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Abstract
Penetration of intermittent renewable energy resources (IRESs), such as wind and solar

power, into power systems significantly increases the uncertainties on system operation, eco-

nomics, stability and reliability. Adequate handling and modeling of these uncertainties become

urgent for smart grid applications. This thesis aims to develop uncertainty modeling methodolo-

gies in distributed power systems (DPSs) for decision making and risk assessment.

Firstly, a novel neural network (NN)-based prediction interval (PI) method was developed

to handle uncertainties for forecasting. A new PI construction method named lower upper bound

estimation (LUBE) method was applied and extended. The LUBE method adopts a NN with two

outputs to directly generate the upper and lower bounds of PIs without any assumption about

data distributions. A new PI evaluation index, which is suitable for NN training, was proposed.

Further a new cost function was developed for the comprehensive evaluation of PIs based on their

width and coverage probability. PSO with the mutation operator was used as a training algorithm

and to minimize the cost function. Results from six case studies show that the proposed PSO-

based LUBE method is very efficient in constructing higher quality PIs in a short time.

The PSO-based LUBE method was further improved and applied to uncertainty handling

for electrical load and wind power forecasting in DPSs. The primary problem for construction

of intervals was firstly formulated as a constrained single-objective problem. The width of PIs

was treated as the key objective and their calibration was considered as the constraint. Compared

to cost function method, advantages of the new formulation are its closeness to the primary

problem and require fewer parameters. PSO enhanced by the mutation operator was then used

to optimally tune NN parameters subject to constraints set on the quality of PIs. Results of

both load and wind case studies clearly show that the proposed probabilistic forecasting method

generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that

the proposed PI construction method greatly outperforms three widely used benchmark methods.

x



Up to now, the forecast uncertainty has been well addressed. The following investigation is

to incorporate wind power interval forecast uncertainties into stochastic unit commitment (UC)

for decision making. Instead of a single level PI, wind power uncertainties were captured by a list

of PIs. A new scenario generation method was proposed. For each hour, an empirical cumulative

distribution function (ECDF) was fitted to these interval points. The Monte Carlo simulation

method was used to generate scenarios from the ECDF. Then wind power scenarios were incor-

porated into a stochastic security-constrained UC (SCUC) problem. Compared to PSO which

is powerful for parameter (real numbers) optimization, genetic algorithm (GA) is more suitable

for the binary representation UC problem. Therefore, GA was proposed to solve the stochastic

SCUC. Five deterministic and four stochastic case studies were implemented. Generation costs

and available reserves from different UC strategies were discussed. Comparative results show

the differences between the planned and real time economic dispatch reserves. The stochastic

models are more robust than deterministic ones.

Previous studies mainly focused on one or two aspects (load and/or wind) of the uncertain-

ties. A comprehensive computational framework was proposed in this thesis for quantification

and integration of uncertainties in DPSs with IRESs. Different sources of uncertainties in DPSs

such as electrical load, wind and solar power forecasts and generator outages are covered by the

proposed framework. Both the deterministic and stochastic SCUC were conducted. Generation

costs as well as different reserve strategies were investigated from the decision making and risk

assessment perspectives. Simulation results show power systems run higher level of risk during

peak load hours. Compared with the only wind case, although the overall costs are lower due to

the penetration of solar power, the involved risks are also higher in this integration framework.

The stochastic models indicate better robustness than deterministic ones.

Overall, this study mainly investigates uncertainty modeling methodologies for forecasting

and renewable energy integration. The proposed methodologies and framework could provide

potential solution for uncertainty quantification and integration in DPSs with IRESs.
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Chapter 1

Introduction

Electrical power systems are evolving from today’s centralized bulk systems, with generation

plants connected to the transmission network, to more decentralized distributed power systems

(DPSs), with smaller generating units connected directly to distribution networks close to demand

consumption [1]. Due to the random nature of weather, intermittent power generation sources

such as wind and solar systems involve high uncertainties. With sudden weather changes, the

output power of a wind farm can fluctuate largely between zero and its capacity. Penetration

of renewable energy sources (RESs) into power systems significantly increases the uncertainties

on both generation and demand sides. These uncertainties bring challenges to system operation

economics, stability, security and reliability of traditional power systems. Forecasting and unit

commitment (UC) scheduling are important and challenging tasks in power systems. However,

traditional methods of forecasting and UC scheduling in existing energy management systems

(EMSs) cannot adequately address these uncertainties arising from RESs. Advanced methods

for forecast uncertainty modeling and new algorithms to incorporate forecast uncertainty into

UC are therefore needed in DPSs [2, 3].

The organization of this chapter is as follows. Section 1.1 and Section 1.2 provide the back-

ground information and general issues of uncertainty modeling separately. Section 1.3 briefly

introduces the DPSs, such as distributed generation and microgrid. Then uncertainty represen-
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tations in DPSs with intermittent RESs (IRESs) are introduced in Section 1.4. The motivations,

objectives and main contributions are presented in Section 1.5 and Section 1.6 respectively.

1.1 Background

To protect the environment and reduce consumption of conventional energy resources, the in-

stalled capacity of renewable energy, wind power in particular, is growing at a significant rate in

many countries around the world. For example, the share of wind power generation in the United

States has been increasing with an annual rate of 25% since 1990. It is estimated that by 2020,

about 12% of the world’s electricity will be supplied by wind generation. Wind generation instal-

lation has reached considerable percentages (in the range of 5% to 20%) of the whole installed

capacity in some European countries in recent years, such as Germany, Spain, and Denmark. On

the other hand, the capital costs ($/KW ) of wind energy decrease gradually with the increment

of the overall installed capacities. Thus, wind energy is becoming an important component in the

supply mix to meet the growing demand for electric energy [4].

The uncertainties involved in DPSs are much more than traditional power systems. Most

of the electrical load and wind power forecasting are point forecasts. However, point forecasts

cannot properly handle the uncertainties associated with data sets. From the uncertainty handling

point of view, probabilistic forecasting of load and wind power needs to be explored, such as

quantile forecast or prediction intervals (PIs). PIs are excellent tools for the quantification of

uncertainties associated with point forecasts and predictions [5].

UC and economic dispatches (ED) are essential and basic tasks in operation and economics

of power systems. UC problem is usually formulated to minimize the total costs of genera-

tions under some operating constraints. Generally speaking, the task is to determine the on/off

status and output power of each generator. Penetration of IRESs increases the uncertainties in

generation, and this brings a big challenge to traditional UC scheduling. It is crucial to build

uncertainty handling models to incorporate the IRES forecast uncertainties into the UC problem.
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Among these uncertainty models, the stochastic model which represents the wind power forecast

uncertainty through scenarios, is one of the most popular ones. Further these uncertainty models

can be applied to decision making and risk assessment in DPSs.

1.2 Overview of Uncertainty Modeling

The definition, classification and sources of uncertainty are firstly introduced. Challenges, issues

and general approaches for uncertainty modeling are then presented.

1.2.1 Definition and Classification of Uncertainty

Uncertainty in engineering analysis and design is commonly defined as knowledge incomplete-

ness due to inherent deficiencies in acquired knowledge [6]. Uncertainty can be classified based

on its sources into three types: ambiguity, approximations, and likelihood. The ambiguity comes

from the possibility of having multioutcomes for processes or systems. The process of approxi-

mation can involve the use of vague semantics in language, approximate reasoning, and dealing

with complexity by emphasizing relevance. Approximations can be viewed to include vagueness,

coarseness and simplification. The likelihood can be defined in the context of chance, odds and

gambling. Likelihood has primary components of randomness and sampling [7].

Uncertainty can also be used to characterize the state of a system as being unsettled or in

doubt, such as the uncertainty of the outcome. Uncertainty is an important dimension in the

analysis of risks. Traditionally, uncertainty in risk analysis processes is classified as follows [6]:

1) Inherent randomness (i.e., aleatory uncertainty): Some events and modeling variables are per-

ceived to be inherently random and are treated to be nondeterministic in nature. The uncer-

tainty in this case is attributed to the physical world because it cannot be reduced or eliminated

by enhancing the underlying knowledge base. This type of uncertainty is sometimes referred

to as aleatory uncertainty. It is representative of unknowns that differ each time we run the

same experiment. An example of this uncertainty type is strength properties of materials such
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as steel and concrete, and structural load characteristics such as wave loads on an offshore

platform.

2) Subjective (or epistemic) uncertainty: In many situations, uncertainty is also present as a

result of a lack of complete knowledge. In this case, the uncertainty magnitude could be re-

duced as a result of enhancing the state of knowledge by expending resources. Sometimes,

this uncertainty cannot be reduced due to resource limitations, technological infeasibility, or

sociopolitical constraints. This type of uncertainty, sometimes referred to as epistemic uncer-

tainty, is the most dominant type in risk analysis. A subjective estimate of this probability can

be used in risk analysis; however, the uncertainty in this value should be recognized. With

some additional modeling effort, this value can be treated as a random variable bounded us-

ing probability intervals or percentile ranges. By enhancing our knowledge base about this

potential event, these ranges can be updated.

In real-world applications, these two kinds of uncertainties may present separately or to-

gether. Uncertainty quantification intends to work towards reducing epistemic uncertainties to

aleatory uncertainties.

1.2.2 Sources of Uncertainty

The sources of uncertainty in modeling and computation of engineering aspects of power systems

include, but not limited to the following [8, 9]:

1) Parameter uncertainty, which comes from the model parameters that are inputs to the com-

puter model (mathematical model) but their exact values are unknown to experimentalists,

cannot be controlled in physical experiments or subject to error.

2) Model inadequacy, also called as structural uncertainty, model bias or model discrepancy,

which comes from the lack of knowledge of the underlying true physics. It depends on how

accurately a mathematical model describes the true system for a real-life situation, consider-
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ing the fact that models are almost always only approximations to reality.

3) Parametric variability, which comes from the variability of input variables of the model. In-

puts into the model may be subject to noise. For example, the value of a given system load

may only be representable as an uncertain variable.

4) Observation error, which comes from the variability of experimental measurements.

5) Numerical uncertainty, numerical modeling using finite arithmetic introduces errors in the

modeling process that can, under some conditions, overwhelm the accuracy of a model.

6) Interpolation uncertainty, which comes with a lack of available data collected from computer

model simulations and/or experimental measurements. For other input settings that don’t have

simulation data or experimental measurements, one must interpolate or extrapolate in order

to predict the corresponding responses.

1.2.3 Challenges and Issues of Uncertainty Modeling

Uncertainty, which was considered synonymous with random, stochastic, and probabilistic pro-

cesses, has grown to incorporate many more uncertain tools and methodologies. Today the ques-

tions with which many practitioners are struggling are [7]:

1) What is uncertainty? Is it just a lack of knowledge and limited information?

2) What are the correct approaches for addressing, analyzing, and modeling uncertainty?

3) How does the quality and quantity of information affect uncertainty analysis and modeling?

4) How robust are answers obtained from uncertainty analysis and modeling?

5) How to incorporate the uncertainty modeling methods into practices for decision making and

risk assessment?

Since the late 1990’s, computational intelligence, or soft computing is attracting increasing

attention to both the theory and practical applications. These computational intelligence methods,
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such as neural networks, fuzzy logic theory and evolutionary algorithms, have been successfully

applied as a tool in uncertainty analysis and modeling.

1.2.4 General Approaches for Uncertainty Modeling

There are two major types of problems in uncertainty quantification: one is the forward propa-

gation of uncertainty and the other is the inverse assessment of model uncertainty and parameter

uncertainty. The uncertainty propagation of the two problems is different. Forward uncertainty

propagation quantifies the uncertainties of system output(s) propagated from uncertain inputs.

The focus is on the response of system outputs to the uncertain inputs. Inverse uncertainty quan-

tification attempts to estimate the discrepancy (bias correction) and the unknown parameters

(parameter calibration), given some experimental measurements of a system and some computer

simulation results from its mathematical model.

Existing forward uncertainty propagation approaches include probabilistic approaches and

non-probabilistic approaches. There are basically five categories of probabilistic approaches for

uncertainty propagation [10]:

• Simulation/sampling-based methods: Monte Carlo simulations [11], importance sampling

[12], adaptive sampling [13], etc.

• Local expansion-based methods: Taylor series, perturbation method, etc. Methods in this

category are weak against the large variability of inputs and nonlinearity of performance

functions (outputs) [10].

• Functional expansion-based methods: Neumann expansion [14], polynomial chaos ex-

pansion (PCE) [15]. The PCE approach has been gaining more attention in uncertainty

representations, stochastic mechanics, solution of stochastic differential equations etc.

• Most probable point (MPP)-based methods : first-order reliability method (FORM) and

second-order reliability method (SORM) [16].
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• Numerical integration-based methods: Full factorial numerical integration (FFNI) [17] and

dimension reduction (DR) [18].

For non-probabilistic approaches, interval analysis [19], fuzzy theory [20], possibility the-

ory and evidence theory are most widely used. Probabilistic approach is widely applied to uncer-

tainty analysis in engineering design due to its consistency with the theory of decision analysis.

Taking this thesis as an example, probabilistic forecasting results have been incorporated into a

stochastic UC modeling for uncertainty quantification and decision making.

Existing methodologies for inverse uncertainty quantification are mostly under Bayesian

framework [9]. The complicated direction is to solve problems with both bias correction and

parameter calibration. The challenges of such problems include not only the influences from

model inadequacy but also parameter uncertainty.

1.3 Distributed Power Systems (DPSs)

The distributed generation and microgrid are main characteristics of DPSs. They are introduced

separately in this section.

1.3.1 Distributed Generation

Traditional power systems are centralized power systems with centralized control and manage-

ment. They usually have large power stations with large generators, which are far away from

the end-users. Thus the transmission lines from the generation side to the distribution side are

very long. Supervisory Control and Data Acquisition (SCADA) serves as a data gathering and

device control center. Traditional power systems suffer from reliability, environment, flexibility

and efficiency problems.

Renewable energy sources, with its advantages of inexhaustibility and nonpollution, be-

come the key to a sustainable energy supply infrastructure. A number of renewable energy

technologies are now commercially available, the most notable being wind power, solar power,
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biomass, geothermal systems, fuel cells and various forms of hydraulic power [1]. Most of these

technologies offer clean, efficient and cost-effective electric energy. Their sizes are usually small,

thus they are flexible enough to connect to distributed grids.

Distributed generation is an electric power source connected directly to the distribution net-

work or on the customer site of the meter [21]. The size of distributed generation can vary from

a few kilowatts to a few megawatts. Nowadays, distributed generation is gaining growing inter-

est among smart grids, particularly as on-site generation for business and homeowners, which

provides better power quality, higher reliability and fewer environment problems. Distributed

generation technology is often lumped with distributed storage, and the combination is referred

to as distributed energy resource that represents a modular electrical generation or storage in-

stalled at customer site. Distributed generation is operated in parallel with the utility system or

islanded from the utility system [22]. Advantages of distributed generation over the traditional

large-scale power generation are their characteristics of being less expensive, more reliable, flex-

ible and environmentally friendly etc.

Shiguo, Luo in [23] introduced eight basic characteristics of distributed power systems

(DPSs): thermal management and packaging, module size reduction, reduced electromagnetic

interference and harmonics, modularity and standardized designs, redundancy and reliability,

availability and maintainability, point-of-load regulation, flexible system structure and layout.

1.3.2 Microgrid

One important component of DPSs is microgrid. Microgrid [24] is a low voltage electrical net-

work that interconnects small, modular generation sources such as photovoltaic, wind turbine,

fuel cell and micro-turbines together with storage elements such as flywheel, super capacitors

and batteries, and controllable loads. Microgrids can be operated in interconnected mode or

islanded mode if it is disconnected from the main power grid.

From the grid’s point of view, microgrids can be considered as controllable entities within
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Figure 1.1: Schematic diagram of a microgrid

the electrical power system that behave as aggregated loads or sources of power and also provide

ancillary services to the supporting networks which depend on the status of both the microgrid

and the main distribution grid. From the customers’ point of view, microgrids are similar to

traditional distribution networks that provide electricity to the customers. Microgrids enhance

local reliability, reduce emissions, improve power quality and potentially lower the cost of energy

supply. This denotes the capability of a microgrid in the smart grid development at distribution

level. Figure. 1.1 shows the schematic diagram of a microgrid [22].

Microgrid extends and adapts the concepts of distributed generation and micro-generation.

It also increases the presence of renewable power sources. The key characteristics of microgrids

are intelligent, efficient, resilient, dynamic, load integrated and flexible [25].
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1.4 Uncertainty Representation in DPSs with Intermittent Renew-

able Energy Sources

Distributed power systems operations are mainly subject to four types of uncertainties: gener-

ation uncertainties, transmission uncertainties, distribution uncertainties and load uncertainties.

These types of uncertainties have been summarized in Fig. 1.2. Generation uncertainties consist

of generation hardware uncertainties and IRESs. The solar irradiation and wind speed fluctuate

significantly with weather changes. These result in high uncertainties of the output power from

IRESs. Regarding transmission uncertainties, the unreliable equipment leads to discrete events,

such as the transmission line outages [26]. Distribution uncertainties include the microgrid un-

certainties and power flow direction uncertainty etc. Departures from load forecasts are often

continuous in nature, and include uncertain load, demand response and area interchange. In the

reminder of this section, several main uncertainties are introduced one by one.

Uncertainties in 
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Load 
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Generation 
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Figure 1.2: Uncertainties in DPSs.
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1.4.1 Load Forecast Uncertainty

Load forecast is of great importance in power system planning and operating. Although various

forecasting methods are being developed to improve the forecasting accuracy, such as time series

forecasting, artificial NN models etc, some degree of load forecast uncertainty still exists in

practice [27]. The level of uncertainty becomes higher if the forecasting period is longer, from

several weeks to decades.

Valenzuela et al. [28] estimated power generation production costs considering the influence

of temperature and load forecast uncertainty. Monte Carlo simulation was used to estimate the

contributions of uncertainties resulting from load and generator availabilities to the variance of

production costs. R. Billinton et al. in [27] investigated the effects of load forecast uncertainty on

bulk electric system reliabilities. Load forecast uncertainty could be described by a probability

distribution whose parameters can be estimated from past experience and future considerations

[29]. In [27] the tabulating technique of sampling was applied to determine the uncertainty by

a normal distribution with a given standard deviation. System and load point reliability indices

and reliability index probability distributions were affected by load forecast uncertainty and the

distribution ranges increased with increase in the uncertainty. In [2] distribution fitting method

and the empirical distribution method were used to evaluate forecast uncertainties. Load and

wind forecast errors were assumed to follow truncated normal distribution. In [30] different levels

of standard deviation of load forecasting were examined on locational marginal price (LMP)

forecasts. It has shown that more accurate load forecast should lead to less deviation in forecast

price.

1.4.2 Uncertainty of Generation and Transmission Line Outages

A generator unit can be either available or not available in its role of delivering power on demand.

When a generator is available for delivering power, it can be operated at its maximum continuous

rating or in a derated state due to operational constraints (i.e., operating at less than its rated

11



CHAPTER 1. INTRODUCTION

capacity) or remain idle due to insufficient demand (i.e., reserve shut down state). There are

many causes that make a generating unit unavailable to meet the demands imposed on it (e.g.,

forced outage, planned maintenance, scheduled maintenance, failure to start, etc.) [31]. Eleven

distinctive states and eleven reliability indices of generators are also introduced in [31].

Frequent forced outages of transmission equipment have significant influences on the reli-

ability and control of industrial and commercial power systems. Combinations of transmission

line outages can easily lead to massive blackouts. According to the Canadian Electricity Associ-

ation outage data in [31], the top three causes of transmission line “line-related” sustained forced

outages are adverse weather, defective equipment and foreign interference.

In [32], load forecast errors, random outages of generators and transmission lines, and fuel

price fluctuations are simulated by the Monte Carlo method. These uncertainties are accounted

together for the optimal maintenance outage scheduling. Jae Hyung Roh et al. [33] also applied

the Monte Carlo method to represent the random outages of generators and transmission lines

as well as the inaccuracies in the long-term load forecasting. But their objective was to present

a stochastic coordination of generation and transmission expansion planning model in a com-

petitive electricity market. Manuel A. Matos et al. in [34] proposed a probabilistic model to

present various uncertainties for setting the operating reserve. These uncertainties include load

forecast and wind power generation forecast uncertainty, unplanned outages of conventional gen-

erators and wind turbines etc. Capacity outage probability table (COPT) was applied to represent

the discrete probability distribution of conventional generation. COPT gives the probability of

occurrence for each possible outage capacity level.

In power systems, operating reserve margin, percentage reserve, expected energy not sup-

plied (EENS), loss of load probability (LOLP), loss of load frequency (LOLF), loss of load

duration (LOLD) are the reliability measures. Uncertainties of generation and transmission line

outages are also related to the power system reliability, especially for the EENS, LOLP and

LOLF [34].

12
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1.4.3 Uncertainty Modeling of Solar Generating Sources

Statistical solar irradiance distribution is described. The theoretical relationship between the

output power of PV modules and solar irradiance are also provided.

1.4.3.1 Statistical Solar Irradiance Distribution

The basic building block of photovoltaic (PV) technology is the solar “cell”, a solar cell (also

called a PV cell) converts solar energy into electrical energy. Multiple PV cells are connected

to form a PV “module”, the smallest PV component sold commercially. These PV modules can

be connected in series to increase the voltage, in parallel to increase the current or both series

and parallel connection to increase power. Multiple PV modules connected together to form

PV arrays. The model of the ith solar generator cell consists of two parts: the solar irradiation

function and the power generation function which links the solar irradiation to the power output

of the PV solar generator. To describe the random phenomenon of the irradiance data, a Beta

probability density function (PDF) is utilized for statistical description as shown in Fig. 1.3 [35]:

Figure 1.3: Beta probability distributions
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f(si) =


Γ(ai + bi)

Γ(ai)Γ(bi)
∗ s(ai−1)i ∗ (1− si)(bi−1), 0 ≤ si ≤ 1, ai ≥ 0, bi ≥ 0

0. otherwise

(1.1)

where si ∈ [0, 1] is the solar irradiance (measured in KW/m2) received by the ith solar gen-

erator, f(si) is the Beta PDF of si, ai and bi are the parameters of the Beta PDF which can

be inferred from estimates of the mean µci and standard deviation σci of clearness index in a

predefined time period.

ai = µci

(
µci(1− µci)

σ2ci
− 1

)
(1.2)

bi = (1− µci)
(
µci(1− µci)

σ2ci
− 1

)
(1.3)

1.4.3.2 Output Power of PV Modules

The output power of the PV module is dependent on the solar irradiance and ambient temperature

of the site as well as the characteristics of the module itself. Therefore, once the Beta PDF is

generated for a specific time segment, the output power during the different states is calculated

for this segment using the following [1, 35]:

PSy(say) = N ∗ FF ∗ Vy ∗ Iy (1.4)

TCy = TA + say

(
NOT − 20

0.8

)
(1.5)

Iy = say [Isc +Ki(TC − 25)] (1.6)

Vy = VOC −Kv ∗ TCy (1.7)

FF =
VMPP ∗ IMMP

VOC ∗ ISC
(1.8)

where TCy is the cell temperature ◦C during state y, TA is the ambient temperature ◦C, Kv

is voltage temperature coefficient V/◦C, Ki is current temperature coefficient A/◦C, NOT is

nominal operating temperature of cell in ◦C, FF is the fill factor, Isc is the short circuit current

in A, Voc is the open-circuit voltage in V , IMPP is current at maximum power point in A, VMPP

is voltage at maximum power point in V , PSy is the output power of the PV module during state

y, and say is the average solar irradiance of state y [1].
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1.4.4 Uncertainty Modeling of Wind Generating Sources

The uncertainties of wind generating sources are mainly from two aspects: the intermittent and

volatile wind speed and the uncertain power curve [36].

1.4.4.1 Statistical Wind Speed Distribution

Wind speed, as an essential measurement for wind power generation, is influenced by many

factors such as the weather conditions, the land terrain, and the height above the ground surface.

A large number of statistics show that wind speed in most regions approximately follows the

Weibull distribution [35, 37]. The PDF of Weibull distribution is defined as:

f(v) =
k

c
(
v

c
)
k−1

exp

[
−(
v

c
)
k
]

(1.9)

where k is the shape parameter and c is the scale parameter. When k = 2, the PDF is called

a Rayleigh PDF. Fig. 1.4 shows the PDF of Weibull distribution for different sets of parameters.

Figure 1.4: Weibull probability distributions

f(v) =
2v

c2
exp

[
−(
v

c
)
2
]

(1.10)
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When the distribution is Rayleigh distribution, the scale parameter c can be estimated as:

c = 1.128 v (1.11)

where v is the average wind speed.

1.4.4.2 Output Power of Wind Turbines

The power curve of a wind turbine is a graph that indicates the mathematical mapping from

different wind speeds to the electrical power output of wind turbines. After the wind speed

distribution is determined, the relationship between the output power of a wind generating unit

and the wind speed can be formulated as [37]:

Pw =



0, 0 ≤ v ≤ vci or vco ≤ v

Prated
(v − vci)
(vr − vci)

, vci ≤ v ≤ vr

Prated. vr ≤ v ≤ vco

(1.12)

where v is the wind speed at the hub height of the wind unit; vci, vco and vr are the cut-in wind

speed, cut-out wind speed, and the rated wind speed respectively; Prated is the rated output power

of the wind unit.

The above Formula (1.12) is an ideal deterministic power curve. However, the deterministic

power curve is different from the empirical power curve. In fact, the obtained empirical power

curve in the real operation involves uncertainties and this curve is never unique. For comparison

purpose, both the deterministic and empirical power curves of a real wind farm are shown in Fig.

1.5 and Fig. 1.6 [38] respectively. The possible deviation may be because of well-known factors

like wake effects, environmental effects, hysteresis, and curtailments in the wind farms [38].

1.4.5 System Other Uncertainties

Different from the distribution network in traditional power systems, microgrid and power flow

direction uncertainties are involved in the distribution systems in DPSs. A microgrid can exist in
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Figure 1.5: Typical machine power curve

Figure 1.6: Empirical relation between speed and output power at an actual wind farm

the distribution systems in DPSs. As mentioned before, microgrids can be operated in intercon-

nected mode or islanded mode. When the microgrids are connected into the main power grid,

the direction of the power flow is determined by the power balance within the microgrids. If the

wind speed is low or the solar irradiation decreases, the electricity shortage may happen in the

microgrids. Then the main grid can compensate for this shortage and the power flows from the
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main grid into the microgrids. If excess power is generated by the microgrids, these power will

flow into the main grid. These power flow uncertainties never exist before, because the end users

only consume the electricity in traditional distribution networks.

Other uncertainties such as the PV module and electronic devices outages, demand response

and uncertain electricity markets will be investigated in future studies.

1.5 Motivations and Objectives

The complexity and level of uncertainty present in operation of power systems have significantly

grown due to penetration of IRESs into the grid. High penetration of IRESs such as wind and

solar power, will have significant impacts on power system stability, security, and reliability due

to fast fluctuation and unpredictable characteristics of IRESs. The integration of a large number

of wind and solar power generations can have either positive or negative impacts on DPSs. A

detailed literature review can be found in Chapter 2. From the literature on incorporation of IRES

uncertainties into DPSs, the main limitations and difficulties can be summarized as follows:

• The uncertainties of IRESs are not well represented in the existing forecasting methods.

The forecasting results are directly from other agencies rather than being proposed and

implemented by the authors themselves.

