# BIOLOGICAL NETWORK ANALYSIS AND COMPARISON 

TIAN DECHAO<br>(MASTER OF SCIENCE, NORTHEAST NORMAL UNIVERSITY, CHINA)

## A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

## DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY

NATIONAL UNIVERSITY OF SINGAPORE

## DECLARATION

I hereby declare that the thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Tian Dechao
$5^{\text {th }}$ February, 2015

## Thesis Supervisor

Choi Kwok Pui Associate Professor, Department of Statistics and Applied Probability, National University of Singapore, Singapore, 117546

## Papers and Manuscripts

## Papers

Tian, D., and Choi, K. P. (2013). Sharp Bounds and Normalization of Wiener-Type Indices. PLoS ONE, 8(11), e78448.

Zhang, S.*, Tian, D.*, Tran, N. H., Choi, K. P., and Zhang, L.X (2014). Profiling the Transcription Factor Regulatory Networks of Human Cell Types. Nucleic Acids Research, 42(20), 12380-12387.

Manuscript
Tian, D., Choi, K. P., and Zhang, L.X. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

* co-first authorship


## Acknowledgements

I would like first to express my gratitude and appreciation to my supervisor, Prof. Choi Kwok Pui for his complete trust, endless patience, and expert guidance in my research. He helps me to build up my confidence in further pursuit of my academic dream and provides detailed recommendations for my future plan. He also takes care of my daily life and always hope the best for me.

I would like to show my gratitude for Prof. Zhang Louxin. His style of thinking, analyzing, and writing help me a lot in research. My thanks also goes to the other Network Biology group members for helpful discussion and warm friendship.

I want to take this opportunity to thank Prof. Bai Zhidong for his support in my PhD application, encouragement in my research and care for my daily life. I would like to express special thanks to other faculty members and support staff. I am grateful to National University of Singapore for awarding me the Graduate Research Scholarship to pursue research in my area of interest.

I would also like to express my sincere thanks to my friends Dr. Li Xiang and Dr. Huang Zhipeng for their friendship and encouragement in the journey. I would like to thank seniors Dr. Hu Jiang, Dr. Li Hua and Dr. Xia Ningning for their generous guidance and kind help in many aspects.

Also I would like to thank other PhD students in Department of Statistics and Applied Probability who helped me in one way or another. All my friends whom I have forgotten to mention here are also greatly appreciated for their assistance and encouragement.

Finally, I am grateful to my family for their unconditional support and encouragement.

## Contents

Declaration ..... ii
Thesis Supervisor ..... iii
Papers ..... iv
Acknowledgements ..... v
Summary ..... xi
List of Tables ..... xiii
List of Figures ..... xvi
1 Introduction ..... 1
1.1 Complex biological networks ..... 1
1.2 High-throughput technologies to map networks ..... 2
1.2.1 High-throughput technologies ..... 2
1.2.2 Errors in the observed biological networks ..... 6
1.2.3 Network resources and databases ..... 6
1.3 Mathematical formulation ..... 8
1.3.1 Mathematical representation ..... 8
1.3.2 Definitions and notations ..... 8
1.3.3 Biological network analysis and comparison ..... 9
1.3.4 Network analysis and comparison toolsets ..... 21
1.4 Thesis organization ..... 21
2 Sharp Bounds and Normalization of Wiener-type Indices ..... 23
2.1 Introduction ..... 23
2.2 Methods ..... 26
2.2.1 Definitions and terminologies ..... 26
2.2.2 Effect of number of nodes on Wiener type indices ..... 29
2.2.3 Main idea ..... 30
2.3 Results ..... 30
2.4 Related work ..... 32
2.4.1 Important special cases ..... 32
2.5 Applications ..... 33
2.6 Experiments ..... 34
2.6.1 Experiment 1: Hierarchical clustering of random net- works ..... 36
2.6.2 Experiment 2: Hierarchical clustering of trees ..... 37
2.6.3 Experiment 3: Hierarchical clustering of random net- works and trees ..... 38
2.6.4 Details on generating random networks ..... 39
2.7 Conclusions ..... 42
2.8 Proofs for Theorems 1-4 ..... 44
2.8.1 Proof of Theorem 2 ..... 49
2.8.2 Proof of Theorem 1 ..... 54
2.8.3 Proof of Theorem 3 ..... 55
2.8.4 Proof of Theorem 4 ..... 58
3 Profiling the Transcription Factor Regulatory Networks of Human Cell Types ..... 59
3.1 Introduction ..... 59
3.2 Materials and Methods ..... 61
3.2.1 Network data ..... 61
3.2.2 Discovery of the hierarchical structures of the regu- latory networks ..... 62
3.2.3 Classifying cell types based on TF regulatory networks ..... 62
3.2.4 Measuring the accuracy of the classifications of cell types ..... 63
3.2.5 Detection of regulatory complex-target modules in hESCs ..... 63
3.2.6 Comparing two distributions ..... 64
3.3 Results ..... 64
3.3.1 Wirings around a few TFs are enough to distinguish cell identities ..... 64
3.3.2 The hierarchical structures of 41 cell-type regulatory networks ..... 67
3.3.3 HK and specific regulatory interactions ..... 70
3.3.4 Regulatory interactions specific to hESCs ..... 74
3.4 Discussion ..... 77
4 Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network ..... 82
4.1 Introduction ..... 82
4.2 Materials and Methods ..... 86
4.2.1 FFL count matrices ..... 86
4.2.2 TFs extensively regulated by FFLs in hESC only ..... 88
4.2.3 hESC specific TF lists ..... 90
4.3 Results ..... 91
4.3.1 FFLs in regulatory networks globally distinguish hESC from the other 40 differentiated cell types ..... 91
4.3.2 Netdis and FFL based measure produce comparable cell type classification ..... 92
4.3.3 TFs extensively regulated by FFLs in hESC only carry out important hESC specific functions ..... 94
4.3.4 Significance of TFs extensively regulated by FFLs in hESC only ..... 99
4.3.5 Comparison with motif centrality measures ..... 99
4.4 Conclusions ..... 100
5 Conclusion and Future Work ..... 106
5.1 Conclusion ..... 107
5.1.1 $f$-Wiener index ..... 107
5.1.2 Profiling TF regulatory networks of human cell types ..... 108
5.1.3 Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network ..... 110
5.2 Future work ..... 111
5.2.1 $f$-Wiener index ..... 111
5.2.2 Profiling TF regulatory networks of human cell types ..... 112
5.2.3 Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network ..... 112
Bibliography ..... 114
Appendix ..... 137

## Summary

Complex networks abound in physical, biological and social sciences. Quantifying a network's topological structure facilitates network exploration and analysis, and network comparison, clustering and classification. A number of Wiener type indices have recently been incorporated as distance-based descriptors of complex networks, such as the R package QuACN. Wiener type indices are known to depend both on the network's number of nodes and topology. To apply these indices to measure similarity of networks of different numbers of nodes, normalization of these indices is needed to correct the effect of the number of nodes in a network. Chapter 2 aims to fill this gap. Moreover, we introduce an $f$-Wiener index of network $G$, denoted by $W_{f}(G)$. This notion generalizes the Wiener index to a very wide class of Wiener type indices including all known Wiener type indices. We identify the maximum and minimum of $W_{f}(G)$ over a set of networks with $n$ nodes. We then introduce our normalized-version of $f$-Wiener index. The normalized $f$-Wiener indices were demonstrated, in a number of experiments, to improve significantly the hierarchical clustering over the non-normalized counterparts.

Neph et al. (2012a) reported the transcription factor (TF) regulatory networks of 41 human cell types using the DNaseI footprinting technique. This provides a valuable resource for uncovering regulation principles in
different human cells. In chapter 3, the architectures of the 41 regulatory networks and the distributions of housekeeping and specific regulatory interactions are investigated. The TF regulatory networks of different human cell types demonstrate similar global three-layer (top, core, and bottom) hierarchical architectures, which are greatly different from the yeast TF regulatory network. However, they have distinguishable local organizations, as suggested by the fact that wiring patterns of only a few TFs are enough to distinguish cell identities. The TF regulatory network of human embryonic stem cells (hESCs) is dense and enriched with interactions that are unseen in the networks of other cell types. The examination of specific regulatory interactions suggests that specific interactions play important roles in hESCs.

An Feed-Forward Loop (FFL) consists of 3 nodes $A, B$ and $C$ in which $A$ regulates $B$, and both $A$ and $B$ regulate $C$. In chapter 4, we compared local regulatory landscapes on each TF in terms of FFLs in regulatory network of hESC with those in other 40 differentiated cell types reported by Neph et al. (2012a). Firstly we found that distributional properties of FFL regulating each TF can reproduce embryonic origin and known cell-lineage relationship well. The clustering is comparable with clusterings based on distance matrices produced by netdis (Ali et al., 2014). Secondly we identified 28 TFs extensively regulated by FFLs in hESC only. Among them 13 TFs perform hESC related functions. While remaining 15 TFs are master TFs in various differentiated cell types. Thirdly, our proposed scores perform better in identifying hESC related TFs than FFL-based centrality measures in Koschützki et al. (2007).

## List of Tables

2.1 Adjusted Rand Index (ARI) for clustering (or classification) of networks in our three experiments. For experiments 1.1 to 1.5 , we report the mean and the standard deviation (number in parenthesis) of ARI. Mean and standard deviation of ARI for experiments 1.1 to 1.5 under random clustering are 0 and 0.05 respectively. ..... 37
3.1 There are 82 hub TFs in the ESCSN. Forty-seven of them, include NANOG, are not hubs in the original hESC TF reg- ulatory network. TFs encoded by hESC-specific genes with super-enhance are colored red. ..... 75
3.2 The summary of the enrichments of hubs, essential and HK TFs in the top, core and bottom layers of the 41 cell-type TF regulatory networks. For clarity, the cell types are divided into eight classes, listed (together with the numbers of cell types) in the first column. The symbols + and represent the enrichment and depletion of TFs of a type in a hierarchical layer in all the networks of a class. ..... 79
4.1 A portion of FFL count matrix $M C$. Values are numbers of FFLs regulating each of 475 TFs in the 41 networks. Abbre- viation: H7, h7-ESC; BL1, B-Lymphocyte; HEM, hematopoi- etic stem cell; BL2, B-Lymphoblastoid; ERY, erythroid; PRO, promyelocytic leukemia; TLY, T-Lymphocyte; HEP, hepato- blastoma; NEU, neuroblastoma. ..... 87
4.2 Five-number summary of RIs from hierarchical clusterings based on distance matrices produced by netdis. We itera- tively chose one out of the 41 networks as a gold-standard network and constructed pair-wise netdis with $k=3$ or 4 for remaining 40 networks. Then we performed hierarchical clus- tering with Ward method and computed RI for resulting clustering. ..... 95
4.3 TFs extensively regulated by Feed-Forward Loops (FFLs) in hESC regulatory network only ..... 98
4.4 TFs regulated by FFLs in regulatory network of hESC only. ..... 98
A. 11509 ESC specific interactions which are found in hESC net- work, but not found in the other 40 TF regulatory networks. ..... 137
A. 255 ESC regulatory complex-target modules using the ESC specific interactions and protein complexes. TFs are sepa- rated by semicolon. ..... 148
A. 3 The distributions of nodes and interactions among three layers: top, core, bottom in the hierarchical organization of 41 networks. The entries in red color are those signif- icantly low/high percentages when compared to the oth- ers. Abbreviations. T-T: Top $\rightarrow$ Top. T-C: Top $\rightarrow$ Core; T-B: Top $\rightarrow$ Bottom;C-C: Core $\rightarrow$ Core; C-B: Core $\rightarrow$ Bottom; B-B:
Bottom $\rightarrow$ Bottom. ..... 149
A. 4 Local reaching centrality (LRC) and global reaching central- ity (GRC) in each of 41 networks. Here we report average LRC of TFs in Top, Core, and Bottom layers. As expected, the LRC of each TF in a layer is always greater than that of each TF in the layers below it in all except two stromal (HCF and HCM) networks from Cardiac Fibroblast. ..... 150
A. 52041 housekeeping (HK) interactions which are found in all the 41 TF regulatory networks. ..... 151
A. 623 protein complexes in which the proteins in the complex are highly connected with HK interactions. Rows without background are TFs in one complex, while rows with gray background are HK interactions connecting TFs in the complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

## List of Figures

$$
\begin{aligned}
& \text { 1.1 Gene regulatory network of E. coli. There are } 197 \text { TFs (red } \\
& \text { circle), } 1745 \text { target genes (blue circle) and 1942 directed in- } \\
& \text { teractions. Data from RegulonDB (version 8.0, Salgado et al. } \\
& \text { (2013)). Network visualization: Cytoscape (version 3.1.0, Kohl } \\
& \text { et al. (2011)). . . . . . . . . . . . . . . . . . . . . . . . . . . } 3
\end{aligned}
$$

1.2 Transcription factor (TF) regulatory network in human em
bryonic stem cell. There are 470 TFs and 13176 interactions.
Data from Neph et al. (2012a). Network visualization: Cy
toscape (version 3.1.0, Kohl et al. (2011)). ..... 4

1.3 Illustration of DNaseI footprinting workflow. Figure is down
loaded from Wikipedia (http://en.wikipedia.org/wiki/
DNA_footprinting\#cite_note-PMID22955618-14). ..... 5

1.4 A framework for bow-tie structure organization. Red objects
stands for input, core and output components. Blue arrows
stands for regulation within or between components. ..... 13

1.5 A schematic view of three-layer hierarchical structure of the
hESC TF regulatory network produced by the vertex-sort
algorithm. The TFs are colored red. The links between the
top and bottom layers are colored yellow. The other links
are in white color. Network data is from Neph et al. (2012a).
Network visualization: Cytoscape (version 3.1.0, Kohl et al.
(2011)). ..... 16
1.6 Network motifs with 2, 3, and 4 nodes. (A) feedback motif. (B) All 13 types of three-node connected subgraph. (C) Bifan and Biparallel motifs. ..... 18

### 2.1 Some special graphs. Figure 2.1 (a) to (g) are trees

2.2 Hierarchical clustering of random networks. 30 networks with 10 each generated by the Erdos-Renyi (ER), scale-free (SF) and geometric (GE) random network models. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 35 for functions used). The adjusted rand index (ARI) for this clustering is 0.24 . Panel (B) is the hierarchical clustering based on the normalized versions of the same $f$-Wiener indices. The ARI of this clustering is 0.67. Number of nodes chosen are $500,550, \ldots, 950$, and $p$ is 0.05 in the Erdos-Renyi model. A scale-free network with 500 nodes is denoted by $S F_{500}$. The others are denoted in a similar way.
2.3 Boxplots of Adjusted Rand Index for measuring the extent of agreement of clustering of the random networks using nonnormalized $f$-Wiener indices versus normalized $f$-Wiener indices.
2.4 Hierarchical clustering of trees. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 6 for functions used). The Adjusted Rand Index (ARI) is 0.1. Panel (B) shows the hierarchical clustering based on normalized $f$-Wiener indices. The ARI is 1 . Trees used in the clustering consist of paths $\left(P_{n}\right)$, stars $\left(S_{n}\right)$, caterpillar-like trees $\left(C_{n, k}\right)$, kites $\left(K_{n, k}\right)$. Number of nodes $n=500,550, \ldots, 950$.
2.5 Hierarchical clusters of trees and graphs. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 6 for functions used). The Adjusted Rand Index (ARI) is 0.04. Panel (B) shows the hierarchical clustering based on normalized $f$-Wiener indices, and $\mathrm{ARI}=0.86$. Trees used are paths $\left(P_{n}\right)$, stars $\left(S_{n}\right)$, caterpillar-like trees $\left(C_{n, k}\right)$, kites $\left(K_{n, k}\right)$. Graphs are generated by Erdos-Renyi $\left(E R_{n}\right)$, scale-free ( $S F_{n}$ ) and geometric $\left(G E_{n}\right)$ random network models. The parameter, $p$, in the Erods-Renyi random graph equals to 0.05 , number of nodes $n=500,550, \ldots, 950$. .
2.6 Illustrating the choices of $u_{1}, u_{2}$ and $u_{3}$ in Lemma 2. Here $T_{1}$ has 5 nodes, $T_{2} 3$ nodes. We choose $u_{1}=3, u_{2}=5$ and $u_{3}=6$. Tree $T$ is constructed by joining $u_{1}$ and $u_{3}$ while $T^{\prime}$ by joining $u_{2}$ and $u_{3} . D(T)$ and $D\left(T^{\prime}\right)$ are $8 \times 8$ matrices where the first 5 columns correspondent to the 5 nodes in $T_{1}$, and the last 3 rows correspondent to the 3 nodes in $T_{2}$.
2.7 Illustration of Lemma 3. Here $n=10, i=j=5, \ell=3, k=$ 7. From the counts of the distances above, it is clear that $\left(d^{\prime}\left(u_{3}, v\right)\right)_{v \in V\left(T^{\prime}\right)} \prec\left(d\left(u_{1}, v\right)\right)_{v \in V(T)}$ and $D\left(T^{\prime}\right) \prec D(T)$.
2.8 Illustration of the subtree pruning and regrafting algorithm. Here $T_{0}$ is obtained from $T$ first by deleting the edge ( $u_{2}, u_{3}$ ) and then connecting $u_{1}$ and $u_{3}$. $T_{0}$ is proved to satisfy these properties: (i) $D(T) \prec D\left(T^{0}\right)$; (ii) $\Delta(T)-1 \leq \Delta\left(T^{0}\right) \leq$ $\Delta(T)$; and (iii) number of pendant nodes is one less than that of $T$.
3.1 The hierarchical clustering of 41 cell types, where the color indicates which classes they belong to (Section 3.2.1). (A) The clustering reported in Neph et al. (2012a) and redrawn for the purpose of comparison, which is based on the pairwise Euclidean distances between the NND vectors of the corresponding TF regulatory networks, has $\mathrm{RI}=0.801$. (B) Our clustering, which is based on the distribution of the downstream targets of the seven STATs, has $\mathrm{RI}=0.856$.
3.2 The evaluation of how the clustering results of limited number of TFs reflect the original cell/tissue groups. The red triangle marks the RI value of the STAT family.
3.3 The STATs and their downstream regulatory targets in hESCs (A) and HSCs (B). Purple TFs are those regulated by some STATs in both cell types. The cell fate commitment process (GO:0045165) is enriched in the targets of STATs in hESCs (Benjamini corrected $p$-value $=2.72 e-7$ ). Dark red and blue targets are the TFs annotated with the GO term. The hemopoietic or lymphoid organ development process (GO:0048534) is enriched in the targets of STATs in HSCs (Benjamini corrected $p$-value $=0.03$ ). Green and blue targets are the TFs annotated with this GO term. Brown targets are other targets whose GO annotations are not given.
3.4 (A) A schematic view of the three-layer hierarchical structure of the hESC TF regulatory network. The links between the top and bottom layers are colored yellow. (B) A summary of average percentages of nodes (dark red) in the three layers and of links (blue) within and across the top, core and bottom layers in a human cell-type TF regulatory network.
3.5 Percentages of TFs that are hubs (A), essential (B) and HK (C) in the top (green circle), core (brown triangle) and bottom (blue diamond) layers in 41 human cell-type TF regulatory networks, grouped according to cell class. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP, epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells. . . .
3.6 Proportion of increase in number of HK interactions in all potential 41- $k$ TF regulatory networks. Where for each $k$, we enumerate all possible percentage of increase in number of common interactions in $41-k$ TF regulatory networks.72
3.7 A) The intersection of the subset of TFs that are involved in HK interactions and the subset of TFs that are encoded by HK genes. (B) The box plots of the relative entropy of the expression values of the genes encoding TFs involved in HK interactions (above) and other TFs (below). (C) The box plots of the proportions of HK interactions within the core layer and among the top, core, and bottom layers in the 41 human cell-type TF regulatory networks. (D) TFs and HK interactions among them in a protein complex (id: HC5737) (Vinayagam et al., 2013)
3.8 The TFs involved in HK interactions that appeared in all of the 41 TF regulatory networks are significantly ( p value $=5.62 e-$ 07) enriched in HK TFs list obtained by combining the lists in Eisenberg and Levanon (2003); She et al. (2009), and Chang et al. (2011).
3.9 (A) Proportions of hub TFs that are in Assou et al. (2007) and the significance of their enrichment in the ESCSN. (B) The subnetwork induced by the hub TFs in the Assou et al.s list in the ESCSN. (C) Proportions of known hESC interactions (38) and the significance of their enrichment in the ESCSN. (D) The hESC specific regulatory interactions appearing in a reported core transcription network for hESCs (Chen et al., 2008). (E) and (F) Two specific regulatory complex-target modules in the hESCs.
4.1 Histogram and fitted log-normal density curve of number of FFLs regulating each TF in the regulatory network of hESC.
4.2 (A) Hierarchical clustering of the 41 cell types based on $M C^{c}$. It has $\mathrm{RI}=0.69$. (B) $z$-score of number of FFLs regulating master TFs in the 41 networks. For a given TF and cell type, high $z$-score (dark color) indicates this TF is regulated by large number of FFLs in that cell type. For example, pluripotent marker OCT4 is regulated by most FFLs in hESC than in the other 40 cell types. (C) Scatterplot of first 2 principal components (PC1 and PC2) from $M C^{r}$. (D) Proportion of variance explained by the first 6 PCs. PC1 and PC2 explained $21.4 \%$ of total variance. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP, epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells.93
4.3 Dendrograms produced by hierarchical clustering with linkage Method= "average" (A) and Method="mcquitty" (B) in hclust function in R . The classifications have $\mathrm{RI}=0.49$ (A) and $\mathrm{RI}=0.85$ ( B ).94
4.4 Dendrogram produced by hierarchical clustering based on a distance matrix produced by netdis (Ali et al., 2014). The network of fetal brain is used as the gold-standard network for netdis. The clustering has $\mathrm{RI}=0.74$. The classification is comparable with the result (Section 4.3.1) produced by the distributional properties of FFL ( $\mathrm{RI}=0.69$ ).
4.5 (A) Subgraph induced by OCT4 and its upstream neighbours (76) in the regulatory network of hESC. There are 495 FFLs regulating OCT4 in this subnetwork. (B) Subgraph induced by OCT4 and its upstream neighbours (18) in the network of fetal heart (fHeart). There are 32 FFLs regulating OCT4 in this subnetwork. Interactions involving in FFLs are colored in green.
4.6 Receiver operating characteristic (ROC) curves and area under the curve (AUC). We compared $R S u m$ against $f f l S u m$, $R A$ against $f f l A, R B$ against $f f l B, R C$ against $f f l C$ in identifying hESC related TFs in reference lists of "Assou TFs" (A), "Master TFs" (B), "Combined TFs" (C), and "Duplicated TFs"(D). (E) Area under the curve (AUC). ROC and AUC demonstrate superiority of $R S u m$ to $f f l S u m$, $R A$ to $f f l A, R B$ to $f f l B, R C$ to $f f l C$.
4.7 Venn diagram between TFs extensively involving in FFLs, taking positions $A, B$, or $C$ in FFL in hESC only. The lists of TFs are labeled as TFSum, TFA, TFB, and TFC respectively. Interesting the 4 lists of TFs have many common TFs. Especially TFC and TFSum have 20 common TFs, $T F C$ and TFB have 13 common TFs. But TFC and TFA only has 1 common TF (ESX1). Total number of TFs in each list is given in parentheses.

## Chapter 1

## Introduction

### 1.1 Complex biological networks

Living cells' characteristics are maintained by complex biological systems which contain numerous components such as DNA, RNA, proteins, and their interactions. Each of these components has been extensively studied to investigate its functions in maintaining cell states and decipher complex cellular systems. It is increasingly clear that biological functions can rarely be attributed to an individual component. Instead, recently more and more evidence demonstrates that important functions are played by interactions between components in maintaining cellular functions (Barabasi and Oltvai, 2004). These discoveries highlight the need to study complex biological systems as a whole. A key challenge is to study structure and dynamics of complex biological systems across conditions, e.g. cell stages, cell types or species, etc. To this direction, complex biological systems are represented by biological networks. A network can be metabolic network, protein-protein interaction (PPI) network, regulatory network, etc. Metabolic networks are classic examples for using a network to represent metabolic pathways. Two
metabolic substrates, denoted as $a$ and $b$, are connected by a directed interaction if a known metabolic reaction exists that acts on $a$ and produces b. PPI networks symbolize physical interactions between proteins. Gene regulatory networks (GRNs) depict gene expression regulation, where a gene's expression is regulated by their regulators (Figure 1.1). Transcription factor (TF) regulatory networks represent regulation of a TF by other TFs (Figures 1.2 and 1.5). Interactions between cellular components rewire at different conditions, for example, stages of a cell, different cell types or across species. Thus these networks could be time-specific, cell type-specific or species-specific, etc. Moreover, these networks are associated with each other and form a "network of networks" that control cell behaviours.

### 1.2 High-throughput technologies to map networks

### 1.2.1 High-throughput technologies

Currently two high-throughput technologies are widely used to map PPI networks, namely Yeast two-hybrid (Y2H) assays (Chen et al., 2010) and affinity purification followed by mass spectrometry (AP-MS) assays (Gingras et al., 2007). Y2H assays can detect direct physical interactions between proteins whereas AP-MS assays can detect protein complexes and indirect association between proteins.

To map regulatory networks, technologies are Yeast one-hybrid (Y1H) assays (Deplancke et al., 2004), Chromatin Immunoprecipitation (ChIP) experiments (Lee et al., 2002) and DNaseI footprinting (Boyle et al., 2011; Galas and Schmitz, 1978; Gusmao et al., 2014; Neph et al., 2012b) are widely applied high-throughput technologies. In Y1H assays, a specific reg-


Figure 1.1. Gene regulatory network of E. coli. There are 197 TFs (red circle), 1745 target genes (blue circle) and 1942 directed interactions. Data from RegulonDB (version 8.0, Salgado et al. (2013)). Network visualization: Cytoscape (version 3.1.0, Kohl et al. (2011)).
ulatory DNA sequence of interest, named as promotor, is used as a bait to identify all putative TFs (preys) that bind to this sequence. On the other hand, Chip experiments are applied to delineate all potentially associated DNA binding sites for a DNA-binding protein of interest.

TF regulatory networks studied in chapters 3 and 4 of this thesis are produced by this approach. DNaseI footprinting is developed by Galas and


Figure 1.2. Transcription factor (TF) regulatory network in human embryonic stem cell. There are 470 TFs and 13176 interactions. Data from Neph et al. (2012a). Network visualization: Cytoscape (version 3.1.0, Kohl et al. (2011)).

Schmitz (1978) to analyze regulatory sequences in diverse organisms. DNaseI footprinting is a well-established approach for identifying direct regulatory interactions and provides a powerful genetic approach for assaying the occupancy of specific sequence elements which can regulate downstream genes. It is successfully applied to discover the first human sequence-specific TFs (Dynan and Tjian, 1983). DNaseI footprinting technology first binds nuclear chromatin with a protein of interest. Then the chromatin sequence is cleaved by certain enzyme. The protein will protect the binding region from being cleaved thus leaving "footprints" which indicate binding of the protein to the chromatin. The workflow is illustrated in Figure 1.3. Armed
with next-generation sequencing, upgraded DNaseI footprinting approaches are able to identify DNA footprints on a genome-wide scale (Boyle et al., 2011; Gusmao et al., 2014; Neph et al., 2012b). Neph et al. (2012b) improves this approach by integrating DNaseI footprints and the predicted TRANSFAC motif-binding sites (Ravasi et al., 2010). This approach can accurately and quantitatively recapitulate Chip-seq data for individual TFs, while simultaneously interrogating the genomic occupancy of potentially all expressed DNA-binding factors in a single experiment.


Figure 1.3. Illustration of DNaseI footprinting workflow. Figure is downloaded from Wikipedia
(http://en.wikipedia.org/wiki/DNA_footprinting\#Cite_note-PMID22955618-14).

### 1.2.2 Errors in the observed biological networks

An observed network is a network detected by experiments to infer the respective real but unknown network. In an observed network, false positives $(F P)$ refer to interactions that do not exist in the real network but are detected by experiments. False negatives $(F N)$ refer to interactions in a real network but are not detected by experiments. True positives (TP) refer to interactions in a real network and are correctly detected by experiments. True negatives ( $T N$ ) refer to interactions that do not exist in a real network and are not falsely detected by experiments. A high sensitivity, $T P /(T P+F N)$, indicates that a large proportion of interactions in the real network are identified in the observed network, and a high precision, $T P /(T P+F P)$, indicates that a high proportion of interactions in the observed network are actually exist in the real network.

Observed networks are prone to inaccuracy and low coverage due to limitations in high-throughput technologies and the complex nature of corresponding systems. For example, the precision for the human PPI dataset CCSB-HI1 was estimated at $\sim 79.4 \%$, which corresponds to a false discovery rate $\sim 20.6 \%$ (Venkatesan et al., 2008). The precision for a new highquality PPI dataset of S. cerevisiae, CCSH-YI1, was estimated at $\sim 94 \%$ by Yu et al. (2008). Although new Y2H assays achieve very high precision, the sensitivity is quite low, where the best sensitivity is at $\sim 17 \%$ for S . cerevisiae.

### 1.2.3 Network resources and databases

Recent years witness exponential growth in biological network data thanks to the rapid development of high-throughput technologies. A number of
open-access databases have been established to bank numerous network data sets. To name a few well-known databases, PPI networks of multiple species are available in DIP (Xenarios et al., 2002), BioGRID (Chatraryamontri et al., 2013), STRING (Chatr-aryamontri et al., 2013), etc. Although the quality of results from Y2H studies, which supply the core of DIP database, is debated (Von Mering et al., 2002), the manually curated DIP database represents currently most reliable yeast protein interactions and provides sufficient data for their unambiguous statistical analyses (Wuchty et al., 2003). GRN can be downloaded from TRANSFAC (Matys et al., 2003), RegulonDB (Salgado et al., 2013), AtRegNet (Palaniswamy et al., 2006), etc. KEGG (Kanehisa and Goto, 2000), perhaps, is the most comprehensive database for metabolic networks and pathways. Some other useful resources include MIPS (Pagel et al., 2005), BIND (Bader et al., 2003), BioCyc (Caspi et al., 2008), Reactome (Croft et al., 2010), etc. A brief summary of over 300 resources related to biological networks and pathways can be found in the meta-database Pathguide (http://www.pathguide.org).

Besides open-access database, some publications also provide valuable network data. One example is the 41 human TF regulatory networks produced by Neph et al. (2012a). The authors combined DNaseI footprinting technology and TRANSFAC motif-binding sites (Ravasi et al., 2010) to map regulatory networks across 41 diverse human cell and tissue types. Each network contains about 475 sequence-specific TFs and 11,200 interactions. This data provide a good opportunity to study structural organizations and dynamics of human TF regulatory networks across cell and tissue types.

### 1.3 Mathematical formulation

### 1.3.1 Mathematical representation

A complex biological network is mathematically represented by a graph $G=(V, E)$, where $V=\{1, \ldots, n\}$ is the set of nodes in the graph and $E \subseteq V \times V$ is the set of edges connecting nodes in $V$. A node stands for a functional component in the network. An edge $(i, j)$ stands for a certain kind of relationship between nodes $i$ and $j$ in the network, depending on the nature of interactions in the network, $(i, j)$ could be directed or undirected. For example, in a PPI network, nodes are proteins in the network and $(i, j)$ denotes the physical interaction or functional association between proteins $i$ and $j$ and is an undirected edge. In a GRN, $i \in V$ denotes a gene and $(i, j)$ denotes regulation of expression level of gene $j$ by gene $i$ hence a directed edge. For a TF regulatory network, $i$ is a TF and $(i, j)$ represents regulation of $\mathrm{TF} j$ by $\mathrm{TF} i$, thus a directed edge.

### 1.3.2 Definitions and notations

Let $G=(V, E)$ be a connected directed or undirected graph. Denote by $N(G)$ the number of nodes in $G$. Size of $G$ also refers to the number of nodes in $G$. The degree of a node, when $G$ is an undirected graph, is the number of edges incident to this node. When $G$ is a directed graph, the out-degree of a node is the number of edges originated from this node, the in-degree is the number of edges ended with this node, and the total-degree is the sum of in-degree and out-degree of this node. Degree distribution $P(k)$, $k=0,1,2, \ldots$, is the probability that a randomly selected node has degree $k$. Similarly for out-degree and in-degree distribution. Hubs are nodes with
high degrees. Throughout this thesis, hubs refer to those nodes with top $20 \%$ degrees (Jothi et al., 2009). Out-degree hubs, in-degree hubs, and total-degree hubs are similarly defined.

Let $G=(V, E)$ be a simple (that is, no self-loops nor multiple edges) undirected and connected graph. Let $\mathcal{G}_{n}$ denote the set of all simple, connected graphs with $n$ nodes. A graph having no cycles is called a tree, and we let $\mathcal{T}_{n}$ denote the set of all connected trees with $n$ nodes. The distance $d(i, j)$ between any pair of nodes, $i$ and $j$, in $G$ is the number of edges in a shortest path from $i$ to $j$. Let $D(G)=[d(i, j)]_{1 \leq i, j \leq n}$ be the distance matrix. We denote the maximum degree of $G$ by $\Delta(G)$.

### 1.3.3 Biological network analysis and comparison

Complex biological networks are modelled as graphs. So that one can apply a wide-repertoire of results in graph theory to quantify network topological structures with the aim to find associations between significant topological structures and functional properties in biological networks. Many such associations have been reported in literature. For example, biological networks have many topological properties which are different from those in random networks. It is believed that these differences are attributed to functional constraints imposed on biological networks. To name a few of these associations, degree distributions in many biological networks are scale free, in other words, it follows a power law distribution, $P(k) \sim k^{-\lambda}$ (Barabasi and Albert, 1999), implying that a few nodes are hubs and connect to many others while the majority of nodes have a few connections. Biological networks are noted for having high clustering coefficients and small diameters and thus are small-world (Amaral et al., 2000). Good summaries can be
found in the review papers by Barabasi and Oltvai (2004) and Ma'ayan (2011). Chapter 2 will focus on Wiener type indices and their applications in network comparison.

A second area is to discover structural organization principles from complex biological networks, with the hope to universally interpret and model complex biological systems. A few global and local principles have been discovered across various biological networks. Global organization principle includes bow-tie structure organization and hierarchical structure organization. Local organization principle includes network motifs, which are viewed as basic building blocks of complex biological networks. The global and local organization principles nest together in biological networks and perform multiple functions as the network backbone. They can be starting points to model biological networks and decipher complex biological systems.

A third area is to study network dynamics. Examples are study on housekeeping (HK) interactions and cell type-specific interactions. These two types of interactions provide further understanding on cell dynamic organizations.

In the following paragraphs, I will first introduce Wiener type indices and a relevant R package QuACN , then bow-tie, hierarchical structures, network motifs, HK and cell type-specific interactions. This sub-section ends with a brief introduction to network analysis and comparison tools.

## Wiener type indices

The use of Wiener index and related type of indices dates back to the seminal work of Wiener in 1947 (Wiener, 1947a,b). Wiener introduced his
celebrated index to predict the physical properties, such as boiling point, heats of isomerization and differences in heats of vaporization, of isomers of paraffin by their chemical structures. Viewing the chemical structure of an isomer as a connected graph, the Wiener index is defined as $\sum_{i, j} d(i, j)$ where $i, j$ represent nodes in the graph, $d(i, j)$ the distance between nodes $i$ and $j$, and the sum is over all pairs of nodes in the graph. Wiener index has since inspired many distance-based descriptors in Chemometrics. These include Harary index (Plavšić et al., 1993), hyper Wiener index (Randić, 1993), q-analog of Wiener index (Zhang et al., 2012b), Wiener polynomial (Hosoya, 1988), Q-index (Brückler et al., 2011), Balaban J index (Balaban, 1982), and information indices (Dehmer, 2008; Dehmer and Mowshowitz, 2011; Dehmer et al., 2009). These indices, or commonly called descriptors, play significant roles in quantitative structure-activity relationship/quantitative structure-property relationship (QSAR/QSPR) models (Todeschini and Consonni, 2009). The definitions of these indices are detailed in chapter 2.

## QuACN: an R package for calculating network indices

Mueller et al. (2011a) introduced the R package QuACN, which facilitates the systematic calculation of network indices in a network. QuACN computes the values of different categories of indices in a network. There are 4 categories in this package. (1) Descriptors based on distances in a graph: this class consists of measures using distances to describe the networks structure (e.g. Wiener index, Harary index, etc.). (2) Descriptors based on other graph invariants: the descriptors in this class use other graph invariants other than distances (e.g. degree, number of nodes, number of edges,
etc.). (3) Partition-based graph entropy descriptors: these measures use an arbitrary graph invariant and an equivalence criteria to induce partitions. A probability value is then calculated for each partition to determine the entropy. (4) Parametric graph entropy measures: to determine the entropy measures of this class (Dehmer et al., 2009), by assigning a probability value to each vertex of the network, using the so-called information functionals.

Mueller et al. (2011b) applied a set of indices in QuACN to quantify metabolic networks from three domains of life. Each network is represented by a numeric vector whose elements are the calculated indices. Then three domains of life are classified based on their numeric vectors from their metabolic networks. Their classification results show that these selected indices capture domain-specific structural characteristics of metabolic networks.

## Bow-tie structure organization in biological network

A Bow-tie network has a conserved core which interacts with numerous input and output components (Figure 1.4). The three components are connected and each component has global and local feedback regulations. As a result, there are multiple flows of information from input to output through the core (Kitano, 2004).

Bow-tie structure organization is shown to be a common but fundamental organizing principle evidenced by large amount of accumulated biological data (Csete and Doyle, 2004; Li et al., 2012; Nelson et al., 2011). Early evidences for bow-tie structures in biological networks can be found in the review paper by Csete and Doyle (2004). Recently bow-tie structure organization was first found in GRN governing male tail tip morphogene-


Figure 1.4. A framework for bow-tie structure organization. Red objects stands for input, core and output components. Blue arrows stands for regulation within or between components.
sis in C. elegans (Nelson et al., 2011). Li et al. (2012) also found bow-tie organization with diverse patterns in GRNs of 8 human tissues.

In metabolic networks, the bow-tie structure design is robust. It facilitates control, accommodating perturbations and fluctuations on many timescales and spatial scales. Bow-tie structure has inherent fragilities. A chief source of fragility is that the universal common currencies responsible for robustness can be easily hijacked by parasites or used to amplify pathological processes. Bow-tie structure is also capable to maintain evolvability over multiple timescales. Thus it can be viewed as a starting point for modeling complex biological systems (Csete and Doyle, 2004).

## Hierarchical structure of regulatory networks

Hierarchical structure as shown in Figure 1.5 is pervasive in complex systems and is believed to be attributed by functional constraints in GRNs (Corominas-Murtra et al., 2013). Hierarchical structure classifies nodes in
a network into $N$-layers ( $N \geq 3$ ), i.e., top layer, intermediate layers, and bottom layer. We call the intermediate layer core in a 3-layer hierarchical structure. The regulatory networks for E. coli (Yu and Gerstein, 2006), S. cerevisiae (Jothi et al., 2009; Yu and Gerstein, 2006), worm (Boyle et al., 2014), fly (Boyle et al., 2014), mouse (Bookout et al., 2006) and human (Boyle et al., 2014; Gerstein et al., 2012) exhibit hierarchical organizations. The hierarchical organization of complex networks has been shown to increase adaptabilities and avoid conflicting constraints compared with non-hierarchical networks (Kauffman, 1993).

Most importantly, these hierarchical organizations are associated with TF dynamics (Gerstein et al., 2012; Jothi et al., 2009; Yu and Gerstein, 2006). More specifically, TFs from different layers in one regulatory network exhibit distinct properties. For example, in human regulatory network, Gerstein et al. (2012) showed that the core layer TFs have the highest betweeness and tend to have the most regulatory collaboration among the TFs. Conversely, top layer TFs have more partners in a protein-protein interaction network and a phosphorylome. In yeast regulatory network, Jothi et al. (2009) showed that (1) top and bottom layers are depleted in hubs while the core is enriched with hubs. (2) The percentage of essential proteins in the top layer ( $\sim 12 \%$ ) is higher than in the core layer ( $\sim 6 \%$ ) and in the bottom layer ( $\sim 3 \%$ ). Essential proteins are necessary for performing basic developmental functions. If they are disrupted, they will cause preor neonatal lethality (Georgi et al., 2013). (3) Top layer TFs are relatively abundant, had a much longer half-life, and are noisy compared with the core and bottom layer TFs. Here noise of a TF was calculated as the ratio of the standard deviation to its mean abundance. In E. coli and S. cere-
visiae regulatory networks, Yu and Gerstein (2006) showed that (1) TFs in top layers are close to all proteins in a protein-protein interaction network, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. (2) TFs at the lower levels of both networks have a much higher tendency to be essential.

Moreover, regulatory networks across species exhibit different hierarchical structures. Boyle et al. (2014) showed that regulatory network from human have more TFs in top layer than those from worm and fly. Zhang et al. (2014) showed that hierarchical structures of regulatory networks from 41 human cell types are different from that of yeast regulatory network, in terms of distribution of TFs, enrichment of essential proteins, etc.

