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Summary 

The aim of ubiquitous computing is to shift computing tasks from the 

traditional desktops to the user’s physical environment. Today, the 

manifestation of this vision can be seen in the proliferation of tablet devices 

and smartphones that provide access to services and applications. Everyday 

objects are transformed into smart objects, i.e., objects with computing and 

networking capability, which can sense and have rich contextual aware 

functionality. Everyday environments are transformed into smart 

environments that automatically monitor and adjust conditions, such as 

temperature and lighting for the inhabitants.  

 

There are a number of limitations with current technologies. First, the user 

interfaces of smart objects and ubiquitous services are not intuitive and 

demand much focus from users. Second, the application development process 

requires expert knowledge, which means less fine control by users over their 

environment. Third, the types of applications and interfaces that can be 

implemented in a smart environment are limited by physical constraints. 

Augmented reality (AR) allows for computer generated graphics, sound and 

other sensory stimuli to be added into the user’s experience of the physical 

world, therefore opening up many possible enhancements to ubiquitous 

computing.  

 

In this research, a framework called SmARtWorld is proposed which aims to 

facilitate smart AR environments. SmARtWorld is designed for universal 

applications with a focus on intuitive and user-friendly interfaces to computer 
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applications. It is a component-based distributed system with smart objects as 

the building blocks of applications embedded into the physical environment. It 

incorporates AR technologies such that smart objects and their user interfaces 

can break physical boundaries and be created for maximum utility to the users.  

 

Multiple research issues have been investigated. The basic architecture of a 

smart object and the networking infrastructure and protocols needed in order 

to create a ubiquitous AR environment have been developed and forms the 

foundation for subsequent developments. Various user interaction and display 

devices have been explored and integrated with SmARtWorld, demonstrating 

the separation of hardware and applications that the framework provides. As a 

result, a smartphone system and a wearable system have been developed that 

can be used with a SmARtWorld environment. The ways in which real and 

virtual smart objects can co-operate and co-exist in the same environment 

have also been studied. Finally, the potential impact that this research can 

make in the manufacturing industry has been studied in three areas, namely, as 

an interface for workers to access computer-aided manufacturing technologies 

in a job shop, as a basis for a manufacturing grid, and as a visual programming 

tool of manufacturing tasks.    

 

The main contribution of the research is a new component-based framework 

for building UAR environments and applications, based on the novel idea that 

every component is a smart object with a virtual user interface to its data and 

functionality. All smart objects share the same architecture which includes a 

hardware abstraction layer. This allows for flexibility in the hardware and 
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software used to implement the smart object. A standard protocol for 

communication and a virtual user interface definition schema have been 

developed in this research so that smart objects can be accessed in any UAR 

environment. The implementation of smart objects that perform the 

fundamental functions needed for UAR applications, namely, the primary 

server, hubs that connect smart objects on different networks, viewing devices, 

landmarks for tracking and registration, and trackers for real objects. Smart 

objects that add interaction and rendering functionality to any UAR 

environment have also been investigated. These include context-sensing 

objects, environmental capture objects, light sources, and physics engine and 

sound rendering objects.  

 

Issues that still warrant further development include error handling, network 

latency and tracking performance. The ergonomics of wearable systems is also 

an issue with the current hardware available, but it is hoped that this can be 

improved as technological advancement in this area is moving rapidly. 
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Chapter 1. Introduction 

 

1.1 Ubiquitous Computing 

The concept of ubiquitous computing (UbiComp) was formalized by Mark 

Weiser as he described its vision in a seminal paper, writing that technologies 

should “disappear into the background” so that users are “freed to use them 

without thinking” and are able to “focus beyond them on new goals” (Weiser, 

1991). The problems that Weiser and other UbiComp researchers found with 

the traditional desktop model of computing relate to its computer-centricity 

and still hold true today. The computer screen becomes the focal point of the 

user’s attention which interferes with the user’s normal cognitive process 

when performing tasks and problem-solving. The act of interacting with a 

computer itself presents an overhead cost on effort. Furthermore, computers 

put information at our fingertips resulting in information overload, 

exacerbating the drain on the user’s energy and time.    

 

UbiComp has already made a significant impact on mankind. Ubiquitous 

computing literally means “computing everywhere”. This has already been 

taken for granted with the proliferation of smartphones and tablets, interactive 

touchscreens and kiosks in public spaces, and smart household appliances. 

However, the problem of computer-centricity has merely been transferred to 

the individual devices, i.e., the problem with the modern model of computing 

is that it is now too device-centric. All of a person’s software tools and 

information sources exist on a single device. Someone in need of information 

or location-specific information has to locate a kiosk before being able to 
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access the services. Smart household appliances can have many more 

functions than the users can conceive of and have time to discover.   

 

UbiComp aims to move away from the problem of device-centricity altogether 

by granularizing computing resources into separate objects in the physical 

environment. Computer functions are presented and actuated through the 

user’s interactions with the environment itself. It is arguable whether any of 

today’s UbiComp systems have been completely successful in eliminating the 

problem of device-centricity.  

 

1.2 Augmented Reality 

Augmented reality (AR) refers to a perception of the real world where 

computer-generated graphics, sound and other sensory stimuli are added. It is 

often advocated as a natural complement to UbiComp because a key 

component of AR systems is the physical environment. AR systems started to 

appear in the 1990’s. In 1992, a see-through head-mounted display (HMD) 

system was created by researchers at Boeing which could overlay diagrams on 

real-world objects during aircraft manufacturing operations (Caudell & Mizell, 

1992). At the same time, a system of “virtual fixtures” was developed by 

Rosenberg (1992) which improved the performance of tele-operated tasks by 

augmenting the operator’s vision with a view of the remote environment; this 

system has an exoskeleton to restrict the operator’s motion and the audio 

overlaid on the operator’s view of the remote environment aids in the 

perception of virtual objects. 
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AR works by tracking a user’s view of the real environment, recognizing and 

estimating the pose, i.e., position and orientation, of known objects with 

respect to the user’s point of view (via a camera), and rendering computer 

generated input spatially-registered around the detected objects. A key 

development in AR was the release of an open source tracking software library 

for PCs called ARToolKit (ARToolKit, n.d.) in 1999 which implemented 

computer vision (CV) functions for tracking square planar markers with 

known patterns efficiently and reliably. ARToolKit has allowed developers 

and researchers to develop AR applications more easily.  

 

Within the next decade, research into AR applications had exploded as AR 

found its way into design and manufacturing (Nee, et al., 2012), medical, 

education, navigation, and entertainment applications (Krevelen & Poelman, 

2010), etc. AR technology has rapidly advanced since then as markerless, non-

optical-sensor-based, and sensor fusion techniques for tracking have been 

developed. 

 

AR and UbiComp complement each other in several ways. AR can free 

UbiComp smart objects and interfaces from the confines of their physical 

configuration, and this enhances a smart environment in terms of its 

appearance and types of interaction. AR tracking technology adds fine 

location-awareness to smart objects which makes them intelligent and 

responsive to the needs of users. Without UbiComp, the scale and scope of AR 

applications may be limited. This is because as mere overlays, augmented 

objects have limited utility. However, if physical objects can be digitized and 
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become a part of the AR environment, more interactions and behaviors can be 

designed which can have actual effects on the real environment.   

 

1.3 Research Objectives and Scope 

As global knowledge and information grows and the world becomes more 

interconnected, it is becoming increasingly important to be able to present the 

knowledge and information intelligently and interactively to users. Packing 

services and data into individual devices will soon become impractical. 

Services and data should not be items that are sought after by the users when 

they feel they need it, but instead should be available wherever and whenever 

they are needed.  

 

To remove this device-centric characteristic of computing is the main aim of 

this research. This is achieved by the development of a framework that 

facilitates AR applications that are embedded in large environments. There are 

three kinds of users who will benefit from this system, namely, environment 

developers, application developers, and end-users. Environment developers 

refers to the persons who set up the hardware infrastructure that turns the 

environment into a ubiquitous augmented reality (UAR) environment. 

Application developers are those who create smart objects which encapsulate 

the functions in an application. End-users are the persons who enter a UAR 

environment and make use of the smart objects. Therefore, the objectives of 

this research are as follows: 
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(1) A common framework for creating UAR environments that abstracts 

applications from hardware for tracking, interaction and display. 

(2) Flexibility in the hardware and software used to implement context-

aware smart objects with highly customizable behaviors, appearance 

and user interfaces. 

(3) Flexibility in the hardware and software used to implement viewing 

and interaction devices. 

(4) Recommended practices for AR application development using the 

proposed framework. 

(5) A self-sustainable framework which continues to be relevant as 

technology evolves.  

 

For objective (1), standard protocols and definitions for communication, 

interaction and object representation will be proposed. Furthermore, 

components of the framework will be defined to ensure that UAR 

environments will be able to provide fundamental AR, namely, tracking and 

interaction, so that application developers can focus on content.  

 

For objective (2), the software architecture of a smart object will be defined 

and will incorporate hardware abstraction. Using this architecture, an 

exploration of the ways in which smart objects can be developed to have 

different behaviors, graphical properties, and interactive properties will be 

conducted.   
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For objective (3), the research will look into the implementation of viewing 

and interaction devices and to demonstrate the use of different platforms to 

achieve a variety of user experiences.  

 

For objective (4), various ways with which smart objects can be designed to be 

more visible but also blend into their UAR environment, as well as their 

practicability in AR applications, will be explored.  

 

For objective (5), two aspects of self-sustainability of the framework will be 

investigated. First is the ability for the framework to remain compatible with 

new hardware and devices. For this aspect, the framework will be designed 

with hardware-software abstraction at the level of smart objects, and, 

application-interaction abstraction at the level of applications. Second is the 

ability for the framework to maintain itself, i.e., creating new smart objects to 

encapsulate new technologies. For this aspect, the application of visual 

programming in a UAR environment will be explored.   

 

As this is a wide topic, some important issues have not been included in the 

scope of this research including security, privacy, quality and reliability of 

service. The scope of this research has been limited to the following issues: 

(1) Tracking of users and objects. 

(2) Unifying heterogeneous objects and devices. 

(3) User viewing and interaction. 

(4) Ubiquitous AR application development. 
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1.4 Organization of the Thesis 

The thesis is organized as follows. First, a comprehensive literature review on 

the state of art in UbiComp and AR technology as well as UAR frameworks is 

given in Chapter 2. Chapter 3 describes the SmARtWorld framework in detail, 

including its requirements, architecture, standards and protocols used. Chapter 

4 describes the implementation of a basic UAR environment and its 

constituent smart objects using the SmARtWorld framework. Chapter 5 details 

the different implementations of SmARtWorld environments without a 

viewing device. Chapter 6 describes the different ways in which smart objects 

can be presented in a SmARtWorld environment. Chapter 7 describes three 

manufacturing applications of the framework, namely a manufacturing job 

shop, manufacturing grid, and visual programming. The thesis is concluded 

with the contributions of this research and recommendations for future work 

discussed in Chapter 8. 
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Chapter 2. Literature Survey 

 

This chapter looks at the related research works that have been conducted for 

placing the research issues into context. Since the main contribution of this 

work is a framework for UbiComp applications, the review starts with 

examining relevant UbiComp issues and the systems that have been developed 

to deal with them. Next, as the framework incorporates AR, a survey on 

research on the main AR issues of tracking and display is presented. Finally, 

systems which combine AR and UbiComp will be explored to give an idea of 

how other researchers have approached this problem. 

 

2.1  Ubiquitous Computing Issues 

Costa et al. (2008) lists ten open issues in ubiquitous computing, namely 

scalability, dependability and security, privacy and trust, mobility (referring to 

applications that follow the user), heterogeneity, spontaneous interoperation, 

invisibility, transparent user interaction, context awareness, and context 

management. Of these, the last six issues are investigated in this research. 

 

2.1.1  Heterogeneity and Spontaneous Interoperation 

An UbiComp environment contains many different kinds of sensors, actuators, 

objects and services built on different technologies and protocols. Many 

UbiComp systems opt to wrap heterogeneous services and devices as web 

services as this unifies the representation of user interfaces (Sashimi, Izumi, & 

Kurumatani, 2005). Several systems take this a step further by proposing to 

make use of semantic reasoning and ontology structures like RDF (Resource 
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Description Framework) and OWL (Web Ontology Language) to describe 

heterogeneous services so that they can be universally understood by different 

devices (Singh, et al., 2006; Guo, 2008; Soylu & de Causmaecker, 2010). 

Other systems have proposed their own middleware for extracting meaningful 

output and control options to suit the application domain (Crepaldi, et al., 

2007) so as to provide more suitable interfaces. The use of ontologies and 

middleware adds a layer of conformity requirement when applications are 

created and can add computational and memory overhead if a middleware 

solution attempts to unify many different communication and interoperability 

protocols. 

 

2.1.2 Invisibility 

Invisibility refers to computer hardware being hidden from the user in a 

UbiComp environment. This can be achieved by the use of wireless mesh 

networks like SNAP (Synapse’s SNAP Network, n.d.) and ZigBee (ZigBee 

Specification Overview, n.d.). These networks are formed from tiny networked 

microcontrollers that can be used for sensing and control. The advent of 

wireless mesh networks have driven the development of smart buildings with 

automated lighting and climate control (Occupying Yourself, 2010; 

LonWorks®-based Office Building, n.d.) and The Internet of Things (Synapse 

Wireless Drives, n.d.).  

 

SNAP and ZigBee nodes are suitable as agents for simple roles like user input 

and output, reasoning, learning, etc. (Jin, et al., 2010). However, as they are 

low-powered and greatly limited in memory capacity compared to a desktop 
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computer or even a smartphone, it would be difficult to implement 

sophisticated computer programs on these mesh networks. UbiComp 

frameworks try to bridge connectivity among different kinds of devices and 

appliances. The problem of invisibility then lies with the user interfaces and 

interaction methods that are used to control the functions that are provided in 

the UbiComp environment. 

 

2.1.3 Transparent User Interaction 

Transparent user interaction refers to making the user interface invisible to the 

user so that the user can focus on the task at hand. There have been reported 

research works on developing gesture recognition through sensors placed in 

the environment rather than worn by the user. Hand gesture recognition using 

CV is an extremely active area of research in user interaction (Rautaray & 

Agrawal, 2012) where cameras are used to detect hand gestures. This requires 

the user’s hands to remain in the camera’s field of view. There is non-vision 

gesture recognition research, such as through the use of electromagnetic 

interference (Kim & Moon, 2014) and Wi-Fi signals (Vyas, et al., 2013; Pu, et 

al., 2013).  

 

Interaction methods that require an interaction device still remain in active 

development due to better recognition performance and different application 

requirements. Interactive surfaces are a familiar sight today in public places. 

These are typically flat screen displays with multi-touch gesture recognition. 

Over the last 20 years, there have been numerous research works on tabletop 

interactive displays, many of which do not have a fixed display orientation and 
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allow access to multiple simultaneous users (Muller-Tomfeld & Fjeld, 2012). 

Some tabletop interactive surfaces include tangible elements to represent 

graspable virtual objects (Ullmer & Ishii, 1997; Fjeld, et al., 1998) or 

recognize and interact with physical objects placed on them (Wilson & Sarin, 

2007; Hincapie-Ramos, et al., 2011). A variant of this is the use of wall-

mounted display projectors (Pinhanez, 2003; Song, et al., 2007) or user-carried 

portable projectors (Cao, et al., 2007; Willis, et al., 2011) to project user 

interfaces onto surfaces and made interactive using CV techniques. 

 

There have been discussions on whether interactive displays can be classified 

as UbiComp user interaction. With good user interface design, user interaction 

can still be transparent. However, the heterogeneity of devices and services in 

UbiComp environments makes user interface design a challenging endeavor. 

A number of automatic user interface generation approaches for UbiComp 

environments have been proposed to allow for abstraction between 

applications and user interface design. Gajos et al. (2008) developed a method 

using decision-theoretic optimization to generate user interfaces for web 

browsers and PDAs based on user abilities, preferences, devices, and tasks. 

Automatic user interface generation based on semantic descriptions of 

interaction modality and types of service was proposed by Vanderdonckt & 

Simarro (2010) by adapting from a knowledge base of user interface models to 

generate an XML-based user interface. The problem with this approach is that 

even if the automatically-generated user interface is comprehensible by a user, 

it may not reflect the intention of an application designer in providing a user 

experience. 



12 

 

 

An alternative class of user interface is tangible user interfaces (TUIs). A TUI 

is made up of physical objects that are manipulated directly and intuitively in 

order to interact with a computer-aided task. Some TUIs are designed as 

application-specific systems where the modes of interaction with the physical 

elements correspond to the functionality of the system (Lee, et al., 2006; 

Nagel, et al., 2010). TUI implementation can also be approached generically 

with the use of standard interface devices, such as buttons, sliders and 

pointers, to interact with a UbiComp environment. An example is the iStuff 

framework (Ballagas, et al., 2003). With this generic approach, applications 

and system output are abstracted from the TUI so that any kinds of 

applications can be developed to work with the interaction objects. Short of 

labeling every interactive object, the TUI approach does not provide the 

awareness of functionality to the users. This means that the UbiComp 

environments utilizing TUIs require that users are familiar with the 

environments.  

 

Wearable devices are another approach to user interaction that is sometimes 

employed in UbiComp systems. Park, et al. (2008) developed a wearable 

system consisting of a radio transceiver and GPS receiver worn on a vest, and 

three-axis accelerometer worn on the finger. The GPS receiver tracks the 

user’s location while the accelerometer recognizes gestures made by the hand. 

The user points at an object to select it and then makes a gesture 

corresponding to the operation the user wishes to carry out. The radio 

transceiver transmits the recognized gestures as a command to the selected 
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object. Current technology remains an obstacle to widespread acceptance of 

wearable AR systems mainly due to the size and weight of the display users 

have to wear on the head and inadequate support for video output from 

mainstream mobile devices. However, mobile and wearable display 

technology is rapidly evolving to solve these issues. 

