

AN OPERATING SYSTEM FOR AUGMENTED REALITY UBIQUITOUS

COMPUTING ENVIRONMENTS

YEW WEIWEN, ANDREW

(B.Eng. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Yew Weiwen, Andrew

18 November 2014

i

Acknowledgements

I would like to express my sincerest gratitude to my thesis supervisors, Assoc.

Prof Ong Soh Khim and Prof. Andrew Nee Yeh Ching, for granting me the

opportunity and support to carry out this research. Their faith and guidance

have been invaluable. Every endeavor they have made in making our

laboratory a happy, clean and conducive environment for research, as well as

their efforts in looking after my welfare, is greatly appreciated.

Sincere thanks also go to my fellow researchers in the Augmented Reality and

Assistive Technology Lab past and present for their advice and friendship. I

would like to make special mention of Dr. Shen Yan and Dr. Zhang Jie who

helped me with a great many matters concerning my academic duties and

settling into the laboratory, and of Dr. Fang Hongchao who has been a

constant source of companionship, encouragement, and technical help. I would

also like to thank the FYP students whom I have mentored who provided

valuable assistance with this work.

Finally, I wish to thank my family for taking an active interest in my research

work, and sometimes giving me wild ideas to ponder, and my parents for

sacrificing so much in order for me to pursue this dream.

ii

Table of Contents

Acknowledgements …………………………………………... i

Table of Contents ……………………………………………… ii

List of Figures …………………………………………………. vi

List of Tables ………………………………………………… viii

List of Abbreviations ………………………………………… ix

Summary ……………………………………………………… xi

Chapter 1. Introduction ……………………………………… 1

 1.1 Ubiquitous Computing ………………………… 1

 1.2 Augmented Reality ………………………………. 2

 1.3 Research Objectives and Scope ………………… 4

 1.4 Organization of the Thesis ……………………….. 7

Chapter 2. Literature Survey ………………………………… 8

 2.1 Ubiquitous Computing Issues ……………………. 8

 2.1.1 Heterogeneity and Spontaneous Interoperation … 8

 2.1.2 Invisibility …………………………………… 9

 2.1.3 Transparent User Interaction …………………. 10

 2.1.4 Context Awareness and Context Management … 13

 2.2 Augmented Reality Issues ……………………… 13

 2.2.1 Tracking ………………………………………. 13

 2.2.2 Display and Interaction Devices …………… 17

 2.3 Ubiquitous Augmented Reality Frameworks …… 19

 2.3.1 High-level Frameworks ……………………… 19

 2.3.2 Component-based Frameworks ……………… 20

iii

 2.3.3 Standards-based Frameworks ………………. 24

 2.4 Summary …………………………………………. 26

Chapter 3. Design of the SmARtWorld Framework ………… 28

 3.1 Requirements …………………………………… 28

 3.2 Overall Architecture …………………………… 29

 3.3 Smart Objects …………………………………… 31

 3.3.1 Smart Object Architecture ……………………. 31

 3.3.2 Virtual User Interface ………………………… 33

 3.4 Communications Protocol ………………………… 37

 3.4.1 Messaging …………………………………… 37

 3.4.2 Addressing and Routing ……………………… 40

 3.5 Summary …………………………………………. 46

Chapter 4. Implementation of a SmARtWorld Environment … 48

 4.1 Basic Smart Object ………………………………. 48

 4.1.1 Fundamental Layer ………………………….. 49

 4.1.2 Functionality & Data Interface Layer ………. 50

 4.1.3 Functionality & Data Access Layer ………… 51

 4.2 Primary Server …………………………………… 53

 4.3 Landmark Server and Landmark Objects ……… 55

 4.4 Object Tracker …………………………………. 58

 4.5 Summary …………………………………………. 59

Chapter 5. User Interaction and Display Devices ……………. 61

 5.1 Wearable System ………………………………….. 61

 5.1.1 Pose Tracking ………………………………... 62

iv

 5.1.2 Rendering Virtual User Interfaces …………… 65

 5.1.3 Bare Hand Interaction ……………………… 70

 5.1.4 Occlusion of Virtual Elements by the Hand … 75

 5.2 Tablet and Smartphone …………………………… 76

 5.3 Device-less Interaction …………………………… 78

 5.3.1 Sensors on a Wireless Sensor Network ………. 79

 5.3.2 Gaze Tracking ………………………………... 80

 5.3.3 Context Recognition …………………………. 82

 5.4 Summary …………………………………………. 85

Chapter 6. Smart Object Representation ……………………… 87

 6.1 Real and Virtual Objects …………………………. 87

 6.2 Realistic Rendering ………………………………. 88

 6.3 Physical Simulation ………………………………. 90

 6.4 Sound Response …………………………………. 92

 6.4.1 Sound Source …………………………………. 92

 6.4.2 Sound Renderer ………………………………. 95

 6.5 Summary ………………………………………… 96

Chapter 7. Manufacturing Applications ………………............ 98

 7.1 Manufacturing Job Shop ……………………… 99

 7.1.1 Smart CAD Object ………………………… 99

 7.1.2 Smart Machining Object …………………… 101

 7.2 Manufacturing Grid …………………………….. 104

 7.2.1 Web Server ………………………………… 105

 7.2.2 Cloud Gateway ……………………………… 107

v

 7.3 Visual Programming …………………………….. 109

 7.3.1 Robot Task Programming ………………….. 110

 7.3.2 Programming Robot Safety Procedures ……. 113

Chapter 8. Conclusion …………………………………………. 118

 8.1 Achievement of Objectives ……………………… 118

 8.2 Contributions …………………………………… 122

 8.3 Recommendations ………………………………. 126

Publications from this Research ……………………………… 128

References ……………………………………………………… 129

vi

List of Figures

2-1 Coordinate transformations from virtual object to AR ……….. 14

3-1 Architecture of a smart object ………………………………… 31

3-2 Network connections in a SmARtWorld environment ………. 40

3-3 Propagation of smart object existence ……………………….. 43

3-4 (a) Addresses used by hubs for objects hosted directly. (b)

Addresses used by hubs for the same objects which are

hosted directly or indirectly. (c) Addresses used by one of

the objects to send messages to the other objects. (d) Routing

of a message over multiple hubs.

… 44

4-1 Architecture of a UAR environment ………………………….. 48

4-2 Creation of a virtual user interface …………………………… 52

4-3 Virtual user interface definitions for the basic smart object … 53

4-4 Database of smart object information in the primary server … 55

4-5 Virtual user interface of a landmark object …………………... 57

5-1 A wearable system ……………………………………………. 61

5-2 Flowchart of the wearable system program execution ……….. 62

5-3 Occlusion of virtual objects by real objects …………………... 68

5-4 Texture-based font rendering ………………………………… 68

5-5 Signed distance field representation of fonts ………………… 69

5-6 Zoom-invariant font quality and font effects ………………… 69

5-7 (a) Depth of a convexity defect indicates presence of fingers,

(b) fingertip is the furthest point from the centroid of the

hand

… 71

5-8 The detection stages of different gestures …………………….. 72

5-9 Bare hand interaction with virtual user interface elements …… 74

5-10 Occlusion of virtual objects by the user’s hand ……………… 75

5-11 Flowchart of the Android system program execution …………. 77

vii

5-12 Touch-screen interaction with virtual user interface elements … 78

5-13 Setup for object interaction using gaze tracking ……………… 81

5-14 Placement of smart objects for gaze tracker interaction ……… 82

5-15 Training an HMM-based context recognition object using a

smartphone

… 85

6-1 A virtual weather sensor object ……………………………….. 88

6-2 Shadows cast by virtual objects due to real light

sources in the environment

……………… 90

6-3 A virtual object reflecting the real environment ……………… 90

6-4 Sound waves generated by two smart objects with

different stiffness and natural frequency

…………… 95

7-1 (Top) Smart CAD object creation tool, (bottom)

SolidWorks part document converted into a smart

CAD object.

…………… 100

7-2 An interactive smart CAD object ……………………………… 101

7-3 Smart machining object: (a) Maintenance interface,

(b) CAM interface, (c) Dragging a smart CAD object

to the CAM interface, and (d) Smart CAD object

loaded in the CAM interface

………... 103

7-4 Architecture of manufacturing grid of smart objects ………… 104

7-5 Smart machining object from a remote SmARtWorld

environment

……… 107

7-6 Flow diagram of a program that stops a factory robot

arm when a worker approaches it.

……… 115

viii

List of Tables

3-1 Basic data and commands of a smart object …………………….. 33

3-2 List of XML tags for interactive elements of a virtual

user interface

………... 35

3-3 List of standard commands and their parameters ……………… 39

4-1 Command and RPC handling procedures for a basic

smart object

………... 51

4-2 RPCs in a landmark server object ……………………………… 56

4-3 RPCs in a landmark object ……………………………………... 57

7-1 Smart objects of a pick-and-place robot workspace ……………. 111

7-2 Smart objects for flow-based programming in a

SmARtWorld environment

……....... 114

ix

List of Abbreviations

2D - Two-dimensional

3D - Three-dimensional

AP - Access point

AR - Augmented reality

ARAF - Augmented Reality Application Framework

ARML - Augmented Reality Markup Language

ASCII - American Standard Code for Information Interchange

CAD - Computer-aided design

CAM - Computer-aided manufacturing

CNC - Computer numerical control

CV - Computer vision

FBP - Flow-based programming

GML - Geography Markup Language

GPS - Global Position System

GUI - Graphical user interface

HMD - Head-mounted display

HMM - Hidden Markov model

HTML - HyperText Markup Language

IP - Internet Protocol

KHARMA - KML/HTML Augmented Reality Mobile Architecture

KML - Keyhole Markup Language

LAN - Local area network

LED - Light-emitting diode

MGrid - Manufacturing grid

x

MRU - Most recently used

ODE - Open Dynamics Engine

OOP - Object-oriented programming

RF - Radio frequency

RPC - Remote procedure call

SDK - Software development kit

SNAP - Synapse Network Application Protocol

TCP - Transmission Control Protocol

TUI - Tangible user interface

UAR - Ubiquitous augmented reality

UbiComp - Ubiquitous computing

UDP - User Datagram Protocol

URI - Uniform resource identifier

URL - Uniform resource locator

VR - Virtual reality

WSN - Wireless sensor network

XML - Extensible Markup Language

xi

Summary

The aim of ubiquitous computing is to shift computing tasks from the

traditional desktops to the user’s physical environment. Today, the

manifestation of this vision can be seen in the proliferation of tablet devices

and smartphones that provide access to services and applications. Everyday

objects are transformed into smart objects, i.e., objects with computing and

networking capability, which can sense and have rich contextual aware

functionality. Everyday environments are transformed into smart

environments that automatically monitor and adjust conditions, such as

temperature and lighting for the inhabitants.

There are a number of limitations with current technologies. First, the user

interfaces of smart objects and ubiquitous services are not intuitive and

demand much focus from users. Second, the application development process

requires expert knowledge, which means less fine control by users over their

environment. Third, the types of applications and interfaces that can be

implemented in a smart environment are limited by physical constraints.

Augmented reality (AR) allows for computer generated graphics, sound and

other sensory stimuli to be added into the user’s experience of the physical

world, therefore opening up many possible enhancements to ubiquitous

computing.

In this research, a framework called SmARtWorld is proposed which aims to

facilitate smart AR environments. SmARtWorld is designed for universal

applications with a focus on intuitive and user-friendly interfaces to computer

xii

applications. It is a component-based distributed system with smart objects as

the building blocks of applications embedded into the physical environment. It

incorporates AR technologies such that smart objects and their user interfaces

can break physical boundaries and be created for maximum utility to the users.

Multiple research issues have been investigated. The basic architecture of a

smart object and the networking infrastructure and protocols needed in order

to create a ubiquitous AR environment have been developed and forms the

foundation for subsequent developments. Various user interaction and display

devices have been explored and integrated with SmARtWorld, demonstrating

the separation of hardware and applications that the framework provides. As a

result, a smartphone system and a wearable system have been developed that

can be used with a SmARtWorld environment. The ways in which real and

virtual smart objects can co-operate and co-exist in the same environment

have also been studied. Finally, the potential impact that this research can

make in the manufacturing industry has been studied in three areas, namely, as

an interface for workers to access computer-aided manufacturing technologies

in a job shop, as a basis for a manufacturing grid, and as a visual programming

tool of manufacturing tasks.

The main contribution of the research is a new component-based framework

for building UAR environments and applications, based on the novel idea that

every component is a smart object with a virtual user interface to its data and

functionality. All smart objects share the same architecture which includes a

hardware abstraction layer. This allows for flexibility in the hardware and

xiii

software used to implement the smart object. A standard protocol for

communication and a virtual user interface definition schema have been

developed in this research so that smart objects can be accessed in any UAR

environment. The implementation of smart objects that perform the

fundamental functions needed for UAR applications, namely, the primary

server, hubs that connect smart objects on different networks, viewing devices,

landmarks for tracking and registration, and trackers for real objects. Smart

objects that add interaction and rendering functionality to any UAR

environment have also been investigated. These include context-sensing

objects, environmental capture objects, light sources, and physics engine and

sound rendering objects.

Issues that still warrant further development include error handling, network

latency and tracking performance. The ergonomics of wearable systems is also

an issue with the current hardware available, but it is hoped that this can be

improved as technological advancement in this area is moving rapidly.

1

Chapter 1. Introduction

1.1 Ubiquitous Computing

The concept of ubiquitous computing (UbiComp) was formalized by Mark

Weiser as he described its vision in a seminal paper, writing that technologies

should “disappear into the background” so that users are “freed to use them

without thinking” and are able to “focus beyond them on new goals” (Weiser,

1991). The problems that Weiser and other UbiComp researchers found with

the traditional desktop model of computing relate to its computer-centricity

and still hold true today. The computer screen becomes the focal point of the

user’s attention which interferes with the user’s normal cognitive process

when performing tasks and problem-solving. The act of interacting with a

computer itself presents an overhead cost on effort. Furthermore, computers

put information at our fingertips resulting in information overload,

exacerbating the drain on the user’s energy and time.

UbiComp has already made a significant impact on mankind. Ubiquitous

computing literally means “computing everywhere”. This has already been

taken for granted with the proliferation of smartphones and tablets, interactive

touchscreens and kiosks in public spaces, and smart household appliances.

However, the problem of computer-centricity has merely been transferred to

the individual devices, i.e., the problem with the modern model of computing

is that it is now too device-centric. All of a person’s software tools and

information sources exist on a single device. Someone in need of information

or location-specific information has to locate a kiosk before being able to

2

access the services. Smart household appliances can have many more

functions than the users can conceive of and have time to discover.

UbiComp aims to move away from the problem of device-centricity altogether

by granularizing computing resources into separate objects in the physical

environment. Computer functions are presented and actuated through the

user’s interactions with the environment itself. It is arguable whether any of

today’s UbiComp systems have been completely successful in eliminating the

problem of device-centricity.

1.2 Augmented Reality

Augmented reality (AR) refers to a perception of the real world where

computer-generated graphics, sound and other sensory stimuli are added. It is

often advocated as a natural complement to UbiComp because a key

component of AR systems is the physical environment. AR systems started to

appear in the 1990’s. In 1992, a see-through head-mounted display (HMD)

system was created by researchers at Boeing which could overlay diagrams on

real-world objects during aircraft manufacturing operations (Caudell & Mizell,

1992). At the same time, a system of “virtual fixtures” was developed by

Rosenberg (1992) which improved the performance of tele-operated tasks by

augmenting the operator’s vision with a view of the remote environment; this

system has an exoskeleton to restrict the operator’s motion and the audio

overlaid on the operator’s view of the remote environment aids in the

perception of virtual objects.

3

AR works by tracking a user’s view of the real environment, recognizing and

estimating the pose, i.e., position and orientation, of known objects with

respect to the user’s point of view (via a camera), and rendering computer

generated input spatially-registered around the detected objects. A key

development in AR was the release of an open source tracking software library

for PCs called ARToolKit (ARToolKit, n.d.) in 1999 which implemented

computer vision (CV) functions for tracking square planar markers with

known patterns efficiently and reliably. ARToolKit has allowed developers

and researchers to develop AR applications more easily.

Within the next decade, research into AR applications had exploded as AR

found its way into design and manufacturing (Nee, et al., 2012), medical,

education, navigation, and entertainment applications (Krevelen & Poelman,

2010), etc. AR technology has rapidly advanced since then as markerless, non-

optical-sensor-based, and sensor fusion techniques for tracking have been

developed.

AR and UbiComp complement each other in several ways. AR can free

UbiComp smart objects and interfaces from the confines of their physical

configuration, and this enhances a smart environment in terms of its

appearance and types of interaction. AR tracking technology adds fine

location-awareness to smart objects which makes them intelligent and

responsive to the needs of users. Without UbiComp, the scale and scope of AR

applications may be limited. This is because as mere overlays, augmented

objects have limited utility. However, if physical objects can be digitized and

4

become a part of the AR environment, more interactions and behaviors can be

designed which can have actual effects on the real environment.

1.3 Research Objectives and Scope

As global knowledge and information grows and the world becomes more

interconnected, it is becoming increasingly important to be able to present the

knowledge and information intelligently and interactively to users. Packing

services and data into individual devices will soon become impractical.

Services and data should not be items that are sought after by the users when

they feel they need it, but instead should be available wherever and whenever

they are needed.

To remove this device-centric characteristic of computing is the main aim of

this research. This is achieved by the development of a framework that

facilitates AR applications that are embedded in large environments. There are

three kinds of users who will benefit from this system, namely, environment

developers, application developers, and end-users. Environment developers

refers to the persons who set up the hardware infrastructure that turns the

environment into a ubiquitous augmented reality (UAR) environment.

Application developers are those who create smart objects which encapsulate

the functions in an application. End-users are the persons who enter a UAR

environment and make use of the smart objects. Therefore, the objectives of

this research are as follows:

5

(1) A common framework for creating UAR environments that abstracts

applications from hardware for tracking, interaction and display.

(2) Flexibility in the hardware and software used to implement context-

aware smart objects with highly customizable behaviors, appearance

and user interfaces.

(3) Flexibility in the hardware and software used to implement viewing

and interaction devices.

(4) Recommended practices for AR application development using the

proposed framework.

(5) A self-sustainable framework which continues to be relevant as

technology evolves.

For objective (1), standard protocols and definitions for communication,

interaction and object representation will be proposed. Furthermore,

components of the framework will be defined to ensure that UAR

environments will be able to provide fundamental AR, namely, tracking and

interaction, so that application developers can focus on content.

For objective (2), the software architecture of a smart object will be defined

and will incorporate hardware abstraction. Using this architecture, an

exploration of the ways in which smart objects can be developed to have

different behaviors, graphical properties, and interactive properties will be

conducted.

6

For objective (3), the research will look into the implementation of viewing

and interaction devices and to demonstrate the use of different platforms to

achieve a variety of user experiences.

For objective (4), various ways with which smart objects can be designed to be

more visible but also blend into their UAR environment, as well as their

practicability in AR applications, will be explored.

For objective (5), two aspects of self-sustainability of the framework will be

investigated. First is the ability for the framework to remain compatible with

new hardware and devices. For this aspect, the framework will be designed

with hardware-software abstraction at the level of smart objects, and,

application-interaction abstraction at the level of applications. Second is the

ability for the framework to maintain itself, i.e., creating new smart objects to

encapsulate new technologies. For this aspect, the application of visual

programming in a UAR environment will be explored.

As this is a wide topic, some important issues have not been included in the

scope of this research including security, privacy, quality and reliability of

service. The scope of this research has been limited to the following issues:

(1) Tracking of users and objects.

(2) Unifying heterogeneous objects and devices.

(3) User viewing and interaction.

(4) Ubiquitous AR application development.

7

1.4 Organization of the Thesis

The thesis is organized as follows. First, a comprehensive literature review on

the state of art in UbiComp and AR technology as well as UAR frameworks is

given in Chapter 2. Chapter 3 describes the SmARtWorld framework in detail,

including its requirements, architecture, standards and protocols used. Chapter

4 describes the implementation of a basic UAR environment and its

constituent smart objects using the SmARtWorld framework. Chapter 5 details

the different implementations of SmARtWorld environments without a

viewing device. Chapter 6 describes the different ways in which smart objects

can be presented in a SmARtWorld environment. Chapter 7 describes three

manufacturing applications of the framework, namely a manufacturing job

shop, manufacturing grid, and visual programming. The thesis is concluded

with the contributions of this research and recommendations for future work

discussed in Chapter 8.

8

Chapter 2. Literature Survey

This chapter looks at the related research works that have been conducted for

placing the research issues into context. Since the main contribution of this

work is a framework for UbiComp applications, the review starts with

examining relevant UbiComp issues and the systems that have been developed

to deal with them. Next, as the framework incorporates AR, a survey on

research on the main AR issues of tracking and display is presented. Finally,

systems which combine AR and UbiComp will be explored to give an idea of

how other researchers have approached this problem.

2.1 Ubiquitous Computing Issues

Costa et al. (2008) lists ten open issues in ubiquitous computing, namely

scalability, dependability and security, privacy and trust, mobility (referring to

applications that follow the user), heterogeneity, spontaneous interoperation,

invisibility, transparent user interaction, context awareness, and context

management. Of these, the last six issues are investigated in this research.

2.1.1 Heterogeneity and Spontaneous Interoperation

An UbiComp environment contains many different kinds of sensors, actuators,

objects and services built on different technologies and protocols. Many

UbiComp systems opt to wrap heterogeneous services and devices as web

services as this unifies the representation of user interfaces (Sashimi, Izumi, &

Kurumatani, 2005). Several systems take this a step further by proposing to

make use of semantic reasoning and ontology structures like RDF (Resource

9

Description Framework) and OWL (Web Ontology Language) to describe

heterogeneous services so that they can be universally understood by different

devices (Singh, et al., 2006; Guo, 2008; Soylu & de Causmaecker, 2010).

Other systems have proposed their own middleware for extracting meaningful

output and control options to suit the application domain (Crepaldi, et al.,

2007) so as to provide more suitable interfaces. The use of ontologies and

middleware adds a layer of conformity requirement when applications are

created and can add computational and memory overhead if a middleware

solution attempts to unify many different communication and interoperability

protocols.

