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Summary

Electricity grid operations require information on load and generation on a variety of

timescales and areas. The advent of significant generation contributions by time variable

solar energy sources means that modeling and forecasting methods are becoming increas-

ingly important. I explore and develop a series of methods for solar irradiance modeling

and forecasting.

The most fundamental models in solar irradiance modeling and forecasting are the clear

sky models. Clear sky models describe the expected total irradiance reaching the Earth’s

surface during a cloud–free situation. Their unique properties allow us to remove the daily

trends in irradiance time series, which is essential for forecasting. I develop a semi–empirical

clear sky model for the equatorial region.

Univariate forecasting using the autoregressive integrated moving average model is ex-

plored next. To enhance the performance of this classic model in a solar engineering context,

knowledge–based decompositions are used to describe the variabilities in irradiance time se-

ries.

Although the univariate models could provide adequate forecasting accuracy, solar irra-

diance is in fact a spatio–temporal quantity, spatio–temporal models are therefore desired.

This thesis focuses on space–time kriging using data collected by a ground–based sensor net-

work. Kriging allows prediction at unobserved locations; this is a distinct advantage over

other spatio–temporal forecasting methods. To satisfy various model assumptions, some

transformations and constraints are considered and described.

One of the assumptions of spatio–temporal models used in this thesis is stationarity.



v

Therefore, only irradiance data on a horizontal plane should be used in spatio–temporal

models. However, such horizontal data can be scarce. Two inverse transposition models are

proposed to convert irradiance on a tilted plane to horizontal irradiance. The motivation

is to utilize the existing photovoltaic installations (often tilted) as irradiance sensors, and

thus forecast irradiance using the above mentioned forecasting models.

To increase the number of monitoring stations in a sensor network and thus allow bet-

ter forecasting, network expansion strategies are discussed. The information content in a

spatio–temporal dataset can be described using entropy. An entropy–based network redesign

procedure is described.

As increasing volumes of information become available, partly due to potential imple-

mentations of the inverse transposition models and network expansion, we need to consider

the effectiveness and interpretability of the data. Threshold distance is developed to describe

the spatial information boundaries for forecasting. Parameter selection and shrinkage mod-

els can reduce the number of parameters in a spatio–temporal model thus achieve efficient

and accurate forecasts.
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Chapter 1

Introduction

Fossil fuels dominate the world’s energy market today. The non–renewable fossil fuels how-

ever will eventually be depleted. This inevitable depletion and other negative impacts of

fossil fuels usage such as global warming have been the motivation of renewable energy

development. Today, solar energy alongside other forms of renewable energy receives atten-

tion from environmentalists, social scientists, economists, politicians, operators of electricity

supply systems and many other groups promoting sustainable development.

Since the creation of the first modern solar cell in 1954 by Chapin et al. (1954), the

technology has advanced tremendously through the years. The efficiency of the silicon

solar cell has tripled and its cost has reduced a hundred times. These motivations lead to

constant growth of photovoltaic (PV) market. At the end of 2013, world solar PV power

capacity increased to 136,697 MW with about 37,007 MW (35% increase from the end of

2012) installed in the year 2013 alone (Shahan, 2014). With the increasing penetration

of distributed solar power into the electricity grids, the inherently introduced variability

potentially poses challenges for the power system operations.

A power system can be described as consisting of generation, transmission & distribution

and load. The main task of a power system is therefore to ensure the delivery of quality

electricity to all loads in the system in response to the time–varying electricity demand. A

state–of–the–art energy management system consists of many operations to balance the gen-



2

eration and load including network monitoring (e.g. state estimation), generation scheduling

(e.g., unit commitment, load forecasting), generation control (e.g. economic dispatch, fre-

quency control) and network analysis & security control (e.g., optimal power flow, short

circuit analysis). These operations are well developed for fossil fuels–based power systems.

However, solar energy is highly weather–dependent; sudden power ramps and drops when

clouds move over a PV installation are still seen as a threat by many grid operators. Fig. 1.1

shows the variation of global horizontal irradiance (GHI) during a typical day in Singapore.

These large fluctuations have to be managed for reliable power gird operations.

(a) (b)

0

300

600

900

1200

200

400

600

800

1000

06:00 09:00 12:00 15:00 18:00 21:00 14:00 14:15 14:30 14:45 15:00
Time [HH:MM]

G
lo

ba
l h

or
iz

on
ta

l i
rr

ad
ia

nc
e 

[
W

m
2 ]

Fig. 1.1 (a) Time series plot for global horizontal irradiance measured on 2012 January 4 at
the Solar Energy Research Institute of Singapore. (b) A zoomed view for 2:00–3:00 pm.

The conventional approaches of increasing the spinning reserves in the power system

and/or using battery–based energy storage can help manage the variability of solar power.

However, these options are costly. Complementary to these, forecasting of the solar power

output on different timescales is a powerful tool, which brings solar PV one step closer

to being “dispatchable”, and thereby making it more compatible with the current power

grid operation. Many desired outcomes of performing forecasting, such as improved power
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quality and reduced operational costs, have been the driving motivation for the solar energy

forecasters.

At this stage, I note that other than irradiance, many other factors have effects on PV

performance. One of those factors is temperature. Solar cell performance drops with in-

creasing temperature owing to the drop in open circuit voltage. Nevertheless, as the change

in temperature is more gradual than the change in irradiance, short term module temper-

ature forecasting is straightforward. For grid integration purposes, irradiance forecasting

contributes most to the overall PV output forecasting uncertainty. This thesis therefore

focuses mostly on irradiance forecasting; PV power forecasting is briefly discussed.

1.1 Problem statement

The primary aim of this thesis is to develop spatio–temporal statistical forecasting methods

for solar irradiance using data collected by ground–based sensor networks. Several secondary

tasks including irradiance modeling, data transformations, monitoring network design are

also investigated.

1.2 An overview of motivations and contributions

As the problem statement suggests, various statistical predictive methods will be consid-

ered, developed, modified, used and validated in chapters 4, 5 and 9 of the thesis. Sta-

tistical forecasting methods are used in a wide range of applications including economic

and econometric forecasting, marketing forecasting, financial forecasting, production and

technological forecasting, crime forecasting, climate forecasting, demographic forecasting,

energy forecasting and many others. What distinguishes solar irradiance forecasting from

the others is the domain knowledge. Chapters 3, 4, 6, 7 and 8 therefore address and study

the domain knowledge (irradiance modeling) in details.
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1.2.1 Chapter 3: the clear sky model

The most fundamental model in solar irradiance modeling and forecasting is the clear sky

model. Fig. 1.1 (a) shows a typical diurnal transient of the GHI time series. Apart from the

fluctuations which are primarily caused by the moving clouds, the curve has a bell–shaped

trend. The bell–shaped curve is a result of Earth’s self rotation. In solar engineering, the

bell–shaped curve can be modeled using a clear sky model. I develop a semi–empirical

clear sky model for Singapore in chapter 3 based on the atmospheric transfer model. The

materials presented in chapter 3 are based on (Yang et al., 2012a, 2014c).

1.2.2 Chapter 4: univariate forecasting using decompositions

A commonly used heuristic in forecasting is time series decomposition. Instead of directly

applying the forecasting methods to the time series, the series is first decomposed into several

sub–series. After the forecast of each sub–series is obtained, the final forecast is obtained

by recombining the individual forecasts. This general framework of “decomposition →

forecasting → recombination” is depicted in Fig. 1.2. Time series decompositions often

improve forecast accuracy because decompositions help in strengthening or attenuating the

signals of different time series components (Kourentzes et al., 2014). Decompositions based

on wavelet theory have been proposed to elaborate on such effects (e.g. Michis, 2014; Sudheer

and Suseelatha, 2015).

Recombination
to obtain ẑt+1

Decomposition of
time series {zt}

Sub–series:
{z

(1)
t }

Sub–series:
{z

(2)
t }

...

Sub–series:
{z

(n)
t }

ẑ
(1)
t+1

ẑ
(2)
t+1

...

ẑ
(n)
t+1

Fig. 1.2 An illustration of forecasting heuristics based on time series decompositions. Let
{zt} be the time series of the quantity needs forecast, {z(1)

t } · · · {z(n)
t } are n decomposed

sub–series. The symbol̂denotes a forecast.



1.2 An overview of motivations and contributions 5

Following such motivations, three heuristics are proposed in chapter 4 based on knowl-

edge of solar irradiance. Instead of using a general time series decomposition method,

such as wavelet or Fourier decompositions, knowledge–based decompositions are considered.

Knowledge–based methods have been previously applied in load forecasting (Ho et al., 1990;

Rahman and Hazim, 1993). In a book chapter written by Webby et al. (2001), time series

forecasting using domain knowledge is discussed from a general perspective. For the specific

task of irradiance forecasting, I choose three exogenous parameters for the analyses, namely,

direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and cloud cover index;

they are used to decompose the GHI time series. A fundamental univariate forecasting

model, namely, the ARIMA (autoregressive integrated moving average) model is used to

perform the one–step–ahead predictions. The materials presented in chapter 4 are based on

(Yang et al., 2012b, 2015a).

1.2.3 Chapter 5: spatio–temporal kriging

Making generalizations is fundamental to mathematics; forecasting is no exception. Two

types of generalizations are discussed in this thesis: (1) generalization of univariate fore-

casting models to multivariate models and (2) generalization of purely spatial predictive

methods to spatio–temporal methods. Chapter 5 considers the later while the former is

briefly discussed in chapter 9.

Kriging is a geostatistical interpolation method named after Danie G. Krige who used

the method for mineral resources evaluation (Krige, 1951). It is later formalized by Math-

eron (1963). Most kriging applications are purely spatial, however, kriging formulation

can be easily generalized to handle spatio–temporal applications (Cressie and Wikle, 2011).

Although there is a rich literature on spatio–temporal kriging in statistics, prior to my publi-

cations (Yang et al., 2013b, 2014a), only one conference paper (Inoue et al., 2012) considered

spatio–temporal kriging for solar irradiance forecasting. This lack of application is due to

three main reasons: (1) some irradiance forecasting methods, such as the satellite–based
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and sky camera–based methods, are spatio–temporal in nature, (2) the irradiance sensor

networks are often spatially sparse and/or have only few sensors; the correlations among the

stations are therefore not observed and (3) the field of irradiance forecasting is relatively

new, multivariate and spatio–temporal statistics are yet to be exposed and appreciated.

Therefore, the kriging framework presented in chapters 5 and 9 is unique to the field of

solar engineering1. Furthermore, it overcomes several disadvantages of the satellite–based

and sky camera–based methods. The materials presented in chapter 5 are based on (Yang

et al., 2013b).

1.2.4 Chapters 6 and 7: adding more sensors into the network

Spatio–temporal methods often rely on sensor networks. The sparsity of the network has

to be addressed by adding in new stations into the network. This is a network redesign

(expansion) problem; I present an entropy–based approach in chapter 8. Beside building

new monitoring stations, it is also possible to utilize the existing PV systems as sensors for

irradiance and PV output forecasting. This idea is demonstrated by Lonij et al. (2013),

where data from 80 rooftop PV systems over a 50 × 50 km area are used.

PV panels are often installed at inclined surfaces to maximize the energy output of the

systems. In order to integrate the PV power output data with horizontal radiometric data,

transposition models are essential. A transposition model converts solar irradiance from a

horizontal plane to any fixed inclined surface. The schematic diagram of the conversion is

shown in Fig. 1.3.

There are several accepted terms describing irradiance components (measured in W/m2).

Global horizontal irradiance (GHI, Iglo) refers to irradiance measured on a horizontal surface.

It can be decomposed additively into two components: the horizontal beam irradiance

(HBI, Ibeam) and the diffuse horizontal irradiance (DHI, Idif). Sometime, direct normal
1Shortly after I wrote the Renewable Energy paper with Gu Chaojun, we wrote another paper on load

forecasting using kriging. The paper is subsequently published in IEEE Transactions on Power Systems
(Gu et al., 2014), showing the wide applicability of kriging.
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It = It,dir + It,dif + It,refl

= Idir cos θi + IdifRd + ρ′IgloRr

= Ibeam
cos θi

cos θz

+ IdifRd + ρ′IgloRr

It,dir
It,dif

It,refl collector plane

It = It,dir + It,dif + It,refl

= Idir cos θi + IdifRd + ρ′IgloRr

= Ibeam
cos θi

cos θz

+ IdifRd + ρ′IgloRr

It,dir
It,dif

It,refl collector plane

Fig. 1.3 Schematic diagram of various irradiance components received on a collector plane.

irradiance (DNI, Idir) is used instead of HBI. On a tilted surface, tilted global irradiance

(It) can be decomposed additively into the tilted beam irradiance (It,dir), the tilted diffuse

irradiance (It,dif) and the reflected irradiance (It,refl). The relationships among the irradiance

components are shown in Fig. 1.3. For the time being, Rd, Rr, ρ′, θi and θz can be treated

as known quantities.

Chapter 6 reviews the transposition models. Theoretically, if any two (out of seven)

types of irradiance listed above are known, the others can be deterministically calculated

through transposition models (Yang et al., 2014d). However, the literature focuses on the

horizontal to tilt conversion; there is no reference on the inverse transposition (from tilt to

horizontal) beside the pair of papers by Faiman et al. (1987, 1993). In chapter 7, I will show

that the assumptions in (Faiman et al., 1987, 1993) are strong, the conversion accuracies

are consequently suboptimal.

The materials presented in chapters 6 and 7 are based on (Yang et al., 2013a, 2014d);

they are highly original. I summarize the contributions as follows:

• Inverse transposition model using a single reference cell is proposed.

• Ten transposition models and five decomposition models are validated using tropical
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irradiance data.

• Anisotropic inverse transposition model using two or more reference cells is proposed.

• Re–parameterization of the Perez model in a tropical environment.

These contributions are more described in the respective chapters.

1.2.5 Chapter 8: network redesign using entropy

The publications on irradiance monitoring network design are surprisingly few. To my

knowledge, only five recent journal papers discuss this research problem. Zagouras et al.

(2013) uses principle component analysis to reduce the features of a satellite image sequence,

the optimal station placement is then found through the k–means clustering algorithm. This

method is later extended to similar applications with smaller geographical scales (Zagouras

et al., 2014a,b). Yang and Reindl (2015) proposed an alternative clustering–based design

using the variance quadtree algorithm. Despite that the methodology adopted in these

works is logical, the clustering approach does not support network redesign, i.e., adding

stations to the existing networks. There is only one reference which considers the irradiance

monitoring network redesign problem. In the recent publication by Davy and Troccoli

(2014), a network maintained by the Australian Bureau of Meteorology is redesigned based

on uncertainty modeling. Unlike (Davy and Troccoli, 2014) where satellite data and genetic

algorithm are used for the redesign of a continental scale network, I consider a metropolitan

scale redesign using ground–based data and entropy in chapter 8. The research shown

in chapter 8 therefore provides insights and introduces a new dimension to the network

design in solar engineering, especially for forecasting applications. The materials presented

in chapter 8 are based on a manuscript in progress.
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1.2.6 Chapter 9: parameter selection

When considering the aggregation of many PV systems distributed over an area, the tran-

sient of the overall energy output is expected to be smoother than the one shown in Fig. 1.1.

This is called the geographical smoothing effect; it is well documented in the literature (Cur-

tright and Apt, 2008; Hoff and Perez, 2010; Lave and Kleissl, 2010; Marcos et al., 2012). In

general, as the station separation distance increases, the correlation between the irradiance

time series collected at two stations reduces. Consequently, as the separation goes beyond

a so–called “de–correlation distance”, measurements from the pair of stations become un-

correlated.

The studies on de–correlation distance mostly consider only correlations observed in the

along–wind direction. When correlations from all directions are involved, de–correlation

distance is usually not seen (Murata et al., 2009). I therefore propose a quantity called the

threshold distance which is estimated using correlations from all directions. It is argued in

chapter 9 that the data collected beyond the threshold distance provide minimal information

to forecasting; they therefore should not be included in a spatio–temporal model. To validate

this hypothesis, two spatio–temporal models are used, namely, the time–forward kriging and

vector autoregressive (VAR) model. VAR is a generalization of the univariate autoregressive

model.

The heuristic herein proposed can be considered as a parameter selection method. In-

stead of using data from all the stations in the sensor network, only the relevant spatio–

temporal neighbors are included in the forecasting model building. In fact, the general idea

of parameter shrinkage and selection is ubiquitous in regression analyses. The lasso (least

absolute shrinkage and selection operator) is one of the most successful inventions in the

literature of regression2. I use the lasso to benchmark the proposed selection method. The
2Lasso is described in this thesis with only minimal sufficient details. There is however a more compre-

hensive paper on irradiance forecasting using the lasso (Yang et al., 2015b). Data from a dense network of
17 radiometers are used to forecast sub–5–min irradiance. As the motivation therein is different from the
motivations of this thesis, I do not include the materials here. However, I strongly encourage the readers
to read the lasso paper.
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materials presented in chapter 9 are based on (Yang et al., 2014a).

1.3 Data

Data is essential to modeling and forecasting. Beside chapter 4 where typical meteorological

year 3 data are used, all other chapters use Singapore data. The choices of datasets are

explained in this section. I note that the choices of datasets do not constrain the appli-

cabilities of the proposed methods. All methods proposed and discussed in this thesis are

general.

1.3.1 Difference between resource assessment and forecasting

Solar irradiance measurements come from two complementary data sources (Vignola et al.,

2012): (1) ground–based instruments and (2) remote sensing satellites. Before the popu-

larization of the satellite–based methods (Perez et al., 2002), the ground–based monitoring

networks are the primarily sources for solar resource assessment. For example, Fig. 1.4

shows the New Energy and Industrial Technology Development Organization (NEDO) me-

teorological network http://app7.infoc.nedo.go.jp/. 834 ground–based weather stations are

distributed spatially in Japan. Today, ground–based data are still used to adjust the biased

irradiance estimates from satellite–based models (Escobar et al., 2014; Nonnenmacher et al.,

2014; Polo et al., 2014).

Although the total number of monitoring stations in the NEDO network is generous,

those stations are too sparse to fully capture the fast–changing cloud conditions. Some

clouds experience creation, propagation and extinction within the spatial resolution. In

fact, most of the networks today are sparse. Other examples of low spatial resolution

networks include National Solar Radiation Data Base (NSRDB) http://rredc.nrel.gov/solar/

old_data/nsrdb/ and the network in Brazil (Martins and Pereira, 2011). Such networks are

useful for resource assessment; they are not suitable for irradiance forecasting.

For the above–mentioned reason, a network of 25 stations in Singapore is used chapters 5,

http://app7.infoc.nedo.go.jp/
http://rredc.nrel.gov/solar/old_data/nsrdb/
http://rredc.nrel.gov/solar/old_data/nsrdb/
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Fig. 1.4 Geographical locations of 834 weather stations in Japan. Each colored pixel denotes
a station, with the color indicating the yearly insolation value in MJ/m2.

8 and 9. Singapore has a total land area of 714.3 km2; the main island of Singapore measures

50 km in the East–West direction and 26 km in the North–South direction. Fig. 1.5 shows the

locations of these 25 stations. The monitoring network was completed in 2013 December.

Therefore during the time of publication, not all stations were available3. Consequently,

partial networks are used in chapters 5 and 9. Nevertheless, chapter 8 demonstrates the full

network.

1.3.2 Solar irradiance measuring instruments

The performance of a PV system is determined by two factors, namely, PV system efficiency

and weather (Meydbray et al., 2012a). We are therefore interested in two types of measure-

ments: (1) measurement of PV efficiency at reference conditions and (2) solar radiometric

measurement.
3The paper (Yang et al., 2014a) is accepted in 2014 January. As one year worth of data are usually

required for publications, only stations built prior to 2013 January are utilized in that study, which is not
the full network.
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Fig. 1.5 Locations of 25 irradiance monitoring stations in Singapore. Source: Google Maps.

Recall the irradiance components shown in Fig. 1.3, there are three components (Idir,

Idif and Iglo) on a horizontal surface and four components (It,dir, It,dif , It,refl and It) on a

tilted surface. These irradiance components can be collected using an instrument called

pyranometer (directly or indirectly). Pyranometers are thermopile–based instruments that

convert heat to an electrical signal which can then be recorded. A pyranometer is typically

used to measure GHI (Iglo); if equipped with an additional shadow band to block the direct

irradiance, it can also record DHI (Idif); DNI (Idir) can thus be calculated deterministically.

Some pyranomters, such as the SPN1 Sunshine Pyranometer, have the capability of mea-

suring GHI and DHI simultaneously. Occasionally for research purposes, pyranometers are

used to measure the tilted global irradiance (It) as well. Instead of measuring the DHI

using pyranometers with shadow bands, we can measure DNI using an instrument called

pyrheliometer with a solar tracking system that aims the instrument at the sun. Pyra-

nometers and pyrheliometers are used for solar radiometric measurements (Meydbray et al.,

2012a,b; Yang et al., 2014b). The price range of industrial-grade pyranometers can reach a

few thousand US dollars. Therefore, it is not economic to build sensor networks using such

instruments for operational forecasting.
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The alternative reference cell is a PV device, which converts a flux of photons directly

into an electric current, working similarly to a PV module. Most reference cells are silicon–

based; they are less accurate than thermopile–based devices (the major loss mechanisms are

discussed in chapter 7. Hundreds of reference cell types are available on the market and are

cheaper than pyranometers (about two hundred US dollars). This type of sensor is therefore

often used to measure the plane of array irradiance (It) at a PV site in order to assess the

system performance (Meydbray et al., 2012a,b; Yang et al., 2014b); it is also common to

install a collection (network) of reference cells within a PV site. To utilize the reference cell

data, inverse transposition models (convert irradiance from tilt to horizon) are needed.

Two datasets are used in this thesis to demonstrate the irradiance conversion algorithms.

The dataset collected at the first zero energy house in Singapore (FZEHS) is used in chap-

ter 6. It consists of data from one pyranometer and two reference cells. The second dataset

comes from the rooftop of SERIS, see chapter 7. It comprises data from two pyranometers

and five reference cells. The datasets will be described in details in the respective chapters.

1.4 Error metrics

Error metrics are used to evaluate forecasts and predictions. The International Energy

Agency (IEA) developed recommendations for reporting irradiance model accuracy based

on three validation metrics: mean bias error (MBE), root mean square error (RMSE) and

Kolmogorove–Smirnov integral (KSI)4 (Beyer et al., 2009; Espinar et al., 2009; IEA, 2012).

MBE is given by:

MBE = 1
N

N∑
n=1

(
În − In

)
(1.1)

4KSI is used to measure the ability to reproduce the cumulative distributions of measurements.
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where În, n = 1, 2, · · · , N is the forecast/predicted irradiance (or other quantities being

forecast) and In is the actual/measured irradiance (quantities). RMSE is given by:

RMSE =

√√√√ 1
N

N∑
n=1

(
În − In

)2
(1.2)

Beside MBE and RMSE, the normalized RMSE (nRMSE) is also frequently used for

error display. The nRMSE is in percentage:

nRMSE =

√√√√ 1
N

N∑
n=1

(
În − In

)2

1
N

N∑
n=1

In

× 100% (1.3)

For the percentage root mean square error, some authors (e.g. Boyd, 2013) use a centered

error metric, i.e.,:

cRMSE =

√√√√ 1
N

N∑
n=1

(
În − MBE − In

)2

1
N

N∑
n=1

In

× 100% (1.4)

When the uncertainty of the forecasts is considered, the expanded uncertainty at 95%

confidence interval (U95) is used:

U95 = k ×

√√√√ 1
N

N∑
n=1

(
În − In

)2

1
N

N∑
n=1

In

× 100% (1.5)

where k is a coverage factor, equals to 1.96 for a 95% confidence level. These evaluation

indices will be used throughout the thesis, whereby the choices depend on the particular

applications.
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1.5 Tools used and software sharing policy

All the results shown in this is thesis are computed/simulated using R, a statistical soft-

ware. Similar to Mathematica and Matlab, R is an integrated suite of software facilities

for data manipulation, calculation and graphical display. It has distinct advantages over

Mathematica and Matlab in terms of statistical computing and graphics. More information

on the software can be found at http://www.r-project.org/.

To address the ability of the scientific community to reproduce and build on research

findings reported in this thesis, I would like to share my R code on a case by case basis (such

as the code to produce a particular figure or a table). Please contact me at yangdazhi.nus@

gmail.com for more information.

1.6 Logic flow and structure of this thesis

The thesis is structured along logical lines of progressive thought. After this introductory

chapter presenting the overall motivations and contributions, chapter 2 provides a detailed

literature review on the state–of–the–art methods and approaches for solar irradiance fore-

casting. Chapter 3 is a short chapter describing the most basic irradiance model, namely,

the clear sky model. The proposed Singapore local clear sky model will be subsequently

used in other chapters. Chapter 4 is devoted to univariate forecasting methods; several

decomposition heuristics are proposed to improve forecasts. One of the conclusions from

this chapter is that the cloud cover information can improve forecasting accuracy. As clouds

are driven primarily by wind, it is logical to consider spatio–temporal forecasting models

instead of temporal only (univariate) forecasting models. Time–forward kriging is developed

in chapter 5 in a solar engineering context; the spatio–temporal evolution and dependence in

solar irradiance random processes are explained through the means of covariance structures.

To realize the forecasting algorithm described in chapter 5, data from a sensor network is

required. Existing networks are often spatially sparse. A group of two chapters (6 and 7)

http://www.r- project.org/
yangdazhi.nus@gmail.com
yangdazhi.nus@gmail.com
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describe the inverse transposition models which convert irradiance components measured

on tilted planes to GHI. Such conversions can potentially increase the number of sensors in

a network, and thus improve forecasts. The series continues with chapter 8, where entropy–

based network redesign is demonstrated as an alternative approach to improve the network

sparsity. Contents presented in chapters 6, 7 and 8 can potentially bring large amounts

of data to forecasters. Very often, such information is spread over a large geographical

area. However, the spatio–temporal dependence has limits. Chapter 9 develops and verifies

two methods defining the threshold distance in an irradiance random field. The temporal

threshold is also discussed. The results show that by using parameter selection, the forecast

results can be improved.



Chapter 2

Literature review

2.1 Review of solar irradiance forecasting

Before any forecast can be made, data need to be collected. Solar irradiance in nature

can be viewed as a random process whose intensity (power per unit area) is a function

of both space and time. Any dataset should therefore be considered as a subset of all

possible observations that can be made in Rd × R1, where d–dimensions describe space

and another dimension describes time. A dataset contains finite samples of irradiance

(in one form or another); these samples define the spatio–temporal resolution thus the

predictability of the dataset. The links among observational methodologies (e.g., remote

sensing, ground instruments, etc), data and forecasts thus become apparent. Forecasting

needs at different spatio–temporal scales drive the data collection process thus lead to the

development in observational methodologies; observational methodologies determine the

available data which then relate to the forecasting skills and choices of forecasting methods.

In the review paper by Inman et al. (2013), the forecasting skills in terms of their

applicable time horizontal and spatial resolution based on the current technologies and

data are related to the forecasting techniques (see Fig. 2.1). Forecasting techniques can

be categorized into 5 classes: 1) forecasting using a wireless sensor network (high spatial

proximity); 2) using total sky imagers; 3) using satellite imaging; 4) numerical weather
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the GHI signal is necessary in order to identify the most correlated
pair of sensors. It should be noted that overcast and clear periods
produce time-series of relatively low variability, resulting in a high
correlation across all sensors, rendering the most correlated pair
approach non-operational [257]. Cloud speeds determined by the
two methods were compared to radiosonde data from the Inte-
grated Global Radiosonde Archive (IGRA) [258], including profiles
of pressure, wind speed and direction, and relative humidity in
addition to METAR surface weather data which were obtained from
the NOAA database [259]. Both methods show good agreement
with the radiosonde and METAR data. The method that uses the
most correlated pair has the advantages of simplicity, robustness
and computational speed while the linear cloud edge method
benefits from reduced installation and maintenance costs. How-
ever, it is important to note that both methods require high vari-
ability in the GHI time-series in order to generate highly correlated
pairs of data.

8. Hybrid systems

A Hybrid System (HS) is characterized by a combination of any
two or more of the methods described previously. As of late, several
HSs have been used to produce high quality solar irradiance fore-
casts. One of the motivations for the development of hybrid models
is that often it is possible to increase the forecasting accuracy by
taking advantage of the strengths of each methodology. A typical
example for this is the pairing of cloud cover information derived
from satellite images with ANNs as implemented in Ref. [260].
Another reason to develop HSs concerns the situation illustrated in
Fig. 20. This figure shows the approximate spatial and temporal
limitations of each of the forecasting techniques described in this
work. Noticeably, none of the individual methodologies is able to
span all relevant areas of interest. For this reason, it is clear that a
high-fidelity, robust forecasting engine would need to incorporate
several of these techniques in order to appropriately forecast on
several spatial and temporal resolutions.

Sfetsos and Coonick introduced a new approach for the fore-
casting of mean hourly GHI using traditional linear stochastic
methods, several artificial-intelligence-based techniques alongside
the adaptive neuro-fuzzy inference scheme [78]. Zarzalejo et al.
used ANNs in conjunction with satellite-derived cloud indices for

the forecasting of hourly mean GHI [199]. Mellit et al. developed a
hybrid model which was used to predict the daily GHI by
combining an ANN and a library of Markov transition matrices [81].
Chaabene and Ammar introduced a medium term dynamic fore-
casting model for irradiance and ambient temperature which
consisted of a neuro-fuzzy estimator based on the meteorological
parameters’ behaviors during the days before as well as a short
term forecast for 5 min ahead based on stochastic models and
Kalman filtering [77]. Reikard performed forecasting tests using
regressions in logs, ARIMA, and unobserved components models,
transfer functions, neural networks and hybrid models [89]. Reik-
ard claimed that the best results were obtained using the ARIMA in
logs, with time-varying coefficients. Martín et al. tested AR, ANNs
and fuzzy-logic models for application to solar thermal power
plants energy production planning [44]. Mellit et al. also developed
an adaptive model for predicting hourly GHI and DNI using a
dataset of measured air temperature, relative humidity, and direct,
diffuse and global horizontal irradiance [261]. The adaptive model’s
performance was compared against an MLP ANN. Ji and Chee [79]
recently developed a new approach that contained two phases
used to predict the hourly solar radiation series. In the detrending
phase, several models are applied to remove the non-stationary
trend lying in the solar radiation series. In the prediction phase,
the ARMA model is used to predict the stationary residual series
with a time delayed neural network. Voyant et al. [80] proposed a
study of the contribution of exogenous meteorological data as
time-series to their optimized MLP. To do so they compared
different forecasting methods including a persistence forecast,
ARIMA reference predictor, an ANN with preprocessing using only
endogenous inputs and an ANN with preprocessing using both
endogenous and exogenous inputs.

More recently, Marquez and Coimbra [262] developed and
validated a medium-term solar irradiance forecast for both GHI and
DNI based on stochastic learning methods, ground experiments
and the NWS database. A genetic algorithm was used as the input
selector for the ANN in order to select the most relevant input
patterns. Voyant et al. used a hybrid ARMA/ANN with NWPs to
predict hourly mean GHI [263]. Marquez et al. [264] also used cloud
indices obtained from a TSI and cloud indices derived from infrared
radiometric measurements in order to improve results for hourly
forecasts of GHI. Marquez, Pedro and Coimbra have developed a

Fig. 20. Comparison of time horizon and spatial resolution. Solid lines indicate current limits of techniques while the dashed lines and arrows indicate the future progress of work.
AI techniques will continue to include local, mesoscale and global meteorological data which will allow for both shorter time horizons and greater areas of interest. In addition,
recent trends in NWP suggest that shorter time horizons will be available through the development of the WRF models.

R.H. Inman et al. / Progress in Energy and Combustion Science 39 (2013) 535e576564

Fig. 2.1 Time horizon and spatial resolution coverages for standard solar irradiance fore-
casting techniques. Solid lines indicate current limits of techniques while the dashed lines
and arrows indicate the future progress of work. Source: Fig. 20 in (Inman et al., 2013).
For abbreviations used in the plot, refer to the nomenclature of the thesis.

prediction and 5) using stochastic & artificial intelligence methods (Inman et al., 2013).

Other review papers such as (Diagne et al., 2013; Law et al., 2014) categorize forecasting

techniques similarly.

2.1.1 Wireless sensor network

A “wireless sensor network” refers to a collection of spatially arranged solar irradiance point

sensors. Although the name itself suggests much broader applications, Inman et al. (2013)

use the name to describe the irradiance sensing infrastructure for very short–term (a few sec-

onds to 3 minutes) forecasts. Unlike the forecasts with longer horizons where the results are

essential for electricity grid operations, the very short–term forecasts find their applications

in large photovoltaics (PV) installations. Knowing the potential shading/unshading over

a particular section of a PV system in advance may be advantageous to maximum power

point tracking algorithms (Hohm and Ropp, 2000). Accurate sub-minute forecasts could

also bring possibilities to better control of ramp-absorbing ultracapacitors (Mahamadou
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et al., 2011; Teleke et al., 2010).