• The forecasting methods usually have special assumptions on data sets and are parametric

methods. Nonparametric probabilistic methods are seldomly used for electrical load and

wind power forecasting in this area of applications.

• It is difficult to apply the nonparametric forecasting results (eg. quantiles or PIs) to DPSs

for decision making and risk assessment. The scenario generation approaches for stochas-

tic models and the solution methods are very complicated.

• Previous studies mainly focus on one or two aspects of the uncertainties, such as the load

and wind power forecast uncertainties. It is very important to address the uncertainty
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problem comprehensively by including different sources of uncertainty for consideration.

The main objective of this study was to explore uncertainty modeling methods applied in

DPSs. This main objective consisted of two parts:

• To develop advanced uncertainty modeling methods for forecasting;

• To incorporate IRESs forecast uncertainties into stochastic unit commitment (UC) for de-

cision making and risk assessment.

In real practice of power system, uncertainties involved in DPSs are huge. The uncertainty

modeling methods proposed in this research are mainly concerning forecasting and incorporating

IRES forecast uncertainties into stochastic UC problems. In addition, the real power systems are

very complicated and the test systems here only model the main issues. Thus some constraints in

UC are omitted, such as the transmission line constraint and the ramping rate constraint of gen-

erators. The most important consideration is to validate the proposed algorithms for uncertainty

quantification rather than build a very complex test system. Modeling all the constraints in real

power systems for UC is beyond the scope of this research.

1.6 Main Research Contributions

The main contributions of this study are listed below:

1) Investigated the definition, classifications and sources of uncertainty. Reviewed challenges

and general approaches for uncertainty modeling. General issues of uncertainty representa-

tion in DPSs with IRESs are studied.

2) Reviewed the uncertainty modeling methods for forecasting and unit commitment (UC) prob-

lems in DPSs, especially methods about the artificial neural network (NN) and the stochastic

models. Reviewed formulation and solution methods of the UC problems.
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3) Proposed a new and efficient uncertainty modeling method for forecasting using the NN-

based PIs. This method is called the particle swarm optimization (PSO)-based lower upper

bound estimation (LUBE) method.

4) With a new problem formulation, the improved PSO-based LUBE method was applied to PI

construction for short-term load, wind and solar power forecasting to model the uncertainty.

5) Proposed a new scenario generation method which builds an important bridge between PIs

and scenarios used in the stochastic model. The IRES forecast uncertainties were further

incorporated into the stochastic UC and economic dispatch (ED) for decision making and

risk assessment.

6) Proposed a computational framework for uncertainty integration in DPSs with IRESs. It

was conducted to integrate load, wind and solar forecast uncertainties and generator outages

uncertainty together.

The main limitations/difficulties raised in literatures (listed in Section 1.5) have been well

addressed. The uncertainties of IRESs are well captured and represented by PIs using our pro-

posed forecasting method. The PSO-based LUBE forecasting model is a nonparametric proba-

bilistic method and the assumptions about data distributions have been avoided. The computation

time and implementation difficulty are also decreased significantly. The new scenario generation

method builds an important linkage between PIs and decision making. Compared to other sce-

nario generation method, it relaxes assumptions for specific data distributions and can be easily

implemented. In this way, nonparametric forecasting results (eg. quantiles or PIs) can be math-

ematically applied to DPSs for computation and decision making. Moreover, a computational

framework has been proposed to consider different sources of uncertainty together rather than

only one or two aspects of uncertainty.

The proposed uncertainty modeling methodologies would improve the existing EMS for

forecasting and renewable integrations involving uncertainty. The methodologies and integration
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framework can be shifted to other areas for smart grid applications. The software used for sim-

ulation and algorithm development is MATLAB on Windows XP platform. The major functions

used are ‘rand’ (random number generator), ‘plot’ (figures) and ‘mapminmax’ (data normaliza-

tion). However, the main algorithms such as the NN modeling, the PSO and genetic algorithm

(GA)-based algorithms and the UC problem formulations are all programmed manually.

1.7 Outline of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2, a literature review is provided to investigate the uncertainty modeling meth-

ods in DPSs. The review is mainly on forecasting, UC with IRESs, as well as incorporation

of forecast uncertainties into UC in DPSs.

• In Chapter 3, the PSO-based LUBE method is proposed for construction of PIs to handle

uncertainty from forecast. Demonstrated results from six case studies indicate that the

proposed method is very effective in constructing high quality PIs in a short time.

• Chapter 4 proposes a new problem formulation for construction of NN-based PIs. Using

this new formulation, an improved PSO-based LUBE method is further applied to short-

term load and wind power forecasting in DPSs.

• Chapter 5 proposes a new scenario generation method and incorporates the wind power

interval forecast uncertainties into stochastic UC for decision making and risk assessment.

• Chapter 6 proposes a computational framework for uncertainty integration in DPSs with

IRESs. In this framework, load, wind and solar power forecast uncertainties and generator

outage uncertainty are integrated together.

• Chapter 7 presents the conclusion of this thesis and provides recommendations for future

work in this area.
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Literature Review

A comprehensive literature review is provided to investigate the uncertainty modeling methods

in DPSs. The review is mainly on forecasting, UC problem with IRESs and incorporating fore-

cast uncertainties into UC scheduling for decision making. Four popularly used methods on

uncertainty modeling for forecasting and UC problems are firstly reviewed. These methods are

probabilistic method, PIs, fuzzy logic and stochastic models. Then a detailed investigation on

construction of NN-based PIs is implemented. The traditional methods and the newly proposed

LUBE method are introduced. Further, issues of UC with IRESs such as the deterministic UC

formulation and solution methods are reviewed. At the end of this chapter, different studies on

incorporating wind power generation forecast uncertainties into UC and other DPSs applications

are investigated.

2.1 Uncertainty Modeling Methods for Forecasting and Unit Com-

mitment Problems in DPSs

Forecasting and UC with IRESs are two challenging and important tasks in daily operations of

DPSs. The popular methods used to quantify uncertainties from forecasting and UC are proba-

bilistic method, PIs, fuzzy logic and stochastic models.
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2.1.1 Probabilistic Method

Probabilistic method is the old and classical method for uncertainty modeling [39]. For the

non-deterministic or uncertain events, the probabilistic theory represents them by the statistical

probability.

The fundamental characterization of probability is the probability density function (PDF).

In probability theory, a PDF, or density of a continuous random variable, is a function that de-

scribes the relative likelihood for this random variable to take on a given value. The probability

for the random variable to fall within a particular region is given by the integral of this vari-

ables density over the region. The probability density function is nonnegative everywhere, and

its integral over the entire space is equal to one.

A PDF is most commonly associated with absolutely continuous univariate distributions.

A random variable X has density f , where f is a non-negative Lebesgue-integrable function,

if [40]:

P [A ≤ X ≤ B] =

∫ B

A
f(x)dx. (2.1)

Hence, if F is the cumulative distribution function (CDF) of X , then:

F (x) =

∫ x

−∞
f(u)du, (2.2)

and (if f is continuous at x),

f(x) =
d

dx
F (x). (2.3)

Intuitively, one can think of f(x)dx as being the probability of X falling within the in-

finitesimal interval [x, x+ dx]. The uniform, Guassian and binomial PDF and CDF are shown in

Fig. 2.1 [8].

If a random variable X is given and its distribution admits a probability density function f ,

then the expected value of X (if it exists) can be calculated as,

E[X] =

∫ ∞
−∞

xf(x)dx. (2.4)
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Figure 2.1: The uniform, Guassian and binomial PDF (left) and CDF (right).

There are many contents about probability theory, here only the basic PDF, CDF are listed,

the detailed information are omitted in this thesis, one can easily find more from a probability

book [40].

2.1.2 Prediction Intervals

In this subsection, the advantages of PIs compared to point forecasts are summarized from the

uncertainty representation perspective. The difference between PIs and confidence intervals is

reviewed.

2.1.2.1 Prediction Intervals VS. Point Forecasts

In regression application of NNs, they have been mainly used for generating point forecasts.

However, there are two disadvantages of point forecasts compared with PIs. The first disad-

vantage is that the reliability of point forecasts significantly drops when the level of uncertainty

increases. The problem becomes more severe when datasets are multivalued, sparse, noisy or the
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target values are affected by some probabilistic events [41]. Nowadays, real world man-made

systems become more and more complex, and they have a high level of uncertainty. Point fore-

casts are more likely to be unreliable and questionable for these applications. Compared with

PIs, there is another disadvantage for point forecasts. NN point forecasts only provide point

prediction values but convey no information about the prediction accuracy [41]. For example,

point forecasts provide only the prediction error but tell nothing about the probability for correct

predictions. This makes decision-making more problematic, as limited information is available

by predicted values.

Unlike point forecasts, PI is a powerful tool for uncertainty modeling by its nature [42]. By

definition, a PI consists of lower and upper bounds that bracket a future unknown target value

with a certain probability ((1 − α)%) called the confidence level [19]. A typical PI consists of

three parts: the upper bound, lower bound and the coverage probability. PIs not only provide

a range that targets are highly likely to lie within, but also have an indication of their accuracy

called the confidence level. PIs are more reliable and informative than point forecasts for decision

makers. Using high quality PIs, the decision makers can confidently draw up future plans, better

manage risks, and maximize their benefits.

2.1.2.2 Difference Between Prediction and Confidence Intervals

When discussing PIs, it is necessary to distinguish PIs from confidence intervals (CIs). It is often

assumed that targets can be modeled by [41],

ti = yi + εi (2.5)

where ti is the i − th messured target (totally n target). εi is the noise, also called error, with a

zero expectation. The error term moves the target away from its true regression mean, yi, towards

the measured value, ti. It is assumed that errors are independently and identically distributed. In

practice, an estimation of the true regression mean is obtained using a model, ŷi. According to
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this, we have,

ti − ŷi = [yi − ŷi] + εi (2.6)

CIs deal with the variance of the first term in the right hand side of (2.6). They quantify

the uncertainty between the prediction, ŷi, and the true regression, yi. CIs are based on the

estimation of characteristics of the probability distribution P (yi | ŷi). In contrast, PIs try to

quantify the uncertainty associated with the difference between the measured values, ti, and the

predicted values, yi. This relates to the probability distribution P (ti | ŷi). Accordingly, PIs will

be wider than CIs and will enclose them [41].

If the two terms in (2.6) are statistically independent, the total variance associated to the

model outcome will become [41],

σ2i = σ2ŷi + σ2ε̂i (2.7)

The term σ2ŷi originates from model misspecification and parameter estimation errors, σ2ε̂i

is the measure of noise variance.

CIs and PIs are two well-known tools for quantifying and representing the uncertainty of

predictions. While a CI describes the uncertainty in the prediction of an unknown but fixed value,

a PI deals with the uncertainty in the prediction of a future realization of a random variable.

By definition, a PI accounts for more sources of uncertainty (model misspecification and noise

variance) and is wider than the corresponding CI [43].

2.1.3 Fuzzy Logic

Fuzzy logic [20] was first proposed in 1965 by Lotfi Zadeh with the proposal of fuzzy set theory

[44]. Fuzzy logic has been applied to many fields, such as control theory, artificial intelligence,

power system, scheduling and optimization, signal analysis for tuning and interpretation etc.

Fuzzy logic is a form of multi-valued logic or probabilistic logic; it deals with reasoning that

is approximate rather than fixed and exact. In the traditional logic theory, binary sets have only

two-valued logic, true or false. On the contrary, fuzzy logic variables may have a truth value that
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ranges in degree between 0 and 1, so fuzzy logic can also handle partial truth.

2.1.3.1 Fuzzy Logic Systems

A fuzzy logic system (FLS) is defined as a nonlinear mapping of an input data (feature) vector

into a scalar output (the vector output case decomposes into a collection of independent multi-

input/single-output systems) [44]. The primary tool for doing this is a list of IF-THEN state-

ments. All rules are fired in parallel. A typical FLS is show in Fig. 2.2, which consists of four

components: rules, fuzzifier, inference engine, and defuzzifier [44]. A FLS maps crisp inputs

into crisp outputs. The process of fuzzy logic is explained as follows: firstly, a crisp set of input

data are gathered and converted to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic

terms and membership functions. This step is known as fuzzification. Afterwards, an inference

is made based on a set of rules. The inference engine of the FLS maps fuzzy input sets into fuzzy

output sets. Lastly, the resulting fuzzy output is mapped to a crisp output using the membership

functions, in the defuzzification step.

Figure 2.2: A fuzzy logic system and its components.

2.1.3.2 Fuzzy Algorithm Implementation

A fuzzy algorithm can be summarized in the following five steps:

1) Initialization. Define the linguistic variables and terms; construct the membership functions

and construct the rule base.
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2) Fuzzify the inputs. Fuzzification is the process of assigning a degree of truth to statements

about the input variables (all those statements in the if part, or antecedent, of the rule). The

membership functions associated with the input variables determine this degree of truth. Any

statement in the antecedent evaluates to a number between 0 and 1.

3) Fuzzy inference. Apply implication operator: The implication method is defined as the shap-

ing of the consequent (a fuzzy set) based on the antecedent (a single number). Implication

occurs for each rule.

4) Aggregate output across all rules. The above operations occur for all rules, and each rule

results in a clipped output fuzzy set. Joining all these clipped output fuzzy sets into a single

combined output membership function is known as aggregation and it is performed by the

aggregation (max) operator.

5) Defuzzify the aggregated output fuzzy set. The aggregated membership function needs to

be reduced to a crisp value. The defuzzification method returns this value given from the

sometimes oddly shaped aggregate.

Linguistic variables [45] are the input or output variables of the system whose values are

not numbers but words or sentences in a natural or artificial language. A linguistic variable is

generally decomposed into a set of linguistic terms. Take the linguistic values of the temperature

as an example, then, T (t) = {too-cold, cold, warm, hot, too-hot} can be the set of decompositions

for the linguistic variable temperature. Each member of this decomposition is called a linguistic

term and can cover a portion of the overall values of the temperature. Membership functions are

used in the fuzzification and defuzzification steps of a FLS, to map the non-fuzzy input values to

fuzzy linguistic terms and vice versa. A membership function is used to quantify a linguistic term.

There are different forms of membership functions such as triangular, trapezoidal, piecewise

linear, Gaussian, or singleton. Fig. 2.3 shows these functions.
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Figure 2.3: Different types of membership functions.

The most common types of membership functions are triangular, trapezoidal, and Gaussian

shapes. The type of the membership function can be context dependent and it is generally chosen

arbitrarily according to the user experience. Note that, an important characteristic of fuzzy logic

is that a numerical value does not have to be fuzzified using only one membership function. In

other words, a value can belong to multiple sets at the same time.

Rules may be provided by experts (you may be such a person) or can be extracted from

numerical data. In either case, engineering rules are expressed as a collection of IF-THEN state-

ments. The rules can also be represented in a matrix form. The evaluations of the fuzzy rules and

the combination of the results of the individual rules are performed using fuzzy set operations.

The operations on fuzzy sets are different from the operations on non-fuzzy sets. The mostly-

used fuzzy set operations are displayed in Table 2.1, where µA, µB are membership functions for

fuzzy sets A and B. After evaluating the result of each rule, these results should be combined to

obtain a final result. This process is called inference.

Table 2.1: Fuzzy Set Operations

OR (Union) AND (Intersection)

MAX Max{µA(x), µB(x)} MIN Min{µA(x), µB(x)}

ASUM µA(x) + µB(x)− µA(x)µB(x) PROD µA(x)µB(x)

BSUM Min{1, µA(x) + µB(x)} BDIF Max{0, µA(x) + µB(x)− 1}
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After the inference step, the overall result is a fuzzy value. This result should be defuzzified

to obtain a final crisp output. For example, the center of gravity, left/right most maximum algo-

rithms can be used. This is the purpose of the defuzzifier component of a FLS. Defuzzification is

performed according to the membership function of the output variable. In a controls application,

for example, such a number corresponds to a control action [44].

2.1.4 Stochastic Model

A general description of stochastic programming and the typical procedure of Monte Carlo sim-

ulation are reviewed.

2.1.4.1 Stochastic Programming

In the field of mathematical optimization, stochastic programming is a framework for modeling

optimization problems that involve uncertainty. Whereas deterministic optimization problems

are formulated with known parameters, real world problems almost invariably include some un-

known parameters. When the parameters are known only within certain bounds, one approach

to tackling such problems is called robust optimization [46]. Here the goal is to find a solution

which is feasible for all such data and optimal in some sense. Stochastic programming models are

similar in style but take advantage of the fact that probability distributions governing the data are

known or can be estimated. The goal here is to find some policy that is feasible for all (or almost

all) the possible data instances and maximizes the expectation of some function of the decisions

and the random variables. More generally, such models are formulated, solved analytically or

numerically, and analyzed in order to provide useful information to a decision-maker [47, 48].

Minimize F0(x) = E[f0(x, τ)]

Subject to Fi(x) = E[fi(x, τ)] ≤ 0, i = 1, ...,m

(2.8)

where the objective and constraint functions fi(x, τ) depend on optimization variable x and

a random variable τ . The parameter τ may be a random variation in implementation, manufacture
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or operation. If fi(x, τ) are convex in x for each τ , hence Fi(x) are convex and the stochastic

programming problem is convex. Fi(x) have analytical expressions in only a few cases, in other

cases the problem is solved approximately. Usually the value of τ is unknown but its distribution

is known or can be estimated. The goal here is to choose the decision variable x so that:

• Constraints are satisfied on average, or with high probability;

• The objective is small on average, or with high probability.

2.1.4.2 Monte Carlo Simulation

Monte Carlo simulation is a general method for (approximately) solving stochastic programming

problem. Monte Carlo simulation is a type of simulation that relies on repeated random sampling

and statistical analysis to compute the results [11]. Monte Carlo methods are often used in com-

puter simulations of physical and mathematical systems. They are used to model phenomena with

significant uncertainty in inputs, such as the calculation of risk in business. Monte Carlo methods

vary in different applications, but the physical process trends to follow a typical procedure [11]:

1) Static Model Generation:

Every Monte Carlo simulation starts up with developing a deterministic model which closely

resembles the real scenario. This is also called the base case, which uses the most likely value

of the inputs variables and generates the model outputs.

2) Input Distribution Identification:

In the base case, the deterministic inputs are applied. Since the risks originate from the

stochastic nature of the input variables, we try to identify the underlying distributions, if any,

which govern the input variables. The historical data are then used to fit the distribution

parameters. This distribution fitting is nothing but a nonlinear optimization problem, where

the variables are parameters of the distributions.

3) Random Variable Generation:
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After the input distribution has been identified, a set of random variables are generated from

the probability distribution over the domain. That is, to generate N samples (scenarios or

realizations) τ ∈ {τ1, τ2, ..., τN}, with associated probabilities πj = Prob(τ = τj) (usually

πj = 1/N ). One set of random numbers is one possible representation of the input variables,

which will be further used in the deterministic model to provide one set of output values. This

process will be repeated times by generating more sets of random numbers, one for each input

distribution, and collect different sets of possible output values. This part is the core of Monte

Carlo simulation.

4) Problem Solving:

Form sample average approximations:

F̂i(x) =
N∑
j=1

πjfi(x, τj), i = 0, ...,m (2.9)

These are random variables (via τ1, ..., τN ) with mean E[fi(x, τ)] = Fi(x).

Now solve finite event problem:

Minimize F̂0(x)

Subject to F̂i(x) ≤ 0, i = 1, ...,m

(2.10)

Solution x?mcs and optimal value F̂0(x
?
mcs) are random variables (hopefully close to x?mcs and

p?, optimal value of original problem). Theory [48] says, (with some technical conditions) as

N →∞, x?mcs → x? and E[F̂0(x
?
mcs)] ≤ p?.

5) Analysis and Decision Making:

After a sample of output values have been collected from the simulation, the statistical anal-

ysis will be implemented. Some statistical indices such as mean, median, the maximum,

minimum, the standard deviation, variance, skewness and kurtosis can be calculated for anal-

ysis. The analysis results are then used for decision making.

Take the UC problem with wind power as an example. In the stochastic security constrained

unit commitment (SCUC) with high level of wind power penetration, Monte Carlo simulation
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is usually used to model the uncertainty of the volatile wind power. The distribution of the

wind power generation output can be obtained from a forecasting procedure. The Monte Carlo

method is applied to generate a series of scenarios from the distribution. Each scenario represents

one possible realization of the wind power output with certain probability. The objective is to

minimize the expected cost of overall scenarios [49]. The obtained UC results can then be used to

determine the generation scheduling, for example to determine the on/off status of the generators

and the output power of each generators.

2.2 Construction of Neural Network-Based Prediction Intervals

Both the traditional PI construction method and the new LUBE method are reviewed. Their

disadvantages and advantages are summarized.

2.2.1 Traditional Methods

After an overview of traditional methods, the detailed implementation of delta method is re-

viewed. The disadvantages of traditional method are provided at the end of this subsection.

2.2.1.1 Overview of Traditional Methods

The delta [50, 51], Bayesian [52], mean-variance estimation [53] and bootstrap [54] techniques

are traditional methods to construct NN-based PIs [55]. The cornerstone of the delta technique

lies in interpreting NNs as nonlinear regression models and linearizing them based on Taylor’s

series expansion [56]. The Bayesian technique interprets the NN parameter uncertainty in terms

of probability distributions and integrates them to obtain the probability distribution of the tar-

get conditional on the observed training set [52]. The mean-variance estimation is implemented

through developing two NNs for prediction of mean and variance of targets [54]. The bootstrap

technique is essentially a resampling method that its computation requirement is massive. Se-

lection of any of these techniques for constructing PIs depends on problem domain, computation
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burden, number of available samples, and analysis purpose.

2.2.1.2 Delta Method

The root theory of delta method is nonlinear regression, which represents the NN as a nonlinear

regression model [41, 56]. The method first linearizes the NN model around a set of parameters

obtained through minimization of the sum of squared error (SSE) cost function. Then, standard

asymptotic theory is applied to the linearized model for constructing PIs [43]. Consider that ω∗ is

the set of optimal NN parameters that approximates the true regression function, yi = f(xi, ω
∗).

In a small neighborhood of this set, the NN model can be linearized based on Taylor’s series

expansion [41, 56],

ŷ0 = f(x0, ω
∗) + gT0 (ω̂ − ω∗) (2.11)

gT0 is the NN output gradient against the network parameters, ω∗,

gT0 =

[
∂f(x0, ω

∗)

∂ω∗1

∂f(x0, ω
∗)

∂ω∗2
...
∂f(x0, ω

∗)

∂ω∗p

]
(2.12)

where p is the number of NN parameters. In the training process of NN, the NN parameters ω̂ are

adjusted through the minimization of the SSE cost function. Under certain regularity conditions,

it can be shown that ω̂ is very close to ω∗. Accordingly, we have,

t0 − ŷ0 ≈ [y0 + ε0]−
[
f(x0, ω

∗) + gT0 (ω̂ − ω∗)
]

= ε0 − gT0 (ω̂ − ω∗) (2.13)

where t0 and ε0 are the same meaning as in (2.5). They are the target values and the noise or

error terms respectively. Then the variance is calculated as,

var(t0 − ŷ0) = var(ε0) + var(gT0 (ω̂ − ω∗)) (2.14)

Assuming that the error terms are normally distributed
(
ε ≈ N(0, σ2ε )

)
, the second term in

the right hand side of (2.14) can be expressed as,

σ2ŷ0 = σ2ε g
T
0 (JT J)

−1
g0 (2.15)
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J in (2.15) is the Jacobian matrix of the NN model with respect to its parameters computed

for the training samples [41],

J =



∂f(x1,ω̂)
∂ω̂1

∂f(x1,ω̂)
∂ω̂2

· · · ∂f(x1,ω̂)
∂ω̂p

∂f(x2,ω̂)
∂ω̂1

∂f(x2,ω̂)
∂ω̂2

· · · ∂f(x2,ω̂)
∂ω̂p

...
...

...
...

∂f(xn,ω̂)
∂ω̂1

∂f(xn,ω̂)
∂ω̂2

· · · ∂f(xn,ω̂)
∂ω̂p


(2.16)

By replacing (2.15) in (2.14), the total variance can be expressed as,

σ20 = σ2ε

(
1 + gT0 (JT J)

−1
g0

)
(2.17)

An unbiased estimate of σ2ε can be obtained from,

s2ε =
1

n− 1

n∑
i=1

(ti − ŷi)2 (2.18)

According to this, the (1− α)% PI for ŷi is computed as detailed in [50],

ŷ0 ± t
1−α

2
n−p sε

√
1 + gT0 (JT J)−1g0 (2.19)

where t
1−α

2
n−p is the α

2 quantile of a cumulative t-distribution function with (n − p) degrees of

freedom.

In order to minimize the overfitting problem and to improve the generalization power of

NN, the Weight Decay Cost Function (WDCF) can be used instead of the SSE cost function. The

WDCF tries to keep the magnitude of the NN parameters as small as possible,

WDCF = SSE + λ ωT ω (2.20)

De Veaux et al. derived the following formula for PI construction for the case that NNs are

trained using the WDCF [51],

ŷ0 ± t
1−α

2
n−p sε

√
1 + gT0 (JT J + λI)−1(JTJ)(JT J + λI)−1g0 (2.21)

Inclusion of λ improves the reliability and quality of PIs, particularly for cases where JTJ

is nearly singular. This comes to the end of delta method for constructing NN-based PIs. Com-

putationally, the delta technique is more demanding in its development stage than its application
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stage. Due to the special assumptions on error distribution, the quality of the generated PIs is low

for noisy data.

2.2.1.3 Disadvantages of Traditional Methods

In spite of advantages of PIs, applications of these methods are still less popular than NN point

forecasts. One important reason is that the implementation of these methods is complex. For

instance, the delta and Bayesian methods need to calculate the Jacobian matrix and Hessian ma-

trix of the parameters separately [57]. In each iteration, the Jacobian or Hessian matrix needs to

be updated, which is very time consuming. Also calculation of derivatives suffers from singu-

larity problems that decrease the reliability of PIs. On the other hand, traditional methods make

assumptions about the data distribution. The delta method assumes that the noises are normally

distributed and t-distribution is applied [50]. Mean-variance estimation method assumes that NN

(predicting the mean) can precisely estimate the true mean of the targets. If this assumption is

violated, the NN generalization power is weak and it results in accumulation of uncertainty in the

estimation of the target value and leads to a low coverage probability. Bootstrap method assumes

that an ensemble of NN models will produce a less biased estimate of the true regression of the

targets [54]. The main disadvantage is that the total variance will be underestimated resulting

in narrow PIs with a low coverage probability. Implementation difficulties, special assumption

about the data distribution, and massive computational requirements hinder widespread applica-

tions of these methods for decision-making [58].

2.2.2 Lower Upper Bound Estimation (LUBE) Method

Lower upper bound estimation (LUBE) method is a new proposed method for construction of

PIs in [43]. Its concept is different from traditional methods. Obvious advantages are shown

compared to traditional methods.
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2.2.2.1 Concept of LUBE Method

The basic concept of LUBE method is to adopt a NN with two outputs to directly generate the

upper and lower bounds of PIs. The first and second outputs correspond to the upper and lower

bounds of PIs separately. The symbolic NN with two outputs for the LUBE method is shown in

Fig. 2.4 [58]. The real NN architectures will vary in different applications. For a typical three-

....