2.1.2 Invisibility

Invisibility refers to computer hardware being hidden from the user in a

UbiComp environment. This can be achieved by the use of wireless mesh

networks like SNAP (Synapse’s SNAP Network, n.d.) and ZigBee (ZigBee

Specification Overview, n.d.). These networks are formed from tiny networked

microcontrollers that can be used for sensing and control. The advent of

wireless mesh networks have driven the development of smart buildings with

automated lighting and climate control (Occupying Yourself, 2010;

LonWorks®-based Office Building, n.d.) and The Internet of Things (Synapse

Wireless Drives, n.d.).

SNAP and ZigBee nodes are suitable as agents for simple roles like user input

and output, reasoning, learning, etc. (Jin, et al., 2010). However, as they are

low-powered and greatly limited in memory capacity compared to a desktop

10

computer or even a smartphone, it would be difficult to implement

sophisticated computer programs on these mesh networks. UbiComp

frameworks try to bridge connectivity among different kinds of devices and

appliances. The problem of invisibility then lies with the user interfaces and

interaction methods that are used to control the functions that are provided in

the UbiComp environment.

2.1.3 Transparent User Interaction

Transparent user interaction refers to making the user interface invisible to the

user so that the user can focus on the task at hand. There have been reported

research works on developing gesture recognition through sensors placed in

the environment rather than worn by the user. Hand gesture recognition using

CV is an extremely active area of research in user interaction (Rautaray &

Agrawal, 2012) where cameras are used to detect hand gestures. This requires

the user’s hands to remain in the camera’s field of view. There is non-vision

gesture recognition research, such as through the use of electromagnetic

interference (Kim & Moon, 2014) and Wi-Fi signals (Vyas, et al., 2013; Pu, et

al., 2013).

Interaction methods that require an interaction device still remain in active

development due to better recognition performance and different application

requirements. Interactive surfaces are a familiar sight today in public places.

These are typically flat screen displays with multi-touch gesture recognition.

Over the last 20 years, there have been numerous research works on tabletop

interactive displays, many of which do not have a fixed display orientation and

11

allow access to multiple simultaneous users (Muller-Tomfeld & Fjeld, 2012).

Some tabletop interactive surfaces include tangible elements to represent

graspable virtual objects (Ullmer & Ishii, 1997; Fjeld, et al., 1998) or

recognize and interact with physical objects placed on them (Wilson & Sarin,

2007; Hincapie-Ramos, et al., 2011). A variant of this is the use of wall-

mounted display projectors (Pinhanez, 2003; Song, et al., 2007) or user-carried

portable projectors (Cao, et al., 2007; Willis, et al., 2011) to project user

interfaces onto surfaces and made interactive using CV techniques.

There have been discussions on whether interactive displays can be classified

as UbiComp user interaction. With good user interface design, user interaction

can still be transparent. However, the heterogeneity of devices and services in

UbiComp environments makes user interface design a challenging endeavor.

A number of automatic user interface generation approaches for UbiComp

environments have been proposed to allow for abstraction between

applications and user interface design. Gajos et al. (2008) developed a method

using decision-theoretic optimization to generate user interfaces for web

browsers and PDAs based on user abilities, preferences, devices, and tasks.

Automatic user interface generation based on semantic descriptions of

interaction modality and types of service was proposed by Vanderdonckt &

Simarro (2010) by adapting from a knowledge base of user interface models to

generate an XML-based user interface. The problem with this approach is that

even if the automatically-generated user interface is comprehensible by a user,

it may not reflect the intention of an application designer in providing a user

experience.

12

An alternative class of user interface is tangible user interfaces (TUIs). A TUI

is made up of physical objects that are manipulated directly and intuitively in

order to interact with a computer-aided task. Some TUIs are designed as

application-specific systems where the modes of interaction with the physical

elements correspond to the functionality of the system (Lee, et al., 2006;

Nagel, et al., 2010). TUI implementation can also be approached generically

with the use of standard interface devices, such as buttons, sliders and

pointers, to interact with a UbiComp environment. An example is the iStuff

framework (Ballagas, et al., 2003). With this generic approach, applications

and system output are abstracted from the TUI so that any kinds of

applications can be developed to work with the interaction objects. Short of

labeling every interactive object, the TUI approach does not provide the

awareness of functionality to the users. This means that the UbiComp

environments utilizing TUIs require that users are familiar with the

environments.

Wearable devices are another approach to user interaction that is sometimes

employed in UbiComp systems. Park, et al. (2008) developed a wearable

system consisting of a radio transceiver and GPS receiver worn on a vest, and

three-axis accelerometer worn on the finger. The GPS receiver tracks the

user’s location while the accelerometer recognizes gestures made by the hand.

The user points at an object to select it and then makes a gesture

corresponding to the operation the user wishes to carry out. The radio

transceiver transmits the recognized gestures as a command to the selected

13

object. Current technology remains an obstacle to widespread acceptance of

wearable AR systems mainly due to the size and weight of the display users

have to wear on the head and inadequate support for video output from

mainstream mobile devices. However, mobile and wearable display

technology is rapidly evolving to solve these issues.

2.1.4 Context Awareness and Context Management

Context awareness refers to the ability of the UbiComp environment to

understand the state of the user as well as that of the environment, and context

management refers to the way in which the UbiComp environment responds to

these states. Context awareness therefore relates to sensing capabilities while

context management relates to environment automation and responsiveness.

Context management is important because it is the means by which

information filtering takes place. Environmental and user-worn sensors are

typically employed in order to achieve context awareness, together with

algorithms, such as logic reasoning (Hunter, 2001; Haghighi, et al., 2008) and

machine learning (Danylenko, et al., 2011; Ayu, et al., 2012), that process the

data and extract meaning about the environment or a user’s actions and

intentions. These methods have frequently been applied to activity recognition

tasks (Nguyen, et al., 2013; Zhan & Kuroda, 2014).

2.2 Augmented Reality Issues

2.2.1 Tracking

Tracking is used for computing a user’s pose, i.e., position and orientation, in

the environment as well as that of objects. There are a number of ways to

14

perform tracking. Thus far, CV is the most widely used tracking approach in

AR systems because of its relative accuracy compared to other methods and

low-cost as only a simple camera is needed.

ARToolKit (ARToolKit, n.d.) is one of the most widely used software in AR.

The ARToolKit tracking module works by searching for square planar

markers called fiducial markers with known patterns to obtain their 3D pose in

the camera image (Kato & Billinghurst, 1999). CV algorithms are used to

compute the pose so as to map the world 3D coordinates to coordinates with

respect to the camera and then to the 2D image coordinates of the screen of a

display device (Figure 2-1). A 3D coordinate system defined with respect to,

for example, the top left corner of the marker as the origin can use the pose to

render the virtual object, defined in the world 3D coordinates, at that location.

Figure 2-1. Coordinate transformations from virtual object to AR

15

While marker-based tracking remains widely used in AR applications because

of the stability, accuracy and robustness of the algorithm, the main drawback

for tracking in a large environment is the need to attach markers to it. Natural

feature tracking eliminates the need for markers as it uses features found in the

environment. Typical natural feature algorithms involve detecting feature

points (points of high contrast change like object corners) in image frames of

the scene and matching them to feature points which have been trained into

the system. Many markerless AR systems make use of planar features

(Wagner, et al., 2008; Fong, et al., 2009) or assume features are planar (Guo,

et al., 2009) to reduce the complexity of the algorithm. Planar feature tracking

makes use of CV techniques to extract the homography between the trained

planar object and the object as seen by the camera. The pose of the object in

the camera can then be extracted using the homography (Malis & Vargas,

2007).

Incremental tracking is sometimes used to supplement or enhance marker-

based and markerless tracking in cases where continuous marker or natural

feature tracking is not possible, such as outdoor and large area applications.

There are vision-based methods like optical flow (Mooser, et al., 2007; Luo &

Bhandarkar, 2007) and structure from motion (Mooser, et al., 2009), as well as

inertial sensor-based methods that track a user’s motions (Aron, Simon, &

Berger, 2007). As inertial sensors are now commonly embedded in mobile

devices along with cameras, a number of hybrid optical-inertial tracking

systems have been researched for AR applications (Reitmayr & Drummond,

2006; DiVerdi & Hollerer, 2008). However, in practice, large and cohesive

16

AR environments with precisely-placed virtual objects are still challenging to

implement. Miyashita et al. (2008) implemented an AR museum guide system

using an ultra-mobile PC (UMPC) with a feature-rotation sensing hybrid

tracking approach; however, whenever the system was switched to inertial

tracking in the absence of features, the tracking result was inaccurate. They

dealt with this problem by placing augmented information in floating balloons

so as to hide the inaccurate tracking. The term “Swim AR” has been used to

describe augmented graphics that float about a range of positions when

accurate pose tracking cannot be obtained (KHARMA Framework, n.d.).

A system known as PTAM (Parallel Tracking and Mapping) does not restrict

itself to tracking planar features. PTAM builds a map of features as the camera

moves around the environment using SLAM (simultaneous localization and

mapping) and simultaneously tracks its position using the map of features

(Klein & Murray, 2007). A map contains feature points extracted from camera

images localized in 3D space. By matching feature points detected by the

camera with those in the map, the 3D pose of the camera is recovered. A map

is initialized by obtaining two camera images that work as a stereo pair and

using stereo vision to recover the 3D positions of the key feature points. This

is done by the user translating the camera horizontally between a start and end

point to simulate horizontal disparity between a pair of cameras. The initial

feature points are used to estimate a dominant ground plane. As the camera

moves, the mapping process tracks the position of the camera continuously

and adds more feature points to the map. PTAM, however, suffers from drift,

i.e., inaccuracies in the map build up as points further from the origin are

17

added. There is also a scale ambiguity when the map is initialized which

makes virtual objects appear in the wrong size in the AR scene. Furthermore,

the memory footprint of a map in PTAM is large which precludes the

application of PTAM in large environments.

CV-based AR allows for very precise placement of virtual objects in real

world locations. Geospatial AR is an alternative class of applications that uses

geodetic coordinates to locate virtual objects on the Earth. The most widely

used positioning system that obtains a user’s geodetic coordinates is the

Global Positioning System (GPS), but the accuracy of a regular GPS receiver

is within a few meters. Geospatial AR is used for outdoor applications that

encompass a very large geographical area as GPS receivers only work well

outdoors. Until centimeter-accurate RTK satellite positioning systems (Meng,

et al., 2008) become widely available in mobile devices, applications will be

typically for providing coarse location-specific information and services

through AR.

2.2.2 Display and Interaction Devices

A variety of display devices have been used in AR with the common ones

being desktops, laptops, tablets, phones, and projectors. Desktops with simple

off-the-shelf web cameras for tracking have been used in applications that

only take place on a desktop. Tablets and phones allow for mobile AR

applications, which use the embedded camera, sensors, and GPS receiver of

these devices for tracking and the touchscreen for interaction and display.

Wikitude (Wikitude App, n.d.) and Layar (Layar App, n.d.) started out as

18

applications for smartphones that displayed information and directional cues

about places of interest using the GPS location of the device. These

applications have since added CV-based tracking for viewing augmented

graphics and videos on magazines.

As phones and tablets have small screens, it is difficult to view and interact

with augmented graphics. Therefore, an alternative is wearable systems which

typically consist of a HMD and laptop. The lack of a touchscreen means novel

interaction methods have to be introduced. Schmalstieg & Reitmayr (2007)

developed a backpack HMD system to view augmented information around

the environment. A handheld spherical device called the iOrb was used with

this system that allows users to issue commands and perform 3D selections on

objects in the environment (Reitmayr, et al., 2005). The main drawbacks of

wearable systems are their weight and ergonomics.

The use of projectors for AR display presents a unique set of challenges. The

distortions arising from projecting at a non-planar surface or at an angle to a

planar surface can be overcome by pre-distorting the projection image based

on the surface geometry and tracking of the user’s viewpoint (Park, et al.,

2006; Krum, et al., 2012). However, one limitation is that this method needs a

surface to project images onto, i.e., augmentations cannot occur in mid-air.

Furthermore, mobile projectors cannot project in high light intensities,

precluding their use in outdoor and bright environments.

19

2.3 Ubiquitous Augmented Reality Frameworks

UAR systems aim to provide universal access to heterogeneous objects and

services, using AR mainly as a visualization mechanism for their information

and user interfaces. Research in this area can generally be categorized as high-

level frameworks, component-based frameworks or standards-based

frameworks. High-level frameworks implement the low-level functions of the

operating platform, such as network communications, tracking, rendering, and

interaction, and allow creation of applications through scripts which can be

plugged into the UAR infrastructure. Component-based frameworks treat all

the low-level functions as abstractions and define a middleware to interface

with their actual implementations. Standards-based frameworks only specify

the data formats and messaging protocols to allow independently-developed

systems to interoperate and to present UAR environments to users.

2.3.1 High-level Frameworks

Kimura et al. (2006) proposed an AR framework for mobile devices wherein

mobile AR services in a ubiquitous computing environment are registered to

visual tags in the environment, with the services stored as programs in remote

locations. Therefore, when a mobile user discovers mobile AR services

through tags, the user can choose to download and use the service.

Furthermore, the framework under which the mobile AR services are to be

created would also have access to the embedded sensors of the mobile devices

so that natural interaction can be achieved.

20

A ubiquitous AR system prototyped by Li et al. (2009) employs a hybrid

vision and inertial technique for tracking and registration, and connects to a

wireless network of sensor nodes. The nodes are attached to objects of interest,

so when a mobile computer carried by a user detects an object in its camera

view, computer generated information based on the corresponding sensor and

registered to the object is rendered.

High-level frameworks make AR application development very

straightforward. Application developers would use development software

specified by the framework to program the application and plug it into the

infrastructure of the framework. However, the look and feel of the resulting

UAR environment and the applications therein cannot be customized easily.

2.3.2 Component-based Frameworks

The DWARF framework (Bauer, et al., 2001) is based on interdependent

services which collaborate to form the UAR environment. Each service

displays its needs, abilities and connectors using XML scripts. The needs of a

service refer to data that the service requires, abilities are the functions that the

service offers, and connectors are the communications protocols used by the

service. Each network node has one service manager which manages services

at the node; there is no central control. The framework uses CORBA

(Documents Associated with CORBA 3.3, n.d.) to enable different platforms

and communication protocols to work with each other.

21

The Studierstube framework (Schmalstieg, et al., 2002) comprises application

objects that contain application data, data operations, and the graphical

representation of the data which acts as the user interface to the application.

Graphical and application data are added to a distributed Open Inventor scene

graph; thus a scene graph can be thought of as a set of application objects that

make up an application. Application objects can be hosted by different

network nodes, where each node contains a copy of the scene graph that is

updated in real-time. Application objects are managed centrally by a session

manager which maintains a list of application objects so that new objects and

users can be aware of the existing objects. Distributed fundamental AR

services such as tracking and video acquisition are accessible using the

OpenTracker (Studierstube project: Open Tracker, n.d.) and OpenVideo

(OpenVideo Documentation, n.d.) libraries, which allow for the configuration

of custom tracking and video hardware to be configured to work in the

Studierstube framework. Application objects are written in C++ as Open

Inventor scene graph nodes and can be dynamically loaded during runtime

(Kainz & Streit, n.d.). Interaction is achieved through a personal interaction

panel (PIP) which consists of a pad on which virtual buttons and sliders are

rendered and a pen to select and manipulate the virtual elements. The PIP also

serves as a display for private information which can only be seen by the

owner of the PIP.

The Tinmith evo5 framework (Piekarski & Thomas, 2003) uses a distributed

object-oriented approach with four classes of objects, namely, data, processing

(which outputs data), core (core features that other objects can inherit) and

22

helper (programming interfaces that help with application development). Data

objects are used as input to processing objects which produce other data

objects. Objects are programmed using C++ and inherit from one of the four

classes; hence, tracking devices are implemented as a type of processing

object which produces a data object that holds the position of a tracked object.

Input devices use the keyboard model where all interactions are mapped to a

unique identifier, while motion-based input devices use position offset data to

represent motion. Other objects which perform other functions would similarly

be implemented.

A component-based framework called VARU (Irawati, et al., 2008) is

different from the frameworks that have been introduced as there are three

interaction spaces in which objects can simultaneously exist, namely, AR, VR

and UbiComp. This means that different users interacting in different spaces

can collaborate on the same tasks. In VR, users can only interact with virtual

objects, while users in UbiComp are able to communicate with physical smart

objects like refrigerators and televisions. Users are able to communicate with

both virtual objects and physical smart objects in the AR space. The VARU

framework consists of a VARU server and a VARU client. Within the VARU

server is an object database, object server and simulation server (for physics

simulation of virtual objects). A VARU client implements the AR, VR and

UbiComp rendering mechanisms and interaction devices. In the UbiComp and

AR space, a middleware called CAIM (Ahn, et al., 2005) and the UPnP

protocol (UPnP, n.d.) are used to allow physical objects to communicate on a

VARU network.

23

The ARCS framework (Chouiten, et al., 2011) is based on components that

use the signal/slot mechanism of the Qt framework (Signals & Slots, n.d.) to

emit and respond to signals. As Qt is for non-distributed systems, a custom-

built middleware is used to enable components on different network nodes to

use the same signal/slot mechanism by the creation of proxy signal emitters

and receivers. As a result, the granularity of component distribution is very

fine, i.e., components can make very low-level function calls to different

machines without prior knowledge of their location. Applications in ARCS are

defined through the use of XML scripts which specify the signal/slot

connections of different components. An application is a finite state machine

and each XML script represents a state.

Most existing component-based frameworks provide flexibility by separating

tracking and interaction implementation from application development. They

typically use a middleware for connecting systems with different

communication protocols and rely on specific APIs for application

development. The APIs and development environments that must be used for

application development may make it easy for programmers to create UAR

applications. However, it is also a source of limitation in terms of the

compatibility with other software libraries and programming mechanisms.

Furthermore, many developers have already established tools and practices for

developing applications in their field which may conflict with the ones

specified by the component-based framework. Therefore, a more liberal type

of framework uses standard definitions to allow interoperability of data and

24

functionality between components and leaves the implementation completely

to the developer.

2.3.3 Standards-based Frameworks

The KHARMA framework (Hill, et al., 2010) is an extension of KML

(Wilson, 2008). In KML, placemarks identify a location’s name, description

and WGS84 coordinates (Department of Defense, n.d.). The placement of 3D

geometries like points, lines, polygons, and full 3D models on locations is also

defined in KML. KHARMA extends the objects that can be placed in

placemarks to labels, balloons, sounds, and trackers. HTML and JavaScript

content can be placed in balloons. Sounds are defined in placemarks by adding

a link to where a sound file is hosted. Trackers defined in a placemark indicate

the specific trackers, identified using an ID string, that should be used in a

location. For example, if a placemark uses fiducial marker tracking of a

specific marker format, the client device would use the appropriate tracking

algorithm to detect the placemark and render the graphical elements associated

with it.

In the ARML framework (Lechner, 2013), a UAR environment consists of

features, which are physical objects on which visual assets can be augmented.

A feature defines an anchor, which is used by viewing devices for detection of

the feature, and the visual asset to be augmented. An anchor can be a set of

GPS coordinates (for geospatial AR), an image or a marker (for computer-

vision AR), while a visual asset can be text, images, 3D models or video.

There is some integration with GML (Portele, 2007), in particular its geometry

25

definitions, which are used in KML to define 3D geometry that can be used as

anchors. This means that locations that are defined in KML or GML

documents can have features defined in ARML attached to these locations.

ARML uses ECMAScript (ECMAScript Language Specification, 2011), which

must be supported by viewing devices if they are to access the dynamic

elements of an AR scene. Trackers are defined using a uniform resource

identifier (URI) to identify the type of trackers to be used in the AR scene,

with remotely hosted tracking code linked to using a uniform resource locator

(URL).

The ARAF standard (Preda, et al., 2013) defines a scene graph format where

nodes can be of different basic types, such as media, script, sensor, actuator,

scene animator, communication and compression. New node types can be

defined based on the basic node types. Media nodes can be audio, image,

video, text and 3D models. Sensor nodes generate data and allow for user

interaction. Scene animators modify certain nodes by interpolating their

orientation, scale, position, color, or some other value between a range over

time. Script nodes can be programmed using ECMAScript to generate triggers

to other nodes. Communication and compression nodes handle transfer and

streaming of various kinds of data, e.g., playback of video. ARAF works in

conjunction with the MPEG-V format (Han & Kim, 2014) which specifies the

syntax and semantics of data and command representations to enable

interoperability between virtual and real worlds. Thus, data formats for sensor

nodes used for user interaction, virtual object data and properties, and

command formats for the control of actuator nodes are all governed by

26

MPEG-V. Tracking for AR is accomplished using sensor nodes which can

output position and orientation or GPS data. For computer-vision AR, the

camera is implemented as a sensor node. Nodes are defined in XML files with

the locations of raw data and scripts indicated by URLs. An ARAF device is a

viewing device that interprets ARAF files and allows users to view and

interact with nodes.

As discussed earlier, standards-based frameworks allow for more freedom in

the implementation of objects in the UAR environment as well as input and

output devices. The developer is able to use any CV-based tracking algorithms

with the data provided through the standards. However, the standards

reviewed are not for UAR applications per se but for distributed AR

applications. The distinction between UAR and distributed AR is the lack of

interoperability of physical objects and their integration in applications. A

standards-based framework that can truly be classed as UAR is still not

available.

2.4 Summary

The issues of UbiComp include hiding user interaction devices and computer

hardware and enabling systems on different platforms and protocols to be

interoperable. The fundamental challenges of AR are mainly in the tracking

and display technology. The main thrust of this research is to achieve a UAR

framework that handles all the afore-mentioned challenges while making

application development rapid and easy. There are three main types of UAR

frameworks, namely, high-level frameworks, component-based frameworks,

27

and standards-based frameworks. High-level frameworks are generally aimed

at easing application development at the cost of application implementation

flexibility. Component-based frameworks are highly successful in achieving

interoperability of different systems and distributed computing but enforce the

use of specific APIs and development environments. Standards-based

frameworks, on the other hand, while allowing for implementation flexibility,

do not have very good support for physical objects and do not ease application

development.

