the Kalman filter

is pushed into the sliding window first and optimized with the rest poses in the sliding

window. The updated optimal pose is given back to the Kalman filter using specific

update scheme to cope with the time delay between the front-end and the back-end.

The same optimal pose is also added to a global pose graph in real-time, which will be

further optimized after the flight mission to generate a globally consistent estimate.

Secondly, we also developed the online path planning algorithm, which consists of

the global planner and the local planner. The global planner is an A* path planning in

the polar coordinate, which is responsible for finding the optimal intermediate waypoints

from the current UAV position to the target position. The local path planner seeks to

find the local optimal target which is collision free and closest to the waypoint from the

global planner. A dynamic feasible trajectory is then obtained by solving the boundary

value problem with the current UAV state and the local target.

Finally, autonomous flights based on a quadrotor platform are performed in various

GPS-denied environments. Two kinds of GPS-denied environments are used: one is

the indoor environment with synthetic trees and the other is a small scale forest. In

the indoor environment, autonomous flights with online GraphSLAM and online path

planning are successfully performed. Experimental results show that the online Graph-

SLAM algorithm significantly improves the consistency of the trajectory and the map

simultaneously. The online path planning algorithm is able to provide feasible path

references to avoid obstacles and maintain the original path route as much as possible.

Flight tests in the real forest, consisting of trees of various orientation and uneven ter-

rain conditions, also show promising improvement of the consistency. The autonomous

flight tests verified all the algorithms developed in this study.

132

Chapter 7

Conclusions and Future Works

This Ph.D. study aims to realize the autonomous navigation of UAVs in GPS-denied

environments. During the four-year study, we have made great efforts to the platform

development and modeling, state estimation without GPS, SLAM algorithm implemen-

tation, and many autonomous flight tests. These developed techniques are modular

enough to cater to new requirements, such as new sensing modalities. Although the

flight tests have been performed mainly in foliage environments, a minimal change in

the developed algorithms can make them applicable to UAV navigation in other GPS-

denied environments, such as indoor offices or urban canyons.

7.1 Contributions

This research work has contributed to the development of UAV navigation systems in

GPS-denied environment in the following aspects:

First of all, we have proposed a comprehensive methodology for designing and mod-

eling small-scale UAVs. Platform design involves the bare platform configuration and

the avionics system design. We have explored two configurations of platforms in this

study: the coaxial helicopter and the quadrotor. The coaxial helicopter is promising

due to its high lift-to-weight ratio and compact size, while the quadrotor stands out be-

cause of its simple mechanical structure and stable flight performance. To illustrate the

modeling methodology, we make use of the coaxial helicopter. The nonlinear modeling

techniques are applied to the roll, pitch, heave, and yaw dynamics with procedures to

identify those parameters. The quadrotor, on the other hand, possesses a simple model,

133

serving as a good basis for designing control laws to track external reference arbitrarily.

Chapters 2 and 3 are dedicated to this topic. The development of other UAV platforms

can easily adopt the methods presented in these chapters.

Secondly, the real-time state estimation framework using odometry measurement

is developed for UAV navigation in GPS-denied environments. The framework only

needs an onboard IMU and a sensor measuring the odometry of the UAV. The odom-

etry measurement may come from a laser range finder or a vision sensor. As a case

study, Chapter 4 uses this framework to estimate the motion of the UAV in forest en-

vironments. The procedures of feature extraction and scan matching are presented in

detail. Interested readers doing similar research can adopt this framework by changing

the odometry method according to the sensor suite configuration.

Next, a consistent mapping system using GraphSLAM is developed in this study.

The formulation of GraphSLAM as a nonlinear least squares problem has been addressed

by other researchers, but there is little work discussing how to interpret the sensor data

and build up the graph. Chapter 5 aims to answer these questions by giving the detailed

procedures of building up the graph and optimizing it. The improved consistency of

maps based on synthetic data and real flight test data have verified the techniques

developed in this chapter.