Input 1

Input 2

Input n-1

Input n

Hidden layer

....
Upper bound

Lower bound

Target

Prediction 

Interval

Figure 2.4: NN model for LUBE method to generate upper and lower bounds of PIs

layered NN, the mathematical mapping between the inputs and the outputs is shown in Formula

(2.22) [59]:

yi = f1

 Nh∑
j=1

(
wijf2

(
Ni∑
k=1

vjkxk + bvj

)
+ bwi

) , i = 1, 2, ..., No (2.22)

where yi is the output of the ith node on the output layer; xk is the input of the kth node in the

input layer; wij represents the connection weight between nodes in the hidden and output layers;

vjk is the connection weight between nodes in the input and hidden layers; and bwi and bvj are

bias terms that represent the threshold of the transfer function f1 and f2. The number of nodes

in the input, hidden and output layers are Ni, Nh and No respectively. In the LUBE method,
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No = 2, and y1, y2 correspond to the upper and lower bounds of PIs.

2.2.2.2 Advantages of LUBE Method

Traditional methods for construction of PIs attempt to estimate the mean and variance of the

target datasets. They construct PIs in two steps [55]:

1) They regress the given dataset to a specified model or function, which is the same as point

forecasts;

2) According to the assumed data distribution, the statistical mean and variance values are cal-

culated, if Jacobian or Hessian matrix are needed, they are also calculated at this step. Based

on this information, PIs are then constructed.

In contrast, the LUBE method directly generates the upper and lower bounds of PIs in one

step. Then PI construction is as simple as point forecasting. Compared with delta, Bayesian and

bootstrap methods, LUBE method has the following advantages [58, 60]:

1) Makes no assumptions about the dataset.

2) Is simpler and avoids calculation of derivatives of NN output with respect to its parameters,

such as Jacobin or Hessian matrix. There is no singularity problem, thus it increases the

reliability of the PI construction.

3) The computational load is much lower than other methods. Once the NN is trained and the

optimal weights are fixed, PI construction is as simple as point forecasting.

2.3 Unit Commitment (UC) with Intermittent Renewable Energy

Sources

The UC with IRESs is different from traditional UC scheduling. IRESs such as wind and solar

power have penetrated into the traditional power systems. If the output power of IRESs is re-
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garded as a negative load, the net load is the load minus the output power of IRESs. The power

balance constraints is changed to meet the net load balance. The potential risks of the uncertain

IRESs need to be addressed.

2.3.1 Overview of the UC Problem Formulation

There are mainly three types of formulation methods for the UC problem [61]. The first type of

UC is the traditional one, which is usually formulated to minimize the total operating cost under

various constraints. It is also called Security Constrained Unit Commitment (SCUC). In some

deregulated markets, some companies change the objective function from cost minimization to

profit (revenue-operational cost) maximization. Beside this, they also change the demand con-

straints from an equality to less than or equal. This UC is called Price-Based Unit Commitment

(PBUC) [62], which consists of the second type of UC formulation. With the increase in pene-

tration of renewable energy, the third type of UC is UC of Power System with Renewable Energy

Sources and Storage System. These renewable sources include wind power and solar power

generation, the battery storage system etc, to name a few. Although these three types of formu-

lation methods have different objective functions, they all can be summarized as an optimization

problem with several constraints. Here the deterministic SCUC is illustrated as an example for

problem formulation.

The objective of the SCUC problem is to minimize the total generation costs under several

constrains. Mathematically, the objective function is formulated as follows [61, 63, 64]:

E(X,P ) =

N∑
i=1

H∑
t=1

[
Fi(Pi,t) + SUi,t(1−Xi,(t−1))

]
Xi,t (2.23)

where Fi(Pi,t) of thermal generators is usually represented as the quadratic function:

Fi(Pi,t) = ai + biPi,t + ciP
2
i,t (2.24)
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The start up cost is determined according to the continuously off time of generators:

SUi,t =


HSUi,t, if T offi,t ≤ T

Down
i + T coldi ;

CSUi,t, if T offi,t > TDowni + T coldi .

(2.25)

Subject to the following constraints:

1) Power balance constraints:
N∑
i=1

Xi,tPi,t = Dt − IRESt (2.26)

2) Spinning reserve constraints:

N∑
i=1

Xi,tPi,max ≥ Dt +Rt (2.27)

or in another form as:
N∑
i=1

Xi,t [Pi,max − Pi,t] ≥ Rt (2.28)

3) Generation limit constraints:

Pi,minXi,t ≤ Pi,t ≤ Pi,maxXi,t (2.29)

4) Minimum up time constraints:

(T oni,t − T
Up
i )(Xi,(t−1) −Xi,t) ≥ 0 (2.30)

where,

T oni,t = (T oni,(t−1) + 1)Xi,t (2.31)

5) Minimum down time constraints:

(T offi,t − T
Down
i )(Xi,t −Xi,(t−1)) ≥ 0 (2.32)

where,

T offi,t = (T offi,(t−1) + 1)(1−Xi,t) (2.33)
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6) Ramp up rate constraints [64]:

Pi,t − Pi,(t−1) ≤ URi (2.34)

7) Ramp down rate constraints [64]:

Pi,(t−1) − Pi,t ≤ DRi (2.35)

8) Transmission flow limits from bus k to bus m:

− Lmaxkm ≤ Lkm,t ≤ Lmaxkm (2.36)

where, Lmaxkm is maximum allowable real power flow through transmission line km.

Besides the above constrains, there are various other constrains. These constrains include

but not limited to, system emission limit, must run units, must out units, crew constraints, fuel

constrains etc [65].

2.3.2 UC Solution Methods

UC solution methods can be classified into three categories: deterministic methods, meta-heuristic

methods and hybrid models. Deterministic methods include priority listing (PL) [66], dynamic

programming (DP) [66], Lagrangian relaxation (LR) [67], integer and linear programming [68].

Meta-heuristic approaches include expert or fuzzy systems [69, 70], genetic algorithm (GA)

[71, 72], evolutionary programming, simulated annealing, tabu search, PSO [73, 74], ant colony

optimization and differential evolution [75]. Hybrid models, where one method compensates

with another, may have a better performance than individual models. Srinivasan et al. in [76]

proposed a PL method-based evolutionary algorithm to solve the UC problem. PL was used as a

good initialization of the evolutionary algorithm. In [63], the authors proposed a hybrid LRGA

model; GA was applied to evolve the Lagrange multipliers to improve the LR method.
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2.3.2.1 Deterministic Methods

Exhaustive enumeration is the earliest method used to solve the UC problem. It enumerates all

possible combinations of the generating units and then the combinations that yield the least cost

of operation are chosen as the optimal solution. Even though the method was not suitable for a

large size electric utility, it was capable of providing an accurate solution [66] .

PL method initially arranges the generating units based on lowest operational cost charac-

teristics. The predetermined order is then used for UC such that the system load is satisfied [65].

PL is the simplest and fastest but achieves poor final solution.

DP holds the Theorem of optimality that “An optimal policy must contain only optimal

sub-policies.” [65]. It has the advantage of being able to solve problems of a variety of sizes

and to be easily modified to model characteristics of specific utilities [66]. But its computation

time suffers from the curse of dimensionality, which leads to more mathematical complexity and

increase in computation time [61].

LR is based on a dual optimization theory. It solves the UC problem by “relaxing” or

temporarily ignoring the coupling constraints and solving the problem as if they did not exist.

This is done through the dual optimization procedure. The dual procedure attempts to reach the

constrained optimum by maximizing the Lagrangian with respect to the Lagrange multipliers,

while minimizing with respect to the other variables in the problem [65]. Fig. 2.5 shows a

typical LR method for solving the UC problem [77], where λ and µ are Lagrange multipliers for

the equality and inequality constraints respectively.

2.3.2.2 Meta-Heuristic Approaches

Meta-heuristic approaches are computational intelligence methods inspired by natural evolution

or social behavior. These methods include expert systems [69], fuzzy systems [70], GA [71, 72],

evolutionary programming, simulated annealing, tabu search, PSO [73], ant colony optimization

and differential evolution [75].
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         where,  and  are the ramp up rate and ramp down 
rate of unit  respectively. 

C. Solving Renewable -Thermal Scheduling with Battery 
The final step is to optimize the renewable-thermal dispatch 

based on the thermal unit commitment results. The result of 
this step gives us the loading of each thermal unit. 

Minimize,    1  1   21  

Subject to,                                                22                                              23    2   11        
 

where, is the on/off status of unit  at time  which is 
from the second step of the method. The solution gives us the 
updated total load of thermal units at each stage,                               24  

III. SOLVING THERMAL UNIT COMMITMENT 
In this paper, LR, GA and LRGA have been used to get the 

least operating cost of thermal units. 

A. Lagrangian Relaxation 
The Lagrangian relaxation [6] solves the unit commitment 

problem by ignoring the coupling constraints temporarily and 
solving the problem as if they did not exist. The LR 
decomposition procedure is based on the dual optimization 
theory. It generates a separable problem by integrating some 
coupling constraints into the objective function through 
functions of the constraint violation with Lagrangian 
multipliers which are determined iteratively. Instead of solving 
the primal problem, one can solve the dual by maximizing the 
Lagrangian function with respect to the Lagrangian multipliers, 
while minimizing with respect to the unit commitment control 
variable. Fig.1 shows the LR algorithm for UC. The principal 
advantage of applying LR is its computational efficiency. 
According to the theoretical analysis, the execution time of LR 
will increase linearly with the size of the problem. The LR 
method allows the utilization of parallel computing techniques 
for single UC sub problems with a small CPU time. However, 
in order to obtain a near-optimal commitment, Lagrange 
multiplier adjustments are to be managed skill fully. In 
addition, the LR method could encounter difficulties as more 
complicated constraints are considered. The inclusion of a large 
number of multipliers could result in an optimization problem 
that is more difficult and even impossible to solve as the 
number of constraints grows.  

Lagrangian function can be formulated as follows: , , , ,  

, ,
 , ,    25  

Then, the primal problem is as follows: 

, 1  1  26  

 
And dual problem is as follows: , , , ,  

  , ,        27  

B. Genetic Algorithm 
Genetic algorithm is a general-purpose stochastic and 

parallel search method which can be used as an optimization 
technique. Near-global optimum can be obtained from GA. 
This algorithm is inspired from genetics and evolution theories 
of natural selection and survival of the fittest. It is iterative 
procedure acting on a population of chromosomes, each 
chromosome being the encoding of a candidate solution to the 
problem. A fitness which depends on how well it solves the 
problem is associated with each chromosome. The objective 
function involves penalty term to penalize those potential 
solutions in which the problem constraints are not fulfilled. The 
objective function translates into a fitness which determines the  

Figure 1. LR for unit commitment 

3

Figure 2.5: LR method to solve UC

GA mimics the natural evolutionary process. It encodes the UC variables as the chromo-

somes, each population represents one potential solutions of the problem. A fitness function is

used as criteria for evaluation of the goodness of the solution. The objective function involves
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penalty term to penalize those potential solutions in which the problem constraints are not ful-

filled. Selection, crossover and mutation are the three main operators of GA. It has potential of

obtaining near-global minimum and the capability of obtaining the solution within short time and

the constraints can be easily included [71].

PSO is inspired by a swarm of birds to find food. Each individual in PSO flies in the search

space with a velocity which is dynamically adjusted according to its own flying experience and

its companions’ flying experience. Personal best (pbest) denotes the best performance of the

individual particle, while global best (gbest) is the best performance in the whole swarm. Through

the velocity and position update, each particle shares the information efficiently throughout the

whole swarm. Attention on PSO in UC problem is increased because of its better convergence

and small simulation time [58, 73].

2.3.2.3 Hybrid Models

As mentioned above, each method has its own advantages and disadvantages. Some researchers

develop hybrid models to further improve the solution of the UC problem. In the hybrid models,

one method compensates with another, they may have better performance than individual models.

Srinivasan, D et al. in [76] proposed a PL-based evolutionary algorithm to solve the UC

problem. PL was used as a good initialization of the evolutionary algorithm. The authors further

studied the effect of the number of PL solution in the initial population. Results showed that best

results were obtained with only 1 PL solution in the initial population, remaining solutions being

generated randomly. In [63, 77], the authors proposed a hybrid LRGA model; GA was applied

to evolve the Lagrangian multipliers to improve the LR method. The LRGA method consisted

of a two-stage cycle. The first stage was to search for the constrained minimum of Lagrangian

function under constant Lagrangian multipliers by two-state dynamic programming. The second

stage was to maximize the Lagrangian function with respect to Lagrangian multipliers adjusted

by GA [63, 77].
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2.4 Incorporating Wind Generation Forecast Uncertainties into UC

Wu et al. [49] applied two methods to consider the uncertainty of wind power generation; com-

parisons between the two methods are also implemented in this paper. The two methods are

stochastic SCUC and interval optimization approaches. In stochastic SCUC, multiple scenarios

are generated using Monte Carlo method to simulate the possible realization of wind power gen-

eration uncertainties. In addition to the base case operation cost, the scenario-based approach

minimizes expected costs of corrective actions. Instead of sampling scenarios, the interval op-

timization uses confidence intervals in terms of upper and lower bounds to represent the un-

certainty spectrum, and derives optimistic and pessimistic solutions for satisfying the system

security requirement [49].

Wang et al. [78] also incorporated wind power generation uncertainty using stochastic

SCUC. The wind power uncertainty in this paper emphasizes on the aspects of intermittency

and volatility. Monte Carlo method is employed to simulate possible wind power volatility sce-

narios. The results for the six-bus system and the IEEE 118-bus system show that the physical

limitations of units such as ramping are crucial for accommodating the volatility of wind power

generation.

Ortega-Vazquez et al. [79] estimated the spinning reserve requirements in systems with

significant wind power generation penetration. Wind power generation is viewed as a negative

load, the uncertainty on this generation increases the uncertainty on the net demand (i.e., the

system wide demand minus the wind power generation). Net demand takes into account the load

forecast errors and wind power generation uncertainty together. The results show that, contrary

to what is commonly believed, an increased wind power penetration does not necessarily require

larger amounts of spinning reserve.

Botterud et al. [80, 81] presented a new model for optimal trading of wind power in day-

ahead electricity markets under uncertainty in wind power and prices. A wind power producer is

facing three main uncertainties when bidding into the day-ahead market: the day-ahead locational
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marginal prices (LMP), the real-time LMP, and the real-time delivery of wind power. A stochastic

model is developed for the bidding strategy.

Sturt et al. [82] used stochastic UC with rolling planning for simulation of wind-integrated

power systems. There are three main contributions. First, they present a new formulation of the

stochastic UC problem. Second, the proposed formulation uses a quantile-based scenario tree

structure. Third, the authors compare the performance of various tree topologies in year-long

simulations of a large system.

Matos et al. [34] considered various uncertainties when setting operating reserves. These

uncertainties come from load, conventional generation and wind generation uncertainties etc.

Load uncertainty is represented as a Gaussian distribution model, conventional generation as ca-

pacity outage probability table. Wind generation uncertainties take into account both forecast

errors and wind turbines’ unplanned outages. The forecast errors can be represented in three

ways. A nonparametric probabilistic forecast can be represented by quantiles, intervals or PDFs.

The other two representations take the form of risk indices of the forecasts, and scenarios incor-

porating temporal or spatial interdependence structure of prediction errors.

Jiang et al. [83] studied the robust UC with wind power and pumped storage hydro. In

the beginning, the authors presented some problems of stochastic SCUC to accommodate wind

power uncertainty. For example, problem size and computational requirement increase with the

number of scenarios; wind power ramp event cannot be represented in stochastic UC etc. Instead,

the robust UC represents the wind power uncertainties in confidence intervals. The algorithm can

automatically simulate the worst scenario where the wind power output changes between upper

and lower bounds and has the greatest impact on system operations. Robust UC also does not

require the distribution of the wind power output. Benders’ decomposition algorithm is used to

obtain a robust unit commitment solution. Interested reader can find more about robust UC from

the relevant studies [84–88].

In spite of the advantages of the above references, the wind power scenarios in the stochastic
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model are mainly generated from an assumed probability distribution, either a normal distribu-

tion [78, 79] or a Weibull probability distribution [49]. The robust UC needs to predefine the

uncertainty set and find the worst-case scenario [83, 84, 86]. A typical PI consists of three com-

ponents: an upper bound, a lower bound and the coverage probability. It is difficult to directly

apply the PIs for computational purpose due to this multivalued problem. There is a gap between

the PIs and the scenarios in the stochastic model. Previous studies mainly focus on one or two

aspects of the uncertainties, such as the load and wind power forecast uncertainties. However,

other system uncertainties still exist such as the solar power forecast uncertainty, generator out-

age uncertainty, etc. An integration framework is therefore needed to integrate different sources

of uncertainty together for decision making and risk assessment.
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Chapter 3

Construction of Neural Network-Based

Prediction Intervals for Forecast

Uncertainty Modeling

3.1 Introduction

Since neural networks (NNs) were first proposed by McCulloch and Pitts in 1943, they have been

successfully applied to different areas. Multilayer feedforward NNs are theoretically universal

approximators [89]. Due to the strong approximation capacity and learning ability, NNs are

suitable for prediction and regression problems. In literatures there are numerous applications,

such examples include, but not limited to, electric power systems [90–92], transportation systems

[93], pattern recognition [94–96], and financial price forecasting [97].

As mentioned in Subsection 2.1.2, PIs are powerful tools to quantify the uncertainties asso-

ciated with point forecasts. Compared to point forecasts, PIs are more reliable and can provide

more information during forecasting for decision making. Traditional methods for construc-

tion of NN-based PIs are delta [50, 51], Bayesian [52], mean-variance estimation [53] and boot-

strap [54] techniques. Subsection 2.2.1 has summarized some drawbacks of traditional methods,
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such as implementation difficulties, special assumption about the data distribution, and massive

computational requirements.

Khosravi et al. in [43] proposed a new method for construction of PIs called lower upper

bound estimation (LUBE) method. LUBE method applies a NN with two outputs to directly

generate the upper and lower bounds of PIs. This method makes no assumptions about data dis-

tribution and avoids calculation of derivatives such as Jacobian and Hessian matrix. Therefore,

it is easy for implementation and fast in generating PIs. Comparative results reported in [43]

reveal that the LUBE method is simpler, faster, and more reliable than traditional methods for

PI construction. For high quality PIs in real-world applications, a higher coverage probability

and narrower width are always expected. After introducing two quantitative PI evaluation in-

dices, specially, a new width evaluation index that is suitable for NN training is proposed. A

comprehensive measure to evaluate both coverage probability and width of PIs is also developed.

This measure was successfully applied to different areas, such as electrical load forecasting [56],

travel time prediction [42] and industrial systems [98].

The measurement cost function is nonlinear, complex, discontinuous and nondifferentiable.

Traditional derivative-based algorithms cannot be applied for its minimization. In [43], sim-

ulated annealing algorithm is applied to minimize the cost function. Obtained results can be

significantly improved in case of using more powerful optimization methods such as the PSO

algorithm. Classical NN training algorithm such as backpropagation, is gradient-based and may

be trapped into local optima. Compare to other evolutionary methods such as GA, the advan-

tage of PSO is its algorithmic simplicity. PSO is more powerful for parameter optimization (real

number), especially for optimization of NN connection weights in numerous literatures. The

mutation operator, which helps to achieve diversity in evolution algorithm, is also integrated into

PSO to improve the exploratory capabilities and help to jump out of local optima.

The main contributions of the chapter are listed below. 1) A new PI width evaluation in-

dex, which is suitable for NN training, is proposed to help improve the quality of PIs. 2) PSO
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associated with mutation operator is firstly integrated into the LUBE method called the PSO-

based LUBE method. This PSO associated with mutation operator has a very strong searching

ability. 3) Demonstrated results from six case studies indicate that the quality of PIs has been

significantly improved compared with the same case studies of two journal papers [41,43]. 4) PI

construction time of the PSO-based LUBE method is also much shorter than both the delta [41]

and LUBE [43] method.

The rest of this chapter is organized as follows. Section 3.2 describes indices used for PI

evaluation. Section 3.3 introduces the proposed PSO-based LUBE method. Case studies, results

and discussions are presented in Section 3.4 and Section 3.5 respectively. Finally, Section 3.6

concludes the whole chapter with some remarks of future work in this domain.

3.2 PI Evaluation Indices

Before discussing the evaluation indices for PIs, the evaluation indices for point forecasts are re-

viewed. Two frequently used evaluation indices are mean square errors (MSE) and mean absolute

percentage errors (MAPE). Both MAPE and MSE are used as the cost function in the learning

algorithms such as back propagation (BP) for training NN parameters. These indices are also

calculated for examining performance of models for test samples. Likewise, PIs, which estimate

the lower and upper bounds for targets with a prescribed confidence level ((1-α)%), need to be

evaluated.

In literatures, two indices have been introduced for evaluation of PI qualities. These are

based on coverage probability and width of intervals.

3.2.1 PICP

Prediction interval coverage probability (PICP) is considered as the fundamental feature of the

PIs. It measures which percentage of targets is covered by intervals. The definition of PICP is as
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follows [56]:

PICP =
1

n

n∑
i=1

ci (3.1)

where n is the number of samples, ci = 1 if the target yi ∈ [Li, Ui], otherwise ci = 0. Li and Ui

are the lower and upper bound of the target yi. To have valid PIs, PICP should be at least equal

to or greater than the nominal confidence level of PIs. Otherwise, PIs are invalid and should be

discarded. The ideal case for PICP is PICP = 100%, which means all targets lie within PIs.

3.2.2 PINAW and PINRW

If the width of intervals is large enough, the requirement for high PICP can be easily satisfied.

But on the other hand, too wide intervals convey little information about the targets, which is

of no use for decision making. According to this, it is important to evaluate PIs based on their

widths as well. In literatures, prediction interval normalized average width (PINAW) has been

introduced [98]. PINAW is the other aspect for higher quality of PIs, which has an overall

evaluation of the width of PIs,

PINAW =
1

nR

n∑
i=1

(Ui − Li) (3.2)

where R is the range of the underlying targets. Originally, only prediction interval average width

(PIAW) is defined. The purpose of normalization is to compare the average widths for datasets of

different ranges. PINAW is the percentage presentation of PIAW to the range of the underlying

targets.

Inspired by the successful performances of MSE for training, a new width evaluation index

for PIs, called prediction interval normalized root-mean-square width (PINRW), is proposed for

NN training in this chapter:

PINRW =
1

R

√√√√ 1

n

n∑
i=1

(Ui − Li)2 (3.3)

Li and Ui and R are the same as in PINAW. Unlike PINAW presents the normalized average

width of PIs, the PINRW is the normalized root-mean-square width of PIs. PINAW and PINRW
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correspond to the 1-norm and 2-norm of the width of PIs. The format of PINAW is similar to

MAPE for point forecasting, and it gives equal weights to all widths of PIs. In contrast, the

new index PINRW is functionally similar to MSE, and magnifies wider intervals. In practice,

experiment results show that PINRW trends to obtain better results than PINAW, just as MSE is

a much better cost function for training than MAPE. Next in this chapter PINRW is used for NN

training and PINAW for testing.

3.2.3 Comprehensive Evaluation of PIs

Larger PICP and narrower PINRW are essential properties of higher quality PIs. These properties

are conflicting, as requesting a greater PICP will always result in wider PINRW, and narrowing

PINRW may lead to an unsatisfactorily low PICP. From the optimization perspective, this is a

two-objective problem. For the purpose of simplification and comprehensive comparisons for

different PIs, the primary multi-objective is transformed into a single-objective one using cost

function.

One successful PI-based cost function is developed in [98], which has a comprehensive

balance between both the PICP and PINAW. Here the PINAW is substituted by PINRW in the

training process. This coverage width-based criterion (CWC) cost function is defined as:

CWC = PINRW (1 + γ(PICP )e−η(PICP−µ)) (3.4)

where γ(PICP ) = 1 for training. For test samples, γ(PICP ) is a step function which entirely

depends on PICP:

γ(PICP ) =


0, P ICP ≥ µ;

1, P ICP < µ.

(3.5)

η and µ are two constant hyper-parameters that determine the penalty term in case of unsatisfying

the required condition. µ is the nominal confidence level associated with PIs and can be set to

(1 − α). η exponentially magnifies the difference between the PICP and µ. It is always set to a

large value to give a heavy penalty of violation of PICP to the given µ.
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At the beginning of the training process, PICP is always very low, the cost function CWC

gives an extremely heavy penalty of unsatisfying the assigned µ. Due to γ(PICP )e−η(PICP−µ)

is a decreasing function of (PICP − µ), the penalty term exponentially decreases along with

the increase of PICP. When the PICP reaches around µ, there is a balance between the PINRW

and PICP. CWC provides a comprehensive evaluation of both evaluation indices and tries to find

a trade off between informativeness and validity of PIs. This conservative approach for PICP

leaves a slack for the test samples [43].

While γ(PICP ) is a step function for testing samples. This is because, as mentioned in

Subsection 2.1, PICP determines the validity of PIs. Once the PICP is no less than the nomi-

nal confidence level ((1-α)%), these PIs are considered as equally valid. Then the comparison

between the two CWCs reasonably pays more attention to the narrower width (PINAW). When

evaluating PIs for testing, γ(PICP ) = 0 in the step function (5) gives equal measurements of

PICP if it is no less than assigned µ; otherwise the corresponding penalty will be accounted by

CWC through setting γ(PICP ) = 1.

3.3 PSO-based LUBE Method

The proposed PI construction method is called the PSO-based LUBE method. The detailed im-

plementation of the proposed method is provided. Determination of some important experimental

parameters such as the optimal NN structure is demonstrated.

3.3.1 LUBE Method

A detailed description of LUBE method [43] has been introduced in Subsection 2.2.2. The basic

concept of LUBE method is to adopt a NN with two outputs to directly generate the upper and

lower bounds of PIs. Traditional methods for construction of PIs attempt to estimate the mean

and variance of the target datasets. They construct PIs in two steps, first do point forecasts,

second the mean and variance values of point forecast errors are applied for PI construction. In
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contrast, the LUBE method directly generates the upper and lower bounds of PIs in one step.

Then PI construction is as simple as point forecasting. Interesting readers can find more about

LUBE method in Subsection 2.2.2.

3.3.2 Optimal NN Structure

Quality of PI is sensitive to the structure of NNs. The question is how to determine layers

and neurons per layer. Too small or large NNs have a low generalization power and usually

suffer under-fitting or over-fitting problems. The determination of the NN structure is key to the

successful construction of high quality PIs. How to determine this optimality is still an open

question. For the case of point forecasting, several methods such as cascade correlation [99],

hybrid evolutionary neural network construction [100], network pruning [101–103], and k-fold

cross validation [104] have been discussed in literatures.

In this chapter, fully connected feed-forward three-layered NNs are chosen and the number

of neurons in the hidden layer is changed from 1 to 20. A k-fold cross validation method is

applied to determine the optimal NN structure. This method relies on a k-fold cross correlation.

To keep the training and test set independent, the k-fold cross validation is implemented on the

training set. The whole training set is divided equally into k complementary folds, out of which,

usually k-1 are used for training the candidate NNs, and the remaining fold is used for validation

[104]. To avoid biased sampling, each structure of NN is trained and validated for k times using

k different sub-training and validation datasets. A 5-fold cross validation is implemented here.

Traditionally error-based measures such as MAPE and MSE are used for selecting the optimal

structure of NNs. The focus of this chapter is on construction of high quality PIs. Therefore, it

is more reasonable to determine the optimal structure of NNs directly using PI-based evaluation

indices, such as PICP, PINAW and CWC. Determination of the optimal NN structure needs to

balance between the network complexity, generalization and learning capacity of NNs.
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3.3.3 Implementation of the Proposed PSO-Based LUBE Method

The flow chart of the proposed PSO-based LUBE method is shown in Fig. 3.1.