28

Chapter 3. Design of the SmARtWorld Framework

3.1 Requirements

The framework proposed in this research, called SmARtWorld, is for the

creation of UAR environments. UAR environments implemented with

SmARtWorld will hereafter be called SmARtWorld environments. The basic

requirements of UbiComp and AR which were discussed in Chapter 2, i.e.,

heterogeneity and spontaneous interoperation, invisibility of computer

hardware, transparent user interaction, context awareness and management,

and tracking of users and objects, will be considered in the design of the

SmARtWorld framework.

User experience is another design consideration in SmARtWorld. Each of the

UAR systems reviewed in Chapter 2 targets one or a combination of the

following three groups of users, namely, end-users, application developers and

resource creators. The SmARtWorld design, however, will account for the

requirements of all three groups. For end-users, a SmARtWorld environment

must provide accessibility to computer functions in a user-friendly way.

Application developers should not have to be concerned with the

implementation of the fundamental technologies of UbiComp and AR, and

they should have the freedom to create any kind of application in a rapid and

straightforward manner. Lastly, resource creators need to have assurance that

the resources they create will be usable in any SmARtWorld environment

while having complete flexibility in the way the resources would appear and

behave.

29

Finally, with limitless potential applications of SmARtWorld environments

and locations where they would be useful, SmARtWorld will be designed for

universal access to all applications and SmARtWorld environments so that

applications in general will not have different requirements of viewing and

interaction hardware. However, application and resource designers will still

have the freedom to cast such restrictions.

3.2 Overall Architecture

The main novelty of the proposed framework is that every resource, including

a viewing device, is a smart object. Object-oriented programming (OOP) is a

major influence on the design of this framework. Every smart object has data

and behavior, with a basic set of data and functions found in every smart

object, similar to the base “Object” type of some OOP languages like C# and

Java. In bringing this concept into a SmARtWorld environment, smart objects

can either be a physical or virtual object rather than a segment of computer

code. The basic data and functions of smart objects are to facilitate basic UAR

functionality such as communication, tracking and invocation of behavior.

Smart objects are the very basic building blocks of applications in a

SmARtWorld environment and can be implemented to encapsulate any kind of

behavior and provide any kind of data. To allow for freedom of

implementation, there are no typed objects which smart object

implementations have to follow or inherit from.

30

A SmARtWorld environment is basically a physical location where smart

objects are linked to a network and can be accessed by users. There is one

primary server to which smart objects and viewing devices are generally

connected. Once connected to the primary server, smart objects will become

aware of each other and start waiting for invocation of their functions, requests

for the data they provide, and start working together automatically. Smart

objects can have functions which are invoked via remote procedure calls

(RPCs). They can also have a virtual appearance that is seen in AR that can be

used as a user interface for input to and output from the smart object. The

addition of a virtual user interface can make complex computer interaction

through smart objects more user-friendly and transparent than completely

relying on physical interactive elements.

Application development at a high level is simply just the placement of smart

objects in a SmARtWorld environment. Application developers can create

new smart objects to fulfil some required functionality in their application or

they can obtain smart objects created by resource creators. Resource creators

can thus be product manufacturers, software developers, researchers, or

hobbyists who create smart objects with specific specialized functionality

which are provided to application developers. The various aspects of the

SmARtWorld framework will be described in detail in the subsequent sections

of this chapter.

31

3.3 Smart Objects

3.3.1 Smart Object Architecture

Every resource in a SmARtWorld environment is a smart object which can

provide data and functions. Function calls are technically RPCs because they

are typically invoked outside of the program that runs in the smart object.

Each piece of data and RPC is associated with a data and RPC identifier

respectively which are character strings allowing other objects to recognize

data and RPCs that may be useful. There is also a set of basic commands

common to all smart objects which facilitate basic UAR functionality.

The creation of a smart object involves the implementation of three main

layers, as shown in Figure 3-1: the fundamental layer, which consists of the

hardware used by the smart object and the native operating systems and

libraries that are used to access the hardware; the functionality & data

interface layer, which sends and receives messages using a communications

protocol defined for SmARtworld and handles the messages appropriately;

and the functionality & data access layer, which exposes the data and RPCs of

the smart object to other objects.

Figure 3-1. Architecture of a smart object.

Hardware (microprocessors, communication,

RPC and command handler

Communications protocol

Data manifest

Native platform and software libraries

Functionality &

data access

layer

Functionality &

data interface

layer

RPC manifest

Fundamental

layer

32

There is virtually no restriction on the implementation of the fundamental

layer. Key hardware elements are a microprocessor with memory to store and

execute the programming of the smart object, and a network port to connect to

the primary server. Any software libraries can be used in the fundamental

layer, as long as the hardware platform can support the functions provided by

the libraries. The underlying network protocol used by smart objects to

communicate is not restricted, provided they have a communication route to

the primary server via smart objects called hubs, which are able to relay

messages between different networks. This will be explained further in

Section 3.4.2. To users and other objects in the UAR, the fundamental layer is

the hidden part of a smart object which quietly does its job. However, there

may be physical elements in the fundamental layer which are perceptible by

users in the UAR, like LEDs or sound.

The functionality & data interface layer implements the communications

protocol and RPC and command handler. The communications protocol

allows the smart object to interpret received messages on the network and

format outgoing messages properly, and also conducts the necessary

procedures when first joining a SmARtWorld environment. The

communications protocol is described in detail in Section 3.4. The RPC

handler invokes the corresponding behavior and internal function calls when

an RPC is received from the network. The command handler takes care of the

basic smart object commands that are received on the network. Table 3-1 lists

some of the basic data and commands, some of which are mandatory, that a

smart object can implement.

33

The data and RPC manifests are the only ways to access the appearance and

functionality of a smart object, and this is the reason they are in the

functionality and data access layer. In a SmARtWorld environment, data and

RPCs can be used autonomously by smart objects or they can be explicitly

accessed by users through the user interface of the smart object. The virtual

interface of a smart object is an important aspect of the SmARtWorld

framework. However, it is not mandatory for a smart object to have a virtual

interface as viewing devices can generate ways for users to access RPCs and

data using the identifiers stored in the manifests.

Table 3-1. Basic data and commands of a smart object

Data Purpose

3D model and

user interface

For rendering the virtual appearance and interactive

elements of the smart object. Optional.

Data manifest To expose data that other objects can retrieve.

Mandatory, but can be empty.

RPC manifest To expose the RPCs that other objects can invoke.

Mandatory, but can be empty.

Pose The position and orientation of the smart object in the

SmARtWorld environment, for rendering and/or

context-management. Mandatory, but can be unknown.

Command Purpose

Get data Allows other objects to request for a specific piece of

data. Optional.

Get data

manifest

Allows other objects to request for the list of data

available from this smart object. Mandatory.

Get RPC

manifest

Allows other objects to request for the list of RPCs

available from this smart object. Mandatory.

Get pose Allows other objects to request for the pose of this smart

object. Mandatory.

3.3.2 Virtual User Interface

Interaction with objects is achieved either by direct manipulation of the

objects, which can be the traditional mode of operation of the objects, or via

34

physical controls that are built into the smart objects to access their functions,

or through the virtual user interface of the objects. The virtual user interface

also provides information and visual output from smart objects as text or 3D

graphics.

The 3D model of the virtual interface plays a crucial role in providing

complex object-centric interaction methods with the object and is stored in a

3D assets file with the smart object. The 3D assets file includes the usual mesh

data, such as vertices, normals and material properties. In addition, the

definitions for the interface element, including the RPCs that they trigger,

must be added to the 3D assets file. The interface element definitions

determine the ways with which the element is interacted, e.g., whether the user

simply has to touch to activate or whether it involves some other actions, and

the data that is passed to the RPC of the object.

Due to its extensibility and comprehensiveness in describing graphical scenes,

the COLLADA file format (Khronos Group, 2008) is chosen to store the

virtual user interface in an XML file. In the COLLADA specification, a 3D

scene is arranged into separate nodes representing separate virtual models. The

node ID is thus used to reference nodes so that smart objects can alter their

user interface dynamically. Each interactive element is defined as a separate

node, using custom interaction tags and parameters that are defined outside the

COLLADA XML schema for this research. Table 3-2 lists the tags and

parameters that can be added to a COLLADA file to make nodes interactive

and dynamic.

35

Table 3-2. List of XML tags for interactive elements of a virtual user interface

Tag Parameters Purpose

Click Node ID, RPC identifier Define element as a

button

Drag Node ID, minimum and maximum

values, minimum and maximum

translation, RPC identifier

Define element as a slider

Rotate Node ID, minimum and maximum

values, minimum and maximum

rotation, RPC identifier

Define element as a knob

Object Node ID, data identifiers, RPC

identifier

Use a smart object as

input

Translate Node ID, x-displacement, y-

displacement, z-displacement,

animate (true/false), speed

(units/second)

Translate the object

Rotate Node ID, x-rotation y-rotation, z-

rotation, animate (true/false), speed

(units/second)

Rotate the object

Scale Node ID, x-scale, y-scale, z-scale,

animate (true/false), speed

(units/second)

Change the scale of the

object

Overlay Node ID, colour Change colour of the

element

Text Node ID, text, font colour, effect,

effect colour

Render text on the

element with optional

glow or outline effect

Visible Node ID, visibility (true/false), real

(true/false)

Show or hide an element

Special Node ID, special effect ID Indicate that the element

has some special

rendering property (e.g.

reflective, glows, etc.)

The first four tags in Table 3-2 are input tags. The first three tags allow for

direct manipulation of the graphical element using a one or two-finger gesture.

The last input tag allows for using smart objects as input to the RPC invoked

by the corresponding graphical element. By defining the three gestures (Click,

Drag, and Rotate) as input tags, these gestures are supported natively in the

SmARtWorld framework, and viewing devices should ensure that these

gestures are available as input methods. Smart object creators would be

36

assured that users would be able to use these four gestures to interact with

their virtual user interface of the object. These four gestures are generally

classified as direct gestures as opposed to symbolic or abstract gestures,

because they involve direct manipulation of objects typically in 2D (though

the objects themselves could be in 3D). They have been chosen for native

support for two reasons. Firstly, these gestures have become pervasive in daily

life as they are supported by almost all mobile devices and interactive screens.

Secondly, direct gestures are much easier to learn and discover (Yee, 2009)

and their intuitive meaning is generic and suitable for different applications.

All the input tags have the identifier of the RPC they are meant to invoke as a

tag parameter. The Drag and Rotate tags have a “minimum and maximum

value” parameter to define the start and end values of the dragging and rotary

motions, and a “minimum and maximum translation” or “minimum and

maximum rotation” to indicate how far each element is supposed to be

translated or rotated from its original state. The latter parameters can also be

used by viewing devices to display the dragged or rotated state of the

interactive element accordingly, stopping when the maximum value is

reached. The Object tag has “data identifiers” as one of its tag properties

which indicates the data that is to be transferred from the object to the

interactive element. It is then the responsibility of the viewing device to obtain

the data and transfer them to the receiving object.

The last seven tags in Table 3-2 are output tags. They modify the graphical

elements that they are applied to. The ability for objects to dynamically alter

37

the node definitions of their virtual user interface allows for output tags to

reflect changing states or values held by the smart objects. The first three

output tags can be animated. This is achieved by the viewing device which

interpolates between the initial and final state of the element according to the

speed property. The Visibility tag can be used to hide and show different

interface elements. This feature can be used to realize context-aware user

interfaces or interfaces akin to sequential menus. The visibility tag also has a

“real” parameter that can indicate whether the mesh geometry is representing

the physical geometry of the object, in which case viewing devices can hide

the virtual mesh but use its geometry for occlusion of virtual objects (see

Section 5.1). The special tag allows for special effects to be applied to the

appearance of smart objects (see Section 6.2).

3.4 Communications Protocol

3.4.1 Messaging

A high-level communications protocol has been defined with a list of standard

commands to facilitate the basic functionality that all smart objects need to

possess in order to work in the SmARtWorld environment. This protocol is

implemented on top of a lower level protocol, such as TCP (Cerf, et al., 1974),

which takes care of data transmission, error detection, packet splitting and

reassembly.

Majority of the standard commands can be categorized as a “GET” command

for requesting specific data, or a “SET” command for transferring data to an

object (Table 3-3). A message that is being sent between smart objects

38

typically consists of four main components, namely, the command, target

address, sender address, and parameters. Commands broadcast to all objects

do not include the target address in the message. The whole message is

encoded as UTF-8 characters (Yergeau, 2003). Every message is concluded by

the two-character sequence “<CR><LF>”, which are the carriage return and

line feed characters respectively. They are used to indicate the end of a

message; this allows the content of a message to be of any length. The general

format of a message is thus “<command>, <target address>, <sender address>,

<parameters><CR><LF>”.

Raw binary data is converted to Base64 encoding (Josefsson, 2006) before

being transferred over the network so that raw bytes can be transferred as

alphanumeric characters and thus will not be confused with the delimiting

characters, such as commas and vertical bars, which are used to separate

different parameters in the message. It is the responsibility of the receiving

object to decode the raw data received and use it appropriately.

RPC parameters make up one component of a message. While the main

components of a message are separated by commas, different parameters are

separated by vertical bars (Unicode character 0x007C). As an example, a

message from a smart object with address “3” informing a smart object with

address “5” of its pose would be: Set My Pose,3,5,4.5|6.3|1.2|0|45|0.

39

Table 3-3. List of standard commands and their parameters

Command Parameters Purpose

New Sender address Announce the existence

of an object

Disconnect Sender address Indicate that an object is

leaving the environment

Get RPC Manifest Target address, sender

address

Request for the list of

RPCs from the target

object

Get Data Manifest Target address, sender

address

Request for a list of data

that the target object

provides

Get Data Target address, sender

address, data identifier

Request for a specific

piece of data identified

by the data identifier

from the target object

Get Pose Target address, sender

address

Request for the pose of

the target object in the

environment

Set My RPC Manifest Target address, sender

address, list of RPC

identifiers

Send a list of the sender

object’s RPCs to the

target object

Set My Data Manifest Target address, sender

address, list of data identifiers

Send a list of the sender

object’s available data to

the target object

Set My Data Target address, sender

address, data identifier, raw

data in Base64 encoding

Send raw data to the

target object

Set My Pose Target address, sender

address, translation vector,

rotation angles

Send the pose of the

sender object

Set My Virtual

Interface Node

Target address, sender

address, node ID, user

interface tag, tag parameters,

mesh

Send an alteration to the

AR user interface of the

sender object (see

Section 3.2.2)

Set Your Data Target address, sender

address, data identifier, raw

data in Base64 encoding

Set the values of a

specific piece of data of

the target object’s

Set Your Pose Target address, sender
address, translation vector,
rotation angles

Set the pose of the
target object

RPC Target address, sender
address, RPC identifier, input
data

Invoke an RPC in the
target object

40

3.4.2 Addressing and Routing

Smart objects can connect to the SmARtWorld environment using any

communication protocol. All connections must eventually lead to the primary

server, which uses Ethernet LAN to achieve universal access and to allow

viewing devices to connect wirelessly via a router. There is no distinction

between viewing devices and smart objects, which means viewing devices can

connect to the environment through any protocol and interact with smart

objects. Smart objects using different communication protocols connect to the

primary server via hubs. The hubs have both an Ethernet LAN connection as

well as a connection to the communication protocol used by the smart objects

it hosts. A possible SmARtWorld environment setup is shown in Figure 3-2.

Figure 3-2. Network connections in a SmARtWorld environment.

In order for smart objects in a SmARtWorld environment to be uniquely

identified so that messages can be routed to them, a smart object has two

Viewing device

Primary

server

Router with

wireless access

point

Smart

object

Smart

object

hub Smart

object

Smart

object

hub

Smart

object

Smart

object

Legend:

Ethernet LAN

WiFi

Other

41

address components. The first component is the network address; this is the

address assigned by the networking hardware used by the smart object. An

object using an Ethernet LAN connection would have a network address

consisting of an IP address and a port number. The second component is an

index number that uniquely identifies the smart object hosted at the network

address. The second address component is hereafter known as the internal

address. Smart objects which are not hosted by a hub do not have an internal

address; they are simply identified by their network address. The target

address and sender address components of a message in the SmARtWorld

protocol refer to the internal addresses of the respective objects. Messages

intended for smart objects which are not hosted by a hub would have an empty

target address. The network address of the sender is assumed to be reported by

the lower level communications protocol when a message is received; this is

the reason that the network address is not included in a message.

This addressing scheme is important for allowing smart objects being hosted

by hubs to have a presence in the SmARtWorld environment. Hubs are

basically smart objects which act as a host to other smart objects. A notable

feature of the hubs is that they hide the true network and internal addresses of

objects from other hubs and assign their own internal addresses to these

objects. The importance of this feature will be explained in later sections. The

primary server is considered a hub as it acts as a host to all the smart objects in

a SmARtWorld environment and it maintains connections to all the smart

objects, either via hubs or directly. The primary server is specially designated

because a SmARtWorld environment must have one (while other hubs are

42

optional) to serve as a common gateway for WiFi-based viewing devices to

view and interact with a SmARtWorld environment.

When a new smart object joins the environment, it broadcasts a “New”

message to report its internal address. The hub which the smart object is

directly connected to receives the message and adds the smart object to a

database of smart objects that it is aware of. Every hub has such a database

which include the hub’s assigned internal address and the reported internal

addresses of the smart objects. Smart objects directly hosted by the hub would

not have a reported internal address, unlike smart objects from other hubs, so

this value is empty in the database. The assigned internal address is given by

the hub to ensure that it is a unique value not shared by other objects. The hub

changes the sender address of the “New” message to the assigned internal

address and forwards the message to all the smart objects that are directly and

indirectly hosted by it (excepting the smart object that sent the message).

Awareness of a new object thus propagates from its direct hub outwards to

other objects. Each time the message encounters a hub, the sender address is

changed to the one assigned by the hub (Figure 3-3).

43

Figure 3-3. Propagation of smart object existence.

Hubs hide the network and internal address of smart objects and assign new

addresses to the smart objects when propagating the existence of these smart

objects. Figure 3-4 shows the address assignments and addressing changes that

take place for routing messages between four objects. Two of the objects are

hosted directly by hub A, the other two by hub C, and hubs A and C are

connected to hub B. In Figure 3-4, the address of each object is denoted by the

network address of its hub followed by its internal address. Figure 3-4a shows

the addresses of smart objects assigned by the hubs that host them directly;

these addresses reflect the true network locations of the objects.

“New, <blank>”

“New, 1”

“New, 5”

<blank>:1

1:5

5:3

“New, 3”

Legend:

Smart object

Hub

Hub database entry

(reported address:assigned

address)

44

Figure 3-4. (a) Addresses used by hubs for objects hosted directly. (b)

Addresses used by hubs for the same objects which are hosted directly or

indirectly. (c) Addresses used by one of the objects to send messages to the

other objects. (d) Routing of a message over multiple hubs.

In Figure 3-4b, the addresses assigned to the objects hosted by each hub

directly and indirectly are shown. When a smart object sends a message to

another smart object, it uses the internal address assigned by its hub as the

A

B

A-1

Legend:

Smart object

Hub

A-2

C

C-2
C-1

A

A-1 A-2

B-4 B-3
B

A-1 A-2

C-2 C-1

C

B-3 B-4

C-2 C-1

(a) (b)

A-1

B
A

C

C-2

A-4

B-4
C-2

C-2

A-1
A-2

A-4
A-3

(c) (d)

Address format: Network-assigned

A

45

target address. This means that an object hosted at hub A uses the internal

addresses assigned by A to send messages to other smart objects in the

environment (Figure 3-4c). For smart objects directly hosted by the same hub,

messages can be routed directly to the target object via the hub. For objects on

different hubs, the message is routed to the next hub until the message reaches

its target. Each time the message is relayed to the next hub, the target address

of the message is changed to the internal address assigned by the next hub for

the target object (Figure 3-4d).

Apart from connecting different network protocols, hubs serve other purposes.

A hub could be used to allow smart objects to create and manage other smart

objects. A complex smart object made up of a hierarchy of smart objects could

be created using a system of nested hubs. However, for smart objects to join

an environment automatically, there must be a mechanism for automatic hub

discovery for the object to become aware of the network address of the hub.

Automatic hub discovery can take place with a handshaking procedure, but

this depends on the low-level communications protocol having a mechanism

for broadcasting messages. The actual implementation of the handshaking

protocol for smart objects with different networking hardware will be

described in subsequent chapters. Alternatively, if there is no broadcasting

mechanism for the hub discovery procedure to take place, the network address

of the hub can be entered either manually into the smart object provided the

object has a way to do this, or programmed into the smart object, in which

case if the network address of the hub changes the smart object has to be

reprogrammed.

46

3.5 Summary

In this chapter, the design of the SmARtWorld framework has been described.

It is primarily a component-based framework, with a communication protocol

and a schema for virtual user interface definition. The novelty of the

framework is that every resource, whether it provides fundamental AR

functionality or higher-level AR application functionality, is a smart object

which uses the same architecture.

Smart objects can have virtual user interfaces which are displayed and

interacted with in AR. Virtual user interfaces allow users to access the

functionality of smart objects in a user-friendly manner. A high-level

communications protocol has been designed which allows smart objects to be

aware of each other, work together to provide basic UAR functionality as well

as to invoke specially-programmed functionality in each other via RPCs. The

use of smart objects as hubs to other smart objects allows for the unification of

different networking protocols. There is one hub designated as the primary

server which guarantees access to all smart objects and WiFi connectivity for

viewing devices.

