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Summary

The visual appearance of a real-world scene or an object depends on shape,

surface reflectance properties, illumination, and the viewpoint from which

we are looking. Given images of a scene or object under different light-

ing and viewing conditions, it is possible to reverse the image formation

process so as to infer shape and/or reflectance, the key of which lies in

an appropriate reflectance model. This thesis studies the problem of ap-

pearance capture, which consists of shape reconstruction and reflectance

estimation, by utilizing several reflectance symmetry properties found in

real-world materials.

First, the classical auto-calibration problem in photometric stereo is stud-

ied. Under unknown directional lighting, the uncalibrated Lambertian

photometric stereo algorithm recovers the shape of a smooth surface up

to the generalized bas-relief(GBR) ambiguity. As is shown in this the-

sis, the GBR ambiguity will destroy a low-rank structure of a 2D bidirec-

tional reflectance distribution function(BRDF) slice, which is implied by

half-vector symmetry. Thus, an algorithm can be proposed based on this

theoretical result to solve the GBR ambiguity, hence, recover the shape.

Second, isotropy of BRDF induces ‘iso-depth contours’ in photometric

stereo. An appearance capture method is proposed by combining these



iso-depth contours and sparse 3D points from multi-view stereo. Depth

information is propagated along iso-depth contours to generate new 3D

points. Through iteration of the process, an accurate 3D shape is recon-

structed which on the other hand, enables accurate reflectance estimation.

This method achieves high accuracy while maintaining generality.

Third, a handheld RGBD-M sensor, which is capable of materials sensing,

is presented. An RGBD sensor is only able to capture color and depth

information. By enhancing it with additional hardware and accompany

it with suitable algorithms, this sensor is able to produce both shape and

reflectance. Compared with traditional appearance capture system, this

sensor features portability and usability, which enables non-professionals

to acquire shape and reflectance in their daily life. To our knowledge, this

sensor is the first one of its kind.
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Chapter 1

Introduction

The visual appearance of a real-world scene or an object is affected by several differ-

ent factors: shape, illumination, surface reflectance properties and the viewpoint from

which we are looking. Of all these factors, only shape and reflectance are intrinsic

properties of the scene or object and cannot be easily altered. The aim of appearance

capture is to recover either or both of the two properties.

Shape reconstruction has long been one of the most important research topics in the

computer vision community. Based on the underlying principles, various vision-based

shape reconstruction methods can be roughly divided into three categories: stereo,

structure from motion and photometric stereo. Stereo methods [Seitz et al., 2006] re-

construct 3D point clouds by finding corresponding image points of two pre-calibrated

cameras and doing triangulation with these points. A variation of stereo methods is

structured light methods, in which case one of the two cameras is replaced with a

projector. An important structured light system is Microsoft Kinect, which is a depth

sensor of consumer level. The second category is structure from motion(SfM) [Hartley

and Zisserman, 2003]. While SfM is also based on point correspondences of different

1



1. INTRODUCTION

images just like stereo, the relative poses between cameras, even the intrinsic param-

eters of cameras, are unknown. Thus, SfM reconstructs 3D point clouds and camera

parameters simultaneously. Obviously, more information is required in SfM than in

stereo. The third category of methods is photometric stereo [Woodham, 1980]. Being

completely different from the previous two kinds of methods, neither does photometric

stereo require image correspondences, since the camera is typically static, nor does it

recover 3D points directly. Photometric stereo seeks to estimate the correct orientation

of each surface point by analysing the intensity variations of its image projection under

different lighting conditions. Given surface normals by photometric stereo methods,

the 3D surface can be eventually reconstructed through ‘integration’ of the normal

field. Compared with stereo and SfM, photometric stereo is able to recover fine details

of a surface. Another advantage of photometric stereo is that it is strongly associated

with surface reflectance. Thus it can be naturally combined with reflectance estima-

tion.

Similar to shape reconstruction, reflectance estimation has also attracted much at-

tention in the research community. The reflectance of a surface point is described by

the so-called bidirectional reflectance distribution function(BRDF), which is a func-

tion of the incoming light direction and outgoing light direction in a local coordi-

nate system. Instead of measuring this function directly using a complicated device

called gonioreflectometer, vision methods seek to recover this function through im-

ages. Some methods assume a parametric model such as Lambertian, Ward [Ward,

1992] or Cook-Torrence model [Cook and Torrance, 1982], and fit the model to mea-

sured BRDF values. Another kind of methods approach this problem in a data-driven

way by modelling an arbitrary BRDF as a linear combination of a set of real-world

basis BRDFs. Recently some researchers explored controlled environment lighting in

2



reflectance estimation [Tunwattanapong et al., 2013], which is proved to significantly

reduce the number of images required by other methods. Given BRDFs estimated from

a real-world scene, it is possible to render photo-realistic images for film production,

gaming or virtual reality applications.

While it is possible to reconstruct 3D shape or to estimate reflectance alone, the two

problems are not independent of each other. On the one hand, a reasonable reflectance

model can help photometric stereo achieve high accuracy in recovering geometric de-

tails of a surface. On the other hand, a relatively accurate shape is a necessity for

estimating reflectance. It is worth noting that most BRDF estimation methods assume

shape is known a priori and typically, the shape is a simple planar surface. In view of

the close relationship between shape and reflectance acquisition, it is a natural idea to

acquire the two simultaneously, which is also desirable in applications.

In recent years, quite a few methods have been proposed for appearance capture

and have produced plausible results. However, there are two problems overlooked by

most of them, and will be covered in detail in this thesis.

The first problem is on choice of BRDF models. Many appearance capture meth-

ods, which combine photometric stereo and BRDF estimation, adopt a parametric

BRDF model, and try to find a good combination of normals and BRDF parameters

that fit input images well. While they can produce reasonably good results in some

cases, their performance degrades as the real BRDF deviates from the assumed model.

To achieve high accuracy while maintaining generality, reflectance symmetry is a good

alternative assumption on BRDF. Compared with a parametric model, reflectance sym-

metry poses much weaker, yet effective constraints on BRDF. Besides, reflectance

symmetry has been ubiquitously observed among real-world materials. Reflectance

symmetry has seen quite a few applications in photometric stereo and achieved rea-

3



1. INTRODUCTION

sonably good results [Alldrin and Kriegman, 2007; Tan et al., 2011; Zickler et al.,

2002]. Thus, its application in appearance capture is promising.

The second problem is on hardware setup and data acquisition. Traditionally, the

main focus of appearance capture is accuracy. This is because its primary application

is photo-realistic rendering in film production. To achieve highly accurate results, most

appearance capture systems consisted of sophisticated hardware setups and involved

tedious work in data acquisition. On the other hand, thanks to the fast evolution of

3D printing as well as BRDF fabrication, we can envision a demand for digital models

in the consumer-level market in near future. Non-professionals are eager to capture

shape and reflectance in their daily life. In addition to fabrication based on digital

models, consumers could also use shape and reflectance as ‘keywords’ to search for

similar products online. There is no doubt that the acquired digital model, especially

the reflectance part, are better features than images [Gu and Liu, 2012; Shiradkar et al.,

2014]. A key feature in the consumer-level market is that, instead of high accuracy,

portability and usability become the new concern. Although the demand is urgent,

none of the available portable 3D scanners on the market is capable of reflectance

capture. A sensor capable of estimating both shape and reflectance will perfectly fill

the gap between the market’s need and the research community.

This thesis focuses on three problems. In Chapter 3, the traditional auto-calibration

problem in photometric stereo is approached. Classical methods in uncalibrated Lam-

bertian photometric stereo recover the surface normals up to certain ambiguity. In

Chapter 3, a novel constraint based on reflectance symmetry is proposed and proved

to be able to fully resolve the ambiguity. A robust auto-calibration algorithm is also

presented and validated by experiments.

In Chapter 4, a method for simultaneous capture of shape and reflectance is pro-

4



posed. The symmetry of isotropy in BRDF enables identification of ‘iso-depth con-

tours’. By iteratively propagating depth information of a sparse set of 3D points along

these contours in multiple viewpoints, we can obtain an accurate shape model, which,

in combination with input photometric images, can be used in BRDF estimation. This

system features high accuracy without loss of generality.

In Chapter 5, a handheld RGBD-M sensor is presented. This sensor is capable

of not only texture and depth sensing, but also material sensing based on a simpli-

fied BRDF model derived from reflectance symmetry. Built upon recent advances in

camera tracking and dense scene reconstruction, it is both portable and easy to use for

ordinary people. This sensor is the first one of its kind to our knowledge.

5
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Chapter 2

Background

Not only shape and reflectance, which are properties of objects or scenes, but also light

sources and the imaging camera will affect how an image looks like. In this chapter,

we review different models for them which are most related to this thesis. In addition,

we present the image formation model which will also help the reader better appreciate

the rest part of the thesis.

2.1 Shape Models

2.1.1 Height Map

The simplest shape model is the height map. A height map is a function defined on the

image plane, assigning a scalar value to each pixel. This assigned value is a distance of

the corresponding 3D point to a reference plane which is parallel to the image plane.

Figure 2.1 illustrates this concept by showing the height map of a hemisphere. On the

left side of Figure 2.1 is the shape of a hemisphere. In the middle is the color-coded

height map, with red indicating larger values and blue referring to smaller values.

7



2. BACKGROUND

Figure 2.1: From left to right: a hemisphere, its height map, its normal map.

From the height map it is easy to calculate the partial derivatives as the height

difference between two neighbouring pixels,

dh

dx
=
h(x+ 1)− h(x)

(x+ 1)− x
= h(x+ 1)− h(x),

dh

dy
=
h(y + 1)− h(y)

(y + 1)− y
= h(y + 1)− h(y).

(2.1.1)

Closely related to the first-order partial derivatives is the surface normal. The nor-

mal at a point on a smooth surface is calculated from the partial derivatives at the point

n =
(−dh

dx
,−dh

dy
, 1)T√

(dh
dx

)2 + (dh
dy

)2 + 1
. (2.1.2)

The color-coded normal map for a hemisphere is shown on the right side of Figure 2.1.

The RGB channels store the three components of a normal respectively in the following

way

R =
nx + 1

2
, G =

ny + 1

2
, B =

nz + 1

2
. (2.1.3)

Given the normal at every pixel on an image, it is possible to recover a smooth

surface whose normals resemble, if not equal, the provided ones by [Horn, 1970].

8



Figure 2.2: A triangle mesh from Wiki.

2.1.2 Triangle Mesh

Another shape model is the triangle mesh, which is widely used in computer graphics.

A triangle mesh is a type of the polygon mesh and comprises a set of triangles that are

connected by their common edges or corners. An example of a triangle mesh is shown

in Figure 2.2. Each vertex in a triangle mesh is associated with a normal. The vertex

normal is typically calculated by averaging the plane normals of its neighbouring tri-

angles. The normal at a point within a triangle is usually interpolated from that of the

three vertices of this triangle. A natural interpolation strategy in this case is barycen-

tric interpolation. Assume the 3D point P is represented as αV1 + βV2 + γV3, where

α + β + γ = 1, then the interpolated normal for the point P is

nP =
αn1 + βn2 + γn3√
αn1 + βn2 + γn3

, (2.1.4)

where ni are the normals at corresponding vertices.

Compared with the height map, the triangle mesh can be used to represent a much

more complicated object or scene.

9



2. BACKGROUND

2.1.3 Volumetric Representation

The third shape model is a volumetric model used in [Curless and Levoy, 1996]. In this

representation, 3D space is divided into small 3D voxels. Each voxel maintains a value.

This value is a signed distance from the voxel center to an implicit surface. Thus, the

3D surface of an object is mathematically represented as an implicit function defined

in 3D space. To explicitly represent the shape using a triangle mesh, the marching

cube algorithm of [Lorensen and Cline, 1987] can applied on the volume to extract the

surface of the object.

While such a model is not as straightforward as the height map or triangle mesh, it

is easy to maintain and update when we are given multiple observations of a scene se-

quentially. Thus, we has seen its application extensively in dense scene reconstruction

methods such as [Chen et al., 2013; Endres et al., 2012; Izadi et al., 2011].

2.2 Light Source Models

A light source emits light into a scene. An LED bulb and the sun are both light sources.

In this section, we briefly introduce three models for light sources.

2.2.1 Point Light Source

A point light source is a 3D point and it emits light in every direction. For different

surface points in the scene, the illumination conditions from the point light source

are different in two aspects. First, the lighting directions are different. The lighting

direction has to be calculated for each surface point separately. Second, the amount

of energy received by two surface patches are different. As shown in Figure 2.3, even

10



Figure 2.3: Illustration of point light source.

if the two surface patches have the same area, the received energy will be affected by

their distance to the point light source and their orientations. It is quite intuitive that

a patch receives more energy as it moves closer to the light source or turns its normal

towards the light source,

E =
E0n

T s

d2
, (2.2.1)

where d is the distance between the surface patch and the light source, n is the normal,

s is the lighting direction for this patch, E0 is the amount of energy received when

d = 1 and n is aligned with s.

2.2.2 Directional Light Source

A directional light source can be obtained by moving the point light source to infinity.

In this case, all points in the scene share the same lighting direction, and the energy

received by two patches are only affected by their orientation. This is the simplest

model for light source and is often used together with an orthographic camera model.

In practice, a point light source can be regarded as a directional light source as long

11



2. BACKGROUND

as its distance to the illuminated scene is much longer than the geometric size of the

scene.

2.2.3 Environment Light Source

Environment light source can be regarded as a generalization of directional light source.

A directional light source is a Dirac delta function on an unit sphere Ω

Lω0(ω) = L0δ(ω − ω0) (2.2.2)

where ω0 is the lighting direction and

∫
Ω

δ(ω − ω0) dω = 1. (2.2.3)

If the the light comes not only from ω0, but also from every other direction, the

light source becomes an environment light source L(ω).

2.3 Reflectance Models

When an opaque material receives some light, apart from absorbing some of the energy,

it will also reflect the light into space. This kind of phenomenon is accurately described

by the bidirectional reflectance distribution function(BRDF). The strict definition of

BRDF relies on a comprehensive understanding of radiometry, which can be found in

[Palmer, 1999]. Here we simply explain the physical meaning of BRDF.

A BRDF is a function defined in a local coordinate system where the surface nor-

mal is aligned with z axis, which is shown in Figure 2.4. It is a function of the incoming

12



Figure 2.4: Definition of BRDF in a local coordinate system.

light direction ωin and the outgoing light direction ωout. Since both directions are vec-

tors on a unit sphere in 3D space and can be parametrized using spherical coordinates,

we have the following

f(ωin, ωout) = f(θin, φin, θout, φout). (2.3.1)

Intuitively, the BRDF value is the amount of light it will reflect in the direction

ωout when it receives a unit amount of incoming light from direction ωin. A physically

valid BRDF has at least three properties, including positivity, conserving energy and

Helmholtz reciprocity. The first two are obvious and the Helmholtz reciprocity means

that the BRDF value does not change when swapping the incoming and outgoing light

directions

f(ωin, ωout) = f(ωout, ωin). (2.3.2)

The simplest BRDF model is Lambertian model, whose only parameter is the so-
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2. BACKGROUND

Figure 2.5: A nearly lambertian object

called albedo ρ,

f(ωin, ωout) = ρ. (2.3.3)

While this is an ideal model, many real-world materials’ BRDF can be well ap-

proximated by Lambertian model. Figure 2.5 shows an image of a nearly Lambertian

surface.