Randomly split dataset into training set (Dtraining), test set (Dtest) 

and Normalization

Initialization of NN and PSO parameters

Start

Velocity and Position Update

Mutation Operator

PIs Construction and Evaluation for training set

Update
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CWCpbest?

Update

pbest
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CWCpbest < 

CWCgbest?

Training 

Termination?

Construct PIs for test set and Evaluation

YES
NO

End

YES

Repeated 5 times?

YES

NO

NO

NO

K-fold cross validation on Dtraining to determine the optimal 

structure of NN

Figure 3.1: PSO-based LUBE method for construction and evaluation of PIs
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3.3.3.1 Data Splitting

In each case study, the dataset is randomly split into training set and test set. 70% of the whole

dataset is used for training and 30% for testing. After splitting, the training dataset is normalized

to [-1, 1], and the same settings are applied to test set for normalization.

3.3.3.2 Determination of the Optimal NN Structure

The training set (Dtraining) is further split into sub-training sets and validation sets using the

5-fold cross validation method. Median value of CWC is used to determine the optimal structure

of NNs.

3.3.3.3 Initialization

This consists of NNs and PSO parameter initialization. NN weights initialization is very impor-

tant for this algorithm. A bad initialization may never converge to a good result. After inves-

tigation [105] and experiments of several methods such as zero symmetric and nonsymmetric

random initialization, fixed initial weights and Nguyen-Widrow (NW) method, the results show

that the worst performance is zero nonsymmetric random initialization. The reason may be that

the input datasets are normalized to [-1, 1] which is symmetric. On the other hand, NW method

always obtains best results and is more stable. NW method chooses initial weights in order to

distribute the active region of each neuron in the layer approximately evenly across the layer’s

input space [106]. Thus NW method is applied in this algorithm for NN initialization.

PSO parameter initialization includes particle position and velocity initialization. Since

particle position is coded in the NN weights, so position initialization has been completed in NN

initialization. Particle velocity is randomly initialized with zero symmetric numbers.
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3.3.3.4 Velocity and Position Update

Velocity and position update are two important operations in PSO algorithm. The searching

information of personal and global best particle is conveyed by the velocity and position update.

As mentioned in the relevant literatures [107,108], the classic formulas for velocity and position

update are shown respectively,

vn(t+ 1) = Wvn(t) + C1 rand()(pbest,n − xn(t))

+ C2 rand()(gbest,n − xn(t)) (3.6)

xn(t+ 1) = xn(t) + vn(t+ 1) (3.7)

where vn is the particle velocity in the nth dimension, rand() is a random number between 0 and

1, W is a scaling factor, and C1 and C2 are scaling factors that determine the relative “pull” of

pbest and gbest [109]. Also the limitations of the velocity (Vmax) and position (Xmax) are set in

update. If the absolute value of velocity is greater than Vmax, then the velocity is constrained in

Vmax. This is the same for position update.

3.3.3.5 Mutation Operator

Mutation operator has been successfully applied to genetic algorithm (GA). Cross-over and mu-

tation are two main operators in GA. Some studies also introduce mutation operator into PSO

and obtain better results [110]. In this chapter, mutation operator is integrated into PSO in or-

der to increase the search capacity and avoid being trapped in local optima. When Gaussian

mutation is added to each connection weight after the position update, the mean of Gaussian

distribution equals to that parameter value and standard deviation is 10% of that parameter value.

The mutation rate exponentially decreases as the optimization continues.
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3.3.3.6 PI Construction and Evaluation for Training Set

After the update of the connection weights, new PIs are constructed using the LUBE method.

The network architecture is similar to the one shown in Fig. 2.4. γ(PICP ) in the cost function

for training is set to 1. After construction of PIs, PI evaluation indices PICP and PINRW are

calculated and further the value of cost function CWC is calculated using Equation (3.4).

3.3.3.7 Update pbest and gbest particle

The criterion for pbest and gbest update is the value of cost function CWC. pbest denotes the

personal best value of each particle, if the new CWC is smaller than CWC of pbest, then pbest for

this particle is substituted by the new corresponding connection weights. Meanwhile, gbest is the

best value of the whole swarm, if the new CWC of pbest is smaller than CWC of gbest, then the

gbest is updated.

3.3.3.8 Training Termination

The training process terminates if the maximum number of iterations is reached or only small

improvement is made in certain number of iterations, otherwise it returns to step 3.3.3.4. The

maximum number of iterations can be different in case studies, which is set according to the

decreasing and converging process of CWC. Usually the PSO-based LUBE method is converged.

3.3.3.9 Test and Evaluation

After training the gbest value is used to construct the PIs for test samples. As mentioned in the

second section, for test samples, PINAW is chosen instead of PINRW and γ(PICP ) is a step

function defined in Equation (3.5). The evaluation indices PICP, PINAW and CWC are measured

and recorded. The whole process is repeated for five times.
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3.4 Case Studies

Six case studies are used to examine performance of the PSO-based LUBE method. The datasets

and methodology used for six case studies are introduced.

3.4.1 Datasets

The first two cases are synthetic with heterogeneous and homogenous noise. The other four

cases are from real world systems. Table 3.1 summarizes these case studies. These cases are as

follows:

Table 3.1: Datasets for Case Studies

Case study Target Samples Attributes

1 1-D function with heterogeneous noise (Ding10) 500 1

2 5-D function with homogenous noise (HAS) 300 5

3 Dry bulb temperature (DBT) 867 3

4 Plasma beta-carotene (PBC) 315 12

5 T70 272 2

6 T90 272 2

1) Ding10 is a one-dimensional synthetic mathematical function, f(x) = x2 + sin(x) + 2 + ε,

where x is randomly generated in [−10, 10], and ε is the added noise with a heterogeneous

distribution.

2) HAS is a five-dimensional synthetic mathematical function, f(x1, x2, x3, x4, x5) = 0.0647(12+

3x1 − 3.5x22 + 7.2x33)(1 + cos(4πx4))(1 + 0.8 sin(3πx5)). Unlike case study 1, the added

noise is normally distributed with a constant variance.

3) Case study 3, dry bulb temperature (DBT) comes from an industrial dryer sampled every ten

seconds. Three inputs are used for estimating the output of dry bulb temperature.

4) Data in case study 4 comes from a medical study, which contains 315 observations on 14
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variables. This study tries to investigate the relationship between personal characteristics,

dietary factors, and plasma beta-carotene.

5) T70 comes from a real baggage handling system, which is frequently affected by probabilistic

events. The target is to forecast the travel time for 70% of each flight bags (T70).

6) T90 is similar to T70. It represents the travel time for 90% of each flight bags (T90). The

level of uncertainty for T90 is higher than T70.

3.4.2 Methodology Used for Case Studies

Two synthetic and four real-world case studies can stand for different types of datasets and vali-

date the PSO-based LUBE method. In each case study, a 5-fold cross validation method is imple-

mented to determine the optimal structure of NNs. The implementation is very similar to Figure

2. However, there are two small differences. The first difference is the data splitting. It is the

training set that is split into five folds using the cross validation method. The second difference

is that the NN structure is fixed for each run, and Nh is changed from 1 to 20 (1 ≤ Nh ≤ 20).

Each candidate NN structure is trained and validated 5 times using 5 different sub-training and

validation datasets, the median value of CWC is chosen to determine the optimal NN structure.

Case study 3 of DBT is taken as an example to illustrate the 5-fold cross validation method.

Fig. 3.2 shows the median value of CWCs in percentage terms corresponding to the number of

neurons in the hidden layer (Nh). As shown in Fig. 3.2 for case study 3, Nh = 4, 5, 16 are the

best three options. NNs with Nh = 4 and Nh = 5 have the top two smallest median value of

CWCs. NN withNh = 16 is obviously more complex and has more parameters, which is difficult

for training. Median CWC of Nh = 4 is also smaller than median CWC of Nh = 5. Balancing

between the network complexity, generalization and regression capacity of NNs, Nh = 4 is

chosen as the optimal NN structure.

After the determination of the optimal NN structure, the LUBE method is used to construct

PIs and PSO is applied to minimize the cost function through optimizing the connection weights
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Figure 3.2: Median CWC vs. NN structure for DBT

of NNs. When the maximum number of iterations is reached, the training process terminates.

The obtained gbest is then used to construct the PIs and PICP, PINAW, CWC are used to evaluate

the quality of PIs for test samples.

Table 3.2: Parameters for PSO and CWC

Parameter Numerical value

PSO

C1 1.22

C2 1.49

Wmax 0.9

Wmin 0.7

CWC

α 0.1

µ 0.90

η 80

Parameters of PSO can change for different case studies in order to control the conver-

gence speed and the searching process. The typical parameter sets of PSO and the CWC cost

function are shown in Table 3.2. Wmax and Wmin are the maximum and minimum value of the
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inertia weight W for previous velocity, which linearly decreases and plays an important role in

controlling the PSO convergence.

3.5 Experimental Results and Discussions

For construction of NN-based PIs, representation of results consists of mainly three parts, the

training process, test results and discussions on computation time. As shown in Fig. 3.3, the

training process shows the convergence behavior of the algorithm. Through training, the value

of cost function becomes smaller and smaller. The test results are based on the constructed PIs

for test samples. Through testing, the performance of the trained NN is validated. In this section,

the training process, the test results and discussions on computation time are presented.
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Figure 3.3: CWC of the gbest particle in each generation of the PSO algorithm.
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3.5.1 Training Process

In order to clearly present the result of the six case studies, the training process for minimizing

CWC cost function is illustrated in Fig. 3.3. The figure shows the CWC of the gbest particle in

each generation of the PSO algorithm. As can be seen from the figure, the CWC value of the gbest

particle for each case study converges to a good result. CWC decreases rapidly at the beginning

of the minimization process. As the optimization proceeds, CWC gradually plateaus and takes

its optimal value. For some case studies, such as case study 2, 3 and 4, CWC drops sharply at the

beginning and after about 100 iterations it decreases slowly until the end. But for case study 1,

5 and 6, not only at the beginning a sharp drop occurs, but also a significant drop happens at the

middle. For each case study, the algorithm converges and obtains a good result, which indicates

the strong searching capacity of PSO combined with the mutation operator.

3.5.2 Test Results

Fig. 3.4 shows the constructed PIs for test samples of six case studies. For better visualization,

only PIs for the first sixty samples are shown. For each case study the constructed PIs cover the

targets in a great percentage, which implies that the PICP indices for the test samples are very

satisfactory. For all case studies we have PICP >= 90%. This clearly indicates that the cost

function CWC and PSO training algorithm can construct high quality PIs. On the other hand,

PINAWs vary from one case study to another. They can be very narrow, such as the PINAWs

in case study 1, 4 and 5; but PINAWs in case study 2 and 3 are much wider. This indicates

that under certain PICP, the widths for PINAWs are determined by the level of uncertainty of

the datasets. Higher level of uncertainty results in wider PINAW. In contrast, a lower level of

uncertainty leads to a smaller PINAW. Thus the PSO-based LUBE method can generate high

quality PIs for different types of datasets.

In order to validate the stability of the algorithm, and present quantitative and convincing

results, each case study is repeated for 5 times. The median values of PICP, PINAW, CWC
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Figure 3.4: The constructed PIs of the 6 case studies.

instead of the best ones are displayed in Table 3.3 for six case studies. Although γ(PICP ) = 0

for test samples, for some case studies such as case study 1, 2 and 4, PINAW is not equal to

CWC. This is due to the fact that shown values are the median of CWC.

It can be seen from the table for all case studies, the assigned confidence level (90%) can

be satisfied. The median values of PICP are all greater than 90%, which means the PSO-based

LUBE method can generate PIs with a high PICP. Meanwhile, the median PINAWs are also

compared with the delta [41] and LUBE [43] method respectively. For the parameters of cost

function CWC, γ(PICP ) (a step function) and µ are the same. The penalty term η in this

chapter is 80 which is larger than 50 in [41, 43]. Although heavier penalties are applied, the

obtained CWCs for all case studies are significantly smaller than the results of the same case

studies reported in [41, 43]. In spite of the median PINAW in case study 1 of delta method [41]

is smaller than the median PINAW of our proposed method, but its PICP is unsatisfied which
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Table 3.3: PI Evaluation Indices and Construction Time for Test Samples

Comparisons Case studies PICP(%) PINAW(%) CWC(%) Time(ms)

The

Proposed

Method

#1-Ding10 92.67 11.49 15.05 0.0693

#2-HAS 91.11 61.81 63.46 0.0276

#3-DBT 91.15 49.24 49.24 0.0895

#4-PBC 93.62 27.30 27.49 0.0503

#5-T70 91.46 37.69 37.69 0.0778

#6-T90 90.24 38.77 38.77 0.0508

LUBE [43]

and

Delta [41]

Method

#1-Ding10 [41] 89.50 6.32 20.49 1460

#2-HAS [43] 90.00 72.22 89.27 3

#3-DBT [43] 94.62 69.39 69.39 4

#4-PBC [43] 91.15 33.91 33.91 3

#5-T70 [41] 91.67 46.44 64.01 980

#6-T90 [43] 91.46 41.51 41.51 3

is less than 90%. The proposed method provides an obvious better CWC than delta method.

The percentage improvements (100% ∗ (compared result− new result) / compared result)

of CWCs are 26.55%, 28.91%, 29.04%, 18.93%, 41.12% and 6.60% respectively for six case

studies.

Therefore, through minimization of cost function for each case study, the PSO-based LUBE

method can construct high quality PIs with a narrower width and a satisfactory coverage proba-

bility.

3.5.3 Discussion on Computation Time

Computation time is one of the key characteristics for algorithm design. For construction of NN-

based PIs, computation time consists of two parts: the off-line training and on-line computation.

The time for off-line is regarded as less important because we will have enough time to train a

NN properly. The NN can be trained and parameters can be adjusted for enough times, then the

one with the best results will be used in real practice. But the on-line computation time becomes
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crucial if it is used for on-line applications. For example, case study 6, T90, comes from a real

baggage handling system, thousands of flight bags at peak hours need to be scheduled in a short

time, algorithms with long computation time will be discarded.

In order to evaluate the computation time of the proposed PSO-based LUBE method, Table

3.3 also summarizes average PI construction time for test samples. The hardware configuration

of the simulation computer is as follows: Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz, and

4 GB of RAM. Under this hardware configuration, for all case studies, PI construction time of

test samples is less than 0.1ms. This is much faster than both the results reported in [41, 43].

As can be seen from Table 3.3, traditional method such as delta method is very time consuming.

This is because Jacobin matrix needs to be calculated and updated in each iteration. According

to the same case studies reported in [43], PI construction requirement of traditional methods is

at least 10 times more than LUBE methods. Compared with traditional methods, LUBE method

is straightforward and fast to construct PIs. The reason for faster construction of PIs than [43]

is that matrix operation is applied to our proposed method, all the PIs for test samples can be

obtained at one time.

The above result comparisons strongly indicate that the PSO-based LUBE method can con-

struct higher quality PIs in a very short time and can be more widely used in real-world applica-

tions.

3.6 Conclusions

A recently introduced PI construction method named LUBE method is applied and extended in

this chapter. To quantitatively evaluate the quality of PIs, PI evaluation indices for both coverage

probability and width are introduced. Specially, a new width evaluation index PINRW, which

is suitable for NN training, is proposed. Compared with PINAW which gives equal weights

to all intervals, PINRW magnifies the wider PIs. Case study results show that the new index

can obtain averagely narrower PIs with a satisfactory coverage probability. The cost function
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CWC is developed to comprehensively balance between the PICP and PINRW. PSO associated

with mutation operator is integrated into the LUBE method called PSO-based LUBE method.

The proposed method is then applied to construct PIs and minimize the cost function through

optimizing the connection weights of NNs.

Six case studies, two synthetic and four real-world ones, are implemented to validate the

PSO-based LUBE optimization method. The 5-fold cross validation method is used to determine

the optimal structure of NNs. Demonstrated results show that not only the quality of PIs has con-

siderable improvements, but also the computation time is much shorter than traditional methods.

What’s more, the proposed method can construct PIs in an easier and faster manner without any

assumption about the data distribution, it can be more generally and widely applicable in prac-

tice. The minimization process of CWC of the gbest particle in each generation clearly indicates

that the cost function can always converge to a sufficient small CWC. With the minimization

of CWC, both the high PICP and narrow PINAW can be reached, which has constructed high

quality PIs. In conclusion, the PSO-based LUBE method is very efficient in constructing high

quality PIs in a short time.
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Chapter 4

Uncertainty Handling Using Neural

Network-Based Prediction Intervals for

Electrical Load and Wind Power

Forecasting

4.1 Introduction

With power systems growth and the penetration of renewable energy sources, the system com-

plexity and uncertainty levels have significantly increased. The load and the renewable energy

forecasting processes have become even more complex, and more accurate forecasts are required

for the management of power systems. Long-term forecasts of the peak electricity demand are

needed for capacity planning and maintenance scheduling [111]. Medium-term forecasts are

used for maintenance planning, fuel scheduling, and hydro reservoir management [112]. Short-

term load forecasting (STLF) is a fundamental and vital factor in day-to-day operations, unit

commitment (UC) and scheduling functions, evaluation of net interchange, and system security
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analysis [112]. The STLF and the renewable energy forecasting are required for the control and

scheduling of power systems and affect the system reliability and fuel consumptions.

Forecasting models that are popularly applied to electrical load and the renewable en-

ergy forecasting can be classified into three categories. 1) statistical models, such as aurore-

gressive (AR), AR integrated moving average (ARIMA) and exponential smoothing (ES) mod-

els [111,113,114]; 2) artificial intelligence models, such as neural networks (NNs) [90,115–118],

fuzzy logic systems (FLSs) [119–121], expert systems etc.; and 3) hybrid models as neuro-fuzzy

systems [122, 123], to name a few. In [111], different forecasting methods including ARIMA

modeling, periodic AR modeling, double seasonality of Holt-Winters ES, and principal compo-

nent analysis are considered for STLF. Electricity demands from 10 European countries are used

as case studies to compare these methods. In [114] two time series models are proposed, namely,

the multiplicative decomposition model and the seasonal ARIMA model. These two models are

implemented and compared for STLF using Singapore datasets. Hippert et al. in [90] provide a

comprehensive review of STLF using NN models. Different forecasting strategies, the iterative,

multi-model, and single-model multivariate forecasting are investigated. Issues, such as NN de-

signing, implementation and validation are also covered. In [116], three techniques called error

output, resampling and multilinear regression are applied to STLF for constructing confidence

intervals using NN models. In [118], the second-generation wavelets are combined with recur-

rent NNs to improve the accuracy of solar radiation prediction. In [4], a hybrid NN and enhanced

PSO are used as the forecast engine for wind power forecast. Focusing on feature selection, an

irrelevancy filter and a redundancy filter are applied to select the set of candidate inputs of NN.

Like NNs, FLSs are also universal approximators. Recently, FLSs have a quick develop-

ment and are popularly applied to forecasting applications [123]. In [122], the adaptive neuro-

fuzzy inference system (ANFIS) model is applied for very short-term wind forecasting using

Tasmania datasets. In [119], an interval type-2 FLS (IT2 FLS) is applied to STLF to handle

uncertainties. The output of an IT2 FLS is an interval (the type reduced set composed of the
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left and right end points), but is not a prediction interval (PI). A PI has a prescribed probability

associated with it called the confidence level. The output obtained from an IT2 FLS does not

have this feature and is a simple interval. An IT2 FLS model has built-in features (e.g., mem-

bership functions with uncertain mean and variance) for handling uncertainties and minimizing

their effects on the quality of output. However, it still lacks to assign a confidence level to its

type reduced set (interval).

Electrical power systems are evolving from today’s centralized bulk systems to more decen-

tralized systems [1]. Renewable energy sources, such as the wind and solar power generations,

with their advantages of being cheaper, more flexible, and environmentally friendly, become the

key to a sustainable energy supply infrastructure. But penetrations of these increase the level of

uncertainty in power systems. More advanced methods for accurate load and wind power fore-

casts under various uncertainties become urgent for smart grid applications. In [2], wind gener-

ation is considered as a negative load. This further increases the complexity of load forecasting.

Most of the applications on STLF and wind power forecasting are point forecasts. However,

point forecasts cannot properly handle the uncertainties associated with datasets [42, 56].

In this chapter, STLF and wind power forecasting are implemented using NN-based PIs.

PIs are excellent tools for quantification of uncertainties associated with point forecasts and pre-

dictions [5,55]. By definition, a PI is an estimate of an interval in which a future observation will

fall, with a certain probability ((1−α)%), given what has already been observed [19]. Typically,

a PI consists of a lower and an upper bound, and the confidence level that the targets will lie

within the two bounds. For point forecasts, only one predicted point is provided for one target

value. Point forecasts provide only the prediction error but tell nothing about the probability for

correct predictions. PIs not only provide a range in which targets are highly likely to be covered,

but also have an indication of their accuracy called the coverage probability.

Delta, Bayesian and bootstrap are three traditional methods commonly used for construc-

tion of NN-based PIs [42, 124]. In spite of advantages of PIs, applications of these methods are
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still less popular than NN point forecasts. Implementation difficulties, special assumptions about

the data distribution, and massive computational requirements [50,54,57] hinder widespread ap-

plications of these methods for decision-making. To overcome these problems, a new method

called lower upper bound estimation (LUBE) method for PI construction was proposed by Khos-

ravi et al in [43]. The LUBE method makes no assumption about data distribution, and avoids

calculation of matrices such as the Jacobian and Hessian matrix. As we know, wind power is

intermittent and very volatile in nature. Thus assumptions about the data distributions seem

problematic and in doubt. That is where we can use the non-parametric LUBE method. Compar-

ative results reported in [43] reveal that the LUBE method is simpler, faster, and more reliable

than traditional methods.

From the decision-making point of view, larger coverage probability and narrower width are

always expected. But these two aspects of PIs are conflicting with each other. This optimization

problem can be formulated and solved in different ways. In this chapter, after introducing the

evaluation indices of PIs, three problem formulation methods are summarized and developed.

Obviously, the primary problem is a multi-objective optimization problem for larger coverage

probability and narrower width. Previously, the primary problem has been translated into a single

objective one using cost functions [5, 42, 55, 56, 98]. In this chapter, a new problem formulation

method is proposed. The nominal coverage probability is considered as a hard constraint. Our

only objective is to minimize the width of PIs. The new constrained single-objective problem

formulation is closer to the primary problem and has fewer parameters than cost functions.

To solve the new constrained single-objective problem, traditional derivative-based algo-

rithms, such as gradient descent methods, cannot be applied. These methods also run the risk of

being trapped into local optima. Therefore, more intelligent and powerful optimization methods

are needed. To optimize NN parameters, PSO [4, 125], genetic algorithm (GA) [126], and sim-

plified swarm optimization [127] have been introduced in literatures. In this chapter, PSO which

is powerful for parameter optimization is employed to solve the problem. The mutation operator,
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which helps achieve diversity in GA, is also integrated into PSO to improve the exploratory ca-

pabilities and help jump out of local optima. The objective of using PSO has mainly two aspects.

For one thing, PSO is used to solve the newly formulated constrained single-objective problem.

That is, to handle the constraints and optimize the objective. For another thing, PSO with muta-

tion operator is used as the training algorithm through optimizing the connection weights of NN

models. Datasets from electrical load demands and wind power generations are used to validate

this method. For the purpose of comparisons, ARIMA, ES and naive models are also built using

the same datasets. Comparative results show that the PSO-based LUBE method can construct

higher quality PIs for load and wind power forecasting applications.

The main contributions of this chapter are as follows: 1) A new problem formulation

method for PI construction is proposed. The primary multi-objective problem is formulated and

solved as a constrained single-objective problem. 2) A new PI width evaluation index, which is

suitable for training NN models, is proposed. 3) PSO associated with mutation operator is firstly

integrated into the LUBE method called the PSO-based LUBE method. This PSO associated

with mutation operator has a very strong searching capability. 4) Different types of prediction

tasks including electrical load and wind power generation forecasts are implemented and com-

pared together. 5) The obtained results from three case studies indicate that the quality of PIs has

been significantly improved compared with ARIMA, ES and naive models. 6) Implementation

of the proposed method is straightforward and much easier; the PI construction time is also much

shorter than traditional methods.

The rest of this chapter is organized as follows. Section 4.2 introduces evaluation indices of

PIs. Three problem formulation methods are provided in Section 4.3. The proposed PSO-based

LUBE method is described in Section 4.4. Case studies, results and discussions are implemented

in Section 4.5 and Section 4.6 separately. Finally, Section 4.7 concludes this chapter and provides

guidelines for future work.
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4.2 Evaluation Indices of PIs

In literature, various methods have been applied to evaluate the performance of point forecasts.

Out of these methods, the most popular ones are error-based measures, such as mean square

errors (MSE) and mean absolute percentage errors (MAPE). Likewise, quality of PIs needs to

be quantitatively evaluated. In this section, evaluation indices for both the coverage probability

and width of PIs are firstly introduced. Specially a new index for width evaluation is proposed.

The new index is suitable for training NN models. Finally, a cost function for the comprehensive

evaluation of PIs is developed.

4.2.1 PI Coverage Probability

Usually the coverage probability (or confidence level) is considered as the key feature of PIs. PI

coverage probability (PICP) indicates in which probability target values will be covered by the

upper and lower bounds. A larger PICP means more targets lie within the constructed PIs and

vice versa. PICP is defined as [56]:

PICP =
1

N

N∑
i=1

εi (4.1)

where, N is the number of samples and εi is a boolean variable which indicates the coverage

behavior of PIs. If the target value yi is covered between the lower bound Li and upper bound

Ui, εi = 1; otherwise εi = 0. Mathematically, εi is defined as follows:

εi =


1, if yi ∈ [Li, Ui];

0, if yi /∈ [Li, Ui].

(4.2)

To have valid PIs, PICP should be no less than the nominal confidence level of PIs. Other-

wise, PIs are invalid and should be discarded. The ideal case for PICP is PICP = 100%, which

means all targets are covered by PIs.
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4.2.2 PI Normalized Average Width and Normalized Root-Mean-Square Width

Quality of PIs is often evaluated by PICP and discussion about the width of PIs is either ignored

or vaguely presented [41]. If the upper and lower bounds of PIs are chosen as extreme values

of the targets (maximum and minimum values), a high PICP (even 100% PICP) can be easily

achieved. The argument here is that too wide PIs convey little information and are of no use

for decision-making. Width of PIs determines their informativeness. In literature, a quantitative

measure of the width is defined as PI normalized average width (PINAW) [98]:

PINAW =
1

NR

N∑
i=1

(Ui − Li) (4.3)

where R is the range of the underlying targets (maximum minus minimum). The purpose of

using R is to normalize the PI average width in percentage. In this way, PINAW can be used for

objective comparisons, regardless of techniques used for their construction or the magnitudes of

the underlying targets.