Lastly, we have presented the successful navigation of UAVs in GPS-denied envi-

ronments using online GraphSLAM and online path planning. Since GraphSLAM is an

offline algorithm, using it for real-time UAV navigation demands tremendous effort. We

present one solution consisting of local optimization using sliding window and global

optimization to detect large loops. The sliding window method leads to a constant time

local GraphSLAM whose states are still prone to drift, and thus a global optimization is

used to further bound the position drift. For path planning, we have adopted a planning

scheme with two layers: global planning and local planning. The global planning uses

A* algorithms based on the current scan of a laser range finder to generate a series of

waypoints towards the target position. The boundary value problem is effectively solved

using the Reflexxes Motion Library to generate the optimal trajectory in the local path

planner. We have also discussed the software development for real-time onboard im-

plementation. Multi-threading techniques are used to allocate the different algorithms

in various threads for practical applications. Flight tests in this chapter incorporate

134

all the algorithms developed in the previous chapters. Successful flight tests with on-

line GraphSLAM and online path planning are performed. The methods of integrating

various algorithms into one functional navigation system are useful to other researchers.

7.2 Future Works

Although we have developed all the essential techniques for UAV navigation in GPS-

denied environments and performed successful flight tests in this Ph.D. study, a lot of

work are required to improve the performance of the overall system and make it more

robust. The following topics are the focuses of our future works.

1. Development of new 3D sensing techniques. We have used a 2D laser range

finder on the small UAV throughout this thesis. At the time of writing, there is

news of a new product release of a 3D laser range finder weighing less than 300 g.

Stereo vision suite with FPGA preprocessing is also under development. New sens-

ing techniques require more and new functions integrated onto the UAV onboard

navigation system. A robust and fast point cloud matching will be required in

future to account for such developments.

2. Multi-UAV cooperation in GPS-denied environment. We have focused

on single UAV navigation in this study. Because of the limits of the battery

technology, the operation time of a single UAV is normally less than 30 minutes.

To survey a large area, it would be difficult and inefficient to employ a single UAV,

as its batteries would soon require repetitive charging. Instead, cooperative multi-

UAV operation will greatly increase the surveying efficiency. Such cooperation

requires a high-level autonomy of each UAV platform and map sharing among

different UAVs.

3. Operation in dynamic environment. We have assumed the environment to

be static during the UAV navigation. This assumption is strict since in many

situations there are moving objects, either moving persons and cars, or shaking

branches of trees. The capability to identify such dynamic objects will definitely

expand the application of UAVs in our daily lives.

135

Finally, it is worth highlighting that UAV-related research is an interdisciplinary

area requiring the efforts of people with different backgrounds. The UAV navigation

system presented in this thesis would not have been possible without the genuine help

and unstinting efforts of our fellow researchers in the NUS UAV group. Our collaborative

teamworks have been demonstrated in two international competitions. The first event

is the second AVIC Cup – International UAV Innovation Grand Prix, held in Beijing,

China, in September 2013. The author has involved in developing a tail-sitter with

reconfigurable wings [2] which won an new innovation award. The second event is the

International Micro Air Vehicle (IMAV) competition, held in Delft, the Netherlands, in

August 2014. In this event, the author has led the NUS UAV team consisting of 19

fellow researchers and won the first prize. Five UAVs with avionic systems developed in

this thesis were used in the competition to perform four designated tasks simultaneously.

Two of the competition tasks, i.e., the urban search and the indoor search and detection,

required using GPS-less navigation techniques similar to the state estimation framework

presented in this thesis. The experiences gained in these international competitions have

been very rewarding and beneficial to all team members.

136

Bibliography

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy. Stereo vision and laser

odometry for autonomous helicopters in GPS-denied indoor environments. Proc.

SPIE 7332, Unmanned Systems Technology XI, 733219, 2009.

[2] K. Z. Ang, J. Cui, T. Pang, K. Li, K. Wang, Y. Ke, and B. M. Chen. Develop-

ment of an unmanned tail-sitter with reconfigurable wings: U-lion. In 11th IEEE

International Conference on Control Automation, pages 750–755, 2014.

[3] K. Arras, O. Mozos, and W. Burgard. Using Boosted Features for the Detection

of People in 2D Range Data. In IEEE International Conference on Robotics and

Automation, pages 3402–3407, April 2007.