Besides diffuse materials which can be approximated by Lambertian model, spec-

ular highlight is often observed in other materials. Several parametric BRDF models

have been proposed to model them.

Phong model [Phong, 1975] is an empirical(not physically valid) model for specu-

lar component of BRDF. It is a generalization of perfect mirror reflection.

Striking a beam of light onto the surface of a mirror, one could only expect to

receive the light at a direction ωout that is symmetric with the incoming light direction

about the surface normal

ωR = 2nTωinn− ωin, (2.3.4)

14



Figure 2.6: Left: A rendered sphere using Phong model; right: illustration of Phong
model.

where ωR is the direction one could see th reflective light. See Figure 2.6.

In Phong model, one could see the light not only in the specific direction ωR. How-

ever, the BRDF value does have a relation with ωR. Phong model assumes that the

BRDF value gradually falls as the viewing direction ωout deviates from ωR in the fol-

lowing way

f(ωin, ωout) = (ωTRωout)
α, (2.3.5)

where α is a shininess constant for the material. The larger α is, the more mirror-like

the material is.

A major benefit of Phong model is efficiency in rendering applications. Thus, it

has been an important model in computer graphics.

Cook-Torrance model [Cook and Torrance, 1982] is a physically valid BRDF model

and is a suitable model for many real-world materials. This model is derived by

analysing statistic properties of micro-facet distribution of a surface. It is expressed

in the following manner,

f(ωin, ωout) =
F (ωin,h)G(ωin, ωout,h)D(h)

4(nTωin)(nTωout)
, (2.3.6)
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Figure 2.7: Renderings of 100 materials in MERL BRDF database

where n is the normal and h is the half vector

h =
ωin + ωout
‖ωin + ωout‖

. (2.3.7)

F , G and D of (2.3.6) are the Fresnel term, geometric term and distribution term

respectively. Their exact definition can be found in [Cook and Torrance, 1982].

Apart from the traditional parametric BRDF models, another approach of mod-

elling BRDF is the data-driven method. The basic idea is that although a BRDF lies in

a very high dimensional space, the set of all real-world BRDFs form a low-dimensional

manifold in this space. Thus, any BRDF can be approximated by a linear combination

of a few other BRDFs which are close to it on the manifold

f =
k∑
i=1

fi. (2.3.8)

In this way, it is only necessary to obtain a sufficiently large database of BRDFs, and to
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Figure 2.8: Illustration of the perspective camera model

estimate a new BRDF is simplified as estimating a sparse weight vector. [Romeiro and

Zickler, 2010b] made use of this model to estimate BRDF and illumination simultane-

ously with the aid of the MERL BRDF database which contains a hundred real-world

materials(see Figure 2.7).

Another trend in BRDF modeling is on exploiting symmetry properties of BRDFs.

It has been observed that many real-world materials exhibit certain symmetry. For

example, isotropy is a widely observed symmetry. These symmetries can greatly sim-

plify a general BRDF model. Such a simplification not only reduces measurements

required to acquire a BRDF, but also poses constraints on certain problem. In the fol-

lowing chapters, we will make extensive use of different symmetry properties found

on real-world BRDFs in order to solve problems or build systems.
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2.4 Camera Models

Many cameras can be modeled by the perspective camera model. In this model, the

coordinate system is usually set up with the camera’s optical centre being the origin

O, and the z axis being parallel to the camera’s optical axis. Thus, the image plane is

parallel to the x− y plane and the distance btween the two planes is the focal length f .

As is shown in Figure 2.8, a 3D point P is imaged to the image plane in the following

way

x =
fX

Z
, y =

fY

Z
. (2.4.1)

This relationship can be elegantly expressed in a matrix form using homogeneous co-

ordinates 
x

y

1

 =


f 0 0

0 f 0

0 0 1



X

Y

Z

 (2.4.2)

Typically, the topleft pixel in the image will be chosen as the origin for the 2D image

plane. In this case, a translation will be involved and the resulting intrinsic matrix for

the perspective camera is

K =


f 0 cx

0 f cy

0 0 1

 . (2.4.3)

A real-world camera is seldom a perfect perspective camera. There is usually slight

lens distortion which are described by 5 coefficients. Nevertheless, all these parame-

ters, including f , cx, cy, and distortion coefficients, can be calibrated using the method

in [Zhang, 2000].

Another simpler camera model is the orthographic camera model. By this model,
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a 3D point is projected onto the image plane by the following transformation

x
y

 =

1 0 0

0 1 0



X

Y

Z

 (2.4.4)

The orthographic camera model can be seen as the special case of the perspective

camera model by moving the camera to infinity.

2.5 Image Formation

Given the above models, it is easy to express the pixel intensity at a pixel p

I(p, ωout) =

∫
Ω

fp(ωin, ωout)L(ωin)(ωTinnp) dωin, (2.5.1)

where Ω is the unit sphere, fp is the BRDF at the 3D point corresponding to the pixel

p, L is an environment light source, ωTinnp encodes the effect of angle between surface

normal and the lighting direction.

This equation is called ‘rendering equation’ in computer graphics and lays the foun-

dation for photo-realistic rendering. In this dissertation, the light source is either direc-

tional light source or point light source, thus for a specific pixel, the rendering equation

is simply

Ip(v) = Lfp(n,v, s)(n
T s), (2.5.2)

where n, v, s are the surface normal, viewing direction and lighting direction re-

spectively. L describes the strength of the light source’s radiance.
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Chapter 3

Calibrating Lambertian Photometric

Stereo

Photometric stereo is an important research topic in computer vision. Unlike multi-

view stereo or structure from motion(SfM), photometric stereo can provide direct ac-

cess to surface normals, which not only are crucial in photo-realistic rendering, but also

help improve 3D reconstruction accuracy [Nehab et al., 2005; Okatani and Deguchi,

2012]. Conventional photometric stereo algorithms(e.g.[Woodham, 1980]) require il-

lumination conditions be known a priori. As a result, it becomes a necessity to cali-

brate illumination, which inevitably complicates the data capture process. Thus, auto-

calibration algorithms are practically important.

Under unknown directional lighting, it is well known that surface normals of a

Lambertian object can only be determined up to a linear ambiguity [Hayakawa, 1994].

Later it is shown [Belhumeur et al., 1999; Yuille and Snow, 1997] that this ambiguity

can be reduced to the generalized bas-relief(GBR) ambiguity by enforcing the integra-

bility constraint. In this chapter, we focus on further resolving this ambiguity.
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3. CALIBRATING LAMBERTIAN PHOTOMETRIC STEREO

Figure 3.1: Synthesized 2D slices of a bivariate BRDF. Values are color-coded: red
means larger BRDF values, blue indicates smaller values, and white regions are unde-
fined for a BRDF. The horizontal and vertical axes are two angles φd and θh, which are
defined in Section 3.3.1. The upper slice, which is obtained from ground truth normals
and light direction, is constant along each row, while clearly this structure does not
hold for the bottom slice estimated using GBR-distorted normals and light direction.

Reflectance of many real-world objects satisfies various symmetries, e.g.isotropy

and reciprocity, which provides additional information to resolve the GBR ambiguity.

As demonstrated in [Tan and Zickler, 2009; Tan et al., 2007], the GBR ambiguity

can be solved using ‘isotropic pairs’ and ‘reciprocal pairs’ identified from one or two

images. Surface points with specular spike [Drbohlav and Chaniler, 2005; Drbohlav

and Šára, 2002] or diffuse maxima [Favaro and Papadhimitri, 2012] can also resolve

the GBR ambiguity. However, these methods all require carefully identified special

surface points, which are easily affected by image noise.

We solve the GBR ambiguity by a holistic analysis of half-vector symmetry, which

suggests the BRDF value stays unchanged when rotating the incoming and outgoing

light directions as a fixed pair around their bisector. This symmetry is closely related
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to the barycentric parameterization of isotropic BRDFs [Stark et al., 2005], and can be

elegantly expressed in the halfway/difference parameterization [Rusinkiewicz, 1998].

Given the correct surface normals and light directions, we can obtain a 2D BRDF slice

from each image of a curved isotropic surface. If the BRDF is half-vector symmetric,

this 2D slice should form a special low-rank matrix when it is properly parameterized,

as illustrated at the top of Figure 3.1. However, as we have observed and will present

in subsequent sections, such a structure is generally destroyed when normals and light

directions are distorted by a GBR transformation, as shown at the bottom of Figure 3.1.

Restoring the special structure of 2D BRDF slices can resolve the GBR ambiguity. We

propose a simple algorithm to find the solution based on this observation.

The contribution of the work presented in this chapter mainly lies in:

1) proposing half-vector symmetry as a novel cue to solve the GBR ambiguity;

2) proving that half-vector symmetry resolves the GBR ambiguity;

3) providing a simple auto-calibration algorithm based on a holistic analysis of this

symmetry.

The rest of this chapter will be organized as follows. First we introduce neces-

sary background knowledge and state the problem. After reviewing related works on

the same topic, we show the main theoretical result and the derived auto-calibration

method. Experimental results are then presented to consolidate our proposed method.

Finally, we conclude this chapter with a discussion.

3.1 Background and Problem Statement

Photometric stereo seeks to recover surface orientations through varying lighting con-

ditions. In a typical setup, a fixed orthogonal camera is looking at a static scene, which
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3. CALIBRATING LAMBERTIAN PHOTOMETRIC STEREO

Figure 3.2: On the left is a typical setup for data capture in photometric stereo: a
camera captures images of the cat model while the light source moves to different
positions. On the right are four captured images.

is illuminated by a directional light source. The camera captures multiple images of the

scene while light direction and intensity change with different images. See Figure 3.2

for an illustration.

Classical photometric stereo assumes Lambert’s model for scene surface reflectances.

When inter-reflection and shadow are ignored, the value ıpf of a pixel p on an image f

can be expressed as

ipf = ρpn
>
p sf , (3.1.1)

where np is the normal of the surface point projected to the pixel p. ρp is the albedo,

which is the only parameter for a Lambertian BRDF. the norm ‖sf‖ and normalized

vector sf indicate the light intensity and direction respectively. Note that we use bold

lowercase letters to indicate normalized vectors.

For all P pixels in an image in F images under different lighting conditions, Equa-
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tion 3.1.1 can be written in a matrix form



I1,1 I1,2 · · · I1,F

I2,1 I2,2 · · · I2,F

...
... . . . ...

IP,1 IP,2 · · · IP,F


=


N1,1 N1,2 · · · N1,P

N2,1 N2,2 · · · N2,P

N3,1 N3,2 · · · N3,P


>

S1,1 S1,2 · · · S1,F

S2,1 S2,2 · · · S2,F

S3,1 S3,2 · · · S3,F


(3.1.2)

or

I = N>S. (3.1.3)

Each column of I is a vectorized image and each row is the intensity profile of a

pixel under all different illumination conditions. Columns of N are surface normals

multiplied by their corresponding albedos, and columns of S are light directions scaled

by their intensities.

Given light intensities and directions for each image, it is easy to estimate N

N = (SS>)−1I>. (3.1.4)

Surface normals and albedos can be easily calculated from N .

However, in uncalibrated photometric stereo, the matrix S, which encodes in-

formation of light intensities and directions, is unknown. Without introducing addi-

tional constraints, N and S can only be recovered up to a general linear transforma-

tion [Hayakawa, 1994] through Singular Value Decomposition(SVD).

I = N>S = (TN)>(T−>S) = N̂>Ŝ, (3.1.5)

where T is an arbitrary invertible transformation.
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3. CALIBRATING LAMBERTIAN PHOTOMETRIC STEREO

By assuming the surface is smooth, it is possible to enforce the integrability con-

straint and reduce the ambiguity T to the so-called Generalized Bas-Relief ambiguity

G [Belhumeur et al., 1999; Yuille and Snow, 1997]

I = N>S = (GN)>(G−>S) = N̂>Ŝ, (3.1.6)

where N̂ = GN , Ŝ = G−>S and G has the following matrix form

G =


λ 0 µ

0 λ ν

0 0 1

 . (3.1.7)

As is shown in Equation 3.1.6, a normal n and a light direction s are distorted in the

following way

n̂ =
Gn

‖Gn‖
, ŝ =

G−>s

‖G−>s‖
. (3.1.8)

The physical meaning of the GBR ambiguity is that the same image can be ex-

plained as the results of various combinations of different shapes and illumination

conditions.

The remaining problem, which is also the focus of this chapter, is to restore every

n and each s from n̂ and ŝ respectively by recovering λ, µ and ν. Obviously, additional

constraint is required to resove the GBR ambiguity.

3.2 Related Works

[Woodham, 1980] proposed the first photometric stereo method with directional light-

ing information known a priori. [Hayakawa, 1994] proved that under unknown di-
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rectional illumination, normals of a Lambertian surface can only be recovered up to a

linear transformation. This ambiguity is reduced to the GBR ambiguity by enforcing

the integrability constraint [Belhumeur et al., 1999; Yuille and Snow, 1997].

Different methods have been proposed to resolve the GBR ambiguity. Besides

those utilizing interreflection [Chandraker et al., 2005] or special lighting configura-

tions [Zhou and Tan, 2010], the other methods can be divided into two categories.

The first category of methods resolves the ambiguity by analyzing reflectance

properties. Earlier methods rely on specific reflectance models. [Georghiades, 2003]

adopted the Torrance-Sparrow model [Torrance and Sparrow, 1967] to tackle the prob-

lem. In [Drbohlav and Chaniler, 2005; Drbohlav and Šára, 2002], the authors assumed

specular-spike reflectance and showed that the ambiguity is solved by detected specu-

lar spots in images. More recent methods exploit general reflectance symmetries. [Tan

and Zickler, 2009; Tan et al., 2007, 2011] exploited isotropy and reciprocity to recover

GBR parameters from carefully identified ‘isotropic pairs’ and ‘reciprocal pairs’ in a

single image.

In the second category, priors on surface albedos are exploited. [Alldrin et al.,

2007] recovered the GBR parameters by assuming the true distribution of surface

albedo has small entropy. [Shi et al., 2010] identified surface points with the same

albedo but different normals to resolve the ambiguity. In a recent work [Favaro and

Papadhimitri, 2012], the authors assumed smoothly varying surface albedos in order

to locate the ‘lambertian diffuse maxima’, which are then used in a robust estimation

framework to estimate the GBR paramters.

Another work worthnoting is [Papadhimitri and Favaro, 2013], which does not

solve the GBR ambiguity directly. They have proved theoretically that the GBR ambi-

guity can be avoided by utilizing a perspective camera model instead of an orthogonal
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3. CALIBRATING LAMBERTIAN PHOTOMETRIC STEREO

camera model, which has long been a common assumption in uncalibrated photometric

stereo.

3.3 Theory on Half-Vector Symmetry and GBR

In this section, we will introduce half-vector symmetry of BRDFs and present the

special low-rank matrix structure enforced by it. After that, we will examine how the

GBR ambiguity destroys the structure of this matrix.

3.3.1 Half-Vector Symmetry

BRDF is a function of incoming and outgoing light directions (ωin,ωout) in a local

coordinate system. [Rusinkiewicz, 1998] proposed to use four spherical coordinates

(θh, φh, θd, φd) to parameterize a BRDF as

f(ωin,ωout) = f(θh, φh, θd, φd). (3.3.1)

Angles in Equation 3.3.1 are illustrated in Figure 3.3 and explained here. First of

all, the half vector is defined as the bisector of lighting and viewing directions, i.e.

h = ωin+ωout

‖ωin+ωout‖ . In a local coordinate system where the surface normal is aligned with

the z-axis, θh and φh are the azimuthal and polar angles of h respectively. θh is called

half angle. θd is named difference angle and is defined as the angle between h and ωin.