When compared to the other UAR frameworks reviewed in Section 2.3.2,

there is more freedom in the implementation of the fundamental behaviour of

a resource because there is no need to conform to a specific programming

language or middleware, such as CORBA, which is used by the DWARF

framework (Bauer, et al., 2001), Open Inventor, which is used by Studierstube

(Schmalstieg, et al., 2002), UPnP, which is used by the VARU framework

47

(Irawati, et al., 2008) and Qt, which is used by the ARCS framework

(Chouiten, et al., 2011). Instead, SmARtWorld utilizes a communication

protocol to standardise data transfer and invocation of functions in smart

objects, and an XML schema to standardise the definition of virtual user

interfaces so that viewing and interaction devices will be able to access the

functionality of smart objects in any UAR environment.

Based on the architecture and principles described in this chapter, the

remaining chapters will discuss the implementation of smart objects that

provide UAR functionality, viewing devices and smart objects for different

purposes as examples of the potential of the SmARtWorld framework.

48

Chapter 4. Implementation of a SmARtWorld Environment

In this chapter, a demonstrative implementation of a UAR environment based

on the SmARtWorld framework is described. The general architecture of a

UAR environment is given in Figure 4-1. It consists of the basic smart objects

that are required in order to realize an environment with smart objects that can

be interacted with through their virtual user interfaces. This implementation

consists of the following smart objects, namely, a basic smart object with

simple behavior and a virtual user interface, a landmark hub which allows

viewing devices to track their pose in the environment by serving data about

physical features in the environment, an object tracker to track the pose of

smart objects in the environment; and a primary server which links all the

smart objects. These objects work together to realize UAR applications.

Figure 4-1. Architecture of a UAR environment

4.1 Basic Smart Object

In this section, the implementation of a basic smart object with two RPCs,

namely, On and Off, is described. It runs on a PC which has an Ethernet LAN

Viewing

Device

Smart

Object

Object

Tracking

Sensors

Land-

marks

Identifier, pose and

position, virtual

interface definitions
Remote

procedure calls

User

Pose

and

position

Interaction

Direct physical manipulation

Identifiers,

virtual interface

definitions of all

objects

Identifier, pose and

position, virtual

interface definitions

Output

Primary

Server

49

connection. The smart object has a virtual user interface through which its

RPCs can be invoked. The RPCs result in a change of color of the smart

object.

4.1.1 Fundamental Layer

A basic smart object that runs on Windows can be implemented easily using

the .NET Framework or Java. A computer with an Ethernet LAN network

card, the Windows operating system and the .NET software libraries would

thus form the fundamental layer of the smart object. Other operating systems

which have Ethernet LAN interfaces can also be used.

For networking, the smart object is implemented as a client program (the

server being an Ethernet LAN hub) using TCP sockets for data transfer. The

first action of a smart object when its program is executed is to initiate the hub

discovery protocol. As TCP sockets do not have a broadcast function, the

smart object has to broadcast using a UDP socket to the subnet broadcast

address to ensure that the hub will receive it. The hub sends a reply containing

its network address and port number so that the smart object can establish a

formal connection to the hub. To be able to receive the reply, the smart object

has to be listening on a specific UDP port to which the hub can reply. A valid

UDP port number must be specified by the smart object to avoid clashes with

other programs which are on the same network host and listening on the same

port number; thus, this allows for multiple independent smart objects (but not

Ethernet LAN hubs) to be running on the same hardware. UDP sockets are not

used for the other communication tasks because of the lack of reliability that

50

TCP can provide. If the UDP port number that the smart object broadcasts is

lost in transmission or corrupted, or the hub is unavailable during the hub

discovery procedure, the smart object can continue the discovery procedure

until the procedure is successful. Once successful, the smart object will not

need to be on a UDP port. To achieve this, a standard UDP port for Ethernet

LAN hubs to use must be defined, and this is set as 2056 in this research.

The hub discovery procedure for Ethernet LAN devices can be summarized as

follows. The smart object broadcasts the port number that it uses for hub

discovery to UDP port 2056, and waits for a hub to reply to the port with its

network address and port number for TCP socket communication. If there is

no reply after a certain time period, the smart object repeats the procedure.

Once hub discovery is achieved, the smart object establishes a persistent TCP

connection with the hub, and sends a “New” command and receives the other

“New” commands from the hub via the TCP socket.

4.1.2 Functionality & Data Interface Layer

The communications protocol is entirely based on the scheme described in

Section 3.4. When data is received by the network card, it is interpreted as a

stream of UTF-8 characters. When the two-character sequence “<CR><LF>”

is encountered, the stream of characters read is treated as a single message.

The message is split into its command, target address, sender address, and

other parameters and sent to the appropriate handler code. Table 4-1 shows the

basic handling procedures implemented for the relevant standard commands

for this object. Other smart objects may have different ways of handling

51

commands or may lack some of the handlers, depending on the functionality

they provide or way they work.

A simple smart object does not need to implement many of the standard basic

commands, especially if it does not depend on other smart objects for its

functionality. The five commands in Table 4-1 are sufficient for a smart object

to have a virtual user interface displayed in the UAR environment and

interactivity with users.

Table 4-1 Command and RPC handling procedures for a basic smart object

Command Parameters Procedure

Get RPC

Manifest

Target address,

sender address

Send a “Set My RPC Manifest” command

with the “On” and “Off” RPCs listed (their

identifiers are set as RPCStandalone_On,

RPCStandalone_Off respectively).

Get Data

Manifest

Target address,

sender address

Send a “Set My Data Manifest” command

with just one data identifier in the manifest,

the one for virtual user interface (the data

identifier is set as VirtualUserInterface).

Get Data Target address,

sender address,

data identifier

Responds only if the data identifier is

“VirtualUserInterface”, in which case a

“Set My Data” command embedded with

the smart object’s user interface

COLLADA file is sent.

Get Pose Target address,

sender address

Send a “Set My Pose” command with the

pose of the object as its parameter.

RPC Target address,

sender address,

RPC identifier,

input data

If the RPC identifier is “On”, send a “Set

My Virtual Interface Node” command to

change the color to green. If it is “Off”,

change the color to red.

4.1.3 Functionality & Data Access Layer

As mentioned, the only RPCs that the basic smart object have are “On” and

“Off”, and the only data that it provides is its virtual user interface. As these

RPCs invoke standalone functions, i.e., there is no interoperability with other

52

smart objects, their RPC identifiers are not very important. However, they

should not collide with RPC identifier definitions that have meaning. Such

standalone RPCs can thus be assigned a special identifier prefix, which is

given as “RPCStandalone” in this research. The identifiers for “On” and “Off”

are thus “RPCStandalone_On” and “RPCStandalone_Off” respectively.

The basic smart object has a virtual user interface, which means it must have a

COLLADA representation of its 3D mesh, materials, interactive and dynamic

elements. The virtual user interface is created easily in any 3D authoring

software and exported in the COLLADA format. The virtual user interface for

the basic smart object is modeled using the free open-source 3D authoring tool

Blender 3D (Figure 4-2).

Figure 4-2. Creation of a virtual user interface.

53

Plugins can be created for most 3D authoring software to enable the definition

of interactive and dynamic user interface elements as part of the modeling

process. Otherwise, this can be achieved after the COLLADA file has been

generated using third party tools or by adding the tags into the COLLADA file

manually. The middle cube is the main body of the smart object while the

green and red surfaces are buttons for the “On” and “Off” RPCs respectively.

The salient definitions for these elements are given in Figure 4-3.

Figure 4-3. Virtual user interface definitions for the basic smart object.

4.2 Primary Server

The primary server is a hub that connects to all Ethernet LAN devices that are

smart objects in the same subnet (which would be the case if all of them are

connected to the same router). At its core, it is implemented similar to a basic

smart object, except that it does not require any RPCs or a virtual user

interface, i.e., it can perform its job without human interaction. It runs on a PC

with an Ethernet LAN interface. Furthermore, TCP sockets are used for

Click:

RPCStandalone_On

Text: On Click:

RPCStandalone_Off

Text: Off

Overlay: Color(255,0, 0)

54

communications with smart objects and the UDP port 2056 is monitored for

the hub discovery procedure.

A significant aspect of the implementation of a primary server is its handling

of basic commands. Since an ordinary hub relays messages between smart

objects, it has to handle all the basic commands. As detailed in Section 3.4.2,

its main responsibility as a hub in handling commands is to change the target

and sender addresses from the received commands to those that it assigned and

forward the modified commands to the target address. This means that it has to

have a database of all the smart objects that are connected to it and this

database stores their corresponding network and internal addresses. However,

the primary server, and hubs in general, can help streamline communications

by maintaining more data about smart objects so as to respond to “Get Data”

and other requests immediately without having to relay the message to the

actual target smart object. This means that when a new object is connected to

the primary server, the primary server would start requesting for all of the

object’s data to be stored in its database.

Figure 4-4 shows the server program that has been developed in this research

for rapid prototyping of smart objects and UAR environments. It has a GUI

with a table that represents the data stored in the primary server’s database of

smart objects that are connected to it, namely, their reported internal address

and the internal address assigned by the server (Hub ID), the RPCs, and data

provided. There are four smart objects connected to the primary server as

shown in Figure 4-4. The last object is the basic smart object that has been

55

described in Section 4.1. The first object is a landmark server, and the next

two smart objects are landmark objects hosted by the landmark server which

will be described in Section 4.3. As the network addresses of the objects

indicate, the landmark server and landmark objects are hosted on the same

remote machine while the basic smart object is hosted on the same machine as

the primary server, but as a program running independently.

Figure 4-4. Database of smart object information in the primary server.

4.3 Landmark Server and Landmark Objects

The landmark server is like a hub except it does not host other objects on the

LAN. Instead, it creates smart objects that are used as landmarks, i.e.,

landmark objects, for viewing devices to track their pose within the virtual

coordinate system of the SmARtWorld environment. The landmark objects

that are created are hosted by the landmark server. The core of the landmark

server is similar to a basic smart object. It runs on a PC with Ethernet LAN

56

connection, and uses a TCP socket for communication and UDP port 2056 for

hub discovery.

The landmark server stores features on planar surfaces in the environment as

landmarks. Each landmark is represented as a rectangular image of the planar

pattern. There are several benefits of selecting planar surfaces as landmarks.

Firstly, planar patterns can be found naturally in many environments and can

be put up easily as posters or decorations. Secondly, the specific algorithm for

tracking the landmarks need not be defined. Thirdly, individual planar patterns

can be added, removed and switched easily without affecting the ability to

track the other patterns.

Like the primary server, the landmark server contains a database of smart

objects. However, the database only contains landmark objects. Unlike the

primary server, the landmark server provides RPCs that allow viewing devices

and other smart objects to interact with it. These RPCs facilitate the creation of

landmark objects out of physical objects in the environment as well as the

deletion of the landmark object (Table 4-2).

Table 4-2. RPCs in a landmark server object.

RPC Identifier Parameters Procedure

LandmarkServerAdd Image file of the

planar pattern, other

optional parameters

(name, dimensions,

pose)

Create a new landmark

object and associate the

image file as a piece of

data identified as

LandmarkPlanarImage

LandmarkServerDelete Target address Delete the targeted

landmark object from the

landmark server

57

Smart objects and viewing devices can interact directly with the landmark

server using the RPCs in Table 4-2 to add and delete landmarks. As the

landmark server does not have a virtual user interface, it depends on the

viewing devices to provide a user interface for users to invoke its RPCs.

Landmark objects, however, have virtual user interfaces which overlay the

physical landmarks in the environment and their own RPCs so as to allow

users to modify or delete the parameters of the landmark objects, namely the

name, dimensions and pose of the landmark (Table 4-3). The virtual user

interface is procedurally generated by the landmark server (Figure 4-5).

Table 4-3. RPCs in a landmark object.

RPC Identifier Parameters Procedure

LandmarkSetName New name Change the value of its

ObjectName data to the new name

LandmarkSetWidth Width in cm Change the value of its

LandmarkDimensionWidth data to

the new width

LandmarkSetHeight Height in cm Change the value of its

LandmarkDimensionHeight data to

the new height

LandmarkDelete Instruct the landmark server to

delete it

Figure 4-5. Virtual user interface of a landmark object.

58

4.4 Object Tracker

The object tracker is a smart object that tracks movable objects in the

environment. There is no restriction on the type of tracking methods used for

tracking objects. There are many possible methods with varying degrees of

accuracy and precision, which can vary depending on the conditions of the

environment and the type of objects that are tracked.

The fundamental layer of the object tracker consists of the tracking hardware

and algorithm. For the UAR implementation presented in this chapter, the

most traditional method of tracking in AR is used, namely, fiducial marker

tracking. This requires a camera to be attached to the object tracker. Objects

that are to be tracked have a fiducial marker attached to them which the

camera recognizes and uses to compute the pose of the objects with respect to

the camera. An object tracker must know its own pose in the environment so

that it can set the pose of the objects it tracks with respect to the environment.

An object tracker sets the pose of the objects it tracks continuously using their

“Set Your Pose” command. Objects that are tracked by object trackers need to

provide some data that allows object trackers to recognize them. This depends

on the tracking algorithm used. In this implementation, the Aruco tracking

library (Aruco, n.d.) is used by the object tracker. The markers used by Aruco

are a 5x5 grid of black and white squares which encode an ID integer number

between 0 and 1023 in a format similar to Hamming Code. The data provided

by objects to be tracked is the ID number of the marker attached to it. The data

identifier of the ID number is given as “TrackingArucoMarker”, so that when

an object joins the environment and the object tracker sees that it has this data

59

identifier, it requests for the ID number and knows to start looking out for this

object. Most other tracking methods require their tracked objects to have some

sort of identification or descriptor which can be provided in this way.

A single fiducial marker tracking object will not be able to perform tracking

over a large area, which means that objects outside of its tracking zone will

not have their pose updated. A number of such tracking objects need to be

placed in the SmARtWorld environment. In a large environment, it might

become a challenge to ensure that dead tracking zones are minimized. Other

tracking techniques which cover a larger area, such as magnetic field tracking

and signal triangulation, might be useful for covering dead zones, albeit

possibly with lower accuracy.

4.5 Summary

A basic implementation of a SmARtWorld environment has been presented in

this chapter. A primary server and a landmark server are needed for smart

objects to have an AR presence. Movable objects need to be tracked by an

object tracker. For universally-accessible environment, the primary server

should use an Ethernet LAN connection and the landmark objects should be

based on planar patterns. Viewing devices can be created independently to be

used in any SmARtWorld environment. The next chapter focuses on the

implementations of different kinds of viewing devices and ways to interact

with a SmARtWorld environment.

60

Compared to other UAR frameworks, such as Studierstube (Schmalstieg, et

al., 2002) and ARCS (Chouiten, et al., 2011), where the components are

programmed and linked to each other offline, a SmARtWorld environment is

built up while in operation by adding landmark objects that are tracked by

viewing devices and other smart objects that provide functionality to users for

any application. The SmARtWorld environment begins working once the

primary server is turned on. Further functionality is added via the smart object

discovery procedure described in Section 3.4.2. Programming UAR

applications can thus be done quickly and easily without having to write any

programming code if suitable smart objects are available.

61

Chapter 5. User Interaction and Display Devices

5.1 Wearable System

Wearable computers have begun to gain traction in recent times and are the

future of AR. While the use of a smartphone requires the user to hold and

interact with the mobile device, a lightweight wearable system using a HMD

that augments the full view of the wearer allows him/her to walk around

unencumbered and hands-free while being able to view the UAR environment.

Unfortunately, a lightweight and low-cost wearable system is unavailable thus

far, though a number of companies are attempting to achieve this.

A wearable system has been implemented in this research for use with

SmARtWorld environments. The program runs on the Windows platform and

comprises a laptop which outputs video to a HMD with a camera mounted on

it (Figure 5-1).

Figure 5-1. A wearable system.

Laptop

Head-mounted

display with

mounted camera

62

The camera tracks its transformation by recognizing planar features in the

environment and the AR view is achieved by rendering the virtual user

interfaces over the camera feed as the background. Interaction is achieved

through bare-hand interaction and gesture recognition. The program execution

of the wearable system is given in Figure 5-2.

Figure 5-2. Flowchart of the wearable system program execution

5.1.1 Pose Tracking

The prototype wearable system relies on planar feature tracking to track its

pose from the landmark objects in the SmARtWorld environment. When the

viewing device first enters the environment, it detects the existence of the

Connect to

primary server

Environment

tracking

Receive

messages

from server

Smart object

rendering

Bare-hand

tracking

Detect camera

image features
Match features

to reference

landmarks

Pose and

virtual user

interface of

smart objects

Detect hand and

fingertips

Detect finger

gestures

Landmark

objects

Pose of the

viewing device

Send RPC to

primary server

63

landmark objects therein and requests for relevant data about them, such as

their image file, dimensions and pose. As the landmark object data is received,

the image files are trained to allow the system to track them. Training involves

detecting the features in the image and computing descriptors for the features

so that they can be recognized and matched to the features from incoming

camera frames (Szeliski, 2011). The OpenCV library is used to provide the

CV functionality needed in the system, including feature detection, descriptor

computation and feature matching. ORB descriptors (Rublee, et al., 2011) are

used as the feature descriptor type as it provides a good balance between

computational efficiency and recognition performance. The planar feature

tracking process is summarized as follows:

1. Detect features from the scene captured by the camera and compute

descriptors for these scene features.

2. Match scene features to the trained features for each landmark.

3. Decide on a correct match and use the matched features to estimate a

homography using a four-point homography estimation algorithm with

RANSAC (Vincent & Laganiere, 2001).

4. Decompose the homography into the rotation and translation

components and use these as the transformation of the landmark from

the camera (Malis & Vargas, 2007).

A few issues related to tracking many landmarks in a wide area have to be

addressed. Firstly, scale invariance is not guaranteed especially if a landmark

could be seen from afar or at close proximity. This would be true for any

64

planar feature tracking algorithm. One approach to mitigate this problem lies

on the training of landmarks. It is possible to train and map multiple reference

images of the same landmark taken from varying distances as different

landmark objects. A landmark captured further away can have more of the

surrounding included in the reference image which will provide more features

for the tracking algorithm to detect.

Another issue is the scaling of computational time as the number of landmarks

grows. Three measures to improve the responsiveness of the tracking are used

in the wearable system. First, an MRU (most recently used) list of the recently

detected landmarks is maintained by the system. Scene features are always

tested with the landmarks in the MRU list first. When looking at the same

scene, the MRU effectively results in only one landmark being tracked every

frame. If the landmarks in the MRU do not match the scene features, the

remaining landmarks are tested. Therefore, the second measure is to pick

intelligently the sequence of the remaining landmarks to be tested. The

landmarks can be arranged by proximity to each other so that landmarks

nearest to the recently matched landmarks are tested first. External sensor

data, such as GPS and orientation sensors, can be used to make better

decisions on the sequence of landmarks to be tested. Even with intelligent

landmark sequencing, there may still be too many landmarks to be tested in a

single frame and this reduces the screen responsiveness. Hence, the third

measure caps the number of landmarks tested per frame to a maximum

number. Tracking is performed in the same thread as graphics rendering since

65

rendering depends on the tracking result. The choice of this number is thus a

balance between screen responsiveness and tracking accuracy.

The rendering framerate of the wearable prototype is about 12 frames per

second, with the main bottleneck being the landmark tracking algorithm.

Notwithstanding the measures to speed up landmark matching to a large

database of landmarks, the computational time for each tracking cycle

accounts for about 80 – 90 ms of processing time. The tracking performance

can be improved by making use of the graphics processing unit (GPU) of the

system’s video card (Sinha, et al., 2011).

5.1.2 Rendering Virtual User Interfaces

Rendering is performed using the programmable pipeline of the rendering

engine of the OpenGL library. The programmable pipeline is preferred over

the traditional fixed pipeline for improved rendering performance as well as to

allow for the implementation of certain effects that make the rendering of

virtual graphics over a real scene clearer to the user. In the programmable

pipeline, custom programs called shaders are loaded into graphics rendering

hardware during the program’s runtime and used to render 3D objects.

Different shaders can be used to render different objects.

Before rendering the virtual user interfaces of smart objects, the camera image

is rendered as a texture on a plane facing the OpenGL camera. Next, smart

objects are rendered in front of the plane so that the texture forms the

background.

66

The virtual user interface of a smart object is described as a 3D scene in the

COLLADA format. From the COLLADA file and any accompanying files

like texture images, the vertices, faces, normals, material properties, and

texture data are extracted and saved in memory. The 3D scene consists of a

collection of 3D elements in different poses with respect to the coordinate

system of the smart object. Ordinary 3D elements in the scene use a typical

shader for rendering, i.e., the object is rendered with colors, alpha

transparency, light-shading and textures.

Some elements have a property of “real” (instead of “virtual”) in their

COLLADA definition, i.e., the geometry represents a physical part of a smart

object. If an element has a “real” property, it indicates that the geometry

should not be rendered but should still block virtual elements that are rendered

behind it. This is achieved by setting the blending function used by OpenGL

(glBlendFunc function, 2012). The blending function decides the way the

pixels that are to be drawn (source pixels) interact with pixels which are

already drawn (destination pixels). Its formula is as follows:

𝑅 = 𝑅𝑠𝑠𝑅 + 𝑅𝑑𝑑𝑅

𝐺 = 𝐺𝑠𝑠𝐺 + 𝐺𝑑𝑑𝐺

𝐵 = 𝐵𝑠𝑠𝐵 + 𝐵𝑑𝑑𝐵

𝐴 = 𝐴𝑠𝑠𝐴 + 𝐴𝑑𝑑𝐴

67

R, G, B, A denote the red, green, blue and alpha color components of the final

pixel value, (𝑅𝑠, 𝐺𝑠, 𝐵𝑠, 𝐴𝑠) and (𝑅𝑑, 𝐺𝑑, 𝐵𝑑, 𝐴𝑑) are the source and

destination color components respectively, and (𝑠𝑅, 𝑠𝐺 , 𝑠𝐵, 𝑠𝐴) and

(𝑑𝑅, 𝑑𝑅, 𝑑𝐵, 𝑑𝐴) are the scale factors for each color component.