Considering the forecast horizon, the separation of these point sensors needs to be small

(a few meters apart). This class of forecasting techniques aims at deriving the information on

cloud motion through the sensor networks arranged in designed geometrical configurations.

Compared with other forecasting methods, wireless sensor network is new; only a handful

of publications are available (see Bosch and Kleissl, 2013; Bosch et al., 2013; Lipperheide

et al., 2015; Lorenzo et al., 2014, for examples).

2.1.2 Total sky imager

Beside using data collected by a wireless sensor network, total sky imager (TSI) is also

frequently used in very short– and short–term forecasting, mainly due to success of the

work by Chow et al. (2011). TSI can be used to forecast both the DNI (Chu et al., 2014;

Marquez et al., 2013; Quesada-Ruiz et al., 2014) and GHI (Bernecker et al., 2014; Chow

et al., 2011; West et al., 2014). Most research groups use a commercially available TSI such

as TSI–800 manufactured by Yankee Environmental Systems (e.g. Chu et al., 2013), while

other groups develop their own TSIs (e.g. Yang et al., 2014e).

Sky images are taken sequentially in time; cloud information can be derived from the

images through image processing. Template matching algorithms (Li et al., 1994; Sayed,

2009; Wu, 1995) are used to compute the motion vectors describing the cloud movements

based on consecutive images. The forecasts can thus be obtained through persisting the

motion vectors or more sophistically, by solving the advection–diffusion equation (e.g. Stroud

et al., 2010). It is recently reported that forecasting based on deterministic ray tracing

method still produces forecasts that are worse than persistence, at 5, 10, 15 min forecast

horizons (Chu et al., 2015). In terms of nRMSE, forecast error using TSI varies from 18 to

24% for forecast horizons ranging from 30 s to 15 min (Yang et al., 2014e). Nevertheless,

due to its physical–based nature and its potential, TSI–based methods are quickly adopted

by many other groups in the past two years not only for irradiance forecasting (e.g. Fu and
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Cheng, 2013) but also used for general atmospheric research (e.g. Kazantzidis et al., 2012).

2.1.3 Satellite imaging

The irradiance forecasting methods discussed so far rely on informative local measurements.

Such methods have limitations in predicting unobserved locations. The name “local sensing”

suggests the need for sampling equipments at every location of interest, which is costly when

integrating distributed solar power into electricity grids. Remote sensing provides a solution

to the problem (Perez et al., 2007, 2010). Geostationary satellites equipped with radiometers

can measure planetary albedo. Ground level irradiance can then be derived (Inman et al.,

2013).

Both physical models (e.g. Lacis and Hansen, 1974; Möser and Raschke, 1984) and

statistical models (e.g. Justus et al., 1986; Tarpley, 1979) can be used to map the satellite

images to irradiance. However, neither approach completes the forecast. To complete the

forecast, cloud motion vector algorithms (Cros et al., 2014; Hammer et al., 1999) can be

used to obtain the cloud conditions at the next time step (Perez et al., 2002, 2004), mapping

is then performed on the forecast images to obtain the future irradiance. An alternative

method is to derive the irradiance time series from the satellite images first, stochastic

& artificial intelligence methods are then applied on the derived irradiance time series to

obtain the forecasts (e.g. Dong et al., 2014). The accuracies of the satellite images–based

forecasts can be improved using hybrid systems (e.g. Marquez and Coimbra, 2013).

2.1.4 Numerical weather prediction

Numerical weather prediction (NWP) is another long–lead irradiance forecasting technique.

Lorenz et al. (2014) provide a good review on the subject. NWP models consider mechanics

and physics (Bjerknes, 1904). The success of a NWP model relies on the knowledge about

the initial state of the atmosphere and the physical laws which govern the evolution of the

atmosphere (Inman et al., 2013). Well known NWP models include Global Forecast System
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(GFS), North American Mesoscale (NAM) model and Weather Research and Forecasting

(WRF) model. These models differ from one another in terms of spatial resolution, input

parameters and most importantly, the underlying physical models. It is therefore important

to choose the forecasting domain, improve data collection and select an NWP system that

uses suitable physical models when one attempts to forecast irradiance.

In solar engineering, the physical laws of motion and thermodynamics are rarely scru-

tinized in detail. As NWP models output hundreds of parameters in each run, irradiance

is but one of them, researchers simply run NWP models (Lorenz et al., 2009; Mathiesen

et al., 2013; Perez et al., 2013) and study the outputs. As most of the NWP models are not

adapted specifically for irradiance forecasting purposes, biased forecasts commonly result.

Statistical post–processing such as the application of model output statistics and Kalman

filtering are thus used to obtain useful results (e.g. Diagne et al., 2014; Mathiesen and

Kleissl, 2011).

2.1.5 Stochastic & artificial intelligence methods

The class of stochastic and artificial intelligence (AI) methods covers the widest ranges in

both spatial and temporal domains as shown in Fig. 2.1, owing to the generality of the

methods. This class of forecasting methods focuses on input (historical data) and output

(forecasts) matching.

Neural networks

The artificial neural network (ANN) is a sub–domain of artificial intelligence (AI). There are

many architectures in ANN including multilayer perceptron (MLP), radial basis network,

self–organized map, support vector machine and Hopfield networks, and others (Haykin,

2008). These architectures differ from one another greatly. It is however a common per-

spective that the ANNs are used to perform two types of tasks, namely, regression and

pattern recognition. Both of these can be applied in solar irradiance forecasting.
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In regression applications, inputs are mapped to outputs in a nonlinear manner. Histor-

ical data are used as inputs to an ANN and irradiance of the immediate time steps are the

outputs. ANN models therefore take two steps, the training and the forecast. The training

phase determines the weights of the artificial neurons and the forecasts are computed based

on the trained weights. Similar to regression applications, pattern recognition applications

also involve training and testing. Instead of outputting the forecast irradiance, the ANN

outputs a natural number representing the classification of objects. For example, we can

use ANN to classify the cloud cover index, which is a discrete measure of the opaqueness of

the cloud on a scale of 0 (clear) to 10 (opaque).

There is a rich literature on ANN models in solar irradiance forecasting. It is however

not the focus of this thesis to discuss the variants in details. Instead, some recent publication

patterns in ANN–based forecasts are summarized as follows:

• Consider exogenous inputs. It is often recognized that other meteorological and cli-

matological inputs such as temperature and humidity can help improve the irradiance

forecasting accuracy. Al-Alawi and Al-Hinai (1998) used climatological variables as

inputs to an ANN to predict monthly values of global horizontal irradiance (GHI) over

a year. Other examples include (Capizzi et al., 2012; Chow et al., 2012; Sozen et al.,

2005).

• Hybrid ANN with other techniques. Combining the ANN models with other tech-

niques may improve the forecasting results. Cao and Cao (2006, 2005) combined a

recurrent ANN with wavelet analysis for the forecast. Dong et al. (2014) combined

self–organized map with exponential smoothing to forecast hourly–ahead irradiance in

Singapore. Pedro and Coimbra (2012) combined MLP with evolutionary computing

for input selection. Cornaro et al. (2015) combined MLP with model output statistics

to improve the forecasts of a NWP model. Other examples include (Cheng et al.,

2014; Marquez et al., 2013).

• Display of new ANN structure in solar irradiance forecasting. New developments in
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the evolving field of ANN itself are applied to solar irradiance forecasting. For example,

Wu and Chee (2011) applied time delayed neural network; Cao and Lin (2008) applied

recurrent wavelet neural network. The dynamic artificial neural network is considered

in (Almonacid et al., 2014).

• Compare various ANN architectures. Yona et al. (2008) compared MLPs, RNNs, and

RBNNs for 24–h–ahead power output forecasting for PV systems. Wu et al. (2014)

compared SVM, ANN, and GA for one–hour–ahead PV power forecast. However,

these studies can be subjective depending on implementations of the architectures.

• Regional first report. Many researchers publish forecasting results with new data from

various regions in the world for archive purpose. Azadeh et al. (2009) used MLPs for

forecasts for six cities in Iran. Mellit and Pavan (2010) forecast solar irradiance of a

grid connected PV plants in Italy. Yap and Karri (2012) forecast global radiation in

Australia and compared to a few other techniques.

An evident disadvantage of ANN is its “black–box” nature. The network may determine

a desired mapping between input (historical data) and output (forecasts) vectors, but does

not provide any information of why a particular input is mapped to a particular output.

Despite this criticisms, ANN represents a significant bulk in solar irradiance forecasting.

The applications of other AI–based methods such as k–nearest neighbors methods (Paoli

et al., 2010), genetic programming (Russo et al., 2014) and fuzzy inference (Huang et al.,

2014) are less common than those of the ANN methods.

Statistical models

Another well studied class of irradiance forecasting methods is the class of statistical models,

or more specifically, the time series models. Time series considers the so–called “process

model”. The process model emphasizes on evolution and dependence. It is described by

parameters. Consider equation zt = ϕ1zt−1 where ϕ1 is a constant, i.e., the single parameter

in this simple model, which can be estimated through fitting. This process is a deterministic
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process as the value of attribute z at time t is deterministically given by the observation at

time t − 1. However, deterministic processes are rare in environmental data such as solar

irradiance time series. Description of the randomness is therefore added into the model,

zt = ϕ1zt−1 + at where at is the random error of the process at time t. Time series models

needs to be built prior to forecasts. Once the model is chosen, parameters can be estimated

from historical data, out–of–sample forecasts are then made by “plugging–in” the in–sample

values iteratively.

One of the classic statistical forecasting model is the autoregressive integrated mov-

ing average (ARIMA) model. It has many variants including autoregressive (AR) model,

moving average (MA) model, autoregressive moving average (ARMA) model, ARMA with

exogenous variables (ARMAX) model and nonlinear ARMAX model. The ARIMA family

is frequently used in solar irradiance forecasting as a benchmark (e.g. Voyant et al., 2011).

Reikard (2009) evaluated the performance of ARIMA model at 5, 15, 30, 60 minutes time

intervals. Exogenous variables including humidity and cloud cover are also used in that

work. Bacher et al. (2009) used AR, ARX and another regressive models.

One of the advantages of the statistical models over the AI–based models is that the

statistical models are often intuitive. Consider the ARMA(p, q) model:

zt = ϕ1zt−1 + · · · + ϕpzt−p + at − θ1at−1 − · · · − θqat−q (2.1)

where ϕ1 · · ·ϕp are the autoregressive parameters to be estimated and θ1 · · · θq are the moving

average parameters to be estimated. This model has process order (p, q), which indicates

that the forecast is a linear combination of observations from p previous steps and the errors

from q previous steps. Given the data, the process order can be determined by examining the

autocorrelation function and partial autocorrelation function. It is also possible to automate

the model building for online forecasting applications through calculating the information

criterions.

The exponential smoothing (ETS) family of models is another frequently encountered
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time series technique (Gardner, 1985, 2006; Roberts, 1982). ETS considers the time series

to be a combination of three components, namely, the error (E), trend (T) and seasonal

(S) components. It has been shown that many exponential smoothing methods are special

cases of the ARIMA model (Abraham and Ledolter, 1983; Box et al., 1994). Although

substantial research had been done on the exponential smoothing method, the method was

considered as an ad hoc forecasting approach since there was no appropriate underlying

stochastic formulation until Hyndman et al. (2002) proposed the state space framework

for exponential smoothing. Exponential smoothing received attention in recent years and

brought success to forecast in many areas including call centers, energy, financial markets

and inventory control (e.g. Taylor, 2004, 2006, 2007, 2008, 2010, 2012a,b; Taylor and Snyder,

2012; Taylor and McSharry, 2007). However, there is only a handful of publications on

irradiance forecasting using ETS model (e.g. Dong et al., 2013; Yang et al., 2015a).

Both ARIMA and ETS models are univariate time series models. Forecasts can be ob-

tained using the measurements from a single irradiance monitoring station. This property

however reveals the limitation of such models; univariate statistical models only charac-

terize the statistical dependence in time. It is logical to extend such characterization to

space. If a univariate time series forecast considers the temporal neighbors as model in-

puts, spatio–temporal forecasts consider the spatial neighbors as well. This thesis focuses

on the applications of spatio–temporal statistical models to the solar irradiance forecasting

problem.

2.2 Spatio–temporal statistics: a very brief introduc-

tion

Before I review the spatio–temporal statistics, some statistical definitions are presented in

purely temporal, purely spatial, as well as spatio–temporal frameworks. Appendix A reviews

the statistical preliminaries for this thesis.
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A spatio–temporal process {z(s; t) : s ∈ Ds ⊂ Rd, t ∈ Dt ⊂ R1} defines a phe-

nomenon such as solar irradiance which evolves through the spatio–temporal index set

Ds × Dt. Both the spatial and the temporal indices can be either continuous or discrete,

which give rises to four kinds of spatio–temporal formulations, namely, the continuous space

continuous time, continuous space discrete time (time series of geostatistical processes),

discrete space continuous time and discrete space discrete time (time series of lattice pro-

cesses) formulations.

When Dt is defined as Dt = {0, 1, 2, · · · } instead of Dt = [0,∞), we have a time

series of spatial processes {zt(x) : x ∈ Ds, t = 0, 1, · · · }. At this point, one may

immediately link the definition to satellite images, i.e., a geostatistical process sampled

at a regular interval. Although such statistical formulations present unique insight to the

problem of spatio–temporal prediction, to the author’s knowledge, there is no literature on

such models in the field of solar energy. Even in the field of statistics, only a handful of

researchers explored such models (e.g. Wikle and Cressie, 1999).

On the other hand, when Ds = {s1, · · · , sn} and t = 0, 1, · · · , T , we have a n–variate

time series {z} where z = {z0, · · · , zT }. In this way, the ARMA(p, q) described in Eqn. 2.1

can be extended into the so–called space–time autoregressive moving average (STARMA)

model:

zt =
p∑

k=1
ϕkzt−k +

q∑
l=0

θlat−l (2.2)

where every parameter in Eqn. 2.1 has become a vector or a matrix. The STARMA model

and its variant STARIMA model were proposed, described and verified statistically by

Deutsch and Pfeifer (1981); Pfeifer and Bodily (1990); Pfeifer and Deutsch (1980a,b,c).

STARMA was also applied to solar irradiance forecasting (Glasbey and Allcroft, 2008). In

this thesis, one of the variants of the STARMA model, the vector autoregressive (VAR)

model, is explored and improved (through means of parameter shrinkage) in chapter 9 in a

solar forecasting context.

The STARMA models allow one to forecast solar irradiance at a set of spatial indices
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simultaneously, i.e., the monitoring stations or the PV systems. However, the model shown

in Eqn. (2.2) does not allow prediction on an (n + 1)th location s0. Consequently, the

STARMA family of models cannot handle the problem of off–site predictions. The off–site

prediction is important in solar engineering as (occasionally) some of the PV systems do not

possess irradiance measurement instruments; predictions at these locations are required for

grid integration as well. Other predictive spatio–temporal models are desired. Space–time

kriging (also known as spatio–temporal kriging or time–forward kriging) is the suitable tool

for predictions at unobserved locations. The principle of space–time kriging lies within the

space–time covariance functions.

In the literature of statistics, covariance functions are used to explain space–time cou-

pling. Sherman (2010) reviewed the models for spatio–temporal covariance functions. How-

ever, most of the studies on covariance functions are strictly theoretical (De Cesare et al.,

2001; Ma, 2003, 2005; Porcu et al., 2006, 2008). To explain the environmental processes,

most authors (e.g. Cressie and Huang, 1999; De Iaco et al., 2002; Genton, 2007; Gneiting,

2002; Kyriakidis and Journel, 1999; Stein, 2005) consider the separable and symmetrical

approximations as these covariance structures are convenient to model. Non–separable and

non–stationary covariance structures were only studied by a few researchers (e.g. Cressie

et al., 2010). In this thesis, only the stationary covariance structures are considered; empir-

ical examples of these covariance functions are found in chapters 5 and 9.

The reason for employing the space–time covariance functions is to obtain the covariance

at arbitrary settings. In other words, once the distance and time lag between a station pair

is known (regardless whether the station is physically present or not), covariance can be read

from the fitted covariance function. As covariance structures characterize variations in space

and time, it can be used for predictive applications. This class of predictive applications is

known as “kriging”.
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2.2.1 Space–time kriging

Kriging is briefly introduced in chapter 1. In the kriging method, the variance of the

interpolation error is minimized. Kriging was first developed for spatial statistics; it is still

recognized as the most promising method for spatial interpolation (e.g. Thiart and Stein,

2013). In solar engineering, various forms of kriging, including simple kriging, ordinary

kriging and universal kriging, are often used to interpolate the irradiance conditions at

unobserved locations (Alsamamra et al., 2009; Bland and Clayton, 1994; Chen et al., 1994;

McKenney et al., 2008; Merino et al., 2001; Moreno et al., 2011; Rehman and Ghori, 2000).

Kriging can be extended to the spatio–temporal case, where the simple kriging predictor

ẑ(s0; t0), the estimate of irradiance z at unobserved location s0 and time t0, is expressed as

a linear combination of historical observed locations:

ẑ(s0; t0) =
n∑

i=1

Ti∑
j=1

wijz(si; tij) + c = W ⊤z + c (2.3)

where z =
(

(z(1))⊤, (z(2))⊤, · · · , (z(n))⊤
)⊤

and z(i) = (z(si; tij) : j = 1, · · · , Ti)⊤ for

i = 1, · · · , n are irradiance data from n locations and Ti previous time steps. W and c can

be optimized by minimize the mean squared prediction error. The simple kriging assumes

that the mean of the process across space and time:

µ(s; t) = E(z(s; t)), s ∈ Ds, t ∈ Dt

is known. Otherwise, ordinary kriging (assuming unknown but constant mean) and universal

kriging (assuming the unknown mean is a known function of co–variates, e.g., latitude,

longitude) can be used.

Unlike the STARIMA family of models, prior to this thesis, application of space–time

kriging in solar irradiance is not found in the literature, except a conference publication by

Inoue et al. (2012). However, the space–time kriging method is applied frequently in other
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fields including agriculture (e.g. Cressie and Majure, 1997), environmental research (e.g.

Hartfield and Gunst, 2003; Lophaven et al., 2004), geology (e.g. Bilonick, 1985), geostatistics

(e.g. Rouhani and Hall, 1989), and others. Many works were also published in top statistics

journals such as Journal of the American Statistical Association (JASA) (e.g. Augustin

et al., 2009; Haas, 1995) and Environmetrics (e.g. Haas, 2002; Huang and Hsu, 2004). Its

unique ability to forecast unobserved locations give solutions to many previously unsolved

problems (Gu et al., 2014). The importance of space–time kriging therefore should not

be neglected in the field of solar energy forecasting, especially when good–quality data is

lacking.



Chapter 3

Estimation and applications of a

Singapore local clear sky model

In this chapter, I analyze Singapore global horizontal irradiance (GHI) measurements and

propose an empirical clear sky GHI model for equatorial regions. The empirical formulation

simplifies the atmosphere radiative transfer to a single exponential term. The results are

benchmarked using locally collected data.

3.1 Introduction to clear sky models

Clear sky is referred to situations where the atmosphere is cloudless. Knowledge of clear

sky GHI reaching ground level is a key parameter in the field of solar radiation modeling

and evaluation (Ineichen, 2008). There are two approaches to model a clear sky situation,

namely, the empirical approach (e.g. Daneshyar, 1978; Haurwitz, 1945, 1946; Ianetz and

Kudish, 2008; Kasten and Czeplak, 1980; Paltridge and Proctor, 1976; Robledo and Soler,

2000) and the physical approach (e.g. Gueymard, 1989; Ineichen and Perez, 2002; Yang

et al., 2001). When local measurements are made and the relative performance of these

models is assessed (e.g. Badescu, 1998; Ianetz et al., 2007; Ineichen, 2006), it transpires that

different approaches are optimal in different geographical locations.
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Empirical models are bell–shaped functions of time in a day, with model parameters fit-

ted using local clear sky measurements. These models are thus location dependent. Physical

models have the advantage of generality and accuracy (Lefevre et al., 2013), but they re-

quire more input parameters such as column ozone, column precipitable water and aerosol

optical depth which are only measured infrequently and at few locations. For instance,

Aerosol Robotic Network (AERONET, http://aeronet.gsfc.nasa.gov) only provides tempo-

ral irregular aerosol data for Singapore, which makes the implementation of the physical

models unreliable. This chapter therefore aims to develop an empirical clear sky model

for the equatorial region. One of key applications of the developed clear sky model is ir-

radiance forecasting. In time series analysis, many models such as autoregressive moving

average model (ARMA) require the model inputs to be stationary. Clear sky models are

commonly used in irradiance time series detrending. I note that for detrending purpose, the

requirement on model accuracy can be slightly relaxed.

Irradiance measurements from two sites, namely, the first zero energy house in Singa-

pore (FZEHS, 1.3094◦N, 103.9160◦E) and the Solar Energy Research Institute of Singapore

(SERIS, 1.3007◦N, 103.7718◦E) are used. All irradiance measuring devices used in this chap-

ter have an uncertainty of ±5%. Data with time resolution of 5 min are used throughout

this chapter.

3.2 Estimation of clear sky irradiance

The goal is to develop the simplest clear sky irradiance model with adequate accuracy.

3.2.1 Model selection

In the literature, many curves or partial curves (e.g. trigonometric functions) are used to

model the clear sky irradiance observations. One example of such modeling is given by the

Adnot et al. (1979) model:

Ics = a′′′(cos θz)b′′′ (3.1)

http://aeronet.gsfc.nasa.gov
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where a′′′ and b′′′ are regression parameters; θz is the zenith angle; Ics is the clear sky GHI.

The parameters a′′′ and b′′′ control the magnitude and width of the fitting curve respectively.

Such models can be improved by including an additional exponential term, as seen in the

Robledo and Soler (2000) model:

Ics = a′′(cos θz)b′′
ec′′(90−θz) (3.2)

Parameters a′′, b′′ and c′′ are obtained by stepwise regression of (90−θz), cos θz, ln(90−θz),

ln(cos θz) and powers of (90 − θz) up to fifth degree.

The parameters a′′′ and a′′ can be further decomposed into the product of a determinis-

tic component (extraterrestrial irradiance and solar constant) and a regressive component

(fitted by local data), as seen in the Janjai et al. (2011) model:

Ics = a′E0Isc(cos θz)b′
ec′ ma (3.3)

where

E0 =1.00011 + 0.034221 cos Γ + 0.00128 sin Γ

+ 0.000719 cos 2Γ + 0.000077 sin 2Γ; (3.4)

Γ =2π(dn − 1)/365; (3.5)

ma =mre
−0.0001184h. (3.6)

Isc = 1362 W/m2 is the solar constant; E0 is the eccentricity correction factor of the Earth

(a dimensionless quantity); Γ is day angle in radians; dn is day number; h is the altitude

in m; mr is the relative optical air mass (first described by Kasten (1965)) and ma is the

relative air mass with the correction for the effect of the altitude. The term ec′ ma is a simple

empirical representation of complex physics of radiative transfer. It is similar to a quantity

called pseudo–optical depth, which is described by Gueymard and Thevenard (2009). With
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the above, I propose a modified clear sky model for the equatorial region:

Ics = aE0Isc(cos θz)bec(90−θz) (3.7)

3.2.2 Model parameter estimation

A clear sky situation can be identified by using a sky camera (Gueymard, 2012). In situations

when a sky camera is not available, a clear sky condition can be selected based on two indices,

the sky’s clearness ε′ and the sky’s brightness ∆′, proposed and defined by Perez et al.

(1990):

ε′ = [(Idif + Idir)/Idif + κϑ3
z]/[1 + κϑ3

z] (3.8)

∆′ = (Idifmr)/(E0Isc) (3.9)

where Idif is diffuse horizontal irradiance (DHI) and Idir is direct normal irradiance (DNI).

κ is a constant equal to 1.041 when zenith angle ϑz is in radians .

Robledo and Soler (2000) consider the sky to be clear if ε′ > 5.0 and sky’s brightness

∆′ < 0.12. Pattanasethanon et al. (2007) use the condition ε′ ≥ 4.5 and reference Perez et al.

(1993) use ε′ > 6.0 to identify clear sky situations. Singapore is very humid throughout the

year; a lower GHI is expected in Singapore compared to locations with lower precipitable

water vapor. Therefore, a smaller value of ε′ is needed to define a clear sky situation in

Singapore. I assume that a clear sky situation prevails in Singapore if ε′ > 3.5.

One year of 5 min GHI and DHI measurements from the FZEHS from 2011 are used to

select possible clear sky time periods using the above criterion; data from SERIS are used

for validation. Nonlinear regression is used to fit the parameters in Eqn. (3.7). The fitted

parameters are 0.8298, 1.3585 and −0.00135 for a, b and c, respectively, and the modified

model for Singapore is given by:

Ics = 0.8298E0Isc(cos θz)1.3585e−0.00135×(90−θz) (3.10)
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3.2.3 Results

The developed clear sky model is validated using the GHI measured at the SERIS during

the year 2012. Fig. 3.1 shows a scatter plot of the measured versus the predicted clear sky

GHI. Following Eqn. (1.3), a normalized root mean square error of 5.6% is found. It is

observed that some modeled points in Fig. 3.1 deviate far from the measured values. These

deviations are due to the misidentifications of the clear sky situations.

A visually straightforward method to validate the clear sky model is superimposing the

model with manually identified daily time series with smooth irradiance transients. Fig. 3.2

shows the model performance by comparing it with the SERIS measurements of 11 days

selected from years 2011 to 2013. The dotted line gives the maximum value of modeled

clear sky GHI. These 11 days are selected manually based on the smoothness of the daily

irradiance transients. The model provides an excellent fit to the data.
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Fig. 3.1 Performance of the modified clear sky model for all clear sky situations at SERIS
during year 2012. The hexagon binning algorithm (Carr et al., 2013) is used for visualization.
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Fig. 3.2 Performance of the modified clear sky model on 11 best clear sky days during the
years 2011 to 2013 benchmarked with 5 min SERIS data.

3.3 Chapter conclusion

Singapore local GHI data are used to derive a simple empirical model for clear sky GHI for

Singapore. The developed clear sky model approximates the radiative transfer mechanisms

with three parameters, namely, a, b and c, which are determined using nonlinear regression

with local GHI measurements. The model is simplistic yet provides sufficient accuracy. In

my publication (Yang et al., 2014c), two applications of the clear sky model, namely, the

missing data handling and detrending, are briefly discussed; I do not reiterate here.



Chapter 4

Time series forecasting using ARIMA

and cloud cover index

Clear sky models can be used to detrend the irradiance time series prior to forecast. There

are however more general statistical detrending procedures. In this chapter, a seasonal-trend

decomposition procedure based on LOESS1 (abbreviated as STL) is used to decompose the

irradiance time series into seasonal, trend and irregular components. A univariate time

series analysis technique, the autoregressive integrated moving average (ARIMA) model2, is

explored using the typical meteorological year 3 (TMY3) data (Wilcox and Marion, 2008).

Three forecasting methods are proposed using different types of meteorological data as input

parameters, namely, global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI),

direct normal irradiance (DNI) and cloud cover. The first method applies ARIMA on the

STL decomposed GHI time series. The second method forecasts DHI and DNI separately,

and then combines the two forecasts to predict GHI. In the third method, an ARIMA model

is used to predict discretized cloud cover. GHI at different zenith angles and under different

cloud cover conditions is constructed using nonlinear regression, i.e., a look–up table of GHI
1LOESS is the abbreviation of locally weighted smoothing (or LOcal regrESSion).
2In this chapter, the choice of model used for one–step–ahead prediction follows (Yang et al., 2012b).

However, other univariate forecasting models can be used. For example, I replace the ARIMA model with
exponential smoothing in another paper (Yang et al., 2015a).
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regression models is created for different cloud cover conditions. It is found that forecasts

using cloud cover information can improve the forecast accuracy.

4.1 Preliminaries

Irradiance forecasting techniques are reviewed in section 2.1. As compared to other methods,

the data requirements in stochastic & artificial intelligence methods are more relaxed, which

facilitate economic and rapid computation. The majority of methods from this class use

ground point sensors such as pyranometers and reference cells.

In the competition between time series models and artificial intelligence models, two

models are commonly adopted, namely, the ARIMA model (Martin et al., 2010; Moreno

et al., 2011; Reikard, 2009) and the artificial neural networks (ANN) multilayer perceptron

model (Martin et al., 2010; Mellit et al., 2010; Paoli et al., 2010). As the forecast abilities of

the models arguably depend on implementations, persistence is commonly used to bench-

mark various forecasting methods. Nevertheless, at 60 min resolution, Reikard (2009) has

shown that an ARIMA model dominates all other time series forecasting methods in four

out of six test stations used in that study. This chapter thus only explores the ARIMA

method.

What distinguishes irradiance forecasting from other forecasting applications is the phys-

ical knowledge about the atmosphere. Weather patterns and their accompanying clouds are

the most significant atmospheric phenomena affecting solar irradiance at the Earth’s surface

(Brinsfield et al., 1984), so these must be considered by any irradiance forecasting system.

Many previous studies have developed empirical relationships to relate cloud cover con-

ditions and solar irradiance. Brinsfield et al. (1984); Yaramoglu et al. (1985) studied the

impact of scattered clouds on irradiance on an otherwise cloudless day. In these works,

large numbers of meteorological data types, such as various irradiance and solar altitude

angle, are used to formulate the relationship between cloud cover and solar irradiance. The

computation is complex and missing data jeopardize the calculation.
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Ehnberg and Bollen (2005) relate the solar elevation angle to insolation under different

cloud cover conditions. A total of nine regression lines are constructed to form a look–up

table according to nine levels of cloud cover on the standard Oktas scale. The results are

tested against stochastically–generated cloud simulations. Luo et al. (2010); Topcu and

Oney (1994); Younes and Muneer (2006) relate solar irradiance to cloud cover and zenith

angle through regression, while Ododo et al. (1996) develops a relationship between solar

irradiance, cloud cover and relative sunshine duration. However, these works do not consider

forecasting techniques. Hence in this chapter, methods to forecast hourly solar irradiance

including cloud cover effects are proposed.

4.2 Time series analysis

A time series is a sequence of observations taken sequentially in time. If the observations

are random variables (such as solar irradiance), it is called a stochastic process.

4.2.1 The ARIMA model

Recall the ARMA(p, q) model shown in Eqn. (2.1) describing a time series {zt}. Define a

backshift operator B so that Bzt = zt−1 and more generally Bjzt = zt−j, Eqn. (2.1) can

be then written as:

(1 − ϕ1B − · · · − ϕpBp)zt = (1 − θ1B − · · · − θqBq)at (4.1)

This may be abbreviated even further by writing:

ϕ(B)zt = θ(B)at (4.2)
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where

ϕ(B) =1 − ϕ1B − ϕ2B2 − · · · − ϕpBp (4.3)

θ(B) =1 − θ1B − θ2B2 − · · · − θqBq (4.4)

To extend the stationary ARMA model to the ARIMA model which can handle non–

stationary time series, the difference operator ∇ = 1 − B is defined or, more generally,

∇d = (1 − B)d. Consider the first differences of the series, i.e., yt = zt − zt−1. This can be

re–written as:

yt = (1 − B)zt = ∇zt (4.5)

If an ARMA model is constructed using the differenced time series yt, i.e, ϕ(B)yt = θ(B)at,

it is equivalent to the ARIMA(p, 1, q) model constructed using the original time series zt,

i.e., ϕ(B)∇zt = θ(B)at. Generalization of the equation gives the ARIMA(p, d, q) model:

ϕ(B)∇dzt = θ(B)at (4.6)

where p, d and q are process orders.

The order of an ARIMA model can be determined by examining the autocorrelation and

partial autocorrelation functions (Box et al., 1994). However, such a model selection process

is not suitable for automated forecasting systems. The alternative is to use information

criterions for model selection. One particular example of information criterion is called

the Akaike information criterion (AIC) (Ricci, 2005). AIC can be computed based on the

maximum likelihood estimate of the innovations3 variance, the length of the time series and

the total number of parameters to be fitted. The best ARIMA model will thus be chosen

based on the AIC. I implement my models using the forecast package (Hyndman et al.,

2014) in R (R Core Team, 2014) and later in this chapter the polynom package (Venables
3The innovations are the differences between the observed values of zt and the optimal forecasts of

those values.
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et al., 2009) is also used.

4.2.2 Input parameters and model selection

At the beginning of this chapter, four input parameters for our time series analysis are

introduced. GHI is used for our first model. DNI and DHI are used for the second model

and cloud cover is used for the third model.