 

2.1.4 Context Awareness and Context Management 

Context awareness refers to the ability of the UbiComp environment to 

understand the state of the user as well as that of the environment, and context 

management refers to the way in which the UbiComp environment responds to 

these states. Context awareness therefore relates to sensing capabilities while 

context management relates to environment automation and responsiveness. 

Context management is important because it is the means by which 

information filtering takes place. Environmental and user-worn sensors are 

typically employed in order to achieve context awareness, together with 

algorithms, such as logic reasoning (Hunter, 2001; Haghighi, et al., 2008) and 

machine learning (Danylenko, et al., 2011; Ayu, et al., 2012), that process the 

data and extract meaning about the environment or a user’s actions and 

intentions. These methods have frequently been applied to activity recognition 

tasks (Nguyen, et al., 2013; Zhan & Kuroda, 2014).  

 

2.2 Augmented Reality Issues 

2.2.1 Tracking 

Tracking is used for computing a user’s pose, i.e., position and orientation, in 

the environment as well as that of objects. There are a number of ways to 
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perform tracking. Thus far, CV is the most widely used tracking approach in 

AR systems because of its relative accuracy compared to other methods and 

low-cost as only a simple camera is needed. 

 

ARToolKit (ARToolKit, n.d.) is one of the most widely used software in AR. 

The ARToolKit tracking module works by searching for square planar 

markers called fiducial markers with known patterns to obtain their 3D pose in 

the camera image (Kato & Billinghurst, 1999). CV algorithms are used to 

compute the pose so as to map the world 3D coordinates to coordinates with 

respect to the camera and then to the 2D image coordinates of the screen of a 

display device (Figure 2-1). A 3D coordinate system defined with respect to, 

for example, the top left corner of the marker as the origin can use the pose to 

render the virtual object, defined in the world 3D coordinates, at that location. 

 

 

Figure 2-1. Coordinate transformations from virtual object to AR 
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While marker-based tracking remains widely used in AR applications because 

of the stability, accuracy and robustness of the algorithm, the main drawback 

for tracking in a large environment is the need to attach markers to it. Natural 

feature tracking eliminates the need for markers as it uses features found in the 

environment. Typical natural feature algorithms involve detecting feature 

points (points of high contrast change like object corners) in image frames of 

the scene and matching them to feature points which have been trained into 

the system. Many markerless AR systems make use of planar features 

(Wagner, et al., 2008; Fong, et al., 2009) or assume features are planar (Guo, 

et al., 2009) to reduce the complexity of the algorithm. Planar feature tracking 

makes use of CV techniques to extract the homography between the trained 

planar object and the object as seen by the camera. The pose of the object in 

the camera can then be extracted using the homography (Malis & Vargas, 

2007).  

 

Incremental tracking is sometimes used to supplement or enhance marker-

based and markerless tracking in cases where continuous marker or natural 

feature tracking is not possible, such as outdoor and large area applications. 

There are vision-based methods like optical flow (Mooser, et al., 2007; Luo & 

Bhandarkar, 2007) and structure from motion (Mooser, et al., 2009), as well as 

inertial sensor-based methods that track a user’s motions (Aron, Simon, & 

Berger, 2007). As inertial sensors are now commonly embedded in mobile 

devices along with cameras, a number of hybrid optical-inertial tracking 

systems have been researched for AR applications (Reitmayr & Drummond, 

2006; DiVerdi & Hollerer, 2008). However, in practice, large and cohesive 
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AR environments with precisely-placed virtual objects are still challenging to 

implement. Miyashita et al. (2008) implemented an AR museum guide system 

using an ultra-mobile PC (UMPC) with a feature-rotation sensing hybrid 

tracking approach; however, whenever the system was switched to inertial 

tracking in the absence of features, the tracking result was inaccurate. They 

dealt with this problem by placing augmented information in floating balloons 

so as to hide the inaccurate tracking. The term “Swim AR” has been used to 

describe augmented graphics that float about a range of positions when 

accurate pose tracking cannot be obtained (KHARMA Framework, n.d.). 

 

A system known as PTAM (Parallel Tracking and Mapping) does not restrict 

itself to tracking planar features. PTAM builds a map of features as the camera 

moves around the environment using SLAM (simultaneous localization and 

mapping) and simultaneously tracks its position using the map of features 

(Klein & Murray, 2007). A map contains feature points extracted from camera 

images localized in 3D space. By matching feature points detected by the 

camera with those in the map, the 3D pose of the camera is recovered. A map 

is initialized by obtaining two camera images that work as a stereo pair and 

using stereo vision to recover the 3D positions of the key feature points. This 

is done by the user translating the camera horizontally between a start and end 

point to simulate horizontal disparity between a pair of cameras. The initial 

feature points are used to estimate a dominant ground plane. As the camera 

moves, the mapping process tracks the position of the camera continuously 

and adds more feature points to the map. PTAM, however, suffers from drift, 

i.e., inaccuracies in the map build up as points further from the origin are 
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added. There is also a scale ambiguity when the map is initialized which 

makes virtual objects appear in the wrong size in the AR scene. Furthermore, 

the memory footprint of a map in PTAM is large which precludes the 

application of PTAM in large environments.  

 

CV-based AR allows for very precise placement of virtual objects in real 

world locations. Geospatial AR is an alternative class of applications that uses 

geodetic coordinates to locate virtual objects on the Earth. The most widely 

used positioning system that obtains a user’s geodetic coordinates is the 

Global Positioning System (GPS), but the accuracy of a regular GPS receiver 

is within a few meters. Geospatial AR is used for outdoor applications that 

encompass a very large geographical area as GPS receivers only work well 

outdoors. Until centimeter-accurate RTK satellite positioning systems (Meng, 

et al., 2008) become widely available in mobile devices, applications will be 

typically for providing coarse location-specific information and services 

through AR.  

 

2.2.2 Display and Interaction Devices 

A variety of display devices have been used in AR with the common ones 

being desktops, laptops, tablets, phones, and projectors. Desktops with simple 

off-the-shelf web cameras for tracking have been used in applications that 

only take place on a desktop. Tablets and phones allow for mobile AR 

applications, which use the embedded camera, sensors, and GPS receiver of 

these devices for tracking and the touchscreen for interaction and display. 

Wikitude (Wikitude App, n.d.) and Layar (Layar App, n.d.) started out as 
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applications for smartphones that displayed information and directional cues 

about places of interest using the GPS location of the device. These 

applications have since added CV-based tracking for viewing augmented 

graphics and videos on magazines.  

 

As phones and tablets have small screens, it is difficult to view and interact 

with augmented graphics. Therefore, an alternative is wearable systems which 

typically consist of a HMD and laptop. The lack of a touchscreen means novel 

interaction methods have to be introduced. Schmalstieg & Reitmayr (2007) 

developed a backpack HMD system to view augmented information around 

the environment. A handheld spherical device called the iOrb was used with 

this system that allows users to issue commands and perform 3D selections on 

objects in the environment (Reitmayr, et al., 2005). The main drawbacks of 

wearable systems are their weight and ergonomics. 

 

The use of projectors for AR display presents a unique set of challenges. The 

distortions arising from projecting at a non-planar surface or at an angle to a 

planar surface can be overcome by pre-distorting the projection image based 

on the surface geometry and tracking of the user’s viewpoint (Park, et al., 

2006; Krum, et al., 2012). However, one limitation is that this method needs a 

surface to project images onto, i.e., augmentations cannot occur in mid-air. 

Furthermore, mobile projectors cannot project in high light intensities, 

precluding their use in outdoor and bright environments. 
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2.3 Ubiquitous Augmented Reality Frameworks 

UAR systems aim to provide universal access to heterogeneous objects and 

services, using AR mainly as a visualization mechanism for their information 

and user interfaces. Research in this area can generally be categorized as high-

level frameworks, component-based frameworks or standards-based 

frameworks. High-level frameworks implement the low-level functions of the 

operating platform, such as network communications, tracking, rendering, and 

interaction, and allow creation of applications through scripts which can be 

plugged into the UAR infrastructure. Component-based frameworks treat all 

the low-level functions as abstractions and define a middleware to interface 

with their actual implementations. Standards-based frameworks only specify 

the data formats and messaging protocols to allow independently-developed 

systems to interoperate and to present UAR environments to users. 

 

2.3.1 High-level Frameworks 

Kimura et al. (2006) proposed an AR framework for mobile devices wherein 

mobile AR services in a ubiquitous computing environment are registered to 

visual tags in the environment, with the services stored as programs in remote 

locations. Therefore, when a mobile user discovers mobile AR services 

through tags, the user can choose to download and use the service. 

Furthermore, the framework under which the mobile AR services are to be 

created would also have access to the embedded sensors of the mobile devices 

so that natural interaction can be achieved. 
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A ubiquitous AR system prototyped by Li et al. (2009) employs a hybrid 

vision and inertial technique for tracking and registration, and connects to a 

wireless network of sensor nodes. The nodes are attached to objects of interest, 

so when a mobile computer carried by a user detects an object in its camera 

view, computer generated information based on the corresponding sensor and 

registered to the object is rendered. 

 

High-level frameworks make AR application development very 

straightforward. Application developers would use development software 

specified by the framework to program the application and plug it into the 

infrastructure of the framework. However, the look and feel of the resulting 

UAR environment and the applications therein cannot be customized easily.  

 

2.3.2 Component-based Frameworks 

The DWARF framework (Bauer, et al., 2001) is based on interdependent 

services which collaborate to form the UAR environment. Each service 

displays its needs, abilities and connectors using XML scripts. The needs of a 

service refer to data that the service requires, abilities are the functions that the 

service offers, and connectors are the communications protocols used by the 

service. Each network node has one service manager which manages services 

at the node; there is no central control. The framework uses CORBA 

(Documents Associated with CORBA 3.3, n.d.) to enable different platforms 

and communication protocols to work with each other.  
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The Studierstube framework (Schmalstieg, et al., 2002) comprises application 

objects that contain application data, data operations, and the graphical 

representation of the data which acts as the user interface to the application. 

Graphical and application data are added to a distributed Open Inventor scene 

graph; thus a scene graph can be thought of as a set of application objects that 

make up an application. Application objects can be hosted by different 

network nodes, where each node contains a copy of the scene graph that is 

updated in real-time. Application objects are managed centrally by a session 

manager which maintains a list of application objects so that new objects and 

users can be aware of the existing objects. Distributed fundamental AR 

services such as tracking and video acquisition are accessible using the 

OpenTracker (Studierstube project: Open Tracker, n.d.) and OpenVideo 

(OpenVideo Documentation, n.d.) libraries, which allow for the configuration 

of custom tracking and video hardware to be configured to work in the 

Studierstube framework. Application objects are written in C++ as Open 

Inventor scene graph nodes and can be dynamically loaded during runtime 

(Kainz & Streit, n.d.). Interaction is achieved through a personal interaction 

panel (PIP) which consists of a pad on which virtual buttons and sliders are 

rendered and a pen to select and manipulate the virtual elements. The PIP also 

serves as a display for private information which can only be seen by the 

owner of the PIP.  

 

The Tinmith evo5 framework (Piekarski & Thomas, 2003) uses a distributed 

object-oriented approach with four classes of objects, namely, data, processing 

(which outputs data), core (core features that other objects can inherit) and 
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helper (programming interfaces that help with application development). Data 

objects are used as input to processing objects which produce other data 

objects. Objects are programmed using C++ and inherit from one of the four 

classes; hence, tracking devices are implemented as a type of processing 

object which produces a data object that holds the position of a tracked object. 

Input devices use the keyboard model where all interactions are mapped to a 

unique identifier, while motion-based input devices use position offset data to 

represent motion. Other objects which perform other functions would similarly 

be implemented.  

 

A component-based framework called VARU (Irawati, et al., 2008) is 

different from the frameworks that have been introduced as there are three 

interaction spaces in which objects can simultaneously exist, namely, AR, VR 

and UbiComp. This means that different users interacting in different spaces 

can collaborate on the same tasks. In VR, users can only interact with virtual 

objects, while users in UbiComp are able to communicate with physical smart 

objects like refrigerators and televisions. Users are able to communicate with 

both virtual objects and physical smart objects in the AR space. The VARU 

framework consists of a VARU server and a VARU client. Within the VARU 

server is an object database, object server and simulation server (for physics 

simulation of virtual objects). A VARU client implements the AR, VR and 

UbiComp rendering mechanisms and interaction devices. In the UbiComp and 

AR space, a middleware called CAIM (Ahn, et al., 2005) and the UPnP 

protocol (UPnP, n.d.) are used to allow physical objects to communicate on a 

VARU network.  
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The ARCS framework (Chouiten, et al., 2011) is based on components that 

use the signal/slot mechanism of the Qt framework (Signals & Slots, n.d.) to 

emit and respond to signals. As Qt is for non-distributed systems, a custom-

built middleware is used to enable components on different network nodes to 

use the same signal/slot mechanism by the creation of proxy signal emitters 

and receivers. As a result, the granularity of component distribution is very 

fine, i.e., components can make very low-level function calls to different 

machines without prior knowledge of their location. Applications in ARCS are 

defined through the use of XML scripts which specify the signal/slot 

connections of different components. An application is a finite state machine 

and each XML script represents a state.  

 

Most existing component-based frameworks provide flexibility by separating 

tracking and interaction implementation from application development. They 

typically use a middleware for connecting systems with different 

communication protocols and rely on specific APIs for application 

development. The APIs and development environments that must be used for 

application development may make it easy for programmers to create UAR 

applications. However, it is also a source of limitation in terms of the 

compatibility with other software libraries and programming mechanisms. 

Furthermore, many developers have already established tools and practices for 

developing applications in their field which may conflict with the ones 

specified by the component-based framework. Therefore, a more liberal type 

of framework uses standard definitions to allow interoperability of data and 
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functionality between components and leaves the implementation completely 

to the developer. 

 

2.3.3 Standards-based Frameworks 

The KHARMA framework (Hill, et al., 2010) is an extension of KML 

(Wilson, 2008). In KML, placemarks identify a location’s name, description 

and WGS84 coordinates (Department of Defense, n.d.). The placement of 3D 

geometries like points, lines, polygons, and full 3D models on locations is also 

defined in KML. KHARMA extends the objects that can be placed in 

placemarks to labels, balloons, sounds, and trackers. HTML and JavaScript 

content can be placed in balloons. Sounds are defined in placemarks by adding 

a link to where a sound file is hosted. Trackers defined in a placemark indicate 

the specific trackers, identified using an ID string, that should be used in a 

location. For example, if a placemark uses fiducial marker tracking of a 

specific marker format, the client device would use the appropriate tracking 

algorithm to detect the placemark and render the graphical elements associated 

with it.  

  

In the ARML framework (Lechner, 2013), a UAR environment consists of 

features, which are physical objects on which visual assets can be augmented. 

A feature defines an anchor, which is used by viewing devices for detection of 

the feature, and the visual asset to be augmented. An anchor can be a set of 

GPS coordinates (for geospatial AR), an image or a marker (for computer-

vision AR), while a visual asset can be text, images, 3D models or video. 

There is some integration with GML (Portele, 2007), in particular its geometry 
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definitions, which are used in KML to define 3D geometry that can be used as 

anchors. This means that locations that are defined in KML or GML 

documents can have features defined in ARML attached to these locations. 

ARML uses ECMAScript (ECMAScript Language Specification, 2011), which 

must be supported by viewing devices if they are to access the dynamic 

elements of an AR scene. Trackers are defined using a uniform resource 

identifier (URI) to identify the type of trackers to be used in the AR scene, 

with remotely hosted tracking code linked to using a uniform resource locator 

(URL).  

 

The ARAF standard (Preda, et al., 2013) defines a scene graph format where 

nodes can be of different basic types, such as media, script, sensor, actuator, 

scene animator, communication and compression. New node types can be 

defined based on the basic node types. Media nodes can be audio, image, 

video, text and 3D models. Sensor nodes generate data and allow for user 

interaction. Scene animators modify certain nodes by interpolating their 

orientation, scale, position, color, or some other value between a range over 

time. Script nodes can be programmed using ECMAScript to generate triggers 

to other nodes. Communication and compression nodes handle transfer and 

streaming of various kinds of data, e.g., playback of video. ARAF works in 

conjunction with the MPEG-V format (Han & Kim, 2014) which specifies the 

syntax and semantics of data and command representations to enable 

interoperability between virtual and real worlds. Thus, data formats for sensor 

nodes used for user interaction, virtual object data and properties, and 

command formats for the control of actuator nodes are all governed by 
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MPEG-V. Tracking for AR is accomplished using sensor nodes which can 

output position and orientation or GPS data. For computer-vision AR, the 

camera is implemented as a sensor node. Nodes are defined in XML files with 

the locations of raw data and scripts indicated by URLs. An ARAF device is a 

viewing device that interprets ARAF files and allows users to view and 

interact with nodes. 

 

As discussed earlier, standards-based frameworks allow for more freedom in 

the implementation of objects in the UAR environment as well as input and 

output devices. The developer is able to use any CV-based tracking algorithms 

with the data provided through the standards. However, the standards 

reviewed are not for UAR applications per se but for distributed AR 

applications. The distinction between UAR and distributed AR is the lack of 

interoperability of physical objects and their integration in applications. A 

standards-based framework that can truly be classed as UAR is still not 

available. 