[4] K. Arun, T. S. Huang, and S. D. Blostein. Least-Squares Fitting of Two 3D Point

Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-

9(5):698–700, Sept. 1987.

[5] A. Bachrach, S. Prentice, R. He, and N. Roy. RANGE-Robust autonomous naviga-

tion in GPS-denied environments. Journal of Field Robotics, 28(5):644–666, 2011.

[6] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor Environ-

ments. PhD thesis, University of Sydney, 2002.

[7] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM):

Part II. IEEE ROBOTICS & AUTOMATION MAGAZINE, 13(3):108–117, 2006.

[8] P. Besl and H. McKay. A method for registration of 3D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2):239–256, Feb. 1992.

137

[9] P. Biber and W. Straßer. The normal distributions transform: A new approach to

laser scan matching. In Intelligent Robots and Systems, IEEE/RSJ International

Conference on, volume 3, pages 2743–2748. IEEE, 2003.

[10] G. Bishop and G. Welch. An introduction to the Kalman filter. Proc. of SIG-

GRAPH, 8:41, 2001.

[11] S. Bouabdallah and R. Siegwart. Design and control of a miniature quadrotor. In

K. Valavanis, editor, Advances in Unmanned Aerial Vehicles, volume 33 of Intelli-

gent Systems, Control and Automation: Science and Engineering, pages 171–210.

Springer Netherlands, 2007.

[12] G. Cai, B. Chen, and T. Lee. An overview on development of miniature unmanned

rotorcraft systems. Frontiers of Electrical and Electronic Engineering in China,

5(1):1–14, 2010.

[13] G. Cai, B. M. Chen, and T. H. Lee. Unmanned Rotorcraft Systems. Springer,

London, 2011.

[14] G. Cai, B. Wang, B. M. Chen, and T. H. Lee. Design and implementation of

a flight control system for an unmanned rotorcraft using RPT control approach.

Asian Journal of Control, 85:95–119, 2013.

[15] B. M. Chen. Robust and H∞ Control. Springer, 2000.

[16] Y. Chen and G. Medioni. Object modeling by registration of multiple range images.

In Robotics and Automation, IEEE International Conference on, volume 3, pages

2724–2729, April 1991.

[17] R. A. Chisholm, J. Cui, S. K. Y. Lum, and B. M. Chen. UAV LiDAR for below-

canopy forest surveys. Journal of Unmanned Vehicle Systems, 01(01):67–68, 2013.

[18] S. Choudhury, S. Arora, and S. Scherer. The Planner Ensemble and Trajectory

Executive: A High Performance Motion Planning System with Guaranteed Safety.

In AHS 70th Annual Forum, Montreal, Quebec, Canada, May 2014.

[19] J. Cui, S. Lai, X. Dong, P. Liu, B. M. Chen, and T. H. Lee. Autonomous navigation

of UAV in forest. In International Conference on Unmanned Aircraft Systems, pages

726–733, 2014.

138

[20] M.-L. Doaa, M. A. M. Salem, H. Ramadan, and M. I. Roushdy. Comparison of Op-

timization Techniques for 3D Graph-based SLAM. Recent Advances in Information

Science, 2013.

[21] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally consistent

maps. Autonomous Robots, 12(3):287–300, 2002.

[22] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: Part I.

Robotics Automation Magazine, IEEE, 13(2):99–110, Jun. 2006.

[23] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3D rigid body transforma-

tions: a comparison of four major algorithms. Machine Vision and Applications,

9(5-6):272–290, 1997.

[24] J. Engel, J. Sturm, and D. Cremers. Scale-aware navigation of a low-cost quadro-

copter with a monocular camera. Robotics and Autonomous Systems (RAS), 2014.

[25] P. Fankhauser, S. Bouabdallah, S. Leutenegger, and R. Siegwart. Modeling and

decoupling control of the coax micro helicopter. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 2223–2228, 2011.

[26] F. Fraundorfer and D. Scaramuzza. Visual Odometry : Part II: Matching, Ro-

bustness, Optimization, and Applications. Robotics Automation Magazine, IEEE,

19(2):78–90, Jun. 2012.

