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Summary 

It is challenging to acquire three-dimensional images of high resolution deep inside 

biological tissues, where the resolution is mainly restricted by out-of-focus background, 

multiple scattering and short noise. In this thesis, we apply focal modulation, 

computational imaging and hybrid schemes to develop new microscopic techniques to 

reject background, scattering and noise. 

In the first part of the thesis, three new approaches of aperture optimization for 

focal modulation microscopy (FMM) are introduced to improve the modulation depth 

and hence to enhance scattering rejection. These approaches, based on the concept of 

pupil moment, are applicable to scalar and vector diffraction cases and nonuniform 

illumination. Among them, the analytical approach ‘maximally-flat crater’ (MFC) 

could achieve a modulation depth with a small difference less than 3% of the maximal 

value. MFC was then extended to design apertures for light of circular and radial 

polarizations, and azimuthal polarization encoded by spiral phase (AziSpi). With 

proper apodization on the aperture, the resolution and modulation depth for radial 

polarization and AziSpi were simultaneously improved. 

Second, diverse imaging with sparsity priors was investigated in structured 

illumination microscopic imaging system. By rearranging photons to their emission 

origins, diverse imaging outperforms conventional image reconstruction approaches in 

background rejection and resolution improvement. The sparsity prior, total variation 

(TV) regularization, enhances its performance in axial sectioning and noise elimination. 

We found that the reconstruction fidelity degrades as the contrast or the spatial 

frequency of the structured illumination pattern decrease, because there are less high 

frequency components introduced as compensation for the ‘missing cone’. 

Third, to obtain high-speed image acquisition with sectioning capability, hybrid 
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imaging modalities combining FMM and wide-field microscopy were introduced to 

implement in spatial domain, in Fourier domain and in sequence for different scenarios. 

The diverse scheme was borrowed to hybrid image reconstruction in spatial domain, in 

which the fast-scanning FMM provides sectioning information and wide-field imaging 

offers signal strength. Rather than iterative reconstruction, the Fourier hybrid modality 

directly recovers the image by combining Fourier components of undersampled FMM 

images with sectioning information and wide-field images with high resolution. The 

sequential hybrid scheme first explores the point spread function (PSF) from FMM and 

wide-field images in a small volume, and then reconstruct the whole volume of interest 

from wide-field images. 

In addition, a theoretical model of direct imaging process through a micro-lens was 

established with vectorial electromagnetic analysis. The simulation results show that 

the resolution of a spherical micro-lens with visible light illumination is between 

100nm and 150nm measured with two-point resolution criterion, which is beyond the 

diffraction limit. However, the significant side-lobes may cause poor contrast and even 

artifacts in wide-field imaging mode. 
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Chapter 1 

Introduction 

1.1  Background 

Optical imaging is a powerful technology in biomedical research, since it has the ability 

to capture cellular structural and functional information. Various concepts and 

techniques have been developed to improve the spatial resolution and/or penetration 

depth, e.g. confocal microscopy (CM) [1, 2], multi-photon microscopy (MPM) [3, 4], 

optical coherence microscopy (OCM) [5], and most recently, light sheet fluorescence 

microscopy (LSFM) [6, 7], structured illumination microscopy (SIM) [8, 9], stimulated 

emission depletion (STED) microscopy [10, 11], stochastic optical reconstruction 

microscopy (STORM) [12, 13] and Photo-activated localization microscopy (PALM) 

[14]. With these advanced techniques, image acquisition with subcellular resolution, or 

even molecular resolution by STED, STORM and PALM, can be acquired in biological 

tissues and cells. 

However, it is still challenging to acquire dynamic three-dimensional (3D) images 

of high resolution deep inside biological tissues, where rather than diffraction limit the 

resolution is mainly restricted by out-of-focus background, multiple scattering and 

short noise [15-17]. Thus, to maintain a resolution in imaging thick specimen as high 

as in imaging thin samples in real-time, it is of significant importance to develop new 

dynamic microscopic techniques to reject background, scattering and noise. 

Among various techniques mentioned before, CM is a well-established tool with 

background rejection, and has been widely used in biomedical research and diagnosis. 

However, CM becomes less effective when probing deeper inside scattering samples, 
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i.e. beyond a few tens of microns, due to multiple scattering [16, 18]. By combining 

CM and angular gating mechanism, focal modulation microscopy (FMM) was recently 

introduced as a novel method for in vivo imaging of thick biological tissues [19, 20]. 

Pupil engineering technique is adopted in this thesis to further improve the performance 

of FMM, including both penetration depth and resolution. 

CM and FMM generally require temporal and spatial scanning which will take a 

long time, so they are not very suitable for dynamic real-time imaging. Based on wide-

field microscopy which only requires scanning in axial direction, SIM [9] and HiLo 

microscopy [21] apply structured illumination to obtain sectioning capability and thus 

reject out-of-focus and scattering background. To utilize the out-of-focus photons more 

effectively, diverse imaging [22] is studied in this thesis to reassign these photons to 

their origins. Since iterative reconstruction is used in diverse imaging, it is expected to 

reduce image noise by applying proper regularization. The regularization of sparsity 

priors, which has been successfully used in compressive sensing to reconstruct an 

optimal image from incomplete data [23], is investigated in this thesis. 

On the other hand, advantages of different imaging systems may be extracted by 

hybrid imaging, where the sample is measured by more than one systems and then the 

image is reconstructed by combining different information from these measurements. 

For example, in medical imaging, MRI, CT, PET and SPECT can be combined to 

reveal multiple functional and structural information in a single image [24-26]. Hybrid 

imaging with FMM and wide-field microscopy is studied and presented in this thesis. 

The subsequent sections provide an overview of relevant optical imaging 

techniques with sectioning capability, scattering reduction, and sparsity priors in image 

reconstruction. As most microscopies used in biomedical research are based on 

incoherent (e.g. fluorescence) imaging, this thesis focuses on incoherent imaging 

systems and all the discussions are under incoherent category if not specified. 
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1.2  Optical sectioning imaging 

Conventional wide-field optical microscopy has no depth sectioning capability due to 

lack of axial high frequency components in the 3D optical transfer function (OTF). The 

wide-field OTF is given by autocorrelation of the 3D generalized pupil which is 

nonzero only on a spherical cap, so the OTF exhibits a ‘missing cone’ of spatial 

frequencies in axial direction (Figure 1.1 (a)) [1]. Thus, a stack of wide-field images is 

not real 3D image but every slice contains out-of-focus background. 

 CM applies selectivity ability of the pinhole to acquire sectioning capability. The 

pinhole before the detector allows the light from focus to transmit but blocks the light 

which comes from out-of-focus region. The OTF of CM is given by autocorrelation of 

the OTFs of illumination and collection [1], so it covers the whole 3D region within 

the bandwidth (Figure 1.1 (c)) and thus obtains sectioning capability. In principle, the 

resolution of CM is also improved because of extended bandwidth, but in practice the 

resolution is little improved due to finite size of pinhole [27]. The pinhole must be large 

enough to collect enough photons. Another advantage of pinhole is that it also rejects 

some scattered light, although the rejection ability becomes less effective for multiple 

scattering in imaging deeper inside scattering samples. 

MPM acquires sectioning capability relying on nonlinear interaction in the sample, 

where the nonlinear multi-photon excitation is mostly confined in the focal region but 

decays rapidly out of focus [28, 29]. This nonlinear process results in sharper point 

spread function (PSF) of the emission light, e.g. the square of the incident PSF with 

scaled wavelength in two-photon microscopy (TPM), and thus an OTF occupies the 

complete region within the bandwidth [30]. Sheppard [31] discussed the general 

principle of this nonlinear interaction and proposed specific examples, including two-

photon fluorescence, harmonic generation and coherent Raman scattering, that could 

be used in sectioning imaging. In addition, near infra-red light is usually used as 
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excitation in MPM, which penetrates deeper inside biological samples than visible light. 

Moreover, nonlinear excitation caused by scattered photons is much weaker in out-of-

focus region than linear excitation in single-photon microscopy. All these advantages 

make MPM superior to conventional CM in imaging depth. Nevertheless, the 

expensive pulse laser source required in MPM limits its widespread application. 

 

Figure 1.1 (a) OTF of wide-field imaging, where the green dashed lines show 

the region of ‘missing cone’. (b) OTF for SIM using two illumination beams. 

(c) OTF for CM. 

From the point view of OTF in frequency domain, the sectioning capability can be 

obtained as long as the spatial frequency in the ‘missing cone’ is compensated. SIM 

employs spatially structured illumination light to shift the spatial frequency 

components of the sample away from its origin in image acquisition process, and then 

numerically shift it back in image reconstruction [9, 32]. As shown in Figure 1.1 (b), 

this manipulation not only compensates for the ‘missing cone’, but also extends the 

bandwidth of the final OTF and thus improves resolution. Various combinations of 

structured illumination have be implemented to improve the resolution in 2D or 3D [8, 

9, 33-35], and commercial version of SIM, e.g. ZEISS ApoTome, is also available. 

SIM requires many images using different structured illumination patterns with precise 

phase shifts to extend the 3D OTF and thus to improve resolution. On the other hand, 
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several groups developed simple approaches to apply less number of images using 

structured illumination to only obtain sectioning capability rather than resolution 

improvement. Wilson and associates applied structured illumination patterns with three 

different phases corresponding to relative phase shifts of 0 and ±π/3 to extract the 

sectioning components by subtraction of the corresponding images in pair [36, 37]. 

Mertz and associates proposed a new approach using only one uniform and one 

structured illumination for each imaging plane [21, 38]. The image was reconstructed 

by extracting the in-focus high frequency components (named ‘Hi’) from the image 

with uniform illumination, and the in-focus low frequency components (named ‘Lo’) 

from the image with structured illumination. The principle of HiLo sectioning 

microscopy is also applicable to speckle illumination [39, 40], and speckle HiLo 

fluorescence endomicroscopy has also been developed [41]. However, rejection of out-

of-focus light is not an efficient way to utilize collected photons, so we explored a new 

reconstruction approach to use these photons to enhance intensity and contrast. 

LSFM, also termed as selective plane illumination microscopy (SPIM) [6] and 

digital scanned laser sheet microscopy (DSLM) [7, 42], is another promising wide-field 

sectioning microscopy for imaging over long time with high speed. Different from 

conventional microscopes, the camera in LSFM is oriented perpendicular to the 

illumination plane, which provides the optical sectioning capability because of finite 

thickness of the plane illumination. The sectioning of LSFM is an angular gating 

mechanism, which was first used in an ultramicroscope developed by Zsigmondy and 

Siedentopf in 1902 [43]. In angular gating scheme, the illumination light path is 

different from the collection light path, so only the particles located in the both paths 

(termed ‘confocal region’ in [44]) can be detected. Other geometric schemes of angular 

gating include divided aperture [44, 45], annular aperture [46, 47], tilted axes [48] and 

dual-axis [49-51]. Among all these techniques, LSFM has the highest output and 

remarkably reduced photobleaching and phototoxic effects. However, the sectioning 
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capability of LSFM is limited by relatively thick light sheet illumination. Recently, the 

combination of LSFM and HiLo has been demonstrated to improve the sectioning 

capability [21, 42]. However, the out-of-focus photons are not efficiently used in this 

approach, the same as in conventional HiLo microscopy. 

1.3  Focal modulation imaging 

The concept of focal modulation can be considered as an extension of pupil engineering, 

where the effective focal intensity results from two corresponding pupils in focal 

modulation, while only one engineered pupil is used in conventional pupil engineering. 

Pupil engineering has been extensively investigated in imaging to improve the 

resolution and/or focal depth. As Toraldo pointed out in 1952 [52], arbitrary sub-

wavelength localization of light in the far-field could be achieved by a well-designed 

pupil filter, a phenomenon that was recently named as super-oscillation [53, 54]. Thus, 

the resolution could be improved with a narrower focal spot produced by a proper 

engineered pupil. Sheppard introduced the concept of pupil moment and series 

expansion method to relax the optimization process of both phase and amplitude pupil 

filters [55], thoroughly investigated the performance of two-zone and three-zone pupil 

filters [56, 57], and extended the method to linearly polarized and radially polarized 

illuminations [56, 58, 59]. Later, the expansion method was generalized to design 

complex pupil filters [60] for transverse super-resolution [61, 62], 3D super-resolution 

[63], and even generalized for the region out of the focal plane [64]. Dorn and 

colleagues adopted radially polarized illumination in an engineered pupil to create a 

focal spot sharper than that of a linear polarization [65, 66]. Azimuthal polarization 

encoded by a spiral phase pupil filter was also proposed to create a sharper focus [67]. 

Nevertheless, the focal spot is only moderately narrower as compared to the earlier 

mentioned pupil filters. To the best of our knowledge, these techniques cannot achieve 

a resolution as high as other super-resolution microscopies, e.g. STED. Most recently, 
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Zheludev and associates applied super-oscillation and developed well-designed phase 

pupils [68] and amplitude pupils [69-71] to create a focal spot much smaller than 

diffraction limit, and achieved a resolution better than λ/6 [72], where λ is the 

wavelength of illumination. However, the inevitable giant side-lobes appeared in super-

oscillation limits its application and even destroys the super-resolution [73]. On the 

other hand, engineered pupils can be employed to improve the depth of focus [74-76]. 

With well-designed binary phase pupil filters, both linearly polarized [77] and radially 

polarized [78] light can be used to create a long ‘needle beam’ with sub-diffraction 

beam size. Applications of pupil filters in microscopy to improve depth of field have 

been demonstrated [76, 79, 80]. 

Focal modulation usually applies subtraction of the focal intensities corresponding 

to two different pupils, normally one of which is free and the other is engineered. 

Depending on the specific design of the engineered pupil, the subtraction introduces 

several possible benefits: narrow PSF for resolution improvement, rejection of out-of-

focus background for sectioning enhancement, and reduction of multiple scattering for 

deeper imaging depth. 

In 1991, Hewlett and Wilson proposed and demonstrated the improvements of 

sectioning strength and resolution by subtracting two PSFs produced by different 

wavelengths or by different pinhole sizes [81]. Obviously the signal strength would be 

degraded by subtraction. To solve this drawback, the PSF to be subtracted could be 

specially engineered as a doughnut-shaped PSF which may be called a destructive PSF 

because of destructive interference occurring at the focus. A free pupil is usually used 

for the other PSF to obtain high signal strength (so called constructive PSF). Mertz and 

associates introduced wavefront aberration in the pupil to produce a destructive PSF in 

TPM [82, 83] in order to enhance background rejection. Isobe and associates applied 

two spatially scanned pulse beams to achieve constructive and destructive PSFs to 

reject background and improve resolution in nonlinear optical microscopy [84, 85]. 
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This idea was later used by Sun to numerically implement on an oversampled image to 

improve resolution [86]. However, the scattering background in differential aberration 

or in spatial scanning cannot be completely eliminated because of inexactly equal 

scattering paths. Chen and Sheppard proposed focal modulation microscopy (FMM) to 

eliminate scattering background in CM, in which a temporal phase modulator was 

introduced to create constructive and destructive PSFs [19]. The modulation speed was 

remarkably enhanced by using acousto-optic modulators [87], or by the combination 

of electro-optic modulators and polarizers [20], which enables FMM for real-time 

image acquisition. In addition, the principle of PSF subtraction has been proposed to 

improve resolution of FMM [88] and CM [89, 90] by using properly engineered annular 

apertures. 

Although the focal modulation technique enables resolution improvement and 

scattering rejection in FMM, the best performance of these two capabilities cannot be 

achieved at the same time in current FMM configuration. The side-lobes of the 

destructive PSF should be close to the focus to narrow the subtracted PSF in resolution 

improvement, while they should be far away from the focus to improve the modulation 

strength in scattering rejection. Thus, the effects must be properly balanced to meet the 

requirement of a specific application. 

1.4  Sparsity priors in image reconstruction 

Utility of sparsity priors has been well studied in compressive (or compressed) sensing 

(CS) to recover signals from incomplete dataset. In CS theory, the signals can be 

completely recovered from much fewer measurements than that required according to 

Nyquist-Shannon sampling theorem, if the signal has ‘sparse’ representation in a proper 

basis and the measurements are ‘incoherent’ [23, 91]. The sparse representation means 

only a few coefficients of the signal in a specific basis are nonzero. The incoherence 

requires that the information of the signal is evenly spread out in all measurements. 
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Thus, each measurement provides a sufficient mixture of modes of the signal. The 

nonzero modes of the signal mixed in the measurements can be retrieved by CS with 

sparsity priors, but not by conventional methods restricted under sampling theorem. 

Image reconstruction by CS has been successfully carried out in various imaging 

techniques, e.g. magnetic resonance imaging [92], single-pixel imaging [93], digital 

holography [94], phase tomography [95] and super-resolution microscopy [96]. 

Sparsity priors are also applicable to image reconstruction from plenty of 

measurements. The regularization of sparsity priors tends to explore the objective 

image in a way that restores the features represented sparsely. For example, total 

variation (TV) is significantly effective for recovering edges of images, which is widely 

used in images enhancement and noise suppression [97, 98]. TV was also applied in 

image deconvolution to reject the out-of-focus background in wide-field microscopy 

[99], CM [100] and the extended depth of field microscope [101]. TV reconstruction 

could recover 3D images from raw data with very low signal-to-noise ratio (SNR) [102], 

which is superior to other reconstruction methods. In this thesis, TV is applied in image 

reconstruction to improve the performance of diverse imaging. 

1.5  Objective and structure of the thesis 

The main goal of this thesis is to develop new dynamic microscopic techniques with 

capabilities of rejecting out-of-focus and scattering background and suppressing noise 

and thus enable 3D imaging deep inside biological samples with high resolution in real-

time. Focal modulation microscopy (FMM), structured illumination imaging, wide-

field microscopy and micro-lens are among the optical modalities for such studies, and 

image reconstruction with sparsity priors is the main computational modality explored 

in this research. This work includes the following specific objectives: 

1) To develop novel optimization methods for phase aperture design in FMM to 

improve its background rejection and imaging depth. 
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2) To investigate the effects of different polarized illuminations in FMM to 

improve the imaging depth and resolution simultaneously. 

3) To develop new image reconstruction approaches to enhance the sectioning 

and resolution of structured illumination imaging, and utilize the out-of-focus 

background photons more efficiently. 

4) To study hybrid imaging by combining FMM and wide-field microscopy to 

obtain high-speed image acquisition without loss of optical sectioning. 

5) To explore the mechanism of super-resolution phenomenon of a micro-lens for 

potential applications in biomedical imaging. 

The structure of the thesis is given as follows. 

With the concept of pupil moment, Chapter 2 introduces three methods to optimize 

design of annular apertures used in FMM. All the methods are demonstrated superior 

to previous approach, and are applicable to both scalar and vector diffraction cases and 

nonuniform illuminations. The effects of aberration on the modulation depth of FMM 

is also discussed. 

Chapter 3 extends the illumination in FMM to cylindrically polarized light. First 

the expressions of field in focal region are derived. The application of circular 

polarization, radial polarization and azimuthal polarization with spiral phase are 

investigated in FMM. The effects of apodization for theses polarizations are studied. 

Chapter 4 adopts diverse imaging approach with TV regularization to reconstruct 

structured illumination images. The effects of contrast and spatial frequency of the 

structured illumination pattern on the reconstruction fidelity are investigated. The 

resolution improvement of diverse imaging reconstruction is demonstrated. 

To acquire advantages of FMM and wide-field microscopy simultaneously, 

Chapter 5 introduces hybrid imaging modalities manipulated in spatial domain, in 

Fourier domain and in sequence for different scenarios. Implementation methods and 

reconstruction fidelity of each approach are investigated. 
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Chapter 6 theoretically models the imaging process through a micro-lens with 

vectorial electromagnetic analysis, and then exclude the previously explanation of 

super-resolution that is based on the super-focusing effect. 

