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Summary 
 

Organisms respond to genetic or environmental perturbations by modulating their 

cellular metabolism. Changes to these metabolic processes are orchestrated through the 

regulation of multiple biological processes, such as gene expression, protein synthesis or 

enzymatic reactions, among others. Metabolites that are intermediates or end-products of 

these regulatory processes, can be regarded as the ultimate biochemical phenotype of a 

cellular system. Traditionally, regulatory molecules and their mechanisms have been 

studied using a reductionist approach, targeting only the specific pathway and its 

intermediates. In order to understand the systems level regulatory interactions that 

determine the physiological state of a cell, statistical analysis of metabolomics data in 

combination with other omics data can be used. However, there are still large gaps in our 

understanding of how to systematically: (i) estimate and remove non-biological sources of 

variation in high-throughput datasets; (ii) characterize the influence of natural variation or 

genetic perturbation on the metabolome, and (iii) derive accurate and biologically informed 

identification of the regulatory control of metabolic networks of the cell.  

Motivated by these unresolved challenges, this thesis aims to understand how an 

organism’s metabolite profile is influenced by (i) unwanted non-biological artefacts; (ii) 

natural variation; (iii) induced genetic perturbation, with an aim to provide important 

insights on the regulatory and molecular mechanisms involved. By addressing these 

specific questions, the following knowledge was gained:  

 To derive biologically meaningful information from high-density datasets, the data 

should be free from unwanted variation such as batch effects. To this end, 

multivariate statistical techniques were used to identify batch effects in an 



xi 

 

 

untargeted metabolome survey and a filtering procedure based on the singular 

value decomposition was developed to remove these batch effects. This technique 

removed unwanted variation while permitting recovery of signals of biological 

origin (Chapter 3).  

 To understand the influence of natural variation in the metabolic profiles, data 

generated from an untargeted metabolite survey of oleaginous algae-Chlorella 

species was used (Chapter 4). Statistical analysis of the metabolic profiles revealed 

(i) discordance between ribosomal-based phylogenetic classification and 

metabolic phenotypes; (ii) metabolic diversity between strains to be growth-stage 

dependent and influenced by habitat-specific variations; (ii) strain-specific 

associations with physicochemical traits. The top performing strains were enriched 

in metabolites belonging to isoprenoid and energy metabolism.  

 To understand the regulation of biochemical processes that generate metabolite 

diversity, genetic perturbation-based approaches were used in Arabidopsis 

(Chapter 5). Analysis of multi-omics datasets using an integrative omics approach 

revealed (i) shared regulatory mechanisms between glycosylation of primary and 

secondary metabolites; (ii) coordinated regulation of processes associated with 

metabolite glycosylation and phytohormone biosynthesis; (iii) dependence of plant 

defence strategies on mechanisms that increase metabolite diversity.  

Taken together, the approaches developed in this thesis, integrate environmental 

factors and metabolic network components with metabolomics data using statistical 

methods to provide insights into the functioning of complex cellular phenotypes.   
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1. Introduction 

“In God we trust; all others must bring data.” 

… W. Edwards Deming 

1.1. Era of big data and integrative omics 

Technological advances in the fields of physical sciences, computing and 

engineering have herald in drastic changes to the way data is generated, stored and 

analysed. Ease of data generation along with the availability of high computational 

power has led to increasing use of statistics in analysing networks, be it social or 

biological (such as transcriptional or metabolic networks). Biologists already familiar 

with handling big datasets from the time of microarray, have now embarked on 

designing larger experiments producing high density datasets.  

This confluence of statistics, computing and biology has created an 

environment conducive for mining and analysing large biological datasets (Marx, 

2013). In this study, we have focused on developing computational solutions for 

analysing metabolic phenotypes by integrating omics datasets to discover novel 

biological relationships.  

1.2. Metabolomics and transcriptomics 

Metabolites are substrates and end-products of enzymatic reactions regulated 

through dynamic biochemical and gene expression changes in the cell (Fiehn, 2002). 

Metabolomics attempts to study the role of metabolites in the physiological and 

developmental state of cells, tissues, organisms and their responses to perturbations. 

Measurement technologies such as mass spectrometry (MS) or nuclear magnetic 

resonance spectroscopy (NMR) (described in Section 2.1.5) are commonly used for 

profiling metabolite levels. Such measurements of metabolite concentrations, along 

with their metabolic pathway information are used for deriving biological 
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interpretations. By providing a real-time measure of the metabolite signals in various 

metabolic pathways, metabolomics approaches provide an accurate snapshot of the 

specific biochemical phenotype (Katajamaa and Oresic, 2007; Raamsdonk et al., 2001). 

Metabolomics approaches can be used to provide a critical assessment of complex 

phenotypes, as well as identify biomarkers related to diseases sub-types, physiological 

responses and the like (Baker, 2011).  

The increasing availability of genome-wide datasets (Suhre et al., 2011; Wen 

et al., 2014), providing interactions between genes and metabolites (Hirai et al., 2005; 

Kresnowati et al., 2006) has now made it possible to establish that cellular metabolic 

phenotypes are directly affected by changes to gene expression levels. Cell growth and 

maintenance is orchestrated via enzyme mediated regulation of metabolite levels, that 

mostly occur via transcriptional and/or translational changes, post-translational 

modifications, binding of small molecules in response to genetic or environmental 

factors (Saito et al., 2010; Zelezniak et al., 2014). Knowledge of such regulatory 

mechanisms increasingly depend upon understanding the genetic structure and gene 

expression levels (Fiehn, 2002). In order to characterize the changes in the genome‐

wide RNA expression patterns, global transcriptome analysis is used.  

1.3. Coordination of metabolic networks – the key to an organism’s 

response to change 

Metabolic pathways are co-ordinately regulated at multiple levels and are 

organized in the form of metabolic networks in a cell. These networks are scale-free, 

contain metabolites as nodes and provide basic biochemical building blocks, enable 

growth and maintenance of biological systems. Metabolic networks allow organisms 

to respond to perturbation and environmental factors by modulating metabolic 

reactions in these networks. For example, plants being sessile, modulate biochemical 

reactions to tolerate various abiotic stresses such as light, nutrient, temperature and 
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biotic stresses such as pathogens, and herbivores among others (Obata and Fernie, 

2012).  

1.3.1. Regulation of metabolic networks 

Knowledge of regulatory mechanisms governing metabolic processes is 

essential for understanding the changes in the biochemistry and physiology of the 

system in response to perturbation. Variation in metabolite levels serve as functional 

indicators of regulatory processes influencing the physiological state of a system. 

Variation in the levels of metabolites can broadly be due to (i) non biological sources- 

such as instrument, sampling or experimental errors, (ii) natural variation or 

environmental factors, referring to macroscopic natural fluctuations such as changes to 

growth conditions, temperature etc., (iii) external perturbations, such as those that 

occur through the regulation of gene expression or that modify natural growth 

conditions.   

Furthermore, the intricate network of interactions between metabolites are 

likely to regulate a number of biological processes, rather than affecting only a specific 

pathway. However, the feedback mechanisms that regulate metabolite levels via 

translational control, signal transduction pathways, or allosteric regulation are poorly 

understood, while protein abundances or enzymatic activities are also difficult to 

measure. Therefore, in order to understand an organism’s response to perturbation, 

their genetic potential and genotype-phenotype relationships, a clear conceptual 

framework with multi-level measurements of biological entities is required.  

Integrating metabolomics and transcriptomics datasets can provide new 

insights into biochemical processes by linking lower level biological entities (such as 

DNA, RNA and metabolites) and higher organizational levels (such as physiological 

and phenotypic response) (Bino et al., 2004; Hendriks et al., 2011). Furthermore, 
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metabolite profiling can also be used to identify novel functions for genes and aid in 

genome annotation (Prosser et al., 2014).  

1.3.2. Metabolomic profiling- measuring metabolite levels 

Metabolites possess increasingly diverse physicochemical properties with 

varying concentration levels that typically range from picomolar to millimolar (Bedair 

and Sumner, 2008; Boccard and Rudaz, 2014). Thus, analytical tools, which can cover 

this vast chemical space and also provide unbiased and accurate quantitative 

measurements of the concentration levels are required. With these criteria, mass 

spectrometry-based metabolomics provide the best platform technology for obtaining 

non-targeted, high-throughput metabolite profiles of the complete metabolome (Bedair 

and Sumner, 2008; Lei et al., 2011; Werner et al., 2008b). The high accuracy of mass 

spectrometers enable the detection of exact masses of metabolites that can serve as 

putative indicators of molecular formula or structures.   

These non-targeted mass spectrometry-based metabolomics experiments 

which provide extended coverage of analytes along with measurements on interacting 

data layers, generate massive data structures. Furthermore, MS-based metabolomics 

experiments, being extremely sensitive to sample and analytical conditions, produce 

datasets wherein the actual biological variation is highly confounded with non-

biological sources of variation. Additionally, genetic or environmental perturbations 

also alter metabolite abundances by reprogramming metabolic pathways. Thus, 

appropriate statistical procedures for handling such datasets should factor in the 

different sources of variation affecting the metabolite profiles. 

Understanding and characterizing these complex datasets pose numerous 

analytical challenges at different stages of the experimental lifecycle, ranging from data 

extraction through to biological interpretation. Though a number of methods, 
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techniques and tools have been designed to address these challenges, unique problems 

associated with the application of metabolite profiling remain.  

1.4. Motivation for current research 

The basic tenets of scientific research are directed towards increasing 

knowledge and providing key avenues for further research in any domain. Thus, being 

in the increasingly challenging and emerging field of metabolomics, identifying 

metabolic strategies and networks in various biological systems is a key objective. 

Understanding the properties of such biological networks, including their architecture, 

regulatory processes, and robustness to evolutionary, environmental and genetic 

changes is key to predicting and engineering desired responses. Progress in 

understanding such networks is predicated on generating accurate descriptions, 

typically by measuring qualitative and quantitative relationships among the biological 

entities in different layers (e.g., transcriptome, metabolome, proteome) in response to 

perturbations.  

Studies using metabolomics approaches have excellent capabilities to estimate 

the effect of different treatment conditions, and provide insights as to how genetic 

information and environmental factors can influence cellular metabolic responses and 

phenotypic characteristics (Hendriks et al., 2011). However, to fully exploit the wealth 

of information in such datasets, multivariate statistical approaches and integrative 

omics strategies that can elucidate complex biological interactions, taking into account 

the influence of other non-biological sources of variations, needs to be developed.  The 

work presented in this study specifically attempts to contribute to the understanding of 

the influence of natural variation or perturbation on the metabolic phenotype of a cell, 

by emphasizing on issues related to metabolomics data analysis and knowledge 

discovery.  
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1.4.1. Organization of the thesis 

A detailed review of the current state of metabolomics challenges, platform 

technologies, and data analysis techniques are provided in Chapter 2. Following are 

the specific questions addressed in the different results based Chapters of this study:  

Chapter 3: How does non-biological variation affect the metabolomics 

profile?  

Mass spectrometry-based metabolomics experiments are extremely sensitive 

to the non-biological sources of variation, such as sample extraction or analytical 

conditions. Furthermore, such experiments generate large and complex data that are 

confounded by multiple sources of technical and biological artefacts. Combining data 

from such experiments performed over long time periods of time (weeks/months) or 

assayed in different batches present numerous challenges. These are often overlooked 

in current pipelines, and may lead to systematic errors, such as batch effects, that could 

be misinterpreted as being of biological origin (Leek et al., 2010).  

We have developed approaches for identifying and removing sample and 

assay-related (batch) effects in untargeted metabolome data using multivariate 

statistical techniques. We demonstrate the use of a filtering procedure based on the 

singular value decomposition (SVD) on untargeted metabolite profile data from 

oleaginous algae- Chlorella, to remove structure in data related to day of sample assay. 

The batch effect corrected data is then analysed in an integrated manner to derive 

meaningful biological information in Chapter 4. 

Chapter 4: How do environmental and biochemical factors affect metabolic 

resource partitioning strategies? 

Cellular metabolism of organisms is tightly regulated in response to 

environmental pressures. Understanding the impact of habitat and biochemical factors 

on an organism’s growth and physiology is extremely important, especially in 
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biological systems, whose bio-products are extremely sensitive to such factors. 

Increasing energy demands has led to the search for alternative sources of energy, with 

biofuel from algae being one of the most promising (Brennan and Owende, 2010).  

The yield of bio-energy products in high cell densities depends on the 

metabolic resource partitioning strategies employed by the organism.  Therefore, in this 

study, we used untargeted high-resolution mass spectrometry along with biochemical 

profiling to understand the metabolic differences at exponential and stationary growth 

stages of 22 naturally varying Chlorella strains isolated in Malaysia by our 

collaborators from University of Malaya (UMA).  

Chapter 5: What is the impact of genetic perturbations on the metabolic 

network?  

Metabolites have important functional and ecological roles, such as regulating 

defence, growth, providing stress tolerance, and are highly valuable as 

pharmaceuticals. These diverse functions are orchestrated through intricate metabolic 

networks, for example in plants, these networks involve almost 200,000 secondary 

metabolites (Wink, 2010). The diversity of metabolites mainly arise through 

biochemical processes such as conjugation (e.g., glycosylation). While the individual 

enzymes and metabolites involved in these processes are known, there are large gaps 

in the field about (i) how the different molecular entities that are involved in 

conjugation processes, function in coordinated networks; and (ii) how metabolite 

conjugation is regulated in response to other processes, such as development and 

defence.  

We used a putative glycosylation regulatory mutant- tt8, in the model plant 

Arabidopsis thaliana, to understand the regulatory processes governing metabolite 

conjugation and its impact on the gene-metabolite relationships in the metabolic 
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network. To discover novel glycosylation targets of TT8 and its regulatory network, 

we developed and used an integrative omics approach.  

Finally, Chapter 6, summarizes the key findings and contributions of the 

thesis, and provides recommendations for future work. An outline of the data analysis 

tools developed/implemented in two interdisciplinary collaborative projects during the 

present work is also provided in the Appendix. Important aspects of this study, along 

with the overall organization of the topics analysing perturbational effects on metabolic 

networks, are depicted in Figure 1.1.  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 
 

 

Figure 1.1. Scope of the present work- research depth, breadth and width
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Parts of this review is published as a book chapter- Rai A, Umashankar S and 
Swarup S, “Plant Metabolomics: From Experimental Design to Knowledge 

Extraction”. Legume Genomics Vol. 1069, Methods in Molecular Biology. 

 

2. Literature review 

“What was vital was overlaid and hidden by what was irrelevant.  

Of all the facts which were presented to us, we had to pick just those  

which we deemed to be essential” 

... Sherlock Homes in ‘The Adventure of the Naval Treaty’ 

 

The literature reviewed here has been organized into two parts. The first part of the 

review provides an overview of metabolome, metabolomics approaches and data 

analysis strategies. In the second part, metabolic networks, multi-omics approaches and 

challenges are discussed.  

2.1. Metabolome  

The term “metabolome” refers to the complete collection of metabolites 

synthesized by a biological system. Metabolites have important structural and 

functional roles, and are low molecular weight intermediates or end products of 

biochemical reactions occurring within cells (Bhalla et al., 2005; Fiehn, 2002). Real-

time measurement of metabolite levels through metabolite profiling techniques help 

determine the active biochemical processes in an biological system (at the time of 

measurement), and provide an accurate biochemical phenotype (Fiehn, 2002).  

Measuring metabolite level fluctuations provides important insights into the 

interactions between the genotype and the environment, and also the various sub-

cellular modifications that are a part of homeostasis. This information can be used to 

assess the cellular response to environmental changes (Bhalla et al., 2005) and in 

functional genomics strategies (Bino et al., 2004; Fiehn, 2002).  
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The metabolic profile of a biological system isolated from a specific location, 

developmental stage or environment represents a unique metabolite signature for that 

particular system observed at that instant of time and in that highly specific 

physiological state.   

2.1.1. Metabolite classes and diversity 

Metabolites possess an enormous range of physicochemical diversity, for 

example, in plant kingdom alone there are nearly 200,000 different types of metabolites 

(Wink, 2010). The activity and sub-cellular specificity of metabolites to organs, tissues 

and biochemical pathways arise mainly due this diversity. Metabolites are classified as 

either primary metabolites such as sugars, amino acids, and organic acids or secondary 

metabolites such as phenylpropanoids, terpenoids and alkaloids. This classification is 

based on their functional roles, with primary metabolites playing an active role during 

growth, development and central energy conversion cycles, while, secondary 

metabolites, are mostly involved in specialized functions, such as coordinating cellular 

response to environmental perturbations and in signalling (Hartmann, 2007). These 

functions of secondary metabolites, require them to be synthesized and localized in 

specialized cells, tissues, or organs. 

Secondary metabolism pathways are generally specialized to cell or tissue type 

during initial differentiation stages (Rhodes, 1994). Such specialization of metabolic 

pathways also exist between different compartments within the cell. For example, 

recent reports have emphasized on the dynamic and highly specific phyto-metabolome 

by  assessing the specificity of foliar metabolic responses in plants to fungus 

(Schweiger et al., 2014). 

The diversity in structures and functions of secondary metabolites arise mainly 

through biochemical processes, such as conjugation, that change the basic chemical 

properties of a small number of core metabolites (Hartmann, 1996).   Such changes to 

the chemical structure of the metabolites confer new functional properties such as 
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altered bioactivity, subcellular mobility, compartmentalization among others. For 

example, these processes help mediate inactivation of toxic forms of metabolites 

(Winkel-Shirley, 2001) and de novo biosynthesis of new compounds among others 

(Sakakibara, 2006).  

A number of conjugation processes such as glycosylation, sulfation, 

acetylation, methylation, amino acid conjugation, gluthatione conjugation  and 

lipophilic conjugation exist in nature (LeBlanc, 2007). Specialized enzymes such as 

carbohydrate active enzymes (CAZy) (Lombard et al., 2014) are involved in 

conjugation of metabolites and are responsible for generating the secondary metabolite 

diversity.  The importance of these processes in secondary metabolism can easily be 

judged by the fact that nearly 4% of the genome of higher plants encodes CAZy.  

Advances in metabolomics approaches have led to a better understanding of 

the classification and roles of primary and secondary metabolites. With many 

secondary metabolites also identified to have important roles in growth and 

development, most scientists now consider the differentiation between primary and 

secondary metabolites as obsolete.  

2.1.2. Metabolomics 

Metabolomics is the comprehensive analysis of the metabolome by profiling 

metabolite levels (Fiehn, 2002) using various measurement technologies (described in 

Section 2.4). The practice of using ‘metabolomics’ to describe analytical and 

quantitative measurement of metabolite began with Oliver et al (Oliver et al., 1998). 

However, it is only in the last decade where technological developments have provided 

a breakthrough to the increasing use of metabolomics in research, as witnessed in the 

exponential growth in the number of articles returned by PubMed search for the term 

‘metabolom*’ (* is a wild card, includes metabolome, metabolomic and metabolomics,  

accessed June 2014) (Figure 2.1).   
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Metabolomics complements other omics approaches and provides unique 

advantages that help understand the relationship between mechanistic biochemistry and 

cellular phenotype (Gary et al., 2012; Goodacre et al., 2004). 

 

Figure 2.1. Number of articles in PubMed  

Firstly, due to the complex regulatory mechanism in cells, changes to gene or 

protein expression levels might not directly result in a change in the morphological or 

biochemical phenotype. Unlike genes or proteins that might be subjected to post-

translational or epigenetic regulations, metabolites whose structures are determined via 

metabolite profiling techniques serve as direct signatures of biochemical activity, and 

can be used to detect unexpected pleiotropic effects. Thus, metabolomics approaches 

can be used to determine biochemical processes that are activated in a particular 

phenotype. Such analysis in combination with the transcriptomic information can be 

used to understand regulatory networks controlling these phenotypes, thereby 

providing important clues to understand the genotype-to-phenotype relationship. For 

example, comparing metabolite profiles using differential metabolite analysis helped 

uncover the effects of a silent mutation in yeast (Raamsdonk et al., 2001) and in potato 

(Weckwerth et al., 2004).   

Secondly, with advances in computational and analytical technologies, 

metabolomics has attained the technical robustness to provide alternate and 
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complementary measure of phenotypes. Using the concept of Metabolic Control 

Analysis (Kell and Mendes, 2000; Teusink et al., 1998) which states that metabolite 

levels serve as direct substitute for physiological measurements, metabolomics 

experiments  can be used to measure changes to biological parameters such as gene or 

protein expression levels, without knowing anything about an organisms genetic 

makeup or its regulatory networks. Multi-omics approaches provide quantitative 

descriptions of cellular regulation and identify early metabolic biomarkers in disease 

progression. For example, by analysing metabolite fluxes together with transcriptome 

profiles, metabolic reprogramming strategies leading to tumorigenesis have been 

identified (Sreekumar et al., 2009; Zhang et al., 2012). 

Systematic analyses of metabolic snapshots of environmental and microbiome 

samples offers great potential to identify hitherto unknown novel bio-active compounds 

and pathways (Medema et al., 2011; Steen et al., 2010). Understanding such novel 

biological designs will lead to better metabolic engineering strategies in synthetic 

biology applications, for example, to produce or consume key metabolites in response 

to environmental cues. Furthermore, with most natural products from secondary 

metabolism being induced under conditions associated with their habitat and lifestyle, 

exploring these natural variants can aid in the identification of natural products with 

important commercial and pharmaceutical values (Clardy and Walsh, 2004). This 

strategy has been used to understand the metabolic markers of biotechnological traits 

useful for biofuel production in Chapter 3.  

2.1.3. Analysing the metabolome 

At any given time, the metabolic state of a cell is maintained through the 

regulation of dynamic biochemical processes in response. By coordinating metabolite 

levels, these processes provide the basic building blocks of cell metabolism ensuring a 

thermodynamically favourable environment for growth and development. The 

regulation of metabolite levels and metabolite network connectivity can be studied 



14 

 

using metabolomics approaches. This provides a unique metabolic fingerprint for each 

system, where the specific metabolic response can be correlated to different sources of 

variation. Studying perturbations which alter gene and metabolite levels, and thereby 

regulating metabolic activity provide a mechanistic view of the regulatory networks 

(Jansen, 2003). In particular, it will be of interest to understand the degree to which 

gene expression changes affect metabolite concentration. There are two possible 

scenarios in which metabolomics approaches can provide valuable insights: 

2.1.3.1. Natural intrinsic variations 

This is an intriguing feature of cell metabolism, wherein genetic variation 

between organisms, or diverse environmental factors create distinct metabolic 

phenotypes. These metabolic signatures are indicative of the natural variation present 

in such organisms, and can be used to understand how an organism’s genetic makeup 

complement’s its environment and enable it to survive in a unique ecosystem. The 

advent of multi omics technologies has facilitated an ecosystems biology approach, 

wherein, genome wide association studies of an entire population are sampled and the 

inherent genetic and metabolic variation are analysed. These approaches are also used 

for identifying novel bio-products in their natural state and can provide the data for 

unravelling complex interplay between genes and environment. For example, 

understanding ecological principles governing growth and production of desired 

compounds in microbiomes, can help design efficient metabolic engineering strategies 

(Bouslimani et al., 2014; Nah et al., 2013; Yen et al., 2013). Environmental samples 

have higher levels of inherent variation and require robust experimental design 

[discussed in Section 2.5]. 

In this thesis, the variation in the metabolite profiles due to (i) non-biological 

sources (Chapter 3); (ii) natural variation (Chapter 4); and (iii) genetic perturbations 

(Chapter 5) are discussed.   
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2.1.3.2. Deliberate and controlled perturbations  

The genetic basis for metabolite regulation, diversity, concentration, and the 

interrelationships between metabolic pathways, regulatory networks can be studied 

using perturbation-based approaches. These studies are designed to link genotype with 

the corresponding phenotype. Such perturbational strategies can be: 

2.1.3.2.1. Localized 

The change in metabolite levels resulting from a localized intervention, such 

as targeting genes at specific steps in a pathway are used to understand the cause and 

effect relationship. Typically loss-of-function (gene silencing, mutagenesis), gain-of 

function (transgenesis), chemical elicitors or inhibitors, RNAi or amiRNA approaches 

are used in this functional genomics approach (Jansen, 2003). Furthermore the effect 

of the localized intervention can be used to estimate the causal relationships arising out 

of pleiotropic effects in the global metabolic network.  

2.1.3.2.2. Global 

Biological systems thrive even in harsh environmental conditions by 

reconfiguring their metabolic networks to ensure that metabolic homeostasis is 

maintained. Measuring metabolic responses during treatments applied to the entire 

system such as biotic or abiotic stressors, transient or diurnal time series in natural 

conditions, other environmental changes (stress, nutrients etc.) can provide clues to 

understand the changes to the organism’s biochemical processes as a response to 

perturbations. In this case, changes to the metabolic network might be induced at 

multiple branch points, thereby affecting a large number of metabolites simultaneously. 

These network-wide perturbations can also be used to guide a more localized analysis. 

For example, identifying that GLDC enzyme was correlated with tumorigenesis, led to 

a more targeted study using a perturbational models [described in Appendix 1] (Zhang 

et al., 2012).  
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2.1.4. Qualitative Vs Quantitative approaches in metabolomics 

Metabolomics approaches can be designed to provide either a qualitative 

description, such as nature, physicochemical properties of metabolites and/or 

quantitative analysis where metabolites and their levels are analysed. For example, to 

differentiate classes of metabolites selectively enriched between legumes grown in a 

fertile soil with those grown in drought conditions, qualitative analysis can be 

performed.  The results from such analysis can be used for identifying biomarkers 

indicating the physiological state of an organism in response to its environment, as well 

as to compare wild-type and genetically engineered systems (Alisdair et al., 2004).  

Accurate absolute or relative metabolite concentrations can be quantitatively 

measured to analyse flux changes, metabolic reprogramming strategies, differential 

activation of pathways when comparing different genotypes, treatment conditions, 

environmental perturbations etc. An unbiased approach to profile as many metabolite 

as possible is used. These analyses help derive specific biological question, wherein 

either a targeted approach or a non-targeted approach can be used. 

2.1.4.1. Targeted metabolomics 

This approach is generally used when testing a specific hypothesis, wherein 

the possible metabolic targets or pathways affected are known. For such approaches, 

good knowledge of the biological problem is desired as this will ensure that the 

sampling strategy captures the maximum change in metabolite levels. Furthermore, 

sound knowledge of extraction chemistry is also required to design the extraction and 

sample preparation steps for isolating specific classes of metabolites (Halabalaki et al., 

2014; Kim and Verpoorte, 2010; Parab et al., 2009). The extracted metabolites are then 

quantified using tandem MS or NMR spectroscopy-based approaches. Using such 

techniques, new classes of metabolites and novel connections in metabolic networks 

can be discovered. For example, these approaches can be effective in analysing the 

levels of desired compounds, such as in the field of nutritional metabolomics (Jones et 



17 

 

al., 2012), food safety/quality (Cevallos-Cevallos et al., 2009), environmental 

chemistry and toxicology (Viant and Sommer, 2013), identification of biomarkers of 

diseases (Kaddurah-Daouk et al., 2008), or effects of genetic modifications on a 

specific enzyme (Fiehn, 2002). 

2.1.4.2. Non-targeted metabolomics 

To obtain a comprehensive, unbiased coverage of the entire metabolome, a 

non-targeted metabolomics approach is used. The non-targeted nature of these 

approaches provide a methodological starting point generating data-driven hypotheses. 

These approaches can be used to identify novel bio-products (Bouslimani et al., 2014), 

new connections between metabolic pathways, and uncovering biochemical 

phenotypes of novel biological systems such as microbiomes (Segata et al., 2013). 

These new links between cellular pathways and biological mechanisms aid in a better 

understanding of cell biology, physiology and can be used to engineer novel products.  

A combination of first non-targeted, and then targeted approach is suggested 

to perform an unbiased characterization of the metabotype and to subsequently identify 

novel metabolites. For example, non-targeted approach can be used to identify the most 

affected pathway, then a targeted analysis can be performed to accurately obtain the 

concentration levels of metabolites from that pathway.  

2.1.5. Metabolomics platform technologies: Choice of metabolomics 

hardware based on experimental approach 

A number of technical and analytical challenges exist in performing 

metabolomics experiments. Firstly, there is wide physicochemical heterogeneity 

between metabolites and a broad dynamic range of abundance (Wink, 2010). These 

require multiple extraction strategies coupled with combination of analytical 

techniques to achieve adequate metabolite coverage (De Vos et al., 2007; Fernie, 2007; 

Patti, 2011). Secondly, analytical instruments with ultra-high resolution, high scan 

speeds are required to ensure that the chemical space of a broad range of metabolites is 
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covered thoroughly. These in turn produce large amounts of data, which needs 

advanced statistical analysis to obtain meaningful information (Werner et al., 2008a).  

Lastly, the biological question, sample type and experimental design should be the 

basis for choosing an analytical instrument. With the above criteria, MS and NMR 

instruments that facilitate metabolomics experiments to be performed with high 

specificity, reproducibility and in both qualitative and quantitative manner should be 

selected. A brief overview of the characteristics of these instruments is provided below.   

2.1.5.1. Nuclear magnetic resonance  

NMR provides the option to have a highly selective and non-destructive 

approach, thus, it is widely used for structure elucidation, confirmation and 

quantification of both known and novel metabolites (Kim et al., 2011; Wishart, 2008b). 

Unlike MS, NMR can be used to analyse samples existing in both solutions or as solid-

state samples. However, NMR has relatively low sensitivity, thus limiting the 

metabolic coverage. This makes NMR to be preferred mainly for targeted approaches, 

such as flux analysis using 1-D or 2-D NMR. Nevertheless, NMR has great potential 

in quality control measurements, and in chemotaxonomy to classify and characterize 

biological systems based on their distinct metabolic signatures.  (Wishart, 2008b) has 

discussed NMR-based metabolomics in depth. 