Furthermore, regulatory networks across human cell types exhibit different hierarchical structures. Zhang et al. (2014) revealed that the hESC TF regulatory network has a topological structure that is different from the rest of the 40 non-hESC networks. (1) It has significantly small top and bottom layers and therefore a large core layer. (2) Its top layer is neither enriched with nor depleted of hub, essential and housekeeping TFs, in contrast to the TF regulatory networks of the 40 differentiated cells.

To classify nodes from a directed network into $N$ layers, a number of deterministic and probabilistic algorithms have been developed by Boyle et al. (2014); Jothi et al. (2009); Yu and Gerstein (2006) and Gerstein et al. (2012). This thesis extensively applied vertex-sort algorithm developed by Jothi et al. (2009) to construct a 3-layer structure for each of these 41 human regulatory networks.


Figure 1.5. A schematic view of three-layer hierarchical structure of the hESC TF regulatory network produced by the vertex-sort algorithm. The TFs are colored red. The links between the top and bottom layers are colored yellow. The other links are in white color. Network data is from Neph et al. (2012a). Network visualization: Cytoscape (version 3.1.0, Kohl et al. (2011)).

## Global and local reaching centrality

As mentioned above, hierarchical structure exists in various biological networks across different species, cell types, or cell stages, etc. To quantitatively characterize the level of network hierarchy, Mones et al. (2012) proposed global reaching centrality (GRC) and local reaching centrality (LRC). Given an unweighted directed graph $G$, LRC of node $i$, denoted as $L R C(i)$, is defined as proportion of all nodes in the network that can be reached from node $i$ via outgoing interactions. The authors defined GRC based on a heterogeneous distribution of the LRC, where $G R C=$ $\sum_{v \in V(G)}(\max (L R C)-L R C(v)) /(N(G)-1)$. The upper bound of GRC is 1 and is attained when the network is a star. GRC is demonstrated to neatly capture the degree of hierarchy in random networks and real networks. Also it is strongly associated with controllability from real networks in (Mones
et al., 2012).

## Network motifs

Network motifs are over-represented connected sub-graph patterns in a real network as compared to a random network (Figure 1.6). For example, to test significance of over-represented connected $n$-node sub-graphs in a real network, Milo et al. (2002) generated random networks satisfy following two conditions. Each node in randomized networks has the same in-degree and out-degree as the corresponding node in the real network. The number of all ( $n-1$ )-node sub-graphs are the same as in the real network. Theoretical and experimental evidences demonstrate that network motifs perform dynamic and specific functions in context of the respective networks. Alon (2007) and Shoval and Alon (2010) are two excellent reviews on various motifs and their functions discovered in GRNs from bacteria to plant to human and other types of biological network. Discovery of conserved motifs like FeedForward Loop (FFL) in GRNs indicates that motifs are the manifestation of evolutionary design principles favored by selection (Artzy-Randrup et al., 2004). Network motifs are building blocks of complex networks thus are one design principle of complex networks and can control behaviours and states of the corresponding complex systems (Alon, 2007). Figure 1.6 illustrates a number of motifs with 2 to 4 nodes found in various biological networks.

One of the important and extensively studied network motifs is FFL. An FFL, as illustrated in Figure 1.6B, consists of 3 nodes $A, B$ and $C$ in which $A$ regulates $B$, and both $A$ and $B$ regulate $C$. FFL in regulatory networks can speed-up the response time of the target gene expression or act as sign-sensitivity delays. FFL can generate pulse of gene expression.


Figure 1.6. Network motifs with 2, 3, and 4 nodes. (A) feedback motif. (B) All 13 types of three-node connected subgraph. (C) Bifan and Biparallel motifs.

FFL can cooperatively enhance induction of gene $C$ by inducers of TF $A$. Here inducers of $A$ are small molecules, protein partners, or covalent modifications that activate or inhibit the transcription activities of $A$ (Alon, 2007; Shoval and Alon, 2010). Early studies revealed that FFL is overrepresented in the regulatory networks of organisms from bacteria and yeast to plants and animals (Alon, 2007). Recent studies show that FFL as a motif is also found in regulatory networks of worm (Boyle et al., 2014), fly (Boyle et al., 2014), human (Boyle et al., 2014; Gerstein et al., 2012; Neph et al., 2012a). Regarding to regulatory networks from embryonic stem cells (ESCs), FFLs is enriched in hESC (Neph et al., 2012a).

Bearing in mind important and dynamic functions played by FFLs and other motifs in various biological networks, some network centrality measures based on network motifs have been proposed to quantify the importance of nodes in directed networks (Harriger et al., 2012; Koschützki and Schreiber, 2008; Koschützki et al., 2007; Sporns et al., 2007; Sporns and Kötter, 2004; Wang et al., 2014). The underlying idea of these centrality
measures is when a node is involved in more motifs, this node is more likely to be functionally important. These centrality measures are named as motif centrality in general and can identify different sets of important nodes in networks partially because they can integrate structural information between local and global information.

Given a directed network $G$, Koschützki et al. (2007) proposed a few centrality measures. First the authors quantified centrality of a node by the number of FFLs this node is involved in. Then this centrality measure is generalized to as node $A$ (or node $B$, node $C$ ) in an FFL. Furthermore, a path tree is used instead of FFL to define new centrality measures. The proposed centrality measures are comparable with other centrality measures like PageRank, in-degree, and out-degree. They can identify new important nodes partially due to the fact that they are not strongly correlated with previous centrality measures (Koschützki and Schreiber, 2008).

Sporns and Kötter (2004) proposed "network fingerprint" to characterize areas (nodes) in one brain network from Macaque Visual Cortex. Network fingerprint for a node is a vector with length 13, each element is the number of times this node is involved in a particular 3-node connected subgraph. Network fingerprint identified five areas which show highly similar patterns of network fingerprints. In their following up work, Sporns et al. (2007) identified and classified putative hub regions in brain networks based on network fingerprints and other centrality measures. Rich club regions are hub regions that are densely connected than expected based on their degree alone. Harriger et al. (2012) discovered that rich club regions in brain networks tend to form star-like configurations based on application of network motif analysis, which indicate that hubs regions embed within
sets of nodes.
Wang et al. (2014) generalized motif centrality measures by taking into account of 2 to 4 node motifs. For a given network with $n$ nodes, the authors first calculated $B=\left[b_{i j}\right]_{1 \leq i \leq n, 1 \leq j \leq m}$, where $m$ is number of types of motifs in the network, $b_{i j}=u_{i j} \times w_{j}, u_{i j}$ equals to the number of $j$-th motif involved by node $i, w_{j}=c_{j} / \sum_{k=1}^{m} c_{k}$ where $c_{k}$ denotes total occurrences of $k$-th motif in the network. Then centrality for node $i$ is the $i$-th element of first principal component derived from $B$. The proposed centrality measure can robustly identify functionally important nodes in five biological networks.

## Housekeeping and cell type-specific interactions

It is believed that biological systems undergo differential change depending on the environments, tissue types, disease states, development or speciation while part of a system will remain unaffected. Rapid development in technology and experimental designs enables large-scale differential network mapping. Some interactions are observed to appear or disappear dynamically, and many others are observed irrespective of conditions. The latter group of interactions are considered housekeeping interactions. Housekeeping interactions and condition-specific (differential) interactions are proposed to model the two types of interactions and they offer deep biological insights into complex systems (Bolouri, 2014; Ideker and Krogan, 2012; Mitra et al., 2013; Srivas et al., 2013). To name one example, in the study of DNA damage-induced genetic networks in yeast, identified housekeeping interactions in untreated and treated networks are enriched for housekeeping functions, like transcription, translation, chromatin and other cellular housekeeping machinery, whereas identified differential interactions effec-
tively capture DNA damage response genes (Ideker and Krogan, 2012). Neph et al. (2012a) observed that $\sim 5 \%$ of all interactions are common across the 41 cell types and interactions unique to one cell form a wellconnected subnetwork, highlighting regulatory diversity within humans. The 41 networks enable us to examine the concepts of housekeeping interactions and cell type-specific interactions in human TF regulatory networks, in terms of deep topological and functional analysis.

### 1.3.4 Network analysis and comparison toolsets

Multiple softwares and platforms are developed to provide comprehensive analysis and comparison on real network data sets. To name a few, Bioconductor (http://bioconductor.org), Cytoscape (http://cytoscape. org/, Kohl et al. (2011)), Galaxy (http://galaxyproject.org/, Goecks et al. (2010)), GenePattern (http://www.broadinstitute.org/cancer/ software/genepattern), and GenomeSpace (http://www.genomespace. org/). For brief introduction to and comparison on these toolsets, refer to a recent review paper by Bolouri (2014).

### 1.4 Thesis organization

This thesis is organized as follows. In chapter 2, we first introduce $f$-Wiener index for a given network $G$, denoted as $W_{f}(G)$, which generalizes all existing Wiener type indices. Then we propose a normalized version of $W_{f}(G)$. In section 2.3, we state our main Theorems 1 to 4, which give sharp bounds of $W_{f}(G)$ in different classes of networks and trees. We also give a brief description of related works in section 2.4. Then, we consider special cases of $f$ in $W_{f}(G)$ to provide explicit expressions of the maximum and the mini-
mum of Wiener, Harary, hyper Wiener, generalized Wiener indices. In the experiment section, we report the performance of hierarchical clustering based on the usual Wiener type indices and the normalized version of these in our experiments. Followed is conclusions section. We end chapter 2 with the proofs of Theorems 1 to 4 .

In chapter 3, we first present materials and methods in section 3.2. In results section, we classify cell types based on local bipartite patterns constructed by a number TFs and their targets in the 41 TF regulatory networks reported by Neph et al. (2012a) in section 3.3.1. Next, we investigate hierarchical structures of 41 human regulatory networks in section 3.3.2. Then, we report dynamic structures of human regulatory networks in terms of HK interactions and hESC specific interactions in sections 3.3.3 and 3.3.4 respectively. In conclusion section, we summarize our contributions and discussed limitations of the study.

In chapter 4, we present materials and methods in section 4.2. In results section, we first classify cell types based on distributions of FFLs regulating each TF 41 in the TF regulatory networks reported by Neph et al. (2012a) in section 4.3.1. Next we study functions of TFs which are extensively regulated by FFLs in hESC only in section 4.3.3. Then we compare our proposed scores with motif centrality measures in identifying hESC related TFs in section 4.3.5. In conclusion section, we summarize our contributions and discuss limitations. Besides we discuss potential generalization of TFs extensively regulated by FFLs in hESC only.

We end this thesis with Chapter 5 for further discussions and conclusions.

## Chapter 2

## Sharp Bounds and Normalization of Wiener-type Indices

### 2.1 Introduction

Recent years witness exponential growth of available biological network data. Thanks to past decades' breakthrough in biotechnology, researchers now are able to interrogate molecular interactions at systems level. It has since been observed that topological properties of these networks provide important insight into the functions of proteins, and their relationship with one another (Barabasi et al., 2011; Delprato, 2012; Hu et al., 2011; Junker and Schreiber, 2008; Milenković et al., 2011; Newman, 2002; ResendisAntonio et al., 2012; Vidal et al., 2011). For examples, degree distribution, average clustering coefficient, diameter, centrality, lethality and graphlet distribution have been extensively studied. Hopefully, based on a carefully chosen list of network topological properties and methods in quantifying them, a complex network is adequately summarized in the form of a numerical $d$-dimensional vector where $d$ is the number of topological properties in consideration. This representation enables us to take full advantage of
a host of classification and clustering techniques to compare complex networks.

A significant step towards this direction is facilitated by the introduction of the R package QuACN by Mueller et al. (2011a). QuACN computes the values of different categories of descriptors in a network. One such category is the distance-based descriptors which include Wiener index, Harary index, etc. The use of Wiener index and related type of indices dates back to the seminal work of Wiener in 1947 (Wiener, 1947a,b). Wiener introduced his celebrated index to predict the physical properties, such as boiling point, heats of isomerization and differences in heats of vaporization, of isomers of paraffin by their chemical structures. Viewing the chemical structure of an isomer as a connected graph, the Wiener index is defined as $\sum_{i, j} d(i, j)$ where $i, j$ represent nodes in the graph, $d(i, j)$ the distance between nodes $i$ and $j$ which is defined as the length of a shortest path between them, and the sum is over all pairs of nodes in the graph. Wiener index has since inspired many distance-based descriptors in Chemometrics. These include Harary index (Plavšić et al., 1993), hyper Wiener index (Randić, 1993), q-analog of Wiener index (Zhang et al., 2012b), Wiener polynomial (Hosoya, 1988), Q-index (Brückler et al., 2011), Balaban J index (Balaban, 1982), and information indices (Dehmer, 2008; Dehmer and Mowshowitz, 2011; Dehmer et al., 2009). These indices, or commonly called descriptors, play significant roles in quantitative structure-activity relationship/quantitative structure-property relationship (QSAR/QSPR) models (Todeschini and Consonni, 2009).

It is known that the Wiener type indices depend both on a network's number of nodes and its topology. When the numbers of nodes in the net-
works are equal, as in the applications to isomers, these indices provide informative measures of the branching property of the networks and hence a fair comparison among them. However, when they are used to measure similarities of networks with different numbers of nodes, the intended measure of topological structures will be masked by the sizes of the networks. Normalization of a Wiener type index expectedly minimizes the effect of the network's number of nodes and hence brings forth its topological structure better. Furthermore, it is also desirable for the normalized index to take value in an absolute scale for better understanding and interpretation. This chapter seeks to fill this gap. The normalization introduced in definition 2 below fulfils this purpose. This definition will be of limited practical value if the sharp upper and lower bounds of the index on a graph cannot be found explicitly. The objective of this chapter is three-fold. First, introduce a very general Wiener type index. We call it $f$-Wiener index, and denote it by $W_{f}(G)$ for a graph $G$. This definition includes all known Wiener type indices as special cases. Second, identify the maximum and minimum values of $W_{f}(G)$ over a class of connected networks $G$ or a class of connected trees $G$. We are able to derive explicit formulas for these optimal values. Third, propose a normalized version, $W_{f}^{*}(G)$ which takes value in $[0,1]$ for better interpretation and network comparison.

This chapter is organized as follows. We first introduce some standard graph-theoretic notations and recall some special graphs. We then introduce the functional analog of Wiener index, $W_{f}(G)$, and our proposed normalized versions of this functional Wiener index in section 2.2.1. In section 2.3, we provide our main results Theorems 1 to 4 . Theorem 1 gives the maximum and the minimum of $W_{f}(G)$ over the set of connected graphs
of $n$ nodes, and characterization of graphs achieving the maximum or the minimum. Theorem 2 gives a parallel result when the maximum and minimum are taken over the set of connected trees of $n$ nodes. Theorem 3, (respectively Theorem 4) identifies the maximum of $W_{f}(G)$ over the set of connected graphs (respectively connected trees) of $n$ nodes with specified maximum degree. We also give a brief description of related works in next section. Then, we consider special cases of $f$ in $W_{f}(G)$ to provide explicit expressions of the maximum and the minimum of Wiener, Harary, hyper Wiener, generalized Wiener indices. In the experiment section, we report the performance of hierarchical clustering based on the usual Wiener type indices and the normalized version of these in our experiments. Followed with conclusions section. We end with the proofs of Theorems 1 to 4 of this chapter.

### 2.2 Methods

### 2.2.1 Definitions and terminologies

Let $G=(V, E)$ be a simple (that is, no self-loops nor multiple edges) connected graph on $n$ nodes where $V=\{1, \ldots, n\}$ and $E \subseteq V \times V$. Denote by $N(G)$ as the number of nodes in $G$. Let $\mathcal{G}_{n}$ denote the set of all simple, connected graphs with $n$ nodes. A graph having no cycles is called a tree, and we let $\mathcal{T}_{n}$ denote the set of all connected trees with $n$ nodes. The distance $d(i, j)$ between any pair of nodes, $i$ and $j$, in $G$ is the number of edges in a shortest path from $i$ to $j$. Let $D(G)=[d(i, j)]_{1 \leq i, j \leq n}$ be the distance matrix. We denote the maximum degree of $G$ by $\Delta(G)$.

Figure 2.1 shows some special graphs we frequently refer to in this

(a) Path $P_{8}$

(e) $C_{8,3}$

(b) $\operatorname{Star} \mathrm{S}_{8}$

(f) $\operatorname{Broom} B_{8,4}$

(c)

(g) Broom $B_{8,5}$

(d) $C_{12,2}$

(h) Kite $K_{8,4}$

Figure 2.1. Some special graphs. Figure 2.1 (a) to (g) are trees.
chapter. A path graph, $P_{n}$, is a graph that can be drawn so that all of its vertices and edges lie on a straight line. Figure $2.1\left(\right.$ a) shows $P_{8}$. A star, $S_{n}$, is a tree with one internal node and $n-1$ leaves. $S_{8}$ is shown in Figure 2.1(b). A complete graph, $K_{n}$, is a graph with $n$ nodes in which every pair of distinct nodes is connected by an edge. A caterpillar, $C_{n, k}$, is a tree with a central path with number of nodes $\in[n /(k+1),(n+k) /(k+1)]$ where at most one end node of the central path has less than $k$ leaves, each of the other nodes in the central path has $k$ leaves. Figures 2.1(d) and 2.1 (e) show caterpillars $C_{12,2}$ and $C_{8,3}$ respectively. A broom $B_{n, k}$ is a tree joining a star $S_{k+1}$ and a path $P_{n-k-1}$ by attaching a pendant node (or leaf) in $P_{n-k-1}$ to a pendant node of $S_{k+1}$. For examples, brooms $B_{8,4}$ and $B_{8,5}$ are shown in Figures $2.1(\mathrm{f})$ and $2.1(\mathrm{~g})$ respectively. A kite $K_{n, \ell}$ is a graph obtained from connecting two end nodes one from a complete graph $K_{\ell}$
and one from a path $P_{n-\ell}$. Figure $2.1(\mathrm{~h})$ shows a kite $K_{8,4}$.
Throughout this chapter, $f$ denotes a monotone function defined on nonnegative integers. We define a functional-analog Wiener index below. Our definition contains the Wiener index, Harary index, hyper Wiener index, compactness, average efficiency, generalized Wiener index, Wiener polynomial, $Q$-index, $q$-analogy of Wiener index as special cases. For detail, see section 2.4.1. We abbreviate it as $f$-Wiener index. This definition has also been independently introduced by Schmuck et al. (2012).

Definition 1. The $f$-Wiener index of $G \in \mathcal{G}_{n}$ is defined by

$$
W_{f}(G)=\sum_{1 \leq i<j \leq n} f(d(i, j)) .
$$

Here $d(i, j)$ denotes the shortest distance between nodes $i$ and $j$.

The number of nodes of $G$ has a very strong effect on Wiener type indices (Section 2.2.2). In order to apply $f$-Wiener index for comparing networks, which often differ in the numbers of nodes, we are led to propose a normalized version for graphs and a normalized version for trees for better interpretation of the index.

Definition 2. (a) The normalized $f$-Wiener index for a graph $G \in \mathcal{G}_{n}$ is defined as

$$
W_{f}^{\star}(G)=\frac{M_{f}-W_{f}(G)}{M_{f}-m_{f}} .
$$

Here $M_{f}=\max _{H \in \mathcal{G}_{n}}\left\{W_{f}(H)\right\}$ and $m_{f}=\min _{H \in \mathcal{G}_{n}}\left\{W_{f}(H)\right\}$.
(b) The normalized $f$-Wiener index for a tree $T \in \mathcal{T}_{n}$ is similarly defined where the maximum $M_{f}$ and the minimum $m_{f}$ are taken over $\mathcal{T}_{n}$ instead.

These normalized versions will be of limited practical value if one cannot compute $M_{f}$ nor $m_{f}$. Our main results, stated in Theorems 1 and 2, show that these optimal upper and lower bounds can be easily computed. Moreover, they characterize those graphs which attain the maximum or the minimum.

By definition, $W_{f}^{*}(G)$ takes values in $[0,1]$. When $f$ is a non-decreasing function, Theorem 1 below shows that $W_{f}^{*}(G)=0$ if and only if $G$ is a path graph, and $W_{f}^{*}(G)=1$ if and only if $G$ is a complete graph. So $W_{f}^{*}(G) \approx 0$ (respectively, $W_{f}^{*}(G) \approx 1$ ) suggests $G$ looks like a path graph (respectively, a complete graph). And hence the numerical value of $W_{f}^{*}(G)$ provides an indication how $G$ is like.

### 2.2.2 Effect of number of nodes on Wiener type indices

It is known that the Wiener index for a connected graph with $n$ nodes ranges from $n(n-1) / 2$ to $n(n-1)(n+1) / 6$ (see Corollary 5 below or Dobrynin et al. (2001); Soltés (1991), and Gutman et al. (1997) ). This wide range can be undesirable if it is used for comparing similarity of graphs with different number of nodes. For example, consider two path graphs, $P_{4}$ and $P_{5}$, with 4 nodes and 5 nodes respectively, and a star graph with 5 nodes, $S_{5}$. Values of the Wiener index for $P_{4}, P_{5}$ and $S_{5}$ are respectively 10, 20 and 16 , giving the false impression that $P_{5}$ and $S_{5}$ are more similar than that of $P_{4}$ and $P_{5}$. However, values of the normalized Wiener index are 0 for $P_{4}$ and $P_{5}$, and 1 for $S_{5}$. This example is far from being an isolated case, it can be shown that if the number of nodes of a path graph is at least $26 \%$ more than the number of nodes in another path graph, there exists a star graph whose Wiener index is closer to that of the path graph with smaller
number of nodes.
The normalized Wiener index of $S_{n}$, star with $n$ nodes, is $1-3 / n$, suggesting stars of sufficiently large $n$, based on the normalized Wiener index, $S_{n}$ is very similar to a complete graph. This is concordant with the fact that a $K_{n}$ is the line graph of $S_{n+1}$ (Resendis-Antonio et al., 1931).

### 2.2.3 Main idea

A key ingredient in our proofs is a matrix majorization (see section 2.8 for definition) argument. Given a connected graph $G$, we can transform it to another graph $G^{\prime}$ such that the distance matrix of $G, D(G)=[d(i, j)]_{1 \leq i, j \leq n}$ majorizes the corresponding distance matrix of $G^{\prime}$. Since the Wiener index of $G$, or its generalization $f$-Wiener index for increasing function $f$, is the sum of the upper diagonal entries in the distance matrix, it follows that $W_{f}(G) \geq W_{f}\left(G^{\prime}\right)$. The construction of $G^{\prime}$ is fairly straightforward as can be seen in the proofs. Similarly, we can transform $G$ to another graph $G^{\prime \prime}$ such that $D(G)$ is majorized by $D\left(G^{\prime \prime}\right)$. And thus $W_{f}(G) \leq W_{f}\left(G^{\prime \prime}\right)$. The construction of $G^{\prime \prime}$ requires delicate and judicious pruning and regrafting. However, the essential idea remains the same. Technical details of proofs are given in section 2.8.

### 2.3 Results

We provide explicit expressions for the maximum and minimum of $W_{f}(G)$ over $\mathcal{G}_{n}$, and over $\mathcal{T}_{n}$ in Theorems 1 and 2 below. We also characterize those graphs or trees attaining the extremum. Theorems 3 and 4 concern trees or graphs with a specified maximum degree. For simplicity of presentations, we shall only state our results for non-decreasing function $f$. Analogous
results for non-increasing $f$ can be deduced easily by replacing $f$ by $-f$.

Theorem 1. Let $f$ be a non-decreasing function on nonnegative integers, and $G \in \mathcal{G}_{n}$, then

$$
\frac{n(n-1)}{2} f(1) \leq W_{f}(G) \leq \sum_{i=1}^{n-1}(n-i) f(i)
$$

The lower bound is attained if and only if $G$ is $K_{n}$. The upper bound is attained if and only if $G$ is $P_{n}$.

Theorem 2. Let $f$ be a non-decreasing function on nonnegative integers, and $T \in \mathcal{T}_{n}$, then

$$
\frac{(n-1)((n-2) f(2)+2 f(1))}{2} \leq W_{f}(T) \leq \sum_{i=1}^{n-1}(n-i) f(i)
$$

The lower bound is attained if and only if $T$ is $S_{n}$. The upper bound is attained if and only if $T$ is $P_{n}$.

Theorem 3. Let $f$ be a non-decreasing function on nonnegative integers. Then, for any $T \in \mathcal{T}_{n}$ with $\Delta(T)=k$, we have

$$
W_{f}(T) \leq W_{f}\left(B_{n, k+1}\right)
$$

The upper bound is attained if and only if $T$ is a broom $B_{n, k+1}$.

Theorem 4. Let $f$ be a non-decreasing function on nonnegative integers. Then, for any $G \in \mathcal{G}_{n}$ with $\Delta(G)=k$, we have

$$
W_{f}(G) \leq W_{f}\left(B_{n, k+1}\right)
$$

Moreover,

$$
W_{f}\left(B_{n, k+1}\right)=\sum_{j=1}^{n-k+1}(n-j) f(j)+\frac{(k-1)(k-2)}{2} f(2) .
$$

Equality holds if and only if $G$ is $B_{n, k+1}$.

### 2.4 Related work

The proofs of Theorems 1 to 4 will be given in section 2.8. Theorem 2 has also been independently obtained by Wagner et al. (see Theorem 2.7 and Corollary 4.1 in Wagner et al. (2013)). Special cases of Theorems 1 to 4 for particular Wiener type index are known in the literature. For examples, the complete graph (respectively, the path graph) is shown to be the minimizer (respectively, maximizer) of the Wiener index among simple connected graphs with the same number of nodes in Dobrynin et al. (2001); Soltés (1991), and Gutman et al. (1997). Similar conclusions are proved to hold for the hyper Wiener index in Gutman et al. (1997), and the Harary index in Gutman (1997). The results in Theorems 1 to 4 in its full generality as $f$-Wiener index are novel to the best of our knowledge. Moreover, we have provided a unifying methodology for the proofs.

### 2.4.1 Important special cases

Since its introduction, Wiener index has inspired many variants and thoroughly studied in a sizeable literature (Todeschini and Consonni, 2009). By choosing appropriate functions $f$, the $f$-Wiener index can be reduced to a number of commonly used descriptors as follows.

If we take $f(k)=k, W_{f}(G)$ written as $W(G)$ is the well-studied de-
scriptor introduced by Wiener in 1947 (Wiener, 1947a,b).
Taking $f(k)=1 / k$, the $f$-Wiener index is the Harary index (Plavšić et al., 1993), denoted by $H(G)$ which is shown to be more discriminating than the Wiener index (Plavšić et al., 1993). Watts and Strogatz (1998) used a scaled version of the Harary index (more precisely, $f(k)=\frac{2}{n(n-1) k}$ ) to measure a network's efficiency in information exchange.

Taking $f(k)=k^{\alpha}$, where $\alpha$ can be positive or negative, the $f$-Wiener index is called generalized Wiener index, denoted by $W_{\alpha}(G)$ (Gutman et al., 1998).

If $f(k)=\left(k^{2}+k\right) / 2$, the $f$-Wiener index is known as the hyper Wiener index (Randić, 1993), denoted by $W W(G)$.

Taking $f(k)=\lambda^{k}$, where $\lambda$ is regarded as a parameter, the $f$-Wiener index is called the Hosoya polynomial or Wiener polynomial (Hosoya, 1988). With an additional factor 2, the Hosoya polynomial is called $Q$-index and denoted by $Q(\lambda)$ in Brückler et al. (2011).

The $q$-analog of the Wiener index, introduced by Zhang et al. (2012c) is simply the $f$-Wiener index by choosing $f(k)=\left(1-q^{k}\right) /(1-q)=\sum_{t=0}^{k-1} q^{t}$.

### 2.5 Applications

By specializing $f$ to various forms in Theorems 1 and 2, we provide below explicit sharp upper bounds and sharp lower bounds for the Wiener index $W(G)$, the Harary index $H(G)$, the hyper Wiener index $W W(G)$, and the generalized Wiener index $W_{\alpha}(G)$ for $\alpha>0$ and $\alpha<0$.

Corollary 5. Let $G$ be a simple, connected graph with $n$ nodes (that is,
$G \in \mathcal{G}_{n}$ ), we have

$$
\begin{gathered}
\frac{n(n-1)}{2} \leq W(G) \leq \frac{n(n-1)(n+1)}{6}, \\
n \sum_{i=2}^{n-1} \frac{1}{i}+1 \leq H(G) \leq \frac{n(n-1)}{2}, \\
\frac{n(n-1)}{2} \leq W W(G) \leq \frac{n(n-1)(n+1)(n+2)}{24},
\end{gathered}
$$

when $\alpha<0$,

$$
n \sum_{i=1}^{n-1} i^{\alpha}-\sum_{i=1}^{n-1} i^{\alpha+1} \leq W_{\alpha}(G) \leq \frac{n(n-1)}{2}
$$

when $\alpha>0$,

$$
\frac{n(n-1)}{2} \leq W_{\alpha}(G) \leq n \sum_{i=1}^{n-1} i^{\alpha}-\sum_{i=1}^{n-1} i^{\alpha+1}
$$

Corollary 6. Let $T$ be a tree with $n$ nodes (that is, $T \in \mathcal{T}_{n}$ ), we have

$$
\begin{gathered}
(n-1)^{2} \leq W(T) \leq \frac{n(n-1)(n+1)}{6} \\
n \sum_{i=2}^{n-1} \frac{1}{i}+1 \leq H(T) \leq \frac{(n-1)(n+2)}{4} \\
\frac{(n-1)(3 n-4)}{2} \leq W W(T) \leq \frac{n(n-1)(n+1)(n+2)}{24}
\end{gathered}
$$

when $\alpha<0$,

$$
n \sum_{i=1}^{n-1} i^{\alpha}-\sum_{i=1}^{n-1} i^{\alpha+1} \leq W_{\alpha}(T) \leq\left((n-2) 2^{\alpha-1}+1\right)(n-1),
$$

when $\alpha>0$,

$$
\left((n-2) 2^{\alpha-1}+1\right)(n-1) \leq W_{\alpha}(T) \leq n \sum_{i=1}^{n-1} i^{\alpha}-\sum_{i=1}^{n-1} i^{\alpha+1} .
$$

### 2.6 Experiments

We describe below three experiments to compare the hierarchical clustering using normalized $f$-Wiener indices with the hierarchical clustering us-
ing non-normalized $f$-Wiener indices. Each experiments consists of 3 main steps.

Step 1: A collection of networks (or graphs) or trees, $\mathcal{C}$, are chosen to be clustered. The collection is detailed in each experiment below.

Step 2: Seven functions are chosen to form the $f$-Wiener indices. In all our experiments, we choose

$$
f_{1}(k)=\sqrt{k}, f_{2}(k)=k, f_{3}(k)=\frac{k+k^{2}}{2}
$$

and

$$
\begin{gathered}
f_{4}(k)=\frac{4 k}{N(G)(N(G)-1)}, \\
f_{5}(k)=k^{-1 / 2}, f_{6}(k)=k^{-1}, f_{7}(k)=k^{-2}
\end{gathered}
$$

The first four functions chosen are increasing and the $f$-Wiener indices correspond to the usual $W_{1 / 2}$ index, Wiener index, the hyper Wiener index and the compactness index. The remaining 3 functions chosen are decreasing and correspond to the $W_{-1 / 2}$ index, the Harary index and the $W_{-2}$ index. Hopefully these indices collectively capture some essential characters of networks and useful for clustering. For $G \in \mathcal{C}$, we construct two characteristic vectors,

$$
\begin{aligned}
& v_{G}=\left(W_{f_{1}}(G), \ldots, W_{f_{7}}(G)\right), \\
& v_{G}^{\star}=\left(W_{f_{1}}^{\star}(G), \ldots, W_{f_{7}}^{\star}(G)\right) .
\end{aligned}
$$

Step 3: We adopt a clustering algorithm to cluster $\mathcal{C}$ using $v_{G}$ and then produce a dendrogram. We do the same using $v_{G}^{*}$. Minimum variance method algorithm due to Ward (Ward, 1963) which is made available in R
base package, was used in all the experiments. The computed the Adjusted Rand Index (ARI) in all the experiments are summarized in Table 2.1 below.

### 2.6.1 Experiment 1: Hierarchical clustering of random networks

The collection of networks chosen for this experiment is the networks generated by some commonly used random network models, namely, Erdos-Renyi (ER) model (Erdős and Rényi, 1959, 1960), scale-free (SF) network model (Barabasi and Albert, 1999) and 3-D geometric model (GE) (Pržulj et al., 2004). Each of these random network models is applied to generate 10 random networks with the number of nodes ranging from 500 to 950 with step of increment 50 . Experiment 1 consists of 5 small, but similar, experiments. We enumerate these 5 small experiments as $1.1, \ldots, 1.5$. The subsection after experiments provides more details on how to generate these random networks. We then apply Steps 2 and 3 above to form two dendrograms: one using $f$-Wiener indices without normalization (Figure 2.2A) and the other dendrogram using normalized $f$-Wiener indices (Figure 2.2B). To quantify the classification of the two methods: with and without normalization, we adopt the commonly used Adjusted Rand Index (ARI) (Rand, 1971) for classification validation. ARI measures the accuracy of classification, and takes values between -1 and 1 . The larger the ARI is, the better is the classification. The ARI for Figures 2.2 A and 2.2 B are respectively 0.18 and 0.58 for Experiment 1.5. Using normalized $f$-Wiener indices lead to a substantial improvement in the classification. We repeat Experiments 1.1 to 1.51000 times each. The boxplots of the ARI are shown in Figure 2.3. The means and standard deviations for these experiments are given in

Table 2.1. They clearly demonstrate the superiority of classification using normalized $f$-Wiener indices.

Table 2.1. Adjusted Rand Index (ARI) for clustering (or classification) of networks in our three experiments. For experiments 1.1 to 1.5 , we report the mean and the standard deviation (number in parenthesis) of ARI. Mean and standard deviation of ARI for experiments 1.1 to 1.5 under random clustering are 0 and 0.05 respectively.

|  | Non-normalized | Normalized |
| :--- | :---: | :---: |
| Experiment 1.1 | $0.44(0.02)$ | $0.88(0.07)$ |
| Experiment 1.2 | $0.41(0.06)$ | $1.00(0.01)$ |
| Experiment 1.3 | $0.38(0.10)$ | $1.00(0.00)$ |
| Experiment 1.4 | $0.36(0.11)$ | $0.97(0.10)$ |
| Experiment 1.5 | $0.30(0.12)$ | $0.62(0.07)$ |
| Experiment 2 | 0.10 | 1.00 |
| Experiment 3 | 0.04 | 0.86 |

### 2.6.2 Experiment 2: Hierarchical clustering of trees

The collection of trees to be classified consists of 10 paths $\left(P_{n}\right), 10$ stars $\left(S_{n}\right), 10$ brooms $\left(B_{n, \frac{n}{2}}\right), 20$ caterpillars ( $C_{n, 2}$ which is like a path, and $C_{n, \frac{n-10}{10}}$ which is like a star), and for $n$ ranging from 500 to 950 with step of increment 50 .

Figure 2.4 shows the two dendrograms. The ARI for Figures 2.4A and 2.4 B are respectively 0.10 and 1.00 . This demonstrates that using normalized $f$-Wiener indices provides much better accuracy for classification purposes. The result in this experiment is consistent with that of experiment 1.


Figure 2.2. Hierarchical clustering of random networks. 30 networks with 10 each generated by the Erdos-Renyi (ER), scale-free (SF) and geometric (GE) random network models. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 35 for functions used). The adjusted rand index (ARI) for this clustering is 0.24 . Panel (B) is the hierarchical clustering based on the normalized versions of the same $f$-Wiener indices. The ARI of this clustering is 0.67 . Number of nodes chosen are $500,550, \ldots, 950$, and $p$ is 0.05 in the Erdos-Renyi model. A scale-free network with 500 nodes is denoted by $S F_{500}$. The others are denoted in a similar way.

### 2.6.3 Experiment 3: Hierarchical clustering of random networks

 and treesThe collection of networks consists of (i) networks generated by three random network models, namely, ER model, SF Model and 3-D geometric


Figure 2.3. Boxplots of Adjusted Rand Index for measuring the extent of agreement of clustering of the random networks using non-normalized $f$-Wiener indices versus normalized $f$-Wiener indices.
model; (ii) some trees such as paths, brooms, caterpillars, stars. Figure 2.5 shows the two dendrograms formed. And the ARI for Figures 2.5A and 2.5B are respectively 0.04 and 0.86 .

### 2.6.4 Details on generating random networks

We describe here in details on how to choose the networks generated by the three random network models in experiments 1 and 3 .

## ER model

There are two parameters in the ER model, namely, $n$, the number of nodes, and $p$, the probability that an edge is formed between a pair of nodes. All edges are formed independently of each other. In Experiment


Figure 2.4. Hierarchical clustering of trees. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 6 for functions used). The Adjusted Rand Index (ARI) is 0.1. Panel (B) shows the hierarchical clustering based on normalized $f$-Wiener indices. The ARI is 1 . Trees used in the clustering consist of paths $\left(P_{n}\right)$, stars $\left(S_{n}\right)$, caterpillar-like trees $\left(C_{n, k}\right)$, kites $\left(K_{n, k}\right)$. Number of nodes $n=500,550, \ldots, 950$.
1.5 , where $p=0.05$, we choose $n$ ranging from 500 to 950 with step of increment 50. We generate an ER network using the 'erdos.renyi.game' function available in the $R$ package igraph (Csardi and Nepusz, 2006). If the network is connected, we keep it in $\mathcal{C}$ and denote it as $E R_{500}$. If not, then we repeat the function 'erdos.renyi.game' until a connected network


Figure 2.5. Hierarchical clusters of trees and graphs. Panel (A) shows the hierarchical clustering based on the $f$-Wiener indices (see Step 1 on page 6 for functions used). The Adjusted Rand Index (ARI) is 0.04. Panel (B) shows the hierarchical clustering based on normalized $f$-Wiener indices, and ARI $=0.86$. Trees used are paths $\left(P_{n}\right)$, stars $\left(S_{n}\right)$, caterpillar-like trees $\left(C_{n, k}\right)$, kites $\left(K_{n, k}\right)$. Graphs are generated by Erdos-Renyi $\left(E R_{n}\right)$, scale-free $\left(S F_{n}\right)$ and geometric $\left(G E_{n}\right)$ random network models. The parameter, $p$, in the Erods-Renyi random graph equals to 0.05 , number of nodes $n=500,550, \ldots, 950$.
is obtained. Similarly, $E R_{550}, \ldots, E R_{950}$ are generated.

## SF model

We also construct ten SF networks by the function 'barabasi.game' available in the R igraph package. We shall describe how to grow a SF network with 500 nodes for a given $p$, say $p=0.05$. The other 9 SF networks with $550, \ldots, 950$ nodes are constructed in a similar manner. In 'barabasi.game' function, we set number of vertices 500 , number of edges to be added in each time step $500 \times 0.05 / 2$ rounded to the nearest integer, and the option to create a directed graph false.

## Geometric model

We generate ten 3-D geometric networks with $500,550, \ldots, 950$ nodes. We shall describe how to construct one with 500 nodes as follows. The rest are constructed similarly. We first place 500 nodes in a unit cube uniformly and independently, then we compute all the $\binom{500}{2}$ pairwise distances and rank these distances in ascending order. We choose the top $100 p \%$ of these pairwise distances and connect their corresponding nodes. If this network is connected, then we keep it in $\mathcal{C}$ and denote it by $G E_{500}$. Otherwise, we discard it, and repeat the above procedure until we get a connected network. The other networks $G E_{550}, \ldots, G E_{950}$ are constructed similarly.

### 2.7 Conclusions

Wiener index and other Wiener type indices have been commonly applied in Chemometrics to associate structures and physicochemical properties of molecules. Recently, these indices are incorporated in quantifying complex
networks as in QuACN (Mueller et al., 2011a) and NetCAD (Ren and Liu, 2013). In this chapter, we first generalize Wiener index to a general functional form, called $f$-Wiener index. This $f$-Wiener index contains all well-known Wiener type indices as special cases such as Wiener index, Harary index, hyper Wiener index, compactness, and average efficiency. We provide a unifying method to identify the maximum and minimum over the set of simple connected graphs with $n$ nodes, or the set of simple connected trees with $n$ nodes (Theorems 1 and 2). Explicit sharp upper and lower bounds for Wiener index, Harary index, hyper Wiener index and the generalized index are deduced over networks (Corollary 5) and over trees (Corollary 6). Moreover, the maximizer and minimizer are characterized in Theorems 1 and 2. We believe these results are general and of independent interests.

Armed with these maximum and minimum values, we propose a normalized version of $f$-Wiener index over networks, and a similar version over trees. These normalized versions provide better interpretation of indices over networks of varying number of nodes than the non-normalized one. We conduct a number of experiments to compare the clustering performance using normalized $f$-Wiener indices with that of the non-normalized $f$-Wiener indices. The results of these experiments consistently demonstrate that using normalized versions improved clustering substantially. The normalized versions capture similar topological structures among networks with different number of nodes better. Our method of optimizing $W_{f}(G)$ can be easily extended to index of the form $\Phi\left(W_{f}(G)\right)$ where $\Phi$ and $f$ are monotone functions. For example, taking $\Phi(x)=1 / x$ and $f(k)=\frac{2}{n(n-1) k}$ leads to $\Phi\left(W_{f}(G)\right)=\frac{n(n-1)}{2 \sum_{i<j} 1 / d(i, j)}$ which measures small-world behvaior of
network $G$ (Newman, 2002). For other descriptors, it is of interest to study whether normalization is needed; if so, how best to normalize them; and to what extent normalization improve network comparison.

$$
\text { Observe that } W_{f}(G)=\sum_{r=1}^{\infty} f(r) n_{r}(G)=\sum_{r=0}^{\infty}[f(r+1)-f(r)] N_{r}(G)
$$ where we assume $f(0)=0, n_{r}(G)$ denotes the number of pairs of nodes in $G$ with distance equals $r$, and $N_{r}(G)$ the number of pairs of nodes in $G$ with distance greater than $r$. Since in most biological networks the number of nodes is large, one may normalize a scaled-version of $W_{f}(G)$ in terms of the asymptotic distribution of the $N_{r}$ 's under the assumption that the observed network $G$ is generated by a given random network model $\mathcal{M}$. This will enable us to determine the likelihood that the observed network is generated by $\mathcal{M}$. Currently a fair amount of information about shortest paths in some network models is available in Barbour and Reinert (2011) and Fronczak et al. (2004). How to make use of these results seems like a worthwhile future project.