Solar irradiance inputs

Prior to the forecasts, time series decomposition is considered for trend removal. Fig. 4.1

shows an example of the diurnal cycle of the GHI during 2004 December. By using the STL

(Cleveland et al., 1990), a time series can be decomposed into seasonal, trend and irregu-

lar components. STL is a seasonal-trend decomposition procedure based on LOESS (the

locally–weighted regression); it is an iterative filtering procedure. The seasonal component

is found by smoothing the seasonal sub–series (e.g. the series of all solar noon values). In

each iteration of the STL, the moving average smoothing and LOESS smoothing (Cleveland

et al., 1988) are used multiple times. I do not repeat the detailed procedures here; inter-

ested readers can refer to the original publications. The decomposition of solar irradiance

time series is additive instead of multiplicative. The data used in this chapter are hourly,

giving a seasonal component with a period of 24. After the time series is decomposed, the

seasonal (diurnal) cycle is subtracted from the original solar irradiance time series, so that

the residual is the sum of trend and irregular components. ARIMA is then applied on the

residual time series to create a forecast.

Cloud cover inputs

As cloud cover does not have a diurnal pattern, the ARIMA model can be directly applied

to the cloud cover index time series. Continuous data are used during the model building to

preserve the temporal behavior of cloud transients. However, when I develop the regression
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Fig. 4.1 The decomposition of GHI for Miami 2004 December, with irradiance in W/m2 on
the ordinate and day of the month on the abscissa. The top plot is the observed irradiance.
The remaining plots show the seasonal, trend and irregular components respectively.

lines for irradiance using cloud cover and zenith angles (details in section 4.3), only daytime

values of cloud cover data are used, as night time irradiance is known to be zero. Due to

the uncertainties in cloud formation and movement, the time series process orders should

be dynamic. Similar to the earlier forecasting models, an ARIMA model is selected and

built prior to each point forecast.

4.3 Forecasting models

TMY3 data from http://rredc.nrel.gov/solar/old_data/nsrdb/ are used. The TMY3 data

provide an annual dataset that holds hourly meteorological values that typify conditions at

http://rredc.nrel.gov/solar/old_data/nsrdb/
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a specific location over a longer period of time, such as 30 years. The dataset provides a

large variety of hourly meteorological parameters such as solar irradiance components (GHI,

DNI and DHI), cloud cover, temperature, humidity, etc. Linear regression analyses were

carried out to test for statistical significance of the seven co–variants in relation to GHI.

The backward elimination method (Faraway, 2002) is used to select the most relevant

parameters by examining the p–values. In regression, the p-value for each term tests the

null hypothesis that the coefficient is equal to zero. The parameter (predictor) with high-

est p–value greater than 0.001 is removed. The elimination process stops when all the

parameters are statistically significant. Table 4.1 shows the p–values of selected seven me-

teorological parameters throughout the selection process. The raw data sets used in these

regression models are Orlando 2005 October, and Miami 2004 December. Three meteoro-

logical parameters show high relevancy to global horizontal irradiance: DNI, DHI and cloud

cover.

Table 4.1 p–values for linear regression models for Orlando 2005 October, and Miami 2004
December using backward elimination. Eliminated parameters are represented by —.

Meteorological parameters

Diffuse Direct Cloud Dry-bulb Pressure Wind Relative
Step irradiance irradiance cover temperature speed humidity

Orlando 1 < 2 × 10−16 < 2 × 10−16 5.13 × 10−8 0.083 0.128 0.040 0.311
2 < 2 × 10−16 < 2 × 10−16 7.00 × 10−8 0.070 0.044 0.052 —
3 < 2 × 10−16 < 2 × 10−16 3.69 × 10−8 — 0.010 0.109 —
4 < 2 × 10−16 < 2 × 10−16 6.21 × 10−8 — 0.007 — —
5 < 2 × 10−16 < 2 × 10−16 5.32 × 10−7 — — — —

Miami 1 < 2 × 10−16 < 2 × 10−16 2.69 × 10−6 0.584 0.712 0.731 0.948
2 < 2 × 10−16 < 2 × 10−16 1.03 × 10−6 0.583 0.705 0.734 —
3 < 2 × 10−16 < 2 × 10−16 1.04 × 10−6 0.592 0.754 — —
4 < 2 × 10−16 < 2 × 10−16 1.05 × 10−6 0.657 — — —
5 < 2 × 10−16 < 2 × 10−16 5.49 × 10−7 — — — —

Global horizontal irradiance Iglo is represented by the sum of the vertical component of

DNI and DHI; the equation is called the closure equation:

Iglo = Idir cos θz + Idif (4.7)

where Idir is DNI, Idif is DHI and θz is the zenith angle. The Idir cos θz term gives the vertical
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Fig. 4.2 Flow chart of forecasting methods: (a) use irradiance to forecast next hour solar
irradiance through decomposition and ARIMA; (b) forecast DNI and DHI separately using
decomposition and ARIMA model, the forecasts are then combined using Eqn. (4.7) for
forecast GHI; (c) use ARIMA to predict the cloud cover; retrieve the forecast GHI using
forecast cloud cover and zenith angle using Eqn. (4.8).

component of DNI. When separate forecasts are made on DNI and DHI, the results can be

used to reconstruct GHI.

Since the four meteorological parameters can be related by considering the TMY3 data

set, three forecast models are proposed. Fig. 4.2 shows the flow chart of the three proposed

models.
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Model 1

In this model, I follow the standard detrend → forecast → reconstruct procedure for solar

irradiance forecasting. GHI time series is first decomposed into three additive components,

namely, the seasonal, trend and irregular components. The seasonal component (diurnal

irradiance pattern) is then subtracted from the measured GHI. The residual of this subtrac-

tion (trend component plus irregular component) is used as inputs to forecast for the next

hour’s residual through ARIMA. The final step is to add back the seasonal component to

the forecast residual time series to obtain the forecast GHI.

Model 2

In the second model, two separate decompositions are carried out for DNI and DHI time

series respectively. The two residual time series are then used as inputs for ARIMA models.

The forecast DNI and DHI are then recombined through the closure equation shown in

Eqn. (4.7) to obtain the GHI forecast.

Model 3

The third proposed model considers cloud cover. Regression analysis is adopted to analyze

the relationships between cloud cover and GHI. Cloud cover data quantify the amount of

sky covered by clouds at each time step. Fig. 4.3 shows a scatter plot of Iglo versus cosine

of zenith angle at each discretized cloud cover condition for our TMY data. Note that the

opaque cloud cover used in the plot axis is the amount of sky dome covered by clouds or

obscuring phenomena that prevent observing the sky or higher cloud layers at the time

indicated (Wilcox and Marion, 2008). It is hypothesized that under different cloud cover

conditions, GHI follows higher order polynomials of cosine of zenith angle at a specific

time. By inspecting the GHI transient with zenith angle, a quadratic polynomial may not

be sufficient to describe the cloud–zenith relationship, while polynomial of order four and

above may overfit the data. Therefore I use a polynomial of order three.
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Fig. 4.3 Scatter plot of Iglo versus cosine of zenith angle at each cloud cover condition.

To confirm the hypothesis, linear regression of cos θz up to fifth degree is performed.

Table 4.2 reports the p–values of the linear regression models. Polynomials of order four and

five yield insignificant parameters. Although several insignificant parameters are reported

for third order polynomials, they shall be used to preserve regression models’ consistency

for all cloud cover conditions. The polynomial selected to correlate GHI and the zenith

angle is therefore given by:

Iglo = α0 + α1 × cos θz + α2 × cos2 θz + α3 × cos3 θz (4.8)

where α0, α1, α2 and α3 are regression parameters. Following Eqn. (4.8), a set of 11

regression lines are constructed. These 11 regression lines correspond to 11 cloud cover
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Table 4.2 p–values of linear regression models of higher order polynomials using the TMY3
Miami data set.

Parameters of polynomial of order 3:
Iglo = α0 + α1 × cos θz + α2 × cos2 θz + α3 × cos3 θz

Cloud cover α0 α1 α2 α3

0 0·223 5·85×10−15 < 2·0×10−16 < 2·0×10−16

1 0·985 1·66×10−4 < 2·0×10−16 < 2·0×10−16

2 0·075 5·11×10−10 3·42×10−14 1·32×10−10

3 0·079 1·09×10−10 4·34×10−9 1·63×10−6

4 0·235 9·17×10−6 1·51×10−4 3·94×10−3

5 0·593 3·40×10−3 1·45×10−4 1·38×10−3

6 0·657 0·327∗ 1·02×10−4 1·00×10−3

7 0·684 0·024 0·028 0·105∗

8 0·881 0·392∗ 3·4 × 10−3 3·27×10−3

9 0·791 0·209∗ 0·068∗ 0·038
10 0·347 3·21×10−4 0·545∗ 0·399∗

Parameters of polynomial of order 4
Iglo = α0 + α1 × cos θz + α2 × cos2 θz + α3 × cos3 θz + α4 × cos4 θz

Cloud cover α0 α1 α2 α3 α4

0 0·191 1·03×10−5 0·012 0·559∗ 0·561∗

1 0·334 1·37×10−3 0·061∗ 0·852∗ 0·124∗

2 0·990 0·194∗ 8·91×10−5 0·008 0·057∗

3 0·550 0·040∗ 9·17×10−3 0·104∗ 0·284∗

4 0·713 0·165∗ 0·069∗ 0·250∗ 0·417∗

5 0·749 0·203∗ 0·250∗ 0·617∗ 0·904∗

6 0·857 0·227∗ 0·765∗ 0·670∗ 0·403∗

7 0·820 0·754∗ 0·160∗ 0·301∗ 0·394∗

8 0·711 0·301∗ 0·928∗ 0·710∗ 0·471∗

9 0·565 0·668∗ 0·107∗ 0·162∗ 0·246∗

10 0·978 0·454∗ 0·376∗ 0·326∗ 0·275∗

Parameters of polynomial of order 5
IGlo = α0 + α1 × cos Z + α2 × cos2 Z + α3 × cos3 Z + α4 × cos4 Z + α5 × cos5 Z

Cloud cover α0 α1 α2 α3 α4 α5

0 0·618 0·077∗ 0·083∗ 0·334∗ 0·428∗ 0·392∗

Note: ∗ denotes parameter is statistically insignificant at a level of 0.05.

possibilities (on the 0 to 10 scale), and thus a look–up table is created.

With the help of this look–up table, once the next hour cloud cover is determined using

ARIMA model, the next hour’s GHI forecast can be obtained by substituting the zenith

angle at the forecast hour into the corresponding regression line.

4.4 Empirical study and discussion

To test the veracity of the three models proposed, two case studies are made. Data from

Miami (25◦47′16′′ N, 80◦13′27′′ W) and Orlando (28◦32′37′′ N, 81◦22′22′′ W) are used in this

section. All the forecast values are true out–of–sample forecasts with a one–week moving
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window as fitting data. The TMY3 data set consists of twelve months from different years,

thus, each month is taken as an individual data set for forecasting purposes.

Forecast using model 1

Using the techniques introduced earlier, GHI is used as model input to perform the forecast.

Forecasting for the entire TMY data set is carried out. The model is trained using the

first week of each month to obtain the decomposed series. Residuals are then obtained

by subtracting the fitted seasonal trend from the remaining data from that month. After

that, ARIMA process orders and parameters are selected and trained using the first week’s

residual time series based on AIC. The trained model will produce a single point forecast.

For the next time step, model is rebuilt with the “new” measurement which just became

available. This procedure is repeated for the entire month. The final step is to add the

diurnal pattern to the forecast residual series to obtain the forecast irradiance.

Forecast using model 2

The iterative procedures of DNI and DHI forecast is identical to the forecast for GHI.

However, in this model, DNI and DHI are used individually as model inputs.

Forecast using model 3

Look–up tables are developed according to method described in section 4.3. The empirically

determined coefficients using the complete TMY3 data set for Miami is shown in Table 4.3.

Similarly, the regression coefficients for Orlando can be fitted.

In Fig. 4.4, GHI is represented as a function of the zenith angle for all 11 possible values

of cloud coverage. The topmost regression line shows a situation when cloud cover is zero;

whereas the bottommost regression line shows a situation when cloud cover is 10. Regression

lines representing cloud cover indices 1–9 fall inbetween the two lines.

After constructing this look–up table, ARIMA forecast is applied on cloud cover time

series. After obtaining the cloud cover forecast, by searching the table using the forecast
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Table 4.3 Regression coefficients for Miami. α0 to α3 are the regression coefficients.

Cloud cover α0 α1 α2 α3

0 −6·963 441·948 1462·358 −868·380
1 0·106 237·797 1882·965 −1215·547
2 −11·997 413·974 1213·413 −667·429
3 −13·465 477·583 1021·191 −544·869
4 −13·692 457·286 898·256 −440·671
5 −7·689 365·900 1066·004 −566·029
6 8·198 154·058∗ 1355·005 −712·482
7 −7·615 359·399 778·865 −361·263∗

8 3·365 166·766∗ 1279·514 −810·311
9 −6·369 258·566 840·045∗ −601·780∗

10 −12·134 406·799 −155·162∗ 139·128∗

Note: ∗ denotes parameter is statistically insignificant at a level of 0.05.
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Fig. 4.4 The relationship between irradiance and the zenith angle at different cloud coverage
(cc) following Eqn. (4.8).

cloud cover and the respective zenith angle, we can obtain the GHI forecast.

4.4.1 Discussion

The error metric used to evaluate the forecast is the normalized root mean square error

following Eqn. (1.3). Table 4.4 shows the nRMSE for all three models using Miami and

Orlando data. Overall values recorded in the last row of each table are obtained using the

sum of the products of the number of forecast days in a month and the monthly mean

values. The total is then divided by total forecast days, which is 281 days in this case.
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Table 4.4 Forecast nRMSE (in %) for hourly TMY3 data at selected sites

Mean observed Iglo nRMSE for Miami

Fcst Period (W/m2) Model 1 (%) Model 2 (%) Model 3 (%) Persist. (%)

1995 January 8-31 329.67 24.98 22.36 17.88 41.00
1981 February 8-28 354.93 23.90 22.19 21.36 40.93
1988 March 8-31 414.93 27.44 26.79 21.47 40.04
2001 April 8-30 455.80 29.66 29.92 27.84 41.72
1990 May 8-31 392.78 28.54 25.23 20.92 38.50
1978 June 8-30 382.57 32.40 31.17 33.29 42.13
1990 July 8-31 404.75 22.89 23.42 21.86 37.62
1994 August 8-31 421.61 25.91 24.95 23.82 38.50
1978 September 8-30 387.54 33.03 31.32 28.09 43.96
1994 October 8-31 359.95 28.49 27.88 25.92 44.58
1977 November 8-30 287.14 28.63 28.57 26.54 46.24
2004 December 8-31 296.22 36.60 36.85 34.45 52.03

overall 374 28.43 27.45 25.29 42.27

Mean observed Iglo nRMSE for Orlando

Fcst Period (W/m2) Model 1 (%) Model 2 (%) Model 3 (%) Persist. (%)

1995 January 8-31 281.99 31.78 28.63 23.07 44.63
1991 February 8-28 328.05 33.03 30.67 26.01 45.77
2001 March 8-31 380.46 35.76 33.49 38.83 46.47
1998 April 8-30 485.73 21.99 22.20 23.02 33.48
1994 May 8-31 447.92 22.42 21.64 20.74 36.44
1996 June 8-30 352.85 37.22 33.46 32.73 45.44
1991 July 8-31 370.62 30.02 29.43 29.11 42.98
2003 August 8-31 387.51 42.88 42.27 42.39 52.87
1999 September 8-30 361.19 39.03 36.95 36.85 49.62
2005 October 8-31 344.16 36.42 34.97 28.95 49.62
2001 November 8-30 340.65 27.77 25.84 30.31 41.80
1996 December 8-31 263.35 34.33 32.92 27.44 49.56

overall 362 32.27 30.71 29.95 44.36

Persistence is used as a benchmark to our proposed models. A persistence model is

simply the assumption that the value for the next time step is the same as the present

value. The nRMSE of the persistence model is shown in the last column of Table 4.4. It is

found from the table that all three proposed models have significantly lower nRMSE than

the persistence model. Among the three models, model 3 has the lowest nRMSE, followed

by model 2.

As the nRMSE only shows the overall performance of the models for each month, some

daily error analyses can help understand the strengths and weaknesses of each model. It was

shown that the accuracy of model 3 depends on the cloud cover data quality (Yang et al.,

2015a). It is therefore important to consider the cloud cover data acquisition in terms of

accuracy and frequency. Further error analyses can be found in (Yang et al., 2012b) as well.
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4.5 Chapter conclusion

Univariate time series model ARIMA is explored in this chapter. Knowledge–based decom-

positions are considered to further improve the performance of the ARIMA model in the

field of solar energy. Three forecasting models are proposed based on GHI decompositions

using the STL, closure equation and cloud cover information. All three models show that

knowledge based decompositions improve the forecasting accuracies from persistence mod-

els. It is worth noting that the forecasts made using model 3 are more accurate in general

than models 1 and 2. From a physical point of view, this is expected as the exogenous

input (cloud cover index) is considered. As mentioned earlier, cloud coverage is the most

important cause of fluctuation in solar irradiance. Due to the continuous nature of the cloud

cover time series (even during the night), model 3 is able to preserve the temporal behavior

of cloud transients, thus it leads to better forecasts. The merit of the third method is that

it only requires low–resolution cloud cover data to improve forecasting.



Chapter 5

Spatio–temporal covariance

structures and time–forward kriging

In the previous chapter, the univariate model ARIMA is studied and expanded for solar

irradiance forecasting. It was shown that incorporating cloud cover information into the

forecasting system can improve the forecast. In fact, as the clouds propagate through space

driven primarily by wind, correlative events will occur at neighboring stations. In other

words, nearby stations can contribute to the forecasts at the current station. In view of this

fact, I consider the spatio–temporal forecast in this chapter.

Statisticians consider properties such as stationarity, full symmetry and separability

when modeling spatio–temporal datasets. None of these properties obtain in meteorological

data such as wind velocity fields and solar irradiance distributions. In this chapter, a

statistical forecast system is constructed to mitigate this problem. Temporal stationarity is

first achieved by detrending solar irradiance time series at individual monitoring stations.

Spatial stationarity is then approximated through deformations of the geographical space.

Various spatio–temporal covariance structures are formed to explore full symmetry and

separability (see Appendix A for definitions). Finally, time–forward kriging is used to

forecast the hourly spatio–temporal solar irradiance data from 10 Singapore stations. The

proposed system is also able to forecast irradiance at arbitrary spatial locations within a
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monitored area, as mentioned in chapter 1.

5.1 Chapter introduction

Univariate time series models can give acceptable forecasting accuracy; however, they do

not provide spatial information. For grid integration, point sensors are required at each PV

system site to produce forecasts for these systems. A large number of monitoring stations is

therefore required over the area of a power grid. The number of sensors is generally limited

and their distribution is irregular. Thus, spatio–temporal estimation for solar irradiance is

an important step towards the forecast required by future renewable energy driven cities.

Spatial and temporal behaviors of solar irradiance are related through complex atmo-

spheric mechanisms. Recent advances in space–time statistics (e.g. Cressie and Wikle, 2011;

Finkenstadt et al., 2006; Le and Zidek, 2006) allow us to analyze such environmental pro-

cesses not only in separate temporal and spatial domains, but as a whole. Along this track,

little work has been done in the field of solar engineering. Most studies employ separate

modeling despite aiming to study solar irradiance across time as well as space (e.g. Glasbey

et al., 2001). There are works which provide explanations to spatio–temporal variability in

global radiation (Gueymard and Wilcox, 2011), however a long–term (inter–annual) study

does not contribute to forecasting applications. This chapter thus aims to develop statistics

that describe the spatio–temporal process.

5.1.1 Anisotropy and time–forward kriging

The statistical properties introduced in appendix A indicate that using statistical prediction

methods requires careful analytical description and analysis of a dataset. For example, in

geostatistics, 2D linear least squares estimation is often performed using kriging algorithms

to construct 2D contour images, such as irradiance maps. Rehman and Ghori (2000) plot

monthly irradiance contours for Saudi Arabia; Righini et al. (2005) develop contours for

Argentina; Bland and Clayton (1994) for Wisconsin and Bechini et al. (2000) for northern
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Italy. These authors first identify a variogram model for the region and then apply weighted

spatial smoothing kriging techniques to perform the spatial prediction.

Spatial resolution, an important consideration in all spatio–temporal irradiance studies,

is often limited by data sparsity. In the context of solar irradiance, it has been shown that the

spatial correlation between two locations cuts off at the de–correlation distance (Perez et al.,

2012). The dependence metrics used in kriging, such as dispersion or correlation, must be

carefully selected. Previous studies have applied kriging techniques to data from stations

with large geographical separations. As a result, overestimates of the threshold distance

occur, leading to information loss. Furthermore, many authors ignore the anisotropic nature

of atmospheric processes by fitting isotropic variogram models. The large fitting errors

typical in the literature imply uncertainties in their analyses that render them too inaccurate

for practical applications. It is likely that no isotropic variogram model can represent the

anisotropic nature of the spatial variability of solar irradiance (Sampson and Guttorp, 1992).

I therefore take anisotropy into consideration in this thesis.

5.1.2 Data

Fig. 5.1 shows the geographical locations of 10 irradiance monitoring stations in Singapore.

These stations are part of a bigger monitoring network designed for grid integration appli-

cations. Silicon sensors are employed at each station, with some also having pyranometers

that measure diffuse and global irradiance. The silicon sensors are regularly calibrated by

the Fraunhofer Institute for Solar Energy Systems in Germany to achieve an uncertainty of

under 5%. The data used in this chapter is hourly data from 2012 November.

5.2 Temporal stationarity

Temporal stationarity for a spatio–temporal process is defined in Eqn. (A.19). Irradiance

time series in Singapore is non–stationary as tested by Wu and Chee (2011). My aim at

this stage is to obtain a stationary time series at each individual station without assuming
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Fig. 5.1 Geographic locations of the 10 stations used in this study. Source: Google Maps.

spatio–temporal separability. Thus, detrend methods similar to those adopted in time series

analyses are considered.

Appendix B shows several existing detrend methods. A common practice in these meth-

ods is that the authors use bell shape curves to remove the diurnal trend in irradiance

time series. In chapter 4, STL is used for detrend. Although such techniques can provide

location–specific stationary time series by finding the least squared fitted parameters. Data

collected at different irradiance monitoring stations do not necessarily share the same model

parameters.

Since Singapore is located near the equator, I only consider the diurnal trend in solar

irradiance time series. In the review paper by (Inman et al., 2013), two commonly accepted

models for detrending irradiance time series are described, namely, the clear sky model and

the extraterrestrial irradiance model. For a given GHI value, the clear sky index is defined

by the ratio between GHI and its clear sky dual; similarly, the clearness index is defined by

dividing GHI by the extraterrestrial irradiance. In this chapter, the clearness index1 method
1Due to the diffuse irradiance component, clear sky index typically ranges from 0 to 1.3, whereas the

clearness index is strictly between 0 and 1.
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is used. The horizontal extraterrestrial irradiance is a deterministic parameter given by:

Ioh = E0Isc cos θz (5.1)

where E0 is the eccentricity, Isc is the solar constant, and θz is the zenith angle.

Trend removal via the clearness index is commonly used, however, it does not guarantee a

stationary detrended series. Therefore we perform the Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) test (Kwiatkowski et al., 1992) to assess stationarity in our detrended series. The

KPSS test has a null hypothesis, H0, to imply stationarity, and an alternative hypothesis

H1 to imply a unit root, i.e., non–stationary. The hypothesis testing is based on searching

for a unit root in the time series autocorrelation model. In other words, if the observation

at time t strongly depends on the observation at time t − 1 with coefficient larger than 1

(zt = µ + ϕ1zt−1, ϕ1 > 1), the series is defined to be explosive. The p–value is a measure

of the evidence against H0: the smaller the p–value, the stronger evidence against H0. The

monthly time series at each station has a p–value greater than 0.1, which indicates strong

evidence in favor of the null hypothesis. As all hypothesis tests suffer from the problem of

probability of false declaration, when the number of test points increases, the probability

of falsely declaring significance is likely to increase. However, this issue can be disregarded

here, since I only utilize several weeks’ data in the stationarity analyses.

5.3 Spatial stationarity

Covariance estimation of spatial processes is fundamental for many problems of spatial

interpolation and design of monitoring networks (Sampson and Guttorp, 1992). However,

most environmental spatio–temporal processes (e.g. De Luna and Genton, 2005; Gneiting,

2002) cannot be assumed to be stationary nor isotropic. For instance, it is known that

no isotropic variogram can accurately model irradiance data (Rehman and Ghori, 2000;

Sampson and Guttorp, 1992). Anisotropy is also discovered in the famous Irish wind data
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(Haslett and Raftery, 1989). Therefore, a forecasting method using a covariance structure

needs to be rigorously examined, avoiding to falsely make the isotropic assumption.

To understand non–stationarity and anisotropy, we need to consider variability mea-

sures. Statistical measures on variability include correlation, covariance, and dispersion,

etc. Correlation and covariance are similarity measures, while dispersion is a dissimilarity

measure. In this chapter, dispersion is used. Spatial dispersion (a measure of variability)

is defined as (Sampson and Guttorp, 1992):

d2
ij = V{zt(si) − zt(sj)} (5.2)

where zt(si) and zt(sj) denote two temporal processes at location si and sj, respectively.

Consider a one–dimensional example, see Fig. 5.2. A measurement station a is located

at the origin of a line. There is a second station b to the left of the origin with a certain

distance. Similarly, a third station c is located at the right of the origin with the same

distance. Suppose a dimensionless dispersion of 3 is set between a and b and 2 is set between

a and c. The contradiction is obvious, as in a stationary and isotropic environment, the

dispersion between a, b and a, c should be the same. This example illustrates both non–

stationarity and anisotropy. In a physical world, the non–stationarity and anisotropy is

frequently observed. In addition, asymmetry is also observed, i.e., d2
ij ̸= d2

ji.

b a c
3 2

Fig. 5.2 A one–dimensional example. a, b and c are measurement stations with the numbers
indicating their dispersions.

Eqns. (A.20) and (A.21) reveal the solution to the above problem. Suppose the vari-

ability in the random process, in this case the dispersion, is only a function of the stations’

separation distance, the covariance in that space is both stationary and isotropic. Sampson

and Guttorp (1992) proposed a two–step method to estimate such covariance structures

using a non–parametric approach. The first step is called multidimensional scaling (MDS)
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and the second step is called thin plate spline (TPS) mapping.

5.3.1 G plane and D plane

In both of the above steps, two planes are considered, namely, the geographic (physical)

space, where stationarity and isotropy of the random process are not assumed, and a new

space where stationarity and isotropy are assumed. Sampson and Guttorp refer to the

geographic space as the G plane and the dispersion space (the transformed space) as the D

plane.

The desired properties in the D plane are stationarity and isotropy. In other words, the

distance in the D plane needs to vary monotonically with dispersion. Using Eqn. (5.2), the

pairwise dispersion can be computed. These calculated dispersions are used to retrieve the

D plane distance. For every station in the G plane, there will be a corresponding station in

the D plane.

5.3.2 Monotonicity and computation for the D plane representa-

tions

The locations of stations in the D plane should be set following the dispersion, i.e, station

pair with a small dispersion should be close to each other in D plane, and vice versa. In

particular, the D plane distance hij should increase monotonically with dispersion. MDS is

used to determine the monotone function. Appendix C shows the details of the computation.

I briefly repeat some key steps here.

The input to MDS is a proximity matrix. In this application, the square root of dispersion

{dij} give the elements in the proximity matrix. A monotone function is found to transform

the proximities to the D plane distances.

δ(dij) ≈ hij (5.3)
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Multidimensional scaling provides a “principle components” representation of the pat-

tern of proximities or dissimilarities (i.e., spatial dispersion) among a set of objects. There

are two types of MDS, namely, classical MDS and non–metric MDS. Classical MDS takes

a matrix of dissimilarities as input, and outputs an object map in lower dimensions. The

method to solve for the coordinates of projection is eigendecomposition. While the classical

MDS provides an initialization to the non–metric MDS, iterative monotonic regression is

carried out to minimize the stress function S:

S =

√√√√√√√√
∑
i<j

(hij − δ(dij))2

∑
i<j

h2
ij

, i ∈ {1, 2, · · · , n− 1}, j ∈ {2, 3, · · · , n} (5.4)

The minimization uses the method of steepest descent, see appendix C for details. Through

non–metric MDS, S is minimized and the converged configuration gives the locations of

stations in the D plane. We note that in the G plane, coordinates are given using latitudes

and longitudes. The output of the MDS can be transformed back to such coordinates using

rigid motions (such as rotation, translation and reflection) and uniform stretching.

5.3.3 Thin plate spline mapping between the G and D planes

Once the stations’ coordinates in the G plane and the D plane have been established, a

R2 → R2 mapping between these two planes is needed. Let the station coordinates in the

G plane be denoted by (xi, yi) and those in the D plane by (x∗
i , y

∗
i ); a bivariate function

f : R2 → R2 that maps the coordinates from the G plane to the D plane is desired:

x∗
i

y∗
i

 = f

xi

yi

 (5.5)

The algorithm determines such a function by minimizing a certain roughness/smoothness
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criterion. For example, in one dimensional cubic spline interpolation:

Jf =
∫

[f ′′(x)]2dx (5.6)

is minimized, subject to first and second order derivative constraints at the knots and at

the boundaries. A cubic spline is a spline constructed of piecewise third–order polynomials

which pass through a set of n control points (knots). The minimization constraint first

considers the continuity at the knots by equating the gradients (first order derivatives) of

two polynomials at each knot. The second order derivative is then minimized using the sum

of the square of the derivative of the gradient (see Eqn. (5.6)) to ensure the fitted spline is

the smoothest.

If the cubic spline described above performs a R1 → R1 mapping, the method can be

extended to a R2 → R1 mapping which applies to the present problem. Bookstein (1989)

states the generalization of this mapping:

Jf =
∫∫

R2

(∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
 dxdy (5.7)

Jf is the measure of roughness/smoothness which is proportional to the bending energy of

an idealized thin plate of infinite extent (Sampson and Guttorp, 1992). The interpolators

minimizing the bending energy are linear combinations of a basis function U(·) centered at

those n observed locations. Thin plate spline is used to perform this interpolation. TPS is

frequently used in morphometrics Bookstein (1989, 1997a). The method to determine the

function f is shown in appendix D.

This method maps an anisotropic random process to an isotropic random process. For

examples of applying such deformation techniques to environmental data, one can refer to

(e.g. Capizzi et al., 2012; Guttorp et al., 1994; Le and Zidek, 2006; Meiring et al., 1998;

Schmidt and O’Hagan, 2003). The following section describes the covariance functions. I

further explore the other two properties, namely, separability, full symmetry in the next
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sections.

5.4 Covariance and Kriging

After trend removal (section 5.2) and space deformation (section 5.3), stationary spatio–

temporal data can be obtained. Some stationary spatio–temporal covariance functions are

introduced here; they will be used later to forecast the clearness index.

5.4.1 Separable model

Recall Eqn. (A.23), the covariance function is separable if it can be written as the product

of a purely spatial and a purely temporal covariance functions. Since use of covariance or

correlation will lead to the same kriging results, here I follow the approach of Gneiting et al.

(2007) and fit a purely temporal correlation function of the Cauchy type:

ρT (τ) = (1 + a|τ |2α)−1 (5.8)

where ρ stands for correlation and a, α are model parameters. For the spatial correlation

function I choose an exponential model with a nugget effect (a term derived from from

mining geostatistics):

ρS(h) = (1 − ν)exp(−c · ∥h∥) + νIh=0 (5.9)

where ν and c are parameters to be fitted. I is a binary indicator function, equals to 1 if

h = 0, 0 otherwise. Therefore the separable covariance function is given by:

CSEP (h; τ) = ρT (τ) · ρS(h) · σ2 (5.10)

where σ2 is the variance of the spatio–temporal process.
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5.4.2 Fully symmetric model

We can construct the fully symmetric but generally non–separable correlation function using

the separable model described earlier. Gneiting et al. (2006) states the theorem:

Theorem. Suppose that φ(r), r ≥ 0, is a completely monotone function, and that ψ(r),

r ≥ 0, is a positive function with a completely monotone derivative. Then

C(h; τ) = σ2

ψ(|τ |2)d/2φ

(
∥h∥2

ψ(|τ |2)

)
, (h; τ) ∈ Rd × R1 (5.11)

is a stationary covariance function on Rd × R1.