 

2.4 Summary 

The issues of UbiComp include hiding user interaction devices and computer 

hardware and enabling systems on different platforms and protocols to be 

interoperable. The fundamental challenges of AR are mainly in the tracking 

and display technology. The main thrust of this research is to achieve a UAR 

framework that handles all the afore-mentioned challenges while making 

application development rapid and easy. There are three main types of UAR 

frameworks, namely, high-level frameworks, component-based frameworks, 



27 

 

and standards-based frameworks. High-level frameworks are generally aimed 

at easing application development at the cost of application implementation 

flexibility. Component-based frameworks are highly successful in achieving 

interoperability of different systems and distributed computing but enforce the 

use of specific APIs and development environments. Standards-based 

frameworks, on the other hand, while allowing for implementation flexibility, 

do not have very good support for physical objects and do not ease application 

development. 
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Chapter 3. Design of the SmARtWorld Framework 

 

3.1 Requirements 

The framework proposed in this research, called SmARtWorld, is for the 

creation of UAR environments. UAR environments implemented with 

SmARtWorld will hereafter be called SmARtWorld environments. The basic 

requirements of UbiComp and AR which were discussed in Chapter 2, i.e., 

heterogeneity and spontaneous interoperation, invisibility of computer 

hardware, transparent user interaction, context awareness and management, 

and tracking of users and objects, will be considered in the design of the 

SmARtWorld framework.  

 

User experience is another design consideration in SmARtWorld. Each of the 

UAR systems reviewed in Chapter 2 targets one or a combination of the 

following three groups of users, namely, end-users, application developers and 

resource creators. The SmARtWorld design, however, will account for the 

requirements of all three groups. For end-users, a SmARtWorld environment 

must provide accessibility to computer functions in a user-friendly way. 

Application developers should not have to be concerned with the 

implementation of the fundamental technologies of UbiComp and AR, and 

they should have the freedom to create any kind of application in a rapid and 

straightforward manner. Lastly, resource creators need to have assurance that 

the resources they create will be usable in any SmARtWorld environment 

while having complete flexibility in the way the resources would appear and 

behave. 
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Finally, with limitless potential applications of SmARtWorld environments 

and locations where they would be useful, SmARtWorld will be designed for 

universal access to all applications and SmARtWorld environments so that 

applications in general will not have different requirements of viewing and 

interaction hardware. However, application and resource designers will still 

have the freedom to cast such restrictions. 

 

3.2 Overall Architecture 

The main novelty of the proposed framework is that every resource, including 

a viewing device, is a smart object.  Object-oriented programming (OOP) is a 

major influence on the design of this framework. Every smart object has data 

and behavior, with a basic set of data and functions found in every smart 

object, similar to the base “Object” type of some OOP languages like C# and 

Java. In bringing this concept into a SmARtWorld environment, smart objects 

can either be a physical or virtual object rather than a segment of computer 

code. The basic data and functions of smart objects are to facilitate basic UAR 

functionality such as communication, tracking and invocation of behavior. 

Smart objects are the very basic building blocks of applications in a 

SmARtWorld environment and can be implemented to encapsulate any kind of 

behavior and provide any kind of data. To allow for freedom of 

implementation, there are no typed objects which smart object 

implementations have to follow or inherit from. 
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A SmARtWorld environment is basically a physical location where smart 

objects are linked to a network and can be accessed by users. There is one 

primary server to which smart objects and viewing devices are generally 

connected. Once connected to the primary server, smart objects will become 

aware of each other and start waiting for invocation of their functions, requests 

for the data they provide, and start working together automatically. Smart 

objects can have functions which are invoked via remote procedure calls 

(RPCs). They can also have a virtual appearance that is seen in AR that can be 

used as a user interface for input to and output from the smart object. The 

addition of a virtual user interface can make complex computer interaction 

through smart objects more user-friendly and transparent than completely 

relying on physical interactive elements. 

 

Application development at a high level is simply just the placement of smart 

objects in a SmARtWorld environment. Application developers can create 

new smart objects to fulfil some required functionality in their application or 

they can obtain smart objects created by resource creators. Resource creators 

can thus be product manufacturers, software developers, researchers, or 

hobbyists who create smart objects with specific specialized functionality 

which are provided to application developers. The various aspects of the 

SmARtWorld framework will be described in detail in the subsequent sections 

of this chapter. 
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3.3 Smart Objects 

3.3.1 Smart Object Architecture 

Every resource in a SmARtWorld environment is a smart object which can 

provide data and functions. Function calls are technically RPCs because they 

are typically invoked outside of the program that runs in the smart object. 

Each piece of data and RPC is associated with a data and RPC identifier 

respectively which are character strings allowing other objects to recognize 

data and RPCs that may be useful. There is also a set of basic commands 

common to all smart objects which facilitate basic UAR functionality. 

 

The creation of a smart object involves the implementation of three main 

layers, as shown in Figure 3-1: the fundamental layer, which consists of the 

hardware used by the smart object and the native operating systems and 

libraries that are used to access the hardware; the functionality & data 

interface layer, which sends and receives messages using a communications 

protocol defined for SmARtworld and handles the messages appropriately; 

and the functionality & data access layer, which exposes the data and RPCs of 

the smart object to other objects. 

Figure 3-1. Architecture of a smart object. 
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There is virtually no restriction on the implementation of the fundamental 

layer. Key hardware elements are a microprocessor with memory to store and 

execute the programming of the smart object, and a network port to connect to 

the primary server. Any software libraries can be used in the fundamental 

layer, as long as the hardware platform can support the functions provided by 

the libraries. The underlying network protocol used by smart objects to 

communicate is not restricted, provided they have a communication route to 

the primary server via smart objects called hubs, which are able to relay 

messages between different networks. This will be explained further in 

Section 3.4.2. To users and other objects in the UAR, the fundamental layer is 

the hidden part of a smart object which quietly does its job. However, there 

may be physical elements in the fundamental layer which are perceptible by 

users in the UAR, like LEDs or sound. 

 

The functionality & data interface layer implements the communications 

protocol and RPC and command handler.  The communications protocol 

allows the smart object to interpret received messages on the network and 

format outgoing messages properly, and also conducts the necessary 

procedures when first joining a SmARtWorld environment. The 

communications protocol is described in detail in Section 3.4. The RPC 

handler invokes the corresponding behavior and internal function calls when 

an RPC is received from the network. The command handler takes care of the 

basic smart object commands that are received on the network. Table 3-1 lists 

some of the basic data and commands, some of which are mandatory, that a 

smart object can implement.  
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The data and RPC manifests are the only ways to access the appearance and 

functionality of a smart object, and this is the reason they are in the 

functionality and data access layer. In a SmARtWorld environment, data and 

RPCs can be used autonomously by smart objects or they can be explicitly 

accessed by users through the user interface of the smart object. The virtual 

interface of a smart object is an important aspect of the SmARtWorld 

framework. However, it is not mandatory for a smart object to have a virtual 

interface as viewing devices can generate ways for users to access RPCs and 

data using the identifiers stored in the manifests. 

 

Table 3-1. Basic data and commands of a smart object 

Data Purpose 

3D model and 

user interface 

For rendering the virtual appearance and interactive 

elements of the smart object. Optional. 

Data manifest To expose data that other objects can retrieve. 

Mandatory, but can be empty. 

RPC manifest To expose the RPCs that other objects can invoke. 

Mandatory, but can be empty. 

Pose The position and orientation of the smart object in the 

SmARtWorld environment, for rendering and/or 

context-management. Mandatory, but can be unknown. 

Command Purpose 

Get data Allows other objects to request for a specific piece of 

data. Optional. 

Get data 

manifest 

Allows other objects to request for the list of data 

available from this smart object. Mandatory. 

Get RPC 

manifest 

Allows other objects to request for the list of RPCs 

available from this smart object. Mandatory. 

Get pose Allows other objects to request for the pose of this smart 

object. Mandatory. 

 

3.3.2 Virtual User Interface 

Interaction with objects is achieved either by direct manipulation of the 

objects, which can be the traditional mode of operation of the objects, or via 
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physical controls that are built into the smart objects to access their functions, 

or through the virtual user interface of the objects. The virtual user interface 

also provides information and visual output from smart objects as text or 3D 

graphics. 

 

The 3D model of the virtual interface plays a crucial role in providing 

complex object-centric interaction methods with the object and is stored in a 

3D assets file with the smart object. The 3D assets file includes the usual mesh 

data, such as vertices, normals and material properties. In addition, the 

definitions for the interface element, including the RPCs that they trigger, 

must be added to the 3D assets file. The interface element definitions 

determine the ways with which the element is interacted, e.g., whether the user 

simply has to touch to activate or whether it involves some other actions, and 

the data that is passed to the RPC of the object.  

 

Due to its extensibility and comprehensiveness in describing graphical scenes, 

the COLLADA file format (Khronos Group, 2008) is chosen to store the 

virtual user interface in an XML file. In the COLLADA specification, a 3D 

scene is arranged into separate nodes representing separate virtual models. The 

node ID is thus used to reference nodes so that smart objects can alter their 

user interface dynamically. Each interactive element is defined as a separate 

node, using custom interaction tags and parameters that are defined outside the 

COLLADA XML schema for this research. Table 3-2 lists the tags and 

parameters that can be added to a COLLADA file to make nodes interactive 

and dynamic. 
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Table 3-2. List of XML tags for interactive elements of a virtual user interface 

Tag Parameters Purpose 

Click Node ID, RPC identifier Define element as a 

button 

Drag Node ID, minimum and maximum 

values, minimum and maximum 

translation, RPC identifier 

Define element as a slider 

Rotate Node ID, minimum and maximum 

values, minimum and maximum 

rotation, RPC identifier 

Define element as a knob 

Object Node ID, data identifiers, RPC 

identifier 

Use a smart object as 

input 

Translate Node ID, x-displacement, y-

displacement, z-displacement, 

animate (true/false), speed 

(units/second) 

Translate the object 

Rotate Node ID, x-rotation y-rotation, z-

rotation, animate (true/false), speed 

(units/second) 

Rotate the object 

Scale Node ID, x-scale, y-scale, z-scale, 

animate (true/false), speed 

(units/second) 

Change the scale of the 

object 

Overlay Node ID, colour Change colour of the 

element 

Text Node ID, text, font colour, effect, 

effect colour 

Render text on the 

element with optional 

glow or outline effect 

Visible Node ID, visibility (true/false), real 

(true/false) 

Show or hide an element 

Special Node ID, special effect ID Indicate that the element 

has some special 

rendering property (e.g. 

reflective, glows, etc.) 

 

The first four tags in Table 3-2 are input tags. The first three tags allow for 

direct manipulation of the graphical element using a one or two-finger gesture. 

The last input tag allows for using smart objects as input to the RPC invoked 

by the corresponding graphical element. By defining the three gestures (Click, 

Drag, and Rotate) as input tags, these gestures are supported natively in the 

SmARtWorld framework, and viewing devices should ensure that these 

gestures are available as input methods. Smart object creators would be 
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assured that users would be able to use these four gestures to interact with 

their virtual user interface of the object. These four gestures are generally 

classified as direct gestures as opposed to symbolic or abstract gestures, 

because they involve direct manipulation of objects typically in 2D (though 

the objects themselves could be in 3D). They have been chosen for native 

support for two reasons. Firstly, these gestures have become pervasive in daily 

life as they are supported by almost all mobile devices and interactive screens. 

Secondly, direct gestures are much easier to learn and discover (Yee, 2009) 

and their intuitive meaning is generic and suitable for different applications. 

 

All the input tags have the identifier of the RPC they are meant to invoke as a 

tag parameter. The Drag and Rotate tags have a “minimum and maximum 

value” parameter to define the start and end values of the dragging and rotary 

motions, and a “minimum and maximum translation” or “minimum and 

maximum rotation” to indicate how far each element is supposed to be 

translated or rotated from its original state. The latter parameters can also be 

used by viewing devices to display the dragged or rotated state of the 

interactive element accordingly, stopping when the maximum value is 

reached. The Object tag has “data identifiers” as one of its tag properties 

which indicates the data that is to be transferred from the object to the 

interactive element. It is then the responsibility of the viewing device to obtain 

the data and transfer them to the receiving object. 

 

The last seven tags in Table 3-2 are output tags. They modify the graphical 

elements that they are applied to. The ability for objects to dynamically alter 
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the node definitions of their virtual user interface allows for output tags to 

reflect changing states or values held by the smart objects. The first three 

output tags can be animated. This is achieved by the viewing device which 

interpolates between the initial and final state of the element according to the 

speed property. The Visibility tag can be used to hide and show different 

interface elements. This feature can be used to realize context-aware user 

interfaces or interfaces akin to sequential menus. The visibility tag also has a 

“real” parameter that can indicate whether the mesh geometry is representing 

the physical geometry of the object, in which case viewing devices can hide 

the virtual mesh but use its geometry for occlusion of virtual objects (see 

Section 5.1). The special tag allows for special effects to be applied to the 

appearance of smart objects (see Section 6.2). 

 

3.4 Communications Protocol 

3.4.1 Messaging 

A high-level communications protocol has been defined with a list of standard 

commands to facilitate the basic functionality that all smart objects need to 

possess in order to work in the SmARtWorld environment. This protocol is 

implemented on top of a lower level protocol, such as TCP (Cerf, et al., 1974), 

which takes care of data transmission, error detection, packet splitting and 

reassembly.  

 

Majority of the standard commands can be categorized as a “GET” command 

for requesting specific data, or a “SET” command for transferring data to an 

object (Table 3-3). A message that is being sent between smart objects 
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typically consists of four main components, namely, the command, target 

address, sender address, and parameters. Commands broadcast to all objects 

do not include the target address in the message. The whole message is 

encoded as UTF-8 characters (Yergeau, 2003). Every message is concluded by 

the two-character sequence “<CR><LF>”, which are the carriage return and 

line feed characters respectively. They are used to indicate the end of a 

message; this allows the content of a message to be of any length. The general 

format of a message is thus “<command>, <target address>, <sender address>, 

<parameters><CR><LF>”.   

 

Raw binary data is converted to Base64 encoding (Josefsson, 2006) before 

being transferred over the network so that raw bytes can be transferred as 

alphanumeric characters and thus will not be confused with the delimiting 

characters, such as commas and vertical bars, which are used to separate 

different parameters in the message. It is the responsibility of the receiving 

object to decode the raw data received and use it appropriately.  

 

RPC parameters make up one component of a message. While the main 

components of a message are separated by commas, different parameters are 

separated by vertical bars (Unicode character 0x007C). As an example, a 

message from a smart object with address “3” informing a smart object with 

address “5” of its pose would be: Set My Pose,3,5,4.5|6.3|1.2|0|45|0. 
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Table 3-3. List of standard commands and their parameters 

Command Parameters Purpose 

New Sender address Announce the existence 

of an object 

Disconnect Sender address Indicate that an object is 

leaving the environment 

Get RPC Manifest Target address, sender 

address 

Request for the list of 

RPCs from the target 

object 

Get Data Manifest Target address, sender 

address 

Request for a list of data 

that the target object 

provides 

Get Data Target address, sender 

address, data identifier 

Request for a specific 

piece of data identified 

by the data identifier 

from the target object 

Get Pose Target address, sender 

address 

Request for the pose of 

the target object in the 

environment 

Set My RPC Manifest Target address, sender 

address, list of RPC 

identifiers 

Send a list of the sender 

object’s RPCs to the 

target object 

Set My Data Manifest Target address, sender 

address, list of data identifiers 

Send a list of the sender 

object’s available data to 

the target object 

 

Set My Data Target address, sender 

address, data identifier, raw 

data in Base64 encoding 

 

Send raw data to the 

target object 

Set My Pose Target address, sender 

address, translation vector, 

rotation angles 

Send the pose of the 

sender object 

Set My Virtual 

Interface Node 

Target address, sender 

address, node ID, user 

interface tag, tag parameters, 

mesh 

Send an alteration to the 

AR user interface of the 

sender object (see 

Section 3.2.2) 

Set Your Data Target address, sender 

address, data identifier, raw 

data in Base64 encoding 

Set the values of a 

specific piece of data of 

the target object’s 

Set Your Pose Target address, sender 
address, translation vector, 
rotation angles 

Set the pose of the 
target object 

RPC Target address, sender 
address, RPC identifier, input 
data 

Invoke an RPC in the 
target object 
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3.4.2 Addressing and Routing 

Smart objects can connect to the SmARtWorld environment using any 

communication protocol. All connections must eventually lead to the primary 

server, which uses Ethernet LAN to achieve universal access and to allow 

viewing devices to connect wirelessly via a router. There is no distinction 

between viewing devices and smart objects, which means viewing devices can 

connect to the environment through any protocol and interact with smart 

objects. Smart objects using different communication protocols connect to the 

primary server via hubs. The hubs have both an Ethernet LAN connection as 

well as a connection to the communication protocol used by the smart objects 

it hosts. A possible SmARtWorld environment setup is shown in Figure 3-2. 

 

 

Figure 3-2. Network connections in a SmARtWorld environment. 
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address components. The first component is the network address; this is the 

address assigned by the networking hardware used by the smart object. An 

object using an Ethernet LAN connection would have a network address 

consisting of an IP address and a port number. The second component is an 

index number that uniquely identifies the smart object hosted at the network 

address. The second address component is hereafter known as the internal 

address. Smart objects which are not hosted by a hub do not have an internal 

address; they are simply identified by their network address. The target 

address and sender address components of a message in the SmARtWorld 

protocol refer to the internal addresses of the respective objects. Messages 

intended for smart objects which are not hosted by a hub would have an empty 

target address. The network address of the sender is assumed to be reported by 

the lower level communications protocol when a message is received; this is 

the reason that the network address is not included in a message. 

 

This addressing scheme is important for allowing smart objects being hosted 

by hubs to have a presence in the SmARtWorld environment. Hubs are 

basically smart objects which act as a host to other smart objects. A notable 

feature of the hubs is that they hide the true network and internal addresses of 

objects from other hubs and assign their own internal addresses to these 

objects. The importance of this feature will be explained in later sections. The 

primary server is considered a hub as it acts as a host to all the smart objects in 

a SmARtWorld environment and it maintains connections to all the smart 

objects, either via hubs or directly. The primary server is specially designated 

because a SmARtWorld environment must have one (while other hubs are 
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optional) to serve as a common gateway for WiFi-based viewing devices to 

view and interact with a SmARtWorld environment. 