### 2.8 Proofs for Theorems 1-4

We describe here detailed proofs of Theorems 1-4. We start with some definitions and three Lemmas.

A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ is majorized by matrix $B=\left[b_{i j}\right]_{1 \leq i, j \leq n}$, denoted by $A \preccurlyeq B$ or $B \succcurlyeq A$ if and only if

$$
a_{(i)} \leq b_{(i)} \quad \text { for } 1 \leq i \leq n \times n,
$$

where $a_{(i)}$ and $b_{(i)}$ are the $i$-th smallest elements in $A$ and $B . A$ is strictly
majorized by $B$, denoted by $A \prec B$ or $B \succ A$ if and only if

$$
a_{(i)} \leq b_{(i)} \quad \text { for } 1 \leq i \leq n \times n
$$

and

$$
a_{(i)}<b_{(i)} \quad \text { for some } i .
$$

Matrices $A$ and $B$ are said to be equivalent, denoted by $A \equiv B$ if and only if

$$
a_{(i)}=b_{(i)} \quad \text { for } 1 \leq i \leq n \times n .
$$

Majorization, strict majorization, and equivalent between two vectors $A=$ $\left(a_{i}\right)_{1 \leq i \leq n}$ and $B=\left(b_{i}\right)_{1 \leq i \leq n}$ are defined similarly.

Let $G$ be a graph, define $V(G)$ as the set of nodes in $G$, and $E(G)$ as the set of edges in $G$. Let $\operatorname{deg}_{G}(u)$ denote the degree of node $u$ in graph $G$. When there is no risk of ambiguity which graph $G$ we are considering, we abbreviate $\operatorname{deg}_{G}(u)$ to $\operatorname{deg}(u)$. Define $n e(u)=\{v \in V(G):(u, v) \in E(G)\}$ and call it neighborhood of node $u$. A node of degree 1 is called a pendant node or a leaf. A node which is not a pendant node is called an internal node. It is known that a path tree is the only tree on $n$ nodes with maximal degree 2 . Only tree on $n$ nodes with maximal degree $n-1$ is a star tree.

A tree is called a starlike tree if it has exactly one node of degree greater than two. Figures 2.1(c), (f), and (g) show 8-node starlike trees with maximum degree equal to 5,4 , and 5 respectively.

Lemma 1. Let $T$ be a connected tree, $u_{1}$ a pendant node and $u_{2}$ an internal node. Suppose all nodes, if there is any, in the shortest path connecting $u_{1}$
and $u_{2}$ are of degree 2. Then

$$
\left(d\left(u_{2}, v\right)\right)_{v \in V(T)} \prec\left(d\left(u_{1}, v\right)\right)_{v \in V(T)} .
$$

Proof. Let $P_{u_{1}, u_{2}}$ denote the path connecting $u_{1}$ with $u_{2}$. For $v \in V(T) \backslash V\left(P_{u_{1}, u_{2}}\right)$

$$
\begin{aligned}
d\left(u_{1}, v\right) & =d\left(u_{1}, u_{2}\right)+d\left(u_{2}, v\right) \\
& >d\left(u_{2}, v\right) .
\end{aligned}
$$

And

$$
\left(d\left(u_{1}, v\right)\right)_{v \in V\left(P_{u_{1}, u_{2}}\right)} \equiv\left(d\left(u_{2}, v\right)\right)_{v \in V\left(P_{u_{1}, u_{2}}\right)} .
$$

Thus

$$
\left(d\left(u_{2}, v\right)\right)_{v \in V(T)} \prec\left(d\left(u_{1}, v\right)\right)_{v \in V(T)} .
$$

Lemma 2. Consider two distinct trees $T_{1}$ and $T_{2}$. Let $u_{1}, u_{2} \in V\left(T_{1}\right)$ with $u_{1}$ of degree at least 2 and $u_{2}$ a pendant node satisfying the property that any node, if there is any, on the shortest path connecting $u_{1}$ and $u_{2}$ is of degree 2. Let $u_{3} \in V\left(T_{2}\right)$. A new tree $T$ is constructed by connecting $u_{1}$ and $u_{3}$, and $T^{\prime}$ is constructed by connecting $u_{2}$ and $u_{3}$. Then,

$$
D(T) \prec D\left(T^{\prime}\right)
$$

Proof. Observe that

$$
\begin{aligned}
\left(d\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(T_{1}\right)} & \equiv\left(d^{\prime}\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(T_{1}\right)} \\
\left(d\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(T_{2}\right)} & \equiv\left(d^{\prime}\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(T_{2}\right)} .
\end{aligned}
$$

For $v_{1} \in V\left(T_{2}\right)$, we have

$$
\begin{aligned}
& \left(d^{\prime}\left(v_{1}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)} \\
\equiv & d^{\prime}\left(v_{1}, u_{3}\right)+1+\left(d^{\prime}\left(u_{2}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)} \\
\equiv & d\left(v_{1}, u_{3}\right)+1+\left(d\left(u_{2}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(d\left(v_{1}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)} \\
\equiv & d\left(v_{1}, u_{3}\right)+1+\left(d\left(u_{1}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)} \\
\prec & \left(d^{\prime}\left(v_{1}, v_{2}\right)\right)_{v_{2} \in V\left(T_{1}\right)} .
\end{aligned}
$$

Thus $D(T) \prec D\left(T^{\prime}\right)$.

Manipulations in Lemma 2 are illustrated in Figure 2.6.
Starting from a tree $T$ with $m$ number of nodes with maximum degree $\Delta(T)$. If $m \geq 2$, Lemma 2 can be iteratively applied to construct a tree $T^{\prime}$ such that the maximum degree is equal to that of $T$ but the number of nodes in $T^{\prime}$ with the maximum degree is reduced by 1 . If $m=1$, then Lemma 2 can also be iteratively applied to construct a tree $T^{\prime}$ with maximum degree $\Delta\left(T^{\prime}\right)=\Delta(T)-1$.

Lemma 3. Given $i+j=k+\ell=n, 1 \leq \ell<i \leq j<k, T$ is created by connecting internal node $u_{1}$ of $S_{i}$ and internal node $u_{2}$ of $S_{j} . T^{\prime}$ is created by connecting internal node $u_{3}$ of $S_{k}$ and internal node $u_{4}$ of $S_{\ell}$. Then

$$
\begin{aligned}
\left(d^{\prime}\left(u_{3}, v\right)\right)_{v \in V\left(T^{\prime}\right)} & \prec\left(d\left(u_{1}, v\right)\right)_{v \in V(T)}, \\
D\left(T^{\prime}\right) & \prec D(T) .
\end{aligned}
$$

Proof. Note that $|V(T)|=\left|V\left(T^{\prime}\right)\right|=n$.


Figure 2.6. Illustrating the choices of $u_{1}, u_{2}$ and $u_{3}$ in Lemma 2. Here $T_{1}$ has 5 nodes, $T_{2} 3$ nodes. We choose $u_{1}=3, u_{2}=5$ and $u_{3}=6$. Tree $T$ is constructed by joining $u_{1}$ and $u_{3}$ while $T^{\prime}$ by joining $u_{2}$ and $u_{3} . D(T)$ and $D\left(T^{\prime}\right)$ are $8 \times 8$ matrices where the first 5 columns correspondent to the 5 nodes in $T_{1}$, and the last 3 rows correspondent to the 3 nodes in $T_{2}$.

Note also that $\left(d\left(u_{1}, v\right)\right)_{v \in V(T)}$ has 1 entry equals to $0, i$ entries equal to 1 and $j-1$ entries equal to 2 . Similarly $\left(d^{\prime}\left(u_{3}, v\right)\right)_{v \in V\left(T^{\prime}\right)}$ has 1 entry equals to $0, k$ entries equal to 1 and $\ell-1$ entries equal to 2 . Thus $\left(d\left(u_{3}, v\right)\right)_{v \in V\left(T^{\prime}\right)} \prec$ $\left(d^{\prime}\left(u_{1}, v\right)\right)_{v \in V(T)}$ proving the first majorization.

Both $D(T)$ and $D\left(T^{\prime}\right)$ have $n$ entries equal to $0,2(n-1)$ entries equal to 1. $D(T)$ has $2(i-1)(j-1)$ entries equal to 3 and the rest of entries 2 , $D\left(T^{\prime}\right)$ has $2(k-1)(\ell-1)$ entries equal to 3 and the rest of entries 2. Since $(k-1)(l-1)<(i-1)(j-1)$, thus $D\left(T^{\prime}\right) \prec D(T)$ proving the second majorization, and hence the proof of Lemma 3.

Manipulations in Lemma 3 are illustrated in Figure 2.7, where $n=$ $10, i=j=5, \ell=3, k=7$.


Figure 2.7. Illustration of Lemma 3. Here $n=10, i=j=5, \ell=3, k=7$. From the counts of the distances above, it is clear that $\left(d^{\prime}\left(u_{3}, v\right)\right)_{v \in V\left(T^{\prime}\right)} \prec\left(d\left(u_{1}, v\right)\right)_{v \in V(T)}$ and $D\left(T^{\prime}\right) \prec D(T)$.

### 2.8.1 Proof of Theorem 2

In this section we will find upper and lower bounds of $W_{f}(T)$ for $T \in \mathcal{T}_{n}$. Lemmas 4 and 5 are dedicated to investigate the relationship between a tree's distance matrix and its maximum degree.

Consider the following subtree pruning and regrafting (SPR) algorithm:
Input $T \in \mathcal{T}_{n}$ with $\Delta(T) \geq 3$ :

1. Choose a pendant node $u_{1}$, and an internal node $u_{2}$ with $\operatorname{deg}\left(u_{2}\right) \geq 3$ satisfying the condition that all nodes lying on the shortest path connecting $u_{1}$ and $u_{2}$, if any, are of degree 2 .
2. Choose $u_{3} \in n e\left(u_{2}\right)$ such that $u_{3}$ does not lie on the shortest path connecting $u_{1}$ and $u_{2}$.
3. A new tree $T^{0} \in \mathcal{T}_{n}$ is constructed by first deleting $\left(u_{2}, u_{3}\right)$ and then connecting $u_{3}$ to $u_{1}$.

This algorithm outputs a tree $T^{0}$ with these properties: (i) $D(T) \prec$ $D\left(T^{0}\right)$; (ii) $\Delta(T)-1 \leq \Delta\left(T^{0}\right) \leq \Delta(T)$; and (iii) number of pendant nodes is one less than that of $T$.

To see this, let $P_{u_{1}, u_{2}}$ denote the path connecting $u_{1}$ with $u_{2}$. Observe that

$$
\begin{aligned}
& \left(d\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V(T) \backslash V\left(P_{u_{1}, u_{2}}\right)} \\
\equiv & \left(d^{0}\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V(T) \backslash V\left(P_{u_{1}, u_{2}}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(d\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(P_{u_{1}, u_{2}}\right)} \\
\equiv & \left(d^{0}\left(v_{1}, v_{2}\right)\right)_{v_{1}, v_{2} \in V\left(P_{u_{1}, u_{2}}\right)} .
\end{aligned}
$$

For $v_{1} \in V(T) \backslash V\left(P_{u_{1}, u_{2}}\right)$, we have

$$
\begin{aligned}
& \left(d\left(v_{1}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}} \\
\equiv & d\left(v_{1}, u_{3}\right)+1+\left(d\left(u_{2}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(d^{0}\left(v_{1}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}} \\
\equiv & d^{0}\left(v_{1}, u_{3}\right)+1+\left(d^{0}\left(u_{1}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}} \\
\equiv & d\left(v_{1}, u_{3}\right)+1+\left(d\left(u_{1}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}} \\
\succ & \left(d\left(v_{1}, v_{2}\right)\right)_{v_{2} \in P_{u_{1}, u_{2}}} \quad \text { by Lemma } 2 .
\end{aligned}
$$

Thus $D(T) \prec D\left(T^{0}\right)$ and property (i) follows. Since $\operatorname{deg}_{T^{0}}\left(u_{2}\right)=\operatorname{deg}_{T}\left(u_{2}\right)-$ $1, \operatorname{deg}_{T^{0}}\left(u_{1}\right)=2, \operatorname{deg}_{T^{0}}(u)=\operatorname{deg}_{T}(u)$ for $u \neq u_{1}, u_{2}$. Then properties (ii)
and (iii) follow.
Manipulations of SPR algorithms are illustrated in Figure 2.8.


Figure 2.8. Illustration of the subtree pruning and regrafting algorithm. Here $T_{0}$ is obtained from $T$ first by deleting the edge $\left(u_{2}, u_{3}\right)$ and then connecting $u_{1}$ and $u_{3} . T_{0}$ is proved to satisfy these properties: (i) $D(T) \prec D\left(T^{0}\right)$; (ii) $\Delta(T)-1 \leq \Delta\left(T^{0}\right) \leq \Delta(T)$; and (iii) number of pendant nodes is one less than that of $T$.

Lemma 4. Let $T \in \mathcal{T}_{n}$ with $\Delta(T) \geq 3$. There exists $T^{\prime} \in \mathcal{T}_{n}$ such that $\Delta\left(T^{\prime}\right)=\Delta(T)-1$ and

$$
D(T) \prec D\left(T^{\prime}\right)
$$

Proof. Let $\ell$ be the number of pendant nodes in $T$. Apply SPR algorithm to $T$ to obtain $T^{0}$. If $\Delta\left(T^{0}\right)=\Delta(T)-1$, then we stop and take $T^{\prime}=T^{0}$. Otherwise let $T=T^{0}$ and apply SPR algorithm again. We repeat this algorithm until we obtain the desired tree $T^{\prime}$. Note that this algorithm will be repeated at most $\ell-2$ times to get the desired tree. Because each application of SPR algorithm reduces number of pendant nodes by 1 . There
are at least 2 pendant nodes in a tree.

Lemma 5. Let $T \in \mathcal{T}_{n}$ with $2 \leq \Delta(T)<n-1$. There exists $T^{\prime} \in \mathcal{T}_{n}$ such that $\Delta\left(T^{\prime}\right)=\Delta(T)+1$ and

$$
D\left(T^{\prime}\right) \prec D(T) .
$$

Proof. We write $\Delta(T)=k$. Choose $u \in V(T)$ with degree $m, m \geq 2$, in such a way that all its neighbors except one are pendant nodes. Write $n e(u)=\left\{u_{1}, \ldots, u_{m-1}, u_{m}\right\}$ where $u_{m}$ is the only internal node in $T$. We consider two cases: $1: m-1+\operatorname{deg}_{T}\left(u_{m}\right)<k+1$ and $2: m-1+\operatorname{deg}_{T}\left(u_{m}\right) \geq$ $k+1$.

1. A new tree $T^{0}$ is constructed by deleting edge $\left(u, u_{j}\right)$, and then connecting $u_{j}$ to $u_{m}$ for $1 \leq j \leq m-1$. We claim that $T^{0}$ satisfies that $\Delta\left(T^{0}\right)=k$ and $D\left(T^{0}\right) \prec D(T)$. Since $\operatorname{deg}_{T^{0}}(v)=\operatorname{deg}_{T}(v), v \in$ $V(T) \backslash\left\{u, u_{m}\right\}, \operatorname{deg}_{T^{0}}(u)=1, \operatorname{deg}_{T^{0}}\left(u_{m}\right)=\operatorname{deg}_{T}\left(u_{m}\right)+m-1 \leq k$, so $\Delta\left(T^{0}\right)=k$. Let $V=V(T)=V\left(T^{0}\right), V_{1}=n e\left(u_{m}\right) \backslash u, V_{2}=$ $V_{1} \bigcup\left\{u, u_{1}, \ldots, u_{m}\right\}$ and $V_{3}=V \backslash V_{2}$.

$$
\begin{gathered}
(d(i, j))_{i, j \in V_{3}} \equiv(d(i, j))_{i, j \in V_{3}}^{0} . \\
(d(i, j))_{i, j \in V_{2}} \succ(d(i, j))_{i, j \in V_{2}}^{0} \text { by Lemma 3. } \\
(d(i, j))_{i \in V_{2}, j \in V_{3}} \succ(d(i, j))_{i \in V_{2}, j \in V_{3}}^{0} .
\end{gathered}
$$

Thus $D\left(T^{0}\right) \prec D(T)$. Let $T=T^{0}$ and repeat this procedure again. Note that the number of pendant nodes in $T$ increases by 1 for each application of this procedure.
2. A new tree $T^{0}$ is constructed by deleting edge $\left(u, u_{j}\right)$, and connecting $u_{j}$ to $u_{m}$ for $1 \leq j \leq k-\operatorname{deg}_{T}\left(u_{m}\right)+1$. As in case $1, T^{0}$ satisfies $D\left(T^{0}\right) \prec D(T)$. Since $\operatorname{deg}_{T^{0}}(v)=\operatorname{deg}_{T}(v), v \in V(T) \backslash\left\{u_{1}, u_{m}\right\}$, $\operatorname{deg}_{T^{0}}(u)=\operatorname{deg}_{T}(u)-\left(k+1-\operatorname{deg}_{T}\left(u_{m}\right)\right)<k, \operatorname{deg}_{T^{0}}\left(u_{m}\right)=k+1$, so $\Delta\left(T^{0}\right)=k+1$. Let $T^{\prime}=T^{0}$ and $T^{\prime}$ satisfies conditions in Lemma 5.

As we claimed in case 1, each time case 1 occurs, the number of pendant nodes in $T$ decreases by 1 , and $(\operatorname{deg}(i))_{i \in V(T)} \prec(\operatorname{deg}(i))_{i \in V\left(T^{0}\right)}$. Thus eventually only case 2 remains and produces a tree as required in Lemma 5.

In the proof of Lemma 5 , we can easily choose $u \in V(T)$ such that its degree equals to $m, m \geq 2$, and all its neighbors except one are pendant nodes. We write $\Delta(T)=k$. So $T$ has at least one node with degree $k$. We choose one such node and denote it as $v$. Let $v_{1}, \ldots, v_{n_{1}}$ be the pendant nodes in $T$ and satisfy $d\left(v, v_{1}\right) \leq d\left(v, v_{2}\right) \leq \ldots \leq d\left(v, v_{n_{1}}\right)$. Denote the path connecting $v$ and $v_{n_{1}}$ by $v \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{p} \rightarrow v_{n_{1}}$. Then $w_{p}$ is one such node $u$. Otherwise, $d\left(v, v_{1}\right) \leq d\left(v, v_{2}\right) \leq \ldots \leq d\left(v, v_{n_{1}}\right)$ does not hold.

Since the star graph has the largest maximum degree, and the path graph has the smallest maximum degree among trees in $\mathcal{T}_{n}$, by Lemmas 4 and 5 , we obtain the following corollary.

Corollary 7. Let $T \in \mathcal{T}_{n}$ with $2<\Delta(T)<n-1$. Then

$$
D\left(S_{n}\right) \prec D(T) \prec D\left(P_{n}\right) .
$$

Proof of Theorem 2. Applying Corollary 7 and the fact that $f$ is increasing can prove Theorem 2.

### 2.8.2 Proof of Theorem 1

Define $\mathcal{G}_{n}(m)$ as a set of connected graphs with the number of nodes $n$ and the number of edges $m, n-1 \leq m \leq \frac{n(n-1)}{2}$.

First we will show that maximum value of $W_{f}(G)$ over $G \in \mathcal{G}_{n}(m)$ is a monotone function of the number of edges, $m$, of $G$.

Lemma 6. Let $G \in \mathcal{G}_{n}$. Then $\max _{G \in \mathcal{G}_{n}(m)} W_{f}(G)$ and $\min _{G \in \mathcal{G}_{n}(m)} W_{f}(G)$ are decreasing functions in $m$.

Proof. For any $G \in \mathcal{G}_{n}(m)$ with $D(G)=(d(i, j))_{1 \leq i, j \leq n}$. When $m \geq n, G$ cannot be a tree and hence contains a cycle. Choose an edge in a cycle in $G$ and delete it to form $G^{\prime}$. Let's say the deleted edge is $(1,2)$. Note that $G^{\prime} \in \mathcal{G}_{n}(m-1)$. Write $D\left(G^{\prime}\right)=\left(d^{\prime}(i, j)\right)_{1 \leq i, j \leq n}$. Since $E\left(G^{\prime}\right) \varsubsetneqq E(G)$, $d(i, j) \leq d^{\prime}(i, j), 1 \leq i<j \leq n, W_{f}(G) \leq W_{f}\left(G^{\prime}\right) . \operatorname{So} \max _{G \in \mathcal{G}_{n}(m)} W_{f}(G) \leq$ $\max _{G \in \mathcal{G}_{n}(m-1)} W_{f}(G)$, for $m \geq n$.

Consider $n \leq m \leq \frac{n(n-1)}{2}$. For any $G \in \mathcal{G}_{n}(m-1)$, we connect two nodes with distance greater than 1 in $G$ and call the resulting graph $G^{\prime \prime}$. Now $G^{\prime \prime} \in$ $\mathcal{G}_{n}(m)$ with $D\left(G^{\prime \prime}\right)=\left(d^{\prime \prime}(i, j)\right)_{1 \leq i \leq j \leq n}$. Since $E(G) \subset E\left(G^{\prime \prime}\right), d^{\prime \prime}(i, j) \leq$ $d(i, j), 1 \leq i<j \leq n$, thus $W_{f}\left(G^{\prime \prime}\right) \leq W_{f}(G)$. So $\min _{G \in \mathcal{G}_{n}(k)} W_{f}(G) \leq$ $\min _{G \in \mathcal{G}_{n}(m-1)} W_{f}(G)$ for $m \geq n$.

Proof of Theorem 1. From Lemma 6 we have

$$
W_{f}\left(K_{n}\right) \leq W_{f}(G) \leq \max \left\{W_{f}(T): T \in \mathcal{T}_{n}\right\} .
$$

From Theorem 2

$$
W_{f}\left(P_{n}\right)=\max \left\{W_{f}(T): T \in \mathcal{T}_{n}\right\} .
$$

Thus Theorem 1 follows.

### 2.8.3 Proof of Theorem 3

In this section, we consider trees with a given maximum degree. The relationship between the distance matrix and the number of nodes with degree equal to maximum degree is investigated.

Lemma 7. Let $T \in \mathcal{T}_{n}$ with $n_{1}$ nodes with degree equal to $\Delta(T)$. Suppose $n_{1} \geq 2$ and $\Delta(T) \geq 3$. There exists $T^{\prime} \in \mathcal{T}_{n}$ with $\Delta\left(T^{\prime}\right)=\Delta(T)$ and $n_{1}-1$ nodes with degree equal to $\Delta(T)$. Moreover, we have

$$
D(T) \prec D\left(T^{\prime}\right) .
$$

Proof. Let $\ell$ be the number of pendant nodes in $T$. Apply SPR algorithm to $T$ to obtain $T^{0}$. If $T^{0}$ has $n_{1}-1$ nodes with degree equal to $\Delta(T)$, then we stop and take $T^{\prime}=T^{0}$. Otherwise let $T=T^{0}$ and apply SPR algorithm again. We repeat this algorithm until we obtain desired tree $T^{\prime}$. Note that this algorithm will be repeated at most $\ell-2$ times to obtain desired tree. Because each application of SPR algorithm reduces number of pendant nodes by 1 . There are at least 2 pendant nodes in a tree.

Corollary 8. Let $T \in \mathcal{T}_{n}$ with $2<\Delta(T)<n-1$. There exists a starlike tree $T^{\prime}$ with $\Delta(T)=\Delta\left(T^{\prime}\right)$ such that

$$
D(T) \prec D\left(T^{\prime}\right) .
$$

Corollary 8 states that among trees with equal maximum degree, distance matrix of a tree with more than one node with maximum degree is
strictly majorized by a distance matrix of a starlike tree. Next to find a tree whose distance matrix majorizes all starlike trees.

Lemma 8. Let $T$ be a starlike tree with $\Delta(T)=k \geq 3$. Then

$$
D(T) \preceq D\left(B_{n, k+1}\right),
$$

with equality holds if and only if $T$ is $B_{n, k+1}$.

Proof. Assume $T$ is non-isomorphic to $B_{n, k+1} . T$ is a starlike tree thus $T$ has $k$ pendant nodes by definition. Denote by $u$ the node with maximum degree $k$, by $u_{1}, \ldots, u_{k}$ pendant nodes in $T$ and satisfy $d\left(u, u_{1}\right) \leq d\left(u, u_{2}\right) \leq$ $\ldots \leq d\left(u, u_{k}\right)$, and by $V_{i}$ set of nodes in the shortest path connecting node $u$ and $u_{i}, 1 \leq i \leq k$. Next a new tree $T^{0}$ is constructed by deleting edge $\left(u_{k-1}, n e\left(u_{k-1}\right)\right)$ and connecting $u_{k-1}$ to $u_{k}$.

For $i, j \in V \backslash\left\{u_{k-1}\right\}$,

$$
d(i, j)=d^{0}(i, j)
$$

For $i \in V \backslash\left(V_{k-1} \cup V_{k}\right)$

$$
\begin{aligned}
d\left(i, u_{k-1}\right) & =d(i, u)+d\left(u, u_{k-1}\right) \\
d^{0}\left(i, u_{k-1}\right) & =d^{0}(i, u)+d^{0}\left(u, u_{k-1}\right) \\
& =d(i, u)+d\left(u, u_{k}\right)+1
\end{aligned}
$$

thus

$$
d\left(i, u_{k-1}\right)<d^{0}\left(i, u_{k-1}\right)
$$

And

$$
\left(d\left(i, u_{k-1}\right)\right)_{V_{k-1} \cup V_{k}} \equiv\left(d^{0}\left(i, u_{k-1}\right)\right)_{V_{k-1} \cup V_{k}},
$$

since both vectors are distances of a pendant node to other nodes in one path with length $d\left(u_{k-1}, u_{k}\right)$. Thus $D(T) \prec D\left(T^{0}\right)$. If $T^{0}$ satisfies $d^{0}\left(u, u_{1}\right)=\cdots=d^{0}\left(u, u_{k-1}\right)=1$, then we stop and $T^{0}$ is $B_{n, k+1}$. Otherwise let $T=T^{0}$ and we repeat this process until get tree $B_{n, k+1}$. Note that this algorithm will be repeated $n-k-d\left(u, u_{k}\right)$ times. Because each repetition will increase $d\left(u, u_{k}\right)$ by 1 . And maximum of $d\left(u, u_{K}\right)$ is $n-k$ and is attained when $T$ is $B_{n, k+1}$.

Lemma 9. For $k \geq 3$,

$$
D\left(B_{n, k+1}\right) \prec D\left(B_{n, k}\right)
$$

Proof. Lemma 9 follows directly from Lemmas 4 and 8.

Proof of Theorem 3. Applying Lemma 8 and the fact that $f$ is increasing.

Remark It has been proven in corollary 3.5 of Schmuck et al. (2012) that

$$
W_{f}\left(T_{n}(k)\right)=\min \left\{W_{f}(T): T \in \mathcal{T}_{n}, \quad \Delta(T)=k\right\}
$$

where $T_{n}(k)$ is a $k$-ary tree, also called Volkmann tree (Fischermann et al., 2002). It remains open whether

$$
D\left(T_{n}(k)\right) \preceq D(T) \quad \text { for } T \in \mathcal{T}_{n}, \Delta(T)=k
$$

holds for all $k, n$ and $k \leq n$. We have verified that ( $(* *)$ holds for $6 \leq n \leq 9$ and $k=3$. If $(\star \star)$ is true for all $n$ and $k$, it provides an alternative proof of

$$
W_{f}\left(T_{n}(k)\right) \leq W_{f}(T)
$$

for $T \in \mathcal{T}_{n}, \Delta(T)=k$, and $f$ monotonically increasing.

### 2.8.4 Proof of Theorem 4

Proof. Let $T$ be a spanning tree of $G$ satisfying $\Delta(T)=k$. Similar to the proof of Theorem 1, one can prove that $D(G) \preceq D(T)$. By Theorem 3, $D(T) \preceq D\left(B_{n, k+1}\right)$. Thus $W_{f}(G) \leq W_{f}\left(B_{n, k+1}\right)$.

## Chapter 3

## Profiling the Transcription Factor

 Regulatory Networks of Human Cell
## Types

### 3.1 Introduction

Living cells are the products of transcription programs involving thousands of genes. Sequence-specific transcription factor (TF) proteins regulate target genes by binding to promoter regions adjacent to the DNA sequences of the genes. There are less than 2,000 TFs in the human genome (Babu et al., 2004; Ravasi et al., 2010; Vaquerizas et al., 2009; Zhang et al., 2012a). They work cooperatively to enhance or inhibit their target genes to achieve high specificity, and thus to precisely control the condition-dependent expression of the genes to respond to extracellular stimuli. Hence, the mutual interactions among TFs determine cellular identity and shape complex cellular functions (Csermely et al., 2014; Davidson, 2010). This makes the study of human TFs on a system-wide scale of vital importantce (Csermely et al., 2013). In systems biology, regulatory interactions among TFs are modeled

Chapter 3. Profiling the Transcription Factor Regulatory Networks of Human Cell Types
as a TF regulatory network in which the nodes are the TFs and the links represent the regulatory relationship among TFs.

Over the past decade, a great deal of information on the organization of regulatory interactions has been obtained particularly for E. coli and S. cerevisiae (Balazsi et al., 2005; Banerjee and Zhang, 2003; Gerstein et al., 2012; Ma et al., 2004; Yu et al., 2006). However, comprehensive generation of cell-type regulatory interactions for humans has been a challenge. First, there are a large number of human TFs as mentioned above, but the data collected from individual experiments often target one cell type and only a few TFs in a particular condition (Davidson et al., 2002; Gerstein et al., 2010; Kim et al., 2008). Second, correlation-based analyses of microarray gene expression data often do not capture the direction of transcriptional regulations, a necessity for deep analyses of regulatory interactions (Basso et al., 2005; Carro et al., 2009). Fortunately, the genome-wide DNaseI footprinting technique has recently been adopted to determine the regulatory interactions of sequence-specific TFs in the 41 human cell types (Neph et al., 2012a). This provides a valuable resource for deciphering regulatory mechanisms in different human cells.

The TF regulatory networks for E. coli (Yu and Gerstein, 2006), S. cerevisiae (Jothi et al., 2009; Yu and Gerstein, 2006), mouse (Bookout et al., 2006) and humans (Gerstein et al., 2012) exhibit hierarchical organizations. Most importantly, these organizations are associated with TF dynamics (Jothi et al., 2009; Yu and Gerstein, 2006). In the present thesis, we investigate the structural organizations and dynamics of the 41 human cell-type TF regulatory networks reported in Neph et al. (2012a) using the vertex-sort algorithm developed in Jothi et al. (2009). Our findings are
interpreted to indicate three insightful conclusions. First, the human celltype TF regulatory networks share similar global three-layer (top, core, and bottom) hierarchical architectures, which are markedly different from that of the yeast TF regulatory network. On the other hand, there are significant differences in the TF regulatory interactions among cell types, as suggested by our finding that wirings around a few TFs can distinguish cell identities well. Second, the TF regulatory network of the human embryonic stem cell (hESC) is dense and has different topological properties from all the other networks. Finally, there are more specific regulatory interactions than thought in the hESCs. These cell-type regulatory interactions and the TFs involved may play unique roles in maintaining pluripotency.

### 3.2 Materials and Methods

### 3.2.1 Network data

The TFs regulatory networks of 41 human cell types have been taken from the recent work by Neph et al. (2012a). These networks were derived from DNaseI footprinting data and the predicted TRANSFAC motif-binding sites (Ravasi et al., 2010). Each network contains about 475 TFs and 11,200 interactions.

According to the physiological and functional properties, Neph et al. (2012a) divided the 41 cell types into eight classes: blood (seven cell types), cancer (two cell types), endothelia (four cell types), epithelia (six cell types), ESCs (one cell type), fetal (three cell types), stroma (14 cell types), and viscera (four cell types).

### 3.2.2 Discovery of the hierarchical structures of the regulatory networks

We used the vertex-sort algorithm (Jothi et al., 2009) to identify the hierarchical structure of a regulatory network. The vertex-sort algorithm first collapses strongly connected components into super-nodes to form a directed acyclic graph, and then constructs its transposed graph by reversing the directions of the edges. A strongly connected component is a subnetwork in which, for each pair of nodes $u$ and $v$ in the subnetwork, these exists a directed path from $u$ to $v$ and from $v$ to $u$. Next, it uses the topological structures of both the directed acyclic graph and its transposed graph to classify the original nodes into the top, core and bottom layers.

### 3.2.3 Classifying cell types based on TF regulatory networks

Neph et al. (2012a) made use of the connectivity of the TF regulatory networks to classify the 41 human cell types. Specifically, they computed all the pairwise Euclidean distances between the normalized node-degree (NND) vectors of the networks, and then applied the Ward clustering method (Ward, 1963) to cluster the cell types.

Instead, we used local connectivity, defined by a subset of nodes in the networks, to classify the cell types. Given a small set of TFs, $A$, we define the feature vector of each cell type to be $\left(x_{1}, \ldots, x_{n}\right)$, where $n$ is the number of TFs in the corresponding network and where $x_{i}=1$ if the $i$-th TF is a target of some TFs in $A$ and 0 otherwise. Principal component analysis was then applied to the feature vectors to reduce the dimension and the noise of feature vector data. We computed the pairwise Euclidean distances based on the first seven principal components of the 41 feature vectors and
then applied Ward clustering to classify the cell types.
To answer one question that how well local topological features of randomly selected TF group distinguish the cell identities, we apply the described strategy for 1000 randomly selected TF groups with $n$ TFs ( $n=$ $1, \ldots, 12$ )

### 3.2.4 Measuring the accuracy of the classifications of cell types

The Rand Index (RI) (Rand, 1971) was used to assess the quality of cell type classifications. To this end, the 41 cell types are partitioned into four categories: (i) stromal and epithelial, (ii) blood, (iii) endothelial, and (iv) cancer, ESC, and fetal tissues.

### 3.2.5 Detection of regulatory complex-target modules in hESCs

The hESC specific interactions are interactions that are only found in the regulatory network of hESCs. A total of 1,509 interactions were identified (Table A.1).

We used these interactions to identify regulatory complex-target modules that are specific to hESCs. For a protein complex, $C$, and a set of TFs, $B$, we say that $C$ and $B$ form a regulatory complex-target module if $C$ contains two or more TFs such that all TFs in $B$ are regulated by every TF (in $C$ ) only in the hESCs. We detected 55 regulatory complex-target modules (Table A. 2 using the protein complexes reported in Vinayagam et al. (2013).

### 3.2.6 Comparing two distributions

The Wilcoxon rank-sum test was used to determine whether the RI was significantly higher when grouping the 41 cell types based on the targets of a few TFs compared to random grouping.

The gene expression data of 79 human tissues (Su et al., 2004) was used to investigate whether a TF gene was stably expressed across tissues. The deviation of an expression level from being a constant is measured in terms of its relative entropy (also known as Kullback-Leibler divergence). In our context, for a gene, it is computed as $\log _{2} 79+\sum_{j} f_{j} \log _{2}\left(f_{j}\right)$, where $f_{j}=e_{j} /\left(\sum_{k=1}^{79} e_{k}\right)$ and $e_{j}$ is the expression level of the gene in tissue $j$ (Ravasi et al., 2010). The entropy equals 0 if the gene expression levels are identical in all 79 tissues. The Wilcoxon rank-sum test was also used to test whether the TFs involved in housekeeping (HK) interactions were more stably expressed than the other TFs.

Wilcoxon rank-sum test require below 3 assumptions. (1) Data are paired and come from the same population. (2) Each pair is chosen randomly and independently. (3) The data are measured at least on an ordinal scale (cannot be nominal). In our applications, the first two assumptions may not be entirely satisfied. For example the independence assumption may not hold considering potential bias in TFs detection.

### 3.3 Results

### 3.3.1 Wirings around a few TFs are enough to distinguish cell identities

Neph et al. (2012a) made use of the global connectivity of the TF regu-
latory networks to classify the 41 human cell types (Section 3.2.3). The resulting grouping (redrawn in Figure 3.1A) strikingly groups the anatomical and functional cell-type groups into clearly pre-annotated classes with $R I=0.801$. Surprisingly, the local connection patterns involving five to nine arbitrarily selected TFs are also good enough to obtain comparable classifications with the RI being in the range from 0.7 to 0.9 on average (Section 3.2.4, Figure 3.2).


Figure 3.1. The hierarchical clustering of 41 cell types, where the color indicates which classes they belong to (Section 3.2.1). (A) The clustering reported in Neph et al. (2012a) and redrawn for the purpose of comparison, which is based on the pairwise Euclidean distances between the NND vectors of the corresponding TF regulatory networks, has $\mathrm{RI}=0.801$. (B) Our clustering, which is based on the distribution of the downstream targets of the seven STATs, has $\mathrm{RI}=0.856$.

Let us consider the seven mammalian signal transducer and activator of transcription (STAT) proteins. The activation of STATs by the Janus kinase proteins serves as an alternative to the second messenger system, transmitting extracellular signals from a wide spectrum of cytokines,


Figure 3.2. The evaluation of how the clustering results of limited number of TFs reflect the original cell/tissue groups. The red triangle marks the RI value of the STAT family.
growth factors and other polypeptide ligands to the nuclei (Horvath, 2000; Levy and Darnell, 2002). A close examination finds that the TFs regulated by the STATs are annotated with different gene ontology (GO) terms in different regulatory networks. For example, as illustrated in Figure 3.3, TFs that are regulated by STATs in hESCs but not in hematopoietic stem cells (HSCs) are enriched in GO:0045165 (cell fate commitment, Benjamini corrected $p$-value $=2.72 e-7$ ). By contrast, TFs that are regulated by STATs in HSCs but not in hESCs are enriched in GO:0048534 (hemopoietic or lymphoid organ development, Benjamini corrected $p$-value $=0.03$ ).

The diversity of the downstream TFs of the STATs might indicate their strong distinguishability for the classification of human cell types. Indeed, using the information on how the STAT proteins connect with their targets to classify the cell types, we obtained a grouping with $\mathrm{RI}=0.856$ (Figure 3.1B), which is even higher than the RI of the grouping of Neph et al. (2012a) mentioned above.


Figure 3.3. The STATs and their downstream regulatory targets in hESCs (A) and HSCs (B). Purple TFs are those regulated by some STATs in both cell types. The cell fate commitment process (GO:0045165) is enriched in the targets of STATs in hESCs (Benjamini corrected $p$-value $=2.72 e-7$ ). Dark red and blue targets are the TFs annotated with the GO term. The hemopoietic or lymphoid organ development process (GO:0048534) is enriched in the targets of STATs in HSCs (Benjamini corrected $p$-value $=0.03$ ). Green and blue targets are the TFs annotated with this GO term. Brown targets are other targets whose GO annotations are not given.

### 3.3.2 The hierarchical structures of 41 cell-type regulatory net-

 worksThe E. coli, yeast, rat, mouse, and human regulatory networks all exhibit hierarchical organization (Bookout et al., 2006; Gerstein et al., 2012; Jothi et al., 2009; Yu and Gerstein, 2006). We investigate the hierarchical organization of the 41 human cell type networks using the vertex-sort algorithm (Jothi et al., 2009).

For each network, the vertex-sort algorithm partitioned its nodes into

Chapter 3. Profiling the Transcription Factor Regulatory Networks of Human Cell Types
the top, core and bottom layers (Figure 3.4A) (Section 3.2.2). The percentages of TFs in the three layers of the 41 regulatory networks are reported in Table A.3. On average, $23 \%$ of TFs are classified into the top layer, $67 \%$ into the core layer, and the lowest amount of TFs (10\%) into the bottom layer (Figure 3.4B). The top, core and bottom layers of the 41 networks have 1 (that is HNF4G), 141 and 15 TFs in common, respectively.


Figure 3.4. (A) A schematic view of the three-layer hierarchical structure of the hESC TF regulatory network. The links between the top and bottom layers are colored yellow. (B) A summary of average percentages of nodes (dark red) in the three layers and of links (blue) within and across the top, core and bottom layers in a human cell-type TF regulatory network.

When compared to the regulatory networks of other cell types, the hESC TF regulatory network has a significantly low number of TFs in the top layer ( $6 \%, p$-value $<0.01$, one-tailed test) and its core layer contains a significantly high number of $\mathrm{TFs}(85 \%, p$-value $<0.01$, one-tailed test). However, its bottom layer has a size (9\%) similar to those of the other cell type networks (Table A.3).