Finally, conclusions and future work are summarized in Chapter 7. 
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Chapter 2  

Aperture optimization in focal modulation 

microscopy 

2.1  Introduction 

Optical imaging into thick biological tissue with cellular or subcellular resolution is 

limited by scattering and absorption [103]. Besides light depletion, scattering also 

diffuses light, which distributes part of light out of focus and thus degrades image 

quality in the conventional wide-field microscopy. With the help of pinhole selectivity 

to block most of the out-of-focus photons, confocal microscopy (CM) has been 

successfully used in biological imaging, especially after the development of laser 

scanning CM. However, CM becomes less effective when probing deeper inside 

scattering samples, i.e. beyond a few tens of microns, as the multiple scattered photons 

leak through the pinhole, overwhelm the ballistic photons and thus deteriorate the 

imaging performance [16, 18]. On the other hand, multi-photon microscopy (MPM) 

has become a promising technique to image thick specimen at penetration depth of few 

hundreds microns with uncompromised spatial resolutions, since nonlinear multi-

photon excitation is mostly confined in the focal region but decays rapidly out of focus 

[16, 28, 104]. Nevertheless, the expensive pulsed laser sources required in MPM limit 

its widespread application. 

Combining CM with coherence gating mechanism, focal modulation microscopy 

(FMM) was recently developed as a novel method for in vivo imaging of thick 

biological tissues [19, 20]. FMM introduces a spatiotemporal phase modulator (STPM) 

into the illumination beam path to modulate part of the beam, which results in temporal 
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oscillation of the interference pattern in the focal volume; whereas no oscillatory 

emission occurs in the out-of-focus region because of spatial separation between the 

modulated and unmodulated beams. Only the modulated emission light from the focal 

volume is retrieved to form FMM images, so out-of-focus and scattering background 

is effectively rejected. It has been demonstrated theoretically and experimentally that 

FMM can probe remarkably deeper than CM, especially when the imaging 

performance is restricted by strong multiple scattering [19, 105]. Moreover, FMM is 

compatible with two-photon microscopy to increase penetration depth further [106]. 

The most important component in FMM is the STPM, which determines the ability 

of background rejection and the efficiency of FMM signal generation. Although STPM 

may improve spatial resolution to some extent [88, 107, 108], modulation depth, which 

affects penetration depth and the threshold of excitation power, is of more concern in 

STPM design [109]. Gao et al. [109] compared modulation depth of annular, fan-

shaped and stripe-shaped phase apertures in STPM, and found that annular phase 

aperture is superior to the others. The principle of equality of the areas for modulated 

and unmodulated sub-apertures was applied in their aperture design [109]. However, 

for an annular aperture in STPM, equal-area phase pattern cannot achieve totally 

destructive interference at the focal spot in imaging systems with high numerical 

aperture (NA) or non-uniform illumination. In fact, equal-area phase pattern is not the 

optimal design for uniform illumination. In this chapter, we propose new methods 

considering NA and illumination beam profile in the process of aperture design for 

STPM. Optimal apertures with both even and odd numbers of sub-apertures were 

obtained. In addition, the effect of aberrations on the performance of FMM was studied. 

2.2  Principle of focal modulation microscopy 

Based on a confocal microscope, FMM introduces a STPM to periodically modulate 

the phase of a spatial fraction of the excitation beam (Figure 2.1 (a)). Thus, the 
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excitation field can be expressed as [110] 
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where r is the spatial coordinates, and the term  
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r  describes the fraction of the 

beam with phase modulation at the frequency f. In a typical FMM system, the 

modulated and unmodulated beams are spatially separated in out-of-focus region by 

the STPM, so the excitation intensity is constant except in the focal region. The two 

beams overlap and interfere with one another at the focal point, and generate an 

oscillating intensity which is given by 
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where the spatial coordinates r is omitted in the last equation. The first two terms in 

the last line of Eq. (2-2) are the portion of constant excitation intensity, while the last 

term corresponds to the periodically oscillated intensity at the modulation frequency f. 

The term  f t  describes the instantaneous relative phase shift of the two beams. 

When they are in phase, the maximal excitation intensity is reached, 
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which is equivalent to the confocal excitation. The minimal excitation intensity is 

approximately reached when the two beams are in anti-phase, 
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The difference between the in-phase and anti-phase intensities is retrieved as the 

effective FMM excitation intensity. Note that modulation and demodulation are often 

used in experiments to retrieve FMM image [19, 20, 87, 111]. 

The STPM can be implemented by discrete mirrors controlled by piezoelectric 

actuators [19], acoustic-optical phase modulators [87] or a combination of electro-optic 

modulator and polarizer [20]. No matter what schematic is used in practice, we can 
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model the STPM as a tunable phase aperture for simplicity as shown in Figure 2.1, 

where the modulated and unmodulated phase pattern of the aperture is of importance. 

For every tunable phase aperture considered in this thesis, all the phase-modulated sub-

apertures have the same instantaneous phase. In other words, the phase-modulated sub-

apertures are modulated simultaneously from the same initial phase. Theoretically, the 

phase of sub-apertures could be modulated in various ways. However, a complicated 

modulation mode is difficult to implement accurately and quickly in spite of possibly 

improved background rejection. To investigate the optimal configuration of the tunable 

phase aperture considered here, we can focus on only the in-phase and anti-phase status 

of the aperture because the effective FMM excitation intensity is determined by the 

difference between the two. 

 

Figure 2.1 Schematic of FMM setup [110]. The annular phase aperture of 2 

sub-apertures with (shaded region) and without (white region) phase 

modulation is applied. L1 and L2 are lenses with the same focal length. DM is 

dichroic mirror and PMT is photomultiplier tube. (b) Configuration of annular 

apertures with 2, 4, 6 and 8 sub-apertures. The shaded and white rings 

represent the sub-apertures with phase modulation and that without phase 

modulation. 

2.3  Modulation depth 

The modulation depth of FMM is defined as the ratio of the intensity of the modulated 

fluorescence signal (i.e., AC component) with respect to the average intensity (i.e., DC 
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component) collected by the pinhole detector when exciting a uniformly fluorescence-

stained sample [109]: 
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Here S denotes the signal intensity at the pinhole detector, which can be expressed as: 
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where  , , ,I x y z t  is the excitation intensity, i.e. ( , )I tr in Eq. (2-2),  , ,Dh x y z  is the 

amplitude point spread function (APSF) of the detection optics,  ,D x y  is the 

sensitivity function for the detector and is restricted within the area of the pinhole, and

2  denotes the 2D convolution operation. In most cases, the signals maxS and minS  are 

reached corresponding to in-phase (Eq. (2-3)) and anti-phase (Eq. (2-4)) excitation 

intensities, respectively. To avoid the influence of sample structure in evaluating 

modulation depth, here the sample is assumed as uniform fluorescence material in the 

whole volume, and with equal emission and excitation wavelengths (if not specified) 

for simplicity. 

Modulation depth is an essential parameter in designing FMM system as it 

determines the signal-to-noise ratio (SNR) and the efficiency of FMM signal 

generation. Here we mainly consider shot noise, the most important source of noise, 

which results from the statistical variation in the number of detected photons and is 

given by the square root of the variance [112]. Shot noise obeys a Poisson distribution, 

which has the property that its variance is equal to its mean. Thus, the importance of 

the modulation depth can be observed from the following relationship: 

 ,AC
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where  denotes that the former is proportional to the latter, I is the illumination 

intensity and Q is quantum efficiency. To maintain a certain level of SNR, the 
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illumination intensity could be reduced to a quarter of the original intensity if the 

modulation depth doubles. Thus, we can decrease the illumination power if sufficient 

FMM signal is already obtained to form images of good quality, which is beneficial for 

avoiding photobleaching and phototoxicity in imaging living biological specimens. 

According to Eqs. (2-5) and (2-6), the modulation depth is determined by the 

excitation intensity, detection optics and pinhole size. The detection optics is fixed for 

given excitation wavelength and NA. Normally the modulation depth decreases as the 

pinhole size increases [19], because the selectivity of pinhole degrades. However, the 

pinhole size must be big enough to collect enough emission photons. Usually the 

pinhole size is chosen comparable to the size of Airy disk. For given detection optics 

and pinhole size, the maximum and minimum signal intensities are approximately 

reached when the excitation intensities are maximum and minimum, respectively, 

where the later extreme values are obtained when the modulated and unmodulated 

beams are in-phase and anti-phase (also known as binary phase), respectively. Thus, 

we can substitute in phaseS   and anti phaseS   for 
maxS  and 

minS , respectively, in Eq. (2-5). 

The modulation depth can be improved by optimizing the in-phase and anti-phase 

excitation intensities, which is relevant to aperture design of STPM in FMM. 

Theoretically, the aperture pattern can be designed complicated to improve the 

modulation depth. However, a complex pattern is difficult to manufacture accurately 

given that the aperture is so small (i.e. a diameter around a few millimeters) [109]. 

Therefore, in the following content, we focus on optimization of annular aperture with 

the number of sub-apertures from 2 to 8, where the aperture is phase-only if not 

specified. 

In practical fluorescence imaging, the emission wavelength is normally longer than 

the excitation wavelength, so the APSF of the detection optics in Eq. (2-6) becomes 

broader than the assumption of equal emission and excitation wavelengths. The relative 
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strength of the minimal signal minS  to the maximal signal maxS  will increase since 

more energy in the side-lobes of the anti-phase excitation intensity are collected by the 

detection optics. Thus, the modulation depth will decrease, according to Eq. (2-5). One 

the other hand, the absolute signal strength will reduce as a broad detection optics 

makes more emission energy rejected by a given pinhole. Therefore, the SNR will also 

decrease. Nevertheless, the assumption of equal emission and excitation wavelengths 

will not affect the conclusions in this thesis as here we improve the aperture design to 

optimize the illumination (excitation) rather than the emission. 

2.4  Annular aperture designed by zeroth pupil moment 

It is apparent that the in-phase signal in phaseS   is equivalent to the CM signal, which is 

the maximum detected signal for given illumination power. Thus, we need to minimize 

the anti-phase signal anti phaseS   to improve the modulation depth (Eq. (2-5)). Although 

the equality of sub-apertures, that is, all the sub-apertures have equivalent areas and the 

numbers of modulated and unmodulated sub-apertures are the same (Figure 2.1 (b)), 

introduces destructive interference at the focal point for uniform illumination in low 

NA system [109], it does not guarantee destructive interference either for non-uniform 

illumination, e.g. Gaussian beam, or in high NA system. Here we introduce two 

methods, based on the concept of pupil moment, to achieve destructive interference at 

the focal point. 

2.4.1  Equal zeroth pupil moment 

Based on scalar diffraction theory, the field in the focal region can be described as [44] 

        2 21
, , , exp 2 ,x y x y x x y y x y x yE v v u P i v v iu d d       


    
    (2-8) 

where  ,x yP    is the pupil function of the objective lens. The optical coordinates 
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are defined through sinxv kx  , sinyv ky  ,  24 sin 2u kz  , with k the wave 

number, α the angular semi-aperture of the objective lens, and x, y, z are Cartesian 

coordinates of the focal region. The coordinates 
x , y  are normalized by the pupil 

radius on the pupil plane. 

For an annular aperture with circularly symmetric pupil function, Eq. (2-8) can be 

written as [55] 
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  (2-9) 

where 
2 2
x y    , 

2 2
x yv v v  , 

2m  , and 0J  is zeroth Bessel function of the 

first kind. The pupil function  P   includes the effects of the phase aperture and 

illumination beam profile  Q  , e.g. Gaussian beam, and can be written as 

      ,P Q T     (2-10) 

with  T   the transmission function of the phase aperture which can be described as 

  
 

1 in the unmodulated sub-apertures

exp in the modulated sub-aperturesf

T
i t





 

   

  (2-11) 

Obviously   1T     for binary phase status in the modulated sub-apertures. 

The intensity at focal point is given by 

      
2

12 2
0

0
0,0 0,0 ,I E P m dm q     (2-12) 

where 0q  is the zeroth pupil moment. For a binary phase aperture with n sub-apertures 

( 2n  ) and 1n   boundaries at 1m , 2m ,…, 1nm  , the p-th pupil moment can be 

depicted as [55] 
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where uniform illumination is assumed. The pupil moment was introduced by Sheppard 

to describe the field as a series expansion for convenience [55]. For nonuniform 

illumination, e.g. Gaussian beam given by      2 2 2exp expQ m       , a 

modified pupil moment pt  can be defined as  
1

0

p
pt T m m dm  . Thus, the field can 

be expressed by the modified pupil moment through expanding the Bessel function and 

exponential function in Eq. (2-9) and the function of the Gaussian beam. 

Eq. (2-12) shows that the destructive interference at the focal point can be achieved 

if the modulated and unmodulated sub-apertures have equal zeroth pupil moment 

(equal-ZPM) and the same number of sub-apertures. Since illumination beam profile 

has been considered in pupil moment, equal-ZPM is applicable for non-uniform 

illuminations, e.g. Gaussian beam. Furthermore, the principle of equal-ZPM can be 

extended to FMM systems with wavefront aberration by including the aberration in the 

pupil function, where the definition of the p-th pupil moment may be extended to 2D 

integral as 

  , , .yx

x y

pp

p p x y x y x yq P d d         (2-14) 

The principle of equal-ZPM can be simplified to equal areas as in [109] for uniform 

illumination without aberration, i.e.  , 1x yP     for in-phase illumination. 

Now we extend the principle of equal-ZPM to the FMM imaging system with a 

high NA objective lens. Considering a high NA system illuminated by a linearly 

polarized light in the Debye approximation, the electric field in the focal region at the 

point ρ, φ, z in cylindrical coordinates can be written as [59, 113] 
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Here A is a constant coefficient related to wavelength and focal length. P(c) is the pupil 

function expressed as a function of cosc  , with θ the angle between the direction 

of the propagation of the illumination wave and the axis. P(c) includes the effects of 

the phase aperture and illumination beam profile Q(c), and can be written as 

        1 ,P c c c Q c T c    (2-17) 

where T(c) is the transmission function of the phase aperture which can be described 

as 

  
 

1 in the unmodulated sub-apertures

exp in the modulated sub-aperturesf

T c
i t


 

   

  (2-18) 

From Eqs. (2-15) and (2-16), the field at the focal point is proportional to the zeroth 

pupil moment  0 dI P c c  . Similar to the scalar diffraction case, here the p-th pupil 

moment is defined as [59] 

  c d .p

pq P c c    (2-19) 

For a binary phase aperture with n  sub-apertures ( 2n  ) and 1n   boundaries 

depicted by 1c , 2c ,…, 1nc  , the p-th pupil moment can be expressed explicitly as 
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where a uniform illumination is assumed. The nonuniform illumination can be treated 

similar to scalar case by defining a modified pupil moment. Therefore, the destructive 

interference at the focal point can be achieved by the principle of equal-ZPM in the 

high NA FMM systems. 
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2.4.2  Zero-sum zeroth pupil moment 

The equal-ZPM of each sub-aperture is a sufficient but not necessary condition to 

achieve destructive interference at the focal point. The destructive interference occurs 

when the summation of ZPM in the modulated sub-apertures is equal to that in the 

unmodulated regions. Considering the plus-minus sign in the calculation of pupil 

moment, the total ZPM vanishes in this case. Thus, this principle is called zero-sum 

ZPM. There are various radius configurations to achieve zero-sum ZPM for a given 

number of sub-apertures, so genetic algorithm (GA) and conjugate gradient descent 

(CGD) are employed to explore the optimal aperture configuration to maximize 

modulation depth. 

Another advantage of the zero-sum ZPM is that the phase aperture with an odd 

number of sub-apertures can be designed, while only that with even number of sub-

apertures is compatible based on the principles of equal-ZPM or equal areas. 

2.4.3  Simulation results 

Typical system parameters used in our simulation are the same as [109] for low NA 

optical system. The wavelength of the emission beam is 0.633 µm and is assumed the 

same as the excitation beam for simplicity. The illumination objective lens and the 

collection lens are identical and with the same NA of 0.55. The pinhole diameter is 0.8 

µm, about 0.6 times of the diameter of the Airy disk. For high NA optical system, the 

NA and pinhole diameter are changed to 0.95 and 0.46μm, respectively. The pinhole 

diameter keeps the same ratio with respect to the Airy disk. Note that the APSF of the 

detection optics used in the low NA system is the same as Eq. (2-9), whereas in the 

high NA optical system the detection optics is determined by averaging all polarization 

directions [114, 115]: 
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  (2-21) 

where the terms A, I0, I1 and I2 are the same as in Eqs. (2-15) and (2-16). The Gaussian 

beam was chosen that the intensity at the edge is 
21 e  times of the peak intensity. 

Figure 2.2 shows simulation results of the modulation depth of annular apertures 

designed by different methods, where the illumination is uniform if not specified. In 

the case of scalar diffraction (Figure 2.2 (a)), the apertures designed by equal-ZPM are 

superior to those designed by equal-area when the illumination is nonuniform. The 

modulation depth of equal-ZPM under Gaussian illumination is a little greater than that 

under uniform illumination, since the slightly broader illumination PSF under Gaussian 

illumination makes a little more energy in side-lobes rejected by the pinhole. Similar 

trends can be concluded in the case of vector diffraction (Figure 2.2 (b)). Obviously the 

method of equal-area is not suitable as its modulation depth is much less than the other 

design methods. Among all the methods, the zero-sum ZPM gives the maximal 

modulation depth, as expected. 

 

Figure 2.2 Modulation depth of apertures designed by equal-area (eA), equal-

ZPM (eZPM) and zero-sum ZPM (zsZPM) using different numbers of sub-

apertures with uniform (U) and Gaussian (G) illumination beams based on 

scalar (a) and vector (b) diffraction theories. 
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2.5  Aperture designed by maximally-flat crater (MFC) 

For a given set of parameters, e.g. the number of sub-apertures, wavelength and NA, 

the maximum modulation depth can be obtained by the principle of zero-sum ZPM. 

However, the optimization algorithms, GA or CGD for example, are required and they 

are usually complicated and time consuming. Here, we propose a simple analytical 

method for aperture design to optimize the modulation depth. By direct algebraic 

manipulation, this approach is applicable to both scalar (low NA) and vector (high NA) 

diffraction optics. 

Thanks to the selectivity of pinhole, the minimum signal minS  decreases if the 

intensity of the excitation beam  , , , anti phaseI x y z t   is pushed far away from the focal 

region of the detection optics  
2

, ,Dh x y z  (Eq. (2-6)). This phenomenon is named as 

maximally-flat crater (MFC) because an extended flat intensity profile with minimum 

value in the focal volume is obtained. It seems similar to the maximally-flat response 

(MFR) introduced in [74], but the latter is broad and flat brightness only in axial axis 

and sharp in transverse axes; whereas the proposed MFC introduces a broad darkness 

in 3D focal volume. 

2.5.1  MFC for scalar diffraction 

We consider an annular aperture  P  , 0 1  , containing n sub-apertures each 

with alternating transmissions of 1  and 1  in a low NA imaging system, which is the 

binary phase status of the pupil function in Eq. (2-10). The field in the focal region is 

expressed as in Eq. (2-9). For a aperture with n sub-apertures ( 2n  ) and 1n   

boundaries at 1m , 2m ,…, 1nm  , the field can be expanded into a Taylor series with 

coefficients given by the pupil moment defined in Eq. (2-13). Thus, the excitation 

intensity in radial and axial axes can be expressed as Eqs. (2-22) and (2-23), 
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respectively, 
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To determine the 1n   unknowns, 1m , 2m ,…, 1nm  , we equate to zero the 

coefficients of the first 2n   even-order terms, including the zeroth-order term, in 

either Eq. (2-22) or Eq. (2-23), and solve the resultant 1n   equations. The binary 

phase apertures based on these solutions would result in MFC in radial axis (by Eq. 

(2-22)) or axial axis (by Eq. (2-23)). To achieve MFC in both radial and axial axes 

simultaneously, we equate to zero the first  2n   pupil moments, 

 0,     0,1,2,... 2,pq p n     (2-24) 

whose solution set is the shared solution of the resultant equations from Eq. (2-22) and 

Eq. (2-23). The equations in Eq. (2-24) can be transformed and considered as a 

Vandermonde matrix [116], which has a solution of uniformly distributed points on a 

circle in the complex plane. Thus, one solution of Eq. (2-24) is obtained, 

  1 cos 2, 1,2,..., 1jm j n   j n         (2-25) 

Different from MFR in [74] where more than one solution sets with mirror images of 

each pair are found, there is only one solution set of Eq. (2-24) found for each aperture 

with the numbers of sub-apertures from 2 to 8. The normalized intensity profiles of 

binary phase apertures designed by the above solutions effectively achieve MFCs in 

the focal region of the detection optics (Figure 2.3). The MFC region extends in both 

radial and axial axes as increasing the number of sub-apertures (Figure 2.3 (a) and (b)). 