φd indicates the rotation angle of ωin and ωout as a pair around the half vector h.

Common BRDF symmetries can be elegantly expressed using this parameteri-

zation. One of the various symmetries widely observed in real-world materials is

isotropy, which means BRDF values stay unchanged as the lighting and viewing direc-
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Figure 3.3: Halfway/difference parameterization of BRDF [Rusinkiewicz, 1998]

tions are rotated as a fixed pair around the normal. Thus, isotropy reduces the BRDF

to a 3D function f(θh, θd, φd). Many isotropic materials also satisfy the half-vector

symmetry, which suggests that BRDF values are invariant with rotation of lighting and

viewing directions around the half vector. In this case, the BRDF does not depend on

φd and is further reduced to a bivariate function f(θh, θd).

This kind of bivariate BRDF model is reported in previous works. For exam-

ple, [Stark et al., 2005] studied several traditional parametric reflectance models and

showed that they are bivariate. [Shi et al., 2012] further used a biquadratic function

to represent bivariate BRDFs. [Romeiro et al., 2008] evaluated the validity of such

a representation on the MERL BRDF database [Matusik et al., 2003] and concluded

that it can be used to represent most materials in the database to high accuracy. Be-

sides, the same bivariate BRDF representation has already been adopted in calibrated

photometric stereo [Alldrin et al., 2008] and reflectometry [Romeiro et al., 2008].

3.3.2 Structured 2D BRDF Slice

The pixel intensity of a general isotropic surface is calculated as I = f(θh, θd, φh)(n ·

s). We ignore the light intensity ‖s‖ here for notation simplicity. Under the assump-
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tion of directional lighting, orthographic camera and homogeneous surface reflectance,

pixel intensities in an image are determined as

I = fθd(θh, φd)(n · s), (3.3.2)

where fθd(θh, φd) = f(θh, θd, φd) is a 2D slice of the original BRDF.

For a curved surface with abundant normals, e.g. a sphere, when both the normals

n and light direction s are known, we can estimate a 2D slice of the BRDF, namely

fθd(θh, φd), based on Equation 3.3.2. This BRDF slice can be arranged into a matrix

form in the range θh ∈ [0, π
2
], φd ∈ [0, 2π]. For a bivariate BRDF, f does not depend on

φd. Thus each row of the matrix is constant. Such a low-rank structure can be clearly

seen at the top of Figure 3.1.

3.3.3 GBR-Distorted 2D BRDF Slice

When surface normals and light direction are distorted by a GBR transformation as

in Equation 3.1.8, the 2D BRDF slice estimated from Equation 3.3.2 no longer has the

low-rank structure. An example from synthetic data is shown at the bottom of Fig-

ure 3.1. This observation motivates us to resolve the GBR ambiguity by restoring the

low-rank structure of BRDF slices.

In the special case that the lighting and viewing directions coincide, the low-rank

property is preserved by the classic bas-relief ambiguity, i.e. µ = ν = 0 in Equa-

tion 3.1.7. In more general cases, however, a GBR transformation will destroy the

low-rank structures of 2D BRDF slices. In fact, for a general bivariate BRDF, we are

able to prove the following proposition.
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Figure 3.4: Projective plane with color-coded BRDF values. A black ellipse corre-
sponds to a row in the BRDF slice of Figure 3.1. Top row shows the effect of a GBR
transformation (µ, ν 6= 0); bottom row shows the case of a classic bas-relief transfor-
mation with 0 < λ < 1. Before GBR transformation, the values on an ellipse are the
same, while this is not true after GBR transformation.

Proposition 1. Any GBR transformation other than the identity matrix cannot simul-

taneously perserve the special low-rank structure of bivariate BRDF slices estimated

from two images whose light directions are not coplanar with the viewing direction.

Here we give some intuitive explanations with illustrative figures. Please refer to

appendix for a formal proof.

We consider the problem on the projective plane where a 3D unit vector (x, y, z)

is represented by a point (x/z, y/z). Viewing direction v = (0, 0, 1)>, light direction

s, half vector h and every surface normal n can find their corresponding points on

this plane. From an image of a curved surface, e.g. a sphere, we can observe sufficient

number of points (surface normals) of this plane. Given the lighting and surface normal

directions, a BRDF value can be estimated at each pixel of an image. By encoding

31



3. CALIBRATING LAMBERTIAN PHOTOMETRIC STEREO

these BRDF values into colors and mapping them to the projective plane according to

the normal at each pixel, we obtain a ‘BRDF map’ shown in Figure 3.4, where red

indicates larger values.

First of all, as marked by the black ellipse in Figure 3.4, points with the same θh

form an ellipse around h, with one of its symmetry axis being the line vs connecting

v and s. For a bivariate BRDF, the BRDF value should be constant along each ellipse,

since θh is fixed for those points on the same ellipse and θd is fixed for all pixels in the

same image. These ellipses correspond to rows in the matrix representation of the 2D

BRDF slice in Figure 3.1.

Now we show how a GBR transformation can change the structure. The GBR

transformation moves normals and the light direction in different ways, as shown

in Equation 3.1.8. In fact, the transformed light direction ŝ will still lie on the line

vs, according to the equation

ŝ =
G−T s

‖G−T s‖
'


sx

sy

−µsx − νsy + λsz

 (3.3.3)

where the symbol ' means equal up to a scale. So the transformed half vector ĥ will

also stay on the line vs. On the other hand, a GBR transformation will translate all

normals (along with the BRDF map associated them) by a displacement (µ, ν) and

scale them by λ. Besides, BRDF values are also changed since they are estimated

from pixel intensities and the GBR transformed shading n̂>ŝ using Equation 3.3.2.

In general, the different motions of normals and the light direction will make the

BRDF value change along the transformed ellipse(consists of points forming the same
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half angle with ĥ). As a result, the low-rank structure of the 2D BRDF slice in Fig-

ure 3.1 will be destroyed. For example, the top of Figure 3.4 shows the case of non-zero

µ, ν. The transformed BRDF map has varying values along the ellipse around ĥ. Sim-

ilarly, at the bottom of Figure 3.4, we consider the case of µ = ν = 0 and λ 6= 1,

i.e. the classic bas-relief ambiguity. λ < 1 is assumed here. In this case, the GBR

transformation moves the light direction s = [sx, sy, sz]
> to ŝ, which is even further

from v (the origin). This can be seen from the following equation

ŝ =


1
λ

0 0

0 1
λ

0 0 1




sx

sy

sz

 '


sx/(λsz)

sy/(λsz)

1

 . (3.3.4)

At the same time, normals and the associated BRDF map will be scaled and shrinked

toward the origin v. So the transformed BRDF value is no longer constant along the

transformed ellipse. This again breaks the low-rank structure of the 2D BRDF slice.

3.4 Auto-Calibrating Photometric Stereo

In this section, we propose a new method for uncalibrated photometric stereo. We

follow the dichromatic reflectance model [Sato and Ikeuchi, 1994] and assume that the

reflectance of an object is the sum of a diffuse component and a homogeneous specular

component: f(ωin, ωout, x) = ρ(x)+fs(ωin, ωout), where x indicates a surface point, ρ

is the diffuse albedo and fs is the specular BRDF. Given multiple images taken under

varying lightings and a fixed viewpoint, it is relatively easy to separate the diffuse

and specular components using existing techniques [Sato and Ikeuchi, 1994; Tan and

Ikeuchi, 2008]. From the diffuse images, we are able to recover surface normals and
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Figure 3.5: Pipeline for uncalibrated photometric streo. First the input images are sep-
arated into diffuse images and specular images. Surface normals and light directions
can be recovered up to an unknown GBR transformation by decomposing the diffuse
images. With the aid of specular images, our proposed algorithm can help resolve the
GBR ambiguity and recover true normals as well as lightings.

light directions up to a GBR transformation by the uncalibrated photometric stereo

method [Yuille and Snow, 1997]. See Figure 3.5 for the pipeline.

By assuming the specular BRDF is bivariate, it is guaranteed by our earlier discus-

sion that surface normals are correctly recovered iff the low-rank structure in estimated

specular BRDF slices is restored.

One natural idea of restoring the low-rank structure is to use the established TILT

technique [Zhang et al., 2011], which recovers a low-rank pattern via domain trans-

formation. In our case, however, both the position of each point (corresponding to a

normal) on the 2D BRDF slice and its associated BRDF value are changed by a GBR

transformation. Thus, TILT is not suitable for our problem and we need to resort to

other solutions. We formulate a simple optimization algorithm to estimate the GBR

parameters given normals and light directions up to a GBR ambiguity, together with a

34



set of specular images.

We first define an objective function to measure how well the estimated 2D BRDF

slice satisfies the special ‘low-rank’ constraint, which in our case means each row is

constant. The most straightforward measure is defined as the sum of variances along

each row(the axis of φd). It is obvious that the correct GBR parameters should corre-

spond to the unique global minimum of the objective function.

However, there are some practical issues in adopting such a measure. Firstly, with

a real image of limited resolution, some entries of the 2D BRDF slice are missing

because the corresponding normals are not observed in the image. Different rows of

the matrix have different numbers of observations. Thus we give higher weights to

rows of a larger number of valid observations, since the variances calculated from

those rows are more reliable. Secondly, the absolute variance level is biased by BRDF

values. In other words, rows with larger BRDF values tend to have larger variances. So

we divide the variance of each row by the square of its mean value for normalization.

Thirdly, the BRDF values estimated from Equation 3.3.2 at large θh are usually noisy

because the shading term n>s tends to be small over those regions. So we only use the

top 20 rows (θh = 1◦, 2◦, . . . , 20◦) when evaluating the variance. Here is the objective

function we used,

min
G

N−1∑
i=0

20∑
θh=1

ki,θh
20∑
θ=1

ki,θ

Var [fi(θh, φd)]

Mean2 [fi(θh, φd)]
. (3.4.1)

In this function, N is the number of input specular images and we can estimate a 2D

BRDF slice fi from each image. The integer ki,θh is the number of valid observations

in row θh of slice i. Note that the calculation of variance and mean are evaluated only
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on valid entries.

Empirically, we found it useful to add one more constraint to the objective function

3.4.1. We require the sum of intensities (BRDF value times n>s) in the top 20 rows

makes up at least 5% of that of the whole 2D slice. If this condition is not satisfied

in a BRDF slice, infinite large penalty value will replace the sum of variance for that

slice. This simple practice helps exclude some degenerated solutions, e.g.a very small

λ compressing the whole BRDF map to a single point.

The proposed objective function is difficult to optimize because both the position

and value of the BRDF map depend on the GBR transformation. We simply adopt

a coarse-to-fine search for optimization. The objective function is first evaluated at

coarsely sampled grid points in the parameter space. We then search nearby the optimal

grid point with higher sampling rate. Empirically, we find the objective function is

smooth and this multi-resolution search can generate good results. As in [Alldrin et al.,

2007], the search space is restricted to−5 ≤ µ, ν ≤ 5, 0 < λ ≤ 5. The initial sampling

step is set as 0.5. After each iteration, both search range and sampling step are reduced

to 1
5

of the coarser one. Three iterations suffices to find an accurate estimation of GBR

parameters.

3.5 Experimental Validation

3.5.1 Experiments on Synthetic Datasets

We evaluated our method using images synthesized from the MERL BRDF database [Ma-

tusik et al., 2003]. For each material, we rendered four images of a sphere with light

directions randomly sampled over the visible hemisphere. We transformed the known
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Figure 3.6: Error plot of results on MERL database. BRDFs are sorted according to
error values. Five materials from the database are presented using a rendered sphere.
One of the recovered BRDF slice(only the range θh ∈ [0◦, 40◦] is shown) is also shown
above the rendered sphere.

normals and light directions using a GBR transformation whose parameters are ran-

domly sampled in the search space. These four images and the GBR-distorted normals

and lighting directions are fed into our algorithm for test. We compared the recovered

normal directions with ground truth and recorded the mean angular error.

For each material in the database, we repeated the above process 10 times with

different light directions and GBR parameters. A plot of the median(of the 10 obtained

average errors) is shown in Figure 3.6 for all the BRDFs in the database. The results

show that the proposed method is capable of recovering surface normals from the GBR

ambiguity with high accuracy. Note that even some BRDFs are not strictly half-vector

symmetric, the correct solutions still correspond to the global optimal of the objective

function.

3.5.2 Experiments on Real Object Datasets

We have also evaluated our method on real data. Each dataset consists of a few images

of an object with homogeneous specular reflection. As a first step, color information

37
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was used to separate each image into a diffuse image and a specular image [Sato and

Ikeuchi, 1994]. To handle shadows, the algorithm in [Brand, 2002] was used to fill

in missing values in shadow regions. After pre-processing, we applied the technique

of uncalibrated Lambertian photometric stereo to obtain normals and light directions

up to an unknown GBR tranformation [Yuille and Snow, 1997]. Finally, our coarse-

to-fine optimization was performed using the specular images to fully recover surface

normals.

To assess quality of the recovered normals, we compared our results with normals

computed from calibrated photometric stereo. In the calibrated method, lighting infor-

mation was known and the same set of diffuse images were used. As shown on the

left of Figure 3.7, our algorithm successfully recovered normals of the apple surface

and the recovered BRDF slice shows the expected low-rank structure, which is also

observed in the result of calibrated photometric stereo. Figure 3.8 shows results on

other datasets.
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Figure 3.7: Results of the datasets Apple(left) and Duck (right). For each example,
top row shows the input images, from left to right: an original image, separated dif-
fuse image and specular image; Second row are normal maps encoded into colors
((R,G,B) = (n + 1)/2), from left to right: calibrated photometric stereo, GBR dis-
torted normals, our recovered normals; Third row shows the height map integrated
from the normal field above it. The last row shows one of the recovered 2D BRDF
slices using normals above it. Note that only rows θh ∈ [0◦, . . . , 40◦] are shown.
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Figure 3.8: Results of datasets Pear(top) and Pear2(bottom). From left to right: an input image, normals from calibrated
photometric stereo, GBR-distorted normals, our recovered normals, height map from calibrated photometric stereo, height
map using GBR-distorted normals, our recovered height map, BRDF slices. In the last column, there are three BRDF slices
for each dataset. From top to bottom, they are estimated using normals from calibrated photometric stero, GBR-distorted
normals and our recovered normals respectively.
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Method Duck Apple Pear Pear2
[Alldrin et al., 2007] 7.5(5.4) 9.0(3.9) 9.7(3.6) 23.8(9.4)

[Shi et al., 2010] 6.6(5.5) 8.9(3.6) 24.9(8.3) 23.7(10.3)
[Drbohlav and Chaniler, 2005] 7.7(4.4) 8.7(3.9) 4.6(2.4) 13.8(5.3)

[Tan et al., 2011] 7.3 (9.4) 9.8 (16.2) N/A N/A
[Favaro and Papadhimitri, 2012] 7.4(4.8) 7.0(2.9) 7.3(2.7) 9.2(4.9)

Ours 5.7(4.5) 7.8(3.1) 4.4(2.4) 11.7(4.9)

Table 3.1: Mean and standard deviation(in brackets) of angular error(deg) by different
methods on four datasets. Normals obtained from calibrated photometric stereo are
regarded as ground truth.