To measure the degree of hierarchy in the three-layer structures obtained above, we calculated the local reaching centrality (LRC) of TFs in each of the 41 networks (Mones et al., 2012). As expected, the LRC of each

TF in a layer is always greater than that of each TF in the layers below it in all except two stromal (HCF and HCM) networks. In the HCF network, only HOXC9 and NKX2-1 in the top layer have an extremely low LRC, smaller than the LRC of the TFs in the core layer. In the HCM network, only HOXC9 and NKX6-1 in the top layer have smaller LRC than that of TFs in the core layer. The mean values of the LRC of the TFs in a layer in the 41 regulatory networks are given in Table A.4. The global reaching centrality (GRC) of the 41 regulatory networks ranges from 0.065 to 0.125 . Low GRC for each network is due to (1) there are only three hierarchal layers, (2) the core layer is much larger than the top layers ( $67 \%$ vs $23 \%$ on average), and (3) the LRC of a TF is slightly smaller in the core layer than in the top layer. These facts leads to the distribution of LRCs skew to the maximum LRC resulting in small GRC.

Distributions of network links. Seventy-six percent of links are distributed within the core layer (Table A. 3 and Figure 3.4B). Both the size of the core layers and the links within them reveal the complex regulatory relationships among TFs in different human cells. The remaining links are distributed as follows: top $\rightarrow$ core (13\%), top $\rightarrow$ bottom ( $2 \%$ ), and core $\rightarrow$ bottom (9\%), suggesting that TFs in the top layer mainly regulate TFs in the core layer.

Distributions of hubs. TFs with high out-degrees are crucial in that they have a large numbers of downstream targets. Following Jothi et al. (2009), the top $20 \%$ TFs with the largest out-degree are defined as hubs in a regulatory network. There are 96 to 98 hubs that regulate at least 21 TFs in each of the 41 cell-type regulatory networks. The core layers of the networks are all enriched in hubs (all $p$-values $\leq 0.005$, hypergeometric test,

Chapter 3. Profiling the Transcription Factor Regulatory Networks of Human Cell Types

Figure 3.5 A ). All the top layers are depleted in hubs (all $p$-values $\leq 0.05$, hypergeometric test) except in the networks of hESCs, HSCs, hippocampal astrocytes and mammary fibroblasts (Figure 3.5A). These results on hub enrichment are concordant with those of the yeast transcription network (Jothi et al., 2009).

Distributions of essential TFs. Essential proteins are necessary for performing basic developmental functions. If they are disrupted, they will cause pre- or neonatal lethality (Georgi et al., 2013). There are 280 essential TFs in each of the 41 networks. For each network, the percentages of essential proteins in the top and core layers are about the same (average difference $1 \%$ ) (Figure 3.5B). By contrast, the percentage of essential proteins in the top layer ( $12 \%$ ) is higher than in the core layer ( $6 \%$ ) and in the bottom layer ( $3 \%$ ) in the yeast transcription network (Jothi et al., 2009).

Distributions of HK TFs. Here TFs encoded by HK genes (Eisenberg and Levanon, 2013) are called HK TFs. There are 63 HK TFs in each of the 41 networks. There are 2, 54 and 7 HK TFs respectively in the top, core and bottom layers of the hESC TF regulatory network. In the remaining 40 networks, all the core layers are enriched, whereas all the top layers are depleted in HK TFs (Figure 3.5C).

### 3.3.3 HK and specific regulatory interactions

In analogy to genes, some regulatory interactions appear in only certain cell types, whereas many others are found in all cell types. Regulatory interactions that are only found in one cell type are called specific interactions; those that are found in all cell types are called HK interactions. Identifying the regulatory interactions belonging to the classes provides important bi-


Figure 3.5. Percentages of TFs that are hubs (A), essential (B) and HK (C) in the top (green circle), core (brown triangle) and bottom (blue diamond) layers in 41 human cell-type TF regulatory networks, grouped according to cell class. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP, epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells.
ological insights into complex biological systems (Bolouri, 2014; Ideker and Krogan, 2012; Mitra et al., 2013; Srivas et al., 2013).


Figure 3.6. Proportion of increase in number of HK interactions in all potential 41- $k$ TF regulatory networks. Where for each $k$, we enumerate all possible percentage of increase in number of common interactions in 41- $k$ TF regulatory networks.

Neph et al. (2012a) remarked that $5 \%$ of all interactions (i.e. 2041 interactions) (Table A.5) are common across the 41 cell types. Encouraging fact is that HK interactions are remarkable robust with median increase from $0.24 \%(k=1)$ to $3.87 \%(k=5)$ (Figure 3.6). We therefore take these 2041 interactions as HK regulatory interactions. Enrichment analyses show that the proportions of HK links within the core layer and between the core and bottom layers are comparable and higher than those between the top and core layers and between the top and bottom layers (Figure 3.7C).

There are 296 TFs involved in HK interactions (Figure 3.7A). These TFs are not necessarily encoded by HK genes. But, as expected, they are enriched with TFs encoded by the HK genes listed in Eisenberg and Levanon (2013) ( $p$-value $=1.27 e-10$; hypergeometric test). Additionally, the expressions of genes encoding them are much stabler than other TF genes


Figure 3.7. A) The intersection of the subset of TFs that are involved in HK interactions and the subset of TFs that are encoded by HK genes. (B) The box plots of the relative entropy of the expression values of the genes encoding TFs involved in HK interactions (above) and other TFs (below). (C) The box plots of the proportions of HK interactions within the core layer and among the top, core, and bottom layers in the 41 human cell-type TF regulatory networks. (D) TFs and HK interactions among them in a protein complex (id: HC5737) (Vinayagam et al., 2013)
across 79 human tissues ( $p$-value $=4.32 e-10$ ) based on the entropy analysis of the gene expression data reported in Su et al. (2004) (Figure 3.7B). Similar results hold for the HK gene list obtained from combining the lists in Eisenberg and Levanon (2003); She et al. (2009), and Chang et al. (2011)
(Figure 3.8).


Figure 3.8. The TFs involved in HK interactions that appeared in all of the 41 TF regulatory networks are significantly ( p value $=5.62 e-07$ )
enriched in HK TFs list obtained by combining the lists in Eisenberg and Levanon (2003); She et al. (2009), and Chang et al. (2011).

### 3.3.4 Regulatory interactions specific to hESCs

ESCs are derived from the inner cell mass of an early-stage embryo. Although OCT4, NANOG and other markers of hESCs have been identified, the whole picture of how TFs cooperate with each other in hESCs is largely unclear (Chen et al., 2008; Liu et al., 2009; Young, 2011). There are 1509 regulatory interactions specific to hESCs, involving 411 TFs. The network induced by specific interactions over these TFs is referred to as the hESC specific network (ESCSN). There are 82 hubs (the top $20 \%$ of the TFs with the largest total degree) (Table 3.1). Among the 82 hubs, only 35 are the hub TFs in the original hESC TF regulatory network. The remaining 47 hubs, including popular NANOG, seem to play unique roles in hESCs.

Table 3.1. There are 82 hub TFs in the ESCSN. Forty-seven of them, include NANOG, are not hubs in the original hESC TF regulatory network. TFs encoded by hESC-specific genes with super-enhance are colored red.

Hubs only in the specific netowrk


Hubs also in the original network



Super-enhancers are large collections of transcriptional enhancers. Genes with super-enhancer domain play important roles in the control of cell identity and diseases (Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013). In mouse and human ESCs, master transcription factors OCT4, SOX2 and NANOG are each encoded by a gene with super-enhancer. They also have DNA binding motifs that are often found in super-enhancer domains (Whyte et al., 2013). Most interestingly, nine hub TFs (colored red in Table 3.1) are each encoded by hESC-specific genes with super-enhancer ( $p$-value $=0.03$; hypergeometric test) based on super-enhancers reported in Hnisz et al. (2013). They are FOXD3, GTF2I, NANOG, NR2F6, OCT4, SIX3, SOX2, ZBTB7B, and ZIC3.

Assou et al. (2007) in a meta-analysis compiled a list of 1076 genes that are overexpressed in hESCs. In the ESCSN the hubs are significantly enriched with the TFs encoded by the overexpressed genes in this list ( $p$ value $=1.61 e-3$; hypergeometric test, Figure 3.9A). More interestingly, 12 of the hubs that are encoded by the genes in the list are well connected, except for ZIC2 (Figure 3.9B). Interestingly, NANOG, OTX2, PARP1, ZIC2 and ZIC3 are not hubs in the original hESC TF regulatory network.

ESCs self-renew indefinitely while maintaining pluripotency. Activin A is a member of the transforming growth factor beta superfamily. It is found to play a central role in maintaining stemness (James et al., 2005; Xiao et al., 2006). Activin A initially binds to type II Activin A receptors and then recruits the Activin A receptor, type IB (ALK4). ALK4 further phosphorylates SMAD2/3. Upon activation by phosphorylation and association with SMAD4, SMAD2/3 translocates to the nucleus and up-regulates the expression of other TF genes, such as Oct4, Nanog, Modal, Wnt3, and Fgf8, and down-regulates Bmp7 (James et al., 2005). In hESCs, SMAD3 tends to co-occupy DNA binding sites with OCT4, SOX2 and NANOG in responses to transforming growth factor beta signaling (Mullen et al., 2011). The Nadal/Activin A signaling pathway is also enriched (False discovery rate $=9.86 e-5$ ) with the hubs in the ESCSN.

In addition, a core transcriptional regulatory network of hESCs (Chen et al., 2008) is enriched in hESC specific interactions ( $p$-value $=6.92 e-6$; hypergeometric test, Figure 3.9C), as shown in Figure 3.9D.


Figure 3.9. (A) Proportions of hub TFs that are in Assou et al. (2007) and the significance of their enrichment in the ESCSN. (B) The subnetwork induced by the hub TFs in the Assou et al.s list in the ESCSN. (C) Proportions of known hESC interactions (38) and the significance of their enrichment in the ESCSN. (D) The hESC specific regulatory interactions appearing in a reported core transcription network for hESCs (Chen et al., 2008). (E) and (F) Two specific regulatory complex-target modules in the hESCs.

### 3.4 Discussion

We have studied the organizational architectures of the 41 human cell-type TF regulatory networks that were reported by Neph et al. (2012a). First, we

Chapter 3. Profiling the Transcription Factor Regulatory Networks of Human Cell Types
have showed that the wiring around five to seven TFs in the networks can be used to classify all the 41 cell types well. Both Neph et al. (2012a) and our studies indicate that the human TF regulatory networks are different globally as well as locally.

Human regulatory networks exhibit hierarchical and modular structure (Rodriguez-Caso et al., 2005). We have examined the three-layer hierarchical organizations of the human cell-type TF regulatory networks. The networks are each partitioned into the top, core and bottom layers, containing $23 \%, 67 \%$ and $10 \%$ of TFs on average (Figure 3.4B, Table A.3), respectively. The large size and well-connectedness of the core layers are probably due to (1) master cell-type specific TFs have a large number of target genes and (2) their encoding genes have a super-enhancer domain (Hnisz et al., 2013; Whyte et al., 2013). For example, in the core layer of the hESC TF regulatory network, 326 TFs (81.3\%) out of 401 are either the regulators or regulated by nine TFs each encoded by a gene with superenhancer domain, forming a large bow-tie subnetwork (Csete and Doyle, 2004).

The same hierarchical analysis (Jothi et al., 2009) indicates that in the yeast TF regulatory networks both the core and bottom layers have similar sizes ( $43 \%$ vs $40 \%$ ) whereas the top layer contains only $13 \%$ of the TFs. Taken together, these two facts together imply a difference in the topological organizations between the human and yeast TF regulatory networks.

Enrichment analyses (Table 3.2) indicate that for each TF regulatory network of the 40 non-ESC cell types, (a) the top layer is lacking in both hub and HK TFs, (b) the core layer is enriched with both hubs and HK

TFs and (c) the bottom layer is only enriched with hub TFs. However, essential TFs seem to be distributed evenly in the top and core layers, but, by and large, sparsely in the bottom layers.

Table 3.2. The summary of the enrichments of hubs, essential and HK TFs in the top, core and bottom layers of the 41 cell-type TF regulatory networks. For clarity, the cell types are divided into eight classes, listed (together with the numbers of cell types) in the first column. The symbols + and represent the enrichment and depletion of TFs of a type in a hierarchical layer in all the networks of a class.

|  | Hub TFs |  |  | Essential TFs |  |  | Housekeeping TFs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top | Core | Bottom | Top | Core | Bottom | Top | Core | Bottom |
| Blood (7) | - | + | - |  |  | - | - | + |  |
| Cancer (2) | - | $+$ | - |  | $+^{c}$ | $-{ }^{\text {c }}$ | - | $+$ |  |
| Endothelia (4) | - | + | - |  |  | - | - | $+$ |  |
| Epithelia (6) | - | $+$ | - |  |  | - ${ }^{\text {b }}$ | - | $+$ |  |
| ESC (1) |  | $+$ | - |  | $+$ | - |  |  |  |
| Fetal (3) | - | + | - |  | + | - | - | $+$ |  |
| Stroma (14) | $-^{a}$ | $+$ | - |  |  | - ${ }^{\text {a }}$ | - | $+$ |  |
| Viscera (4) | - | + | - |  |  | - | - | + |  |

Interestingly, the hESC TF regulatory network has a topological structure that is different from the rest. It has significantly small top and bottom layers and therefore a large core layer. Indeed, seven STATs and 15 key TFs (appearing in Figures 3.9B and 3.9D) are all found in the core layer. Moreover, $87.6 \%$ of links are within the core layer, whereas there are only 40 links ( $0.3 \%$ ) between the top and bottom layers. These two facts together suggest that hESCs have a highly dense and well-connected TF regulatory network. And our analyses indicate that master TFs and super-enhancers associated TFs are in the kernel of the core layer. Its top layer is neither enriched with nor depleted of hub, essential and HK TFs, in contrast to the TF regulatory networks of the other cell types.

We have also studied the dynamic properties of the human cell-type TF regulatory networks. The HK interactions are related to basic life support
such as bio-molecular synthesis and transcription mechanisms. One of our findings is that most HK interactions are within the core layer or between the core and bottom layers. Using the identified HK interactions to investigate the protein complex database, we identified 23 protein complexes in which the proteins are highly connected with HK links (Table A.6). One of these complexes is given in Figure 3.7D. Most of the identified protein complexes are as predicted and hence it would be interesting to investigate their biological functions.

The ESCSN, the subnetwork induced by specific links in the hESC TF regulatory network, has also been investigated. The 82 hub TFs in the ESCSN (Table 3.1) seem to play important roles in hESCs due to the following facts: (i) their genes are overexpressed, (ii) they are enriched in the Activin A/Nodal signaling pathway, and (iii) specific interactions are enriched in a core transcriptional regulatory network of the hESCs reported in Chen et al. (2008). In general, specific regulatory interactions are difficult to detect because the network of each cell type is based on independent data, leading to a high false negative rate. Since the number of specific interactions in hESCs is much higher than that in other cell types, our results should not be greatly affected by the limitations of the data chosen.

Cell type specificity is believed to be the outcome of the interplay of the DNA sequence binding specificity of TFs, co-factors and epigenetics (Boyer et al., 2005; Chen et al., 2008). Through the integration of a database of protein complexes (Vinayagam et al., 2013) and the ESCSN, we identified 55 hESC- specific regulatory complex-target modules (Section 3.2.5, Table A.2). One of these modules is illustrated in Figure 3.9E: in a complex (id \#: HC4463), both KLF4 and ZFX have three common downstream
targets: FOXD3, OCT4 and ZFP42. As expected, KLF4, ZFX and their targets are important in the maintenance of pluripotency, self-renewal and development processes in ESCs (Boyer et al., 2005; Chan et al., 2009; Chen et al., 2008; Galan-Caridad et al., 2007; Jiang et al., 2008; Ramalho-Santos et al., 2002; Rogers et al., 1991). Another is given in Figure 3.9F, in which both ALX4 and MZF1 regulate FOXD3 and TFAP2C. Notably, FOXD3 has recently been demonstrated to be responsible in directing pluripotency and paraxial mesoderm fates in hESCs (Arduini and Brivanlou, 2012). All these facts together suggest that specific regulatory interactions may play important roles in hESCs.

## Chapter 4

## Profiling Human Embryonic Stem

## Cell via Feed-Forward Loops in

## Transcription Factor Regulatory

## Network

### 4.1 Introduction

Embryonic stem cells (ESCs) are derived from the inner cell mass of an early-stage embryo. ESCs are capable to maintain self-renewal and pluripotency simultaneously. Self-renewal is the process that ESCs divide to produce more ESCs. Pluripotency is the ability that ESCs differentiate into endoderm, mesoderm, or ectoderm germ layer, then into all human cell types. Deciphering molecular mechanisms which control ESC self-renewal and pluripotency is key to understanding development. It may also help to discover new therapies for diseases resulted from defects in development.

Living human cells are the products of transcription programs involving approximately 21,000 protein-coding genes (Pennisi, 2012). TF proteins
regulate target genes by binding to either promoter or enhancer regions adjacent to the DNA sequences of the genes. There are less than 2,000 TFs in the human genome (Babu et al., 2004; Ravasi et al., 2010; Vaquerizas et al., 2009; Zhang et al., 2012a). Pluripotency of ESCs are largely controlled by TFs OCT4, SOX2, and NANOG. OCT4 and NANOG are essential for establishing or maintaining a robust pluripotent state. SOX2 functions as a heterodimer with OCT4 in ESCs. Expression of SOX2 is generally required for reprogramming somatic cells into induced pluripotent cells (Young, 2011). Super-enhancers are large collections of transcriptional enhancers. Genes with super-enhancer domain play important roles in the control of cell identity and diseases (Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013). In mouse and human ESCs, OCT4, SOX2 and NANOG are each encoded by a gene with super-enhancer. Their DNA binding motifs are found in super-enhancer domains (Whyte et al., 2013). Hnisz et al. (2013) reported 60 TFs which are encoded by hESC-specific genes with super-enhancers. In another study, Assou et al. (2007) in a meta-analysis compiled a list of 1076 genes that are overexpressed in hESCs.

TFs work cooperatively to enhance or inhibit their target genes to achieve high specificity, and thus to precisely control the condition-dependent expression of the genes to respond to extracellular stimuli. Hence, the mutual interactions among TFs determine cellular identity and shape complex cellular functions (Csermely et al., 2014; Davidson, 2010). This makes the study of human TFs on a system-wide scale of vital importance (Csermely et al., 2013). In systems biology, regulatory interactions among TFs are modeled as a TF regulatory network in which the nodes are the TFs and the links represent the regulatory relationship among TFs.

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

Over the past decade, a great deal of information on the organization of regulatory interactions has been obtained particularly for E. coli and S. cerevisiae (Balazsi et al., 2005; Banerjee and Zhang, 2003; Gerstein et al., 2012; Ma et al., 2004; Yu et al., 2006). However, comprehensive generation of cell-type regulatory interactions for humans has been a challenge. First, there are a large number of human TFs, but the data collected from individual experiments often target one cell type and only a few TFs in a particular condition (Davidson et al., 2002; Gerstein et al., 2010; Kim et al., 2008). Second, correlation-based analyses of microarray gene expression data often do not capture the direction of transcriptional regulations, a necessity for deep analyses of regulatory interactions (Basso et al., 2005; Carro et al., 2009). Fortunately, the genome-wide DNaseI footprinting technique has recently been widely adopted to determine the regulatory interactions of sequence-specific TFs in the 41 human cell types including hESC (Neph et al., 2012a). This provides a valuable resource for deciphering local regulatory mechanisms on ESC related TFs by comparing local structures of regulatory networks in hESC with those in the other 40 differentiated cell types.

Network motifs are connected sub-graph patterns which are over-represented in the observed network as compared against a network model. One of the most important and extensively studied network motifs is Feed-Forward Loop (FFL) (Alon, 2007). An FFL, as illustrated in Figure 1.6B, consists of 3 nodes $A, B$ and $C$ in which $A$ regulates $B$, and both $A$ and $B$ regulate $C$. FFL in regulatory networks can speed-up the response time of the target gene expression or act as sign-sensitivity delays. FFL can generate pulse of gene expression. FFL can also cooperatively enhance induction of gene
$C$ by inducers of TF $A$. Here inducers of $A$ are small molecules, protein partners, or covalent modifications that activate or inhibit the transcription activities of $A$ (Alon, 2007; Mangan and Alon, 2003; Shoval and Alon, 2010). Early studies revealed that FFL is over-represented in the regulatory networks of organisms ranging from bacteria and yeast to plants and animals (Alon, 2007). Recently FFL as a motif is also found in regulatory networks of worm (Boyle et al., 2014), fly (Boyle et al., 2014), human (Boyle et al., 2014; Gerstein et al., 2012; Neph et al., 2012a). Core TFs in hESC regulatory network form an FFL where OCT4/SOX2 can be viewed as node $A$, NANOG as node $B$, and ESC related genes as node $C$ (Boyer et al., 2005). The number of FFLs varies according to the developmental stages in worm and in fly, with L1 stage in worm and late-embryo stage in fly showing the highest number of FFLs, suggesting increased filtering fluctuations and accelerating responses in these stages (Boyle et al., 2014).

Recognising that FFLs play important and dynamic functions in various biological networks, some network centrality measures based on network motifs have been proposed to quantify the importance of nodes in directed networks (Harriger et al., 2012; Koschützki and Schreiber, 2008; Koschützki et al., 2007; Sporns et al., 2007; Sporns and Kötter, 2004; Wang et al., 2014). The underlying idea of these centrality measures is that the more motifs a node is involved in the network, the more important the node could be. These centrality measures are called motif centrality in general and can identify different sets of important nodes in networks partially because they can integrate structural information between local and global information. However these centrality measures only take into account of the structural information, e.g. FFLs, in a single network. They fail to capture dynamic

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network
organization principles of regulatory network across cell types.
Our objectives in this chapter are two folds: (1) to study whether the distributional properties of FFL are distinctive in hESC network as compared with those in the differentiated tissue/cell types; and (2) to identify TFs that are extensively regulated by FFL in the hESC network only.

In this chapter, we compare local regulatory landscape on each TF in terms of FFLs in regulatory network of hESC with those in the other 40 differentiated cell types reported by Neph et al. (2012a). Firstly we find that distributional properties of FFL regulating each TF can recapture embryonic origin and classify known cell-lineage relationship well. Secondly, we identify 28 TFs extensively regulated by FFLs in hESC only. Among them 13 TFs perform hESC related functions, and the remaining 15 TFs are master TFs in various differentiated cell types. Thirdly, our proposed scores perform better in identifying hESC related TFs than FFL-based centrality measures in Koschützki et al. (2007).

### 4.2 Materials and Methods

### 4.2.1 FFL count matrices

We constructed an FFL count matrix $M C=\left[m c_{i, j}\right]_{1 \leq i \leq 475,1 \leq j \leq 41}$ : the $i j$-th element $m c_{i, j}$ is the number of times TF $i$ is regulated by FFLs in network $j$. In other words, the $i j$-th element represents the number of times TF $i$ taking position $C$ in FFLs in network $j$. Seven TFs, GCM1, HNF4G, POU1F1, PROP1, SPZ1, SPY and TFDP2, are not regulated at all by any FFL in the 41 networks. As a result, the rows in $M C$ for these TFs have constant value 0 , and then we removed constant rows of 0 's in matrix $M C$
before further analysis. Without loss of generality, we label the network of hESC as network 1 and the other 40 networks as network $j(2 \leq j \leq 41)$.

Table 4.1 illustrates a portion of FFL count matrix MC.
Table 4.1. A portion of FFL count matrix $M C$. Values are numbers of FFLs regulating each of 475 TFs in the 41 networks. Abbreviation: H7, h7-ESC; BL1, B-Lymphocyte; HEM, hematopoietic stem cell; BL2, B-Lymphoblastoid; ERY, erythroid; PRO, promyelocytic leukemia; TLY, T-Lymphocyte; HEP, hepatoblastoma; NEU, neuroblastoma.

|  | $\begin{gathered} \mathrm{hESC} \\ \hline \mathrm{H} 7 \end{gathered}$ | Blood |  |  |  |  |  |  | Cancer |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BL1 | HEM | BL2 | BL2 | ERY | PRO | TLY | HEP | NEU |  |
| OTX2 | 431 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . $\cdot$ |
| POU5F1 | 495 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| ZFP42 | 309 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | $\ldots$ |
| ZIC3 | 263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | $\ldots$ |
| FOXD3 | 920 | 27 | 154 | 1 | 224 | 157 | 0 | 277 | 0 | 6 | $\cdots$ |
| SIX3 | 592 | 146 | 2 | 0 | 123 | 0 | 452 | 4 | 0 | 191 | $\cdots$ |
| SOX2 | 457 | 67 | 58 | 170 | 1 | 0 | 1 | 57 | 79 | 67 | $\ldots$ |
| NANOG | 24 | 0 | 0 | 0 | 0 | 0 | 53 | 0 | 2 | 0 | $\cdots$ |
| KLF4 | 82 | 234 | 282 | 75 | 145 | 16 | 152 | 187 | 127 | 0 | $\cdots$ |
| STAT3 | 243 | 249 | 232 | 262 | 411 | 194 | 206 | 292 | 213 | 226 | $\cdots$ |
| PAX4 | 69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\cdots$ |
| $\vdots$ | : | : | : | : | $\cdots$ |

Furthermore, we introduced normalized versions of $M C$, denoted by $M C^{c}$ and $M C^{r}$. Since total occurrences of FFLs in the 41 networks has an extremely wide range: from 27264 in epithelia cell HRCEpiC to 122646 in blood cell NB4. $M C^{c}$ is derived from normalizing $M C$ in a way that each column is divided by the total of this column. Each column in $M C^{c}$ sums to 1 and is a distribution of the relative frequencies of FFLs regulating 475 TFs in the corresponding network. $M C^{c}$ will be used as the input for hierarchical clustering on cell types.

Then $M C^{r}$ is derived from standardizing $M C^{c}$ in a way that each row is subtracted from its empirical mean and divided by its empirical standard deviation. Thus each row of $M C^{r}$ is $z$-score of corresponding row in $M C^{c}$

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network
and has mean of 0 and standard deviation of 1 . A higher $z$-score of a TF in network $j_{1}$ than in network $j_{2}$ means a higher number of FFLs regulating this TF in network $j_{1}$ than in network $j_{2} . M C^{r}$ will be used as the input for principal component analysis on cell types.

Similarly we can construct FFL count matrices $M A, M B$, and $M S u m$, where the $i j$-th element is the number of times $\mathrm{TF} i$ taking position $A$, taking position $B$, and involved in FFLs in network $j$, respectively. Here $M S u m=M A+M B+M C$. We define their normalized versions in a similar fashion.

### 4.2.2 TFs extensively regulated by FFLs in hESC only

We introduced a score, denoted by $R C$, to quantify to what extent a TF is regulated by FFLs in hESC only. For a TF $i$, the score

$$
R C_{i}=m c_{i, 1} / \max _{2 \leq j \leq 41}\left\{m c_{i, j}\right\},
$$

that is, $R C_{i}$ is the ratio of the number of FFLs regulating TF $i$ in hESC network to the maximum number of FFLs regulating $\mathrm{TF} i$ in the other 40 tissue/cell-type networks. TFs with scores exceeding a threshold, which is to be chosen suitably, are defined as TFs extensively regulated by FFLs in hESC only. Following a 2-fold gene expression analysis practice, we chose threshold of 2 . To determine the significance of TFs extensively regulated by FFLs in hESC only at threshold 2, we found that the distribution of number of FFLs regulating each TF in the 41 networks can be approximated by a lognormal distribution (Figure 4.1). Let $X_{j}$ be the number of FFLs regulating a TF in network $j$ for $1 \leq j \leq 41$. Let $\Phi$ and $\phi$ be the distribution and density functions of a standard normal distribution. We
assumed that $X_{j}$ independently follows a lognormal distribution. Let $t>0$ and represent $X_{j}=e^{\mu_{j}+\sigma_{j} Z_{j}}$ where $Z_{j}$ 's are independent standard normal random variables. Write $s=\log t$. We have

$$
\begin{aligned}
& P\left(X_{1} / \max _{2 \leq j \leq 41}\left\{X_{j}\right\}>t\right) \\
= & P\left(X_{1}>t \max _{2 \leq j \leq 41}\left\{X_{j}\right\}\right) \\
= & P\left(X_{1}>t X 2, \ldots, X_{1}>t X_{41}\right) \\
= & P\left(\mu_{1}+\sigma_{1} Z_{1}>s+\mu_{2}+\sigma_{2} Z_{2}, \ldots, \mu_{1}+\sigma_{1} Z_{1}>s+\mu_{41}+\sigma_{41} Z_{41}\right) \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-z^{2} / 2} \prod_{j=2}^{41} \Phi\left(\frac{\mu_{1}-\mu_{j}+\sigma_{1} z-\log t}{\sigma_{j}}\right) d z
\end{aligned}
$$

Parameters $\hat{\mu}_{j}, \hat{\sigma}_{j}$ were estimated from $M C$ by equation (4.1)

$$
\begin{equation*}
\hat{\mu}_{j}=\ln \left(\frac{m_{j}^{2}}{\sqrt{v_{j}+m_{j}^{2}}}\right) \text { and } \hat{\sigma}_{j}^{2}=\ln \left(1+\frac{v_{j}}{m_{j}^{2}}\right) \tag{4.1}
\end{equation*}
$$

where $m_{j}$ and $v_{j}$ are the mean and variance of the $j$-th column in $M C$. Plugging in $t=2$ and the estimated $\mu_{j}$ and $\sigma_{j}$, we have $P\left(X_{1} / \max _{2 \leq j \leq 41}\left\{X_{j}\right\}>\right.$ $2)=4.6 e-18$. An extremely small probability indicates that TFs extensively regulated by FFLs in hESC only at threshold 2 are most likely not caused by chance. This phenomenon may be attributed to organization principles and dynamic properties of regulatory networks that maintain self-renewal and pluripotency of hESC. Considering that the 41 cells belong to 8 cell types, the independence assumption between $X_{i}, 1 \leq i \leq 41$, may not be satisfied.

Similarly we introduced $R A, R B$ and $R S u m$ based on matrices $M A$, $M B$, and MSum respectively. Then we can quantify TFs extensively taking position $A$ in FFLs in hESC only, TFs extensively taking position $B$ in

FFLs in hESC only, and TFs extensively involved in FFLs in hESC only.


Figure 4.1. Histogram and fitted log-normal density curve of number of FFLs regulating each TF in the regulatory network of hESC.

### 4.2.3 hESC specific TF lists

In a meta-analysis, Assou et al. (2007) compiled a list of 1076 genes that are overexpressed in hESCs by at least three studies. Among them 29 are found in 475 TFs of the 41 networks. We labeled the list of these 29 TFs as "Assou TFs"

Super-enhancers are large collections of transcriptional enhancers. Genes with super-enhancer domain play important roles in the control of cell identity and diseases (Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013). In mouse and human ESCs, master TFs OCT4, SOX2, NANOG are each encoded by a gene with super-enhancer and also have DNA binding motifs that are often found in super-enhancer domains (Whyte et al., 2013). We used "Master TFs" to label 24 TFs out of 475 TFs which are encoded by hESC-specific genes with super-enhancer based on super-enhancers reported in Hnisz et al. (2013).
"Duplicated TFs" denotes a list of 8 TFs which belong to both the "Assou TFs" and "Master TFs". "Combined TFs" denotes a list of 45 TFs which is the union of the two lists "Assou TFs" and "Master TFs".

### 4.3 Results

### 4.3.1 FFLs in regulatory networks globally distinguish hESC from the other 40 differentiated cell types

Considering that FFLs play multiple important functions in regulatory networks and hESC represents a common developmental ancestor to the other differentiated tissue/cell-types, it is interesting to investigate whether hESC can be distinguished from the other 40 differentiated tissue/cell-types by FFLs in regulatory networks, and whether FFLs can recover known cell-lineage relationships between the 41 tissue/cell-types. To answer these questions, we first constructed an FFL count matrix $M C$ whose $i j-t h$ element is number of FFLs regulating TF $i$ in network $j$. Then we calculated distances between cell types by the Manhattan distance of $M C^{c}$ which is the normalized $M C$ (Section 4.2.1). Next hierarchical clustering was carried out with complete linkage method. Hierarchical clustering has $\mathrm{RI}=0.69$ and produced a dendrogram that reproduced known cell-lineage relationship with remarkable detail, as well as broader features of embryonic origin. On a gross level, hESC was the root of the dendrogram, and functional or anatomical related cells were in one major cluster group, e.g. blood cells, cancer cells, endothelia cells, fetal tissues and stromal cells (Figure 4.2A). hESC was also the root in dendrograms produced by hierarchical clustering with a number of linkage methods (Figure 4.3).

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

To confirm these observations, we applied principal component analysis on $M C^{r}$ (Section 4.2.1). The first two principal components (PC1 and PC2) together explain $21.4 \%$ of total variance of $M C^{r}$. The scatterplot of PC1 and PC 2 clearly shows the distinctiveness of these major cluster groups (Figure 4.2C). The scatterplot also reveals that hESC is far away from the other 40 tissue/cell-types.

These results together suggest that regulatory networks of functional or anatomical related cells share similar local organization principles. So local structures could shed light on cell type related TFs.

### 4.3.2 Netdis and FFL based measure produce comparable cell type classification

Ali et al. (2014) proposed an alignment-free distance measure netdis $\in[0,1]$ to compare two simple undirected networks. Given two query networks and a gold-standard network, the authors first counted occurrences of all $k$-node induced subgraphs, $k=3$ or 4 , in the two-step ego graph of each node. Two-step ego graph of a node is the subgraph induced by this node and its neighbours within two edges. Netdis of the two query networks is constructed after $k$-node induced subgraphs counts are normalized by those in the gold-standard network. It is demonstrated to be able to reconstruct phylogenetic tree of species and separate different random network models.

To apply netdis to the 41 TF regulatory networks, we first converted them to simple undirected networks by removing self-loops and duplicated edges. Then we iteratively chose a network as a gold-standard network and classified the other 40 networks by hierarchical clustering with ward method (Ward, 1963) on a distance matrix built from netdis between re-


Figure 4.2. (A) Hierarchical clustering of the 41 cell types based on $M C^{c}$. It has $\mathrm{RI}=0.69$. (B) $z$-score of number of FFLs regulating master TFs in the 41 networks. For a given TF and cell type, high $z$-score (dark color) indicates this TF is regulated by large number of FFLs in that cell type. For example, pluripotent marker OCT4 is regulated by most FFLs in hESC than in the other 40 cell types. (C) Scatterplot of first 2 principal components (PC1 and PC2) from $M C^{r}$. (D) Proportion of variance explained by the first 6 PCs. PC1 and PC2 explained $21.4 \%$ of total variance. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP, epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells.

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network


Figure 4.3. Dendrograms produced by hierarchical clustering with linkage Method= "average" (A) and Method="mcquitty" (B) in hclust function in R . The classifications have $\mathrm{RI}=0.49$ (A) and $\mathrm{RI}=0.85$ (B).
spective networks. The clusterings produced by netdis are comparable with the results based on FFL count. Because there is no significant difference between RIs based on netdis and RI based on FFL count. Table 4.2 reported the five-number summary of RI based on netdis. The median RI is 0.603 and 0.565 for $k=3$ and 4 , respectively. The maximum $\mathrm{RI}=0.74$ is obtained when $k=4$ and the network of fetal brain is the gold-standard network (Figure 4.4).

### 4.3.3 TFs extensively regulated by FFLs in hESC only carry out important hESC specific functions

We next investigated differences on local regulatory landscapes between hESC and the other 40 tissue/cell-types. Among TFs in "Combined TFs" list (Section 4.2.3 ), OTX2, OCT4, ZFP42, ZIC3, TFAP2C, FOXD3, SIX3, RORB, and PARP1 are extensively regulated by FFLs in hESC when com-

Table 4.2. Five-number summary of RIs from hierarchical clusterings based on distance matrices produced by netdis. We iteratively chose one out of the 41 networks as a gold-standard network and constructed pair-wise netdis with $k=3$ or 4 for remaining 40 networks. Then we performed hierarchical clustering with Ward method and computed RI for resulting clustering.

|  | Minimum | Lower quartile | Median | Upper quartile | Maximum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $k=3$ | 0.415 | 0.517 | 0.603 | 0.659 | 0.732 |
| $k=4$ | 0.413 | 0.5 | 0.565 | 0.621 | 0.74 |



Figure 4.4. Dendrogram produced by hierarchical clustering based on a distance matrix produced by netdis (Ali et al., 2014). The network of fetal brain is used as the gold-standard network for netdis. The clustering has $\mathrm{RI}=0.74$. The classification is comparable with the result (Section 4.3.1) produced by the distributional properties of $\mathrm{FFL}(\mathrm{RI}=0.69)$.


Figure 4.5. (A) Subgraph induced by OCT4 and its upstream neighbours (76) in the regulatory network of hESC. There are 495 FFLs regulating OCT4 in this subnetwork. (B) Subgraph induced by OCT4 and its upstream neighbours (18) in the network of fetal heart (fHeart). There are 32 FFLs regulating OCT4 in this subnetwork. Interactions involving in FFLs are colored in green.
pared against other cell types (Figure 4.2B). For example, OCT4 was regulated by 495 FFLs in hESC, while it were regulated by only 32 FFLs in fetal heart, and it was not even regulated by FFLs in the other 39 tissue/celltypes. Induced subgraphs by OCT4 and its upstream neighbours in hESC (Figure 4.5A) and in fetal heart (Figure 4.5B) clearly show that OCT4 was extensively regulated by FFLs in hESC only, indicating that the local regulatory landscape of OCT4 in hESC is very different from that of the other 40 cell types. Given the fact that OCT4 is a master TF for pluripotency in hESC (Young, 2011), we further asked whether other TFs extensively regulated by FFLs in regulatory network of hESC only also perform important functions in hESC.

To answer this question we used the score, $R C$, defined earlier for each TF. We defined TFs with score not less than 2 as TFs extensively regulated by FFLs in hESC only (Section 4.2.2). Totally 28 TFs are identified. We denoted the list of these 28 TFs by TFC.

We first did enrichment analysis of TFC in TFs in hESC specific TFs lists (Section 4.2.3). Overall TFC is significantly enriched in hESC specific TFs. Detailed results are listed below.

1. $T F C$ is significantly ( $p$-value $=0.039$ ) enriched in hESC specific TFs list "Combined TFs". There are 6 TFs common to TFC and "Combined TFs". They are FOXD3, POU5F1, TFAP2C, ZFP42, ZIC3 and OTX2.
2. TFC is significantly ( $p$-value $=0.005$ ) enriched in hESC specific TFs list "Assou TFs". There are 6 TFs common to TFC and "Assou TFs". They are FOXD3, POU5F1, TFAP2C, ZFP42, ZIC3 and OTX2.
3. $T F C$ is not significantly ( $p$-value $=0.161$ ) enriched in hESC specific TFs list "Master TFs". There are only 3 TFs common to TFC and "Master TFs". They are FOXD3, OCT4 and ZIC3.
4. $T F C$ is significantly ( $p$-value $=0.008$ ) enriched in hESC specific TFs list "Duplicated TFs". There are 3 TFs common to TFC and "Duplicated TFs". They are FOXD3, OCT4 and ZIC3.