There are several choices (Gneiting, 2002) in selecting φ(r) and ψ(r), for example:

φ1(r) =exp(−crγ), c > 0, 0 < γ ≤ 1 (5.12)

φ2(r) =(1 + crγ)−ν , c > 0, 0 < γ ≤ 1, ν > 0 (5.13)

φ3(r) =2ν [exp(cr1/2) + exp(−cr1/2)]−ν , c > 0, ν > 0 (5.14)

ψ1(r) =(arα + 1)β, a > 0, 0 < α ≤ 1, 0 ≤ β ≤ 1 (5.15)

ψ2(r) = ln(arα + b)/ ln(b), a > 0, b > 1, 0 ≤ α ≤ 1 (5.16)

ψ3(r) =(arα + b)/[b(arα + 1)], a > 0, 0 < b ≤ 1, 0 ≤ α ≤ 1 (5.17)

Gneiting (1997) and the references therein prove the complete monotonicity of the above

functions. If we select ψ1(r) and φ1(r) and substitute them into Eqn. (5.11), and consider

only the two dimensional space case, we have:

C(h; τ) = σ2

(1 + a|τ |2α)β

[
exp

(
− c · ∥h∥2γ

(1 + a|τ |2α)βγ

)]
, (h; τ) ∈ R2 × R (5.18)

If we let γ = 1/2 and include a nugget effect, the above equation becomes:

C(h; τ) = σ2 · (1 − ν)
(1 + a|τ |2α)β

[
exp

(
− c · ∥h∥

(1 + a|τ |2α)β/2

)
+ ν

1 − ν
Ih=0

]
(5.19)
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Furthermore, Gneiting (2002) considered a reparameterization of Eqn. (5.19), namely, mul-

tiplying another purely temporal covariance function (1 + a|τ |2α)−ζ to it:

CF S(h; τ) = σ2 · (1 − ν)
(1 + a|τ |2α)β∗

[
exp

(
− c · ∥h∥

(1 + a|τ |2α)β/2

)
+ ν

1 − ν
Ih=0

]
(5.20)

where β∗ = β + ζ. Eqn. (5.20) reveals an immediate link between Eqns. (5.8) and (5.9).

β can be considered as a space–time interaction parameter, and 0 ≤ β ≤ 1. If β = 0,

Eqn. (5.20) is reduced to the separable model shown in Eqn. (5.10).

5.4.3 Time–forward kriging

Time–forward kriging is used here to assess the predictive performance of the spatio–

temporal structures just developed. Consider a spatio–temporal process {z(s; t) : s ∈

Ds ⊂ Rd, t ∈ Dt ⊂ R1} evolves through the spatio–temporal index set Ds × Dt. Given

observations:

Z ≡
(
z(s1; t1) z(s2; t2) · · · z(sp; tp)

)⊤
(5.21)

at p space–time coordinates, predictions at unobserved coordinates (s0; t0) can be obtained

using the simple kriging predictor:

ẑ(s0; t0) = µ(s0; t0) + c(s0; t0)⊤C−1(z − µ) (5.22)

where C ≡ Cov(Z), c(s0; t0) ≡ Cov(z(s0; t0),Z) and µ ≡ E(Z) (Cressie and Huang, 1999).

When the number of temporal indices at each station is identical, Z can be decomposed,

such that:

Z =
(

z(1)⊤ z(2)⊤ · · · z(m)⊤
)⊤

(5.23)

and

z(k) =
(
z(s1; tk) z(s2; tk) · · · z(sn; tk)

)⊤
, k = 1, · · · ,m (5.24)
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where n and m are numbers of spatial and temporal indices, nm = p. Subsequently, the C

in Eqn. (5.22) is:

C =



C0 C⊤
1 · · · C⊤

m−1

C1 C0 · · · C⊤
m−2

... ... . . . ...

Cm−1 Cm−2 · · · C0


, ∈ Rnm×nm (5.25)

and

Cτ =



C11,τ C12,τ · · · C1n,τ

C21,τ C22,τ · · · C2n,τ

... ... . . . ...

CN1,τ CN2,τ · · · Cnn,τ


, ∈ Rn×n (5.26)

where τ = 0, · · · ,m− 1 and

Cij,τ = Cij,k−l

= Cov(z(si; tk), z(sj; tl))

= Cov(z(si; tk), z(sj; tk − τ)), ∀k > l (5.27)

If Cij,τ is estimated empirically using Ĉov{z(si; t), z(sj; t−τ)}, i, j ∈ {1, · · · , n}; the method

is then called empirical kriging. It can also be estimated from the empirical covariance

function Ĉ(h; τ) as seen in Eqns. (5.10) and (5.20). Similar to C, for one time step ahead

prediction, the c in Eqn. (5.22) can be expanded as:

c =
(

c⊤
m · · · c⊤

2 c⊤
1

)⊤
, ∈ Rnm×1 (5.28)

and

cτ =
(
c01,τ c02,τ · · · c0n,τ

)⊤
, ∈ Rn×1 (5.29)



5.5 Singapore case study 64

where τ = m, · · · , 1 and

c0j,τ = Cov(z(s0; tk), z(sj; tk − τ)) (5.30)

Vector c can be constricted using the covariance functions, which only require distance and

time lags. Unlike forecasting using time series of spatial processes, time–forward kriging is

able to forecast (n+ 1)th point in space.

5.5 Singapore case study

After the data detrend process, temporal stationary clearness index data are obtained. I

now demonstrate the deformation of geographical coordinates to obtain spatial stationarity.

Two weeks of hourly data from 2012 November 1–14 are used for model fitting.

5.5.1 Spatial stationarity

Fig. 5.3 shows the G plane spatial dispersion versus geographical inter–station distances.

The inter–station distances are calculated by pairwise great circle distance (longitude and

latitude are used as input while the output is in kilometers). Therefore, 45 pairs (= n ×

(n − 1)/2, when n = 10) with their respective spatial dispersions are plotted. It is clear

from Fig. 5.3 that no isotropic variogram model could accurately reflect the data.

MDS is performed using the spatial dispersions as the inputs. Fig. 5.4 shows the relation-

ship between spatial correlation in D plane distance. It can be observed that the spread of

the correlation becomes significantly narrower than the previous anisotropic case (Fig. 5.3).

This decrease is quantified using the residual sum–of–square. After fitting the exponential

correlation functions to Fig. 5.3 and Fig. 5.4, the residual sum–of–square values are 0.01938

and 0.01081 respectively. I thus conclude that MDS effectively reduces anisotropy.

Thin plate spline mapping is performed after the station coordinates in the D plane are

derived. Fig. 5.5 shows the thin plate spline transformation grids from the G to the D plane.
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Fig. 5.3 Spatial correlation on geographical plane shows anisotropy.
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Fig. 5.4 Spatial correlation on dispersion plane shows improved isotropy.

I note that rotation, reflection and enlargement are used to transform the MDS results so

that the final D plane coordinates follow the original G plane latitudes and longitudes.

5.5.2 Model fitting

The exponential correlation function expressed in Eqn. (5.9) is fitted using the results shown

in Fig. 5.4. The fitted parameters are ν̂ = 0.036381 and ĉ = 0.005943. For the purely

temporal correlation function in Eqn. (5.8), the fitted parameters are â = 0.2044 and α̂ =

0.7871. Note that a and α are obtained with |τ | ≤ 3, i.e. M = 3. For hourly solar irradiance,

the order of the autoregressive parameter is usually within this range. Fig. 5.6 shows the
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Fig. 5.5 Thin plate spline transformation grids from G plane to D plane. Plot (a) shows
the original G plane locations with rectangular grid; (b) shows the D plane locations after
MDS with bended grid.

fit. The fitted parameter for the fully symmetric model is β̂ = 0.8923.
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Fig. 5.6 Temporal correlation fitted using first two week’s data from 2012 November. Non-
linear least square is used to obtain the fitted line.
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Table 5.1 Forecast RMSE for hourly Singapore clearness index data at the 10 stations for
2012 November 15–30.

RMSE for clearness index

Station Persistence Separable covariance Fully symmetric covariance Empirical kriging

S301 0.196 0.156 0.154 0.145
S500 0.200 0.145 0.142 0.153
S104 0.195 0.150 0.148 0.152
S304 0.187 0.134 0.131 0.169
S305 0.194 0.152 0.149 0.146
S116 0.196 0.142 0.139 0.153
S106 0.201 0.143 0.139 0.154
S102 0.192 0.142 0.139 0.156
S108 0.193 0.152 0.149 0.155
S105 0.181 0.142 0.141 0.134

overall 0.193 0.146 0.144 0.152

5.5.3 Forecast

The hourly ahead forecasts is evaluated using one month clearness index data in this section.

Eqn. (1.2) is used to compute the RMSE (see Table 5.1) of the forecast clearness index. Two

weeks of hourly data from 2012 November 1–14 are used to perform the model fitting, thus

the forecasts show the results from the remaining 16 days of data, namely, 2012 November

15–30. The persistence model is used to benchmark the data.

The rightmost column of Table 5.1 shows results of empirical kriging. Recall that em-

pirical kriging does not depend any covariance function fitting. The covariance matrix C

and covariance vector c0 are computed based on sample covariance Ĉov(·).

5.6 Discussion and conclusion

Isotropy describes rotational invariance. In other words, the spatial covariance is only a func-

tion of distance ∥h∥. We have seen in Fig. 5.4 that MDS can effectively improve anisotropy

by reducing the scattering of points in the correlation versus distance plot. However, the

result is not perfect. To examine the goodness of fit of MDS, the Shepard plot is employed.

The Shepard plot is a plot of D plane distance hij against the square root of dispersion dij

together with an monotonic regression (the solid line) of the hij on the dij. Perfect MDS

results would indicate that hij strictly increases with dij. Fig. 5.7 shows the Shepard plot
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for clearness index data from 10 Singapore stations.

0.00

0.05

0.10

0.15

0.20

0.25

0.06 0.08 0.10 0.12
di j  [dimensionless]

h
ij
 [d

im
en

si
on

le
ss

]

Fig. 5.7 Shepard plot for Singapore clearness index data. D-plane distance hij is plotted
against dissimilarity dij. An isotonic regression of hij on dij is shown by the solid line.

The origin of the fitting errors is explained in appendix C, which is summarized to be

the degeneracy in the proximity matrix. Fig. 5.8 shows the spatial dispersions between

the pairwise stations. The red dots in the plot show the spatial dispersion only involving

stations S106, S104 and S304; the green triangles show the spatial dispersion only involving

stations S301, S305 and S116. It is obvious that no isotropic variogram model can be fitted

to these data without sacrificing some data points. An ad hoc solution to the problem is to

remove either groups of stations from the MDS step. Data from S301, S305 and S116 are

removed for illustration. Fig. 5.9 shows the new Shepard plot which indicates a perfect fit.

Several questions arise from the above observation:

1. Why the isotropy improves after removing some boundary stations (see Fig. 5.1)?

2. If irradiance is modeled as spatio–temporal random processes, is there any threshold

distance describing the spatial boundary of the process?

3. How can we define and determine the threshold distance?

4. After the threshold distance is set, how the model parameters change?

5. Will the threshold distance improve the kriging accuracies?
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Fig. 5.8 Spatial dispersion indicate two variogram models are involved in the data.
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Fig. 5.9 Shepard diagram after removing stations S301 S305 and S116.

6. Does the threshold distance apply to other forecasting models?

These questions will be answered in chapter 9, which presents a correlation–based study

on the threshold distance in the solar irradiance random process. By properly defining a

threshold distance, the time–forward kriging parameters can be reduced without loss of

forecast accuracies. The vector autoregressive model is also explored; the results are found

to be consistent with those from kriging. Before we look at the parameter shrinkage in

spatio–temporal irradiance forecasting, transposition models are discussed in chapters 6

and 7.



Chapter 6

Inverse transposition using a single

reference cell

In the previous chapter, space–time kriging is used to forecast the hourly clearness index

in Singapore. The developed methodology outperforms the persistence model. The foun-

dations of the method are built on top of two transformations of the data: (1) temporal

stationarity is achieved by detrending the data and (2) a space deformation technique is

applied to approximate, if not obtain, the spatial stationarity. The aim of chapter 5 is to

devise a methodology to forecast solar irradiance over a wide area, using time series from a

network of monitoring stations as input. However, the costs of developing and maintaining

such solar irradiance sensor networks are high, especially when pyranometers are used to

collect the global horizontal irradiance (GHI) data.

The alternative to a pyranometer is a reference cell. Reference cells (silicon sensors)

are usually installed with PV systems for performance evaluation (Meydbray et al., 2012a;

Yang et al., 2014b). As many PV systems are tilted towards the equator to maximize the

yearly energy yield, the reference cells are therefore installed at the plane of array (POA)

tilts. Utilizing the data collected by the reference cells can facilitate irradiance forecasting.

However the tilted irradiance data cannot be used directly, one is therefore often compelled

to convert the irradiance received at an arbitrary tilt to GHI.
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In this chapter, as well as in chapter 7, methods for reconstructing GHI using tilted

irradiance measurements are discussed. The existing literature however focuses on using

transposition and decomposition models to predict the solar irradiance on tilted surface

from the solar irradiance data on a horizontal plane. My developments here are therefore

novel.

6.1 Literature review on transposition and decompo-

sition models

Many transposition models have been proposed in the literature to convert solar irradiance

on the horizontal plane to that on a tilted plane. The global irradiance, It, on a tilted plane

of s degrees from the horizontal, can be evaluated from the equation:

It = Idir cos θi + IdifRd + ρ′IgloRr (6.1)

where Idir is the direct normal solar irradiance (DNI), Idif is the diffuse horizontal irradiance

(DHI), Iglo is the GHI, θi is the angle of incidence of the sun rays on the tilted plane, Rd

is the diffuse transposition factor, ρ′ is the foreground’s albedo, and Rr is the transposition

factor for ground reflection.

It should be noted that the incidence angle θi of the sun’s rays on a surface with an

arbitrary tilt angle s and azimuth is purely geometric; its formulation can be found in

standard texts (e.g. Duffie and Beckman, 2006). Ground reflection is considered as an

isotropic process by most studies, and is characterized by Rr, which is a function of tilt

angle s (Gueymard, 2009). The formulations for the diffuse transposition factor Rd can

be classified as isotropic (e.g. Badescu, 2002; Koronakis, 1986; Liu and Jordan, 1962; Tian

et al., 2001) and anisotropic (e.g. Hay, 1979; Klucher, 1979; Perez et al., 1990; Reindl et al.,

1990b; Skartveit and Olseth, 1986; Temps and Coulson, 1977). Details and mathematical

formulations for Rd are summarized by Evseev and Kudish (2009); Noorian et al. (2008) for
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both types. The recent paper by David et al. (2013) evaluates the performance of various

anisotropic transposition models in a tropical environment.

In order to compute the irradiance on a tilted surface, we need to know all three irradi-

ance components on a horizontal surface, namely, GHI, DNI and DHI. The closure equation

describes a well–known relationship among the three components:

Iglo = Idir cos θz + Idif (6.2)

where θz is the zenith angle. This relationship implies that we should have at least two

irradiance measurements in order to accurately predict the global solar irradiance on a

tilted plane.

Multi–sensor approaches (e.g. Faiman et al., 1993) are often used to resolve this issue.

When two irradiance sensors are installed at two different tilts, we can accurately solve

for Idir and Idif using simultaneous equations (use Eqn. (6.1) twice, by having two sets of

parameters obtained from two tilts). Otherwise, decomposition models are used to estimate

Idir and Idif from a single Iglo measurement.

To separate the direct and diffuse components from Iglo, many empirical relationships

have been proposed. Instead of relating the irradiance components directly, most papers

in the literature use the concept of transmittance. Transmittance is a representation of

fraction of extraterrestrial irradiance reaching the ground (see section 6.2 for details). Most

approaches aim to represent diffuse horizontal transmittance Kd or direct normal transmit-

tance Kn as a function of the effective global horizontal transmittance Kt (Kt is also known

as the clearness index) and other predictors. Gueymard (2009) suggests that the direct and

diffuse separation be made dependent on zenith angle, ambient temperature and relative

humidity. Garrison (1985); Garrison and Sahami (1995) suggest the separation should con-

sider solar elevation, surface albedo, atmospheric precipitable water and snow cover. These

multivariate models are complex and the input measurements are not always available.

I seek simple empirical models to separate direct and diffuse components from global
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solar irradiance. Erbs et al. (1982); Orgill and Hollands (1977) use univariate approaches,

namely, GHI as the only input. Maxwell (1987) considers a bivariate model using GHI and

zenith angle as inputs. Reindl et al. (1990a) proposed versions of his model as both univari-

ate and bivariate models. Zhang (2006) used GHI and elevation angle (equals to 90◦ −θz) as

inputs, the decomposition model is then constructed using the Gompertz function. These

models are developed from the measurements taken at some specific locations; therefore

their accuracy must be carefully evaluated if they are applied to places different from the

ones included in the databases used for their development (Padovan and Col, 2010).

While the methods for converting solar irradiance from horizontal to tilted planes are

well described, the reverse process, i.e. converting from tilted to horizontal, is lacking in

the literature. For reasons described in the beginning of this chapter, an algorithm which

converts solar irradiance on a tilted plane to horizontal irradiance using a single set of tilted

measurements is proposed in this chapter.

The rest of this chapter is organized as follows. Section 6.2 evaluates the performance

of various transposition and decomposition models in tropical regions. The performance of

ten transposition models (four isotropic models and six anisotropic models) is first exam-

ined using the tropical data set in section 6.2.2. Measurements of both GHI and DHI are

used as inputs for these transposition models. The converted results are compared to tilted

measurements. Five decomposition models are then selected and verified in section 6.2.3.

The predicted DHI is compared to the measured DHI. The transposition models and de-

composition models are combined and evaluated in section 6.2.4. In other words, only GHI

is used to convert irradiance from horizontal to tilt; the results are again compared to the

tilted measurements. Section 6.3 describes the process of converting solar irradiance from

tilt to horizontal. Results and analyses of the proposed algorithm are shown in section 6.4.

Section 6.5 concludes the findings of this chapter.
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6.2 Horizontal to tilt: an evaluation

6.2.1 Background

Define two types of transmittance:

Iglo =KtIoh; (6.3)

Idir =KnIo (6.4)

Kt and Kn are effective global horizontal transmittance and direct normal trans-

mittance respectively, while Ioh is horizontal extraterrestrial irradiance and Io is extrater-

restrial direct normal irradiance. The extraterrestrial irradiance is the function of zenith

angle θz and eccentricity correction factor E0 as shown below:

Ioh =E0Isc cos θz; (6.5)

Io =E0Isc (6.6)

E0 is also know as the reciprocal of the square of the Earth radius factor (e.g. see Maxwell,

1987); and is given by Eqn. (3.4). Recall that E0 also depends on Γ which is defined as the

eccentric anomaly of the Earth in the orbit around the Sun (Maxwell, 1987) or day angle

(Janjai et al., 2011) as seen in Eqn. (3.5). Isc is the solar constant, equal to 1362 W/m2.

Note that Eqn. (6.5) is identical to Eqn. (5.1), its purpose here is to distinguish from Io.

As Singapore has a latitude of 1.3◦N, the “rule–of–thumb” installation angle for fixed

panels should be 1.3◦. However, in practice, the installation angle in Singapore is usually

chosen to be between 5◦ to 20◦ to enhance panels’ output by promoting self cleaning by rain.

A highly tilted plane introduces anisotropic features into derived the Rr values (Gueymard,

2009), but this effect is not significant for slopes less than 20◦. As a result, I use an isotropic

approximation for Rr:

Rr = (1 − cos s)/2, (6.7)
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in this section, where s is the tilt angle for the plane of incidence. An anisotropic formulation

is however adopted in chapter 7 wherein data from larger tilt angles are used.

Both isotropic and anisotropic Rd models are discussed extensively in the literature. Ten

models are compared in the following section. Among the ten models, four are isotropic

models (see Badescu, 2002; Koronakis, 1986; Liu and Jordan, 1962; Tian et al., 2001) and six

are anisotropic models (see Hay, 1979; Klucher, 1979; Perez et al., 1990; Reindl et al., 1990b;

Skartveit and Olseth, 1986; Temps and Coulson, 1977). These ten models are provided in

appendix E.

By combining Eqns. (6.3) to (6.7), Eqn. (6.1) is written using the K–indices:

It = KnIo cos θi + (Kt −Kn)IohRd + ρ′KtIoh[(1 − cos s)/2] (6.8)

I call Eqn. (6.8) the target function. In order to find It, the tilted global solar irradiance, we

need to know all the parameters on the right side of Eqn. (6.8). Among these parameters,

θi is purely geometric and can be easily calculated. I select a fixed value of 0.2 for ρ′ as

suggested by Gueymard (2009) owing to the total absence of snow and ice in Singapore. As

such, the only unknowns in the target function are Kt, Kn and Rd.

When all the horizontal irradiance components are known, It can be evaluated directly

through Eqn. (6.1). When only the GHI is known, decomposition models are needed to

predict DNI and DHI. I choose five models which are considered as “universal” models to

formulate the relationship between Kt and Kn, including the Erbs et al. (1982) model, Orgill

and Hollands (1977) model, Maxwell (1987) model, Reindl et al. (1990a) univariate model

and Reindl et al. (1990a) bivariate model. These models are summarized in appendix F.

Using a combination of transposition models and decomposition models, It values can be

obtained using Eqn. (6.8).
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6.2.2 Evaluation of 10 transposition models

The irradiance data used in this section were obtained from the first zero energy house in

Singapore (FZEHS), which is shown in Fig. 6.1. The building has two PV arrays mounted

on the metal roof. The azimuths of the PV arrays are 66◦ NE and 246◦ SW on the east

and west roofs, respectively. The inclination angles of the east roof is 18.3◦ and 6.1◦ for the

west roof.

Christophe.inglin@PhoenixSolar.sg 4

Zero-energy  building  is  already  possible  today  …
8.58kWp PV system generates 800-900kWh/month, exceeding average consumption

…  but  not  yet  commercially  viable  at  today’s  costsFig. 6.1 The first zero energy house in Singapore.

Three irradiance measurement devices are installed, namely, two calibrated silicon sen-

sors installed in the plane of array of each roof and a pyranometer installed horizontally

on the roof, which is nameed S111. The silicon sensor facing east is named S111a and the

west facing one is named S111b. The measurements from S111 are used as inputs to the

transposition models, as this particular device (a Delta–T Sunshine SPN1 Pyranometer)

measures GHI and DHI simultaneously. The model output is compared to the measure-

ments from S111a and S111b. Various transposition models are examined using 5 min data

from these three stations over a period of one year, namely, 2011. For zenith angle and

incidence angle calculation, solar position algorithm (SPA) (Reda and Andreas, 2004, 2008)

from the National Renewable Energy Laboratory is used.

Mean bias error (MBE) shown in Eqn. (1.1), centered root mean square error (cRMSE)

in Eqn. (1.4) and the expanded uncertainty at 95% confidence interval (U95) in Eqn. (1.5)
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are used as error metrics following (Boyd, 2013). Table 6.1 shows the MBE, cRMSE and

U95 for tilted solar irradiance prediction using ten transposition models. The results are

calculated based on measurements from S111a and S111b.

Table 6.1 Performance of ten transposition models (converting from horizontal to tilted)
over a period of one year, 2011.

S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [W/m2] cRMSE [%] U95 [%] MBE [W/m2] cRMSE [%] U95 [%]
All sky, N=44495

Isotropic
Liu and Jordan 2.99 10.28 20.19 6.69 8.14 16.34
Badescu -2.08 10.13 19.88 6.13 8.13 16.26
Tian -13.15 10.02 20.68 0.46 8.11 15.89
Koronakis 4.78 10.34 20.40 6.88 8.14 16.37
Anisotropic
Hay 6.78 8.55 17.09 5.47 8.17 16.27
Reindl 7.09 8.56 17.13 5.49 8.17 16.27
Temps and Coulson 25.56 10.22 23.64 26.12 9.74 23.39
Klucher 14.36 10.00 20.84 15.88 9.38 20.21
Perez 2.45 8.64 16.99 5.67 8.03 16.03
Skartveit and Olseth 6.27 8.58 17.09 5.41 8.13 16.28

Mean observed [W/m2] 398.59 369.62

Clear sky, N=757
Isotropic
Liu and Jordan -5.07 5.40 10.48 8.94 2.11 4.81
Badescu -7.75 5.27 10.52 8.62 2.11 4.76
Tian -13.59 5.20 10.77 5.48 2.11 4.40
Koronakis -4.13 5.32 10.44 9.04 2.11 4.82
Anisotropic
Hay 1.24 3.34 6.53 5.85 2.37 4.91
Reindl 1.35 3.33 6.54 5.86 2.37 4.91
Temps and Coulson 6.86 4.54 9.07 17.97 2.16 6.48
Klucher 6.54 4.56 9.10 17.75 2.16 6.43
Perez 5.54 4.12 8.21 9.45 2.11 5.04
Skartveit and Olseth 1.24 3.33 6.53 5.85 2.37 4.91

Mean observed [W/m2] 766.17 717.75

The results shown in Table 6.1 are separated into all sky condition and clear sky con-

ditions to further elaborate on the errors. The selection of clear sky situation is similar to

the method used in chapter 3 considering the sky’s clearness ε′ and the sky’s brightness ∆′.

Table 6.1 shows that all transposition models perform better under clear sky conditions due

to a relatively isotropic sky and small diffuse components. Some strong biases are observed

for Klutcher model and Temps and Coulson model for both sky conditions. In the original

paper, the scatter plots of the modeling errors are displayed; they show consistency with

Table 6.1. Interested readers can refer to (Yang et al., 2013a).
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6.2.3 Evaluation of 5 decomposition models

DNI and DHI can be predicted from GHI using the decomposition models in situations when

the DNI or DHI measurements are unavailable. Table 6.2 shows the performance of five

decomposition models over a period of one year, 2011. GHI measurements from the SPN1

pyranometer are used as inputs to the decomposition models to predict DHI and DNI; the

output (predicted DHI) is compared with DHI measurements from the SPN1.

Table 6.2 Performance of five decomposition models (predicting DHI from GHI in a tropical
region) over a period of one year, 2011.

Model MBE [W/m2] cRMSE [%] U95 [%]

All-sky, N=44495
Erbs -13.32 32.02 71.81
Orgill -12.85 34.50 68.80
Reindl (univariate) -13.74 34.71 69.37
Maxwell -13.27 34.94 69.73
Reindl (bivariate) 0.43 31.76 62.26

Mean observed [W/m2] 195.49

Clear-sky, N=757
Erbs 66.59 24.50 126.57
Orgill 76.26 25.89 143.37
Reindl (univariate) 85.97 22.00 157.21
Maxwell 97.36 43.29 191.07
Reindl (bivariate) 117.46 23.83 211.76

Mean observed [W/m2] 111.46

The large cRMSE values obtained in Table 6.2 are consistent with the results from the

many studies of the literature. The errors originate from the one–to–many mapping from

GHI to DHI. Recall that GHI and DHI may also be represented using transmittance Kt and

Kd. Fig. 6.2 shows the scatter plot for Kt, Kd pairs during 2011 January under different

zenith angle ranges. It is observed that the possible range of Kd varies from 0.1 to 0.5 for

Kt values greater than 0.1. The range of Kd is weakly dependent on zenith angle. As all the

decomposition models describe a one–to–one mapping between Kt and Kd, a large cRMSE

is expected. The details of the one–to–many mapping could be found in the study by Ridley

et al. (2010).

More elaborate separation methods (e.g. Maxwell and Reindl bivariate models) do not

out–perform the simpler ones (e.g. the Erbs, Orgill and Reindl univariate models). This
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Fig. 6.2 Scatter plot for Kt, Kd pairs during 2011 January under different zenith angle
ranges. Erbs model is plotted to demonstrate the non–injective mapping from Kt to Kd.

conclusion is also observed by Gueymard (2009) in his comparison of models with mid–

latitude data. It is interesting to note that the decomposition models perform worse in

clear sky conditions as compared to all sky conditions. Large positive MBEs are observed

for all models showing strong over–prediction. This is expected as: with the same Kt value,

Kd is much smaller during a clear sky condition than cloudy conditions, i.e., clear sky

conditions are very likely to be the points below the curve in Fig. 6.2.

6.2.4 Combination of decomposition models and transposition

models

Decomposition models alone introduce large errors for DHI prediction. The effect of these

errors on irradiance conversion by assuming unavailable DHI measurements is examined in

this section. In other words, GHI is used as the only input for conversion from horizontal

to tilt.

The four isotropic models used in section 6.2.2 show similar accuracy for It prediction.

The classic Liu and Jordan model is thus selected to represent all isotropic models. As
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the Klucher model and the Temps and Coulson model do not perform well, as shown in

Table 6.1, these models are not considered in this analyses. The Hay model is not included

as it can be represented using the Skartveit and Olseth model when Ω = 0 (see appendix E).

Therefore, only three anisotropic models, namely, those of Perez, Reindl and Skartveit and

Olseth, are selected.

Table 6.3 shows the error metrics for various combinations of transposition models and

decomposition models over a period of one year, 2011. For this exercise, only GHI measure-

ments from S111 are used as inputs to Eqn. (6.8). DHI and DNI components are estimated

using decomposition models and the results (converted It values) are compared with the

measurements from S111a and S111b separately.

Table 6.3 Performance of five decomposition models with four transposition models (con-
verting from horizontal to tilted) over a period of one year, 2011. Only GHI measurements
from SPN1 are used as input, DNI and DHI are estimated using various decomposition mod-
els, the output (converted global irradiance on tilted plane) is compared with measurements
from the reference cells.

S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [W/m2] cRMSE [%] U95 [%] MBE [W/m2] cRMSE [%] U95 [%]

Isotropic
Liu and Jordan
+ Erbs 0.86 11.25 22.05 7.18 8.25 16.60
+ Orgill 0.86 11.25 22.06 7.25 8.24 16.61
+ Reindl (univariate) 1.03 11.11 21.79 7.18 8.23 16.57
+ Maxwell 2.17 10.48 20.57 6.85 8.23 16.53
+ Reindl (bivariate) 1.41 11.30 22.16 7.49 8.25 16.66

Anisotropic
Perez
+ Erbs 0.91 10.02 19.65 6.29 8.17 16.36
+ Orgill 0.72 10.01 19.61 6.31 8.16 16.35
+ Reindl (univariate) 0.72 9.89 18.39 6.23 8.15 16.32
+ Maxwell 2.18 9.55 18.76 6.13 8.22 16.44
+ Reindl (bivariate) 0.70 9.93 19.47 6.41 8.16 16.35

Reindl
+ Erbs 4.81 9.84 19.43 6.11 8.30 16.59
+ Orgill 5.12 9.79 19.36 6.16 8.31 16.61
+ Reindl (univariate) 6.27 9.43 18.70 6.97 7.99 16.03
+ Maxwell 8.80 10.05 20.08 6.74 8.12 16.22
+ Reindl (bivariate) 7.92 9.59 19.13 8.03 7.90 15.96

Skartveit and Olseth
+ Erbs 4.02 9.85 19.41 6.04 8.31 16.59
+ Orgill 4.36 9.81 19.34 6.10 8.31 16.61
+ Reindl (univariate) 4.69 9.79 19.32 5.99 8.33 16.63
+ Maxwell 6.19 10.84 21.46 5.38 8.69 17.27
+ Reindl (bivariate) 5.47 10.13 20.03 6.22 8.42 16.83

Mean observed [W/m2] 398.59 369.62
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Table 6.3 shows that the best performance using a combination of transposition models

and decomposition models is given by Reindl plus the Reindl univariate model for S111a,

Reindl plus the Reindl bivariate model for S111b. It is important to note that, for small

inclination angles, for example S111b, the performance of anisotropic models is very similar

to those using the isotropic approximation. It should be noted that if decomposition models

are used to estimate DHI and DNI, there will be small additional errors to the results from

Table 6.1.

6.3 Converting irradiance from tilt to horizontal

Tilt to horizontal irradiance conversion is studied in this section. Although by using an

anisotropic Rd formulation can reduce conversion errors, for small collector tilts like those

encountered in the tropics, the Liu and Jordan isotropic approximation is used for Rd:

Rd = 1 + cos s
2 = cos2

(
s

2

)
(6.9)

through out this section. Tilt to horizontal conversion using an anisotropic model is demon-

strated in chapter 7.

6.3.1 Problem formulation

Regardless the choice of decomposition model, the target function is a piecewise nonlinear

equation due to the nature of various decomposition models. A numerical method is used

to search for the root of the equation.

Most numerical techniques that involve gradient calculation are computationally expen-

sive. I choose a simple search method using the bisection procedure combined with the

linear or quadratic inverse interpolation. This method is described by Brent (1973). This

method is implemented in both C (Forsythe et al., 2001) and R (R Core Team, 2014). As

Brent’s method only works for continuous functions, I perform the minimization for each
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Fig. 6.3 Kn versus Kt for three univariate decomposition models, namely, Erbs, Orgill and
Reindl (univariate) models.

intervals for our target function, i.e., for each Kt range described in various decomposition

models. Although Brent’s method efficiently finds the solutions to the target function, it

overlooks certain physical constraints of our application. In fact, the only applied constraint

is the non–negativity of all transmittances.

6.3.2 Univariate Models

For all three univariate decomposition models, the constraints are satisfied under all circum-

stances. Fig. 6.3 shows Kn versus Kt plotted for three univariate decomposition models,

namely, the Erbs, Orgill and Reindl (univariate) models. It is clear that Kn is positive for

all Kt in these three models. The fact that Kn is smaller for all corresponding Kt (curves

are below the 1:1 line) leads to positive Kd values as

Kd = Kt −Kn (6.10)
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6.3.3 Reindl (Bivariate) Model

For the Reindl (bivariate) model, the constraints are given in appendix F. Following the

constraints, a valid region for Kt, Kn pairs under Reindl model assumptions can be drawn.