2.1.5.2. Mass spectrometry    

Mass spectrometry-based metabolomics is widely popular in both targeted and 

non-targeted approaches as it provides high resolution, sensitivity and coverage 

required for identification and quantification of metabolites. The ratio of mass-to-

charge observed of ions is measured in this technique.  These observations provide 

specific chemical information which can directly be related to the chemical structure 

and formula. For example, accurate mass, isotope distribution patterns and 

characteristic daughter ions are all produced using MS. These results are used for 

fragmentation-based structure elucidation or identification via spectral matching to 
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compound databases such as HMDB (Wishart et al., 2013), KEGG (Okuda et al., 2008) 

or MetaCyc (Zhang et al., 2005).  

The high sensitivity of MS is used to detect metabolites even at picomolar or 

femtomolar levels. High mass accuracy (detection differences less than 2ppm) and high 

resolution, make the next generation instruments, such as Fourier transform-ion 

cyclotron resonance MS (FT-ICR-MS) and Orbitrap MS to be used derive semi-

quantitative measurements of metabolite concentrations. For absolute quantitative 

measurements of metabolite levels, quadrupole ion trap mass spectrometers or triple 

quadrupole mass spectrometers (for tandem MS/MS) are used. The high sensitivity and 

resolution, comes with its caveats, requiring robust data analysis strategies for 

obtaining biological information. A detailed discussion on various stages of mass 

spectrometry-based metabolomics experiments is provided (Dettmer et al., 2007).  

2.1.5.2.1. Hyphenated mass spectrometry techniques 

The two most common approaches for MS-based metabolic profiling are either 

direct injection of the sample into MS or using chromatography techniques such as gas 

chromatography (GC), high-performance or ultra-performance liquid chromatography 

(LC) and capillary electrophoresis (CE) in conjunction with mass spectrometry 

(hyphenated mass spectrometry) to provide better separation and resolution of 

metabolite profiles.   

Direct injection-based approaches are faster compared to others as time spent 

in the chromatographic run is saved. Thus, for screening large number of samples, such 

as those from a population-based research or a large environmental study these 

approaches are used. However, direct injection of compounds are prone to matrix 

effects such as ion suppression or enhancement and lead to inaccurate quantification of 

metabolites. There are also challenges in resolving adducts during metabolite 

identification.  
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MS with chromatography-based separation enables the separation of ions 

based on its physicochemical properties such as size and charge, and thus, avoid matrix 

effects. These advantages makes chromatography coupled MS to be one of the most 

widely used approach in analysing complex samples. Furthermore, additional 

information on metabolites detected, mainly in the form of retention times of those 

metabolites is obtained. Such information is especially useful while performing 

database-dependent metabolite identification. 

GC-MS-based approaches require the analytes (thermo-labile) to be in gas 

phase, and are suitable for both volatile and non-volatile compounds following 

derivatization. This approach is widely used in targeted metabolomics where the 

chemical properties of metabolites are known. For example, GC-MS is popular in plant 

metabolomics to detect volatile metabolite contributing to aroma (Shuman et al., 2011). 

Furthermore, GC-MS has comprehensive robust metabolite libraries that can be used 

for metabolite identification (Hummel et al., 2007). The major limitation of GC-MS is 

the extensive derivatization steps, and restrictions based on the chemical properties of 

metabolite classes. Thus, liquid phase-based methods such as LC-MS have found 

favour among metabolomics researchers.  

LC-MS is generally less restrictive than GC-MS. For example, in LC-MS, 

samples can be mildly heated during ionization. This property of LC-MS makes it ideal 

for non-targeted metabolomics approaches that are performed to detect both thermo-

labile and thermo-stable metabolites. An additional analysis strategy is the flexibility 

to use a number of columns based on reverse phase, ion exchange and hydrophobic 

interactions principles (Allwood and Goodacre, 2010). Ultra-high performance liquid 

chromatography (UHPLC) provides a fast and efficient way to increase 

chromatographic resolution and detection range, while decreasing the analysis time 

compared to HPLC. The major challenge in LC-MS-based approaches is the bottleneck 

in metabolite databases. With a number of variations in separation columns, a 
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comprehensive database facilitating cross-comparisons between different approaches 

has been difficult to construct. Thus, putative metabolites are usually validated via 

NMR or tandem MS/MS and MRM (Multiple Reaction Monitoring) methods. These 

methods provide a detailed description of the chemical structures and aid in validation 

of the metabolite detected. LC-MS-based metabolomics has been reviewed in this 

article (Bin et al., 2012).  

Separation of charged metabolites can be performed using CE-MS. However, 

its sensitivity is low, hence metabolites have to be enriched before being used in CE-

MS. Furthermore, it also lacks comprehensive reference libraries. Depending on the 

objectives of the experiment, nature and range of metabolites to be detected, a number 

of ionization techniques, such as, electron ionization (EI), electrospray ionization 

(ESI), atmospheric pressure chemical ionization (APCI), chemical ionization (CI), 

MALDI, desorption ESI (DESI) and extractive ESI (EESI) can be used. Detailed 

reviews (Ernst et al., 2014; Lei et al., 2011; Rai et al., 2013) discuss strategies used in 

analytical platforms to data acquisition techniques for mass spectrometry-based 

metabolomics. 

2.1.6. Design of Experiments 

It is important to note that metabolomics data can be observed at different 

scales, such as tissues, organs, organism or communities. Each of these systems have 

their own complexities that affect, the rate at which metabolite concentration changes, 

time delays between gene-metabolite responses among others. Therefore, it is 

important to develop an experimental design that can provide insights into biological 

responses without confounding effects (Leek et al., 2010). For example, pilot studies 

should be performed in order to optimize various extraction and analytical procedures. 

The nature and class of the metabolites specific to the experiment should be examined, 

before conducting a large-scale study.  
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The experimental design can be tuned to the biological question of interest, 

after primarily addressing the data acquisitions challenges. Robust study designs 

minimizing nuisance variations (sample handling and analytical) and maintaining 

sample integrity should be used (Hendriks et al., 2011; Leek et al., 2010). Furthermore, 

good experiment designs should not only aim to reduce analytical-measurement 

variations, but, should also ensure that the experiment has considerable statistical 

power to answer the biological question. For these reasons, a pilot study along with 

thorough literature survey should be performed. These results can then be used to 

ascertain the levels of biological and technical variation in the samples. Adequate 

number of biological and technical replicates should be selected after accounting for 

the predicted variation among replicates. Such careful analysis can ensure that the 

actual experiment meets the coverage, reliability and reproducibility criteria to provide 

sound biological information. To ensure minimal confounding effects due to 

instrument or analytical variations, factorial or randomized study designs can be 

considered. Minor influences due to non-biological sources of information can be 

detected by performing exploratory data analysis during data pre-processing.  

If careful statistical considerations are taken into account at the experimental 

design phase of a multi-omics project, then there is an opportunity to build rigorous 

systems-level statistical models that fully take advantage of the interdependent 

workings of biological molecules. A number of reviews (Fernie et al., 2011; Gibon and 

Rolin, 2012; Goodacre et al., 2007) have provided detailed recommendations for 

performing well-designed, robust metabolomics experiments.  

2.1.7. Data analysis strategies in metabolomics 

High-throughput metabolomics experiments enable the detection of large number 

of signals, such as, measuring 10,000 features (ions) across different conditions. These 

measurement technologies typically produce gigabytes of data having intricate patterns 

hidden in their data structures. Such datasets, require enhanced data standards and 
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strategies involving robust, high quality statistical procedures to obtain biological 

knowledge. The data analysis procedures depend on the (i) choice of analytical 

platform, (ii) experiment design and biological question, and (iii) inherent properties 

of the data (Boccard et al., 2010) 

 Data extraction, handling and treatment procedures which greatly influence the 

ability to identify and quantify metabolites of interest, have a direct role in the 

biological interpretation (Katajamaa and Oresic, 2007). Extracting the relevant 

information from the overwhelming amount of data generated by these high throughput 

techniques is an important objective for knowledge discovery in this field (Boccard et 

al., 2010; Goodacre et al., 2004). Development of bioinformatics techniques, 

specifically for data storage and management, raw data extraction, pre-processing and 

statistical analysis, integration with other omics datasets, metabolite identification and 

metabolic modelling is crucial for future progress of metabolomics and systems 

biology (Shulaev, 2006; Wishart, 2009). 

To extract valuable information, irrespective of the analytical technique used, 

metabolomics data is analysed in the following step-wise manner: pre-processing, pre-

treatment, data analysis, validation and interpretation (Eliasson et al., 2011; Goodacre 

et al., 2007; Hendriks et al., 2011; Katajamaa and Oresic, 2007). Pre-processing 

methods transform raw signals into a representation facilitating robust statistical 

comparisons. They typically include filtering, peak alignment, noise removal, baseline 

correction, normalization and scaling (Boccard et al., 2010; van den Berg et al., 2006). 

Pre-processing is usually followed by a quality control strategy, where exploratory data 

analysis is performed to check data quality and identify any issues in sample 

processing, analytical or technical errors, batch effects etc.  

Data analysis techniques try to reduce the multi-dimensional datasets into smaller 

components, thereby enabling the researchers to identify differential metabolites, 

interesting patterns in the data structure, and visualize the dynamic information using 
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both univariate and multivariate analyses (Saccenti et al., 2014). Most analysis 

strategies utilize both supervised methods (uses prior information to guide the 

classification) such as ANOVA, partial least squares (PLS) and discriminant function 

analysis (DFA), and unsupervised (to describe the overall pattern or data structure) 

methods such as hierarchical clustering, principal component analysis (PCA) and selF-

organizing maps (Broadhurst and Kell, 2006). To aid in biological interpretation the 

differential features identified using the above techniques are then mapped onto 

metabolic pathways. Robust data analysis strategies not only provide interesting 

biological interpretations, but also help design better experiments, optimize protocols 

and reduce experimental errors (Parab et al., 2009). 

In a typical metabolomics dataset, the biological differences between samples are 

hidden under intricate patterns in the data, confounded with obscuring sources of 

variability introduced at various stages of sample generation or analysis, such as 

systematic errors during experiments, misplaced samples or instrument errors. Thus, 

separating out the relatively small but important patterns in metabolite concentrations 

related to genetic variation or multitude of environmental changes is not 

straightforward. Naïve analysis of such datasets can lead to serious misinformation 

(Leek et al., 2010). Multivariate statistical techniques for identification and removal of 

non-biological sources of variation are discussed in depth in Chapter 3.  

The vast volume of data has facilitated the development of a number of application-

specific software pipelines and advanced statistical techniques for data handling, data 

processing and mining, and visualization aiming at disentangling the complex 

regulatory processes in biological systems (Biswas et al., 2010; Pluskal et al., 2010; 

Smith et al., 2006; Xia et al., 2012). (Sugimoto et al., 2012) provide a comprehensive 

review on the bioinformatics tools and techniques available for mass spectrometry-

based metabolomics data analysis.  
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The functional annotation along with data mining and extraction of knowledge 

from the wealth of information obtained is one of the grand challenges of 

metabolomics. The metabolomics research community, functioning under the umbrella 

of Metabolomics Society (http://metabolomicssociety.org/),  has developed a set of 

guidelines ensuring minimal reporting standards for experiments, thus, providing the 

much needed benchmarks for data analysis, exchange and comparison of metabolomics 

experiments (Fiehn et al., 2008; Goodacre et al., 2007; Members et al., 2007). These 

require researchers to diligently record metadata such as temperature, growth 

conditions (minimal set of data of reporting standards and general guidelines) that aid 

in biological interpretation and reduce experimental errors.  

2.2. Metabolic networks 

2.2.1. What are metabolic networks? 

Biological systems derive their important characteristics like adaptability, stability 

and resilience through the regulation of highly interconnected chains of metabolic 

pathways that encompass heterogeneous biological entities including DNA (genes), 

mRNA, proteins and metabolites. The complex interactions between various 

components in a biological system is best characterized as networks. A number of 

biological networks, each donning a different functional role such as protein-protein 

interaction (PPI) networks, metabolic networks, transcriptional regulation networks, 

signal transduction networks interact with each other. These biological networks being 

dynamic and selectable, respond to environmental pressures by regulating various 

biochemical processes in the cell. Thus, these networks are a reflection of biological 

processes such as metabolism, transcription and translation that take place in the cell, 

(Ideker et al., 2001), and, provide an overview of the regulation by proteins, activation 

or inactivation of enzymes by posttranslational processes and feedback loops 

The collection of metabolites, their pathways and their inter-relationships, 

holding information about a series of biochemical events constitute an organism’s 

http://metabolomicssociety.org/


26 

 

metabolic network. For example, using both computational predictions and 

experimental procedures, a metabolic pathway database, PlantCyc, containing more 

than 800 pathways from over 300 plant species has been developed (Zhang et al., 2005). 

These pathways are co-ordinately regulated at multiple levels, such as by feedback 

regulation of metabolic reactions and transcriptional regulation of sets of metabolic 

genes. Through metabolomics approaches it is now possible to sample thousands of 

unique ions, assign putative formula and structure, add new pathways, and even 

develop naïve metabolic networks (Dettmer et al., 2007). Metabolic networks act as 

scaffolds for metabolic models and can be used to predict cellular function and study 

of the role of individual reactions.  

Robustness and modularity of metabolic networks, are the two major 

properties that dictate how metabolic networks function and respond to external 

stimulus. Robustness is the property through which the cellular metabolism tries to 

maintain homeostasis on encountering genetic or environmental perturbations (Smart 

et al., 2008).  Robustness of metabolic networks is achieved mainly through the 

presence of multiple isozymes, therefore ensuring redundancy and a tight feedback 

control. Thus, the effect of blocking one enzyme or a pathway, often leads to the 

activation of an alternative route through its complementary isozymes. For example, 

the conversion of glucose-6-phosphate into glyceraldehyde-3-phosphate can be 

achieved using both glycolysis and pentose phosphate pathways. Such properties 

confer the ability to use multiple alternative pathways to synthesize the same 

metabolites, thus increasing the odds for an organism to survive in unfavourable 

conditions. Stable isotope-based metabolomics approaches wherein the movement of 

the targeted metabolite into different pathways or tissues is tracked, help in 

understanding the plasticity and the dynamic nature of metabolic networks.  

This observed robustness of metabolic networks, can be explained using the 

concept of modularity. Modularity describes the potential of independent and self-
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contained property of a system, i.e. the process through which a number of regulatory 

processes govern activation of specific modules to produce the desired metabolic 

response to perturbations. Modularity and plasticity of metabolic networks follow a 

power law distribution, with focus being on the few critical hub nodes, made of 

important genes and metabolites, in the dense highly interconnected community 

structure. These key genes or metabolites appear in many reactions, while most other 

genes or metabolites appear in only one or few reactions. Such key metabolites serve 

as common substrates at branch points of diverse metabolic pathways where a high 

level of coordinated gene expression exists (Huss and Holme, 2007). Identifying these 

critical branch point metabolites can provide insights into the master regulators and 

strategies for understanding metabolic response (Holme, 2011).  For example, in 

Arabidopsis, different branches of isoprenoid metabolic network such as carotenoids 

and brassinosteroids metabolic pathways exist independently and are activated based 

on subcellular localization of metabolic pathways (Vranova et al., 2012). The specific 

activation of metabolic modules occur based on compartmentalization and localization 

of metabolic response, thus, providing the mechanism for targeted production of 

metabolites in a tissue-dependent manner as a desired response to environmental 

factors (Brown et al., 2003).    

The analysis of these nonlinear, multivariate and multi-layered networks, 

identification of functional modules, along with the complexities in accurately 

detecting, quantifying and interpreting metabolomics datasets have led to the 

development of multiple techniques (Brohee et al., 2008; de Oliveira Dal'Molin et al., 

2010; Hamilton and Reed, 2014; Junker et al., 2006; Lewis et al., 2012; Mithani et al., 

2010; Ruppin et al., 2010; Yeang, 2009). The structure and properties of metabolic 

networks especially the topology and methods for the reconstruction of metabolic 

networks have been described in detail (Palsson, 2006).  The tight regulation of 
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metabolic networks and effects of genetic perturbations on metabolic networks are 

analysed in detail in Chapter 5.  

2.2.2. Integrative omics approaches 

Systems Biology seeks to "study the behavior of an in vivo biological process 

by systematically perturbing them and then monitoring the interactions between gene, 

protein, metabolite and informational pathways" (Ideker et al., 2001). Biological 

networks are complex systems which are highly inter-connected, non-linear, and 

dynamic with interactions at multiple levels. Traditionally, genes or proteins involved 

in different processes have been studied in a reductionist manner, for example 

characterizing genes only affected in specific metabolic pathways involved in human 

disease or plant defence response. However, coordination of cellular processes involves 

interconnectivity via networks of various biological pathways and their control by 

signalling and regulatory networks.  

Gene-regulatory motifs form the building blocks of functional modules by 

regulating the expression of genes and in turn metabolic pathways. These pathways 

then form functional modules which are highly interconnected and interact with 

different biological networks in the cell, thus forming a large-scale biological network 

requiring systems level approaches to understand biological processes in a holistic 

manner. Such integrative approaches to biological questions can yield important 

insights inaccessible to traditional reductionist methods. The main utility of systems 

approaches lies in the possibility to predict the results of experimental or natural 

perturbations. For example, Gal4p and Gcn4p lead to the breakthrough discovery 

showing how transcription factors work (Ptashne, 1988). However, to understand the 

transcriptional regulatory control orchestrated by these transcription factors, systematic 

analysis of data from different biological layers was needed.   

Technological developments in analytical platforms along with the rapidly 

decreasing cost of multiple omics measurements has caused an important paradigm 



29 

 

shift in the field of systems biology by facilitating integrative omics approaches (Cai, 

2012; Gary et al., 2012; Nielsen and Jewett, 2007; Segata et al., 2013; Wang et al., 

2013b).  By combining these heterogeneous biological information into a single 

systems level analysis, using techniques such as correlations, metabolic control 

analysis, information theories, and network/graph models, complex regulatory 

interactions can be better studied (Joyce and Palsson, 2006). Such analysis can reveal 

the dynamic interactions and connectivity in metabolic networks, permitting the 

discovery of new correlations and pathways among biological entities (Choi and 

Pavelka, 2012). However to connect these highly multivariate datasets in terms of 

biological networks, a clear conceptual framework with good experiment design, 

dedicated tools and statistically sound data analysis is required.  

Statistical techniques capable of handling heterogeneous datasets, which might 

contain of binary, categorical or continuous data, as well as being able to accommodate 

missing data, and remove artificially induced systematic biases should be developed 

(Wang et al., 2012). Furthermore, these techniques should be able to provide sound 

biological interpretation and visualization of multiple layers of data. The overall 

strategy in any multi-omics analysis is  

(i) identifying differential features for each dataset, such as genes, proteins or 

metabolites independently; 

 (ii) combining these results by mapping these features onto the biological 

networks using pathway information from databases such as KEGG (Kanehisa and 

Goto, 2000; Kanehisa et al., 2014), MetaCyc (Zhang et al., 2005), and Human 

Metabolome Database (Wishart et al., 2013) or by developing genome-scale metabolic 

models. This is then used for identifying patterns of correlation or co-regulation, For 

instance, transcriptomics and metabolomics data were integrated to identify clusters of 

genes and metabolites that were co-ordinately modulated in response to specific 

nutritional stresses in the model plant Arabidopsis thaliana (Hirai et al., 2004); 
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  (iii)  analyse network structure to identify enriched sub-networks, functional 

modules; and  

(iv) develop in silico cellular models using models such as Flux Balance 

Analysis (FBA) to predict reaction rates and network activities that give rise to cellular 

phenotypes (Wang et al., 2012). Bayesian methods, which are modelled to avoid over-

fitting datasets are also widely used. (Choi and Pavelka, 2012; Cline et al., 2007; Hirai 

et al., 2007; Kresnowati et al., 2006; Li et al., 2013; Segata et al., 2013; Takahashi et 

al., 2011) provide examples and detailed discussions on the integration of omics data.   

The two most commonly used approaches for data integration are correlation 

analysis, techniques such as PCA and PLS belonging to the unsupervised approaches 

and Genome-scale metabolic models (GEMs). In the first approach, normalized gene 

and metabolite datasets are analysed to identify significant gene-metabolite pairwise 

correlations (Allen et al., 2010; Hirai et al., 2005), this reveals the presence of co-

expressed connections. PLS can be used to model the metabolite abundances as a 

function of gene expression profiles (Pir et al., 2006). These are then visualized in the 

form of networks or used in enrichment analysis. Constraint-based approaches aim to 

develop a genome-scale metabolic model and incorporate the metabolic fluxes and 

reaction kinetics (Hamilton and Reed, 2014; Lewis et al., 2012; Price et al., 2003; 

Zelezniak et al., 2014). FBA uses GEMs to calculate how metabolites flow through the 

metabolic network. This enables researchers to predict the production rate of specific 

metabolites or the growth rate of an organism.  

These multi-omics approach are used in diverse areas ranging from studying 

ecological networks, where biotic interactions between species are of focus, to 

modelling biochemical networks within a cell and in diverse domains such as, 

toxicology, metabolism and pharmacokinetics. They have also been successfully 

applied to study regulatory interactions (Hirai et al., 2007), functional genomics 

(Raamsdonk et al., 2001; Tohge et al., 2005) and to identify genome wide quantitative 
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trait loci (Riedelsheimer et al., 2012; Saito et al., 2010). Analysing the associations 

between genotypic and phenotypic characteristics has important ramifications in 

pathological studies for explaining disease pathways and identifying biomarkers for 

prognosis and diagnosis (Kaddurah-Daouk et al., 2008; Sreekumar et al., 2009; Zhang 

et al., 2012). Such integrated analyses provide important clues that help understand 

how genetic blueprints combined with non-genetic, environmental factors influence a 

biological system.  

The challenges in integrating multiple datasets, such as lack of uniform and 

standardized databases, lab-to-lab variations, are expectedly the same as observed in 

metabolomics data analysis. MetaboLights (Haug et al., 2013; Salek et al., 2013b), a 

database for freely storing metabolomics data with detailed experimental protocols and 

meta information, is championed by the European Bioinformatics Institute, and 

promises to be an important tool to overcome these barriers. 

2.2.3. Challenges in metabolomics 

The last decade has witnessed great advances in statistical techniques and 

measurement technologies aiding in robust characterization of the complete 

metabolome of an organism. However, a number of challenges ranging from sample 

preparation to metabolite identification and biological interpretation hinder 

comprehensive utilization of metabolomics data (Hegeman, 2010; Vuckovic, 2012). 

The high chemical and structural diversity of metabolites require specialized 

extraction protocols, taking the spatio-temporal location, genotype and compound 

classes into account. A suitable extraction procedure that provides both comprehensive 

coverage and specificity should be developed before using any metabolomics platform. 

Furthermore, to obtain the metabolite levels at the exact moment defined in experiment 

design, conditions that can possibly affect degradation or inter-conversion of 

metabolites should be prevented. This is usually performed by quenching the 

metabolism of the targeted biological system (Álvarez-Sánchez et al., 2010). For 
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example, intermediate metabolites such as those from Calvin cycle and nucleotides 

have a very short turn-over time and require immediate quenching (Fernie et al., 2011). 

The physicochemical characteristics of the metabolites in the biological system under 

consideration, should be the basis for developing any extraction buffer/method. (Kim 

and Verpoorte, 2010; Parab et al., 2009; Vuckovic, 2012; Want et al., 2013) provide a 

detailed reviews and protocols on sample preparation for metabolomics experiments.  

The above articles describe a variety of protocols for targeting the metabolites 

of interest, and for optimizing instrument parameters. However, trying to identify novel 

metabolites or pathways where the nature of metabolites are largely unknown is 

extremely challenging. Furthermore, the variation in extraction protocols has made it 

difficult to have standardized metabolomics databases, especially for MS-based 

approaches. For example, different instruments have slightly varying fragmentation 

patterns for the same metabolite, thus, standardized libraries are very hard to develop. 

Data curation is also difficult as curators are having to comprehend the uncharacterized 

measurement noise associated with high-throughput measurements, and errors during 

metabolite identification (Salek et al., 2013a) . (Wishart, 2009) provides list of 

databases used for metabolite identification and pathway mapping. 

These issues have resulted in a number of molecules that are detected by the 

instrument, but are not assigned to any metabolite and thus not included in the 

metabolite databases or repositories (Kind et al., 2009).  A survey conducted by the 

American Society for Mass Spectrometry (ASMS) in 2009 revealed metabolite 

identification to the biggest bottleneck among users (Spectrometry, 2009). The current 

practices allow high confidence identification for only major primary metabolite such 

as sugars, sugar phosphates, amino acids, and organic acids and certain secondary 

metabolite classes such as phenylpropanoids, and alkaloids. This is because, in a typical 

mass spectrometry analysis, for a particular metabolite, number of features such as their 

isotopic forms, adducts and daughter ions are produced. These ambiguities further 
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complicate metabolite identification via direct matching of the m/z ratios to the 

databases. Therefore, to identify novel compounds with high confidence, researchers 

use the rather slow technique of structure elucidations using fragmentations patterns 

obtained using tandem MS and NMR approaches. NMR-based identification strategy 

relies on detecting and matching the characteristic and unique “chemical-shift” 

fingerprint for each metabolite (Moco et al., 2007). However, with the probable 

chemical space of around 600 million compounds- determined using the seven golden 

rules, and up to 8 billion chemical formulas (theoretically possible C, H, N, S, O, P-

formulas for compounds up to 2000 Da), it is an enormous challenge identify novel 

compounds when the closest reference compounds are not available in the databases. 

The time, effort and cost involved in experimentally determining characteristic 

properties for millions of molecules present in any given bio-system is a daunting 

challenge. Thus, a significant improvement in experiment design and data analysis 

tools is an urgent necessity to enhance systems biology-based knowledge discovery.  

2.2.4. Metabolomics as a tool in biological research 

The potential of metabolomics as a tool far outweighs the challenges, a 

delightful scenario to be in as it encourages and rewards technological advances. By 

providing the insights into biochemical regulations, metabolomics immediately adds a 

new dimension as an analytical technique. The areas in which metabolomics techniques 

have been applied are diverse, and new applications are continuously being explored, 

a selected few are discussed here.  

 Functional genomics, systems biology and biotechnology (Alisdair et al., 2004; 

Hamilton and Reed, 2014; Nielsen and Jewett, 2007; Saito and Matsuda, 

2010): Understanding regulatory networks in biological systems, developing 

genome-scale metabolic networks, studying cellular dynamics using 

mathematical modelling, effects of perturbations, metabolomics as a tool in 
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enhancing and developing compounds with useful traits in various biological 

systems. 

 Plant biology, plant-microbe and plant pathogen interactions, agriculture 

(Bhalla et al., 2005; Dixon et al., 2006; Hall, 2006; Lee et al., 2013; 

Narasimhan et al., 2003; Okazaki and Saito, 2012; Rasmussen et al., 2012): 

Characterizing biochemical and genotype-phenotype relationship, cellular 

responses to different environments, identifying novel plant products and 

developing metabolic engineering strategies for producing compounds with 

important pharmaceutical and commercial values. 

 Food science and nutrition (Dervilly-Pinel et al., 2012; Jones et al., 2012; 

Wishart, 2008a): For detecting contaminants, enhancing nutritional value of 

foods, optimizing fermentation and bioremediation processes, impact of 

fertilizers and pesticides on plants and environment, assessing substantial 

equivalence from genetically modified organisms compared to natural 

cultivars, among others. 

 Human health and disease (Aboud and Weiss, 2013; Kaddurah-Daouk et al., 

2008; Spratlin et al., 2009; Suhre et al., 2011; Wikoff et al., 2009): For 

identifying early biomarkers useful as disease and prognostic indicators, 

diagnosing pathologies, and in drug development and assessing therapeutic 

targets of disease, assessing associations between genetic variation and human 

disease phenotypes, to understand the complex interactions of host, diet and 

gut microflora in human health. 

 Environmental metabolomics and natural products research (Bundy et al., 

2009; Nguyen et al., 2012; Rochfort, 2005; Viant and Sommer, 2013; Zhang 

et al., 2010): Assessing ecotoxicology, microbiome structure and functions, 

components of ecosystems biology, interactions of organisms with 

environment, discovering natural products, studying evolutionary relationships 
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using phylogenomics and metabolic networks, designing new bio-parts using 

ecological principles in synthetic biology applications. 

 

The following chapters of this thesis systematically address different issues 

related to metabolomics data processing and integration of multiple biological data 

layers.    
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3. Statistical methods for identification and removal of non-

biological sources of variation 

 

 ‘Data does not equal information; information does not equal knowledge; 

and, most importantly of all, knowledge does not equal wisdom. We have oceans of 

data, rivers of information, small puddles of knowledge, and the odd drop of wisdom.’ 

… Henry Nix (1990) in ‘A National Geographic Information System – An 

Achievable Objective?’ 

 

3.1. Background and introduction 

Metabolomics technologies have now reached a stage of development where 

the primary concern is not about generating high quality data but rather about obtaining 

meaningful biological knowledge from gigabytes of information. This ability to 

generate large amounts of data will aid in the understanding of previously inaccessible 

domains of biology (Goodacre et al., 2004; Kell, 2004). Furthermore, robust data 

analysis of biochemical phenotypes can provide unique insights in the context of both 

hypothesis generating (exploratory) and hypothesis testing (confirmatory) phases of 

research (Jaeger and Halliday, 1998).  

Designing systematic experiments, analysis protocols and extracting relevant 

knowledge from the wealth of data is critical to all omics applications. MS-based 

metabolomics experiments are extremely sensitive and provide unparalleled detection 

and coverage of metabolites. As these technologies not only increase the quantity of 

data, but also affect its properties (Godzien et al., 2013), successful application of these 

experiments depend on both the analytical system and the data mining strategies.  

Typically, in a large dataset the true biological responses detected are hidden under that 

façade of data confounded with unwanted variation (Leek et al., 2010). Such 
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experiments demand advanced statistical procedures to identify and remove unwanted 

non-biological sources of variation (Eliasson et al., 2011; Hendriks et al., 2011). 