When drawing smart objects, the destination pixels would contain the camera

image texture and possibly other smart objects. When drawing a real element

of a smart object, the scale factors for the RGB components of the source

color are set to zero and that for the destination color are set to one. For the A

components, the scale factor for the source alpha is set to one and that for the

destination alpha is set to zero. The resulting RGBA values are as follows:

𝑅 = 𝑅𝑑

𝐺 = 𝐺𝑑

𝐵 = 𝐵𝑑

𝐴 = 𝐴𝑠

The RGB components of the final pixel remain the same as what it was before

the smart object is drawn while the alpha component takes the source value. If

the source alpha value is one (fully opaque), subsequent objects drawn behind

it will be hidden. Therefore, if the virtual user interface of a smart object is

superimposed on a physical object, the overall effect is that the elements that

have the “real” property are not drawn but still block virtual elements behind it

(Figure 5-3).

68

Textured fonts are used to generate and render dynamic text for virtual user

interface elements which are given the text tag. In this approach, an image

containing a collection of ASCII characters at known positions and with

known dimensions is used as a reference to generate a texture of the required

text to be rendered during run-time (Figure 5-4).

Figure 5-3. Occlusion of virtual objects by real objects.

Figure 5-4. Texture-based font rendering

A font texture can be represented as a signed distance field (Green, 2007)

where each pixel is a number indicating its distance away from a white pixel

which is inside a character (Figure 5-5), rather than a bitmap of color

intensities. This representation maintains a high quality of the font at any

amount of zoom and supports computationally fast shader effects, such as anti-

69

aliasing, outlines, glow, and drop shadows (Green, 2007). In an AR

application, the background colors are unpredictable, such that these effects

are valuable for making text easier to read. Furthermore, text registered to 3D

objects in the real scene can be at various distances from the camera, and

hence maintaining the quality at different zoom levels is important.

Figure 5-5. Signed distance field representation of fonts.

The “effect” and “effect color” properties of a text tag of a virtual user

interface node indicate the effect to use for text rendering and the color to

apply to the effect. Two effects are supported in the wearable system, namely,

outline and glow (Figure 5-6). These two effects are implemented in the

shaders that are used for text rendering and they make use of the signed

distance field font representation to perform the calculations.

Figure 5-6. Zoom-invariant font quality and font effects.

Zoomed out Zoomed in

70

If the number of smart objects in the environment is large, and models are

detailed and have high polygon counts, rendering performance may start to

suffer. One optimization that can be done to mitigate this issue is to make use

of a view-dependent level-of-detail algorithm (Hu, et al., 2010) to adjust the

number of vertices to use for rendering smart objects.

5.1.3 Bare-Hand Interaction

The wearable system is designed to allow users to interact with the virtual user

interfaces of smart objects using their bare hands. To detect the hand, the

colors of the pixels are analyzed to determine skin-colored pixels. A black and

white image is produced where pixels determined to be skin-colored are set to

white and all other colors black. Next, contour analysis is performed on the

black and white image to determine the most probable hand region based on

its size and shape. The contour of this region is further analyzed to detect

individual fingers.

Fingers are detected by obtaining the convex hull of the hand contour and

finding “convexity defects”, which are the regions within the convex hull that

are not within the hand contour. Only convexity defects of a minimum depth

indicate the presence of a finger (Figure 5-7a). Individual fingers are classified

as either a “pointer finger”, of which there can only be one, or an “additional

finger”. If there is only one convexity defect of sufficient depth, there is only

one finger which is classified automatically as a pointer.

71

It is important to obtain the screen coordinates of each fingertip for the later

step of gesture detection. The tip of the pointer finger is defined as the farthest

contour point from the centroid of the contour (Figure 5-7b). The tip of an

additional finger is the second farthest contour point, and that of a second

additional finger is the third farthest contour point, etc.

The possible gestures that can be used to interact with the virtual user interface

elements in the wearable system are click, drag, and rotate. The click gesture

is reminiscent of using the pointer finger to press a switch or button. The drag

gesture resembles the pointer finger holding down a button and dragging it in

one direction. The rotate gesture involves the pointer finger and another

finger, most appropriately the thumb, rotating as if they are turning a knob.

These are gestures that most users would be familiar with from their

experience with using smartphones.

Figure 5-7. (a) Depth of a convexity defect indicates presence of fingers, (b)

fingertip is the farthest point from the centroid of the hand.

The click gesture consists of four stages (top row of Figure 5-8). The first

stage is the initialization stage, wherein the hand must remain in the same

(b) (a)

Depth

Fingertip to centroid

distance

72

position and pose for a fixed duration, e.g., one second. The blue dot depicts

the position of the fingertip and the green dot the position of the centroid of

the hand contour. The orange circles around the blue and green dots indicate

the regions that these two points must remain within during the initialization

stage. If the initialization is successful, the circles turn green. Otherwise, the

initialization is restarted.

The second stage occurs after the initialization stage. The user can start

performing a click action at any time during this stage. The system continues

monitoring the fingertip and the center of mass during this stage. If the hand

centroid moves out of the circle, the gesture is cancelled and the initialization

stage is activated again.

Figure 5-8. The detection stages of different gestures.

Click

Drag

Rotate

Stage1 Stage 2 Stage 3 Stage 4

73

If the user bends their finger such that the fingertip goes out of the green circle

which is around the fingertip and the distance between the fingertip and the

centroid decreases, the system interprets this as a finger pressing action and

the third stage is activated. A yellow dot indicates the original position of the

fingertip before the pressing action started. During this third stage, as long as

the centroid stays within the green circle, the click gesture is active.

If the click gesture is still active and the fingertip returns inside the green

circle, the click gesture is completed. This is indicated by the yellow dot

turning red momentarily before the initialization stage restarts. On completion

of the click gesture, the screen coordinates of the yellow/red dot, i.e., the

screen coordinates of the fingertip when the click gesture first started, is

obtained and used to determine the object or element that has been clicked on.

The stages of the drag gesture are shown in the middle row of Figure 5-8. The

first stage is the same initialization stage as for the click gesture. After

initialization, when the user bends his finger downwards, this is still part of a

click gesture. The click gesture turns into a drag gesture in the third stage,

when the user moves his whole hand until the centroid leaves the green circle,

which marks the region within which the centroid was originally located when

the click gesture started. At this point, the click gesture is turned into a drag

gesture. The drag distance is indicated by a red line joining the starting point

of the drag gesture and the current position of the fingertip. During this stage,

the distance dragged is continuously monitored and used as interaction input.

The small green circle near the fingertip shows where the finger must return to

74

in order to complete the drag gesture (the finger release stage). The green

circle translates by following the translation of the centroid. After the finger

release, the drag gesture ends and the initialization stage is restarted.

The rotate gesture (bottom row of Figure 5-8) starts with the same

initialization stage as in the click and drag gestures. The appearance of a

second finger triggers the start of a rotate gesture. A yellow line is displayed to

illustrate the rotation action as the user performs it. As the yellow line rotates

from its previous orientation, the rotation angle is monitored and used as

interaction input. The rotate gesture ends when the second finger disappears,

i.e., the user retracts his finger back into the palm.

The three gestures supported by the wearable system correspond to the touch,

drag, and rotate which can be defined in the virtual user interface of a smart

object. Figure 5-9 shows a user interacting with different elements of a virtual

user interface using the three gestures.

Figure 5-9. Bare-hand interaction with virtual user interface elements.

Click Rotate Drag

75

5.1.4 Occlusion of Virtual Elements by the Hand

As the AR view is achieved by overlaying virtual elements on the camera

feed, every virtual element will appear on top of everything in the physical

environment including the user’s hands. However, to maintain a perception of

depth and thus the immersiveness of the SmARtWorld environment, the user’s

hand should occlude virtual elements (Figure 5-10). This also makes it easier

to interact with virtual elements because the user is able to see where they are

pointing. This of course assumes that the hand is always nearer to the user

than the virtual elements. However, this is a reasonable assumption because of

the unlikelihood of a virtual element being between the user’s face and hand.

Figure 5-10. Occlusion of virtual objects by the user’s hand.

Making the user’s hand appear to occlude virtual elements involves

manipulating the graphics rendering pipeline. After the camera feed is drawn

as the background of the screen, a depth mask is created from a black and

white image of the user’s hand in order to set the depth value of the pixels

76

belonging to the hand to a minimum value (these pixels of minimum depth

represent objects that are nearest to the virtual camera of the graphics

rendering engine). When the virtual elements are drawn, the graphics

rendering engine performs a depth test, which means that any virtual element

that occupies the same pixels as the hand pixels will fail the depth test and

would not be drawn and displayed.

5.2 Tablet and Smartphone

Wearable systems are still too costly and uncomfortable to be used for long

periods of time. The most viable device for use as a viewing device is

therefore still the tablet or smartphone. Any average smartphone by current

standards is sufficiently equipped to serve as a viewing device as long as it has

an embedded camera.

In this research, an Android app was created to demonstrate the use of a

smartphone as a viewing device and tested on a Samsung Galaxy S2 device.

The Android viewing device app is largely a straight port of the wearable

system. The program execution flowchart is given in Figure 5-11.

Tracking performance is worse than the wearable system, due to less powerful

processing power in the mobile device. Apart from implementing GPU-based

tracking, optimizations specific to mobile device hardware architecture can be

done (Yang & Cheng, 2012). Some of the fundamental layer functions such as

TCP and UDP socket communication were re-written to make use of functions

77

in the Android API. The main difference from the wearable system is in the

implementation of the interaction method.

Figure 5-11. Flowchart of the Android system program execution

Interaction with virtual user interface elements is achieved through the touch-

screen. The selection of 3D objects on the touch-screen is similar to using a

mouse for picking 3D objects on a monitor, for which there are well-

established methods like ray-casting and color picking. The user selects a user

interface element by placing their finger down on it on the touch-screen. A

touch operation is then performed by lifting the finger up from the screen. To

perform a drag or rotate gesture, the finger is not lifted up immediately. A drag

Connect to

primary server

Environment

tracking

Receive

messages

from server

Smart object

rendering

Touchscreen

gesture tracking

Detect camera

image features

Match features

to reference

landmarks

Detect finger gestures

(Android API)

Send RPC to

primary server

Pose and

virtual user

interface of

smart objects

Landmark

objects

Pose of the

viewing device

78

gesture is performed on the interface element, if it accepts such input, by

swiping the finger along the screen. A rotation gesture is performed by placing

another finger down on the screen and moving one finger around the other.

Interactions with each element will result in the corresponding RPC being sent

to the smart object. Figure 5-12 depicts the three operations performed through

the smartphone app on three different interface elements.

Figure 5-12. Touch-screen interaction with virtual user interface elements.

5.3 Device-less Interaction

Interaction with smart objects can also be achieved using the SmARtWorld

framework without the use of any viewing device. This approach makes use of

devices in the environment such as buttons, keyboards, touch-sensors, and

voice recognition and context recognition sensors. Some of the input devices

and sensors that will be described in this section are built using the SNAP

system (Synapse’s SNAP, n.d.) to form a wireless sensor network (WSN).

Click Rotate Drag

79

5.3.1 Sensors and Input Devices on a Wireless Sensor Network

A SNAP node is a low-cost and portable way to create a smart object with

sensors and it is easily connected wirelessly to other nodes. A hub is needed to

link the smart objects on the WSN to the other smart objects in the

environment. A SNAP node is an RF transceiver with a microcontroller that

runs Python code. SNAP nodes automatically form a mesh network when they

are within range of each other, and they use the XML-RPC protocol (Winer,

2003) to communicate.

The SNAP hub program runs on a PC which has a SNAP node connected by

USB. The hub program sees this node as an XML-RPC server and connects to

it. Other SNAP nodes which join the SNAP network see the hub as another

normal SNAP node, which means a hub discovery procedure is needed. SNAP

does have broadcast capability which means the hub discovery procedure is

straightforward. Like any other smart object, a new SNAP node broadcasts a

“New” command to all nodes, and the information of existing smart objects

are sent to the new node from the hub.

One of the input devices created in this research is a presence sensor. It is

implemented as a smart object based on a SNAP node. The fundamental layer

of this object consists of the RF transceiver and SNAP operating system, with

an infrared presence sensor connected to its microcontroller. The

microcontroller is programmed to read values from the presence sensor and

infer if something is in front of the sensor based on the sensor readings. If the

80

sensor is obstructed, it invokes an RPC. If the object moves away from the

sensor, another RPC is invoked.

Other input devices similar to the presence button are a door sensor,

implemented using a flex sensor connected to a SNAP node, and a pressure

sensor. The flex sensor is placed perpendicular to the hinge of a door so that

when the door is opened, the flex sensor resistance changes. The door sensor

interprets the flex sensor readings as whether the door is opening or closing

and invokes different RPCs for each outcome. The pressure sensor is placed

on a chair and invokes an RPC when a person sits on a chair and a different

RPC when the person gets up from the chair.

5.3.2 Gaze Tracking

A gaze tracking sensor determines the direction of a person’s gaze. One way

gaze tracking can be used in a SmARtWorld environment for device-less input

is to determine which smart object a user is looking at and invoke an RPC in

that object. This is implemented with a camera connected to a PC, with the

camera mounted facing where a user would be and smart objects placed

behind the camera. The ITU Gaze Tracker library (San Augustin, et al., 2010)

is used to process images from the camera and get the user’s gaze point. There

is a calibration step which involves the user looking at a computer screen

while his gaze is tracked and focusing on different points on the screen as

indicated by the program (Figure 5-13a).

81

Figure 5-13. Setup for object interaction using gaze tracking.

Testing the gaze tracking accuracy of this system by moving the mouse cursor

on the computer screen using eye gaze, it was found that eye gaze tracking

was accurate to within each of the sections in a 3 x 2 grid dividing the screen.

This means that a person’s gaze cannot be determined accurate to a point on

the screen but to a region where it is confident that the gaze tracking is within.

Another point of note is that the maximum distance between the user and

camera is about 45 cm before tracking deteriorated which means that the user

must be within that distance to a cluster of smart objects in order to interact

with them.

After the calibration and accuracy testing, the computer screen is removed so

that only the camera is left (Figure 5-13b). Possible gaze directions are

constrained to the 3 x 2 grid. The range of possible gaze directions for each

grid section depends on the user’s position and computer screen position

during calibration (Figure 5-14a). Each range for each grid section thus

(a) Calibration

setup
(b) Setup after

calibration

82

indicates that objects within that range are selected if the user looks in that

direction. Therefore, in order for a unique object to be interacted with for a

certain gaze direction, the objects must be separated according to Figure 5-

14b.

With the above setup, the gaze tracking object allows interaction with up to six

different smart objects by the user looking at them. This setup is quite limiting

as the user cannot move his head or the tracking fails and the smart objects

have to be quite well spaced-out. However, more than one gaze tracking

objects can be used for different clusters of interactive objects.

Figure 5-14. Placement of smart objects for gaze tracker interaction.

5.3.3 Context Recognition

Context recognition refers to the detection of the intentions and activities of a

person. This can be done on an abstract level, e.g., detecting activities like

doing laundry and washing dishes (Pirsiavash & Ramanan, 2012; Hoque &

(a) Selectable areas depends on the user’s

position and screen during calibration.

(b) The separation

required between objects

in different selectable

areas.

83

Stankovic, 2012), or a lower level with actions like sitting and standing

(Kwapisz, et al., 2010).

Logic-based context recognition relies on understanding and reasoning of the

observations that indicate with certainty the intention of a person. Wang et al.

(2010) used a logic-based approach to infer high-level activities of users based

on sets of low-level sensor output which frequently occur for a specific

activity and rarely in other activities, e.g., a person is inferred to be brushing

his hair as a result of holding a comb in the bathroom and moving it in certain

directions while also holding a can of detangling spray. This approach can be

implemented with smart objects in a SmARtWorld environment by channeling

the outputs of low-level sensors like those described in the previous two

sections to a smart object which has been trained to translate different sensor

output combinations to specific user intention.

A probabilistic approach commonly applied to both high-level and low-level

context recognition is the use of Hidden Markov models (HMMs). In this

approach, each user intention is modeled as a single HMM which is trained

from the data sequence observed when a person is carrying out the actions

with the intention in mind. A trained HMM can then calculate the probability

that a person has a particular intention based on newly observed data

sequences.

The algorithms that are frequently used for training an HMM and evaluating

the probability that a data sequence indicates a particular user intention are the

84

Baum-Welch algorithm the forward-backward algorithm respectively, and are

described in detail by Rabiner (1989). An HMM can be implemented as a

smart object which allows itself to be trained via an RPC that invokes the

forward-backward algorithm. A trained HMM smart object performs context

recognition by observing sensor data and computes the probability that the

sensor data is a result of a particular user intention, invoking some behavior in

other objects if the probability is above a threshold.

The training of an HMM object is done through the virtual user interfaces of

the HMM object and the sensors in the environment (Figure 5-15). First, the

user registers several sensors with the HMM object. The user then invokes a

“record” RPC on the HMM object and carries out the actions for a certain user

intention and invokes the “stop recording” RPC once the series of actions is

completed. This can be carried out multiple times to improve the training

results. After training is complete, the user registers an RPC to be invoked by

the HMM object when it recognizes the user intention with a probability above

a certain threshold. Finally, the HMM object is left to monitor the sensor

objects registered to it.

85

Figure 5-15. Training an HMM-based context recognition object using a

smartphone.

5.4 Summary

In this chapter, viewing and interaction devices are described. With

component-based UAR frameworks, such as Studierstube and Tinmith evo5

(Piekarski & Thomas, 2003), viewing devices are application-specific and

may not work with other applications developed using the same tools. In

SmARtWorld, generic viewing devices can be used to access the user

interfaces and functions in a UAR environment. All the implementation

architectures of these devices are based on that of a smart object, which means

that these devices use the same procedures to connect to the network of any

UAR environment and discover other smart objects.

The SmARtWorld framework is designed to be used with current devices as

well as future devices. Wearable systems may still be too costly and

cumbersome, but they are a rapidly evolving technology. Context recognition

86

is a possible means of interaction without the use of devices. This provides

access for the elderly or disabled; they are also significant for use in

conjunction with viewing devices that do not provide a method for interaction

with smart objects through direct gestures. By placing different types of

sensors in the environment, different modes of context recognition such as

symbolic gesture recognition, speech recognition, and high-level activity

recognition can augment the interaction of users with smart objects. The

separation of RPCs and interaction devices in the framework makes it

compatible with almost any interaction method as long as it can be mapped to

the RPCs of smart objects. This idea of dynamic creation of new interaction

methods in a UAR by users by making use of smart objects, which function as

sensors and as data processors, is not seen in other UAR frameworks.

87

Chapter 6. Smart Object Representation

6.1 Real and Virtual Objects

The SmARtWorld framework allows for both real and virtual objects to co-

exist in a UAR environment. Real objects are smart objects with a physical

form embedded with their own fundamental layer (i.e., computing and

networking hardware). Their behavior is programmed in their own memory

and their pose must be tracked to allow viewing devices to augment their

virtual user interfaces over their physical location. Real objects can be directly

handled and may have physical controls to invoke RPCs.

Virtual objects do not have physical form and are perceived only by their

virtual user interfaces. Their hardware is not at the same location as their pose.

They can come into existence in the environment through smart object hosts,

e.g., landmarks which come from landmark servers, or exist as independent

running programs like the basic smart object in Section 4.1. Virtual objects

can be very useful in bringing abstract functionality into an environment, such

as the HMM objects for context recognition as described in Section 5.3. As an

example, a virtual weather sensor can be created as a smart object that

retrieves the weather conditions at a particular geographic location from a

cloud weather service (Figure 6-1). Users in the SmARtWorld environment

would be able to make use of this object to make travel plans.

88

Figure 6-1. A virtual weather sensor object.

6.2 Realistic Rendering

The appearance of an object is defined by the 3D model data that defines its

virtual user interface. The vertices of the 3D model define the shape of the

object while the surface normals and material properties, namely, diffuse,

ambient and specular color, and shininess which determines the size of the

specular highlights, determine the color and shading of the object. Texture

mapping affects the color of specific points along the surface of the object,

while normal, displacement, and bump maps give the appearance of geometry

that is not shaped by the vertices of the object model. These data parameters

affect the appearance of the material of the object. External parameters which

change the appearance of the object come from environmental factors, such as

ambient light, light sources, and reflection of the environment on the object

surface by the use of reflection maps.

Texture mapping can be achieved easily. The wearable system described in

Section 5.1 uses the programmable pipeline of OpenGL to render the AR

scene, in which texture mapping involves copying the texture to video

memory and calling the texture mapping functions in the shaders. To realize

Sunny Rainy

89

effects, such as shadows and environmental reflection requires more effort.

There are generally two approaches. The direct approach is to track light

sources and real objects to calculate object lighting and shadows (Haller, et al.,

2003), and extract an environmental map for reflecting the real environment

on virtual objects (Ropinski, et al., 2004). The second approach is to use

indirect methods, such as image-based lighting and shadowing of virtual

objects which simulate global illumination and shadows based on real-time

images of the environment (Supan, et al., 2006).

Using the direct approach, viewing devices must implement the appropriate

algorithms for shadow and environmental reflection rendering, and there must

be support from the SmARtWorld environment. Figure 6-2 shows a virtual

object casting shadows in a SmARtWorld environment using a shadow

mapping technique implemented on a viewing device. This technique involves

two passes. First, the scene is rendered from the perspective of the light

source. Next, the proper scene is rendered from the perspective of the virtual

camera and the result of the first pass is used to add shadows into the scene. In

an AR environment, the pose and properties of light sources must be known.

In Figure 6-2, the light source is a smart object which provides data about its

color and intensity. The viewing device uses this data with the pose of light

sources to perform the first pass.

For environmental mapping on reflective smart objects, viewing devices can

use images of the environment as textures to wrap around the smart object

(Figure 6-3). If an environment is assumed to be a box, the environmental map

90

would consist of six images, i.e., one for each face of the box. Alternatively, in

the absence of a true environmental map, a viewing device can use its own

camera image as an environmental map. This will, however, give a less

accurate reflection of the environment.

Figure 6-2. Shadows cast by virtual objects due to real light sources in the

environment.

Figure 6-3. A virtual object reflecting the real environment.