Although only the intensity profiles in radial and axial axes are considered in Eqs. (2-22) 

and (2-23), the MFC in 3D focal volume is successfully obtained (Figure 2.3 (c)). 
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Actually we can directly expand Eq. (2-9) by Taylor series and take square modulus to 

obtain the intensity distribution in 3D focal volume, and then following the same steps 

we will find that the solution set of Eq. (2-24) satisfies the resultant equations. Note 

that this method is suitable for both cases of even and odd numbers of sub-apertures, 

while the equal-ZPM aperture design is only applicable to the cases of even numbers. 

 

Figure 2.3 Normalized intensity profiles of binary phase apertures with 4 

(green line), 6 (red line), 8 (blue line) sub-apertures and detection optics (d, 

dashed black line) in (a) radial and (b) axial axes. (c) Normalized intensity 

distribution of the binary phase aperture with 6 sub-apertures (colorbar in 

logarithmic scale). 

 

Figure 2.4 Modulation depth of FMM using apertures designed by equal-area 

(EA, black diamond) and MFC (blue circle). 

Figure 2.4 compares the modulation depth of FMM with apertures designed by 
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MFC and equal-area (equivalent to equal-ZPM in scalar diffraction). The parameters 

are the same as in section 2.4.3. Except for the identical design for the case of 2 sub-

apertures, MFC always leads to a larger modulation depth than equal-area for the same 

number of sub-apertures. Furthermore, the MFC aperture of 5 (or 6) sub-apertures has 

almost the same modulation depth compared with the equal-area aperture of 6 (or 8) 

sub-apertures, which is important to ease the fabrication of the aperture. 

2.5.2  MFC for vector diffraction 

Now we extend this analytic method to the FMM imaging system with a high NA 

objective lens. The excitation intensity in the focal region at the point , ,r z  in 

cylindrical coordinates is 

  
22 2

, , ,x y zI r z E E E      (2-26) 

where the field , ,x y zE  can be calculated through Eq. (2-15). By converting cylindrical 

coordinates to Cartesian coordinates, the intensity profiles in , ,x y z  axes can be 

obtained. Alternatively, we can specify particular values for , ,r z  to represent the 

intensity profiles in , ,x y z  axes. By substituting 0r   in Eqs. (2-15) and (2-26), the 

excitation intensity in z axis can be expressed with coefficients given by the pupil 

moment explicitly as 
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    (2-27) 

To obtain the intensity expressions in the transverse axes, we specify 0z   in Eq. 

(2-16), which makes the exponential term in the equation omitted. Now we expand 0I , 

1I  and 2I  in Eq. (2-16) as a power series with coefficients given by the pupil moment, 



28 

 

 

 

 
 

 

 
 

2

0 , 2

0 0

2 1

1 , 2 2 1

0 0

2 2

2 , 2 2 1 2 2

0 0

1

! 2

1

1 ! 2

1
2 ,

2 ! 2

j j j

j m m

j m

j j j

j m m m

j m

j j j

j m m m m

j m

kr
I q

j

kr
I q q

j

kr
I q q q

j









 





 



 

 

   
   

   

   
    

    

   
     

    

 

 

 

  (2-28) 

where 
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Thus, the excitation intensity in ,x y  axes can be explicitly expressed by substituting 

Eq. (2-28) for 0I , 1I  and 2I  in Eq. (2-15). 

Following the same steps as before, we equate to zero the coefficients of the first 

 2n   even-order terms, including the zeroth-order term, in any expressions of the 

intensity profiles in , ,x y z  axes, and solve the resultant 1n   equations to achieve 

MFC in the corresponding axis. Again the three sets of resultant equations share the 

same solution set, which is obtained by solving Eq. (2-24). It allows us to obtain MFC 

in , ,x y z  axes simultaneously. Note that here the pupil moment is defined by Eq. (2-19) 

based on vector diffraction theory. 

To demonstrate MFC in high NA imaging system, the NA of 0.95 is chosen in the 

numerical simulation. The wavelength is the same as before. The pinhole diameter is 

0.46 µm, also about 0.6 times of the diameter of the Airy disk. Figure 2.5 (a)~(c) show 

that the normalized intensity profiles of the binary phase apertures designed by these 

solutions effectively achieve MFCs in all , ,x y z  axes in the focal region of the detection 

optics. Note that here the detection optics is given by Eq. (2-21) based on vector 

diffraction. Figure 2.5 (d) shows the modulation depth of FMM with the apertures 

designed by equal-area (EA), equal-ZPM and MFC in the high NA imaging system. 
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Clearly the latter is remarkably superior to the equal-area aperture, and also better than 

the equal-ZPM aperture. The region of ‘flat crater’ extends in , ,x y z  axes as increasing 

the number of sub-apertures, so the modulation depth increases consequently. 

 

Figure 2.5 Normalized intensity profiles of binary phase apertures with 4 

(green line), 6 (red line), 8 (blue line) sub-apertures and detection optics (d, 

dashed black line) in (a) x-, (b) y- and (c) z-axes. (d) Modulation depth of FMM 

with STPM apertures designed by EA (black diamond) and MFC (blue circle). 

(e) Normalized intensity distribution of the binary phase aperture with 6 sub-

apertures (colorbar in logarithmic scale). 

Figure 2.5 (e) indicates that the MFC in 3D focal region is also obtained in vector 

diffraction optics. One can directly expand Eq. (2-16) to demonstrate the solution set 

of Eq. (2-24) is the solution of the resultant MFC equations in 3D space, although it is 
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more complicated. 

To evaluate the performance of MFC apertures, we investigate the modulation 

depth of all possible annular designs for the aperture containing 3 sub-apertures (Figure 

2.6 (a)), where the simulation parameters are the same as Figure 2.5 (d). The 

modulation depth of the MFC aperture is 0.57, which is very close to the maximum 

value 0.59; whereas the quasi equal-area (Quasi-EA in Figure 2.6 (a)) aperture shows 

a modulation depth of only 0.20. Here the Quasi-EA means the middle sub-aperture 

has the same area as the sum of inner and outer sub-apertures, while the areas of the 

inner and outer sub-apertures are equal. Furthermore, we compare the modulation 

depth of MFC apertures with the maximum modulation depth for the apertures 

containing 2~8 sub-apertures with the same simulation parameters in Figure 2.5 (d), 

where the maximum values are evaluated by genetic algorithm (GA). The results show 

that the difference of the modulation depth is less than 3% for the apertures containing 

the same number of sub-apertures (Figure 2.6 (b)). 

 

Figure 2.6 (a) Modulation depth of FMM with the aperture containing 3 sub-

apertures. (b) Modulation depth of FMM apertures designed by genetic 

algorithm (GA) and MFC with different number of sub-apertures. 

Obviously the calculation based on scalar diffraction theory is much simpler than 

vector diffraction theory. The former is an approximation of the latter for a small 

angular aperture, i.e. a small NA [113]. It has been suggested that the scalar theory 

yields good results for 0.5NA  [117], though the NA of 0.55 is chosen in our 
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simulation for comparison with the result in [109]. Thus, a proper theory must be 

chosen to balance the calculation complexity and accuracy. 

Besides the property of 3D darkness in focal volume, MFC apertures produce two 

focal points simultaneously along the optical axis without any ripples between the foci 

(Figure 2.3 (c) and Figure 2.5 (e)). The actual distance between the two focuses can be 

tuned by the number of sub-apertures and other imaging parameters, e.g. wavelength 

and the NA of objective lens. This bifocal property has potential applications, for 

instance, in readout of dual-layer disks, multiple optical traps, bifocal microscopy and 

optical lithography [56, 57, 118, 119]. 

2.5.3  Experiment results 

A spatial light modulator (SLM) was employed to implement the phase pattern in the 

measurement of the modulation depth (Figure 2.7). An oil immersion objective lens 

with NA of 1.4 was used as illumination and collection objective. A wavefront sensor 

(WFS) was applied to monitor the phase pattern. 

 

Figure 2.7 Schematic diagram of the modulation depth measurement. SLM is 

spatial light modulator, BS is beam splitter, pBS is pellicle beam splitter, WFS 

is wavefront sensor, The pinhole size is 25µm, and the focal lengths of L1, L2 

and L3 are 125mm, 100mm and 175mm, respectively. 

Figure 2.8 shows the simulation and experimental results of modulation depth for 

apertures designed by equal-ZPM and MFC, which verifies our proposed methods. The 

difference of the experiment and simulation results are mainly attributed to two reasons. 

The first is that the sample is assumed as uniform material with uniform emission in 
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the whole 3D volume, which may not be satisfied in practice. For example, if only one 

emission particle is located at the focal spot, the modulation depth would always be 

unity as long as destructive interference occurs at the focus. The other reason is the 

unavoidable wavefront aberration in the experiment, although we tried our best to 

compensate for the aberrations with the SLM. In general, the measured modulation 

depth is consistent with the simulation results. 

 

Figure 2.8 Simulation (Simu) and experimental (Exp) results of modulation 

depth for apertures designed by equal-ZPM (a) and MFC (b). 

2.6  Effects of aberrations on the modulation depth 

To investigate the effects of aberrations on the modulation depth, we added three types 

of Zernike aberrations (astigmatism, coma and trefoil) on the pupil function. The 

aberrations like tip/tilt and defocus are excluded, because they just lead to shift of focus 

position and can be easily corrected in practice. Here the apertures are designed by 

equal-ZPM without aberration, and the parameters are the same as in the scalar 

simulation for simplicity. Note that the field must be calculated by Eq. (2-8) rather than 

Eq. (2-9) since the pupil function is no longer rotationally symmetric due to aberration. 

We adopted fast Fourier transform (FFT) to implement the field calculation [120]. 

Figure 2.9 shows the modulation depth using different number of sub-apertures for 

astigmatism, coma and trefoil. The aberration degrades the modulation depth, because 

it can decrease the in-phase intensity and increase the anti-phase intensity. In general, 
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the modulation depth decays as the root mean square (RMS) of the aberration increases. 

For coma, the modulation depth rises a little when the RMS of aberration increases 

beyond one wavelength, which is attributed to aberration compensation due to 2π 

ambiguity. 

 

Figure 2.9 The modulation depth using different number of sub-apertures for 

(a) astigmatism (Ast), (b) coma (Com) and (c) trefoil (Tre). (d) Comparison of 

effects of different kinds of aberrations. The unit of RMS is in wavelength. 

The aperture with more number of sub-apertures is more resistant to the 

degradation of aberration. For example, the modulation depth of the aperture with 6 

sub-apertures decreases to 0.2 at 1.5RMS   in presence of trefoil aberration, whereas 

the modulation depth that with 2 sub-apertures decreases to the same level at 

0.2RMS  . Thus, a balance of aberration resistance and manufacture complexity must 

be carefully considered in practice. 

As shown in Figure 2.9 (d), different aberrations have different degradation effects 

on the modulation depth. Coma degrades the modulation depth more than astigmatism 

and trefoil when the RMS of aberration is less than unity, while trefoil becomes the 

worst because of aberration compensation in coma. Even for astigmatism, the 

modulation depth drops to one-half at 1.9RMS   compared to the value without 

aberration. Thus, adaptive optics, which is used to compensate for wavefront aberration, 
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is expected to improve the performance of FMM in practice. 

2.7  Conclusion 

In this chapter, we introduced three methods based on pupil moment to optimize the 

aperture design in FMM. The equal-ZPM is a straightforward extension of the 

previously proposed method of equal-areas, but suitable for nonuniform illumination 

and high NA system. The zero-sum ZPM provides the optimal aperture design for given 

conditions, however, it requires optimization algorithms which are usually complicated 

and time consuming. The MFC method, which takes advantages of series expansion 

and pupil moment, offers a simple analytic approach to optimize annular phase 

apertures. The modulation depth from MFC is very close to the maximum value, with 

a small difference of less than 3% for the same number of sub-apertures. In addition, 

the apertures with more sub-apertures are more resistant to wavefront aberrations, 

although aberration degrades modulation depth in general. 
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Chapter 3 

Cylindrical polarization in focal modulation 

microscopy 

3.1 Introduction 

Cylindrically polarized light is known to produce a tight focusing spot by applying 

proper apodization [66] or phase encoding [67]. Most recently, subtraction imaging in 

CM with radially and azimuthally polarized light was verified for lateral resolution 

improvement [121]. Here we investigate the performance of circularly polarized light, 

radially polarized light, and azimuthally polarized light encoding by spiral phase 

(abbreviated to ‘AziSpi’) used in focal modulation microscopy (FMM). Firstly we 

derive the representation of field in the focal region for different polarizations. Then 

the annular phase apertures in FMM for the cylindrical polarization are optimized by 

the MFC method which was introduced in section 2.5. The effects of apodization on 

FMM for radial polarization and AziSpi are investigated by evaluation of resolution, 

modulation depth, Strehl ratio and focusing efficiency. 

3.2  Field in focal region 

Consider a non-paraxial perfect focusing system as illustrated in Figure 3.1, the 

incident monochromatic wave propagates through the reference surface and transforms 

to a perfect converging wave. According to Debye-Wolf integral, the field 
f

E  in the 

focal region of the system is expressed as [113] 

      exp ,f rP iAk S ik d


   E E q R   (3-1) 

where P denotes the position in the focal region, k is the wave number, A is a constant 
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for normalization, 
r

E  depicts the refractive wave just after the reference surface, S 

denotes the position on the reference surface which is restricted by the numeric aperture 

(NA) of the system, Ω is the solid angle subtended by the aperture as seen from the 

focal point, sind d d   , q is the unit vector in the direction of the converging 

refractive ray and is given by 

  sin cos ,  sin sin ,  cos ,    q   (3-2) 

and R is the position vector depicting the point P in the focal region and is given by 

  cos ,  sin ,  ,P P P P Pr r z R   (3-3) 

with the cylindrical coordinates  ,  ,  P P Pr z . The relationship between the cylindrical 

coordinates and the Cartesian coordinates in Figure 3.1 is simply as cosP Px r  , 

sinP Py r  , Pz z . Therefore, the term in the exponent of the integral Eq. (3-1) 

becomes 

  sin cos cos .P P Pr z      q R   (3-4) 

 

Figure 3.1 The focusing geometry. 

To calculate the integral Eq. (3-1), the relationship between the incident wave 
i

E   

and the refractive wave 
r

E  is required. The polarization of the incident wave changes 

due to refraction occurring at the reference surface. We depict the orthogonal local 

polarization components of the incident wave by the unit vector  1 2 3, , e e e  , and that 
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of the refractive wave by  , ,   e e e . The transformation of the polarization can be 

described as 
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where i
e  and r

e  denote the polarization components of incident wave and refractive 

wave, respectively, with the universal coordinates , , x y z  defined in Figure 3.1. Thus, 

the transformation of the incident wave 
i

E   and refractive wave 
r

E  is described as 

 cos ,r iE ME   (3-7) 
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 (3-8) 

where the factor cos  comes from energy conservation [113]. 

Therefore, for a given incident field, the field in the focal region can be derived 

through Eqs. (3-1) ~ (3-8). The equations are applicable for incident wave with any 

polarization and any phase as long as the Debye approximation is satisfied. In the 

optical system considered here, the field of interest is near the focus and the focal length 

is much greater than the wavelength, so the Debye approximation is applicable. 

Although there are efficient numerical integration algorithms to evaluate two-

dimensional (2D) integral, it is still time-consuming to calculate the whole field in 
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three-dimensional (3D) focal volume through direct implementation of Eq. (3-1). The 

fast Fourier transform (FFT) and chirp z transform (CZT) in 2D and 3D were proposed 

to speed up the integral calculation [120, 122, 123]. Nevertheless, for the circularly 

symmetric incident waves considered here, the 2D integral can convert to one-

dimensional (1D) integral by the integral representation of the Bessel function of the 

first kind: 

    
2

0
exp cos 2 .n

ni n d i J


            (3-9) 

3.3  Phase aperture designed by maximally-flat crater (MFC) 

The MFC method proposed in section 2.5 was employed to design annular phase 

apertures for different polarized illuminations in FMM. To implement MFC, the pupil 

moment must be defined properly for different polarizations, then the apertures can be 

designed by following the steps in section 2.5. Here the expressions of the field for 

different polarizations in the focal region are derived, and then the definition of the 

pupil moment are given. By applying Eq. (3-9) and corresponding series expansion Eq. 

(3-10), the field and intensity in the focal region can be expanded with coefficients 

given by the pupil moment, which can be used to verify the consistence of MFC 

implementation based on pupil moment and that based on intensity expansion. 
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3.3.1  Linear polarization 

For an incident wave linearly polarized in x-direction, given by  1,  0,  0i E , the 

refractive wave is derived as 
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which is equivalent to the strength factor as defined in [113]. 

The field in the focal region is derived by Eqs. (3-1) ~ (3-8), and expressed as 
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where 
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with α the semi-angular aperture determined by numerical aperture ( sinNA  ). The 

result is the same as in [113] and can be rewritten as Eq. (2-16) for the convenience of 

defining pupil moment. The aperture design is illustrated in section 2.5.2. 

3.3.2  Circular polarization 

The wave of circular polarization can be described as  1,  ,  0i i E , where the plus-

minus sign denotes the left and right circular polarizations. Without loss of generality, 

either circular polarization considered is enough since they have the same intensity 

distribution in the focal volume. For the left circular polarization, the field in the focal 

region is derived as 
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E   (3-14) 

where the terms 0 1 2,  ,  c c cI I I  are equivalent to 0 1 2,  ,  l l lI I I  as in Eq. (3-13), respectively. 

Thus, the pupil moment can be defined and calculated the same as that of linear 

polarization, i.e. Eqs. (2-19)  and (2-20). 

Although the terms 
c

nI  ( 0,1,2n  ) in the circular polarization share the same 
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expression as the linear polarization, the fields in the focal region have different 

symmetry properties. The transverse field in Eq. (3-14) can be decomposed into two 

circular waves: one with constant phase ( 0
cI ) and the other with spiral phase (

2

2
picI e


). 

Therefore, the intensity distribution is rotationally symmetric, described as 

    2 2 222 2 2 2
0 1 22 2 .c c c

x y zI P E E E A k I I I        (3-15) 

3.3.3  Radial polarization 

For a radially polarized incident wave, given by  cos ,  sin ,  0i  E , the field in the 

focal region is derived as 
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where 0

rI  and 1

rI  are given by 
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Obviously the transverse field in Eq. (3-16) is radially symmetric, so the intensity 

distribution deserves the same symmetry property, which is given by 

    2 222 2 2 2
0 12 2 .r c

x y zI P E E E A k I I       (3-18) 

To define the pupil moment used in MFC, Eq. (3-17) can be rewritten as 
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with the pupil function Q(c) expressed as a function of cosc  . Q(c) includes the 

effects of the phase aperture and illumination beam profile P(c), and can be written as 
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        21 ,Q c c c P c T c    (3-20) 

where T(c) is the transmission function of the phase aperture which is described by Eq. 

(2-18). Therefore, the pupil moment is depicted as 
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which can be evaluated numerically for a given system. 