 

When a new smart object joins the environment, it broadcasts a “New” 

message to report its internal address. The hub which the smart object is 

directly connected to receives the message and adds the smart object to a 

database of smart objects that it is aware of. Every hub has such a database 

which include the hub’s assigned internal address and the reported internal 

addresses of the smart objects. Smart objects directly hosted by the hub would 

not have a reported internal address, unlike smart objects from other hubs, so 

this value is empty in the database. The assigned internal address is given by 

the hub to ensure that it is a unique value not shared by other objects. The hub 

changes the sender address of the “New” message to the assigned internal 

address and forwards the message to all the smart objects that are directly and 

indirectly hosted by it (excepting the smart object that sent the message). 

Awareness of a new object thus propagates from its direct hub outwards to 

other objects. Each time the message encounters a hub, the sender address is 

changed to the one assigned by the hub (Figure 3-3).  
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Figure 3-3. Propagation of smart object existence. 

 

Hubs hide the network and internal address of smart objects and assign new 
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connected to hub B. In Figure 3-4, the address of each object is denoted by the 

network address of its hub followed by its internal address. Figure 3-4a shows 

the addresses of smart objects assigned by the hubs that host them directly; 

these addresses reflect the true network locations of the objects.  
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Figure 3-4. (a) Addresses used by hubs for objects hosted directly. (b) 

Addresses used by hubs for the same objects which are hosted directly or 

indirectly. (c) Addresses used by one of the objects to send messages to the 

other objects. (d) Routing of a message over multiple hubs. 
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target address. This means that an object hosted at hub A uses the internal 

addresses assigned by A to send messages to other smart objects in the 

environment (Figure 3-4c). For smart objects directly hosted by the same hub, 

messages can be routed directly to the target object via the hub. For objects on 

different hubs, the message is routed to the next hub until the message reaches 

its target. Each time the message is relayed to the next hub, the target address 

of the message is changed to the internal address assigned by the next hub for 

the target object (Figure 3-4d). 

 

Apart from connecting different network protocols, hubs serve other purposes. 

A hub could be used to allow smart objects to create and manage other smart 

objects. A complex smart object made up of a hierarchy of smart objects could 

be created using a system of nested hubs. However, for smart objects to join 

an environment automatically, there must be a mechanism for automatic hub 

discovery for the object to become aware of the network address of the hub. 

Automatic hub discovery can take place with a handshaking procedure, but 

this depends on the low-level communications protocol having a mechanism 

for broadcasting messages. The actual implementation of the handshaking 

protocol for smart objects with different networking hardware will be 

described in subsequent chapters. Alternatively, if there is no broadcasting 

mechanism for the hub discovery procedure to take place, the network address 

of the hub can be entered either manually into the smart object provided the 

object has a way to do this, or programmed into the smart object, in which 

case if the network address of the hub changes the smart object has to be 

reprogrammed.  
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3.5 Summary 

In this chapter, the design of the SmARtWorld framework has been described. 

It is primarily a component-based framework, with a communication protocol 

and a schema for virtual user interface definition. The novelty of the 

framework is that every resource, whether it provides fundamental AR 

functionality or higher-level AR application functionality, is a smart object 

which uses the same architecture.  

 

Smart objects can have virtual user interfaces which are displayed and 

interacted with in AR. Virtual user interfaces allow users to access the 

functionality of smart objects in a user-friendly manner. A high-level 

communications protocol has been designed which allows smart objects to be 

aware of each other, work together to provide basic UAR functionality as well 

as to invoke specially-programmed functionality in each other via RPCs. The 

use of smart objects as hubs to other smart objects allows for the unification of 

different networking protocols. There is one hub designated as the primary 

server which guarantees access to all smart objects and WiFi connectivity for 

viewing devices.  

 

When compared to the other UAR frameworks reviewed in Section 2.3.2, 

there is more freedom in the implementation of the fundamental behaviour of 

a resource because there is no need to conform to a specific programming 

language or middleware, such as CORBA, which is used by the DWARF 

framework (Bauer, et al., 2001), Open Inventor, which is used by Studierstube 

(Schmalstieg, et al., 2002), UPnP, which is used by the VARU framework 
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(Irawati, et al., 2008) and Qt, which is used by the ARCS framework 

(Chouiten, et al., 2011). Instead, SmARtWorld utilizes a communication 

protocol to standardise data transfer and invocation of functions in smart 

objects, and an XML schema to standardise the definition of virtual user 

interfaces so that viewing and interaction devices will be able to access the 

functionality of smart objects in any UAR environment.  

 

Based on the architecture and principles described in this chapter, the 

remaining chapters will discuss the implementation of smart objects that 

provide UAR functionality, viewing devices and smart objects for different 

purposes as examples of the potential of the SmARtWorld framework. 
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Chapter 4. Implementation of a SmARtWorld Environment 

 

In this chapter, a demonstrative implementation of a UAR environment based 

on the SmARtWorld framework is described. The general architecture of a 

UAR environment is given in Figure 4-1. It consists of the basic smart objects 

that are required in order to realize an environment with smart objects that can 

be interacted with through their virtual user interfaces. This implementation 

consists of the following smart objects, namely, a basic smart object with 

simple behavior and a virtual user interface, a landmark hub which allows 

viewing devices to track their pose in the environment by serving data about 

physical features in the environment, an object tracker to track the pose of 

smart objects in the environment; and a primary server which links all the 

smart objects. These objects work together to realize UAR applications.  

 

 

Figure 4-1. Architecture of a UAR environment 
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In this section, the implementation of a basic smart object with two RPCs, 

namely, On and Off, is described. It runs on a PC which has an Ethernet LAN 

Viewing 

Device 

Smart 

Object 

Object 

Tracking 

Sensors 

Land-

marks 

Identifier, pose and 

position, virtual 

interface definitions 
Remote 

procedure calls 

User 

Pose 

and 

position 

Interaction  

Direct physical manipulation 

Identifiers, 

virtual interface 

definitions of all 

objects 

Identifier, pose and 

position, virtual 

interface definitions 

Output  

 

Primary 

Server 



49 

 

connection. The smart object has a virtual user interface through which its 

RPCs can be invoked. The RPCs result in a change of color of the smart 

object. 

 

4.1.1 Fundamental Layer 

A basic smart object that runs on Windows can be implemented easily using 

the .NET Framework or Java. A computer with an Ethernet LAN network 

card, the Windows operating system and the .NET software libraries would 

thus form the fundamental layer of the smart object. Other operating systems 

which have Ethernet LAN interfaces can also be used. 

 

For networking, the smart object is implemented as a client program (the 

server being an Ethernet LAN hub) using TCP sockets for data transfer. The 

first action of a smart object when its program is executed is to initiate the hub 

discovery protocol. As TCP sockets do not have a broadcast function, the 

smart object has to broadcast using a UDP socket to the subnet broadcast 

address to ensure that the hub will receive it. The hub sends a reply containing 

its network address and port number so that the smart object can establish a 

formal connection to the hub. To be able to receive the reply, the smart object 

has to be listening on a specific UDP port to which the hub can reply. A valid 

UDP port number must be specified by the smart object to avoid clashes with 

other programs which are on the same network host and listening on the same 

port number; thus, this allows for multiple independent smart objects (but not 

Ethernet LAN hubs) to be running on the same hardware. UDP sockets are not 

used for the other communication tasks because of the lack of reliability that 
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TCP can provide. If the UDP port number that the smart object broadcasts is 

lost in transmission or corrupted, or the hub is unavailable during the hub 

discovery procedure, the smart object can continue the discovery procedure 

until the procedure is successful. Once successful, the smart object will not 

need to be on a UDP port. To achieve this, a standard UDP port for Ethernet 

LAN hubs to use must be defined, and this is set as 2056 in this research. 

 

The hub discovery procedure for Ethernet LAN devices can be summarized as 

follows. The smart object broadcasts the port number that it uses for hub 

discovery to UDP port 2056, and waits for a hub to reply to the port with its 

network address and port number for TCP socket communication. If there is 

no reply after a certain time period, the smart object repeats the procedure. 

Once hub discovery is achieved, the smart object establishes a persistent TCP 

connection with the hub, and sends a “New” command and receives the other 

“New” commands from the hub via the TCP socket.  

 

4.1.2 Functionality & Data Interface Layer 

The communications protocol is entirely based on the scheme described in 

Section 3.4. When data is received by the network card, it is interpreted as a 

stream of UTF-8 characters. When the two-character sequence “<CR><LF>” 

is encountered, the stream of characters read is treated as a single message. 

The message is split into its command, target address, sender address, and 

other parameters and sent to the appropriate handler code. Table 4-1 shows the 

basic handling procedures implemented for the relevant standard commands 

for this object. Other smart objects may have different ways of handling 
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commands or may lack some of the handlers, depending on the functionality 

they provide or way they work. 

 

A simple smart object does not need to implement many of the standard basic 

commands, especially if it does not depend on other smart objects for its 

functionality. The five commands in Table 4-1 are sufficient for a smart object 

to have a virtual user interface displayed in the UAR environment and 

interactivity with users. 

 

Table 4-1 Command and RPC handling procedures for a basic smart object 

Command Parameters Procedure 

Get RPC 

Manifest 

Target address, 

sender address 

Send a “Set My RPC Manifest” command 

with the “On” and “Off” RPCs listed (their 

identifiers are set as RPCStandalone_On, 

RPCStandalone_Off respectively). 

Get Data 

Manifest 

Target address, 

sender address 

Send a “Set My Data Manifest” command 

with just one data identifier in the manifest, 

the one for virtual user interface (the data 

identifier is set as VirtualUserInterface). 

Get Data Target address, 

sender address, 

data identifier 

Responds only if the data identifier is 

“VirtualUserInterface”, in which case a 

“Set My Data” command embedded with 

the smart object’s user interface 

COLLADA file is sent. 

Get Pose Target address, 

sender address 

Send a “Set My Pose” command with the 

pose of the object as its parameter. 

RPC Target address, 

sender address, 

RPC identifier, 

input data 

If the RPC identifier is “On”, send a “Set 

My Virtual Interface Node” command to 

change the color to green. If it is “Off”, 

change the color to red. 

 

4.1.3 Functionality & Data Access Layer 

As mentioned, the only RPCs that the basic smart object have are “On” and 

“Off”, and the only data that it provides is its virtual user interface. As these 

RPCs invoke standalone functions, i.e., there is no interoperability with other 
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smart objects, their RPC identifiers are not very important. However, they 

should not collide with RPC identifier definitions that have meaning. Such 

standalone RPCs can thus be assigned a special identifier prefix, which is 

given as “RPCStandalone” in this research. The identifiers for “On” and “Off” 

are thus “RPCStandalone_On” and “RPCStandalone_Off” respectively.  

 

The basic smart object has a virtual user interface, which means it must have a 

COLLADA representation of its 3D mesh, materials, interactive and dynamic 

elements. The virtual user interface is created easily in any 3D authoring 

software and exported in the COLLADA format. The virtual user interface for 

the basic smart object is modeled using the free open-source 3D authoring tool 

Blender 3D (Figure 4-2). 

 

 

Figure 4-2. Creation of a virtual user interface. 
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Plugins can be created for most 3D authoring software to enable the definition 

of interactive and dynamic user interface elements as part of the modeling 

process. Otherwise, this can be achieved after the COLLADA file has been 

generated using third party tools or by adding the tags into the COLLADA file 

manually. The middle cube is the main body of the smart object while the 

green and red surfaces are buttons for the “On” and “Off” RPCs respectively. 

The salient definitions for these elements are given in Figure 4-3. 

 

 

Figure 4-3. Virtual user interface definitions for the basic smart object. 
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communications with smart objects and the UDP port 2056 is monitored for 

the hub discovery procedure. 

 

A significant aspect of the implementation of a primary server is its handling 

of basic commands. Since an ordinary hub relays messages between smart 

objects, it has to handle all the basic commands. As detailed in Section 3.4.2, 

its main responsibility as a hub in handling commands is to change the target 

and sender addresses from the received commands to those that it assigned and 

forward the modified commands to the target address. This means that it has to 

have a database of all the smart objects that are connected to it and this 

database stores their corresponding network and internal addresses. However, 

the primary server, and hubs in general, can help streamline communications 

by maintaining more data about smart objects so as to respond to “Get Data” 

and other requests immediately without having to relay the message to the 

actual target smart object. This means that when a new object is connected to 

the primary server, the primary server would start requesting for all of the 

object’s data to be stored in its database.  

 

Figure 4-4 shows the server program that has been developed in this research 

for rapid prototyping of smart objects and UAR environments. It has a GUI 

with a table that represents the data stored in the primary server’s database of 

smart objects that are connected to it, namely, their reported internal address 

and the internal address assigned by the server (Hub ID), the RPCs, and data 

provided. There are four smart objects connected to the primary server as 

shown in Figure 4-4. The last object is the basic smart object that has been 
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described in Section 4.1. The first object is a landmark server, and the next 

two smart objects are landmark objects hosted by the landmark server which 

will be described in Section 4.3. As the network addresses of the objects 

indicate, the landmark server and landmark objects are hosted on the same 

remote machine while the basic smart object is hosted on the same machine as 

the primary server, but as a program running independently. 

 

 

Figure 4-4. Database of smart object information in the primary server. 

 

4.3 Landmark Server and Landmark Objects 

The landmark server is like a hub except it does not host other objects on the 

LAN. Instead, it creates smart objects that are used as landmarks, i.e., 

landmark objects, for viewing devices to track their pose within the virtual 

coordinate system of the SmARtWorld environment. The landmark objects 

that are created are hosted by the landmark server. The core of the landmark 

server is similar to a basic smart object. It runs on a PC with Ethernet LAN 
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connection, and uses a TCP socket for communication and UDP port 2056 for 

hub discovery.  

 

The landmark server stores features on planar surfaces in the environment as 

landmarks. Each landmark is represented as a rectangular image of the planar 

pattern. There are several benefits of selecting planar surfaces as landmarks. 

Firstly, planar patterns can be found naturally in many environments and can 

be put up easily as posters or decorations. Secondly, the specific algorithm for 

tracking the landmarks need not be defined. Thirdly, individual planar patterns 

can be added, removed and switched easily without affecting the ability to 

track the other patterns. 

 

Like the primary server, the landmark server contains a database of smart 

objects. However, the database only contains landmark objects. Unlike the 

primary server, the landmark server provides RPCs that allow viewing devices 

and other smart objects to interact with it. These RPCs facilitate the creation of 

landmark objects out of physical objects in the environment as well as the 

deletion of the landmark object (Table 4-2).   

 

Table 4-2. RPCs in a landmark server object. 

RPC Identifier Parameters Procedure 

LandmarkServerAdd Image file of the 

planar pattern, other 

optional parameters 

(name, dimensions, 

pose) 

Create a new landmark 

object and associate the 

image file as a piece of 

data identified as 

LandmarkPlanarImage 

LandmarkServerDelete Target address Delete the targeted 

landmark object from the 

landmark server 
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Smart objects and viewing devices can interact directly with the landmark 

server using the RPCs in Table 4-2 to add and delete landmarks. As the 

landmark server does not have a virtual user interface, it depends on the 

viewing devices to provide a user interface for users to invoke its RPCs. 

Landmark objects, however, have virtual user interfaces which overlay the 

physical landmarks in the environment and their own RPCs so as to allow 

users to modify or delete the parameters of the landmark objects, namely the 

name, dimensions and pose of the landmark (Table 4-3). The virtual user 

interface is procedurally generated by the landmark server (Figure 4-5). 

 

Table 4-3. RPCs in a landmark object. 

RPC Identifier Parameters Procedure 

LandmarkSetName New name Change the value of its 

ObjectName data to the new name 

LandmarkSetWidth Width in cm Change the value of its 

LandmarkDimensionWidth data to 

the new width 

LandmarkSetHeight Height in cm Change the value of its 

LandmarkDimensionHeight data to 

the new height 

LandmarkDelete  Instruct the landmark server to 

delete it 

 

 

Figure 4-5. Virtual user interface of a landmark object. 
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4.4 Object Tracker 

The object tracker is a smart object that tracks movable objects in the 

environment. There is no restriction on the type of tracking methods used for 

tracking objects. There are many possible methods with varying degrees of 

accuracy and precision, which can vary depending on the conditions of the 

environment and the type of objects that are tracked.   

 

The fundamental layer of the object tracker consists of the tracking hardware 

and algorithm. For the UAR implementation presented in this chapter, the 

most traditional method of tracking in AR is used, namely, fiducial marker 

tracking. This requires a camera to be attached to the object tracker. Objects 

that are to be tracked have a fiducial marker attached to them which the 

camera recognizes and uses to compute the pose of the objects with respect to 

the camera. An object tracker must know its own pose in the environment so 

that it can set the pose of the objects it tracks with respect to the environment. 

An object tracker sets the pose of the objects it tracks continuously using their 

“Set Your Pose” command. Objects that are tracked by object trackers need to 

provide some data that allows object trackers to recognize them. This depends 

on the tracking algorithm used. In this implementation, the Aruco tracking 

library (Aruco, n.d.) is used by the object tracker. The markers used by Aruco 

are a 5x5 grid of black and white squares which encode an ID integer number 

between 0 and 1023 in a format similar to Hamming Code. The data provided 

by objects to be tracked is the ID number of the marker attached to it. The data 

identifier of the ID number is given as “TrackingArucoMarker”, so that when 

an object joins the environment and the object tracker sees that it has this data 
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identifier, it requests for the ID number and knows to start looking out for this 

object. Most other tracking methods require their tracked objects to have some 

sort of identification or descriptor which can be provided in this way.      