I refer the interested readers to (Yang et al., 2013a).

6.3.4 Maxwell Model

The Maxwell model is another bivariate model which is more elaborate than previously

described decomposition models. Several additional parameters are involved in the model

to relate Kd and Kt, namely, Knc, mr and ∆Kn. Three constraints apply to the Maxwell

model: 1) θz ≤ 86◦; 2) ∆Kn ≥ 0 and 3) Knc > ∆Knc.

Clear sky direct normal transmittance Knc represents the maximum proportion of direct

normal irradiance reaching the Earth’s surface at any instant. Therefore the valid range for

Knc is between 0 and 1. As the relationship between Knc and θz is empirical, we need to

examine the range of zenith angle used to develop Eqn. (6.8). Maxwell (1987) uses relative

optical air mass values in the range from 1 to 12 to develop Eqn. (F.10). The air mass range

of 1 to 12 corresponds to zenith angle ranged from 0◦ to 85.853◦ (≈ 86◦) which give rise to

the first constraint for the algorithm, θz ≤ 86◦.

The second constraint relates to ∆Kn, ∆Kn ≥ 0 (see Figs. 3–5 in (Maxwell, 1987) for

details). ∆Kn is a function of θz and Kt. Fig. 6.4 plots the variation of ∆Kn with Kt

for various zenith angles. It is clear from Fig. 6.4 that for large zenith angles, ∆Kn may

take negative values for certain values of Kt. Therefore, Kt is only valid below a certain

threshold. For instance when θz = 80◦, Kt must be smaller than 0.6 for any valid ∆Kn

estimation.

Knc − ∆Kn > 0 is the third constraint. This constraint is necessary as the value of

direct normal transmittance should not go beyond the clear sky condition. Fig. 6.5 plots

the variation of Kn (Kn = Knc − ∆Kn) with Kt for various zenith angles. For various

zenith angles, the function Kn = f(Kt) intersects the x–axis at different positions. These
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Fig. 6.4 ∆Kn versus Kt for various zenith angles.

x–intercepts act as lower bounds for possible Kt values.
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Fig. 6.5 Kn versus Kt for various zenith angles.

As these three constraints describe necessary conditions for the existence of Kt, all must

be satisfied for the solutions obtained by Brent’s minimization to be valid for Maxwell

model.
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6.4 Results and discussions

Table 6.4 and 6.5 show the monthly performance of various models converting solar irradi-

ance on tilted planes to GHI. It is observed that the cRMSE for irradiance conversion from

tilt to horizontal is slightly larger than those from horizontal to tilt conversions. Recall

that all the decomposition models are shown to introduce large errors in Kd and Kn in

section 6.2. These errors will be carried forward into prediction of Idif and Idir.

When irradiance is converted from tilt to horizontal, all three irradiance components on

the horizontal plane, namely, GHI, DNI and DHI need to be approximated (related through

various decomposition models). The errors from decomposition models will be embedded

in all three irradiance components. On the other hand, when we convert irradiance from

horizontal to tilt, only DNI and DHI are approximated, while GHI is measured. Therefore,

in this case, the errors from decomposition models will be embedded in DNI and DHI

components only, thus a smaller cRMSE is expected in Table 6.3 than in Tables 6.4 and

6.5.

6.4.1 Case study of the Maxwell model

Tables 6.4 and 6.5 show the overall performance of our algorithm converting solar irradiance

from tilt to horizontal. I focus on the performance of my algorithm over a one–day period

in this section. The conversion results from the Maxwell model are used to illustrate the

findings.

In the morning, due to a smaller incident angle at S111a than at S111b, a larger DNI

component is received at S111a. S111a expects higher irradiance levels than measurements

at S111b. Similarly, in the afternoon, measurements at S111a are lower than measurements

at S111b. This geometric configuration is illustrated in Fig. 6.6 (a), showing a typical day’s

measurements at S111a and S111b during 2011 July 5. I apply the algorithm and constraints

described in section 6.3 on the one–day data. The tilt to horizontal conversion result on

2011 July 5 is shown Fig. 6.6 (b). A significant reduction in the difference between two
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Table 6.4 Performance of five decomposition models (tilted to horizontal), using Liu and
Jordan isotropic approximation for Rd, over a period of six months, from 2011 January to
June. Global irradiance on tilted plane measurements from silicon sensors are inputs, the
output converted GHI is compared to SPN1 GHI measurements.

S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [W/m2] cRMSE [%] U95 [%] MBE [W/m2] cRMSE [%] U95 [%]

2011 January
Erbs -6.35 15.21 30.07 -1.87 9.65 18.96
Orgill -6.56 15.19 30.05 -1.90 9.64 18.94
Reindl (univariate) -6.48 14.94 29.56 -1.81 9.61 18.88
Maxwell -8.45 13.91 27.61 -2.02 8.63 16.95
Reindl (bivariate) -10.40 14.13 28.23 -3.37 8.75 17.24

2011 February
Erbs -15.66 12.00 24.40 -11.47 6.28 13.33
Orgill -16.00 12.13 24.70 -11.43 6.28 13.34
Reindl (univariate) -15.81 11.94 24.33 -11.31 6.24 13.25
Maxwell -17.74 11.34 23.30 -11.89 5.84 12.45
Reindl (bivariate) -17.41 12.35 25.23 -11.84 6.12 13.03

2011 March
Erbs -4.30 13.56 26.67 -4.78 9.29 18.39
Orgill -4.75 13.68 26.93 -4.79 9.27 18.36
Reindl (univariate) -4.70 13.39 26.56 -4.62 9.21 18.24
Maxwell -6.21 12.18 24.07 -5.87 8.00 15.95
Reindl (bivariate) -6.59 13.33 26.32 -6.06 8.87 17.65

2011 April
Erbs -9.14 12.80 25.44 -13.78 8.29 17.54
Orgill -9.08 12.87 25.57 -13.71 8.27 17.52
Reindl (univariate) -8.99 12.76 25.36 -13.55 8.23 17.42
Maxwell -10.70 11.72 23.41 -15.37 7.40 15.87
Reindl (bivariate) -10.62 12.52 24.93 -16.21 7.65 16.56

2011 May
Erbs -5.52 12.14 23.93 -12.90 8.10 17.16
Orgill -5.25 12.21 24.07 -12.85 8.13 17.23
Reindl (univariate) -5.13 12.15 23.95 -12.74 8.08 17.12
Maxwell -6.43 11.04 21.83 -14.34 7.39 15.80
Reindl (bivariate) -5.99 11.86 23.40 -14.93 7.52 16.29

2011 June
Erbs -5.18 13.45 26.51 -6.99 9.55 19.10
Orgill -5.19 13.50 26.61 -7.01 9.57 19.15
Reindl (univariate) -5.02 13.40 26.41 -6.94 9.55 19.09
Maxwell -5.48 12.18 24.02 -7.89 8.84 17.72
Reindl (bivariate) -6.18 12.93 25.51 -9.16 8.98 18.17

stations is evident.

6.5 Chapter conclusion

In this chapter, transposition models and its converse, the inverse transposition models, are

studied. Irradiance data collected using reference cells on two tilted planes, namely, a 18.3◦
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Table 6.5 Continuation of previous table with 2011 July to December data.

Station S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [W/m2] cRMSE [%] U95 [%] MBE [W/m2] cRMSE [%] U95 [%]

2011 July
Erbs -20.44 13.32 27.38 -18.65 7.82 17.21
Orgill -20.44 13.46 27.69 -18.42 7.88 17.32
Reindl (univariate) -20.03 13.36 27.45 -18.31 7.85 17.25
Maxwell -20.91 12.35 25.49 -19.76 7.51 16.59
Reindl (bivariate) -20.88 13.38 27.50 -19.44 7.60 16.90

2011 August
Erbs -17.99 11.80 24.58 -14.44 5.99 13.68
Orgill -17.92 11.86 24.72 -14.44 6.00 13.74
Reindl (univariate) -17.68 11.74 24.46 -14.38 5.94 13.62
Maxwell -19.91 10.57 22.35 -16.36 5.33 12.56
Reindl (bivariate) -20.59 11.35 23.87 -17.21 5.49 13.20

2011 September
Erbs -27.13 12.67 27.75 -13.50 6.96 15.11
Orgill -27.04 12.64 27.77 -13.41 7.00 15.20
Reindl (univariate) -26.62 12.40 27.25 -13.34 6.95 15.11
Maxwell -41.26 10.04 23.72 -23.88 4.03 11.00
Reindl (bivariate) -30.65 12.37 27.58 -15.68 6.66 14.90

2011 October
Erbs -14.95 12.82 26.26 -6.85 7.15 14.50
Orgill -14.94 12.85 26.33 -6.90 7.15 14.52
Reindl (univariate) -14.87 12.67 25.99 -6.78 7.11 14.42
Maxwell -17.89 12.13 25.18 -7.58 6.20 12.67
Reindl (bivariate) -20.10 12.16 25.44 -9.18 6.53 13.52

2011 November
Erbs -1.75 11.30 22.18 -1.11 7.50 14.71
Orgill -2.02 11.51 22.60 -1.16 7.49 14.96
Reindl (univariate) -2.08 11.38 22.34 -1.01 7.44 14.62
Maxwell -2.64 10.38 20.39 -0.84 6.22 12.21
Reindl (bivariate) -3.90 10.79 21.24 -1.94 6.86 13.49

2011 December
Erbs 12.62 14.76 29.79 23.60 13.99 30.97
Orgill 11.88 14.89 29.97 23.06 14.05 31.00
Reindl (univariate) 12.18 14.96 30.13 23.19 14.01 30.96
Maxwell 11.41 13.73 27.56 24.02 12.09 27.17
Reindl (bivariate) 10.32 14.17 28.30 24.60 13.57 30.10

NE facing plane and a 6.1◦ SW facing plane, are individually used to reconstruct the GHI

measurements made using the horizontally installed SPN1 pyranometer. cRMSE of ≈ 13%

and ≈ 6% are found for the two tilts respectively.

Inverse transposition model aims at solving three unknowns (namely, Iglo, Idir, Idif) using

a set of tilted irradiance measurements It. Although Eqn. (6.2) provides a link between GHI,

DHI and DNI, so that one of the three unknown can be represented using the other two, we

still cannot solve two unknowns using one equation. Decomposition models provide repre-

sentations of DNI (or DHI) using GHI, my method is thus able to reconstruct all horizontal
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Fig. 6.6 (a) Time series plot for It measured on 2011 July 5 at stations S111a and S111b.
(b) Converted GHI.

irradiance components using Eqn. (6.1). However, the non–injective decomposition models

are the main source of errors. To solve the inverse transposition model deterministically, we

can utilize two sets of irradiance measurements from two different tilt angles for horizontal

data reconstruction. In the next chapter, such inverse decomposition models are described.

As the eventual goal of this chapter is to input these transposed horizontal data into the

spatio–temporal forecasting models, their accuracies have to considered. The accuracies of

the inverse transposition models depend on the tilt angle of the reference cell. In this chapter,

the cRMSE from data using the 6.1◦ sensor is within the tolerable range for forecasting

applications, however the conversion errors using data from the 18.3◦ sensor is significant.

For many PV systems installed in the mid–latitude sites, the array tilts are often in the

range of 20◦ to 40◦. The inverse transposition models herein described are not validated

with such configurations, nevertheless, the errors are believed to be even larger than those

displayed in Tables 6.4 and 6.5. In the next chapter, data from 10◦, 20◦, 30◦ and 40◦ are

used for validation of the inverse transposition models using both single– and multiple–
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sensors approaches. One can find that by using the multi–reference cells approach, the

inverse transposition models errors are significantly reduced.



Chapter 7

Inverse transposition using two or

more reference cells

The previous chapter shows how to use the data from a single reference cell on an arbitrary

tilted plane to estimate the horizontal irradiance components. In this section, inverse trans-

position models that use data from multiple–reference cells are proposed with validation.

Both isotropic and anisotropic transposition models have been introduced earlier, their

formulations can be found in Appendix E. Although the isotropic transposition models are

simplistic, the anisotropic nature of diffuse irradiance has been the largest source of error

associated with this assumption (Ma and Iqbal, 1983). Among those anisotropic transposi-

tion models seen in the previous chapter, the Perez model is the most universal and most

frequently used transposition model. In contrast with chapter 6 where many transposition

models are considered and compared, I focus on the Perez model in this chapter. Never-

theless, multi–sensor inverse transposition model using the isotropic assumptions (Faiman

et al., 1987, 1993) is used as a benchmark toward the end of this chapter.

Beside switching the inverse transposition model from a single–sensor approach to a

multi–sensor approach, several other improvements are made in this chapter: 1) an anisotropic

formulation of Rr is considered, 2) reflection loss and spectral loss of the reference cell are

taken into the account, and most importantly 3) the Perez model coefficients are adjusted
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using the tropical data.

7.1 An introduction to the Perez model

6.5◦

15◦

horizon band

isotropic background
circumsolar

Fig. 7.1 The three–part geometrical framework described by Perez et al. (1986).

The Perez irradiance model offers a practical representation of solar irradiance by con-

sidering the sky hemisphere as a three–part geometrical framework, namely, circumsolar

disc, horizon band and the isotropic background, as shown in Fig. 7.1. Radiation from each

of these zones is modeled differently to account various types of scattering which cause the

anisotropy. Perez et al. (1986) proposed the first version of the Perez model. The simpli-

fied Perez diffuse irradiance model was then proposed (Perez et al., 1987); it is given

by:

It,dif = Idif

[
(1 − F1)

1 + cos s
2 + F1

a

b
+ F2 sin s

]
, (7.1)

where Idif and It,dif are diffuse irradiance on horizontal plane and tilted plane, respectively;

s is the plane tilt angle;

a = max{0, cos θi}, (7.2)

b = max{cos 85◦, cos θz}, (7.3)
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given by Perez et al. (1988) are a result of the approximation by assuming that all circum-

solar energy originates from a point source; θi is the solar incidence angle; θz is the zenith

angle in degrees;

F1 = max{0, F11(ε′) + ∆′F12(ε′) + ϑzF13(ε′)}, (7.4)

F2 =F21(ε′) + ∆′F22(ε′) + ϑzF23(ε′), (7.5)

are defined as reduced brightness coefficients where ∆′ is the sky’s brightness; ε′ is the sky’s

clearness, ϑz is the zenith angle in radians. The parameters involved in ∆′ and ε′ calcula-

tions have been defined earlier in chapters 3, 5 and 6. The unknown parameters F11, F12,

F13, F21, F22, F23 can be determined empirically from measurements of the irradiance on

tilted surfaces. The set of F11, F12, F13, F21, F22, F23 has evolved many times. The most

widely accepted set of coefficients is given by Perez et al. (1990) as shown in Appendix E and

repeated here in Table 7.1, which is based on data from Albany (USA), Geneva (Switzer-

land), Los Angeles (USA), Albuquerque (USA), Phoenix (USA), Cape Canaveral (USA),

Osage (USA), Trappes (France), and Carpentras (France).

Table 7.1 Perez model coefficients for irradiance as a function of the sky’s clearness index
ε′ (Perez et al., 1990)

ε′ F11 F12 F13 F21 F22 F23

[1, 1.065) −0.0083 0.5877 −0.0621 −0.0596 0.0721 −0.022
[1.065, 1.23) 0.1299 0.6826 −0.1514 −0.0189 0.066 −0.0289
[1.23, 1.5) 0.3297 0.4869 −0.2211 0.0554 −0.064 −0.0261
[1.5, 1.95) 0.5682 0.1875 −0.2951 0.1089 −0.1519 −0.014
[1.95, 2.8) 0.873 −0.392 −0.3616 0.2256 −0.462 0.0012
[2.8, 4.5) 1.1326 −1.2367 −0.4118 0.2878 −0.823 0.0559
[4.5, 6.2) 1.0602 −1.5999 −0.3589 0.2642 −1.1272 0.1311
[6.2, +∞) 0.6777 −0.3273 −0.2504 0.1516 −1.3765 0.2506

Although Table 7.1 is considered to be at an asymptotic level of optimization, the lo-

cations (see above) used to fit the original set of coefficients do not include a tropical site.

Meteorological differences between the original sites and tropical regions may therefore af-

fect the performance of the transposition model. Singapore is located near the equator with

a latitude of 1.3◦N and has a tropical climate. It is therefore well–suited for investigating
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the effect of locally (under a tropical weather condition) adjusted model coefficients. I ex-

plicitly express the mathematical derivations here to facilitate further applications in other

locations where model coefficients adjustment may apply.

7.2 Model coefficients adjustment

A least square approach is used to adjust the model coefficients F11, F12, F13, F21, F22, F23.

Substituting Eqns. (7.4) and (7.5) into Eqn. (7.1) yields

It,dif =Idif
1 + cos s

2 + Idif

(
a

b
− 1 + cos s

2

)
(F11 + ∆′F12 + ϑzF13)

+ Idif sin s(F21 + ∆′F22 + ϑzF23). (7.6)

Given n tilted sensors and m samples of Idif (and It,dif correspondingly), the equivalent

linear algebra of (7.6) is

AX = Y , (7.7)

where

X =
(
F11 F12 F13 F21 F22 F23

)⊤
,∈ R6 (7.8)

and

A =



A1,1
1 A1,1

2 A1,1
3 A1,1

4 A1,1
5 A1,1

6
... ... ... ... ... ...

A1,m
1 A1,m

2 A1,m
3 A1,m

4 A1,m
5 A1,m

6
... ... ... ... ... ...

An,1
1 An,1

2 An,1
3 An,1

4 An,1
5 An,1

6
... ... ... ... ... ...

An,m
1 An,m

2 An,m
3 An,m

4 An,m
5 An,m

6



, ∈ Rnm×6 (7.9)
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with Ai,j
1 = Ij

dif [ai,j/bj − (1 + cos si)/2], Ai,j
2 = ∆′

jA
i,j
1 , Ai,j

3 = ϑj
zA

i,j
1 , Ai,j

4 = Ij
dif sin si,

Ai,j
5 = ∆′

jA
i,j
4 , Ai,j

6 = ϑj
zA

i,j
4 , i = 1, · · · , n, j = 1, · · · ,m.

Y =
(
Y1,1 · · · Y1,m · · · , Yn,1 · · · Yn,m

)⊤
, ∈ Rnm (7.10)

with Yi,j = I i,j
t,dif − Ij

dif(1 + cos si)/2, i = 1, · · · , n, j = 1, · · · ,m. The least square solution

to Eqn. (7.7) is given by

X =
(
A⊤A

)−1
A⊤Y . (7.11)

This least squares method is described by Perez et al. (1988). To establish an accurate

fit, the method requires n sets of measurements of tilted diffuse irradiance and a set of

horizontal diffuse irradiance measurements (each set has m samples), i.e., I i,j
t,dif and Ij

dif .

However in practice, tilted diffuse irradiance measurements are scarce. This is particularly

true in developing countries where long term, precisely calibrated irradiance datasets are

often not available. Cost–effective silicon sensors can however be used to measure global

tilted irradiance, It = It,dif +It,dir, where It,dir is the in–plane direct irradiance. Such sensors

are commonly installed in medium and larger PV systems for system monitoring and it is

likely that such data becomes widely available as PV systems proliferate globally. A novel

approach that circumvents the need for tilted diffuse component observations is therefore

proposed.

Two types of devices are commonly used to perform radiometric measurements, namely,

thermopile pyranometers and reference cells. Meydbray et al. (2012a) pointed out three

disadvantages of reference cells as compared to a tilted pyranometer: 1) reference cells

suffer from spectral loss as they have a narrow wavelength response, 2) reference cells suffer

from reflection losses owing to its flat surface design and 3) the linearity of the reference cells’

output signals is affected by temperature, this however can be corrected with an on–board

temperature sensor. Therefore the spectral and reflection losses need to be accounted for

when the reference cell measurements are used. The losses are embedded in the formulations
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as follows.

7.2.1 Derivation of It,dif

The irradiance due to ground reflection (extended from Temps and Coulson, 1977), It,refl, is

given by

It,refl = 1
2ρ

′(Ibeam + Idif)(1 − cos s)[1 + sin2(θz/2)]| cos(α− β)| (7.12)

where ρ′ is the foreground’s albedo, α and β are the azimuth of sun and plane respectively.

Ibeam is the horizontal direct irradiance or horizontal beam irradiance; Ibeam = Idir cos θz.

Note that this reflected irradiance component was given earlier as ρ′IgloRr in chapter 6

and Rr = 0.5(1 − cos s) follows an isotropic assumption. This isotropic assumption on the

transposition factor for ground reflection is adopted by many recent studies (e.g. Evseev

and Kudish, 2009; Gueymard, 2009; Yadav and Chandel, 2013; Yoshida et al., 2013) due

to its simplicity, nevertheless an anisotropic model for Rr is used in this chapter. Many

authors have proposed anisotropic ground reflection models (Gardner and Nadeau, 1988;

Gueymard, 1987), but lack of experimental data has hampered their validation. Eqn. (7.12)

models Rr as 0.5(1 − cos s)[1 + sin2(θz/2)]| cos(α − β)|. This anisotropic model was first

proposed by Temps and Coulson (1977), and is a well–accepted anisotropic model for Rr

(Elminir et al., 2006).

It is convenient here to add Eqn. (7.12) in the It,dif expression so It,dif now accounts for

both in–plane diffuse and reflected components; at the same time, the reflection loss and

spectral loss as Lrefl and Lspec are added into the formulation, then Eqn. (7.6) becomes

It,dif =0.5ρ′(Ibream + Idif)(1 − cos s)
[
1 + sin2

(
θz

2

)]
| cos(α− β)|(1 − Lrefl)(1 − Lspec)

+ Idif
1 + cos s

2 (1 − Lrefl)(1 − Lspec)

+ Idif

(
a

b
− 1 + cos s

2

)
(1 − Lrefl)(1 − Lspec)(F11 + ∆′F12 + ϑzF13)

+ Idif sin s(1 − Lrefl)(1 − Lspec)(F21 + ∆′F22 + ϑzF23). (7.13)
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Having obtained the It,dif representation, to construct It, It,dir is expressed as follows.

7.2.2 Derivation of It,dir

It,dir can be calculated from Ih deterministically by geometry as:

It,dir = Ibeam
cos θi

cos θz

. (7.14)

If considering spectral and reflection losses, Eqn. (7.14) becomes:

It,dir = Ibeam
cos θi

cos θz

(1 − y)(1 − Lspec). (7.15)

Here I use a set of parameter y provided by Fraunhofer ISE, which gives a piecewise linear

representation of the reflection loss in It,dir,

y =



0, if θi ∈ [0, 30◦);

0.0006(θi − 30◦), if θi ∈ [30◦, 40◦);

0.006 + 0.0012(θi − 40◦), if θi ∈ [40◦, 50◦);

0.018 + 0.0029(θi − 50◦), if θi ∈ [50◦, 60◦);

0.047 + 0.0068(θi − 60◦), if θi ∈ [60◦, 65◦);

0.081 + 0.0098(θi − 65◦), if θi ∈ [65◦, 70◦);

0.13 + 0.0166(θi − 70◦), if θi ∈ [70◦, 75◦);

0.213 + 0.0276(θi − 75◦), if θi ∈ [75◦, 80◦);

0.351 + 0.047(θi − 80◦), if θi ∈ [80◦, 85◦);

0.586 + 0.0828(θi − 85◦), if θi ∈ [85◦, 90◦),

(7.16)

to account for the reflection loss of It,dir on the glass surface of silicon sensors.

Substituting Eqns. (7.13) and (7.15) into the equation It = It,dir + It,dif , and dividing
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Idif on both sides yields:

It

Idif
=Ibeam cos θi(1 − y)(1 − Lspec)

Idif cos θz

+ 0.5ρ′ Iglo

Idif
(1 − cos s)[1 + sin2(θz/2)]| cos(α− β)|(1 − Lrefl)(1 − Lspec)

+ 1 + cos s
2 (1 − Lrefl)(1 − Lspec)

+
(
a

b
− 1 + cos s

2

)
(1 − Lrefl)(1 − Lspec)(F11 + ∆′F12 + ϑzF13)

+ sin s(1 − Lrefl)(1 − Lspec)(F21 + ∆′F22 + ϑzF23). (7.17)

where Iglo = Idif + Ibeam is the global horizontal irradiance. Write Eqn. (7.17) into linear

algebra form:

A∗X = Y ∗, (7.18)

where

A∗ =



H1,1
1 ∆′

1H
1,1
1 ϑ1

zH
1,1
1 H1,1

2 ∆′
1H

1,1
2 ϑ1

zH
1,1
2

... ... ... ... ... ...

H1,m
1 ∆′

mH
1,m
1 ϑm

z H
1,m
1 H1,m

2 ∆′
mH

1,m
2 ϑm

z H
1,m
2

... ... ... ... ... ...

Hn,1
1 ∆′

1H
n,1
1 ϑ1

zH
n,1
1 Hn,1

2 ∆′
1H

n,1
2 ϑ1

zH
n,1
2

... ... ... ... ... ...

Hn,m
1 ∆′

mH
n,m
1 ϑm

z H
n,m
1 Hn,m

2 ∆′
mH

n,m
2 ϑm

z H
n,m
2



, ∈ Rnm×6 (7.19)

with

H i,j
1 =

(
ai,j

bj

− 1 + cos si

2

)
(1 − Lrefl)(1 − Lspec), (7.20)

H i,j
2 = sin si(1 − Lrefl)(1 − Lspec); (7.21)
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and

Y ∗ =
(
Y ∗

1,1 · · · Y ∗
1,m · · · Y ∗

n,1 · · · Y ∗
n,m

)⊤
, ∈ Rnm (7.22)

with

Y ∗
i,j =I i,j

t

Ij
dif

− (1 − Lrefl)(1 − Lspec)

×

1 + cos si

2 + 0.5ρ′ I
j
glo

Ij
dif

(1 − cos si)[1 + sin2(θj
z/2)]| cos(αj − βi)|


− Ij

beam cos θi,j
i (1 − yi,j)(1 − Lspec)
Ij

dif cos θj
z

. (7.23)

Then, the parameters of F11, F12, F13, F21, F22, F23 can be optimized by the least square

method as follows:

X =
(
A∗⊤A∗

)−1
A∗⊤Y ∗. (7.24)

7.2.3 Derivation of α, θi and θz

By inspecting each components of (7.24), we need to calculate α, θi and θz. They are three

frequently encountered solar positioning parameters. There are many simplified approxi-

mations for these parameters (e.g. Masters, 2004; Michalsky, 1988). To ensure sufficient

accuracy, the Solar Position Algorithm (SPA) from National Renewable Energy Laboratory

is used to calculate the azimuth of the sun, the incidence angle and the zenith angle. The

details of this algorithm can be found in the open source C program by Reda and Andreas

(2004, 2008).

7.2.4 Performance

All measurements used in this chapter are taken from the meteorological station at Solar

Energy Research Institute of Singapore (SERIS). The horizontal global irradiance, Iglo, is

measured by three devices: a silicon sensor (±5% uncertainty), a pyranometer (CMP11

from Kipp & Zonen, ±3% uncertainty) and a pyranometer (SPN1 from Delta–T, ±5%
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uncertainty); horizontal diffuse irradiance is measured by the same pyranometer (SPN1);

in–plane global irradiance is measured by four other silicon sensors with different tilts: 10◦,

20◦, 30◦, 40◦, with the same azimuth of 64◦ NE. All silicon sensors were calibrated at Fraun-

hofer ISE CalLab with on–board temperature sensors to perform temperature correction.

Measurements are sampled with overall historical data availability higher than 99.7%. The

sampling rate is 1 second; and the data is logged as 1 min averages. Fig. 7.2 shows a

photograph of the irradiance measurement station located on the roof of SERIS.

Fig. 7.2 Photograph of the irradiance measurement station located on the rooftop of Solar
Energy Research Institute of Singapore (SERIS).

The Perez model has been used mostly for hourly application despite its initial instan-

taneous design. To ensure sufficient samples, an hourly averaged data set over the entire

year 2013 is used to adjust the Perez model coefficients; data from 2014 January to 2014

May are used for validation. Data points with θz > 87◦ and θi > 90◦ are not considered.

For horizontal irradiance inputs, the interpolated values are used:

Idif =I(CMP11)
glo

I
(SPN1)
dif

I
(SPN1)
glo

, (7.25)

Ibeam =I(CMP11)
glo − Idif , (7.26)

since CMP11 is an industrial standard sensor with higher accuracy than SPN1. The ratio
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of diffuse/global irradiance is derived from the SPN1 data. I(CMP11)
glo , I(SPN1)

dif and I(SPN1)
glo are

readings from CMP11 (GHI) and SPN1 (DHI and GHI), respectively.

Following procedures described in sections 7.2.1 to 7.2.3, the adjusted set of F ∗
11, F ∗

12, F ∗
13,

F ∗
21, F ∗

22, F ∗
23 are calculated, as shown in Table 7.2. The readings from the four tilted silicon

sensors (at 10◦, 20◦, 30◦ and 40◦) are used for fitting the new parameters. The mean bias

error (MBE) in W/m2 and percentage root mean square error (nRMSE) in % are selected

as the error metrics for the evaluation. The error calculations are shown in Eqns. (1.1) and

(1.3) respectively. Table 7.3 shows the MBE and nRMSE of irradiance conversion results

to various tilts using standard Perez model with coefficient sets F and F ∗ for hourly data.

Table 7.2 Locally fitted Perez model coefficients using one year (2013) of hourly irradiance
data from Singapore.

ε′ F ∗
11 F ∗

12 F ∗
13 F ∗

21 F ∗
22 F ∗

23

[1, 1.065) 0.0485 0.5018 −0.1070 0.1976 −0.4549 0.0051
[1.065, 1.23) 0.3239 0.3845 −0.2828 0.2682 −0.5768 −0.0013
[1.23, 1.5) 0.5479 0.3355 −0.4283 0.1301 −0.1287 0.0166
[1.5, 1.95) 0.6305 0.8401 −0.5762 0.1082 −0.1478 0.1072
[1.95, 2.8) 1.1469 −0.1501 −0.7686 0.0979 −0.5319 0.1802
[2.8, 4.5) 1.9053 −2.7319 −0.9979 0.0982 −0.3522 0.2872
[4.5, 6.2) 1.0591 0.4510 −0.5650 0.1126 −0.5392 0.2710
[6.2, +∞) 0.0949 −9.0339 −0.4739 0.0742 −0.2914 0.3272

Table 7.3 Error comparison for irradiance conversion from horizontal to tilted planes in
Singapore using the Perez model with coefficient sets F (original) and F ∗ (adjusted).

s
MBE [W/m2] nRMSE [%]

F F ∗ F F ∗

10◦ 2.54 4.21 2.31 2.26
20◦ -2.39 0.63 2.73 2.13
30◦ -0.01 4.02 3.57 3.19
40◦ -3.17 1.47 4.60 4.00
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I further describe the errors by showing the scatter plots of the modeled values versus

the measurements (see Fig 7.3 for results from hourly data). Minimal deviations from the

45◦ lines are observed in these plots showing unbiased (small MBE) estimations under both

sets of model coefficients. It can be concluded that the coefficients adjusted for the local

irradiance conditions in Singapore perform better than the original ones from (Perez et al.,

1990) in both hourly and instantaneous applications. Considering that the improvements in

nRMSE are marginal, this exercise confirms the broad applicability of the Perez model for

irradiance conditions including the tropics. For applications of the Perez model at locations

remote from the ones listed in section 7.1, locally fitted model coefficients may be helpful

to improve the conversion accuracies. Table 7.3 suggests that the errors are small enough

to be compatible with measurement uncertainties (for example ±3% for CMP11 from Kipp

& Zonen), the improvements made are however significant given the large sample size.

7.3 Solutions to the inverse transposition problem

In some instances, it is necessary to apply the inverse Perez model, i.e., converting irradiance

from tilt to horizontal. For example, one may seek to leverage in–plane irradiance readings

from PV systems (typically made at larger PV systems for performance ratio evaluation)

for GHI data, which then can be used to create irradiance maps of an area. With increasing

penetration levels of variable solar power into electricity grids, such irradiance maps as well

as spatio–temporal solar irradiance forecasting techniques become more and more relevant.