[27] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms, and Applications.

ASA-SIAM Series on Statistics and Applied Probability. SIAM, 2007.

[28] A. Georgiev and P. Allen. Localization methods for a mobile robot in urban envi-

ronments. IEEE Transactions on Robotics, 20(5):851–864, October 2004.

[29] G. Grisetti, R. Kuemmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical

Optimization on Manifolds for Online 2D and 3D Mapping. In IEEE International

Conference on Robotics & Automation (ICRA), 2010.

[30] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi. Fast and

accurate SLAM with Rao-Blackwellized particle filters. ROBOTICS AND AU-

TONOMOUS SYSTEMS, 55(1):30–38, Jan. 2007.

139

[31] S. Grzonka, G. Grisetti, and W. Burgard. A Fully Autonomous Indoor Quadrotor.

IEEE Transactions on Robotics (T-RO), 8(1):90–100, Feb. 2012.

[32] J. Guivant, F. Masson, and E. Nebot. Simultaneous localization and map building

using natural features and absolute information. Robotics and Autonomous Systems,

40(2-3):79–90, 2002.

[33] J. Guivant, E. Nebot, and S. Baiker. Localization and map building using laser

range sensors in outdoor applications. Journal of Robotic Systems, 17(10):565–583,

2000.

[34] H. Hirschmuller. Stereo processing by semiglobal matching and mutual information.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–341,

Feb. 2008.

[35] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert. iSAM2:

Incremental smoothing and mapping using the bayes tree. The International Jour-

nal of Robotics Research, 31:216–235, Feb. 2012.

[36] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and

mapping. IEEE Trans. on Robotics (TRO), 24(6):1365–1378, Dec. 2008.

[37] F. Kendoul. Survey of advances in guidance, navigation, and control of unmanned

rotorcraft systems. Journal of Field Robotics, 29(2):315–378, 2012.

[38] T. Kröger. On-Line Trajectory Generation in Robotic Systems, volume 58 of

Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, Germany, 2010.

[39] R. Kümmerle. State Estimation and Optimization for Mobile Robot Navigation.

PhD thesis, Albert-Ludwigs-University of Freiburg, Department of Computer Sci-

ence, April 2013.

[40] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A

general framework for graph optimization. In IEEE International Conference on

Robotics and Automation (ICRA), Shanghai, China, May 2011.

[41] J. W. Langelaan. State estimation for autonomous flight in cluttered environments.

PhD thesis, Stanford University, March 2006.

140

[42] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[43] J. Leishman and S. Ananthan. Aerodynamic Optimization of a Coaxial Proprotor.

In 62nd American Helicopter Society Annual Forum Proceedings, number 1, 2006.

[44] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric

beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, Jun 1991.

[45] K. Liu, B. M. Chen, and Z. Lin. On the problem of robust and perfect tracking

for linear systems with external disturbances. International Journal of Control,

74(2):158–174, 2001.

[46] F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping. Autonomous Robots, 4(4):333–349, 1997.

[47] F. Lu and E. Milios. Robot Pose Estimation in Unknown Environments by Matching

2D Range Scans. Journal of Intelligent and Robotic Systems, 18:249–275, 1997.

[48] J. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, pages 281–297. California, USA, 1967.

[49] K. Madsen, H. Nielsen, and O. Tingleff. Methods for nonlinear least squares prob-

lems. Technical report, 2004.

[50] M. Magnusson, A. Lilienthal, and T. Duckett. Scan registration for autonomous

mining vehicles using 3D-NDT. Journal of Field Robotics, pages 803–827, 2007.

[51] M. Magnusson, A. Nuchter, C. Lorken, A. Lilienthal, and J. Hertzberg. Evaluation

of 3D registration reliability and speed - A comparison of ICP and NDT. In IEEE

International Conference on Robotics and Automation, pages 3907–3912, May 2009.

[52] T. Masuda, K. Sakaue, and N. Yokoya. Registration and integration of multiple

range images for 3D model construction. In Proceedings of the 13th International

Conference on Pattern Recognition, volume 1, pages 879–883, 1996.