The hESC specific TF lists do not necessarily include all TFs that play some functions related to hESC. Thus we searched functions of TFs in $T F C$ by Google Scholar. Totally 13 TFs in TFC have been reported in literature to perform hESC related functions. These TFs are ALX1, CDX2, DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4,

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

PAX4, ZFP42, and ZIC3. Tables 4.3 and 4.4 list important functions played
by these 28 TFs. Table 4.4 lists TFs that are uniquely regulated by FFLs
in hESC, no FFL regulates these TFs in the other tissue/cell-types.
Table 4.3. TFs extensively regulated by Feed-Forward Loops (FFLs) in hESC regulatory network only.

|  | TF | Score | Function | Reference |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\rightharpoonup}{y} \\ & \dot{0} \\ & \ddot{g} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | PAX7 | 64.8 | Plays a central role in muscle development | Seale et al. (2000) |
|  | OTP | 33 | Involved in brain development and neuronal differentiation. OTP has been identified as specifically required for development of the A11 DA group in mice | Ryu et al. (2007) |
|  | ALX1 | 10 | Encoded gene expressed selectively in chondrocyte lineage during embryonic development | Beverdam and Meijlink (2001) |
|  | ZFP42 | 8.4 | Specific to very early stages of development in hESCs | Rogers et al. (1991) |
|  | PAX2 | 7.4 | Relates to midbrain and eye development | Bäumer et al. (2003) |
|  | FOXI1 | 5.8 | In zebrafish, Foxil is required for cells to respond to FGF signalling in patterning the developing ear and jaws | Solomon et al. (2003) |
|  | VSX1 | 3.6 | Associated with development and maintenance of ocular tissues, which expressed in embryonic craniofacial | Semina et al. (2000) |
|  | SIX6 | 2.9 | Involved in specification and morphogenesis of the eye in the first few weeks of human development | Jean et al. (1999) |
|  | CDX2 | 2.4 | One of trophectoderm markers and markedly up-regulated upon POU5F1 reduction | Loh et al. (2006) |
|  | HOXB13 | 2.4 | In mouse ESCs, HOXB13 is involved in tail and neuronal development | John et al. (2004) |
|  | TFAP2C | 2.3 | Activate genes involved in a large spectrum of important biological functions including proper eye, face, body wall, limb and neural tube development. They also suppress a number of genes including MCAM/MUC18, C/EBP alpha and MYC | Safran et al. (2010) |
|  | ARX | 2 | Required for normal brain development. May be important for maintenance of specific neuronal subtypes in the cerebral cortex and axonal guidance in the floor plate | Safran et al. (2010) |
|  | POU4F3 | 10 | Essential for hair cell differentiation and maintenance | Kim et al. (2002) |
|  | NKX2-2 | 4.3 | Markedly induced during differentiation in ESCs. It is a marker of the endocrine lineage | Xiang et al. (1997) |
|  | POU2F3 | 3.3 | A member of the Oct transcription factor family. It is involved in keratinocyte and epidermal differentiation | Jensen (2004) |
|  | PAX4 | 3.2 | Controls endocrine cell differentiation, it promotes the development of insulin-producing cells such as pancreatic cell during differentiation of mouse ESCs | Andersen et al. (1997) |
|  | LMX1B | 3 | Associated with control dopaminergic differentiation, LMX1B is a key TF in directed differentiation of dopaminergic neuronal subtypes from human ESCs | Blyszczuk et al. (2003) |
|  | ATOH1 | 2.3 | Plays a role in the differentiation of subsets of neural cells by activating E box-dependent transcription (By similarity) | Safran et al. (2010) |
|  | POU5F1 | 15 | Crucial for ESC self-renewal and pluripotency | Young (2011) |
|  | ZIC3 | 8.3 | Required for maintenance of pluripotency in ESCs | Lim et al. (2007) |
|  | FOXD3 | 3.3 | Important in maintaining pluripotency of mouse ESCs, and is specific to the very early stages of development in hESCs | Hanna et al. (2002) |

Table 4.4. TFs regulated by FFLs in regulatory network of hESC only.

| TF | NO. FFLs | Function | Reference |
| :---: | :---: | :---: | :---: |
| OTX2 | 431 | Associated with early pan-neural epithelium in day 7 embryoid bodies | Goulburn et al. (2011) |
| CRX | 335 | Belonging to homebox family and is one photoreceptor marker | Safran et al. (2010) |
| DMRT3 | 221 | Plays key roles in neurogenesis | Bellefroid et al. (2013) |
| LMX1A | 190 | Plays a pivotal role in the mDA differentiation of human ESCs | Cai et al. (2009) |
| DMRT1 | 43 | One sex determination gene, DMRT1 is present during embryogenesis in Sertoli and germ cells | Raymond et al. (2000) |
| TBX22 | 37 | Part of one pathway to regulate mammalian palate development | Liu et al. (2008) |
| ESX1 | 6 | A trophoblast-specific transcription factor, regulating placental development and fetal growth | Li and Behringer (1998) |

### 4.3.4 Significance of TFs extensively regulated by FFLs in hESC only

We tested the significance of TFs extensively regulated by FFLs in hESC only by procedures listed below. Let $N=10,000$ and $1 \leq i \leq 28$ stands for the 28 TFs extensively regulated by FFLs in hESC only. Firstly we generated one random network for the network of hESC by randomly rewiring its interactions while preserving the degree sequence. We counted number of FFLs regulating TF $i$ in this random network and denoted it by $x^{i}$. Secondly we generated one random graph for each of the other 40 networks in the same way and counted numbers of FFLs regulating TF $i$ in the resulted 40 random networks. We denoted the maximum number by $y^{i}$. We repeated the above two steps $N$ times and constructed two vectors $X^{i}=\left(x_{k}^{i}\right)$ and $Y^{i}=\left(y_{\ell}^{i}\right), 1 \leq k, \ell \leq N$ for TF $i$. We calculated $p$-value, denoted by $p^{i}$, for $\mathrm{TF} i$ extensively regulated by FFLs in hESC only by equation (4.2).

$$
\begin{equation*}
p^{i}=\frac{1}{N^{2}} \sum_{k=1}^{N} \sum_{\ell=1}^{N} \mathbb{1}\left(x_{k}^{i}>2 y_{\ell}^{i}\right) . \tag{4.2}
\end{equation*}
$$

$P$-values for TFs extensively regulated by FFLs are not greater than 0.0001 , suggesting these TFs extensively regulated by FFLs are unlikely due to chance.

### 4.3.5 Comparison with motif centrality measures

Koschützki et al. (2007) proposed 4 centrality measures (4.3)-(4.6) based on FFL to quantify importance of each node in a directed network. A higher
value implicates greater importance of a node in the network.

$$
\begin{align*}
f f l S u m & =\text { Number of times a node involved in an FFL, }  \tag{4.3}\\
f f l A & =\text { Number of times a node taking position } A \text { of an FFL, }  \tag{4.4}\\
f f l B & =\text { Number of times a node taking position } B \text { of an FFL, }  \tag{4.5}\\
f f l C & =\text { Number of times a node taking position } C \text { of an FFL. } \tag{4.6}
\end{align*}
$$

To identify hESC related TFs in regulatory network of hESC, Koschützki et al. (2007) proposed centrality measures is limited to TFs participating FFLs in regulatory network of hESC only. However, our proposed ratiobased scores $R S u m, R A, R B$, and $R C$ take into account TFs participating in FFLs in the network of hESC as well as in the networks of the other 40 differentiated cell types. We compared $R$ Sum against $f$ flSum, $R A$ against $f f l A, R B$ against $f f l B$, and $R C$ against $f f l C$ in identifying hESC related TFs. Reference lists used for hESC related TF lists are "Assou TFs", "Master TFs", "Duplicated TFs ", and "Combined TFs" (Section 4.2.3). Receiver operating characteristic (ROC) curves (Figures 4.6A to D) and area under the curve (AUC) (Figure 4.6E) consistently demonstrate superiority of our proposed ratio based scores to the 4 centrality measures.

### 4.4 Conclusions

In this chapter, we contrasted the local regulatory landscape of each TF in terms of FFLs in regulatory network of hESC with the other 40 differentiated cell types reported by Neph et al. (2012a). We first found that the distributional properties of FFL regulating each TF can recapture embryonic origin and classify known cell-lineage relationship. These results

B Master TFs

C Combined TFs

E $\quad$ Area under the curve (AUC)

|  | Assou <br> $(29)$ | Master <br> $(24)$ | Combined <br> $(45)$ | Duplicated <br> $(8)$ |
| :--- | :---: | :---: | :---: | :---: |
| RSum | 0.685 | 0.594 | 0.624 | 0.773 |
| ffSum | 0.624 | 0.554 | 0.583 | 0.655 |
| RA | 0.475 | 0.528 | 0.509 | 0.452 |
| ffA | 0.498 | 0.504 | 0.483 | 0.593 |
| RB | 0.657 | 0.599 | 0.611 | 0.754 |
| ffB | 0.555 | 0.526 | 0.517 | 0.675 |
| RC | 0.683 | 0.591 | 0.630 | 0.722 |
| fflC | 0.664 | 0.561 | 0.603 | 0.710 |

Figure 4.6. Receiver operating characteristic (ROC) curves and area under the curve (AUC). We compared $R S u m$ against $f f l S u m, R A$ against $f f l A, R B$ against $f f l B, R C$ against $f f l C$ in identifying hESC related TFs in reference lists of "Assou TFs" (A), "Master TFs" (B), "Combined TFs" (C), and "Duplicated TFs"(D). (E) Area under the curve (AUC). ROC and AUC demonstrate superiority of RSum to $f f l S u m, R A$ to $f f l A, R B$ to $f f l B, R C$ to $f f l C$.


Figure 4.7. Venn diagram between TFs extensively involving in FFLs, taking positions $A, B$, or $C$ in FFL in hESC only. The lists of TFs are labeled as TFSum, TFA, TFB, and TFC respectively. Interesting the 4 lists of TFs have many common TFs. Especially TFC and TFSum have 20 common TFs, TFC and TFB have 13 common TFs. But TFC and TFA only has 1 common TF (ESX1). Total number of TFs in each list is given in parentheses.
together suggest that regulatory networks of functionally or anatomically related cells share similar local organization principles. Local structures could shed light on identifying cell type related TFs.

Next we identified 28 TFs extensively regulated by FFLs in hESC only. These 28 TFs are significantly extensively regulated by FFLs in hESC only as evidenced by simulation results. Among them ALX1, CDX2, DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4, PAX4, ZFP42, and ZIC3 perform hESC related functions. Even though remaining 15 TFs are not evidenced to carry out direct functions in hESC, they are demonstrated to play multiple important roles in differentiated cell types (Tables 4.3 and 4.4). This may indicate FFLs play roles in repressing the expression of key TFs encoded genes of differentiated cell types in hESC to maintain self-renewal and pluripotency of hESC.

TFs extensively regulated by FFLs in hESC only can be generalized to TFs extensively taking positions $A, B$, or involved in FFLs in hESC only.

Interestingly, a remarkable number of TFs can be found in at least 2 lists, and only a small number of TFs can only be found in one list (Figure 4.7). The list of TF's extensively taking position $B$ in FFLs in hESC only at threshold 2 has 19 TFs. Among them 13 are also extensively regulated by FFLs in hESC only, including OCT4, OTX2, ZFP42, which are well-known ESC markers The other 6 TFs are ALX3, EVX1, LHX4, MNX1, SOX17, and T. ALX3 involves in cell-type differentiation and development. EVX1 may play an important role as a transcriptional repressor during embryogenesis. LHX4 is involved in the control of differentiation and development of the pituitary gland. SOX17 involves in the regulation of embryonic development and in the determination of the cell fate. T is an embryonic nuclear TF. It effects transcription of genes required for mesoderm formation and differentiation. One master TF of hESC is SOX2 and it is extensively taking position $B$ in FFLs in hESC only at threshold 1.

TFs extensively taking position $A$ in FFLs in hESC only at threshold 1 has 11 TFs including GATA1, GATA2, HOXC5, and TBX5. Interestingly only one TF (ESX1) is also extensively regulated by FFLs in hESC only. GATA1 and GATA2 play an essential role in regulating transcription of genes involved in the development and proliferation of hematopoietic and endocrine cell lineages. HOXC5 plays an important role in morphogenesis in all multicellular organisms. TBX5 may play a role in heart development and specification of limb identity.

TFs extensively involved in FFLs in hESC only at threshold 2 has 23 TFs with 20 of these 23 TFs are also found in TFs extensively regulated by FFLs in hESC only. The other 3 TFs are ALX3, BARHL2, and EVX1. As discussed above, ALX3 and EVX1 play some functions related

Chapter 4. Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network
to ESCs. Functions of these TFs presented in this section were extracted from GeneCards encyclopedia (www.genecards.org, Safran et al. (2010)).

Thirdly, we compared $R S u m$ versus $f f l S u m, R A$ versus $f f l A, R B$ versus $f f l B$, and $R C$ versus $f f l C$ in identifying hESC related TFs. ROC and AUC consistently demonstrate superiority of our proposed ratio based scores, RSum, $R A, R B$, and $R C$, to the FFL-based centrality measures $f f l S u m, f f l A, f f l B$, and $f f l C$ (Koschützki et al., 2007).

Advantage of Netdis is that it counts all $k$-node induced subgraphs in the two-step ego graph of a node $i$. Disadvantage of applying netdis in measuring pairwise distance among the 41 directed networks is that it is originally designed for undirected networks. Applying netdis requires us to remove the direction of regulation, key information contained in a TF regulatory network. In contrast, advantage of our FFL based method is that it naturally takes into account the regulation direction attribute. But the disadvantage of our FFL based method is that it only counts FFLs involving in the node $i$ in the two-step ego graph. The advantage and disadvantage in both Netdis and our FFL based methods may be the reason why the two methods produce comparable classification results.

The 41 regulatory networks were constructed using DNaseI footprinting technology, which possibly contain some spurious links and missing links. TFs extensively regulated by FFLs in hESC only are defined by choosing threshold of 2 . These TFs are most likely to be regulated by a higher number of FFLs in the network of hESC than in the networks of the other cell types. Also hierarchical clustering results is confirmed by a few linkage methods and by principal component analysis. Our results should not be greatly affected by the limitations of the data chosen.

The 41 regulatory networks are from 8 cell/tissue types. Studying associations between FFLs and master TFs in the other 7 cell/tissue types is an interesting future work.

## Chapter 5

## Conclusion and Future Work

Many biological networks have become available in the recent decade. Designing methods to compare and analyze them will enhance understanding of the biological systems at system level. Studies (Alon, 2007; Barabasi and Oltvai, 2004; Jothi et al., 2009; Neph et al., 2012a) show that the topological properties of a complex biological network often unravel its global and local organization structure, and functionally similar nodes. The three results (Chapters 2-4) represent our attempts to explore the relationship of topological structures and biological functions. Our works in Chapter 2 on f -Wiener type indices stem from our purpose to provide summarize statistics for a given network. We also underscore the need to normalize these indices for the objectives to compare networks which often have different number of nodes. In chapter 3, we compare in greater detail about the global and local organization principles of the 41 human cell type networks. We discover similar as well as distinct structures across them. In Chapter 4, based on an important network motif, FFL, we compare and contrast the distributional properties of FFL in these networks. We describe below some of our findings.

### 5.1 Conclusion

### 5.1.1 f-Wiener index

Wiener index and other Wiener type indices have been commonly applied in Chemometrics to associate structures and physicochemical properties of molecules. Recently, these indices are incorporated in quantifying complex networks as in QuACN and NetCAD. In chapter 2, we first generalized Wiener index to a general functional form, called $f$-Wiener index. This $f$ Wiener index contains all well-known Wiener type indices as special cases. We provided a unifying method to identify the maximum and minimum over the set of simple connected graphs with $n$ nodes, or the set of simple connected trees with $n$ nodes (Theorems 1 and 2). Explicit sharp upper and lower bounds for Wiener index, Harary index, hyper Wiener index and the generalized index were deduced over networks (Corollary 5) and over trees (Corollary 6). Moreover, the maximizer and minimizer were characterized in Theorems 1 and 2. We believed these results are general and of independent interests.

Armed with these maximum and minimum values, we proposed a normalized version of $f$-Wiener index over networks, and a similar version over trees. These normalized versions provide better interpretation of indices over networks of varying number of nodes than the non-normalized one. The normalized versions capture similar topological structures among networks with different number of nodes better, evidenced by significant improvement in network classification in five simulations.

Our method of optimizing $W_{f}(G)$ can be easily extended to index of the form $\Phi\left(W_{f}(G)\right)$ where $\Phi$ and $f$ are monotone functions. For example,
taking $\Phi(x)=1 / x$ and $f(k)=\frac{2}{n(n-1) k}$ leads to $\Phi\left(W_{f}(G)\right)=\frac{n(n-1)}{2 \sum_{i<j} 1 / d(i, j)}$ which measures small-world behavior of network $G$ (Newman, 2002).

### 5.1.2 Profiling TF regulatory networks of human cell types

In chapter 3, we have studied the organizational architectures of the 41 human cell-type TF regulatory networks that were reported by Neph et al. (2012a). First, we have showed that the wiring around five to seven TFs in the networks can be used to classify all the 41 cell types well. Both Neph et al. (2012a) and our studies indicate that the human TF regulatory networks are different globally as well as locally.

We have examined the three-layer hierarchical organizations of the human cell-type TF regulatory networks. The networks are each partitioned into the top, core and bottom layers, containing $23 \%, 67 \%$ and $10 \%$ of TFs on average, respectively. The same hierarchical analysis (Jothi et al., 2009) indicates that in the yeast TF regulatory networks both the core and bottom layers have similar sizes ( $43 \%$ vs $40 \%$ ) whereas the top layer contains only $13 \%$ of the TFs. Taken together, these two facts imply a difference in the topological organizations between the human and yeast TF regulatory networks.

Enrichment analyses indicate that for each TF regulatory network of the 40 non-ESC cell types, (a) the top layer is lacking in both hub and HK TFs, (b) the core layer is enriched with both hubs and HK TFs and (c) the bottom layer is only enriched with hub TFs. However, essential TFs seem to be distributed evenly in the top and core layers, but, sparsely in the bottom layers. Interestingly, the hESC TF regulatory network has a topological structure that is different from the rest. It has significantly
small top and bottom layers and therefore a large core layer. Its top layer is neither enriched with nor depleted in hub, essential and HK TFs.

We have also studied the dynamic properties of the human cell-type TF regulatory networks. The HK interactions are related to basic life support such as bio-molecular synthesis and transcription mechanisms. One of our findings is that most HK interactions are within the core layer or between the core and bottom layers.

The ESCSN, the subnetwork induced by specific links in the hESC TF regulatory network, has also been investigated. The 82 hub TFs in the ESCSN seem to play important roles in hESCs due to the following facts: (i) their genes are overexpressed, (ii) they are enriched in the Activin A/Nodal signaling pathway, and (iii) specific interactions are enriched in a core transcriptional regulatory network of the hESCs. In one hESC- specific regulatory complex-target module, both KLF4 and ZFX have three common downstream targets: FOXD3, OCT4 and ZFP42 in ESCSN. Notably KLF4, ZFX and their targets are important in the maintenance of pluripotency, self-renewal and development processes in ESCs. All these facts together suggest that specific regulatory interactions may play important roles in hESCs.

In general, specific regulatory interactions are difficult to detect because the network of each cell type is based on independent data, leading to a high false negative rate. Since the number of specific interactions in hESCs is much higher than that in other cell types, our results should not be greatly affected by the limitations of the data chosen.

### 5.1.3 Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

In chapter 4, we compared local regulatory landscape on each TF in terms of FFLs in the regulatory network of hESC and in the other 40 differentiated cell types reported by Neph et al. (2012a). Firstly we found that distributional properties of FFL regulating each TF can reproduce embryonic origin and known cell-lineage relationship. These results together suggest that regulatory networks of functional or anatomical related cells share similar local organization principles. Local structures could shed light on identifying cell type related TFs. Moreover the hierarchical clustering of cell types by distributional properties of FFL regulating each TF is comparable with clustering based on network distances produced by netdis (Ali et al., 2014).

Secondly we identified 28 TFs extensively regulated by FFLs in hESC only. These 28 TFs are significantly extensively regulated by FFLs in hESC only as evidenced by simulation results. Among them ALX1, CDX2, DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4, PAX4, ZFP42, and ZIC3 perform hESC related functions. The other 15 TFs are not evidenced to carry out direct functions in hESC. But they are demonstrated to play multiple important roles in differentiated cell types. This may indicate that interacting FFLs play roles in repressing expression of key TFs encoded genes of differentiated cell types in hESC to maintain self-renewal and pluripotency of hESC.

TFs extensively regulated by FFLs in hESC only can be generalized to TFs extensively taking position $A, B$, or involving in FFLs in hESC only. Interestingly, there are large number of TFs that are common to the 4 lists
of TFs. Only a small number of TFs are unique to each list.
Thirdly, we compared $R S u m$ against $f f l S u m, R A$ against $f f l A, R B$ against $f f l B$, and $R C$ against $f f l C$ in identifying hESC related TFs. ROC and AUC consistently demonstrate superiority of our proposed ratio based scores, RSum, $R A, R B$, and $R C$, to the FFL-based centrality measures $f f l S u m, f f l A, f f l B$, and $f f l C$ (Koschützki et al., 2007).

The 41 regulatory networks data set is produced based on DNaseI footprinting technology, which is believed to contain some spurious links and missing links. TFs extensively regulated by FFLs in hESC only are defined by choosing threshold at 2 . These TFs are most likely to be regulated by a higher number of FFLs in hESC that in other cell types. Also hierarchical clustering results is confirmed by a few linkage methods and principal component analysis. Our results should not be greatly affected by the limitations of the data chosen.

### 5.2 Future work

### 5.2.1 f-Wiener index

Observe that $W_{f}(G)=\sum_{r=1}^{N(G)-1} f(r) n_{r}(G)=\sum_{r=0}^{N(G)-1}[f(r+1)-f(r)] N_{r}(G)$ where we assume $f(0)=0, n_{r}(G)$ denotes the number of pairs of nodes in $G$ with distance equals $r$, and $N_{r}(G)$ the number of pairs of nodes in $G$ with distance greater than $r$. Since in most biological networks the number of nodes is large, one may normalize a scaled-version of $W_{f}(G)$ in terms of the asymptotic distribution of the $N_{r}$ 's under the assumption that the observed network $G$ is generated by a given random network model $\mathcal{M}$. This will enable us to determine the likelihood that the observed network is gener-
ated by $\mathcal{M}$. Currently a fair amount of information about shortest paths in some network models is available in Barbour and Reinert (2011)and Fronczak et al. (2004). How to make use of these results seems like a worthwhile future project.

For other descriptors, it is of interest to study whether normalization is needed; if so, how best to normalize them; and to what extent normalization improves network comparison.

### 5.2.2 Profiling TF regulatory networks of human cell types

The 41 regulatory networks are produced based on DNaseI footprinting, which is believed prone to high false positive rate. More generally, network data produced by high-throughput technologies are prone to low coverage rate and inaccuracy. Thus how to cleanup these noisy network data is an interesting future work.

By integrating identified HK interactions and the protein complex database, we identified 23 protein complexes in which the proteins are highly connected with HK interactions. Most of the identified protein complexes are as predicted and hence it would be interesting to investigate their biological functions.

### 5.2.3 Profiling Human Embryonic Stem Cell via Feed-Forward Loops in Transcription Factor Regulatory Network

In this chapter we investigated network motif, FFLs, in identifying master TFs in the TF regulatory networks of hESC. There are other important networks motif, for example 4-node bi-fan. How to identify master TFs in regulatory networks based on other motifs is an interesting future work. The

41 regulatory networks are from 8 cell/tissue types. Studying associations between FFLs and master TFs in the other 7 cell/tissue types is another interesting future work.

## Bibliography

Ali, W., Rito, T., Reinert, G., Sun, F., and Deane, C. M. (2014). Alignment-free protein interaction network comparison. Bioinformatics, 30(17):i430-i437.

Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):450-461.

Amaral, L. A. N., Scala, A., Barthelemy, M., and Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences, USA, 97(21):11149-11152.

Andersen, B., Weinberg, W. C., Rennekampff, O., McEvilly, R. J., Bermingham, J., Hooshmand, F., Vasilyev, V., Hansbrough, J. F., Pittelkow, M. R., Yuspa, S. H., et al. (1997). Functions of the POU domain genes Skn-1a/i and Tst-1/Oct-6/SCIP in epidermal differentiation. Genes $\mathcal{E}^{6}$ Development, 11(14):1873-1884.

Arduini, B. L. and Brivanlou, A. H. (2012). Modulation of FOXD3 activity in human embryonic stem cells directs pluripotency and paraxial mesoderm fates. Stem Cells, 30(10):2188-2198.

Artzy-Randrup, Y., Fleishman, S. J., Ben-Tal, N., and Stone, L. (2004). Comment on "Network motifs: simple building blocks of complex net-
works" and "Superfamilies of evolved and designed networks". Science, 305(5687):1107-1107.

Assou, S., Le Carrour, T., Tondeur, S., Ström, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Réme, T., Hugnot, J.-P., et al. (2007). A metaanalysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells, 25(4):961-973.

Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., and Teichmann, S. A. (2004). Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 14(3):283-291.

Bader, G. D., Betel, D., and Hogue, C. W. (2003). BIND: the biomolecular interaction network database. Nucleic Acids Research, 31(1):248-250.

Balaban, A. (1982). Highly discriminating distance-based topological index. Chemical Physics Letters, 89(5):399-404.

Balazsi, G., Barabási, A.-L., and Oltvai, Z. (2005). Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proceedings of the National Academy of Sciences, USA, 102(22):7841-7846.

Banerjee, N. and Zhang, M. Q. (2003). Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Research, 31(23):7024-7031.

Barabasi, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509-512.

Barabasi, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1):56-68.

Barabasi, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding the cell's functional organization. Nature Reviews Genetics, 5(2):101113.

Barbour, A. D. and Reinert, G. (2011). The shortest distance in random multi-type intersection graphs. Random Structures ${ }^{63}$ Algorithms, 39(2):179-209.

Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R., and Califano, A. (2005). Reverse engineering of regulatory networks in human B cells. Nature Genetics, 37(4):382-390.

Bäumer, N., Marquardt, T., Stoykova, A., Spieler, D., Treichel, D., AsheryPadan, R., and Gruss, P. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development, 130(13):2903-2915.

Bellefroid, E. J., Leclère, L., Saulnier, A., Keruzore, M., Sirakov, M., Vervoort, M., and De Clercq, S. (2013). Expanding roles for the evolutionarily conserved dmrt sex transcriptional regulators during embryogenesis. Cellular and Molecular Life Sciences, 70(20):3829-3845.

Beverdam, A. and Meijlink, F. (2001). Expression patterns of group-I aristaless-related genes during craniofacial and limb development. Mechanisms of Development, 107(1):163-167.

Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., and Wobus, A. M. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proceedings of the National Academy of Sciences, USA, 100(3):9981003.

Bolouri, H. (2014). Modeling genomic regulatory networks with big data. TRENDS in Genetics, 30(5):182-191.

Bookout, A. L., Jeong, Y., Downes, M., Yu, R. T., Evans, R. M., and Mangelsdorf, D. J. (2006). Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 126(4):789-799.

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6):947-956.

Boyle, A. P., Araya, C. L., Brdlik, C., Cayting, P., Cheng, C., Cheng, Y., Gardner, K., Hillier, L. W., Janette, J., Jiang, L., et al. (2014). Comparative analysis of regulatory information and circuits across distant species. Nature, 512(7515):453-456.

Boyle, A. P., Song, L., Lee, B.-K., London, D., Keefe, D., Birney, E., Iyer, V. R., Crawford, G. E., and Furey, T. S. (2011). High-resolution genomewide in vivo footprinting of diverse transcription factors in human cells. Genome Research, 21(3):456-464.

Brückler, F., Došlić, T., Graovac, A., and Gutman, I. (2011). On a class
of distance-based molecular structure descriptors. Chemical Physics Letters, 503(4):336-338.

Cai, J., Donaldson, A., Yang, M., German, M. S., Enikolopov, G., and Iacovitti, L. (2009). The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model. Stem Cells, 27(1):220229.

Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao, X., Snyder, E. Y., Sulman, E. P., Anne, S. L., Doetsch, F., Colman, H., et al. (2009). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463(7279):318-325.

Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., et al. (2008). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 36(suppl 1):D623-D631.

Chan, K. K.-K., Zhang, J., Chia, N.-Y., Chan, Y.-S., Sim, H. S., Tan, K. S., Oh, S. K.-W., Ng, H.-H., and Choo, A. B.-H. (2009). KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells, 27(9):2114-2125.

Chang, C.-W., Cheng, W.-C., Chen, C.-R., Shu, W.-Y., Tsai, M.-L., Huang, C.-L., and Hsu, I. C. (2011). Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS ONE, 6(7):e22859.

Chatr-aryamontri, A., Breitkreutz, B.-J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage, L., Kolas, N., ODonnell, L., et al. (2013). The BioGRID interaction database: 2013 update. Nucleic Acids Research, 41(D1):D816-D823.

Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6):1106-1117.

Chen, Y.-C., Rajagopala, S. V., Stellberger, T., and Uetz, P. (2010). Exhaustive benchmarking of the yeast two-hybrid system. Nature Methods, 7(9):667-668.

Corominas-Murtra, B., Goñi, J., Solé, R. V., and Rodríguez-Caso, C. (2013). On the origins of hierarchy in complex networks. Proceedings of the National Academy of Sciences, USA, 110(33):13316-13321.

Croft, D., OKelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., et al. (2010). Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research, 39(S1):D691-D697.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695.

Csermely, P., Hódsági, J., Korcsmáros, T., Módos, D., Perez-Lopez, Á. R., Szalay, K., Veres, D. V., Lenti, K., Wu, L.-Y., and Zhang, X.-S. (2014). Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential Mechanism: Network models, novel
therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence. In Seminars in Cancer Biology. Elsevier.

Csermely, P., Korcsmáros, T., Kiss, H. J., London, G., and Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacology \& Therapeutics, 138(3):333-408.

Csete, M. and Doyle, J. (2004). Bow ties, metabolism and disease. TRENDS in Biotechnology, 22(9):446-450.

Davidson, E. H. (2010). The regulatory genome: gene regulatory networks in development and evolution. Academic Press.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., et al. (2002). A genomic regulatory network for development. Science, 295(5560):1669-1678.

Dehmer, M. (2008). Information processing in complex networks: Graph entropy and information functionals. Applied Mathematics and Computation, 201(1):82-94.

Dehmer, M. and Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181(1):57-78.

Dehmer, M., Varmuza, K., Borgert, S., and Emmert-Streib, F. (2009). On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. Journal of Chemical Information and Modeling, 49(7):1655-1663.

Delprato, A. (2012). Topological and functional properties of the small GTPases protein interaction network. PLoS ONE, 7(9):e44882.

Deplancke, B., Dupuy, D., Vidal, M., and Walhout, A. J. (2004). A gatewaycompatible yeast one-hybrid system. Genome Research, 14(10b):20932101.

Dobrynin, A., Entringer, R., and Gutman, I. (2001). Wiener index of trees: Theory and applications. Acta Applicandae Mathematicae, 66(3):211249.

Dynan, W. S. and Tjian, R. (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 35(1):79-87.

Eisenberg, E. and Levanon, E. Y. (2003). Human housekeeping genes are compact. TRENDS in Genetics, 19(7):362-365.

Eisenberg, E. and Levanon, E. Y. (2013). Human housekeeping genes, revisited. TRENDS in Genetics, 29(10):569-574.

Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen, 6:290-297.

Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61.

Fischermann, M., Hoffmann, A., Rautenbach, D., Székely, L., and Volkmann, L. (2002). Wiener index versus maximum degree in trees. Discrete Applied Mathematics, 122(1):127-137.

Fronczak, A., Fronczak, P., and Hołyst, J. A. (2004). Average path length in random networks. Physical Review E, 70(5):056110.

Galan-Caridad, J. M., Harel, S., Arenzana, T. L., Hou, Z. E., Doetsch, F. K., Mirny, L. A., and Reizis, B. (2007). Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell, 129(2):345-357.

Galas, D. J. and Schmitz, A. (1978). DNAase footprinting a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Research, 5(9):3157-3170.

Georgi, B., Voight, B. F., and Bućan, M. (2013). From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS Genetics, 9(5):e1003484.

Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.-K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., et al. (2012). Architecture of the human regulatory network derived from encode data. Nature, 489(7414):91-100.

Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., Yip, K. Y., Robilotto, R., Rechtsteiner, A., Ikegami, K., et al. (2010). Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science, 330(6012):1775-1787.

Gingras, A.-C., Gstaiger, M., Raught, B., and Aebersold, R. (2007). Analysis of protein complexes using mass spectrometry. Nature Reviews Molecular Cell Biology, 8(8):645-654.

Goecks, J., Nekrutenko, A., Taylor, J., et al. (2010). Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8):R86.

Goulburn, A. L., Alden, D., Davis, R. P., Micallef, S. J., Ng, E. S., Yu, Q. C., Lim, S. M., Soh, C.-L., Elliott, D. A., Hatzistavrou, T., et al. (2011). A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells, 29(3):462-473.

Gusmao, E. G., Dieterich, C., Zenke, M., and Costa, I. G. (2014). Detection of active transcription factor binding sites with the combination of DNase hypersensitivity and histone modifications. Bioinformatics, 30(22):31433151.

Gutman, I. (1997). A property of the Wiener number and its modifications. Indian Journal of Chemistry. Sect. A: Inorganic, Physical, Theoretical §3 Analytical, 36(2):128-132.

Gutman, I., Linert, W., Lukovits, I., and Dobrynin, A. (1997). Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications. Journal of Chemical Information and Computer Sciences, 37(2):349-354.

Gutman, I., Popović, L., et al. (1998). Graph representation of organic molecules Cayley's plerograms vs. his kenograms. Journal of the Chemical Society, Faraday Transactions, 94(7):857-860.

Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S., and Labosky, P. A. (2002). Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes $\mathcal{E}$ Development, 16(20):2650-2661.

Harriger, L., Van Den Heuvel, M. P., and Sporns, O. (2012). Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE, 7(9):e46497.

Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A., and Young, R. A. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155(4):934-947.

Horvath, C. M. (2000). STAT proteins and transcriptional responses to extracellular signals. TRENDS in Biochemical Sciences, 25(10):496-502.

Hosoya, H. (1988). On some counting polynomials in chemistry. Discrete Applied Mathematics, 19(1):239-257.

Hu, L., Huang, T., Shi, X., Lu, W.-C., Cai, Y.-D., and Chou, K.-C. (2011). Predicting functions of proteins in mouse based on weighted proteinprotein interaction network and protein hybrid properties. PLoS ONE, 6(1):e14556.

Ideker, T. and Krogan, N. J. (2012). Differential network biology. Molecular Systems Biology, 8:565.

James, D., Levine, A. J., Besser, D., and Hemmati-Brivanlou, A. (2005). $\operatorname{TGF} \beta /$ activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6):12731282.

Jean, D., Bernier, G., and Gruss, P. (1999). Six6(Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mechanisms of Development, 84(1):31-40.

Jensen, J. (2004). Gene regulatory factors in pancreatic development. Developmental Dynamics, 229(1):176-200.

Jiang, J., Chan, Y.-S., Loh, Y.-H., Cai, J., Tong, G.-Q., Lim, C.-A., Robson, P., Zhong, S., and Ng, H.-H. (2008). A core Klf circuitry regulates selfrenewal of embryonic stem cells. Nature Cell Biology, 10(3):353-360.

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004). Human microrna targets. PLoS Biology, 2(11):e363.

Jothi, R., Balaji, S., Wuster, A., Grochow, J. A., Gsponer, J., Przytycka, T. M., Aravind, L., and Babu, M. M. (2009). Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology, 5:294.

Junker, B. H. and Schreiber, F. (2008). Analysis of biological networks. volume 2, pages 31-59. Wiley-Interscience.

Kanehisa, M. and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1):27-30.

Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford University Press.

Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6):1049-1061.

Kim, J.-H., Auerbach, J. M., Rodríguez-Gómez, J. A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.-H., Nguyen, J., Sánchez-Pernaute, R., Bankiewicz, K., et al. (2002). Dopamine neurons derived from embryonic
stem cells function in an animal model of Parkinson's disease. Nature, 418(6893):50-56.

Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11):826-837.

Kohl, M., Wiese, S., and Warscheid, B. (2011). Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics, pages 291-303. Springer.

Koschützki, D. and Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulation and Systems Biology, 2:193-201.

Koschützki, D., Schwöbbermeyer, H., and Schreiber, F. (2007). Ranking of network elements based on functional substructures. Journal of Theoretical Biology, 248(3):471-479.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298(5594):799-804.

Levy, D. E. and Darnell, J. (2002). STATs: transcriptional control and biological impact. Nature Reviews Molecular Cell Biology, 3(9):651-662.

Li, J., Hua, X., Haubrock, M., Wang, J., and Wingender, E. (2012). The architecture of the gene regulatory networks of different tissues. Bioinformatics, 28(18):i509-i514.

Li, Y. and Behringer, R. R. (1998). Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nature Genetics, 20(3):309-311.

Lim, L. S., Loh, Y.-H., Zhang, W., Li, Y., Chen, X., Wang, Y., Bakre, M., Ng, H.-H., and Stanton, L. W. (2007). Zic3 is required for maintenance of pluripotency in embryonic stem cells. Molecular Biology of the Cell, 18(4):1348-1358.

Liu, W., Lan, Y., Pauws, E., Meester-Smoor, M. A., Stanier, P., Zwarthoff, E. C., and Jiang, R. (2008). The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice. Development, 135(23):3959-3968.

Liu, Y., Jiang, B., and Zhang, X. (2009). Gene-set analysis identifies master transcription factors in developmental courses. Genomics, 94(1):1-10.

Loh, Y.-H., Wu, Q., Chew, J.-L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4):431-440.

Lovén, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I., and Young, R. A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153(2):320-334.

Ma, H.-W., Buer, J., and Zeng, A.-P. (2004). Hierarchical structure and modules in the escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics, 5:199.

Ma'ayan, A. (2011). Introduction to network analysis in systems biology. Science Signaling, 4(190):tr5.

Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, USA, 100(21):11980-11985.

Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A. E., Kel-Margoulis, O. V., et al. (2003). Transfac $®$ : transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31(1):374-378.

Milenković, T., Memišević, V., Bonato, A., and Pržulj, N. (2011). Dominating biological networks. PLoS ONE, 6(8):e23016.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594):824-827.

Mitra, K., Carvunis, A.-R., Ramesh, S. K., and Ideker, T. (2013). Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics, 14(10):719-732.

Mones, E., Vicsek, L., and Vicsek, T. (2012). Hierarchy measure for complex networks. PLoS ONE, 7(3):e33799.

Mueller, L., Kugler, K., Dander, A., Graber, A., and Dehmer, M. (2011a). QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics, 27(1):140-141.

Mueller, L. A., Kugler, K. G., Netzer, M., Graber, A., and Dehmer, M. (2011b). A network-based approach to classify the three domains of life. Biology Direct, 6:53.

Mullen, A. C., Orlando, D. A., Newman, J. J., Lovén, J., Kumar, R. M., Bilodeau, S., Reddy, J., Guenther, M. G., DeKoter, R. P., and Young, R. A. (2011). Master transcription factors determine cell-type-specific responses to TGF- $\beta$ signaling. Cell, 147(3):565-576.

Nelson, M. D., Zhou, E., Kiontke, K., Fradin, H., Maldonado, G., Martin, D., Shah, K., and Fitch, D. H. (2011). A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans. PLoS Genetics, 7(3):e1002010.

Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., and Stamatoyannopoulos, J. A. (2012a). Circuitry and dynamics of human transcription factor regulatory networks. Cell, 150(6):1274-1286.

Neph, S., Vierstra, J., Stergachis, A. B., Reynolds, A. P., Haugen, E., Vernot, B., Thurman, R. E., John, S., Sandstrom, R., Johnson, A. K., et al. (2012b). An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489(7414):83-90.

Newman, M. E. (2002). The structure and function of networks. Computer Physics Communications, 147(1):40-45.

Pagel, P., Kovac, S., Oesterheld, M., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C., Mark, P., Stümpflen, V., Mewes, H.W., et al. (2005). The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6):832-834.

Palaniswamy, S. K., James, S., Sun, H., Lamb, R. S., Davuluri, R. V., and Grotewold, E. (2006). AGRIS and AtRegNet. a platform to link cisregulatory elements and transcription factors into regulatory networks. Plant Physiology, 140(3):818-829.

Pennisi, E. (2012). Encode project writes eulogy for junk DNA. Science, 337(7):1159-1161.

Plavšić, D., Nikolić, S., Trinajstić, N., and Mihalić, Z. (1993). On the Harary index for the characterization of chemical graphs. Journal of Mathematical Chemistry, 12(1):235-250.

Pržulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling interactome: scale-free or geometric? Bioinformatics, 20(18):3508-3515.

Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., and Melton, D. A. (2002). "stemness": transcriptional profiling of embryonic and adult stem cells. Science, 298(5593):597-600.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846850.

Randić, M. (1993). Novel molecular descriptor for structureproperty studies. Chemical Physics Letters, 211(4):478-483.

Ravasi, T., Suzuki, H., Cannistraci, C. V., Katayama, S., Bajic, V. B., Tan, K., Akalin, A., Schmeier, S., Kanamori-Katayama, M., Bertin, N., et al. (2010). An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 140(5):744-752.

Raymond, C. S., Murphy, M. W., O'Sullivan, M. G., Bardwell, V. J., and Zarkower, D. (2000). Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes $\mathcal{E}$ Development, 14(20):2587-2595.

Ren, G. and Liu, Z. (2013). NetCAD: a network analysis tool for coronary artery disease-associated PPI network. Bioinformatics, 29(2):279-280.

Resendis-Antonio, O., Hernández, M., Mora, Y., and Encarnación, S. (1931). Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38(10):116119.

Resendis-Antonio, O., Hernández, M., Mora, Y., and Encarnación, S. (2012). Functional modules, structural topology, and optimal activity in metabolic networks. PLoS Computational Biology, 8(10):e1002720.

Rodriguez-Caso, C., Medina, M. A., and Sole, R. V. (2005). Topology, tinkering and evolution of the human transcription factor network. FEBS Journal, 272(24):6423-6434.

Rogers, M., Hosler, B., and Gudas, L. (1991). Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development, 113(3):815-824.

Ryu, S., Mahler, J., Acampora, D., Holzschuh, J., Erhardt, S., Omodei, D., Simeone, A., and Driever, W. (2007). Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Current Biology, 17(10):873-880.

Safran, M., Dalah, I., Alexander, J., Rosen, N., Stein, T. I., Shmoish, M.,

Nativ, N., Bahir, I., Doniger, T., Krug, H., et al. (2010). GeneCards Version 3: the human gene integrator. Database, 2010:baq020.

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., MuñizRascado, L., García-Sotelo, J. S., Weiss, V., Solano-Lira, H., MartínezFlores, I., Medina-Rivera, A., et al. (2013). RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Research, 41(D1):D203-D213.

Schmuck, N. S., Wagner, S. G., and Wang, H. (2012). Greedy trees, caterpillars, and Wiener-type graph invariants. MATCH Communications in Mathematical and in Computer Chemistry, 68(1):273-292.

Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell, 102(6):777-786.

Semina, E., Mintz-Hittner, H., and Murray, J. (2000). Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues. Genomics, 63(2):289-293.