 

A single fiducial marker tracking object will not be able to perform tracking 

over a large area, which means that objects outside of its tracking zone will 

not have their pose updated. A number of such tracking objects need to be 

placed in the SmARtWorld environment. In a large environment, it might 

become a challenge to ensure that dead tracking zones are minimized. Other 

tracking techniques which cover a larger area, such as magnetic field tracking 

and signal triangulation, might be useful for covering dead zones, albeit 

possibly with lower accuracy. 

 

4.5 Summary 

A basic implementation of a SmARtWorld environment has been presented in 

this chapter. A primary server and a landmark server are needed for smart 

objects to have an AR presence. Movable objects need to be tracked by an 

object tracker. For universally-accessible environment, the primary server 

should use an Ethernet LAN connection and the landmark objects should be 

based on planar patterns. Viewing devices can be created independently to be 

used in any SmARtWorld environment. The next chapter focuses on the 

implementations of different kinds of viewing devices and ways to interact 

with a SmARtWorld environment. 
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Compared to other UAR frameworks, such as Studierstube (Schmalstieg, et 

al., 2002) and ARCS (Chouiten, et al., 2011), where the components are 

programmed and linked to each other offline, a SmARtWorld environment is 

built up while in operation by adding landmark objects that are tracked by 

viewing devices and other smart objects that provide functionality to users for 

any application. The SmARtWorld environment begins working once the 

primary server is turned on. Further functionality is added via the smart object 

discovery procedure described in Section 3.4.2. Programming UAR 

applications can thus be done quickly and easily without having to write any 

programming code if suitable smart objects are available. 
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Chapter 5. User Interaction and Display Devices 

 

5.1  Wearable System 

Wearable computers have begun to gain traction in recent times and are the 

future of AR. While the use of a smartphone requires the user to hold and 

interact with the mobile device, a lightweight wearable system using a HMD 

that augments the full view of the wearer allows him/her to walk around 

unencumbered and hands-free while being able to view the UAR environment. 

Unfortunately, a lightweight and low-cost wearable system is unavailable thus 

far, though a number of companies are attempting to achieve this.  

 

A wearable system has been implemented in this research for use with 

SmARtWorld environments. The program runs on the Windows platform and 

comprises a laptop which outputs video to a HMD with a camera mounted on 

it (Figure 5-1).  

 

Figure 5-1. A wearable system. 
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The camera tracks its transformation by recognizing planar features in the 

environment and the AR view is achieved by rendering the virtual user 

interfaces over the camera feed as the background. Interaction is achieved 

through bare-hand interaction and gesture recognition. The program execution 

of the wearable system is given in Figure 5-2. 

 

 

Figure 5-2. Flowchart of the wearable system program execution 

 

5.1.1 Pose Tracking 

The prototype wearable system relies on planar feature tracking to track its 

pose from the landmark objects in the SmARtWorld environment. When the 

viewing device first enters the environment, it detects the existence of the 
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landmark objects therein and requests for relevant data about them, such as 

their image file, dimensions and pose. As the landmark object data is received, 

the image files are trained to allow the system to track them. Training involves 

detecting the features in the image and computing descriptors for the features 

so that they can be recognized and matched to the features from incoming 

camera frames (Szeliski, 2011). The OpenCV library is used to provide the 

CV functionality needed in the system, including feature detection, descriptor 

computation and feature matching. ORB descriptors (Rublee, et al., 2011) are 

used as the feature descriptor type as it provides a good balance between 

computational efficiency and recognition performance. The planar feature 

tracking process is summarized as follows: 

 

1. Detect features from the scene captured by the camera and compute 

descriptors for these scene features. 

2. Match scene features to the trained features for each landmark. 

3. Decide on a correct match and use the matched features to estimate a 

homography using a four-point homography estimation algorithm with 

RANSAC (Vincent & Laganiere, 2001). 

4. Decompose the homography into the rotation and translation 

components and use these as the transformation of the landmark from 

the camera (Malis & Vargas, 2007). 

 

A few issues related to tracking many landmarks in a wide area have to be 

addressed. Firstly, scale invariance is not guaranteed especially if a landmark 

could be seen from afar or at close proximity. This would be true for any 
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planar feature tracking algorithm. One approach to mitigate this problem lies 

on the training of landmarks. It is possible to train and map multiple reference 

images of the same landmark taken from varying distances as different 

landmark objects. A landmark captured further away can have more of the 

surrounding included in the reference image which will provide more features 

for the tracking algorithm to detect.  

 

Another issue is the scaling of computational time as the number of landmarks 

grows. Three measures to improve the responsiveness of the tracking are used 

in the wearable system. First, an MRU (most recently used) list of the recently 

detected landmarks is maintained by the system. Scene features are always 

tested with the landmarks in the MRU list first. When looking at the same 

scene, the MRU effectively results in only one landmark being tracked every 

frame. If the landmarks in the MRU do not match the scene features, the 

remaining landmarks are tested. Therefore, the second measure is to pick 

intelligently the sequence of the remaining landmarks to be tested. The 

landmarks can be arranged by proximity to each other so that landmarks 

nearest to the recently matched landmarks are tested first. External sensor 

data, such as GPS and orientation sensors, can be used to make better 

decisions on the sequence of landmarks to be tested. Even with intelligent 

landmark sequencing, there may still be too many landmarks to be tested in a 

single frame and this reduces the screen responsiveness. Hence, the third 

measure caps the number of landmarks tested per frame to a maximum 

number. Tracking is performed in the same thread as graphics rendering since 
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rendering depends on the tracking result. The choice of this number is thus a 

balance between screen responsiveness and tracking accuracy.  

 

The rendering framerate of the wearable prototype is about 12 frames per 

second, with the main bottleneck being the landmark tracking algorithm. 

Notwithstanding the measures to speed up landmark matching to a large 

database of landmarks, the computational time for each tracking cycle 

accounts for about 80 – 90 ms of processing time. The tracking performance 

can be improved by making use of the graphics processing unit (GPU) of the 

system’s video card (Sinha, et al., 2011).   

 

5.1.2 Rendering Virtual User Interfaces 

Rendering is performed using the programmable pipeline of the rendering 

engine of the OpenGL library. The programmable pipeline is preferred over 

the traditional fixed pipeline for improved rendering performance as well as to 

allow for the implementation of certain effects that make the rendering of 

virtual graphics over a real scene clearer to the user. In the programmable 

pipeline, custom programs called shaders are loaded into graphics rendering 

hardware during the program’s runtime and used to render 3D objects. 

Different shaders can be used to render different objects. 

    

Before rendering the virtual user interfaces of smart objects, the camera image 

is rendered as a texture on a plane facing the OpenGL camera. Next, smart 

objects are rendered in front of the plane so that the texture forms the 

background. 
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The virtual user interface of a smart object is described as a 3D scene in the 

COLLADA format. From the COLLADA file and any accompanying files 

like texture images, the vertices, faces, normals, material properties, and 

texture data are extracted and saved in memory. The 3D scene consists of a 

collection of 3D elements in different poses with respect to the coordinate 

system of the smart object. Ordinary 3D elements in the scene use a typical 

shader for rendering, i.e., the object is rendered with colors, alpha 

transparency, light-shading and textures.  

 

Some elements have a property of “real” (instead of “virtual”) in their 

COLLADA definition, i.e., the geometry represents a physical part of a smart 

object. If an element has a “real” property, it indicates that the geometry 

should not be rendered but should still block virtual elements that are rendered 

behind it. This is achieved by setting the blending function used by OpenGL 

(glBlendFunc function, 2012). The blending function decides the way the 

pixels that are to be drawn (source pixels) interact with pixels which are 

already drawn (destination pixels). Its formula is as follows: 

 

𝑅 = 𝑅𝑠𝑠𝑅 + 𝑅𝑑𝑑𝑅 

𝐺 = 𝐺𝑠𝑠𝐺 + 𝐺𝑑𝑑𝐺 

𝐵 = 𝐵𝑠𝑠𝐵 + 𝐵𝑑𝑑𝐵 

𝐴 = 𝐴𝑠𝑠𝐴 + 𝐴𝑑𝑑𝐴 
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R, G, B, A denote the red, green, blue and alpha color components of the final 

pixel value, (𝑅𝑠, 𝐺𝑠, 𝐵𝑠, 𝐴𝑠) and (𝑅𝑑, 𝐺𝑑, 𝐵𝑑, 𝐴𝑑) are the source and 

destination color components respectively, and  (𝑠𝑅, 𝑠𝐺 , 𝑠𝐵, 𝑠𝐴) and 

(𝑑𝑅, 𝑑𝑅, 𝑑𝐵, 𝑑𝐴) are the scale factors for each color component. 

 

When drawing smart objects, the destination pixels would contain the camera 

image texture and possibly other smart objects. When drawing a real element 

of a smart object, the scale factors for the RGB components of the source 

color are set to zero and that for the destination color are set to one. For the A 

components, the scale factor for the source alpha is set to one and that for the 

destination alpha is set to zero. The resulting RGBA values are as follows: 

 

𝑅 = 𝑅𝑑 

𝐺 = 𝐺𝑑 

𝐵 = 𝐵𝑑 

𝐴 = 𝐴𝑠 

  

The RGB components of the final pixel remain the same as what it was before 

the smart object is drawn while the alpha component takes the source value. If 

the source alpha value is one (fully opaque), subsequent objects drawn behind 

it will be hidden. Therefore, if the virtual user interface of a smart object is 

superimposed on a physical object, the overall effect is that the elements that 

have the “real” property are not drawn but still block virtual elements behind it 

(Figure 5-3). 
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Textured fonts are used to generate and render dynamic text for virtual user 

interface elements which are given the text tag. In this approach, an image 

containing a collection of ASCII characters at known positions and with 

known dimensions is used as a reference to generate a texture of the required 

text to be rendered during run-time (Figure 5-4).  

 

 

Figure 5-3. Occlusion of virtual objects by real objects. 

 

 

Figure 5-4. Texture-based font rendering 

 

A font texture can be represented as a signed distance field (Green, 2007) 

where each pixel is a number indicating its distance away from a white pixel 

which is inside a character (Figure 5-5), rather than a bitmap of color 

intensities. This representation maintains a high quality of the font at any 

amount of zoom and supports computationally fast shader effects, such as anti-
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aliasing, outlines, glow, and drop shadows (Green, 2007). In an AR 

application, the background colors are unpredictable, such that these effects 

are valuable for making text easier to read. Furthermore, text registered to 3D 

objects in the real scene can be at various distances from the camera, and 

hence maintaining the quality at different zoom levels is important. 

 

 

Figure 5-5. Signed distance field representation of fonts. 

 

The “effect” and “effect color” properties of a text tag of a virtual user 

interface node indicate the effect to use for text rendering and the color to 

apply to the effect. Two effects are supported in the wearable system, namely, 

outline and glow (Figure 5-6). These two effects are implemented in the 

shaders that are used for text rendering and they make use of the signed 

distance field font representation to perform the calculations.  

 

 

Figure 5-6. Zoom-invariant font quality and font effects. 

Zoomed out Zoomed in 



70 

 

 

If the number of smart objects in the environment is large, and models are 

detailed and have high polygon counts, rendering performance may start to 

suffer. One optimization that can be done to mitigate this issue is to make use 

of a view-dependent level-of-detail algorithm (Hu, et al., 2010) to adjust the 

number of vertices to use for rendering smart objects.  

 

5.1.3 Bare-Hand Interaction 

The wearable system is designed to allow users to interact with the virtual user 

interfaces of smart objects using their bare hands. To detect the hand, the 

colors of the pixels are analyzed to determine skin-colored pixels. A black and 

white image is produced where pixels determined to be skin-colored are set to 

white and all other colors black. Next, contour analysis is performed on the 

black and white image to determine the most probable hand region based on 

its size and shape. The contour of this region is further analyzed to detect 

individual fingers. 

 

Fingers are detected by obtaining the convex hull of the hand contour and 

finding “convexity defects”, which are the regions within the convex hull that 

are not within the hand contour. Only convexity defects of a minimum depth 

indicate the presence of a finger (Figure 5-7a). Individual fingers are classified 

as either a “pointer finger”, of which there can only be one, or an “additional 

finger”. If there is only one convexity defect of sufficient depth, there is only 

one finger which is classified automatically as a pointer. 
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It is important to obtain the screen coordinates of each fingertip for the later 

step of gesture detection. The tip of the pointer finger is defined as the farthest 

contour point from the centroid of the contour (Figure 5-7b). The tip of an 

additional finger is the second farthest contour point, and that of a second 

additional finger is the third farthest contour point, etc.  

 

The possible gestures that can be used to interact with the virtual user interface 

elements in the wearable system are click, drag, and rotate. The click gesture 

is reminiscent of using the pointer finger to press a switch or button. The drag 

gesture resembles the pointer finger holding down a button and dragging it in 

one direction. The rotate gesture involves the pointer finger and another 

finger, most appropriately the thumb, rotating as if they are turning a knob. 

These are gestures that most users would be familiar with from their 

experience with using smartphones.  

 

Figure 5-7. (a) Depth of a convexity defect indicates presence of fingers, (b) 

fingertip is the farthest point from the centroid of the hand. 

 

The click gesture consists of four stages (top row of Figure 5-8). The first 

stage is the initialization stage, wherein the hand must remain in the same 
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position and pose for a fixed duration, e.g., one second. The blue dot depicts 

the position of the fingertip and the green dot the position of the centroid of 

the hand contour. The orange circles around the blue and green dots indicate 

the regions that these two points must remain within during the initialization 

stage. If the initialization is successful, the circles turn green. Otherwise, the 

initialization is restarted. 

 

The second stage occurs after the initialization stage. The user can start 

performing a click action at any time during this stage. The system continues 

monitoring the fingertip and the center of mass during this stage. If the hand 

centroid moves out of the circle, the gesture is cancelled and the initialization 

stage is activated again.   

 

 

Figure 5-8. The detection stages of different gestures. 
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If the user bends their finger such that the fingertip goes out of the green circle 

which is around the fingertip and the distance between the fingertip and the 

centroid decreases, the system interprets this as a finger pressing action and 

the third stage is activated. A yellow dot indicates the original position of the 

fingertip before the pressing action started. During this third stage, as long as 

the centroid stays within the green circle, the click gesture is active. 

 

If the click gesture is still active and the fingertip returns inside the green 

circle, the click gesture is completed. This is indicated by the yellow dot 

turning red momentarily before the initialization stage restarts. On completion 

of the click gesture, the screen coordinates of the yellow/red dot, i.e., the 

screen coordinates of the fingertip when the click gesture first started, is 

obtained and used to determine the object or element that has been clicked on. 

 

The stages of the drag gesture are shown in the middle row of Figure 5-8. The 

first stage is the same initialization stage as for the click gesture. After 

initialization, when the user bends his finger downwards, this is still part of a 

click gesture. The click gesture turns into a drag gesture in the third stage, 

when the user moves his whole hand until the centroid leaves the green circle, 

which marks the region within which the centroid was originally located when 

the click gesture started. At this point, the click gesture is turned into a drag 

gesture. The drag distance is indicated by a red line joining the starting point 

of the drag gesture and the current position of the fingertip. During this stage, 

the distance dragged is continuously monitored and used as interaction input. 

The small green circle near the fingertip shows where the finger must return to 
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in order to complete the drag gesture (the finger release stage). The green 

circle translates by following the translation of the centroid. After the finger 

release, the drag gesture ends and the initialization stage is restarted. 

 

The rotate gesture (bottom row of Figure 5-8) starts with the same 

initialization stage as in the click and drag gestures. The appearance of a 

second finger triggers the start of a rotate gesture. A yellow line is displayed to 

illustrate the rotation action as the user performs it. As the yellow line rotates 

from its previous orientation, the rotation angle is monitored and used as 

interaction input. The rotate gesture ends when the second finger disappears, 

i.e., the user retracts his finger back into the palm. 

 

The three gestures supported by the wearable system correspond to the touch, 

drag, and rotate which can be defined in the virtual user interface of a smart 

object. Figure 5-9 shows a user interacting with different elements of a virtual 

user interface using the three gestures. 

 

 

Figure 5-9. Bare-hand interaction with virtual user interface elements. 
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5.1.4 Occlusion of Virtual Elements by the Hand 

As the AR view is achieved by overlaying virtual elements on the camera 

feed, every virtual element will appear on top of everything in the physical 

environment including the user’s hands. However, to maintain a perception of 

depth and thus the immersiveness of the SmARtWorld environment, the user’s 

hand should occlude virtual elements (Figure 5-10). This also makes it easier 

to interact with virtual elements because the user is able to see where they are 

pointing. This of course assumes that the hand is always nearer to the user 

than the virtual elements. However, this is a reasonable assumption because of 

the unlikelihood of a virtual element being between the user’s face and hand.  

 

 

Figure 5-10. Occlusion of virtual objects by the user’s hand. 

 

Making the user’s hand appear to occlude virtual elements involves 

manipulating the graphics rendering pipeline. After the camera feed is drawn 

as the background of the screen, a depth mask is created from a black and 

white image of the user’s hand in order to set the depth value of the pixels 
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belonging to the hand to a minimum value (these pixels of minimum depth 

represent objects that are nearest to the virtual camera of the graphics 

rendering engine). When the virtual elements are drawn, the graphics 

rendering engine performs a depth test, which means that any virtual element 

that occupies the same pixels as the hand pixels will fail the depth test and 

would not be drawn and displayed. 

 

5.2 Tablet and Smartphone 

Wearable systems are still too costly and uncomfortable to be used for long 

periods of time. The most viable device for use as a viewing device is 

therefore still the tablet or smartphone. Any average smartphone by current 

standards is sufficiently equipped to serve as a viewing device as long as it has 

an embedded camera.  

 

In this research, an Android app was created to demonstrate the use of a 

smartphone as a viewing device and tested on a Samsung Galaxy S2 device. 

The Android viewing device app is largely a straight port of the wearable 

system. The program execution flowchart is given in Figure 5-11. 