3.3.4  Azimuthal polarization with spiral phase 

An incident wave of AziSpi is depicted by    sin ,  cos ,  0 expi in   E  with n  an 

integer number. The field in the focal region is given by 
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with 

    
0

cos sin sin exp cos .a
n n p pI J kr ikz d


        (3-23) 

The azimuthally polarized light encoding by the first-order spiral phase ( 1n  ) 

introduces a tight focus spot [67], whereas with spiral phase of other orders it causes 

donut-shaped focal intensity distributions. Here only the light encoding by the first-

order spiral phase is considered for FMM application, and the field in the focal region 

is expressed explicitly as 
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Similar to previous process for radial polarization, Eq. (3-23) can be rewritten as 
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      21 exp d ,a

n n P PI Q c J kr c ikz c c





    (3-25) 

where the pupil function Q(c) is given by 

      ,Q c cP c T c   (3-26) 

with T(c) the transmission function of the phase aperture described by Eq. (2-18). For 

uniform illumination, the pupil moment can be described explicitly as 
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Similar to the circular polarization, the transverse field in Eq. (3-24) can also be 

decomposed into two circular waves: one with constant phase ( 0
aI ) and the other with 

spiral phase (
2

2
piaI e


). Therefore, the intensity distribution is rotationally symmetric: 

    2 222 2 2 2
0 22 .a a

x y zI P E E E A k I I       (3-28) 

3.4  Comparison of different polarizations in FMM 

In the simulations, the illumination and emission wavelengths are assumed the same 

for convenience, i.e. 0.633μm, the objective lenses for illumination and collection have 

the same NA, and  0.95NA  is chosen if not specified. In previous simulation based 

on scalar diffraction theory (section 2.4.3), the pinhole diameter is 0.8μm, about 0.6 

times of the diameter of Airy disk, which is 1.35 times of the FWHM of the Airy disk. 

In vector diffraction, the size of the focal intensity distribution changes with various 

NA even in optical coordinates, so the pinhole size based Airy disk diameter does not 

have comparable sectioning effect or efficiency. Therefore, the pinhole size based on 

the illumination PSF, i.e., 1.35 times of the FWHM of the PSF, is chosen instead. 
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3.4.1  Annular aperture design 

The aperture design for the circular polarization is expected the same as that for linear 

polarization, since they share the same definition of pupil moment. Figure 3.2 shows 

the aperture designs for different polarizations, where the radius is normalized by the 

size of the aperture. For a given number of sub-apertures, the MFC design shows large 

area in the outer annular region for the circular polarization, while relatively smaller 

area for the radial polarization. This may be attributed to the decreasing factors, i.e. 

  21 ,  1,  1c c  , in the expressions of the pupil functions (Eqs. (2-17), (3-26) and 

(3-20), respectively), which affect the integrands in the definition of the pupil moment. 

For all the polarizations, the areas of the middle sub-apertures become relatively larger 

than the inner and outer parts as the number of the sub-apertures increases. 

 

Figure 3.2  The normalized radius of the annular phase apertures for circular 

polarization (red), AziSpi (black) and radial polarization (blue). The yellow 

and white bars denote the modulated and unmodulated parts, respectively. 

3.4.2  Intensity distribution in focal region 

The intensity distributions of both in-phase and anti-phase are investigated here to 

compare different polarizations. Figure 3.3 (a) and (d) show the in-phase intensity 

distributions for circular polarization (blue line), radial polarization (red point dashed 

line) and AziSpi (black dashed line) with 0.75NA  along transverse and axial 

directions, respectively. The optical coordinates are defined as sinv kr  , 
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 24 sin 2u kz  , where k is the wave number, α is the angular semi-aperture of the 

objective lens, and r, z are the physical distances from the focal point in cylindrical 

coordinates. The AziSpi shows the narrowest FWHM in both transverse and axial 

directions, while the transverse FWHM of the radial polarization is significantly wider. 

When NA increases to 0.95, the transverse FWHM of the radial polarization shrinks 

close to the other polarizations (Figure 3.3 (b)), which means the radial polarization 

benefits in high NA system. In addition, the axial FWFM of the radial polarization is a 

little wider than the other polarizations (Figure 3.3 (d) and (e)). 

Figure 3.3 (c) and (f) show the anti-phase intensity distributions of the aperture 

with 4 sub-apertures. In the transverse plane, the energy in the circular polarization is 

pushed further away than the other polarizations, which is expected to lead to less anti-

phase signal and thus larger modulation depth. In the axial direction, the side-lobe is 

shifted a little further away in the radial polarization. 

 

Figure 3.3 Normalized intensity profiles of in-phase apertures ((a), (b), (d) and 

(e)) and anti-phase apertures with 4 sub-apertures ((c) and (f)) for circular 

polarization (blue line), radial polarization (red point dashed line) and AziSpi 

(black dashed line) along transverse direction (u=0) ((a) ~ (c)) and axial 

direction (v=0)((d) ~ (f)). NA=0.75 in (a) and (d), while NA=0.95 in the other 

figures. 
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3.4.3  Modulation depth 

Figure 3.4 shows the modulation depth of annular apertures designed by MFC with 

different polarizations. In general, the modulation depth increases as the number of the 

sub-apertures increases, because the volume of the ‘flat-crater’ increases and then the 

anti-phase signal decreases. 

For a given number of the sub-apertures, the modulation depth decreases in the 

circular polarization and the AziSpi as the numerical aperture (NA) increases (Figure 

3.4 (a) and (c)), whereas it increases in the radial polarization (Figure 3.4 (b)). This is 

attributed to that the pinhole size, which is based on the FWHM of the illumination 

PSF, decreases in the radial polarization when the NA increases. Actually the radial 

polarization benefits the high NA system, where it can produce a tight focusing spot 

[58, 65, 66], but results in broad focusing spot in the low NA system. 

 

Figure 3.4 Modulation depth of apertures designed by MFC using different 

numbers of sub-apertures with (a) circular polarization, (b) radial polarization 

and (c) AziSpi. (d) Comparison of modulation depth with different polarizations 

for high NA system (NA=0.95). 

Figure 3.4 (d) compares the modulation depth for different polarizations in the high 

NA system ( 0.95NA ). The modulation depth in the circular and linear polarizations 
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is greater than that in the radial polarization and AziSpi, because in the former cases 

the energy of the anti-phase is pushed further away from the focus (see Figure 3.3 (c)). 

3.4.4  Resolution 

Figure 3.5 shows the transverse FWHM of the in-phase PSF with different NA and 

different polarizations. The unit of FWHM is based on optical coordinates which is 

given by 
2

v x NA



   with λ the wavelength and x the physical distance. The PSF of 

the linear polarization is not rotationally symmetric, so the averaged FWHM is 

employed for comparison. The averaged FWHM is given by 

    ,averageFWHM FWHM x FWHM y    (3-29) 

where  FWHM x  and  FWHM y  are the FWHM along x- and y- axes. 

The FWHM of radial polarization is very large when the NA is small, which implies 

that the radially polarized illumination is only suitable for high NA imaging system. 

The FWHM of linear and circular polarizations increases as the NA increases, whereas 

the FWHM of radial polarization and AziSpi decays monotonically. For a given NA, 

the AziSpi illumination is expected to provide the best resolution as the FWHM of 

AziSpi is the narrowest. 

It seems counterintuitive that The FWHM of linear and circular polarizations 

increases for larger NA. It is true that, for larger NA, more high frequency components 

are involved, and consequently, the FWHM (evaluated in physical coordinates) and 

imaging result become better. However, the FWHM in Figure 3.5 is evaluated in optical 

coordinates rather than physical coordinates. The optical coordinates were introduced 

to exclude the influences of NA and wavelength in evaluating the field in the focal 

region based on scalar diffraction theory (Eq. (2-8)). Here the optical coordinates are 

used to show the effect of NA for different polarizations in vector diffraction theory. 

In this case, the intensity contributions from all the transverse and longitudinal (x-, y- 
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and z-) fields are included in the evaluation of the FWHM. The change of NA 

introduces the change of the relative strengths of the transverse and longitudinal fields, 

which causes the variation of the FWHM. For example, for an incident wave linearly 

polarized in x-direction, the fields along y- and z- directions in the focal region increase 

when the NA increases. The increase of the fields along y- and z- directions makes the 

FWHM (evaluated in optical coordinates) worse due to the characteristics of the first 

(J1) and second (J2) Bessel functions of the first kind (Eq. (3-12) and (3-13)). 

 

Figure 3.5  FWHM of different polarizations. The inserted figure shows the 

FWHM at the range of NA from 0.9 to 1. The unit of FWHM is in optical 

coordinates. 

3.5  Apodization 

Various apodization designs for cylindrically polarized light have been proposed to 

improve the resolution [56, 58, 65, 66, 124-127] or focal depth [78, 127]. The 

apodization techniques can be employed in FMM by directly overlapping the 

apodization pattern and the MFC pattern to improve the resolution and sectioning 

capability simultaneously. In such a way, the total number of the sub-apertures would 

be the sum of the apodization pattern and the MFC pattern, so the complexity of the 

aperture fabrication must be considered in practice. Note that the possibly increased 

focal depth introduced by apodization would be missing because FMM employs a 

pinhole to implement ‘depth sectioning’. 
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Here, as an example, the inner-blocked apodization was investigated to apply in 

FMM, since this apodization pattern is so simple that we can focus on the influence of 

the apodization on the performance of FMM. The inner-blocked apodization can be 

considered as the simplest configuration of the shaded-mask filter [76], leaky filter [57] 

or three-level filter [75]. To combine it in FMM, the MFC design was implemented in 

the unblocked region of the aperture. We define the ratio of the radii of the inner-

blocked and the outer unblocked aperture as the annular factor, which is described as 

 .inner blocked

outer

r

r
    (3-30) 

An inner-blocked annular aperture with 3 sub-apertures is shown in Figure 3.6 to 

illustrate the configuration more clearly, where the inner black part is blocked, the grey 

annular parts are phase-modulated parts and the white annular part is unmodulated. 

 

Figure 3.6  An inner-blocked annular aperture with 3 sub-apertures. 

3.5.1  Resolution 

The resolution of FMM is determined by the illumination PSF, detection optics and the 

pinhole size, where the latter two factors are not affected by the inner-blocked 

apodization. Therefore, the full width at half maximum (FWHM) of the illumination 

PSF can be used to evaluate the transverse resolution, because here we focus on the 

influence of the apodization which is irrelevant to the detection optics and the pinhole 

size. Furthermore, the FWHM of the in-phase PSF can be employed to substitute the 

illumination PSF, since the MFC design produces a ‘flat crater’ in the focus which 

makes the main-lobe of the illumination PSF almost not affected by the anti-phase PSF. 

In such a way, the transverse resolution can be evaluated without any influence of the 
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number of the sub-apertures. On the other hand, the axial resolution is mainly affected 

by the detection optics and the pinhole size, because the axial size of the illumination 

PSF in inner-blocked apodization for cylindrical polarization is usually larger than the 

size of the detection optics. So the overall axial resolution is determined by the 

detection optics and the pinhole size (see the integrand in Eq. (2-6)). Thus, we focus 

on investigating the transverse resolution here. 

Figure 3.7 shows the transverse FWHM of the in-phase PSF with different annular 

factors and different polarizations. The unit of FWHM is based on optical coordinates, 

and the averaged FWHM of the linear polarization (Eq. (3-29)) is employed for 

comparison. 

 

Figure 3.7  The transverse FWHM of the in-phase PSF with different annular 

factors for linear (green circle), circular (blue star) and radial (red diamond) 

polarizations, and AziSpi (black square, Azi-Spi). The unit of FWHM is based 

on optical coordinates. 

In Figure 3.7, the FWHM of radial polarization and AziSpi decreases significantly 

as the annular factor increases. When the annular factor reaches 0.9, the FWHM of the 

both polarizations approaches 2.34, which is 2.55  equivalently. The resolution of 

radial polarization benefits the most from the inner-blocked apodization, since the 

FWHM decreases the most quickly as the annular factor increases. In addition, the 

AziSpi gives the best resolution when there is no apodization. Thus, the performance 

of the AziSpi is the best from the view point of resolution enhancement. 
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On the other hand, when the annular factor increases, the FWHM of linear 

polarization decreases slowly, while the FWHM of circular polarization decreases a 

little at the beginning and then increases to its initial value. In general, the resolution 

of linear and circular polarizations is little affected by the inner-blocked apodization. 

Thus, they would not be considered in the following investigations, since the apodiation 

here is expected to improve the resolution and performance of FMM simultaneously. 

3.5.2  Modulation depth 

Figure 3.8 shows the modulation depth of FMM with different annular factors and 

different numbers of sub-apertures for radial polarization and AziSpi. In general, the 

modulation depth increases as the annular factor increases, which will ease the 

fabrication of the aperture significantly. For example, the modulation depth of 8 sub-

apertures without apodization is about 0.82, which value can be exceeded by proper 

inner-blocked apodization applied on 2 sub-apertures ( 0.8  ), 3 sub-apertures  

( 0.6  ) and 4 sub-apertures ( 0.4  ) in radial polarization, or 2 sub-apertures  

( 0.8  ), 3 sub-apertures ( 0.7  ) and 4 sub-apertures ( 0.5  ) in the AziSpi. 

Obviously the aperture with less number of sub-apertures is much easier to fabricate. 

One may concern about the light efficiency in the inner-blocked configuration, which 

will be discussed later. 

For a given number of sub-apertures and a given annular factor, the modulation 

depth of the radial polarization is similar to that of the AziSpi, whereas the former is a 

little greater than the latter in most cases. In general, the performance of the radial 

polarization is the best from the view point of the improvement of modulation depth. 

The improvement of modulation depth benefited from the inner-blocked 

apodization can be attributed to side-lobe shift in the anti-phase PSF. Figure 3.9 shows 

the normalized intensity profiles of binary phase apertures using different annular 

factors. As the annular factor increases, the side-lobes in transverse plane decrease and 
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the envelope of the side-lobes moves further away from the focus. Along the axial 

direction, the amplitudes of the side-lobes change very little, but the profiles are 

broadened are shifted further away, when the annular factor increases. All these 

changes reduce the intensity of the anti-phase PSF in the focal volume, and thus 

decrease the anti-phase signal and improve the modulation depth. 

 

Figure 3.8  The modulation depth of FMM with different annular factors using 

2- (blue), 3- (red) and 4- (black) sub-apertures for radial polarization (dashed 

star, Radial) and AziSpi (solid square, Azi-Spi). 

 

Figure 3.9  Normalized intensity profiles of binary phase apertures with 2 sub-

apertures for AziSpi ((a) and (b)), and 3 sub-apertures for radial polarization 

((c) and (d)), with the annular factors 0 (blue), 0.3 (red) and 0.6 (black). 
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There is no significant difference between the radial polarizationt and AziSpi when 

we investigated effects of inner-blocked apodization on the intensity distribution. The 

apodization enlarges the volume of the ‘flat crater’ by shifting the side-lobes far away 

from the focus, and this is little affected by polarization. 

3.5.3  Strehl ratio 

Here we define the ratio of the focal intensities of the in-phase PSF with the apodization 

and that without aposization as the Strehl ratio, which is a measure of the energy 

efficiency in the apodization rather than its usual application of evaluating the quality 

of image formation [128]. If the points on the aperture contribute equally to the focus, 

the relationship of the Strehl ratio and the annular factor would be parabolic, as the 

green line shown in Figure 3.10. The Strehl ratio is less than the parabolic values in 

most cases in Figure 3.10, which means the outer part of the aperture contributes less 

to the focal intensity. With small NA and small annular factor, the Strehl ratio of the 

radial polarization is greater than the parabolic values, because the peak of the PSF 

without apodization locates away from the origin. 

 

Figure 3.10 The Strehl ratio of radial polarization (dot-dashed lines, R) and 

AziSpi (solid lines, AS) using different annular factors with NA of 0.55 (black), 

0.75 (red) and 0.95 (blue). The parabolic profile due to the annular factor is 

also shown (green). 

For a given NA, the Strehl ratio of the AziSpi decays more quickly than that of the 
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radial polarization when the annular factor increases, which means in the former case 

the outer aperture contributes less to the focal intensity than in the latter case. Thus, the 

apodization is more preferred in the radial polarization when the energy efficiency is 

more of concern. 

3.5.4  Focusing efficiency 

In an aplantic imaging system, the focused power is proportional to [59, 129] 

  
2

2 2 ,total inner outerW cT c dc c c     (3-31) 

where T(c) is the transmission function, innerc  and outerc  are corresponding to the inner-

blocked and outer radii with the expression of cosc  . The normalized power 

efficiency can be defined as 

 ,
2

focus

power

total

I
F

W
   (3-32) 

where focusI  is the normalized intensity at the focus which is unity for a free aperture 

of 2   with linearly polarized illumination.  With the factor 1 2  in Eq. (3-32), the 

total normalized power efficiency (electric and magnetic) at the focus for 2   (

1NA ) is unity for linearly polarized illumination with free aperture. The power 

efficiencies of 0.95,  0.75,  0.55NA  for linear polarization are 0.42, 0.25 and 0.13, 

respectively. 

Figure 3.11 shows the power efficiencies using different annular factors. For a 

given NA, the power efficiencies are less than the corresponding values in linear 

polarization, which means the power of linearly polarized light can be concentrated to 

the focus more efficiently. For AziSpi, the power efficiency decays monotonically as 

the annular factor increases. The same trend appears in the radial polarization when the 

NA is small. As the NA increases to 0.95, the power efficiency reaches a peak of 0.28 

at the location 0.16  . 
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The power efficiency of AziSpi is always greater than that of the radial polarization 

when NA is small, whereas the latter becomes greater when NA reaches 0.95 with 

proper apodization ( 0.11  ). Thus, the radial polarization benefits more from high 

NA and the inner-blocked apodization. 

In addition, the power efficiency increases in general as the NA increases, which 

means, as expected, a high NA can concentrate more power to the focus. 

 

Figure 3.11 The power efficiency of radial polarization (dot-dashed lines, R) 

and AziSpi (solid lines, AS) using different annular factors with NA of 0.95 

(black), 0.75 (red) and 0.55 (blue). 

In a high NA system, the integral of the intensity in the focal plane is not 

proportional to the power across the focal plane [59, 129]. The integral of the intensity 

is proportional to 

  
2

,total inner outerI T c dc c c     (3-33) 

where the parameters have the same definition as in Eq. (3-31). The normalized 

intensity efficiency can be defined simply as 

 ,
focus

i

total

I
F

I
   (3-34) 

and this is unity for a free aperture of 2   with linearly polarized illumination. The 

intensity efficiencies of 0.95,  0.75,  0.55NA  for linear polarization are 1.10, 0.83 

and 0.49, respectively. 
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Figure 3.12 shows the intensity efficiencies using different annular factors. Similar 

to power efficiency, the intensity efficiencies are less than the corresponding values in 

linear polarization for a given NA, which means the energy of linearly polarized light 

is distributed more at the focus. Thus, the side-lobes on the focal plane in the radial 

polarization and AziSpi contain more energy than that in the linear polarization, though 

the former have narrower main-lobes. 

 

Figure 3.12 The intensity efficiency of radial polarization (dot-dashed lines, R) 

and AziSpi (solid lines, AS) using different annular factors with NA of 0.95 

(black), 0.75 (red) and 0.55 (blue). 

The relationship of the intensity efficiency and the annular factor and the NA is 

similar to that of power efficiency. However, the intensity efficiency of AziSpi with 

0.95NA  decays so quickly that it is less than the intensity efficiency with low NA 

when the annular factor increases to a certain level ( 0.28   for 0.75NA , 0.50   

for 0.55NA ). For the radial polarization with 0.95NA , the intensity efficiency 

reaches a peak of 0.70 at the location 0.10  . 

3.5.5  Discussion 

In a high NA imaging system with considerable annular factor in the inner-blocked 

apodization, radial polarization performs better in Strehl ratio and light efficiency than 

AziSpi, and the former performs as well as the latter in resolution improvement when 

the annular factor is large. On the other hand, AziSpi has relatively better performance 
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in Strehl ratio and light efficiency in the low NA system, and the resolution is little 

affected by NA if measured in optical coordinates. As for the modulation depth, radial 

polarization and AziSpi behave very similar when given the same number of sub-

apertures and annular factor. 

In a high NA FMM system, the incident light in the outer part of the aperture 

propagates through longer path length than the light in the inner part, so the former 

decays more due to absorption and scattering before reaching the focus. The effective 

illumination will be nonuniform but approximately as a Gaussian beam when the 

incident light is uniform. Thus, the modulation depth of the radial polarization will 

degrades because the Gaussian beam effectively decreases the NA. One solution is to 

compensate for absorption and scattering by applying nonuniform illumination, e.g. 