She, X., Rohl, C. A., Castle, J. C., Kulkarni, A. V., Johnson, J. M., and Chen, R. (2009). Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics, 10:269.

Shoval, O. and Alon, U. (2010). SnapShot: network motifs. Cell, 143(2):326-326.

Solomon, K. S., Kudoh, T., Dawid, I. B., and Fritz, A. (2003). Zebrafish
foxi1 mediates otic placode formation and jaw development. Development, 130(5):929-940.

Soltés, L. (1991). Transmission in graphs: a bound and vertex removing. Mathematica Slovaca, 41(1):11-16.

Sporns, O., Honey, C. J., and Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS ONE, 2(10):e1049.

Sporns, O. and Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2(11):e369.

Srivas, R., Costelloe, T., Carvunis, A.-R., Sarkar, S., Malta, E., Sun, S. M., Pool, M., Licon, K., van Welsem, T., van Leeuwen, F., et al. (2013). A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring. Cell Reports, 5(6):17141724.

Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences, USA, 101(16):60626067.

Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics. Wiley-VCH.

Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A., and Luscombe, N. M. (2009). A census of human transcription factors: function, expression and evolution. Nature Reviews Genetics, 10(4):252-263.

Venkatesan, K., Rual, J.-F., Vazquez, A., Stelzl, U., Lemmens, I., HirozaneKishikawa, T., Hao, T., Zenkner, M., Xin, X., Goh, K.-I., et al. (2008). An empirical framework for binary interactome mapping. Nature Methods, 6(1):83-90.

Vidal, M., Cusick, M. E., and Barabasi, A.-L. (2011). Interactome networks and human disease. Cell, 144(6):986-998.

Vinayagam, A., Hu, Y., Kulkarni, M., Roesel, C., Sopko, R., Mohr, S. E., and Perrimon, N. (2013). Protein complex-based analysis framework for high-throughput data sets. Science Signaling, 6(264):rs5.

Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., and Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887):399-403.

Wagner, S., Wangb, H., and Zhangc, X.-D. (2013). Distance-based graph invariants of trees and the Harary index. Filomat, 27(1):41-50.

Wang, P., Lü, J., and Yu, X. (2014). Identification of important nodes in directed biological networks: A network motif approach. PLoS ONE, 9(8):e106132.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301):236-244.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'smallworld' networks. Nature, 393(6684):440-442.

Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I., and Young, R. A. (2013). Master
transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153(2):307-319.

Wiener, H. (1947a). Correlation of heats of isomerization, and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. Journal of the American Chemical Society, 69(11):2636-2638.

Wiener, H. (1947b). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1):17-20.

Wuchty, S., Oltvai, Z. N., and Barabási, A.-L. (2003). Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics, 35(2):176-179.

Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S.-M., and Eisenberg, D. (2002). DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1):303-305.

Xiang, M., Gan, L., Li, D., Chen, Z.-Y., Zhou, L., OMalley, B. W., Klein, W., and Nathans, J. (1997). Essential role of POU-domain factor Brn3c in auditory and vestibular hair cell development. Proceedings of the National Academy of Sciences, USA, 94(17):9445-9450.

Xiao, L., Yuan, X., and Sharkis, S. J. (2006). Activin A maintains selfrenewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24(6):1476-1486.

Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144(6):940-954.

Yu, H., Braun, P., Yıldırım, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., et al. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898):104-110.

Yu, H. and Gerstein, M. (2006). Genomic analysis of the hierarchical structure of regulatory networks. Proceedings of the National Academy of Sciences, USA, 103(40):14724-14731.

Yu, X., Lin, J., Masuda, T., Esumi, N., Zack, D. J., and Qian, J. (2006). Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Research, 34(3):917-927.

Zhang, H.-M., Chen, H., Liu, W., Liu, H., Gong, J., Wang, H., and Guo, A.Y. (2012a). AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Research, 40(D1):D144-D149.

Zhang, S., Tian, D., Tran, N. H., Choi, K. P., and Zhang, L. (2014). Profiling the transcription factor regulatory networks of human cell types. Nucleic Acids Research, 42(20):12380-12387.

Zhang, Y., Gutman, I., Liu, J., and Mu, Z. (2012b). q-analog of wiener index. Match-Communications in Mathematical and Computer Chemistry, 67(2):347.

Zhang, Y., Gutman, I., Liu, J., and Mu, Z. (2012c). q-analog of Wiener index. MATCH Communications in Mathematical and in Computer Chemistry, 67(2):347-356.

## Appendix

Table A.1. 1509 ESC specific interactions which are found in hESC network, but not found in the other 40 TF regulatory networks.

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | AHR | BARHL2 | 2 | AHR | EN2 | 3 | AHR | IKZF1 |
| 4 | AHR | SIX3 | 5 | ALX1 | HBP1 | 6 | ALX1 | NR1H4 |
| 7 | ALX1 | TFAP2C | 8 | ALX3 | FOXJ1 | 9 | ALX3 | HBP1 |
| 10 | ALX4 | EBF2 | 11 | ALX4 | FOXD3 | 12 | ALX4 | NR1H4 |
| 13 | ALX4 | TFAP2C | 14 | AR | SIX6 | 15 | ARID5B | DMRT1 |
| 16 | ARID5B | HNF1B | 17 | ARID5B | NKX3-2 | 18 | ARID5B | OVOL2 |
| 19 | ARID5B | ZFP42 | 20 | ARNT | EN2 | 21 | ARNT | IKZF1 |
| 22 | ARNT | SIX3 | 23 | ARNT | SOX2 | 24 | ARNT2 | IKZF1 |
| 25 | ARNT2 | SIX3 | 26 | ATF1 | FOXC1 | 27 | ATF2 | FOXC1 |
| 28 | ATF3 | FOXC1 | 29 | ATF4 | DLX2 | 30 | ATF4 | FOXC1 |
| 31 | ATF4 | ZIC3 | 32 | ATF5 | ARX | 33 | ATF5 | FOXC1 |
| 34 | ATF5 | NKX2-2 | 35 | ATF5 | PAX2 | 36 | ATF5 | SIX3 |
| 37 | ATF6 | FOXC1 | 38 | ATF7 | FOXC1 | 39 | ATOH1 | FGF9 |
| 40 | ATOH1 | HOXB13 | 41 | ATOH1 | POU3F1 | 42 | ATOH1 | REST |
| 43 | ATOH1 | SIX4 | 44 | ATOH1 | STAT5A | 45 | ATOH1 | TBX22 |
| 46 | ATOH1 | ZBTB7A | 47 | BACH1 | XBP1 | 48 | BACH2 | GLI1 |
| 49 | BCL6 | MYF5 | 50 | BCL6 | SIX 4 | 51 | BDP1 | DLX2 |
| 52 | BDP1 | HBP1 | 53 | BDP1 | HMGA1 | 54 | BDP1 | LHX2 |
| 55 | BHLHE40 | CRX | 56 | BHLHE40 | DMRT1 | 57 | BHLHE40 | OVOL2 |
| 58 | BHLHE40 | ZFP42 | 59 | BHLHE41 | CRX | 60 | BHLHE41 | DMRT1 |
| 61 | BHLHE41 | OVOL2 | 62 | BHLHE41 | ZFP42 | 63 | BPTF | FOXO4 |
| 64 | BPTF | WT1 | 65 | BRF1 | DLX2 | 66 | BRF1 | LHX2 |
| 67 | CBFB | IRX2 | 68 | CBFB | OTX2 | 69 | CBFB | PARP1 |
| 70 | CBFB | POU4F3 | 71 | CDC5L | LEF1 | 72 | CDX1 | REST |
| 73 | CDX1 | T | 74 | CDX1 | VAX1 | 75 | CDX2 | GCM1 |
| 76 | CDX2 | ONECUT1 | 77 | CDX2 | REST | 78 | CDX2 | VAX1 |
| 79 | CEBPA | EOMES | 80 | CEBPA | POU5F1 | 81 | CEBPA | SIX4 |
| 82 | CEBPG | TBX22 | 83 | CIZ1 | ISL1 | 84 | CNOT3 | HOXB13 |
| 85 | CNOT3 | MSX2 | 86 | CNOT3 | PAX2 | 87 | CNOT3 | PAX4 |
| 88 | CREB1 | EN2 | 89 | CREB1 | FOXC1 | 90 | CREM | FOXC1 |
| 91 | CRX | AIRE | 92 | CRX | NR2E3 | 93 | CTCF | CDX2 |
| 94 | CTCF | DLX1 | 95 | CTCF | ESX1 | 96 | CTCF | OTP |
| 97 | CTCF | POU5F1 | 98 | CTCF | SOX10 | 99 | CTCF | TBX22 |

Continued on next page

## Appendix .

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | CTCF | VSX2 | 101 | CTCF | ZIC3 | 102 | CUX1 | MYF5 |
| 103 | DDIT3 | POU5F1 | 104 | DEAF1 | ESR1 | 105 | DEAF1 | GFI1 |
| 106 | DEAF1 | HOXB13 | 107 | DEAF1 | POU4F3 | 108 | DEAF1 | RORB |
| 109 | DEAF1 | T | 110 | DLX5 | CRX | 111 | DMBX1 | CRX |
| 112 | DMRT2 | VAX1 | 113 | DMRT3 | HOXB13 | 114 | E2F1 | DMRT1 |
| 115 | E2F1 | FOXA2 | 116 | E2F1 | LMX1A | 117 | E2F4 | LMX1A |
| 118 | E2F6 | LMX1A | 119 | E2F7 | LMX1A | 120 | EBF1 | LHX4 |
| 121 | EBF1 | NF1 | 122 | EBF1 | PAX4 | 123 | EBF1 | POU5F1 |
| 124 | EBF2 | PAX4 | 125 | EBF2 | POU5F1 | 126 | EGR1 | ALX1 |
| 127 | EGR1 | CRX | 128 | EGR1 | DMRT3 | 129 | EGR1 | OTP |
| 130 | EGR1 | OTX2 | 131 | EGR1 | PAX4 | 132 | EGR1 | PAX7 |
| 133 | EGR1 | POU2F3 | 134 | EGR2 | ALX1 | 135 | EGR2 | CRX |
| 136 | EGR2 | DMRT3 | 137 | EGR2 | OTP | 138 | EGR2 | OTX2 |
| 139 | EGR2 | PAX4 | 140 | EGR2 | PAX7 | 141 | EGR2 | POU2F3 |
| 142 | EGR3 | ALX1 | 143 | EGR3 | CRX | 144 | EGR3 | DMRT3 |
| 145 | EGR3 | OTP | 146 | EGR3 | OTX2 | 147 | EGR3 | PAX4 |
| 148 | EGR3 | PAX7 | 149 | EGR3 | POU2F3 | 150 | EGR4 | CRX |
| 151 | EGR4 | DMRT3 | 152 | EGR4 | NKX6-1 | 153 | EGR4 | OTX2 |
| 154 | EGR4 | PAX7 | 155 | EGR4 | POU2F3 | 156 | EGR4 | SIX6 |
| 157 | ELF1 | SMAD3 | 158 | ELF1 | ZIC1 | 159 | ELF1 | ZIC2 |
| 160 | ELF2 | FOXD3 | 161 | ELF2 | HMX3 | 162 | ELF2 | NKX2-2 |
| 163 | ELF2 | POU4F3 | 164 | ELF2 | REST | 165 | ELF2 | SIX4 |
| 166 | ELF2 | ZIC1 | 167 | ELF2 | ZIC2 | 168 | ELF3 | ETV7 |
| 169 | ELF3 | ISL1 | 170 | ELF3 | OTX2 | 171 | ELF3 | TP63 |
| 172 | ELK1 | DMRT3 | 173 | ELK1 | HBP1 | 174 | ELK1 | TCF7 |
| 175 | ELK1 | ZIC1 | 176 | ELK1 | ZIC2 | 177 | ELK4 | TCF7 |
| 178 | ELK4 | ZIC1 | 179 | ELK4 | ZIC2 | 180 | EMX2 | CEBPB |
| 181 | EN1 | FOXD3 | 182 | EN2 | FOXD3 | 183 | EP300 | DMRT3 |
| 184 | EP300 | GFI1 | 185 | EP300 | NKX2-2 | 186 | EP300 | OTX2 |
| 187 | EP300 | PAX7 | 188 | EP300 | RORB | 189 | EP300 | SIX3 |
| 190 | EPAS1 | SOX2 | 191 | ERF | ZIC1 | 192 | ERF | ZIC2 |
| 193 | ERG | OTX2 | 194 | ERG | TCF7 | 195 | ERG | ZIC1 |
| 196 | ERG | ZIC2 | 197 | ESR1 | PAX2 | 198 | ESR1 | POU5F1 |
| 199 | ESR2 | POU5F1 | 200 | ESRRA | HOXB13 | 201 | ESRRB | EBF2 |
| 202 | ESRRB | HOXB13 | 203 | ESRRB | POU4F3 | 204 | ESX1 | HBP1 |
| 205 | ETS1 | BARHL2 | 206 | ETS1 | FOXD3 | 207 | ETS1 | HBP1 |
| 208 | ETS1 | MSX2 | 209 | ETS1 | TCF7 | 210 | ETS1 | ZIC1 |
| 211 | ETS1 | ZIC2 | 212 | ETS1 | ZIC3 | 213 | ETS2 | FOXD3 |
| 214 | ETS2 | HBP1 | 215 | ETS2 | ZIC1 | 216 | ETS2 | ZIC2 |
| 217 | ETV7 | HBP1 | 218 | ETV7 | TCF7 | 219 | ETV7 | ZIC1 |
| 220 | ETV7 | ZIC2 | 221 | EVX1 | SOX2 | 222 | FGF9 | FOXD3 |
| 223 | FGF9 | GATA3 | 224 | FLI1 | MYCN | 225 | FLI1 | NR5A2 |
| 226 | FLI1 | PAX1 | 227 | FLI1 | POU5F1 | 228 | FLI1 | TCF7 |
| 229 | FLI1 | ZIC1 | 230 | FLI1 | ZIC2 | 231 | FOSL1 | GLI1 |
| 232 | FOSL1 | LMX1A | 233 | FOSL1 | PAX6 | 234 | FOXA1 | DMRT1 |
| 235 | FOXA1 | ETV7 | 236 | FOXA1 | FOXD3 | 237 | FOXA1 | HOXA1 |
| 238 | FOXA1 | HOXA11 | 239 | FOXA2 | ETV7 | 240 | FOXA2 | HOXA1 |
| 241 | FOXA2 | HOXA11 | 242 | FOXA3 | ETV7 | 243 | FOXA3 | HOXA1 |
| 244 | FOXA3 | HOXA11 | 245 | FOXD1 | FOXD3 | 246 | FOXD1 | IRX5 |
| 247 | FOXD1 | MEIS1 | 248 | FOXD3 | ETV7 | 249 | FOXD3 | FOXI1 |

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 | FOXD3 | HOXB3 | 251 | FOXD3 | OTX2 | 252 | FOXD3 | PAX5 |
| 253 | FOXD3 | PAX7 | 254 | FOXF1 | ETV7 | 255 | FOXF1 | FOXI1 |
| 256 | FOXF1 | OTX2 | 257 | FOXF1 | PAX5 | 258 | FOXF1 | PAX7 |
| 259 | FOXF2 | ETV7 | 260 | FOXF2 | FOXI1 | 261 | FOXF2 | OTX2 |
| 262 | FOXF2 | PAX5 | 263 | FOXF2 | PAX7 | 264 | FOXG1 | DMRT1 |
| 265 | FOXG1 | XBP1 | 266 | FOXH1 | ETV7 | 267 | FOXH1 | FOXI1 |
| 268 | FOXH1 | HOXB3 | 269 | FOXH1 | OTX2 | 270 | FOXH1 | PAX5 |
| 271 | FOXH1 | PAX7 | 272 | FOXI1 | ETV7 | 273 | FOXI1 | FOXI1 |
| 274 | FOXI1 | PAX5 | 275 | FOXI1 | PAX7 | 276 | FOXJ1 | ETV7 |
| 277 | FOXJ1 | FOXI1 | 278 | FOXJ1 | HOXB3 | 279 | FOXJ1 | OTX2 |
| 280 | FOXJ1 | PAX5 | 281 | FOXJ1 | PAX7 | 282 | FOXJ2 | ETV7 |
| 283 | FOXJ2 | FOXI1 | 284 | FOXJ2 | HOXB3 | 285 | FOXJ2 | PAX5 |
| 286 | FOXJ2 | PAX7 | 287 | FOXL1 | CDX2 | 288 | FOXL1 | PAX3 |
| 289 | FOXM1 | ETV7 | 290 | FOXM1 | HOXA1 | 291 | FOXM1 | HOXA11 |
| 292 | FOXO1 | DMRT1 | 293 | FOXO1 | XBP1 | 294 | FOXO3 | FOXI1 |
| 295 | FOXO3 | NANOG | 296 | FOXO4 | MAFA | 297 | FOXP1 | BARHL2 |
| 298 | FOXP1 | HOXB13 | 299 | FOXP1 | OTX2 | 300 | FOXP1 | PAX2 |
| 301 | FOXP3 | ONECUT1 | 302 | GABPA | BARX1 | 303 | GABPA | NR5A2 |
| 304 | GABPA | OVOL2 | 305 | GABPA | PAX6 | 306 | GABPB1 | BARX1 |
| 307 | GABPB1 | NR5A2 | 308 | GABPB1 | OVOL2 | 309 | GABPB1 | PAX6 |
| 310 | GATA1 | OTX2 | 311 | GATA1 | PAX2 | 312 | GATA1 | SIX3 |
| 313 | GATA1 | STAT3 | 314 | GATA1 | STAT4 | 315 | GATA2 | FOXC1 |
| 316 | GATA2 | FOXJ3 | 317 | GATA2 | MSX2 | 318 | GATA2 | NR5A2 |
| 319 | GATA2 | SIX3 | 320 | GATA2 | STAT3 | 321 | GATA3 | FOXA2 |
| 322 | GATA3 | FOXC1 | 323 | GATA3 | FOXJ3 | 324 | GATA3 | MSX2 |
| 325 | GATA3 | NR5A2 | 326 | GATA3 | PGR | 327 | GATA4 | CRX |
| 328 | GATA4 | TFAP2B | 329 | GBX2 | SOX2 | 330 | GCM1 | CDX2 |
| 331 | GFI1 | MEIS1 | 332 | GLI1 | SMAD2 | 333 | GLI2 | RORB |
| 334 | GLI2 | SMAD2 | 335 | GLI3 | HMX3 | 336 | GLI3 | HOXA1 |
| 337 | GLI3 | POU5F1 | 338 | GLI3 | RORB | 339 | GLI3 | VSX2 |
| 340 | GLIS1 | SMAD2 | 341 | GLIS3 | PAX7 | 342 | GLIS3 | POU5F1 |
| 343 | GSX2 | SOX2 | 344 | GTF2A1 | LHX4 | 345 | GTF2I | ALX3 |
| 346 | GTF2I | ALX4 | 347 | GTF2I | ARNTL2 | 348 | GTF2I | CRX |
| 349 | GTF2I | DMRT3 | 350 | GTF2I | E2F4 | 351 | GTF2I | EGR4 |
| 352 | GTF2I | ONECUT1 | 353 | GTF2I | OTX1 | 354 | GTF2I | TFAP2B |
| 355 | GTF2I | VAX2 | 356 | GTF2IRD1 | CDX2 | 357 | GTF2IRD1 | FOXD3 |
| 358 | GTF2IRD1 | POU5F1 | 359 | HAND1 | DLX1 | 360 | HAND1 | DMRT1 |
| 361 | HAND1 | OVOL2 | 362 | HAND1 | SIX2 | 363 | HAND1 | SIX3 |
| 364 | HAND1 | ZFP42 | 365 | HAND2 | DMRT1 | 366 | HAND2 | OVOL2 |
| 367 | HAND2 | ZFP42 | 368 | HES1 | NEUROD1 | 369 | HES1 | PAX6 |
| 370 | HIC1 | BARHL2 | 371 | HIC1 | CDX2 | 372 | HIC1 | CRX |
| 373 | HIC1 | DMRT1 | 374 | HIC1 | DMRT3 | 375 | HIC1 | HNF1B |
| 376 | HIC1 | LMX1A | 377 | HIC1 | NKX2-2 | 378 | HIC1 | OTP |
| 379 | HIC1 | ZIC3 | 380 | HIF1A | IKZF1 | 381 | HIF1A | IRF3 |
| 382 | HIF1A | POU3F2 | 383 | HIF1A | SIX3 | 384 | HIF1A | SOX2 |
| 385 | HIVEP2 | CRX | 386 | HIVEP2 | OTX2 | 387 | HMGA1 | LMX1A |
| 388 | HMGA1 | PARP1 | 389 | HMGA1 | PAX6 | 390 | HMGA1 | SOX21 |
| 391 | HMGA2 | LMX1A | 392 | HMGA2 | PARP1 | 393 | HMGA2 | PAX6 |
| 394 | HMGA2 | SOX21 | 395 | HNF1A | MNX1 | 396 | HNF1B | DMRT2 |
| 397 | HNF1B | EGR4 | 398 | HNF1B | IRX4 | 399 | HNF1B | NF1 |

Appendix .
Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 400 | HNF4A | ALX4 | 401 | HNF4A | DMRT2 | 402 | HNF4A | DMRT3 |
| 403 | HNF4A | FOXD3 | 404 | HNF4A | FOXH1 | 405 | HNF4A | LHX4 |
| 406 | HNF4A | LMX1A | 407 | HNF4A | NR5A1 | 408 | HNF4A | OTP |
| 409 | HNF4A | POU5F1 | 410 | HNF4A | ZNF628 | 411 | HNF4G | DMRT3 |
| 412 | HNF4G | FOXD3 | 413 | HNF4G | FOXH1 | 414 | HNF4G | LHX4 |
| 415 | HNF4G | POU5F1 | 416 | HNF4G | ZNF628 | 417 | HOXA1 | SOX2 |
| 418 | HOXA10 | REST | 419 | HOXA10 | VAX1 | 420 | HOXA11 | LHX4 |
| 421 | HOXA13 | FOXD3 | 422 | HOXA13 | RAX | 423 | HOXA3 | SOX2 |
| 424 | HOXA4 | TFAP2C | 425 | HOXA5 | MYCN | 426 | HOXA9 | LMX1B |
| 427 | HOXB3 | CEBPB | 428 | HOXB3 | SOX2 | 429 | HOXB4 | TFAP2C |
| 430 | HOXB7 | BARHL2 | 431 | HOXB8 | BARHL2 | 432 | HOXB9 | GLI1 |
| 433 | HOXB9 | VAX1 | 434 | HOXC10 | LHX4 | 435 | HOXC11 | LHX4 |
| 436 | HOXC4 | NR1H4 | 437 | HOXC4 | TFAP2C | 438 | HOXC5 | TFAP2C |
| 439 | HOXC9 | REST | 440 | HOXD13 | SOX9 | 441 | HOXD9 | MYCN |
| 442 | HSF1 | FOXD3 | 443 | HSF1 | FOXJ3 | 444 | HSF1 | LEF1 |
| 445 | HSF1 | MECP2 | 446 | HSF1 | NKX2-1 | 447 | HSF1 | NKX2-2 |
| 448 | HSF2 | FOXJ3 | 449 | HSF2 | GATA3 | 450 | HSF2 | LEF1 |
| 451 | HSF2 | MECP2 | 452 | HSF2 | NKX2-1 | 453 | IKZF1 | CRX |
| 454 | IKZF1 | ESX1 | 455 | IKZF1 | HBP1 | 456 | IKZF1 | PAX6 |
| 457 | IKZF1 | RUNX3 | 458 | IKZF1 | SIX4 | 459 | IKZF1 | TBX15 |
| 460 | IKZF2 | FOXD3 | 461 | IRF1 | ALX1 | 462 | IRF1 | EOMES |
| 463 | IRF1 | GFI1 | 464 | IRF1 | SOX17 | 465 | IRF1 | ZFP42 |
| 466 | IRF2 | ALX1 | 467 | IRF2 | EOMES | 468 | IRF2 | FOXD3 |
| 469 | IRF2 | GFI1 | 470 | IRF2 | SOX17 | 471 | IRF2 | ZFP42 |
| 472 | IRF3 | ALX1 | 473 | IRF3 | EOMES | 474 | IRF3 | FOXD3 |
| 475 | IRF3 | GFI1 | 476 | IRF3 | PAX7 | 477 | IRF3 | SOX17 |
| 478 | IRF3 | ZFP42 | 479 | IRF4 | ALX1 | 480 | IRF4 | EOMES |
| 481 | IRF4 | GFI1 | 482 | IRF4 | SOX17 | 483 | IRF4 | ZFP42 |
| 484 | IRF6 | ALX1 | 485 | IRF6 | EOMES | 486 | IRF6 | SOX17 |
| 487 | IRF6 | ZFP42 | 488 | IRF7 | ALX1 | 489 | IRF7 | GFI1 |
| 490 | IRF7 | SOX17 | 491 | IRF7 | ZFP42 | 492 | IRF8 | ALX1 |
| 493 | IRF8 | EOMES | 494 | IRF8 | GFI1 | 495 | IRF8 | SOX17 |
| 496 | IRF8 | ZFP42 | 497 | IRF9 | GFI1 | 498 | IRF9 | PAX2 |
| 499 | IRX2 | PAX3 | 500 | IRX3 | PAX3 | 501 | IRX4 | PAX3 |
| 502 | IRX5 | PAX3 | 503 | ISX | FOXJ1 | 504 | JUN | GLI1 |
| 505 | JUN | LMX1A | 506 | JUN | PAX6 | 507 | JUNB | GLI1 |
| 508 | JUND | GLI1 | 509 | JUND | LMX1A | 510 | JUND | PAX6 |
| 511 | KLF11 | ATF2 | 512 | KLF11 | DLX1 | 513 | KLF11 | EN2 |
| 514 | KLF11 | FOXH1 | 515 | KLF11 | NKX2-2 | 516 | KLF11 | POU5F1 |
| 517 | KLF11 | SREBF2 | 518 | KLF15 | CRX | 519 | KLF15 | DMRT3 |
| 520 | KLF15 | MAFA | 521 | KLF15 | MSX2 | 522 | KLF15 | NKX2-2 |
| 523 | KLF15 | OTX2 | 524 | KLF15 | PAX2 | 525 | KLF15 | PAX7 |
| 526 | KLF15 | POU5F1 | 527 | KLF15 | ZIC3 | 528 | KLF4 | DMRT3 |
| 529 | KLF4 | FOXD3 | 530 | KLF4 | MSX2 | 531 | KLF4 | NANOG |
| 532 | KLF4 | PAX2 | 533 | KLF4 | POU5F1 | 534 | KLF4 | TBX15 |
| 535 | KLF4 | TFAP2B | 536 | KLF4 | TP63 | 537 | KLF4 | ZFP42 |
| 538 | LEF1 | FOXD1 | 539 | LEF1 | HMGA1 | 540 | LEF1 | MNX1 |
| 541 | LEF1 | MYOG | 542 | LHX2 | HBP1 | 543 | LHX3 | TFAP2C |
| 544 | LHX4 | FOXJ1 | 545 | LHX4 | SOX2 | 546 | LHX5 | FOXI1 |
| 547 | LHX5 | NR1H4 | 548 | LHX5 | TFAP2C | 549 | LHX6 | FOXJ1 |

Continued on next page

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 550 | LHX8 | FOXJ1 | 551 | LHX8 | SOX2 | 552 | LMO2 | ATOH1 |
| 553 | LMO2 | FOXJ3 | 554 | LMO2 | OTX2 | 555 | LMO2 | POU3F1 |
| 556 | LMO2 | SOX2 | 557 | LMX1A | FOXI1 | 558 | LMX1A | NR1H4 |
| 559 | LMX1A | TFAP2C | 560 | LMX1B | FOXI1 | 561 | LMX1B | NR1H4 |
| 562 | MAF | CRX | 563 | MAF | DLX4 | 564 | MAF | PURA |
| 565 | MAF | TBX15 | 566 | MAFA | DLX3 | 567 | MAFA | PARP1 |
| 568 | MAFA | POU5F1 | 569 | MAFG | REST | 570 | MAX | DMRT1 |
| 571 | MAX | NKX2-5 | 572 | MAX | OVOL2 | 573 | MAX | SATB1 |
| 574 | MAX | SMAD4 | 575 | MAX | ZFP42 | 576 | MAX | ZNF219 |
| 577 | MAZ | ALX3 | 578 | MAZ | ALX4 | 579 | MAZ | CDX2 |
| 580 | MAZ | CRX | 581 | MAZ | FOXD3 | 582 | MAZ | LMX1B |
| 583 | MAZ | MSX1 | 584 | MAZ | MYF5 | 585 | MAZ | NKX6-1 |
| 586 | MAZ | OTX2 | 587 | MAZ | PAX7 | 588 | MAZ | SIX6 |
| 589 | MAZ | TBX22 | 590 | MECOM | FOXJ3 | 591 | MECOM | MSX2 |
| 592 | MECOM | OTX2 | 593 | MECOM | PAX2 | 594 | MECP2 | PAX7 |
| 595 | MEF2A | IRX2 | 596 | MEF2A | TBX15 | 597 | MEIS1 | LMX1B |
| 598 | MEIS3 | ARX | 599 | MEOX1 | SOX2 | 600 | MITF | DMRT1 |
| 601 | MITF | OVOL2 | 602 | MITF | ZFP42 | 603 | MNX1 | FOXD3 |
| 604 | MTF1 | FOXD3 | 605 | MYB | LMX1A | 606 | MYB | NKX2-2 |
| 607 | MYB | PARP1 | 608 | MYB | PAX7 | 609 | MYB | RAX |
| 610 | MYB | RUNX3 | 611 | MYB | STAT3 | 612 | MYB | ZIC3 |
| 613 | MYC | DMRT1 | 614 | MYC | NKX2-5 | 615 | MYC | OVOL2 |
| 616 | MYC | SATB1 | 617 | MYC | SMAD4 | 618 | MYC | ZFP42 |
| 619 | MYC | ZNF219 | 620 | MYCN | ATOH1 | 621 | MYCN | DMRT1 |
| 622 | MYCN | OVOL2 | 623 | MYCN | ZFP42 | 624 | MYF5 | DMRT1 |
| 625 | MYF5 | HNF1B | 626 | MYF5 | NKX3-2 | 627 | MYF5 | OVOL2 |
| 628 | MYF5 | ZFP42 | 629 | MYF6 | ATOH1 | 630 | MYF6 | DMRT1 |
| 631 | MYF6 | OTX2 | 632 | MYF6 | OVOL2 | 633 | MYF6 | T |
| 634 | MYF6 | ZFP42 | 635 | MYOD1 | ATOH1 | 636 | MYOD1 | DLX1 |
| 637 | MYOD1 | DMRT1 | 638 | MYOD1 | HOXB13 | 639 | MYOD1 | OTX2 |
| 640 | MYOD1 | OVOL2 | 641 | MYOD1 | T | 642 | MYOD1 | ZFP42 |
| 643 | MYOG | ATOH1 | 644 | MYOG | DMRT1 | 645 | MYOG | OTX2 |
| 646 | MYOG | OVOL2 | 647 | MYOG | T | 648 | MYOG | ZFP42 |
| 649 | MZF1 | CRX | 650 | MZF1 | FOXC1 | 651 | MZF1 | FOXD3 |
| 652 | MZF1 | PAX2 | 653 | MZF1 | PAX5 | 654 | MZF1 | PURA |
| 655 | MZF1 | TBX22 | 656 | MZF1 | TFAP2C | 657 | MZF1 | ZFP42 |
| 658 | NANOG | ETS1 | 659 | NANOG | LMX1A | 660 | NANOG | MECP2 |
| 661 | NANOG | OTX2 | 662 | NANOG | POU3F2 | 663 | NANOG | POU5F1 |
| 664 | NANOG | VAX1 | 665 | NANOG | XBP1 | 666 | NEUROD1 | CDX2 |
| 667 | NEUROD1 | FOXD3 | 668 | NEUROD1 | FOXO4 | 669 | NEUROD1 | HOXB13 |
| 670 | NEUROD1 | MNX1 | 671 | NEUROD1 | REST | 672 | NF1 | ALX3 |
| 673 | NF1 | CDX2 | 674 | NF1 | DMRT3 | 675 | NF1 | HMX3 |
| 676 | NF1 | MSX2 | 677 | NF1 | NANOG | 678 | NFATC1 | FOXA1 |
| 679 | NFATC1 | HOXD12 | 680 | NFATC1 | ZNF219 | 681 | NFATC2 | FOXA1 |
| 682 | NFATC2 | ZNF219 | 683 | NFATC3 | FOXA1 | 684 | NFATC3 | ZNF219 |
| 685 | NFATC4 | FOXA1 | 686 | NFATC4 | POU2F3 | 687 | NFATC4 | ZNF219 |
| 688 | NFE2 | HMX3 | 689 | NFE2 | LMX1A | 690 | NFE2 | PAX7 |
| 691 | NFE2L1 | REST | 692 | NFE2L2 | BARX1 | 693 | NFE2L2 | LMX1A |
| 694 | NFE2L2 | NR5A2 | 695 | NFE2L2 | OVOL2 | 696 | NFE2L2 | PAX6 |
| 697 | NFE2L2 | REST | 698 | NFIB | ALX3 | 699 | NFIB | CDX2 |

Continued on next page

## Appendix .

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 700 | NFIB | DMRT3 | 701 | NFIB | MSX2 | 702 | NFIB | NANOG |
| 703 | NFIX | ALX3 | 704 | NFIX | CDX2 | 705 | NFIX | DMRT3 |
| 706 | NFIX | HMX3 | 707 | NFIX | MSX2 | 708 | NFIX | NANOG |
| 709 | NFKB1 | ALX3 | 710 | NFKB1 | BARHL2 | 711 | NFKB1 | GATA3 |
| 712 | NFKB1 | ISL1 | 713 | NFKB1 | LMX1B | 714 | NFKB1 | NKX2-1 |
| 715 | NFKB1 | OTP | 716 | NFKB1 | PAX4 | 717 | NFKB1 | RUNX3 |
| 718 | NFKB1 | ZIC3 | 719 | NFKB2 | ALX3 | 720 | NFKB2 | ISL1 |
| 721 | NFKB2 | LMX1B | 722 | NFKB2 | OTP | 723 | NFKB2 | PAX4 |
| 724 | NFKB2 | RUNX3 | 725 | NFKB2 | ZIC3 | 726 | NFYA | LHX4 |
| 727 | NFYA | OTX2 | 728 | NFYA | SIRT6 | 729 | NHLH1 | DMRT1 |
| 730 | NHLH1 | HOXB9 | 731 | NHLH1 | OVOL2 | 732 | NHLH1 | POU5F1 |
| 733 | NHLH1 | SMAD4 | 734 | NHLH1 | ZFP42 | 735 | NHLH1 | ZNF219 |
| 736 | NKX2-1 | FOXH1 | 737 | NKX2-2 | HBP1 | 738 | NKX2-2 | LMX1A |
| 739 | NKX3-1 | LMX1A | 740 | NKX3-2 | OTP | 741 | NKX6-2 | FOXD3 |
| 742 | NR0B1 | BARHL1 | 743 | NR0B1 | EBF2 | 744 | NR0B1 | FOXO4 |
| 745 | NR0B1 | GFI1 | 746 | NR0B1 | HOXB13 | 747 | NR0B1 | PAX1 |
| 748 | NR1H2 | GLI1 | 749 | NR1H2 | HOXB13 | 750 | NR1H2 | IRX4 |
| 751 | NR1H2 | NKX2-2 | 752 | NR1H2 | POU5F1 | 753 | NR1H4 | GLI1 |
| 754 | NR1H4 | HOXB13 | 755 | NR1H4 | IRX4 | 756 | NR1H4 | PAX6 |
| 757 | NR1I2 | GFI1 | 758 | NR1I2 | HOXB13 | 759 | NR1I3 | GFI1 |
| 760 | NR1I3 | HOXB13 | 761 | NR2C2 | MYCN | 762 | NR2C2 | POU5F1 |
| 763 | NR2C2 | ZIC1 | 764 | NR2C2 | ZIC2 | 765 | NR2E3 | MNX1 |
| 766 | NR2F1 | ALX1 | 767 | NR2F1 | ALX4 | 768 | NR2F1 | BARHL1 |
| 769 | NR2F1 | DLX1 | 770 | NR2F1 | EOMES | 771 | NR2F1 | FOXD3 |
| 772 | NR2F1 | HOXB13 | 773 | NR2F1 | LHX4 | 774 | NR2F1 | LMX1A |
| 775 | NR2F1 | MSX2 | 776 | NR2F1 | MYCN | 777 | NR2F1 | NKX6-1 |
| 778 | NR2F1 | PARP1 | 779 | NR2F1 | PAX2 | 780 | NR2F1 | POU5F1 |
| 781 | NR2F1 | TBX22 | 782 | NR2F1 | ZNF628 | 783 | NR2F2 | ALX1 |
| 784 | NR2F2 | ALX4 | 785 | NR2F2 | BARHL1 | 786 | NR2F2 | DLX1 |
| 787 | NR2F2 | FOXD3 | 788 | NR2F2 | HOXB13 | 789 | NR2F2 | ISL1 |
| 790 | NR2F2 | LHX4 | 791 | NR2F2 | LMX1A | 792 | NR2F2 | MSX2 |
| 793 | NR2F2 | MYCN | 794 | NR2F2 | NKX6-1 | 795 | NR2F2 | ONECUT1 |
| 796 | NR2F2 | PARP1 | 797 | NR2F2 | PAX2 | 798 | NR2F2 | PAX4 |
| 799 | NR2F2 | POU5F1 | 800 | NR2F2 | TBX22 | 801 | NR2F2 | ZNF628 |
| 802 | NR2F6 | BARHL2 | 803 | NR2F6 | NR5A1 | 804 | NR2F6 | OTP |
| 805 | NR2F6 | RAX | 806 | NR2F6 | SIX3 | 807 | NR2F6 | SMAD4 |
| 808 | NR3C1 | CDX2 | 809 | NR3C1 | FOXO1 | 810 | NR3C1 | HOXB13 |
| 811 | NR3C1 | LEF1 | 812 | NR3C1 | MYCN | 813 | NR3C1 | PBX1 |
| 814 | NR4A1 | BARHL1 | 815 | NR4A1 | EBF2 | 816 | NR4A1 | GFI1 |
| 817 | NR5A1 | POU4F3 | 818 | NR5A2 | NKX2-2 | 819 | NR5A2 | POU4F3 |
| 820 | NR5A2 | PRRX1 | 821 | NR5A2 | ZIC1 | 822 | NR5A2 | ZIC2 |
| 823 | NR6A1 | NKX2-2 | 824 | NR6A1 | SIX6 | 825 | NRF1 | POU4F3 |
| 826 | OAZ1 | FOXO4 | 827 | OAZ1 | NKX2-2 | 828 | ONECUT1 | HOXD12 |
| 829 | ONECUT1 | HOXD13 | 830 | OTP | TFAP2C | 831 | OTX1 | SIX4 |
| 832 | OTX2 | CRX | 833 | OTX2 | NR2E3 | 834 | PARP1 | HOXB3 |
| 835 | PARP1 | ZFP42 | 836 | PATZ1 | CRX | 837 | PATZ1 | FOXD3 |
| 838 | PATZ1 | NKX2-2 | 839 | PATZ1 | OTX2 | 840 | PATZ1 | PAX7 |
| 841 | PATZ1 | TFAP2C | 842 | PAX2 | ALX3 | 843 | PAX4 | DMRT3 |
| 844 | PAX4 | NF1 | 845 | PAX4 | OTP | 846 | PAX4 | OTX2 |
| 847 | PAX4 | PAX7 | 848 | PAX4 | POU5F1 | 849 | PAX4 | RORB |