[53] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control

for quadrotors. In IEEE International Conference on Robotics and Automation

(ICRA), pages 2520–2525, 2011.

141

[54] B. Mettler, M. B. Tischler, and T. Kanade. System identification of small-size

unmanned helicopter dynamics. In American Helicopter Society 55th Annual Forum

Proceedings, volume 2, pages 1706–1717, 1999.

[55] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A Factored

Solution to the Simultaneous Localization and Mapping Problem. In In Proceedings

of the AAAI National Conference on Artificial Intelligence, pages 593–598, 2002.

[56] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An Im-

proved Particle Filtering Algorithm for Simultaneous Localization and Mapping

that Provably Converges. In Proceedings of the Sixteenth International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 1151–1156, 2003.

[57] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and R. Y.

Siegwart. A Synchronized Visual-Inertial Sensor System with FPGA Pre-Processing

for Accurate Real-Time SLAM. In IEEE International Conference on Robotics and

Automation, 2014.

[58] P. Nunez, R. Vazqez-Martin, J. del Toro, A. Bandera, and F. Sandoval. Natural

landmark extraction for mobile robot navigation based on an adaptive curvature

estimation. Robotics and Autonomous Systems, 56(3):247–264, 2008.

[59] L. Paull, S. Saeedi, M. Seto, and H. Li. AUV Navigation and Localization: A

Review. IEEE Journal of Oceanic Engineering, 39(1):131–149, 2014.

[60] S. Ross, N. Melik-Barkhudarov, K. Shankar, A. Wendel, D. Dey, J. Bagnell, and

M. Hebert. Learning monocular reactive UAV control in cluttered natural environ-

ments. In IEEE International Conference on Robotics and Automation (ICRA),

pages 1765–1772, May 2013.

[61] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third In-

ternational Conference on 3D Digital Imaging and Modeling, pages 145–152, 2001.

[62] B. Sabata and J. Aggarwal. Estimation of motion from a pair of range images: A

review. CVGIP: Image Understanding, 54(3):309–324, 1991.

[63] Z. Sarris. Survey of UAV applications in civil markets. In The 9th IEEE Mediter-

ranean Conference on Control and Automation, 2001.

142

[64] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopoulos, A. Mar-

tinelli, M. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, D. Gurdan, L. Heng,

G. Lee, S. Lynen, M. Pollefeys, A. Renzaglia, R. Siegwart, J. Stumpf, P. Tanskanen,

C. Troiani, S. Weiss, and L. Meier. Vision-Controlled Micro Flying Robots: From

System Design to Autonomous Navigation and Mapping in GPS-Denied Environ-

ments. IEEE Robotics Automation Magazine, 21(3):26–40, Sept. 2014.

[65] D. Scaramuzza and F. Fraundorfer. Visual Odometry Part I: The First 30 Years and

Fundamentals. IEEE Robotics & Automation Magazine, 18(4):80–92, Dec. 2011.

[66] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa. Stereo vision

based indoor/outdoor navigation for flying robots. In IEEE/RSJ International

Conference on Intelligent Robots and Systems,, pages 3955–3962, Nov 2013.

[67] S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor indoor navigation

with a computationally constrained MAV. In IEEE International Conference on

Robotics and Automation, pages 20–25, May 2011.

[68] S. Shen, N. Michael, and V. Kumar. Obtaining liftoff indoors: Autonomous nav-

igation in confined indoor environments. Robotics Automation Magazine, IEEE,

20(4):40–48, 2013.

[69] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships

in robotics. In Autonomous Robot Vehicles, volume 8, pages 167–193. 1990.

[70] M. Song, F. Sun, and K. Iagnemma. Natural landmark extraction in cluttered

forested environments. In IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 4836–4843, May 2012.

[71] O. Sorkine. Least-Squares Rigid Motion Using SVD. Technical report, Courant

Institute of Mathematical Sciences, New York University, Feb. 2009.

[72] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot map-

ping with applications to multi-robot and 3D mapping. In IEEE International

Conference on Robotics and Automation, volume 1, pages 321–328, 2000.