The format of PINAW is similar to the MAPE used for point forecasts. It gives equal

weights to each width of PIs. It is MSE that is frequently used to train NN models instead

of MAPE. This is due to the fact that MSE magnifies bigger forecasting errors and results in

better training performances. Inspired by this, a new width evaluation index for PIs, called PI

normalized root-mean-square width (PINRW), is developed for training in this chapter:

PINRW =
1

R

√√√√ 1

N

N∑
i=1

(Ui − Li)2 (4.4)

The new index PINRW is functionally similar to MSE, and magnifies wider intervals. In

practice, experiment results show that PINRW trends to obtain higher quality PIs than PINAW,

just as MSE is a much better cost function for training than MAPE. Next in this chapter, PINRW

is used for training NN models and PINAW for testing.
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4.2.3 Coverage Width-Based Criterion

PICP and PINAW (or PINRW) assess only one aspect of PIs individually. Focusing on only one

side of PIs may lead to misleading results. In practice, a measure is required to simultaneously

address both aspects and comprehensively evaluate the overall quality of PIs. An interesting

index, called coverage width-based criterion (CWC), is proposed in [98]:

CWC = PINAW (1 + γ(PICP )e−η(PICP−µ)) (4.5)

where γ(PICP ) = 1 for training. µ and η are two controlling parameters. The nominal confi-

dence level ((1 − α)%) can be used as a guidance for choosing µ. It stands for the preassigned

PICP that must be satisfied. η is a hyper-parameter that magnifies the difference between the

PICP and µ. If the preassigned PICP is not satisfied, CWC exponentially penalizes on this term.

When the PICP reaches around µ, there is a balance between the PINRW (for training) and PICP.

CWC provides a comprehensive assessment for both evaluation indices. It tries to find a tradeoff

between informativeness (PINAW & PINRW) and validity (PICP) of PIs.

If the preassigned PICP is satisfied, the comparison between the two CWCs reasonably

pays more attention to the narrower PINAW. Thus for test samples, γ(PICP ) is a step function

whose value is determined upon the satisfaction of PICP:

γ(PICP ) =


0, P ICP ≥ µ;

1, P ICP < µ.

(4.6)

When evaluating test PIs, if PICP is no less than the assigned µ, γ(PICP ) = 0 gives equal mea-

surements of PICP. Otherwise, γ(PICP ) = 1 and the corresponding penalty will be accounted

by CWC.
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4.2.4 Winkler SCORE

Winkler in [128] proposed a scoring rule for interval estimation. This score S(α)
i rewards narrow

PI as well as provides the penalty term if the target value yi is not covered by the constructed PI.

S
(α)
i =



− 2αδ
(α)
i − 4(L

(α)
i − yi), yi < L

(α)
i ;

− 2αδ
(α)
i , yi ∈ I(α)i ;

− 2αδ
(α)
i − 4(yi − U (α)

i ), yi > U
(α)
i .

(4.7)

where δ(α)i is the size of the interval forecast I(α)i :

δ
(α)
i = U

(α)
i − L(α)

i . (4.8)

Then, the average score is derived to address the overall performance:

S
(α)
i =

1

m

m∑
i=1

S
(α)
i . (4.9)

A detailed comparison between Winkler score and CWC for the comprehensive evaluation

of PIs can be found from one of our publications in [129]. Both the advantages and disadvantages

of CWC and SCORE are discussed and compared together for uncertainty handling of electrical

load forecasting applications [129]. In the following of this chapter, CWC is chosen as the

comprehensive evaluation index of PIs.

4.3 Problem Formulation for Construction of NN-Based PIs

Three different problem formulations are summarized and compared together. They are the

primary multi-objective problem formulation, the single-objective formulation and constrained

single-objective formulation.

4.3.1 Primary Problem Formulation

From the optimization point of view, higher PICP and narrower PINAW are two objectives for

high quality PIs. Thus the primary problem can be modeled as a multi-objective problem. How-

ever, these objectives are conflicting with each other as improving one objective will decrease
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another. If it is solved by some multi-objective methods, the nondominated solutions will appear

on the Pareto front.

Objectives : Finding optimal weights ω∗ to : (4.10)

Maximize : PICP (ω);

Minimize : PINAW (ω).

Constraints : PINAW (ω) > 0; (4.11)

0 ≤ PICP (ω) ≤ 100%.

4.3.2 Single-Objective Problem Formulation

In our previous work [42, 55, 56, 98], if the nominal PICP (µ) was preassigned, the primary

problem was transformed into a single-objective problem. This is realized through using CWC

as a cost function defined in Equation (3.4).

Objective : Finding optimal weights ω∗ to : (4.12)

Minimize : CWC(ω).

CWC cost function provides a comprehensive evaluation on both the PICP and PINAW (or

PINRW for training). At the beginning of the training process, PICP is usually very low, and then

CWC gives a heavily exponential penalty on this term. As the training continues, PICP becomes

higher and higher, the penalty for the unsatisfying PICP exponentially decreases. Once PICP is

near the preassigned coverage probability (µ), there is a balance between the validity (PICP) and

the informativeness (PINAW & PINRW) of PIs.

4.3.3 Constrained Single-Objective Problem Formulation

In this chapter, a new problem formulation method is proposed. Since PICP is usually considered

as the fundamental feature and determines the validity of PIs, it is reasonably to be regarded as

the hard constraint. This means, the preassigned PICP must be satisfied for valid PIs. Under this
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hard constraint, the remaining objective is to minimize PINAW. In this way, the primary problem

is successfully represented as a constrained single-objective problem:

Objective : Finding optimal weights ω∗ to : (4.13)

Minimize : PINAW (ω).

Constraints : PINAW (ω) > 0; (4.14)

µ ≤ PICP (ω) ≤ 100%.

where µ is the nominal confidence level which can be set to (1 − α)%. As shown in the model,

this new formulation is a single-objective problem with three constraints. Our only objective is

to minimize the average width of PIs. For the three constraints, out of which, µ ≤ PICP (ω) is

the hard constraint that must be met. If proper controls are given in the process of calculation,

other two constraints can be satisfied automatically.

Compared to the cost function method, there are two obvious advantages of this problem

formulation. It has fewer parameters and is closer to the primary problem. Taking the above

CWC cost function as an example, parameters such as µ, η and γ(PICP ) need to be assigned in

advance. The performance of the cost function is also sensitive to these parameters. They need

to be fine tuned carefully.

To solve the constrained single-objective problem using PSO, the criteria for replacing one

particle ~m with another particle ~n are as follows [108, 130]:

• Particle ~n is feasible and particle ~m is not;

• Both particles are feasible or they have the same satisfaction of constraints, but ~n yields a

better objective function value.

• Both particles are infeasible, but ~n results in the lower sum of constraint violations.
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4.4 PSO-based LUBE Method for STLF

With the new problem formulation, the improved PSO-based LUBE method is applied to STLF

and wind power forecasting. The detailed implementation is introduced below.

4.4.1 LUBE Method

Traditional methods for construction of PIs suffer from various problems. For examples, the

delta method makes assumption on data and residual distributions [41]. In the process of PI

construction, the derivatives also need to be calculated. Jacobian matrix and Hessian matrix

are required by the delta and Bayesian method respectively [41]. This may result in singularity

problems then decrease the reliability of PIs. Calculations for Jacobian matrix and Hessian matrix

also significantly increase the computation time. Thus the complexity of traditional methods

hinders widespread applications of PIs.

A new method called the lower upper bound estimation (LUBE) method was proposed

in [43] to construct NN-based PIs. LUBE method adopts a NN with two outputs to directly con-

struct PIs in one step without any assumption about the data distribution. The two outputs of NN

correspond to the lower and upper bounds of PIs. This design format is similar to point forecasts,

the process of PI construction is easy and straightforward. But the functions are totally differ-

ent. LUBE method constructs PIs in just one step, thus is simpler and faster to be implemented.

Interesting readers can find more about LUBE method in Subsection 2.2.2

4.4.2 Implementation of the PSO-based LUBE Method for STLF

The flow chart of the proposed PSO-based LUBE method for STLF is shown in Fig. 4.1.

4.4.2.1 Data Splitting

The whole dataset is split into three sets: training set, validation set, and test set. The training

set is used to adjust the connection weights of NNs. The validation set is applied to determine
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Split dataset into training set (Dtraining), validation set (Dvalidation)
and test set (Dtest) then Normalization

Initialization of NN and PSO parameters

Start

Velocity and Position Update

Mutation Operator

PI Construction and Evaluation on Dtraining 
and Dvalidation

Update pbest and gbest

Training Termination?

Construct PIs for Dtest and Evaluation

End

YES

5 Time Repeats?

YES

NO

NO

Use the validation set to determine
the optimal structure of NN and other parameters

Perform seasonal differencing and Correlation Analysis

Figure 4.1: PSO-based LUBE method for construction and evaluation of PIs for STLF

the optimal NN structure and other undetermined parameters. The test set will evaluate the final

performance of the algorithm. After splitting, the training and validation datasets are normalized

to [-1, 1], and the same settings are applied to test set for normalization.
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4.4.2.2 First Seasonal Difference and Correlation Analysis

The purpose of differencing is to make a time series stationary. It is particularly effective for

a seasonal time series. Correlation analysis is applied to help choose the inputs of NNs. The

detailed implementation of this part can be found in Section V.

4.4.2.3 Determination of the Optimal NN Structure

For each candidate NN structure, the NN is trained and validated using the training and validation

sets for five times. Median values of PINAWs (with satisfied PICPs ≥ µ) are used to determine

the optimal structure of NNs. Similarly, this method is also applicable to other undetermined

parameters.

4.4.2.4 Initialization

NN weight and PSO parameter initializations become crucial for the proposed algorithm. The

initialization process directly influences the quality of PIs and repeatability of the algorithm.

Several NN weight initialization methods have been investigated [105] and compared in ad-

vance. The performances of fixed initial weights, zero symmetric and nonsymmetric random

initialization and Nguyen-Widrow (NW) method are examined by a list of experiments. Com-

parative results show that zero nonsymmetric random initialization has the worst results. One

possible explanation is that the input datasets are normalized to [-1, 1] which is symmetric. On

the other hand, NW method repeatedly obtains best and stablest results. NW method chooses

initial weights in order to distribute the active region of each neuron in the layer approximately

evenly across the layer’s input space [106]. Thus NW method is chosen in this algorithm for NN

weight initialization.

PSO parameter initialization consists of particle position and velocity initialization. Since

NN connection weights are represented as the position of particles, so position initialization

has been completed in weight initialization. Particle velocity is randomly initialized with zero
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symmetric numbers.

4.4.2.5 Velocity and Position Update

Velocity and position update are the core of the PSO algorithm. The particles will exchange their

“findings” with each other in the update process. In this way, the information will be exchanged

efficiently throughout the whole swarm. The classic formulas for velocity and position update

[108] are shown below:

vn(t+ 1) = Wvn(t) + C1 rand()(pbest,n − xn(t))

+ C2 rand()(gbest,n − xn(t)) (4.15)

xn(t+ 1) = xn(t) + vn(t+ 1) (4.16)

where vn is the particle velocity in the nth dimension, rand() is a random number between 0 and

1, W is a scaling factor, and C1 and C2 are scaling factors that determine the relative “pull” of

pbest and gbest [109]. Besides the two updates, the ranges for velocity and position are limited to

Vmax and Xmax separately.

4.4.2.6 Mutation Operator

Selection, cross-over and mutation are three main operators in GA. Mutation operator, which

helps achieve diversity in GA, is integrated into PSO. This integration strongly enhances the

searching capacity and avoids being trapped into local optima. In flow chart shown in Fig. 4.1,

Gaussian mutation is added to each connection weight after the position update. The mean and

standard deviation of Gaussian distribution are the weight value and 10% of that weight value

respectively. The mutation rate exponentially decreases as the optimization continues.

4.4.2.7 PI Construction and Evaluation for Training

The validation set has been applied to determine the optimal NN structure. In this step, the train-

ing and validation sets are combined together to train the NN. After update of the NN connection
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weights, LUBE method is then applied to construct new PIs. PI assessment indices (PICP and

PINRW) are calculated.

4.4.2.8 Update pbest and gbest particle

pbest is the personal best value of each particle and gbest denotes the best value of the whole

swarm. Compared with the cost function method, the constrained single-objective optimization is

different. When updating the pbest and gbest, the criterion introduced in Section III is applied. The

feasibility and the objective function will be considered together. While only CWC is considered

for cost function method.

4.4.2.9 Training Termination

The training termination criterion can be set as the reach of the maximum number of iterations

or few improvements made in certain number of iterations. Otherwise, the training process con-

tinues and returns to Step 4.4.2.5.

4.4.2.10 Test and Evaluation

Once the training process terminates, the gbest value is chosen to generate PIs for the test set.

PICP and PINAW instead of PINRW are calculated and recorded. For the comprehensive eval-

uation purpose, CWC is also calculated. γ(PICP ) is a step function defined in Equation (4.6)

for testing. The whole process is repeated five times. Results in each run and the median values

are reported.

4.5 Electrical Load and Wind Power Forecasting in DPSs

Three case studies are investigated to validate the improved PSO-based LUBE method. Two

cases are real datasets for electrical load forecasting and one case is for wind power forecasting.
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4.5.1 Datasets

The demand datasets are real electrical load data from Singapore (SG) and New South Wales

(NSW) (Australia). These two different areas stand for two different types of load profiles. Load

pattern of Singapore is obvious more fixed than NSW’s due to the climate and regional reasons.

Singapore has a tropical rainforest climate with no distinctive seasons, uniform temperature and

pressure. Temperatures of this city country usually range from 23 to 32 ◦C (73 to 90 ◦F). On

the other hand, NSW is more influenced by the seasonal factors thus with more complex load

patterns.

The chosen time periods are from Jan, 2007 to Dec, 2011, with 48 load points in each day.

These five-year load datasets are further divided into three sets: training set, validation set and

test set. The periods used for training, validation and testing are the first three years, the fourth

year and fifth year respectively. The typical weekly curves of SG and NSW load, from Monday

to Sunday, are shown in Fig. 4.2. One-week ahead load forecasting using NN-based PIs will be

implemented and compared for both case studies.
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Figure 4.2: Typical weekly load of SG and NSW (22nd to 28th Jan 2007)
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The wind power generation datasets are from Capital Wind Farm (Captl WF). The Captl WF

is located in NSW, around 30 kilometers north east of Canberra, just southeast of Lake George

and north of Bungendore. The wind farm was completed in 2009 and cost around A$220 million.

The wind farm was built as part of the Kurnell Desalination Plant project to offset the power usage

of the desalination plant. The total capacity is 140 MW. The original 5-minute interval datasets

are combined into one-hour interval ones using average values. Some missing points are filled

by the neighborhood values. The whole year of 2010 is chosen, out of which, the first six months

are used for training, the following three months for validation and last three months for testing.

Since one-day (24-hour) ahead wind power generation forecasting is commonly used in the UC

and economic dispatches (EDs), one-day ahead PIs for wind power generation is implemented in

this chapter.

4.5.2 Correlation Analysis

In time series analysis, identification of models usually relies on correlation analysis. For ARIMA

models, ARIMA(p, d, q), the autocorrelation function (ACF) and partial ACF (PACF) are used

to determine the q and p orders. ACF and PACF are useful tools to analyze the correlation be-

tween the forecast values and the historical datasets. Inspired by the successful applications of

ACF and PACF, we apply them to determine the input values of NN that are most related to the

forecast values. However, in time series analysis, only for a stationary time series can make ACF

and PACF more sense. A time series that is seasonal or has varied mean and variance values is

absolutely nonstationary.

Unfortunately, the load datasets are nonstationary because they are seasonal time series with

daily and weekly patterns. Thus ACF and PACF make little sense on the original datasets. How to

remove the seasonality of datasets becomes important for ACF and PACF analysis. Differencing

is a common way to make a time series stationary. Since one-week ahead load forecasting is
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Figure 4.3: ACF and PACF analysis of first seasonal differenced SG load from Year 2007 to 2009

studied in this chapter, first seasonal difference [131] is conducted here:

y(t) = y(t0) − y(t0 − T ) (4.17)

where T is the cycle of a time series, here T is the weekly cycle: T = 48 ∗ 7 = 336. y(t0) and

y(t) are the time series before and after the first seasonal difference. ACF and PACF analysis

of first seasonal differenced SG and NSW load from Year 2007 to 2009 are implemented. The

example of SG is shown in Fig. 4.3.

The implementations of wind power generation PIs are similar to the short-term load fore-

casting as shown in the flow chart of Fig. 4.1. The main difference is that no differencing is

conducted. Wind power is the intermittent and volatile renewable resource. It fluctuates from

time to time, so it has no obvious daily and weekly patterns. Then no seasonal differencing is

conducted on wind power generation forecasts. The PIs are constructed on the original datasets.
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Furthermore, some limitations are set to the upper and lower bounds of Captl WF. The upper

limitation is set to the capacity of 140MW, and the lower limitation is 0.

4.5.3 Inputs to the Neural Network

How to determine the inputs of NN for STLF is still an open question. Previously they were

usually determined based on experience or a priori knowledge about the behavior of the system.

A rather intuitive guess is that, there must be homologous instants in the past to the current

instant, either the same moment yesterday (24 hours ago) or the same instant one week ago, two

weeks ago and so on [132].

In this chapter, the inputs of NN are chosen based on the ACF and PACF analysis, as well

as some empirical guidelines from references [91, 132–134]. The first input of NN for load

forecasting is the day mark. The day mark in each week noted as {1, 2, 3, 4, 5, 6, 7}, then it

is normalized and added to the input set of NN. The day mark can distinguish different daily

load patterns in each week. Lagged (one-week ahead, lags > T ) values of the larger absolute

ACF and PACF are also considered. Based on the trial and error method, there are totally 16

inputs for NN load forecasting models. We also leave half an hour time slack for power system

weekly ahead planning, such as the UC scheduling and EDs. The number of inputs for NN wind

power generation forecasting is chosen as 24 without day marks. In the following of the chapter,

training of NN for load forecasting is based on the datasets after first seasonal difference. When

calculating the assessment indices of PIs, the datasets are transformed back into the original load.

While the PIs of wind power generation forecasting are constructed on the original datasets.

4.6 Results and Discussions

Representations of results for NN-based PIs mainly consist of three parts: the training process,

test results and discussions on quality of PIs. The training process shows the convergence behav-

ior of PICP and PINRW for the gbest particle. It implies how they change through the optimiza-
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tion process. The final performance of the proposed method is examined by test set. Test results

are cast in the form of figures and tables. Finally, the qualities of PIs including the repeatability

and computation time are further discussed.

4.6.1 Determination of NN Structure and Parameters

Fully connected feed-forward NNs with two hidden layers are chosen in three case studies. The

activation functions in the hidden and output layers are tansig and purelin respectively. The

quality of PIs is sensitive to the structure of NNs. Too small NNs have a poor learning capacity

and too large NNs have a low generalization power. They also suffer from under-fitting and over-

fitting problems. How to determine the number of neurons in the two hidden layers becomes

crucial for constructing high quality PIs. In literatures, several methods such as network pruning

[101–103], cascade correlation [99] and hybrid evolutionary NN construction [100] have been

applied to determine this optimality. In our previous work [55], a k-fold cross validation was

applied to address this problem. Because in load and wind power forecasting the time series is in

sequence, the k-fold cross validation cannot be directly implemented here. But the idea is very

similar to cross validation. The number of neurons in the two hidden layers (n1 and n2) vary

from 1 to 10, 1 ≤ n1, n2 ≤ 10. Thus there are totally 10 ∗ 10 = 100 candidate NN structures.

Each candidate NN is trained and validated for 5 times using the training and validation set. Then

the median PINAW of the validation set is used as the criterion for a better structure. If the hard

constraint of µ ≤ PICP (ω) has not been met, then the object of PINAW will be arbitrarily set

to a very big value. Thus this candidate NN structure will be discarded.

Determination of the NN structure needs to balance between the network complexity, gen-

eralization, and learning capacity of NNs. Fig. 4.4 shows the NN structure versus the median

PINAW of the validation set of NSW load. The lowest point in this 3D-plot is chosen as the NN

structure. As shown in Fig. 4.4, the number of neurons in the hidden layers are n1 = 8 and

n2 = 1 for the lowest point. So the chosen NN structure is 16− 8− 1− 2 for NSW load. Due to
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the space limitation, the similar plots for SG load and Captl WF are omitted, the corresponding

NN structure is 16− 5− 1− 2 and 24− 8− 5− 2.
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Figure 4.4: Optimal NN structure of NSW load data

Besides the optimal NN structure, the validation set can also be used to determine other

parameters in the algorithm. Actually the cost function CWC is not necessary needed to solve the

constrained single-objective optimization problem. For the purpose of comprehensive evaluation,

CWC is also applied for testing. Table 4.1 shows the typical parameters of three case studies for

PSO and CWC. Wmax and Wmin are the maximum and minimum value of the inertia weight

W for previous velocity. W plays an important role in controlling the PSO convergence and it

linearly decreases as iterations increase.

The nominal coverage probability µnominal is 90%. When training NNs, the µtrain is set to

91%–93% according to performances of the validation set. Usually µtrain is 1–3% greater than

µnominal. This conservation leaves a slack for the test set. In this way, the nominal coverage

probability will be easily reached for testing.
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Table 4.1: Experiment Parameters in STLF

Parameter Numerical value

PSO

C1 1.22

C2 1.49

Wmax 1

Wmin 0.7

CWC

µnominal 90%

µtrain 91%–93%

η 50

4.6.2 Training Process

Fig. 4.5, 4.6 and 4.7 show the PICP and PINRW of gbest particle in iterations for SG, NSW

load and Captl WF separately. The population size is 80 for SG and NSW load, and 200 for

Captl WF; the numbers of iterations are all set to 2000.
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Figure 4.5: PICP and PINRW of gbest particle during training for SG load data

As shown in Fig. 4.5, 4.6 and 4.7, the training processes for all case studies simply con-

verge. The PICP of gbest particle for load forecasting only has a rapid drop at the beginning.
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Figure 4.6: PICP and PINRW of gbest particle during training for NSW load data
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Figure 4.7: PICP and PINRW of gbest particle during training for Captl WF wind data

After the first few iterations, PICP makes little changes and quickly reaches to the preassigned

coverage probability µtrain. For the gbest PICP of Captl WF, not only a rapid drop happens at

the beginning, but also it has a small perturbation in the middle. This implies the algorithm pays
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much more attention to the hard constraint at first. The particles with satisfied PICP have the

priority to survive and are chosen as the gbest particle. It just meets our design of the problem

formulation. The PINRW of gbest particle decreases sharply at the beginning. This means once

the hard constraint of µtrain is satisfied, the algorithm quickly shifts the emphasis on smaller

objective function of PINRW. As the optimization proceeds, PINRW gradually plateaus. Even

from 100 to 600 iterations, PINRW minimization makes little improvement. But after about 600

iterations, PINRW continues to reduce step by step. Finally PINRW takes its optimal value and

converges to a good solution. This implies the strong searching capacity of PSO combined with

the mutation operator.

4.6.3 Test Results

For unbiased assessments, the whole year of 2011 is used for testing. So there are totally 365 ∗

48 = 17520 test samples for load forecasting. The number of test samples for Captl WF is

92 ∗ 24 = 2208 (last three months of 2010). For better visualization, test result figures for only

one week are shown in Fig. 4.8, 4.9 and 4.10. The numerical results of the whole test set are

shown later in Table 4.2.

As can be seen from Fig. 4.8, 4.9 and 4.10, the constructed PIs cover the real test samples

in a great percentage. The real test samples (blue line) lie within the constructed lower and upper

bounds (pink and red lines) in most cases. For SG and NSW load forecasts, the shapes of the

three lines are very similar to each other. But for Captl WF, the upper bounds and the real test

data have strong fluctuations, which indicate the high uncertainties of wind power. The lower

bounds of Captl WF mostly drop to zeros. That is because in the training and validation sets,

wind power outputs unexpectedly drop to zeros frequently. The percentage of zero values is

30.42% in the whole Captl WF dataset. This is called the intermittence of wind power. In order

to cover the real test data with a high PICP (≥ 90%), the lower bounds have to be set down as

zeros frequently.
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Figure 4.8: SG weekly load and PIs for testing (21-27 Mar. 2011)
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Figure 4.9: NSW weekly load and PIs for testing (21-27 Mar. 2011)

High PI coverages imply that the PICP indices for the test samples are very satisfactory

using the proposed method. In this way, the validity of PIs has been confirmed. On the other

hand, the width of PIs for SG load is different from NSW load. They can be very narrow, as
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Figure 4.10: Captl WF weekly generation and PIs for testing (1-7 Oct. 2010)

the pink and red lines of the lower upper bounds are tight with each other. It is wider for NSW

load. This is because, as mentioned before, load pattern of NSW is more irregular than SG due

to the climate and regional reasons. Moreover, for all SG and NSW loads in Fig. 4.8 and 4.9, PIs

become wider during the daily maximum and minimum load demand periods. These are periods

with the maximum level of uncertainty in operation of the energy system. These uncertainties

are appropriately reflected in the width of PIs.

Furthermore, widths of PIs for Captl WF are much larger than load forecasts. The widths

of PIs are determined by the uncertainty level of the datasets. Under the preassigned PICP, a

lower level of uncertainty results in narrower PIs and vice versa. Thus the PSO-based LUBE

method can construct high quality PIs for datasets under different levels of uncertainty. It can

handle different types of prediction tasks.
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4.6.4 Discussions on Quality of PIs

In order to validate the repeatability of the algorithm, and provide quantitative and convincing

results, each case study is repeated 5 times. Results in each run as well as the median values of

PICP, PINAW and CWC instead of the best ones are displayed in Table 4.2. PI construction time

for test samples is also reported. Based on Table 4.2, we can have the following conclusions:

1) Demonstrated results imply the strong repeatability and stability of the proposed algorithm.

For five time replicates, the results show a high consistency for PICP, PINAW and CWC.

The standard deviations of CWCs for three case studies are 0.1045, 1.3525 and 1.6602. The

obtained results have definitely small variations in different runs.

2) For all runs and case studies, the preassigned PICP (90%) can be satisfied. This means that

the constructed PIs cover the target values with a high probability. It clearly shows that the

hard constraint (µ ≤ PICP (ω)) in the problem formulation is successfully met.

3) The median value of PINAW for NSW load is 23.50%, that is obviously larger than 16.05%

of SG load. The average widths of PIs are different for two case studies. Under certain PICP,

widths of PIs rely on the uncertainty level of the datasets. NSW load has a higher level of

uncertainty thus its PIs are wider than PIs of SG load. What’s more, the widths of PIs for wind

power generation are obviously lager than the load forecasting. Although the forecast horizon

is one-day ahead, PINAWs of PIs are still much larger than one-week ahead load forecasting.

This strongly indicates the high uncertainty of wind power.

4) PI construction time is one of the key characteristics for algorithm design. This is especially

true for on-line applications. Under a hardware configuration of Intel(R) Core(TM)2 Duo

CPU E8500 3.16GHz, and 4 GB of RAM, the average PI construction time for the test set is

12.30ms, 14.56ms and 4.27ms separately. This is very fast and as simple as point forecasts.
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4.6.5 Comparison of Results with Benchmark Models

For unbiased comparisons, ARIMA, ES and naive models are used as three benchmarks for one-

week ahead load and one-day ahead wind power generation PIs using the same datasets. Two

methods, iterative multi-step and direct one-step ARIMA models are tried. For the iterative multi-

step method, a multiplicative seasonal ARIMA model [135] is built. Double seasonal intra-day

and intra-week cycles are considered in this method. The iterative multi-step method works well

on point forecasts. But the widths of PIs increase very quickly with the increasing of time steps.

PINAWs of PIs for one-week ahead are even larger than 100%. These are too large and are of no

use for comparisons.

Multi-step models have the risk of running accumulative errors. Usually, ARIMA models

have a better performance for one-step ahead forecasting. The concept of direct one-step method

is to resample the original half-hour interval datasets into the new one-week interval time series.