Metabolomics data processing typically includes exploratory data analysis to 

check the quality of data (such as presence of batch effects) before proceeding to pre-

treatment, pre-processing and statistical analysis for identifying differential metabolites 

(Katajamaa and Oresic, 2007).  Exploratory data analysis (EDA) should be conducted 

to identify any systematic errors before further experiments can be performed (Boccard 

et al., 2010).  

A description of the web-based exploratory data analysis application- datPAV 

(Biswas et al., 2011) developed during the initial part of this research is provided in 

Appendix 1. datPAV provides various statistical and visualization options for 

exploratory data analysis. To enable quick examination of high-throughput omics data 

and cater to the needs of the wide range of omics studies, datPAV has been designed 

as an web-based tool for performing multi-omics exploratory data analysis. 

3.1.1. The importance of batch effects in omics data 

Limited by sample processing time (each sample requiring on average 20 

minutes for LC MS-based analysis), large sample metabolomics experiments often 

need to be performed over weeks or in different batches. Even with robust protocols 

and optimization of sample preparation methods, each batch represents a unique 

analytical environment having its own time and place-dependent experimental nuances. 

For example, in a metabolomics experiment with two samples A and B, each with four 

biological replicates; there might be differences in the resultant outcome of one 

biological replicate, for example A1 due to batch, extraction or analytical errors. This 

difference can influence A1 to have a metabolite profile which is completely different 

from other replicates of A and might even influence A1 to be similar to B. If these 

errors and batch effects are not removed, then the statistical power to compare the 

variance between two groups in parametric (t-tests) or non-parametric tests is lost. This 
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is mainly due to the increased variation in group A as the result of the outlier replicates. 

In large blinded studies or for non-supervised analysis, A1 might also be grouped with 

B. If such systematic errors are not undetected, then they lead to confounding biological 

interpretation. A real example, where the outlier replicates of wild-type, were found to 

be similar to outlier replicates of mutant lines, is shown in Chapter 5. 

Careful experiment designs can minimize batch effects, however it can only be 

eliminated if the whole study is conducted in a single batch. Thus, batch effects are 

almost an inevitable consequence of large experiments. For example, human error 

(differences during sample preparation), different analytical platforms, instrument 

variations during long periods of operation such as temperature changes or ionization 

efficiency, changes in chromatography such as column conditions can introduce 

unwanted experimental sources of variations in the metabolite profiles (Leek et al., 

2010). There can also be differences due to unwanted biological variation such as 

differences in sample mass, concentration or cell number among others.  These 

systematic experimental or analytical influences lead to qualitative and quantitative 

differences in the relative peak intensities of the metabolites, that are unrelated to the 

biochemical phenotype-the main focus of the study. The resulting peak intensity of 

each metabolic feature (counts) is a combination of both the biological signal, as well 

as unwanted (non-biological) variation.  

Analysing data from such experiments presents numerous challenges due to 

the influence of these batch and sampling/measurement variables (Ernest et al., 2012). 

In order to distinguish biologically relevant signals from experiment noise, robust 

normalization procedures are required. Batch effects can affect subsets of metabolite 

features in different ways (Redestig et al., 2009). The standard pre-processing steps 

such as binning, alignments,  normalization and scaling procedures can be used for 

adjusting technical variation due to abundances (van den Berg et al., 2006). These pre-

processing steps assume general invariability for all metabolite features and do not 

include corrections for systematic variations due to batch effects (Leek et al., 2010). 
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Thus, potentially misinterpreting signals arising out of experimental artefacts as being 

of biological origin. This can lead to major problems and incorrect biological 

conclusions when such spurious differences due to batch effects are completely 

correlated with the biological question (outcome of interest). Furthermore, ignoring 

batch effects during data analysis can increase confidence intervals, therefore affecting 

robust identification of differential metabolites (Ernest et al., 2012).  

3.1.2. Existing solutions for removing batch effects 

For microarray-based expression profiling, sophisticated normalization 

methods that directly incorporate batch adjustments in statistical models such as 

ComBat (Johnson et al., 2007), Surrogate Variable Analysis (Leek and Storey, 2007),  

and Remove Unwanted Variation (Gagnon-Bartsch and Speed, 2012) have been 

developed. A thorough review on batch effects and their removal methods for 

microarray-based expression studies is provided in (Lazar et al., 2013). For 

metabolomics experiments, which are susceptible to an even higher amount of 

unwanted variation than microarray studies, the development of batch effect correction 

procedures have been relatively minimal (De Livera et al., 2012; Ernest et al., 2012; 

Wang et al., 2013a). However, batch effect removal procedures using these 

applications require a specific experimental design. Thus, these applications could not 

provide a ready solution for experiments having customized sampling strategies. The 

specific details pertaining to each statistical application mentioned above is discussed 

later in this Chapter. 

Unsupervised methods such as PCA have been successfully used for capturing 

systematic variation due to latent variables (such as batch effects) in a large datasets 

(Alter et al., 2000; Leek et al., 2010; Leek and Storey, 2007). After normalization and 

scaling, PCA makes use of co-variances or correlations among the metabolite features 

to decompose the original data matrix onto a lower dimensional space. The reduction 

of the variation across thousands of features resulting from biological differences and 
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confounded with the influence of nuisance latent variables into orthogonal PCs, 

provides a robust statistical measure to quantitatively characterize the metabolite data 

structure. The PCs are actually linear combinations of the original data variables. 

Maximum variation and the most interesting phenomena is typically observed in the 

first few PC loadings, with subsequent components explaining decreasing amounts of 

variation (Ivosev et al., 2008; Liland, 2011). Visualization of the PCs that describe the 

maximum variation in the data structure can reveal the underlying relationships 

between the metabolite features as a manifestation of biological differences or batch 

effects. PCA shares a close mathematical relationship with singular value 

decomposition (SVD) (Alter et al., 2000; Shlens, 2014). Typically, SVD-based 

calculations are carried out within PCA. 

In this Chapter, I developed a statistical approach for removing batch effects 

in the large-scale untargeted metabolomics data using SVD. I developed this approach 

using data obtained from a survey of natural variation in oleaginous algal species. 

Specifically, metabolite measurements were obtained from 22 Chlorella strains, 

compared over two growth phases and run in four batches, to remove structure in data 

related to day of sample assay (268 samples being run in 4 batches spread over a 

month). Here, the term batch refers to a collection of samples processed at a particular 

instance using the same instrument under identical conditions. In this study, batch 

refers to the day on which the samples were processed in the mass spectrometer 

(abbreviated as RunDay). Furthermore, batch is an all-encompassing term for both 

observed and unobserved variation affecting the samples processed in a particular day.  

3.2. Materials and methods 

3.2.1. Experimental design 

In order to survey the natural variation in oleaginous microalgae and identify 

strains for efficient biofuel production, 22 algal strains were isolated by colleagues at 

the University of Malaya (Vello et al., 2014) from 7 different locations and a total of 
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16 different habitats in Malaysia (refer to Chapter 4 for detailed sampling strategy). 

These strains were then isolated and cultured in laboratory conditions (as described in 

Vello et al., 2014). We then performed untargeted metabolite profiling for these 22 

strains at 2 growth phases, namely, exponential (between day 4 to 6) and stationary (at 

day 12). A total of 264 samples (262 samples, as some strains did not have all the 

replicates), 22 Strains X 2 Growth Stages X 3 Biological replicates X 2 Technical 

replicates, apart from blanks (for determining instrument or analytical noise/errors) and 

matrices (sample extraction matrix) were profiled. Blanks undergo the entire extraction 

process, but without the sample material. They were run after each set of 6 samples (3 

biological replicates and 2 technical replicates from one strain). The large number of 

samples required metabolite profiling to be carried out over 4 different batches spread 

over 2 weeks (May 15 to May 23, 2013) (Figure 3.1).  

Such experimental designs are prone to batch effects, as over long periods of 

time, instrument characteristics might change. Furthermore, samples that are collected 

at the same time but profiled in batches might also face issues with sample degradation. 

This can be minimized by storing the samples at -80°C without any freeze/thaw cycles. 

In cases where the sample numbers are large, experiments can only be run in batches. 

Such experiments should be carefully designed with adequate randomization 

procedures used both during extraction and MS analysis stage. Furthermore, to utilize 

statistical techniques that can handle and correct for batch effects, multiple internal 

standards, along with pooled biological samples should be run in a randomized order 

in each batch. The experimental design used in this study did not use (i) randomized 

extraction or MS run order and (ii) did not have pooled biological samples or internal 

standards, thus, the metabolite profiles were influenced by batch-specific non-

biological sources of variation.  
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3.2.2. Metabolome profiling  

3.2.2.1. Metabolite extraction  

Cell disruption was achieved using bead beating of the cell pellets, specifically 

a Tomy micro smash MS 100 bead beater (Tomy Seiko Co., Tokyo, Japan) along with 

lysing matrix Y from MP Biomedical lysing kit (MP Biomedicals, Solon, OH). The 

screw-top micro centrifuge tubes containing Lysing matrix constituted 0.5 mm 

diameter Yttria-Stabilized Zirconium oxide beads. Lyophilized algae cells weighing 50 

mg were added to lysing matrix along with 1 ml pre cooled 80% methanol.  The sample 

was subjected to bead beating at 4000 rpm for 20 s and then thawed in ice for a minute. 

This procedure was repeated five times, the extract was then centrifuged twice at 

11,000 x g for 10 min at 4°C. The supernatant was pipetted out and filtered through 0.2 

µm syringe filters (Sartorius Stedim Biotech). The final extract was kept in -80°C 

refrigerator till the analysis. Metabolite extraction was performed by Ms. Vejeysri 

Vello (University of Malaya). 

 

3.2.2.2. LC-MS analysis 

Chromatography separations were carried out using a Zorbax Eclipse Plus-C18 

(2.1x50 mm, 1.8-µ) reverse phase column on an Agilent Infinite 1290 UPLC system. 

The temperatures for column and auto sampler were 50°C and 7°C, respectively. The 

mobile phase consisted of de-ionized water with 0.1% formic acid (solvent A) and 

LCMS grade acetonitrile (ACN) with 0.1% formic acid (solvent B). A gradient elution 

was conducted for separations using the following method: isocratic elution with 5% 

B for 0.5 min, followed by a 10 min gradient to 98% B, which was kept for 2 min, then 

re-equilibrated at 5% B for 2.5 min. The flow rate was 0.3 mL/min and injection 

volume was 3 µL. The samples were subjected to an Agilent Q-TOF 6540 mass 

spectrometer after separation through liquid chromatography. The analysis was carried 

out in positive mode with ESI as source for ions with a mass range between 50 to 1200 
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m/z. The nebulizer pressure (psi), source gas temperature (°C), dry and sheet gas flow 

(L/hour), capillary voltage (V) and sheet gas temperatures (°C) were 40, 250, 12, 12, 

4000 and 350, respectively. LC-MS profiling was performed by Dr. Peter Benke and 

Mr. Vinay Kumar from (Metabolites Biology Lab, NUS). 

For the data-dependent MS/MS, UHPLC system with column was setup in-

line with mass spectrometer, with a 14 min long separation method same as described 

above for untargeted metabolic profiling. Parameters used were: drying gas 

temperature at 250ºC with 12L/min (nitrogen) flow rate, nebulizer gas at 40 psi, sheath 

gas temperature at 350ºC with 12L/min (nitrogen) flow rate, capillary voltage at 

4000V, nozzle voltage 1500V, skimmer voltage 65.0V, fragmentor voltage 100V and 

octopole RFPeak voltage 750V. Parameters for precursor selections were: fixed 

collision energy at 20eV and 40eV, max precursors per cycle at 10, threshold (absolute) 

at 100cps, active exclusion enabled with exclusion after 2 occurrences and release of 

active exclusion after 30 s. Data acquisition was performed in centroid mode at the 

resolution of 30,000 with MS scan rate set at 8 spectra/s and MS/MS scan rate set at 4 

spectra/s. Metabolite identification for MS/MS data is ongoing, the results presented in 

this chapter use the MS1 data extracted from the MS/MS dataset for validating SVD-

based approach. 

3.2.3. Metabolomics data analysis 

3.2.3.1. Data processing and analysis 

Raw data files from Q-TOF (.d files) were converted into mzXML format using 

msconvert of the ProteoWizard suite (Chambers et al., 2012; Kessner et al., 2008). The 

parameters defined for Q-TOF were optimized for this dataset (method = ‘centWave’, 

ppm = 30, peakwidth = c(5,60), prefilter = c(0,0), snthresh=6, peak grouping: bw = 5, 

minsamp = 1, mzwid = 0.015; retention time correction algorithm: ‘obiwarp’) (Patti et 

al., 2012), a total of 67,467 features were extracted using XCMS package (version 1.38) 

(Smith et al., 2006) in statistical programming language R (version 3.01) (R Core 



44 

Team, 2014). This produces a data matrix where samples are represented in columns 

and the metabolite features in rows. In the resulting data matrix, each row (mass 

features) is characterized by a unique mass-by-charge ratio (m/z) and a retention time 

(rt; or the time taken for an ion to elute through the chromatography column). The 

columns of this data matrix provide the abundance or the counts (number representing 

concentration of that particular mass feature in the sample).  

All statistical analysis were performed using R version 3.01. Exploratory data 

analysis was performed using R and datPAV. Version control has been implemented 

using Git in RStudio™. All the scripts will be uploaded onto GitHub upon publication.  

Log transformation followed by centering and scaling was performed on the 

dataset during the data pre-processing stages. Raw Total Ion Chromatograms (TIC) 

were developed to obtain a visual representation of the reproducibility of metabolic 

profiles between biological and technical replicates. TICs plot the retention time on the 

x-axis, and the total ion current detected for all features/ions at that particular instance 

on the y-axis. The similarity between the TICs for the replicates indicate the similarity 

or differences in the metabolite profiles (including the abundance of each metabolite) 

between the replicates. Thus, visualizing TICs provides a quick measure of the 

relationship between the metabolite profiles of samples. Variation in the TIC profiles 

between replicates can indicate whether certain replicates of strains are potential 

outliers. An example is shown in Figure 3.2A, where the technical replicate-

D4_104_b3_r002 (here D4 indicates growth stage, 104 is the strain number, b1 is 

biological replicate 1 and r002 is the second technical replicate of that biological 

replicate) shown as a pink line clearly has a different profile. The coefficient of 

variation (CV) was calculated for each replicate of a strain. Specifically, the CV of the 

abundances of all features in a particular replicate was calculated, and this was done 

for each replicate of a strain. In an ideal scenario, the replicates will have similar CVs 

as the metabolite abundances should be similar. However, replicates that had different 

TIC profiles had a markedly different coefficient of variation. For example, the 
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coefficients of variation for the replicates of strain D4_104, were 43.62, 41.49, 43.44, 

42.61, 41.31 and 75.72 for D4_104_b1_r001, D4_104_b1_r002, D4_104_b2_r001, 

D4_104_b2_r002, D4_104_b3_r001 and D4_104_b3_r002, respectively. Based on the 

CVs, we can conclude that the variation in the abundances of features in 

D4_104_b3_r002, and therefore the metabolite profile, is different compared to the 

other replicates of strain D4_104_b3_r002.  

Figure 3.2B shows the distribution of the abundances for all the features in 

each replicate as a boxplot. Furthermore, to investigate the cause of variation in the 

CVs and distribution in the abundances of features between replicates, the number of 

missing values (zeroes) in each replicate were analysed. Interestingly, the outlier 

replicate that showed a different profile had a 20% increase in the number of features 

whose abundances were zero (Figure 3.2C). We can conclude that TICs, CV and the 

number of zeroes are inherently related to each other for each replicate. This 

observation was as expected as data points analysed here are abundances of features, 

thus are non-negative in nature and have a minimum value of zero. Therefore, the 

abundances are likely to follow a mixture of Poisson-distribution (for non-negative 

abundance) and normal-distribution (for zeroes). This observation suggested a heuristic 

strategy for identifying and removing outliers.  

To identify outliers among the CVs of replicates of a strain, boxplot statistics 

was used. Specifically, the CVs of replicates that were 1.5 times the interquartile range, 

above the upper quartile and below the lower quartile were deemed as outliers. Using 

this strategy, we identified the following strains to contain outliers (the number of 

outlier replicates in each strain is indicated in the brackets): D12_001 (1), D12_006 

(1), D12_014 (1), D12_051 (1), D12_177 (1), D12_187 (1), D12_207 (2), D12_252 

(2), D12_255 (1), D12_258 (1), D4_014 (1),  D4_094 (1), D4_104 (1), D4_245 (1), 

D4_254 (1), D4_268 (1) and D4_325 (1). Thus, after removing 19 outlier samples, the 

final data matrix used for analysis contained a total of 243 samples (125 from day 4 

and 118 from day 12). 



Figure 3.1. Sample (Strain) allocation to different batches. The rows indicate the 
strain and columns indicate the batch in which they were processed. Each batch 
indicates a separate day in which the samples allocated to that batch were processed.
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3.2.3.2. Missing values 

Missing values arise when a feature is identified in some samples but is not 

detected in others. For the sample in which the feature is not detected, the abundances 

are marked as zeroes or ‘NA’ in the metabolite data matrix. Thus, due to biological or 

technical variation between replicates of a sample, some replicates might contain a high 

number of missing values. For example, the feature might be present but not be detected 

in a sample if the concentration is below instrument limits or if there were analytical 

errors (Karpievitch et al., 2012). These missing values are a key challenge in 

quantitative analysis as they influence the distribution and variance of the metabolite 

profiles. Furthermore, the reason behind the missing-ness often cannot be easily 

determined, and a number of approaches have been developed for imputation of 

missing values (Gromski et al., 2014). 

In this study, to ensure that absence of certain features were not a result of 

software limitation, the actual chromatograms in the form of raw TICs were 

investigated to determine whether features really had missing values. These raw TIC 

plots were analysed for all the samples before initiating xcms-based data processing. 

Finally, in xcms, 𝑓𝑖𝑙𝑙𝑝𝑒𝑎𝑘𝑠 function that identifies peak groups where the sample is 

not represented and then integrates the signal in the region of that peak from the raw 

data, was used as a data imputation step.  

In typical metabolomics experiments, filters are set to select ions whose 

abundances are above a certain threshold such as 500 or 1000 counts. However, for our 

analysis, to obtain raw unfiltered dataset, no such filter was applied. Features that had 

missing values even after the imputation step were removed. Features present across 

all samples were selected mainly to avoid scenarios wherein the features not detected 

by the instrument, have their values artificially imputed during SVD filtering approach. 

Thus, for this study, we used a Filter by Flag (Flagged for presence or absence of a 

metabolite) approach, wherein metabolite  features detected and having an abundance 
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(intensity) value among all the samples at either exponential phase (day 4) or stationary 

phase (day 12) were used. This greatly reduced the data matrix from 67,467 features to 

13, 443 features in exponential phase (day 4) and 10,687 in stationary phase (day 12). 

Figure 3.3 shows the number of zeroes (missing values) in the replicates before the 

Filter by Flag approach. As expected in Figure 3.3A the blanks towards the left 

(indicated by the red box) and the matrix towards the right (indicated by the green box) 

had the maximum number of missing values. This plot also provides an indication of 

the outliers, i.e. replicates of strains having an unusually high number of zeroes. Figures 

3.3B and 3.3C provide a comparison of number of zeroes in each strain (sum of zeroes 

in the replicates) for each feature.   
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3.3. Results and discussion 

3.3.1. Identification of batch effects 

“In high dimensional data, with far more measured  variables than 

observations, it is almost always possible to find a satisfactory separation between two 

or more classes” (Saccenti et al., 2014). 

The mass spectrometry-based metabolite profiling was performed in 4 batches. 

This could induce potential batch-specific variations in the metabolic profiles. An 

initial screening of the TICs of the blanks and matrix indicated that batch effects might 

influence the variation in metabolite profiles. Figure 3.4 shows the TICs of the blanks 

and matrix. Clearly there is a shift in the metabolic profiles in both blanks and matrix 

datasets. Furthermore, after pre-processing the data matrix, we used Bray-Curtis 

measure to create a dissimilarity matrix and visualize the separation using ordination 

plots (Figure 3.5). The points in the plots represent each blank or matrix sample. The 

points are coloured according to the RunDay. In experiments where batch effects do 

not influence the metabolic profiles, there would be no clear trends observed within 

either of the two subsets of control samples (blanks or matrix, respectively). However 

in this case, we observe RunDay to be a distinguishing factor between samples in both  

blank and matrix. This separation is indicative of instrument variations as the same 

sample preparation strategy was applied for all samples and in all batches.  

We then attempted to study how the RunDay differences affected the samples. 

Exponential and stationary phase data sets were treated as two separate datasets mainly 

for the following reasons:  

(i) Growth stage differences are themselves confounded within batches: 

From Figure 3.1, we observe that batch 4 did not have any samples from stationary 

phase. However, 14 out of 22 strains from the exponential phase were run in batch 4. 

Similarly 12 strains from stationary phase were processed in batch 2, while only 3 

strains from the exponential phase were processed in the same batch. This experimental 
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design resulted in unequal number of samples in each batch, and batch differences were 

confounded with growth stage-specific differences, thus requiring complex modelling 

approaches. Furthermore, any modelling solution used here, not only had to factor in 

the nesting of strain within batch, but also the unequal distribution of samples from the 

two growth stages into different batches. Therefore, attributing the differences in the 

metabolite profiles to strain-specific, and growth stage-specific effects from the 

combined dataset would be complicated due to this experimental design.  

(ii) Loss of information in the combined dataset: The main criterion for 

selecting mass features from the raw dataset for statistical analysis, was that a mass 

feature should be detected across all samples. When the datasets were treated 

separately, exponential phase had 13,443 features and stationary phase had 10,687 

features that passed the above criterion. However in the combined dataset, only 9,421 

features could be selected based on the above criterion. Thus, exponential phase and 

stationary phase when treated separately, had 4,021 (42%) and 1,266 (13%) features 

more, respectively. These differences could be attributed to the substantial and 

expected differences in the metabolic profiles of the strain during exponential and 

stationary growth stage. Therefore, treating the growth stages as a single experimental 

dataset would result in loss of growth stage-specific information, which were mainly 

determined from the features that were unique to each growth phase.  

For these reasons, we decided to treat the metabolite profiles of exponential 

and stationary growth stages as separate datasets. 
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Figure 3.4. Total Ion Chromatograms of (A) Blanks and (B) Matrix. These TICs 
clearly indicate a shift in the metabolite profiles. In ideal conditions all the TICs 
should overlap with each other.
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Figure 3.5. Principal coordinates analysis of (A) Blanks and (B) Matrix. Both the 
ordination plots show that blanks or matrix run in different batches- indicated by run 
day, have different metabolite profiles.
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Using the same Bray-Curtis-based ordination analysis, we visualized the 

separation between strains at both exponential and stationary growth phases (Figure 

3.6). As expected, we observed clear separation between the strains based on RunDay. 

Analysis of distance using the adonis function from ‘vegan’ package (Jari Oksanen, 

2013) in R, was computed between the metabolite distance matrix and Strain or 

RunDay. We note that replicates cluster strongly within strains (for samples from 

exponential growth phase (day 4), the analysis of distance results using Bray-Curtis 

measure for calculating dissimilarities, indicated the R2 values to be 0.564, p-values 

<0.001 and for stationary growth phase (day 12), R2=0.634, p-values <0.001. 

Comparable results when Euclidean distance was used to define inter-sample 

distances). This rules out the possibility of the influence of carry over effects (in cases 

where the sample is not eluted completely during the run) or labelling errors (as the 

replicates within a strain clustered together). The points in the plots represent samples 

and are coloured based on RunDay to help visualize the relationships between strain-

specific differences and batch effects. We also observed small but significant 

associations using Bray-Curtis measure with RunDay, with the coefficient of 

determination (R2) values for day 4 being 0.190 and for day 12 it was 0.205, with p-

values less than 0.001.  Similarly results were observed when Euclidean distance was 

used. All calculations were performed with 999 permutations. 

To quantitatively assess the associations between priori factors (RunDay and 

strain) and variation in the metabolite data structure, we used a linear regression model. 

First the feature level data matrix was decomposed into orthogonal PCs using princomp 

function from the ‘stats’ package in R. The covariance matrix was used for generating 

the eigen values and eigen vectors. To interpret the variation captured in each 

component in terms of strain-specific and RunDay effects, we calculated R2 between 

the PC loadings and RunDay or strain as dependent factors. The significance of such 

correlations were tested using ANOVA. 
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Figure 3.6. Principal coordinates analysis (plotted using PRIMER6) of strains 
(A) exponential phase-Day 4 and (B) stationary phase-Day 12. The run day (batch) in 
which the samples were run clearly influences the variation in both PC1 and PC2 for 
exponential and stationary phase.
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It is important to note that both RunDay and strain-specific (biological) 

variation influences metabolic differences. The R2 statistic and its associated p-values 

for both day 4 and day 12 are plotted in Figure 3.7 against their corresponding PC. We 

observe that both strain-specific association and RunDay effects are significantly 

associated with the leading PCs (blue box in Figure 3.7). Furthermore, strain-specific 

association survives on higher PCs but RunDay variation tends to disappear after the 

initial PC. This is shown in Figure 3.7 wherein the R2 and p-values for RunDay (shaded 

green) become insignificant (R2 < 0.1, p-values >0.1) after the top few PCs. Now that 

we have clearly established RunDay to be a significant batch effect, it is of critical 

importance to isolate and remove the effect of RunDay to observe natural variation or 

genotypic differences between the strains.  
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Figure 3.7. Associations between principal component loadings of 

metabolomics data with RunDay and strain at exponential-day 4 and stationary-day 12 
phase. The blue boxes highlight the confounding effects between the batches- RunDay 

(shaded green) and biological differences (shaded red) on higher PCs. R2 values 

describing degree of association between each PC eigenvector and either RunDay or 

strain identity. Associations that are statistically significant are shown in closed 
symbols.  
 

3.3.2. Current methods for removing unwanted variation 

The current solutions for quantifying batch effects are based on (i) data 

normalization using internal standards or pooled quality controls, (ii) linear regression 

models, and (iii) advanced statistical techniques. We briefly discuss each of these 

approaches and why they were not suitable for this study.  

3.3.2.1. Internal standard and quality control-based approaches 

Internal standards (IS) are compounds or commercial standards that can be 

used to assess the reproducibility of the instrument. These compounds have chemical 

properties that enable them to be clearly distinguishable from the samples under 

investigation. For example, IS might contain unique peaks or elute at different retention 

times, thus making it easier to identify them from the peaks generated from the sample. 

Quality control (QC) samples on the other hand are pooled mixtures of the biological 

samples under investigation (Naz et al., 2014). In this approach, the idea is to capture 

all metabolites which have the potential to be detected by the instrument. In this 

manner, the instrument can sufficiently capture the entire spectrum of the metabolome 

under investigation. Dunn et al., 2012 provides an excellent review on the importance 

of QC’s in metabolomics analysis(Dunn et al., 2012)(Dunn et al., 2012)(Dunn et al., 

2012). Studies have shown that using quality control samples help mitigate batch 

effects better than using internal standards (Van Der Kloet et al., 2009).   

On detecting batch effects, existing methods normalize the feature intensity to 

that of an internal standard. For example, the normalized log abundances for each non-

IS or QC feature in each sample is obtained by subtracting from the log abundance of 

the IS or QC. This will introduce an additional bias if the features are not correlated 
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with the IS or QC samples. The other major drawback of using single internal standards 

is the assumption that unwanted variation occurs only after sample preparation and that 

every metabolite in a sample undergoes the same type of unwanted variation. This 

might not be true as the influence of batch effects might vary based on the chemical 

properties of the metabolite. Furthermore, selection of an appropriate IS also depends 

on knowing the chemical background of the samples under investigation. This is not 

possible for untargeted studies where the analytical properties of the samples are not 

known beforehand.  

The unwanted variation detected using the IS might also be influenced by 

cross-contamination effects of the other metabolites. This has led to the development 

of methods such as cross-contribution compensating multiple standard normalization 

(CCMN) to identify and remove batch effects influenced by run order in GC-MS 

(Redestig et al., 2009). Such approaches provide an excellent solution for removing run 

order, provided adequate internal standards were chosen. If the unwanted variation was 

not due to the instrument, but resulted during sample extraction or collection periods, 

then using IS or QC will not remove these confounding factors. There are very limited 

strategies that can be used when even the QC samples or internal standards are affected 

by batch. 

In this study, there were no dedicated QC or IS samples. Even then, as 

witnessed in Figure 3.5, the blanks and the matrix themselves showed significant batch 

effects. Thus, for such large-scale studies, multiple IS or advanced statistical techniques 

need to be utilized. For a smaller study, randomized sample and extraction order might 

have been feasible, however in this study it was not possible to partially extract samples 

from strains for each batch as it was not designed to facilitate a random order. In 

specific, in the absence of randomized design, retroactive randomization wherein 

samples are aliquoted each time from the same sample solution, in order to analyse the 

samples in different batches will lead to active degradation of the samples during the 

freeze and thaw cycles. Therefore, for experiments with large number of samples, a 
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clear randomized pattern for sample storage, extraction and MS analysis, with multiple 

pooled biological quality controls and internal standards should be included in the 

experimental design. 

3.3.2.2. Linear regression 

Confounding effects can be modelled as either fixed or random effects in a 

mixed linear model. If the latent variable (batch effect) is modelled as a fixed-effect 

then the resulting treatment groups means will include the latent variable. Thus, 

limiting the variance and confidence interval to be modelled only on the remaining 

residual errors and sample sizes. Furthermore, model inferences can only be estimated 

based on the latent variable. However, if the latent variable is modelled as a random 

effect, then this factor becomes a source of random variation and the experiment results 

will cover all probable scenarios under the influence of the latent variable. This 

approach is used in programs such as MetabR that implement linear mixed models to 

normalize metabolomics data based on fixed effect confounding variables (Ernest et 

al., 2012). MetabR requires the metabolite features to have a normal distribution, which 

is not feasible, as it is challenging to ensure normal distribution for environmental 

samples collected in an untargeted approach. 