Comparison of our method with several other algorithms is shown in Table 3.1.

Those [Alldrin et al., 2007; Favaro and Papadhimitri, 2012; Shi et al., 2010] utilizing

only albedo information were run on diffuse images. As can be seen, our method

achieves a similar performance as the diffuse maxima method [Favaro and Papad-

himitri, 2012] and outperforms the other methods. Please notice that our method

and [Favaro and Papadhimitri, 2012] exploit completely different sources of informa-

tion. While [Favaro and Papadhimitri, 2012] is purely based on diffuse images and

owns its robustness to a robust estimator, our method exploits information in spec-

ular reflection and its accuracy comes from a robust global structure. The dataset

Pear2 exhibits significantly higher errors than the others. This is due to imperfect

diffuse/specular separation, which affects all methods.

It is worthnoting that in most examples, the BRDF slice recovered by our method

shows an even better ‘low-rank’ pattern than that of the slice from calibrated photo-

metric stereo. This difference suggests inaccuracy of recorded light directions. We

carefully conducted another experiment to further validate our method. By painting

a sphere with green paint whose BRDF is known, we prepared a dataset with known

ground truths for both normals and the BRDF. After separating six images of the sphere
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Figure 3.9: Results of the dataset Sphere. The first row shows the separation result
of an image. The second row shows normals and the last row displays BRDF slices.
From left to right are ground truth, results estimated from calibrated method, results
produced by our method.

under directional lighting into diffuse and specular components, both the calibrated

method and our method were run respectively. Since the BRDF of the sphere is homo-

geneous across its surface, we used the original images instead of separated specular

images in our algorithm to solve the GBR ambiguity. We then estimated the BRDF

slice from each image based on normals(and light directions) recovered from both

methods respectively. Recovered normals and BRDF slices were compared to ground

truths. As can be seen from Figure 3.9 and Table 3.2, our method performed slightly

better than the calibrated method in this case.
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Method Normal error BRDF error
Calibrated 4.03(2.87) 0.091

Ours 3.95(1.87) 0.071

Table 3.2: The first column shows mean and standard deviation(in brackets) of angular
error(deg) of normals by different methods on the Sphere dataset; the second column
shows the root-mean-square error of recovered BRDF slices.

3.6 Summary and Discussion

In this chapter, we have carefully examined the structure of a 2D BRDF slice esti-

mated from a curved surface under directional illumination. We have shown that if the

BRDF is bivariate, which is implied by isotropy and half-vector symmetry, the esti-

mated BRDF slice will have a special low-rank structure and this structure is generally

destroyed by GBR-distorted normals and light directions. Based on this observation,

we have formulated a simple algorithm to automatically calibrate photometric stereo

by restoring the structure. Our approach is distinguished from several previous works

in that it seeks to recover a global structure instead of relying on a few critical surface

points. This holistic approach makes our algorithm robust and accurate.

Limitations As implied by the algorithm, a major limitation to our method is that it

requires sufficent normal variation to work. In fact, while information at all pixels with

different normals helps achieve robustness, it excludes our method from dealing with

extreme cases where only a few different normals are observed in an image. A possible

solution is to use special light configurations [Zhou and Tan, 2010]. Alternatively, we

might also fit parametric models to these limited observations before analyzing the

structure of the BRDF slice.
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Chapter 4

Capturing Appearance for Isotropic

Materials

In this chapter, we present a method for appearance capture. After an introduction

of the proposed method, a short review of related works will be presented. Since

our method makes a general assumption on BRDF, we present this as a background

before introducing the whole system. Then we look into individual components of the

pipeline, shape reconstruction and reflectance estimation , in the following sections.

Experimental results are then presented to demonstrate the effectiveness of the method.

Finally, a discussion concludes this chapter.

4.1 Introduction

Appearance capture methods recover both 3D shape and surface reflectance of objects,

allowing photo-realistic rendering of the captured objects under arbitrary lighting con-

ditions from every possible viewpoint. This capture is an important problem with many
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applications in fields such as computer graphics and reverse engineering.

Simultaneous capture of both shape and reflectance is quite challenging since cap-

ture of either requires a good model of the other as a prerequisite. Most previous

methods on appearance capture make use of parametric BRDF models. For example,

the multi-view stereo method [Hernandez et al., 2008] assumes a Lambertian model for

surface reflectance and [Goldman et al., 2005] adopts Ward’s model. A major problem

for these methods is that their performance degrades as the real objects’ reflectance

deviates from the assumed models. Therefore, such methods can only capture appear-

ances of limited real-world objects.

In contrast to the above methods, we exploit reflectance symmetries to make our

method work on more general objects. Specifically, we take advantage of isotropy

and bilateral symmetry which are widely observed for BRDFs of real-world materials.

According to [Alldrin and Kriegman, 2007], these two symmetry properties allow us to

identify ‘iso-depth contours’, i.e.pixels with the same distance to the image plane, from

a set of photometric images. In our proposed method, SfM [Hartley and Zisserman,

2003] is first applied to reconstruct a sparse set of 3D points using images of multiple

viewpoints. Then the depth information of these 3D points are propagated to points on

the same iso-depth contours which are collected from multiple viewpoints. Each pass

of propagation generates additional 3D points, whose depth information can be further

propagated. A surprisingly small number of 3D points (about two hundreds) can be

propagated to reconstruct the complete 3D shape (about two million points). Once

the shape is fixed, we use the same set of input images to infer the spatially varying

reflectance. We assume the BRDF at each surface point is a linear combination of a

few basis isotropic BRDFs which are represented by some discretized representation

to handle general materials. The basis BRDFs and mixing weights at each point can be
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iteratively estimated by the alternating constraint least square method as in [Lawrence

et al., 2006].

The proposed method not only works for general isotropic materials, but also re-

quires simpler setup compared with other works [Ghosh et al., 2009; Holroyd et al.,

2010; Tunwattanapong et al., 2013]. The system is a practical step towards an afford-

able solution for casual users to perform appearance capture.

4.2 Related Work

Image-based modeling. These methods reconstruct a 3D shape and a ‘texture map’

from images. Texture color at each surface point is decided according to its image

projections. [Furukawa and Ponce, 2010; Lhuillier and Quan, 2005] are two recent

representative methods. While this kind of methods produce plausible results in many

cases, the implicit assumption of Lambertian BRDF is often insufficient to represent

general non-Lambertian materials.

Shape scanning and reflectance fitting. To obtain precise 3D shape, either time-

of-flight 3D laser scanners or triangulation based 3D laser scanners are used in [Davis

et al., 2005; Levoy et al., 2000; Rusinkiewicz et al., 2002; Zhang et al., 2004]. Given

a precise 3D reconstruction, parametric reflectance functions can be fitted at each sur-

face point according to its image observations, as in [Lensch et al., 2003; Sato et al.,

1997].A major issue for these methods is that they require precise registration between

images and 3D shapes. Since different sensors(3D laser scanner and camera) are used

for shape and reflectance capture respectively, this registration is difficult and often

causes artifacts in misaligned regions. Some methods [Aliaga and Xu, 2008; ?] handle

this problem by using the same camera for shape reconstruction from structured-light
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system and reflectance estimation from photometric stereo, and this approach makes

registration relatively simple. However, their problem is that they need to capture im-

ages under both structured-light and varying directional light at each viewpoint, which

is tedious and requires a complicated setup.

Photometric appearance capture. The method proposed in this chapter belongs

to photometric approaches that capture both shape and reflectance from the same set of

images. Most of previous methods, e.g.[Goldman et al., 2005; Hernandez et al., 2008;

Zhang et al., 2003], assume specific parametric BRDF models such as Lambert’s model

or Ward’s model [Ward, 1992]. The performance of these methods will degrade when

the real objects have different reflectances from the assumed model.

Some other methods employed a sophisticated hardware setup to achieve high qual-

ity results. [Ma et al., 2007] and [Ghosh et al., 2009] use a light stage where the in-

tensity of each LED on the stage can be precisely controlled. [Holroyd et al., 2010]

require specialized coaxial lights. [Tunwattanapong et al., 2013] build a metal arc

with LEDs to produce spherical harmonics lighting. The requirement of expensive and

complicated hardware has limited their wide application.

Recently, a few algorithms [Alldrin et al., 2008; Holroyd et al., 2008] are proposed

for appearance capture by exploiting various reflectance symmetries that are valid for a

broader class of objects. However, [Holroyd et al., 2008] require up to a thousand input

images at each viewpoint and [Alldrin et al., 2008] relies on fragile optimization. [Tan

et al., 2011] and [Chandraker et al., 2011] both recovered iso-contours of depth and

gradient magnitude for isotropic surfaces. In their methods, additional user interactions

or boundary conditions are required to recover the 3D shape.

The work closest to the proposed method in this chapter is [Alldrin et al., 2008].

Both methods are built upon reflectance symmetry embedded in ‘isotropic pairs’ in-
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Figure 4.1: An illustration of bilateral symmetry from [Alldrin and Kriegman, 2007].

troduced in [Tan et al., 2007]. There are three key differences between the proposed

method and [Alldrin et al., 2008]. First, a complete 3D shape can be obtained by

the proposed method rather than a single-view normal map by [Alldrin et al., 2008].

Second, fragile optimization by alternatively adjusting shape and reflectance, which is

used in [Alldrin et al., 2008], is avoided here by combining multi-view geometry and

photometric cues. Third, the proposed method works with general tri-variant BRDFs

while [Alldrin et al., 2008] assumed bi-variant BRDFs to constraint the problem.

BRDF acquisition. The proposed method is also related to BRDF acquisition

methods such as [Aittala et al., 2013; Dong et al., 2010; Ren et al., 2011]. These

methods are only applicable to near-flat surfaces where the surface normals are known

beforehand. The proposed method can be considered as a generalization of these meth-

ods to non-planar surfaces.
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Figure 4.2: Definition of azimuth angle for a normal.

4.3 Background

Apart from isotropy and half-vector symmetry which we have seen in Chapter 3, there

is another symmetry observed in many real-world BRDFs and referred to as bilateral

symmetry.

Bilateral symmetry means that the BRDF is symmetric about the plane spanned

by the surface normal n and viewing direction v with respect to the incident lighting

direction s. This symmetry is illustrated in Figure 4.1. Since the lighting directions s

and s′ are symmetric about the green plane, the BRDF values for the two configurations

are the same by bilateral symmetry. A very interesting property of bilateral symmetry

is that the angle between the normal n and the two lighting directions, s and s′, are also

the same. Thus, intensities observed at two pixels with this symmetric configurations

will be the same

f(n,v, s)nT s = f(n,v, s′)nT s′. (4.3.1)
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Figure 4.3: An illustration of a minimal lighting configuration

If we take the view direction v as the z axis and transform n and s into the new

coordinate system, it can be easily seen that the symmetry plane spanned by v and n

corresponds to the azimuth angle of n (See Figure 4.2), which is the angle between x

axis and the projection of n in the x− y plane.

Based on this observation, [Alldrin and Kriegman, 2007] proposed ‘a minimal

lighting configuration’ for detecting this symmetry and hence the azimuth angle of

n in the camera’s local coordinate system. This configuration is a circle of light source

positions parallel to the image plane of the camera and centred about the optical axis of

the camera, which is shown in Figure 4.3. A typical intensity profile for a pixel under

this lighting configuration is shown in Figure 4.6 (a). The vertical axis of the chart

indicates pixel intensities, while the horizontal axis is the range of azimuth angles.

The red symmetry axis of the intensity profile can be recovered by the naive approach

described in [Alldrin and Kriegman, 2007], and it provides a good estimation of the

normal’s azimuth angle in the camera’s local coordinate system.
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Figure 4.4: An example of iso-depth contours on the bunny model([Alldrin and Krieg-
man, 2007])

While bilateral symmetry is not implied by isotropy, nearly all physically valid

isotropic materials in the real-world have this property. Thus, we do not distinguish

the two properties and only use the term ‘isotropy’ to refer to both as in [Alldrin and

Kriegman, 2007].

Given the azimuth estimation at every pixel in an image, it is trivial to identify iso-

depth contours(see Figure 4.4) in the image following [Alldrin and Kriegman, 2007].

4.4 Overview

As an overview, we provide a block diagram of our system in Figure 4.5. First, we

acquire images from multiple viewpoints under varying illumination. A robust algo-

rithm is specially designed to identify iso-depth contours from these images for each

viewpoint. Meanwhile, we apply the standard structure-from-motion technique on im-

ages from different viewpoints to reconstruct a sparse set of 3D points. A complete 3D
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shape is obtained by propagating the depths of these points along the dense iso-depth

contours. This initial shape is further refined according to the method described in

[Nehab et al., 2005]. Once the shape is fixed, we can estimate a set of basis isotropic

BRDFs and their mixing weights at each surface point by the ACLS method [Lawrence

et al., 2006] to model the surface reflectance.
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Figure 4.5: System pipeline. We recover iso-depth contours from photometric stereo images for each viewpoint and recover
a sparse 3D point cloud by structure-from-motion. In the figure showing iso-depth contours, the gray intensity encodes the
estimated azimuth angles, and the colored curves are iso-depth contours. We then propagate the depths of these 3D points
along the iso-depth contours to recover the complete 3D shape. Once the shape is fixed, we estimate the spatially varying
BRDF from the original input images.
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Figure 4.6: (a) The symmetry axis of intensity profiles tells the azimuth angle of a
pixel’s normal direction; (b) cast shadows can break this symmetry; (c) the intensity
profile of most of isotropic BRDFs in [Matusik et al., 2003] can be well represented
by a 2-order Fourier series.

4.5 Shape Reconstruction

4.5.1 Robust Iso-depth contour estimation

As mentioned in Section 4.3, [Alldrin and Kriegman, 2007] observed that isotropy

allows almost trivial estimation of iso-depth contours. However, their work does not

mention how to handle more general lighting configurations, and does not take into

consideration of global illumination effects such as cast shadow and interreflection.

Based on the original naı̈ve approach, we propose two improvements to make iso-

depth contour estimation more robust on real data.

Handheld Point Light Source In practice, it is more convenient to capture images

with a handheld bulb, i.e.a point light source that does not lie precisely on a view-

centred circle. So we compute spatially variant lighting directions at each pixel, and

interpolate the desired observations from recorded pixel intensities.
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Figure 4.7: We compute a Delaunay triangulation of the original lighting directions
(red dots) in the projective plane. The desired observations (blue dots) on a view-
centred circle are generated by linear interpolation within these triangles. Left: the
circle radius d is the mean distance between the red dots and the viewpoint v. Right:
the circle radius d is set as (di + do)/2. Here, di (or do) is the largest (or smallest)
distance between v and the red dots on the inner (or outer) conic.

Specifically, we take the average depth of an object (computed from the recon-

structed sparse 3D points in Section 4.5.2) to estimate an approximate 3D position of

each pixel. We also calibrate the 3D positions of the light source (see the experiments

section). The lighting directions at each pixel are then computed according to the 3D

positions of that pixel and the light sources.

To allow flexible data capture, we interpolate observations under lighting directions

lying on a view-centred circle, and compute the azimuth angle from these interpolated

observations. We study this interpolation problem in the projective plane where a unit

3D direction (x, y, z) is represented by a 2D point (x/z, y/z). As shown in the left

of Figure 4.7, the original lighting directions at a pixel are represented by the red

points. We compute a Delaunay triangulation of these points in the projective plane.