 

Tracking performance is worse than the wearable system, due to less powerful 

processing power in the mobile device. Apart from implementing GPU-based 

tracking, optimizations specific to mobile device hardware architecture can be 

done (Yang & Cheng, 2012). Some of the fundamental layer functions such as 

TCP and UDP socket communication were re-written to make use of functions 
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in the Android API. The main difference from the wearable system is in the 

implementation of the interaction method.  

 

 

Figure 5-11. Flowchart of the Android system program execution 

 

Interaction with virtual user interface elements is achieved through the touch-

screen. The selection of 3D objects on the touch-screen is similar to using a 

mouse for picking 3D objects on a monitor, for which there are well-

established methods like ray-casting and color picking. The user selects a user 

interface element by placing their finger down on it on the touch-screen. A 

touch operation is then performed by lifting the finger up from the screen. To 

perform a drag or rotate gesture, the finger is not lifted up immediately. A drag 
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gesture is performed on the interface element, if it accepts such input, by 

swiping the finger along the screen. A rotation gesture is performed by placing 

another finger down on the screen and moving one finger around the other. 

Interactions with each element will result in the corresponding RPC being sent 

to the smart object. Figure 5-12 depicts the three operations performed through 

the smartphone app on three different interface elements. 

 

 

Figure 5-12. Touch-screen interaction with virtual user interface elements. 

 

5.3 Device-less Interaction 

Interaction with smart objects can also be achieved using the SmARtWorld 

framework without the use of any viewing device. This approach makes use of 

devices in the environment such as buttons, keyboards, touch-sensors, and 

voice recognition and context recognition sensors. Some of the input devices 

and sensors that will be described in this section are built using the SNAP 

system (Synapse’s SNAP, n.d.) to form a wireless sensor network (WSN). 
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5.3.1 Sensors and Input Devices on a Wireless Sensor Network 

A SNAP node is a low-cost and portable way to create a smart object with 

sensors and it is easily connected wirelessly to other nodes. A hub is needed to 

link the smart objects on the WSN to the other smart objects in the 

environment. A SNAP node is an RF transceiver with a microcontroller that 

runs Python code. SNAP nodes automatically form a mesh network when they 

are within range of each other, and they use the XML-RPC protocol (Winer, 

2003) to communicate. 

 

The SNAP hub program runs on a PC which has a SNAP node connected by 

USB. The hub program sees this node as an XML-RPC server and connects to 

it. Other SNAP nodes which join the SNAP network see the hub as another 

normal SNAP node, which means a hub discovery procedure is needed. SNAP 

does have broadcast capability which means the hub discovery procedure is 

straightforward. Like any other smart object, a new SNAP node broadcasts a 

“New” command to all nodes, and the information of existing smart objects 

are sent to the new node from the hub.   

 

One of the input devices created in this research is a presence sensor. It is 

implemented as a smart object based on a SNAP node. The fundamental layer 

of this object consists of the RF transceiver and SNAP operating system, with 

an infrared presence sensor connected to its microcontroller. The 

microcontroller is programmed to read values from the presence sensor and 

infer if something is in front of the sensor based on the sensor readings. If the 
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sensor is obstructed, it invokes an RPC. If the object moves away from the 

sensor, another RPC is invoked.  

  

Other input devices similar to the presence button are a door sensor, 

implemented using a flex sensor connected to a SNAP node, and a pressure 

sensor. The flex sensor is placed perpendicular to the hinge of a door so that 

when the door is opened, the flex sensor resistance changes. The door sensor 

interprets the flex sensor readings as whether the door is opening or closing 

and invokes different RPCs for each outcome. The pressure sensor is placed 

on a chair and invokes an RPC when a person sits on a chair and a different 

RPC when the person gets up from the chair.  

 

5.3.2 Gaze Tracking 

A gaze tracking sensor determines the direction of a person’s gaze. One way 

gaze tracking can be used in a SmARtWorld environment for device-less input 

is to determine which smart object a user is looking at and invoke an RPC in 

that object. This is implemented with a camera connected to a PC, with the 

camera mounted facing where a user would be and smart objects placed 

behind the camera. The ITU Gaze Tracker library (San Augustin, et al., 2010 ) 

is used to process images from the camera and get the user’s gaze point. There 

is a calibration step which involves the user looking at a computer screen 

while his gaze is tracked and focusing on different points on the screen as 

indicated by the program (Figure 5-13a).  
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Figure 5-13. Setup for object interaction using gaze tracking. 

 

Testing the gaze tracking accuracy of this system by moving the mouse cursor 

on the computer screen using eye gaze, it was found that eye gaze tracking 

was accurate to within each of the sections in a 3 x 2 grid dividing the screen. 

This means that a person’s gaze cannot be determined accurate to a point on 

the screen but to a region where it is confident that the gaze tracking is within. 

Another point of note is that the maximum distance between the user and 

camera is about 45 cm before tracking deteriorated which means that the user 

must be within that distance to a cluster of smart objects in order to interact 

with them. 

 

After the calibration and accuracy testing, the computer screen is removed so 

that only the camera is left (Figure 5-13b). Possible gaze directions are 

constrained to the 3 x 2 grid. The range of possible gaze directions for each 

grid section depends on the user’s position and computer screen position 

during calibration (Figure 5-14a). Each range for each grid section thus 
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indicates that objects within that range are selected if the user looks in that 

direction. Therefore, in order for a unique object to be interacted with for a 

certain gaze direction, the objects must be separated according to Figure 5-

14b. 

 

With the above setup, the gaze tracking object allows interaction with up to six 

different smart objects by the user looking at them. This setup is quite limiting 

as the user cannot move his head or the tracking fails and the smart objects 

have to be quite well spaced-out. However, more than one gaze tracking 

objects can be used for different clusters of interactive objects.  

 

Figure 5-14. Placement of smart objects for gaze tracker interaction. 

 

5.3.3 Context Recognition 

Context recognition refers to the detection of the intentions and activities of a 

person. This can be done on an abstract level, e.g., detecting activities like 

doing laundry and washing dishes (Pirsiavash & Ramanan, 2012; Hoque & 
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Stankovic, 2012), or a lower level with actions like sitting and standing 

(Kwapisz, et al., 2010). 

 

Logic-based context recognition relies on understanding and reasoning of the 

observations that indicate with certainty the intention of a person. Wang et al. 

(2010) used a logic-based approach to infer high-level activities of users based 

on sets of low-level sensor output which frequently occur for a specific 

activity and rarely in other activities, e.g., a person is inferred to be brushing 

his hair as a result of holding a comb in the bathroom and moving it in certain 

directions while also holding a can of detangling spray. This approach can be 

implemented with smart objects in a SmARtWorld environment by channeling 

the outputs of low-level sensors like those described in the previous two 

sections to a smart object which has been trained to translate different sensor 

output combinations to specific user intention. 

 

A probabilistic approach commonly applied to both high-level and low-level 

context recognition is the use of Hidden Markov models (HMMs). In this 

approach, each user intention is modeled as a single HMM which is trained 

from the data sequence observed when a person is carrying out the actions 

with the intention in mind.  A trained HMM can then calculate the probability 

that a person has a particular intention based on newly observed data 

sequences.  

 

The algorithms that are frequently used for training an HMM and evaluating 

the probability that a data sequence indicates a particular user intention are the 
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Baum-Welch algorithm the forward-backward algorithm respectively, and are 

described in detail by Rabiner (1989). An HMM can be implemented as a 

smart object which allows itself to be trained via an RPC that invokes the 

forward-backward algorithm. A trained HMM smart object performs context 

recognition by observing sensor data and computes the probability that the 

sensor data is a result of a particular user intention, invoking some behavior in 

other objects if the probability is above a threshold.  

 

The training of an HMM object is done through the virtual user interfaces of 

the HMM object and the sensors in the environment (Figure 5-15). First, the 

user registers several sensors with the HMM object. The user then invokes a 

“record” RPC on the HMM object and carries out the actions for a certain user 

intention and invokes the “stop recording” RPC once the series of actions is 

completed. This can be carried out multiple times to improve the training 

results. After training is complete, the user registers an RPC to be invoked by 

the HMM object when it recognizes the user intention with a probability above 

a certain threshold. Finally, the HMM object is left to monitor the sensor 

objects registered to it.  
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Figure 5-15. Training an HMM-based context recognition object using a 

smartphone. 

 

5.4 Summary 

In this chapter, viewing and interaction devices are described. With 

component-based UAR frameworks, such as Studierstube and Tinmith evo5 

(Piekarski & Thomas, 2003), viewing devices are application-specific and 

may not work with other applications developed using the same tools. In 

SmARtWorld, generic viewing devices can be used to access the user 

interfaces and functions in a UAR environment. All the implementation 

architectures of these devices are based on that of a smart object, which means 

that these devices use the same procedures to connect to the network of any 

UAR environment and discover other smart objects.  

 

The SmARtWorld framework is designed to be used with current devices as 

well as future devices. Wearable systems may still be too costly and 

cumbersome, but they are a rapidly evolving technology. Context recognition 
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is a possible means of interaction without the use of devices. This provides 

access for the elderly or disabled; they are also significant for use in 

conjunction with viewing devices that do not provide a method for interaction 

with smart objects through direct gestures. By placing different types of 

sensors in the environment, different modes of context recognition such as 

symbolic gesture recognition, speech recognition, and high-level activity 

recognition can augment the interaction of users with smart objects. The 

separation of RPCs and interaction devices in the framework makes it 

compatible with almost any interaction method as long as it can be mapped to 

the RPCs of smart objects. This idea of dynamic creation of new interaction 

methods in a UAR by users by making use of smart objects, which function as 

sensors and as data processors, is not seen in other UAR frameworks. 
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Chapter 6. Smart Object Representation 

 

6.1 Real and Virtual Objects 

The SmARtWorld framework allows for both real and virtual objects to co-

exist in a UAR environment. Real objects are smart objects with a physical 

form embedded with their own fundamental layer (i.e., computing and 

networking hardware). Their behavior is programmed in their own memory 

and their pose must be tracked to allow viewing devices to augment their 

virtual user interfaces over their physical location. Real objects can be directly 

handled and may have physical controls to invoke RPCs.   

 

Virtual objects do not have physical form and are perceived only by their 

virtual user interfaces. Their hardware is not at the same location as their pose. 

They can come into existence in the environment through smart object hosts, 

e.g., landmarks which come from landmark servers, or exist as independent 

running programs like the basic smart object in Section 4.1. Virtual objects 

can be very useful in bringing abstract functionality into an environment, such 

as the HMM objects for context recognition as described in Section 5.3. As an 

example, a virtual weather sensor can be created as a smart object that 

retrieves the weather conditions at a particular geographic location from a 

cloud weather service (Figure 6-1). Users in the SmARtWorld environment 

would be able to make use of this object to make travel plans.   
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Figure 6-1. A virtual weather sensor object. 

 

6.2 Realistic Rendering 

The appearance of an object is defined by the 3D model data that defines its 

virtual user interface. The vertices of the 3D model define the shape of the 

object while the surface normals and material properties, namely, diffuse, 

ambient and specular color, and shininess which determines the size of the 

specular highlights, determine the color and shading of the object. Texture 

mapping affects the color of specific points along the surface of the object, 

while normal, displacement, and bump maps give the appearance of geometry 

that is not shaped by the vertices of the object model. These data parameters 

affect the appearance of the material of the object. External parameters which 

change the appearance of the object come from environmental factors, such as 

ambient light, light sources, and reflection of the environment on the object 

surface by the use of reflection maps. 

 

Texture mapping can be achieved easily. The wearable system described in 

Section 5.1 uses the programmable pipeline of OpenGL to render the AR 

scene, in which texture mapping involves copying the texture to video 

memory and calling the texture mapping functions in the shaders. To realize 

Sunny Rainy 
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effects, such as shadows and environmental reflection requires more effort. 

There are generally two approaches. The direct approach is to track light 

sources and real objects to calculate object lighting and shadows (Haller, et al., 

2003), and extract an environmental map for reflecting the real environment 

on virtual objects (Ropinski, et al., 2004). The second approach is to use 

indirect methods, such as image-based lighting and shadowing of virtual 

objects which simulate global illumination and shadows based on real-time 

images of the environment (Supan, et al., 2006). 

 

Using the direct approach, viewing devices must implement the appropriate 

algorithms for shadow and environmental reflection rendering, and there must 

be support from the SmARtWorld environment. Figure 6-2 shows a virtual 

object casting shadows in a SmARtWorld environment using a shadow 

mapping technique implemented on a viewing device. This technique involves 

two passes. First, the scene is rendered from the perspective of the light 

source. Next, the proper scene is rendered from the perspective of the virtual 

camera and the result of the first pass is used to add shadows into the scene. In 

an AR environment, the pose and properties of light sources must be known. 

In Figure 6-2, the light source is a smart object which provides data about its 

color and intensity. The viewing device uses this data with the pose of light 

sources to perform the first pass.  

 

For environmental mapping on reflective smart objects, viewing devices can 

use images of the environment as textures to wrap around the smart object 

(Figure 6-3). If an environment is assumed to be a box, the environmental map 
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would consist of six images, i.e., one for each face of the box. Alternatively, in 

the absence of a true environmental map, a viewing device can use its own 

camera image as an environmental map. This will, however, give a less 

accurate reflection of the environment.  

 

Figure 6-2. Shadows cast by virtual objects due to real light sources in the 

environment. 

 

Figure 6-3. A virtual object reflecting the real environment. 

 

6.3 Physical Simulation 

A physics engine object can be added to a SmARtWorld environment to add 

realism to the physical interactions between smart objects. The physics engine 

Shadow cast by 

virtual object 

Shadow cast by real 

object 
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object monitors the physical interactions of smart objects with each other in 

real-time and updates their states when interaction occurs. 

 

In this research, a physics engine object was created using the Open Dynamics 

Engine (ODE) library (Smith, 2007) to add collision detection between objects 

in a SmARtWorld environment. Collision detection requires the geometry of 

smart objects to be modeled using primitive geometries defined by the physics 

engine. This “ODE model” of the smart object is made available as part of the 

data of the smart object. Therefore, when a new smart object joins the 

environment and has an ODE model, it can be added automatically to the 

physics simulation through the physics engine object. Apart from the ODE 

model, the smart object must have its mass and center of gravity defined. 

 

At every time step of the collision detection simulation, physics simulation is 

performed. For collision detection, the ODE library returns information about 

the contact points between colliding objects, penetration depth of one object 

into another, and the normal vector of the penetration. For the physics 

simulation, forces on each object can be obtained. The physics engine object 

calculates the velocities of each virtual object involved in the simulation and 

makes it move by invoking its “Set Your Pose” RPC.   

 

Real objects will not be affected by collisions with virtual objects unless they 

have actuators to move them. To achieve accurate physics simulation in such 

cases, real objects can be set as kinematic bodies in ODE which will 

effectively make them impervious to any forces applied on them. The physics 
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engine object determines whether an object is real or virtual by inspecting its 

virtual user interface to determine if there are any elements with the “real” 

property applied on them.  

 

6.4 Sound Response 

Realistic and positional sounds that are made by objects in response to 

interactions by users and other objects would be very desirable in UAR 

environments. First, it can bring to attention to smart objects that are not in the 

user’s field of view. Secondly, it can create a more immersive and realistic 

atmosphere of a mixture of real and virtual objects. Having positional and 

realistic sounds may allow a visually impaired user to locate and understand 

the functionality of smart objects without seeing them. For the rendering of 

sound in a SmARtWorld environment, two kinds of objects are needed, 

namely, a sound source and a sound renderer.  

 

6.4.1 Sound Source 

The sound source object streams digital sound data to a sound renderer to be 

played. Uncompressed sound data is digitally represented by sampling the 

sound wave at regular intervals and getting discrete values of the wave. The 

sound is re-created by the sound renderer object from digital form by 

demodulating the digital signal and shifting the output signal to speakers. 

 

Smart objects can be packaged with recorded sound files by their developers 

to output sounds intentionally with certain events. In this approach, the 

triggering of a sound is controlled in the fundamental layer and is programmed 
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by the developer. When a sound is triggered, the sound file is streamed via an 

RPC in the sound renderer object. Streaming is done by sending chunks of the 

sound data to the sound renderer, which concatenates the chunks into a long 

sound wave. The size of each chunk is decided by the smart object that sends 

the sound. 

 

Smart objects without packaged sounds can still make sounds in the 

environment. This can happen if an environment consists of objects for 

applications which do not have sounds but the environment owner would still 

like them to stimulate the aural senses. Two ways to achieve this are to define 

the object’s material and shape class which it provides as data so that a 

suitable sound can be selected from a library, and to model the sonal response 

of an object accurately such that tapping the object at different locations and 

with different force can result in different sounds. For the first approach, an 

intermediary smart object would be trained to detect certain events (e.g., from 

a context recognition object or collisions detected by a physics engine object) 

and a sound based on the materials and shapes of the colliding objects is 

generated by it. In the second approach, there is a body of research work 

dedicated to the real-time synthesis of realistic sound made by virtual objects 

due to contact (Liu, et al., 2011; Chadwick, et al., 2012). 

 

In physics-based sound modeling, object sounds which are to be simulated are 

treated as vibrating objects, and a commonly used model for this is the 

exciter/resonator model (Avanzini, et al., 2003). Each object has one or more 

resonators, i.e., vibration modes which are to be modelled mathematically. 
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The exciter transfers energy to the object that results in a vibration response. 

For example, a guitar string is an exciter while the body of the guitar is a 

resonator. The basic parameters which could affect the character of a sound 

are pitch, loudness and timbre. Pitch and loudness depend on the frequency 

and amplitude of the wave respectively, while timbre, which is described as 

the perceptual difference in two sounds which have the same pitch and 

loudness, is attributed to the waveform of the sound.  

 

A simple model used for physics-based sound synthesis is a spring-mass 

vibration model represented as: 

𝑥 = 𝑒−𝛼𝑡 cos 𝑤𝑡 

where 𝛼 is the stiffness and 𝑤 the natural angular frequency.  