3.3.2.2.1. Linear model 

We performed a naïve removal to RunDay effect and subtracted the influence 

of RunDay, by using the residuals from the above model to perform linear regression 

using strain as a factor. Our analysis showed that though batch effects were reduced, 

RunDay still had a significant association with metabolite features (Figure 3.8A). 

Using adjusted p-values, calculated using mt.maxT function from the multtest package 

in R, the number of significant features in exponential phase were determined to be 

3,208 and stationary phase had 2,555 significant features (p-value < 0.05). Figure 3.8B 

shows the number of significant features associated with RunDay, strain, and common 

to both RunDay and strain.   
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Figure 3.8. Naïve removal of RunDay effect using linear model. The left column shows 
the results obtained at exponential phase, whereas the right column shows the 
stationary phase. (A)The p-values are plotted as a histogram, with the x axis splitting 
the range of FDR adjusted p-values in bins of 0.05 and the y axis the corresponding 
number of features in that range. The dotted line indicates the number of significant 
features that are purely by chance alone (p < 0.05). The first row shows the distribution 
of p-values that associated with strain, whereas the second row shows the p-values 
associated with RunDay; (B) Significant features that are common between RunDay 
and strain, and unique to each RunDay or strain. 
 
3.3.2.2.2. Nested linear model 

A nested linear model was then used to test whether this approach can mitigate 

the batch effects and identify strain-specific significant features. The nested model, 

shown below, was used for each of exponential and stationary growth phase. 
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𝑙𝑚(𝑥~ 𝑎𝑠. 𝑓𝑎𝑐𝑡𝑜𝑟(𝑅𝑢𝑛𝐷𝑎𝑦𝐼𝑑)  +  𝑎𝑠. 𝑓𝑎𝑐𝑡𝑜𝑟(𝑅𝑢𝑛𝐷𝑎𝑦𝐼𝑑)/𝑎𝑠. 𝑓𝑎𝑐𝑡𝑜𝑟(𝑆𝑡𝑟𝑎𝑖𝑛𝐼𝑑)) 

Strain and RunDay (batch) are treated as fixed effects as we are interested in 

differences in these specific days and strains.  Furthermore, as strain is completely 

nested within each batch, it is fit within RunDay in a nested model. Residuals from the 

above model were calculated, and the residuals for each feature were tested against 

each of strain and RunDay (as factors). This analysis effectively tested for the presence 

of any feature in the residual for significant association to strain or RunDay, once the 

nested nature of these factors had been taken into account. The results from the above 

analysis did not detect any significant association of feature against either RunDay or 

strain, as the p-values of all such features from the residual dataset were above 0.1. 

These results were as expected, as the main factors influencing variation in the 

metabolite profiles were strain-specific differences and batch effects. Therefore, 

modelling strain and RunDay as fixed effects showed that the residuals did not contain 

signal associated with strain or RunDay. The above model further supports the 

observation that strain-specific and RunDay-specific differences were the major factors 

that were driving the variation in the metabolite profiles. 

Nested model does not reduce the influence of batch effects: The ideal scenario is, after 

fitting the nested model, we would want to detect a higher number of features that are 

associated with strain alone and minimum number of features associated with RunDay. 

We then estimated the number of significant features associated with (i) RunDay, and 

(ii) strain (Figure 3.9).  We observed that the number of significant features associated 

with RunDay were 11,736 at exponential and 9,600 at stationary. Furthermore, 12,405 

and 9,479 features were also significantly associated with strain. The distribution of p-

values of these features are shown in Figure 3.9 
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Figure 3.9. Significant features detected using a nested linear model. The first row 

shows the distribution of p-values that associated with strain, whereas the second row 

shows the p-values associated with RunDay. The dotted line indicates the number of 
significant features that are purely by chance alone (p-value < 0.05). 

 

As we observed that the number of significant features that were associated with both 

RunDay and strain were quite similar, we then calculated the number of significant 

features that were (i) common to both (overlapping features of RunDay and strain), (ii) 

significant in RunDay only, (iii) significant in strain only. The results shown in Figure 

3.10 indicate that a high number of features, that were detected as significant, were 

common to both RunDay and strain. Furthermore, the number of features that were 

detected as significant only in RunDay or strain is less than the number that are 

common to both RunDay and strain (Figure 3.10). These results further strengthen the 

observation, that for this experimental design, a nested linear model is unable to 

separate out the influence of batch effects from strain-specific differences. 
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Figure 3.10. Overlaps between significant features detected using a nested linear 

model. 

3.3.2.3. Advanced statistical models 

These models have been designed to identify surrogate variables manifested in 

the form of batch effects. They identify specific parts of the data matrix that are affected 

by batch effects, and perform targeted removal of unwanted variation. ComBat 

(Johnson et al., 2007), uses an empirical Bayes framework to fit a linear model 

including both biological factors and batch covariates. ComBat works exceptionally 

well for small datasets when the latent variables are known (Chen et al., 2011). For 

large datasets, with potential unknown non-biological sources of variation factor 

analysis, methods such as surrogate variable analysis (SVA) (Leek et al., 2012; Leek 

and Storey, 2007) can be used. SVA combines SVD and linear model analysis to 

capture the unwanted variation due to multiple factors.  
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A number of approaches for removing unwanted variations or batch effects, 

use factor analysis. For example, Remove Unwanted Variation (RUV) (Gagnon-

Bartsch and Speed, 2012) and for metabolomics RUV-2 (De Livera et al., 2012) use 

negative controls to detect the presence of unwanted variation and subsequently 

remove them using linear regression models. These negative controls are features that 

are not affected based on biological factors or experiment design. RUV and CCMN 

rely on the identification of specific compounds as negative controls. If these 

compounds are provided then it can identify compounds that are not affected by batch 

effects. Furthermore, in the absence of any non-changing features, RUV-2 can utilize 

internal standards or blanks as negative controls. The hypothesis is that any variation 

in the negative control set is only due to the influence of unwanted variation. 

A recent report evaluating six batch effects correction methods for expression 

microarray data suggested ComBat to be the most effective (Chen et al., 2011). In the 

same review, the researchers mention that for cases when genuine biological variations 

are completely confounded with batch effects, none of the methods could effectively 

reduce batch effects.  

In this study, RUV-2 and CCMN could not be applied as we did not have non-

changing features in our dataset. Different strains being run on different days (Figure 

3.1), led to strain being completely nested within RunDay and resulted in a singular 

design model matrix in ComBat.  ComBat cannot invert design matrixes in a singular 

system. Using such an experimental design in ComBat, resulted in the following error: 

Error in solve.default(t(design) %*% design) : #  Lapack routine dgesv: system is 
exactly singular: U[24,24] = 0 

SVA has been used for identifying surrogate variables, however, for this 

experiment, when SVA was used, the confounding effects of RunDay with strain-

specific differences resulted in no surrogates being identified. A possible cause for this 

outcome is that the strains were completely nested within batches, therefore limiting 

the ability of SVA to detect surrogate variables. It will be an interesting future exercise 
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to test the exact reason that led SVA not to detect any surrogate variables. This can be 

tested by permuting the sample observations between strains and batches. 

Motivation for an SVD-based approach: 

From the Figures 3.6, 3.7, a clear progressive effect of batch differences could 

be detected. Figure 3.7 also showed that batch effect was associated with the leading 

PCs. These results suggested that a PCA-based approach could provide a solution to 

reduce the influence of batch effects. PCA-based approaches have been shown to 

effectively correct widespread batch effects (Leek and Storey, 2007; Pickrell et al., 

2010). In a recent report by Goldinger et al, the authors compare the effectiveness of 

using PC-filtering approaches with approaches that use linear models. They put 

forward a caution that, PC-filtering might remove biologically relevant data. They state 

that the approach is suitable when linear models are not effective in removing batch 

effects. As shown above, for the experimental design used in this study, regression-

based methods were ineffective in removing batch effects, and existing tools such as 

ComBat or SVA could not reconcile the confounding factors in the experimental 

design. 

Confounding variation due to batch effects have been effectively mitigated by 

filtering out multiple PCs (Fehrmann et al., 2011; Goldinger et al., 2013; Price et al., 

2006; Stranger et al., 2012). These reports highlighted the use of SVD-based filtering 

for mitigating batch effects. It is important to note that in an SVD-based approach when 

PC filtering is applied, there is a tendency to lose some information that is not 

associated with non-biological sources of variation. One of the arguments put forward 

by Goldinger et al as the limitation of PCA for mitigating batch effects is that the 

components of variation that contribute to each principal component are often 

unknown. However, in this study, we first computed the association between and the 

factors of interest, namely strain and RunDay (described in Section 3.3.1 and Figure 

3.7). With this motivation, we attempted to investigate the effectiveness of using SVD-

based filtering for mitigating batch effects from untargeted metabolomics data. 
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3.3.3. Removal of batch effects: Solution based on SVD 

In this study, we utilize the data decomposition technique of SVD to develop 

a novel statistical framework for removing batch effects.  Upon identifying PCs that 

are significantly associated with RunDay and strain, we employ a filtering procedure 

using SVD to minimize or remove batch effects.  

This approach consists of 3 steps (Figure 3.11). The first step is to quantify the 

association between PC and the priori factors, in this case strains and RunDay (Figure 

3.7) using analysis of variance models. This resulted in the identification of PCs that 

were most correlated with the surrogate and with the outcome. In the second step, the 

proposed algorithm decomposes the metabolite matrix into 𝑈𝐷𝑉T components using 

SVD. Lastly, it nullifies a small number of singular values of the diagonal matrix 𝐷, 

based on their association with RunDay and finally re-computes the metabolite matrix 

preserving the overall strain-specific biological variation and removing confounding 

batch effects. The procedure below explains these steps in detail.  

Figure 3.11. Procedure for batch effect removal using SVD 

3.3.3.1. Approach to perform batch effect removal using SVD:  

1. For a 𝑚 × 𝑛 scaled metabolite feature matrix 𝑌, with 𝑚 metabolite features 

observed over 𝑛 samples and 𝑚 > 𝑛, the variation in 𝑌 results from strain-

specific metabolic differences confounded with systematic variation caused by 

RunDay effect. The RunDay effect is depicted here as a function of latent 

variable 𝐿.  
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2. To identify the influence of RunDay on the metabolite matrix, PCs of 𝑌, which 

form the linear transformations of the original variables, are calculated using 

the princomp function on the covariance matrix in R.  

3. Associations between PC (using loadings) of 𝑌 and influence of the RunDay 

latent variable 𝐿 is calculated using the below given linear regression model  

Run day:lm(x~ as. factor(RunDay)) and Strain:lm(x~ as. factor(Strain)) 

4. A filtering procedure using SVD (svd function in R) is then performed on the 

scaled original metabolite matrix, yielding 𝑌 = 𝑈𝐷𝑉T. Here 𝑈 is an 𝑚 × 𝑛 

orthonormal matrix, 𝐷 is a 𝑛 × 𝑛 diagonal matrix containing positive singular 

values, and 𝑉 is an 𝑛 × 𝑛 orthonormal matrix. PCs are then rows of 𝐷𝑉T, where 

the 𝑖th PC is found in the 𝑖th row of 𝐷𝑉T. The columns of 𝑈 are the loadings of 

their respective PCs. The above description is for cases when m > n. It should 

be noted that for real-valued data, U can be an  𝑚 × 𝑛 orthogonal matrix and 

D an 𝑚 × 𝑛 rectangular diagonal matrix.  

5. The SVD algorithm was run on all components in the decomposed matrix. For 

each PCi which was significantly associated (p-values <0.05) with run day 

(determined from the linear model), we replaced the same 𝑖th singular values 

present in the diagonal matrix 𝐷 with zero ‘0’. The diagonal matrix 𝐷 with the 

replaced value was then used for recomputing the metabolite matrix, resulting 

in 𝑌*= 𝑈𝐷*𝑉T. 

6. By nullifying the 𝑖th values of PCs that were significantly associated with 

RunDay and re-computing the new matrix, we effectively filtered out the 

variation influenced by RunDay. These steps are illustrated in Figure 3.12.  

7. Furthermore, the re-computed matrixes were confirmed for efficient removal 

of RunDay effect by testing the number of differential metabolite features 

associated with RunDay and strain using permutation-based F-statistics. Each 

feature in the recomputed metabolite matrices was tested using the mt.maxT 
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function from the multtest package (Pollard et al., 2005) in R. This function 

provides permutation adjusted p-values for step-down multiple testing 

procedures. The null hypothesis corresponds to no differential metabolite 

features across samples when RunDay or strain was used as a factor. We 

performed 1000 permutations for each feature and iteratively tested the 

recomputed metabolite matrices to arrive at the stage where we could observe 

no significant features based on RunDay, whereas strain still had a significant 

effect. Due to the multiple testing, false discovery rate (FDR) adjusted p-values 

were generated using Benjamini-Hochberg procedure.  

Test of effect size and inflation statistics: We tested for (i) effect size using correlation 

as function of test statistic, and (ii) inflation effects by observing the distribution of 

numerator and denominator of F-statistics. 

 Correlation as function of test statistic:  Correlation as a function of test 

statistic was used as function to calculate the R2 value associated with an F-statistic. 

The correlation coefficient can be used to measure of the strength of the effect rather 

than to test the significance of the effect (Rodgers and Nicewander, 1988). In the 

presence of multiple groups, Rodgers et al provided a measure to determine the 

relationship between the coefficient of determination R2 and F-statistic through the 

formula 𝑅2 =  𝐹(𝑘 −  1)/[𝐹(𝑘 − 1)  + (𝑁 − 𝑘)] 

 In the above formula, F is the F-statistic, k is the number of groups (strain or 

RunDay), and N is the total number of samples. The R2 value was calculated for each 

feature. Using the above relationship, the correlation statistic [effect] is computed for 

the F-statistics for each of batch and strain-specific effects. This relationship is plotted 

in the in the third rows of Figures 3.12 A, B and C. The features deemed as significant 

(FDR adjusted p-value < 0.05) after permutation-based tests are coloured in red. The 

significant features have a high R2 and F-statistic, indicating that the model describes 

the variation well, and, the variation between group means are high. Expectedly, 
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features which did not have a significant FDR adjusted p-values, also had a low F-

statistic value and low coefficient of determination.  

 We then tested for inflation of the F-statistics, related to the choice of whether 

shrinkage estimators are required. The numerator and the denominator of the F-

statistics were obtained using the 𝑚𝑡. 𝑡𝑒𝑠𝑡𝑠𝑡𝑎𝑡. 𝑛𝑢𝑚. 𝑑𝑒𝑛𝑢𝑚 from the multtest 

package in R. The numerator assesses the variation of the means between groups. The 

denominator is an average of the sample variance estimated for each group. Artefactual 

inflation of test statistics may occur in cases of small differences (numerator) amplified 

by small within group variances, and a simple analysis was undertaken to explore this 

issue. In this analysis, the ratio of denominator to numerator is plotted in the last rows 

of Figure 3.12 A, B and C. These plots indicate the number features (in y axis) and 

ratio of the test statistic (in log scale in the x axis). In an ideal scenario the features that 

are deemed as significant should have low denominator to numerator ratio. Such ratios 

indicate that the between group means are largely different, and thus, the numerator 

has a high degree of variation. In Figures 3.12 A, B, C, the number of strain-specific 

significant features that have low denominator to numerator ratio is higher than those 

affected by batch effects (on the bottom left panel). As the PCs are removed, this trend 

increases for the strain-specific features, while decreasing for batch affected features. 

Taken together, these results help conclude that the SVD-based filtering is effectively 

removing only the variation associated with batch effects, as the strain-specific 

variation still exhibit significant ratios (with low values) between denominator-to-

numerator of the F-statistic. 

 



A

Figure 3.12. Illustration of batch effect removal using SVD. (A) The uncorrected data 
matrix is shown. The first row show displays the metabolite matrix in a mass-by-
charge retention time plane. The grey shaded points represent the full data matrix. 
Points shaded in blue, red and black represent the significant features associated with 
strain, RunDay and those which are common, respectively. The second row shows 
the number of significant differential features (p-value < 0.05) associated with strain 
and RunDay. The left column shows the results obtained with strain as a factor, 
whereas the right column shows results with RunDay. The third row plots the 
relationship between R2 and F-statistic for each feature.  The last row plots the distri-
bution of the ratio of denominator to the numerator of the F-statistic.  
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Figure 3.12B. The significant features associated with RunDay has reduced.
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Removing top 5 PCs
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Figure 3.12C. The significant features associated with RunDay are negligible and 
batch effects are significantly reduced.
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Removing top 10 PCs
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3.3.3.2. Results from the application of the batch effect removal algorithm  

To test whether the proposed algorithm works well for removing unwanted 

variation, we would have to understand that the differences between strains are 

correlated with the unwanted variation as a result of batch differences. Thus, an 

effective solution will (i) reduce the number of features which are influenced by 

RunDay, (ii) identify features which are influenced only by strain-specific variation, 

and (iii) remove the influence of RunDay and preserve only the effect due to strains for 

features which are confounded with both RunDay and strain effects (Figure 3.12A, B, 

C).  

The above approach was used for removing batch effects from metabolite 

matrices of strains profiled at both exponential (day 4) and stationary phase (day 12). 

For both data matrices, significant association with RunDay was observed with mainly 

the top few PCs. Thus, the top PCs captured the systematic variation due to batch 

effects. Before batch correction, at exponential stage, there were 10,664 differential 

features between strains and 5,165 features showing significant differences based on 

RunDay (Table 3.1). Similarly for the day 12 matrix, we observed 9,044 and 5,116 

features due to strain and RunDay differences, respectively.  Using the above approach, 

batch effects were substantially minimized by nullifying the singular values of the first 

4 PCs for stationary and first 7 PCs of exponential phase. For example, Figure 3.13 

shows groupings of strains before and after batch correction. This illustration shows an 

increasing or decreasing trend in the raw (scaled) data due to RunDay in loadings of 

PCs 1, 2 and 3. The removal of RunDay associated variance resulted in the strains to 

cluster based on their biological differences.  For stationary phase, we retained 18.99% 

of the residual variance of the original matrix containing 10,687 features. Out of this 

set, 5,878 features were significant due to strain-specific differences and 6 features 

significant due to RunDay effect. However the features affected by RunDay were 

different from those affect due to strain, hence were ignored during metabolite 

identification. For exponential phase, there were multiple sources influencing the 
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metabolite matrix, such as differences in growth rate between strains which were 

further confounded with batch effects. Thus for exponential phase, after batch effect 

correction, we retained 13.31% of the residual variance from the metabolite matrix 

encompassing 13,444 features. The batch correction resulted in identification of 3,979 

features showing significant strain-specific variation and 138 features which were 

significantly affected by RunDay. Over all, the batch effect removal procedure greatly 

reduced the variation in metabolite profiles attributed to run day to almost 0% for 

stationary (day 12) and around 1% for exponential (day 4) phase. The features that were 

still associated with RunDay were artefacts or adducts and hence did not map onto any 

metabolite from with METLIN (Sana et al., 2008) or MetaCyc- constrained to the 

Chlorella metabolome (Zhang et al., 2005)  databases. 

Table 3.1. Significant metabolite features before and after batch effect removal 

 Exponential phase Stationary phase 

 Raw data 

Features detected 67,468 67,468 

Complete features 13,444 10,687 

Residual variance 100% 100% 

Strain-specific features 13,012 10,309 

RunDay-specific features 10,537 8,910 

 Batch effect removed 

Residual variance  (PCs 

removed) 
13.31% (7 PCs) 18.99% (4 PCs) 

Metabolites identified 1,102 996 

Strain-specific features 3,979 5,878 

Strain-specific 

metabolites 
466 655 

RunDay-specific features 138 6 

Metabolites influenced by 
RunDay 

0 0 
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Figure 3.13. The plots depict the first two PC loadings of PCA performed on strains 

before and after batch correction for (A) exponential phase- day 4, uncorrected data; 
(B) exponential phase- day 4, after batch effect correction; (C) stationary phase- day12, 

uncorrected data; (D) stationary phase- day12, after batch effect correction. The y axis 

in first, second and third row show PC 1, 2 and 3, respectively. The x-axis represent 

RunDay time stamps. The absence of within batch grouping based on run order indicate 
that there was no within batch variation and that only RunDay difference (between 

batches) was the major confounding factor.  Interestingly, the strains achieve a better 

(random) spread after removing the batch effect from the data structure.  
 

To assess the feasibility of using SVD filtering in the present case, the following 

analyses have been undertaken to show that SVD-based filtering approach used in this 

study retains some strain-specific biological information:  

Case study 1: Strains that were run within a single batch in each growth stage: We 

designed an analysis to investigate the validity of the SVD procedure by only 

examining inter-strain differences within a given RunDay batch. Specifically, to 

estimate the percentage of variation explained by strain-specific differences before and 

after the application of the SVD batch effect correction on all samples, but only 

comparing samples within the same batch to their uncorrected counterparts. This was 

tested using analysis of distance measure (𝑎𝑑𝑜𝑛𝑖𝑠 in vegan package) on 14 strains 

which were run in batch 4 from exponential phase and 12 strains from stationary phase 

run in batch 2 (Figure 3.1). Table 3.2 describes the results from 𝑎𝑑𝑜𝑛𝑖𝑠 which shows 

that the within batch strain-specific differences are preserved following the application 

of the SVD procedure. Interestingly, the variation explained (R2) by strains, seems to 

increase by 6% for exponential phase while decreasing by 3% for stationary phase after 

batch effect correction procedure. 

From the same analysis the distribution of F-statistics for the strain-specific 

differences (based on 999 permutations) (Figure 3.14A) also indicate an overlap in the 

magnitude of the F-statistics between the uncorrected and batch effect corrected data. 

The y axis in the plot shows the density of F-statistics values. The topological ordering 

between the strains is represented by plotting the first two axes of the double centered 

distance matrix obtained from 𝑐𝑚𝑑𝑠𝑐𝑎𝑙𝑒 in Figure 3.14B. .
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Table 3.2. Analysis of distance results for within batch comparison

Growth 

stage 

Dataset Factor DF SS  MS F.model R2 Pr(>F)   

Exponential 

Phase 

Raw data 

(batch23) 

Strain 13 61300 4715.4 2.4771 0.32792 0.001 *** 

Residual 66 125636 1903.6 NA 0.67208   

Corrected 

data 

(batch23) 

Strain 13 56657 4358.2 3.2337 0.3891 0.001 *** 

Residual 66 88951 1347.7 NA 0.6109   

Stationary 

Phase 

Raw data 

(batch17) 

Strain 11 77775 7070.4 4.719 0.49013 0.001 *** 

Residual 54 80907 1498.3 NA 0.50987   

Corrected 

data 

(batch17) 

Strain 11 60677 5516.1 4.2697 0.46517 0.001 *** 

Residual 54 69762 1291.9 NA 0.53483   
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Figure 3.14. Analysing relationship between strains 
before and after batch correction. (A) Density plot that 
shows the overlap in the distribution of F-statistics 
between the uncorrected and batch corrected data; (B) 
Relationship between strains plotted using the first 2 
axis of the distance matrix
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These plots indicate that though the variation between strains seems to have 

decreased, the topological ordering of strains such as, (i) D4_001 and D4_006 at 

exponential stage, and (ii) D12_006 and D12_014 at stationary stage, appear to be 

preserved before and after batch effect correction. 

By definition, the issue of whether it is appropriate to use SVD across batches 

cannot be assessed using this analysis, but these results clearly indicate there is 

preservation of biological signal following application of the SVD procedure. The issue 

of across-batch correction is addressed in the following sections. 

Case study 2: Validation of biological interpretations and strain relationship using 

independent data 

The biological relationships between strains used in this study, were tested 

using an independent experiment performed in August 2014. This experiment was a 

targeted tandem MS/MS analysis that was performed for validating the putative 

metabolites predicted from this study. We extracted MS1 data from this datset to 

compare the relationship between strains. 

Targeted metabolomics was performed using tandem MS/MS on 6 strains that 

were shown to have the most diverging physicochemical traits. They were 

UMACC001, UMACC187, UMACC253, UMACC254, UMACC322, and 

UMACC051 profiled at both exponential and stationary phase. The MS1 spectrum was 

extracted from the tandem MS/MS data and processed using the same methods as 

described in the thesis. Importantly, these new data on selected strains were run in the 

one batch. Thus, they provide an ideal test case to understand whether batch effect 

correction procedure preserves the biological relationship between strains. For 

comparative analysis, the same 6 strains were selected from the original dataset and the 

batch corrected dataset, in both exponential and stationary phase. Analysis of distance 

measure was used to determine the variation explained by the strains (Table 3.3) and 

distribution of F-statistics were assessed. 
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Table 3.3. Analysis of distance comparing relationship among 6 strains 

 

 

Growth stage Dataset Factor DF SS  MS F.model R2 Pr(>F)   

Exponential 

Phase 

Raw data 
Strain 5 33367 6673.5 3.8113 0.39654 0.001 *** 

Residual 29 50779 1751 NA 0.60346   

Corrected 

data 

Strain 5 21817 4363.4 3.2625 0.36 0.001 *** 

Residual 29 38785 1337.4 NA 0.64   

MS/MS 

data 

Strain 5 5531.9 1106.38 3.9194 0.62022 0.001 *** 

Residual 12 3387.4 282.28 NA 0.37978   

Stationary 
Phase 

Raw data 
Strain 5 39261 7852.2 4.4525 0.47104 0.001 *** 

Residual 25 44088 1763.5 NA 0.52896   

Corrected 

data 

Strain 5 38042 7608.5 6.5802 0.56823 0.001 *** 

Residual 25  28907 1156.3 NA 0.43177   

 MS/MS 

data 

Strain 5 6821.8 1364.36 5.6202 0.70076 0.001 *** 

 Residual 12 2913.1 242.76 NA   0.29924       
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Figure 3.15. Density plots that depict the distribution of F values obtained from the 
permutation test for the raw, batch corrected and independent MS/MS data  

 

The results again reflect the earlier trend, with a minor change, in this case, 

batch effect correction in stationary phase seems to explain 5% more variation than the 

uncorrected data. However for exponential phase, there seems to be a 3% decrease. The 

distribution of F-statistics show an overlap between the raw data, corrected data and 

MS/MS data from the new experiment (Figure 3.15). Furthermore the topological 

ordering of strains remains similar in all 3 datasets (Figure 3.16). From these results, 

we can conclude that relationship between strains is preserved. Importantly, it also 

supports the claim that SVD-based filtering effectively removes batch effects while 

still retaining strain-specific differences. 

 



Figure 3.16. Relationship 
between 6 strains  in the 
raw data, batch corrected 
data and in the new 
MS/MS dataset, plotted 
using the first 2 axis of 
the distance matrix
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SVD-based approach preserves biological interpretation 

Figure 3.17 shows the effect of SVD-based filtering of PC components. The y 

axis indicates the number of significant features (determined using permutation-based 

F-statistics) that were associated with Strain (coloured red) and RunDay (coloured 

green). The x axis indicates the number of PCs that have been removed.  

As witnessed in the Figure 3.17, the number of significant features that are 

associated with RunDay drops of rapidly after removal of the top few PCs in both 

exponential (Day4) and stationary (Day12) phase. Furthermore, while RunDay 

associated features are removed after the top few PCs, there still seems to be a 

significant number of features that are associated with strain differences. Unlike, the 

nested linear model, these are strain-specific features alone and are not significant when 

RunDay is used as a factor.  

A detailed representation of the effect size, inflation statistic and the 

relationship between strain-specific and run-day specific features are provided in 

Supplementary Figures 1 and 2 for exponential and stationary phase, respectively. 

Furthermore, as observed in Figure 3.14, the overall relationship between strains 

analysed in the same batch, before and after batch correction procedure, is similar. 

Therefore, SVD-based correction seems to effectively reduce non-biological sources 

of variation. 

Metabolites in batch effect corrected data show significant associations with PC 

A recent method ‘Jackstraw’ that computes the association between 

metabolites and principal components was tested on the raw and batch corrected data. 

It uses a resampling method to produce accurate significant measures of associations 

between the observed metabolites and their principal components.  
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Figure 3.17. Number of significant features that are associated with RunDay and strain 
after removing each PC. The x axis indicates the PCs and the y axis indicates the 

number of significant features. 

The over-fitting characteristics that result from computation of principal 

components from the same set of variables are also taken into account (Chung and 

Storey, 2014). The 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝐴 function from the jackstraw package was used to 

estimate the number of significant principal components from both raw and batch 

corrected data at each growth stage. Interestingly, the test did not detect any significant 

principal components in the raw data. However, when the 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝐴 function 

was used on the batch effects corrected dataset, it determined the first 26 components 

of exponential phase and first 22 components of stationary phase to have significant 

associations with metabolites (Figure 3.18). The x axis in Figure 3.18 represents the 

PCs and the y axis shows the percentage variation explained by each PC. 



89 

 

Figure 3.18. Significant associations between principal components and metabolites. 

The y axis indicates the percentage variation and the x axis indicates PCs. 

These results suggest that the variation in the uncorrected dataset might be 

masked due to batch effects, thus, the metabolites did not show any significant 

association with the principal components. Furthermore, the above results further 

support the assumption that SVD-based filtering retained significant variation due to 

strain-specific effects. This observation is based on the detection of significant 

association between metabolites and principal components of the batch effects 

corrected dataset that explained 63% and 68% in exponential and stationary phase, 

respectively. 
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Comparison of SVD-based approaches with standard batch effect removal approaches 

The effectiveness of using PCA-based approaches in this fashion has been 

subject to some debate, and in particular, the generality of this procedure is unclear, 

hinging on the fact that the influences of non-biological, batch-related variables are 

thought to manifest themselves in the first few principal components. In practice, this 

is probably extremely difficult to establish in general terms, due to the context-specific 

and diverse nature of such non-biological influences in large sample series. Goldinger 

et al. argue that such PCA filtering is less effective than linear modelling, and 

demonstrate the even principal components with small variance contributions can be 

associated with batch related variables (Goldinger et al., 2013) 

Recently, Leek et al compared the effectiveness of using PCA (using SVD) 

and SVA for identifying and mitigating batch effects (Leek, 2014). In this study, using 

three published datasets and one simulated dataset, the author compared supervised 

SVA and svaseq for count data (similar in nature to metabolite abundances in the 

metabolomics data matrix), with standard methods for removing batch effects. The 

author uses SVD to perform PCA-based batch effect removal. For the simulated 

dataset, when batch effects had low correlation with group effect, SVA and RUV-based 

approaches performed better than PCA-based approach. However, the author shows 

that in datasets where there is moderate or high correlation between batch and group 

effects, then unsupervised SVA and PCA-based approaches perform better than RUV-

based approaches.  