6.3 Physical Simulation

A physics engine object can be added to a SmARtWorld environment to add

realism to the physical interactions between smart objects. The physics engine

Shadow cast by

virtual object

Shadow cast by real

object

91

object monitors the physical interactions of smart objects with each other in

real-time and updates their states when interaction occurs.

In this research, a physics engine object was created using the Open Dynamics

Engine (ODE) library (Smith, 2007) to add collision detection between objects

in a SmARtWorld environment. Collision detection requires the geometry of

smart objects to be modeled using primitive geometries defined by the physics

engine. This “ODE model” of the smart object is made available as part of the

data of the smart object. Therefore, when a new smart object joins the

environment and has an ODE model, it can be added automatically to the

physics simulation through the physics engine object. Apart from the ODE

model, the smart object must have its mass and center of gravity defined.

At every time step of the collision detection simulation, physics simulation is

performed. For collision detection, the ODE library returns information about

the contact points between colliding objects, penetration depth of one object

into another, and the normal vector of the penetration. For the physics

simulation, forces on each object can be obtained. The physics engine object

calculates the velocities of each virtual object involved in the simulation and

makes it move by invoking its “Set Your Pose” RPC.

Real objects will not be affected by collisions with virtual objects unless they

have actuators to move them. To achieve accurate physics simulation in such

cases, real objects can be set as kinematic bodies in ODE which will

effectively make them impervious to any forces applied on them. The physics

92

engine object determines whether an object is real or virtual by inspecting its

virtual user interface to determine if there are any elements with the “real”

property applied on them.

6.4 Sound Response

Realistic and positional sounds that are made by objects in response to

interactions by users and other objects would be very desirable in UAR

environments. First, it can bring to attention to smart objects that are not in the

user’s field of view. Secondly, it can create a more immersive and realistic

atmosphere of a mixture of real and virtual objects. Having positional and

realistic sounds may allow a visually impaired user to locate and understand

the functionality of smart objects without seeing them. For the rendering of

sound in a SmARtWorld environment, two kinds of objects are needed,

namely, a sound source and a sound renderer.

6.4.1 Sound Source

The sound source object streams digital sound data to a sound renderer to be

played. Uncompressed sound data is digitally represented by sampling the

sound wave at regular intervals and getting discrete values of the wave. The

sound is re-created by the sound renderer object from digital form by

demodulating the digital signal and shifting the output signal to speakers.

Smart objects can be packaged with recorded sound files by their developers

to output sounds intentionally with certain events. In this approach, the

triggering of a sound is controlled in the fundamental layer and is programmed

93

by the developer. When a sound is triggered, the sound file is streamed via an

RPC in the sound renderer object. Streaming is done by sending chunks of the

sound data to the sound renderer, which concatenates the chunks into a long

sound wave. The size of each chunk is decided by the smart object that sends

the sound.

Smart objects without packaged sounds can still make sounds in the

environment. This can happen if an environment consists of objects for

applications which do not have sounds but the environment owner would still

like them to stimulate the aural senses. Two ways to achieve this are to define

the object’s material and shape class which it provides as data so that a

suitable sound can be selected from a library, and to model the sonal response

of an object accurately such that tapping the object at different locations and

with different force can result in different sounds. For the first approach, an

intermediary smart object would be trained to detect certain events (e.g., from

a context recognition object or collisions detected by a physics engine object)

and a sound based on the materials and shapes of the colliding objects is

generated by it. In the second approach, there is a body of research work

dedicated to the real-time synthesis of realistic sound made by virtual objects

due to contact (Liu, et al., 2011; Chadwick, et al., 2012).

In physics-based sound modeling, object sounds which are to be simulated are

treated as vibrating objects, and a commonly used model for this is the

exciter/resonator model (Avanzini, et al., 2003). Each object has one or more

resonators, i.e., vibration modes which are to be modelled mathematically.

94

The exciter transfers energy to the object that results in a vibration response.

For example, a guitar string is an exciter while the body of the guitar is a

resonator. The basic parameters which could affect the character of a sound

are pitch, loudness and timbre. Pitch and loudness depend on the frequency

and amplitude of the wave respectively, while timbre, which is described as

the perceptual difference in two sounds which have the same pitch and

loudness, is attributed to the waveform of the sound.

A simple model used for physics-based sound synthesis is a spring-mass

vibration model represented as:

𝑥 = 𝑒−𝛼𝑡 cos 𝑤𝑡

where 𝛼 is the stiffness and 𝑤 the natural angular frequency.

To apply physics-based sound synthesis to objects in a SmARtWorld

environment, smart objects need to provide the vibration model that is used to

represent their sonal response when they hit each other. As a proof-of-concept,

two virtual objects are placed in a SmARtWorld environment, along with a

sound renderer and physics engine object. The physics engine detects when

there is a collision and triggers the sound response in each object. The objects

then stream the digitized sound data to the sound renderer. Both objects use

the simple spring-mass vibration model shown above but with different

parameters. One object has a low stiffness value and high natural frequency,

resulting in a metallic “ting” sound when hit, and the other has a high stiffness

value and low natural frequency, resulting in a short tap sound. The

waveforms of the two sounds are shown in Figure 6-4.

95

Figure 6-4. Sound waves generated by two smart objects with different

stiffness and natural frequency.

6.4.2 Sound Renderer

In a UAR environment, positional sounds come from objects in a 3D space.

Positional sound can be achieved using sound rendering software libraries

such as OpenAL (OpenAL Soft, n.d.). The OpenAL SDK defines three

entities, namely the listener, sound source, and buffer. The sound renderer

adapts to different speaker configurations to generate positional sounds based

on the poses of the listener and sound sources. A buffer holds the actual sound

data and is associated with a sound source. Sound sources can be data streams

with continuous incoming data.

To achieve positional sound in a SmARtWorld environment, a sound

rendering object is connected to a surround sound speaker system. The sound

rendering object uses OpenAL to play positional sounds with other smart

Low

stiffness,

high

natural

frequency

High

stiffness,

low

natural

frequency

96

objects as sound sources which stream sound data. The 3D poses of smart

objects are retrieved by the sound rendering object for positional sound

generation, but in a multi-user environment, the positions of users must be

assumed at one fixed location. Alternatively, sound rendering functionality

can be embedded with viewing devices in which case every user will hear

positional sounds from smart objects with respect to the user’s true position.

6.5 Summary

In this chapter, the different ways in which a smart object can be represented

in a SmARtWorld environment have been described. Environment developers

can choose to support more advanced rendering effects by placing smart

objects, such as environmental map sources or sound renderers into the

environment. In the absence of these objects, the smart objects would be

represented by the basic features where at least the 3D geometries and colors

of virtual user interfaces can be seen and interacted with. With physics-based

simulation and sound synthesis, even greater realism and blending between

real and virtual objects can be achieved, regardless of the intended application

of the smart objects.

The methods for achieving realistic rendering of virtual objects that have been

used in this chapter are based on published AR rendering and computer

graphics algorithms, but implemented using distributed smart objects under

SmARtWorld. These rendering algorithms would be implemented on viewing

devices but rely on data that is available from various smart objects in a UAR

environment. For shadow mapping, a viewing device would have to discover

97

light source objects in the UAR environment while for environment mapping,

the viewing device could obtain the required data from an environment map

object that maintains a 360o image of the room. This reinforces the goal of

abstracting applications from lower-level tasks.

Another idea that is introduced in this chapter is the interaction between real

and virtual objects, particularly what happens when they collide with each

other. The implementation of a physics engine and sound rendering engine as

smart objects is given, along with the data that smart object developers have to

define, allows their physical and aural properties to be derived by other

objects. These objects can be used in any UAR environment in conjunction

with any other smart objects, as long as data describing their physical

properties are included. The generalization of this concept of mixing real and

virtual objects is not demonstrated in other UAR frameworks, i.e., UAR

developers would have to program such behavior manually.

98

Chapter 7. Manufacturing Applications

Modern manufacturing today is characterized by temporary virtual enterprises

comprising different manufacturing companies and the sharing of their

resources. Monolithic factories built for very specific products have given way

to smaller and more flexible facilities. Modern factory architecture, commonly

known as “smart factories”, employ UbiComp technology to embed machines

and sensors with intelligence and connect them to a network so that workers

can retrieve real-time production information through mobile devices that they

carry or computers on the facility (Hessman, 2013). AR has commonly been

applied in the manufacturing sector to enhance specific human-centric

activities like factory layout planning (Pentenrieder, et al., 2007), product

design (Lee & Park, 2005; Ng, et al., 2013), assembly (Caudell & Mizell,

1992; Hou, et al., 2013) and CNC machining (Olwal, et al., 2008).

In this chapter, the application of distributed computing and virtual user

interfaces of smart objects in manufacturing activities is presented. The first

section presents the application of SmARtWorld to a small job shop. The

second section presents the integration of smart objects in SmARtWorld

environments around the world through a manufacturing grid (MGrid). The

last section briefly discusses visual programming in a SmARtWorld

environment which is applicable to manufacturing as well as numerous other

disciplines.

99

7.1 Manufacturing Job Shop

7.1.1 Smart CAD Object

The understanding of part designs and the use of computer-aided design

(CAD) files is an integral part of a job shop. Therefore, a smart CAD object

has a virtual user interface that allows for interactive features which help aid

in the understanding of features and dimensions of a design. It also

encapsulates CAD data of a design that other computer-aided technologies

will use.

To demonstrate the creation of a smart object from a SolidWorks CAD model,

a tool to extract features from a part document and generate a smart CAD

object based on this part document is described here. The smart CAD object

creation tool creates and acts as a hub to smart CAD objects in the AR

environment. The CAD feature extraction functionality of the tool is based on

the SolidWorks API which is used to extract data from the active document of

a running instance of SolidWorks. The tool extracts the features, including its

geometry and annotations that are attached to the part. Next, the user can

associate annotations with features that will be useful for the smart CAD

object (Figure 7-1). When the extracted data is saved and stored as a smart

CAD object, a COLLADA file for the AR user interface of the object is

generated automatically. The COLLADA file includes the geometry of the

features, i.e., the vertices and normal vector of each vertex for rendering the

shaded model in the AR environment, as well as 3D models of the annotations

which are generated procedurally from the properties of the annotation

elements, e.g., lines and arrows, that are extracted through the SolidWorks

100

API. Only the texts of the annotations are not converted to a 3D mesh as they

are dynamically generated by a viewing device when viewed in the AR

environment.

Figure 7-1. (Top) Smart CAD object creation tool, (bottom) SolidWorks part

document converted into a smart CAD object.

101

A smart CAD object enhances the understanding and evaluation of a part

design by utilizing the design-by-features philosophy, with each feature of the

CAD model making up a single interactive element of the virtual user

interface. The virtual user interface of the whole model is a visualization of the

product or part, with interactive features that allow the user to hide and show

specific features and to display parameters, such as dimensions, tolerances,

etc., of each feature, which is similar to the kind of functionality one would

find within the SolidWorks environment. Figure 7-2 shows the smart CAD

object in an AR environment with different feature annotations shown or

hidden as the user clicks on the feature.

Figure 7-2. An interactive smart CAD object.

7.1.2 Smart Machining Object

A smart machining object, which overlays a CNC machine, is an example of a

smart object that augments a physical object existing in the environment with

a virtual user interface and added functionality. A smart machining object has

different use contexts, such as machining and maintenance.

102

In the machining context, a smart machining object provides computer-aided

manufacturing (CAM) functionality through RPCs, similar to the way

SolidWorks functionality is implemented in the smart CAD object. For

example, MasterCam has C-Hooks and NET-Hooks SDK for providing

MasterCam functionality respectively through C/C++ and .NET programs. A

smart machining object can have CAM functionality by creating RPCs which

call the functions provided by CAM software SDKs. With an accurate model

of the CNC machine, the graphical output from the CAM software can be

augmented directly on the CNC machine, thus making the physical CNC

machine part of the CAM software interface. If the machining table of the

CNC machine is defined as an interactive element in its virtual user interface

file with the tag “Object”, it can be used to load a CAD model into the CAM

interface of a smart machining object by the user by placing a smart CAD

object on the table. Once the CAD model is loaded, the smart machining

object can proceed to generate and simulate machining toolpaths.

In the maintenance context, smart machining objects can display real-time

sensor data and maintenance information so that maintenance personnel can

inspect the conditions of the machining resources promptly. Furthermore,

animated graphical maintenance instructions can be superimposed on the

actual machine parts to provide easy-to-understand guidance on performing

maintenance on machines. As different machines have different designs and

parts, each smart machining resource object would have its own individual

sensor outputs and maintenance instructions superimposed accordingly

through the use of the AR user interface. However, making use of the capacity

103

of smart objects for independent behavior can allow for smarter maintenance

systems. For example, an AR maintenance system that displays information

according to the type of maintenance and the user’s skill level and allows

authoring of AR content to improve maintenance guidance (Zhu, et al., 2013)

can be implemented by programming the smart machining resource object to

activate different AR user interface elements according to a user’s skill level

setting that is input to the smart object. Figure 7-3 shows the virtual user

interface of a smart machining object for different tasks and gives an idea of

how users might interact with it.

Figure 7-3. Smart machining object: (a) Maintenance interface, (b) CAM

interface, (c) Dragging a smart CAD object to the CAM interface, and (d)

Smart CAD object loaded in the CAM interface.

(a) (b)

(c) (d)

104

7.2 Manufacturing Grid

MGrid research often encapsulates manufacturing services as web services

(He, et al., 2006; Dong, et al., 2008) in order to make use of the connectivity

and homogeneity of the web. Therefore, it is useful to make use of web

protocols to link smart objects to a manufacturing grid so as to make it side-

by-side compatible with web service-oriented manufacturing services.

A possible approach for putting local smart objects on the internet is to set up

a web server which provides remote access to smart objects using HTTP

protocols and generates HTML forms (World Wide Web Consortium, n.d.)

based on the RPCs of the smart objects. For users in their local SmARtWorld

environment to interact with a remote smart object, the HTML code received

from the remote web server needs to be interpreted and the RPCs packaged as

HTML form submissions. For this, a smart object called a cloud gateway that

mediates a web server and local smart objects is needed (Figure 7-4).

Figure 7-4. Architecture of manufacturing grid of smart objects.

Gridded

resources/services

Gridded

resources/services

Gridded

resources/services

Web

server

Web

server

Web

server

Primary server

Cloud

gateway Local

resources/services

Primary server

Local

resources/services

Primary server

Primary server

Local

resources/services

Local and remote

resources/services

105

7.2.1 Web Server

The main index page of a web server would list the smart objects available, its

RPCs and the URL to retrieve the virtual user interfaces. The HTML code

below illustrates the manner in which a smart machining object called

“Makino Milling Machine” is publicized through the index page. Custom

HTML tags are used to indicate to a remote client information about the RPCs,

data and virtual user interface of a smart object, with standard HTML tags

interspersed to allow normal web browsers to display information about the

smart object:

<smartobject>

<u>Tom's Workshop</u>

<i>Name: </i>

<smartobject-name>Makino Milling Machine</smartobject-name>

<i>Description: </i>

<smartobject-description>Smart Machining Object</smartobject-

description>

Access Resource

<div id="hidden" style="display:none">

<smartobject-interface>1/MakinoMilling.dae</smartobject-interface>

<smartobject-

rpc>1/Load_Model.html,1/Simulate.html,1/Order_Job.html</smartobject-

rpc>

<smartobject-data>Available:Yes</smartobject-data>

106

</div>

</smartobject>

The custom HTML tags are those with the “smartobject-” prefix and

encapsulate the information which is hidden from display on normal browsers,

so as not to look out of place on the website. RPCs are provided as HTML

forms serving as web interfaces to the specific functions of the manufacturing

resource. Following the above example, the Makino Milling Machine has

three RPCs, namely, Load Model, Simulate, and Order Job, as specified within

the <smartobject-rpc> tag. The “Load Model” RPC is for a remote user to load

a CAD model into the smart machining object for machining simulation using

the “Simulate” RPC, and finally to request for the manufacturing resource to

carry out a production run of the part the “Order Job” RPC is used. As a smart

object, these RPCs are specified in the COLLADA file of the virtual user

interface of the object. The HTML form for each RPC is defined in its own

HTML file. The HTML code for the “Load Model” RPC is as follows:

<form action="Load_Model" method="post" enctype="multipart/form-

data">

<label for="file">Upload a SolidWorks part file (.sldprt) or STL file

(.stl):</label>

<input type="file" name="CadModel" id="file">

<input type="submit" name="submit" value="Submit">

</form>

107

In the HTML form, the “action” attribute of a “form” tag is used as the RPC

identifier, and the “name” attribute of an “input” tag is used as the data

identifier. When the “Load Model” RPC is invoked, the CAD model, labeled

with the data identifier “CadModel”, is transferred using HTML as a form

submission regardless of whether the source of the RPC invocation is a smart

object or web browser.

7.2.2 Cloud Gateway

Web browsers will be able to interact with remote smart objects immediately

by communicating with the remote web server, but this bypasses their virtual

user interfaces and uses HTML forms as the user interface instead. The cloud

gateway serves as the link between a remote web server and local smart

objects so that a remote smart object can be treated as a normal smart object in

the local AR environment. In the local AR environment, the cloud gateway is

seen as a host to smart objects which users can interact with via their virtual

user interfaces (Figure 7-5).

Figure 7-5. Smart machining object from a remote SmARtWorld environment.

108

The cloud gateway allows users to browse different web servers, allowing

proxy versions of smart objects found on the web server to be hosted on the

cloud gateway. RPCs from viewing devices and other objects are sent to the

remote objects via the cloud gateway. The cloud gateway formats RPCs as

HTML form data as follows:

------------8d185dce20123be

Content-Disposition: form-data; name="CadModel";

filename="Part_SW4.sldprt"

Content-Type: application/octet-stream

<binary data as Base64 encoded string>

------------8d185dce20123be--

In the form submission, each piece of data is bounded by a random string

prefixed by a series of dashes. The data identifier of each piece of data is

entered in the “name” attribute, and the form submission is sent towards the

URL of the RPC’s corresponding HTML form hosted on the remote web

server. The web server extracts the data and sends the corresponding RPC to

the object in its local environment. The web server can send a response to the

form submission and include a standard command, such as to update certain

pieces of data or the virtual user interface, for the object that sent the RPC in

the first place.

109

One limitation of this approach of using HTML forms alone is that the remote

object is not able to send updates on its status to local objects after the initial

response to the form submission unless the cloud gateway automatically

queries the remote object at intervals. However, this can be overcome by

adding server-side scripting to the web server and client-side scripting to the

cloud gateway.

7.3 Visual Programming

Visual programming is a programming paradigm in which programming tasks

are performed graphically by making connections and defining relationships

between different functional entities rather than by writing code. In the

manufacturing industry, it has been applied in areas like control and

mechatronic system design and simulation (Effen, 2001; Sakairi, et al., 2013),

resource planning (Dorner, et al., 2009), robot programming (Schlette, et al.,

2014), and production control (Köhler, et al., 2000). In addition, AR has been

used as a child’s tool for creating AR applications through visual

programming (Radu & MacIntyre, 2009), demonstrating how easy

programming can be in an AR environment. Two examples of visual

programming in a manufacturing environment are given below. The first

shows the use of high-level programming to enhance robot task programming,

and the second makes use of low-level programming to make a robot consider

human safety during its operation.

110

7.3.1 Robot Task Programming

The programming of industrial robots such as pick-and-place and painting

applications, usually involves writing codes in a programming language that is

interpreted by the robot controller. For example, the tasks for ABB robots are

programmed using the RAPID code. This requires the task engineer to be

familiar with programming and RAPID code. Sometimes, an engineer from

ABB is hired to help with the programming. This process is often both time-

consuming and costly.

To program a robot to pick a workpiece from a worktable and place it on a

conveyor belt, the robot programmer has to define a waiting position for the

robot, command the robot to pick the workpiece when it is ready, define a path

from the worktable to the conveyor belt, and command the robot to release its

gripper. In addition, a presence sensor is needed to be placed on the worktable

and connected to the robot controller so that the robot program will be able to

read its signal. Assuming the workpiece is always picked up from the same

position and orientation on the worktable, the program for the robot, written in

pseudo-code, is as follows:

1 Wait for presence signal input

2 Move along Path 1 (waiting position to

workpiece position)

3 Close gripper

4 Move along Path 2 (from workpiece to conveyor

belt)

5 Release gripper

6 Move to Path 3 (from conveyor belt to waiting

position)

7 Goto line 1

111

Each path in the pseudo-code is made up of a sequence of positional and

orientation targets in the workspace of the robot. Each target has to have its

position, orientation, speed, zone (how close the robot must pass through the

target), and robot configuration defined in the code. In addition, the signal

input from the presence sensor must be given a name and associated with the

input port on the robot controller that it has been connected to. This is done

through the user interface on a teach pendant, which is a tablet device that is

used to manually move the robot and create targets based on the pose of the

robot.

Turning the robot’s workspace into a UAR environment and the task objects,

like the workpiece, worktable and conveyor belt, into smart objects, the task of

the robot can be programmed visually through the virtual user interfaces of the

smart objects. Table 7-1 shows the smart objects that are used in the pick-and-

place scenario and the relevant RPCs.

Table 7-1. Smart objects of a pick-and-place robot workspace

Smart Object RPCs and Data

Robot Create new looped task

Finalize task creation

Workpiece Pick up

Release

Worktable Wait for ready signal

Move to waiting position

Ready signal (data)

Conveyor belt Place object

The “Create new looped task” RPC creates a task that repeats the first action

after the last action has been performed. Invoking this RPC puts the robot in a

programming state where the robot waits for messages from other smart

objects that indicate actions to perform for the task. Each RPC accessible on

112

the task objects sends a signal to the robot, which generates the RAPID code

to be sent to the robot controller. To create the same task as the pseudo-code

given above, the RPCs are triggered in the following order:

1. Move to waiting position

2. Wait for ready signal

3. Pick up

4. Place object

5. Release

Targets and paths are generated automatically by the robot by using

knowledge of the pose of the task objects, which is the fundamental

information that smart objects in a SmARtWorld environment provide. For

example, the waiting position is defined by the worktable object with respect

to its own coordinate frame. The robot computes the waiting position with

respect to the UAR environment by transforming the waiting position with

respect to the worktable by the pose of the worktable with respect to the UAR

environment. The robot then computes the waiting position with respect to its

own coordinate frame by inverse-transforming the waiting position with

respect to the UAR environment by the robot’s own pose in the UAR

environment. This enables the robot to move to the waiting position using its

own coordinate frame.