One such example where GHI data are required is space–time kriging. A novel technique

is introduced in this section, namely, irradiance conversion from tilt to horizontal using

two or more silicon sensors. The merit of this new technique goes to its cost–effectiveness,

as only silicon sensors (measuring tilted global irradiance) are required for this conversion

algorithm. Neither tilted diffuse measurements nor pyranometers are needed.
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To facilitate the analysis, define k = Ibeam/Idif , then Eqn. (7.17) can be re–arranged as:

It =kIdif cos θi(1 − y)(1 − Lspec)
cos θz

+ Idif
1 + cos s

2 (1 − Lrefl)(1 − Lspec)

+ 0.5ρ′Idif(1 + k)(1 − cos s)[1 + sin2(θz/2)]| cos(α− β)|(1 − Lrefl)(1 − Lspec)

+ Idif

(
a

b
− 1 + cos s

2

)
(1 − Lrefl)(1 − Lspec)

(
F11 + Idif

Io cos θz

F12 + ϑzF13

)
+ Idif sin s(1 − Lrefl)(1 − Lspec)

(
F21 + Idif

Io cos θz

F22 + ϑzF23

)
. (7.27)

Note that the invention of parameter k is strictly for mathematical convenience. One could

consider k as a form of Iglo, since Iglo = Ibeam + Idif . By inspecting the equation, two cases

are made:

• S = 0, i.e., irradiance readings from horizontal silicon sensors are available. (This is

a null problem; its inclusion is to maintain mathematical completeness.);

• S > 0, i.e., irradiance readings from horizontal silicon sensors are unavailable.

7.3.1 Case of s = 0

In this case, θi = θz, a = b, and Eqn. (7.27) is simplified to

kIdif(1 − y)(1 − Lspec) + Idif(1 − Lrefl)(1 − Lspec) = It,0. (7.28)

where It,0 is the irradiance received by a zero degree tilted silicon sensor.

• If Idif is known, k can be solved from Eqn. (7.28) as

k = It,0/Idif − (1 − Lrefl)(1 − Lspec)
(1 − y)(1 − Lspec)

. (7.29)

Thus Ibeam = kIdif and Iglo = (1 + k)Idif .
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• If k is known, from Eqn. (7.28)

Idif = It,0

k(1 − y)(1 − Lspec) + (1 − Lrefl)(1 − Lspec)
. (7.30)

So Ibeam = kIdif and Iglo = (1 + k)Idif .

• If both Idif and k are unknown, then with only one equation there exist infinite solu-

tions. There are two ways to deal with the issue. Applying decomposition models to

approximate the diffuse irradiance from horizontal irradiance (e.g. Erbs et al., 1982;

Maxwell, 1987). However, due to the non–injective nature of the mapping from GHI

to DHI, using decomposition models introduces large errors (Ridley et al., 2010). In

the other case, irradiance readings from another tilted silicon sensor can assist to find

the unique solution by providing the additional equation, which will be discussed in

section 7.3.2 as a special case.

In general, when global irradiance measurements from horizontal silicon sensors (It,0) are

available, the derivation of Idif and Iglo becomes straightforward and the Perez model is not

required for reconstruction.

7.3.2 Case of s > 0

In this case, Eqn. (7.27) can be re–arranged to:

(AIdif + Bk + C)Idif = It, (7.31)
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where

A =

[
F12

(
a

b
− 1 + cos s

2

)
+ F22 sin s

]
(1 − Lrefl)(1 − Lspec)

Io cos θz

, (7.32)

B =cos θi(1 − y)(1 − Lspec)
cos θz

+ (1 − Lrefl)(1 − Lspec)

× 0.5ρ′(1 − cos s)[1 + sin2(θz/2)]| cos(α− β)|, (7.33)

C =(1 − Lrefl)(1 − Lspec)
{

0.5ρ′(1 − cos s)[1 + sin2(θz/2)]| cos(α− β)|

+ 1 + cos s
2 + (F11 + ϑzF13)

(
a

b
− 1 + cos s

2

)
+ (F21 + ϑzF23) sin s

}
. (7.34)

• If Idif is known, k can be solved from Eqn. (7.31) as

k = It/Idif − AIdif − C
B

. (7.35)

Thus Ibeam = kIdif and Iglo = (1 + k)Idif .

• If k is known, from Eqn. (7.31)

AI2
dif + (Bk + C)Idif − It = 0. (7.36)

If A = 0, the equation has a unique solution:

Idif = It

Bk + C
. (7.37)

If A ̸= 0 and (Bk + C)2 + 4AIt ≥ 0, Eqn. (7.31) can be solved as

Idif =
−(Bk + C) ±

√
(Bk + C)2 + 4AIt

2A
. (7.38)

Any negative solution should be ignored as Idif ≥ 0.

• If both Idif and k are unknown, as mentioned in section 7.3.1, irradiance values from
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another silicon sensor with different tilt are necessary to get the unique solution.

Suppose the irradiance values from two different tilted silicon sensors are It,1 and It,2,

respectively, it follows from Eqn. (7.31) that

(A1Idif + B1k + C1)Idif = It,1, (7.39)

(A2Idif + B2k + C2)Idif = It,2. (7.40)

Mutually dividing Eqns. (7.39) and (7.40) to eliminate Idif yields

k = (A2It,1 − A1It,2)Idif + C2It,1 − C1It,1

B1It,2 − B2It,1
. (7.41)

Substituting Eqn. (7.41) into Eqn. (7.39) yields

A∗I2
dif + B∗Idif + C∗ = 0, (7.42)

where

A∗ = A1 + B1
A2It,1 − A1It,2

B1It,2 − B2It,1
, (7.43)

B∗ = C1 + B1
C2It,1 − C1It,2

B1It,2 − B2It,1
, (7.44)

C∗ = −It,1. (7.45)

If A∗ = 0, the group of Eqns. (7.39) and (7.40) has a unique solution:

Idif = −C∗

B∗ . (7.46)

If A∗ ̸= 0 and b∗2 − 4A∗C∗ ≥ 0, the two solutions to Eqns. (7.39) and (7.40) are

Idif = −B∗ ±
√
b∗2 − 4A∗C∗

2A∗ , (7.47)
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where the negative root should be ignored.

The closed form solutions presented above cover all cases of data availability. Model

coefficients F11, F12, F13, F21, F22, F23 are selected in the following manner:

• Values of defined coefficients A, B and C are only functions of F11, F12, F13, F21, F22,

F23.

• Eight sets of A, B and C can be calculated based on different Perez model coefficients.

These values lead to eight diffuse horizontal irradiance (DHI) estimates, thus eight

global horizontal irradiance (GHI) estimates.

• Eight ε′ values can be then calculated using GHI/DHI estimates.

• If the assumed ε′ agrees with the calculated ε′, the set is selected as the true es-

timated GHI. Furthermore, direct normal irradiance (DNI) can be calculated using

true estimates of GHI.

7.3.3 Case study

With the reliable data of 5 months (2014 January to May), the inverse problem of Perez

transposition is validated using 10 case studies:

1. Idif is known, reconstruct Iglo from It,10 (10◦ tilted silicon sensor);

2. Idif is known, reconstruct Iglo from It,20 (20◦ tilted silicon sensor);

3. Idif is known, reconstruct Iglo from It,30 (30◦ tilted silicon sensor);

4. Idif is known, reconstruct Iglo from It,40 (40◦ tilted silicon sensor);

5. Idif is unknown, reconstruct Iglo from It,10 and It,20;

6. Idif is unknown, reconstruct Iglo from It,10 and It,30;

7. Idif is unknown, reconstruct Iglo from It,10 and It,40;
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8. Idif is unknown, reconstruct Iglo from It,20 and It,30;

9. Idif is unknown, reconstruct Iglo from It,20 and It,40;

10. Idif is unknown, reconstruct Iglo from It,30 and It,40.

These 10 case studies cover all sensor permutations. In addition to these, I define another

8 case studies whose choices are justified in section 7.3.4.

11. Idif is unknown, reconstruct Iglo from It,10, It,20 and It,30;

12. Idif is unknown, reconstruct Iglo from It,10, It,30 and It,40;

13. Idif is unknown, reconstruct Iglo from It,20, It,30 and It,40;

14. Idif is unknown, reconstruct Iglo from It,10, It,20, It,30 and It,40;

15. Idif is unknown, reconstruct Iglo from It,10 only (with decomposition model);

16. Idif is unknown, reconstruct Iglo from It,20 only (with decomposition model);

17. Idif is unknown, reconstruct Iglo from It,30 only (with decomposition model);

18. Idif is unknown, reconstruct Iglo from It,40 only (with decomposition model).

Table 7.4 shows the error metrics for reconstructions, which follows Eqns. (1.1) and (1.3).

The errors are observed to be in the same range as those reported in Table 7.3. By using

two silicon sensors on different tilts (case studies (5), (6) and (7)), it is possible to produce

better results than deriving the Idif from data of the SPN1 sensor (case studies (3) and (4)).

Therefore a pair of carefully modeled silicon sensors is preferred over a suboptimal grade

pyranometer due to the lower cost of silicon sensors.

7.3.4 Benchmarking

The studies on inverse transposition is rarely encountered in the literature. Nevertheless, the

works by Faiman et al. (1987, 1993) reveal a simplistic approach to the inverse transposition
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Table 7.4 Errors from the proposed method to solve the inverse Perez model. Faiman et al.
(1987) model and Yang et al. (2013a) model are used to benchmark the results.

Inverse Perez model Faiman et al. (1987) model Yang et al. (2013a) model

Case MBE RMSE MBE RMSE MBE RMSE
[W/m2] [%] [W/m2] [%] [W/m2] [%]

(1) -4.12 1.87 — —
(2) -0.02 1.69 — —
(3) -3.26 2.64 — —
(4) 0.55 3.84 — —
(5) -3.88 2.57 -7.68 5.11 —
(6) -4.53 2.43 -5.61 4.63 —
(7) -3.86 2.33 -6.42 5.01 —
(8) 1.30 3.21 1.38 5.45 —
(9) 0.73 2.70 -0.18 5.04 —
(10) 3.06 5.66 -6.54 7.32 —
(11) — -5.87 3.61 —
(12) — -6.16 3.71 —
(13) — -0.64 4.08 —
(14) — -5.01 3.49 —
(15) — — 1.11 4.01
(16) — — 3.75 7.27
(17) — — -13.68 16.13
(18) — — -26.72 23.00

problem. In both works, a multi–pyranometer approach is used to solve the problem by

first assuming isotropy in both diffuse irradiance and irradiance due to ground reflection. I

implement the method outlined by Faiman et al. (1987) to benchmark my results.

With isotropic assumptions on the diffuse transposition factor and the transposition

factor due to ground reflection, Eqn. (7.13) is simplified to:

It,dif =0.5ρ′(Ibeam + Idif)(1 − cos s)(1 − Lrefl)(1 − Lspec)

+ Idif
1 + cos s

2 (1 − Lrefl)(1 − Lspec). (7.48)

Together with the in–plane direct irradiance, Eqns. (7.48) and (7.15) are substituted into

It = It,dif + It,dir and yield:

It =0.5ρ′(Ibeam + Idif)(1 − cos s)(1 − Lrefl)(1 − Lspec)

+ Idif
1 + cos s

2 (1 − Lrefl)(1 − Lspec)

+ Ibeam
cos θi

cos θz

(1 − y)(1 − Lspec). (7.49)
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By inspecting, Eqn. (7.49) can be conveniently written into:

It = p′Ibeam + q′Idif (7.50)

with

p′ =
[

cos θi

cos θz

(1 − y) + ρ′
(1 − cos s

2

)
(1 − Lrefl)

]
(1 − Lspec), (7.51)

q′ =
[

(1 + cos s) + ρ′(1 − cos s)
2

]
(1 − Lrefl)(1 − Lspec), (7.52)

which can be readily calculated. Given n tilted sensors, this equation can then be written

into linear algebra form:

ÃX̃ = Ỹ (7.53)

where

X̃ =
(
Ibeam Idif

)⊤
, ∈ R2 (7.54)

Ỹ =
(
I1

t · · · In
t

)⊤
, ∈ Rn (7.55)

and

Ã =


p′

1 q′
1

... ...

p′
n q′

n

 . ∈ Rn×2 (7.56)

The least square solution to Eqn. (7.53) is given by:

X̃ = (Ã⊤Ã)−1Ã⊤Ỹ. (7.57)

Based on Eqn. (7.57), Ibeam and Idif can be calculated based on data from any n ≥ 2 sensors,

and thus Iglo. The Faiman et al. (1987) model is used in case studies (5) to (14) covering all

sensors permutations. Table 7.4 shows the error metrics of the model. It can be seen that
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the isotropic Faiman et al. (1987) model only performs marginally worse than the proposed

inverse Perez model. Further to that, when 3 or more sensors are used (case studies (11) to

(14)), the errors are smaller than the errors from the 2 sensors cases of the Faiman et al.

(1987) model.

These above comparison between the isotropic and anisotropic approaches to the inverse

transposition problem aligns with the results reported in a previous work by Gueymard

(2009) which evaluates the horizontal to tilt conversions. The improvements from using

isotropic models to using anisotropic models in both works are shown to be certain but

marginal. I note that the Perez model depends on ε′ binning, the retrieved ε′ values might

not agree with the expected bin. Thus, when we follow the procedures described in sec-

tion 7.3.2, the conversion of a small percentage of data points will be unsuccessful. The

failure rate of the algorithm is about 2 to 3 percent. This issue however can be addressed

by redefining the ε′ binning. On the other hand, the isotropic approach has guaranteed

solutions. The trade–off between the isotropic and anisotropic approaches can be evaluated

based on the applications.

All of the tilt to horizontal conversion algorithms shown in this chapter use at least two

sensors in GHI reconstruction. However, more than common, there is only a single sensor

available. In this case, the method introduced in chapter 6 is used. Erbs univariate decom-

position model (Erbs et al., 1982) is repeated here using the new data for benchmarking.

Table 7.4 shows the error metrics for case studies (15) to (18). The RMSE calculated using

measurements from the 10◦ tilt and the 20◦ tilt sensors improve from the ones reported in

chapter 6 as various losses are accounted in this chapter. Since the mapping between GHI

and DHI is non–injective owing to different sky conditions, the errors using the Yang et al.

(2013a) model are much larger than the ones using multiple sensor approaches. It can thus

be concluded that by including another reference cell at an alternative tilt, the accuracy of

tilt to horizontal conversion can be improved substantially. I have shown that the uncer-

tainties of the proposed algorithm are within the uncertainties of the measurements. The
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proposed conversion algorithm is therefore well suited and sophisticated enough to describe

the experimental results; a further refinement is not necessary.

7.4 Chapter conclusion

A least squares method is first introduced to optimize the Perez transposition model using

the tropical data. The locally fitted set of coefficients outperforms the original set of co-

efficients. Such regional optimizations of the Perez model coefficients are promoted. This

chapter then establishes closed form solutions for two–way conversion among various com-

ponents received on a horizontal plane and the ones received on tilted planes. At this stage,

all of the irradiance components listed in the nomenclature section have been modeled. Such

modeling gives convenience to a series of solar engineering problems, including:

• Use Iglo (pyranometer) and Idif (another pyranometer with shadow band or shadow

pattern) measurements to model It for PV module performance benchmarking. The

second pyranometer can be replaced by a pyrheliometer who measures Ibeam.

• Use measured It,1 and It,2 (two reference cells) to reconstruct Iglo and Idif . The re-

constructions are used to generate GHI maps and as inputs to irradiance forecasting

algorithms. This can be enhanced with tilted pyranometers, with equipment cost

being the trade–off.

• Use Iglo (pyranometer) and It (reference cell) to reconstruct the often desired horizon-

tal component, Idif , for financial saving on equipments.

Of particular importance to the methods introduced in this chapter is that observations

need not use costly pyranometers, but can be derived from low–cost reference cells. Since

performance monitoring using reference cells is very commonly carried out in larger PV

systems, it greatly increases the potential number of sites that can benefit from a locally–

optimized Perez model, even in the absence of a research–grade meteorological station.



Chapter 8

Network redesign using entropy

Many existing solar irradiance monitoring networks were built particularly for resource

assessment purposes; they are often spatially sparse. In order for the networks to handle

other increasingly important tasks, such as irradiance forecasting for grid integration, their

spatial sparsity must be addressed by adding in new monitoring stations.

Chapters 6 and 7 present two approaches of converting the tilted irradiance measure-

ments to GHI. These methods allow solar forecasters to utilize the data from the existing

PV systems, and thus make better forecasts by considering the additional data. Another

direct approach to the network sparsity issue is network expansion.

8.1 Chapter introduction

The network design approaches in solar engineering literature have two other key differences

with the one herein described: (1) the approach in (Yang and Reindl, 2015; Zagouras et al.,

2013, 2014a,b) uses satellite images as the input data to the design algorithms, (2) their

approach designs the network from scratch, i.e., it does not consider the existing irradi-

ance monitoring networks. Building new networks is costly, especially when the networks

are expected to be maintained for long period of time. However, there are many avail-

able networks which have been operating for decades, e.g., the National Solar Radiation
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Data Base (http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/), the New En-

ergy and Industrial Technology Development Organization (http://app7.infoc.nedo.go.jp/).

It is sometimes desired to revamp and expand these networks to better accomplish the needs

for resources assessment and other emerging applications such as irradiance forecasting. Uti-

lizing the existing monitoring networks is thus economically justified. An example project

is described in a recent publication (Davy and Troccoli, 2014), where the irradiance mon-

itoring network maintained by the Australian Bureau of Meteorology is redesigned based

on uncertainty modeling. Furthermore, the network construction projects are often multi–

phase. After the first phase of the project, ground data become available, which in turn

lead to better decisions and inference on stations’ locations in the following phases.

Unlike (Davy and Troccoli, 2014) where satellite data and genetic algorithm are used for

the redesign, I consider the ground data and entropy1. Although there is no literature on

statistical network redesign in solar engineering, rich literature is present in geosciences. Two

most adopted approaches are the kriging–based redesign (Ashraf et al., 1997; Zimmerman,

2006) and the entropy–based redesign (Mogheir et al., 2006; Owlia et al., 2011). The two

approaches are being compared in (Lee and Ellis, 1997); and I adopt the later in this chapter.

For a more detailed discussion on entropy–based redesign, readers are referred to the recent

book by Singh (2013). Section 8.3 briefly reviews the entropy–based redesign problems.

Before I reveal the redesign criteria, some practical issues associated with solar irradiance

spatio–temporal data have to be considered first. In particular, two issues are constantly be-

ing overlooked by solar engineers during problem solving, namely, the statistical distribution

of the (transformed) irradiance data and the isotropy of the spatial covariance structure.

Many statistical procedures have assumptions on distribution of the inputs data. Violation

of such assumptions of distribution may lead to unreliable and non–interpretable results. It

is therefore mandatory to perform some preliminary analyses, such as the normality test,

prior to modeling. The heterogeneous spatial covariance structure of an irradiance random
1In information theory, entropy is the average amount of information contained in each message received.

See Eqn. (8.10) for definition.

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
http://app7.infoc.nedo.go.jp/
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field is another practical issue. In spatial statistics, isotropic variograms or isotropic covari-

ance functions are often used to explain the spatial or spatio–temporal dependency in the

data. However, isotropy is rarely observed in environmental processes; many works over-

look this by fitting an isotropic model to the anisotropy data. This will result in suboptimal

predictive performance at the unobserved locations and at future time. I will address both

issues in sections 8.1.2 and 8.2.

8.1.1 Data

The analyses presented in chapter 5 consider data from 10 irradiance monitoring stations

in Singapore. As mentioned in chapter 5, those 10 stations belong to a bigger monitoring

network. The irradiance monitoring network with 25 stations in Singapore was completed

in 2013 December2. Fig. 8.1 shows the locations of these stations3. As Singapore is located

near the equator, there is no significant seasonal variation in the clear sky irradiance it

neither has significantly different weather patterns among months. Hourly data from 2014

July are therefore used in this chapter. As the focus here is the methodology, the use of one

month data is sufficient.

8.1.2 Normality test

Clear sky model developed in chapter 3 is first used to detrend the irradiance time series.

In statistics, normally distributed data are more amenable to standard analyses. However,

removing the diurnal trend from the time series does not guarantee a normal distribution

(Dong et al., 2013); further hypothesis testing is needed if we want to assume normal in the

following analyses. I use the Kolmogorov–Smirnov (K–S) test to test normality.
2I wrote the Renewable Energy paper (Yang et al., 2013b) in early 2013, consequently, the data used in

chapter 5 are from 2012 November and have only 10 stations.
3Only data from 24 stations are used in this chapter; one station experienced data loss during the period

of analyses.
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Fig. 8.1 Locations of 24 irradiance monitoring stations used in this chapter. Source: Google
Maps.

For data with length n, the K–S test statistic is given by

Dn = sup
x

|F̂n(x) − F (x)| (8.1)

where F̂n(x) is the empirical distribution function:

F̂n(x) = 1
n

n∑
i=1

I(Xi≤x) (8.2)

where I(·) is an indicator function, which equals to 1 if Xi ≤ x, 0 otherwise. The null

hypothesis H0 of the K–S test is the samples follow a specific distribution F (x), in this

case the normal distribution; the alternative hypothesis H1 is the sample do not follow the

specific distribution. The null hypothesis is rejected if Dn > c, where the critical value c

is found from the K–S table. Fig. 8.2 shows the approximately normal distributions of the

clear sky index at four selected stations. After running the K–S tests for all 24 stations,

only 2 tests reject H0. Thus there are reasons to assume that this particular set of clear

sky index data is normally distributed. The station specific mean and variance will be dealt
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later.
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Fig. 8.2 The distributions of the clear sky index at four selected stations. The red curves
are normal density functions with station specific mean and variance.

8.2 The S–G method: a revisit

The entropy–based network redesign will be discussed in section 8.3. At this stage, I would

like to point out that a particular step in the redesign is to estimate the spatio–temporal

covariance structure of the clear sky index process. Therefore, a preliminary analysis on

spatial correlation is first carried out. Fig. 8.3 shows the correlation versus geographical

distance plot using the hourly clear sky index data from 2014 July; the scatters show strong

anisotropy. Therefore the Sampson and Guttorp (1992) method (the S–G method) discussed

in chapter 5 is again useful in the present situation. However, the S–G method herein used

is slightly different from the one shown in chapter 5. Ever since the invention of the S–G

method, many researchers (Bruno et al., 2009; Damian et al., 2001; Guttorp and Sampson,

1994; Meiring et al., 1998; Monestiez et al., 1993) have proposed variants to the method; I

take this opportunity to present these variants.
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Fig. 8.3 Spatial correlation on geographical plane shows anisotropy.

8.2.1 The D plane representation

Recall that the S–G method considers dispersion as the dissimilarity measure for the time

series of spatial process. The algorithm takes two steps, namely, the multidimensional

scaling (MDS) step and the thin plate spline (TPS) mapping step. The method considers

two planes: the anisotropic geographical plane (G plane) and the approximately isotropic

dispersion plane (D plane).

The goal of this section is to retrieve the D plane coordinates using the dispersion.

Instead of using the dispersion defined in Eqn. (5.2), the correlation dispersion (Guttorp

and Sampson, 1994) between two locations si and sj is used:

dij = 2 − 2Corr
(
z(si; t), z(sj; t)

)
(8.3)

where Corr(·) denotes correlation. In chapter 5, the non–metric multidimensional scaling

approach is used to retrieve the stations’ location in the D plane. The non–metric MDS

aims at minimizing the stress S (recall the definition given by Eqn. (5.4)) over all monotone

functions δ(·). Once the D plane coordinates are found via the non–metric MDS, a para-

metric class of correlation function ρS(h,θ) (see Eqn. (5.9), where parameter θ is {ν, c}) is

fitted so that the correspondence between the D plane distance and the correlation can be
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established, allowing covariance estimation for unobserved locations.

The above procedure treats the scaling and correlation function fitting separately. How-

ever, Monestiez and Switzer (1991) considers the separation to be unnatural and proposes

an elegant alternating algorithm which fits the variogram and scales the coordinates

simultaneously:

• The A–step: Move the n points to minimize the least square criterion:

∑
i<j

(
dij − γ(hij,θ)

)2
(8.4)

for a fixed θ. γ(hij,θ) is a parametric family of variogram model with parameter θ.

• The B–step: Based on the new D plane locations, estimate the value of θ through the

same least square objective function, i.e., Eqn. (8.4).

The algorithm can be initialized by fitting a variogram to the G plane coordinates. As

the two steps are iterative, choice on the stopping criterions can be made either reaching a

defined tolerance level or reaching a defined maximum iterations.

8.2.2 Thin plate spline bending

After obtaining the set of D plane stations’ coordinates, a bivariate mapping function

f : R2 → R2 that maps an arbitrary G plane point to its D plane dual is needed. The

bijective mapping procedure is described in appendix D. This procedure performs an exact

interpolation from the G plane to the D plane, i.e., the fitted function passes through all

points in the D plane. One practical issue of the exact interpolation is overfitting; and it will

lead to the thin plane folding. The folding is due to the degeneracy in the dispersion ma-

trix and it cannot be guaranteed that each TPS mapping is bijective (Damian et al., 2001;

Monestiez et al., 1993). TPS folding leads to undesired poor extrapolations to unobserved

locations.
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There are a few ways that can solve the folding problem, for instance, we can choose

a high dimensional D plane. However, it is argued that a high dimensional D plane solves

the folding but not the overfitting by introducing an even more closely fitted variogram

(Monestiez et al., 1993). Another solution is to introduce a penalty term during the thin

plane spline mapping. Recall that the choice of function f(·) is made by minimizing the

roughness criterion:

Jf =
∫∫

R2

(∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
 dxdy (8.5)

Wahba and Wendelberger (1980) notes that this roughness criterion is proportional to the

bending energy of a thin plate. In consideration of the above, a penalty term is included,

so that the function being minimized becomes:

n∑
i=1

(
x∗

i − fx∗(xi, yi)
)2

+
n∑

i=1

(
y∗

i − fy∗(xi, yi)
)2

+ λ
(
Jfx∗ + Jfy∗

)
(8.6)

where λ is the penalty scale. By including the penalty term, the spline becomes a smooth-

ing spline. When λ = 0, the spline is the interpolating spline; when λ → ∞, the TPS is

affine and has zero bending energy. The last term of expression (8.6) has the sum two

integrals. Bookstein (1997b) showed the closed formula for this sum:

1
8π (Vx∗L−1

n V ⊤
x∗ + Vy∗L−1

n V ⊤
y∗ ) (8.7)

where L−1
n is the n×n upper left submatrix of L−1, see appendix D. At this stage, the only

remaining problem is to choose a proper value for λ. Several methods to select lambda were

proposed in the literature including simulated annealing Iovleff and Perrin (2004), cross

validation Meiring et al. (1997b) and the stopping rule approach Meiring et al. (1997b).

Regardless of which procedure, the goal is to find a small λ such that the resulting D plane

is smooth without folding. For the application of redesign the monitoring network, a simple
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trial and error approach is sufficient as the S–G method is only performed once.

8.2.3 Implementation

Before I move on to entropy–based design, I summarize the S–G method with Fig. 8.4.

The correlation dispersion in Eqn. (8.3) can be calculated empirically. Alternatively, the

correlation matrix can be estimated using the EM algorithm (Le and Zidek, 2006). It is

found that the empirical estimates do not differ much from the ones estimated via the EM

algorithm. Without loss of generality, an exponential variogram is used for Eqn. (8.4):

γ(h) =


ã+ (2 − ã)[1 − exp(−t̃h)] if h > 0;

0 otherwise.
(8.8)

Parameters ã and t̃ are fitted using the alternating algorithm.

Fig. 8.4 shows the correlation versus the great–circle distance plots on the first column;

shows the original and deformed Singapore maps in the second column. The topmost scatter

plot is identical to Fig. 8.3, showing anisotropy in space. The S–G method is applied using

the correlation dispersion estimates with λ = 0; and the results are shown in the middle

row. It is clear that the anisotropy is significantly reduced. However, the D plane for the

λ = 0 case has slight foldings at the left and bottom of the map. The λ value is therefore

gradually increased until the map is folding free, with an increasing anisotropy as the trade–

off. Such a case is found with λ = 0.001. I note that the great–circle distance displayed

here is not used as the G plane distance due to its non–Euclidean geometry. The Lambert

conformal conic projection is used to flatten the Earth’s curvature. After the computation,

the coordinates of the D plane objects (including map polygons, grid and station locations)

are projected back to longitude and latitude through the inverse Lambert projection for

plotting.
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Fig. 8.4 An illustration of the S–G method.

8.3 The entropy–based design

The S–G method discussed in the previous section is a non–parametric way to improve

heterogeneous spatial covariance estimation. The estimated covariance structure is used for

monitoring network redesign in this section. The entropy concept is considered.
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8.3.1 The differential entropy

Consider the Shannon’s entropy (Shannon, 1948) for a discrete random variable X which

takes countably many values {x1, x2, · · · }:

H(p) = −
∑

i

p(xi) log p(xi) (8.9)

where p(xi) = P(X = xi) is the probability mass function of X; P(·) denotes probability; the

summation is over all possible values of X. The differential entropy (Cover and Thomas,

2005) can be defined by analogy, i.e., sums and probabilities are replaced by integrals and

density functions:

H(f) = −
∫
R1
f(x) log f(x)dx (8.10)

where f(x) is the probability density function (pdf) of the continuous random variable X.

Following the definition, the entropy for multivariate distributions can be derived (Ahmed

and Gokhale, 1989; Zografos and Nadarajah, 2005). For example, consider an n–variate

normal distribution with pdf:

f(x) = 1√
(2π)n|Σ|

exp
(

−1
2(x − µ)⊤Σ−1(x − µ)

)
(8.11)

with mean vector µ and covariance matrix Σ. Its entropy is derived as:

H(f) = −
∫

· · ·
∫
Rn
f(x) ln f(x)dx

=
∫

· · ·
∫
Rn
f(x)

{1
2 ln

(
(2π)n|Σ|

)
+ 1

2(x − µ)⊤Σ−1(x − µ)
}
dx

=1
2 ln

(
(2π)n|Σ|

)
+ 1

2E
(
(x − µ)⊤Σ−1(x − µ)

)
=1

2 ln
(
(2π)n|Σ|

)
+ n

2
=n2 + n

2 ln(2π) + 1
2 ln|Σ| (8.12)
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The expectation in Eqn. (8.12) is n, because:

E
(
(x − µ)⊤Σ−1(x − µ)

)
=E

{
trace

(
Σ−1(x − µ)(x − µ)⊤

)}
=trace

{
Σ−1E

(
(x − µ)(x − µ)⊤

)}
=trace(Σ−1Σ) = n (8.13)

By observing Eqn. (8.12), it can be seen that for given n, the entropy depends only on

the determinant of the covariance matrix. This result greatly simplifies the later analysis.

Before I discuss the network redesign problem, the conditional differential entropy H(X|Y )

for given two random variables X and Y with a joint density f(x, y) is first defined:

H(X|Y ) = −
∫∫

R2
f(x, y) log f(x|y)dxdy

= −
∫∫

R2
f(x, y) log f(x, y)

f(y) dxdy

= −
∫∫

R2
f(x, y) log f(x, y)dxdy +

∫
R1

∫
R1
f(x, y)dx log f(y)dy

= −
∫∫

R2
f(x, y) log f(x, y)dxdy +

∫
R1
f(y) log f(y)dy

=H(X, Y ) −H(Y ) (8.14)

This also holds for multivariate cases, i.e., H(X|Y ) = H(X,Y ) −H(Y ).

8.3.2 The redesign problems

Let zt be a p–dimensional random vector representing the irradiance random field at p

discrete sites and at time t, t ∈ {1, · · · , T}. Among the p sites, g are observed (gauged) and

u are unobserved (ungauged); p = g + u. We can thus write:

zt =
((

z
(1)
t

)⊤ (
z

(2)
t

)⊤
)⊤

=
(
z

(11)
t · · · z

(1u)
t z

(21)
t · · · z

(2g)
t

)⊤
(8.15)
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where z
(1)
t denotes the unobserved data at time t and z

(2)
t denotes the monitored data at

time t. Together as zt, t ∈ {1, · · · , T}, they represent the information available at the time

of design, our primary interest is thus zT +1, namely, the random field at a future time. To

redesign the monitoring network, we can either select or remove stations from u∪ g, so that

the prospective random field is:

zT +1 =
((

z
(rem)
T +1

)⊤ (
z

(sel)
T +1

)⊤
)⊤

(8.16)

The fundamental identity in entropy–based design problem is:

Htotal =Hpred +Hmeas

=H
(

z
(rem)
T +1

∣∣∣z(sel)
T +1

)
+H

(
z

(sel)
T +1

)
(8.17)

whereHpred is minimized, or equivalentlyHmeas is maximized, as the total entropy is assumed

constant (Shewry and Wynn, 1987). This design is called the variability absorption design

(Lee and Ellis, 1997). The maximum variability absorption design aims at optimizing a

configuration (sel) so that the unobserved sites (rem) has least uncertainty.