One step of the new time series is one week. Thus the one-step ahead forecasting on the new

time series using ARIMA models can directly construct one-week ahead PIs. For example, to

forecast load point y{t}, the chosen time series is:

y{t− LT}, y{t− (L− 1)T}, y{t− (L− 2)T}

, ...... , y{t− 3T}, y{t− 2T}, y{t− T} (4.18)

T = 48∗7 = 336, is the weekly cycle for load forecasting. L is the length of “look-back” weeks.

One year contains 52 weeks, if the “look-back” length is 4 years, then L = 52 ∗ 4 = 208. PI

of y{t} is then constructed based on the resampled time series. For the wind power generation

forecasts, the forecast horizon is one-day ahead, so the resampling cycle in Equation (4.18) is

T = 24 for 24 hours, and the “look-back” length L is nine months (approximately L = 9 ∗ 30 =

270 days).

The above direct one-step method is conducted on the ARIMA, ES and naive models to

construct 90% PIs. The naive model is similar to the persistence model of point forecasts, which
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states that the variable’s future value will be the same as the last one measured. The simulations

of the three benchmark models are implemented in a statistical software named R [136]. The

numerical results of the three models are listed in Table 4.2. As can be seen from the table, the

proposed PSO-based LUBE method outperforms the ARIMA, ES and naive models. The quality

of PIs has been significantly improved. Since CWC has a comprehensive evaluation on both

aspects of PIs, the following discussions on the improvements are mainly focused on CWC. The

percentage improvement is defined as:

Compared result − New result

Compared result
∗ 100% (4.19)

Table 4.3: CWC Percentage Improvements to Benchmark Models

Percentage Improvements ARIMA ES Naive

SG Load
Median 13.99% 14.31% 27.83%

Best 15.06% 15.38% 28.73%

NSW Load
Median 59.99% 62.79% 67.32%

Best 60.15% 62.93% 67.45%

Captl WF
Median 3.98% 7.50% 65.30%

Best 5.31% 8.77% 65.78%

For the three case studies, percentage improvements of the median and best CWCs com-

pared with ARIMA, ES and naive models are listed in Table 4.3. For the NSW load, all three

benchmarks fail to construct valid PIs with satisfied PICPs. Although PINAWs of the first two

models are narrower than the proposed method, their PICPs are all unsatisfied and lower than

the preassigned value of 90%. Thus CWCs put a penalty on the violation of the PICP hard con-

straint. This penalty term is also added to naive model of Captl WF. In all the four methods, the

proposed method obtains the best results, while the naive models have the worst results for three

case studies. Further, the proposed method uses only one NN model for one test set. But then,

the three benchmark models apply multiple forecast models. The number of models is equal to
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the number of test samples.

What is more, the LUBE method outperforms traditional methods on both the quality of PIs

and the computation time. These advantages have been verified in our previous work reported

in [43, 55]. LUBE method can construct PIs with satisfied PICP and narrower PINAW than

traditional methods. On the other hand, PI construction requirement of traditional methods is at

least 10 times more than LUBE methods [43]. Thus the proposed method can construct higher

quality PIs in a shorter time for load and wind power generation forecasting applications.

4.7 Conclusions

STLF and the renewable energy forecasting are of great importance for control and scheduling

of smart grids. The uncertainty of power systems increases due to the penetration of renewable

energy such as wind and solar power. To overcome the deficiencies of point forecasts to han-

dle uncertainty, this chapter implements the short-term load and wind power forecasting using

NN-based PIs. PIs are excellent tools for quantification of uncertainties associated with point

forecasts and predictions. Traditional methods for PI construction suffer from various problems.

A newly proposed method called LUBE method is adopted and further developed to construct

PIs. The primary multi-objective problem is successfully transformed into a constrained single-

objective problem. Advantages of this new problem formulation are closer to the original prob-

lem and having fewer parameters than the cost function. PSO with a strong searching ability

for parameter adjustment is integrated with the mutation operator. With the enhanced search-

ing capacity, PSO is then used to solve the new problem and train the NN models. Correlation

analysis is applied to help choose the inputs of NN models. Comparative results for both load

and wind power generation datasets show that not only the high PICP and narrow PINAW are

obtained, but also the PI construction time remains short. Quality of PIs is significantly improved

compared with ARIMA, ES and naive models. In conclusion, the proposed PSO-based LUBE

method constructs higher quality PIs for different types of prediction tasks in a short time.
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Chapter 5

Incorporating Wind Power Interval

Forecast Uncertainties into Stochastic

Unit Commitment for Decision Making

5.1 Introduction

Due to the random nature of weather, intermittent power generation sources, such as wind and

solar systems, have great uncertainties. With sudden weather changes, the output power of a

wind farm can drop most part of its power or even drop to zero. High wind power penetration will

have significant impacts on power system operation economics, stability, security, and reliability

due to fast fluctuation and unpredictable characteristics of wind speed [137]. Unit commitment

(UC) and economic dispatch (ED) are essential and basic tasks in power system daily operations.

UC problems incorporated with wind generation uncertainties become a more important and

challenge task than before in smart grid applications [2, 3, 138].

UC problem is usually formulated to minimize the total generation costs under some op-

erating constraints. This formulation is also called the security constrained unit commitment

(SCUC) problem. UC solution methods can be classified into three categories: deterministic
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methods, meta-heuristic methods and hybrid models. Deterministic methods include priority list-

ing (PL) [66], dynamic programming [66], Lagrangian relaxation (LR) [67], integer and linear

programming. Meta-heuristic approaches include expert systems [69], fuzzy logic [70], genetic

algorithm (GA) [71, 72], evolutionary programming, simulated annealing, tabu search, particle

swarm optimization (PSO) [73], ant colony optimization and differential evolution (DE) [75].

Hybrid models, where one method compensates with another, may have a better performance

than individual models. Srinivasan et al. in [76] proposed the PL method-based evolutionary

algorithm to solve the UC problem. PL was used as a good initialization of the evolutionary

algorithm. In [63], the authors proposed a hybrid LRGA model; GA was applied to evolve the

Lagrange multipliers to improve the LR method.

Conventional wind power forecasting produces a value, or the conditional expectation (point

forecasts) of wind power output at a time point in the future [36]. However, currently wide-used

point forecasts cannot provide additional quantitative information on the uncertainty associated

with wind power generation [139, 140]. From the decision making and risk assessment point

of view, probabilistic forecasts of wind power, such as prediction intervals (PIs), quantiles or

scenarios, are optimal inputs [36].

For point forecasts (cannot represent uncertainty), there is only one forecast value at each

time point. Power system operators can straightforwardly use this single value for decision mak-

ing. But for PIs, even a single level PI consists of three components: an upper bound, a lower

bound and the corresponding confidence level [19]. It is hard to directly apply the two bounds

to make a decision. Therefore, the linkage between the PIs and decision making becomes urgent

for smart grids [55, 141]. In this chapter, a computational framework is proposed to build this

important linkage through a proposed scenario generation method and the stochastic modeling.

In order to incorporate the wind power forecast uncertainties into the UC problems, some re-

search work has been done in references. Wu et al. [49] implemented and compared the stochastic

SCUC and interval optimization approaches. In the stochastic SCUC, the scenarios were gener-
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ated with a presumption that the wind speed uncertainty follows a Weibull probability distribution

function with the autocorrelation factor and diurnal pattern. The interval optimization used con-

fidence intervals in terms of upper and lower bounds to represent the uncertainty spectrum, and

derived optimistic and pessimistic solutions [49]. Wang et al. in [78] emphasized on the aspects

of intermittence and volatility of wind power in SCUC. Wind power was assumed to follow a

normal distribution and Monte Carlo simulation was used to generate scenarios subject to this

normal distribution.

Ortega-Vazquez et al. [79] estimated the spinning reserve (SR) requirements in systems with

significant wind power generation penetration. Wind power generation was viewed as a negative

load. The net demand forecast error was generated using a Gaussian cumulative probability

distribution. Sturt et al. [82] used stochastic unit commitment (SUC) with rolling planning for

simulation of wind-integrated power systems. It presented a new formulation of the SUC problem

and used a quantile-based scenario tree structure. The performances of various tree topologies in

year-long simulations of a large system were compared. Jiang et al. [83] studied the robust UC

with wind power and pumped storage hydro. The robust UC [84,86] represented the wind power

uncertainties in a predetermined uncertainty set containing the worst-case scenario. Benders’

decomposition algorithm was used to obtain a robust UC solution.

In spite of the advantages of the above references, the wind power scenarios in the stochastic

model are mainly generated from an assumed probability distribution, either a normal distribu-

tion [78, 79] or a Weibull probability distribution [49]. The robust UC needs to predefine the

uncertainty set and find the worst-case scenario [83, 84, 86]. To generate wind power scenar-

ios, in [142, 143] the complex covariance matrix needs to be calculated based on a multivariate

Gaussian distribution assumption. The main contributions of this chapter are summarized below:

1) A new scenario generation method is proposed to capture the uncertainty of the wind power

forecasting. The proposed method can be easily implemented and avoids making strong as-

sumptions on the wind power probabilistic distributions.
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2) A nonparametric lower upper bound estimation (LUBE) is used to generate neural network

(NN)-based PIs.

3) Meta-heuristic GA is used to solve the stochastic SCUC problem. The obtained total cost is

among the best one from the relevant literature.

4) Five deterministic and four stochastic case studies are implemented. These different UC

strategies are further discussed and compared together.

5) Different reserve strategies are investigated. The scheduled reserve and real time ED reserve

are compared together.

6) The computational framework in this chapter overcomes the multivalued problem when the

PIs are applied for decision making in power system operations. Some guidelines are also

provided for system operators from the risk assessment perspective.

The rest of this chapter is organized as follows. Wind power forecasting using NN-based

PIs are introduced in Section 5.2. Section 5.3 proposes a new scenario generation method to

handle the interval forecast uncertainties. Problem formulation of the stochastic SCUC problem

is described in Section 5.4. Section 5.5 presents the GA-based solution method for the stochastic

SCUC problem. Case studies are introduced in Section 5.6. Simulation results and discussions

are provided in Section 5.7. Finally, Section 5.8 concludes the chapter with some remarks for

further study in this domain.

5.2 PIs for Wind Power Forecasting

PIs are powerful tools to handle uncertainties associated with point forecasts. In our previous

work [60], a new PSO-based LUBE method was proposed to construct NN-based PIs for electri-

cal load and wind power forecasting. The basic idea of LUBE method is to use a NN with two

outputs to directly generate the upper and lower bounds of PIs [43,60]. The first output of NN is
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the upper bound of a PI and the second output corresponds to the lower bound.

Delta, Bayesian and bootstrap are traditional methods to construct prediction intervals (PIs)

based on NNs [41, 43]. Compared to traditional methods, the key advantages of the LUBE

method for PI constructions are as follows:

1) It is simpler and constructs higher quality PIs in just one step. Traditional methods first do

point forecasting and then construct PIs.

2) As known to all, wind power is volatile and intermittent in nature. Thus, assumptions about

the data distributions seem problematic and in doubt. The LUBE method is a nonparametric

method and no assumption on data distribution is made. Traditional methods always con-

sider a parametric distribution (e.g., Normal) for data and then try to find its parameters for

construction of intervals [41].

3) Its computational burden for PI construction is significantly lower than alternative methods

[43]. This is due to the fact that the developed NN directly generates PIs. Alternative methods

need to linearize NN models or calculate complex matrices such as the Jacobian and Hessian

matrices [43].

In practice, PIs with a high coverage probability and narrow width are expected for decision

making. However, these two aspects of PIs contradict with each other. For example, increasing

the coverage probability will also widen the PIs while squeezing the PIs may lead to a lower

coverage probability. This multi-objective problem can be formulated and solved in different

ways. In [43,58], this problem is modeled as a single-objective problem through a comprehensive

cost function. In [60], the primary multi-objective problem is transformed into a constrained

single-objective problem. The preassigned coverage probability is treated as a hard constraint

and the only objective is to minimize the width of PIs. Compared with the cost function method,

advantages of this new formulation are: (i) it is closer to the primary problem; and (ii) it has

fewer parameters and avoids choosing the format of cost functions. The extra parameters used in
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the cost function are not required in the new formulation.

In [60], PSO, which is powerful for parameter optimization, is employed to solve the prob-

lem. The mutation operator, which helps to achieve diversity in GA, is also integrated into PSO

to improve the exploratory capabilities and help in jumping out of local optima. The objective of

using PSO has mainly two aspects. For one thing, PSO is used to solve the newly formulated con-

strained single-objective problem. That is, to handle the constraints and optimize the objective.

For another thing, PSO with mutation operator is used as the training algorithm through opti-

mizing the connection weights [144] of NN models. To solve the constrained single-objective

problem using PSO, the criteria for replacing one particle ~a with another particle ~b are as fol-

lows [108, 130]:

1) Particle~b is feasible and particle ~a is not;

2) Both particles are feasible or they have the same satisfaction of constraints, but ~b yields a

better objective function value.

3) Both particles are infeasible, but~b results in the lower sum of constraint violations.

The wind power data used in this chapter is from Alberta wind farm, Canada in 2012 [145].

The data set is preprocessed and has an hourly resolution. It is well known that wind power is

intermittent and performs like a stochastic process. Different from electrical demand, wind power

has no obvious daily or weekly patterns. In this chapter, the autocorrelation function and partial

autocorrelation function analyses [136] are applied and help to choose the inputs of NN. Based on

the correlation analysis of the 2012 wind power data and the trial and error method, the 24 points

in the previous day are chosen as the inputs of NN. Although the PSO-based LUBE method is

used to forecast a list of PIs of wind power in this chapter, the methodology can be extended

into other forecasting tasks for uncertainty modeling, such as the electrical load and solar power

forecasting etc. To make the chapter self-contained, a brief introduction of the method for wind

power interval forecast is provided. More details about the method can be found in [60].
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5.3 Scenario Generation from the Wind Power PIs

The uncertain wind power is firstly captured by a list of PIs. Then a new scenario generation

method is proposed to generate scenarios from PIs. These scenarios are further incorporated into

the stochastic model for decision making.

5.3.1 Forecast Uncertainty Handling Using a List of PIs

In [60] only one level PIs, the 90% PIs, are constructed using the PSO-based LUBE method.

For most decision-making processes, such as power system operation, a single level PI is not

sufficient for making an optimal decision for a given lead time. Theoretically, any type of prob-

abilistic distributions can be represented by a sufficient number of its PIs or quantiles [142].

Different from our previous work, a list of PIs are generated ranging from 5% to 95% with an in-

crement of 5% for uncertainty handling. PIs of 19 levels are constructed for one-day ahead wind

power generation forecasting using the PSO-based LUBE method as introduced in [60]. These

PIs are applied to estimate the empirical cumulative distribution function (ECDF) of unknown

probabilistic distributions of the wind power generation outputs.

5.3.2 Scenario Generation for Uncertainty Representation for Decision Making

The wind power uncertainty mainly comes from the NN-structured PIs with different confidence

levels. However, the main difficulty here is how to apply these PIs to mathematical models for

decision making. As mentioned before, compared to point forecasts (cannot represent uncer-

tainty) PI suffers the multivalued problem for decision making, not to mention the fact that we

have PIs of 19 different levels here. Therefore, a new scenario generation is proposed to properly

represent the uncertainties included in the NN-structured PIs. The wind forecast uncertainties are

represented as scenarios. Further, these generated scenarios can be mathematically involved into

the stochastic model for computational purpose for decision making. The following steps show

the implementation of the proposed scenario generation method.
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1) A List of Wind power PIs: Apply the PSO-based LUBE method to make forecasts for a list

of PIs with continuous levels of 5% to 95%. An example from ARIMA is shown in Fig. 5.1.

The wind power datasets are from a wind farm of Alberta, Canada [145]. The forecasting

periods are the 24 hours on Dec. 2, 2012. All the predicted and measured wind power values

are normalized by the capacity of the wind farm.
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Figure 5.1: A list of PIs for one-day ahead wind power forecasting.

2) Decomposing PIs into quantiles: If the forecast errors are assumed to be symmetrically

distributed, then each PI can be uniquely decomposed into two quantiles. The (1 − α)% PIs

consists of two bounds, i.e. the lower and upper bounds. They correspond to the (α/2)% and

(1−α/2)% quantiles respectively. For example, the 90% PI is decomposed into 5% and 95%

quantiles of wind power and the 10% PI is decomposed into 45% and 55% quantiles.

3) Obtaining discrete points on ECDF: For each hour, every quantile value corresponds to one

point on the ECDF curve. If the upper and lower bounds of a 90% PI at hour t are 0.92 and

0.1 (per unit value of wind power), then two points on the ECDF curve are obtained. They

are point A (0.95, 0.92) and point B (0.05, 0.1). The number of PIs are 19, so the number of
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quantiles is 19 ∗ 2 = 38 for each hour. Besides the 38 points, two more points, point (0, 0)

and point (1, 1), are also on the ECDF curve. These two points are the two ends of the ECDF

curve, which mean the probabilities are 0 and 1 when the wind power outputs is less than zero

and the nominal capacity. In sum, totally 38+2 = 40 points are obtained on the ECDF curve.

4) Fitting the ECDF curve: Once the 40 points are obtained, the ECDF curve can be fitted from

these points. Here piecewise cubic Hermite interpolation is used to fit the ECDF. The fitted

ECDF curve passes through all the known 40 points. Fig. 5.2 shows the fitted ECDF curve of

Hour 1 on Dec. 2, 2012 for the Alberta wind farm.
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Figure 5.2: The fitted ECDF curve of Hour 1 on Dec. 2, 2012.

5) Monte Carlo simulation to generate scenarios: After the ECDF curve fitting, Monte Carlo

simulation [11] is applied to generate scenarios from the ECDF. That is, for each scenario, a

random number between 0 and 1 is uniformly generated. The corresponding wind power on

the ECDF curve (per unit) is the wind power output at this scenario. This process is repeated

24 times for the 24 hours of the day. The ECDF on each hour is fitted individually and
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the corresponding scenarios are generated from the ECDF of this hour. Fig. 5.3 shows the

generated 50 scenarios for 24 hours on Dec. 2, 2012 for the Alberta wind farm.
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Figure 5.3: The generated 50 wind power scenarios for 24 hours on Dec. 2, 2012.

5.3.3 Advantages and Significance

Advantages of the proposed scenario generation method are as follows:

1) It can be easily implemented. The core parts of the proposed method are the ECDF curve

fitting and Monte Carlo simulation. No complex computation such as the covariance matrix

[142, 143] is needed.

2) It avoids making strong assumptions on the wind power probabilistic distributions. The only

assumption in the scenario generation is that the forecast errors are symmetrically distributed.

In this way, one level PI can be uniquely decomposed into two quantiles. Under this assump-

tion, the 90% PI is decomposed into the 5% and 95% quantiles rather than the 6% and 96%

or 4% and 94% quantiles. This assumption is a relaxation of the specific probabilistic distri-

butions. Whereas, the normal distribution [78, 79] or a Weibull probability distribution [49]
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is assumed to capture the volatility of the wind power. A multivariate Gaussian distribu-

tion needs to be assumed before the recursive estimation of the covariance matrix in [142]

and [143].

The proposed method also builds an important bridge between the PIs and the scenarios

used in the stochastic model. As mentioned before, power system operators need to deal with

the multivalued problem when the PIs are applied to make a decision. Moreover, a list of PIs has

much more values than the single level PI. These values cannot be directly used for computational

purpose. The purpose of the proposed method is to generate the scenarios from a list of PIs. These

generated scenarios are further computationally involved into the stochastic models for decision

making and risk assessment.

5.4 Formulation of the Stochastic SCUC Problem

As shown in last section, wind power forecast uncertainties have been modeled as the generated

scenarios. In this section, the intermittent and fluctuating wind power is further incorporated into

the formulation of the stochastic SCUC problem. In the mathematical formulation, the W s
t is the

wind generation at time t in scenario s. As shown in Fig. 5.3, the generated 50 scenarios for 24

hours on the operating day are provided. These lines stand for the stochastic realizations of W s
t

for next day wind power generation outputs. W s
t is then incorporated into a thermal generating

UC and ED system through the power balance constraints in Equation (2.26). It further influences

the expected generation costs during the UC and ED scheduling. In this way, W s
t establishes a

mathematical link between the generated scenarios and the formulation of the stochastic SCUC

problem for uncertainty handling of wind power forecasting. A detailed mathematical problem

formulation is shown below.

The objective of the stochastic SCUC problem is to minimize the expected generation costs

under several constrains. Mathematically, the objective function is formulated as follows [63,
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138, 146]:

E(X,P ) = (5.1)

min

S∑
s=1

ps

[ N∑
i=1

H∑
t=1

Fi(P
s
i,t)Xi,t +

H∑
t=1

(Cens ∗ ENSst

+Crns ∗RNSst )
]

+
N∑
i=1

H∑
t=1

[
SUi,t(1−Xi,(t−1))

]
Xi,t

where Fi(P si,t) of thermal generators is usually represented as a quadratic function:

Fi(P
s
i,t) = ai + biP

s
i,t + ci(P

s
i,t)

2 (5.2)

Energy not served (ENS) and the reserve not served (RNS) will be at the cost of Cens and

Crns in the objective function. The start up cost is determined according to the continuously off

time of generators:

SUi,t =


HSUi,t, if T offi,t ≤ T

Down
i + T coldi ;

CSUi,t, if T offi,t > TDowni + T coldi .

(5.3)

The following constraints are also defined:

1) Power balance constraints:

N∑
i=1

Xi,tP
s
i,t +W s

t = Dt − ENSst (5.4)

2) Spinning reserve constraints:

N∑
i=1

Xi,t

[
Pi,max − P si,t

]
≥ Rst −RNSst (5.5)

3) Generation limit constraints:

Pi,minXi,t ≤ P si,t ≤ Pi,maxXi,t (5.6)

4) Minimum up time constraints:

(T oni,t − T
Up
i )(Xi,(t−1) −Xi,t) ≥ 0 (5.7)

where,

T oni,t = (T oni,(t−1) + 1)Xi,t (5.8)

111



CHAPTER 5. INCORPORATING WIND POWER INTERVAL FORECAST UNCERTAINTIES INTO STOCHASTIC UNIT
COMMITMENT FOR DECISION MAKING

5) Minimum down time constraints:

(T offi,t − T
Down
i )(Xi,t −Xi,(t−1)) ≥ 0 (5.9)

where,

T offi,t = (T offi,(t−1) + 1)(1−Xi,t) (5.10)

5.5 GA-Based Solution Method for the Stochastic SCUC

To solve the stochastic SCUC problem, a GA-based solution method is proposed. As mentioned

in Chapter 4, compare to other evolutionary methods such as GA, PSO is powerful for parameter

optimization (real numbers), especially for optimization of NN connection weights. However, in

Chapter 5 the formulated optimization problem is a UC problem. It is used to determine the on/off

status of generators. The chromosome is presented as binary strings (0 and 1 integer numbers).

Compared to PSO, GA is more suitable and powerful for optimization of binary problems. The

flow chart of the GA-based solution method is provided in Fig. 5.4.

5.5.1 Binary Representation of UC Solutions

Each chromosome of the GA represents a potential solution of the UC problem. The chromosome

is a row vector, whose length is the number of scheduled hours multiplied by the number of

generators. A bit string of a N units H hour UC chromosome is shown in Fig. 5.5.

5.5.2 Initialization

Initialization is crucial to the repeatability and success rate of the GA-based solution method

for the stochastic SCUC problem. In this chapter, two initialization methods are applied. One

third of the populations are initialized using the PL method and the remaining ones are randomly

initialized. Before the PL, full-load average cost (FLAC) of each unit is calculated.

FLAC(i) =
Fi(Pi,max)

Pi,max
=

ai
Pi,max

+ bi + ci ∗ Pi,max (5.11)
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Figure 5.4: Flow chart of the GA-based solution method.

Hour  1 Hour  2 …… Hour  H

Unit 1 … N Unit 1 … N …… Unit 1 … N

1100011101  1101111101 … 1000110110 … 1110001011

Figure 5.5: Binary representation of chromosomes.

Net load is also predefined as in Equation (5.12):

loadnet(t) = load(t)− wind power(t) (5.12)

In PL method, the units are committed in a ascending order of FLAC to meet the net load. For

each chromosome, one wind power scenario is chosen to calculate the net load. So the net load

is changing with wind power scenarios in different chromosome initializations.

113



CHAPTER 5. INCORPORATING WIND POWER INTERVAL FORECAST UNCERTAINTIES INTO STOCHASTIC UNIT
COMMITMENT FOR DECISION MAKING

5.5.3 Repairing Strategy for the Minimum Up and Down Time Constraints

During the initialization, the minimum up and down time constraints of generators are not con-

sidered. Thus the minimum up and down time constraints may be violated for some chromo-

somes. Generally speaking, there are two methods to deal with these constraint violations. One

method is to add a penalty term to the objective function for the violation. So the offspring with

a satisfied constraint have the priority to survive. Another is to repair the chromosomes if the

minimum up and down time constraints are not met. After the repairing, the minimum up and

down time constraints can be satisfied for every chromosome. In this chapter, a similar repairing

strategy [75, 147] for the minimum up and down time constraints is implemented.

5.5.4 Decommitment of the Excess Units

Repairing the minimum up and down time constraints can lead to excessive generations and

spinning reserves at some operation hours. This is not desirable from the economic operation

perspectives and extra costs may be caused. A heuristic search algorithm in [75, 147] based on a

PL is used to decommit some units one by one, in descending order of their FLAC as given by

Equation (5.11), until the spinning reserve constraint is just satisfied at any time instant. Please

note that before decommitting the excess unit, the minimum up and down time constraints must

be checked in advanced. If turning off the generator will make the minimum up and down time

constraints unmet, then this generator will not be shut down.

5.5.5 Fitness Evaluation and Economic Dispatches

For every chromosome, the UC decision is fixed. With a fixed UC decision, the λ-iteration [65]

is used to solve the ED problem for every wind power scenario. The power balance constraint

as in Equation (2.26) can be satisfied through the λ-iteration method. If the ENS or the RNS of

spinning reserve requirement as in Equation (2.27) happens, the not served parts will be at the

cost of Cens and Crns separately. If the sum of the minimum power of the on units is larger than
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the net load, a heavy penalty term is added to the expected cost. The fitness function is defined

in Equation (5.13) and is positively oriented, i.e., the greater, the better. A is a system-dependent

constant used to avoid getting too small fitness values. Its magnitude should be of the order of

the systems maximum operating cost over the scheduling time periods or larger [148].

Fitness =
A

E(X,P )
(5.13)

5.5.6 Elitism Strategy

Elitism is a useful strategy frequently used in GA. The idea is to reserve the best one or more

populations in previous generation and directly copy them to the next generation without modi-

fications. In this way, the best fitness values will not decrease with iterations. In this chapter, the

two fittest solutions are reserved first, and the two worst solutions after the selection are replaced

by the two elitism members.

5.5.7 Selection

q-tournament selection is implemented in the GA. The most used value for q is 2. The larger

value the q is, the higher the selection pressure becomes in the population. A large q means the

whole population will be dominated by the members with high fitness values. There needs a

balance to maintain the selection pressure and the diversity of the population.