The desired observations – those blue dots – on a view-centred circle are generated by
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linear interpolation within these triangles. The radius d of the blue circle is computed

as the mean distance between the red dots and the viewpoint v.

Global Illumination Effects To improve accuracy, we need to identify cast shad-

ows, which break the symmetry of pixel intensities. Figure 4.6 (b) shows an example

pixel with cast shadow. (This pixel is marked in red in the input image of the ‘Buddha’

example in Figure 4.14.) The original intensity profile marked by red ‘×’ is asym-

metric. Though we might use an intensity threshold to detect shadows, it is hard to

identify penumbra this way. Two samples in the penumbra are marked with red ‘⊗’

in Figure 4.6 (b). As shown in Figure 4.6 (b), the azimuth angle estimated by the

naı̈ve method in [Alldrin and Kriegman, 2007] is far from the ground truth at this

point. Points in the penumbra also cause problems in the reflectance estimation in Sec-

tion 4.6. So we identify them as ‘outliers’ by fitting a parametric model to the observed

intensity profiles. Consider a Lambertian point with surface normal n = (nx, ny, nz)

and albedo ρ. Its intensity should be ρrnx cos θ + ρrny sin θ− ρznz when the lighting

direction is (r cos θ, r sin θ,−z). This motivates us to fit a truncated Fourier series

A0 +
∑
k

Ak cos kθ +
∑
k

Bk sin kθ

to an intensity profile. We evaluate the fitting error on synthetic data generated ac-

cording to the MERL BRDF database [Matusik et al., 2003]. For each BRDF in the

database, we uniformly sample ninety normals along a longitude on the visible upper

hemisphere, and render them under a light moving on a view-centered circle. Fig-

ure 4.6 (c) plots the normalized RMSE (root-mean-square error) of all materials with

different orders of Fourier series. For most of materials, an intensity profile can be well

represented by a second order (i.e. 1 ≤ k ≤ 2) Fourier series with normalized RMSE
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less than 5%. So we always apply RANSAC to fit a second order Fourier series to each

observed intensity profile, and estimate the azimuth angle according to the symmetry

of the fitted curve. As shown by the green vertical line in Figure 4.6 (b), our estimated

azimuth angle is closer to the ground truth. In fact, this fitting also makes our method

less sensitive to specular inter-reflections, which are outliers above the fitted curve.

Tracing Contours Once an azimuth angle is computed at each pixel, we proceed

to generate iso-depth contours. Starting from every pixel, we iteratively trace along the

two directions perpendicular to the azimuth direction with a step of 0.1 pixel. Specifi-

cally, suppose the estimated azimuth angle is θ at a pixel x. We trace along the two 2D

directions d+ = (cos(θ+π/2), sin(θ+π/2)) and d− = (cos(θ−π/2), sin(θ−π/2))

to x+ = x + 0.1d+ and x− = x + 0.1d−. We then replace d+ and d− according to

the azimuth angles of x+ and x− respectively and continue to trace. We stop tracing

when the maximum number of iterations is reached (500 in our experiments). Pixels

on one traced curve should have the same distance to the image plane. To avoid tracing

across discontinuous surface points, we use the method described in the ‘NPR camera’

[Raskar et al., 2004] to identify discontinuities. Further, we define a confidence mea-

sure for these traced contours as the inverse of the maximum curvature along them.

Intuitively, smoother contours with relatively small curvature are more reliable.

4.5.2 Multi-view depth propagation

A standard structure-from-motion algorithm such as [Lhuillier and Quan, 2005; Snavely

et al., 2006] can reconstruct a set of sparse 3D points on the object. We capture ex-

periment objects on a turntable with a checkboard pattern to ensure sufficient feature

matching for textureless examples. Since structure-from-motion algorithms could be
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Figure 4.8: We propagate the depth of x to the iso-depth contour segment Ci that
passes through its projection in the i-th view. This propagation generates new 3D
points, e.g.y1, y2, whose depths in other images can also be propagated along their
corresponding iso-depth contours Cj1, Cj2.

affected by moving highlights, we compute a median image at each viewpoint by tak-

ing the median intensity of each pixel and use these images for feature matching. Re-

constructed 3D points are combined with the traced iso-depth contours to recover the

complete 3D shape.

Depth Propagation As illustrated in Figure 4.8, given a reconstructed 3D point x,

we project it to all images where it is visible. Suppose an iso-depth contour Ci goes

through its projection in the i-th image. We perform a depth propagation to assign the

depth of x to all pixels on Ci. (If the depth of a pixel on Ci is already known, we keep it

unchanged.) This propagation generates new 3D points, whose depths in other images

can also be propagated. We begin with a sparse set of 3D points P reconstructed by

structure-from-motion. Depth propagation with P in all images generates a large set

of 3D points P ′. We then replace P by P ′ and apply depth propagation iteratively. We
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Figure 4.9: (a) initially reconstructed 3D points; (b) 3D points obtained by depth prop-
agation; (c) initial shape after Poisson surface reconstruction; (d) final result after op-
timization.
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keep iterating until P ′ is empty.

Direct application of the algorithm described above will generate poor results.

There are a few important issues which must be addressed for robust 3D reconstruc-

tion.

Point Sorting We sort all points in P according to the confidence of their asso-

ciated iso-depth contours. Note that if a point is visible in K different views, it is

repeated K times in P and each repetition is associated with an iso-depth contour in

one view. At each iteration, we only select half of the points in P of high confidence

for depth propagation. We then remove those selected points, and insert P ′ into the

sorted set P for the next iteration.

Visibility Check We should not propagate the depth of a 3D point in an image

where it is invisible. However, the visibility information is missing for 3D points

generated by propagation. So we apply a consistency check when propagating the

depth of a 3D point x to a contour C. We check pixels on C one by one, starting from

the projection of x to the two ends of C. If a pixel p fails the check, we truncate C

at p, and only assign the depth of x to pixels on the truncated contour. If the updated

contour is too short (less than 5 pixels in our implementation), we do not propagate.

To evaluate consistency at a pixel p, we assign it the depth of x to determine its

3D position. We then use the surface normal of x to select L (L = 7 in our imple-

mentation) most front parallel views where x is visible. We assume p is visible in all

these L images and check the consistency of the azimuth angles at its projections. The

azimuth angles at corresponding pixels in two different views uniquely decide a 3D

normal direction 1. If different combinations of these L views all lead to consistent 3D

1An azimuth angle in one view (with the camera center) decides a plane where the normal must lie
in. Intersecting two such planes determines the 3D normal direction.
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normals (the angle between any two normals is within T degrees), we consider p as

consistent. Otherwise, we discard the view that is most different from the mean view

angle and check consistency with the remaining L − 1 views iteratively. We consider

p consistent, if it is consistent over at least 3 views. Otherwise, it is inconsistent. For

each consistent 3D point, we set its normal as the mean of all consistent normals. In

our implementation, we begin with T = 3, and relax it by 1.3 times whenever P ′ is

empty until T > 15.

We note the number of consistent views for each 3D point when inserting it to

the set P ′. Points are first sorted by the number of consistent views in descending

order. Those with the same number of consistent views are sorted by the confidence of

contours.

Shape Optimization After depth propagation, we have a set of 3D points, each

with a normal direction estimated. We apply the Poisson surface reconstruction [Kazh-

dan et al., 2006] to these points to obtain a triangulated surface. This surface is further

optimized according to [Nehab et al., 2005] by fusing the 3D point positions and their

normal directions.

Figure 4.9 shows the reconstructed shape at different stages. Shown in (a) are 3D

points obtained from multi-view stereo. (b) is the 3D points (with normal directions)

obtained by depth propagation. (c) shows the result after Poisson surface reconstruc-

tion. The final optimized shape is at Figure 4.9 (d). Note the face becomes clearly

smoother after optimization.
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4.6 Reflectance Capture

We assume the surface reflectance can be represented by a linear combination of sev-

eral (K=2) basis isotropic BRDFs. Once the 3D shape is reconstructed, we follow

[Lawrence et al., 2006] to estimate the basis BRDFs and their mixing weights at each

point on the surface. We consider the general tri-variant isotropic BRDF, which is a

function of θh, θd, φ as shown in Figure 4.10. We discretize θh, θd and φ into 90, 2 and

5 bins respectively all in the interval [0, π/2]. Please refer to [Romeiro and Zickler,

2010a] for a justification of choosing this interval. Hence, a BRDF is represented as a

900× 1 vector by concatenating its values at these bins.

We build an N ×M observation matrix V, and factorize it into a matrix of mixing

weights W and a matrix of basis BRDFs H as,

VN×M = WN×KHK×M .

M = 900 is the dimension of a BRDF. N is the number of 3D points. Each row

of V represents the observed BRDF of a surface point. In constructing the matrix V,

we avoid pixels observed from slanted viewing directions (the angle between viewing

direction and surface normal is larger than 40 degrees in our implementation), where

a small shape reconstruction error can cause a big change in their projected image

positions. V contains missing elements because of incomplete observation. We apply

the Alternating Constrained Least Squares (ACLS) algorithm [Lawrence et al., 2006]

to iteratively compute the rows of W and columns of H.

To further improve reflectance capture accuracy, we first compute H from a sub-

set of precisely reconstructed 3D points, whose reconstructed normals from different

combinations of azimuth angles are consistent within 1.5 degrees. We then fix H and
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compute W at all surface points.

As an example, the recovered basis BRDFs and BRDF mixture weights for ‘Bud-

dha’ are visualize in Figure 4.11. The red and green channels are the normalized

mixture weight of the first and second basis BRDFs. Each basis BRDF is applied to

render a sphere under frontal lighting and viewing directions.

Figure 4.10: Definition of θh, θd and φ.

4.7 Experiment

We evaluated our algorithm on real data with two hardware setups. Both setups used

a PointGrey Grasshopper camera, which captures linear images at 1200× 900 resolu-

tion. The first setup used a handheld bulb as light source to ensure data capture flexi-

bility. The second one used blinking LED lights synchronized with the video camera

to speedup capture. We captured images viewpoint by viewpoint. This process can be

speeded up by an automatic turntable. But we used a broken LP player to simplify the

setup. After capturing images at one viewpoint, we manually rotated the LP player to

capture the next viewpoint.

In our experiments, the 3D points obtained from the structure-from-motion algo-
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Figure 4.11: The normalized BRDF mixture weights are visualized in the different
color channels. The corresponding basis BRDFs are used to render a sphere on the
right.

rithm were often noisy. We only kept points with reprojection error less than 0.5 pixels.

Typically, about 200 initial points were obtained for each example. Our system can also

easily incorporate manual intervention in the form of matched feature points to handle

textureless regions. To provide a ‘ground truth’ validation, all experimental objects

were scanned using a Rexcan III industrial scanner, which is accurate to 10 microns.

Our results were registered with the scanned shapes using the iterative closest point

(ICP) algorithm [Besl and McKay, 1992].

4.7.1 A Handheld-Light System

Consisting of just a video camera and a handheld light source, this system is compact

and portable. At each viewpoint, we moved a handheld bulb to capture a short video

clip (about two minutes), and then uniformly sampled about 100 images with different
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Figure 4.12: Results from the handheld-light system. First column: one of the in-
put image; second column: the recovered shape rendered with uniform diffuse shad-
ing; third column: a rendering with the recovered reflectance model from the same
viewpoint and lighting condition as the image in the first column; fourth column: the
color-coded shape error in millimeters compared to laser-scanned ‘ground truth’.

lighting directions. The light source positions and intensities were recorded with cali-

bration spheres. Examples are provided in Figure 4.12. The first column of Figure 4.12

shows a sample input image. The teapot example in the first row was captured from 10

viewpoints, which allow us to reconstruct part of its surface, while the cat example in

the second row was fully reconstructed. To better visualize the recovered shapes, we

render them with uniform diffuse shading in the second column. Most of the geome-

try details are successfully captured. The third column shows renderings according to

the captured reflectance from the same viewpoint and lighting condition as the input

image in the first column. To provide a quantitative evaluation on shape capture, we vi-

sualize the shape reconstruction errors (measured in millimeters) in the fourth column.

The larger errors at the surface boundary are due to insufficient and slanted observa-

tions. Overall, the median (and mean) shape error is 0.53 (and 0.79) millimeters for

the teapot, 0.62 (and 0.96) millimeters for the cat. The object diameters are 250mm

and 140mm for teapot and cat respectively. It is worth noting that the rendering result
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Figure 4.13: Our device consists of a video camera and two circles of LED lights.

for cat was a bit noisy because the brushed paint is not precisely isotropic.

4.7.2 A Ring-Light System

Setup To facilitate data capture, we built a simple device shown in Figure 4.13. 72

LEDs were uniformly distributed on two concentric circles of diameter 400 and 600

millimeters respectively. A video camera was mounted at the center of these circles,

facing the direction perpendicular to the board 1. The camera was synchronized with

the LED lights such that at each video frame, there was only one light turned on. At

each viewpoint, we captured 30 images with different lighting directions in 12 seconds

(at 4fps). (Please refer to the supplementary file for a justification of the number of

images per viewpoint.)

We pre-calibrated the intensities and positions of these LEDs. Since they are uni-

formly distributed and the circle radiuses are known, we only need to calibrate one

parameter θ0 to determine their positions. Here, θ0 is the reference angle of the first

1The camera was mounted manually. It might not exactly sit on the circle center. Its direction
might also be slightly off. We ignored these two factors as they introduce little errors according to our
experiments.
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LED light as shown in Figure 4.3. For more details of this calibration please refer to

the supplementary files. We considered LEDs to be point light sources. Hence, at a

general surface point, the local lighting directions will form two conics in the projec-

tive plane as illustrated on the right of Figure 4.7. When computing azimuth angles, we

performed a Delaunay triangulation based interpolation as introduced in Section 4.5.1.

We chose a circle with diameter d = (di + do)/2 to interpolate the required observa-

tions. Here, di (or do) is the largest (or smallest) distance between v and the original

lighting directions – the red dots – in the inner (or outer) conic.

Results An example, an polished wooden ‘Buddha’, is provided in the first row of

Figure 4.14. This example has focused and strong highlight. The object diameter is 120

mm. We captured it from 41 different viewpoints. This example contains many dis-

continuities at clothes folds and large concavities at the shoulder. These shape details

were faithfully captured, as shown in the rendering in the second and third columns.

The median (or mean) shape error was 0.36 (or 0.57) mm in this example. Most of the

large shape errors appeared at concave carvings with strong inter-reflection.

Another four examples, ‘Cup’, ‘Teapot2’,‘Cup’ and ‘Frog’, are also included in

Figure 4.14. These examples cover a wide range of different material. The ‘Cat’ is

covered by a brushed matte paint. The clay ‘Teapot2’ has soft and extended highlight.

The rusted metal ‘Cup’ has quickly change reflectance over its surface. The painted

‘Frog’ also has significant spatial BRDF changes. The quantitative results is shown

in Table 4.1. As can be seen from Table 4.1 and Figure 4.14, out method consistently

performed well on all of them.

To further evaluate our results, we rendered all examples from the ringlight system

under novel lighting and viewpoint and compared them with captured photographs in

Figure 4.15. Note that these images were not used in our shape and reflectance capture
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Figure 4.14: Five examples captured by the ringlight system. From left to right: an
input image, shape model rendered with Lambertian BRDF, rerendering using the cap-
tured BRDF, color-coded shape error.