The smart objects in Table 7-1 have to use pre-determined RPC identifiers in

order that the robot smart object can understand the action indicated by the

RPCs of the task objects. For example, when the “Wait for ready signal” RPC

is invoked, the worktable object must send a message that the robot will

113

understand to inquire on the “ready” status of the worktable via its “Ready

signal” RPC. This requires cooperation between the robot and the task object

manufacturers to come up with standard RPC identifiers for robot

programming.

7.3.2 Programming Robot Safety Procedures

The object-oriented SmARtWorld architecture is open to certain programming

paradigms, such as object-oriented programming (OOP) and flow-based

programming (FBP), which can be applied in a SmARtWorld environment for

visual programming at a lower level.

In OOP, objects contain functions and variables. Variables can be assigned

values while functions are called to invoke certain program behavior. FBP is

component-oriented rather than object-oriented. Components are “black

boxes” which process data from its input streams to generate output data.

Applications are built by connecting the inputs and outputs of different

independent components. FBP can be implemented over OOP languages and

can help make the logical flow of information in applications easier to

visualize. A smart object in a SmARtWorld environment can directly wrap

objects or components that are implemented in an OOP language and provide

access to their functions and variables via RPC and data identifiers. By

establishing connections between different smart objects through their virtual

user interfaces, high-level programs and behavior can be created visually.

114

Table 7-2 shows five smart objects which can be used as components for FBP

in a SmARtWorld environment. The first object, the Smart Object Creator, is

used to create a new smart object that encapsulates the behavior that is to be

programmed for. The Conditional More-than object has a data identifier

representing its current output state. It takes an input value and compares it to

a comparison value that is set by the programmer. Its output state is set as

“true” if the input value is more than the comparison value, and “false”

otherwise. Additionally, it can be set to trigger a different RPC in another

object for each state. The Logical AND object also has an output state which

is “true” if both its inputs are “true” and “false” otherwise. The While-loop

object keeps triggering the RPC which is set as its output as long as its input

value is “true”. Other conditional and logic components can be implemented

similarly.

Table 7-2. Smart objects for flow-based programming in a SmARtWorld

environment.

Smart Object RPCs Remarks

Smart Object Creator Create New Object

New Smart Object Start

Finalize

This is the object created by

the smart object creator

Conditional More-

than

Set Input Source

Set Comparison

Value

Set True Output

Set False Output

Data identifiers for a

Boolean value representing

its current output state and a

number representing the

current comparison value.

Logical AND Set Input Source 1

Set Input Source 2

Set True Output

Set False Output

Data is a Boolean value

representing its current

output state.

While-loop Set Input Source

Set Input Value

Set Output

Data is a Boolean value

representing its current input

state.

115

To illustrate the use of visual programming in a factory where robots and

humans work in close proximity, the objects in Table 7-1 are used to create an

application that monitors a robot workspace and stops the robot if a human

worker is about to cross its path. The rotation angle of the robot arm is output

by the robot and connected to the Conditional More-than object. A rotation of

more than 90 degrees means the robot arm is about to swing into the path of a

walkway for workers. The Conditional More-than object outputs “true” to a

Logical AND object which also receives a true/false signal from a presence

sensor set up near the walkway. If both inputs to the Logical AND object are

“true”, a pause signal is sent to the robot to halt the robot arm until the

walkway is clear. The flow diagram of the system is shown in Figure 7-6.

Figure 7-6. Flow diagram of a program that stops a factory robot arm when a

worker approaches it.

For the program shown in Figure 7-6, the smart object only executes its

behavior once. The user may wish to execute the program continuously. To

achieve this, another smart object is created and the While-loop object is used

Presence

sensor

Robot

> 90

AND

Robot arm

swing direction
Swing

angle

Walkway for workers

True/False

True/False

Pause signal

116

to continue execution of the RPC of the first smart object. The input value of

the While-loop object is set to “true” to make it an infinite loop, and its output

is set to the “start” RPC of the first object.

The implementation of the objects in Table 7-1 and the visual programming

process in a SmARtWorld environment is described next. The Smart Object

Creator is a hub which hosts the new objects that it creates. The programmer

creates a new object which comes with a Start RPC and Finalize RPC. The

virtual user interface of the new object is by default a cube with buttons for the

RPCs. The Conditional More-than, Logical AND and While-loop objects are

hosted by the smart object creator. When a new smart object is created, the

smart object creator and all its constituent objects enter into the programming

mode, which means any connections made during this mode will be applied as

behavior triggered by the new RPC. The Finalize RPC is used to exit the

programming mode and store the behaviors that have been programmed.

Connections and values are remembered by the default component objects,

i.e., the Conditional More-than, Logical AND and While-loop objects, for

each smart object that has been created. Thus, when a new smart object

executes its behavior, the default component objects work independently to

fulfill the functionality of the new smart object.

The system described is a highly simplified environment for FBP. A more

complete implementation of an FBP environment would allow more complex

behavior to be programmed, more RPCs to be added and virtual user

interfaces to be user-modeled. Furthermore, to achieve a self-sustaining UAR

117

framework, visual programming should be done at an even lower-level where

new smart objects that run independently from the Smart Object Creator are

built. This would entail source code generation and compilation into an

executable program. However, current approaches in visual programming

paradigms have not been proven to be efficient methods of low-level

programming as simple functionality that would take only a few lines of codes

to implement might require very complex component connections, thus

making this still an open issue.

118

Chapter 8. Conclusion

8.1 Achievement of Objectives

The goal of this research is to develop a framework that facilitates highly

interactive and intelligent UAR environments. The result is SmARtWorld, a

component-based framework that transforms effectively a physical

environment into an operating system for UAR environments and relies on

independent smart objects to provide basic UAR functionality as well as UAR

applications. The novelty of SmARtWorld is that every component is

essentially an independent smart object that can have a dynamic virtual user

interface in AR for user-friendly interactivity with users. Another unique

feature of SmARtWorld is that, as a component-based framework, it does not

require any middleware software as interoperability between components is

achieved through the use of standard definitions of RPC and data identifiers

and formats. The balance between the enforcement of standards and the goal

of universal access has been considered carefully throughout this research.

Five objectives of this research were stated in Chapter 1. The achievement of

each objective is explained below.

Objective 1: create a common framework for UAR environments that

abstracts applications from hardware for tracking, interaction and

display. Chapter 4 has given an implementation of a basic UAR environment.

Based on this, applications such as a UAR manufacturing environment and

manufacturing grid have been demonstrated in Chapter 7. These applications

are made up of individual smart objects that can be developed independently.

119

They work together by using a common set of identifiers for sharing data and

triggering remote procedure calls. The applications available in a UAR

environment thus depend on the smart objects that are placed in the

environment. The different network protocols, embedded hardware and

operating systems used by individual smart objects are hidden, while

functionality of the smart objects are provided to users through the virtual user

interfaces that are defined using a common schema.

Objective 2: allow for flexibility in the hardware and software used to

implement context-aware smart objects with highly customizable

behaviors, appearance and user interfaces. In Section 3.3.1, it was shown

that any hardware and software libraries can be used in the fundamental layer

of the smart objects, as long as the hardware and software libraries are

compatible and the functionality and data access layer, i.e., the middleware

layer, is written to interface with the fundamental layer. In addition, virtual

user interfaces allow any part of the 3D model of a smart object to be

interacted with to trigger any behavior that has been defined in its

functionality and data access layer.

Objective 3: allow for flexibility in the hardware and software used to

implement viewing and interaction devices. The abstraction of hardware

from the programming of smart objects has been emphasized in the

framework, as illustrated in Section 3.3.1. Fundamental functions like object

and environmental tracking can be performed by different types of sensors,

while the data output can be formatted in the same way and use the same data

120

identifiers. Graphical rendering and tracking hardware and algorithms are

always improving, and so the framework will be able to make use of new

technologies by formatting data transfer according to the communications

protocol defined in Section 3.4.

User interaction methods are also not strictly enforced in the framework. In

Sections 5.1 and 5.2, the implementation of three hand gestures, which are

commonly used today on the majority of touch-screen systems, to interact with

smart objects through different display devices are given. However, different

sensors and gesture recognition methods can also be used to detect the three

hand gestures. User interaction is not limited to the three hand gestures

because, as presented in Section 3.4, specific smart object behavior can be

triggered remotely using the “RPC” command, and this command can be

triggered via any gesture as long as it is recognized by the target smart object.

Furthermore, as illustrated in Section 5.3, user interaction need not be

implemented in viewing devices.

Objective 4: recommended practices for AR application development

using the proposed framework. The SmARtWorld framework gives

developers greater freedom in the implementation of smart objects, viewing

devices, and applications. However, there are some considerations raised in

various chapters to ensure user-friendly to smart object functions using generic

viewing devices. In Section 5.1.2, a number of graphical rendering effects

were described that would enhance the visibility of virtual graphical elements

overlaying a scene of the physical environment. For example, applying the

121

“real” property to the physical parts of smart objects so that they occlude the

virtual parts, and specifying textual elements with an outline or glow property.

Furthermore, in Chapter 6, several ways to help a virtual smart object blend in

with the physical environment were described. These involve the use of

several different types of smart objects, such as physics engines and light

sources. These objects are not required for a basic UAR environment.

However, AR applications would certainly benefit from making use of them.

Objective 5: a self-sustainable framework. Self-sustainability of the

framework is achieved firstly by the abstraction of hardware from the

programming of smart objects, which gives rise to flexibility of hardware and

software used in the fundamental layer of smart objects. This means that as

new types of sensors and other embedded technologies become available, the

same smart object architecture can be used to implement smart objects to be

used in a UAR environment. Therefore, as technology progresses, new smart

objects can be created to encapsulate old and new functionalities using new

technology.

Secondly, the framework features abstraction of behaviors from interaction

methods, allowing for new interaction devices and technologies to be

encapsulated in viewing devices and smart objects. As explained in Section

3.4, behaviors are triggered via remote procedure calls (RPCs) using a unique

RPC identifier for each function, and new RPC identifiers can be defined for

new functions and new smart objects. Smart objects can be programmed to

invoke RPCs in other smart objects when they detect user input. A few

122

examples of device-less interaction methods are given in Section 5.3. It is

possible that during the initial adoption phase of the framework, most

interaction will take place via viewing devices using the three hand gestures

described in Sections 5.1 and 5.2. However, as developers who specialize in

user interaction start creating smart objects to encapsulate their technology,

more UAR frameworks will start to utilize device-less interaction methods.

This allows for simpler viewing devices for users and more customized user

experiences in different UAR environments.

Another aspect of self-sustainability is the ability for the framework to create

smart objects which make use of new technologies in order to “update” UAR

environments. The vision of this research is to replace traditional desktop

computing with “UAR computing”. Ideally, this includes the development of

smart objects in a UAR environment. This aspect was briefly discussed in

Section 7.3.2. However, the creation of smart objects from a low level, i.e., the

generation of programming code in the fundamental layer of the smart object

to allow the functionality and data interface layer to access the fundamental

behavior of a smart object, has not been comprehensively investigated in this

research. This is a very profound and extensive topic and would likely involve

a fundamental change in the way software libraries which interface with

hardware would need to be implemented.

8.2 Contributions

The main contribution of the research is a new component-based UAR

framework for building UAR environments and applications. Every

123

component is a smart object that performs all fundamental functions as well as

high-level application functions. A standard protocol for communication and a

standard user interface definition schema have been proposed in this research

so that smart objects can be used in any UAR environment. Smart objects have

a virtual user interface that gives users access to their functionality and data

through AR. The specific contributions are highlighted below.

Communications protocol. The communications protocol is one of the few

standards enforced in SmARtWorld that allows smart objects to communicate

with each other regardless of networking protocol, while the basic set of RPCs

allows for basic UbiComp functionality in the environment. More

functionality and content can be added to a SmARtWorld environment by

bringing more smart objects into the environment with their own RPCs and

data.

Virtual user interface definition. The virtual user interface forms the

appearance and interactive elements of a smart object in AR. It is defined in a

standard COLLADA schema with a few definitions added for the

SmARtWorld framework to represent interactive elements and special

rendering properties for virtual user interfaces.

UAR implementation. An implementation of a UAR environment using the

SmARtWorld framework involves the development of several crucial types of

smart objects, namely, the primary server, landmark server, landmark objects

and object tracker. These objects can be used by adopters of the SmARtWorld

124

framework to create their own UAR environments. Some potential

applications in manufacturing based on this implementation have been given

in Chapter 7.

Viewing and interaction devices. Several methods of viewing and interacting

with smart objects have been explored in this research. Viewing devices are

smart objects which look for landmark objects in a SmARtWorld environment

to track their pose and download the virtual user interfaces of smart objects to

display them to the user in AR. The framework is designed to be able to work

with current mainstream devices as well as emerging technology like wearable

systems. The distributed nature of SmARtWorld means that a few less crucial

rendering effects and behavior, such as reflectivity, physical and sound

response, can be added with the support of other smart objects in the

environment rather than requiring the viewing device to handle the possible

ways that smart objects can be represented in the environment.

Universal access to independently-developed UAR environments in any

location. The SmARtWorld framework provides universal access to the

functions of UAR environments and smart objects through user-friendly

virtual user interfaces, though specialized viewing devices can also be created

that might cater customized functions and interaction methods for specific

UAR environments.

Bridged gap between real and virtual objects. It has also been shown how

the framework can facilitate blending and interaction between real and virtual

125

objects so as to reduce the distinction between the physical and digital domain

through the development and use of particular smart objects in the UAR

environment. The real and virtual objects blend smoothly with each other in

terms of appearance and functionality. Real objects can occlude virtual objects

and collide with virtual objects under the framework. Real and virtual objects

can work together, e.g., to integrate virtual and real sensor data together in one

application.

Abstraction of applications from fundamental functionality. There is

significant flexibility in the potential behavior, AR appearance and virtual user

interfaces of smart objects. Any hardware and software libraries can be used in

the implementation of the fundamental behavior of a smart object. As a result,

application developers can focus on creating smart objects that provide

specific applications without having to consider the implementation of

fundamental functionality, and without having to consider the specific details

about the environment they would be used in. Environment developers can

easily set up a UAR environment and the applications therein without having

to perform low-level programming. When smart objects, which encapsulate

basic functionality become well-established and shared around the world,

developers will be able to use visual programming techniques to create smart

objects and applications without having to learn programming languages.

126

8.3 Recommendations

There are a few issues that have not been considered in this research. First, the

scalability, quality of service, and error handling issues have not been

investigated. Before this framework can be widely deployed and adopted,

possible failures and network latency issues need to be handled.

Secondly, the tracking accuracy and speed have not been completely

optimized for the wearable and smartphone systems that are used to evaluate

the SmARtWorld environment execution based on the framework. This

disturbed users during tests. Dedicated research on the issues and methods of

tracking in a large environment should be conducted with the aim of

minimizing jitter and blind zones (areas where no tracking takes place), and

maximizing frame rates.

Thirdly, the weight and cumbersomeness of the wearable system prototype

have negative impacts during test. This problem is caused by the hardware

required in order to have the hands-free display capability and enough

computational power for tracking and interaction. However, mobile and

display technology is rapidly evolving and will enable much lighter and

comfortable wearable systems to be built in the near future.

Lastly, while virtual object animation was superficially investigated in this

research, it does not have the animation quality that can be found in modern

video games. For proper gaming, entertainment and media applications to be

possible, this aspect has to be developed further.

127

Once the afore-mentioned issues are resolved, a clear documentation of all the

standards and protocols that have been used must be made so that developers

can use the framework. There are a few AR and UbiComp standards that

might be worth integrating with the framework, e.g., vision-based descriptors

proposed by MPEG (Compact Descriptors for Visual Search, 2011).

128

Publications from this Research

Yew, A.W.W., Ong, S.K., & Nee, A.Y.C. (2010). SmARt World – Ubiquitous

Augmented Reality Computing. Paper presented at the International

Workshop on Mobile Collaborative Augmented Reality, 13-16 October

2010, Seoul, South Korea.

Yew, A.W.W., Ong, S.K., & Nee, A.Y.C. (2011). SmARt World - User-

Friendly Mobile Ubiquitous Augmented Reality Framework. In L. Alem

& W. Huang (Eds.) Recent Trends of Mobile Collaborative Augmented

Reality Systems. Berlin: Springer.

Yew, A.W.W., Ong, S.K., & Nee, A.Y.C. (2013). Adding Augmented Virtual

Interfaces to Simple Smart Objects for Ubiquitous Computing

Environments. Proceedings of the IADIS International Conferences on

Interfaces and Human Computer Interaction 2013 and Game and

Entertainment Technologies 2013 (pp. 37 – 44). IADIS Press. Paper

presented at the IADIS International Conference on Interfaces and

Human Computer Interaction, 22 - 24 July 2013, Prague, Czech

Republic.

Yew, A.W.W., Ong, S.K., & Nee, A.Y.C. (2014). Augmented Reality Interfaces

for Smart Objects in Ubiquitous Computing Environments. In P. Isaías,

& K. Blashki (Eds.) Human-Computer Interfaces and Interactivity:

Emergent Research and Applications (pp. 208-229). Hershey, PA:

Information Science Reference.

Yew, A.W.W., Ong, S.K., & Nee, A.Y.C. (2014). Towards A Griddable

Distributed Manufacturing System with Augmented Reality Interfaces,

Robotics and Computer Integrated Manufacturing, submitted.

129

References

Ahn, S., Kang, D., Kim, H., & Ko. H. (2005). Ubiquitous Smart Interaction

Space. Proceedings of the First International Workshop on

Personalized Context Modeling and Management for UbiComp

Applications 2005 (pp. 122 – 124). Aachen, Germany: CEUR Workshop

Proceedings.

ARToolKit. (n.d.). Retrieved August 10 2014 from

http://www.hitl.washington.edu/artoolkit/

Aruco: A Minimal Library for Augmented Reality Applications Based on

OpenCV (n.d.). Retrieved 12 August 2010 from

http://www.uco.es/investiga/grupos/ava/node/26

Avanzini, F., Rath, M., Rocchesso, D., & Ottaviani, L. (2003). Low-level

Models: Resonators, Interactions, Surface Textures. In D. Rocchesso &

F. Fontana (Eds.) The Sounding Object (pp. 137 – 165). Italy: Phasar

Ayu, M., Ismail, S., Matin, A., & Mantoro, T. (2012). A Comparison Study of

Classifier Algorithms for Mobile-phone's Accelerometer Based Activity

Recognition. Procedia Engineering, 41(0), 224 - 229.

Ballagas, R., Ringel, M., Stone, M., & Borchers, J. (2003). iStuff: A Physical

User Interface Toolkit for Ubiquitous Computing Environments.

Proceedings of SIGCHI Conference on Human Factors in Computing

Systems (pp. 537 – 544). New York, NY: ACM.

Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Riß, S.,

Sandor, C., & Wagner, M. (2001). Design of a Component-Based

Augmented Reality Framework. Proceedings of the Second IEEE and

130

ACM International Symposium on Augmented Reality (pp. 45-54).

Washington, DC: IEEE Computer Society.

Cao, X., Forlines, C., & Balakrishnan, R. (2007). Multi-User Interaction using

Handheld Projectors. Proceedings of the 20th Annual ACM Symposium

on User Interface Software and Technology (pp. 43 - 52). New York,

NY: ACM.

Caudell, T., & Mizell, D. (1992). Augmented Reality: An Application of Heads-

up Display Technology to Manual Manufacturing Processes.

International Conference on System Sciences (Vol. 2) (pp. 659 - 669).

Washington DC: IEEE Computer Society.

Cerf, V., Dalal, Y., & Sunshine, C. (1974). Specification of Internet

Transmission Control Program. RFC 675. Retrieved 18 August 2014

from http://tools.ietf.org/html/rfc675

Chadwick, J., Zheng, C., & James, D. (2012). Precomputed Acceleration Noise

for Improved Rigid-Body Sound. ACM Transactions on Graphics

(TOG) - SIGGRAPH 2012 Conference Proceedings, 31(4), Article 3.

Chouiten, M., Didier, J-Y., & Mallem, M. (2011). Proceedings of the 5th

International Conference on Communication System Software and

Middleware (pp. 3:1 – 3:7). New York, NY: ACM.

Compact Descriptors for Visual Search. (2011). Retrieved 5 Sep 2014 from

http://mpeg.chiariglione.org/standards/mpeg-7/compact-descriptors-

visual-search

Costa, C., Yamin, A., & Geyer, C. (2008). Toward a General Software

Infrastructure for Ubiquitous Computing. IEEE Pervasive Computing,

7(1), 64 - 73.

131

Crepaldi, R., Harris, A., Kooper, R., Kravets, R., Maselli, G., Petrioli, C., &

Zorzi, M. (2007). Managing Heterogeneous Sensors and Actuators in

Ubiquitous Computing Environments. Proceedings of the First ACM

Workshop on Sensor and Actuator Networks (pp. 35 - 42). New York,

NY: ACM.

Danylenko, A., Kessler, C., & Löwe, W. (2011). Comparing Machine Learning

Approaches for Context-Aware Composition. In S. Apel, & E. Jackson

(Eds.), Software Composition (pp. 18-33). Berlin: Springer Berlin

Heidelberg.

Department of Defense World Geodetic System 1984. (2000). Springfield,

Virginia: National Geospatial-Intelligence Agency (NGA).

Documents Associated With CORBA, 3.3. (2012). Retrieved 20 August 2014

from http://www.omg.org/spec/CORBA/3.3/

Dong, B., Qi, G., Gu, X., & Wei, X. (2008) Web Service-Oriented

Manufacturing Resource Applications for Networked Product

Development. Collaborative Design and Manufacturing, 22(3), 282 –

295

Dorner, C., Draxler, S., Pipek, V., & Wulf, V. (2009). End Users at the Bazaar:

Designing Next-Generation Enterprise Resource Planning Systems.