5.5.8 Crossover Operator

The crossover operator is a two-point crossover. Under a certain crossover probability, two-

point crossover calls for two points to be selected on the parent chromosome strings. Everything

between the two points is swapped between the parent binary strings, rendering two child chro-

mosomes.
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5.5.9 Mutation Operator

Adaptive mutation is chosen. The mutation rate exponentially decreases with the increase of the

number of generations. For each mutation, a random number is generated. If the rand number is

smaller than the mutation rate, the value on this bit is flipped; otherwise, the value remains the

same as before.

5.5.10 Termination

The termination criterion can be set as the reach of the maximum number of iterations or few

improvements are made in a certain number of generations.

5.6 Case Studies

Five deterministic and four stochastic cases are implemented and compared. Reserve strategies

with and without wind power forecast are investigated.

5.6.1 Datasets

The modified UC test system [63] incorporated with wind power generation uncertainties is used

as case studies in this chapter. Please see the appendix for the detailed datasets of this test system.

The 24-hour ahead load forecasting is shown in Table 1. Table 2 and 3 show the unit data for

generators. The total installed capacity of the thermal generators is 1662 MW, which is 10.8%

higher than the peak load (1500MW at Hour 12). The wind power generation uncertainties

are considered as scenarios as shown in Fig. 5.3. The capacity of the penetrated wind farm is

assumed to be 200 MW. The basic spinning reserve requirement is considered as 10% of the

system load. The test systems can be extended up to 100 units by duplicating the units and

scaling the load and wind profiles based on the original system.
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5.6.2 Wind Power Generation Uncertainties

The wind power generation uncertainties are modeled by a stochastic process using the generated

scenarios (W s
t ). Firstly, a list of PIs are constructed using the PSO-based LUBE method. They

are further decomposed as quantiles and used to fit an ECDF curve. Then Monte Carlo simulation

method is applied to generate the scenarios from the ECDF curve. A detailed description of the

scenario generation method can be found from Section III. With the uncertain wind power, the

UC decision of the stochastic SCUC problem is solved by the GA in this study.

5.6.3 Deterministic and Stochastic Cases

To investigate the effects of different UC strategies on the economic costs and the ED reserves,

five deterministic and four stochastic cases are implemented and compared. Deterministic cases

set different forecasts of wind power generations, such as no forecast, point forecast, perfect

forecast, the positive 80% quantile and the conservative 20% quantile forecast of wind power.

A 10% of load forecast reserve is considered in all deterministic cases. While, stochastic cases

set different ED reserve requirements for scenarios. These reserve requirements are explained in

detail in next subsection. Table 5.1 summarizes these cases of different UC strategies.

5.6.4 Investigations on Different Reserve Strategies

In order to accommodate wind power uncertainty, several reserve strategies are investigated. The

actual reserve requirements need to be set by the power system operators for their preferences.

Usually there is a compromise between the economic cost and risks. In S1, a basic reserve

requirement of 10% of the load is supposed to accommodate system uncertainties such as the

load and wind forecast errors and generator outages. Additional reserve requirement can be

added to compensate the extra wind uncertainties not captured by the generated scenarios and

the potential emergencies. Thus additional reserves are added to the basic level according to

different reserve strategies. These strategies can be considered with and without wind power
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Table 5.1: Deterministic and Stochastic UC Strategies

Cases Descriptions UC Forecasts

D1 Det.UC w/no wind Det. No

D2 Det.UC w/point forecast Det. Point

D3 Det.UC w/perfect forecast Det. Perfect

D4 Det.UC w/80% quantile forecast Det. Quantile

D5 Det.UC w/20% quantile forecast Det. Quantile

S1 Stoch.UC w/regular reserve (10% of load forecast) Stoch. Scenarios

S2 Stoch.UC w/additional reserve (additional 5% of load forecast) Stoch. Scenarios

S3 Stoch.UC w/additional reserve (50% of point forecast) Stoch. Scenarios

S4 Stoch.UC w/additional reserve (point forecast - 10% quantile forecast) Stoch. Scenarios

forecast, such as additional 5% of load forecast (S2), additional 50% of point forecast (S3) and

additional (point forecast - 10% quantile forecast) reserves (S4). In S2, total 15% of load is

considered as reserve. In S3, only half of point forecast is considered to be reliable since an

additional reserve of 50% of point forecast is added. In S4, additional wind reserve requirement

is set by deducting the 10% quantile forecast from the point forecast. Because the realized wind

power will most likely be higher than the 10% quantile forecast (90% of the time). Although we

set different reserve strategies at the UC scheduling stage, in the real time ED stage the regular

reserve (10% of load forecast) is used for the real operations of the power systems.

5.7 Simulation Results and Discussions

Simulation results of deterministic and stochastic cases are provided and compared together.

Generation costs as well as the available reserves are discussed.
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5.7.1 Deterministic Cases of Wind Power

The deterministic case can be considered as a special case of the stochastic SCUC model. This

special case contains only one scenario with deterministic wind power in each hour. If no fore-

cast is obtained, no wind power is penetrated in the thermal units system. This is a classical

study implemented in many references [63,67,75,147]. The deterministic case of no wind power

(D1) can simply set the number of scenarios to one and the wind power to zero. Other deter-

ministic cases of point (D2), perfect (D3) and quantile forecast (D4 & D5) of wind power can be

conducted in a similar way as D1.

The experimental parameters are listed in Table 5.2. Where, pop size is the population size,

and N PL is the number of populations using PL initialization method. The maximum number

of iterations is 300, the crossover probability is 0.7, and q in the q-tournament is set to 2. The

number of elitism members is 2, and β is the initial mutation probability which exponentially

decreases with the increasing iterations. The system-dependent constant A is chosen as 600,000.

The cost of reserve curtailment is $1,100/MWh, and the cost of unserved energy is $3,500/MWh.

Table 5.2: Parameters for GA

Parameter Numerical value

pop size 64

N PL 20

max iter 200 or 300

crossover prob 0.7

q 2

N elitism 2

β 0.2

A 600000

Cens 3500

Crns 1100
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Table 5.3: The UC Solutions for the 10-Unit 24-Hour Stochastic SCUC Problem

Hour
Unit Number

1 2 3 4 5 6 7 8 9 10

1 1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0
5 1 1 0 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0
9 1 1 1 1 1 1 1 0 0 0

10 1 1 1 1 1 1 1 1 0 0
11 1 1 1 1 1 1 1 1 1 0
12 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 0 0
14 1 1 1 1 1 1 1 0 0 0
15 1 1 1 1 1 0 0 0 0 0
16 1 1 1 1 1 0 0 0 0 0
17 1 1 1 1 1 0 0 0 0 0
18 1 1 1 1 1 0 0 0 0 0
19 1 1 1 1 1 0 0 0 0 0
20 1 1 1 1 1 1 1 1 0 0
21 1 1 1 1 1 1 1 0 0 0
22 1 1 0 0 1 1 1 0 0 0
23 1 1 0 0 0 1 0 0 0 0
24 1 1 0 0 0 0 0 0 0 0

The best total cost solved for D1 is $563937.687 and the UC decision is given in Table

5.3. In order to valid the efficiency of the proposed GA to solve the UC problem, the scheduled

UC cost of D1 is compared to related results using the same dataset. These benchmark methods

include GA [71], LR [71], IBPSO [73], LRPSO [73], DBDE [75], DE [147], ES-EPSO [69],

ELR [67] and LRGA [63]. As is clearly shown in Table 5.4, the obtained total cost is among the

best one from the relevant literature. If no wind power is considered, this is a classical test system,

and the lowest value in Table 5.4 is already the best solution for this test system. Therefore, the

effectiveness of the proposed GA-based solution method has been validated.
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Table 5.4: Comparison of the best total generation costs without wind power (D1).

Methods Generation Cost ($)

GA [71] 565,825

LR [71] 565,825

IBPSO [73] 563,999

LRPSO [73] 565,870

DBDE [75] 563,977

DE [147] 563,938

ES-EPSO [69] 563,938

ELR [67] 563,977

LRGA [63] 564,800

Proposed GA 563,937.687

Both the scheduled UC generation cost and the real time ED cost are listed in Table 5.5.

The scheduled UC generation cost is based on the day-ahead UC decision and the different wind

power forecasts. The same UC decision is used in the real time ED cost, however, the real wind

power next day (perfect forecast) is applied to real time ED. Table 5.5 lists the two kinds of costs

for the deterministic and stochastic cases. The results are based on the best results of the repeated

20 runs using the proposed algorithm.

For the scheduled UC costs as shown in Table 5.5, the 80% quantile forecast case (D4)

obtains the least cost in all deterministic cases. The largest cost corresponds to the no forecast

case of D1. This is obvious, since the cost of wind generation is regarded as zero in this study.

Then the larger proportion of wind power penetration will lead to a less generation cost and vice

versa. The order of the generation costs from largest to smallest isD1 > D5 > D3 > D2 > D4.

D3 and D2 are the perfect and point forecast cases. Their wind power values are moderate so the

generation costs also stay at middle levels. D5 obtains the second largest cost because it uses a

conservative 20% quantile forecast of wind power. The analysis of the available reserves of the

deterministic cases will be discussed later together with the stochastic cases.
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Table 5.5: Deterministic and Stochastic UC and ED Costs

Cases
Scheduled

Value
Real Time

UC Costs ($) ED Costs ($)

D1 563937.687 Single 542496.106

D2 532707.667 Single 612254.542

D3 538556.091 Single 538556.091

D4 514111.980 Single 873267.106

D5 552152.144 Single 556400.825

S1 538104.445 Expected 542496.106

S2 574268.924 Expected 548266.135

S3 543801.510 Expected 546078.819

S4 550554.515 Expected 547896.795

For the real time ED cost, the perfect forecast (D3) definitely has the lowest cost. This

can be clearly seen from the last column of Table 5.5. However, for the optimistic 80% quantile

forecast of D4, the RNS occurs (shown in detail later in Subsection 5.7.3). In contrast to the least

scheduled UC cost, D4 obtains the largest real time ED cost due to the high penalty from RNS.

This is the same reason for the higher costs of D2 and even D5, they both have the RNS. Since

RNS does not occur in D1 (no wind case), it obtains the second lowest cost and is only more than

the perfect forecast.

5.7.2 Stochastic SCUC with Wind Power Scenarios

The parameters used in GA and the stochastic SCUC problem are shown in Table 5.2. The only

difference is that the maximum number of iterations is 200 instead of 300 in the stochastic SCUC

cases to save the computation time. The number of scenarios is 50 as shown in Fig. 5.3.

Fig. 5.6 shows the best and average fitness values during optimization for S1 with a 10%

reserve requirement. Due to the elitism strategy, the best fitness continuously increases with the

iterations. As can be seen from Fig. 5.6, the initial best fitness is relatively high (lager than
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Figure 5.6: Fitness trend during optimization for S1.

1.05), this is due to the good initialization using the PL method. This indicates the high quality

of seeds used at the start of the algorithm, which will lead to a high success rate for optimal or

near optimal solutions.

The system scheduled expected cost of S1 is $538104.445 for the stochastic SCUC. The UC

decision is the same as in Table 5.3. Compared with the no wind power case (D1), the expected

cost reduction due to the penetration of wind power generation is $563937.687−$538104.445 =

$25833.242. Different from the deterministic cases, the scheduled UC costs and the real time

ED costs of S1-S4 remain at the same level. The higher the reserve requirement is, the more the

generation cost will be. S1 has only the regular reserve requirement (10% of load), it has the

lowest values for the two kinds of costs. The order of the scheduled UC costs and real time ED

costs from the lowest to the highest is S1 < S3 < S4 < S2. The system costs of S2 are the

largest due to a highest reserve requirement (totally 15% of load). In S2, most generators need to

be turned on to maintain the highest spinning reserve, which can be clearly seen from Fig. 5.7.

At every hour, the number of units turned on of S2 is largest. Moreover, due to the high penalty
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of RNS on some scenarios, the difference between the scheduled UC cost and the real time ED

cost is also the largest in S2 out of all stochastic cases.
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Figure 5.7: The number of units turned on.

5.7.3 Discussion on Available Reserves

Two kinds of available reserves, the scheduled reserve and the real time ED reserve, are inves-

tigated and compared together for different UC strategies. The scheduled available reserve is

based on the day-ahead UC decision and forecasted wind power generation. The same UC de-

cision but the real wind power next day is applied to real time ED. The purpose of doing so is

to show the difference between the planned and realized reserves, and further to investigate the

potential risks for different UC strategies.

5.7.3.1 Number of Units Turned on

It can be observed from Fig. 5.7 that the stochastic cases of S2 and S4 have the most generators

turned on in each hour. S2 has the most on-line generators to maintain a high reserve requirement
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of 15%. D4 turns least generators on using a positive 80% quantile forecast of wind power. On

the other hand, D5 has to turn on more generators due to a conservative 20% quantile forecast.

5.7.3.2 Scheduled UC Reserves

As shown in Fig. 5.8 and 5.9, almost all the UC strategies can meet the scheduled reserve

requirement. The objective function in Equation (2.23) gives heavy penalties on the ENS and
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Figure 5.8: Scheduled available reserve of Det. cases.

RNS, so all deterministic and stochastic cases schedule enough generators on-line to avoid ENS

and RNS occurring. In Fig. 5.8, all the deterministic cases of D1-5 can meet the scheduled 10%

reserve requirement. In Fig. 5.9, all the stochastic cases of S1-S4 can meet the scheduled reserve

requirement respectively. However, there is only one exception of S2 (15% reserve of load) at

Hour 12. The RNS of 18.68MW (expected value) occurs at the peak load, which is shown in the

pink rectangle in Fig. 5.9. This is due to the fact that the total installed capacity of the thermal

generators is only 10.8% higher than the peak load. It also implies that wind power is not reliable

to contribute to the system reserve. Therefore, the scheduled UC cost of S2 is the highest among
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Figure 5.9: Scheduled available reserve of Stoch. cases.

all the stochastic cases as indicated in Table 5.5.

5.7.3.3 Real Time ED Reserves

There are some differences between the planned and the realized reserves with the uncertain wind

power. As per Fig. 5.10, RNS still occurs in three real time ED cases. D4, D2 and D5 have RNS

during Hours 8-20, although the ENS does not happen. D4 has the most hours (8-15, 19-20) of

RNS due to the optimistically deterministic forecast (80% quantile) of wind power. As a result

of high uncertainties, wind power will be under or over estimated. It is especially risky if the

forecasted wind power is highly over estimated. According to Fig. 5.1, the real wind power is

obviously lower than the point forecasts during Hours 6-19. This is the direct cause for RNS. If

the penetration level of wind power is higher in this system, even ENS may happen. This is risky

for the operation of the system and needs to be avoided. Another interesting finding is that most

of the RNS occurs at the peak load hours such as Hours 9-14 and 19-21. The overall reserve at

the peak load hours is obviously lower than non-peak load hours. This implies that the peak load
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Figure 5.10: Real time ED available reserve of Det. cases.

hours run higher level of risk (uncertainties) for system operations.
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Figure 5.11: Real time ED available reserve of Stoch. cases.

On the contrary, all the four stochastic cases (with different reserve strategies) can always
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meet the reserve requirement in real time ED in Fig. 5.11. S2 and S4 have overall higher reserve

levels than S1 and S3. This is because the higher reserve requirements of S2 and S4. All the four

lines of S1-S4 are always above the 10% reserve requirement in Fig. 5.11. However, the RNS

occurs in three out of five deterministic case studies. It needs to be noticed that the conservative

20% quantile forecast in D5 has RNS in Hour 14. This case tells us that even if the conservative

deterministic forecast is applied, the obtained UC scheduling still runs the risk and is unreliable

in system operations. Thus the stochastic model is more robust than deterministic ones.

5.8 Conclusions

A nonparametric and recently proposed PSO-based LUBE method is used to construct NN-based

PIs. Wind power forecast uncertainties are represented by a list of PIs with the coverage prob-

abilities ranging from 5% to 95%. A new scenario generation method is proposed. It can be

easily implemented and avoids making strong assumptions on the wind power probabilistic dis-

tributions. This method also builds an important bridge between the PIs and the scenarios used

in the stochastic model. Wind generation uncertainties are considered as a stochastic process

through the generated scenarios. Further a stochastic SCUC model is built and the wind sce-

narios are incorporated into this model. Five deterministic and four stochastic case studies with

uncertain wind power are implemented. GA is used to solve the stochastic SCUC problem. The

generation costs for different UC strategies are discussed and compared together. Specially two

available reserves, the scheduled and real time ED reserves, are discussed. Results indicate that

the stochastic model is more robust than deterministic ones. The peak load hours run higher

level of risk (RNS and ENS) than non-peak hours for system operations. What is more, there are

some differences between the planned and real time ED reserves. The potential risks need to be

considered by system operators.
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Chapter 6

A Computational Framework for

Uncertainty Integration with

Intermittent Renewable Energy

Sources

6.1 Introduction

Renewable energy resources such as wind and solar power have several major benefits including

low economic costs and zero environmental footprints. That is why their deployment has sus-

tained a high growth rate in many countries worldwide [4]. However, the level of uncertainties

associated with operation of intermittent renewable energy sources (IRESs) is high. In addition,

uncertainties do exist in other parts and components of power systems including but not limited to

consumers (load demands), generators (shutdowns), and transmission lines (faults and leakages).

Uncertainties in forecasting the output of IRESs such as wind and solar generation, as well

as system loads, are not incorporated into existing energy management systems (EMSs) and tools
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used for generation commitment, dispatch, and market operation. With the growing penetration

of intermittent resources, these uncertainties could result in significant unexpected load following

and dispatch problems and pose serious risks to control and operation performance characteris-

tics as well as the grid reliability. Without quantifying prevailing risks, system operators have

limited means to assess the likelihood of occurrence and the magnitude of problems to mitigate

imposed adverse impacts [149]. As per these, there is a real business need to develop and deploy

a computational framework to integrate these uncertainties together and mitigate the potential

risks for system operations.

In [150], a fuzzy-optimization approach was proposed for solving the generation scheduling

problem with consideration of wind and solar energy systems. Hourly load, available water, wind

speed and solar radiation forecast errors were taken into account using fuzzy sets. A methodol-

ogy to set operating reserve considering load forecast uncertainty, conventional generation out-

ages and wind power forecast uncertainty was described in [34]. Makarov in [2] proposed an

approach to integrate the uncertainty model with an existing EMS. Different levels of integration

such as passive, active and proactive are presented. However, only load and wind power forecast-

ing uncertainties are considered and the solar power uncertainty is not considered in simulations.

A stochastic programming framework [151] was built as a multi-objective problem. Different

sources of uncertainties were considered for optimal operation of micro-grids. In [152], inter-

mittent wind units were integrated into a GENCO’s generation assets and the GENCO’s hourly

wind generation schedule was coordinated with that of natural gas units and hydro units for

maximizing the GENCO’s payoff.

Previous studies mainly focus on one or two aspects of the uncertainties, such as the load

and/or wind power forecast uncertainties [49, 78, 79, 83, 84]. It is very important to address this

problem comprehensively by including all sources of uncertainty (load, wind and solar power

generation, forced generator outages, etc.). In [138, 146], the influence of wind power forecast

uncertainties on generation costs and different reserves have been investigated. In order to fo-
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cus on wind power uncertainties, other uncertainties such as load and forced generator outages

were temporarily ignored. In this paper, a computational framework is proposed to integrate the

various uncertainties together. A preliminary research has been implemented to investigate the

framework for uncertainty integration.

The purpose of this research is multi-fold. 1) Previous studies have not considered ade-

quate uncertainties as part of the scheduling. 2) This integration framework quantifies all grid

uncertainties and then integrates them into the decision-making and risk assessment. 3) Several

uncertainty modeling methods are proposed to address uncertainties from different sources. 4)

A new scenario generation method is proposed to generate scenarios for IRESs such as wind

and solar power. 5) The integration framework is validated on the stochastic unit commitment

(UC) scheduling problem. 6) Generation costs as well as the available reserves of different UC

strategies are investigated and compared together.

The rest of this chapter is organized as follows. The proposed framework for uncertainty

integration in DPSs is introduced in Section 6.2. Uncertainty representation, problem formulation

of the stochastic SCUC problem and the solution method are described in Section 6.3. Section

6.4 describes the datasets and simulation cases. Simulation results and discussions are provided

in Section 6.5. Finally, Section 6.6 concludes the chapter with some remarks for further study in

this domain.

6.2 Proposed Computational Framework for Uncertainty Integra-

tion in DPSs with IRESs

The Section 1.4 in Chapter 1 has provided a comprehensive summary of uncertainty in DPSs

with IRES. As shown in Fig. 1.2, DPSs operations are mainly subject to four types of uncer-

tainties: generation uncertainties, transmission uncertainties, distribution uncertainties and de-

partures from forecasts. In this chapter, a computational framework for uncertainty integration
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in DPSs with IRESs is proposed. The integrated uncertainties include load forecast uncertainty,

wind and solar power forecast uncertainty and forced generator outages etc. Integrating all of the

uncertainties in DPSs is out of the scope of this study. Fig. 6.1 shows the proposed computational

framework for uncertainty integration in DPSs with IRESs.
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Figure 6.1: The computational framework for uncertainty integration in DPSs with IRESs.

6.2.1 Inputs of the Integration Framework

Objective setting and data gathering are the first stage of the proposed framework. The inputs

of the integration framework consist of mainly four parts: the objective function, the operation

constraints, scenario generation, reserve requirement and other input data.

The objective function includes the thermal generator cost, the start up cost and penalty

terms from the reserve and energy not served. So the objective is to minimize the cost and
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mitigate the operation risk. The objective function is subject to several constraints such as the

power balance constraint, the generating limitations of thermal generators, the minimum up/down

time constraints and reserve requirement. The load forecast uncertainty, wind and solar power

forecast uncertainty and forced generator outages are represented as the generated scenarios. The

detailed scenario generation will be introduced in next section. Reserve requirement includes the

spinning and non-spinning reserve requirements. Other input information such as the electricity

market and optimal bidding of generation (thermal, wind and solar) can also be covered.

6.2.2 Stochastic SCUC Modeling

After setting the objective function and gathering the input data, a stochastic stochastic security-

constrained unit commitment (SCUC) model is built. The stochastic SCUC model tries to cover

as many as major uncertainty sources in DPSs. In particular, forecasting uncertainties for load

demand and solar and wind power generation are considered. These uncertainties are modeled

as a stochastic process and presented as scenarios. Other uncertainties can be integrated in a

similar way. The objective of stochastic SCUC is to minimize the expected generation costs under

several constraints for several scenarios. Therefore, it evaluates the overall costs considering all

scenarios and their probabilities (ps). The detailed problem formulation of the stochastic SCUC

can be found in Subsection 6.3.2.

6.2.3 Outputs of the Integration Framework

The main purpose of UC is to determine the on/off status and output power of each generator.

After solving the stochastic SCUC and economic dispatches, the outputs are obtained. These are

the generation schedule, the online units and the available reserve. These outputs are important

evidence for decision making and risk assessment in the operation, economics and reliability of

DPSs.
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6.2.4 Decision Making and Risk Assessment

The decision making and risk assessment are based on the outputs of the stochastic SCUC. The

power system operators can schedule the generation next day and set the different reserve strate-

gies according to their preferences. That is to say, the system operators need to decide which

generators are turned on next day, and to decide how much power each turned on generator will

supply. On the other hand, system operators should maintain a certain level of spinning and non-

spinning reserves. The potential risks such as the not-served reserve and the not-served energy

need to be handled by the system operator as well.

6.3 Stochastic Model for Uncertainty Integration: Load, Wind, So-

lar, and Generator Outage Uncertainties

In this section, uncertainty representation for different sources of uncertainty is introduced. The

problem formulation and the GA-based solution method are then provided.

6.3.1 Uncertainty Representation

Load forecast uncertainty is assumed to follow a normal distribution. Wind and solar forecast un-

certainties are represented as scenarios using the proposed scenario generation method in Chapter

5. Generator outages uncertainty is modeled as discrete scenarios.

6.3.1.1 Load Uncertainty Representation

Load uncertainties are much less than uncertainties associated with IRESs. This is due to the

fact that aggregated load demands are fairly smooth and predictable. However, the MW value

of load forecasting error is still high. A common method is to model the load uncertainty as the

normal distribution [27,34]. In this chapter, load forecast errors are assumed to follow the normal

distribution. In addition to the point forecast, standard deviations in each hour are also provided.
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Load uncertainty is then represented as stochastic scenarios which are generated using the point

forecasts and the corresponding standard deviations (SD).

Table 6.1: Load SD Data for 24 Hours

Hour Load SD (MW) Hour Load SD (MW) Hour Load SD (MW)

1 19.221 9 25.027 17 26.920

2 17.783 10 26.514 18 31.295

3 18.576 11 26.783 19 28.534

4 17.819 12 36.938 20 21.120

5 17.247 13 23.636 21 20.366

6 17.106 14 25.720 22 22.101

7 19.942 15 25.096 23 20.389

8 19.934 16 24.428 24 20.367

The demand point forecasts are from a classic UC test system as reported in [67,71]. Hourly

point forecasts of load demand and their standard deviation [153] are shown in Table 1 (in the

appendix) and Table 6.1 respectively. The load scenarios are then generated from this normal

distribution at each hour, which are shown in Fig. 6.2. The mean absolute percentage error

(MAPE) of the generated load scenarios is around 2%-3%, which is in the common range of

day-ahead load forecasting.

6.3.1.2 Wind Uncertainty Representation

As mentioned in Chapter 5, wind power forecasting uncertainty is represented as a series of

scenarios. This has been realized by two steps as shown in Section 5.2 and Section 5.3. Firstly,

a list of PIs for wind power forecasting is implemented with confidence levels ranging from 5%

to 95% (5% increment). Then wind power scenarios are generated by a newly proposed scenario

generation method. To avoid the repetition, wind uncertainty representation is omitted in this

135



CHAPTER 6. A COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY INTEGRATION WITH INTERMITTENT RENEWABLE
ENERGY SOURCES

2 4 6 8 10 12 14 16 18 20 22 24
600

700

800

900

1000

1100

1200

1300

1400

1500

1600

D
ay

 A
he

ad
 L

oa
d 

F
or

ec
as

tin
g

Time Horizon (hr)

 

 
scenarios
prediction

Figure 6.2: The generated 50 load scenarios for 24 hours.

chapter. A detailed implementation can be found from Section 5.2 and Section 5.3 in Chapter 5.

6.3.1.3 Solar Uncertainty Representation

The same uncertainty representation method of wind power is applied to solar power as well.

Since wind and solar power are all IRESs, the proposed uncertainty modeling methodology can

be used as the common modeling method for IRESs.

1) A list of PIs for solar power forecasting: as shown in Section 5.3 in Chapter 5, a list of wind

power PIs are generated. The method is similarly applied to solar power. A list of solar power

PIs are generated ranging from 5% to 95% with an increment of 5% for uncertainty handling.

PIs of 19 levels are constructed for one-day ahead solar power generation forecasting. These

PIs can be constructed by our previously proposed PSO-based lower upper bound estimation

(LUBE) method [43, 60] or ARIMA models [136]. An example from ARIMA is shown in

Fig. 6.3. The solar power datasets are from Solar Radiation Monitoring Laboratory station:

Ashland, University of Oregon in USA [154]. The forecasting periods are the 24 hours on
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July. 16, 2013. All the predicted and measured solar power values are normalized by the

capacity of the PV modules at Ashland station (15KW).
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Figure 6.3: A list of PIs for day-ahead solar power forecasting for Ashland PV modules on July 16, 2013.
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Figure 6.4: The fitted solar power ECDF curve of Hour 12 on July 16, 2013.
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2) The fitted ECDF curve for solar power: once a list of PIs for solar power forecasting are

obtained, these PIs are then decomposed into quantiles. For each hour, every quantile value

corresponds to one point on the ECDF curve. Like the wind power in Section 5.3, totally

19 ∗ 2 + 2 = 40 points are used to fit the ECDF curve. Fig. 6.4 shows the fitted ECDF

curve of Hour 12 on July 16, 2013 for the Ashland solar station. The ECDF will be used to

generated solar power scenarios for the stochastic model.