Continued on next page

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 850 | PAX4 | SIX6 | 851 | PAX4 | TBX15 | 852 | PAX4 | ZFP42 |
| 853 | PAX5 | FLI1 | 854 | PAX5 | FOXH1 | 855 | PAX5 | HMX3 |
| 856 | PAX5 | PAX2 | 857 | PAX5 | POU2F3 | 858 | PAX6 | FOXD3 |
| 859 | PAX6 | SMAD3 | 860 | PAX8 | LHX5 | 861 | PBX1 | BARHL2 |
| 862 | PBX1 | MNX1 | 863 | PBX1 | OTX2 | 864 | PBX1 | ZIC3 |
| 865 | PDX1 | BARHL2 | 866 | PDX1 | FOXJ3 | 867 | PDX1 | MNX1 |
| 868 | PGR | CDX2 | 869 | PGR | MYCN | 870 | PGR | PBX1 |
| 871 | PGR | ZNF628 | 872 | PITX1 | AIRE | 873 | PITX1 | MEOX1 |
| 874 | PITX1 | NR2F6 | 875 | PITX1 | STAT4 | 876 | PITX1 | WT1 |
| 877 | PITX2 | ATOH1 | 878 | PITX2 | BRF1 | 879 | PITX2 | CRX |
| 880 | PITX2 | NR2E3 | 881 | PITX2 | ZFP42 | 882 | PITX3 | CRX |
| 883 | PITX3 | NANOG | 884 | PKNOX1 | ARX | 885 | PKNOX1 | BARHL2 |
| 886 | PKNOX1 | TP63 | 887 | PKNOX2 | ARX | 888 | PKNOX2 | ETS1 |
| 889 | POU2AF1 | CDX2 | 890 | POU2AF1 | NR2F6 | 891 | POU2AF1 | OTX2 |
| 892 | POU2AF1 | PAX6 | 893 | POU2AF1 | SMAD4 | 894 | POU2AF1 | ZIC3 |
| 895 | POU2F1 | CDX2 | 896 | POU2F1 | FOXD1 | 897 | POU2F1 | FOXJ1 |
| 898 | POU2F1 | HBP1 | 899 | POU2F1 | IRX2 | 900 | POU2F1 | MECP2 |
| 901 | POU2F1 | OTX2 | 902 | POU2F1 | PAX2 | 903 | POU2F1 | PAX6 |
| 904 | POU2F1 | SMAD4 | 905 | POU2F1 | ZIC3 | 906 | POU2F2 | CDX2 |
| 907 | POU2F2 | MECP2 | 908 | POU2F2 | NR2F6 | 909 | POU2F2 | OTX2 |
| 910 | POU2F2 | PAX2 | 911 | POU2F2 | PAX6 | 912 | POU2F2 | SMAD4 |
| 913 | POU2F2 | ZIC3 | 914 | POU2F3 | CDX2 | 915 | POU2F3 | FOXD1 |
| 916 | POU2F3 | NR2F6 | 917 | POU2F3 | OTX2 | 918 | POU2F3 | PAX6 |
| 919 | POU2F3 | SMAD4 | 920 | POU2F3 | ZIC3 | 921 | POU3F1 | CDX2 |
| 922 | POU3F1 | IRX2 | 923 | POU3F1 | NR2F6 | 924 | POU3F1 | OTX2 |
| 925 | POU3F1 | PAX6 | 926 | POU3F1 | SMAD4 | 927 | POU3F1 | ZIC3 |
| 928 | POU3F2 | CDX2 | 929 | POU3F2 | NR2F6 | 930 | POU3F2 | OTX2 |
| 931 | POU3F2 | PAX6 | 932 | POU3F2 | SMAD4 | 933 | POU3F2 | ZIC3 |
| 934 | POU3F3 | CDX2 | 935 | POU3F3 | NR2F6 | 936 | POU3F3 | OTX2 |
| 937 | POU3F3 | PAX6 | 938 | POU3F3 | SMAD4 | 939 | POU3F3 | ZIC3 |
| 940 | POU5F1 | CDX2 | 941 | POU5F1 | ESX1 | 942 | POU5F1 | ETS1 |
| 943 | POU5F1 | FOXD1 | 944 | POU5F1 | HOXD12 | 945 | POU5F1 | HOXD13 |
| 946 | POU5F1 | ISL1 | 947 | POU5F1 | LHX5 | 948 | POU5F1 | NANOG |
| 949 | POU5F1 | NR2F6 | 950 | POU5F1 | OTX2 | 951 | POU5F1 | PAX6 |
| 952 | POU5F1 | POU5F1 | 953 | POU5F1 | SIX3 | 954 | POU5F1 | SMAD4 |
| 955 | POU5F1 | TFAP2C | 956 | POU5F1 | THRB | 957 | POU5F1 | VSX1 |
| 958 | POU5F1 | ZIC3 | 959 | POU6F1 | FOXJ3 | 960 | POU6F1 | OTX2 |
| 961 | PPARA | CDX2 | 962 | PPARA | LHX4 | 963 | PPARA | LHX8 |
| 964 | PPARA | MNX1 | 965 | PPARA | MYCN | 966 | PPARA | OTX2 |
| 967 | PPARA | PAX6 | 968 | PPARA | POU5F1 | 969 | PPARA | RORB |
| 970 | PPARA | SIX3 | 971 | PPARA | SMAD3 | 972 | PPARD | LHX4 |
| 973 | PPARD | MNX1 | 974 | PPARD | MYCN | 975 | PPARD | POU5F1 |
| 976 | PPARD | SIX3 | 977 | PPARD | ZNF628 | 978 | PPARG | LHX4 |
| 979 | PPARG | MNX1 | 980 | PPARG | MYCN | 981 | PPARG | POU5F1 |
| 982 | PPARG | SIX3 | 983 | PPARG | SMAD4 | 984 | PPARG | ZNF628 |
| 985 | PRDM1 | ALX1 | 986 | PRDM1 | BARHL2 | 987 | PRDM1 | FOXD3 |
| 988 | PRDM1 | HOXB13 | 989 | PRDM1 | MYF6 | 990 | PRDM1 | NKX2-1 |
| 991 | PRDM1 | POU4F3 | 992 | PRDM1 | VAX1 | 993 | PRDM1 | ZIC3 |
| 994 | PURA | ALX1 | 995 | PURA | ALX4 | 996 | PURA | FOXA2 |
| 997 | PURA | IRX4 | 998 | PURA | MSX2 | 999 | PURA | NKX2-2 |

Continued on next page

## Appendix .

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | PURA | NKX3-2 | 1001 | PURA | PITX1 | 1002 | PURA | PITX2 |
| 1003 | PURA | POU5F1 | 1004 | PURA | RORB | 1005 | RARA | CRX |
| 1006 | RARA | FOXA2 | 1007 | RARA | MYCN | 1008 | RARA | POU5F1 |
| 1009 | RARA | REST | 1010 | RARA | VAX1 | 1011 | RAX | AIRE |
| 1012 | RAX | NR2E3 | 1013 | RBPJ | NF1 | 1014 | REL | ISL1 |
| 1015 | REL | NR5A1 | 1016 | REL | PAX4 | 1017 | REL | ZIC3 |
| 1018 | RELA | ISL1 | 1019 | RELA | LMX1B | 1020 | RELA | NR5A1 |
| 1021 | RELA | PAX4 | 1022 | RELA | RUNX3 | 1023 | RELA | ZIC3 |
| 1024 | RELB | ISL1 | 1025 | RELB | PAX4 | 1026 | RELB | ZIC3 |
| 1027 | REST | DMRT3 | 1028 | REST | LMX1A | 1029 | REST | PAX6 |
| 1030 | RFX1 | CRX | 1031 | RFX1 | FOXD3 | 1032 | RFX1 | OTX2 |
| 1033 | RORA | PAX6 | 1034 | RORA | REST | 1035 | RREB1 | ARX |
| 1036 | RREB1 | EN2 | 1037 | RREB1 | FOXD3 | 1038 | RREB1 | HAND1 |
| 1039 | RREB1 | HMGA1 | 1040 | RREB1 | OTX2 | 1041 | RREB1 | PAX7 |
| 1042 | RREB1 | RAX | 1043 | RREB1 | ZIC3 | 1044 | RUNX1 | IRX2 |
| 1045 | RUNX1 | OTX2 | 1046 | RUNX1 | PARP1 | 1047 | RUNX1 | POU4F3 |
| 1048 | RUNX2 | IRX2 | 1049 | RUNX2 | OTX2 | 1050 | RUNX2 | PARP1 |
| 1051 | RUNX2 | POU4F3 | 1052 | RUNX3 | IRX2 | 1053 | RUNX3 | OTX2 |
| 1054 | RUNX3 | PARP1 | 1055 | RUNX3 | POU4F3 | 1056 | RXRA | CDX2 |
| 1057 | RXRA | CRX | 1058 | RXRA | HOXB13 | 1059 | RXRA | LHX4 |
| 1060 | RXRA | MNX1 | 1061 | RXRA | NKX2-2 | 1062 | RXRA | OTX2 |
| 1063 | RXRA | PAX6 | 1064 | RXRA | POU5F1 | 1065 | RXRA | REST |
| 1066 | RXRA | SIX3 | 1067 | RXRA | VAX1 | 1068 | RXRB | CRX |
| 1069 | RXRB | FOXA2 | 1070 | RXRB | GFI1 | 1071 | RXRB | POU5F1 |
| 1072 | RXRB | REST | 1073 | RXRB | VAX1 | 1074 | SIX4 | FOXA1 |
| 1075 | SMAD1 | CRX | 1076 | SMAD1 | LMX1A | 1077 | SMAD1 | POU5F1 |
| 1078 | SMAD1 | XBP1 | 1079 | SMAD2 | ATF4 | 1080 | SMAD2 | CRX |
| 1081 | SMAD2 | LMX1A | 1082 | SMAD2 | POU5F1 | 1083 | SMAD3 | ATF4 |
| 1084 | SMAD3 | CRX | 1085 | SMAD3 | HOXD13 | 1086 | SMAD3 | LMX1A |
| 1087 | SMAD3 | POU5F1 | 1088 | SMAD3 | TBX15 | 1089 | SMAD4 | ATF4 |
| 1090 | SMAD4 | CRX | 1091 | SMAD4 | FOXA2 | 1092 | SMAD4 | FOXD3 |
| 1093 | SMAD4 | GATA2 | 1094 | SMAD4 | LMX1A | 1095 | SMAD4 | POU5F1 |
| 1096 | SMAD4 | RAX | 1097 | SMAD4 | SIX2 | 1098 | SMAD4 | TBX15 |
| 1099 | SMAD7 | ATF4 | 1100 | SMAD7 | CRX | 1101 | SMAD7 | LMX1A |
| 1102 | SMAD7 | POU5F1 | 1103 | SOX10 | CDX2 | 1104 | SOX10 | NFKB2 |
| 1105 | SOX17 | SOX2 | 1106 | SOX2 | CDX2 | 1107 | SOX2 | ETS1 |
| 1108 | SOX2 | HOXD12 | 1109 | SOX2 | HOXD13 | 1110 | SOX2 | NANOG |
| 1111 | SOX2 | NFKB2 | 1112 | SOX2 | POU5F1 | 1113 | SOX2 | SIX3 |
| 1114 | SOX2 | TGIF2 | 1115 | SOX2 | THRB | 1116 | SOX21 | CDX2 |
| 1117 | SOX21 | NFKB2 | 1118 | SOX4 | CDX2 | 1119 | SOX4 | NFKB2 |
| 1120 | SOX5 | CDX2 | 1121 | SOX5 | NFKB2 | 1122 | SOX9 | CDX2 |
| 1123 | SOX9 | FOXI1 | 1124 | SOX9 | NFIB | 1125 | SOX9 | NFKB2 |
| 1126 | SOX9 | NKX2-2 | 1127 | SP1 | ALX3 | 1128 | SP1 | CDX2 |
| 1129 | SP1 | CRX | 1130 | SP1 | DMRT3 | 1131 | SP1 | EVX1 |
| 1132 | SP1 | FOXI1 | 1133 | SP1 | LMX1A | 1134 | SP1 | NR5A2 |
| 1135 | SP1 | OTP | 1136 | SP1 | OTX2 | 1137 | SP1 | PAX7 |
| 1138 | SP2 | ALX3 | 1139 | SP2 | CDX2 | 1140 | SP2 | CRX |
| 1141 | SP2 | DMRT3 | 1142 | SP2 | EVX1 | 1143 | SP2 | FOXI1 |
| 1144 | SP2 | LMX1A | 1145 | SP2 | MSX2 | 1146 | SP2 | NKX2-2 |
| 1147 | SP2 | OTX2 | 1148 | SP2 | PAX7 | 1149 | SP3 | ALX3 |

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1150 | SP3 | CDX2 | 1151 | SP3 | CRX | 1152 | SP3 | DMRT3 |
| 1153 | SP3 | EVX1 | 1154 | SP3 | FOXI1 | 1155 | SP3 | LMX1A |
| 1156 | SP3 | NKX2-2 | 1157 | SP3 | OTP | 1158 | SP3 | OTX2 |
| 1159 | SP3 | PAX7 | 1160 | SP4 | ALX3 | 1161 | SP4 | CDX2 |
| 1162 | SP4 | CRX | 1163 | SP4 | DMRT3 | 1164 | SP4 | EVX1 |
| 1165 | SP4 | FOXI1 | 1166 | SP4 | LMX1A | 1167 | SP4 | MSX2 |
| 1168 | SP4 | NKX2-2 | 1169 | SP4 | OTX2 | 1170 | SP4 | PAX7 |
| 1171 | SPI1 | ALX1 | 1172 | SPI1 | EOMES | 1173 | SPI1 | EVX1 |
| 1174 | SPI1 | FOXH1 | 1175 | SPI1 | HMX3 | 1176 | SPI1 | IRX2 |
| 1177 | SPI1 | LHX4 | 1178 | SPI1 | MYCN | 1179 | SPI1 | MYOG |
| 1180 | SPI1 | POU5F1 | 1181 | SPI1 | T | 1182 | SPI1 | TFAP2B |
| 1183 | SPI1 | TP63 | 1184 | SPIB | LMX1A | 1185 | SPZ1 | ALX1 |
| 1186 | SPZ1 | CDX2 | 1187 | SPZ1 | CRX | 1188 | SPZ1 | FOXA1 |
| 1189 | SPZ1 | FOXA2 | 1190 | SPZ1 | HOXB3 | 1191 | SPZ1 | NKX2-2 |
| 1192 | SPZ1 | PAX7 | 1193 | SPZ1 | POU4F3 | 1194 | SPZ1 | POU5F1 |
| 1195 | SPZ1 | PURA | 1196 | SPZ1 | RAX | 1197 | SPZ1 | ZIC3 |
| 1198 | SREBF1 | ARX | 1199 | SREBF1 | EN2 | 1200 | SREBF1 | FOXD3 |
| 1201 | SREBF1 | IRX4 | 1202 | SREBF1 | NKX2-2 | 1203 | SREBF1 | PAX7 |
| 1204 | SREBF1 | POU5F1 | 1205 | SREBF1 | TBX22 | 1206 | SREBF1 | ZNF148 |
| 1207 | SREBF2 | ARX | 1208 | SREBF2 | CDX2 | 1209 | SREBF2 | DMRT3 |
| 1210 | SREBF2 | EN2 | 1211 | SREBF2 | FOXD3 | 1212 | SREBF2 | IRX4 |
| 1213 | SREBF2 | NKX2-2 | 1214 | SREBF2 | NR5A2 | 1215 | SREBF2 | PAX6 |
| 1216 | SREBF2 | PAX7 | 1217 | SREBF2 | POU5F1 | 1218 | SREBF2 | TBX22 |
| 1219 | SREBF2 | ZNF148 | 1220 | SRF | ESX1 | 1221 | SRF | IRX2 |
| 1222 | SRY | CDX2 | 1223 | SRY | NFKB2 | 1224 | STAT1 | FOXO4 |
| 1225 | STAT1 | LHX2 | 1226 | STAT1 | POU4F3 | 1227 | STAT1 | VAX1 |
| 1228 | STAT3 | ARX | 1229 | STAT3 | DLX3 | 1230 | STAT3 | FOXD3 |
| 1231 | STAT3 | FOXO4 | 1232 | STAT3 | HMX3 | 1233 | STAT3 | LHX5 |
| 1234 | STAT3 | OTX2 | 1235 | STAT3 | PAX7 | 1236 | STAT3 | PKNOX2 |
| 1237 | STAT3 | POU4F3 | 1238 | STAT3 | SOX2 | 1239 | STAT3 | VAX1 |
| 1240 | STAT4 | POU2F3 | 1241 | STAT5A | TBX22 | 1242 | T | ATF2 |
| 1243 | T | POU5F1 | 1244 | TAL1 | CDX2 | 1245 | TAL1 | DMRT1 |
| 1246 | TAL1 | EHF | 1247 | TAL1 | OVOL2 | 1248 | TAL1 | TP63 |
| 1249 | TAL1 | ZFP42 | 1250 | TAL1 | ZNF219 | 1251 | TBX15 | FOXA1 |
| 1252 | TBX15 | HOXD13 | 1253 | TBX15 | TFAP2C | 1254 | TBX18 | FOXA1 |
| 1255 | TBX18 | TFAP2C | 1256 | TBX22 | TFAP2C | 1257 | TBX5 | DMRT3 |
| 1258 | TBX5 | EGR2 | 1259 | TBX5 | ETV7 | 1260 | TBX5 | FOXA2 |
| 1261 | TBX5 | REST | 1262 | TBX5 | SIX3 | 1263 | TCF12 | DMRT1 |
| 1264 | TCF12 | HNF1B | 1265 | TCF12 | LMX1A | 1266 | TCF12 | NKX3-2 |
| 1267 | TCF12 | NR2F6 | 1268 | TCF12 | OVOL2 | 1269 | TCF12 | POU5F1 |
| 1270 | TCF12 | ZFP42 | 1271 | TCF3 | ATOH1 | 1272 | TCF3 | DMRT1 |
| 1273 | TCF3 | HOXB13 | 1274 | TCF3 | HOXD12 | 1275 | TCF3 | LMX1A |
| 1276 | TCF3 | OTX2 | 1277 | TCF3 | OVOL2 | 1278 | TCF3 | POU3F1 |
| 1279 | TCF3 | POU5F1 | 1280 | TCF3 | REST | 1281 | TCF3 | SIX2 |
| 1282 | TCF3 | SIX3 | 1283 | TCF3 | T | 1284 | TCF3 | TBX22 |
| 1285 | TCF3 | ZFP42 | 1286 | TCF4 | DMRT1 | 1287 | TCF4 | FOXD1 |
| 1288 | TCF4 | HNF1B | 1289 | TCF4 | NKX3-2 | 1290 | TCF4 | OVOL2 |
| 1291 | TCF4 | ZFP42 | 1292 | TCF7 | MNX1 | 1293 | TCF7 | MYOG |
| 1294 | TEF | PAX7 | 1295 | TEF | ZIC1 | 1296 | TEF | ZIC2 |
| 1297 | TERF1 | OTX2 | 1298 | TERF1 | POU5F1 | 1299 | TFAP2A | DMRT3 |

## Appendix .

Table A. 1 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1300 | TFAP2A | HOXC12 | 1301 | TFAP2A | LHX8 | 1302 | TFAP2A | OVOL2 |
| 1303 | TFAP2A | PAX2 | 1304 | TFAP2A | PAX7 | 1305 | TFAP2A | SIX6 |
| 1306 | TFAP2A | TBX22 | 1307 | TFAP2A | ZFP42 | 1308 | TFAP2A | ZIC3 |
| 1309 | TFAP2B | DMRT3 | 1310 | TFAP2B | HOXC12 | 1311 | TFAP2B | LHX8 |
| 1312 | TFAP2B | PAX2 | 1313 | TFAP2B | PAX7 | 1314 | TFAP2B | RORB |
| 1315 | TFAP2B | SIX6 | 1316 | TFAP2B | TBX22 | 1317 | TFAP2B | ZFP42 |
| 1318 | TFAP2B | ZIC3 | 1319 | TFAP2C | DMRT3 | 1320 | TFAP2C | HOXC12 |
| 1321 | TFAP2C | LHX8 | 1322 | TFAP2C | PAX2 | 1323 | TFAP2C | PAX7 |
| 1324 | TFAP2C | RORB | 1325 | TFAP2C | SIX6 | 1326 | TFAP2C | TBX22 |
| 1327 | TFAP2C | ZFP42 | 1328 | TFAP2C | ZIC3 | 1329 | TFAP4 | ESX1 |
| 1330 | TFAP4 | GFI1 | 1331 | TFAP4 | OTX2 | 1332 | TFAP4 | TBX22 |
| 1333 | TFAP4 | ZNF628 | 1334 | TFCP2 | ARX | 1335 | TFCP2 | EBF2 |
| 1336 | TFCP2 | EN2 | 1337 | TFCP2 | EOMES | 1338 | TFCP2 | LHX5 |
| 1339 | TFCP2 | ZBTB7A | 1340 | TFCP2L1 | HMGA1 | 1341 | TFCP2L1 | LHX4 |
| 1342 | TFCP2L1 | ZFP42 | 1343 | TFDP1 | LMX1A | 1344 | TFDP2 | LMX1A |
| 1345 | TGIF1 | ARX | 1346 | TGIF1 | ETS1 | 1347 | TGIF1 | RXRB |
| 1348 | TGIF2 | ARX | 1349 | THRA | CRX | 1350 | THRA | MYCN |
| 1351 | THRA | POU5F1 | 1352 | THRA | REST | 1353 | THRA | VAX1 |
| 1354 | THRB | CRX | 1355 | THRB | MYCN | 1356 | THRB | POU5F1 |
| 1357 | THRB | REST | 1358 | THRB | VAX1 | 1359 | TLX2 | IRX4 |
| 1360 | TLX2 | TBX15 | 1361 | TOPORS | FOXA2 | 1362 | TOPORS | PARP1 |
| 1363 | TOPORS | PRRX1 | 1364 | TOPORS | TERF1 | 1365 | TOPORS | ZFP42 |
| 1366 | TP53 | DMRT3 | 1367 | TP53 | FOXD1 | 1368 | TP53 | LMX1A |
| 1369 | TP53 | MEOX1 | 1370 | TP53 | NKX3-2 | 1371 | TP53 | PAX2 |
| 1372 | TP53 | POU5F1 | 1373 | TP63 | DMRT3 | 1374 | TP63 | LMX1A |
| 1375 | TP63 | NKX3-2 | 1376 | TP63 | POU5F1 | 1377 | TP73 | DMRT3 |
| 1378 | TP73 | LMX1A | 1379 | TP73 | NKX3-2 | 1380 | TP73 | POU5F1 |
| 1381 | TRIM28 | ARX | 1382 | TRIM28 | BARHL2 | 1383 | TRIM28 | FOXA2 |
| 1384 | TRIM28 | HOXA11 | 1385 | TRIM28 | LHX8 | 1386 | TRIM28 | SOX10 |
| 1387 | USF1 | DMRT1 | 1388 | USF1 | OVOL2 | 1389 | USF1 | ZFP42 |
| 1390 | USF2 | DMRT1 | 1391 | USF2 | OVOL2 | 1392 | USF2 | ZFP42 |
| 1393 | VDR | ALX3 | 1394 | VDR | ALX4 | 1395 | VDR | CRX |
| 1396 | VDR | DMRT1 | 1397 | VDR | EVX1 | 1398 | VDR | LMX1B |
| 1399 | VDR | NKX2-1 | 1400 | VDR | ONECUT1 | 1401 | VDR | OTX2 |
| 1402 | VDR | PAX2 | 1403 | VDR | POU5F1 | 1404 | VDR | SIX6 |
| 1405 | VSX1 | TFAP2C | 1406 | VSX2 | SOX2 | 1407 | WT1 | ALX3 |
| 1408 | WT1 | CRX | 1409 | WT1 | FOXD3 | 1410 | WT1 | FOXH1 |
| 1411 | WT1 | LMX1B | 1412 | WT1 | PAX7 | 1413 | WT1 | PURA |
| 1414 | WT1 | SIX6 | 1415 | WT1 | TFAP2C | 1416 | XBP1 | CDX2 |
| 1417 | YY1 | CDX2 | 1418 | YY1 | LMX1B | 1419 | YY1 | ZFP42 |
| 1420 | ZBTB33 | POU5F1 | 1421 | ZBTB33 | ZNF589 | 1422 | ZBTB6 | FOXJ3 |
| 1423 | ZВTB6 | LHX8 | 1424 | ZBTB6 | NANOG | 1425 | ZВTB6 | OTX1 |
| 1426 | ZBTB7A | PAX5 | 1427 | ZBTB7A | POU5F1 | 1428 | ZBTB7B | ALX3 |
| 1429 | ZBTB7B | CDX2 | 1430 | ZBTB7B | CRX | 1431 | ZBTB7B | DMRT3 |
| 1432 | ZBTB7B | EVX1 | 1433 | ZBTB7B | FOXD3 | 1434 | ZBTB7B | MSX2 |
| 1435 | ZВTB7B | NKX2-2 | 1436 | ZBTB7B | NKX6-1 | 1437 | ZBTB7B | OTX2 |
| 1438 | ZBTB7B | PAX7 | 1439 | ZBTB7B | SIX6 | 1440 | ZEB1 | ETV7 |
| 1441 | ZEB1 | HOXA11 | 1442 | ZEB1 | MNX1 | 1443 | ZEB1 | ONECUT1 |
| 1444 | ZEB1 | OTX1 | 1445 | ZEB1 | REST | 1446 | ZEB1 | SOX2 |
| 1447 | ZFP161 | POU4F3 | 1448 | ZFP42 | CDX2 | 1449 | ZFP42 | HOXB13 |

Table A. 1 - Continued from previous page

| $\mathbf{N}$ | Source | Target | N | Source | Target | N | Source | Target |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1450 | ZFP42 | PAX7 | 1451 | ZFP42 | VAX1 | 1452 | ZFX | CRX |
| 1453 | ZFX | DMRT3 | 1454 | ZFX | EN2 | 1455 | ZFX | OTP |
| 1456 | ZFX | OTX2 | 1457 | ZFX | PAX7 | 1458 | ZFX | POU4F3 |
| 1459 | ZFX | POU5F1 | 1460 | ZFX | SOX10 | 1461 | ZFX | ZFP42 |
| 1462 | ZIC2 | FOXG1 | 1463 | ZIC3 | NF1 | 1464 | ZNF143 | FOXD1 |
| 1465 | ZNF143 | POU5F1 | 1466 | ZNF143 | TLX2 | 1467 | ZNF148 | ALX3 |
| 1468 | ZNF148 | CRX | 1469 | ZNF148 | EVX1 | 1470 | ZNF148 | FOXD3 |
| 1471 | ZNF148 | FOXH1 | 1472 | ZNF148 | LMX1B | 1473 | ZNF148 | NKX6-1 |
| 1474 | ZNF148 | OTX2 | 1475 | ZNF148 | PAX7 | 1476 | ZNF148 | PURA |
| 1477 | ZNF148 | SIX6 | 1478 | ZNF148 | TFAP2C | 1479 | ZNF148 | ZFP42 |
| 1480 | ZNF148 | ZIC3 | 1481 | ZNF219 | DMRT3 | 1482 | ZNF219 | NKX2-2 |
| 1483 | ZNF219 | OTX2 | 1484 | ZNF219 | PAX7 | 1485 | ZNF219 | POU5F1 |
| 1486 | ZNF219 | PURA | 1487 | ZNF219 | SIX6 | 1488 | ZNF219 | ZIC3 |
| 1489 | ZNF263 | ALX4 | 1490 | ZNF263 | CRX | 1491 | ZNF263 | DMRT3 |
| 1492 | ZNF263 | E2F4 | 1493 | ZNF263 | ESX1 | 1494 | ZNF263 | EVX1 |
| 1495 | ZNF263 | FOXC1 | 1496 | ZNF263 | FOXD3 | 1497 | ZNF263 | MEOX1 |
| 1498 | ZNF263 | ONECUT1 | 1499 | ZNF263 | PARP1 | 1500 | ZNF263 | PAX7 |
| 1501 | ZNF263 | POU5F1 | 1502 | ZNF263 | SMAD4 | 1503 | ZNF263 | TBX22 |
| 1504 | ZNF350 | ATOH1 | 1505 | ZNF350 | FOXC1 | 1506 | ZNF350 | NKX6-1 |
| 1507 | ZNF589 | PAX2 | 1508 | ZNF589 | TP63 | 1509 | ZNF628 | PAX2 |
|  |  |  |  |  |  |  | 40 |  |

Table A.2. 55 ESC regulatory complex-target modules using the ESC specific interactions and protein complexes. TFs are separated by semicolon.

| N | Complex ID | TFs in complex | Common targeted TFs | Common targeted TFs in Assou's list |
| :---: | :---: | :---: | :---: | :---: |
| 1 | HC5737 | SREBF1;SREBF2 | ARX;EN2;FOXD3;IRX4;NKX2-2; PAX7;POU5F1;TBX22;ZNF148 | FOXD3;POU5F1 |
| 2 | HC4791 | KLF4;MZF1 | FOXD3;PAX2;ZFP42 | FOXD3;ZFP42 |
| 3 | HC4463 | KLF4;ZFX | DMRT3;POU5F1;ZFP42 | POU5F1;ZFP42 |
| 4 | HC5737 | KLF4;SREBF2 | DMRT3;FOXD3;POU5F1 | FOXD3;POU5F1 |
| 5 | HC8397 | ALX4;MZF1 | FOXD3;TFAP2C | FOXD3;TFAP2C |
| 6 | HC5737 | KLF4;SREBF1 | FOXD3;POU5F1 | FOXD3;POU5F1 |
| 7 | HC5737 | KLF4;SREBF1;SREBF2 | FOXD3;POU5F1 | FOXD3;POU5F1 |
| 8 | HC7980 | SP1;SP4 | ALX3;CDX2;CRX;DMRT3;EVX1; FOXI1;LMX1A;OTX2;PAX7 | OTX2 |
| 9 | HC6813 | SP1;ZFX | CRX;DMRT3;OTP;OTX2;PAX7 | OTX2 |
| 10 | HC4806 | ELK1;ETS1 | HBP1;TCF7;ZIC1;ZIC2 | ZIC2 |
| 11 | HC4830 | MZF1;TFAP2A | PAX2;TBX22;ZFP42 | ZFP42 |
| 12 | HC6813 | TFAP2A;ZFX | DMRT3;PAX7;ZFP42 | ZFP42 |
| 13 | HC6706 | KLF4;TFAP2A | DMRT3;PAX2;ZFP42 | ZFP42 |
| 14 | HC6706 | KLF4;SPI1 | POU5F1;TFAP2B;TP63 | POU5F1 |
| 15 | HC6161 | FOXD3;SP1 | FOXI1;OTX2;PAX7 | OTX2 |
| 16 | HC7106 | ELK4;ETS1 | TCF7;ZIC1;ZIC2 | ZIC2 |
| 17 | HC7106 | ELK1;ELK4 | TCF7;ZIC1;ZIC2 | ZIC2 |
| 18 | HC7106 | ELK1;ELK4;ETS1 | TCF7;ZIC1;ZIC2 | ZIC2 |
| 19 | HC5737 | EP300;SP1 | DMRT3;OTX2;PAX7 | OTX2 |
| 20 | HC8674 | USF1;USF2 | DMRT1;OVOL2;ZFP42 | ZFP42 |
| 21 | HC4830 | TFAP2A;USF1 | OVOL2;ZFP42 | ZFP42 |
| 22 | HC4829 | ETS1;KLF4 | FOXD3;MSX2 | FOXD3 |
| 23 | HC8945 | MYB;TFAP2A | PAX7;ZIC3 | ZIC3 |
| 24 | HC8981 | MZF1;ZFX | CRX;ZFP42 | ZFP42 |
| 25 | HC4791 | KLF4;MZF1;TFAP2A | PAX2;ZFP42 | ZFP42 |
| 26 | HC4750 | MAX;TFAP2A | OVOL2;ZFP42 | ZFP42 |
| 27 | HC4463 | KLF4;TFAP2A;ZFX | DMRT3;ZFP42 | ZFP42 |
| 28 | HC6507 | ETS1;NFKB1 | BARHL2;ZIC3 | ZIC3 |
| 29 | HC5737 | MZF1;SREBF1 | FOXD3;TBX22 | FOXD3 |
| 30 | HC5737 | MZF1;SREBF2 | FOXD3;TBX22 | FOXD3 |
| 31 | HC5737 | MZF1;SREBF1;SREBF2 | FOXD3;TBX22 | FOXD3 |
| 32 | HC4824 | GATA2;GATA3 | FOXC1;FOXJ3;MSX2;NR5A2 |  |
| 33 | HC9343 | HSF1; HSF2 | FOXJ3;LEF1;MECP2;NKX2-1 |  |
| 34 | HC5737 | SP1;SREBF2 | CDX2;DMRT3;NR5A2;PAX7 |  |
| 35 | HC5737 | EP300;SREBF2 | DMRT3;NKX2-2;PAX7 |  |
| 36 | HC5737 | SREBF2;TFAP2A | DMRT3;PAX7;TBX22 |  |
| 37 | HC4812 | FOXI1;SP1 | FOXI1;PAX7 |  |
| 38 | HC6813 | SP1;TFAP2A | DMRT3;PAX7 |  |
| 39 | HC6813 | SP1;TFAP2A;ZFX | DMRT3;PAX7 |  |
| 40 | HC4771 | MYB;SP1 | LMX1A;PAX7 |  |
| 41 | HC7991 | SOX10;SOX5 | CDX2;NFKB2 |  |
| 42 | HC7837 | FOXA1;ZEB1 | ETV7;HOXA11 |  |
| 43 | HC2082 | GATA1;GATA2 | SIX3;STAT3 |  |
| 44 | HC9023 | TFAP2A;TP53 | DMRT3;PAX2 |  |
| 45 | HC6196 | EP300;TFAP2A | DMRT3;PAX7 |  |
| 46 | HC9394 | FOXM1;ZEB1 | ETV7;HOXA11 |  |
| 47 | HC5737 | EP300;SREBF1 | NKX2-2;PAX7 |  |
| 48 | HC5737 | SREBF1;TFAP2A | PAX7;TBX22 |  |
| 49 | HC5737 | EP300;SREBF1;SREBF2 | NKX2-2;PAX7 |  |
| 50 | HC5737 | SREBF1;SREBF2;TFAP2A | PAX7;TBX22 |  |
| 51 | HC5737 | EP300;SP1;SREBF2 | DMRT3;PAX7 |  |
| 52 | HC5737 | SP1;SREBF2;TFAP2A | DMRT3;PAX7 |  |
| 53 | HC5737 | EP300;SREBF2;TFAP2A | DMRT3;PAX7 |  |
| 54 | HC5737 | EP300;SP1;TFAP2A | DMRT3;PAX7 |  |
| 55 | HC5737 | EP300;SP1;SREBF2;TFAP2A | DMRT3;PAX7 |  |

Table A.3. The distributions of nodes and interactions among three layers: top, core, bottom in the hierarchical organization of 41 networks. The entries in red color are those significantly low/high percentages when compared to the others. Abbreviations. T-T: Top $\rightarrow$ Top. T-C: Top $\rightarrow$ Core; T-B: Top $\rightarrow$ Bottom;C-C: Core $\rightarrow$ Core; C-B: Core $\rightarrow$ Bottom; B-B:
Bottom $\rightarrow$ Bottom.

| Network | \% of nodes in 3 layers |  |  |  | \% of interactions between 3 layers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top | Core | Bottom | T-T | T-C | T-B | C-C | C-B | B-B |
| 01_AG10803_Skin_Fib | 23.7 | 65.7 | 10.6 | 0 | 13.2 | 2 | 74.1 | 10.6 | 0 |
| 02_AoAF_Aortic_Fib | 21.8 | 69.4 | 8.8 | 0 | 11.5 | 1.3 | 78.6 | 8.5 | 0 |
| 03_CD20+_B_Lymphocyte | 22.6 | 66.8 | 10.6 | 0 | 14.4 | 1.8 | 74.7 | 9.1 | 0 |
| 04_CD34+_Hemat_Stem_Cell | 11.5 | 77 | 11.5 | 0 | 6.7 | 0.9 | 82.6 | 9.8 | 0 |
| 05_fBrain | 24.3 | 63.4 | 12.4 | 0.1 | 13.6 | 2.1 | 73 | 11.2 | 0 |
| 06_fHeart | 21.2 | 68.2 | 10.6 | 0 | 11.1 | 1 | 80.6 | 7.3 | 0 |
| 07_fLung | 11.5 | 79.5 | 9 | 0 | 6.5 | 0.8 | 83.7 | 9 | 0 |
| 08_GM06990_B_Lymphoblastoid | 30.6 | 58.5 | 10.8 | 0 | 17 | 2.3 | 71.1 | 9.5 | 0 |
| 09_GM12865_B_Lymphoblastoid | 23.9 | 66 | 10.1 | 0 | 13.5 | 1.5 | 76.7 | 8.3 | 0 |
| 10_H7-hESC_Embryonic_Stem_Cell | 6.2 | 85.3 | 8.5 | 0 | 3.8 | 0.3 | 87.6 | 8.2 | 0 |
| 11_HAEpiC_Amniotic_Epi | 25.9 | 64.4 | 9.7 | 0.1 | 16.4 | 1.9 | 73.9 | 7.8 | 0 |
| 12_HA-h_Hippocampal | 13.3 | 76.8 | 9.9 | 0 | 9.9 | 0.8 | 81.6 | 7.6 | 0 |
| 13_HCF_Cardiac_Fib | 20.9 | 69.3 | 9.8 | 0 | 10.7 | 1.1 | 79.8 | 8.3 | 0 |
| 14_HCM_Cardiac_Fib | 19.4 | 70.3 | 10.3 | 0 | 10.2 | 1.1 | 80.5 | 8.3 | 0 |
| 15_HCPEpiC_Choroid_Plexus_Epi | 22.5 | 68.3 | 9.2 | 0 | 12 | 1.1 | 79.9 | 6.9 | 0 |
| 16_HEEpiC_Esophageal_Epi | 20.9 | 68.2 | 11 | 0 | 9.1 | 1.1 | 79.8 | 9.9 | 0 |
| 17_HepG2_Hepatoblastoma | 28.3 | 61 | 10.7 | 0 | 19.3 | 2.9 | 68.8 | 8.9 | 0 |
| 18_HFF_Foreskin_Fib | 20.2 | 65.7 | 14.1 | 0 | 10.6 | 1.4 | 76.4 | 11.5 | 0 |
| 19_HIPEpiC_Iris_Pigment_Epi | 24.4 | 64.9 | 10.7 | 0 | 11.6 | 1.3 | 78.6 | 8.5 | 0 |
| 20_HMF_Mamary_Fib | 21.1 | 71.1 | 7.8 | 0 | 12.7 | 1.3 | 78.6 | 7.4 | 0 |
| 21_HMVEC_LLy_Lung_Lymphatic | 22.3 | 67 | 10.7 | 0 | 14.3 | 2 | 73.8 | 9.9 | 0 |
| 22_HMVEC-dBl-Ad_Adult_Derm_Blood | 26.4 | 62.6 | 11 | 0 | 16.8 | 2.3 | 71.3 | 9.6 | 0 |
| 23_HMVEC-dBl-Neo_Derm_Blood | 19.6 | 69.5 | 10.9 | 0 | 12.3 | 1.6 | 76.3 | 9.8 | 0 |
| 24_HMVEC-dLy-Neo_Derm_Lymph | 22.8 | 67.4 | 9.8 | 0 | 14.2 | 1.6 | 75.6 | 8.6 | 0 |
| 25_HPAF_Pulmonary_Artery_Fib | 22.5 | 67.2 | 10.4 | 0 | 11.1 | 1.1 | 79.8 | 8 | 0 |
| 26_HPdLF_Periodontal_Fib | 26.4 | 65.5 | 8.1 | 0 | 14.2 | 1.5 | 76 | 8.3 | 0 |
| 27_HPF_Pulmonary_Fib | 23.5 | 67.9 | 8.6 | 0 | 14.9 | 1.4 | 75.8 | 7.7 | 0 |
| 28_HRCEpiC_Renal_Cortical_Epi | 32.8 | 57.1 | 10.1 | 0.1 | 23 | 3.3 | 63.8 | 9.8 | 0 |
| 29_HSMM_Skeletal_Myoblast | 19.4 | 71 | 9.6 | 0 | 13.8 | 1.5 | 76.7 | 7.9 | 0 |
| 30_HVMF_Mesenchymal_Fib | 23.6 | 67.7 | 8.7 | 0 | 14.4 | 1.3 | 77.1 | 7.1 | 0 |
| 31_IMR90_Fetal_Lung_Fib | 27 | 62.3 | 10.7 | 0 | 15.3 | 2.4 | 71.3 | 10.9 | 0 |
| 32_K562_Erythroid | 33 | 57.6 | 9.4 | 0 | 17.4 | 2.2 | 70.7 | 9.6 | 0 |
| 33_NB4_Leukemia | 18.5 | 72.8 | 8.7 | 0 | 9.3 | 1.1 | 81.4 | 8.2 | 0 |
| 34_NH-A_Astrocyte | 29.5 | 59.4 | 11.2 | 0 | 15.5 | 2.3 | 72.3 | 9.9 | 0 |
| 35_NHDF-Ad_Adult_Dermal_Fib | 22.9 | 66.4 | 10.7 | 0 | 12.7 | 1.7 | 76.3 | 9.2 | 0 |
| 36_NHDF-neo_Neonatal_Dermal_Fib | 22.6 | 70 | 7.5 | 0 | 13.7 | 1.1 | 78.8 | 6.3 | 0 |
| 37_NHLF_Lung_Fib | 20.3 | 68 | 11.8 | 0 | 10.8 | 1.5 | 76.8 | 10.8 | 0 |
| 38_SAEC_Small_Airway_Epi | 31.3 | 58.9 | 9.8 | 0 | 13.7 | 1.9 | 74.3 | 10.1 | 0 |
| 39_SKMC_Skeletal_Muscle | 17.6 | 73.3 | 9 | 0 | 9.3 | 1 | 81.3 | 8.4 | 0 |
| 40_SK-N-SH_RA_Neuroblastoma | 25.5 | 59.3 | 15.2 | 0 | 16.5 | 3.1 | 68 | 12.4 | 0 |
| 41_Th1_T_Lymphocyte | 28.9 | 62.7 | 8.4 | 0 | 15.9 | 1.3 | 75.1 | 7.7 | 0 |
| Mean(SD) | 23(5.6) | 67(5.9) | 10(1.5) | 0 | 13(3.6) | 2(0.6) | 76(4.6) | 9(1.3) | 0 |
|  | 1 | -1 | 0.1 |  | 1 | 0.9 | -0.9 | 0.2 |  |
| Correlation | -1 | 1 | -0.4 |  | 0.9 | 1 | -1 | 0.6 |  |
|  | 0.1 | -0.4 | 1 |  | -0.9 | -1 | 1 | -0.5 |  |
|  |  |  |  |  | 0.2 | 0.6 | -0.5 | 1 |  |

Table A.4. Local reaching centrality (LRC) and global reaching centrality (GRC) in each of 41 networks. Here we report average LRC of TFs in Top, Core, and Bottom layers. As expected, the LRC of each TF in a layer is always greater than that of each TF in the layers below it in all except two stromal (HCF and HCM) networks from Cardiac Fibroblast.

| N | Name | GRC | LRC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Top | Core | Bottom |
| 1 | B-Lymphocyte | 0.085 | 0.7743 | 0.7721 | 0 |
| 2 | Hemat. Stem Cell | 0.108 | 0.8812 | 0.879 | $3 \mathrm{e}-04$ |
| 3 | B-Lymphoblastoid | 0.085 | 0.6872 | 0.6849 | $2 \mathrm{e}-04$ |
| 4 | B-Lymphoblastoid | 0.085 | 0.7573 | 0.755 | 0 |
| 5 | Erythroid | 0.068 | 0.6667 | 0.6643 | 2e-04 |
| 6 | Promyelocytic Leuk. | 0.076 | 0.813 | 0.8109 | $2 \mathrm{e}-04$ |
| 7 | T-Lymphocyte | 0.066 | 0.7071 | 0.7048 | 1e-04 |
| 8 | Hepatoblastoma | 0.081 | 0.7167 | 0.7143 | 2e-04 |
| 9 | Neuroblastoma | 0.121 | 0.7421 | 0.7398 | 1e-04 |
| 10 | Lung Lymphatic | 0.089 | 0.7768 | 0.7746 | $1 \mathrm{e}-04$ |
| 11 | Adult Dermal Blood | 0.086 | 0.7357 | 0.7335 | 1e-04 |
| 12 | Neonatal Dermal Blood | 0.093 | 0.8039 | 0.8017 | $1 \mathrm{e}-04$ |
| 13 | Neonatal Dermal Lymph. | 0.081 | 0.7718 | 0.7696 | 0 |
| 14 | Amniotic Epi. | 0.084 | 0.7397 | 0.7374 | $1 \mathrm{e}-04$ |
| 15 | Choroid Plexus Epi. | 0.079 | 0.7718 | 0.7696 | $2 \mathrm{e}-04$ |
| 16 | Esophageal Epi. | 0.091 | 0.7931 | 0.7909 | $3 \mathrm{e}-04$ |
| 17 | Iris Pigment Epi. | 0.087 | 0.7544 | 0.7522 | 1e-04 |
| 18 | Renal Cortical Epi | 0.078 | 0.6682 | 0.6659 | $1 \mathrm{e}-04$ |
| 19 | Small Airway Epi. | 0.074 | 0.6856 | 0.6834 | $3 \mathrm{e}-04$ |
| 20 | ESC | 0.082 | 0.9403 | 0.9382 | 0 |
| 21 | Fetal Brain | 0.109 | 0.7523 | 0.75 | $2 \mathrm{e}-04$ |
| 22 | Fetal Heart | 0.088 | 0.7898 | 0.7876 | $1 \mathrm{e}-04$ |
| 23 | Fetal Lung | 0.083 | 0.8868 | 0.8846 | 0 |
| 24 | Skin Fib. | 0.092 | 0.7594 | 0.7572 | 0 |
| 25 | Aortic Fibroblast | 0.074 | 0.7824 | 0.7802 | 4e-04 |
| 26 | Cardiac Fib. | 0.083 | 0.7766 | 0.7908 | 0 |
| 27 | Cardiac Fib. | 0.089 | 0.7899 | 0.8056 | 0 |
| 28 | Foreskin Fib. | 0.117 | 0.7964 | 0.7942 | $2 \mathrm{e}-04$ |
| 29 | Mammary Fib. | 0.069 | 0.7892 | 0.787 | 1e-04 |
| 30 | Pulmonary Artery Fib. | 0.088 | 0.7721 | 0.7699 | 0 |
| 31 | Periodontal Fib. | 0.069 | 0.7347 | 0.7325 | $2 \mathrm{e}-04$ |
| 32 | Pulmonary Fib. | 0.074 | 0.7632 | 0.761 | $3 \mathrm{e}-04$ |
| 33 | Mesenchymal Fib. | 0.07 | 0.7658 | 0.7636 | $2 \mathrm{e}-04$ |
| 34 | Fetal Lung Fib. | 0.083 | 0.7299 | 0.7277 | $3 \mathrm{e}-04$ |
| 35 | Adult Dermal Fib. | 0.088 | 0.7713 | 0.7691 | $2 \mathrm{e}-04$ |
| 36 | Neonatal Dermal Fib. | 0.065 | 0.7743 | 0.7719 | $1 \mathrm{e}-04$ |
| 37 | Lung Fib. | 0.099 | 0.7974 | 0.7952 | $2 \mathrm{e}-04$ |
| 38 | Hippocampal Astrocyte | 0.091 | 0.8667 | 0.8645 | $1 \mathrm{e}-04$ |
| 39 | Skeletal Myoblast | 0.083 | 0.8054 | 0.8031 | $1 \mathrm{e}-04$ |
| 40 | Astrocyte | 0.083 | 0.701 | 0.6987 | $1 \mathrm{e}-04$ |
| 41 | Skeletal Muscle | 0.082 | 0.8237 | 0.8215 | $1 \mathrm{e}-04$ |

Table A.5. 2041 housekeeping (HK) interactions which are found in all the 41 TF regulatory networks.