In the present case, we have analysed the association between biological and 

non-biological variables, and eigenvector composition, and at least here, PCA 

effectively decouples the influence of these factors, despite their highly confounded 

nature. But the generality of this procedure is unclear and we emphasize, in common 

with others, that the influence of batch effects needs to be carefully investigated on a 
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case-by-case basis, and undue reliance should not be placed on prescriptive solutions. 

The extent to which PCA filtering should be used a general strategy for removing batch 

effects, potentially even in situations when these factors are either not available or not 

recorded, is unclear and more work is needed in this area. 

 

3.4. Conclusions 

We used significance tests and analysis of variance measures to evaluate the 

impact of batch effects on the metabolite features when both batch and biological 

differences were confounded. Given a set of linear combination of PCs estimated from 

the metabolomics data, we developed a (i) filtering procedure that minimizes such 

unwanted variations resulting in preservation of biological signals (ii) and does not 

require negative controls, QCs or standards for removing unwanted variation. We use 

the non-targeted algal metabolomics data to show that the proposed filtering procedure 

can be used to effectively remove nuisance variation caused by batch effects, while 

preserving the biological source of variation to serve as a direct indicator of 

biochemical phenotype. The analysis of this dataset is further examined in the next 

Chapter (discussed in Chapter 4).  

We have demonstrated the need for incorporating batch effect correction 

methods as a standard protocol especially for high throughput datasets. This can largely 

simplify complex methods and provide meaningful biological interpretations. 

Furthermore, with increased sharing of metabolomics datasets among the scientific 

community through initiatives such as MetaboLights and COSMOS (Salek et al., 

2013b), it is imperative that comprehensive meta information is recorded for removing 

batch differences. Similar to the case of expression microarrays, these data standards 

will facilitate increased meta-analysis and large-scale data mining providing further 

justification for implementing robust experimental design and data analysis strategies 

(Gibon and Rolin, 2012; Rai et al., 2013). It is also important to note that experimental 
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designs should incorporate the use of multiple internal standards and pooled standards. 

The samples should be extracted and processed in a randomized order. These steps are 

provide vital information that can be used to identify and mitigate batch effects. 

The SVD-based approach described in this study, provides a suitable 

alternative for mitigating batch effects, when the experimental design issues render 

regression-based methods as ineffective. The methods described in this Chapter may 

also have a role to play in identifying and removing batch effects in any large-scale 

experiments such as Next Generation Sequencing (NGS) studies. Taken together, 

implementation of these techniques will lead to improved experimental designs and 

enhanced data standards in untargeted metabolome surveys from any setting 

.
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4. Environmental and biochemical determinants of 

metabolic resource partitioning in naturally varying 

microalgae- Chlorella  

“This preservation of favorable variations and 

 the rejection of injurious variations,  

I call Natural Selection.” 

… Charles Darwin (1859) in ‘Origin of Species’ 

4.1. Background and Introduction 

The increasing energy demands along with the depleting fossil fuels has 

resulted in finding alternative sources of energy critical for sustaining modern life 

(Georgianna and Mayfield, 2012).  Biofuel production using microalgae has clear 

advantages over other renewable sources of energy due to the following characteristics:  

(i) Microalgae produce and accumulate oil as nonpolar lipids, such as 

triglycerides (TAGs), from sunlight and carbon dioxide (Wijffels and Barbosa, 

2010). These rich sources of TAGs can be converted to high quality biofuels.  

(ii) Compared to other alternatives such as crop biomass, microalgae grow 

relatively rapidly (Wijffels and Barbosa, 2010) and are easy to metabolically 

engineer for producing the desired bio-products.  

(iii) Microalgae can be farmed on non-arable land (Chisti, 2007) and using non-

potable water (Phang, 1990), thus, minimizing wasteful diversion of resources 

that can be better utilized and crucial for growing food crops. 

The vast natural diversity of algae along with their enormous chemical and 

physiological variability provides an environment conducive for identifying efficient 

strains for biofuel production (Stengel et al., 2011). Such diversity also highlights the 

ability of microalgae to thrive in diverse ecosystems (Radakovits et al., 2010). 

Unbiased high-throughput screening of the biochemical profiles of such populations, 
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especially inter-species comparisons, can provide insights into the genetic and  

environmental factors influencing production of valuable commercial products from 

oleaginous microalgae (Stengel et al., 2011). Furthermore, such studies can also 

provide insights into the factors that shaped evolutionary diversity in these species i.e. 

the role of environment in shaping evolutionary and regulatory divergence between 

species.  

Microalgae exhibit enormous diversity in their lipid profiles, ability to 

synthesize energy, growth rates and biomass productivity, all of which determine the 

yield (Stengel et al., 2011). Thus, bioprospecting natural variants with the desired traits 

such as strains that can grow quickly having high biomass and lipid content, can 

drastically reduce the time required to optimize metabolic engineering strategies for 

large-scale production of biofuels, and have high economic benefits (Georgianna and 

Mayfield, 2012).  

In this study, we focus on the green oleaginous microalgae- Chlorella, which 

are widely distributed in fresh water environments (Eckardt, 2010). Initially, a number 

of algal isolates were assigned to the genus Chlorella. However, this taxonomy 

classification was not reliable because of the lack of distinct morphological 

characteristics. With further molecular analysis, these isolates were then separated into 

two classes of chlorophytes, namely the Trebouxiophyceae (true Chlorella), and the 

Chlorophyceae (Blanc et al., 2010). Similar to other microalgae, Chlorella, has been 

the focus of interest mainly for (i) producing biofuels and high-value bioactives, (ii) 

sequestering carbon dioxide from the environment, (iii) and as biofertilizers or for 

bioremediation (Arbib et al., 2014). Furthermore, Chlorella has an inherent capacity to 

produce high amounts of  lipids (Pribyl et al., 2012) and biomass (Doan et al., 2011). 

Chlorella has been studied for a number of years starting from 1969 (Fott and 

Nováková, 1969), with most of the efforts initially focusing on identifying and 

screening for specific bioactive algal compounds (Onofrejova et al., 2010; Schumacher 
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et al., 2011), with later emphasis on analysing the effect of nutrients, growth conditions 

(Xin et al., 2010) and determination of optimal conditions for producing high quality 

biofuel (Rodolfi et al., 2009).  

However, the untapped potential of naturally varying microalgae as efficient 

producers of biofuel has never been comprehensively studied using non-targeted 

metabolomics approaches (Stengel et al., 2011). Previous efforts in screening tropical 

microalgae were largely focused on their use as food supplements or as fertilizers 

(briefly reviewed by (Vello et al., 2014)). Furthermore, there is growing evidence 

indicating that organisms vary in their ability to regulate both the levels and 

configurations of a given set of metabolic enzymes (Rhee et al., 2011), related to both 

variation in genetic and environmental factors. (Breunig et al., 2014; Chan et al., 2010; 

Wen et al., 2014). The development of advanced analytical measurement technologies 

(discussed in Chapter 2) combined with multivariate statistical techniques, have now 

provided opportunity to profile the diverse chemical space and richness of algal 

compounds. This approach also provides an unbiased characterization of the 

biochemical phenotype facilitating the characterization of effect of genetic and 

environmental (habitat) niche on the metabolic diversity.  

A major challenge is to understand the complex factors influencing the 

allocation of cellular resources to various processes such as growth, lipid productivity 

and biomass in oleaginous algae. Understanding how microalgae can convert the single 

carbon compounds into bio-products of interest can be studied using metabolomics. 

For example, comparing naturally varying strains using non-targeted metabolomics 

profiling can generate accurate quantitative biochemical phenotypes that help 

understand the preferential utilization of metabolic pathways in the cellular resource 

partitioning strategies. Knowledge of such processes can help in strain prioritization 

(Krug and Muller, 2014) whereby efficient strains that facilitate easy manipulation of 

metabolic pathways can be identified. This approach can also aid in removing 
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bottlenecks such as cell-density limits during synthetically re-engineered microbial 

biofuel production. Additionally, mass spectrometry-based metabolomics can reveal 

the genomic potential and characterize the metabolite concentration changes influenced 

by environmental factors.  

As inter-species comparison of strains isolated from different habitats are 

analogous to studying the environmental effects on metabolic phenotypes of oleaginous 

algae, we examined the natural variation of 22 Chlorella strains isolated from 7 

different geographic locations in Malaysia. To characterize the metabolic diversity of 

these strains, non-targeted metabolic profiling was performed. In this Chapter, I have 

undertaken a systematic analysis of these to analyse the metabolic diversity between 

22 Chlorella strains, with the specific aim of (i) understanding metabolic changes 

during growth; and (ii) identifying habitat-induced variation and biochemical 

determinants of metabolic phenotypes. 

This study is the first report to profile natural variation in oleaginous 

microalgae using a combination of non-targeted metabolomics, phylogenetic analysis 

and physicochemical profiling. We assess the strain-specific metabolic reprogramming 

strategies and analyse associations between physicochemical and metabolic profiles to 

identify key metabolic correlates of biotechnology related traits. The overall objective 

of this study is to identify algal strains that have biochemical and metabolic 

characteristics suitable for biofuel production. 
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4.2. Materials and methods 

4.2.1. Sampling strategy 

To survey the natural variation in oleaginous microalgae, untargeted 

metabolomics profiling was performed on 22 strains of Chlorella obtained from 

University of Malaya Algae Culture Collection (UMACC). These 22 strains were 

isolated from 7 different geographic locations (Figure 4.1), comprising of 16 diverse 

habitats (Table 4.1) in Malaysia (Courtesy: Ms. Vejeysri Vello and Prof. Siew-Moi 

Phang, UMA). Colleagues from UMA had previously characterized the lipid 

productivity and the fatty acid composition of these strains to identify promising strains 

for biofuel production. For detailed procedures on collection, culturing and storage of 

samples, kindly refer to (Vello et al., 2014).  

              Figure 4.1. Sampling locations in Malaysia 

Phylogenetic analysis of these 22 strains based on partial 18S rRNA sequences 

revealed that 15 strains belonged to the true Chlorella clade (within the class 
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Trebouxiophyceae) and 6 strains were from the Parachlorella clade, while 1 strain 

(UMACC 184)  was not sequenced (Table 4.1)(Vello et al., 2014).                     

Table 4.1. Species and sampling site description of 22 Chlorella strains (adapted from 

(Vello et al., 2014)) 

Strain Species Origin 

UMACC 001 Chlorella Pond at IPSP Farm, University of Malaya 

UMACC 006 Chlorella Fish tank containing chicken manure, IPSP Farm, 
University of Malaya 

UMACC 014 Chlorella IPSP Farm, University of Malaya 

UMACC 051 Chlorella Aerobic pond for POME treatment, Tenamaran 

Palm Oil Mill, Selangor 

UMACC 084 Chlorella Digested POME, enriched with goat dung, IPSP 

Farm, University of Malaya 
UMACC 087 Chlorella Digested POME, enriched with goat dung, IPSP 

Farm, University of Malaya 

UMACC 094 Chlorella Tenamaran Palm Oil Factory, Selangor 

UMACC 104 Chlorella Muddy water of Sementa Mangrove, Selangor 

UMACC 177 Chlorella Plastic container, Kuantan Pahang 

UMACC 184 Unidentified NA 

UMACC 187 Chlorella Tin, Chinese graveyard, Kuantan Pahang 

UMACC 207 Chlorella Concrete tank, shop houses, Kedah 

UMACC 268 Chlorella Raw palm oil effluent pond, Labu Palm Oil Mill, 

Negeri Sembilan 

UMACC 283 Chlorella Anaerobic pond 3, Labu Palm Oil Mill, Negeri 

Sembilan 
UMACC 322 Chlorella Wastewater treatment pond at oil refinery, Negeri 

Sembilan 

UMACC 325 Chlorella Wastewater treatment pond at oil refinery, Negeri 
Sembilan 

UMACC 245 Parachlorella Seawater from Terengganu 

UMACC 252 Parachlorella Sea Bass Pond at Sepang, Selangor 

UMACC 253 Parachlorella Sea Bass Pond at Sepang, Selangor 

UMACC 254 Parachlorella Sea Bass Pond at Sepang, Selangor 

UMACC 255 Parachlorella Sea Bass Pond at Sepang, Selangor 

UMACC 258 Parachlorella Sea Bass Pond at Sepang, Selangor 

It is important to note that though the strains are similar to those used in (Vello 

et al., 2014), the data for this study comes from a different batch. This study was 

specifically conducted to identify the differences in metabolic strategies during growth 

phases and to determine the associations between biochemical traits and metabolic 

profiles. 
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4.2.2. Experimental design 

Experiments were designed to assess the influence of habitat and genotype on 

the metabolic phenotypes. Metabolite profiles of 22 strains at two growth phases- 

exponential (day 4) and stationary phase (day 12) (Figure 4.2) were obtained using 

Liquid Chromatography Mass Spectrometry (LC-MS) (described in Chapter 3). 

Biological replicates of each of these strains were developed in a manner permitting 

assessments of metabolic variation. Specifically, for each strain, we profiled 3 

biological replicates and for each biological replicate 2 analytical replicates were used 

at each growth phase. 

Figure 4.2. Experimental design for generating metabolome and biochemical profiles. 

The physicochemical measurements were collected for 3 biological replicates. 

The physicochemical measurements collected by Ms. Vejeysri Vello (UMA) are: 

 

 Specific growth rates: monitored based on OD620nm and chlorophyll a (Chla) 

concentration. Figure 4.3 provides an illustration of the growth rate 

measurements for these 22 strains. There is no growth rate associated with 

strains at stationary phase. 

 Biomass (g/L) 

 Biomass productivity (g/L/day): expressed as the dry biomass produced (in g 

L−1 day−1), at the end of exponential growth phase, specifically it is biomass 

density (g L−1)×specific growth rate (day−1) 
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 Lipid productivity (mg/L/day) 

 Total lipid content (% dry weight) 

 Total protein content (% dry weight) 

 Total carbohydrate content (% dry weight) 

Figure 4.3. Representative growth rates for (A) Chlorella and (B) Parachlorella strains 

4.2.3. Metabolite identification 

We used the metabolomics datasets that were corrected for batch effects in this 

study. CAMERA package (Kuhl et al., 2012) in R (R Core Team, 2014) was used with 

the default parameters to remove isotopes and adducts before metabolite identification. 

Figure 4.4 shows the distribution of standard deviation of the abundance (in the y axis) 

for each m/z feature (in the x axis).  As there was higher variation in the larger 

metabolite masses, a 10 ppm mass and retention time window of 5 s was set after 

manually inspecting the peak width in the extracted ion chromatograms. After 

deionization, metabolite features which elute within 5 s of each other and having m/z 

within 10 ppm were grouped and the median m/z for this was calculated. The m/z was 

then used in database search for predicting putative metabolite identifications. The m/z 

and retention time for all the features detected in each dataset is provided in a 

Supplementary dataset (Dataset 1).  
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Figure 4.4. Standard deviation of metabolite abundances at exponential (day 4) and 
stationary (day 12) growth stage. The standard deviation increases linearly with 

increase in mass, indicating that higher masses are more variable, possibly due to the 

analytical limitations. 

 

We then used the binned m/z feature list to predict putative metabolites by 

matching them against MetaCyc- constrained to the Chlorella metabolome (Zhang et 

al., 2005) and METLIN (Tautenhahn et al., 2012) databases using the PCDL manager 

(Agilent) with a search window set to 10 ppm in positive mode. Specifically, the 

database was first searched for exact matches to the given m/z, if there were no exact 

matches, then the search extends to 1pp window, then 2 and so on till 10 ppm. The best 

match is the one which has the minimum difference in ppm from the given m/z value. 

All the metabolites described in this Chapter were putative identifications based on 

database matches. Supplementary Dataset 1 lists all predicted metabolites with their 

ppm differences (within 10 ppm). The predicted metabolites can provide valuable clues 

to possible metabolites and their pathways, however, these need to be validated using 

standards and tandem MS/MS techniques for absolute confirmation. The total number 

of putative metabolites, at (i) exponential phase -1,102 were detected in the batch 

corrected dataset, while 466 metabolites were differential, and at (ii) stationary phase - 

996 metabolites were detected using batch corrected dataset while 655 were differential 

metabolites. 
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All statistical analyses in this study were performed using R and on batch effect 

corrected data. In figures, strain labels starting with UMACC are replaced by ‘DX_’ 

for clarity. Here X refers to the growth stage, thus X is 4 for exponential phase (D4_) 

and 12 for stationary phase (D12_). However, when the strains are referred to in the 

context of their genetic sequences or genomes, UMACC label is still used as there are 

no differences in these labels based on growth stages. Using this dataset, we identified 

significantly different (FDR adjusted p-values < .05) features between the 22 strains, 

amounting to 5,878 features at stationary phase, and 3,979 features at exponential 

phase.  

As a follow up to these initial surveys, data-dependent MS/MS is currently 

being performed using Agilent quadrupole time of flight mass spectrometry (Agilent 

Q-ToF 6540) with ESI probe in positive mode of ionization. The resulting fragments 

will be used to identify metabolites based on chemical structure similarity with 

standards or/and matching with MassBank database (Horai et al., 2010).  

 

4.3. Results and discussion 

4.3.1. Genetic divergence between algal strains 

rRNAs being key elements of the translation mechanism in cells are extremely 

conservative and are not structurally affected by artefacts produced due to lateral 

transfers (Pace et al., 1986). Furthermore, the length of the SSU-18S rRNA sequences 

are adequate to provide statistically robust comparisons between species. These 

characteristics make them ideal entities to be used for deriving phylogenetic 

relationship between organisms. For this study, phylogenetic analysis using the 18S 

rRNA sequences (courtesy Ms. Vejeysri Vello, Prof. Phang Siew Moi, UMA) provided 

a measure of the algal diversity sampled, especially given that these were 

uncharacterized microbes assayed over diverse geographical locations and habitats.  
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With the phylogenetic relationships already mapped out by Vello et al., 2014, 

we set out to derive a measure for calculating the genetic distance among the 21 strains. 

While the phylogenetic relationship was analysed by Vello et al, the work in Figure 

4.5A was mainly performed to assess genetic divergence within 21 strains that had 

metabolomics data. The phylogenetic analysis from Vello et al could not be used for 

the same purpose as (i) it used 29 strains, and (ii) Vello et al compared these 29 strains 

with 83 other taxa, mainly related to other Chlorella (from the GenBank database). In 

this Chapter, genetic differences were analysed between 21 strains (UMACC 184 did 

not have 18S data) in order to provide a measure of comparison between the metabolic 

distances for the same set. Specifically, it was used to analyse whether strain-specific 

metabolic traits could be related (at both growth stages) to the genetic differences 

between the strains. The genetic distance between the 21 strains was calculated using 

the 𝑠𝑡𝑟𝑖𝑛𝑔𝐷𝑖𝑠𝑡 function (Levenshtein distance) from the ‘Biostrings’ package (Pages 

et al.) in R. Hierarchical clustering based on average linkage method was then used to 

visualize this distance matrix (Figure 4.5A).   

From Figure 4.5A, we observed a clear separation between strains isolated 

from Seawater or Sea Bass Pond, namely UMACC 252, UMACC 245, UMACC 258, 

UMACC 253 and UMACC 254 and others. Interestingly, the above five strains are 

from the Parachlorella clade, thus exerting an influence on the genetic distance. The 

tight clustering within this group also suggest that these strains might have a similar 

genetic background. Furthermore, Strain UMACC 255 isolated from Sea Bass Pond 

and belonging to Parachlorella, formed a separate cluster with UMACC 322 which 

was isolated from a waste water treatment plant and belonged to the Chlorella clade. 

Surprisingly, the above two strains formed a unique subclade separate from the 

remaining 19 strains. This could possibly be due to the unexpectedly high similarity in 

the 18S rRNA sequences between these two strains. It will be interesting to perform 

complete sequencing of these strains to analyse their evolutionary and regulatory 
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relationships.  These observations from genetic distance-based clustering led us to 

further characterize the metabolic relationships between strains.   

4.3.2. Metabolic divergence between algal strains 

Metabolites identified from exponential phase-1,102 (full data), 466 

(differential) metabolites and from stationary phase we had 996 (full data), 655 

(differential) metabolites were used for calculating the metabolic divergence among 

the 21 strains using 𝑣𝑒𝑔𝑑𝑖𝑠𝑡 function (Euclidean distance) of ‘vegan’ (Jari Oksanen, 

2013) package in R. In the above description, full data refers to all the metabolites 

which were detected in the metabolomics profile for that growth stage, whereas 

differential refers to all the metabolites which were significantly varying in abundance 

between the strains. The distance matrix produced was visualized using hierarchical 

clustering based on average linkage method (Figure 4.5 Exponential phase: B, 

Stationary phase: C).  

There appeared to be substantial differences in the clustering patterns between 

genetic and metabolic distance matrices and even between growth stages in the 

metabolic profiles. For example, the clusters formed based on habitat or genotype in 

the genetic distance-based tree (Figure 4.5A) were conspicuous because of their 

absence in the metabolic distance trees. Furthermore, strains D4_322 (Figure 4.5B) 

(which had also shown significant genetic divergence, Figure 4.5A), and D12_001 

(Figure 4.5C), showed the maximum metabolic divergence at exponential and 

stationary phase, respectively. These large metabolic profile based divergence indicate 

that these strains have a markedly different metabolome compared to the others. 

UMACC 001 and UMACC 014 which formed a cluster based on genetic distance, were 

also clustered together based on metabolic profiles at exponential phase. However, this 

trend was not repeated in the metabolite profiles at stationary phase.  We observed that 

strains that were genetically divergent, were converging in the same cluster based on 

metabolic distances at exponential (D4_051 and D4_087, Figure 4.5B) and stationary 
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phase (D12_014 and D12_255, Figure 4.5C). Apart from these obvious groupings, 

there were no clear clustering patterns in the metabolic distance trees at both 

exponential and stationary phase.  

We then performed a Mantel test (𝑚𝑎𝑛𝑡𝑒𝑙 function in ‘vegan’ package, with 

999 permutations) computing Spearman’s correlation coefficient to analyse the trends 

between metabolic and genetic distance matrices. Mantel test, a non-parametric 

statistical method, that tests the significance of correlations between two distance 

matrices using permutations of rows and columns. In this implementation of Mantel 

test, the Spearman’s correlation coefficient ‘r’ will fall in the range of -1 to +1 

depending on the correlation between the elemental (strain) distributions in both the 

genetic and metabolic matrices. A strong negative correlation brings ‘r’ closer to -1, 

whereas in case of positive correlation the correlation coefficient value ‘r’ will be closer 

to +1.  An ‘r’ value of ‘0’ indicates no correlation between the two matrices. We did 

not observe any significant correlations between the genetic and metabolic distances at 

both growth stages (Table 4.2). This result is in accordance with previous studies on 

closely related genotypes, where studies conducted on Arabidopsis thaliana analysed 

the natural variation in different accessions and also showed that there was only a minor 

or no correlation between its genetic and metabolic diversity (Chan et al., 2010; 

Houshyani et al., 2012). Furthermore, they observed that metabolite levels were largely 

influenced by environment. The absence of genotype-metabotype correlation indicates 

that there is no one-to-one relationship between the genome and the metabolome of an 

organism. Thus, an unbiased metabolomics survey might be a better analytical 

technique to capture novel metabolites or understand the genomic potential of 

uncharacterized strains. Furthermore, there was no correlation (based on Mantel test) 

between the metabolic profiles of exponential and stationary phase, either using full 

data (r = 0.079, p-value = 0.297) or differential metabolites (r = 0.021, p-value = 0.43). 
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The above results indicate that the metabolite strategies in strains differ between growth 

stages. 

Table 4.2. Mantel test statistic (Spearman’s correlation coefficient r) between genetic 

and metabolic distances 

 

4.3.2.1. Metabolic diversity between algal strains 

To obtain a more intuitive feel for the growth stage-specific differences at 

metabolites, we generated a presence/absence matrix of the metabolites detected in 

each growth stage. The batch corrected dataset is used for putative identification of 

metabolites using a database search (described in Section 4.2.3). The metabolites 

identified in different growth stages number 1,102 in exponential and 996 at stationary 

phase. This number represents the total number of metabolites that were predicted 

based on mass similarity (within the given 10 ppm threshold) to existing metabolites. 

Using the m/z features that were differential between strains, we obtained 466 

metabolites at exponential and 655 metabolites at stationary phase. A matrix 

representing all the detected metabolites in this experiment was created. This 

presence/absence matrix had 4 different columns, wherein the presence of a metabolite 

in that column category is scored as ‘1’ and absence as ‘0’.  

This is visualized as a heatmap (Figure 4.6), wherein the detection of the 

metabolite in that set is indicated by a grey shade. The majority of metabolites detected 

seems to be common between exponential (day 4) and stationary phase (day 12), when 

the complete profile is used. However the differential metabolites, i.e. metabolites that 

vary in their abundance among the 22 strains were mostly unique to either exponential 

or stationary phase. 

Growth stage Dataset Vs Genetic distance 

Exponential  
phase 

Full data  0.108 (p-value = 0.22) 

Differential metabolites  0.180 (p-value  = 0.10) 

Stationary 
 phase 

Full data -0.076 (p-value = 0.74) 

Differential metabolites -0.112 (p-value = 0.81) 
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The Venn diagram in Figure 4.7 reveals that out of 655 differential metabolites 

at stationary phase, 311 were unique to the stationary phase alone. In other words, the 

metabolic differences between strains at stationary phase were due to significant 

changes to the abundance levels in 311 metabolites. The concentration levels for these 

metabolites did not significantly change or were not detected at exponential phase. A 

similar analysis shows that 56 metabolites were varying in their concentration only at 

exponential phase and not stationary phase. Taken together, a total of 655 unique 

metabolites are accountable for the strain-specific metabolic differences among the 22 

strains at exponential and stationary phases. Analysis of these metabolites will help 

understand the metabolic individuality of algal strains.



 

                                                          

UMACC 255

UMACC 322

UMACC 252

UMACC 245
UMACC 258

UMACC 253
UMACC 254

UMACC 001
UMACC 014

UMACC 187

UMACC 325

UMACC 268

UMACC 087
UMACC 177

UMACC 006

UMACC 207

UMACC 051
UMACC 094

UMACC 283

UMACC 084

UMACC 104

Height Height Height

UMACC 255

UMACC 322

UMACC 322

UMACC 255

UMACC 252

UMACC 252

UMACC 245

UMACC 245UMACC 254
UMACC 254

UMACC 258

UMACC 258

UMACC 253

UMACC 253
UMACC 001

UMACC 001

UMACC 014

UMACC 014

UMACC 187

UMACC 187

UMACC 325

UMACC 325

UMACC 268

UMACC 268

UMACC 087

UMACC 087

UMACC 177

UMACC 177

UMACC 006

UMACC 006

UMACC 207

UMACC 207

UMACC 051

UMACC 051

UMACC 094

UMACC 094
UMACC 283

UMACC 283

UMACC 084

UMACC 084
UMACC 104 UMACC 104

Figure 4.5. Distances between 21 strains (A) Genetic distance (Levenshtein distance), Metabolic distance (Euclidean distance using full dataset) at 
exponential phase (B) and stationary phase (C)  
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Figure 4.6. Heatmap (presence of a metabolite indicated in grey shade) showing 
differences in metabolites detected between growth stages. The rows represent 

metabolites, and columns are different datasets. 

Figure 4.7. Venn diagram highlights the differences between the metabolites detected 

in each growth stage. Abbreviations: Day12_all- Total metabolites detected in 
stationary phase, Day12_difF- Differential metabolites in stationary phase, Day4_all- 

Total metabolites detected in exponential phase, and Day4_difF- Differential 

metabolites detected in exponential phase.  
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Strain-specific metabolic phenotypes arise from both regulatory 

(concentration) and structural (chemical structure) differences in metabolites. Strains 

of the sub cluster of Parachlorella strains D4_255, D4_258, D4_252 and D4_254 at 

the exponential phase (Figure 4.8A) were all isolated from the same location in 

Selangor. It is interesting to observe the similarity between the metabolic profiles of 

these strains and raises the hypothesis that habitat might have an influence on the 

metabolic processes at early growth phases (No such clustering was observed during 

the stationary phase (Figure 4.8B)). However, the above hypothesis, though interesting, 

is purely speculative and warrants more experimentation and increased sample size to 

achieve statistically robust results.  

Interestingly, there were no differential metabolite features i.e. features with 

significant variation in their abundance when the strains were grouped according to 

their genotype (Chlorella Vs Parachlorella), at both exponential and stationary phase. 

Therefore, the major source of differences in the metabolite levels of these strains are 

due to strain-specific regulatory variations and/or environmental factors (such as 

habitat) influencing the biochemical phenotype.  

This analysis, highlights the fact that the time at which the metabolome is 

profiled is indicative of the metabolic state of a system. This should especially be taken 

note of when trying to understand an uncharacterized organism’s metabolic potential. 

In ideal scenarios metabolic profiling should be performed mostly over a time series.  