3) The generated 50 scenarios for solar power: After fitting the ECDF curve, Monte Carlo

simulation [11] is applied to generate scenarios from the ECDF. That is, for each scenario, a

random number between 0 and 1 is uniformly generated. The corresponding solar power on

the ECDF curve (per unit) is the solar power output at this scenario. This process is repeated

24 times for the 24 hours of the day. The ECDF on each hour is fitted individually and

the corresponding scenarios are generated from the ECDF of this hour. Fig. 6.5 shows the

generated 50 scenarios for 24 hours on July 16, 2013 for the Ashland solar station.
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Figure 6.5: The generated 50 solar scenarios for 24 hours on July 16, 2013.
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6.3.1.4 Generator Outage Uncertainty Representation

Conventionally generator outage is considered as a discrete probability distribution and repre-

sented by the capacity outage probability table (COPT) [34, 65]. COPT gives the probability of

occurrence for each possible outage capacity level. In order to simplify the integration frame-

work and be compatible with the net load concept, the similar method in [155] is implemented

to represent the generator outage uncertainty. The implementation steps are as follows:

1) 5 out of 10 generators are considered for generator outages. That is, Generators 6-10 (inter-

mediate and peaking units [156]) in the 10-unit 24-hour test systems are considered for the

outage events (Table 3).

2) Generator outage is modeled by creating a scenario which has demand increases equal to the

unavailable generator’s capacity. These demand increases occur during the periods in which

the generator is expected to be down [155]. Therefore, if one generator outage occurs, the

net load during the outage periods is added by the unavailable generator’s capacity. If two or

more outages occur together for some hours, then the unavailable generators’ capacities are

added together to the net load for these hours.

3) The assumption for the equivalent outage duration is 8 hours per day.

4) The assumed forced outage rate is 2%. Please note that the outage rate and duration can be

adjusted in the real operation according to the historical outage statistics for different genera-

tors.

According to the above steps, the generated scenarios for generator outages are shown in

Table 6.2. These scenarios are generated for the 50 scenarios of the Generators 6-10 in Table 3.

6.3.2 Problem Formulation

The problem formulation of the proposed uncertainty integration framework is similar to the

formulation of the stochastic SCUC problem in Section 5.4 in Chapter 5. The main difference is
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Table 6.2: The Generated Scenarios for Generator Outages

Scenario Outage Generator No. Outage Hours

7 8 6-13

16 6 10-17

16 9 7-14

28 10 2-9

44 6 16-23

the power balance constraint, which is shown in Equation (6.5). Compared to the only wind case

in Section 5.4, the load, wind and solar power forecasting uncertainties and the generator outages

are all considered together in the integration framework. Then the net load has a new definition:

loadnet(t) = load(t) − wind power(t) − solar power(t) (6.1)

The objective of the stochastic SCUC problem is to minimize the expected generation costs

under several constrains.The objective function consists of four parts: the thermal generator costs,

the start up cost, and the penalty terms from the energy not served (ENS) and the reserve not

served (RNS). Mathematically, the objective function is formulated as follows [63, 138]:

E(X,P ) = (6.2)

min
S∑
s=1

ps

[ N∑
i=1

H∑
t=1

Fi(P
s
i,t)Xi,t +

H∑
t=1

(Cens ∗ ENSst

+Crns ∗RNSst )
]

+

N∑
i=1

H∑
t=1

[
SUi,t(1−Xi,(t−1))

]
Xi,t

where thermal generator cost Fi(P si,t) is usually represented as a quadratic function:

Fi(P
s
i,t) = ai + biP

s
i,t + ci(P

s
i,t)

2 (6.3)

RNS and ENS will be at the cost of Cens and Crns in the objective function. The start up
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cost is determined according to the continuously off time of generators:

SUi,t =


HSUi,t, if T offi,t ≤ T

Down
i + T coldi ;

CSUi,t, if T offi,t > TDowni + T coldi .

(6.4)

The following constraints are also defined:

1) Power balance constraints:

N∑
i=1

Xi,tP
s
i,t +W s

t + PV s
t = Ds

t + FOst − ENSst (6.5)

The Ds
t , W

s
t and PV s

t are the load, wind and solar power outputs at time t in scenario s

respectively. FOst and ENSst are the forced outage of generators and ENS at time t in

scenario s.

2) Spinning reserve constraints:

N∑
i=1

Xi,t

[
Pi,max − P si,t

]
≥ Rst −RNSst (6.6)

3) Generation limit constraints:

Pi,minXi,t ≤ P si,t ≤ Pi,maxXi,t (6.7)

4) Minimum up time constraints:

(T oni,t − T
Up
i )(Xi,(t−1) −Xi,t) ≥ 0 (6.8)

where,

T oni,t = (T oni,(t−1) + 1)Xi,t (6.9)

5) Minimum down time constraints:

(T offi,t − T
Down
i )(Xi,t −Xi,(t−1)) ≥ 0 (6.10)

where,

T offi,t = (T offi,(t−1) + 1)(1−Xi,t) (6.11)
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6.3.3 GA-Based Solution Method

The proposed integration framework of the stochastic SCUC problem is solved using genetic

algorithm (GA). The solution procedure has been introduced in Section 5.5 in Chapter 5. Each

UC solution is represented by the binary chromosome. The binary values of 0 and 1 stand for the

off and on status of each generator at one hour. So the length of the binary string equals to the

number of generators multiplied by the number of scheduled hours.

As indicated in Equation (6.1), both the uncertain load, wind and solar power are involved in

the net load. The generator outages also cause demand increases which equal to the unavailable

generators’ capacity. These are not the same to the only wind case in Chapter 5. These changes

need to be reflected by the fitness evaluation and economic dispatches in the GA-based solution

method. That is, the λ iteration is updated to satisfy the new power balance constraint as shown

in Equation (6.5). When the fitness function is evaluated, all the modeled uncertainties, such as

the load, wind, solar and generator outage uncertainties are calculated. These uncertainties have

influences on thermal generator costs, the start up costs and the penalty terms from the ENS and

RNS. To make this chapter self-contained, a brief description of the GA-based solution method

is provided. The detailed implementation of the solution method can be found from Section 5.5.

6.4 Datasets and Simulation Cases

The modified test system in Chapter 5 is used in this chapter. The load forecast and unit data

are shown in Table 1-3 respectively. In Chapter 5, only wind uncertainty is considered. But in

the integration framework, load, wind, solar and generator outages uncertainties are considered

together and represented as scenarios in the stochastic SCUC model. The capacity of the pen-

etrated wind and solar power are assumed to be 200 MW and 100MW respectively. Therefore,

the total capacity of the IRESs is 300 MW, which is 1/5 of the peak load.

As the five deterministic and four stochastic cases shown in Table 5.1 in Chapter 5, the same
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concept is applied to the integration framework. However, the wind and solar power forecasting

are summed up together in the five deterministic and four stochastic cases. Taking the point

forecast case (D2) as an example, the point forecast value in the integration framework is the

summation of the wind and solar power point forecasts. The summation of the wind and solar

power forecasting are also applied for setting different reserve strategies in the four stochastic

cases. For each simulation case, the algorithm is run for 10 repeated times and the best results

are reported.

6.5 Simulation Results and Discussions

Results of the deterministic and stochastic cases and the available reserves are provided and dis-

cussed in this section. The experimental parameters are listed in Table 6.3. Where, pop size is

Table 6.3: Parameters Used in the Integration Framework

Parameter Numerical value

pop size 64

N PL 20

max iter 200 or 300

crossover prob 0.7

q 2

N elitism 2

β 0.2

A 600000

Cens 3500

Crns 1100

the population size, and N PL is the number of populations using PL initialization method. The

maximum numbers of iterations are 300 and 200 for deterministic and stochastic cases respec-

tively. The crossover probability is 0.7, and the q in the q-tournament is set to 2. The number

of elitism members is 2, and β is the initial mutation probability which exponentially decreases
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with the increasing iterations. The system-dependent constant A is chosen as 600,000. The cost

of reserve curtailment is $1,100/MWh, and the cost of unserved energy is $3,500/MWh.

6.5.1 Deterministic Cases of Wind and Solar Power

D1 is the no forecast case, this means the penetrated wind and solar power is 0. In Chapter 5, to

demonstrate the effectiveness and efficiency of the proposed GA-based solution method, Section

5.7 has compared the results with several solution methods. These benchmark methods include

GA [71], LR [71], IBPSO [73], LRPSO [73], DBDE [75], DE [147], ES-EPSO [69], ELR [67]

and LRGA [63]. The comparison indicates that the solution quality of D1 is among the best one

from the relevant literature.

Table 6.4: Deterministic and Stochastic UC and ED Costs in the Integration Framework

Cases
Scheduled

Value
Real Time

UC Costs ($) ED Costs ($)

D1 563937.687 Single 531586.520

D2 516074.046 Single 646367.876

D3 523810.166 Single 523810.166

D4 495996.705 Single 924968.863

D5 538420.600 Single 536318.881

S1 528092.051 Expected 531626.164

S2 539477.652 Expected 538873.934

S3 535792.825 Expected 537290.562

S4 536678.455 Expected 538374.976

For the scheduled UC cost in Table 6.4, the overall UC cost is less due to the solar power

penetration compared to the only wind case in Chapter 5. The larger wind and solar power

penetration will lead to a less (unit) generation cost. Case D1 has no wind and solar power

penetration, so the generation cost of D1 is the largest. D5 uses the conservative 20% quantile

forecast of wind and solar power, and then D5 obtains the second largest costs. D4 uses the
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optimistic 80% quantile forecast of wind and solar power, and then D4 obtains the least costs.

For the case D2 (point forecast) and D3 (perfect forecast), the point forecast of wind and solar

power is overall more than the perfect forecast, so cost of D2 is less than the cost of D3.

For the real time ED cost, the perfect forecast (D3) definitely has the lowest cost. This

can be clearly seen from the last column of Table 6.4. However, for the optimistic 80% quantile

forecast of D4, the RNS occurs. In contrast to the least scheduled UC cost, D4 obtains the largest

real time ED cost due to the high penalty from RNS. This is the same reason for the higher costs

of D2 and even D5, they both have the RNS. Compared to the only wind case of D4 and D2 in

Chapter 5, the penalty terms are much larger since more RNSs occur. Since RNS does not occur

in D1 (no wind case), it obtains the second lowest cost and is only more than the perfect forecast.

6.5.2 Stochastic SCUC with Wind and Solar Power Scenarios

The simulation parameters of the stochastic SCUC are provided in Table 6.3. Fig. 6.6 shows the

fitness trends of the best and average fitness values for S4. It is obvious that both the best and

average fitness curves have an increasing trend. For one thing, the best fitness has a good starting

point (> 1.05). This is due to the good initialization using PL method. For another thing, the

best fitness continuously increases with iterations due to the utilization of the elitism strategy.

The best fitness has a very sharp increase at the first 20 iteration. Then it continues to increase

step by step and finally coverages to a high value. The fitness trend during optimization implies

the efficiency of the proposed GA-based solution method.

Both the scheduled UC cost and real time ED cost of stochastic cases are displayed in Table

6.4. Just as the deterministic cases, due to the penetration of solar power, the overall real time

ED costs of stochastic cases are less than the only wind case in Chapter 5. As can be seen from

Table 6.4, the reserve requirements have a significant impact on the two kinds of generation costs.

Different from the deterministic cases, the order of the scheduled UC cost and real time ED cost

is the same. That is, generation costs from the lowest to the highest is S1 < S3 < S4 < S2.
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Figure 6.6: Fitness trend during optimization for S4.

This conformity implies the robustness of the stochastic model. In all stochastic cases, the high

penalty from RNS and ENS is little. The larger the reserve requirement, the higher the generation

cost. S1 is the regular reserve case, the level of the spinning reserve requirement is the lowest.

Therefore, S1 has the lowest cost out of the four stochastic cases. It is the opposite situation for

S2. Since S2 has the overall highest reserve level, it obtains the highest cost accordingly. As

can be clearly seen from Fig. 6.7, most generators need to be turned on to maintain the highest

spinning reserve for S2.

6.5.3 Discussion on Available Reserves

Two kinds of available reserves, the scheduled UC reserve and the real time ED reserve, are

investigated and compared together for different UC strategies. The main difference of the two

kinds of reserve is the usage of the forecast or the real generation outputs of IRESs (wind and

solar). The scheduled and real time available reserves are both based on the day-ahead UC

decision. The forecast wind and solar power generations are used to calculate the scheduled UC
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Figure 6.7: The number of units turned on for uncertainty integration.

reserve. However, the real time ED reserve uses the real wind and solar power next day. The

purpose of doing so is to show the difference between the planned and realized reserves, and

further to investigate the potential risks for different UC strategies.

6.5.3.1 Number of Units Turned on

Fig. 6.7 shows the number of units turned on for the nine simulation cases. As can be seen

from Fig. 6.7, for the deterministic cases, the penetration level of renewable energies (wind and

solar) has a significant impact on the generator scheduling. The reason behind this is that the

less penetration of wind and solar power needs more generator being turned on to maintain the

power balance constraint. Then D1 has the most generators turned on and D4 the least out of

five deterministic cases. Moreover, for the stochastic cases, the reserve requirement determines

the units turned on. The same load, wind, solar and generator outage scenarios are applied in all

stochastic cases. Therefore, more generators need to be turned on to maintain a higher level of

reserve. In this way, S2 and S1 show the outer and inner edges in all stochastic cases in Fig. 6.7.
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6.5.3.2 Scheduled UC Reserves

Fig. 6.8 and 6.9 show the scheduled UC reserves for the deterministic and stochastic cases

separately. In all cases, the preassigned reserve requirements can be fully satisfied. This is due to

the high penalty terms from RNS and ENS. Then the scheduled UC reserves have to satisfy the

different reserve requirements in all cases.
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Figure 6.8: Scheduled available reserve of Det. cases for uncertainty integration.

For the deterministic cases, all cases have the same reserve requirement of 10% of load

forecasting. As clearly shown in Fig. 6.8, all reserve lines of D1-5 are above the black dotted

lines (10% of load) throughout the scheduled 24 hours. An interesting finding is the distribution

of the reserve margins during the 24 hours. The least reserve margins happen during Hour 8-13,

which are the peak load hours in the day scheduled. This implies the higher level of risk in system

operations during these peak load hours. It can be considered as a guideline for system operators

for more cautious decision making and risk assessments.

For the stochastic cases, although different reserve strategies are applied and the reserve
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Figure 6.9: Scheduled available reserve of Stoch. cases for uncertainty integration.

requirements are different, all the preassigned reserve requirements can be met. This has been

clearly indicated in Fig. 6.9. The dotted lines show the different reserve requirements for S1-

S4. For each case, the same color is applied. The solid line stands for the scheduled available

reserve, and the dotted line with the same color is the corresponding reserve requirement. S2 has

the overall highest scheduled available reserve (black line) while S1 has the lowest (red line).

6.5.3.3 Real Time ED Reserves

Although different reserve strategies are applied to the day-ahead UC scheduling stage, the 10%

reserve requirement is set in the real time ED stage to mimic the real operations of the test system.

As shown in Fig. 6.10 and 6.11, there are some differences between the planned and the realized

reserves with the uncertain IRESs. As per Fig. 6.10, although the ENS does not happen, RNS still

occurs in three real time ED cases. D2 has RNS during Hours 8-14, D4 has RNS during Hours

9-20. Even there is RNS at Hour 10 for D5 (conservative 20% quantile forecast of wind and
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Figure 6.10: Real time ED available reserve of Det. cases for uncertainty integration.

solar power). Compared with the RNS in Chapter 5, RNSs of uncertainty integration of D2 and

D4 are obvious larger. It implies the superimposed effect of uncertainties in the computational

framework for uncertainty integration.

The case of D5 tells us that even if the conservative deterministic forecast is applied, the

obtained UC scheduling still runs the risk and is unreliable in system operations. As can be seen

from Fig. 6.8, the peak load hours (Hour 8-13) have the least reserve margins for the scheduled

UC reserve. It is not surprising that RNS happens during these peak load hours for the real

time ED reserve. As a result of high uncertainties, IRESs may be under or over estimated. It is

especially risky if the forecasted IRESs are highly over estimated. Since the high uncertainties

of IRESs, the involved risk is also much higher during these peak load hours. The potential risks

have been clearly reflected by the RNSs as shown in Fig. 6.10.

In contrary to deterministic cases, all the four stochastic cases (with different reserve strate-

gies) can always meet the reserve requirement in real time ED in Fig. 6.11. Out of the four

stochastic cases, there is no RNS and ENS. Uncertainties from load forecasting, IRESs and gen-
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Figure 6.11: Real time ED available reserve of Stoch. cases for uncertainty integration.

erator outages are well represented by the generated scenarios in the stochastic model. The

obtained results from the stochastic model are significantly more robust than the deterministic

model. Deterministic model considers only one scenario of the uncertain IRESs (wind and so-

lar power). The uncertainties of IRESs cannot be adequately represented in the deterministic

model. However, the stochastic model captures the wind and solar power uncertainties in dif-

ferent scenarios. Different cases of IRES realizations, as well as the load and generator outage

uncertainties, have been considered. Therefore, stochastic model is more robust than the deter-

ministic ones. Just like the scheduled UC reserve in Fig. 6.9, higher reserve requirement will lead

to a higher reserve margin in the real time ED reserve. Correspondingly, the cost is also higher

for lower risk (higher reserve margin). The trade-off and the reserve strategies can be determined

by the system operators for their preferences during decision making.
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6.6 Conclusions

It is very important to address the uncertainty problem comprehensively by including different

sources of uncertainty. A comprehensive computational framework for uncertainty integration

in DPSs with IRESs has been proposed in this chapter. In contrast to previous studies, the load,

wind and solar power forecast uncertainties as well as the uncertainty from generator outages are

included in the proposed framework. A new scenario generation method is proposed to model

the uncertainty of IRESs such as wind and solar power forecasting. Then these uncertainties are

all represented as scenarios and incorporated into a stochastic SCUC model, and a heuristic GA

is utilized to solve this stochastic SCUC problem. Five deterministic and four stochastic case

studies have been investigated and compared together. Different UC and reserve strategies have

been demonstrated. According to the results, the overall costs are lower than the only wind case

in Chapter 5 due to the penetration of solar power. The RNSs in the deterministic cases of the

integration framework are also larger than the only wind case. It implies the superimposed effect

of uncertainties in the computational framework for uncertainty integration. Comparative results

show the power systems run higher level of risk during peak load hours. The stochastic model is

more robust than the deterministic ones.
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Chapter 7

Conclusions and Future Work

In this final chapter, major findings and contributions of this research are summarized. Their

implications are discussed and areas for future work are suggested.

7.1 Overall Conclusions

This study explored uncertainty modeling methods applied in distributed power systems (DPSs).

The uncertainty modeling methods for forecasting and incorporating forecast uncertainty into

unit commitment (UC) in DPSs for decision making were developed. After the literature review

on uncertainty modeling and DPSs, a new and efficient uncertainty modeling method for fore-

casting using the neural network (NN)-based prediction intervals (PIs) was proposed. The PSO-

based LUBE method was then extended and applied to electrical load and wind power interval

forecasting. Sufficient case studies from different areas have been implemented. The forecasting

results clearly show the advantages of the proposed PSO-based LUBE method in terms of quality

of PIs and computation time.

Wind power forecast uncertainty was further incorporated into the stochastic UC schedul-

ing and economic dispatches (EDs) for decision making and risk assessment. Finally, a computa-

tional framework was proposed for uncertainty integration in DPSs. Load, wind and solar power

forecast and the generator outage uncertainties were integrated together. Five deterministic and
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four stochastic case studies were investigated from the perspective of generation costs and avail-

able reserves. Simulation results prove that the stochastic model outperforms the deterministic

ones. There are some differences between the scheduled reserves and real time ED reserves.

Power systems run higher level of risk during peak load hours and these potential risks need to

be considered by system operators during decision making.

7.2 Main Contributions

Penetration of intermittent renewable energy sources (IRESs) such as wind and solar power into

traditional power systems has significant impacts on system operation, economics, reliability

and security. Forecasting and UC scheduling with uncertain IRESs have become a lot more

challenging and important than before in daily operations of DPSs. The main contributions of

this research consist of the following aspects:

• A Comprehensive Overview of Uncertainty Modeling in DPSs

1) This was the first systematic overview of uncertainty modeling approaches in DPSs

and some application case studies were implemented. Uncertainty representations of

different sources of uncertainty associated with IRESs were comprehensively inves-

tigated.

2) A comprehensive investigation on forecasting, UC and renewable energy integration

was conducted from the uncertainty quantification point of view. i) The uncertainty

modeling methods for forecasting and UC problems in DPSs were reviewed. ii) The

traditional and new LUBE methods for construction of NN-based PIs were intro-

duced and compared. iii) UC with IRESs, i.e., the UC problem formulations and dif-

ferent solution methods were investigated. iv) Incorporation of wind power forecast

uncertainties into UC and other DPS applications were reviewed and the drawback

of current study was summarized.
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• Advanced Uncertainty Handling Methods for Forecasting

1) A recently introduced PI construction method named LUBE method was applied and

extended. A new width evaluation index PINRW, which is suitable for NN training,

was proposed. Further, a new cost function was developed for the comprehensive

evaluation of PIs based on their width and coverage probability. PSO with mutation

operator was used for minimizing the cost function and adjusting NN parameters

in the LUBE method. The proposed PSO-based LUBE method showed significant

improvements in the quality of results and speed.

2) A new problem formulation for PI construction was proposed. The primary multi-

objective problem was successfully transformed into a constrained single-objective

problem. Advantages of this new formulation are its closeness to the original problem

and require fewer parameters than cost functions. Correlation analysis was applied

to help choose the inputs of NN models. Comparative results for both load and

wind power generation datasets suggest that not only were high PICP and narrow

PINAW obtained, but also the PI construction time remained short. Quality of PIs

was significantly improved when compared to ARIMA, exponential smoothing and

naive models.

• Incorporation of IRES Forecast Uncertainties into Stochastic UC for Decision Making and

Risk Assessment

1) A new scenario generation method was proposed. This method built an important

bridge between the PIs and the scenarios used in the stochastic model. Wind gen-

eration uncertainties were considered as a stochastic process through the generated

scenarios. A security-constrained UC (SCUC) model with uncertain wind power was

built and genetic algorithm (GA) was proposed to solve the stochastic SCUC prob-

lem. Five deterministic and four stochastic case studies were implemented. Two
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kinds of generation costs and available reserves for different UC strategies were dis-

cussed and compared together.

2) A computational framework for uncertainty integration in DPSs with IRESs was pro-

posed. Load forecast uncertainty was assumed to follow a normal distribution. Wind

and solar power forecast uncertainties were represented by a list of PIs and the pro-

posed scenario generation method was applied to generate scenarios from PIs. The

uncertainty of generator outages was modeled as the discrete scenarios. Load, wind,

solar and generator outage uncertainty scenarios were further incorporated into a

stochastic SCUC model. Deterministic and stochastic cases were implemented to in-

vestigate the impacts of generation costs and reserves on system operations from the

decision making and risk assessment point of view.

7.3 Future Work

The PSO-based LUBE method for constructing PIs would be a useful tool to improve the exist-

ing uncertainty handling method for load and wind power forecasting in DPSs. The proposed

scenario generation method and the integration framework have provided valuable insight into

the decision making and risk assessment for system operators under uncertainties. Further im-

provements and interesting areas for future research are as follows:

• The PSO-based LUBE method can be extended to other forecast tasks involving uncertain-

ties, such as electricity price forecasting and transportation system uncertainty modeling.

• In order to reserve the uncertainties in the original demand datasets, we did not have spe-

cial considerations during holidays and weekends for short-term load forecasting. Elec-

trical loads usually have different patterns and higher uncertainties during holidays and

weekends. Further improvements should be made by smoothing out the holiday datasets

through average, separating the weekends from weekdays and applying enhanced input
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selection methods.

• The proposed scenario generation method and the stochastic models may be applied to

other statistical applications for the representation of a stochastic process.

• In SCUC test systems, the focus was on incorporating the wind power forecast uncer-

tainties into stochastic UC for decision-making rather than building a very complex test

system. Thus some constraints in UC were omitted, such as the transmission line con-

straint and the ramping rate constraint of generators. A direct extension of this work is to

consider more constraints in UC and use bigger test systems. For example, the number of

units can be extended up to 100. New test cases, such as the 26-unit or 52-unit systems,

would be further investigated. Some reliability and risk assessment indices, e.g., standard

deviation of the scenario cost, will also be considered.

• The proposed PSO-based LUBE method and scenario generation method make little as-

sumptions about data distributions. Therefore, they can be generally and easily conducted.

It would also be interesting to extend the methodologies to other areas in smart grid ap-

plications for uncertainty modeling, such as renewable integrations, optimal bidding in

electricity market and optimal sitting and sizing of distributed generations.

• In the proposed computational framework for uncertainty integration, the uncertainty rep-

resentation methods for different uncertainty sources could be further improved. For ex-

ample, the capacity outage probability table and the Markov model can be applied to repre-

sent the uncertainty of generator outages. The proposed computational framework would

be shifted to other applications involving different kinds of uncertainties, such as the smart

grid and transportation system for uncertainty quantification and integration.
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Appendix
The Load Data and Unit Data for the UC Test System

Table 1: Load Data for 24 Hours

Hour Load (MW) Hour Load (MW) Hour Load (MW)

1 700 9 1300 17 1000

2 750 10 1400 18 1100

3 850 11 1450 19 1200

4 950 12 1500 20 1400

5 1000 13 1400 21 1300

6 1100 14 1300 22 1100

7 1150 15 1000 23 900

8 1200 16 1050 24 800

Table 2: Unit Data 1 for the 10-Unit System

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Pi,max(MW) 455 455 130 130 162

Pi,min(MW) 150 150 20 20 25

ai($/h) 1000 970 700 680 450

bi($/MWh) 16.19 17.26 16.60 16.50 19.70

ci($/MW 2h) 0.00048 0.00031 0.00200 0.00211 0.00398

TUpi (h) 8 8 5 5 6

TDowni (h) 8 8 5 5 6

HSU($) 4500 5000 550 560 900

CSU($) 9000 10000 1100 1120 1800

T coldi (h) 5 5 4 4 4

Ti,0(h) 8 8 -5 -5 -6

FLAC 18.61 19.53 22.24 22.01 23.12
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Table 3: Unit Data 2 for the 10-Unit System

Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pi,max(MW) 80 85 55 55 55

Pi,min(MW) 20 25 10 10 10

ai($/h) 370 480 660 665 670

bi($/MWh) 22.26 27.74 25.92 27.27 27.79

ci($/MW 2h) 0.00712 0.00079 0.00413 0.00222 0.00173

TUpi (h) 3 3 1 1 1

TDowni (h) 3 3 1 1 1

HSU($) 170 260 30 30 30

CSU($) 340 520 60 60 60

T coldi (h) 2 2 0 0 0

Ti,0(h) -3 -3 -1 -1 -1

FLAC 27.45 33.45 38.14 39.48 40.06
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