 

To apply physics-based sound synthesis to objects in a SmARtWorld 

environment, smart objects need to provide the vibration model that is used to 

represent their sonal response when they hit each other. As a proof-of-concept, 

two virtual objects are placed in a SmARtWorld environment, along with a 

sound renderer and physics engine object. The physics engine detects when 

there is a collision and triggers the sound response in each object. The objects 

then stream the digitized sound data to the sound renderer. Both objects use 

the simple spring-mass vibration model shown above but with different 

parameters. One object has a low stiffness value and high natural frequency, 

resulting in a metallic “ting” sound when hit, and the other has a high stiffness 

value and low natural frequency, resulting in a short tap sound. The 

waveforms of the two sounds are shown in Figure 6-4. 
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Figure 6-4. Sound waves generated by two smart objects with different 

stiffness and natural frequency. 

 

6.4.2 Sound Renderer 

In a UAR environment, positional sounds come from objects in a 3D space. 

Positional sound can be achieved using sound rendering software libraries 

such as OpenAL (OpenAL Soft, n.d.). The OpenAL SDK defines three 

entities, namely the listener, sound source, and buffer. The sound renderer 

adapts to different speaker configurations to generate positional sounds based 

on the poses of the listener and sound sources. A buffer holds the actual sound 

data and is associated with a sound source. Sound sources can be data streams 

with continuous incoming data. 

 

To achieve positional sound in a SmARtWorld environment, a sound 

rendering object is connected to a surround sound speaker system. The sound 

rendering object uses OpenAL to play positional sounds with other smart 
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objects as sound sources which stream sound data. The 3D poses of smart 

objects are retrieved by the sound rendering object for positional sound 

generation, but in a multi-user environment, the positions of users must be 

assumed at one fixed location. Alternatively, sound rendering functionality 

can be embedded with viewing devices in which case every user will hear 

positional sounds from smart objects with respect to the user’s true position. 

 

6.5 Summary 

In this chapter, the different ways in which a smart object can be represented 

in a SmARtWorld environment have been described. Environment developers 

can choose to support more advanced rendering effects by placing smart 

objects, such as environmental map sources or sound renderers into the 

environment. In the absence of these objects, the smart objects would be 

represented by the basic features where at least the 3D geometries and colors 

of virtual user interfaces can be seen and interacted with. With physics-based 

simulation and sound synthesis, even greater realism and blending between 

real and virtual objects can be achieved, regardless of the intended application 

of the smart objects. 

 

The methods for achieving realistic rendering of virtual objects that have been 

used in this chapter are based on published AR rendering and computer 

graphics algorithms, but implemented using distributed smart objects under 

SmARtWorld. These rendering algorithms would be implemented on viewing 

devices but rely on data that is available from various smart objects in a UAR 

environment. For shadow mapping, a viewing device would have to discover 
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light source objects in the UAR environment while for environment mapping, 

the viewing device could obtain the required data from an environment map 

object that maintains a 360o image of the room. This reinforces the goal of 

abstracting applications from lower-level tasks. 

 

Another idea that is introduced in this chapter is the interaction between real 

and virtual objects, particularly what happens when they collide with each 

other. The implementation of a physics engine and sound rendering engine as 

smart objects is given, along with the data that smart object developers have to 

define, allows their physical and aural properties to be derived by other 

objects. These objects can be used in any UAR environment in conjunction 

with any other smart objects, as long as data describing their physical 

properties are included. The generalization of this concept of mixing real and 

virtual objects is not demonstrated in other UAR frameworks, i.e., UAR 

developers would have to program such behavior manually. 
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Chapter 7. Manufacturing Applications 

 

Modern manufacturing today is characterized by temporary virtual enterprises 

comprising different manufacturing companies and the sharing of their 

resources. Monolithic factories built for very specific products have given way 

to smaller and more flexible facilities. Modern factory architecture, commonly 

known as “smart factories”, employ UbiComp technology to embed machines 

and sensors with intelligence and connect them to a network so that workers 

can retrieve real-time production information through mobile devices that they 

carry or computers on the facility (Hessman, 2013). AR has commonly been 

applied in the manufacturing sector to enhance specific human-centric 

activities like factory layout planning (Pentenrieder, et al., 2007), product 

design (Lee & Park, 2005; Ng, et al., 2013), assembly (Caudell & Mizell, 

1992; Hou, et al., 2013) and CNC machining (Olwal, et al., 2008).  

 

In this chapter, the application of distributed computing and virtual user 

interfaces of smart objects in manufacturing activities is presented. The first 

section presents the application of SmARtWorld to a small job shop. The 

second section presents the integration of smart objects in SmARtWorld 

environments around the world through a manufacturing grid (MGrid). The 

last section briefly discusses visual programming in a SmARtWorld 

environment which is applicable to manufacturing as well as numerous other 

disciplines. 
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7.1 Manufacturing Job Shop 

7.1.1 Smart CAD Object 

The understanding of part designs and the use of computer-aided design 

(CAD) files is an integral part of a job shop. Therefore, a smart CAD object 

has a virtual user interface that allows for interactive features which help aid 

in the understanding of features and dimensions of a design. It also 

encapsulates CAD data of a design that other computer-aided technologies 

will use.  

 

To demonstrate the creation of a smart object from a SolidWorks CAD model, 

a tool to extract features from a part document and generate a smart CAD 

object based on this part document is described here. The smart CAD object 

creation tool creates and acts as a hub to smart CAD objects in the AR 

environment. The CAD feature extraction functionality of the tool is based on 

the SolidWorks API which is used to extract data from the active document of 

a running instance of SolidWorks. The tool extracts the features, including its 

geometry and annotations that are attached to the part. Next, the user can 

associate annotations with features that will be useful for the smart CAD 

object (Figure 7-1). When the extracted data is saved and stored as a smart 

CAD object, a COLLADA file for the AR user interface of the object is 

generated automatically. The COLLADA file includes the geometry of the 

features, i.e., the vertices and normal vector of each vertex for rendering the 

shaded model in the AR environment, as well as 3D models of the annotations 

which are generated procedurally from the properties of the annotation 

elements, e.g., lines and arrows, that are extracted through the SolidWorks 
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API. Only the texts of the annotations are not converted to a 3D mesh as they 

are dynamically generated by a viewing device when viewed in the AR 

environment. 

 

 

Figure 7-1. (Top) Smart CAD object creation tool, (bottom) SolidWorks part 

document converted into a smart CAD object. 

 

 



101 

 

A smart CAD object enhances the understanding and evaluation of a part 

design by utilizing the design-by-features philosophy, with each feature of the 

CAD model making up a single interactive element of the virtual user 

interface. The virtual user interface of the whole model is a visualization of the 

product or part, with interactive features that allow the user to hide and show 

specific features and to display parameters, such as dimensions, tolerances, 

etc., of each feature, which is similar to the kind of functionality one would 

find within the SolidWorks environment. Figure 7-2 shows the smart CAD 

object in an AR environment with different feature annotations shown or 

hidden as the user clicks on the feature.  

 

 

Figure 7-2. An interactive smart CAD object. 

 

7.1.2 Smart Machining Object 

A smart machining object, which overlays a CNC machine, is an example of a 

smart object that augments a physical object existing in the environment with 

a virtual user interface and added functionality. A smart machining object has 

different use contexts, such as machining and maintenance.  
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In the machining context, a smart machining object provides computer-aided 

manufacturing (CAM) functionality through RPCs, similar to the way 

SolidWorks functionality is implemented in the smart CAD object. For 

example, MasterCam has C-Hooks and NET-Hooks SDK for providing 

MasterCam functionality respectively through C/C++ and .NET programs. A 

smart machining object can have CAM functionality by creating RPCs which 

call the functions provided by CAM software SDKs. With an accurate model 

of the CNC machine, the graphical output from the CAM software can be 

augmented directly on the CNC machine, thus making the physical CNC 

machine part of the CAM software interface. If the machining table of the 

CNC machine is defined as an interactive element in its virtual user interface 

file with the tag “Object”, it can be used to load a CAD model into the CAM 

interface of a smart machining object by the user by placing a smart CAD 

object on the table. Once the CAD model is loaded, the smart machining 

object can proceed to generate and simulate machining toolpaths.  

 

In the maintenance context, smart machining objects can display real-time 

sensor data and maintenance information so that maintenance personnel can 

inspect the conditions of the machining resources promptly. Furthermore, 

animated graphical maintenance instructions can be superimposed on the 

actual machine parts to provide easy-to-understand guidance on performing 

maintenance on machines. As different machines have different designs and 

parts, each smart machining resource object would have its own individual 

sensor outputs and maintenance instructions superimposed accordingly 

through the use of the AR user interface. However, making use of the capacity 
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of smart objects for independent behavior can allow for smarter maintenance 

systems. For example, an AR maintenance system that displays information 

according to the type of maintenance and the user’s skill level and allows 

authoring of AR content to improve maintenance guidance (Zhu, et al., 2013) 

can be implemented by programming the smart machining resource object to 

activate different AR user interface elements according to a user’s skill level 

setting that is input to the smart object. Figure 7-3 shows the virtual user 

interface of a smart machining object for different tasks and gives an idea of 

how users might interact with it.  

 

 

Figure 7-3. Smart machining object: (a) Maintenance interface, (b) CAM 

interface, (c) Dragging a smart CAD object to the CAM interface, and (d) 

Smart CAD object loaded in the CAM interface. 

 

(a) (b) 

(c) (d) 
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7.2 Manufacturing Grid 

MGrid research often encapsulates manufacturing services as web services 

(He, et al., 2006; Dong, et al., 2008) in order to make use of the connectivity 

and homogeneity of the web. Therefore, it is useful to make use of web 

protocols to link smart objects to a manufacturing grid so as to make it side-

by-side compatible with web service-oriented manufacturing services.  

 

A possible approach for putting local smart objects on the internet is to set up 

a web server which provides remote access to smart objects using HTTP 

protocols and generates HTML forms (World Wide Web Consortium, n.d.) 

based on the RPCs of the smart objects. For users in their local SmARtWorld 

environment to interact with a remote smart object, the HTML code received 

from the remote web server needs to be interpreted and the RPCs packaged as 

HTML form submissions. For this, a smart object called a cloud gateway that 

mediates a web server and local smart objects is needed (Figure 7-4). 

 

 

Figure 7-4. Architecture of manufacturing grid of smart objects. 
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7.2.1 Web Server 

The main index page of a web server would list the smart objects available, its 

RPCs and the URL to retrieve the virtual user interfaces. The HTML code 

below illustrates the manner in which a smart machining object called 

“Makino Milling Machine” is publicized through the index page. Custom 

HTML tags are used to indicate to a remote client information about the RPCs, 

data and virtual user interface of a smart object, with standard HTML tags 

interspersed to allow normal web browsers to display information about the 

smart object: 

 

<smartobject> 

<u>Tom's Workshop</u><br/> 

<i>Name: </i> 

<smartobject-name>Makino Milling Machine</smartobject-name><br/> 

<i>Description: </i> 

<smartobject-description>Smart Machining Object</smartobject-

description><br/> 

<a href="1/resource_index.html">Access Resource</a><br/> 

<div id="hidden" style="display:none">                        

<smartobject-interface>1/MakinoMilling.dae</smartobject-interface> 

<smartobject-

rpc>1/Load_Model.html,1/Simulate.html,1/Order_Job.html</smartobject-

rpc> 

<smartobject-data>Available:Yes</smartobject-data> 
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</div>  

</smartobject> 

 

The custom HTML tags are those with the “smartobject-” prefix and 

encapsulate the information which is hidden from display on normal browsers, 

so as not to look out of place on the website. RPCs are provided as HTML 

forms serving as web interfaces to the specific functions of the manufacturing 

resource. Following the above example, the Makino Milling Machine has 

three RPCs, namely, Load Model, Simulate, and Order Job, as specified within 

the <smartobject-rpc> tag. The “Load Model” RPC is for a remote user to load 

a CAD model into the smart machining object for machining simulation using 

the “Simulate” RPC, and finally to request for the manufacturing resource to 

carry out a production run of the part the “Order Job” RPC is used. As a smart 

object, these RPCs are specified in the COLLADA file of the virtual user 

interface of the object. The HTML form for each RPC is defined in its own 

HTML file. The HTML code for the “Load Model” RPC is as follows: 

 

<form action="Load_Model" method="post" enctype="multipart/form-

data"> 

<label for="file">Upload a SolidWorks part file (.sldprt) or STL file 

(.stl):</label> 

<input type="file" name="CadModel" id="file"><br> 

<input type="submit" name="submit" value="Submit"><br> 

</form> 
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In the HTML form, the “action” attribute of a “form” tag is used as the RPC 

identifier, and the “name” attribute of an “input” tag is used as the data 

identifier. When the “Load Model” RPC is invoked, the CAD model, labeled 

with the data identifier “CadModel”, is transferred using HTML as a form 

submission regardless of whether the source of the RPC invocation is a smart 

object or web browser. 

 

7.2.2 Cloud Gateway 

Web browsers will be able to interact with remote smart objects immediately 

by communicating with the remote web server, but this bypasses their virtual 

user interfaces and uses HTML forms as the user interface instead. The cloud 

gateway serves as the link between a remote web server and local smart 

objects so that a remote smart object can be treated as a normal smart object in 

the local AR environment. In the local AR environment, the cloud gateway is 

seen as a host to smart objects which users can interact with via their virtual 

user interfaces (Figure 7-5).  

 

 

Figure 7-5. Smart machining object from a remote SmARtWorld environment. 
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The cloud gateway allows users to browse different web servers, allowing 

proxy versions of smart objects found on the web server to be hosted on the 

cloud gateway. RPCs from viewing devices and other objects are sent to the 

remote objects via the cloud gateway. The cloud gateway formats RPCs as 

HTML form data as follows: 

 

------------8d185dce20123be 

Content-Disposition: form-data; name="CadModel"; 

filename="Part_SW4.sldprt" 

Content-Type: application/octet-stream 

 

<binary data as Base64 encoded string> 

------------8d185dce20123be-- 

 

In the form submission, each piece of data is bounded by a random string 

prefixed by a series of dashes. The data identifier of each piece of data is 

entered in the “name” attribute, and the form submission is sent towards the 

URL of the RPC’s corresponding HTML form hosted on the remote web 

server. The web server extracts the data and sends the corresponding RPC to 

the object in its local environment. The web server can send a response to the 

form submission and include a standard command, such as to update certain 

pieces of data or the virtual user interface, for the object that sent the RPC in 

the first place.  
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One limitation of this approach of using HTML forms alone is that the remote 

object is not able to send updates on its status to local objects after the initial 

response to the form submission unless the cloud gateway automatically 

queries the remote object at intervals. However, this can be overcome by 

adding server-side scripting to the web server and client-side scripting to the 

cloud gateway. 

 

7.3 Visual Programming 

Visual programming is a programming paradigm in which programming tasks 

are performed graphically by making connections and defining relationships 

between different functional entities rather than by writing code. In the 

manufacturing industry, it has been applied in areas like control and 

mechatronic system design and simulation (Effen, 2001; Sakairi, et al., 2013), 

resource planning (Dorner, et al., 2009), robot programming (Schlette, et al., 

2014), and production control (Köhler, et al., 2000). In addition, AR has been 

used as a child’s tool for creating AR applications through visual 

programming (Radu & MacIntyre, 2009), demonstrating how easy 

programming can be in an AR environment. Two examples of visual 

programming in a manufacturing environment are given below. The first 

shows the use of high-level programming to enhance robot task programming, 

and the second makes use of low-level programming to make a robot consider 

human safety during its operation. 
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7.3.1 Robot Task Programming 

The programming of industrial robots such as pick-and-place and painting 

applications, usually involves writing codes in a programming language that is 

interpreted by the robot controller. For example, the tasks for ABB robots are 

programmed using the RAPID code. This requires the task engineer to be 

familiar with programming and RAPID code. Sometimes, an engineer from 

ABB is hired to help with the programming. This process is often both time-

consuming and costly.  

 

To program a robot to pick a workpiece from a worktable and place it on a 

conveyor belt, the robot programmer has to define a waiting position for the 

robot, command the robot to pick the workpiece when it is ready, define a path 

from the worktable to the conveyor belt, and command the robot to release its 

gripper. In addition, a presence sensor is needed to be placed on the worktable 

and connected to the robot controller so that the robot program will be able to 

read its signal. Assuming the workpiece is always picked up from the same 

position and orientation on the worktable, the program for the robot, written in 

pseudo-code, is as follows: 

 

1 Wait for presence signal input 

2 Move along Path 1 (waiting position to  

workpiece position) 

3 Close gripper 

4 Move along Path 2 (from workpiece to conveyor  

belt) 

5 Release gripper 

6 Move to Path 3 (from conveyor belt to waiting  

position) 

7 Goto line 1 
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Each path in the pseudo-code is made up of a sequence of positional and 

orientation targets in the workspace of the robot. Each target has to have its 

position, orientation, speed, zone (how close the robot must pass through the 

target), and robot configuration defined in the code. In addition, the signal 

input from the presence sensor must be given a name and associated with the 

input port on the robot controller that it has been connected to. This is done 

through the user interface on a teach pendant, which is a tablet device that is 

used to manually move the robot and create targets based on the pose of the 

robot. 

 

Turning the robot’s workspace into a UAR environment and the task objects, 

like the workpiece, worktable and conveyor belt, into smart objects, the task of 

the robot can be programmed visually through the virtual user interfaces of the 

smart objects. Table 7-1 shows the smart objects that are used in the pick-and-

place scenario and the relevant RPCs. 