Bessel–Gauss beam [125]. Another one is to employ an inner-blocked apodization with 

a large annular factor, so only the light in the outer part of the aperture, which is 

approximately uniform, is focused. The latter solution also provides improved 

resolution and modulation depth, although it sacrifices more light efficiency. From this 

point of view, AziSpi performs better than radial polarization since it is not affected 

much by NA. 

In general, the inner-blocked apodization improves the performance, e.g. 

modulation depth and resolution, of annular apertures in FMM by sacrificing light 

efficiency. However, this apodization may not be universally benefited for other 

configurations of apertures. For example, in the fan-shaped aperture (Figure 3.13 (a)), 

which was already used in FMM [20], the modulation depth decays as the annular 

factor of the inner-blocked apodization increases (Figure 3.13 (b)). In this configuration, 

the apodization enhances the side-lobes of the anti-phase PSF and shifts them close to 

the focal point (Figure 3.13 (c) and (d)), so the anti-phase signal creases and thus the 

modulation depth degrades. Here the simulation parameters are the same as in the scalar 

case in section 2.4.3 for convenience. 
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Figure 3.13 (a) An inner-blocked fan-shaped aperture with 6 sub-apertures. (b) 

Modulation depth of fan-shaped aperture with different annular factors. (c) 

Normalized intensity profiles of anti-phase PSF. (d) Normalized transverse 

intensity distribution of anti-phase PSF. 

3.6  Conclusion 

In this chapter, the representations of field in the focal region for different polarizations 

are derived, and then expressed in a 1D integral, which is convenient to implement 

calculation and define pupil moment. Then we investigated the performance of circular 

and radial polarizations and AziSpi used in FMM, where the annular phase apertures 

were optimized by MFC. The energy in the circular polarization is pushed further away 

than the other polarizations in the transverse plane, which leads to less anti-phase signal 

and thus larger modulation depth. The AziSpi gives the best resolution for any given 

NA; whereas the radial polarization provides better resolution than linear and circular 

polarizations only in the high NA system. 

The effects of inner-blocked apodization were investigated by comparing the 

resolution, modulation depth, Strehl ratio and focusing efficiency. Radial polarization 

performs better in Strehl ratio and light efficiency than AziSpi only in a high NA system 
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with considerable annular factors. On the other hand, the modulation depth and 

resolution of AziSpi are affected very little by NA, which makes it robust in practical 

implementation. In general, for radial polarization and AziSpi, both the modulation 

depth and resolution are improved by the inner-blocked apodization, especially when 

the annular factor increases. Thus, a proper inner-blocked apodization could simplify 

the aperture design by sacrificing light efficiency. It is noted that the apodization must 

be applied carefully for different configurations of the apertures. For example, the 

inner-blocked apodization degrades the modulation depth of fan-shaped apertures. 
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Chapter 4 

Diverse structured-illumination imaging 

4.1  Introduction 

Wide-field optical microscopy is efficient and robust for imaging dynamic real-time 

process, but it has no depth sectioning capability due to lack of axial high frequency 

components in the 3D optical transfer function (OTF). Thus, a stack of wide-field 

images is not real 3D image but every slice contains out-of-focus background. To 

overcome this limitation, HiLo microscopy uses one more image with structured 

illumination to introduce sectioning capability. Rather than rejecting the out-of-focus 

photons in HiLo approach, here we apply diverse imaging approach to reconstruct 

images from the structured-illumination images by rearranging the photons to the 

emission origins, which utilizes the photons more efficiently. Furthermore, sparsity 

priors of the sample were incorporated in the reconstruction process to improve the 

sectioning capability and image fidelity. 

4.2  Diverse imaging with sparsity priors 

Diversity scheme has been widely used in telecommunications to alleviate signal 

fading by using multiple antenna channels with different characteristics [130-133]. In 

general, diverse imaging can be defined as that satisfying the following conditions [22]: 

1) Measure an object with two or more imaging systems which have different 

input-output relationship. 

2) The multiple imaging systems must provide different information of the object, 

e.g. different frequency components. 

3) Exploit the persistence of the unknown information among the raw images by 
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signal processing and/or statistical tools to recover the desired image. 

For most microscopy technologies, the imaging process can be approximated as 

linear and shift invariant. We denote the object as a function of position  f r  and its 

optical images as  jg r  ( 1,...,j N ), where N images are obtained via different 

imaging systems with its point spread function (PSF)  jh r . Mathematically, the 

image is the convolution of the object and the PSF, 

      .j jg f h r r r   (4-1) 

Thus, the object estimate rf  can be obtained by combining the diverse images by 1 

  
2

argmin ,r f j j j

j

f g f h f        (4-2) 

where the position vector r is omitted for convenience, j  is weight factor denoting 

the confidence of the corresponding imaging,   is the regularization coefficient which 

is usually determined by ad hoc knowledge or is optimized empirically, and  f is 

the regularization function. 

The most commonly used regularization function is the Tikhonov function, which 

prefers the solutions with smaller norms: 

  
2

,
i

Tikhonov f r   (4-3) 

where the subscript i denotes the pixel numbers. Sparsity priors have been widely used 

in compressive sensing to recover information from undersampled data [23, 91]. 

However, sparsity priors are also applicable when there are abundant measurements, 

but the signal is degraded by noise and low- or band-pass filters. With the help of 

sparsity priors, diverse imaging often results in better reconstruction fidelity. Here we 

applied total variation (TV) as the regularization representing sparsity. TV is evaluated 

                                                           
1 Most recently, another diverse imaging modality using expectation maximization was 

proposed by M. Ingaramo, et al, ChemPhysChem 15, 794-800 (2014). 
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by 

      
2 2 2

.x y z

i i i

i

TV f f f                r r r   (4-4) 

TV represents sparsity for a piece-wise constant image, so a good reconstruction is 

expected for such an object. In both numerical reconstruction and experiments in this 

thesis, all the images are considered piecewise constant when TV is applied. The 

algorithm TwIST [134] was used to solve Eq. (4-2) for TV regularization. When we 

employed the Tikhonov regularization, in principle we could solve this convex problem 

analytically. However, the resulting matrix in 3D simulation is too huge to be 

manipulated in our work station. Thus we used Landweber algorithm [135] to solve 

this problem. 

4.3  Mathematical model of structured-illumination imaging 

In a structured-illumination imaging system based on wide-field fluorescence 

microscope, the emission intensity is proportional to the product of excitation 

illumination and the density of fluorescent sample [36, 136], where the latter is the 

object for recovery. Thus, the imaging process in Eq. (4-1) requires modification to 

reveal the property of the illumination. For a sample  , ,f x y z  located at the axial 

position 0z , the emission intensities corresponding to uniform and structured 

illuminations are described by 

      0 0, , , , , , , , ,u uF x y z z f x y z z I x y z    (4-5) 

      0 0, , , , , , , , ,s sF x y z z f x y z z I x y z    (4-6) 

where  , ,uI x y z  and  , ,sI x y z  are the intensity distributions of the uniform and 

structured illuminations, respectively, and    
2

, ,, , , ,u s u sI x y z E x y z  with the electric 

field in 3D space calculated by Fresnel propagation [137] 
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   (4-7) 

where 
ik  and 

i  are wave number and wavelength of the illumination light, 

respectively. Normally we can assume the fields of uniform and structured 

illuminations at the object plane  ,   are unity and sinusoid, respectively, i.e.  

1o

uE  ,   1 cos 2o

u gE k   , where gk  is the spatial frequency of the structured 

illumination. 

The intensities of measured images for uniform and structured illuminations can be 

expressed as 

      0 0 0, , , , , , , | ,u u zg x y z F x y z z h x y z        (4-8) 

      0 0 0, , , , , , , | ,s s zg x y z F x y z z h x y z        (4-9) 

where the 3D convolution is implemented first, and then the results on the focal plane 

( 0z  ) is selected to form a 2D image as measured. The intensity PSF  , ,h x y z  can 

be calculated by square of Eq. (2-8) for low NA, or by Eq. (2-21) for high NA, with the 

wavelength of emission light. The full 3D image stacks is obtained by moving the 

object in axial direction. This imaging process can be used to substitute for Eq. (4-1) 

to implement the diverse imaging shown in Eq. (4-2). Here the image formation model 

does not account for the multiple-scattering background light, which is often 

considered as low frequency and thus eliminated by image preprocessing in many cases. 

4.4  Reconstruction fidelity 

To study the performance of the diverse imaging reconstruction with sparsity priors, 

we compared different reconstruction schemes: HiLo reconstruction [21], single image 

reconstruction (only one image corresponding to uniform illumination) with Tikhonov 

and TV regularizations, and diverse imaging reconstruction (two images corresponding 
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to uniform and structured illuminations, respectively) with Tikhonov and TV 

regularizations. We used a spoke-wheel as the object in the simulation (Figure 4.1 (a)). 

Figure 4.1 (b) shows cross-sections of the object in x-z and x-y plane. The thickness (y-

axis) of the spoke-wheel is 8µm, the inner and outer radii of the wheel are 4µm and 

6µm, respectively, and the thickness of the spoke is 1.6µm. The transverse and axial 

pixel sizes are 0.2µm and 0.4µm, respectively. The wavelengths of the excitation light 

and emission light are 488nm and 530nm, respectively. The NA of the collection 

objective lens is 0.5. The spatial frequency of the structured illumination is 600 line 

pairs / mm, if not specified. We added Gaussian noise with signal-to-noise ratio (SNR) 

of 20dB to the simulated raw images, which are shown in Figure 4.1 (c) and (d). 

 

Figure 4.1 The object (a) used in simulation and its cross-sections in x-z and 

x-y plane (b). The images corresponding to uniform (c) and structured (d) 

illuminations. 

4.4.1  Comparison of single image and diverse imaging reconstructions 

Figure 4.2 shows the image reconstructed by HiLo algorithm, where the out-of-focus 

background is partly rejected. However, there is still significant residual background, 

because the HiLo algorithm only utilizes low-frequency components of the structured-

illumination image which is not sufficient to reject background for such an object with 

fine structures. In addition, the effect of PSF elongation in axial direction is not 
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considered in HiLo reconstruction, so the hub in the reconstructed image looks darker 

than adjacent regions where a lot of photons come from the spoke rods. This 

phenomenon makes the observer confused if there are two hubs in the center. The effect 

of PSF elongation may result in artefacts in HiLo reconstruction. 

 

Figure 4.2 Image reconstructed by HiLo algorithm. 

The image reconstruction can be improved by proper utility of sparsity priors, 

which can be verified by comparison of Figure 4.3 (a) and (b) where the images are 

obtained by single image reconstruction. There is significant noise in the Tikhonov 

reconstruction, while the image is very smooth in the TV reconstruction. However, the 

central region in the hub is still missed in both reconstructions, which is attributed to 

the ‘missing cone’ (Figure 1.1 (a)) problem in wide-field imaging. The inverse 

reconstruction approach can rearrange most of the out-of-focus photons back to their 

origins, but normally they cannot completely recover the frequency components in the 

‘missing cone’ region. Similar to compressive sensing recovery from incomplete data, 

here TV regularization challenges the ‘missing cone’, as the missed intensity in the 

central hub in TV reconstruction is less than that in Tikhonov construction. However, 

it is far from sufficient to recover ‘missing cone’ with only uniform illumination image. 

Here the missing of central hub is different from the darkness of central hub in Figure 

4.2, which can be discriminated by comparing the width of the hub to the original object. 

The sparsity priors, i.e. TV regularization here, can suppress the noise effectively, but 

it cannot restore the missed frequency components in axial axis in wide-field imaging. 

The structured-illumination data provides the missed frequency components, so the 
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hub in the simulation can be well reconstructed by using the uniform and structured 

illumination data (Figure 4.3 (c) and (d)). Again, the reconstructed image with TV 

regularization is smoother and of much less noise than Tikhonov reconstruction. 

Comparison of Figure 4.3 (b) and (d) demonstrates that the diverse imaging improves 

the performance of reconstruction, especially the sectioning capability. 

  

Figure 4.3 Images reconstructed by only uniform illumination data (Uni) with 

(a) Tikhonov (Tik, green) and (b) TV (magenta) regularizations, and diverse 

imaging by uniform and structured illumination data (Uni + Str) with (c) 

Tikhonov (Tik, blue) and (d) TV (red) regularizations. Normalized line profiles 

at position of the yellow lines in Figure (d) in (e) axial and (f) transverse 

directions, where the black dashed lines denote the profiles of the object. 

Figure 4.3 (e) and (f) show the normalized line profiles at position of the yellow 

lines in Figure 4.3 (d) in axial and transverse directions, respectively, where the 

difference between different reconstruction schemes can be revealed in detail. Along 

axial direction, the two spokes in the middle can be resolved by diverse imaging, while 
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the TV reconstruction (red line) performs much better contrast than Tikhonov 

reconstruction (blue line). On the other hand, they cannot be resolved in the single 

image reconstruction with either TV (magenta line) or Tikhonov (green line) 

regularization, although the TV regularization smoothes the profile. In the transverse 

direction (Figure 4.3 (f)), the hub reconstructed by diverse imaging with TV 

regularization is the closest to the profile of original object. The central point in the hub 

is darker than adjacent points in all the reconstruction schemes, because the missed 

frequency components are not fully compensated by the structured illumination data in 

this simulation. It is expected to completely correct the ‘missing cone’ problem by a 

structured illumination with higher spatial frequency and/or more structured 

illuminations in different directions. If we use the contrast in the hub to evaluate the 

reconstruction performance, the diverse imaging is better than single image 

reconstruction, and the TV reconstruction is better than Tikhonov reconstruction. Thus, 

the diverse imaging with TV regularization performs the best. 

4.4.2 Effect of contrast of the structured illumination 

In practice, the contrast of the structured illumination is usually degraded by strong 

scattering in imaging thick samples. If the contrast is very low, the structured 

illumination will be approximately equivalent to the uniform one and hence fail to 

provide high frequency information. Thus, it is crucial to investigate the influence of 

the contrast in diverse imaging scheme. The relative mean square error (MSE) is used 

to quantify the effects. The MSE is given by 
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where the subscript i denotes the pixel number,  rf r  and  of r  are the reconstructed 

image and the original objects, respectively. 
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Figure 4.4 shows the MSE of diverse imaging using structured illuminations of 

different contrasts. The MSE decreases as the contrast of the structured illumination 

increases, and TV reconstruction generally performs better than Tikhonov approach. 

For TV reconstruction, the MSE is greater than 20% for the contrast no more than 0.4, 

it is less than 13% for the contrast no less than 0.8, and at the contrast 0.6 the MSE 

fluctuates across 13% and 20%. Thus, the value 0.6 can be considered as a threshold 

of contrast. 

In addition, the variance of MSE in TV regularization is larger than Tikhonov 

regularization for a given NA, because an iterative algorithm TwIST [134] was 

employed to solve this non-convex inverse problem. On the other hand, the solution of 

Tikhonov regularization essentially corresponds to a unique result which can be 

obtained explicitly [22], although TwIST was used in our simulation due to huge 

matrices in 3D calculation. 

 

Figure 4.4 The MSE of diverse imaging using structured illuminations of 

different contrasts. 

To visually evaluate the performance of diverse imaging around the threshold, 

Figure 4.5 compares the images reconstructed by Tikhonov and TV regularizations, 

where the contrasts of the structured illumination are 0.4 (upper figures) and 0.8 

(bottom figures). The central part of the hub is missed in both Tikhonov and TV 

reconstructions when the contrast is 0.4, while it is well recovered when the contrast is 
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0.8. For the TV reconstruction, the capability of noise suppression is also improved 

when the contrast increases. 

 

Figure 4.5 Raw structured illumination data (a) and Images reconstructed by 

diverse imaging with Tikhonov (b) and TV (c) regularizations, where the 

contrasts of the structured illumination are 0.4 (upper) and 0.8 (bottom). 

4.4.3  Effect of frequency of the structured illumination 

The spatial frequency of the structured illumination determines how much frequency 

components in the ‘missing cone’ can be compensated, so it affects the sectioning 

capability of diverse imaging. Figure 4.6 shows the MSE of diverse imaging using 

structured illuminations of different spatial frequencies, where the mean values for 

different frequencies are similar for the same reconstruction scheme. However, the 

frequency 500 line pairs / mm, where the fluctuation of the MSE is much larger than 

other frequencies, may be considered as a threshold. 

Figure 4.7 (a) and (b) show images reconstructed by diverse imaging with the 

frequency of 200 line pairs / mm. For the TV reconstruction, although the image looks 

piecewise smooth, it is not as uniform as the image reconstructed with the frequency 

of 600 line pairs / mm (Figure 4.3 (d)). This phenomenon is consistent with comparison 

of their MSE values. 



69 

 

Figure 4.6 The MSE of diverse imaging using structured illuminations of 

different spatial frequencies. 

 

Figure 4.7 Images reconstructed by diverse imaging with (a) Tikhonov (green) 

and (b) TV (magenta) regularizations, where the frequency of the structured 

illumination is 200 line pairs / mm. Normalized line profiles at position of the 

yellow lines in Figure 4.3 (d) along (c) axial and (d) transverse directions, 

where the blue and red lines denote reconstructions using structured 

illumination data with frequency 600 line pairs / mm by Tikhonov and TV 

regularizations, respectively. 

Figure 4.7 (c) and (d) compare the normalized line profiles at position of the yellow 

lines in Figure 4.3 (d) in axial and transverse directions, respectively. In the axial 

direction, the two spokes in the middle can be resolved by diverse imaging with the 

frequency of 600 line pairs /mm, while the TV reconstruction (red line) performs much 

better contrast than Tikhonov reconstruction (blue line). On the other hand, they cannot 
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be resolved in the single image reconstruction with either TV (magenta line) or 

Tikhonov (green line) regularization, though the TV regularization smoothes the 

profile. 

4.5  Resolution 

The structured illumination data includes high frequency information by shifting the 

frequency components in transverse direction, so the transverse resolution is expected 

to be improved by proper reconstruction. To recover the high frequency components, 

usually more than one structured illumination raw images are required to shift the high 

frequency components back to their original positions in Fourier space, e.g. 

reconstruction by Wiener filter in conventional SIM [9]. As for HiLo microscopy, the 

high frequency components cannot be identified by one structured illumination raw 

image, so they are filtered out and only low frequency components are left for 

compensating for the ‘missing cone’ [21]. Thus, the resolution of HiLo microscopy 

remains the same as the wide-field microscopy, but only the sectioning capability is 

obtained. However, as the reconstruction is considered as an inverse problem in diverse 

imaging, it is possible to restore the high frequency components with only one 

structured illumination raw data. 

To study the resolution of diverse imaging, a spoke-wheel object with 8 spokes but 

without the outer ring as shown in Figure 4.8 was used in simulation. The radius of the 

spoke-wheel is 1.5µm, and its thickness (z-axis) is 5µm. The transverse and axial pixel 

sizes are 0.025µm and 0.5µm, respectively. The wavelengths of the excitation light and 

emission light are 488nm and 530nm, respectively. The NA of the collection objective 

lens is 0.5. The spatial frequency of the structured illumination is 800 line pairs / mm. 

Noise was added to the simulated images with SNR of 20dB. 
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Figure 4.8 The object (left) used in simulation, and the raw images with 

uniform (middle) and structured (right) illumination. 

Figure 4.9 shows the images reconstructed by only uniform illumination data (one 

image, 1i) and by diverse imaging (2i), with Tikhonov and TV regularizations. In the 

diverse imaging results, the resolution along x- axis looks better than that along y- axis, 

and the latter seems similar to the reconstruction by only uniform illumination data. 

This phenomenon is clearer in TV reconstruction, where the width of the central hub is 

narrower in x- direction. 

 

Figure 4.9 Images reconstructed by only uniform illumination data (1i) with 

Tikhonov (a) and TV (b) regularizations, and those reconstructed by diverse 

imaging (2i) with Tikhonov (a) and TV (b) regularizations. 

 

Figure 4.10 Normalized intensity line profiles at position of the red and blue 

lines in Figure 4.9 (d) for different reconstruction schemes. The black dashed 

line denotes the profile of the spoke. 