IEEE Software, 26(5), 45 – 51.

ECMAScript Language Specification. (2011). Geneva: ECMA International.

Effen, M.C. (2001). A Mechatronics Library for SIMULINK. Proceedings of

the 2001 IEEE International Conference on Control Applications (pp.

121 – 124). Washington, DC: IEEE Computer Society.

132

Fjeld, M., Bichsel, M., & Rauterberg, M. (1998). BUILD-IT: An Intuitive

Design Tool Based on Direct Object Manipulation. Proceedings of the

International Gesture Workshop on Gesture and Sign Language in

Human-Computer Interaction (pp. 297 - 308). London: Springer-

Verlag.

Fong, W., Ong, S., & A.Y.C., N. (2009). Computer Vision Centric Hybrid

Tracking for Augmented Reality in Outdoor Urban Environments.

Proceedings of 16th Symposium on Virtual Reality Software and

Technology (pp. 185 – 190). New York, NY: ACM.

glBlendFunc function. (2012). Retrieved 25 Auguest 2014 from

http://msdn.microsoft.com/en-

us/library/windows/desktop/dd318368(v=vs.85).aspx

Guo, J., Wang, Y., Chen, J., Lin, J., Wu, L., Xue, K., Liu, W., & Zhang, J.

(2009). Markerless tracking for augmented reality applied in

reconstruction of Yuanmingyuan archaeological site. Proceedings of

11th IEEE International Conference on Computer-Aided Design and

Computer Graphics (pp. 324 – 329). Washington DC: IEEE Computer

Society.

Guo, Y. (2008). Reasoning with Semantic Web Technologies in Ubiquitous

Computing Environment. Journal of Software, 3(8), 27 - 33.

Haghighi, P., Krishnaswamy, S., Zaslavsky, A., & Gaber, M. (2008). Reasoning

about Context in Uncertain Pervasive Computing Environments. In D.

Roggen, C. Lombriser, G. Tröster, G. Kortuem, & P. Havinga (Eds.),

Smart Sensing and Context (pp. 112 - 125). Berlin: Springer Berlin

Heidelberg.

133

Haller, M., Drab, S., & Hartmann, W. (2003). A Real-time Shadow Approach

for an Augmented Reality Application Using Shadow Volumes.

Proceedings of the ACM Symposium on Virtual Reality Software and

Technology (pp. 56 - 65). New York, NY: ACM.

Han, J.J. & Kim, S.-K. (2014). Text of White Paper on MPEG-V. International

Organization for Standardization.

He, Y., Yu, T., Liu, L., Shen, B., & Sun, H. (2006). A WSRF-Based Resource

Management System of Manufacturing Grid. Sixth IEEE International

Symposium on Cluster Computing and the Grid Management System of

Manufacturing Grid, (pp. 174-177). Singapore.

Hessman, T. (2013, February 14). The Dawn of the Smart Factory. Retrieved

November 10, 2013, from Industry Week:

http://www.industryweek.com/technology/dawn-smart-factory

Hill, A., MacIntyre, B., Gandy, M., Davidson, B., & Rouzati, H. (2010).

KHARMA: An open KML/HTML architecture for mobile augmented

reality applications. Proceedings of the 9th International Symposium on

Mixed and Augmented Reality (pp. 233 – 234). Washington, DC: IEEE

Computer Society.

Hincapie-Ramos, J., Tabard, A., & Bardram, J. (2011). Mediated Tabletop

Interaction in the Biology Lab: Exploring the Design Space of the

Rabbit. Proceedings of the 13th International Conference on Ubiquitous

Computing (pp. 301-310). New York, NY: ACM.

Hou, L., Wang, X., Bernold, L., & Love, P. (2013). Using Animated Augmented

Reality to Cognitively Guide Assembly. Journal of Computing in Civil

Engineering, 27(5), 439 – 451.

134

Hoque, E. & Stankovic, J. (2012). AALO: Activity Recognition in Smart

Homes Using Active Learning in the Presence of Overlapped Activities.

Proceedings of the 6th International Conference on Pervasive

Computing Technologies for Healthcare (pp. 136 – 146). Washington,

DC: IEEE Computer Society.

Hunter, A. (2001). A Default Logic Based Framework for Context-Dependent

Reasoning with Lexical Knowledge. Journal of Intelligent Information

Systems, 16(1), 65 - 87.

Irawati, S., Ahn, S., Kim, J., & Ko, H. (2008). IEEE Virtual Reality Conference

2008 (pp. 201 – 208). Washington DC: IEEE Computer Society.

Jin, Y., Wang, R., Huang, H., & Sun, L. (2010). Agent-Oriented Architecture

for Ubiquitous Computing in Smart Hyperspace. Wireless Sensor

Network, 1(2), 74 – 84.

Josefsson, S. (2006). The Base16, Base32, and Base64 Data Encodings (RFC

4648). Retrieved 18 August 2014 from

https://tools.ietf.org/html/rfc4648.

Kainz, B. & Streit, M. (n.d.). How to Write an Application with Studierstube

4.0. Retrieved 20 August 2014 from

http://studierstube.icg.tugraz.at/doc/pdf/Stb4AppWriting.pdf

Kato, H., & Billinghurst, M. (1999). Marker Tracking and HMD Calibration for

a Video-based Augmented Reality Conferencing System. Proceedings

of 2nd IEEE and ACM International Workshop on Augmented Reality

(pp. 85 - 94). Washington DC: IEEE Computer Society.

KHARMA Framework. (n.d.). Retrieved 20 August 2014 from

https://research.cc.gatech.edu/kharma/content/kharma-framework

135

Khronos Group. (2008). COLLADA – Digital Asset Schema Release 1.5.0.

Retrieved 18 August 2014 from

http://www.khronos.org/files/collada_spec_1_5.pdf

Kim, Y.C. & Moon, C.H. (2014). Non-Contact Gesture Recognition Using the

Electric Field Disturbance for Smart Device Application. International

Journal of Multimedia and Ubiquitous Engineering, 9(2), 133 – 140.

Kimura, H., Tokunaga, E., & Nakajima, T. (2006). Building Mobile Augmented

Reality Services in Pervasive Computing Environments. Proceedings of

ACS/IEEE International Conference on Pervasive Services (pp. 285 -

288). Washington, DC: IEEE Computer Society.

Köhler, H.J., Nickel, U., Niere, J., & Zündorf, A. (2000). Integrating UML

Diagrams for Production Control Systems. Proceedings of the 22nd

International Conference on Software Engineering (pp. 241 – 251).

Washington, DC: IEEE Computer Society.

Krevelen, D.W.F. van & Poelman, R. (2010). A Survey of Augmented Reality

Technologies, Applications and Limitations. The International Journal

of Virtual Reality, 9(2), 1 – 20.

Krum, D., Suma, E., & Bolas, M. (2012). Augmented Reality using Personal

Projection and Retroreflection. Personal and Ubiquitous Computing,

16(1), 17 - 26.

Kwapisz, J.R., Weiss, G.M., & Moore, S.A. (2010). Activity Recognition Using

Cell Phone Accelerometers. ACM SIGKDD Explorations Newsletter,

12(2), 74 – 82.

Layar App. (n.d.). Retrieved January 25, 2014, from Layar:

https://www.layar.com/products/app/

136

Lechner, M. (Ed). (2013). OGC Augmented Reality Markup Language 2.0

(ARML 2.0) [Candidate Standard]. Open Geospatial Consortium Inc.

Lee, E.S., Hong, S., & Johnson, B.R. (2006). Context Aware Paper-Based

Review Instrument: A Tangible User Interface for Architecture Design

Review. In G.A. Luhan (Ed.), Proceedings of the 25th Annual

Conference of the Association for Computer-Aided Design in

Architecture (pp. 317 – 327). Louisville, KY: Association for Computer-

Aided Design in Architecture.

Lee, W., & Park, J. (2005). Augmented Foam: A Tangible Augmented Reality

for Product Design. Proceedings of the 4th IEEE and ACM International

Symposium on Mixed and Augmented Reality (pp. 106 - 109).

Washington DC: IEEE Computer Society.

Li, X., Chen, D., & Xiahou, S. (2009). Ubiquitous Augmented Reality System.

Proceedings of Second International Symposium on Knowledge

Acquisition and Modeling (pp. 91 – 94). Washington DC: IEEE

Computer Society.

Liu, S., Cheng, T.-W., & Hsieh, Y.-C., (2011). Synthesizing Physics-Based

Vortex and Collision Sound in Virtual Reality. Lecture Notes in

Computer Science, 6939(1), 190-198.

LonWorks®-based Office Building Cuts HVAC, Lighting Costs 80% (n.d.).

Retrieved October 2, 2013 from

http://www.echelon.com/customers/smart-buildings/bob.htm

Meng, X., Yang, L., Aponte, J., Hill, C. Moore, T., & Dodson, A.H. (2008).

Development of Satellite Based Positioning and Navigation Facilities

for Precise ITS Applications. 11th International IEEE Conference on

137

Intelligent Transport Systems (pp. 962 – 967). Washington DC: IEEE

Computer Society.

Malis, E., & Vargas, M. (2007). Deeper Understanding of the Homography

Decomposition for Vision-based Control. Nice: Institut National de

Recherche en Informatique et en Automatique (INRIA).

Muller-Tomfelde, C., & Fjeld, M. (2012). Tabletops: Interactive Horizontal

Displays for Ubiquitous Computing. Computer, 45(2), 78-81.

Nagel, T., Heidmann, F., Condotta, M., & Duval, E. (2010). Venice Unfolding:

A Tangible User Interface for Exploring Faceted Data in a Geographical

Context. Proceedings of the 6th Nordic Conference on Human-

Computer Interaction: Extending Boundaries (pp. 743 – 746). New

York, NY: ACM.

Nee, A.Y.C., Ong, S.K., Chryssolouris, G., & Mourtzis, D. (2012). Augmented

Reality Applications in Design and Manufacturing. CIRP Annals -

Manufacturing Technology, 61(2), 657–679.

Ng, L., Wang, Z., Ong, S.K., & Nee, AY.C. (2013). Integrated Product Design

and Assembly Planning in an Augmented Reality Environment.

Assembly Automation, 33(4), 345 - 359.

Nguyen, T. A., Raspitzu, A., & Aiello, M. (2013). Ontology-based office

activity recognition with applications for energy savings. Journal of

Ambient Intelligence and Humanized Computing, doi: 10.1007/s12652-

013-0206-7

Occupying Yourself with Energy and Occupancy (2010). Retrieved 2 October

2013 from

138

http://www.automatedbuildings.com/news/aug10/articles/sinopoli1/10

0728121202sinopoli.htm

Olwal, A., Gustafsson, J., & Lindfors, C. (2008). Spatial Augmented Reality on

Industrial CNC-Machines. Proc. SPIE 6804, The Engineering Reality of

Virtual Reality 2008, 680409, doi:10.1117/12.760960

OpenAL Soft. (n.d.). Retrieved January 27 2014 from

http://kcat.strangesoft.net/openal.html

OpenVideo Documentation (n.d.). Retrieved 20 August 2014 from

http://studierstube.icg.tugraz.at/openvideo/

Park, H., Lee, M.-H., Kim, S.-J., & Park, J.-I. (2006). Surface-Independent

Direct-Projected Augmented Reality. Lecture Notes in Computer

Science, 3852, 892 - 901.

Park, K., Park, K.-W., Lee, J., Yoo, J.-W., Lim, S.-H., & Choi, H.-J. (2008). U-

TOPIA: A Ubiquitous Environment with a Wearable Platform, UFC and

Its Security Infrastructure, pKASSO. Communications in Computer and

Information Science, 11(1), 183 - 193.

Piekarski, W. & Thomas, B. (2003). An Object-Oriented Software Architecture

for 3D Mixed Reality Applications. Proceedings of the Second IEEE

and ACM International Symposium on Mixed and Augmented Reality

(pp. 247 – 256). Washington, DC: IEEE Computer Society.

Pinhanez, C. (2003). Creating Ubiquitous Interactive Games Using Everywhere

Displays Projectors. The International Federation for Information

Processing, 112(3), 149 - 156.

Pirsiavash, H. & Ramanan, D. (2012). Detecting Activities of Daily Living in

First-person Camera Views. Proceedings of the 2012 IEEE Conference

139

on Computer Vision and Pattern Recognition (pp. 2847 – 2854).

Washington, DC: IEEE Computer Society.

Portele, C. (Ed). (2007). OpenGIS® Geography Markup Languag (GML)

Encoding Standard. Open Geospatial Consortium Inc.

Preda, M., Choi, B.S., & Anh, M. (Eds.). (2013). WD of the 2nd Edition of

ISO/IEC 23000-13, Augmented Reality Application Format.

International Organization for Standardization.

Pu, Q., Gupta, S., Gollakota, S., & Patel, S. (2013). Whole-home Gesture

Recognition using Wireless Signals. Proceedings of the 19th Annual

International Conference on Mobile Computing & Networking (pp. 27

– 38). New York, NY: ACM

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. Proceedings of the IEEE, 77(2),

257 – 286.

Radu, I. & MacIntyre, B. Augmented-reality Scratch: A Children's Authoring

Environment for Augmented-reality Experiences. Proceedings of the

8th International Conference on Interaction Design and Children (pp.

210 – 213). New York, NY: ACM.

Rautaray, S.S. & Agrawal, A. (2012). Vision based hand gesture recognition for

human computer interaction: a survey. Artificial Intelligence Review,

doi: 10.1007/s10462-012-9356-9

Reitmayr, G., Chiu, C., Kusternig, A., Kusternig, M., & Witzmann, H. (2005).

iOrb - Unifying Command and 3D Input for Mobile Augmented Reality.

Proceedings of the IEEE VR Workshop on New Directions in 3D User

Interfaces (pp. 7 - 10). Washington DC: IEEE Computer Society.

140

Ropinski, T., Wachenfeld, S., & Hinrichs, K. (2004). Virtual reflections for

Augmented Reality Environments. Proceedings of the 14th

International Conference on Artificial Reality and Telexistence (pp. 311

– 318). Berlin: Springer.

Rosenberg, L. (1992). The Use of Virtual Fixtures as Perceptual Overlays to

Enhance Operator Performance in Remote Environments. Dayton,

Ohio: Wright-Patterson Air Force Base.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient

alternative to SIFT or SURF. Proceedings of the 2011 IEEE

International Conference on Computer Vision (ICCV) (pp. 2564 –

2571). Washington DC: IEEE Computer Society.

Sakairi, T., Palachi, E., Cohen, C., Hatsutori, Y., Shimizu, J., & Miyashita, H.

(2013). Model Based Control System Design Using SysML, Simulink,

and Computer Algebra System. Journal of Control Science and

Engineering, Vol. 2013, Article ID 485380, 1 – 14.

San Augustin, J., Skovsgaard, H., Mollenbach, E., Barret, M., Tall, M., Hansen,

D., & Hansen, J. (2010). Evaluation of a Low-Cost Open-Source Gaze

Tracker. Proceedings of the 2010 Symposium on Eye-Tracking Research

& Applications (pp. 77-80). New York: ACM.

Sashima, A., Izumi, N., & Kurumatani, K. (2005). Agents That Coordinate Web

Services in Ubiquitous Computing. Lecture Notes in Computer Science,

3598, 131 - 145.

Schlette, C., Losch, D., & Rossmann, J. (2014). A Visual Programming

Framework for Complex Robotic Systems in Micro-Optical Assembly.

141

Proceedings of the 41st International Symposium on Robotics (pp. 1 –

6). Berlin: VDE.

Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavári, Z., Encarnaçäo, L. M.,

Gervautz, M., & Purgathofer, W. (2002). The Studierstube Augmented

Reality Project. Presence: Teleoperators and Virtual Environments,

11(1), 33 - 54.

Schmalstieg, D., & Reitmayr, G. (2007). The World as a User Interface:

Augmented Reality for Ubiquitous Computing. In G. Gartner, W.

Cartwright, & P. P. Michael (Eds.), Location Based Services and

TeleCartography (pp. 369-391). Berlin: Springer Berlin Heidelberg.

Signals & Slots. (n.d.). Retrieved 20 August 2014 from http://qt-

project.org/doc/qt-5/signalsandslots.html

Singh, S., Puradkar, S., & Lee, Y. (2006). Ubiquitous computing: Connecting

Pervasive Computing through Semantic Web. Information Systems and

e-Business Management, 4(4), 421 - 439.

Sinha, S.N., Frahm, J., Pollefeys, M., & Genc, Y. (2011). Feature Tracking and

Matching in Video Using Programmable Graphics Hardware. Machine

Vision and Appliances, 22(1), 207 – 217.

Smith, R. (2007, May 28). Open Dynamics Engine. Retrieved January 27 2014

from http://www.ode.org/

Song, P., Winkler, S., & Tedjokusumo, J. (2007). A Tangible Game Interface

Using Projector-Camera Systems. Proceedings of the 12th International

Conference on Human-computer Interaction: Interaction Platforms and

Techniques (pp. 956 - 965). Berlin: Springer-Verlag.

142

Soylu, A., & de Causmaecker, P. (2010). Ubiquitous Web for Ubiquitous

Computing Environments: The Role of Embedded Semantics. Journal

of Mobile Multimedia, 6(1), 26 - 48.

Studierstube project: Open Tracker (n.d.). Retrieved 20 August 2014 from

http://studierstube.icg.tugraz.at/opentracker/

Supan, S., Stuppacher, I., & and Haller, M. (2006). Image Based Shadowing in

Real-time Augmented Reality. International Journal of Virtual Reality,

5(3), 1 - 10.

Synapse’s SNAP Network Operating System (n.d.). Retrieved 20 August 2014

from https://www.synapse-

wireless.com/documents/whte_paper/Synapse-SNAP-OS-White-

Papper.pdf

Synapse Wireless Drives Internet of Things Innovation (n.d.). Retrieved 20

August 2014 from http://harborresearch.com/wp-

content/uploads/2014/04/HRI_Synapse-Paper_2014.pdf

Szeliski, R. (2011). Feature Detection and Matching. In Computer Vision:

Algorithms and Applications (pp. 181 – 234). Berlin: Springer-Verlag.

Ullmer, B., & Ishii, H. (1997). The metaDESK: Models and Prototypes for

Tangible User Interfaces. Proceedings of the 10th Annual ACM

Symposium on User interface Software and Technology (pp. 223-232).

New York, NY: ACM.

UPnP. (n.d.). Retrieved 20 August 2014 from http://www.upnp.org/

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., & Schmalstieg, D.

(2008). Pose Tracking from Natural Features on Mobile Phones.

Proceedings of the 7th IEEE/ACM International Symposium on Mixed

143

and Augmented Reality (pp. 125 - 134). Washington, DC: IEEE

Computer Society.

Wang, L., Gu, T., Chen, H., Tao, X., & Lu, J. (2010). Real-Time Activity

Recognition in Wireless Body Sensor Networks: From Simple Gestures

to Complex Activities. Proceedings of the 16th International

Conference on Embedded and Real-Time Computing Systems and

Applications (pp. 43 – 52). Washington, DC: IEEE Computer Society.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American,

265(3), 94 - 104.

Willis, K., Poupyrev, I., Hudson, S., & Mahler, M. (2011). SideBySide: Ad-hoc

Multi-user Interaction with Handheld Projectors. Proceedings of the

24th Annual ACM Symposium on User Interface Software and

Technology (pp. 431 - 440). New York, NY: ACM.

Wilson, A., & Sarin, R. (2007). BlueTable: Connecting Wireless Mobile

Devices on Interactive Surfaces Using Vision-based Handshaking.

Proceedings of Graphics Interface 2007 (pp. 119 - 125). New York, NY:

ACM.

Wilson, T. (Ed). (2008). OGC® KML. Open Geospatial Consortium Inc.

Winer, D. (2003). XML-RPC Specification. Retrieved 25 August 2014 from

http://xmlrpc.scripting.com/spec.html

World Wide Web Consortium (n.d.). Forms. Retrieved 18 August 2014 from

http://www.w3.org/TR/html4/interact/forms.html

Vanderdonckt, J., & Simarro, F. (2010). Generative Pattern-based Design of

User Interfaces. Proceedings of the 1st International Workshop on

144

Pattern-Driven Engineering of Interactive Computing Systems (pp. 12 –

19). New York: ACM.

Vincent, T. & Laganiere, R. (2001). Detecting Planar Homographies in an

Image Pair. Proceedings of the 2nd International Symposium on Image

and Signal Processing and Analysis (pp. 182 – 187). Washington, DC:

IEEE Computer Society.

Vyas, K.K., Paree, A., & Tiwari, S. (2013). Gesture Recognition and Control

Part 3 – WiFi Oriented Gesture Control & its application. International

Journal on Recent and Innovation Trends in Computing and

Communication, 1(9), 682 – 685.

Yang, X. & Cheng, K. (2012). Accelerating SURF Detector on Mobile Devices.

Proceedings of the 20th ACM International Conference on Multimedia

(pp. 569 – 578). New York: ACM.

Yee, W. (2009). Potential Limitations of Multi-touch Gesture Vocabulary:

Differentiation, Adoption, Fatigue. Lecture Notes in Computer Science,

5611, 291 – 300.

Yergeau, F. (2003). UTF-8, a Transformation of Format of ISO 10646 (RFC

3629). Retrieved 18 August 2014 from

http://tools.ietf.org/html/rfc3629.

Zhan, Y., & Kuroda, T. (2014). Wearable sensor-based human activity

recognition from environmental background sounds. Journal of Ambient

Intelligence and Humanized Computing, 5(1), 77-89.

Zhu, J., Ong, S.K., & Nee, A.Y.C. (2013, June). An Authorable Context-Aware

Augmented Reality System to Assist the Maintenance Technicians. The

145

International Journal of Advanced Manufacturing Technology, 66(9-

12), 1699-1714.

ZigBee Specification Overview (n.d.). Retrieved 20 August 2014 from

http://zigbee.org/Specifications/ZigBee/Overview.aspx