Example Buddha Cat Teapot2 Cup Frog
diameter(mm) 120 140 120 120) 90
No. of views 41 35 30 30) 34

median error(mm) 0.36 0.24 0.24 0.29 0.25
mean error(mm) 0.57 0.53 0.66 0.50 0.47

Table 4.1: Quantitative results for ringlight system on five different examples.
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Figure 4.15: First column: a photograph; second column: rendering of the recovered
example under the same viewing and lighting conditions as the first column; third
column: rendering under environment lighting.
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Figure 4.16: Mean shape error of the ‘Buddha’ example. This error does not change
significantly with different number of LEDs.

system. It is obvious that the renderings look quite similar to the original images.

Number of images at each viewpoint

While the ringlight appearance capture system is able to produce high-accuracy

results, the number of required input images is huge, given that 72 images are captured

for each viewpoint. Thus, a natural question is whether this large number of input

images for each viewpoint is an overkill. So we evaluated the accuracy of captured

shape and BRDF with different number of input images from each viewpoint.

We first evaluated the shape accuracy on the ‘Buddha’ example. Figure 4.16 shows

the mean shape reconstruction error (in millimeters) as a function of the number of

LEDs in each viewpoint. We always chose equal number of uniformly distributed

lights on both the outer and inner circles. Since our Fourier series fitting requires at

least 5 LEDs from each viewpoint, we begin the plot from 10 lights (5 on each circle).

We found the mean shape error did not change significantly for different number of

LEDs.

We also evaluated the reflectance accuracy with different number of LEDs. We

first measured the BRDF of a green paint after applying it to a sphere of known shape,
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Figure 4.17: Relative RMSE BRDF error of a green paint. This error generally de-
creases with more LEDs.

and capturing the BRDF from images with calibrated directional lighting. We took

this measurement as ‘ground truth’ and compared our result with it. This experiment

is evaluated with another painted figurine shown on the right of Figure 4.17. The left

of Figure 4.17 shows the relative root mean square error (RMSE) of our result with

different number of LEDs from each viewpoint. We computed RMSE as the following

Erms =

( ∑
θh,θd,φ

(f(θh, θd, φ)− f̂(θh, θd, φ))2

f(θh, θd, φ)2

) 1
2

Here, f(·), f̂(·) are the ‘ground truth’ and recovered BRDFs respectively. This error

converges to about 8.5% when about 30 LEDs are used. So in our experiments, we

always used 30 LEDs for the ring-light system.

4.7.3 Comparison with Existing Methods

We compared our results with those obtained from [Alldrin et al., 2008]. and [Her-

nandez et al., 2008]. We used the same code as the authors. The iterative shape and

reflectance optimization in [Alldrin et al., 2008] is complicated and slow. It took over
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Figure 4.18: Results according to [Alldrin et al., 2008].

40 hours to compute the results of one viewpoint with 72 input images at resolution of

200×350. Figure 4.18 shows the results from [Alldrin et al., 2008]. (a) is a color coded

normal map where the x, y, z components of a normal direction are linearly encoded

in the RGB channels, e.g. (x + 1)/2 → R. Shown in (b) is a surface computed from

the recovered normal map according to [Wu and Tang, 2006]. (c) is a rendering from

novel lighting direction according to the estimated normal and reflectance. We can see

clear artifacts in all these images. (d) is the color coded shape error (in millimeters).

Notice the error range is from 0 to 5. The median (and mean) shape error is 2.38 (and

2.85) millimeters. The median (and mean) angular error of normal directions is 13.1

(and 17.6) degrees. Figure 4.19 shows the results from [Hernandez et al., 2008] which

is designed for Lambertian surfaces, where most of the shape details are smoothed out.

4.7.4 Runtime Efficiency

Our implementation was not optimized for speed. We did all experiments on a com-

puter with 24GB RAM and a 8-core 3.0GHz CPU. At each viewpoint, our matlab code

computed azimuth angles in 1 minute, and traced iso-depth contours in 1.5 minutes.

Depth propagation took 16 minutes (for 40 viewpoints), and the final shape optimiza-
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Figure 4.19: Results according to [Hernandez et al., 2008].

tion took 1 minute. It took about 15 minutes to compute the basis BRDFs from 5,000

samples with ACLS. Our output mesh typically had about two million points with av-

erage spatial distance 0.095 millimeters. It took another 45 minutes to compute their

BRDF mixing weights. Much of the involved process including azimuth angle compu-

tation, iso-depth contour tracing, and BRDF mixing weight computation can be easily

parallelized.

4.8 Discussion

In this chapter, wee propose a method to capture both shape and reflectance of real ob-

jects with spatially variant isotropic reflectance. while our method is able to capture 3D

shapes and reflectance to high accuracy, it has a few limitations. First, our method can-

not model anisotropic material. It also cannot handle translucent objects and mirror

surfaces. Second, although our method is robust to cast shadows and strong specu-

lar inter-reflections with Fourier series fitting, it suffers from diffuse inter-reflections.

To resolve this problem, we could replace LEDs by projectors and apply the method
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in [Nayar et al., 2006] to separate inter-reflection. However, it would significantly

complicate the hardware setup. Alternatively, we might iteratively estimate the shape

and inter-reflection. Third, our method requires a few accurate initial 3D seed points.

While this is available from multi-view stereo for surfaces with texture, it is hard lo-

cate corresponding pixels for textureless surfaces. In our experiments, we manually

marked some corresponding pixels. A more practical solution is to use laser to project

small dots onto the surface to facilitate correspondence finding. Last, our ring-light

capture setup contains only two circles of LEDs. Hence, we only capture the BRDF

of a point with two different θd values. (Note that θd is the angle between viewing and

lighting directions as shown in Figure 4.10.) Hence, during reflectance capturing, we

can only discretize θd to two levels, and cannot capture Fresnel effects faithfully. Note

this limitation does not apply to the handheld setup. We could increase the number

of circles of LED lights, or fit parametric Fresnel terms [Schlick, 1994] to solve this

problem.
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Chapter 5

Building a Handheld RGBD-M Sensor

5.1 Introduction

Just as stated in Chapter 4, simultaneous capture of both 3D shape and reflectance is an

important research area and has a vast range of applications in industries. As a result,

different methods, including the one described in Chapter 4, have been proposed in

hope of achieving high accuracy of reconstructed shape and reflectance.

While these methods can produce high-quality results under controlled environ-

ment, most of them involve sophisticated hardware setup and/or complicated data cap-

ture process. For example, [Tunwattanapong et al., 2013] relied on a rotating arm of

controlled LEDs for illumination while it typically took about 3 ∼ 4 hours to acquire

enough images for the work described in Chapter 4. This complexity of data cap-

ture has prohibited any ordinary person who wishes to digitize interesting scenes and

objects in his/her daily life from doing so. Another problem of current appearance cap-

ture methods is that the data acquisition systems are mostly static and therefore works

only on small, movable objects. Thus, a handheld device, which can be used easily
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and acquire data rapidly, is highly desirable for appearance capture.

The device closest to the desired one is an RGBD sensor such as Microsoft Kinect

or ASUS Xtion PRO LIVE, which is capable of both RGB image acquisition and depth

sensing. By making use of solely depth images of an RGBD sensor, [Newcombe et al.,

2011a] and [Izadi et al., 2011] reconstructed a dense 3D scene model in real time. A

recent work [Zhou and Koltun, 2014] further estimated a color map by mapping the

acquired RGB images onto the reconstructed geometry. However, the information of

surface reflectance or material remains missing in the reconstructed scene model.

To make a handheld RGBD-M 1 sensor for appearance capture, we take one step

further by enhancing the RGBD sensor with an additional infrared(IR) camera and a

set of IR LED light sources. Without significantly sophisticating the original RGBD

sensor or complicating data acquisition, the added camera acquires images under the

added light sources. By processing these images together with reconstructed geometry

using customized algorithms, material sensing becomes viable.

Viewing from another perspective, this RGBD-M sensor is a computational sensor

in computational photography terminology [Raskar and Tumblin, 2009]. A computa-

tional sensor does not pass direct measurement, i.e.2D images, to the user. Instead,

it attempts to understand and analyse a machine-readable representation of the scene

using accompanied algorithms. After suitable data processing, the final output of our

sensor is a color mesh and surface BRDFs, both of which constitute an essential repre-

sentation of a scene.

This chapter focuses on building a handheld RGBD-M sensor for casual appear-

ance capture, which, to our knowledge, is the first one of its kind. The structure of this

chapter is as follows. We first present the hardware part of the sensor: setup and cali-

1‘M’ stands for material.
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Figure 5.1: The RGBD-M sensor. LEDs are circled.

bration. After describing data acquisition, we switch to the software part and detail the

data processing pipeline in the sensor, with special focus on two key algorithms. After

that, the sensor is demonstrated to be capable of appearance capture with real-world

examples and we summarize this chapter with a discussion of limitations.

5.2 Hardware Setup

Our RGBD-M sensor is built upon an off-the-shelf product, ASUS Xtion PRO LIVE.

Apart from this commercial product, several IR LEDs and an IR camera are also used.

The sensor is shown in Figure 5.1.

5.2.1 ASUS Xtion PRO LIVE

ASUS Xtion Pro LIVE(we will call it Xtion for brevity), which is similar to Kinect

from Microsoft in functionality, consists of an RGB camera, an IR camera and an

IR light projector. The RGB camera captures color images, while the IR camera and
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Figure 5.2: Left: an IR image captured by Xtion’s IR camera, showing dotted pattern
produced by Xtion’s projector. Right: a depth image calculated from the IR image on
the left. Both images are scaled for visualization.

projector are coordinated to produce depth images. The basic idea of Xtion’s depth

sensing is structured light. The IR projector projects a special pattern into the scene,

while the IR camera on Xtion captures an image of the pattern and calculates a depth

image by triangulation after decoding the pattern(Figure 5.2). For simplicity, we say

that Xtion consists of a color camera and a depth camera. The depth camera’s intrinsic

parameters and poses refer to the corresponding parameters of Xtion’s IR camera.

It is worth noting that Xtion is not the only choice for building up our sensor.

Microsoft Kinect can also be used. However, Xtion is noticeably smaller in size than

Kinect and Xtion does not require a dedicated external power supply as Kinect does.

This feature makes it quite easy to integrate Xtion into the system.

5.2.2 IR Camera

Xtion is an RGBD sensor providing both RGB images and depth images. To enhance

its capability and enable material sensing, we have added an additional IR camera on

top of Xtion together with several IR LEDs as shown in Figure 5.1. We deliberately
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Figure 5.3: The spectra of Xtion’s IR projector light and the added IR LED light

choose to work in the IR range to avoid intervention from indoor illumination in the

visible light spectrum. The added IR LEDs will actively illuminate the scene, images

of which will be acquired by the added IR camera.

There are some practical issues to be handled when building the sensor. First, the

added IR camera, whose model is Manta G-145 NIR from Allied Vision Technologies,

is sensitive not only in the near infrared spectrum, but also in the visible light spec-

trum. So undesirable visible light can ruin IR images. Another issue is that Xtion’s IR

projector also emits IR light which can be seen by the added IR camera. To circum-

vent these obstacles, we need to carefully choose a filter for the IR camera and select

suitable LEDs. We have measured the power spectrum of Xtion’s IR projector using a

spectroscope. As can be seen in Figure 5.3, the emitted IR light by Xtion’s projector

has a wavelength around 835nm. Thus, we have adopted IR LEDs which emit light

with wavelength around 940nm, to avoid intervention. Accordingly, a bandpass fil-

ter is attached to the IR camera’s lens, allowing only light around 940nm to pass and

blocking other IR light as well as visible light.
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Both Xtion and the IR camera are rigidly fixed onto an Aluminium plate, with the

IR camera on top of Xtion. A circular plastic plate with a radius of 16cm is connected

to the Aluminium plate, with the IR camera at the center. Eight LEDs are evenly

distributed on the edge of the circular plate, and another two LEDs are attached to the

device differently, as shown in Figure 5.1.

The IR camera and LEDs are coordinated by a microcontroller(PIC16F877A) in

such a way that the camera takes an image only when one of the LEDs is turned on.

The image data are transmitted back to a desktop computer via an Ethernet cable.

5.3 Device Calibration

The RGBD-M sensor needs to be calibrated both geometrically and radiometrically.

Geometric calibration includes estimation of the intrinsic parameters of different cam-

eras, relative poses between cameras, and LED positions. Radiometric calibration

involves vignetting calibration, estimation of camera response function, and the bright-

ness of different LEDs. These calibration processes are described below.

5.3.1 Geometric Calibration

5.3.1.1 Intrinsics and Relative Poses

We first calibrate the depth camera of Xtion and the added IR camera. Specifically, we

estimate intrinsic parameters of cameras and relative pose between them.

The intrinsic parameters we calibrate includes focal lengths and principal points.

Radial and tangential distortions of lens are ignored because they are negligible in our
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Figure 5.4: A pair of images captured simultaneously for camera calibration. Left:
an IR image acquired by Xtion’s depth camera with Xtion’s IR projector blocked and
the scene illuminated by a 835nm point light source; right: an image captured by the
added IR camera under a 940nm light source.

situation. The camera intrinsic parameters are

Kd =


fd 0 cd,x

0 fd cd,y

0 0 1

 , Kir =


fir 0 cir,x

0 fir cir,y

0 0 1

 , (5.3.1)

where fd and fir are focal lengths for Xtion’s depth camera and the added IR camera

respectively. cd,x and cd,y are the principal point for Xtion’s depth camera, while cir,x

and cir,y are the principal point for the added IR camera.

The relative pose between two cameras is a rigid transformation, consisting of a

rotation matrixR and a translation vector T . Given a single 3D point and its coordinate

Xd in the depth camera’s local coordinate system, its coordinate in the IR camera’s

coordinate system can be calculated as

Xir = RXd + T. (5.3.2)
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Figure 5.5: Estimating light direction l from a mirror sphere based on orthographic
camera model and directional lighting model.

Calibration of the above parameters is an established problem in the computer vi-

sion community. We take advantage of [Bouguet, 2013] to solve this stereo camera

calibration problem. [Bouguet, 2013] requires multiple pairs of images of a checker-

board pattern as input. To prepare input data, we place a planar checkerboard in front

of the device, illuminating it with both 835nm and 940nm light while blocking the IR

projector of Xtion. A pair of images are captured from the depth camera of Xtion and

the added IR camera for every orientation of the board(see Figure 5.4).

The intrinsic parameters of the RGB camera of Xtion and its relative pose with

regard to the depth camera can be calibrated in the same routine.

5.3.1.2 LED Positions

The ten LED bulbs’ positions in the IR camera’s local coordinate frame need to be

determined for BRDF estimation.

Traditional lighting direction calibration assumes directional lighting and an or-

thographic camera. As illustrated in Figure 5.5, the camera captures an image of a

mirror-like sphere. By identifying the specular point in the image and calculating its
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Figure 5.6: Left: an image of a mirror sphere with edge marked out; right: illustrative
figure for sphere center estimation.

normal on the sphere, it is easy to infer the lighting direction with the assumption

that the normal at the specular point bisects the angle between viewing direction and

lighting direction

l = 2(nTv)n− v. (5.3.3)

In our case, however, we have adopted the point light source model and the per-

spective camera model. Thus, the above calibration method cannot be directly applied.