At this point, 3 types for redesign can be raised: 1) optimal design by selecting a given

number of stations among the p locations (e.g. Bueso et al., 1998); 2) reduction design by

removing some of the existing network (e.g. Wu and Zidek, 1992) and 3) extension design by

adding some stations into the existing network (e.g. Zidek et al., 2000). We are interested

in the third design in this work. From Eqn. (8.14), we thus have:

H
(

z
(sel)
T +1

)
= H

(
z

(g)
T +1

)
+H

(
z

(add)
T +1

∣∣∣z(g)
T +1

)
(8.18)

where (add) denotes some additional stations from u. The redesign criterion is therefore:

max
[
H
(

z
(add)
T +1

∣∣∣z(g)
T +1

)]
(8.19)
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The marginal normality of the clear sky index data is shown earlier, the assumption is

extended further here. Let z
(add)
T +1 and z

(g)
T +1 be jointly normal with covariance:

Σ =

Σaa Σag

Σga Σgg

 (8.20)

where Σaa, Σag and Σgg are sub–covariances of the respective subscripts, where a denotes

the additional stations and g denotes the existing network, the entropy in Eqn. (8.19) is

(Bueso et al., 1998):

H
(

z
(add)
T +1

∣∣∣z(g)
T +1

)
= 1

2 log
∣∣∣Σa|g

∣∣∣+ const. (8.21)

where const. is the cardinality of (add). In other words, if the number of additional stations

is fixed, only the first term in Eqn. (8.21) needs to be considered. Σa|g is the conditional

covariance. Σa|g can be easily found via the Bartlett (1933) decomposition:

Σa|g = Σaa − ΣagΣ−1
gg Σga (8.22)

For all possible (add) in the set {ADD}, we compute the determinant of the conditional

covariance, the set maximizes the determinant should be chosen.

The entries of the covariance matrices in Eqn. (8.22) can be found via the variogram

shown in Eqn. (8.8):

Σij = σ̂2
i · σ̂2

j ·
(
2 − γ(hij)

)
/2, i, j ∈ a ∪ g (8.23)

where σ̂2
i and σ̂2

j are the variance estimates at s∗
i and s∗

j respectively. We note that during

the variance estimation at the unobserved locations, the non–homogeneity in the variance

field is smoothed using the same thin plate splines.



8.4 Case study: adding 3 stations 127

8.4 Case study: adding 3 stations

Suppose there is budget to set up 3 new irradiance monitoring stations in Singapore, the

methods introduced earlier are used to redesign the existing monitoring network by adding

these 3 stations at preferred locations. Based on the locations of the existing network, a 10

by 10 grid of potential sites are set, as shown in Fig. 8.5.
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Fig. 8.5 A 10 by 10 grid of potential locations for new monitoring sites. Light blue dots
denote stations not on the main island. Colored dots show the existing network. The symbol
@ indicates the locations of the 3 new locations following the entropy–based redesign.

I only consider the potential locations on the main island (show as small black dots) as

setting up a monitoring station over the ocean is unrealistic. 56 potential locations, as a

result, are used in the redesign; the cardinality of set {ADD} is C56
3 = 27720. For each

element in {ADD}, the logarithm of the determinant shown in Eqn. (8.21) is calculated4.

The run time for the determinant calculation is 4.21 seconds on a late 2013 MacBook Pro

computer. The 3 stations maximizing the conditional entropy is represented with symbol
4The dimensions of Σaa, Σag and Σgg are 3 × 3, 3 × 24 and 24 × 24 respectively.
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@ in Fig. 8.5.

The optimal locations of the new stations can be refined by using more potential sites.

However, the number of possible combinations increases substantially. For example, if

we perform the analysis on a 100 by 100 grid, the cardinality of set {ADD} is C10000
3 ≈

1.67×1011. In this case, evolutionary computing can be used to select the optimal locations;

same entropy criterion can be used as the objective function.

8.5 Chapter conclusion

An entropy–based method is introduced to redesign (expand) the existing irradiance moni-

toring network. Much attention is paid to the non–parametric covariance estimation as the

particular criterion of network expansion relies heavily on the estimated covariance. Solar ir-

radiance random fields in nature is “almost surely" anisotropic, the S–G method is therefore

necessary in the spatio–temporal covariance related applications. Previously unaddressed

issue, the thin plate folding, is discussed in details here. The trade–off between the measure

of isotropy and the severeness of the folding is made clear. Several data issues including the

stationarity of the clear sky index time series, the marginal and joint normality of the data

and non–homogeneity of the variance field are also briefly discussed.



Chapter 9

Space–time forecasting models with

parameter shrinkage

Chapters 6 and 7 discuss two distinct approaches to the inverse transposition problem. Such

practices would allow us to gather more data into the forecasting system. Furthermore, when

it is financially acceptable, additional monitoring stations can be build at strategic locations

using the methods presented in chapter 8, to provide data. Recall that in chapter 5, the

irradiance spatio–temporal random process is characterized using the covariance structures.

However, two problems arise as the spatial sampling points within an area increase: 1) the

size of the covariance matrix becomes large thus increases the computation burden and 2)

some covariances become degenerate thus make the isotropic transform impossible1. Similar

problems are found in the time domain, too. A key objective of this chapter is to reduce

the number of parameters in the characterization of the process.

Properly designed shrinkage models can improve forecast accuracies from a model that

uses irrelevant information. I propose two novel methods to quantify the long-term threshold

distance of the spatio–temporal irradiance process, namely, deriving the threshold distance

from the distributions of maximum daily cross-correlation and from the isotropic dispersion.
1Although the penalized TPS mapping can be used to resolve the bending, when the bending is severe,

the use of large λ value will result in underfitting, recall section 8.2.2 for more details.
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I also apply two spatio–temporal predictive methods, namely, space–time kriging and vector

autoregressive (VAR) models. It is found that the forecasting accuracies do not increase by

including more stations beyond the threshold distance2. This result allows for the design of

simplified monitoring networks and improved forecasting techniques.

9.1 Monitoring network, predictability and model pa-

rameter shrinkage

An important objective of monitoring networks is to predict values of an attribute of interest

at unobserved locations using observed data at known locations. The spatial sparsity and

sampling rate of the networks directly determine the predictability of the networks in both

space and time. Two extreme examples are given in chapter 2. Bosch and Kleissl (2013);

Bosch et al. (2013) use networks with super fine spatial resolution for sub–minute prediction

and Perez et al. (2007, 2010) use satellite images for days–ahead prediction. The link

between the network and its predictability is immediately seen.

For intra–hour irradiance forecasts, the most suitable network is seen in (Lonij et al.,

2013). Electricity output data from a dense network of residential rooftop PV systems (80

systems over a 50 × 50 km area) are used to derive the cloud patterns and movements, thus

forecast the solar power. Along–wind and cross–wind directional correlations are considered.

This is only possible owing to the observations provided by many station pairs, i.e., a good

spatial resolution.

The above mentioned techniques and applications use cloud motion analyses. Unfortu-

nately, most existing irradiance monitoring networks are far more sparse than the network

in (Lonij et al., 2013), and suffer from measurement errors and occasional downtime. Al-

ternative forecast techniques are needed.

Spatio–temporal forecasting based on data from sparse sampling in the presence of noise
2The threshold distance herein developed is likely to be frequency dependent, i.e., varies with data time

resolution. Further research may apply.
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and missing data represents the paradigmatic problem of spatio–temporal statistics (Cressie

and Wikle, 2011). Spatio–temporal statistics is not a new field of study, however, its de-

velopment lags far behind the spatial statistics (Ma, 2003). Furthermore, the developments

in the predictive models are mostly theoretical. In recent years, few researchers have used

spatio–temporal statistics to model environmental processes such as wind velocity fields

(De Luna and Genton, 2005; Gneiting, 2002; Porcu et al., 2008) and solar irradiance (Inoue

et al., 2012; Yang et al., 2013b). These applications use data that can be considered as

temporally rich and spatially sparse. De Luna and Genton (2005) point out that if the

prediction is only in the time direction, spatial stationarity and isotropy assumptions can

be relaxed by means of VAR models. However, considering the spatial dependence in the

data, a model building strategy has to be included. This statement reveals the core idea of

this chapter: parameter shrinkage in a spatio–temporal predictive model.

In linear regression analyses, parameter shrinkage is directly related to the goodness of fit

of a hyperplane. By logically selecting and/or weighting the regression inputs, the predictive

performance can be further optimized from the least square solution (Miller, 2002); although

the estimators are usually biased (the unbiased estimators are given by the least square

solution). A VAR model can be considered as a linear regression model; general parameter

shrinkage models for VAR have been developed and well-accepted. Ridge regression, the

lasso (Tibshirani, 1996, 2011), least angle regression (LARS) (Efron et al., 2004) and elastic

nets regression (Zou and Hastie, 2005) have shown to improve the estimation errors in many

multivariate regression problems. However, these methods are not tailored to environmental

modeling.

I propose two novel methods for parameter selection and shrinkage in solar irradiance

forecasting using spatio–temporal statistical models in this chapter. Both methods identify

a threshold distance in irradiance random processes. The threshold distance is an impor-

tant quantity that specifies the maximum separation between locations whose values may

be correlated.
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The first method uses standard deviations of inter–station correlation distributions to

quantify the threshold distance in the irradiance field. This means that the irradiance values

sampled at two stations lose correlation beyond a certain distance. Previously, this de–

correlation distance was simulated (assuming along–wind and rigid clouds) by Perez et al.

(2012) using univariate time series data of various time averaging horizons. Lonij et al.

(2013) confirmed the estimation of 15 min along–wind de–correlation distance of ≈10 km

using measured data from 80 stations. In this chapter, I use only a sparse network of 13

stations to estimate the 5 min threshold distance. Note that I choose the name “threshold

distance” (instead of the de–correlation distance) owing to the fact that the estimation not

only considers the along–wind situations but all possible directional correlations.

The second proposed method uses spatial dispersion to quantify the threshold distance.

Recall that the irradiance process is almost surely anisotropic. In this case, multidimensional

scaling (MDS) (as seen in chapter 5) is appropriate to transform the anisotropic geographical

plane to an isotropic dispersion plane. The threshold distance is then estimated on the

dispersion plane. The estimated distance thus derived agrees well with that from the first

method. While both approaches are empirical in that the magnitude of the result and its

error will be limited by the dataset, the methodologies are well–suited to application to

irradiance observations.

Once the threshold distance is determined, data from stations beyond the threshold dis-

tance will not be considered in model building. Therefore this distance constraint becomes

an automatic parameter selection tool for models such as kriging and VAR. The forecasts

using partial networks are compared with several other existing methods including the per-

sistence model, full network space–time kriging, VAR with ridge/lasso regression and full

network VAR models. The results of the proposed shrinkage models are better than the

full network model in general. Furthermore, the threshold distance also provides guidelines

in monitoring network design.
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9.1.1 Data

The analyses are performed using one year (2013), 5 min GHI data collected at 13 meteo-

rological stations across Singapore whose locations are indicated in Fig. 9.1. Some of these

stations have appeared in Fig. 5.1. Only data with zenith angles smaller than 70◦ are used

to avoid the measurement errors due to large zenith angle and possible shading.
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Fig. 9.1 Locations of the 13 stations used in this chapter. Source: Google Maps.

9.2 Analysis of spatio–temporal lag distribution

The cross–covariance and the cross–correlation as functions of time lags provide measures

of the similarity of two stationary time series (Podobnik et al., 2011).

9.2.1 Lag correlation between a pair of stations

Cloud transients dominate solar irradiance variability, while the movements of clouds are

driven primarily by wind. The von Mises (or circular normal) distribution is the most

commonly used circular distribution describing the distribution of wind direction (Xu et al.,



9.2 Analysis of spatio–temporal lag distribution 134

2010). I hypothesize that the daily temporal lag between two stations is governed by a zero

centered, symmetrical distribution. I quantify the daily temporal lag between two stations

using the maximum cross–correlation of two GHI time series.

Detrended time series must be used in the calculation of cross–correlations between a

pair of stations. This is essential for proper analyses for two reasons: 1) detrending prevents

two time series from being correlated if they are uncorrelated, and 2) detrending captures

the underlying true correlation between two time series (Horvatic et al., 2011). The clear

sky index is therefore used instead of GHI to account for the cross–correlation. The clear

sky index is calculated by dividing the GHI series by its corresponding clear sky irradiance.

The clear sky model is described in chapter 3.

As an example, Fig. 9.2 shows the cross–correlation between stations S104 and S105

(4.19 km apart) on 2013 June 11. A max correlation of 0.872 is observed at time lag +5

minutes. This indicates that whatever happens at S105 may cause a similar event at S104

five minutes later on that day. The possibility can be described by magnitudes of correlation

coefficients: higher correlation indicates a higher possibility.

The daily maximum cross–correlation experiment between S104 and S105 is repeated

for the entire year. The distribution (histogram) is shown in Fig. 9.3. The time lag which

corresponds to the maximum daily cross–correlation is on the horizontal axis; while the

frequency of occurrence (number of days which a particular time lag occurred in the year

2013) is shown on the vertical axis. Note that all the maximum cross–correlation coefficients

used in Fig. 9.3 are significant at 95% confidence with all insignificant coefficients being

rejected. The 1−α confidence interval of the cross–correlation coefficient θ is approximated

by Wasserman (2003):

(a, b) =
(
θ̂ −

zα/2√
n− 3

, θ̂ + zα/2√
n− 3

)
(9.1)

where θ̂ is the estimate of cross–correlation coefficient θ. zα/2 is the value of the 1 − α/2

percentile point of the standard normal distribution. n is the number of data points, 110 in
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Fig. 9.2 The cross–correlation function (CCF) between stations S104 and S105 (4.19 km
apart) on 2013 June 11. The clear sky irradiance and two irradiance time series are shown
in the top window while the clear sky index (dimensionless) time series are shown in the
middle. A maximum correlation of 0.872 is observed at time lag +5 minutes. The dashed
blue lines in the bottom plot indicate the 95% confidence interval for correlation estimates.

this case. For a small correlation coefficient under the null hypothesis of zero correlation,

the approximated critical values at the α = 5% level are ±1.96/
√
n− 3 ≈ ±0.19 (see dashed

blue lines in Fig. 9.2). This confidence interval approximation assumes white noise inputs.

9.2.2 Hovmöller diagram analyses

Hovmöller diagram is an effective way to visualize spatio–temporal data. The axes of the

Hovemöller diagram are usually longitude or latitude (on the abscissa) and time (on the

ordinate). To visualize the distance–time relationship for temporal lag distribution among
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Fig. 9.3 The distribution of the time lag of the daily max cross–correlation between station
S104 and S105 (4.19 km apart).

stations, kilometer distance is used on the abscissa. Fig. 9.4 shows the time lag distributions

for all possible station pairs. To make the visual contrast, I plot the Hovmöller diagram in

Fig. 9.4 in log of frequency.

The Hovmöller diagram herein shown is a combination of histograms seen from the

top down. For each column of blocks, the diagram represents the histogram at a specific

distance, i.e., the time lag correlation distribution between a particular pair of stations.

Since 13 stations are involved, n(n−1)/2 = 78 columns are shown in the Hovmöller diagram.

Symmetrical distributions from many columns are seen in Fig. 9.4 where the colors are

distributed evenly at both sides of the zero time lag line. The observed symmetry agrees

with the earlier hypothesis. As the standard deviation indicates the deviation from the

mean, it is an effective statistic to represent the magnitude of possible time lag between

two stations. Fig. 9.5 shows the standard deviation of lag distribution against the distances

across 78 pairs of stations.

It may be expected that as the separation distance between station pairs increases, the

standard deviation in the lag distribution will increase and eventually converge. I seek to

quantify this convergence so that threshold distance can be deduced. I use the so–called

“L–method” to determine the threshold distance from Fig. 9.5. The application of the L–
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Fig. 9.4 Hovmöller diagram using inter–stations distance on the abscissa. Color bar indicates
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Fig. 9.5 The standard deviations σ of time lag distributions against the distances across 78
pairs of stations. Threshold distance of 10.78 km is estimated using the L–method.

method here is novel. The L–method was originally designed for the detection of anomalies

in time series (Salvador and Chan, 2005); its ability to use two separate linear least square
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regression lines to identify the “knee” suits the present application. The total root mean

squared error RMSEc of the two regression lines is given by:

RMSEc = c

b
×RMSE(Lc) + b− c

b
×RMSE(Rc) (9.2)

Given a set of points with indices i = 1, · · · , b (see Fig. 9.5, b = 78 in our case), the

L–method first separates them into two sets, namely, the sequence of points Lc with indices

i = 1, · · · , c and the sequence of points Rc with indices i = c+1, · · · , b. Two separate linear

regression lines are fitted using these two sets of points; and their fitting root mean square

errors are RMSE(Lc) and RMSE(Rc) respectively. RMSEc can thus be found following

the above equation. As c can vary from 2 to b − 2; a particular value of c would minimize

RMSEc. In addition, any c ∈ {2, 3, · · · , b−2} corresponds to a pair of stations; the distance

between this pair of stations can thus be calculated. It is found that a distance of 10.78 km

(the c = 20 case) minimizes RMSEc (see the dashed vertical line in Fig. 9.5).

The threshold distance in Singapore has been determined. Although a distribution of

temporal lag correlation may exist at a larger distance, correlations beyond the threshold

distance is assumed to be non–informative. Perez et al. (2012) estimated the de–correlation

distance of 5 min irradiance observations to be 3 km at a mid latitude site. However only

correlations in the along–wind directions are considered in that study. If the correlations

of all directions are involved, the de–correlation distance is usually not observed (Murata

et al., 2009). The aim of threshold distance is shrinking the regression parameters in a

spatio–temporal predictive model (a long–term statistical quantity), but not quantifying

the absolute (short–term) de–correlation distance.

Daily maximum correlation analysis is used to define the spatio–temporal correlation

limits. Although the analysis appears to be short–term (daily), it is in fact a long–term

(yearly) analysis since only the standard deviations of daily time lag distributions for an

entire year are considered. In the following section, I estimate the correlation threshold

distance using another method.
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9.3 Analysis of thin plate spline bending

9.3.1 Isotropy transformation

A useful metric in quantifying spatio–temporal dissimilarity is spatial dispersion, defined in

Eqn. (5.2). If an irradiance random field is isotropic (invariant of rotation in space), the

threshold distance can be estimated using L–method on a dispersion versus distance plot

(following a similar fitting procedure as the method described in section 9.2). However,

isotropy is rarely observed; the distance in the geographical plane may not provide useful

correspondence between dispersion and distance. I therefore use the two–step transforma-

tion introduced in chapter 5 to transform the anisotropic G plane to D plane, so that the

relationship between the dispersion and distance can be established.

The mathematics for multidimensional scaling and thin plate spline mapping is shown

in appendices C and D. Fig. 9.6 shows the transformation. It uses the same data across

the same time period as the earlier exercise in section 9.2. On subplot (a), we have the

station locations identical to the one shown in Fig. 9.1. Subplot (b) shows the transformed

dispersion grid.

The transformed D plane has improved isotropy from the anisotropic G plane. While

searching for the threshold distance, a one–to–one correspondence between the distance

and the dispersion must be established, i.e., dispersion should be a function of separation

distance only. The threshold distance using the L–method on D plane is thus more robust.

Fig. 9.7 shows the correspondence between the spatial dispersion and the D plane inter–

station distance; a total of 78 points are plotted using data from the 13 stations. Analysis

using the L–method identifies a threshold distance of 10.43 km, which agrees well with the

previous estimation of 10.78 km using the correlation distribution method.
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Fig. 9.6 The G plane coordinates are mapped to the D plane through a bijective function.
Points in plot (a) show the original G plane locations in the rectangular grid; (b) show the
D plane locations after the multidimensional scaling in the deformed grid.

3 × 104

4 × 104

5 × 104

6 × 104

10 20 30
Inter−station distance [kilometer]

D
is

pe
rs

io
n 

[W
2

m
4 ]

Fig. 9.7 Spatial dispersion versus the D plane inter–station distance for GHI measurements.

9.4 Predictive performance and conclusion

Threshold distance in spatio–temporal irradiance fields in Singapore is estimated using two

distinct methods in section 9.2 and section 9.3. In this section, I demonstrate a forecasting

application of the estimated threshold distance.
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9.4.1 Some spatio–temporal forecasting models

Space–time kriging

Space–time kriging uses proximities such as covariance to forecast the spatio–temporal pro-

cess z(s0; t0) at location s0 and time t0. The explicit expression of its point estimate,

ẑ(s0; t0), is given in chapter 5. Recall when data from m previous steps and n locations are

used, the spatio–temporal covariance matrix C has dimension Rnm×nm. I will use space–time

kriging to validate the shrinkage model in the next section.

Vector autoregressive model

Beside the space–time kriging, VAR is also considered. In the VAR model, we consider

a time series of spatial process {zt(s) : s ∈ Ds, t = 0, 1, · · · } where Ds = {s1, · · · , sn}.

Recall Eqn. (2.2), if we only consider the autoregressive part and include a constant term

ζ, we have a VAR(p) model:

zt = ζ +
p∑

k=1
ϕkzt−k + at , (9.3)

i.e., 

zt(s1)

zt(s2)
...

zt(sn)


= ζ + ϕ1



zt−1(s1)

zt−1(s2)
...

zt−1(sn)


+ · · · + ϕp



zt−p(s1)

zt−p(s2)
...

zt−p(sn)


+ at (9.4)

where ϕk, k = 1, · · · , p are n × n matrices, ζ and at are n dimensional vectors. To solve

for matrices ϕk, a n–variate time series {z}, z = {z0, · · · , zT }, formed by the (T + 1) × n

observations is considered. VAR(p) models can also be written in concise matrix notation:

Z∗ = BX∗ + U ∗ (9.5)
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where

Z∗ =
(

zp zp+1 · · · zT

)
=



zp(s1) zp+1(s1) · · · zT (s1)

zp(s2) zp+1(s2) · · · zT (s2)
... ... . . . ...

zp(sn) zp+1(sn) · · · zT (sn)


(9.6)

B =
(

ζ ϕ1 ϕ2 · · · ϕp

)
=


ζ1

... ϕ1 ϕ2 · · · ϕp

ζn

 (9.7)

X∗ =



1 1 · · · 1

zp−1 zp · · · zT −1

zp−2 zp−1 · · · zT −2

... ... . . . ...

z0 z1 · · · zT −p


=



1 1 · · · 1

zp−1(s1) zp(s1) · · · zT −1(s1)

zp−1(s2) zp(s2) · · · zT −1(s2)
... ... . . . ...

zp−1(sn) zp(sn) · · · zT −1(sn)

zp−2(s1) zp−1(s1) · · · zT −2(s1)

zp−2(s2) zp−1(s2) · · · zT −2(s2)
... ... . . . ...

zp−2(sn) zp−1(sn) · · · zT −2(sn)
... ... . . . ...

z0(s1) z1(s1) · · · zT −p(s1)

z0(s2) z1(s2) · · · zT −p(s2)
... ... . . . ...

z0(sn) z1(sn) · · · zT −p(sn)



(9.8)

U ∗ =
(

ap ap+1 · · · aT

)
=



ap(s1) ap+1(s1) · · · aT (s1)

ap(s2) ap+1(s2) · · · aT (s2)
... ... . . . ...

ap(sn) ap+1(sn) · · · aT (sn)


(9.9)
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If we write the residual sum–of–square (RSS) of the model as:

RSS(B) = (Z∗ − BX∗)⊤(Z∗ − BX∗) (9.10)

and set its first order derivative with respect to B to zero, i.e., (Z∗ − BX∗)(X∗)⊤ = 0, the

stationary point for this quadratic function can be found. The least square estimator for

matrix B is thus given by:

B̂ = Z∗(X∗)⊤[X∗(X∗)⊤]−1 (9.11)

Any VAR model has its equivalent regression representation. Eqn. 9.5 can be re–written

to n regression problems, each one being:

Z = Xβ + U (9.12)

where

Z =
(
zp(sk) zp+1(sk) · · · zT (sk)

)⊤
, k ∈ {1, · · · , n} (9.13)

X = (X∗)⊤ (9.14)

U =
(
ap(sk) ap+1(sk) · · · aT (sk)

)⊤
, k ∈ {1, · · · , n} (9.15)

The least square estimates for β, a vector with length p× n+ 1, is thus given by:

β̂ = (X⊤X)−1X⊤Z (9.16)

which minimizes (Z − Xβ)⊤(Z − Xβ). We can see from the above equations that for each

station sk, the prediction is made using a linear combination of its own past values and the

past values from all other stations.
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Ridge regression

As mentioned earlier in section 9.1, many parameter shrinkage models such as the ridge

regression have been proposed to simplify the above VAR model (and other regression

problems). The idea behind ridge regression is to penalize the size of the regression param-

eters. The ridge regression estimator solves the regression problem using ℓ2 penalized least

squares:

β̂ridge = argmin
β

{
∥Z − Xβ∥2

2 + λ∥β∥2
2

}
(9.17)

where ∥Z − Xβ∥2
2 = (Z − Xβ)⊤(Z − Xβ) is the ℓ2–norm loss function, i.e., RSS. ∥β∥2

2 =

β⊤β is the ℓ2–norm penalty on β. λ is a tuning parameter which regulates the strength of

the penalty. When λ = 0, we get the linear regression estimate; when λ = ∞, β̂ridge = 0.

The equivalent minimization problem is:

minimize (Z − Xβ)⊤(Z − Xβ) s.t. ∥β∥2
2 < t (9.18)

By matrix calculus, the solution to this problem is immediately seen to be:

β̂ridge =
(
X⊤X + λIn×(p×n+1)

)−1
X⊤Z (9.19)

The most commonly used way to select a suitable λ is the K–fold cross validation. The

training data are first partitioned into K equal sized separate sets. For each k = 1, 2, · · · , K,

we fit the model to the training set excluding the kth–fold. The overall cross–validation

error through K models is computed. The λ∗ which minimizes the cross–validation error is

selected.
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The lasso

Similar to ridge regression, the lasso coefficients are

β̂lasso = argmin
β

{
∥Z − Xβ∥2

2 + λ∥β∥1
}

(9.20)

or the solutions to the ℓ1 minimization:

minimize (Z − Xβ)⊤(Z − Xβ) s.t. ∥β∥1 < t (9.21)

Unlike ridge regression, the lasso shrinks some of the coefficients exactly to zero. This is

because of its special geometric implication from the ℓ1–norm penalty. Thus the lasso can

be considered as a parameter selection method, but not ridge regression. However, β̂lasso

has no closed form solution. The problem can be solved using quadratic programming from

convex optimization (Tibshirani, 2011).

9.4.2 Proposed shrinkage models

The above models will be used to benchmark the proposed mode along with the persistence

model where the forecast is equal to the current observation.

The threshold distance in Singapore has been previously identified to be ≈10 km. Fol-

lowing this guideline, several subnetworks are selected as shown in Fig. 9.8. Each circle has

a radius of 10 km; and they jointly cover all the stations. As the proposed shrinkage models

are general, they will be applied in both kriging frameworks and VAR frameworks.

9.4.3 Predictive performance

The shrinkage models in an empirical kriging framework are first examined. Fig. 9.5 shows

that the maximum σ of lag distribution is 35 minutes, and that the σ at the threshold

distance is 20 minutes. If 5 min data are used for forecasting, a maximum temporal lag



9.4 Predictive performance and conclusion 146

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

Subnetwork 5

301

500

104

304

305

307

116

106

102108

105

315 319

Fig. 9.8 Five subnetworks covering all 13 irradiance monitoring stations, each with a radius
of 10 km.

of 7 (35/5 = 7) should be used to fully capture the spatio–temporal dynamics. On the

other hand, a temporal lag of 4 corresponds to the threshold distance. Thus m = 7 and

m = 4 in Eqn. 5.25 are set for these two case studies. 5 additional case studies are also

performed using a temporal lag of 4 and the subnetworks, which are defined by the threshold

distance. The nRMSE shown in Eqn. (1.3) is used as the error metric. Clear sky index is

used in the kriging models, the results are converted back to irradiance and the errors are

calculated using irradiance Iglo. Table 9.1 shows the nRMSEs for various shrinkage schemes

in empirical kriging models. The persistence model errors are shown as well.

Similar case studies are made for the VAR models. In addition, the lasso is implemented

on top of the VAR(4) model. Ridge regression is not included as it cannot be considered as

a parameter selection method. The nRMSEs for various shrinkage schemes in VAR models

are shown in Table 9.2.

It is interesting to note that most models that perform better in the empirical kriging

framework also perform better in the VAR framework. This indicates that the proposed

shrinkage models are general, and can be readily applied to other spatio–temporal predic-
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Table 9.1 nRMSEs for various shrinkage schemes in empirical kriging models. Lowest nRM-
SEs are highlighted in bold.

Station Pers. Kriging(m=7) Kriging(m=4) Subnet1 Subnet2 Subnet3 Subnet4 Subnet5

S301 26.85 24.54 24.49 24.45 — — — —
S500 22.62 21.17 21.10 — — 21.09 21.51 —
S104 27.03 23.88 23.81 — — — 23.88 23.88
S304 18.77 18.62 18.57 — — 18.49 — —
S305 24.62 22.88 22.85 22.81 — — — —
S307 20.96 20.48 20.39 20.54 — 20.53 — —
S116 25.73 23.16 23.08 — 23.70 — 23.07 —
S106 19.87 19.18 19.12 — 19.25 — — —
S102 25.61 22.97 22.92 — — 22.96 23.03 —
S108 28.40 25.22 25.16 — — 25.13 25.36 —
S105 27.68 24.80 24.73 — — — 24.81 24.78
S315 25.88 22.97 22.89 — — — 22.87 23.51
S319 28.34 25.30 25.19 25.22 — 25.41 — —

Table 9.2 nRMSEs for various shrinkage schemes in vector autoregressive (VAR) models.
Lowest nRMSEs are highlighted in bold.

Station Pers. VAR(p=7) VAR(p=4) Lasso Subnet1 Subnet2 Subnet3 Subnet4 Subnet5

S301 26.85 25.33 25.28 25.33 25.23 — — — —
S500 22.62 21.50 21.42 21.51 — — 21.40 21.81 —
S104 27.03 25.01 24.93 25.03 — — — 24.98 24.99
S304 18.77 18.26 18.19 18.60 — — 18.09 — —
S305 24.62 23.45 23.40 23.51 23.36 — — — —
S307 20.96 20.23 20.15 20.61 20.34 — 20.21 — —
S116 25.73 24.05 23.96 23.91 — 24.47 — 23.94 —
S106 19.87 19.12 19.08 19.69 — 19.20 — — —
S102 25.61 23.60 23.53 23.60 — — 23.52 23.61 —
S108 28.40 25.96 25.90 25.83 — — 25.91 26.14 —
S105 27.68 26.05 25.97 26.16 — — — 26.03 25.99
S315 25.88 23.95 23.83 24.10 — — — 23.81 24.52
S319 28.34 26.24 26.12 26.10 26.16 — 26.33 — —

tive frameworks such as vector autoregressive integrated moving average model, space–time

Kalman filter, etc. I performed similar forecasts for time horizons beyond 5 minutes, namely,

10 minutes, 15 minutes and 20 minutes; the forecasts perform better than persistence, which

is otherwise not achievable via methods such as using a sky camera or using satellite images

(Lonij et al., 2013).
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9.5 Chapter conclusion

Two novel methods are introduced to quantify the threshold distance in a solar irradiance

random field. The results from the two distinct methods agree well with each other and the

previous results in the literature. The estimated threshold distance can be considered as an

automatic parameter shrinkage and selection tool for spatio–temporal forecasting models.

The results are shown to be general. Comparative studies on forecasting are presented and

discussed. Although the proposed models only improve the persistence marginally in this

chapter, the advantages of the spatio–temporal models shall not be overlooked. I will show

in the subsequent chapter that once the spatial resolution of the sensor network is improved,

the spatio–temporal models will show significant advantage over all univariate models.



Chapter 10

Summary and future works

10.1 Original contributions of this thesis

Statistical treatments of spatio–temporal data have become important in recent years in

many fields. In solar irradiance modeling and forecasting, sky camera and satellite images

provide snapshots of the sky; ground point sensors record irradiance as time series; moni-

toring networks record the time series of spatial processes. The observational nature of such

data and the inevitable measurement and modeling errors make statistics, the science of

uncertainty, a necessary tool for these studies.

Probability & distribution, likelihood calculation, parameter estimation, regression, hy-

pothesis testing, time series, multivariate models and spatio–temporal models are the main

topics of statistics involved in this thesis. Novel applications of statistics in the solar engi-

neering context are the main contributions.

In chapter 3, a novel function form of the clear sky model is proposed. The proposed

model is flexible owing to the three shape parameters in Eqn. (3.7). With local data, the

parameters can be fitted via non–linear regression thus generate the empirical clear sky

model.

In chapter 4, univariate time series forecasting is explored. The univariate approach

is well–studied in the literature of solar irradiance forecasting. However, the knowledge
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based decompositions shown in the chapter have not previously been used. It is shown that

by decomposing the GHI time series into DHI and DNI time series, forecast results can be

improved. Furthermore, when a cloud cover index time series is present, GHI can be written

as a function of the cloud cover index, CC, and the zenith angle, i.e, Iglo = f(CC, θz), where

f(·) represents 11 third–order polynomial functions of the zenith angle, one for each discrete

CC value. The application of the seasonal–trend decomposition procedure based on LOESS

is also novel.