 

Table 7-1. Smart objects of a pick-and-place robot workspace 

Smart Object RPCs and Data 

Robot Create new looped task 

Finalize task creation 

Workpiece Pick up 

Release 

Worktable Wait for ready signal 

Move to waiting position 

Ready signal (data) 

Conveyor belt Place object 

 

The “Create new looped task” RPC creates a task that repeats the first action 

after the last action has been performed. Invoking this RPC puts the robot in a 

programming state where the robot waits for messages from other smart 

objects that indicate actions to perform for the task. Each RPC accessible on 
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the task objects sends a signal to the robot, which generates the RAPID code 

to be sent to the robot controller. To create the same task as the pseudo-code 

given above, the RPCs are triggered in the following order: 

 

1. Move to waiting position    

2. Wait for ready signal 

3. Pick up 

4. Place object 

5. Release 

 

Targets and paths are generated automatically by the robot by using 

knowledge of the pose of the task objects, which is the fundamental 

information that smart objects in a SmARtWorld environment provide. For 

example, the waiting position is defined by the worktable object with respect 

to its own coordinate frame. The robot computes the waiting position with 

respect to the UAR environment by transforming the waiting position with 

respect to the worktable by the pose of the worktable with respect to the UAR 

environment. The robot then computes the waiting position with respect to its 

own coordinate frame by inverse-transforming the waiting position with 

respect to the UAR environment by the robot’s own pose in the UAR 

environment. This enables the robot to move to the waiting position using its 

own coordinate frame.  

 

The smart objects in Table 7-1 have to use pre-determined RPC identifiers in 

order that the robot smart object can understand the action indicated by the 

RPCs of the task objects. For example, when the “Wait for ready signal” RPC 

is invoked, the worktable object must send a message that the robot will 
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understand to inquire on the “ready” status of the worktable via its “Ready 

signal” RPC. This requires cooperation between the robot and the task object 

manufacturers to come up with standard RPC identifiers for robot 

programming.   

 

7.3.2 Programming Robot Safety Procedures 

The object-oriented SmARtWorld architecture is open to certain programming 

paradigms, such as object-oriented programming (OOP) and flow-based 

programming (FBP), which can be applied in a SmARtWorld environment for 

visual programming at a lower level.  

 

In OOP, objects contain functions and variables. Variables can be assigned 

values while functions are called to invoke certain program behavior. FBP is 

component-oriented rather than object-oriented. Components are “black 

boxes” which process data from its input streams to generate output data. 

Applications are built by connecting the inputs and outputs of different 

independent components. FBP can be implemented over OOP languages and 

can help make the logical flow of information in applications easier to 

visualize. A smart object in a SmARtWorld environment can directly wrap 

objects or components that are implemented in an OOP language and provide 

access to their functions and variables via RPC and data identifiers. By 

establishing connections between different smart objects through their virtual 

user interfaces, high-level programs and behavior can be created visually. 
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Table 7-2 shows five smart objects which can be used as components for FBP 

in a SmARtWorld environment. The first object, the Smart Object Creator, is 

used to create a new smart object that encapsulates the behavior that is to be 

programmed for. The Conditional More-than object has a data identifier 

representing its current output state. It takes an input value and compares it to 

a comparison value that is set by the programmer. Its output state is set as 

“true” if the input value is more than the comparison value, and “false” 

otherwise. Additionally, it can be set to trigger a different RPC in another 

object for each state. The Logical AND object also has an output state which 

is “true” if both its inputs are “true” and “false” otherwise. The While-loop 

object keeps triggering the RPC which is set as its output as long as its input 

value is “true”. Other conditional and logic components can be implemented 

similarly. 

 

Table 7-2. Smart objects for flow-based programming in a SmARtWorld 

environment. 

Smart Object RPCs Remarks 

Smart Object Creator Create New Object  

New Smart Object Start 

Finalize 

This is the object created by 

the smart object creator 

Conditional More-

than 

Set Input Source 

Set Comparison 

Value 

Set True Output 

Set False Output 

Data identifiers for a 

Boolean value representing 

its current output state and a 

number representing the 

current comparison value. 

Logical AND Set Input Source 1 

Set Input Source 2 

Set True Output 

Set False Output 

Data is a Boolean value 

representing its current 

output state. 

While-loop Set Input Source 

Set Input Value 

Set Output 

Data is a Boolean value 

representing its current input 

state.  
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To illustrate the use of visual programming in a factory where robots and 

humans work in close proximity, the objects in Table 7-1 are used to create an 

application that monitors a robot workspace and stops the robot if a human 

worker is about to cross its path. The rotation angle of the robot arm is output 

by the robot and connected to the Conditional More-than object. A rotation of 

more than 90 degrees means the robot arm is about to swing into the path of a 

walkway for workers. The Conditional More-than object outputs “true” to a 

Logical AND object which also receives a true/false signal from a presence 

sensor set up near the walkway. If both inputs to the Logical AND object are 

“true”, a pause signal is sent to the robot to halt the robot arm until the 

walkway is clear. The flow diagram of the system is shown in Figure 7-6. 

 

 

Figure 7-6. Flow diagram of a program that stops a factory robot arm when a 

worker approaches it. 

 

For the program shown in Figure 7-6, the smart object only executes its 

behavior once. The user may wish to execute the program continuously. To 

achieve this, another smart object is created and the While-loop object is used 

Presence 

sensor 

 

Robot 

 

> 90 

 

AND 

Robot arm 

swing direction 
Swing 

angle 

Walkway for workers 

True/False 

True/False 

Pause signal 
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to continue execution of the RPC of the first smart object. The input value of 

the While-loop object is set to “true” to make it an infinite loop, and its output 

is set to the “start” RPC of the first object.  

 

The implementation of the objects in Table 7-1 and the visual programming 

process in a SmARtWorld environment is described next. The Smart Object 

Creator is a hub which hosts the new objects that it creates. The programmer 

creates a new object which comes with a Start RPC and Finalize RPC. The 

virtual user interface of the new object is by default a cube with buttons for the 

RPCs. The Conditional More-than, Logical AND and While-loop objects are 

hosted by the smart object creator. When a new smart object is created, the 

smart object creator and all its constituent objects enter into the programming 

mode, which means any connections made during this mode will be applied as 

behavior triggered by the new RPC. The Finalize RPC is used to exit the 

programming mode and store the behaviors that have been programmed. 

Connections and values are remembered by the default component objects, 

i.e., the Conditional More-than, Logical AND and While-loop objects, for 

each smart object that has been created. Thus, when a new smart object 

executes its behavior, the default component objects work independently to 

fulfill the functionality of the new smart object. 

 

The system described is a highly simplified environment for FBP. A more 

complete implementation of an FBP environment would allow more complex 

behavior to be programmed, more RPCs to be added and virtual user 

interfaces to be user-modeled. Furthermore, to achieve a self-sustaining UAR 
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framework, visual programming should be done at an even lower-level where 

new smart objects that run independently from the Smart Object Creator are 

built. This would entail source code generation and compilation into an 

executable program. However, current approaches in visual programming 

paradigms have not been proven to be efficient methods of low-level 

programming as simple functionality that would take only a few lines of codes 

to implement might require very complex component connections, thus 

making this still an open issue. 
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Chapter 8. Conclusion  

 

8.1 Achievement of Objectives 

The goal of this research is to develop a framework that facilitates highly 

interactive and intelligent UAR environments. The result is SmARtWorld, a 

component-based framework that transforms effectively a physical 

environment into an operating system for UAR environments and relies on 

independent smart objects to provide basic UAR functionality as well as UAR 

applications. The novelty of SmARtWorld is that every component is 

essentially an independent smart object that can have a dynamic virtual user 

interface in AR for user-friendly interactivity with users. Another unique 

feature of SmARtWorld is that, as a component-based framework, it does not 

require any middleware software as interoperability between components is 

achieved through the use of standard definitions of RPC and data identifiers 

and formats. The balance between the enforcement of standards and the goal 

of universal access has been considered carefully throughout this research. 

Five objectives of this research were stated in Chapter 1. The achievement of 

each objective is explained below.  

 

Objective 1: create a common framework for UAR environments that 

abstracts applications from hardware for tracking, interaction and 

display. Chapter 4 has given an implementation of a basic UAR environment. 

Based on this, applications such as a UAR manufacturing environment and 

manufacturing grid have been demonstrated in Chapter 7. These applications 

are made up of individual smart objects that can be developed independently. 
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They work together by using a common set of identifiers for sharing data and 

triggering remote procedure calls. The applications available in a UAR 

environment thus depend on the smart objects that are placed in the 

environment. The different network protocols, embedded hardware and 

operating systems used by individual smart objects are hidden, while 

functionality of the smart objects are provided to users through the virtual user 

interfaces that are defined using a common schema. 

 

Objective 2: allow for flexibility in the hardware and software used to 

implement context-aware smart objects with highly customizable 

behaviors, appearance and user interfaces. In Section 3.3.1, it was shown 

that any hardware and software libraries can be used in the fundamental layer 

of the smart objects, as long as the hardware and software libraries are 

compatible and the functionality and data access layer, i.e., the middleware 

layer, is written to interface with the fundamental layer. In addition, virtual 

user interfaces allow any part of the 3D model of a smart object to be 

interacted with to trigger any behavior that has been defined in its 

functionality and data access layer.  

 

Objective 3: allow for flexibility in the hardware and software used to 

implement viewing and interaction devices. The abstraction of hardware 

from the programming of smart objects has been emphasized in the 

framework, as illustrated in Section 3.3.1. Fundamental functions like object 

and environmental tracking can be performed by different types of sensors, 

while the data output can be formatted in the same way and use the same data 
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identifiers. Graphical rendering and tracking hardware and algorithms are 

always improving, and so the framework will be able to make use of new 

technologies by formatting data transfer according to the communications 

protocol defined in Section 3.4.  

 

User interaction methods are also not strictly enforced in the framework. In 

Sections 5.1 and 5.2, the implementation of three hand gestures, which are 

commonly used today on the majority of touch-screen systems, to interact with 

smart objects through different display devices are given. However, different 

sensors and gesture recognition methods can also be used to detect the three 

hand gestures. User interaction is not limited to the three hand gestures 

because, as presented in Section 3.4, specific smart object behavior can be 

triggered remotely using the “RPC” command, and this command can be 

triggered via any gesture as long as it is recognized by the target smart object. 

Furthermore, as illustrated in Section 5.3, user interaction need not be 

implemented in viewing devices.  

 

Objective 4: recommended practices for AR application development 

using the proposed framework. The SmARtWorld framework gives 

developers greater freedom in the implementation of smart objects, viewing 

devices, and applications. However, there are some considerations raised in 

various chapters to ensure user-friendly to smart object functions using generic 

viewing devices.  In Section 5.1.2, a number of graphical rendering effects 

were described that would enhance the visibility of virtual graphical elements 

overlaying a scene of the physical environment. For example, applying the 
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“real” property to the physical parts of smart objects so that they occlude the 

virtual parts, and specifying textual elements with an outline or glow property. 

Furthermore, in Chapter 6, several ways to help a virtual smart object blend in 

with the physical environment were described. These involve the use of 

several different types of smart objects, such as physics engines and light 

sources. These objects are not required for a basic UAR environment. 

However, AR applications would certainly benefit from making use of them.   

 

Objective 5: a self-sustainable framework. Self-sustainability of the 

framework is achieved firstly by the abstraction of hardware from the 

programming of smart objects, which gives rise to flexibility of hardware and 

software used in the fundamental layer of smart objects. This means that as 

new types of sensors and other embedded technologies become available, the 

same smart object architecture can be used to implement smart objects to be 

used in a UAR environment. Therefore, as technology progresses, new smart 

objects can be created to encapsulate old and new functionalities using new 

technology. 

 

Secondly, the framework features abstraction of behaviors from interaction 

methods, allowing for new interaction devices and technologies to be 

encapsulated in viewing devices and smart objects. As explained in Section 

3.4, behaviors are triggered via remote procedure calls (RPCs) using a unique 

RPC identifier for each function, and new RPC identifiers can be defined for 

new functions and new smart objects. Smart objects can be programmed to 

invoke RPCs in other smart objects when they detect user input. A few 
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examples of device-less interaction methods are given in Section 5.3. It is 

possible that during the initial adoption phase of the framework, most 

interaction will take place via viewing devices using the three hand gestures 

described in Sections 5.1 and 5.2. However, as developers who specialize in 

user interaction start creating smart objects to encapsulate their technology, 

more UAR frameworks will start to utilize device-less interaction methods. 

This allows for simpler viewing devices for users and more customized user 

experiences in different UAR environments.  

 

Another aspect of self-sustainability is the ability for the framework to create 

smart objects which make use of new technologies in order to “update” UAR 

environments. The vision of this research is to replace traditional desktop 

computing with “UAR computing”. Ideally, this includes the development of 

smart objects in a UAR environment. This aspect was briefly discussed in 

Section 7.3.2. However, the creation of smart objects from a low level, i.e., the 

generation of programming code in the fundamental layer of the smart object 

to allow the functionality and data interface layer to access the fundamental 

behavior of a smart object, has not been comprehensively investigated in this 

research. This is a very profound and extensive topic and would likely involve 

a fundamental change in the way software libraries which interface with 

hardware would need to be implemented. 

 

8.2 Contributions 

The main contribution of the research is a new component-based UAR 

framework for building UAR environments and applications. Every 
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component is a smart object that performs all fundamental functions as well as 

high-level application functions. A standard protocol for communication and a 

standard user interface definition schema have been proposed in this research 

so that smart objects can be used in any UAR environment. Smart objects have 

a virtual user interface that gives users access to their functionality and data 

through AR. The specific contributions are highlighted below. 

 

Communications protocol. The communications protocol is one of the few 

standards enforced in SmARtWorld that allows smart objects to communicate 

with each other regardless of networking protocol, while the basic set of RPCs 

allows for basic UbiComp functionality in the environment. More 

functionality and content can be added to a SmARtWorld environment by 

bringing more smart objects into the environment with their own RPCs and 

data.  

 

Virtual user interface definition. The virtual user interface forms the 

appearance and interactive elements of a smart object in AR. It is defined in a 

standard COLLADA schema with a few definitions added for the 

SmARtWorld framework to represent interactive elements and special 

rendering properties for virtual user interfaces.  

 

UAR implementation. An implementation of a UAR environment using the 

SmARtWorld framework involves the development of several crucial types of 

smart objects, namely, the primary server, landmark server, landmark objects 

and object tracker. These objects can be used by adopters of the SmARtWorld 
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framework to create their own UAR environments. Some potential 

applications in manufacturing based on this implementation have been given 

in Chapter 7.  

 

Viewing and interaction devices. Several methods of viewing and interacting 

with smart objects have been explored in this research. Viewing devices are 

smart objects which look for landmark objects in a SmARtWorld environment 

to track their pose and download the virtual user interfaces of smart objects to 

display them to the user in AR. The framework is designed to be able to work 

with current mainstream devices as well as emerging technology like wearable 

systems. The distributed nature of SmARtWorld means that a few less crucial 

rendering effects and behavior, such as reflectivity, physical and sound 

response, can be added with the support of other smart objects in the 

environment rather than requiring the viewing device to handle the possible 

ways that smart objects can be represented in the environment. 

 

Universal access to independently-developed UAR environments in any 

location. The SmARtWorld framework provides universal access to the 

functions of UAR environments and smart objects through user-friendly 

virtual user interfaces, though specialized viewing devices can also be created 

that might cater customized functions and interaction methods for specific 

UAR environments. 

 

Bridged gap between real and virtual objects. It has also been shown how 

the framework can facilitate blending and interaction between real and virtual 
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objects so as to reduce the distinction between the physical and digital domain 

through the development and use of particular smart objects in the UAR 

environment. The real and virtual objects blend smoothly with each other in 

terms of appearance and functionality. Real objects can occlude virtual objects 

and collide with virtual objects under the framework. Real and virtual objects 

can work together, e.g., to integrate virtual and real sensor data together in one 

application.   

 

Abstraction of applications from fundamental functionality. There is 

significant flexibility in the potential behavior, AR appearance and virtual user 

interfaces of smart objects. Any hardware and software libraries can be used in 

the implementation of the fundamental behavior of a smart object. As a result, 

application developers can focus on creating smart objects that provide 

specific applications without having to consider the implementation of 

fundamental functionality, and without having to consider the specific details 

about the environment they would be used in. Environment developers can 

easily set up a UAR environment and the applications therein without having 

to perform low-level programming. When smart objects, which encapsulate 

basic functionality become well-established and shared around the world, 

developers will be able to use visual programming techniques to create smart 

objects and applications without having to learn programming languages.  
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8.3 Recommendations 

There are a few issues that have not been considered in this research. First, the 

scalability, quality of service, and error handling issues have not been 

investigated. Before this framework can be widely deployed and adopted, 

possible failures and network latency issues need to be handled. 

 

Secondly, the tracking accuracy and speed have not been completely 

optimized for the wearable and smartphone systems that are used to evaluate 

the SmARtWorld environment execution based on the framework. This 

disturbed users during tests. Dedicated research on the issues and methods of 

tracking in a large environment should be conducted with the aim of 

minimizing jitter and blind zones (areas where no tracking takes place), and 

maximizing frame rates. 

 

Thirdly, the weight and cumbersomeness of the wearable system prototype 

have negative impacts during test. This problem is caused by the hardware 

required in order to have the hands-free display capability and enough 

computational power for tracking and interaction. However, mobile and 

display technology is rapidly evolving and will enable much lighter and 

comfortable wearable systems to be built in the near future.  

 

Lastly, while virtual object animation was superficially investigated in this 

research, it does not have the animation quality that can be found in modern 

video games. For proper gaming, entertainment and media applications to be 

possible, this aspect has to be developed further. 
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Once the afore-mentioned issues are resolved, a clear documentation of all the 

standards and protocols that have been used must be made so that developers 

can use the framework. There are a few AR and UbiComp standards that 

might be worth integrating with the framework, e.g., vision-based descriptors 

proposed by MPEG (Compact Descriptors for Visual Search, 2011).   
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