To deal with the problem, we propose a new method for calibrating the positions of a

set of point light sources.

We still make use of a mirror sphere for calibration. As a first step, we estimate the

3D position of the sphere center C.

Estimate Sphere Center

To estimate the sphere center, we first acquire an image taken under general IR

illumination. Since the camera is a perspective camera, the sphere is projected to a

region enclosed by an ellipse which can be easily marked out(see Figure 5.6). As can

be seen from Figure 5.6, pixels on the ellipse correspond to 3D points where the view
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Figure 5.7: Left: an image of the mirror sphere with noticeable specular highlight;
right: illustrative figure for explaining constraints on a light source

direction is tangent to the sphere. Assume a pixel on the ellipse has a homogeneous

coordinate x, then the direction of the corresponding view direction is v = K−1
ir x.

Given the known radius r of the sphere, the following equation on distance from C to

a line should holds

‖C − (vvT )C‖ = r, (5.3.4)

where C is the sphere center to be estimated. By taking all k pixels on the ellipse into

consideration, we can formulate the following optimization problem,

min
C

k∑
i=1

(‖C − (viv
T
i )C‖2 − r2)2. (5.3.5)

By solving the above optimization problem, the sphere center C can be located.

Constraints on a Single Light Source

To obtain a constraint on one light source, we capture an image of the same sphere

under this light source, as shown in Figure 5.7. Note that the surface normal at specular

highlight point on the sphere still corresponds to the bisector of the angle between view
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direction and lighting direction. Thus, we locate the specular highlight and calculate its

view direction as a first step. By intersecting the view direction and the known sphere

in 3D space, the specular point P is known. The normal of P is easily computed as

P−C
‖P−C‖ . With known n and v, the light direction l can be obtained directly from (5.3.3).

Till now, the light source S can be constraint to lie on a line in space

l× (S − P ) =


0

0

0

 (5.3.6)

where P is the 3D position of the specular point and l is the local lighting direction for

P .

By moving the sphere to different positions, we can have multiple constraints on

the position of the LED

l1 × S = l1 × P1

l2 × S = l2 × P2

....

(5.3.7)

Then S can be estimated by solving a linear system. The physical meaning is that the

LED is the intersecting point of all the lines in space.

Constraints on All Light Sources

While we can solve the positions of all LEDs one by one following the above

method, the result can be even more accurate when we optimize the positions of all

LEDs simultaneously. Assume the coordinates of all LEDs are Ŝ1, Ŝ2, · · · in certain

coordinate system, the only parameters to be estimated is a rigid transformation which

87



5. BUILDING A HANDHELD RGBD-M SENSOR

Figure 5.8: Some images used for estimating relative positions of all LEDs.

transforms Ŝi to the real position Si in the IR camera’s local coordinate system. As-

sume we have m LEDs and for each LED, we capture images of a mirror sphere at n

different positions, we can define the following error function

f(R, T ) =
n∑
i=1

m∑
j=1

dist(RŜj + T, lij, Pij) (5.3.8)

where dist(S, l, P ) is the squared distance from the light source S to a line passing the

point P with a direction l

dist(S, l, P ) = ‖S − P − (llT )(S − P )‖2. (5.3.9)

This is a non-linear least squares problem and can be solve by Matlab function lsqnon-

lin.

The remaining problem is how to represent all LED positions in a single coordinate

system. We simply solve the sub-problem by placing the LED plate on a checkerboard

and take images of them from multiple viewpoints with a camera whose intrinsics are

pre-calibrated(see Figure 5.8). Camera poses can be easily recovered given the size

of squares in the checkerboard pattern. By marking out LEDs in all images, we can

triangulate and solve the positions of all LEDs in the same coordinate system. These

coordinates are exactly Ŝ1, Ŝ2, · · · , which is what we need.
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5.3.2 Radiometric Calibration

Experimental results show that the IR camera’s pixel value is proportional to the ir-

radiance going into the camera. However, images from the added IR camera suffer

from noticeable ‘vignetting effect’. In addition, the brightness of different LEDs are

different. We briefly describe calibration procedures for them as follows.

5.3.2.1 Vignetting Effect

Photographed images generally exhibit a radial falloff of intensity from the center of

the image. This is the so-called ‘vignetting effect’. This effect has to be removed if

the image is going to be used for material estimation. We have adopted the following

model for vignetting

V (r) = 1 +
3∑

n=1

βnr
2n, (5.3.10)

where r is the distance of a pixel from the image center, β1, β2, β3 are the three param-

eters to be estimated, and V is the vignetting value such that

Î(x, y) = I(x, y)V (r(x, y)), (5.3.11)

where I(x, y) is the expected pixel value at (x, y) while Î(x, y) is the observed pixel

value due to vignetting.

There are different methods on vignetting removal [Goldman and Chen, 2005; Kim

and Pollefeys, 2008]. Here we adopt the method of [Kim and Pollefeys, 2008] due to

its robustness. We illuminate a diffuse white board with a fixed point light source and

capture images of this white board from different viewpoints. Since the white board is

planar, the image of the board can be easily warped into another image by homography,
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which is estimated by locating the four pairs of corresponding corners in two images.

The key observation is that for the same point on the white board, its pixel values in

different images should be stay the same regardless of the view direction. Thus we

have the following equation

Î1(x1, y1)

V (r(x1, y1))
=

Î1(x2, y2)

V (r(x2, y2))
. (5.3.12)

where Î1 and Î2 are two images, (x1, y1) and (x2, y2) are the projections of the same

3D point on the two images respectively. This equation can be viewed as a constraint

on the vignetting function V (r). More constraints can be added as even more points

are involvecd. For details, please see [Kim and Pollefeys, 2008].

5.3.2.2 Relative Brightness of LEDs

The brightness of the ten LEDs are slightly different and need to be calibrated in or-

der to normalize the captured images illuminated by different LEDs. The calibration

process is quite simple. A diffuse white board is placed in front of the sensor and a set

of IR images are captured under the illumination of different LEDs. After removing

vignetting for each image, the observed value for a specific pixel p is

Ip = ρ
(lTi,pn)Li

d2
i,p

, (5.3.13)

where ρ is the albedo across the white board, n is the surface normal of the white board,

di,p is the distance from the ith LED to the point on the white board corresponding to

the pixel p, li,p is the light direction for the specific point under the ith light source, Li

is the brightness of the ith LED.

90



Since the LED positions are pre-calibrated, and the pose of the white board can be

easily calibrated by marking out its four edges with known lengths, the brightness of

an LED can be calculated based on the above equation

Li =
Ipd

2
i,p

ρ(lTi,pn)
. (5.3.14)

Thus, by assuming ρ = 1, we can calculate the brightness for each LED based on

the pixel values at a single pixel. For robustness, the results from multiple pixels can

be averaged in practice. After calibrating the brightness for each LED, the input IR

images can be normalized by dividing the image by L of the corresponding LED.

5.4 Data Capture

Data capture is quite easy with the RGBD-M sensor. Since material sensing works in

the IR range, no darkroom environment is required. The user only needs to aim the

sensor to an object of interest and move around it. Typical data acquisition time is only

1 min for an object a desk.

Three data streams will be transferred to a computer simultaneously during the

scanning stage: a depth image stream and a color image stream from Xtion, an IR

image stream from the added IR camera.

An inevitable problem in data capture is synchronization. There are three cameras

within the sensor, two of which are from Xtion and can be regarded as naturally syn-

chronized. To synchronize the RGB camera of Xtion and the added IR camera, which

run in different frame rates ( 30fps vs 22fps), we flash a beam of light into both cam-

eras and assume the first IR image and RGB image(called ‘head image’) seeing the
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flash are taken simultaneously. Since each of the two streams of images is associated

with a timestamp from its camera itself, we can subtract the timestamp value of the

head image from the timestamp of each image. In this way, all images are aligned to

the same timeline.

The problem for the above synchronization method is that the pair of head im-

ages are are not perfectly synchronized. However, the difference is guaranteed to be

smaller than 1
30

sec. As long as the sensor moves not too fast, the effect of imperfect

synchronization is negligible.

It is worth noting that perfect synchronization can be achieved by further modifying

the hardware, which is beyond the scope of this chapter.

5.5 Data Processing

Data processing with suitable algorithms is an essential component for the RGBD-M

sensor. As stated in the previous section, the RGBD-M sensor’s hardware captures

three streams of images. On the other hand, this sensor’s software will transform input

image streams into a compact scene representation with both shape and reflectance.

In this section, we will present the whole pipeline of data processing and detail two

key algorithms in data processing.
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Figure 5.9: The computation pipeline for the RGBD-M sensor

93



5. BUILDING A HANDHELD RGBD-M SENSOR

5.5.1 Pipeline

Figure 5.9 shows how the sensor does computation to process input data and turn them

into a compact representation of a scene or object.

As can be seen in the pipeline, we first run the customized algorithm ‘KinectFusion

with ICP’, which is described in Section 5.5.2, on the depth stream to obtain both a 3D

mesh model and poses for the depth camera. After obtaining the depth camera’s poses,

the RGB camera’s poses can be easily calculated by applying a rigid transformation on

the depth camera’s poses. With the help of color images and the RGB camera’s poses,

a per-vertex color can be estimated for the 3D mesh.

On the material sensing side, the acquired IR images are first corrected to remove

vignetting and normalized by the corresponding LED brightness. Since the IR camera

is not synchronized to the depth camera in a frame-wise way, its camera poses for

each IR image can only be obtained through interpolation. Specifically, the pose for

one IR image is linearly interpolated from the poses of two depth images temporally

close to it. The interpolation of the translational component is straightforward. For the

rotational component, the interpolation is carried out on the quaternion representation

of rotation. Given the camera poses for each IR image, 3D vertices on the model can be

projected onto IR images and calculate BRDF values. As will be seen in Section 5.5.3,

the BRDF of any vertex is modelled as a linear combination of several basis BRDFs.

Though BRDF factorization, the reflectance model, including basis BRDFs and per-

vertex weights, can be obtained. It is worth noting that the color information can be

used for initializing BRDF factorization.

94



5.5.2 KinectFusion with ICP

KinectFusion, which has been presented in [Izadi et al., 2011; Newcombe et al., 2011a],

is a method for camera tracking and scene reconstruction using only depth images. The

method takes a sequence of depth images as input and reconstruct a 3D model as well

as the camera pose for each input depth image. specifically, the method maintains a

volumetric model of a scene. When a new depth image arrives, it will render a depth

image from the model, based on its best guess of the pose of the incoming depth image.

The new depth image is then aligned with the rendered depth image, giving an better

estimation of its camera pose. After that, the volumetric model is updated by the newly

aligned depth image. This process is repeated till all depth images are integrated into

the volumetric model. Finally, a mesh model is extracted from the volumetric model.

Besides KinectFusion, there are other camera tracking methods available. How-

ever, those RGB-based methods, such as [Endres et al., 2012; Klein and Murray, 2007;

Newcombe et al., 2011b], perform poorly when there is not much texture in the scene.

By making use of solely depth images, KinectFusion is much more robust.

Despite its robustness, KinectFusion still cannot avoid the notorious problem of

drifting, which means that small errors in frame-to-frame tracking could accumulate

and result in a noticeably large tracking error for a long sequence.

Drifting can cause much trouble for our application. Since the depth camera of

Xtion runs at a frame rate of around 30fps, a single minute’s data capture will yield

a depth sequence of almost 1800 frames. Simply running KinectFusion on this long

sequence will produce inaccurate camera poses, which in turn, ruin the shape model.

To reduce drifting, we have adopted the following strategy. Instead of integrating

every depth image into a single volumetric shape model, we partition the long sequence
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into multiple short sequences with a length of around 200 frames. For each short

sequence, we run KinectFusion on it and obtain a mesh model which only represents

part of the scene. Then these partial mesh models are aligned to each other by the

iterative closest point(ICP) algorithm. At the same time, camera pose for each frame is

transformed properly. To extract the final mesh model, Poisson surface reconstruction

[Kazhdan et al., 2006] is used to merge all the aligned partial models.

By truncating a long sequence into small chunks, we have partially eliminated the

possibility of accumulated tracking error. In fact, since KinectFusion is run only on a

short sequence, the estimated camera poses and partial models are reasonably accurate.

Alignment of partial models by ICP seldom introduces large error.

5.5.3 BRDF Estimation

Given the shape model, camera poses and LED positions, it is possible to estimate the

BRDF values at each surface point by the following equation

f(ωin, ωout) =
I

nT l

1

d2
, (5.5.1)

where d is the distance from a vertex to an LED bulb. However, for each surface

point, we do not have every combination of ωin and ωout. In order to facilitate BRDF

estimation for every surface point, additional constraints are required.

First of all, we simplify the BRDF model by assuming isotropy and half-vector

symmetry. As we have already discussed in Chapter 3, isotropy is ubiquitously ob-

served in real-world materials and eliminates one variable of BRDF. Half-vector sym-

metry also significantly simplifies the BRDF model by eliminating another variable

while still keeping the simplified BRDF a good approximation of the original one. The
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simplified BRDF for a surface point is mathematically expressed as

f(ωin, ωout) = f̂(θh, θd), (5.5.2)

where the definitions of θh and θd can be found in Figure 3.3.

The second assumption we make is that a real-world scene consists of only a few

different materials. This is especially true for artificial scenes such as an indoor envi-

ronment. Thus, the BRDF at each surface point can be expressed as a linear combina-

tion of several different basis BRDFs

Hn×m = Bn×kWk×m, (5.5.3)

where each column ofH is the BRDF of one surface point, each column ofB is a basis

BRDF, and each column of W is the non-negative weight vector for a surface point.

EstimatingB andW fromH is a standard non-negative matrix factorization(NMF)

problem since both B and W are non-negative matrices. Given a reasonable initial

estimation of k basis BRDFs, we can alternate between estimation of W and B till the

Frobenius norm of H − BW changes very little. Since the error is non-increasing at

each iteration, B and W are guaranteed to converge to a local optimal.

However, the local optimal obtained by a simple NMF does not necessarily have

to be a reasonable solution. Typically in our experiments, there is no observation for

almost 90% of entries in H . These entries place no constraint on B and W . In order

for B and W to converge to a reasonable solution, we follow [Lawrence et al., 2006]

and enforce several different constraint on B and W .

Monotonicity For a BRDF f̂(θh, θd) with fixed θd, we force the BRDF value to be
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monotonically decreasing as θh goes down from 0 to π
4
. This hard constraint can be

implemented as a set of linear inequalities on entries of B.

Smoothness A BRDF is typically a smooth function. Thus, we add a smoothness

term to the original objective function. The smoothness term is defined as the squared

sum of all first order and second order derivatives of each basis BRDF f̂(θh, θd). Its

physical meaning is that the value of every basis BRDF should change too fast as θh

and θd vary.

Unity and Sparsity Unlike the above mentioned two constraints on basis BRDFs

B, unity and sparsity are two related constraints imposed on each column of W . It

is assumed that the BRDF at a surface point is a linear combination of some basis

BRDFs. In most cases, this BRDF is dominated by a single basis BRDF. That means

if w is a column of W , then only one entry of w is close to 1 and the rest are close to 0.

This intuitive idea can be decomposed into a unity constraint and a sparsity constraint.