To compare the resolution quantitatively, we took the resolution limit as the 
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distance between the centers of adjacent spokes for which the ratio of the intensity at 

the central dip to that at the maxima of the corresponding intensity line profile is equal 

to one-half. This definition is different from the conventional two-point resolution 

[138], because the geometry of the object is different and the conventional two-point 

resolution is for raw image. Here the resolution limit is introduced to quantitatively 

compare the resolutions of different reconstruction schemes. 

Figure 4.10 shows the normalized intensity line profiles for different reconstruction 

schemes at position of the red and blue lines in Figure 4.9 (d), where the resolution in 

x-axis of the image reconstructed by diverse imaging with TV regularization reaches 

the resolution limit. Obviously, only the spokes separated along x-axis are resolved in 

diverse imaging reconstruction, since only the high frequency components in Fourier 

domain corresponding to x-axis in space are included in the structured illumination data. 

The contrast of the image reconstructed by Tikhonov regularization is superior to that 

by TV regularization, as TV regularization always tries to smooth the image and thus 

decrease the contrast. Therefore, it is more appropriate to select different thresholds of 

resolution limit for evaluation of Tikhonov and TV reconstructions. On the other hand, 

the contrast along y-axis in diverse imaging reconstruction is very close to that in 

construction with only uniform illumination data by the same regularization, which 

means the resolution in y-axis is little affected by the structured illumination. 

 

Figure 4.11 The intensity ratio of images reconstructed by different schemes 

with respect to the distance of adjacent spokes. 
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Figure 4.11 shows the intensity ratio of images reconstructed by different schemes 

with respect to the distance of adjacent spokes. According to the resolution limit 

criterion of one-half, the resolution in x-axis in diverse imaging with Tikhonov (0.31µm) 

and TV (0.38µm) regularizations is improved by 31% and 22%, respectively, compared 

to the corresponding regularizations with only uniform illumination data (0.45µm for 

Tikhonov and 0.49µm for TV). In the transition region around unity or zero, the 

intensity ratio in TV reconstruction changes faster than that in Tikhonov reconstruction 

especially in diverse imaging, which means the capability of resolving in TV 

reconstruction is more sensitive. TV regularization prefers a determined answer to 

resolving with less ambiguity, which phenomena is similar to the sparsity priors used 

in compressive sensing. 

Furthermore, we evaluated the resolution of diverse imaging using one uniform and 

two perpendicular structured illumination data (three raw images in total, 3i). Figure 

4.12 shows the images reconstructed by Tikhonov and TV regularizations, where both 

of them are symmetric. The TV regularization not only smoothes the reconstructed 

image, but also eliminate the possible illusion, which can be found in the central region 

of the image reconstructed by Tikhonov regularization. 

 

Figure 4.12 Images reconstructed by diverse imaging using one uniform and 

two structured illumination data with Tikhonov (left) and TV (right) 

regularizations. 

Figure 4.13 compares the intensity ratio of reconstructed images, where the 

intensity ratio in diverse imaging along x-axis is the same as that along y-axis. The 

transition from ‘resolving’ to ‘unresolving’ in TV regularization is much sharper than 
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that in Tikhonov regularization. As before, TV regularization prefers a determined 

answer to resolving, which is much significant when more than one structured 

illumination data are used. 

 

Figure 4.13 The intensity ratio of images reconstructed using only uniform 

illumination data (1i) and one uniform and two structured illumination data (3i) 

with respect to the distance of adjacent spokes. 

4.6  Experiment results 

The performance of the diverse imaging with TV regularization was preliminarily 

evaluated with wide-field images of fluorescence beads. The sample has an excitation 

wavelength of 480nm and an emission wavelength of 530nm. A Ronchi ruling was 

used to produce the structured illumination, where the resultant spatial frequency at the 

focal plane is 320 line pairs / mm. The effective pixel size on the sample is 0.266µm, 

and the axial step size is 0.6µm. The NA of the collection objective lens is 0.55. The 

theoretically calculated PSF was employed in diverse imaging reconstruction. 

Figure 4.14 shows the raw structured illumination data and images reconstructed 

by HiLo algorithm and diverse imaging with TV regularization. The noise and out-of-

focus background is well suppressed in TV reconstruction, and the boundary of the 

bead is sharp. The tilt elongation in axial axis is attributed to the error of PSF. The 

image quality is expected to be improved by using an accurately measured PSF in 

reconstruction. 
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Figure 4.14 Structured illumination raw data (a), and images reconstructed 

by HiLo algorithm (b) and diverse imaging with TV regularization (c). (d) 

Normalized intensity profiles in transverse (left) and axial (right) directions at 

the position of the yellow dashed lines shown in (c). 

4.7  Conclusion 

In this chapter, diverse imaging with sparsity priors was introduced to reconstruct an 

image from two images: one with uniform illumination and the other with structured 

illumination. By rearranging the photons to the emission origins, diverse imaging 

performs much better than HiLo approach in background rejection and noise 

suppression. Since the high frequency components are introduced by structured 

illumination data to compensate for the missed components in the ‘missing cone’, the 

sectioning capability is well developed in diverse imaging. The image fidelity, which 

is evaluated by MSE and contrast, of diverse imaging is much better than single image 

reconstruction. The sparsity priors, i.e. TV regularization in our case, was demonstrated 

to further improve the reconstruction fidelity. 

 The effects of the contrast and spatial frequency of the structured illumination were 
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investigated. The image quality degrades when the contrast decreases, which often 

happens in imaging deep in highly scattering samples. As the spatial frequency 

increases, the image quality is improved because of more compensation of high 

frequency components from the structured illumination. 

The resolution in the direction perpendicular to the structured illumination fringes 

can be improved by diverse imaging, which is not reachable in HiLo method. However, 

the resolution in the other transverse direction is little improved, because the 

corresponding bandwidth cannot be extended by only one structured illumination 

image. Two perpendicular structured illuminations can help to improve the transverse 

resolution. Compared to Tikhonov regularization, TV reconstruction prefers a 

determined answer to resolving with less ambiguity. 
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Chapter 5 

Hybrid imaging with focal modulation 

microscopy and wide-field microscopy 

5.1  Introduction 

Scanning microscopy techniques, e.g. CM, FMM and MPM, have depth sectioning 

ability, but they require temporal and spatial scanning which will take a long time, and 

thus are not very suitable for dynamic real-time imaging. If the image acquisition 

process is intentionally speeded up beyond its requirement, the image quality will be 

definitely degraded due to information loss. On the other hand, wide-field optical 

microscopy is efficient and robust for imaging dynamic real-time process but lack of 

depth sectioning capability. Therefore, if the sectioning information is still in the image 

captured by scanning microscopy, the other lost information may be compensated by a 

wide-field image. In this chapter, we proposed several hybrid imaging approaches to 

combine scanning microscopy with wide-field microscopy. In different modalities, the 

image is reconstructed by different algorithms implementing in space, or in Fourier 

domain, or in sequence. Specifically, we chose FMM as an example of scanning 

microscopy to study the performance of hybrid imaging. However, the methods can be 

straightforward implemented with other scanning microscopy techniques. 

5.2  Hybrid imaging in spatial domain 

In spatial domain, the hybrid imaging can be implemented conveniently via diverse 

imaging scheme proposed in section 4.2. Specifically, Eq. (4-2) can be rewritten as 

  
2 2

argmin ,r f FMM FMM WF WFf g f h g f h f           (5-1) 
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where f and fr denote the object and reconstructed image, respectively, 
FMMg  and 

WFg  

are images obtained by FMM and wide-field microscopy, respectively, 
FMMh  and 

WFh  

describe the point spread functions (PSF) of FMM and wide-field microscopy, 

respectively,   is the weight factor for the two images,   is the regularization 

coefficient, and  f is the regularization function. The wide-field PSF WFh  can be 

calculated by square of Eq. (2-8) for low NA, or by Eq. (2-21) for high NA, with the 

wavelength of emission light. The FMM PSF 
FMMh  is equivalent to the integrand in 

Eq. (2-6) with effective illumination, which can be written as 

      2, , , , , ,FMM illu deh h x y z h x y z D x y       (5-2) 

where 2  denotes the 2D convolution operation,  ,D x y  is the sensitivity function 

for the pinhole detector. The effective illumination PSF illuh  is the difference of in-

phase and anti-phase illuminations, which is dependent on the aperture design. An 

annular aperture of 2 sub-apertures designed by MFC (section 2.5) was used in our 

simulation. The detection PSF deh  was calculated by square of Eq. (2-8) for low NA 

and by Eq. (2-21) for high NA. 

Consider the shot noise caused by the quantum effect of light, which is the most 

important source of noise when the number of detected photons is small, the 

relationship of signal-to-noise ratio (SNR) and the average number of photons N is 

given by [112] 

 .
N

SNR N
N

    (5-3) 

If the required SNR of FMM images can be reduced from 20 dB to 5 dB, we can 

decrease the number of collected photons to only 1 32 . Thus, we can speed up the 

image acquisition process by 32 times, given that the wide-field imaging time is 

negligible. Meanwhile, the wide-field images are used to improve SNR through diverse 

imaging scheme. Therefore, we can obtain the advantages of FMM, sectioning 
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capability and high resolution, and the advantage of wide-field microscopy, fast 

imaging speed with high SNR, at the same time. 

The object used in simulation is shown in Figure 5.1, which is the same as previous 

in Figure 4.1. The wavelengths of the excitation light and emission light are 488nm and 

530nm, respectively, and for convenience we assumed the excitation wavelengths in 

FMM and wide-field imaging are the same. The NA of the illumination and collection 

objective lenses is assumed the same, with the value of 0.5 if not specified. Gaussian 

noise is added to the simulated raw images, with SNR 20dB for wide-field (WF) images 

and 5dB for FMM images. 

 

Figure 5.1  The object used in simulation and its cross-sections in x-z and x-y plane 

(a). The images are corresponding to wide-field imaging (b) and FMM (c). 

5.2.1  Reconstruction with Tikhonov regularization 

Figure 5.2 shows the images reconstructed with Tikhonov regularization by only wide-

field (a, green) and FMM (b, blue) data, and by diverse imaging (c, red). Although the 

image reconstructed by wide-field data has much less background than the raw image 

(Figure 5.1 (c)), there is significant out-of-focus background left. Furthermore, in the 

line profiles shown in Figure 5.2 (d), the contrast of the central two spokes in the wide-

field reconstruction is significantly lower than the other two due to lower resolution in 

wide-field image. In addition, the central part of the hub is missed due to lack of 

sectioning capability. 

The image reconstructed by diverse imaging looks similar to that reconstructed by 



80 

FMM data, and both of them has much less noise than the raw image (Figure 5.1 (d)). 

To quantify their performance, MSE was applied to evaluate the reconstruction fidelity, 

where the MSE is calculated by Eq. (4-10). As shown in Figure 5.3 (a), The MSE of 

reconstruction with diverse imaging is smaller than that with only FMM data, which 

demonstrates the benefit of high SNR from wide-field data. As expected, the MSE 

decreases as the NA increases, since the resolutions of both wide-field microscopy and 

FMM are improved. However, the MSEs of reconstructions with diverse imaging and 

only FMM change much less than the reconstruction with wide-field data. In the former 

case, the MSEs are mainly determined by noise (very low SNR in FMM data), so they 

are just less affected by the resolution of the microscopies. In the latter case, the out-

of-focus background is the dominant source of MSE, so the reconstruction is 

remarkably improved by resolution enhancement. When the NA increases to 0.9, the 

MSE of reconstruction with only wide-field data is very close to that with diverse 

imaging. Nonetheless, the feature of the object is better covered by diverse imaging, as 

the joints are brighter than other parts in the image reconstructed by wide-field data 

(Figure 5.3 (c)). In addition, there is still residual out-of-focus background in the gap 

regions between spokes in the latter reconstruction. 

 

Figure 5.2 Images reconstructed using Tikhonov regularization by only wide-

field (a, green) and FMM (b, blue) data, and by diverse imaging (c, red). 

Intensity line profiles at position of the yellow lines in (c), where the dashed 

line denotes the object.  
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Figure 5.3 (a) The MSE of images reconstructed by diverse imaging (black 

solid line) and only wide-field (blue dashed line) and FMM (red dashed line) 

using different NA. Raw (b) and reconstructed (c) images of wide-field data 

with NA of 0.9. 

5.2.2  Reconstruction with total variation (TV) regularization 

Figure 5.4 shows the images reconstructed with TV regularization by only wide-field 

(a, green) and FMM (b, blue) data, and by diverse imaging (c, red). All the 

reconstructed images are smooth, but the contrast of the central two spokes in the image 

reconstructed by wide-field data is still lower than the other two, and the central part 

of the hub is missed. 

Figure 5.5 compares the MSE of different reconstruction schemes with TV 

regularization. For a given NA, the MSE of reconstruction with diverse imaging is the 

smallest, which benefits from the capability of out-of-focus rejection in FMM and the 

high SNR in wide-field data. Here with TV regularization, the advantage of high SNR 

in wide-field data is utilized more effectively, so the MSE in diverse imaging is 

remarkably smaller than the reconstruction with only FMM data. Although the MSE of 

reconstruction with wide-field data decreases more quickly than the other two, it is 

always greater than the diverse imaging. 

In addition, the MSE of reconstruction with wide-field data is less than that with 

FMM when the NA is high ( 0.8,  0.9NA ). In this situations, the intensity level of 

noise in the low-SNR FMM raw images (Figure 5.1 (d)) is comparably greater than 

that of the out-of-focus background in the wide-field raw images (Figure 5.3 (b)), so 
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the latter one is easier to be suppressed by the TV regularization. 

 

Figure 5.4 Images reconstructed with TV regularization by only wide-field (a, 

green) and FMM (b, blue) data, and by diverse imaging (c, red). Intensity line 

profiles at position of the yellow lines in (c), where the dashed line denotes the 

object. 

 

Figure 5.5 The MSE of images reconstructed by diverse imaging (black solid 

line) and only wide-field (blue dashed line) and FMM (red dashed line) with 

TV regularization using different NA. 

5.2.3  Comparison of Tikhonov and TV regularizations 

Figure 5.6 compares the MSE of images reconstructed by diverse imaging with 

Tikhonov and TV regularizations, where the MSE of the latter is remarkably less than 

the former one. Comparing to Tikhonov regularization, the MSE of TV regularization 

is reduced by 48% at 0.5NA  and 64% at 0.9NA , which demonstrates the benefit 

of proper application of sparsity priors. 
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Figure 5.6 The MSE of images reconstructed by diverse imaging with Tikhonov 

(blue dashed line) and TV (black solid line) regularizations. 

5.3  Hybrid imaging in Fourier domain 

Wide-field images include not only the in-focus photon contribution, but also the out-

of-focus and scattering photon contributions. The latter two types of photon 

contributions are usually considered as exhibiting only low frequency spatial structures 

[21]. Here we substitute the low frequency components of wide-field images by the 

corresponding frequency components of undersampled FMM images to eliminate the 

out-of-focus and scattering photon contributions. The benefit of this hybrid technique 

is that we can speed up the FMM image acquisition process by reducing the sampling 

rate. 

In brief, the images acquired by FMM and wide-field microscopy can be written, 

respectively, as: 

      ,WF in outI I I r r r   (5-4) 

    ,FMM inI Ir r   (5-5) 

where  inI r  and  outI r  are the image contributions from in-focus and out-of-focus, 

respectively (spatial coordinates r ), and   is the weight factor of intensities due to 

different signal gains of FMM and wide-field microcopy systems. The low frequency 

components of the in-focus image can be obtained by applying a low-pass filter (LP) 

to  FMMI r  with a cut-off frequency smaller than the sampling rate of FMM image, i.e. 
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     .in FMMLP I LP I       r r   (5-6) 

As mentioned before, the out-of-focus image contribution contains only low frequency 

spatial structures. Therefore, with a complementary high-pass filter (HP) applied to 

wide-field image  WFI r  we can recover the high frequency components in  inI r , 

     ,in WFHP I HP I       r r   (5-7) 

while   0outHP I   r . Finally we obtain a full bandwidth representation of  inI r  

by combining Eqs. (5-6) and (5-7) through 

      
1

.in FMM WFI LP I HP I


        r r r   (5-8) 

Ideally,   can be determined by the systematic parameters, e.g. illumination intensity 

and pinhole size. However, here we treat it as an unknown parameter and adjust to 

smooth the transition from low frequency to high frequency components. 

Figure 5.7 illustrates the whole process, where the Fourier transform and inverse 

Fourier transform can be implemented in either 2D or 3D frequency domains. In the 

following sub-sections we evaluate the performance of 2D and 3D manipulations, 

respectively. 

 

Figure 5.7 Flow chart of hybrid imaging in Fourier domain. FT represents 

Fourier transform, HP and LP represent high-pass and low-pass filters 

respectively, and fI is Fourier transform of the final image. 
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5.3.1  Reconstruction in 2D Fourier domain 

The images are reconstructed slice by slice to form a 3D image. We followed the 

process in Figure 5.7 to retrieve each slice, where the Fourier transform (FT) and 

inverse FT are implemented in 2D domain. The same object as in Figure 5.1 was used 

in simulation. The wavelengths of the excitation and emission light are 488nm and 

530nm, respectively. The NA is 0.5 for both illumination and detection objective lens. 

The pixel size in wide-field images is 0.1x y m    , and the axial step size is 

0.2z m  . Gaussian noise was added to the simulated raw images with 20SNR dB  

for FMM images and 30SNR dB  for wide-field images, if not specified. 

To quantify the undersampling process, the pixel ratio N is defined as at which one 

pixel from every N  pixels along the transverse directions in the fully sampled FMM 

image (which has the same sampling number as the wide-field image) was selected to 

form the undersampled image. Thus, the sampling number of FMM images is only 

21 N  as that of the wide-field images. If we mainly consider the influence of FMM 

imaging speed in the hybrid imaging system, we can speed up the image acquisition 

process by 2N  times through the undersampling approach. 

To combine the low and high frequency components in 2D Fourier domain, we 

investigated two types of filters, the rectangular filter (R) and modified Gaussian filter 

(G), which are defined as 
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where 
2 2

r x yf f f   is the frequency in transverse axis. Obviously the cut-off 

frequency, ,R cut offf   and G,cut offf  , should not larger than the bandwidth of the 
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undersampled FMM image (
,BW FMMf ). All the frequency components of undersampled 

FMM image will be used in reconstruction if we choose the cut-off frequency the same 

as the bandwidth of the undersampled FMM image. However, this may not be optimal 

due to frequency overlapping in the Fourier spectrum of the undersampled FMM image. 

Therefore, the cut-off ratio was introduced as 

 
,
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cut off

BW FMM

f
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   (5-11) 

The complementary high-pass filter is given by 1HP LP  . On the other hand, we 

select the weight factor   in Eq. (5-8) in a way that the FMM image and wide-field 

image have the same average spectral power at the cut-off frequency. 

Since the image reconstruction is processed in 2D slice by slice, proper weight 

coefficients for combination of different slices must be selected. Here we apply the 

total intensity of the undersampled FMM image as the total intensity of the 

reconstructed image, because FMM image excludes the out-of-focus background. 

Therefore, the sampling rate of FMM image must exhibit a good estimation of the total 

intensity of the reconstructed image; otherwise the contrast between different slices 

may be inaccurate. Based on this principle, it is reasonable to expect a more accurate 

contrast for processing larger images, where the undersampled FMM images have more 

chance to reveal accurate intensity ratio for different slices. This can be considered as 

another advantage of our method since it often requires a huge image size in observing 

live biological processing. 

To evaluate the reconstruction fidelity quantitatively, we calculate the MSE based 

on the fully sampled FMM image, i.e. 
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  (5-12) 

Figure 5.8 shows the MSE of images reconstructed with Gaussian and rectangular 

filters using different pixel ratios and cut-off ratios. Given the same values of pixel 
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ratio and cut-off ratio, the Gaussian filter outperforms rectangular filter in most cases, 

which can be contributed to the smoother transition from low frequency to high 

frequency in Gaussian filter. In general, the MSE increases as the pixel ratio increases, 

because higher pixel ratio (less sampling number of FMM image) gives less capability 

of background rejection and less accuracy of the low frequency components. As for the 

cut-off ratio, the minimal MSE appears at the range of 0.4 ~ 0.8  , which can be 

considered as a good compromise between the effect of background rejection and the 

frequency overlapping of the undersampled FMM images. 