[73] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press, 2005.

143

[74] S. Thrun and M. Montemerlo. The Graph SLAM Algorithm with Applications to

Large-Scale Mapping of Urban Structures. The International Journal of Robotics

Research, 25(5-6):403–429, 2006.

[75] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey,

C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,

S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The robot that won

the darpa grand challege. Journal of Field Robotics, 23:661–692, 2006.

[76] M. Tischler and R. Remple. Aircraft and rotorcraft system identification: Engi-

neering Methods with Flight Test Examples. AIAA, 2006.

[77] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceedings

of the 21st annual conference on Computer graphics and interactive techniques,

pages 311–318. ACM, 1994.

[78] B. Wang, B. M. Chen, and T. H. Lee. An RPT approach to time-critical path

following of an unmanned helicopter. In 8th Asian Control Conference (ASCC),

pages 211–216, May 2011.

[79] F. Wang. Indoor Navigation Systems for Unmanned Aerial Vehicles. PhD thesis,

National University of Singapore, 2014.

[80] F. Wang, J. Cui, B. M. Chen, and T. H. Lee. A Comprehensive UAV Indoor

Navigation System Based on Vision Optical Flow and Laser FastSLAM. Acta

Automatica Sinica, 39(11):1889–1900, 2013.

[81] F. Wang, J. Cui, B. M. Chen, and T. H. Lee. Flight Dynamics Modeling of Coaxial

Rotorcraft UAVs. In Handbook of Unmanned Aerial Vehicles, pages 1217–1256.

Springer Netherlands, 2014.

[82] F. Wang, J. Cui, S. K. Phang, B. M. Chen, and T. H. Lee. A mono-camera and

scanning laser range finder based UAV indoor navigation system. In International

Conference on Unmanned Aircraft Systems, pages 694–701, May 2013.

144

[83] S. Weik. Registration of 3D partial surface models using luminance and depth in-

formation. In International Conference on Recent Advances in 3-D Digital Imaging

and Modeling, pages 93–100. IEEE, 1997.

145

List of Author’s Publications

Refereed Journals

[J1] R. A. Chisholm, J. Cui, S. K. Lum, and B. M. Chen, “UAV LiDAR for below-

canopy forest surveys,” Journal of Unmanned Vehicle Systems, vol. 01, no. 01, pp.

61-68, 2013

[J2] F. Wang, J. Cui, B. M. Chen, and T. H. Lee, “A Comprehensive UAV Indoor

Navigation System Based on Vision Optical Flow and Laser FastSLAM,” Acta

Automatica Sinica, vol. 39, no. 11, pp. 1889-1900, 2013

[J3] F. Lin, K. Z. Y. Ang, F. Wang, B. M. Chen, T. H. Lee, B. Yang, M. Dong, X. Dong,

J. Cui, S. K. Phang, B. Wang, D. Luo, K. Peng, G. Cai, S. Zhao, M. Yin, and

K. Li, “Development of an unmanned coaxial rotorcraft for the DARPA UAVForge

challenge,” Unmanned Systems, vol. 1, no. 2, pp. 211-245, 2013

Book Chapters

1. F. Wang, J. Cui, B. M. Chen and T. H. Lee, Flight dynamics modeling of coax-

ial rotorcraft UAVs, Handbook of Unmanned Aerial Vehicles (Edited by K. P.

Valavanis and G. J. Vachtsevanos), Springer, pp. 1217-1256, 2014

International Conferences

[C1] K.Z. Ang, J. Cui, T. Pang, K.Li, K. Wang, Y. Ke, and B. M. Chen, “Development

of an unmanned tail-sitter with reconfigurable wings: U-Lion,” in 11th IEEE In-

ternational Conference on Control Automation, (Taichung, Taiwan), pp. 750-755,

2014

146

[C2] J. Cui, S, Lai, X. Dong, P. Liu, B. M. Chen, and T. H. Lee, “Autonomous naviga-

tion of UAV in forest, ” in 2014 International Conference on Unmanned Aircraft

Systems, (Orlando, USA), pp. 726-733, 2014

[C3] J. Cui, F. Wang, X. Dong, Z. Y. Ang, B. M. Chen, and T. H. Lee, “Landmark

extraction and state estimation for UAV operation in forest,” in Proceedings of the