Chapter 5 describes the spatio–temporal forecast models. There is no literature regarding

time–forward kriging in solar irradiance forecasting, apart from a conference publication by

Inoue et al. (2012). In that paper, the statistical properties such as stationarity, isotropy,

separability and full symmetry are not considered. In chapter 5, the above mentioned

statistical properties are carefully examined. A two–step space deformation is used to

transform the geographical plane to the dispersion plane so that the spatial stationarity

and spatial isotropy are achieved. In the predictive step, i.e., the time–forward kriging, the

performance of various covariance models is also compared.

There are very few reports in the literature on inverse transposition; and there is no

reference on inverse transposition using only data of a single tilted irradiance component.

This makes the proposed algorithm of tilt to horizontal irradiance conversion in chapter 6

novel. Instead of using multiple sets of tilted data, only a tilted reference cell is used to

retrieve all the horizontal irradiance components via a decomposition model. The use of

the Brent (1973) method, a root search routine, circumvents the need for gradient based

optimizations. Last but not the least, the chapter also acts as a regional first report on the

performance of 10 transposition models and 5 decomposition models.

Chapter 7 shows an alternative way to transpose the irradiance components on a tilted

plane to those on a horizontal plane. In the first half of the chapter, the coefficients of

the Perez model are adjusted using tropical data so that the performance of the model

is optimized in a least square sense. A complete set of mathematical solutions to the
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inverse problem is then described, validated and benchmarked in the second half of the

chapter. Although the multi–sensor approach to the inverse transposition problem has

been around since Faiman et al. (1987), the anisotropic formulation is first proposed here

through applying the Perez model. The bidirectional irradiance transposition described in

the chapter yields a tolerable error compatible with the measurement uncertainty.

Entropy–based monitoring network expansion is developed in chapter 8. Since neither

entropy nor ground–based data have been consider in irradiance network redesign, the

materials presented in the chapter are new to solar engineering. Further to the apparent

novelty, rigorous statistical methods are employed to make the proposed redesign procedure

robust. In fact, the Sampson–Guttorp method adopted in the chapter goes far beyond

the field of solar engineering; it is however critically important owing to the almost surely

anisotropic nature of the irradiance random field.

Chapter 9 considers the spatio–temporal models using data from an irradiance sensor

network. The concept of parameter shrinkage is introduced in solar engineering for the first

time. To formulate the shrinkage model, the idea of a geographical threshold distance is

proposed. Two distinct methods are used to estimate the threshold distance of an irradiance

random field in Singapore. It is shown that the spatio–temporal models perform better

under shrinkage.

10.2 Proposed future works

10.2.1 Chapter 4: interval forecast

In chapter 4, three univariate irradiance forecasting models using decomposition were pro-

posed. ARIMA is used in the predictive step. Alternatively, ETS is used to replace ARIMA

in (Yang et al., 2015a). The exponential smoothing state space model contains 30 candidate

models depending on the choices of the seasonal and error components (Hyndman et al.,

2002, 2008). Based on the STL decomposition described in the chapter, the number of
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candidate models can be reduced to 10. The reduction in the state space formulation gives

convenience to likelihood and AIC calculation.

The materials presented in chapter 4 only consider point forecast. However, probabilistic

forecasts provide power systems operators with valuable information about the uncertainty

associated with the expected generation; it is sometimes more desired than point fore-

cast. As many statistical forecasting models support confidence interval estimations (see

Hyndman et al., 2008), it is logical to consider probabilistic forecasts as an extension to

the methods developed in chapter 4. However, to combine the probabilistic forecasts with

decomposition heuristics, error propagation needs careful consideration.

10.2.2 Chapter 5: computational issues

One of the novelties in chapter 5 is the application of the two–step grid deformation. MDS

and TPS mapping are used to transform an anisotropic G plane to an isotropic D plane.

However, one of the computational issues is grid folding (see Figure 2 in Meiring et al.,

1997a). To solve the folding problem, penalties can be used. In chapter 8, a penalty λ is

applied to the thin plate spline mapping. Alternatively, the penalty can be applied during

the multidimensional scaling. However, the penalty scale is mostly likely to be different

from the one in Eqn. (8.6) (Le and Zidek, 2006). Further research may apply.

Another computational issue is the feasibility of the method with large dataset. The two–

step transformation is computationally expensive; therefore when the size of the network

scales up, alternative isotropic transformation is needed. One of the possible alternatives

is shown by McBratney and Minasny (2013). Spacebender is promising for a purely spatial

setup, however, for a spatio–temporal setup such as the one shown in chapter 5, further

research is needed.



10.2 Proposed future works 153

10.2.3 Chapters 6 and 7: bidirectional transposition at large an-

gles

Both chapters describe the bidirectional irradiance transpositions. However, the largest

angle of surface inclination used is 40◦. It is known that the performance of transposi-

tion models can be compromised at large tilt angles (Gueymard, 2009). With increasing

applications of building–integrated PV and vertical bifacial PV (Guo et al., 2013), the accu-

racies of the bidirectional transposition at large angles need to be evaluated. The coefficient

adjustment shown in chapter 7 is useful in this case.

10.2.4 Chapter 9: spatio–temporal statistics, the next frontier

The importance of spatio–temporal formulations for irradiance random processes was em-

phasized repeatedly throughout the thesis. However, the field of spatio–temporal statistics

covers a very wide range of methods, models and techniques. Exploring these further would

be of benefit in many areas.

One important concept in spatio–temporal statistics which is not considered in this

thesis is the hierarchical model. Hierarchical statistical modeling gives a way to represent

uncertainties through well–defined levels of conditional probabilities (Cressie and Wikle,

2011). The data model, the process model and the parameter model form the structure.

The hierarchical modeling approach can be considered as a type of analysis–of–variance

decomposition, so that the uncertainties associated at each level (data, process and param-

eter) can be modeled. It is more general than the conventional additive decomposition.

Future work on hierarchical modeling may enable inference about the true processes and

parameters of an irradiance random field.

Solar irradiance, one of many environmental processes, is the focus of this thesis. Spatio–

temporal methods, models and techniques herein developed use solar irradiance data alone.

However, the characteristics of the irradiance random process can be jointly described with

exogenous parameters such as pressure, temperature and humidity. It is therefore possible
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to generalize the ideas discussed in this thesis to a multivariate context, and doing so may

improve future forecasts.

Future consideration of these issues may show that spatio–temporal statistics is not only

the next frontier of solar forecasting, but environmental science in general.
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Appendix A

Statistical preliminaries

Given a random variable X, a cumulative distribution function F (x) is defined as

F (x) = P(X ≤ x), where P denotes probability. We can then have the following:

Definition. The expectation, or mean, or first moment of X is defined to be

E(X) =
∫
xdF (x) = µ = µX ; (A.1)

and the variance of X is defined by

V(X) = E(X − µ)2 =
∫

(x− µ)2dF (x) = σ2 = σ2
X ; (A.2)

If there is another random variable Y with mean µY , the covariance between X and Y is

Cov(X, Y ) = E
(

(X − µX)(Y − µY )
)

; (A.3)

and their correlation is

Corr(X, Y ) = Cov(X, Y )
σXσY

. (A.4)
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A.1 Time series preliminaries

Time series is a subset of what we call temporal processes. A (possible multivariate) tem-

poral process can be written as {z(r) : r ∈ Dt} where Dt ⊂ R1 and r indexes the time

of the process. A temporal process can be continuous where Dt = [0,∞) or discrete where

Dt = {0, 1, 2, · · · }. We represent the a continuous univariate temporal process as z(t) and

a discrete univariate temporal process as zt. Thus {zt : t = 0, 1, · · · } or simply {zt} is a

time series. Following the above definition, the mean of a time series is given by:

µt = E(zt), t ∈ Dt (A.5)

Beside the mean of a time series, we are also interested in how the time series co-varies

across various time lags; this is described by the autocovariance function:

C(t, r) = Cov(zt, zr) = E
(

(zt − µt)(zr − µr)
)
, t, r ∈ Dt. (A.6)

Furthermore, by defining the variance of σ2
t = V(zt) = C(t, t), we have the autocorrelation

function:

ρ(t, r) = C(t, r)√
C(t, t)C(r, r)

= C(t, r)
σtσr

, t, r ∈ Dt, (A.7)

which is a normalized measure of the co–variation, ρ(t, r) ∈ [−1, 1].

Let us consider a time series {zt}. We say the time series is strictly stationary if

{zt1 , · · · , ztm}, a collection of m random variables from time series {zt}, has an identi-

cal joint distribution with another collection of m random variables at a time lag τ , i.e.,

{zt1+τ , · · · , ztm+τ }, ∀ τ ∈ {0,±1,±2, · · · }. A time series is weakly stationary (or second–

order stationary) if (1) E(zt) = µ, ∀ t ∈ Dt and (2) Cov(zt, zr) = C(t− r) = C(τ), ∀ t, r ∈

Dt and τ = {0,±1,±2, · · · }.

For a multivariate time series {zt}, we use {z(i)
t } to denote the ith time series. The
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cross–covariance function between time series {z(i)
t } and {z(j)

t } is defined by:

Cij(t, r) = Cov(z(i)
t , z(j)

r ), t, r ∈ Dt. (A.8)

Furthermore if the multivariate time series is weakly stationary, then:

Cij(t, r) = Cij(τ) = Cov(z(i)
t , z

(j)
t+τ ) = Cji(−τ). (A.9)

Lastly, weakly stationary cross–correlation function is given by:

ρij(τ) = Cij(τ)√
Cii(0)Cjj(0)

, τ = 0,±1,±2, · · · . (A.10)

The above definitions are general. When data are involved, we are interested in the

empirical estimates of the statistics. For a weakly stationary time series {z1, · · · , zT }, the

empirical mean (or sample mean) µ̂ = 1
T

T∑
t=1
zt. The empirical autocovariance function

is:

Ĉ(τ) = 1
T

T −τ∑
t=1

(zt+τ − µ̂)(zt − µ̂), τ = 0, 1, · · · , T − 1. (A.11)

The above is biased; the denominator can be replaced by T − τ for a unbiased estimation

of the autocovariance function. The empirical autocorrelation function is:

ρ̂(τ) = Ĉ(τ)
Ĉ(0)

, τ = 0, 1, · · · , T − 1. (A.12)

Similarly, the empirical cross–covariance function is:

Ĉij(τ) = 1
T

T −τ∑
t=1

(z(i)
t+τ − µ̂i)(z(j)

t − µ̂j), τ = 0, 1, · · · , T − 1; (A.13)

and the empirical cross–correlation function is:

ρ̂ij(τ) = Ĉij(τ)
Ĉii(0)Ĉjj(0)

, τ = 0, 1, · · · , T − 1. (A.14)
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As a numerical example, consider {zt} = {6.7, 5.3, 3.3, 6.7, 3.3, 4.7, 4.7, 6.7, 3.3, 6.7} is a

weakly stationary time series, with T = 10. The empirical mean is calculated to be µ̂ = 5.14.

For τ = 3, the autocorrelation is:

ρ̂(3) = Ĉ(3)
Ĉ(0)

=

1
10

7∑
t=1

(zt+3 − 5.14)(zt − 5.14)

1
10

10∑
t=1

(zt − 5.14)2
= −0.48

2 = −0.24.

A.2 Geostatistics preliminaries

A spatial process can be written as {z(s) : s ∈ Ds} where Ds ⊂ Rd and s indexes the

location of the process. A spatial process is called a geostatistical process if its parameters

are defined via mean, variances and covariances. We are interested to establish the spatial

dependence in a geostatistical process.

Variogram is the foundation of geostatistics. A stationary variogram is defined as:

γ(h) = V
(
z(s + h) − z(s)

)
, ∀ s, s + h ∈ Ds. (A.15)

where h is a d–dimensional translation in space; γ(h) denotes the variogram. Furthermore,

if the variogram can be written as only a function of ∥h∥, where ∥·∥ denote the Euclidian

distance, it is an isotropic variogram. Similar to the variogram, we can define stationary

spatial covariance function:

C(h) = Cov
(
z(s + h), z(s)

)
, ∀ s, s + h ∈ Ds. (A.16)

with E(z(s)) = µ, which is constant. The corresponding stationary spatial correlation

function is:

ρ(h) = C(h)
C(0) , h ∈ Rd. (A.17)

Isotropic spatial covariance/correlation functions are C(∥h∥) and ρ(∥h∥) respec-
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tively, if they exist.

A.3 Space–time covariance functions

In the spatio–temporal case, if we can define covariance function C such that:

C(s − x; t, r) = Cov{z(s; t), z(x; r)}, s,x ∈ Ds, t, r ∈ Dt (A.18)

we say that the covariance function is spatially stationary. Similarly, temporal sta-

tionarity of the covariance function is defined as:

C(s,x; t− r) = Cov{z(s; t), z(x; r)}, s,x ∈ Ds, t, r ∈ Dt (A.19)

and spatio–temporal stationarity corresponds to:

C(s − x; t− r) = Cov{z(s; t), z(x; r)}, s,x ∈ Ds, t, r ∈ Dt (A.20)

Similar to spatial stationarity, spatial isotropy corresponds to:

C(∥s − x∥; t, r) = Cov{z(s; t), z(x; r)}, s,x ∈ Ds, t, r ∈ Dt (A.21)

From Eqn. (A.18), if we define h = s − x, and from Eqn. (A.19) we define τ = t − r,

spatially and temporally stationary covariance functions can be written as CS(h) and CT (τ)

respectively, where the subscripts S and T are used to denote space and time. A spatio–

temporal random process z(s; t) is said to have a separable spatio–temporal covariance

function if:

Cov{z(s; t), z(x; r)} = CS(s,x) · CT (t, r), ∀ s,x ∈ Ds, t, r ∈ Dt (A.22)



A.3 Space–time covariance functions 188

When CS(·) and CT (·) are spatially and temporally stationary, Eqn. (A.22) becomes:

C(h; τ) = CS(h) · CT (τ), h ∈ Rd, τ = 0,±1,±2, · · · (A.23)

However, environmental data sets are not separable due to the complex time and space

interactions. Such separable approximation only facilitates analysis. A more general class

of spatio–temporal processes are the fully symmetric processes. A random process is said

to be fully symmetric if:

Cov{z(s; t), z(x; r)} = Cov{z(s; r), z(x; t)}, ∀ s,x ∈ Ds, t, r ∈ Dt (A.24)

Again, given the stationary covariance functions, Eqn. (A.24) becomes:

C(h; τ) = C(h; −τ), h ∈ Rd, τ = 0,±1,±2, · · · (A.25)

which represents a stationary fully symmetric covariance function. Separability is a

special case of full symmetry. Therefore when the covariance matrix is not fully symmetric,

it can not be separable.

As correlation can be considered as a normalized measure of covariance, the above defi-

nitions apply to correlation function ρ(·; ·). For example, a spatio–temporal stationary

correlation function can be defined as:

ρ(h; τ) = Corr{z(s; t), z(x; r)}, s,x ∈ Ds, t, r ∈ Dt, h ∈ Rd, τ = 0,±1,±2, · · ·

(A.26)

From Eqns. (A.22), (A.23), (A.24) and (A.25) we can infer that stationarity does not imply

full symmetry nor separability. Fig. A.1 shows the Venn diagram for the three statistical

properties.
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General spatio–temporal dataset

Separable

Fully Symmetric

Stationary

Fig. A.1 Diagram illustration for stationarity, full symmetry and separability.
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Selected detrend models

Baig et al. (1991) fit the global horizontal irradiance (GHI) series with a Gaussian function:

Itrend = 1
σ

√
2π
e−(t−m)2/2σ2 (B.1)

where Itrend is the fitted trend, t is time, and σ is the standard deviation of the Gaussian (the

regression parameter that should be determined by the data). The parameter m represents

the peak hour of a day which corresponds to the expected mean of the Gaussian distribution.

Kaplanis (2006) uses a cosine function to fit the GHI series:

Itrend = a1 + a2 cos
(

2π(t−m)
24

)
(B.2)

where a1 and a2 are the regression parameters.

Al-Sadah et al. (1990) find that a high order polynomial model is a good fit:

Itrend = b1 + b2t+ b3t
2 (B.3)

where b1, b2 and b3 are the regression parameters.
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Multidimensional scaling

Multidimensional scaling (MDS) aims at searching for a low dimensional space (usually

Euclidean), in which points in the space represent the objects, in addition, the distance

between the set of points in the space, {hij}, match as well as possible the original set of

dissimilarities {dij} (Cox and Cox, 2000). There are many MDS models, among which the

classical scaling and non–metric scaling are used in this thesis.

Multi-dimensional scaling is implemented in many statistical softwares such as R (R

Core Team, 2014). Nevertheless, we show the required mathematics for implementing MDS

in our context. We use the non–metric MDS developed by Kruskal (1964a,b). Classical

MDS is first used to set the initial parameters required by Kruskal’s algorithm.

C.1 Classical MDS

Using the definition of dispersion given by Sampson and Guttorp (1992), we can define the

proximity (which can be similarity or dissimilarity, in our case the dissimilarity) matrix ∆,

which is constructed using the square root of the elements in the dispersion matrix [d2
ij],

i.e., ∆ = [dij] where i, j ∈ {1, 2, · · · , n} representing n points in space.

The classical MDS algorithm rests on the fact that the coordinate matrix X can be

derived by eigenvalue decomposition from the scalar product matrix B = XX ′. A detailed
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derivation can be found in chapter 2 of (Cox and Cox, 2000). The following steps describe

the solution mathematically.

Given the matrix of squared proximities ∆(2) = [d2
ij], we perform double centering:

B = −1
2J∆(2)J (C.1)

where J = I − n−111⊤, n is the number of objects. For example, if we have 4 objects,

J =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


− 1

4 ×



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


(C.2)

The purpose of the double centering step is to overcome the indeterminacy of the solution

due to arbitrary translation. B calculated this way is relative to the origin. We can then

use spectral decomposition:

B = QmΛmQ−1
m (C.3)

Λm is the diagonal matrix of m eigenvalues and Qm is the matrix of m eigenvectors. The

coordinate matrix can then be obtained by:

X = B(1/2) = QmΛ(1/2)
m (C.4)

If the desired MDS results are two dimensional, only the first two columns of X are needed.

C.2 Kruskal’s algorithm

In contrast to the classical MDS, non–metric MDS interests only in the ranking of the

dissimilarities. Recall the definition earlier, for n objects (points) in space, there are only

n(n−1)/2 dissimilarities dij for i < j with i ∈ {1, 2, · · · , n−1} and j ∈ {2, 3, · · · , n}. In the
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ideal case, if we arrange the dissimilarities in an ascending order, we can define disparities

ĥij = δ(dij), where δ(·) is a monotonic regression passing through all n points in the exact

order. However, this ideal situation is not always present at the initial condition set by

classical MDS; further optimization is required. It is achieved by minimizing some stress

functions. Unfortunately, even when the stress functions are minimized, the monotonic

relationship may not be present due to the degeneracies in the dissimilarity matrix.

a b

c

d

2

3

4

5

6

1

Fig. C.1 A representation for degeneracy in the dissimilarity matrix. a, b, c and d are
objects, the numbers indicate their dissimilarities.

Consider the example shown in Fig. C.1. If only objects a, b and c are considered,

the dissimilarities (numbers in the figure) are immediately seen to be related with their

distances, i.e., the dissimilarity increases monotonically with increasing separation. Now

consider that one more object, d, is added into configuration. After examining the inter-

object distances, the logical dissimilarity between a and d would be 7 (they are furthest

apart). However, the set dispersion is 1; the relationships among the objects become less

obvious. In the later case, non–metric MDS would locate d somewhere near a to achieve

the minimum stress. In our application of irradiance forecasting, the degeneracies in the

dissimilarity matrix is not severe as the dissimilarity is based on the physical guild line of

“closer things are more alike”. Practical examples shown in chapter 5 and 9 both reflect the

physical principle and the applicability of MDS.
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With that being said, we consider the stress functions. A raw stress S∗ is defined as:

S∗ =
∑
i<j

(hij − ĥij)2, i ∈ {1, 2, · · · , n− 1}, j ∈ {2, 3, · · · , n} (C.5)

which is the sum of square error between the desired distances and the disparities. However,

this raw stress function lacks certain desirable properties. For instance, it is not invariant

under uniform stretching. If the dissimilarities change by a factor of k, then S∗ changes to

k2S∗. To overcome the defect, a normalizing term can be added as a denominator, further-

more, the square root is included, which is analogous to choosing the standard deviation in

place of the variance:

S =

√√√√√√√√
∑
i<j

(hij − ĥij)2

∑
i<j

h2
ij

(C.6)

The stress function S can be minimized through an iterative gradient descent method.

The steps are given below:

1. Use classical MDS for initial configuration.

2. Normalize the configuration to have its centroid at the origin and unit mean square

distance from the origin. Although the classical MDS centers the data, normalization

is need for each iteration to prevent the continually expanding in successive iterations.

3. Find set of distance {hij} from the configuration.

4. Fit a monotonic regression line of {hij} on {dij} by least square. Details of this least

square method is found in chapter 3 of (Cox and Cox, 2000).

5. Find the gradient ∂S
∂x

, where x = (x1, y1, x2, y2, · · · , xn, yn)′ are the coordinates of the

N points in space. For higher dimension scalings, x is adjusted accordingly. If the

absolute value
∣∣∣∣∣∂S
∂x

∣∣∣∣∣ is smaller than some ϵ, the algorithm converges. Otherwise:

6. Find the step length sl which controls the convergence speed. An ad hoc rule of finding
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sl is given in (Kruskal, 1964b). Comprehensively, sl is determined by g(Sm,Sm−1,Sm−5),

a function of present stress Sm, the previous stress Sm−1 and the stress 5 steps ago,

Sm−5.

7. Calculate the new configuration using:

xm+1 = xm −

∂S
∂x

× sl∣∣∣∣∣∂S
∂x

∣∣∣∣∣
(C.7)

where m is the iteration step.

8. Go back to step 2.

The configuration at convergence will give the non–metric MDS result.



Appendix D

Thin plate spline mapping

Given two sets of coordinates:

G =

x1 x2 · · · xn

y1 y2 · · · yn


⊤

, ∈ Rn×2 (D.1a)

D =

x∗
1 x∗

2 · · · x∗
n

y∗
1 y∗

2 · · · y∗
n


⊤

, ∈ Rn×2 (D.1b)

where G and D stand for geographical and dispersion planes. For each pair of coordinates

in G, we can find the Euclidean distance between them, i.e,:

rij = ∥si − sj∥ =
√

(xi − xj)2 + (yi − yj)2 (D.2)
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By defining the thin plate spline U(rij) = r2
ij log r2

ij. We can write matrices:

K =



0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)
... ... . . . ...

U(rn1) U(rn2) · · · 0


, ∈ Rn×n (D.3a)

P =


1
... G

1

 =


1 s1

... ...

1 sn

 =


1 x1 y1

... ... ...

1 xn yn

 , ∈ Rn×3 (D.3b)

L =

 K P

P ⊤ 0

 , ∈ R(n+3)×(n+3) (D.3c)

where 0 is a 3×3 matrix of zeros. We find the inverse of L through spectral decomposition:

L = QΛQ−1 (D.4)

and

L−1 = QΛ−1Q−1 (D.5)
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We write:

L−1 =


L−1

n · · ·

L−1
1

...

L−1
2 · · ·

 , ∈ R(n+3)×(n+3) (D.6a)

L−1
n =



L−1
1,1 L−1

1,2 · · · L−1
1,n

L−1
2,1 L−1

2,2 · · · L−1
2,n

... ... . . . ...

L−1
n,1 L−1

n,2 · · · L−1
n,n


, ∈ Rn×n (D.6b)

L−1
1 =

(
L−1

(n+1),1 L−1
(n+1),2 · · · L−1

(n+1),n

)
, ∈ R1×n (D.6c)

L−1
2 =

L−1
(n+2),1 L−1

(n+2),2 · · · L−1
(n+2),n

L−1
(n+3),1 L−1

(n+3),2 · · · L−1
(n+3),n

 , ∈ R2×n (D.6d)

where L−1
i,j denotes the entry of L−1 at ith row, jth column.

Consider the n–vector Vx∗ and the (n+ 3)–vector Yx∗ :

Vx∗ =
(
x∗

1 x∗
2 · · · x∗

n

)
, ∈ R1×n (D.7)

Yx∗ =
(

Vx∗ 0 0 0
)⊤

, ∈ R(n+3)×1 (D.8)

We can thus define a function fx∗(x, y) so that an arbitrary G plane point s0 with coordinates

(x, y) can be mapped to the x–coordinate in the D plane:

fx∗(x, y) = a1 + axx+ ayy +
n∑

i=1
wiU(∥si − s0∥) (D.9)

where the coefficients a1, ax, ay and wi are found via:

L−1Yx∗ =
(
w1 · · · wn a1 ax ay

)⊤
, ∈ R(n+3)×1 (D.10)
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Similarly the point s0 can be mapped to the y–coordinate in the D plane using fy∗(x, y),

which is defined similarly through the vectors Vy∗ and Yy∗ . From Eqn. (D.10), it is clear

that the role of the last 3 rows of L is to ensure that the sum of the coefficients wi are zero.

Furthermore, the cross products of wi with the x and y coordinates of si are likewise zero.

In matrix format, the above procedure can be rewritten by computing:

W = L−1
n D, ∈ Rn×2 (D.11a)

T = L−1
1 D, ∈ R1×2 (D.11b)

B = L−1
2 D, ∈ R2×2 (D.11c)

For an arbitrary point s0 in geographical plane (x, y), its position in the dispersion plane

(x∗, y∗) is: x∗

y∗

 = T ⊤ + B⊤

x
y

+ W ⊤S (D.12)

where

S =



U∥s0 − s1∥

U∥s0 − s2∥
...

U∥s0 − sn∥


, ∈ Rn×1 (D.13)

We obtain the one–to–one mapping from the geographical plane to dispersion plane.
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Transposition models

E.1 Isotropic models

Four isotropic models are accessed in chapter 6. In isotropic approximation, we assume the

diffuse radiance were ideally constant over the whole sky hemisphere. Tilt angle s is the

only input to these models.

The Badescu (2002) model

Rd = [3 + cos(2s)]/4 (E.1)

The Koronakis (1986) model

Rd = (2 + cos s)/3 (E.2)

The Liu and Jordan (1962) model

Rd = (1 + cos s)/2 = cos2(s/2) (E.3)

The Tian et al. (2001) model

Rd = 1 − s/180 (E.4)
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E.2 Anisotropic Models

In reality, a plane of tilt s facing the sun receives more diffuse radiation than a plane of

same tilt in the opposite direction. More parameters are involved in anisotropic models.

The Hay (1979) model

Rd = Ibeam

Ioh
Rb +

(
1 − Ibeam

Ioh

)(1 + cos s
2

)
(E.5)

where Rb is beam irradiance transposition factor, it is given by cos θi/ cos θz.

The Klucher (1979) model

Rd = cos2
(
s

2

) [
1 + F ′ sin3

(
s

2

)]
[1 + F ′ cos2 θi sin3 θz] (E.6)

where F ′ is Klucher’s modulating function defined as 1 − (Idif/Iglo)2.

The Perez et al. (1990) model

The sky’s clearness ε′ is first defined by Perez:

ε′ =
(Idif + Idir)

1
Idif

+ κ

(
θz × π

180

)3
÷

1 + κ

(
θz × π

180

)3
 (E.7)

where κ is constant 1.041 for θz in degrees. The sky’s brightness ∆′ is give by: ∆′ =

Idif ×mr/Io.

The circumsolar brightening coefficient F1 and horizon brightening coefficient F2 is given

by:

F1 = max
{

0, F11 + F12 × ∆′ + F13 ×
(
θz × π

180

)}
(E.8)

F2 = F21 + F22 × ∆′ + F23 ×
(
θz × π

180

)
(E.9)

where F11, F12, F13, F21, F22 and F23 are given according to various ε′ bins by table:
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ε′ F11 F12 F13 F21 F22 F23

[1, 1.065) −0.0083 0.5877 −0.0621 −0.0596 0.0721 −0.022
[1.065, 1.23) 0.1299 0.6826 −0.1514 −0.0189 0.066 −0.0289
[1.23, 1.5) 0.3297 0.4869 −0.2211 0.0554 −0.064 −0.0261
[1.5, 1.95) 0.5682 0.1875 −0.2951 0.1089 −0.1519 −0.014
[1.95, 2.8) 0.873 −0.392 −0.3616 0.2256 −0.462 0.0012
[2.8, 4.5) 1.1326 −1.2367 −0.4118 0.2878 −0.823 0.0559
[4.5, 6.2) 1.0602 −1.5999 −0.3589 0.2642 −1.1272 0.1311
[6.2, +∞) 0.6777 −0.3273 −0.2504 0.1516 −1.3765 0.2506

Finally the diffuse transposition factor is given by:

Rd = (1 − F1) ×
(1 + cos s

2

)
+ F1 × a

b
+ F2 × sin s (E.10)

where a = max(0, cos θi) and b = max(0.087, cos θz).

The Reindl et al. (1990b) model

Rd = Ibeam

Ioh
Rb +

(
1 − Ibeam

Ioh

)(1 + cos s
2

) [
1 +

√
Ibeam

Iglo
sin3

(
s

2

)]
(E.11)

where Rb is defined earlier in Hay model.

The Skartveit and Olseth (1986) model

Rd = Ibeam

Ioh
Rb + Ω cos s+

(
1 − Ibeam

Ioh
− Ω

)(1 + cos s
2

)
(E.12)

where Ω = max [0, (0.3 − 2Ibeam/Ioh)]

The Temps and Coulson (1977) model

Rd = cos2
(
s

2

) [
1 + sin3

(
s

2

)]
[1 + cos2 θi sin3 θz] (E.13)
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Decomposition models

The Erbs et al. (1982) model

We define diffuse horizontal transmittance Kd as:

Idif = KdIoh (F.1)

Combine the above equation with Eqns. (6.3) to (6.5), we have:

Kd = Kt −Kn (F.2)

together with the correlation which Erbs developed:

Kd

Kt
= 1.0 − 0.09Kt, for Kt ≤ 0.22 (F.3)

Kd

Kt
= 0.9511 − 0.1604Kt + 4.388K2

t − 16.638K3
t

+12.336K4
t , for 0.22 < Kt ≤ 0.80 (F.4)

Kd

Kt
= 0.165, for Kt > 0.80 (F.5)
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The Orgill and Hollands (1977) Model

Kd

Kt
= 1.0 − 0.249Kt, for Kt ≤ 0.35 (F.6)

Kd

Kt
= 1.557 − 1.84Kt, for 0.35 < Kt ≤ 0.75 (F.7)

Kd

Kt
= 0.177, for Kt > 0.75 (F.8)

The Maxwell (1987) Model

Kn = Knc − ∆Kn (F.9)

Knc = 0.866 − 0.122mr − 0.0121m2
r − 0.000653m3

r + 0.000014m4
r (F.10)

∆Kn = a+ b× exp(c×mr) (F.11)

mr = [cos θz + 0.15(93.885 − θz)−1.253]−1 (F.12)

Knc is clear sky direct normal transmittance, mr is relative optical air mass as described

in (Kasten, 1965). a, b and c are parameters used to calculate the change in direct normal

transmittance ∆Kn under various values of Kt. a, b and c are related to Kt by a piecewise

function:

For Kt ≤ 0.6,

a = 0.512 − 1.56Kt + 2.286K2
t − 2.222K3

t (F.13)

b = 0.370 + 0.962Kt (F.14)

c = −0.280 + 0.932Kt − 2.048K2
t (F.15)
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For Kt > 0.6,

a = −5.743 + 21.77Kt − 27.49K2
t + 11.56K3

t (F.16)

b = 41.40 − 118.5Kt − 66.05K2
t + 31.90K3

t (F.17)

c = −47.01 + 184.2Kt − 222.0K2
t + 73.81K3

t (F.18)

The Reindl et al. (1990a) Model (Univariate)

Kd

Kt
= 1.020 − 0.248Kt, for Kt ≤ 0.3 (F.19)

Kd

Kt
= 1.45 − 1.67Kt, for 0.3 < Kt ≤ 0.78 (F.20)

Kd

Kt
= 0.147, for Kt > 0.78 (F.21)

The Reindl et al. (1990a) Model (Bivariate)

Kd

Kt
= 1.020 − 0.254Kt + 0.0123 sinα, for Kt ≤ 0.3 (F.22)

Kd

Kt
= 1.400 − 1.749Kt + 0.177 sinα,

for 0.3 < Kt ≤ 0.78, Kd/Kt < 0.97 and Kd/Kt > 0.1 (F.23)
Kd

Kt
= 0.486Kt − 0.182 sinα, for Kt > 0.78 and Kd/Kt > 0.1 (F.24)

where α is the solar elevation angle. It is given by 90◦ − θz in degrees.
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