The unity constraint is that the sum of w is close to 1. In other words, the following

term needs to be minimized

(1−
k∑
i=1

wi)
2. (5.5.4)

The sparsity constraint is that each entry of w is close to 0 or close to 1. Mathe-

matically, we minimize the following function

k∑
i=1

(min((wi − 0)2, (wi − 1)2)) (5.5.5)

Given the above hard and soft constraints, B and W will converge to a reasonable

solution.
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Figure 5.10: Three sample images captured by the RGBD-M sensor. Top row from left
to right: depth image(scaled for better visualization) and RGB image; bottom row: IR
image.

5.6 Experimental Demonstration

In this section, we demonstrate how the handheld RGBD-M sensor works by two ex-

amples and a comparison with KinectFusion.
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Figure 5.11: Left: cropped mesh of eyeglass case and a box; right: mesh with color
information.

5.6.1 First Example

In the first example, we try to capture the appearance of an eyeglass case together with

a paper box underneath it. Figure 5.10 shows a set of representative input images of

the scene. It can be easily observed from Figure 5.10 that the eyeglass case, which is

made of plastic, exhibits some specular highlights while the paper box looks purely

diffuse.

After scanning the scene with the RGBD-M sensor, the proposed method which

is described in Section 5.5.2 is run on the input depth sequence to obtain a 3D mesh

representation of the scene. Since we are only interested in the eyeglass case and the

underlying box, so we manually remove the rest parts of the scene. The remaining

mesh is shown in Figure 5.11.

With the estimated camera poses of the depth camera and its relative pose with

regard to the RGB camera, we project each vertex of the mesh onto every RGB images.
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the color information for each vertex is obtained in this manner. See Figure 5.11 for

the result.

To estimate BRDFs for the model, vertices are projected onto IR images to collect

BRDF values for the matrix H in (5.5.3). The factorization of H requires an initializa-

tion of basis BRDFs. Here we run the kmeans clustering algorithm based on the color

at each vertex to classify these vertices into 2 groups. We assume vertices belonging

to the same group share a common BRDF. Thus, one basis BRDF can be easily esti-

mated based on all the vertices in a single group. In this experiment, 2 basis BRDFs

are estimated.

After obtaining the observation matrix H and initializing basis BRDF matrix B,

factorization is applied and produces results shown in Figure 5.12.

It can be shown that the material of the eyeglass case, which is made of plastic, is

dominated by a specular BRDF, while the BRDF of the paper box is quite diffuse.

It is worth noting that the weights for the region that is on the top of the box and

close to the eyeglass case, are clearly incorrect. Pixel values observed in this region

are not only the result of direct illumination from the IR LED. Indirect lighting from

the eyeglass case also contributes to its appearance. Since this interreflection in this

concave region is not modelled by our data processing pipeline, such results can be

expected.

Another artefact in the weight maps is the frontal corner of the box. Weights at

this corner show inconsistency with its neighbouring regions. This is because the re-

constructed mesh is not perfectly aligned with IR images due to small errors in camera

tracking and the mesh itself. The negative effect of misalignment is exaggerated in

regions where depth varies quickly, such as the corner of the box.

Since the RGBD-M sensor together with its accompanied algorithms recovers both
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1.1

0

Figure 5.12: Left column: two estimate basis BRDFs rendered with a sphere under
directional light; right column: weight maps for two basis BRDFs. Red indicates
larger weights while blue indicates smaller values.

102



Figure 5.13: Left column: original IR images; right column: renderings of the mesh
under the same light conditions as the original images. All images are cropped for
visualization.
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Figure 5.14: 4 renderings of the captured appearance model.

shape and BRDFs, we can produce renderings of the scene and compare them with

the original input IR images. Figure 5.13 shows the comparison. As can be seen, the

renderings look quite similar to the original images. The smooth specular highlight on

the eyeglass case is faithfully reproduced. An issue for the rendering is that the carved

words at the top side of the eyeglass case is not seen in the rendered image. This is

because KinectFusion tends to smooth out details such as the carved words.

Per-vertex color can be added back to the mesh to render color images as shown in

Figure 5.14.
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Figure 5.15: Left: a depth image(scaled for visualization); right: an IR image

Figure 5.16: The reconstructed mesh with all background parts removed manually

5.6.2 Second Example

The second example involves a vase and a cylindrical pot. In this example, we scan

one side of the scene and just as in the first example, we keep only regions of interest.

However, we intentionally disable the RGB camera to demonstrate that the material

sensing can still work without color images.

Figure 5.15 shows two sample images of the input streams. The reconstructed mesh

is shown in Figure 5.16.
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1.1

0

Figure 5.17: Top left visualizes the first basis BRDF by rendering a sphere with it; Top
right visualizes weight at each vertex for the first basis BRDF. The second rows shows
the results for the second basis BRDF.

To initialize basis BRDFs in the first example, color information is used for iden-

tification of vertices with similar materials. However, color is not the only prior for

this task. For example, we can use the intensity profile of each vertex under all IR

illuminations and group them by affinity propagation [Frey and Dueck, 2007]. This is

another possible solution. Also in this example, by removing the background, the two

objects with different materials are naturally separated. We utilize this shape prior by

grouping together vertices of the same connected component of the mesh, to initialize

basis BRDFs.

The final results of BRDF estimation is shown in Figure 5.17. It can be seen that

basis BRDFs are successfully recovered. A noticeable artefact is on the right side of
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the vase where the weights are different from other parts of the vase. This is because

this region of vase is made of a different materials from both basis BRDFs(See the last

row of Figure 5.18).

We also render the mesh with BRDFs under original illumination and compare

them with original IR images. Figure 5.18 shows the results. The renderings resemble

corresponding IR images except the right side of the vase where there is a third material

which is not modelled.

The above results demonstrates that the material sensing ability does not require

color information as a necessity. In fact, given the captured BRDFs, it is quite easy

for any user to modify the colors of the materials as they wish. See Figure 5.19 for

illustration.

5.6.3 Comparison with KinectFusion

While the RGBD-M sensor relies on KinectFusion for camera tracking and 3D recon-

struction, it provides more information that a Kinect sensor: BRDFs. To see this, a

comparison is provided in the following.

A blue gymball, shown in Figure 5.20, is captured as scene of interest. By the

sensor described in this chapter, shape, color and BRDF of this gymball are simulta-

neously obtained and thus, an image of this gymball can be rendered which faithfully

reproduces the specular highlight of the gymball(left of Figure 5.21). However, by

Kinect with only KinectFusion algorithm, only shape and color can be recovered. By

making assumption of Lambertian surfaces, the rendered image of the gymball lacks

that highlight, which violates our visual perception of the scene.
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Figure 5.18: Left column: original images; right column: renderings of the mesh.
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Figure 5.19: First row shows what the real vase and cylindrical pot look like; the
second row shows the rendering results after assignment different colors to the basis
BRDFs.
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Figure 5.20: An RGB image of a blue gymball

Figure 5.21: On the left is an image of the gymball rendered with the shape, color and
BRDF information from the RGBD-M sensor, on the right is an image rendered with
only shape and color information from KinectFusion.
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5.7 Summary and Discussion

In the chapter, we have presented the handheld RGBD-M sensor we had built for cap-

turing shape and material simultaneously in a casual way. Such a device is important

in three different areas. First, when viewed as an appearance capture system, this sen-

sor is much smaller in form factor and simpler in operation than other systems. Thus, it

has the potential of enabling non-professionals to perform appearance capture in daily

life.

Second, viewing from the aspect of scene reconstruction, this system has the ad-

vantage of material sensing in addition to recovering shape, while many other methods

focus on shape and texture only.

Third, our device is also a computational sensor in computational photography

terminology. By coordinating the hardware for data acquisition and software for cus-

tomized computation, this ‘camera’ produces an essential representation of a scene or

object, as opposed to a traditional camera capturing photos. This ‘camera’ provides

much potential for image/video editing.

Given the similar ringlight configurations of last chapter and this chapter, it is a

natural idea to use the method of last chapter with the sensor here. However, this is

hardly achievable because of three issues. 1. To estimate azimuth angle for a view

as in last chapter, we have to capture images of that view under different illumination

while keeping camera fixed. In the case of a handheld device, the camera is constantly

moving. Even if we purposely hold the device steadily, it is impossible to get per-pixel

alignment between images due to trembling hands. This results in poor azimuth esti-

mation, especially in regions where there is a sharp change in intensity. 2. The method

described in last chapter requires highly accurate camera poses. This is achieved by
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placing a checkerboard beneath the object for localization. However, in this chapter,

we try to deal with more general scenes and camera poses is given by KinectFusion.

While KinectFusion is relatively robust, its accuracy is lower than what we would ex-

pect. The less accurate camera poses will severely ruin the shape results. 3. Depth

propagation in last chapter relies on an underlying assumption: lighting direction is

directional and the camera is orthographical. However, in the sensor setup, the LEDs

will be close to the scene (0.5m 1.5m) and the IR camera has large field-of-view (to

match the fov of ASUS camera). In this case, the estimated iso-depth contours are

theoretically wrong and hardly a good approximation.

Limitations While we have demonstrated the sensor with real-world examples, it

has some limitations. First, KinectFusion, which is the shape reconstruction method

we rely on, tends to smooth out shape details as can be seen in the eyeglass case

example. Second, since the sensor is constantly on the move, it is difficult to perform

exposure stacking for high dynamic range imaging. Thus, over-exposure and under-

exposure are inevitable. This will affect the accuracy of BRDF estimation. Third,

small errors in camera pose estimation will cause misalignment between IR images

and 3D mesh. In this case, the same vertex can be projected to a wrong image points.

This is especially problematic in regions full of shape details or fast changing textures.

Lastly, as in most appearance capture methods, inter-reflection is not modeled.

Since all the limitations are critical to high accuracy , further research can be done

in this direction to solve them so as to improve results. We believe that the improved

accuracy could lead to a leap from a consumer level sensor to a professional device.
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Chapter 6

Conclusions

Shape reconstruction and reflectance estimation are quite important in computer vision

and computer graphics. A suitable BRDF model is the key to both. In this thesis,

we make extensive use of reflectance symmetries in capturing appearance of objects.

In addition, we built a handheld device for non-professionals to perform appearance

capture easily.

In Chapter 3, we had proposed a novel constraint based on a theoretical result about

half-vector symmetry, to fully resolve the GBR ambiguity in uncalibrated Lambertian

photometric stereo. the auto-calibration algorithm based on this result is proved to

be accurate and robust. In Chapter 4, we had combined sparse 3D points, which are

estimated by SfM, and iso-depth contours, which are estimated by assuming isotropic

BRDFs, to reconstruct a 3D shape. This highly accurate shape enables accurate esti-

mation of BRDFs in the second phase. Thanks to isotropy, such a system achieves high

accuracy while maintaining generality. In Chapter 5, we had presented an RGBD-M

sensor, which is capable of color sensing, depth sensing and most importantly, mate-

rial sensing. This sensor is a combination of the dense tracking and mapping technique
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and BRDF estimation. Reflectance symmetries help constrain BRDFs to a reasonable

solution. This sensor is the first one of its kind to our knowledge.

Despite the merits that have been mentioned in each chapter, there are a few issues

unsolved and can serve as future work.

First, while isotropy, which is the underlying assumption of all three chapters,

is a generally observed property of real-world materials, there are also interesting

anisotropic materials. There have been methods on capturing appearance of anisotropic

materials. However, the hardware setup is quite sophisticated. Developing a simpler

system for anisotropic material acquisition is quite meaningful.

Second, none of the works in this thesis models inter-reflection. Inter-reflection is

an annoying phenomenon in both photometric stereo and BRDF estimation. Current

techniques can hardly handle it easily. However, recent advances in computational

photography, such as [Wu et al., 2012], might shed some light on this problem. [Wu

et al., 2012] has built an ultra-fast imaging system which can ‘photograph’ the trans-

mission of light. Since it will take longer time for the light bounced multiple times

to be received by the ‘camera’ than that bounced only once, it might be possible to

only collect light directly returned from the surface. This new technique is a promising

direction in solving inter-reflection.

Third, the geometry produced by KinectFusion lack details while the LEDs and

IR camera on the sensor naturally make up a photometric stereo system which has

the potential of refining the initial shape. A major problem for this direction is the

correspondence problem. As we know, photometric stereo requires almost perfect

alignment of pixels. However, due to small errors in camera poses and initial shape, it

is not easy to establish good correspondence between pixels from different images. To

solve this problem, a global optimization of camera poses and shape might be required.
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Fourth, our portable sensor is not a real-time system. If material sensing can run

in real-time, then it will be possible to involve the user in the capturing loop. The

captured material will be visualized as the user scans a scene so that the user could

decide whether some parts of the scene need to be scanned again. This will profoundly

increase the strength of this sensor.
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Appendix A: Proof of Proposition 1

Proof. Consider the problem on the projective plane. Apart from a BRDF value, each

point is also associated with a shading value n>s and an intensity value I which is the

BRDF multiplied by the shading. For a bivariate BRDF, the BRDF map consists of a

set of ellipses around h with a symmetry axis vs. It is clear the shading map is also

symmetric about vs. So the intensity map is symmetric about vs and its maximum m

must lie on vs.

When the GBR ambiguity is incurred, the transformed light direction ŝ will keep

lying on the line vs based on equation 3.3.3, and so is ĥ. However, the intensity

maximum will experience a translation (µ, ν) and a scaling λ. If (µ, ν) is not parallel

to vs, the intensity maximum will shift away from vs to m1. Now we consider the

point m2, which lies on the other side of vs and is the mirror point of m1 across vs.

Its intensity is smaller than that of m1 and their transformed shading values are equal:

m>1 ŝ = m>2 ŝ. Thus, their transformed BRDF values are different. On the other hand,

these two points have the same transformed half angle and thus they belong to the same

row of the GBR distorted 2D BRDF slice. So the low-rank structure is broken.

Even if (µ, ν) is parallel to vs, the GBR transformation will still break the low-

rank structure of the BRDF slice from another image whose lighting direction is not

coplanar with v and s.
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Figure 1: Projective plane with BRDF values. Top: BRDF transformed by a general
GBR; bottom: BRDF transformed by GBR with µ, ν = 0, 0 < λ < 1.

In the following, we consider the case µ, ν = 0. We assume λ > 0 by ignoring the

concave/convex ambiguity. We will prove by contradiction for the case λ < 1. The

case of λ > 1 can be proved similarly. Assume the low-rank structure still hold in the

GBR-transformed BRDF slice.

Since the normals nv = v and ns = s have the same half angle: θh = θd, they

should have the same BRDF value

I(nv)

cos(2θd)
=

I(ns)

cos(0)
. (.0.1)

A similar relation holds for the GBR transformed case

Î(nv)

cos(2θ̂d)
=

Î(nŝ)

cos(0)
(.0.2)

where Î is the transformed intensity map, nŝ = ŝ, and θ̂d is the transformed half angle
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for nv and nŝ. As shown in Section 3.3.3, Î is the result of shrinking I toward v

and ŝ is further from v than s, we have I(nv) = Î(nv) and θd < θ̂d. Combining

this with Equation (.0.1,.0.2), it can be derived that the relation Î(nŝ) > I(ns) should

hold. On the other hand, nŝ is transformed from nx, which lies even further from v:

Î(nŝ) = I(nx). For most real-world BRDFs, Intensity decreases as the normal moves

away from the fixed viewing direction v and lighting direction s: I(nx) < I(ns). thus,

Î(nŝ) < I(ns). Contradiction.
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