2013 Chinese Control Conference, (Xi’an, China), pp. 5210-5215, July 2013

[C4] S. Zhao, X. Dong, J. Cui, Z. Y. Ang, F. Lin, K. Peng, B. M. Chen, and T. H. Lee,

“Design and implementation of homography-based vision-aided inertial navigation

of UAVs,” in Proceedings of the 2013 Chinese Control Conference, (Xi’an, China),

pp. 5101-5106, 2013

[C5] F. Wang, J. Cui, S. K. Phang, B. M. Chen, and T. H. Lee, “A mono-camera and

scanning laser range finder based UAV indoor navigation system,” in International

Conference on Unmanned Aircraft Systems, (Atlanta, USA), pp. 694-701, 2013

[C6] J. Cui, F. Wang, Z. Qian, B. M. Chen, and T. H. Lee, “Construction and Modeling

of a Variable Collective Pitch Coaxial UAV,” in 9th International Conference on

Informatics in Control, Automation and Robotics, (Rome, Italy), pp. 286-291,

2012

[C7] F. Wang, S. K. Phang, J. Cui, G. Cai, B. M. Chen, and T. H. Lee, “Nonlinear

modeling of a miniature fixed-pitch coaxial UAV,” in American Control Conference,

(Montreal, Canada), pp. 3863-3870, 2012

[C8] F. Wang, S. K. Phang, J. Cui, B. M. Chen and T. H. Lee, “Search and rescue: a

UAV aiding approach”, in Proceedings of the 23rd Canadian Congress on Applied

Mechanics, (Vancouver, Canada), pp. 183-186, 2011

147

	Summary
	List of Tables
	List of Figures
	Introduction
	Introduction
	Literature Review
	GPS-denied Navigation
	Laser Data Scan Matching
	Simultaneous Localization and Mapping

	Challenges of This Study
	Thesis Outline

	Design of UAV Platforms
	Introduction
	UAV Bare Platform Design
	Review of UAV Platform Configuration
	Comparison of VTOL Platforms
	Platform Selection and Design

	Avionics System Design
	UAV Function Blocks
	Avionics System Components
	Avionics System Integration

	Conclusion

	Modeling and Control of UAV Platforms
	Introduction
	Modeling of Coaxial Helicopter
	Comprehensive Dynamics Model Structure
	Linear Dynamics Model and Parameter Identification

	Modeling of Quadrotor
	Overview of Quadrotor Model
	Linearized Model Identification
	Control Law Design
	Flight Test Results

	Conclusion

	UAV State Estimation Using Laser Range Finder
	Introduction
	Feature Extraction
	Laser Range Finder Model
	Feature Extraction Procedure
	Scan Segmentation Algorithm
	Geometric Descriptors
	Feature Extraction Result

	Scan Matching
	Iterative Closest Point Matching
	Data Association
	Rigid Transformation Estimation
	Experiment Evaluation

	IMU-driven State Estimation
	Autonomous Flight Test
	Conclusion

	Offline Consistent Localization and Mapping using GraphSLAM
	Introduction
	GraphSLAM System Structure
	GraphSLAM Back-end
	GraphSLAM Formulation
	Loop Detection
	Graph Optimization
	Error Linearization for 2D Poses

	Offline GraphSLAM Evaluation
	GraphSLAM Software Development
	Consistent Mapping with Synthetic Data
	Loop Closure Detection
	GraphSLAM Parameter Tuning

	Conclusion

	Autonomous Flights with Online GraphSLAM
	Introduction
	Online GraphSLAM using Sliding Window
	Online Path Planning
	Onboard Software Development
	Experiment Results
	Autonomous Fight with Online GraphSLAM
	Autonomous Flight in Small Scale Forest
	Autonomous Flight with Online GraphSLAM and Online Path Planning

	Conclusion

	Conclusions and Future Works
	Contributions
	Future Works

	Bibliography
	List of Author's Publications