 

Figure 5.8 The MSE of images reconstructed with Gaussian (a) and 

rectangular (b) filters using different pixel ratios and cut-off ratios. 

 

Figure 5.9 (a) The cross-section of original fully sampled FMM image in x-z 

and x-y plane. The reconstructed images with cut-off ratio τ=0.6 and pixel 

ratios (b) N=14 and (c) N=16. (d) Normalized intensity profiles of full sampled 

FMM (black dashed line) and the reconstructed images with the pixel ratios 

N=14 (blue line) and N=16 (red line) along the yellow lines in (c). 

An interesting phenomenon is that the MSE at 14N   is greater than that at 16N   
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in both Gaussian and rectangular filters when the cut-off ratio is larger than 0.4. 

Anyway, both of the reconstructed images conserve the main features of the sample 

very well (Figure 5.9 (a ~ c)). The less MSE of the latter is attributed to better contrast 

conservation (Figure 5.9 (d)). It seems counterintuitive that the less sampling number 

conserves a better contrast. However, for a small image, such as the example here with 

the diameter 12µm and feature size about 1.5µm, a high pixel ratio ( 14N  ) may 

produce a grid pattern which does not reveal the low frequency as it could be. Although 

the MSE is greater at 14N  , comparison of the line profiles of the central hubs shows 

that it outperforms that 16N   in recovering the fine structures (Figure 5.9 (d)). 

Nevertheless, the MSE of the reconstructed image with Gaussian filter is less than 10% 

when the pixel ratio is no more than 20 and the cut-off ratio is between 0.5 and 0.9. 

  

Figure 5.10 (a) The MSE of images reconstructed by rectangular (R) and 

Gaussian (G) filers with different SNRs, where the numbers in the legend 

indicate the SNR of wide-field images. (b) The image reconstructed by 

Gaussian filter with SNR=10dB for FMM image and SNR=20dB for wide-field 

image. 

The influence of the noises in wide-field image and FMM image in reconstruction 

was investigated (Figure 5.10), where we chose the pixel ratio 16N   and cut-off ratio 

0.6  . As expected, the MSE decreases as the SNRs of FMM and/or wide-field 

images increase for both the rectangular and Gaussian filters. The Gaussian filter 

performs much better than the rectangular filter when they are applied to the images 

with the same SNR of FMM image or wide-field image. Especially, the MSE is less 
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than 12% when a Gaussian filter is applied to the image reconstruction with a FMM 

image with SNR no less than 10dB. The reconstructed image well rejects the out-of-

focus background and maintain the features of the object (Figure 5.10 (b)), although 

the performance is not as good as that with high SNR. Thus, the noise level 

10SNR dB  for FMM images can be considered as a criterion for successful 

reconstruction, and Gaussian filter is preferred. 

5.3.2  Reconstruction in 3D Fourier domain 

The reconstruction process can be implemented via Eqs. (5-6) ~ (5-8) in 3D Fourier 

domain. The effects of pixel ratio and cut-off ratio were first investigated in transverse 

axes in Fourier domain, while the FMM image was fully sampled in axial axis. 

 

Figure 5.11 The MSE of images reconstructed with Gaussian (a) and 

rectangular (b) filters using different pixel ratios and cut-off ratios in 

transverse axes. 

Figure 5.11 shows the MSE of images reconstructed with Gaussian and rectangular 

filters using different pixel ratios and cut-off ratios in transverse axes. Similar to the 

reconstruction in 2D Fourier domain, the Gaussian filter performs much better than the 

rectangular filter in most cases for given the same values of pixel ratio and cut-off ratio. 

The MSE generally increases as the pixel ratio increases. For the cut-off ratio, both 

filters give the minimal MSE at the range of 0.6 ~ 0.8  . We chose 16N   and 

0.7   to explore the optimal values in axial axis in the following simulation. The 

corresponding MSE is 2.2% and 2.3% for Gaussian and rectangular filters, respectively. 
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Figure 5.12 The MSE of images reconstructed with Gaussian (a) and 

rectangular (b) filters using different pixel ratios and cut-off ratios in axial axis. 

Figure 5.12 shows the MSE of images reconstructed with Gaussian and rectangular 

filters using different pixel ratios and cut-off ratios in axial axis. In general, the 

Gaussian filter performs much better than the rectangular filter, which indicates the 

importance of smooth transition from low frequency to high frequency in axial axis in 

3D reconstruction. For a given pixel ratio, the MSE decreases monotonically as the cut-

off ratio in axial axis increases, which is different from that in transverse axes. This 

phenomenon can be attributed to that the frequency transition is not required in axial 

axis because there is no axial frequency in the ‘missing cone’ region in wide-field 

images. Thus, we can choose the axial cut-off ratio as unity, as long as the pixel ratio 

satisfies the reconstruction requirements. 

Figure 5.13 shows the images reconstructed by Gaussian filter with different axial 

pixel ratios. The features of the object can be well recovered when the axial pixel ratio 

is small (Figure 5.13 (a)). The main features can still be distinguished as the axial pixel 

ratio increases to 12, but the out-of-focus background increases, which means the 

sectioning capability of FMM is weakened by undersampling at such a level. When the 

axial pixel ratio decreases further to 20, the top and bottom arcs of the spoke-wheel 

becomes hardly to see. Therefore, the axial pixel ratio 12zN   may be considered as a 

criterion of axial undersampling. The specific values could change in other situations, 

depending on the specific requirements of sectioning effect. 
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Figure 5.13 Images reconstructed using different axial pixel ratios, where the 

transverse pixel ratio is 16, the transverse and axial cut-off ratios are 0.7 and 

1.0, respectively. 

In addition, the reconstructed image at 20zN   looks similar to the HiLo image 

shown in Figure 4.2, but with a better background rejection. One reason is attributed to 

better sectioning capability of FMM. The other reason may be attributed to the 

difficulty in proper selection of weight factors for different slices in HiLo algorithm, 

while in our reconstruction method the intensity distribution in 3D space can be 

conveniently retrieved from FMM images. 

5.3.3  Preliminary Experiment result 

To test the proposed hybrid imaging in Fourier domain, we used a wide-field image 

and an undersampled image acquired by a confocal microscope (CM). As mentioned 

before, the principle of hybrid imaging in Fourier domain is applicable to any scanning 

microscopy as long as it has sectioning capability. 

A silk sponge stained by fluorescent dye rhodamine 6G was imaged in the 

experiment. The peak emission wavelength is 559nm. The sample was imaged by a 

commercial microscope (Olympus IX81) with a wide-field mode and then a confocal 

mode, where they share the same objective lens with the NA of 0.25. The pixel size of 

the wide-field image is 0.32µm, while it is 2.76µm in the original CM image. Before 

reconstruction, the CM image was undersampled again by a factor of 2, so the effective 
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pixel size of CM image is 5.52µm. Here only one slice of wide-field image and one 

slice of CM image are used, so only reconstruction in 2D Fourier domain was tested. 

Figure 5.14 compares the wide-field image, undersampled CM image and the 

reconstructed image. The undersampled CM image looks like mosaic pattern, so we 

rendered the image by zero-padding in Fourier domain. Although the contrast of 

rendered CM image looks good, no details of the sample can be observed because of 

highly undersampling rate. The fine features are revealed in the wide-field image, but 

the contrast is very low due to strong out-of-focus background. On the other hand, the 

reconstructed image conserves high contrast from CM image and high resolution from 

wide-field image (Figure 5.14 (d)). 

 

Figure 5.14 Raw data of (a) undersampled CM image and (c) wide-field image. 

(b) Rendered CM image by zero-padding in Fourier domain. (d) Image 

reconstructed by hybrid imaging in 2D Fourier domain. 

Figure 5.15 shows the normalized line profiles of wide-field image, rendered CM 

image and image reconstructed by hybrid imaging along the yellow line in Figure 5.14 

(c). It can be clearly observed that the hybrid imaging effectively reject the out-of-focus 

background and maintain the fine structural features which cannot be seen in the CM 

image. 
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Figure 5.15 Normalized line profiles of wide-field image (red solid), rendered 

CM image (blue dashed) and image reconstructed by hybrid method (black 

solid) along the yellow line in Figure 5.14 (c). 

5.4  Hybrid imaging in sequence 

The quality of wide-field image can be improved by iterative reconstruction using the 

corresponding wide-field PSF, which has been shown in Figure 5.3 (c). Ideally, the 

PSF can be determined by parameters of the imaging system, e.g. illumination source, 

light path, objective, and so on. However, it depends on many factors that are difficult 

to be accurately obtained, for example, aberrations and optical properties of the samples. 

Small spherical beads, usually with diameter less 1 micron, are often introduced to 

mimic a point object for measurement of PSF, which is suitable for calibrating PSF of 

the imaging system but not applicable for the errors introduced by the sample itself. 

Here we proposed to use FMM to retrieve the wide-field PSF, and then reconstruct the 

image from wide-field raw data. Since the volume of PSF is usually much smaller than 

the sample, we can use a small volume of FMM images to retrieve PSF. Thus, the 

imaging time of FMM in this case is negligible compared to the time of scanning the 

whole sample by FMM. This hybrid imaging technique consists two sequent steps in 

reconstruction: 

1) Retrieve PSF from FMM and wide-field raw images in a small volume; 

2) Reconstruct images from the whole wide-field raw images using retrieved PSF. 

In the following sub-sections, the PSF retrieval and image reconstruction using the 

retrieved PSF are studied. In the simulation, the wavelengths of the excitation and 
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emission light are 488nm and 530nm, respectively. The transverse and axial pixel sizes 

are 0.2x y m     and 0.4z m  . Gaussian noise was added to the simulated raw 

images with 20SNR dB  for both FMM and wide-field images, if not specified. 

5.4.1  PSF retrieval 

For wide-field microscopy, the image is the convolution of the object and the PSF, 

which can be written by recalling Eq. (4-1) 

      ,g f h r r r   (5-13) 

where  g r  is the recorded image,  f r  denotes the object, and  h r  is the PSF. 

Since FMM has sectioning capability and performs better resolution than wide-field 

microscopy, we can approximate FMM image as the object and retrieve the PSF with 

known FMM and wide-field images. In this way, the quality of the reconstructed image 

is expected close to the FMM image rather than the original object. 

Due to inevitable noise in the raw images, the PSF cannot be retrieved by direct 

inversing Eq. (5-13) in Fourier domain. We adopted following steps to retrieve the PSF: 

1) Calculate an initial PSF by a modified Wiener filter, 
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  (5-14) 

where G, F and H are Fourier transform of  g r ,  f r  and  h r , respectively, H is 

also called optical transfer function (OTF), and 1  and 2  are parameters related to 

SNR of raw FMM and wide-field images. 

2) Pass the amplitude and phase of H through a 3D median filter. 

3) Adopt iterative constraints on PSF in spatial domain and Fourier domain. 

The constraint in spatial domain is the effective volume of the intensity distribution 

of PSF, which is described as an hourglass with radius of Airy disk and radiation angle 

 asin NA   with respect to axial angle [139]. 

Rather than only bandwidth constraint used in Fourier domain [139], we derived a 
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more specific boundary condition for OTF. The OTF is a convolution of 3D complex 

pupil function, which is nonzero only on a spherical cap related to the NA and 

wavelength [140]. Thus, the support region of OTF in Fourier domain was derived as 
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where rk  and zk  are spatial frequency in transverse and axial axes, 0k  is the wave 

number determined by the wavelength and 
2 2 2
0 r zk k k  ,   is the angular semi-

aperture of the objective lens given by  asin NA  . 

A spherical shell with inner radius 3µm and outer radius 6µm was simulated for 

PSF retrieval. Figure 5.16 (a) and (b) show the raw FMM and wide-field images, 

respectively, where the NA used is 0.5. As shown in Figure 5.16 (c) and (d), the 

retrieved PSF is very close to the theoretical one, while the error mainly comes from 

side-lobes due to noise effect. We tested for NA from 0.5 to 0.9 for PSF retrieval, and 

the results showed that the PSF with MSE ranging from 2% to 10% can be obtained 

with about 10 iterations of the constraints in spatial domain and Fourier domain. 

 

Figure 5.16 FMM (a) and wide-field (b) images used in PSF retrieval. The 

theoretical (c) and retrieved (d) PSF. 

5.4.2  Image reconstruction 

To avoid possible duality in reconstruction, we adopted the spoke-wheel as shown in 

Figure 5.1 for image reconstruction, but not the spherical shell used in PSF retrieval. 

The MSE was used to quantitatively evaluate the performance of reconstruction by 

retrieved PSF. Normally the original object is used as the standard in MSE calculation. 

However, here it is more suitable to apply the FMM image as the standard, since the 
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FMM image is approximated as the object in PSF retrieval. As shown in Figure 5.17, 

the MSE based on the object is remarkably greater than that based on FMM images. In 

general, the MSE decreases as the NA increases because of resolution improvement. 

The TV regularization outperforms the Tikhonov regularization. 

 

Figure 5.17 The MSE of reconstruction using raw wide-field data with different 

NA, where the object (a) and corresponding FMM images (b) are used as 

standards in MSE calculation. 

 

Figure 5.18 Images reconstructed from raw wide-field images using Tikhonov 

(a, c) and TV (b, d) regularizations with NA=0.7 (a, b) and NA=0.8 (c, d). 

To visually compare the performance using different NA, Figure 5.18 shows the 

images reconstructed by 0.7NA  and 0.8NA  with Tikhonov regularization and TV 

regularization. The top and bottom arcs are suppressed by background in both 

Tikhonov and TV reconstruction for 0.7NA , due to lack of enough resolution. On 

the other hand, the main features are recovered for 0.8NA , although there is residual 

background in the gap regions between the spokes. Thus, the 0.8NA  may be 

considered as a criterion in reconstruction of images with feature size similar to that in 

our simulation. In addition, the TV regularization can suppress noise and smooth the 

reconstructed images, the same as previous results. 

Comparing the MSE in Figure 5.17 to that of reconstruction by theoretical PSF 
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(Figure 5.3 (a) and Figure 5.5 (a)), the MSE of reconstruction by retrieved PSF is 

greater, as expected. However, the reconstruction by theoretical PSF also fails to reveal 

some features when the NA is small, as shown in Figure 5.2 (a). So, the error in 

reconstruction with retrieved PSF is partially from the error in PSF retrieval, and 

partially due to the resolution limitation of the imaging system. The criterion of the NA 

could vary for samples with different feature sizes. 

5.5  Discussion and conclusion 

In this chapter, we proposed hybrid imaging modalities in spatial domain, in Fourier 

domain and in sequence, for different scenarios. If we compare the performance of 

these approaches, e.g. by MSE, we will find the diverse imaging (in spatial domain) 

outperforms the other two, and the sequential hybrid imaging performs the worst. 

However, accurate PSFs of FMM and wide-field microscopy are required in diverse 

imaging, while the other two do not need PSF. As for the image acquisition process, a 

very small scanning volume for PSF retrieval in sequential hybrid imaging usually 

contains smaller sampling number than undersampling the whole volume in the Fourier 

hybrid imaging. If the PSF is mainly affected by the imaging system itself rather than 

samples, the sampling number in sequential hybrid imaging can be highly reduced 

since only one scanning image is enough. Thus, the reconstruction technique with 

higher performance requires more information of the imaging system and/or more 

measurements, which often introduces more cost of setup and challenges in 

implementation. A proper choice of hybrid imaging techniques depends on the practical 

requirements and feasibility. 

In conclusion, hybrid imaging methods in spatial domain, in Fourier domain and in 

sequence are proposed and evaluated in this chapter. The diverse imaging (in spatial) 

performs the best reconstruction by using accurate PSFs of the imaging systems. Rather 

than iterative reconstruction, the Fourier hybrid imaging can be implemented directly 

in Fourier domain. Although the sequential hybrid imaging does not reconstruct images 
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as good as the other two, the resulted images have better quality than wide-field images, 

and this technique requires the least information of the imaging system and the least 

measurements. 
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Chapter 6 

Classical imaging theory of a micro-lens 

6.1  Introduction 

A long-standing issue of traditional microscopy is that its resolution is limited to about 

half of the illumination wavelength as a result of the loss of evanescent waves during 

wave propagation. To break this resolution limit and achieve super-resolution, 

researchers have developed various approaches. One approach is to recover the 

evanescent waves in far-field by using negative refractive index metamaterials, which 

could achieve unlimited resolution in theory [141]. However, because of practical 

difficulties such as loss, this approach has not been practically used. Another approach 

is to deliberately create a specific situation where only a single light emitting spot (or 

sparsely distributed spots) will locate in the field of view, such that the overlapping of 

Point Spread Function (PSF) will not occur in principle. Typical examples include 

Stimulated Emission Depletion (STED) microscopy, Stochastic Optical 

Reconstruction Microscopy (STORM) [12] and photo activated localization 

microscopy (PALM) [14]. Although being very successful in practice, these 

microscopy technologies share an inherent drawback: they generally require temporal 

and spatial scanning which will take a long time, and thus are not very suitable for 

dynamic real-time imaging. 

Achieving super-resolution without utilizing either evanescent waves or scanning 

is obviously in great demand. Recently, the phenomenon of photonic nano-jet with a 

subwavelength focus formed by a transparent micro-lens has been considered as a 

potential approach to beat the diffraction limit [142-144]. A remarkable record of 50nm 
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lateral resolution has been reported for real-time imaging through a dielectric micro-

lens with white light illumination [145]. This significant progress undoubtedly will 

bring out a profound impact on related disciplines in biology, chemistry, medicine, and 

semiconductor industry. However, the previous attribution of this high resolution [145] 

to the photonic nano-jet focusing phenomenon [142-144] remains elusive in the sense 

that imaging and focusing are two distinctive physical phenomena that do not always 

have necessary connection in resolution. While most previous literatures adopted 

focusing analysis [145], a direct imaging calculation through a micro-lens with 

vectorial electromagnetic analysis can provide more physical insights. Here we apply 

the classical Mie scattering theory to simulate the real imaging process by placing light 

emitters behind the micro-lens and observing them in the far field. 

6.2  Model of wide-field micro-lens imaging 

As shown in Figure 6.1, two incoherent dipoles pointing in the z direction are placed 

on the object plane just beside the micro-lens (diameter D = 4.74 μm, refractive index 

n = 1.46), similar to the experimental setup of the micro-lens imaging system [145]. 

The waves radiated from the dipoles propagate through the micro-lens and are collected 

on the collecting plane in the far-field. The interaction between the dipole radiation and 

the micro-lens is calculated by multipole expansion based on spherical harmonics and 

Mie scattering theory. The Numerical Aperture (NA) with respect to the origin of the 

object plane is 0.9, the same as in [145]. According to angular spectrum representation, 

the collected waves are decomposed into plane waves, which will then numerically 

propagate backward in the negative x direction to form a virtual image on the image 

plane. 
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Figure 6.1  Configuration of image reconstruction of two incoherent dipoles. 

The origin of the coordinates (x,y,z) coincides with the center of the micro-lens. 

6.3  Multipole and plane wave expansions for micro-lens 

scattering 

To calculate the field distribution in the whole space, the electric field ( E ) and 

magnetic field ( H ) is decomposed into TE and TM modes (with respect to the 

direction of r̂ ) in free space by introducing the scalar potentials TM  and TE , 

respectively [146], 
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where ε and μ are the permittivity and the permeability, respectively, and ω is the 

temporal frequency of the field. 

By substituting Eq. (6-1) into Green’s function in the spherical coordinates 

 , ,r    and using the method of separation of variables, we can obtain the expressions 

of the two scalar potentials for the dipole located at pr  as 
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where TM

nmC  and TE

nmC  are constant coefficients which are determined by the function of 

the specific dipole used in study,  ˆ
n kr  denotes the spherical Bessel function of first 

kind (  ˆ
nJ kr ) for   pr r  or the spherical Hankel function of first kind (  ˆ

nH kr ) for 

  pr r , 
m

nP  denotes associated Legendre polynomials, and k is the wave number in free 

space. 