To identify metabolic pathways that were detected in both growth stages, these 

metabolites were mapped on Chlorella-specific metabolic pathways in KEGG (Table 

4.3 and Figure 4.9). Typically pathway or function enrichments in omics analysis are 

calculated by performing overrepresentation analysis using methods such as 

hypergeometric tests or Fisher’s exact test. This produces in an enrichment score, 

typically in the form of p-values as an indicative measure of pathway enrichment. Such 

an analysis was also performed for this study, specifically 𝑓𝑖𝑠ℎ𝑒𝑟. 𝑡𝑒𝑠𝑡 was used to test 
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for overrepresentation of these pathways in the total dataset and in the features that 

were differential between strains at each growth stage. It should be noted that this test 

was performed by treating the number of metabolites detected at each stage in the full 

dataset as the total population size for that stage. In typical experiments, such analysis 

is performed by treating the total number of entities in the pathway as the population 

size for that pathways, and the total number of entities in all metabolic pathways as the 

total population size. However, in metabolomics experiments, it should be noted that 

the maximum number of entities in a metabolic pathway for an experiment, is limited 

by the detection method (extraction protocols and capacity of mass spectrometers) used 

and the database. Therefore, in order to apply a uniform and unbiased measure of 

enrichment, the total population size for each stage was calculated using the total 

number of metabolites detected in that stage. The resulting p-values from this analysis 

are shown within brackets for each pathway in Table 4.3. Only 2-Oxocarboxylic acid 

metabolism in stationary phase had a significant enrichment score.  

The objective of this experiment was to observe the differences in the type of 

metabolites and their associated pathways. In order to capture differential enrichment 

of metabolic pathways, a targeted study with an extraction protocol optimized for such 

analysis and using instrumentation (for example tandem MS/MS) that can facilitate 

such comparisons is required. In scenarios where such experimentation is not possible, 

alternate complementary levels of information such as those measuring the 

transcriptome levels should be used to strengthen the statistical and biological 

interpretation (an example for such an application is described in Section 5.3.1).  

However, biological interpretation based on the (i) presence and absence of 

metabolites, and (ii) overall coverage of the untargeted metabolic profiles when 

overlaid on the canonical Chlorella-specific pathways, can still be derived from the 

metabolomics analysis (without MS/MS data) conducted in this study. As the same 

technique was used for profiling strains in both growth stages, it is assumed that the 
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detection limits for metabolites in both growth stages will be similar. With this 

hypothesis, the presence or absence of metabolites clearly relates to the differences in 

the type of metabolites and their associated processes that are active in metabolic 

pathways. These shifts in metabolic strategies during growth stages as shown in Figure 

4.9, can provide valuable clues to understand metabolic diversity of the 22 strains. In 

Figure 4.9, the total number of metabolites are represented as 100 percentage in the 

columns. The corresponding percentage of a pathway in the full data is shaded dark 

grey, whereas the number of differential metabolites identified onto that pathway is 

coloured orange (the percentage is calculated based on the total number of metabolites 

for that pathway).  

A 

B 

Figure 4.8. Hierarchical clustering of differential metabolites using Euclidean distance 
and average linkage method at (A) Exponential phase, (B) Stationary phase. 
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Expectedly, the top pathways are associated with secondary metabolism or 

energy (Table 4.3). The maximum number of differential metabolites between the 

strains at both exponential and stationary phase belonged to secondary metabolism 

pathways such as (i) Carotenoids, ubiquinone and other terpenoids biosynthesis; (ii) 

lipid metabolism; Interestingly for the above two pathway classes, the number of 

differential metabolites in stationary phase is almost double the number found in 

exponential phase. These numbers indicate that the diversity in lipid production 

between the 22 strains arise mainly during the stationary growth phase; (iii) alpha-

linolenic acid (jasmonic acid) metabolism and (iv) phenylpropanoid metabolism. 

Similarly, differential metabolites were greater in stationary phase than in exponential 

phase for the above metabolic pathways. Linolenic acid is one of the major 

determinants of fatty acid content in algae, thus the differences in numbers indicate that 

the strains have the diverse metabolic strategies in alpha-linolenic acid metabolism that 

eventually result in varying fatty acid levels among these strains. It will also be 

interesting to perform a targeted analysis of the jasmonic acid pathway (discussed in 

Chapter 5) to determine whether these algal strains also have rudimentary mechanisms 

for phytohormone biosynthesis (Blanc et al., 2010). Phenylpropanoids include a large 

class of metabolites (discussed inn Chapter 5), with diverse functional roles, thus 

targeted analysis using MS/MS can further elucidate the implications of differences in 

this metabolite class.  

Finally, differential metabolites which mapped onto pathways related to energy 

generation were mainly associated with (i) amino acid metabolism, (ii) 2-

Oxocarboxylic acid metabolism and (iii) Aminoacyl-tRNA biosynthesis. The trends 

between the number of differential metabolites in stationary and exponential phase 

were mixed and require confirmation using MS/MS data to understand the differences 

in metabolic strategies (Table 4.3). This is also illustrated in Figure 4.9.  Supplementary 

Dataset 2 provides metabolites identified in each pathway as separate lists. 
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Table 4.3. Number of metabolites detected in each pathway for each growth stage. Enrichment values are shown within the brackets. 

Pathway name Total 

Metabolites 

Day12-

FullData 

Day12-

Differential 

Day4-

FullData 

Day4-

Differential 

cvr00906 Carotenoid biosynthesis   115 19 16 (0.17) 24 13 (0.19) 

cvr01210 2-Oxocarboxylic acid metabolism   NA 13 12 (0.08) 13 8 (0.14) 

cvr00260 Glycine, serine and threonine metabolism   51 13 10 (0.49) 13 5 (0.74) 
cvr00564 Glycerophospholipid metabolism   52 10 10 (0.04) 11 7 (0.14)  

cvr00592 alpha-Linolenic acid metabolism   40 11 10 (0.14) 11 6 (0.32) 

cvr00130 Ubiquinone and other terpenoid-quinone biosynthesis   80 13 9 (0.72) 14 5 (0.81) 
cvr02010 ABC transporters   122 14 9 (0.84) 15 7 (0.5) 

cvr00330 Arginine and proline metabolism   90 10 8 (0.44) 9 5 (0.34) 

cvr00970 Aminoacyl-tRNA biosynthesis   52 9 8 (0.23) 10 4 (0.7) 

cvr00270 Cysteine and methionine metabolism   57 9 7 (0.52) 8 2 (0.93) 
cvr00940 Phenylpropanoid biosynthesis   65 7 7 (0.1) 7 3 (0.66) 

cvr00960 Tropane, piperidine and pyridine alkaloid biosynthesis   68 11 7 (0.84) 12 5 (0.66) 

cvr00460 Cyanoamino acid metabolism   46 8 6 (0.61) 9 2 (0.96) 
cvr00590 Arachidonic acid metabolism   75 6 6 (0.14) 6 5 (0.06) 

cvr00860 Porphyrin and chlorophyll metabolism   124 10 6 (0.89) 11 4 (0.78) 

cvr00950 Isoquinoline alkaloid biosynthesis   93 6 6 (0.14) 7 2 (0.89) 

cvr01220 Degradation of aromatic compounds   NA 9 6 (0.78) 9 3 (0.83) 
cvr00240 Pyrimidine metabolism   66 5 4 (0.57) 6 3 (0.53) 

cvr00360 Phenylalanine metabolism   72 7 4 (0.9) 7 3 (0.66) 

cvr00380 Tryptophan metabolism   82 8 4 (0.96) 9 3 (0.83) 
cvr00591 Linoleic acid metabolism   28 4 4 (0.27) 3 3 (0.08) 

cvr00600 Sphingolipid metabolism   25 4 4 (0.27) 4 3 (0.22) 

cvr01040 Biosynthesis of unsaturated fatty acids   54 5 4 (0.57) 4 3 (0.22) 
cvr00230 Purine metabolism   92 5 3 (0.87) 5 3 (0.38) 

cvr00250 Alanine, aspartate and glutamate metabolism   24 4 3 (0.69) 4 3 (0.22) 

cvr00310 Lysine degradation   52 5 3 (0.87) 6 2 (0.82) 

cvr00400 Phenylalanine, tyrosine and tryptophan biosynthesis   35 5 3 (0.87) 5 0 (1) 
cvr00760 Nicotinate and nicotinamide metabolism   47 4 3 (0.69) 4 2 (0.58) 

cvr00770 Pantothenate and CoA biosynthesis   55 4 3 (0.69) 4 1 (0.9) 

cvr01200 Carbon metabolism   NA 6 3 (0.94) 7 3 (0.18) 
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A 

Figure 4.9A. Differential presence of metabolites in metabolic pathways at Exponential phase. Abbreviations: Day4.FullData- Total metabolites 

detected in exponential phase, Day4.Differntial- Differential metabolites in exponential phase.



 

 

 

B 

Figure 4.9B. Differential presence of metabolites in metabolic pathways at Stationary phase. Abbreviations: Day12.FullData- Total metabolites 

detected in stationary phase, Day12.Differntial- Differential metabolites in stationary phase. 
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4.3.3. Physicochemical profiles 

The physicochemical profiles, totalling 7 different measurements (see 

Materials and methods) were characterized for the 22 strains. With the observation of 

strain-specific and growth stage-specific differences in the metabolic profiles, we 

analysed the physicochemical data to identify whether they exhibited a pattern similar 

to the metabolic profiles. We performed PCA on the centered and scaled 

physicochemical data using the 𝑝𝑟𝑐𝑜𝑚𝑝 function from the ‘stats’ package in R. The 

separation between strains at exponential and stationary growth stage was observed in 

the second PC axis which explained around 35% variation in the data. Interestingly, 

the variation in the first PC was largely associated to the influence of lipid or protein 

content in strains.   

Figure 4.10. PCA of physicochemical profiles of 22 strains. Strains in exponential 

phase are coloured blue, whereas stationary phase is coloured red. 
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We observed that the total protein and lipid productivity were inversely related 

to each other. To analyse this relationship further, we performed Kendall tau-based 

correlation (Figure 4.11). 

Figure 4.11. Correlation between physiochemical measures of 22 strains at (A) 

Exponential phase, (B) Stationary phase. P-values were adjusted using Bonferronni 
corrections. Abbreviations: totalCarbCon- Total Carbohydrate Content, 

totalProteinCon- Total Protein Content, totalLipidCon- Total Lipid Content, 

lipidProduc- Lipid Productivity, biomassProduc- Biomass Productivity, biomass- 

Biomass, growthRate- Growth Rate. 
 

From Figure 4.11, we observed that total lipid concentration was negatively 

correlated with total protein at both exponential and stationary phase. At exponential 

phase, both biomass productivity and lipid productivity were significantly correlated. 

The lack of correlation between biomass and lipids during stationary phase is not 

surprising as the lipid accumulation is commonly observed at the start of stationary 

phase when nutrients become limited. As lipid productivity is often used as an indicator 

for biofuel production efficiency, its correlation with biomass productivity, 

substantiates its usefulness as a suitable physicochemical-biomarker (Huerlimann et 

al., 2010). 

The significant negative correlation between total lipid and total protein 

indicates that likelihood of inherent lipogenic and proteogenic strains. Understanding 

the differences in molecular mechanisms between such strains can provide valuable 

insights into their resource partitioning strategies. Expectedly as the biochemical 
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profiles significantly vary between growth stages, the biochemical distance matrix of 

both exponential and stationary phase calculated using 𝑣𝑒𝑔𝑑𝑖𝑠𝑡 function (Euclidean 

distance) in ‘vegan, showed no correlation (r = -0.004, p-value = 0.48, calculated using 

Mantel test, 𝑚𝑎𝑛𝑡𝑒𝑙 function using Spearman’s correlation coefficient in ‘vegan’ 

package, 999 permutations). We then used the Mantel test to analyse pattern similarity 

between biochemical profiles and metabolite distances at exponential and stationary 

phase (Table 4.4).   

Table 4.4. Mantel test statistic (Spearman’s correlation coefficient r) between 

biochemical and metabolic distances. 

Growth stage Dataset Vs Biochemical profiles 

Exponential  

phase 

Full data -0.011 (p-value = 0.55) 

Differential metabolites  0.024 (p-value  = 0.39) 

Stationary 

 phase 

Full data 0.263 (p-value = 0.013) 

Differential metabolites 0.248 (p-value = 0.016) 

From the above table, we observe that there were small but significant 

correlations between the metabolic profiles of strains in the stationary phase and their 

biochemical profiles. Interestingly, there was no correlation between strains at 

exponential phase and their physiochemical profiles. The lack of a significant 

correlation between biochemical traits and metabolic profiles at exponential phase 

indicate that microbes decide their metabolic resource partitioning strategy late during 

their growth phase. 

To analyse if there were significant associations between any biochemical trait 

of the strains and the observed metabolic variation, we performed PERMANOVA 

(Permutational Multivariate Analysis of Variance Using Distance Matrices) with 999 

permutations using the 𝑎𝑑𝑜𝑛𝑖𝑠 function in ‘vegan’ package in R. Only biomass had a 

significant association with the metabolite profiles, both with differential metabolites 

(R2 = 0.084, p-value = 0.015) and full data set (R2 = 0.079, p-value = 0.019) at 

stationary phase. With biomass explaining around 8% of the variation in metabolite 

profiles, the results hint that the resource partitioning strategy of strains is reflected in 
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its end phenotype, thus, stressing the importance of analysing cellular metabolism in 

order to understand the molecular mechanisms that determine the efficiency of biofuel 

production. None of the other biochemical traits were significantly associated with 

metabolic profiles at stationary phases, whereas there were no correlation between any 

biochemical trait and the metabolic profiles at exponential phase. 

4.3.3.1. Biochemical determinants of resource partitioning 

The success of large-scale microalgae-based biofuel production depends on 

growth rate and oil content in strains. The high- and low-yielding groups are interesting 

candidates for the identification of naturally varying species-specific metabolic traits. 

Thus, we set out to determine if the best strains in each of the biochemical traits have 

markedly different metabolite profiles when compared to the worst strains (lowest 

producers, growers etc.) in each trait. Centered and scaled data were used to determine 

the best and worst strains. For each trait, strains in the top and bottom 10% of the range 

(values measured for each trait) were extracted (Figure 4.12) using the 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 

function in R.  

Figure 4.12. Classification of strains based on their biochemical profiles. 

Strains which are consistently best performers are coloured dark blue; worst performers 

are coloured red; and strains which switched between lipid and protein productivity are 

coloured green. Abbreviations: growthRate- Growth Rate, biomass- Biomass, 
biomassProd- Biomass Productivity, lipidProduc- Lipid Productivity, totalLipidCon- 

Total Lipid Content, totalProteinCon- Total Protein Content, totalCarbCon- Total 

Carbohydrate Content. 

From the above figure, we observe that strain UMACC 322 which had the 

maximum metabolic divergence at exponential phase (D4_322, Figure 4.5B) is the top 
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strain in among three different biochemical traits (Biomass, Biomass productivity and 

Total Carbohydrate Content) at exponential phase. Similarly, UMACC 001 which had 

the maximum divergence based on metabolic distance at stationary phase (D12_001, 

Figure 4.5C), is the worst performer in three different traits (Biomass, Biomass 

productivity and Lipid productivity).  

We had earlier observed that D4_252 and D4_254 formed a separate sub 

cluster at exponential phase (Figure 4.5B). The possible divergence of their metabolic 

profiles emerges when comparing their biochemical traits. From Figure 4.12, we 

observe that strains UMAC 254 and UMACC 252 are one of the top lipid producers. 

However at stationary phase, UMAC 254 (D12_254) has switched to become a strain 

having one of the highest total protein content, thus, suggesting that early markers  of 

resource partitioning strategy can be identified using an organism’s metabolic profile. 

Similarly UMACC 187 (D12_187) which is not one the top strains at exponential 

phase, but has high biomass and biomass productivity and lipid productivity formed a 

separate sub cluster based on the metabolic profiles at stationary phase (Figure 4.5C).  

To analyse whether the differences in the biochemical traits reflect in 

quantitative differences in their metabolic profiles, F-tests were performed on 

metabolite matrices using the 𝑚𝑡. 𝑚𝑎𝑥𝑇 function (with 1000 permutations) from the 

‘multtest’ package (Pollard et al., 2005) in R. In this test, the top 3 strains in each 

category were grouped into one category and their metabolite profiles were compared 

against the bottom 3 for the categories given below (Table 4.5). Importantly, we did 

not observe influence of growth media on the metabolic profile differences, thus ruling 

out batch affects during culture preparation. 

Biomass which had a significant association with metabolite profiles at 

stationary phase seems to elicit the maximum difference (showing 795 features) 

between the metabolite profiles of strains at stationary phase. In other words, strains 

which differ based on biomass had divergent metabolite profiles. At exponential phase 
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biomass and lipid productivity (showing 196 and 116 features, respectively) which are 

dependent on the growth rate, along with lipid content (104 features) seem to elicit the 

maximum difference in metabolite profiles. The metabolic and biochemical 

relationships between strains are vastly different between growth stages. Strains having 

extreme biochemical profiles also have relatively divergent metabolic profiles 

compared to the others. 

Table 4.5. Biochemical determinants of metabolic diversity among 22 Chlorella 

strains. The numbers represent the number of significant differential features for each 

comparison. 

Comparisons Day 4 Day 12 

 Top 10% 

vs 

bottom 

10% 

Top 10% 

vs 

bottom 

10% 

Chlorella Vs Parachlorella 0 0 

Prov-Seawater media and 
other media 

0 0 

Growth rate 8 0 

Biomass 55 795 

Biomass productivity 196 795 

Total carbon content 25 265 

Lipid productivity 116 128 

Total lipid content 104 173 

Total protein content 39 190 

Thus, in order to explore the behaviour of strain-specific metabolite 

associations in determining resource partitioning strategies, we used Haygood’s 

measure (Haygood et al., 2007). Haygood et al. described an approach for identifying 

tissue-specific gene expression patterns using maximal expression criteria: since few 

genes are expressed in a completely tissue-specific manner, even if that gene shows 

maximum expression in one tissue, there is a high probability that this expression level 

might also be witnessed in other tissues. This problem was recast into linear algebra by 

Haygood et al. Specifically, each gene is treated as a “vector” in the “tissue expression” 

space", thus, multiple tissues are treated as separate dimensions. In this approach, 
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tissue-specific measures are described by computing the square of the cosine angle 

between gene-vector and each of the tissue axes. However, this is equal to computing 

the 𝜎𝑔𝑡 of each gene, with the number of genes g=1,..,G and tissues ranging from 

t=1,..,T 

𝜎𝑔𝑡 =
𝐸𝑔𝑡

2

∑ 𝐸𝑔𝑘
2𝑇

𝑘=1

 

In the above expression 𝐸𝑔𝑡 is measured as the expression level of gene g in 

tissue t. This equates to simply normalizing the expression of a gene to the total 

expression measured across all included tissues. The advantage of such an approach is 

that the sum of 𝜎𝑔𝑡 is always going to be unity across all tissues. Furthermore, for any 

gene, the average of 𝜎 will always be 1/T. Thus, deviations from this value can be used 

to explore tissue-specificity. Furthermore, Haygood measure is independent of the 

overall expression level (application for metabolomics developed in discussion with 

Dr. Rohan Williams). In this study, the above concept had been modified to reflect 

strains as equivalent to tissues and metabolites abundance levels measured in the place 

of genes. This concept is particularly suited for metabolomics, as a higher or lower 

abundance of a metabolite in a particular strain hints at the possibility that the specific 

metabolite might play a critical role in determining the activation of its associated 

metabolite pathway. In our dataset, this translates into normalizing the abundance of 

each metabolite to the total abundance of the metabolite detected across all strains. 

Thus, the Haygood measure for a metabolite which does not have any specific 

abundance trend will be around 0.0454 (1/22 strains=0.0454). The above calculation 

assumes that a metabolite, which is within the normal abundance levels has an equal 

association with all the strains. Thus if the total abundance level is 1, this is split equally 

among all the strains resulting in 0.0454 being the Haygood measure for a non-strain-

specific metabolite. This analysis was performed on the 466 differential metabolites 

from exponential phase and 655 differential metabolites from stationary phase (Figure 
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4.13). It is important to note that while the heatmap in Figure 4.6 shows the 

presence/absence of a list of metabolites across growth stages, the values represented 

for each metabolite in Figure 4.13 is the Haygood measure for that metabolite in that 

particular strain. 

Figure 4.13. Heatmap showing the normalized values based on Haygood measure for 

(A) Exponential phase, (B) Stationary phase. The columns represent individual 
metabolites and the rows represent strains. Heatmap is plotted with Euclidean distance 

with average linkage clustering using the 𝑝ℎ𝑒𝑎𝑡𝑚𝑎𝑝 function in ‘pheatmap’ package 

in R. High metabolite association values are indicated in red shades in the plot. 

In (Figure 4.13), strains which previously showed high metabolite divergence 

or were categorized as the best or worst performers based on biochemical straits had 

distinct metabolite association patterns. For example D4_322 at exponential phase 

(Figure 4.13A) and D12_001 or D12_187 at stationary phase (Figure 4.13B) has a high 
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number of metabolites showing significant associations (increasing metabolite 

association is shaded from blue to red). 

Expectedly the metabolic pathways which were linked to these strain-specific 

metabolite associations were mainly related to energy, lipid or fatty acid biosynthesis 

(Table 4.3). Taken together, our results suggest that strains UMACC 187, UMACC 

254 and UMACC 322 to be the most efficient strains which can be targeted for further 

analysis for determining efficiency of large-scale biofuel production. Furthermore, 

UMACC 001 has a radically different metabolic and biochemical profile, and requires 

further analysis to determine the reprogramming strategies that allow it to have one of 

the highest total protein contents. 

4.4. Conclusions 

This survey of naturally varying strains measuring genetic diversity, 

biochemical characteristics and metabolic profiles allowed us to perform robust 

multivariate statistics to analyse the metabolic potential 22 Chlorella strains. We 

compared the metabolic divergence, genotype-metabotype associations and identified 

metabolic correlates of biotechnology related traits. This integrative analysis resulted 

in the identification of strain-specific metabolic biomarkers that can be developed for 

chemotaxonomic classification of oleaginous algae.   

Our results suggest that the metabolic differences among the strains might be 

due to differences in gene expression levels or variation in genome sequences not 

covered by the 18S rRNA sampling. In this study, the strains were isolated and had 

been grown in lab conditions. However, they still exhibit significant metabolic and 

biochemical differences. Furthermore, the metabolic and biochemical profiles were 

largely invariant based on ribosomal sequence-based genetic distances, thus, 

suggesting that the strain might have undergone habitat-influenced genetic adaptions. 

Such adaptions result in changes to gene function and expression levels which can 

affect the gene product and therefore its phenotypic evolution (Whittkopp, 2013).  
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Furthermore, the regulatory mechanisms involved in modulating metabolic 

functions remain incompletely defined. Thus, while biochemical methods provide a 

glimpse into an organism’s metabolic potential, the underlying mechanisms linking the 

genotype to its metabolic phenotype remain largely understudied. These require 

targeted transcriptomics and genomic analysis to narrow down the traits to specific 

genes. Such complementary information on gene expression levels can help build 

metabolic models and aid metabolic engineering techniques to probe symbiotic 

associations between genotype-metabotype (discussed using a model system in 

Chapter 5), their biochemical traits and influence of environmental factors.  

Overall, the results from this study provide insights on the effect of genotypic 

differences and habitat-specific factors that produce large metabolic diversity between 

phylogentically similar strains. It is interesting to note that the variation in metabolic 

phenotypes is due to specific metabolites, thus indicating a highly selective metabolic 

strategy. These results also highlight the importance of untargeted analysis to identify 

natural variants. Such untargeted metabolomics approach in a diversity-oriented study 

provides a conceptual framework for effectively screening and classifying algal species 

without relying on genome information. The identification of naturally efficient strains 

provides the opportunity to selectively mine and isolate species of interest containing 

the desired biochemical and metabolic traits from known locations. As these strains 

have a natural tendency for producing desired compounds, they provide a favourable 

starting position for metabolic engineering strategies. Taken together, the approaches 

described in this study can help understand the effects of genetic or environmental 

perturbations on the metabolic diversity of biological systems. 

Additionally, next generation sequencing techniques can be used to identify 

genomic potential and expression level variation for elucidating ‘hotspots’ based on 

gene-metabolic QTLs (Wen et al., 2014). These hotspots can be used for estimating the 

evolutionary divergence and can provide insights into to phenotypic buffering (Fu et 
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al., 2009) among the 22 strains. Such analysis will be useful for transforming systems 

level information info a functional large-scale production setup. 
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5. Data-dependent multi-omics approach to uncover effects 

of genetic perturbation on metabolic network 

“Nothing unconnected ever occurs,  

and anything unconnected  

would instantly perish” 

… Emanuel Swedenborg, 18th century Swedish scientist and philosopher 

5.1. Introduction 

Organisms being complex systems, regulate their physiological responses 

through inter-connected, non-linear, and dynamic interactions between multiple 

biological layers such as DNA, RNA, proteins and metabolites. Elucidation of such 

molecular mechanisms orchestrated via regulatory changes to gene expression and 

gene products can provide important clues in assessing cellular responses. With the 

metabolome representing the closest biochemical phenotype of an organism, analysing 

gene-metabolite relationships using an integrative omics approach can provide a 

systems level understanding of these cellular processes (Joyce and Palsson, 2006). 

From the previous study, we determined that there is enormous metabolic 

diversity in naturally varying organisms. For example, in the plant kingdom, estimates 

indicate the presence of nearly 200,000 different types of metabolites with diverse 

physical and chemical properties (Fiehn, 2002). This diversity is generated via 

biochemical processes such as conjugations, hydroxylations, methylations, 

decarboxylations, oxidation/reduction and acyltransfer reactions. Among various 

conjugation processes, glycosylation which results in addition of sugar moieties to 

aglycone (acceptor) and deglycosylation are the most prominent. 
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In plants, glycosylation or deglycosylation processes provide crucial 

modifications to the physicochemical properties of metabolites required for growth, 

development and stress response (Vaistij et al., 2009). This regio- and stereo- selective 

modification of aglycone molecules produce glycosides with diverse chemical 

structures and properties. Flavonoids consisting of almost 5,000 different structures, 

have important ecological, economic and pharmaceutical properties (Wink, 2010) and 

are one of the major classes of secondary metabolites to be influenced by glycosylation 

process. For example, glycosylation of a single flavonol metabolite, quercetin results 

in over 300 glycoside forms (Harborne and Baxter, 1999).  

Glycosylation and deglycosylation processes are regulated by a specialized set 

of enzymes known as carbohydrate active enzymes (CAZy) (Lombard et al., 2014). 

CAZy comprises of five enzyme classes. For deglycosylation processes, they are 

glycoside hydrolases (GHs), polysaccharide lyases (PLs) and carbohydrate esterases 

(CEs) and while glycosylation is mediated via glycosyltransferases (GTs) and auxiliary 

activity enzymes (AAs). Though, glycosylated forms of metabolites and their 

aglycones along with the enzymes mediating such processes have been studied, there 

are still gaps in understanding how (i) the coordination between different molecular 

entities such as genes and metabolites occur during sugar conjugation (glycosylated) 

processes, and (ii) processes such as plant innate immunity, stress response and growth 

are related to glycosylation of metabolites (Wink, 2010).  

In order to gain a holistic understanding of the molecular mechanisms co-

ordinately regulated during glycosylation, we systematically perturbed a basic helix-

loop-helix transcription factor, TRANSPARENT TESTA 8 (TT8) (Nesi et al., 2000) , 

in the model plant Arabidopsis thaliana.  Using a model plant in a laboratory setup 

provided us with a robust experimental strategy devoid of unwanted variation due to 

environmental factors.  

TT8 forms a ternary complex with two other proteins, TT2 and TTG1. This 

complex in turn regulates the expression of BAN and DFR genes from the ‘lower’ 
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phenylpropanoid metabolic network (Baudry et al., 2004), thereby, co-ordinately 

controlling flavonoid biosynthesis. Recent reports (Xu et al., 2013) suggested that TT8 

might be involved in regulating the expression of genes in flavonoid biosynthesis. 

Interestingly, TT8, was also shown to alter the chromatographic profiles of both the 

aglycone (Pelletier et al., 1999) and glycosylated  (Narasimhan et al., 2003) forms of 

kaempferol and quercetin. However, it is not yet known whether TT8 directly regulates 

glycosylation of flavonoids and/or other metabolites (glycosylated and/or aglycone 

forms). These results indicate that TT8 might be a putative flavonoid glycosylation 

regulator and would be a suitable model to investigate: (i) glycosylation of flavonoids, 

(ii) the coordinated regulation of sugar conjugation, and, (iii) other processes that might 

be co-regulated with sugar conjugation. Furthermore, with glycosylation of flavonoids 

and other secondary metabolites regulated by CAZy genes, we hypothesize that TT8 

affects glycosylation of flavonoids by regulating CAZy.  

To discover novel glycosylation targets of TT8 and its regulatory network, we 

measured the effect of TT8 loss on the Arabidopsis metabolic network by performing 

non-targeted metabolomics profiling. Furthermore, to identify coordinated changes in 

the gene expression levels, we measured RNA levels using microarray-based 

expression profiling. To utilize the systems-level information from these high 

throughput datasets, I developed a novel integrative omics strategy that combines the 

genomic relationships with gene expression and metabolite abundances. In this study, 

I used multivariate statistical methods to analyse promoter sequences and performed 

enrichment analysis by integrating both genomics and metabolomics datasets. 

To the best of our knowledge, this study represents the first approach to utilize 

orthogonal and complementary levels of biological information provided via genomics 

(analysis of shared promoter motifs), transcriptomics and non-targeted metabolomics 

in a systematic manner to understand genetic basis for glycosylation of metabolites. 
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5.2. Materials and methods 

5.2.1. Plant materials and growth conditions 

 Arabidopsis thaliana plants of ecotype Wassilewskija (Ws-2) and tt8-3 

(deb122) were obtained from Versailles (INRA, France), while tt8-2 and Ler-0 were 

obtained from the Arabidopsis seed stock center (ABRC, USA). Dexamethasone (dex) 

inducible TT8:GR overexpression lines were created by transforming 2x35S:TT8:GR 

promoter in Wt-Col (CS60000) background.  

To generate 2x35S:TT8-GR construct, we amplified TT8 cDNA from 

PGWB20-TT8 clone using primers TT8-cla1(5’-

AACTCGAGATGGATGAATCAAGTATTATTC-3’) and TT8-xho1(5’-

ATTATCGATTAGATTAGTATCATGTATTATGAC-3’), digested by Cla1, Xho1 

and were introduced in HY109 vector between 2x35S promoter and glucocorticoid 

coding gene. Plant transformation was performed as described earlier (Bechtold and 

Pelletier, 1998). Twelve independent transformed lines were tested for expression 

levels of BAN and DFR, known direct targets of TT8 with and without dex treatment. 

Three lines that showed maximum up-regulation of known target genes were selected 

for analysing the phenotypes resulting from induced overexpression of TT8.  For 

further studies, we selected inducible TT8:GR overexpression line that showed 

maximum up-regulation of BAN and DFR on dex treatment. 

Seeds were surface sterilized using 30% Clorox with 7 minute incubation, 

followed by 6 times washing with autoclaved water and transferred to MS (Duchefa 

Biochemie) agar plate [1x MS media, 20 g/liter sucrose, and 6 g/liter phytoagar (pH 

5.7)] for 4 days before placing them in growth chamber at 22°C for 16 h light/8 h dark 

cycle. For inducible lines, transgenic seeds were sown directly on MS agar plates with 

30µM dex (stock solution prepared in ethanol) or equivalent amount of ethanol for 

mock treatment. Photon flux density was set at 50 µmol 2 min 1 s. Seedlings were 

harvested after 6 days for metabolites or RNA extraction.  
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5.2.2. Metabolome profiling 

5.2.2.1. Metabolite extraction  

Metabolite extraction for non-targeted metabolic profiling was performed as 

described in the protocol (Rai et al., 2013). Briefly, whole plants were snap frozen by 

liquid N2 and homogenized using mortar and pestle. 100mg of homogenized samples 

were transferred to a 1.5ml eppendrof tube and 0.5ml of ice cold 80% methanol was 

added immediately, centrifuged twice at 4°C, 13,500 rpm for 20 min and the 

supernatant collected were used to analyse through directly to mass spectrometry. 

Metabolite extracts for four biological replicates of each line, with each replicate 

injected thrice as technical replicates were used in Q-TOF, while Orbitrap had three 

biological replicates of each line, with three replicates. The sample run were not 

randomized, however, the entire extraction and analysis was performed in one batch. 

5.2.2.2. LCMS analysis 

We used two MS platforms to broaden coverage of ionized metabolites from 

samples. In the first platform, Agilent 1290 UHPLC system was used in-line with 

Agilent QTOF 6540. Six microliters of each metabolite extract sample was 

chromatographed on a Zorbax Eclipse Plus-C18 column (10cm length, 2.1 cm 

diameter, 1.8 µm particle size) with column temperature fixed at 50°C. Flow rate was 

maintained at 0.3 ml/min in an 18 min run with a gradient mobile phase: A) 0.1% FA 

in water; B) 0.1% FA in ACN (t = 0–0.5 min, B = 10%; t = 0.5–12 min, B = 100%; t = 

12–15 min, B = 100%; t = 15–15.1 min, B = 10%; t = 15.1–18 min, B = 10%). The 

eluent was introduced directly into the mass spectrometer by electrospray, and during 

the whole period of injection samples were maintained at 4°C. Untargeted mass 

profiling was performed with Agilent Q-TOF 6540 using ESI probe in positive mode 

of ionization. Parameter for MS were: drying gas temperature- 350ºC with 10L/min 

(nitrogen) flow rate, sheath gas temperature -400ºC with 12L/min (nitrogen) flow rate, 

capillary voltage- 4000V, data acquisition in centroid mode, resolution- 30,000, 
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acquisition rate- 4 spectra/s, mass range- 50-1200 m/z. The system was controlled by 

Mass-Hunter Data Acquisition Software (Agilent Technologies, Santa Clara, CA, 

USA).  

In the second platform, we used Acquity UHPLC system (Waters) in-line with 

LTQ-Orbitrap Velos (Thermo Fisher Scientific). Acquity UPLC BEH C18 column 

(10cm length, 2.1cm diameter, 1.7 µm particle size) was used with column temperature 

fixed at 50°C, injection volume was10 µl with sample vials maintained at 7°C. Solvents 

used were the same as in first approach with solvent flow rate of 0.4ml/min and a linear 

gradient of 13 min. The following gradient was used: 5% B for 0.5 min, 5–100% B in 

9 min, holding at 100% B for 2 min and re-equilibration at 5% B for 2 min. MS profiling 

was performed in positive mode using in-line LTQ-Orbitrap Velos equipped with a 

heated electrospray probe (H-ESI II). The system was controlled by Xcalibur 2.2 

(Thermo Fisher Scientific). ESI and MS parameters used for Orbitrap were: spray 

voltage 5.0 kV, sheath gas and auxiliary nitrogen pressures 50 and 10 arbitrary units, 

respectively, capillary and heater temperatures 300 and 350 ̊C, respectively, tube lens 

voltages 110 V. The resolution was set at 60,000 for full MS scan (50-1200 m/z) with 

acquisition rate of 3 scan/s. Data were acquired in profile mode with external 

calibration. 

Data-dependent MS/MS was performed using Agilent Q-TOF 6540 with ESI 

probe in positive mode of ionization. UHPLC system with column was setup in-line 

with mass spectrometer, with an 18 min long separation method same as described 

above for untargeted metabolic profiling. Parameters used were: drying gas 

temperature at 350ºC with 10L/min (nitrogen) flow rate, sheath gas temperature at 

400ºC with 12L/min (nitrogen) flow rate, capillary voltage at 4000V, nozzle voltage 

1500V, skimmer voltage 65.0V, fragmentor voltage 150V and octopole RFPeak 

voltage 750V. Parameters for precursor selections were - fixed collision energy at 

50eV, max precursors per cycle at 10, threshold (absolute) at 100cps, active exclusion 

enabled with exclusion after 2 occurrences and release of active exclusion after 30 s. 
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Data acquisition was performed in centroid mode at the resolution of 30,000 with MS 

scan rate set at 8 spectra/s and MS/MS scan rate set at 2 spectra/s. 

5.2.3. Metabolomics data analysis 

  Raw data files from both Q-TOF (.d files) and Orbitrap (.RAW files) were 

converted into mzXML format using msconvert of the ProteoWizard suite (Kessner et 

al., 2008). Using parameters defined for Q-TOF (method = ‘centWave’, ppm = 30, 

peakwidth = c(10,60), prefilter = c(0,0); peak grouping: bw = 5, minfrac = 0.3, mzwid 

= 0.025; retention time correction algorithm: ‘obiwarp’) and  Orbitrap (method = 

‘centWave’, ppm = 2.5, peakwidth = c(10,60), prefilter = c(3,5000); peak grouping: 

bw = 5, minfrac = 0.3, mzwid = 0.015; retention time correction algorithm: ‘obiwarp’) 

a total of 8,734 (QTOF), 5,969 (Orbitap) features were extracted using XCMS 

package(Patti et al., 2012; Smith et al., 2006)  (version 1.38)  in R software (R Core 

Team, 2014). Exploratory data analysis was performed using R and datPAV. 

Metabolite profiles were analysed using XCMS and m/z values of putative metabolites 

were checked again using Agilent’s Mass Hunter Software. TICs for metabolite 

profiles obtained through Q-TOF showed a distinct divergence in the metabolite 

profiles for the biological replicate 1 for both tt8 and wild-type (Figure 5.1).  

Raw data was then log-transformed and quantile normalized. Similar to the 

TICs, for samples analysed in Q-TOF, we observed that biological replicate 1 from 

each genotype, tt8 and wild-type formed a separate cluster (Figure 5.1). We then 

analysed the remaining three biological replicates of Q-TOF to ensure that they were 

statistically robust.  All three biological replicates analysed using Orbitrap showed 

good reproducibility. This was visualized by performing Principal Coordinates 

Analysis (PCoA with Bray-Curtis dissimilarity) in PRIMER6 (Figure 5.2) on the 

replicates of Q-TOF and Orbitrap. Figure 5.2A shows the outlier biological replicate 1 

of both tt8 and wild-type in Q-TOF. After removing the outlier from Q-TOF samples, 

the analysis revealed that TT8 loss resulted in a difference in the metabolite profiles 
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between wild-type and tt8 to be over 47% in Q-TOF (Figure 5.2B) and 23% in Orbitrap 

(Figure 5.2C) . We concur that any non-biological source of variation could have 

influenced this separation, thus, for further analysis, biological replicate 1 from both 

sets in Q-TOF were removed. As the remaining 3 biological replicates for each 

condition in Q-TOF showed strong analytical similarity, multivariate analysis was then 

performed on a total of 36 samples (3 biological replicates, 3 technical replicates for 

each genotype) from each MS. It is important to note that the analysis in the MS 

platforms were experimental replicates, meaning that the replicates used in each 

platform were from different batches of plants. Thus, biological replicate 1 of Q-TOF 

was not related to biological replicate 1 of Orbitrap. Furthermore, samples from Q-TOF 

could be used even after removing the outlier, only because these samples still had 

remaining three biological replicates in genotype, thus, they provided the required 

statistical robustness. Therefore, when designing such experiments, it is always useful 

to have a minimum of four biological replicates as even if one replicate is an outlier, 

the analysis can still be performed using the remaining three. Batch effect correction 

procedure described in Chapter 3, was not required in this scenario as all replicates 

were run in a single batch. 

Mann-Whitney test with p-values adjusted (p-value < 0.05) using Benjamini-

Hochberg false discovery rates was performed on the two groups yielding 1,259 and 

611 differential features with p-value < 0.05 and fold change >2 on the Q-TOF and 

Orbitrap, respectively. 

5.2.4. Metabolite identification 

A total of 101 differential features were then recursively mapped (with mass 

tolerance < 5 and 10 ppm) onto KEGG Arabidopsis database (2014 version) (Kanehisa 

and Goto, 2000; Kanehisa et al., 2014)  using PCDL manager (Agilent). Putative 

metabolites were predicted for each m/z feature following the same strategy described 

in Chapter 4. The metabolites whose mass difference (less than 10 ppm) between the 
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given m/z was minimum was selected to represent that feature. A list of all m/z features 

with their retention time, predicted metabolites and the ppm error is provided in Dataset 

3. Of these, 46 metabolites were validated using data-dependent MS/MS-based 

fragmentation, with the fragmentation pattern matched against metabolites in the 

MassBank database (Horai et al., 2010). 

5.2.5. Microarray-based expression profiling and analysis.  

Total RNA was extracted using Omega plant RNA extraction kit (Omega BIO-

TEK) following manufacturer’s protocol. RNA was purified using an RNeasy 

purification kit (Qiagen). Total RNA was sent to Genomax technologies, Singapore for 

microarray analysis including RNA quality control using Bioanalyser (Agilent), 

reverse transcription and labelling, single color hybridization onto Agilent Arabidopsis 

4×44k Array and preliminary data analysis. The experiments were performed for two 

biological replicates each for Ws and tt8 lines, with two technical replicates (of each 

biological replicate) of each line being hybridized on single slide. Analysis was 

performed using Genespring 12.0 (Agilent) software. 

All probes were normalized using percentile shift to 75% and were baseline 

corrected to the median. Data were filtered by taking 20th to 100th percentile of signal 

value followed by filtering data based on coefficient of variance with < 20% as cut off. 

Similar to the differences in metabolic profiles of Ws and tt8 lines, their respective 

gene expression profiles also exhibited a clear difference (Figure 5.3). Filtered data 

were used for statistical analysis to identify differentially expressed genes using 

unpaired t-test with asymptotic p-value computation with Benjamini-Hochberg-based 

FDR (False discovery Rate) correction. 1,284 differentially expressed genes were 

selected based on p-value < 0.05 and absolute fold changes > 2 with respect to control.
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Figure 5.1. Raw Total Ion Chromatograms showing four biological replicates with 
each having 3 analytical replicates of (A) tt8 (B) wild-type. The TICs of the 
biological replicate 1 of both tt8 and wild-type show distinct profiles compared 
to the other replicates. 
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Figure 5.2A. Exploratory data analysis depicting similarity in metabolic profiles 
within biological replicates and differences between genotypes in Q-TOF. The first 
row shows the hierarchical clustering between samples and the second row ordination 
plots. Orange and blue shaded points represent TT8 and wild-type, respectively.  
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Figure 5.2B. Exploratory data analysis depicting similarity in metabolic profiles 
within biological replicates and differences between genotypes in Q-TOF after 
removing one outlier biological replicate from each genotype.
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Figure 5.2C. Exploratory data analysis depicting similarity in metabolic profiles 
within biological replicates and differences between genotypes in Orbitrap.
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Figure 5.3. PCA using princomp function in R, shows similar trends between technical 

and biological replicates of wild-type and tt8. 
 

Gene Set Enrichment Analysis (GSEA) enrichment analysis was performed 

using the web-based tool PlantGSEA (Yi et al., 2013). Subpathway enrichment was 

performed on differential genes and metabolites in R using iSubpathwayMiner package 

(Li et al., 2013). Microarray data has been uploaded onto the GEO database [under 

embargo until publication]. All p-values mentioned in study are FDR corrected.   

5.2.6. Promoter regulatory network 

Differential  genes were analysed using network-guided guilt-by-association 

approach in AraNet (Vandepoele et al., 2009)  to identify target gene group (TGG).  

Among the 1,284 differential genes, those that have minimal set of information in The 

Arabidopsis Information Resource (TAIR, https://www.arabidopsis.org/) were further 

selected. This removed genes (306 genes) which did not contain any annotation in 

Arabidopsis or even functional/sequence similarity to other organisms.  

Amadeus (Linhart et al., 2008) platform was used for de novo motif discovery, 

we scanned for enriched motifs in the 968 differential genes with six different 

combinations, defined as: Promoter length: 1500, 1000 and 500 bps upstream of 

transcription start site, and, Motif length: 8-mer’s and 10-mer’s motifs. An adjacency 

matrix, which showed the number of shared motifs between any two genes, revealed 

https://www.arabidopsis.org/
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the maximum motif similarity between the 23 CAZY genes and other differential genes 

to be 19 motifs. Using an approach similar to (Vandepoele et al., 2009), we tested 

different constraints, such as, genes sharing at least 95%, 90%, 75% and 50% of the 

maximum motif similarity, these gene clusters contained 15 (sharing 18 motifs), 27 

(sharing 17 motifs), 170 (sharing 14 motifs) and 596 (sharing 10 motifs) genes, 

respectively. To limit false positives but still have the potential to uncover new 

interactions, genes were selected based on a highly stringent condition i.e., those 

sharing a minimum of 14 motifs (at least 75% motif similarity). The promoter 

regulatory network was constructed using this list in Cytoscape (Shannon et al., 2003). 

PScan (Zambelli et al., 2009) was then used to identify enriched plant promoter motifs 

in 170 genes from the glycosylation regulatory network. 

5.2.7. Growth assays for stress tolerance 

For stress tolerance assays, Arabidopsis seeds were sown onto MS agar plate 

[1x MS media, 20 g/litre sucrose, and 6 g/litre phytoagar (pH 5.7)] with or without 

different stress conditions [Salt stress (100mM, 150mM, 200mM), Methyl jasmonate 

(MeJA) (50µM, 100µM, 150µM), Mannitol (250mM, 500mM), Deoxynivalenol 

(DON) (5ppm, 10ppm, 20ppm) and Abscisic (ABA) (1µM, 5µM, 10µM)], stratified 

for 4 days, and then incubated at 22 ̊C for 1 week. Ws and tt8 lines were sown directly 

on MS agar plates with or without salt, mannitol, ABA, MeJA and DON. TT8:GR seeds 

were sown on MS agar plates with all selected stress conditions in addition with 30 µM 

dex or equivalent volume of ethanol for TT8 induction or mock treatment, respectively. 

MeJA is a part of innate immune response for biotic stress(Navarro et al., 2008). DON 

is a fungal toxin that is inactivated by glycosylation to impart resistance against 

Fusarium graminearum (Poppenberger et al., 2003), and was used as a representative 

of biotic stress. For germination test under different stress conditions, 28 seeds for each 

transgenic line were sown on three petri plates and percentage germination was 
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measured. The germination of seeds was scored as positive when the tip of the radical 

had fully penetrated the seed coat. 

5.2.8. ChIP assay and Quantitative real time PCR 

ChIP assay using plant materials (0.8g) from six-day-old seedlings of TT8:GR 

lines, with or without dex treatment were performed as described previously 

(Kaufmann et al., 2009) with minor modifications. Promoters of target genes were 

scanned for putative motifs and primers were designed to cover entire promoter. 

Quantitative real-time PCR was performed in triplicates using Bio-Rad CFX384 real 

time PCR system (Bio-Rad) using Maxima SYBR Green qPCR mix (Thermo Fisher 

Scientific). The comparative Ct method (Ct) for relative quantification of gene 

expression was used for calculating the fold change using TUB2 as endogenous 

control.  

Above experiments were performed by colleagues from Metabolite Biology 

Lab, NUS - Dr. Amit Rai, Megha and Lim Boon Kiat. I performed systems level 

analysis of genomics, transcriptomics and metabolomics datasets and developed and 

implemented the integrative omics approach mainly using scripts in R and 

computational tools described in Section 5.2 (Materials and methods). I generated 

Figures 5.1 to 5.12, except for parts of Figure 5.11.  For Figure 5.11, images of 

Arabidopsis plants were produced by Dr. Amit Rai. 

5.3. Results and discussion 

5.3.1. Integrative omics approach to identify direct targets and the regulatory 

network mediated by a putative glycosylation regulator 

This integrative omics strategy (Figure 5.4) uses three complementary 

biological data measurements, namely, metabolomics, transcriptomics and 

transcriptome dependent in-silico genomics. Using non-targeted mass spectrometry-

based metabolomics, we aimed to capture a comprehensive portion of the Arabidopsis 

metabolome affected by TT8 loss. We then developed a targeted data-dependent 
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MS/MS approach to determine glycosylated and non-glycosylated metabolites (shaded 

grey on the left in Figure 5.4). For determining gene expression levels, we performed 

microarray to identify differential genes in tt8 w.r.t its wild-type control. PlantGSEA 

tool was used to identify enriched functional categories. A metabolite set enrichment 

analysis using iSubpathwayMiner was performed.  

Overrepresentation approaches (ORA) such as Fisher’s exact test or a 

hypergeometric test, are usually performed to understand the significance of entities, 

such as metabolites and genes that have been mapped onto pathways. These tests 

compare the number of differential entities that have been mapped onto a pathway, 

against the probability of such mappings occurring purely by chance. A pathway is then 

deemed to be enriched (usually in the form of p-values, such as those seen in Section 

4.3.2.1), if the number of entities that have been mapped onto it is significantly different 

from those expected by chance alone.  

A number of such methods, including ORA and GSEA are widely used for 

identifying pathways whose entities have significant changes in their levels. However, 

the predictive power generated by such methods are limited, as they focus only on 

genes or metabolites and do not factor in simultaneous changes to levels of both of 

genes and metabolites. Furthermore, standard correlation-based methods are unable to 

distinguish between direct and indirect associations when comparing gene and 

metabolite abundances (due to confounding variables such as batch effects). Thus, an 

integrative pathway analysis strategy that can utilize the combined power of both genes 

and metabolites provides an excellent solution to interpret the underlying biological 

phenomena.  

IMPaLA (Kamburov et al., 2011) and iSubpathwayMiner (Li et al., 2013) are 

two such tools that provide the option to use both gene and metabolite information for 

identifying significant pathways. The enrichment statistics for metabolic pathways in 

IMPaLA is generated by multiplying the p-values for genes and metabolites (obtained 

separately for each entity). This approach is certainly advantageous than analysing 
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genes and metabolites separately. However, IMPaLA does not consider the topology 

or the presence of hub-nodes in its analysis. These are taken into account in 

iSubpathwayMiner, which analyses the structure of the metabolic pathway.  

If a biological entity has significant changes to its levels, then it might also 

induce corresponding changes to the levels of neighbouring entities in the metabolic 

pathway. This scenario is factored into the enrichment analysis in iSubpathwayMiner 

as it integrates information from genes, metabolites, and their relative positions in the 

sub pathway along with their metabolic cascade regions (Li et al., 2013). Furthermore, 

in a large metabolic pathway, only core part of the pathway, depending on the 

biological phenomena, might have an effect. Thus, iSubpathwayMiner performs 

integrative sub pathway enrichment analysis that can result in a higher predictive power 

for understanding metabolic responses. Specifically, iSubpathwayMiner analyses 

lenient distance similarities of key nodes within the metabolic pathway structure to 

identify important metabolic cascade sub-pathway regions. The enrichment scores for 

such analyses are then generated using a hypergeometric test. Furthermore, 

iSubpathwayMiner also enables direct import of the Arabidopsis metabolic network 

from KEGG into R. Therefore, in order to fully utilize the (i) strength of the combined 

gene and metabolite analysis, (ii) statistical power generated by analysing enriched sub-

pathways, (iii) most updated Arabidopsis metabolic network, we selected 

iSubpathwayMiner for performing integrative analysis. 

To determine the effect of TT8 loss on the metabolic network architecture we 

analysed genes and metabolites together in a sub-pathway enrichment analysis using 

𝑆𝑢𝑏𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝐺𝑀 function in ‘iSubpathwayMiner’ package (Li et al., 2013) in R. The 

output from this analysis was then mapped onto AraCyc version 8.0 (Mueller et al., 

2003) pathways.  

Gene expression is affected by the combinatorial arrangement and sharing of 

motifs in the promoter region. These motifs act as transcription factor binding sites. 
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Hence, the presence or absence of certain motifs plays a significant role in recruiting 

transcription factors and initiation of transcription, thereby affecting gene expression 

levels. The information encoded in these promoter sequences such as type and number 

of motifs can help understand genotype-phenotype relationships by providing a 

mechanistic interpretation of the genetic basis that govern metabolite regulation (Levo 

and Segal, 2014). Thus, we analysed the promoter sequences of differentially expressed 

genes. We selected only those genes that had  evidence (experimental or 

computational)-based on annotations in AraNet (Lee et al., 2010) to understand 

promoter relationships (shaded grey on the right in Figure 5.4). Furthermore, to identify 

conserved regions between differential genes, we performed de novo motif 

identification implemented using Amadeus (Linhart et al., 2008). This approach 

allowed us to identify motifs which had not yet been encoded to a transcription factor. 

Then, a constraint-based promoter regulatory network was developed based on shared 

enriched motifs between these genes. This subset of genes affected by TT8 loss formed 

the glycosylation regulatory network. The pathways associated with these genes were 

cross-referenced with the AraCyc metabolic pathways where the metabolites had 

earlier been mapped. This metabolic pathway level analysis helped us identify common 

targets affected by TT8. Taken together, by combining high-throughput metabolomics, 

genomics and transcriptomics data, we generated testable hypothesis on the role of TT8 

in Arabidopsis. The hypothesis was then validated using TT8 loss-of-function and 

inducible overexpression lines.   
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Figure 5.4. Integrative omics approach to identify direct targets of a flavonoid 

glycosylation regulator. Differential metabolites and genes were identified by 

comparing the metabolic and transcriptome profiles of tt8 and wild-type. Glycosylated 

metabolites were identified using a targeted MS/MS approach. Promoter networks 
analysis was performed using differential genes. Enriched metabolic sub-networks in 

KEGG Arabidopsis metabolic network were identified by the combination of 

differential metabolite and genes 
 

5.3.2. TT8 loss affects glycosylation of flavonoids and nucleotides 

To determine the effects of TT8 loss on the metabolome, we performed 

untargeted metabolic profiling.  As glycosylation is dynamic during the early growth 

stages, we chose to perform the experiments using 6-day old seedling metabolite 

extracts from tt8 and wild-type (Ws background).  Two high resolution mass 

spectrometry platforms were used to improve the coverage of differential metabolites. 

Figure 5.5 illustrates the metabolites detected using the two mass spectrometers on a 

mass-by-charge versus retention time plot. 
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The x-axis represent the retention time, while the y-axis represents the mass-

by-charge ratio of the putative metabolites detected using database searches. From this 

figure, we observed that analytical methods were complementary rather than redundant 

as it covers unique regions of the metabolome. For example, the Q-TOF-based mass 

spectrometer (shaded green in Figure 5.5) covers the entire elution time, whereas 

Orbitrap which had a shorter run time (shaded red in Figure 5.5) was enriched towards 

the initial parts of the chromatography run. The differences in the types of metabolites 

being measured in the two MS arise mainly due to the differences in the 

chromatographic run (see Section 5.2.3). While Orbitrap had a LC run time for 15 mins, 

Q-TOF was run for 18 mins. Furthermore, there was also differences in the column 

make. These differences, plus the fact that Orbitrap slightly favours metabolites at 

lower mass range, eluting first, compared to Q-TOF, resulted in both the MS capturing 

different m/z ranges. Importantly, from Figure 5.2 we also know that both the mass 

spectrometers captured significant biological differences between wild-type and 

mutant. Thus, by using two mass spectrometers, we were able to obtain comprehensive 

coverage of the changes in the Arabidopsis metabolome as a result of TT8 loss. 

Figure 5.5. Comprehensive coverage of the perturbed metabolome. Two mass 

spectrometers were used for profiling complementary regions of the Arabidopsis 
metabolome. The points indicate the detected metabolite’s location based on mass (y 

axis) and retention time (x axis). 

From the differential metabolite analysis, we observed that flavonoids 

including flavonols, flavanones and anthocyanins were the largest class of metabolites 

affected by the loss of TT8 (Table 5.1).  Similar to previous reports, quercetin and 

kaempferol aglycones were up-regulated in TT8 loss-of-function line (Nesi et al., 2000; 
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Pelletier et al., 1999). Our comprehensive metabolomics approach enabled the 

detection of thirteen additional flavonoid aglycones, whose glycosylated forms have 

been not yet been shown to be affected in tt8 (Table 5.1). Interestingly, TT8 loss had 

differential effects on the glycosylation of aglycones mainly based upon the metabolite 

class. For example in Table 5.1A, the first group of metabolites had both aglycones and 

their corresponding glycosylated forms being affected in tt8, whereas, only the 

glycosylated forms were affected in the second group. 

Another interesting observation, is that the trends in the glycosylated 

metabolites were mainly dependent on the nature of the attached sugar moiety. For 

example, most of the glucoside conjugated quercetin and kaempferol were down-

regulated, while the rhamnoside conjugated forms were mostly up-regulated in tt8. 

We also observed a significant number of nucleotides and their glycosylated 

forms being affected in tt8 (Table 5.1B). The sugar conjugated nucleotides numbering 

around 13 out of 20 were mostly down-regulated whereas only 3 out of 10 aglycone 

nucleotides were down-regulated. Taken together, we observed that sugar conjugated 

forms of both primary and secondary metabolites were majorly affected by TT8 loss.  

 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

Table 5.1. Metabolites affected in tt8. Relative log2-fold levels of differential putative 

glycosylated metabolites and their aglycones belonging to (A) flavonoids, and (B) 
nucleotides in both TT8 loss and induced overexpression lines are shown. * indicates 

metabolite was confirmed using MS/MS. (shown in the next page) 
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A 

Aglycone Glycone    tt8     TT8:GR 

  cyanidin*   2.4 -2.2 
 cyanidin 3,5-diglucoside* -2.4 2.9 

 cyanidin 3-O-beta-D-glucoside* -3 2 

 cyanidin 3-O-sophoroside* -2.4 1.3 
kaempferol*  9.6 -1.4 

 kaempferol 3-sophorotrioside* -5.2 3.1 

 kaempferol 3-O-glucoside* -4.6 2.1 

 kaempferol 7-O-glucoside* -4.2 1.8 
 kaempferol 3,7-O-diglucoside* -8.8 2 

 kaempferol 3-O-glucosyl-(1-2)-glucoside* 1.6 -1.1 

 kaempferol 3-O-glucosylgalactoside* 7 -2.3 
 kaempferol 3-O-gentiobioside-7-O-rhamnoside* 2.7 -2.3 

 kaempferol 3-rhamnoside* 2.8 -1.5 

 kaempferol 3-rhamnoside-7-rhamnoside* 6.9 1.4 
quercetin*  9.5 -6.3 

 quercetin 3,7-O-diglucoside* -3.8 2.6 

 quercetin 3-O-[xylosyl-(1-2)-glucoside]* -7.8 3.1 

 quercetin 3-O-glucoside* -9.7 8.8 
 quercetin 3-O-glucosyl-(1-2)-glucoside* 0.8 -2.1 

 quercetin 3-O-rhamnoside* 9 -2 

 quercetin 3-O-rhamnoside-7-O-glucoside* -8.8 2.3 
 quercetin 3-rhamnoside-7-rhamnoside* 9.9 -3.2 

luteolin*  12.9 -1.3 

 luteolin 7-O-glucoside* -10 0.8 

vitexin*  15.2 N.D 
 vitexin 2-O-D-glucoside* -8.6 N.D 

isovitexin*  -1.9 2.1 

 isovitexin 2''-O-beta-D-glucoside* -0.8 -1.9 
salicylate  -4.6 1.8 

 salicylate -D-glucose ester 7.5 -2.2 

 salicylate 2-O-D-glucoside -0.5 -1.1 
apigenin  3.4 -1.7 

 apigenin 7-O-beta-glucoside* -9.5 N.D 

 apigenin 7-O-neohesperidoside* -1.7 N.D 

 genistein 7-O-glucoside* -0.8 2.1 
 hesperetin 7-O-glucoside* -7.6 3.3 

 pelargonidin-3,5-diglucoside* 5 -3.8 

 naringenin 7-O-glucoside* 8.6 -2.5 
 bracteatin 6-O-glucoside* 0.7 -1.3 

 coniferaldehyde glucoside -1.3 1.4 

 dihydroconiferyl alcohol glucoside 7.14 14.1 
eriodictyol  8.3 -0.3 

2',4,4',6'-

tetrahydroxychalcone 

 8.3 -0.3 

4-coumarate  -2.3 8.8 
caffeoylshikimate  8.1 -3 

camalexin  -6.4 13 

chorismate  -6.5 10.4 
dihydroconiferyl alcohol  1.1 -2.7 

dihydromyricetin  27.4 -0.3 
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B 

Aglycone Glycone tt8 TT8:GR 

UDP*  6.8 N.D 
 UDP-2,3-bis(3-

hydroxytetradecanoyl)glucosamine* 
8.6 -2.3 

 UDP-4-dehydro-6-deoxy-D-glucose* 2.8 -1.9 

 UDP-D-apiose -7.7 1.2 
 UDP-D-glucose -6.6 1.8 

 UDP-D-glucuronate -6.9 3.1 

 UDP-D-xylo-4-keto-hexuronate -11.8 3.3 
 UDP-D-xylose -7.7 3.9 

 UDP-galactose -6.6 2.3 

 UDP-L-arabinofuranose* 8.5 -3.1 
 UDP-L-arabinose -7.7 3.5 

 UDP-N-acetyl-D-glucosamine -12 N.D 

UMP  1.7 N.D 

UTP  -10.8 3.4 
dUMP  6.6 -1.7 

dUTP  8.5 -2.1 

dTDP  6.4 -3.3 
dTTP  -3 3.1 

 dTDP-alpha-L-rhamnose 2.8 N.D 

 dTDP-D-glucose -15.9 2.3 
 TDP-rhamnose -6.4 4 

 dTDP-4-acetamido-4,6-dideoxy-D-galactose 2.7 -2.3 

 dTDP-4-dehydro-6-deoxy-D-glucose -9.2 7.5 

dGTP*  -3.9 1.1 

 GDP-D-glucose* -1.7 1.3 

 GDP-L-fucose* -15.9 2.3 
 CDP-4-dehydro-3,6-dideoxy-D-glucose 9 -1.7 

 CDP-4-dehydro-6-deoxy-D-glucose 7.5 -2.3 

dCTP  N.D -2.7 
dGMP  N.D    6.3 

   

5.3.3. TT8 loss affects genes associated with sugar metabolism and 

glycosylation 

Microarray-based gene expression profiling was performed using tt8 and wild-

type seedlings to determine the effects of TT8 loss at transcript levels. As expected, the 

levels of TT8 were down-regulated in the mutant compared to the wild-type. Consistent 

with previous reports, targets of TT8 such as BAN and DFR were down-regulated by 

1.3- and 1.67-fold, respectively, while homologs of TT8 namely, EGL3 and GL3, were 

up-regulated by 1.45- and 2.3-fold, respectively. The up-regulation of homologs 

possibly explain the marginal but significant down-regulation of BAN and DFR.  
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Several biosynthetic genes from phenylpropanoid and flavonoid pathway 

showed down-regulation in their gene expression trends compared to wild-type. 