Similarly, the potentials of internal fields inside the micro-lens ( int

TM  and int

TE ) and 

the potentials of scattering fields ( S

TM  and S

TE )  can be expressed as 
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  (6-3) 

where intk  represents the wave number inside the micro-lens. 

Now, all the electromagnetic fields can be expanded in terms of the corresponding 

scalar potentials by Eq. (6-1). Given that the multipole functions form an orthogonal 

basis, we can obtain all the coefficients in Eq. (6-3) by applying the boundary 

conditions at the surface of the micro-lens. The coefficients are given by 
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where the subscript int (internal) denotes the corresponding variables inside the micro-

lens. With these coefficients, the scattering field can be obtained by Eq. (6-1). 

According to angular spectrum representation, the collected field in the far-field 

can be decomposed into plane waves as 

      
1

, ; , ; exp ,
2

y z c c y z

NA

k k x y z x i k y k z dydz


   
 E E   (6-5) 

where  , ;y z ck k xE  is the Fourier transform of the field  , ; cy z xE  at the position cx , 

and NA represents the numerical aperture of the collecting plane which restricts the 

domain of integration in space. Here the axial axis is x-axis (Figure 6.1), which is 

different from that in optics where the z-axis is often defined as the axial axis. However, 

this representation is often used in representation of dipole radiation in 

electromagnetics. 

Then the collected field can numerically propagate in space, which, according to 

angular spectrum representation, is given by 
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The E field on the left-hand side of Eq. (6-6) represents the field polarized in either 
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direction (x-, y-, or z-), which depends on the corresponding polarization of the field in 

the integrand. The reconstructed images are obtained by adding the intensities of all the 

corresponding fields together, i.e., 

 
22 2

,x y zI E E E     (6-7) 

which represents the virtual image produced by the micro-lens. 

6.4  Whispering gallery mode in micro-lens 

Whispering gallery mode (WGM) excited in a spherical micro-lens has been reported 

to enhance the resolution [147] since WGM enhances coupling evanescent waves into 

the micro-lens and converting to propagating waves [148]. To investigate the WGM of 

the micro-lens in the visible spectrum, we first numerically scan the backscattering 

cross section [147] of the micro-lens from wavelength 400nm to 700nm (Figure 6.2). 

The first WGM appears at the wavelength 401.64nm. Another wavelength 403.07nm 

without WGM is chosen for comparison. 

 

Figure 6.2 Backscattering cross-section in visible spectrum. 

By placing a single dipole just beside the micro-lens (Figure 6.3), we find that the 

fields at wavelength 401.64nm with WGM (Figure 6.3 (a)) are enhanced significantly 

compared to that at wavelength 403.07nm without WGM (Figure 6.3 (b)). The strong 

surface wave in the case of WGM improves the wave coupling and conversion (Figure 

6.3 (c)). On the other hand, the wave conversion by only refraction is very weak when 
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there is no WGM (Figure 6.3 (d)). 

 

Figure 6.3 Snapshots of wave propagation in -x y  plane for 401.64nm   (a, 

c) and 403. nm07   (b, d). The color maps in (c) and (d) are truncated to 

reveal the pattern of weak fields. The white circle denotes the contour of the 

micro-lens. The small blue dot denotes the position of the dipole. 

6.5  Resolution of monochromatic light 

To determine the position of the image plane, we examine the reconstructed intensity 

distribution in the x-y plane, as shown in Figure 6.4 (a) and (c) for wavelengths 

401.64nm and 403.07nm, respectively, with the single dipole behind the micro-lens. 

From the view of geometrical optics, the focus of a micro-lens is at  / 2R n n   (R is 

the radius of the micro-lens and n is its refractive index), i.e. at 6.41 mx   . This 

estimation may be applicable to the wavelength 403.07nm without WGM (Figure 6.4 

(c)), but not appropriate for the wavelength 401.64nm with WGM (Figure 6.4 (a)). 

Alternatively, the maximum intensity position in the x-axis ( 4.40 mx   for 

wavelength 401.64nm and 6.84 mx    for wavelength 403.07nm) can be considered 

as the focus, since the dipole is known to be on the x-axis. However, at 4.40 mx    

for the wavelength 401.64nm, the maximum side-lobes are 40% of the main-lobe 
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(Figure 6.4 (b)), which will cause distortion and poor contrast in wide-field imaging 

[149]. To reduce side-lobes, the focus 4.87 mx    adopted from [145] is also 

considered, where the maximal side-lobes decrease to about 22% of the main-lobe. 

Note that at the position 3.94 mx   , the side-lobes are even higher than the main-

lobe, which may introduce artifacts in practice. 

The Full Width at Half Maximum (FWHM) is a widely used evaluation of 

resolution. To compare FWHM at different image planes, the magnification of the 

micro-lens must be considered, although the resolution is not necessarily related to 

magnification but rather wave coupling and conversion. The magnification can be 

estimated by shifting the dipole 50nm away from its original position along the y-axis 

and observing the corresponding shift of the virtual image. After being normalized by 

the magnification (1.82 for 401.64nm at 4.40 mx    and 2.84 for 403.07nm at 

6.84 mx   ), the corresponding effective FWHMs are 107nm (with 40% side-lobes) 

for wavelength 401.64nm and 214nm for wavelength 403.07nm. The effective FWHM 

without WGM is close to the diffraction limit in air, while the one with WGM is much 

narrower, similar to the conclusion in [147]. Note that the effective FWHM with WGM 

is much smaller than 157nm, the FWHM achievable with an oil immersion lens of the 

same refractive index 1.46 and angular aperture ( sin 0.9  ), which is mainly 

attributed to apodization. However, significant side-lobes may lead to large distortion 

and poor contrast in wide-field imaging. The side-lobes caused by apodization may be 

suppressed in confocal microscopy, where the resolution of a micro-lens can be 

enhanced by WGM to beat the diffraction limit. In the following text for 

monochromatic light, only waves with WGM will be considered to explore the possibly 

highest resolution. 
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Figure 6.4  Reconstructed intensity distribution in -x y  plane for (a) 

401.64nm   and (c) 403.07nm  . Normalized intensity profile of (b) 

401.64nm   focused at 4.87 mx    (blue dash-dot line), 4.40 mx    

(black solid line) and 3.94 mx    (red dashed line), and (d) 403.07nm   

focused at 6.84 mx    (black solid line), 6.41 mx    (red dashed line) 

and 4.87 mx    (blue dash-dot line). 

Another notable phenomenon is that different modes of WGM have different 

resolution enhancement. Here we compare the first TE mode and the first TM mode 

appearing at the wavelengths 401.64nm and 405.55nm, respectively. The analysis in 

Figure 6.5 demonstrates that the effective FWHM, after normalized by magnification, 

of wavelength 405.55nm is 186nm focused at 8.17 m  (maximum intensity position), 

271nm focused at 4.25 m  (the other peak intensity position), 195nm focused at 

6.41 m  (geometrical focus) and 413nm focused at 4.87 m  (position adopted 

from [145]). Compared with the TE mode, the TM mode has a much larger FWHM for 

the given radius and refractive index in our model. We tested other larger wavelengths 

with TE and TM modes and found that the narrowest effective FWHM is achieved by 

the shortest wavelength with TE mode of WGM, which is 401.636 nm. 

To better evaluate resolution with the golden criterion of two-point resolution, we 

put two emitters behind the micro-lens with illumination wavelength 401.64 nm. Figure 
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6.6 (a) and (c) show the intensity distribution in x-y plane formed by two incoherent 

dipoles separated by distances of 150nm and 100nm, respectively. The dipoles 

separated by 150nm are clearly resolved (Figure 6.6 (a) and (b)). However, the dipoles 

separated by 100nm are hardly resolved (Figure 6.6 (c) and (d)). One may argue that 

two peaks can be resolved at the position 3.94 mx    in the case of 100nm 

separation. However, the position 3.94 mx    is not the true focus ( 4.40 mx   ), 

and the peaks are because of side-lobes, as illustrated in Figure 6.4 (a). 

 

Figure 6.5  (a) Reconstructed intensity distribution in x-y plane for

405. nm55  . (b) Normalized intensity profile focused at 8.17 mx    

(black solid line), 6.41 mx    (red dashed line), 4.87 mx    (blue dash-

dot line) and 4.25 mx    (green dashed line). 

 

Figure 6.6  Reconstructed intensity distribution in x-y plane for two incoherent 

dipoles separated by (a) 150nm and (c) 100nm. Normalized intensity profile for 

two incoherent dipoles separated by (b) 150nm and (d) 100nm at the focus of 

4.87 mx    (blue dash-dot line), 4.40 mx    (black solid line) and 

3.94 mx    (red dashed line). 
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6.6  Resolution of white light 

To further explore the resolution of white light illumination, we chose 110 wavelengths 

including all WGMs in the spectrum 400nm~700nm to mimic white light. With such 

white light illumination, the micro-lens can resolve two dipoles separated 150nm apart 

(Figure 6.7 (a)), but cannot for those separated 100nm apart (Figure 6.7 (b)). Moreover, 

we have further tested images formed in various focuses, and got almost the same result. 

Actually, the effective FWHM of the combined white light cannot be smaller than the 

narrowest effective FWHM of monochromatic light, which is 107nm (with 40% side-

lobes) at the wavelength 401.64nm. Thus, the resolution of a spherical micro-lens with 

white light illumination cannot reach sub-100nm. 

 

Figure 6.7  Images formed by two dipoles separated by (a) 150nm and (b) 

100nm. The focus is chosen at 4.40 mx   , where the intensity of the white 

light is maximal. 

6.7  Discussion and conclusions 

If the effective FWHM is adopted as the evaluation of resolution, the highest 

resolution of the micro-lens studied here is 107nm at the wavelength 401.64nm, which 

is λ/3.75 with λ the wavelength in free space. Compared to the FWHM (157nm) 

achieved with an oil immersion lens of the same refractive index 1.46 and angular 

aperture, it is narrowed by 32%, which is comparable to the improvement by 

apodization in pupil engineering. The micro-lens can be considered as a special case of 

pupil engineering: it is put on top of the sample to modify the amplitude and phase of 

the light, while in normal pupil engineering an amplitude and/or phase mask is put on 
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the pupil plane. 

However, the effective FWHM cannot be claimed as the same as resolution of 

micro-lens in wide-field imaging, because significant side-lobes (40% of the main-lobe) 

may result in remarkable distortion and even artifacts. Given non-negligible side-lobes 

in a point spread function (PSF), the FWHM may be claimed as resolution by 

specifying a limited field-of-view where the superposition of side-lobes is not greater 

than the main-lobe, which is beyond the scope of this chapter. On the other hand, the 

side-lobes may be suppressed in confocal microscopy, where the resolution of a micro-

lens can be further improved by the selectivity of pinhole. 

It should be emphasized that in our calculation some realistic factors that have been 

ignored may offer real reasons for the experimentally observed high resolution in the 

record. For example, our model only considers perfect spherical shape, while in reality 

surface roughness may play an important role in near-field imaging. Moreover, the 

gold-coated fishnet anodic aluminum oxide (AAO) sample was used in experiment 

[145], but the possible surface plasmon resonance and quantum or nonlocal effects 

induced by the periodic metallic sample are completely ignored in our calculation. 

In conclusion, the direct imaging process through a micro-lens is calculated with 

Mie scattering theory. A micro-lens can achieve resolution beyond diffraction limit, 

but significant side-lobes may cause distortions, poor contrast and even artifacts in 

wide-field imaging. The resolution of a spherical micro-lens with visible light 

illumination is between 100nm and 150nm measured with two-point resolution 

criterion, or around 107nm evaluated by FWHM for the shortest wavelength with 

WGM. Therefore, some important physical mechanisms that have not been revealed 

(probably surface roughness enhanced surface plasmon resonance, nonlocal effects, or 

quantum effects) are expected to be involved in the previous successful experiments of 

ultra-high resolution.
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Chapter 7 

Conclusions and future work 

7.1  Conclusions 

This work is dedicated to imaging techniques with capabilities of optical sectioning, 

scattering rejection and noise suppression for 3D imaging in thick samples with high 

resolution in real-time. Optical modalities, including focal modulation, structured 

illumination, wide-field imaging and micro-lens, are investigated. Computational 

image reconstruction with sparsity priors is explored to improve the performance of 

such optical modalities or their combinations. 

First, new approaches of aperture optimization for FMM were introduced and 

extended to cylindrically polarized illumination. The requirement of destructive 

interference occurring at the focus for anti-phase PSF motivated the methods of equal-

ZPM and zero-sum ZPM based on the concept of pupil moment. The zero-sum ZPM 

provides the optimal aperture design for given conditions, but it requires optimization 

algorithms which are usually complicated and time consuming. With the help of series 

expansion by pupil moment, the method MFC introduces a simple analytic approach 

to optimize annular phase apertures. The modulation depth from MFC is very close to 

the optimal value, with a small difference less than 3%. MFC is also applicable to 

illuminations of circular and radial polarizations and AziSpi used in FMM, among 

which the circular polarization results in the largest modulation depth. AziSpi gives the 

best resolution for any given NA; whereas the radial polarization provides better 

resolution than linear and circular polarizations only in high NA cases. The inner-

blocked apodization was found to simultaneously improve the modulation depth and 
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resolution for radial polarization and AziSpi, but light efficiency is sacrificed. In a high 

NA system with considerable apodization, radial polarization is superior to AziSpi in 

maintaining Strehl ratio and light efficiency. However, the modulation depth and 

resolution of AziSpi are little affected by NA, which makes it robust in practical 

implementation. In addition, the apertures with more sub-apertures are more resistant 

to wavefront aberrations, although aberrations degrade modulation depth in general. 

Second, diverse imaging with sparsity priors was investigated in the reconstruction 

of HiLo and SIM images. By rearranging the photons to their emission origins, diverse 

imaging outperforms conventional HiLo method in rejecting out-of-focus background. 

The image fidelity of diverse imaging is much better than the reconstruction from only 

uniform illumination data, as the missed frequency components in ‘missing cone’ are 

compensated by structured illumination. TV regularization was used to improve the 

reconstruction fidelity. The image quality degrades if the contrast of the structured 

illumination pattern decreases, which often happens in imaging deep inside highly 

scattering samples. This is attributed to relative weak compensation of high frequency 

components introduced by low contrast structured illumination. The image quality is 

improved as the spatial frequency of structured illumination pattern increases, because 

more compensation of high frequency components are shifted by structured 

illumination and then captured by detection OTF. The resolution in the direction 

perpendicular to the structured illumination fringes can be improved by diverse 

imaging, which is not reachable in HiLo method. However, the resolution in the other 

transverse direction is little improved, because the corresponding bandwidth cannot be 

extended by only one structured illumination image. Anyway, the transverse resolution 

can be improved by two structured illuminations via diverse imaging. 

Third, to obtain high-speed image acquisition with sectioning capability, hybrid 

imaging modalities combining FMM and wide-field microscopy are introduced to 

implement in spatial domain, in Fourier domain and in sequence for different scenarios. 



113 

The diverse imaging approach was borrowed to hybrid image reconstruction in spatial 

domain, in which fast-scanning FMM images provide sectioning information and wide-

field images offer high SNR. TV regularization remarkably improves reconstruction 

fidelity by reducing the MSE to about one-half of the Tikhonov regularization. Rather 

than iterative reconstruction, the Fourier hybrid modality directly recovers the image 

by combining Fourier components of undersampled FMM images with sectioning and 

wide-field images with high resolution (compared to undersampled images). This 

approach is efficient and robust, but the possibly best reconstruction result is just close 

to fully sampled FMM images. Nevertheless, the optical sectioning is obtained and it 

successfully rejects the out-of-focus background in wide-field images. The sequential 

hybrid scheme first explores the PSF from FMM and wide-field images in a small 

volume, and then reconstruct the whole volume of interest from wide-field images. The 

volume of scanning images is highly reduced, and the reconstruction process rearranges 

the out-of-focus background photons back to their emission origins. However, optical 

sectioning cannot be fully recovered due to lack of high frequency components in the 

‘missing cone’. From the point view of reconstruction fidelity, the diverse imaging 

performs superior to the other two, but it requires accurate PSFs of both FMM and 

wide-field imaging systems. 

In addition, a theoretical model of direct imaging process through a micro-lens is 

established with vectorial electromagnetic analysis. The simulation results show that a 

micro-lens can achieve resolution beyond diffraction limit, but significant side-lobes 

may cause distortions, poor contrast and even artifacts in wide-field imaging mode. 

The resolution of a spherical micro-lens with visible light illumination is between 

100nm and 150nm measured with two-point resolution criterion, or around 107nm 

evaluated by FWHM for the shortest wavelength with WGM. Therefore, some 

important physical mechanisms that have not been revealed (probably surface 

roughness enhanced surface plasmon resonance, nonlocal effects, or quantum effects) 
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are expected to be involved in the ultra-high resolution imaging in literature. 

7.2  Recommendations for future work 

In this thesis, various optical imaging modalities are investigated to enhance optical 

sectioning, scattering rejection and noise elimination to improve resolution. The efforts 

are extensive but not exhaustive. Except for applications of these microscopic imaging 

techniques, some recommendations for future work are as follows. 

In FMM, the imaging depth can be improved by increasing the modulation depth. 

However, currently the relationship of imaging depth and modulation depth is 

qualitative rather than quantitative. The effects of multiple scattering on the imaging 

depth for apertures with the same value of modulation depth but different geometric 

configurations are possibly different, especially if the polarization of illumination is 

under consideration. Thus, a model directly including multiple scattering, aperture 

configuration and light polarization, will be helpful to quantitatively evaluate the effect 

of modulation depth on the imaging depth. 

A proper apodization can improve the modulation depth and resolution at the same 

time, but light efficiency, e.g. power efficiency and intensity efficiency, is sacrificed. 

The decreased power efficiency will degrade the signal level for a given power of 

illumination. As the intensity efficiency decreases, the possibility of photobleaching in 

the out-of-focus region will increase. So it is important to find a balance between these 

advantages and disadvantages. Experimental study on apodization in FMM is expected 

to identify the optimal apodization for specific kinds of samples. 

In current FMM, subtraction of two PSFs is adopted to obtain the effective PSF, 

where the main objective is to reject multiple scattering background and thus improve 

imaging depth. On the other hand, the resolution can be improved by subtraction of 

two PSFs in focal modulation technique. Therefore, it would be of interest to explore 

manipulation of more than two PSFs to improve the penetration depth and resolution 
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of FMM simultaneously but without sacrificing of light efficiency. 

In current diverse imaging, multiple scattering background is not considered in the 

image formation model (Eq. (4-1)). A high-pass filter may be employed in the objective 

function (Eq. (4-2)) to eliminate the influence of multiple scattering, since the photon 

contribution of multiple scattering is usually considered as exhibiting only low 

frequency components. This is also applicable to diverse imaging by combining FMM 

and wide-field microscopy, where a high-pass filter is applied to the wide-field image. 

In current study, the weight factors for different images are chosen as unity in 

diverse imaging, which is tunable by considering confidence of image acquisition 

process, e.g. SNR. Nevertheless, different choices of weight factors will result in 

emphasis on different information of the reconstructed image. Possibly the effects are 

different for different diverse modalities and regularizations. An investigation of the 

effects of weight factors in various diverse modalities is an interesting direction for 

future work. 

The undersampling ratio and cut-off ratio in Fourier hybrid imaging were 

optimized by simulations in our study. The optimal values may be affected by specific 

properties of the sample, for example, feature size and concentration. A statistical 

model would be a good guidance for the parameter choice and experimental exploration 

for some specific types of samples. 

Our simulation results show limited resolution for a micro-lens in wide-field 

imaging. A confocal mode would be applied to improve its resolution and suppress the 

significant side-lobes. As a special case of pupil engineering, super-resolution induced 

by super-oscillation may be achieved by a well-designed wavefront of illumination 

employed in a micro-lens. Furthermore, other polarizations, e.g. radial polarization and 

azimuthal polarization, may introduce more benefits in resolution improvement. 
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