Similar results were also seen at their corresponding metabolite levels. As we observed 

a number of metabolites being glycosylated, we focused on the enzymes mediating 

glycosylation processes, specifically CAZy. Expectedly, 34 genes from the CAZy 

category were differentially expressed by more than 2-fold (Figure 5.6). We also 

observed around 10% of the total CAZy genes in Arabidopsis being significantly 

affected by more than 1.5-fold. The expression levels for CAZy genes associated with 

glycosylation of specific metabolites showed similar trends. For example, UGT78D1, 

regulates the glycosylation of aglycone forms of kaempferol by adding rhamnosides 

(Jones et al., 2003) was up-regulated by over 6.5-fold, showing the same trend as that 

of rhamnoside conjugated forms of kaempferol in tt8 (Table 5.1A). Similarly, 

UGT88A1, which glucosylates quercetin was down-regulated by 2.5-fold (Figure 5.6), 

and so were the levels of three forms of quercetin glucosides in tt8 (Table 5.1A). These 

two genes are also associated with several sugar conjugation processes. 

To identify coordinated response of genes and metabolites in enriched sub 

pathways in the KEGG Arabidopsis metabolite network, we mapped differential genes 

and metabolites onto their respective KEGG identifiers and used iSubpathwayMiner in 

R. The most enriched process was inositol phosphate metabolism which is related to 

signalling in defence responses in Arabidopsis. However, the above analysis is limited 

by the fact that KEGG maps does not provide exhaustive coverage of the glycosylated 

forms. Using our targeted MS/MS analysis we observed that a number of metabolites 

from the flavonoid pathway being glycosylated. Upon incorporating results from 

MS/MS analysis, flavonoid or nucleotide glycosylation networks had the maximum 

number of affected entities based mainly upon the number of differential metabolites 

(glycosylated and non-glycosylated) in those pathways (Table 5.1A). Thus, sub-

networks associated with flavonoid metabolism were the most enriched sub-network 

affected by tt8.  The next most enriched pathways were related to nucleotides and sugar 
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metabolism (Figure 5.8 and Supplementary Dataset 3). Sugar metabolism networks of 

fructose, mannose and pyruvate pathways were enriched together with glycolysis and 

TCA cycle (Supplementary Dataset 3). Branches of TCA cycle that lead to amino acid 

pathways such as arginine, proline, and cysteine and methionine metabolism were also 

enriched. 

Sugar associated pathways, such as pentose phosphate pathways, and amino 

acid pathways, such as alanine and proline metabolism contribute precursors to the 

components of nucleotide network, namely purine and pyrimidines. Sub-networks with 

these pathway inputs were significantly enriched, suggesting indirect influence of 

enriched sugar metabolism network on nucleotide metabolism. These results suggest 

that TT8 loss affects nucleotide and flavonoid sugar conjugation process at both gene 

and metabolite levels 

In addition to the sugar and nucleotide metabolic sub-network, a number of 

sugar transporters and sucrose synthases were also affected in tt8. Sugar transporters 

SUC6 and SUC7, sucrose synthases SUS2, SUS3 and SUS5 along with sugar binding 

proteins STP6 were down–regulated by more than 1.5-fold. Taken together, gene 

expression analysis shows disruption of sugar conjugation machinery in tt8 with 

members of sugar metabolism and glycosylation machinery such as sucrose synthases, 

sugar binding proteins, sugar transporters, glycosyltransferases and hydrolases being 

affected, thus explaining the perturbation in the levels of metabolite glycosylation. 
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Figure 5.6. Differentially expressed CAZy genes. Heatmap on the left showing 
relative CAZy gene expression levels computed as z-scores using heatmap2 
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5.3.4. Abiotic-biotic stress response together with jasmonate and 

brassinosteroid biosynthesis network is enriched in tt8 

GSEA revealed 14 biological processes encompassing around 30% of the 

differential genes to be significantly enriched. Interestingly, abiotic and biotic stress 

response, hormone response, metabolic pathways and developmental functions were 

the major categories that were enriched (Figure 5.7).  From Figure 5.7, we observed 

that genes associated with biotic stress response showed overall up-regulation 

(relatively higher proportion of red in the figure), while abiotic stress categories 

showed a mixed trend, with hormone response and biosynthesis processes being 

effectively up-regulated in TT8 loss.  

Furthermore, from our sub-network enrichment analysis, we observed 

jasmonate sub-networks to be significantly enriched (p-value < 0.01) at both gene and 

metabolite levels. Interestingly, the sugar or amino conjugated forms of jasmonates, 

were not affected in tt8. Expression levels of genes from jasmonic acid biosynthesis 

pathways, such as, AOC1, AOC2, AOC3, LOX2, LOX3, HPL1, OPCL1, OPR3 and 

ST2A were all up-regulated by more than 2-fold in tt8, this was the same trend 

witnessed in their metabolic intermediates (Table 5.2). Genes associated with jasmonic 

acid responses, such as, key regulators - JAZ1 to JAZ12 (Thines et al., 2007), JMT, and 

CEJ1 and expect JAZ3 and JAR1, were all up-regulated in tt8. Additionally, JAR1 

regulates jasmonic acid-dependent processes, whereas CEJ1 expression is co-regulated 

by jasmonic acid.  

Previous reports (Chico et al., 2008), state that increase in jasmonic acid 

biosynthesis leads to up-regulation of MYC2, a bHLH transcription factor, which has 

an important role in jasmonate signalling pathways. This was also observed in our study 

with MYC2 being up-regulated by 2.3-fold in response to increased jasmonic acid 

biosynthesis in tt8. TT8 loss not only affected jasmonic acid biosynthesis, but also 

extended upstream to its fatty acid precursor, such as α-linolenate. Our integrative 
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omics analysis also revealed enrichment of fatty acid biosynthesis and lipid pathways 

(Supplementary Dataset 3),  which is further supported by recent biochemical evidence 

that shows that TT8 exudes inhibitory effects fatty acid biosynthesis (Chen et al., 2014).  

Another major phytohormone pathway affected by tt8 is brassinosteroid 

biosynthesis. Brassinosteroid sub-networks showed significant enrichment at the 

metabolite levels. Furthermore, the key genes of this pathway, namely BR6OX1 and 

AT4G27440 were down-regulated by more than 2-fold. Biosynthesis of brassinolide 

from campesterol in Arabidopsis occurs through two routes, one through (6α)-

hydroxycampestanol and second through 6-deoxycathasterone (Figure 5.8). Although, 

both branches for brassinolide biosynthesis are active in wild-type (Noguchi et al., 

2000), TT8 loss resulted in a switch, with (6α)-hydroxycampestanol branch being up-

regulated while 6-deoxycathasterone being down-regulated, thus suggesting a 

preferred route of brassinolide biosynthesis in tt8 (Figure 5.8). 

SERK4 (AT2G13790), SERK5 (AT2G13800) which are part of the 

brassinosteroid signalling cascade were up-regulated by over 2-fold, while FLS2 was 

down-regulated by 1.5-fold change. These results suggest that the signalling 

mechanisms in brassinosteroid pathway were not majorly affected. However, there 

were significant changes observed in the genes and metabolites belonging to 

brassinosteroid biosynthesis pathway. 

These results clearly indicate that TT8 loss affects two major phytohormone 

biosynthesis pathways in Arabidopsis. Furthermore, these pathways are also known to 

play an important role in stress response.  



Figure 5.7. Gene Set Enrichment Analysis. Top 33 enriched GO categories (p-value < 
0.05) with the number of differential genes affected in each category is shown here. 
Within each of the enriched GO category, the number of overexpressed and down-
regulated genes are indicated in red and green colour, respectively.
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Table 5.2. Metabolites belonging to phytohormone pathways affected in tt8. * indicates 

metabolite was confirmed using MS/MS. 

Aglycone Glycone tt8 TT8:GR 

Jasmonic acid biosynthesis 

volicitin *  -11.7 N.D 

12-OPDA  -6.1 3.4 

jasmonic acid  9.1 -1.8 

7-Isomethyljasmonate  8.5 -3.2 

17-hydroxylinolenic acid  8.9 -3.3 

2(R)-HOT  11.3 -2.5 

2(R)-HPOT  11.5 -2.6 

methyl jasmonate  5.6 -3.7 

OPC4-trans-2-enoyl-CoA  2.1 -1.1 

OPC6-trans-2-enoyl-CoA  -6.5 -2 

alpha-linolenate  2 1.5 

(9Z,11E,15Z)-(13S)-

hydroperoxyoctadeca-
9,11,15-trienoate 

 7.1 1.8 

Brassinosteroid biosynthesis 

campest-4-en-3-one *  -5.9 6.1 

22 alpha-hydroxy-campest-4-

en-3-one 

 2.2 -0.3 

26-hydroxycastasterone  8.2 -5.4 

brassinolide *  1.3 -1.9 

castasterone *  8.6 -1.1 

6 alpha-hydroxy-castasterone  -11.5 2.9 

6-deoxocastasterone  -5.3 9.4 

6-deoxotyphasterol  -6.5 6.9 

26-hydroxybrassinolide  13.3 -3.4 

 brassinolide-23-O-

glucoside 

-8.3 2.5 

 castasterone-23-O-

glucoside 

-5.1 0.1 
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5.3.5. TT8 regulatory network links genes associated with carbohydrate active 

enzymes to innate immunity 

We analysed the promoter sequences of differentially expressed genes to 

determine whether these genes shared common enriched motifs. Transcription Factor 

Binding Sites (TFBS) by controlling the timing and location of transcriptional activity, 

play an important role in regulating gene expression levels (Leister et al., 2011; Meier 

et al., 2008; Vandepoele et al., 2009; Vidal et al., 2013). Thus, genes sharing motifs 

might be under common regulatory mechanisms. We used a network-guided guilt-by-

association approach to uncover relationships at a regulome level and analysed 

enriched 8-mer and 10-mer de novo promoter motifs (Linhart et al., 2008) to obtain 

shared motifs between differentially expressed genes. As described in the previous 

sections, glycosylation of flavonoids and nucleotides and CAZy associated genes were 

significantly affected in tt8. Furthermore, we also witnessed TT8 having significant 

effects on processes associated with stress response and hormone biosynthesis (Figure 

5.7). Therefore, in order to identify whether these genes share common regulatory 

mechanisms, we constrained the promoter network to show only relationships between 

genes that were connected with CAZy genes.  

We then developed an undirected network with nodes representing genes and 

edges representing the shared motifs (Figure 5.9). The width of the edges is 

proportional to the number of shared motifs between any two genes (nodes), with high 

similarity indicated by thicker edges. This network represents the genes in the TT8-

glycosylation regulome. This glycosylation regulome consists of 18 CAZy genes that 

connect mainly with genes associated with stress response (13 genes) and 

phytohormone biosynthesis (13 genes). CAZy genes also share motifs with genes 

involved in sugar metabolism such as transporters (5 genes) and transferases, 

hydrolases, oxidases (9 genes) (Figure 5.9). Genes involved in initial brassinosteroid 
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biosynthesis and response, such as the cytochrome P450 genes (Figure 5.9) also shared 

motifs with jasmonate and CAZy genes. 

Genes from the TT8-glycosylation regulome analysed using PScan (Zambelli 

et al., 2009) tool revealed bZIP-related binding sites, EmBP-1, MYB, and Squamosa, 

TFBS over-represented (Table 5.3). Interestingly, recent reports have suggested these 

TFBS to be enriched in the presence of regulators such as JAZ and a number of stress 

associated CAZy genes and sugar-related pathways (Kang et al., 2010; Kazan and 

Manners, 2012; Qi et al., 2011). These relationships suggest the possibility of a 

common regulatory mechanisms among CAZy genes and between CAZy and jasmonic 

acid-associated genes. The results from transcriptome and metabolite profiling also 

support the novel relationships identified in the network, such as those between CAZy 

and jasmonic acid biosynthesis associated genes. Taken together, our results suggest 

that glycosylation of metabolites and processes associated with stress response might 

be co-regulated in the TT8-glycosylation regulome.  
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Table 5.3. Enriched plant transcription factors of the TT8-glycosylation regulome. The 

co-regulated gene sets were assessed for the occurrence of 21 known plant transcription 
factor binding sites. 

 

Transcription factor binding site  500bp  1000bp  

Jaspar 

EmBP-1  1.00E-04 2.00E-05 

HAT5  0.001 0.0001 

squamosa  0.002 0.015 

ATHB-5  0.016 0.001 

PEND  0.018 0.003 

bZIP910  0.021 0.164 

AGL3  0.023 0.001 

   

Jaspar-Fam 

MADS  4.00E-12 7.00E-07 

Homeobox  1.00E-11 2.00E-11 

Forkhead  4.00E-08 3.00E-05 

bZIP(bZIP cEBP-like 

subclass) 

2.00E-06 8.00E-04 

bHLH(zip)  1.00E-05 2.00E-09 

bZIP(bZIP CREB/G-box-like 

subclass)  

0.028 8.00E-04 

   

Transfac 

P$PIF3_02  8.00E-06 2.00E-05 

P$PIF3_01  1.00E-04 3.00E-06 

P$AGL3_01  3.00E-03 0.007 

P$AGL3_02  0.01 0.007 

P$SBF1_01  0.029 7.00E-05 

P$ATHB5_01  0.04 0.001 

P$DOF1_01  0.769 0.007 

P$ATHB1_01  0.157 3.00E-04 

P$PBF_01  0.173 0.009 
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Figure 5.9. Promoter network showing 
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5.3.6. TT8 reprograms hormone biosynthesis and sugar conjugations by 

physically binding to their promoters 

Direct associations of TT8 with genes associated with jasmonic acid and 

brassinosteroid biosynthesis, glycosylation of metabolites and stress response 

pathways were tested using ChIP-PCR and RT-PCR in inducible overexpression lines. 

Representative genes from each process in the promoter network were selected and 

their expression levels were analysed in overexpression and mutant lines using RT-

PCR-based relative quantification.  

Interestingly a number of CAZy genes showed reciprocal expression trends in 

TT8 loss and induced overexpression lines, suggesting direct association of the 

expression of these genes with TT8 activity (Figure 5.10A). Hydrolases which were 

down-regulated in dex-induced overexpression lines were up-regulated in tt8. 

Conversely, transferases and sugar transporters, down-regulated in TT8 loss-of-

function lines were up-regulated in dex-induced overexpression lines. TT8 also showed 

direct binding to the promoters of the CAZy genes, UGT84A1, UGT85A3 and 

UGT88A1 in dex-induced lines (Figure 5.10A). In TT8 loss-of-function lines, twelve 

jasmonic acid-associated genes were up-regulated, while the same set of genes were 

down-regulated in the dex-inducible system (Figure 5.10B). TT8 also showed direct 

binding to the promoters of six jasmonic acid biosynthesis genes, namely AOC2, 

AOC3, LOX2, OPCL1, ST2A and HPL1 in dex-induced overexpression lines. 
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 The key gene from brassinosteroid biosynthesis pathway, BR6ox1 was up-

regulated in tt8 and down-regulated in dex-induced overexpression lines. Genes 

associated with stress response also showed reversal in gene expression trends in 

mutant and overexpression lines (Figure 5.10C). Interestingly, the overall gene and 

metabolite expression trends in dex-induced overexpression lines were similar to tt8 

but showed exact inverse trends. These results taken together show that TT8 is a 

potential master regulator that directly binds to and reprograms genes associated with 

stress-related hormone biosynthesis, sugar conjugation processes and indirectly 

regulates stress-associated genes in Arabidopsis thaliana. 

5.3.7. TT8 overexpression enhances stress tolerance 

The results from gene expression and metabolomics analyses showing that TT8 

controls stress response and hormone biosynthesis overwhelmingly suggest a 

regulatory role for TT8 in mediating plant innate immunity. Thus, we tested tt8 and its 

dex-induced overexpression lines with salt, mannitol and ABA treatments for abiotic 

stress conditions and for biotic stress, we used MeJA and DON. Response to these 

stress conditions was analysed by counting the number of germinated seeds and 

recording images of 6-day-old seedlings. The germination percentage of seeds was 

calculated to provide a quantitative measure of the stress response.  

We observed a large reduction in the germination rates for all treatments in tt8 

when compared to its wild-type (Figure 5.11A). Remarkably, dex-induced TT8:GR 

showed nearly 20-30% improvement in germination rates compared to its wild-type 

(Figure 5.11B). The germination rates of dex-induced TT8:GR compared with its wild-

type in stress-free conditions were similar. Therefore, the increased germination rates 

witnessed in TT8:GR lines were not induced by dex, but rather are a result of increased 

TT8. The effect of stress treatments to tt8 were most pronounced in salt, mannitol and 

DON (we observed effects on germination between days 1 to 3), with tt8 showing 

nearly 50% lower germination at the end of week one. 
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Effects of MeJa and ABA were observed between days two or three and 

culminated in nearly 25% lower germination rates compared to wild-type after one 

week. Under severe salt stress (200 mM NaCl), tt8 germinated as late as five days after 

sowing. These results establish that TT8 plays a direct role in tolerance towards 

multiple abiotic and biotic stresses tested here.  

Figure 5.11. Effect of selected stress conditions on (A) TT8 loss of function, and (B) 
mock/dex treated induced TT8 overexpression lines. TT8 overexpression lines show 

increased germination rates under all stress conditions compared to its wild-type.  
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5.4. Conclusion 

In this study, we provide computational and biochemical evidence to establish 

the role of TT8 as a key regulator of glycosylation of metabolites. We have also shown 

for the first time, the role of TT8 in mediating,  

(i) Coordinated regulation of glycosylation of both primary and secondary 

metabolites through a common mechanism. The utilization of a common 

mechanism to regulate both primary and secondary metabolites suggests 

that glycosylation processes that generate diverse metabolites require 

wide range of cellular resources to be regulated in a coordinated manner.  

(ii) Direct relationship between metabolite conjugation and stress hormone 

biosynthesis through coordinated regulation via direct binding to the 

promoters or indirectly affecting expression levels.  

(iii) Plant stress response against multiple biotic and abiotic stress factors by 

directly or indirectly regulating the gene expression levels of eight 

stress-associated genes. These genes have important roles in enabling 

the plants to survive salt and drought stress (Liu et al., 2013; Mir et al., 

2013; Seo et al., 2008).  

Interestingly, TT8 overexpression improves stress tolerance, while its loss 

renders the plant to be more sensitive to abiotic and biotic stresses. Recent reports had 

suggested that TT8 might play a role in stress response based on increase TT8 levels 

witnessed in roots in response to salt and osmotic stress (Jiang et al., 2009).  Based on 

TT8’s roles in coordination of glycosylation of metabolites and stress response 

processes, we have now established TT8 as a key regulator of plant stress response. 

Finally, we propose a model highlighting the role of TT8 in co-ordinately regulating 

sugar conjugation processes and innate immunity (Fig. 5.12)
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Figure 5.12. Model depicting the role of TT8 in regulating glycosylation of metabolites 
and mediating plant innate immunity. Glycosylation of nucleotides and flavonoids are 
positively regulated by TT8, while jasmonic acid biosynthesis is negatively regulated. 
Expression level of several genes associated with stress response are also regulated by 
TT8. Thus, TT8 acts as an integrator of secondary metabolism and innate immunity.
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The model shows that TT8 directly binds to the promoters of genes associated 

with glycosylation of metabolites (such as UGT84A1, UGT85A3 and UGT88A1) and 

hormone biosynthesis (LOX2, AOC2, AOC3, HPL1, ST2 and OPCL1).  

Furthermore, the expression levels of members of sugar conjugation machinery 

(highlighted in blue in Figure 5.12) are also affected by TT8. Thus the regulatory 

control exhibited through TT8-mediated processes results in increased metabolite 

diversity. Finally, several genes associated with stress response are either up- or down- 

regulated as a result of TT8 activity.  

Taken together, these results highlight the importance of processes that 

generate metabolite diversity and reveal the underlying complex mechanistic 

interactions involved in plant defence strategies. 
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6. Overall conclusions and future perspectives 

 

 

 “Fill the brain with high thoughts, highest ideals, 

place them day and night before you, and  

out of that will come great work.” 

...Swami Vivekananda, Indian philosopher 

 

Deriving meaningful biological information from complex systems requires 

robust statistical methods. It is clear from these studies that metabolomics approaches 

can provide valuable insights into cellular responses by linking genotype to 

phenotypes. Furthermore, we also show that integrating datasets with complementary 

information about the biological system can generate strong testable biological 

hypothesis, which can further be validated.  

The major conclusions from the three studies are: 

(i) Large-scale experiments are prone to unwanted non-biological sources of 

variation that confound the outcome. If these variations are not corrected, they 

lead to erroneous biological interpretations. Furthermore, off-the-shelf 

solutions do not work for complex experimental designs, thus, requiring tailor-

made statistical solutions to investigate possible batch effects using 

exploratory data analysis. This study also highlights the importance of storing 

all possible meta-information that can be used for investigating unwanted 

variations. Finally, the statistical methods in this study can also be used for 

others types of omics datasets. 

(ii) While direct induced perturbations can be used in model organisms to 

understand the metabolic processes, natural varying species that contain 

genetically intractable systems can be studied using a non-targeted 

metabolomics approach. As the first study of natural variation in the microalga- 

Chlorella using metabolomics approach, we observed distinct relationships 
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between habitat and metabolic diversity. This diversity is greater compared to 

the metabolic divergence at species level between Chlorella and Parachlorella 

strains. Physiological and environmental factors therefore outweigh genetic 

influence on metabolic phenotypes. Furthermore, we showed that by 

associating growth and physiochemical parameters with metabolic profiles, we 

can derive biomarkers and associated metabolic pathways. Such associations 

can be used for predicting and optimizing the behaviour of non-model systems 

and help in bioprospecting of natural products in naturally varying systems.  

(iii) We show that organisms respond to perturbations by modulating their gene 

expression levels, thus, exuding regulatory controls involving coordinated 

gene-metabolite changes that reprogram the Arabidopsis metabolite network. 

By utilizing the combined power derived by integrating genomic relationships 

and gene expression outcomes with metabolite profiling, we were able to 

uncover TT8’s role in increasing metabolite diversity and in regulating stress 

response and phytohormone biosynthesis. This systems level understanding of 

the regulatory control in reprogramming of perturbed metabolic networks 

could only be detected using both transcriptome and metabolome 

measurements, thus highlighting the utility of a multi-omics approach. 

Furthermore, we show that plant stress responses are highly dependent on 

biochemical processes that generate metabolic diversity. 

The approaches developed in this study integrate experimental design, 

environmental factors and direct measurements of metabolic network components (i.e., 

enzyme and metabolite levels) to assess multiple sources of influence on metabolic 

phenotypes. These are then analysed using statistical methods to provide valuable 

biological interpretations. Taken together, the current research work contributes 

important results that have the potential to be developed into useful applications for 

human health (Appendix 2), environment (Chapters 4 and 5) and energy (Chapter 4).  
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Future perspectives from these results include:  

 We will be including recommendations for the minimal meta-data structure 

based on the metabolomics data standards initiative (Fernie et al., 2011; 

Steinbeck et al., 2012) for reporting and analysing batch-specific variations. 

To facilitate open access research, we are also planning to provide open access 

to R scripts upon publication of the paper.   

 Secondly, we have identified efficient strains for biofuel production based on 

the results of metabolomics data that was generated from a survey of naturally 

varying oleaginous microalgae in Malaysia. Currently we are working on a 

small-scale batch culture of the same strains in collaboration with Prof. Phang 

Siew Moi (University of Malaya). Furthermore, as a part of metabolic 

engineering strategies, multi-omics approaches used in Arabidopsis can be 

extended to top-performing Chlorella for enhancing the naturally existing 

biological design principles leading to efficient biofuel production.  

  We identified important components and mechanisms that affect bioactive 

properties of flavonoids, hormones, stress response, and generate increased 

metabolite diversity in Arabidopsis. Additionally, by establishing TT8, which 

has homologs in crop plants, as a key integrator of biochemical processes that 

lead to increased diversity of secondary metabolites and increase plant stress 

response, we have uncovered untapped potential for the application of TT8 in 

agriculture and pharmaceutical industries. We are now at an advanced stage in 

filing for a patent detailing these mechanisms and their applications.  
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Appendix 1: datPAV- A web-based exploratory data analysis 

tool 

This tool was developed to provide user-friendly informatics programs for 

analysis of large omics data sets. The input data is a standard two dimensional matrix 

with rows and columns. This tool explores organization of the data, detect errors and 

supports basic statistical analyses whose results can be visualized using a suite of 

programs. The functions are placed as individual modules as well as in a customizable 

workflow.  

Statistical techniques in datPAV help to determine the distribution of data, 

establish correlations to explore experimental consistency or instrument reliability, 

perform fold-change analysis and fit a relation between variables using linear 

regression techniques. My contribution to the development of datPAV is the 

implementation of statistical data analysis (Table A1) modules written in PERL and 

integration with the R statistical environment. 

  
Process/Analyse data 

With further options to select columns and
set parameters for selected processing 
option 

Mean centering (auto scale) Subtract column mean and divide by column σ 
Pareto scaling Divide by column standard deviation (σ) 
Column normalization Divides each value by its column maximum 
Global normalization Divides each value by the dataset maximum 
Distribution Computes % distribution for 10 intervals for each 

column 
Filter(moving average) Useful for time series data 
Variable correlation Depicts dependency between every pair of attributes 
Noise correction Helps in filtering the predefined noise in the data 
Fold change (between 
columns) 

Log2 transformation of ratio between two columns 

t-test P-value calculation between columns 
Auto correlation Depicts similarity between observations as a function 

of time 
Cross correlation Depicts dependency between every pair of attributes 

as a  measure of time 

Table A1. Statistical tools in datPAV
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Appendix 2: Metabolic reprogramming in Cancer 

Lung cancer is the leading cause of cancer-related mortality in both men and 

women worldwide with over 1 million deaths each year, and a 5-year survival below 

15%. Non-small cell lung cancer accounts for approximately 85% of all lung cancers. 

Our collaborator Dr. Bing Lim (Genome Institute of Sciences) identified the metabolic 

enzyme glycine decarboxylase (GLDC) as critical for tumour initiating cells (TIC). 

However the effect of GLDC in initiating metabolic reprogramming of cancer cells was 

not known.  

We performed non-targeted metabolomics on perturbed (overexpression or 

knock down) cells from human lung cancer cell line (A549), mouse embryonic 

fibroblasts (3T3), and normal human adult lung fibroblasts (HLF) using LC-MS to 

identify the global perturbations in the metabolome. Using the statistical techniques 

discussed in this thesis, I performed metabolomics data analysis which lead to the 

identification of glycine, serine and threonine metabolism, glycolysis and pyrimidine 

pathways as being significantly perturbed.  These were then verified using targeted 

metabolomics approach (Tandem MS/MS and Multiple Reaction Monitoring analysis). 

Taken together, our metabolomics approach helped us determine that GLDC 

over expression induces dramatic changes in glycolysis and glycine/serine metabolism 

which then lead to changes in pyrimidine metabolism to regulate cancer cell 

proliferation (Zhang et al., 2012). In human patients, GLDC overexpression is 

significantly associated with higher mortality from lung cancer, and aberrant GLDC 

expression is observed in multiple cancer types. Our findings helped establish a novel 

link between glycine metabolism and tumorigenesis, and may provide novel targets for 

advancing anti-cancer therapy.  