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | AHR | ATF2 | 2 | AHR | EGR1 | 3 | AHR | GTF2A1 |
| 4 | AHR | HBP1 | 5 | AHR | RFX1 | 6 | AHR | YY1 |
| 7 | AHR | ZNF219 | 8 | AIRE | TCF3 | 9 | ALX4 | HMBOX1 |
| 10 | ALX4 | JUN | 11 | ALX4 | RB1 | 12 | ALX4 | UBP1 |
| 13 | AR | HMBOX1 | 14 | AR | NR6A1 | 15 | AR | RXRB |
| 16 | ARNT | BPTF | 17 | ARNT | DBP | 18 | ARNT | DLX2 |
| 19 | ARNT | EGR1 | 20 | ARNT | GTF2A1 | 21 | ARNT | GZF1 |
| 22 | ARNT | HINFP | 23 | ARNT | IRF9 | 24 | ARNT | NFATC3 |
| 25 | ARNT | TOPORS | 26 | ATF1 | BACH2 | 27 | ATF1 | BDP1 |
| 28 | ATF1 | EGR2 | 29 | ATF1 | ING4 | 30 | ATF1 | JUND |
| 31 | ATF1 | MAFF | 32 | ATF1 | NF1 | 33 | ATF1 | NR6A1 |
| 34 | ATF1 | REL | 35 | ATF1 | RELB | 36 | ATF1 | RFX1 |
| 37 | ATF1 | SREBF1 | 38 | ATF1 | STAT3 | 39 | ATF1 | TFCP2 |
| 40 | ATF1 | TRIM28 | 41 | ATF2 | BACH2 | 42 | ATF2 | EGR2 |
| 43 | ATF2 | ING4 | 44 | ATF2 | JUND | 45 | ATF2 | MAFF |
| 46 | ATF2 | NF1 | 47 | ATF2 | NR6A1 | 48 | ATF2 | RELB |
| 49 | ATF2 | RFX1 | 50 | ATF2 | SREBF1 | 51 | ATF2 | StAT3 |
| 52 | ATF2 | TFCP2 | 53 | ATF2 | TRIM28 | 54 | ATF3 | BACH2 |
| 55 | ATF3 | BDP1 | 56 | ATF3 | ING4 | 57 | ATF3 | JUN |
| 58 | ATF3 | MAFF | 59 | ATF3 | NF1 | 60 | ATF3 | NR6A1 |
| 61 | ATF3 | RELB | 62 | ATF3 | RFX1 | 63 | ATF3 | SREBF1 |
| 64 | ATF3 | Stat3 | 65 | ATF3 | TFCP2 | 66 | ATF3 | TRIM28 |
| 67 | ATF4 | BACH2 | 68 | ATF4 | ING4 | 69 | ATF4 | MAFF |
| 70 | ATF4 | NF1 | 71 | ATF4 | NR6A1 | 72 | ATF4 | RELB |
| 73 | ATF4 | RFX1 | 74 | ATF4 | SREBF1 | 75 | ATF4 | SREBF2 |
| 76 | ATF4 | Stat3 | 77 | ATF4 | TFCP2 | 78 | ATF4 | TRIM28 |
| 79 | ATF5 | BACH2 | 80 | ATF5 | ING4 | 81 | ATF5 | MAFF |
| 82 | ATF5 | NF1 | 83 | ATF5 | NR6A1 | 84 | ATF5 | OAZ1 |
| 85 | ATF5 | RELB | 86 | ATF5 | RFX1 | 87 | ATF5 | SREBF1 |
| 88 | ATF5 | STAT3 | 89 | ATF5 | TFCP2 | 90 | ATF5 | TRIM28 |
| 91 | ATF6 | BACH2 | 92 | ATF6 | ING4 | 93 | ATF6 | MAFF |
| 94 | ATF6 | NF1 | 95 | ATF6 | NR6A1 | 96 | ATF6 | RELB |
| 97 | ATF6 | RFX1 | 98 | ATF6 | SREBF1 | 99 | ATF6 | StAT3 |
| 100 | ATF6 | TFCP2 | 101 | ATF6 | TRIM28 | 102 | ATF7 | BACH2 |
| 103 | ATF7 | ING4 | 104 | ATF7 | MAFF | 105 | ATF7 | NF1 |
| 106 | ATF7 | NR6A1 | 107 | ATF7 | RELB | 108 | ATF7 | RFX1 |
| 109 | ATF7 | SREBF1 | 110 | ATF7 | STAT3 | 111 | ATF7 | TFCP2 |
| 112 | ATF7 | TRIM28 | 113 | ATOH1 | CEBPE | 114 | ATOH1 | DLX2 |
| 115 | BACH1 | GTF2A1 | 116 | BACH2 | GTF2A1 | 117 | BARHL1 | CNOT3 |
| 118 | BARHL2 | CNOT3 | 119 | BCL6 | GTF2A1 | 120 | BHLHE41 | GTF2A1 |
| 121 | BHLHE41 | HSF2 | 122 | CDX1 | HES1 | 123 | CDX2 | BCL6 |
| 124 | CDX2 | HES1 | 125 | CEBPA | NFE2L1 | 126 | CEBPD | SREBF2 |
| 127 | CNOT3 | BACH1 | 128 | CNOT3 | CTCF | 129 | CNOT3 | EGR1 |
| 130 | CNOT3 | FOXN2 | 131 | CNOT3 | FOXO3 | 132 | CNOT3 | HSF2 |
| 133 | CNOT3 | JUND | 134 | CNOT3 | MAFF | 135 | CNOT3 | MAX |
| 136 | CNOT3 | NF1 | 137 | CNOT3 | NFE2L2 | 138 | CNOT3 | NFYA |
| 139 | CNOT3 | PITX3 | 140 | CNOT3 | PKNOX1 | 141 | CNOT3 | RB1 |
| 142 | CNOT3 | SMAD2 | 143 | CNOT3 | SP4 | 144 | CNOT3 | SREBF1 |

Appendix .

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 145 | CNOT3 | SREBF2 | 146 | CNOT3 | SRF | 147 | CNOT3 | TFAP4 |
| 148 | CNOT3 | ZFP161 | 149 | CNOT3 | ZNF143 | 150 | CNOT3 | ZNF263 |
| 151 | CREB1 | BACH2 | 152 | CREB1 | E4F1 | 153 | CREB1 | EGR2 |
| 154 | CREB1 | FOXP3 | 155 | CREB1 | ING4 | 156 | CREB1 | JUND |
| 157 | CREB1 | MAFF | 158 | CREB1 | NF1 | 159 | CREB1 | NFE2L2 |
| 160 | CREB1 | NR6A1 | 161 | CREB1 | REL | 162 | CREB1 | RELB |
| 163 | CREB1 | RFX1 | 164 | CREB1 | SREBF1 | 165 | CREB1 | STAT3 |
| 166 | CREB1 | TFCP2 | 167 | CREB1 | TRIM28 | 168 | CREM | BACH2 |
| 169 | CREM | EGR2 | 170 | CREM | ING4 | 171 | CREM | JUND |
| 172 | CREM | MAFF | 173 | CREM | NF1 | 174 | CREM | NR6A1 |
| 175 | CREM | RELB | 176 | CREM | RFX1 | 177 | CREM | SREBF1 |
| 178 | CREM | STAT3 | 179 | CREM | TFCP2 | 180 | CREM | TRIM28 |
| 181 | CRX | DDIT3 | 182 | CTCF | BCL6 | 183 | CTCF | CEBPE |
| 184 | CTCF | CTCF | 185 | CTCF | DLX2 | 186 | CTCF | DLX3 |
| 187 | CTCF | E4F1 | 188 | CTCF | EGR1 | 189 | CTCF | EP300 |
| 190 | CTCF | ESRRA | 191 | CTCF | GLI1 | 192 | CTCF | GZF1 |
| 193 | CTCF | HOMEZ | 194 | CTCF | HSF2 | 195 | CTCF | IRF2 |
| 196 | CTCF | IRF9 | 197 | CTCF | MAFA | 198 | CTCF | MAZ |
| 199 | CTCF | MTERF | 200 | CTCF | MTF1 | 201 | CTCF | NFE2L1 |
| 202 | CTCF | NFE2L2 | 203 | CTCF | NFKB2 | 204 | CTCF | NFYA |
| 205 | CTCF | PATZ1 | 206 | CTCF | PKNOX1 | 207 | CTCF | POU2F1 |
| 208 | CTCF | PURA | 209 | CTCF | RFX2 | 210 | CTCF | SP1 |
| 211 | CTCF | SP3 | 212 | CTCF | SRF | 213 | CTCF | STAT1 |
| 214 | CTCF | TCF12 | 215 | CTCF | TP53 | 216 | CTCF | ZBTB33 |
| 217 | CTCF | ZBTB7A | 218 | CTCF | ZBTB7B | 219 | DEAF1 | CREB1 |
| 220 | DEAF1 | CTCF | 221 | DEAF1 | DEAF1 | 222 | DEAF1 | EGR1 |
| 223 | DEAF1 | HMBOX1 | 224 | DEAF1 | JUNB | 225 | DEAF1 | MAX |
| 226 | DEAF1 | MZF1 | 227 | DEAF1 | SHOX2 | 228 | DEAF1 | TCF12 |
| 229 | DEAF1 | TP53 | 230 | DEAF1 | ZBTB33 | 231 | DMRT1 | SRF |
| 232 | DMRT2 | SRF | 233 | E2F1 | ATF2 | 234 | E2F1 | ATF4 |
| 235 | E2F1 | CREM | 236 | E2F1 | DLX2 | 237 | E2F1 | E2F1 |
| 238 | E2F1 | JUNB | 239 | E2F1 | MAZ | 240 | E2F1 | PKNOX1 |
| 241 | E2F1 | ZFP161 | 242 | E2F1 | ZNF143 | 243 | E2F4 | ATF4 |
| 244 | E2F4 | E2F1 | 245 | E2F4 | MAZ | 246 | E2F6 | ATF4 |
| 247 | E2F6 | E2F1 | 248 | E2F6 | MAZ | 249 | E2F7 | ATF4 |
| 250 | E2F7 | E2F1 | 251 | E2F7 | MAZ | 252 | E4F1 | RFX1 |
| 253 | EBF1 | EGR1 | 254 | EBF1 | HOMEZ | 255 | EBF1 | MAX |
| 256 | EBF1 | RB1 | 257 | EBF1 | ZNF143 | 258 | EBF2 | EGR1 |
| 259 | EBF2 | HOMEZ | 260 | EBF2 | RB1 | 261 | EBF2 | ZNF143 |
| 262 | EGR1 | ATF1 | 263 | EGR1 | ATF2 | 264 | EGR1 | ATF4 |
| 265 | EGR1 | BHLHE40 | 266 | EGR1 | BRF1 | 267 | EGR1 | CEBPB |
| 268 | EGR1 | CNOT3 | 269 | EGR1 | CREM | 270 | EGR1 | DBP |
| 271 | EGR1 | DDIT3 | 272 | EGR1 | EP300 | 273 | EGR1 | FOXH1 |
| 274 | EGR1 | FOXJ3 | 275 | EGR1 | FOXN2 | 276 | EGR1 | FOXO3 |
| 277 | EGR1 | GABPA | 278 | EGR1 | GTF2A1 | 279 | EGR1 | GTF2I |
| 280 | EGR1 | HBP1 | 281 | EGR1 | HES1 | 282 | EGR1 | HIF1A |
| 283 | EGR1 | HSF2 | 284 | EGR1 | IRF1 | 285 | EGR1 | JUNB |
| 286 | EGR1 | JUND | 287 | EGR1 | MAX | 288 | EGR1 | MAZ |
| 289 | EGR1 | MZF1 | 290 | EGR1 | NFATC3 | 291 | EGR1 | NFE2L1 |
| 292 | EGR1 | NFE2L2 | 293 | EGR1 | NFYA | 294 | EGR1 | NR4A1 |

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 295 | EGR1 | NR6A1 | 296 | EGR1 | OAZ1 | 297 | EGR1 | PKNOX1 |
| 298 | EGR1 | POU2F1 | 299 | EGR1 | RBPJ | 300 | EGR1 | REL |
| 301 | EGR1 | RELB | 302 | EGR1 | RFX1 | 303 | EGR1 | RFX2 |
| 304 | EGR1 | RXRB | 305 | EGR1 | SP1 | 306 | EGR1 | SP4 |
| 307 | EGR1 | SREBF1 | 308 | EGR1 | SRF | 309 | EGR1 | STAT1 |
| 310 | EGR1 | STAT3 | 311 | EGR1 | TCF12 | 312 | EGR1 | TEF |
| 313 | EGR1 | TOPORS | 314 | EGR1 | TP53 | 315 | EGR1 | TRIM28 |
| 316 | EGR1 | UBP1 | 317 | EGR1 | YY1 | 318 | EGR1 | ZBTB7B |
| 319 | EGR1 | ZNF143 | 320 | EGR1 | ZNF238 | 321 | EGR1 | ZNF333 |
| 322 | EGR1 | ZNF628 | 323 | EGR2 | ATF1 | 324 | EGR2 | ATF2 |
| 325 | EGR2 | ATF4 | 326 | EGR2 | BHLHE40 | 327 | EGR2 | BRF1 |
| 328 | EGR2 | CEBPB | 329 | EGR2 | CNOT3 | 330 | EGR2 | CREM |
| 331 | EGR2 | DBP | 332 | EGR2 | DDIT3 | 333 | EGR2 | EP300 |
| 334 | EGR2 | FOXH1 | 335 | EGR2 | FOXJ3 | 336 | EGR2 | FOXN2 |
| 337 | EGR2 | FOXO3 | 338 | EGR2 | GABPA | 339 | EGR2 | GTF2A1 |
| 340 | EGR2 | GTF2I | 341 | EGR2 | HBP1 | 342 | EGR2 | HES1 |
| 343 | EGR2 | HIF1A | 344 | EGR2 | HSF2 | 345 | EGR2 | IRF1 |
| 346 | EGR2 | JUNB | 347 | EGR2 | JUND | 348 | EGR2 | MAX |
| 349 | EGR2 | MAZ | 350 | EGR2 | MZF1 | 351 | EGR2 | NFATC3 |
| 352 | EGR2 | NFE2L1 | 353 | EGR2 | NFE2L2 | 354 | EGR2 | NFYA |
| 355 | EGR2 | NR4A1 | 356 | EGR2 | NR6A1 | 357 | EGR2 | OAZ1 |
| 358 | EGR2 | PKNOX1 | 359 | EGR2 | POU2F1 | 360 | EGR2 | RBPJ |
| 361 | EGR2 | REL | 362 | EGR2 | RELB | 363 | EGR2 | RFX1 |
| 364 | EGR2 | RFX2 | 365 | EGR2 | RXRB | 366 | EGR2 | SP1 |
| 367 | EGR2 | SP4 | 368 | EGR2 | SREBF1 | 369 | EGR2 | SRF |
| 370 | EGR2 | STAT1 | 371 | EGR2 | STAT3 | 372 | EGR2 | TCF12 |
| 373 | EGR2 | TEF | 374 | EGR2 | TFAP4 | 375 | EGR2 | TOPORS |
| 376 | EGR2 | TP53 | 377 | EGR2 | TRIM28 | 378 | EGR2 | UBP1 |
| 379 | EGR2 | YY1 | 380 | EGR2 | ZBTB7B | 381 | EGR2 | ZNF143 |
| 382 | EGR2 | ZNF238 | 383 | EGR2 | ZNF333 | 384 | EGR2 | ZNF628 |
| 385 | EGR3 | ATF1 | 386 | EGR3 | ATF2 | 387 | EGR3 | ATF4 |
| 388 | EGR3 | BHLHE40 | 389 | EGR3 | BRF1 | 390 | EGR3 | CEBPB |
| 391 | EGR3 | CNOT3 | 392 | EGR3 | CREM | 393 | EGR3 | DBP |
| 394 | EGR3 | DDIT3 | 395 | EGR3 | EP300 | 396 | EGR3 | FOXH1 |
| 397 | EGR3 | FOXJ3 | 398 | EGR3 | FOXN2 | 399 | EGR3 | FOXO3 |
| 400 | EGR3 | GABPA | 401 | EGR3 | GTF2A1 | 402 | EGR3 | GTF2I |
| 403 | EGR3 | HBP1 | 404 | EGR3 | HES1 | 405 | EGR3 | HIF1A |
| 406 | EGR3 | HSF2 | 407 | EGR3 | IRF1 | 408 | EGR3 | JUNB |
| 409 | EGR3 | JUND | 410 | EGR3 | MAX | 411 | EGR3 | MAZ |
| 412 | EGR3 | MZF1 | 413 | EGR3 | NFATC3 | 414 | EGR3 | NFE2L1 |
| 415 | EGR3 | NFE2L2 | 416 | EGR3 | NFYA | 417 | EGR3 | NR4A1 |
| 418 | EGR3 | NR6A1 | 419 | EGR3 | OAZ1 | 420 | EGR3 | PKNOX1 |
| 421 | EGR3 | POU2F1 | 422 | EGR3 | RBPJ | 423 | EGR3 | REL |
| 424 | EGR3 | RELB | 425 | EGR3 | RFX1 | 426 | EGR3 | RFX2 |
| 427 | EGR3 | RXRB | 428 | EGR3 | SP1 | 429 | EGR3 | SP4 |
| 430 | EGR3 | SREBF1 | 431 | EGR3 | SRF | 432 | EGR3 | STAT1 |
| 433 | EGR3 | STAT3 | 434 | EGR3 | TCF12 | 435 | EGR3 | TEF |
| 436 | EGR3 | TOPORS | 437 | EGR3 | TP53 | 438 | EGR3 | TRIM28 |
| 439 | EGR3 | UBP1 | 440 | EGR3 | YY1 | 441 | EGR3 | ZBTB7B |
| 442 | EGR3 | ZNF143 | 443 | EGR3 | ZNF238 | 444 | EGR3 | ZNF333 |

Continued on next page

Appendix .

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 445 | EGR3 | ZNF628 | 446 | EGR4 | ATF1 | 447 | EGR4 | ATF2 |
| 448 | EGR4 | ATF4 | 449 | EGR4 | BHLHE40 | 450 | EGR4 | BRF1 |
| 451 | EGR4 | CEBPB | 452 | EGR4 | CNOT3 | 453 | EGR4 | CREM |
| 454 | EGR4 | DBP | 455 | EGR4 | DDIT3 | 456 | EGR4 | EP300 |
| 457 | EGR4 | FOXH1 | 458 | EGR4 | FOXJ3 | 459 | EGR4 | FOXN2 |
| 460 | EGR4 | FOXO3 | 461 | EGR4 | GABPA | 462 | EGR4 | GTF2I |
| 463 | EGR4 | HBP1 | 464 | EGR4 | HES1 | 465 | EGR4 | HIF1A |
| 466 | EGR4 | HSF2 | 467 | EGR4 | IRF1 | 468 | EGR4 | JUNB |
| 469 | EGR4 | JUND | 470 | EGR4 | MAZ | 471 | EGR4 | MZF1 |
| 472 | EGR4 | NFATC3 | 473 | EGR4 | NFE2L1 | 474 | EGR4 | NFE2L2 |
| 475 | EGR4 | NFYA | 476 | EGR4 | NR4A1 | 477 | EGR4 | PKNOX1 |
| 478 | EGR4 | POU2F1 | 479 | EGR4 | RBPJ | 480 | EGR4 | REL |
| 481 | EGR4 | RELB | 482 | EGR4 | RFX1 | 483 | EGR4 | RFX2 |
| 484 | EGR4 | RXRB | 485 | EGR4 | SP4 | 486 | EGR4 | SRF |
| 487 | EGR4 | STAT1 | 488 | EGR4 | STAT3 | 489 | EGR4 | TCF12 |
| 490 | EGR4 | TEF | 491 | EGR4 | TOPORS | 492 | EGR4 | TP53 |
| 493 | EGR4 | TRIM28 | 494 | EGR4 | UBP1 | 495 | EGR4 | YY1 |
| 496 | EGR4 | ZBTB7B | 497 | EGR4 | ZNF238 | 498 | EGR4 | ZNF333 |
| 499 | EGR4 | ZNF628 | 500 | EHF | EGR1 | 501 | EHF | TBP |
| 502 | ELF1 | DDIT3 | 503 | ELF2 | CNOT3 | 504 | ELF2 | DDIT3 |
| 505 | ELF2 | GABPA | 506 | ELF2 | GTF2I | 507 | ELF2 | MTF1 |
| 508 | ELF2 | PITX3 | 509 | ELF2 | SP3 | 510 | ELF3 | ZNF143 |
| 511 | ELK1 | DDIT3 | 512 | ELK1 | ELK4 | 513 | ELK1 | ING4 |
| 514 | ELK1 | MTERF | 515 | ELK1 | MTF1 | 516 | ELK1 | MZF1 |
| 517 | ELK1 | NR1H2 | 518 | ELK1 | SIRT6 | 519 | ELK1 | SP3 |
| 520 | ELK1 | TBP | 521 | ELK4 | DDIT3 | 522 | ELK4 | MZF1 |
| 523 | ELK4 | TBP | 524 | EP300 | MTF1 | 525 | EP300 | UBP1 |
| 526 | ERF | DDIT3 | 527 | ERG | DDIT3 | 528 | ERG | NR1H2 |
| 529 | ESR1 | CTCF | 530 | ESR1 | JUND | 531 | ETS1 | CDC5L |
| 532 | ETS1 | DDIT3 | 533 | ETS1 | EGR1 | 534 | ETS1 | GABPA |
| 535 | ETS1 | HMBOX1 | 536 | ETS1 | MAZ | 537 | ETS1 | MTERF |
| 538 | ETS1 | MZF1 | 539 | ETS1 | NFYA | 540 | ETS1 | NR1H2 |
| 541 | ETS1 | RXRB | 542 | ETS1 | SIRT6 | 543 | ETS1 | SP3 |
| 544 | ETS2 | DDIT3 | 545 | ETS2 | EGR1 | 546 | ETS2 | GABPA |
| 547 | ETS2 | MAZ | 548 | ETS2 | SP3 | 549 | ETV7 | DDIT3 |
| 550 | ETV7 | ELK4 | 551 | ETV7 | ING4 | 552 | ETV7 | TBP |
| 553 | ETV7 | UBP1 | 554 | FLI1 | ATF4 | 555 | FLI1 | DDIT3 |
| 556 | FLI1 | ELK4 | 557 | FLI1 | ING4 | 558 | FLI1 | TBP |
| 559 | FOSL1 | BHLHE40 | 560 | FOXJ2 | TP53 | 561 | FOXM1 | USF1 |
| 562 | FOXO3 | HBP1 | 563 | FOXO4 | ZNF263 | 564 | FOXP1 | NR1I3 |
| 565 | GABPA | DDIT3 | 566 | GABPA | EGR1 | 567 | GABPA | ING4 |
| 568 | GABPA | MZF1 | 569 | GABPA | NFYA | 570 | GABPA | NR1H2 |
| 571 | GABPA | SIRT6 | 572 | GABPA | SP3 | 573 | GABPA | TBP |
| 574 | GABPB1 | DDIT3 | 575 | GABPB1 | EGR1 | 576 | GABPB1 | ING4 |
| 577 | GABPB1 | MZF1 | 578 | GABPB1 | NFYA | 579 | GABPB1 | NR1H2 |
| 580 | GABPB1 | SIRT6 | 581 | GABPB1 | SP3 | 582 | GABPB1 | TBP |
| 583 | GATA1 | CTCF | 584 | GATA2 | FOXP3 | 585 | GBX2 | NR2C2 |
| 586 | GFI1 | SREBF2 | 587 | GLI3 | CNOT3 | 588 | GLI3 | HINFP |
| 589 | GLIS3 | NR6A1 | 590 | GLIS3 | SP1 | 591 | GTF2A1 | JUND |
| 592 | GTF2I | EGR1 | 593 | GTF2I | FOXN2 | 594 | GTF2I | IRF2 |

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 595 | GTF2I | MAZ | 596 | GTF2I | STAT1 | 597 | GTF2I | STAT3 |
| 598 | HES1 | HES1 | 599 | HES1 | MAZ | 600 | HIC1 | ATF7 |
| 601 | HIC1 | BHLHE40 | 602 | HIC1 | DDIT3 | 603 | HIC1 | DEAF1 |
| 604 | HIC1 | FOXJ1 | 605 | HIC1 | GLI1 | 606 | HIC1 | GZF1 |
| 607 | HIC1 | HIF1A | 608 | HIC1 | HOMEZ | 609 | HIC1 | IRF1 |
| 610 | HIC1 | JUNB | 611 | HIC1 | JUND | 612 | HIC1 | MAX |
| 613 | HIC1 | MAZ | 614 | HIC1 | NFE2L2 | 615 | HIC1 | NFYA |
| 616 | HIC1 | NR6A1 | 617 | HIC1 | PKNOX1 | 618 | HIC1 | RELA |
| 619 | HIC1 | SP1 | 620 | HIC1 | SREBF2 | 621 | HIC1 | SRF |
| 622 | HIC1 | TEF | 623 | HIC1 | TP53 | 624 | HIC1 | XBP1 |
| 625 | HIC1 | ZBTB7A | 626 | HIC1 | ZFP161 | 627 | HIVEP2 | GTF2I |
| 628 | HMX1 | NFYA | 629 | HMX3 | CNOT3 | 630 | HNF4A | ATF7 |
| 631 | HNF4A | FOXO3 | 632 | HNF4G | ATF7 | 633 | HNF4G | FOXO3 |
| 634 | HOXA11 | E4F1 | 635 | HOXA4 | TEF | 636 | HOXA9 | PITX3 |
| 637 | HOXC10 | E4F1 | 638 | HOXC11 | E4F1 | 639 | HOXC12 | E4F1 |
| 640 | HOXC4 | TEF | 641 | HOXC5 | TEF | 642 | HOXD12 | E4F1 |
| 643 | HSF1 | CHURC1 | 644 | HSF1 | POU2F1 | 645 | HSF 1 | ZNF143 |
| 646 | HSF2 | CHURC1 | 647 | IKZF1 | DBP | 648 | JUN | BHLHE40 |
| 649 | JUNB | BHLHE40 | 650 | JUND | BHLHE40 | 651 | KLF11 | DDIT3 |
| 652 | KLF11 | ESRRA | 653 | KLF11 | JUND | 654 | KLF11 | NFATC3 |
| 655 | KLF11 | TGIF1 | 656 | KLF11 | TP53 | 657 | KLF11 | ZNF238 |
| 658 | KLF15 | ATF5 | 659 | KLF15 | BHLHE40 | 660 | KLF15 | BRF1 |
| 661 | KLF 15 | CEBPB | 662 | KLF15 | E4F1 | 663 | KLF 15 | EGR1 |
| 664 | KLF15 | EP300 | 665 | KLF15 | ERF | 666 | KLF15 | ESRRA |
| 667 | KLF15 | FOXN2 | 668 | KLF15 | FOXO3 | 669 | KLF15 | GTF2I |
| 670 | KLF15 | HIF1A | 671 | KLF15 | JUND | 672 | KLF15 | MAX |
| 673 | KLF15 | MAZ | 674 | KLF15 | NFATC3 | 675 | KLF15 | NR1H2 |
| 676 | KLF15 | NR4A1 | 677 | KLF15 | PKNOX1 | 678 | KLF15 | POU2F1 |
| 679 | KLF15 | RBPJ | 680 | KLF15 | RELB | 681 | KLF15 | RFX1 |
| 682 | KLF15 | RXRB | 683 | KLF15 | SIRT6 | 684 | KLF15 | SP1 |
| 685 | KLF15 | SREBF1 | 686 | KLF15 | SRF | 687 | KLF15 | STAT6 |
| 688 | KLF15 | TCF12 | 689 | KLF15 | TEF | 690 | KLF15 | TP53 |
| 691 | KLF15 | TRIM28 | 692 | KLF15 | ZBTB7B | 693 | KLF15 | ZFP161 |
| 694 | KLF15 | ZNF143 | 695 | KLF4 | ATF5 | 696 | KLF4 | ATF7 |
| 697 | KLF4 | BRF1 | 698 | KLF4 | CREM | 699 | KLF4 | CTCF |
| 700 | KLF4 | DBP | 701 | KLF4 | DDIT3 | 702 | KLF4 | DLX2 |
| 703 | KLF4 | E4F1 | 704 | KLF4 | EP300 | 705 | KLF4 | ESRRA |
| 706 | KLF4 | FOXN2 | 707 | KLF4 | GTF2A1 | 708 | KLF4 | GTF2I |
| 709 | KLF4 | GZF1 | 710 | KLF4 | HES1 | 711 | KLF4 | HINFP |
| 712 | KLF4 | HSF1 | 713 | KLF4 | IRF1 | 714 | KLF4 | JUND |
| 715 | KLF4 | KLF11 | 716 | KLF4 | MAZ | 717 | KLF4 | MZF1 |
| 718 | KLF4 | NFATC3 | 719 | KLF4 | NFE2L2 | 720 | KLF4 | NFYA |
| 721 | KLF4 | NR1H2 | 722 | KLF4 | NR6A1 | 723 | KLF4 | OAZ1 |
| 724 | KLF4 | PITX3 | 725 | KLF4 | PKNOX1 | 726 | KLF4 | RBPJ |
| 727 | KLF4 | REL | 728 | KLF4 | RELB | 729 | KLF4 | RFX1 |
| 730 | KLF4 | RFX2 | 731 | KLF4 | RXRB | 732 | KLF4 | SIRT6 |
| 733 | KLF4 | SP1 | 734 | KLF4 | SP4 | 735 | KLF4 | SREBF2 |
| 736 | KLF4 | SRF | 737 | KLF4 | STAT3 | 738 | KLF4 | TBP |
| 739 | KLF4 | TCF3 | 740 | KLF4 | TEF | 741 | KLF4 | TOPORS |
| 742 | KLF4 | TRIM28 | 743 | KLF4 | UBP1 | 744 | KLF4 | USF1 |

Appendix .
Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 745 | KLF4 | YY1 | 746 | KLF4 | ZFP161 | 747 | KLF4 | ZNF238 |
| 748 | KLF4 | ZNF333 | 749 | KLF4 | ZNF628 | 750 | LHX6 | E2F7 |
| 751 | LHX8 | E2F7 | 752 | MAF | CDC5L | 753 | MAF | GTF2A1 |
| 754 | MAF | MTF1 | 755 | MAF | SIRT6 | 756 | MAFB | GTF2A1 |
| 757 | MAFF | GTF2A1 | 758 | MAFG | GTF2A1 | 759 | MAFG | PKNOX1 |
| 760 | MAX | DBP | 761 | MAX | FOXO3 | 762 | MAX | GTF2A1 |
| 763 | MAX | HSF1 | 764 | MAX | IRF9 | 765 | MAX | JUNB |
| 766 | MAX | JUND | 767 | MAX | MAX | 768 | MAX | NFE2L2 |
| 769 | MAX | PITX3 | 770 | MAX | SMAD7 | 771 | MAX | ZFP161 |
| 772 | MAZ | ATF2 | 773 | MAZ | BHLHE40 | 774 | MAZ | DDIT3 |
| 775 | MAZ | E4F1 | 776 | MAZ | ELK4 | 777 | MAZ | EP300 |
| 778 | MAZ | JUN | 779 | MAZ | MAZ | 780 | MAZ | MECP2 |
| 781 | MAZ | NR6A1 | 782 | MAZ | PITX3 | 783 | MAZ | POU2F1 |
| 784 | MAZ | RXRB | 785 | MAZ | SP2 | 786 | MAZ | SP3 |
| 787 | MAZ | STAT3 | 788 | MAZ | TCF12 | 789 | MAZ | TEF |
| 790 | MAZ | ZBTB7B | 791 | MEF2A | BDP1 | 792 | MEF2A | JUN |
| 793 | MEF2C | JUN | 794 | MEIS1 | PITX3 | 795 | MTF1 | RELB |
| 796 | MYB | NFYA | 797 | MYB | PKNOX1 | 798 | MYB | RFX2 |
| 799 | MYB | UBP1 | 800 | MYC | DBP | 801 | MYC | FOXO3 |
| 802 | MYC | GTF2A1 | 803 | MYC | HSF1 | 804 | MYC | JUNB |
| 805 | MYC | JUND | 806 | MYC | NFE2L2 | 807 | MYC | NR6A1 |
| 808 | MYC | PITX3 | 809 | MYC | ZFP161 | 810 | MYCN | MAX |
| 811 | MYCN | PITX3 | 812 | MYF6 | ATF1 | 813 | MYF6 | HES1 |
| 814 | MYF6 | HMBOX1 | 815 | MYF6 | TEF | 816 | MYF6 | TERF1 |
| 817 | MYF6 | ZBTB7A | 818 | MYOD1 | ATF1 | 819 | MYOD1 | HES1 |
| 820 | MYOD1 | HMBOX1 | 821 | MYOD1 | TEF | 822 | MYOD1 | TERF1 |
| 823 | MYOD1 | zBTB7A | 824 | MYOG | ATF1 | 825 | MYOG | HES1 |
| 826 | MYOG | HMBOX1 | 827 | MYOG | TEF | 828 | MYOG | TERF1 |
| 829 | MYOG | ZBTB7A | 830 | MZF1 | BHLHE40 | 831 | MZF1 | DBP |
| 832 | MZF1 | EGR1 | 833 | MZF1 | MAZ | 834 | MZF1 | MECP2 |
| 835 | MZF1 | POU2F1 | 836 | MZF1 | SP1 | 837 | MZF1 | SP4 |
| 838 | NANOG | ING4 | 839 | NEUROD1 | ARNT | 840 | NEUROD1 | CDC5L |
| 841 | NF1 | FOXP3 | 842 | NF1 | HBP1 | 843 | NF1 | MAZ |
| 844 | NF1 | PATZ1 | 845 | NF1 | ZFP161 | 846 | NFATC1 | MAX |
| 847 | NFATC2 | MAX | 848 | NFATC3 | MAX | 849 | NFATC4 | MAX |
| 850 | NFE2 | FOXA3 | 851 | NFE2 | GTF2A1 | 852 | NFE2L1 | BDP1 |
| 853 | NFE2L1 | GTF2A1 | 854 | NFE2L1 | PKNOX1 | 855 | NFE2L1 | TBP |
| 856 | NFE2L2 | DDIT3 | 857 | NFE2L2 | EGR1 | 858 | NFE2L2 | GTF2A1 |
| 859 | NFE2L2 | ING4 | 860 | NFE2L2 | MZF1 | 861 | NFE2L2 | NFYA |
| 862 | NFE2L2 | NR1H2 | 863 | NFE2L2 | SIRT6 | 864 | NFE2L2 | SP3 |
| 865 | NFE2L2 | TBP | 866 | NFIB | MAZ | 867 | NFIB | ZFP161 |
| 868 | NFIX | FOXP3 | 869 | NFIX | HBP1 | 870 | NFIX | MAZ |
| 871 | NFIX | PATZ1 | 872 | NFIX | ZFP161 | 873 | NFKB1 | EGR1 |
| 874 | NFKB1 | HES1 | 875 | NFKB1 | IRF1 | 876 | NFKB1 | IRF2 |
| 877 | NFKB1 | JUNB | 878 | NFKB1 | NFE2L2 | 879 | NFKB1 | NFKB2 |
| 880 | NFKB1 | NR4A1 | 881 | NFKB1 | RBPJ | 882 | NFKB1 | REL |
| 883 | NFKB1 | RFX5 | 884 | NFKB2 | HES1 | 885 | NFKB2 | IRF1 |
| 886 | NFKB2 | IRF2 | 887 | NFKB2 | NFE2L2 | 888 | NFKB2 | NFKB2 |
| 889 | NFKB2 | NR4A1 | 890 | NFKB2 | REL | 891 | NFKB2 | RFX5 |
| 892 | NFYA | ATF4 | 893 | NFYA | ATF7 | 894 | NFYA | CNOT3 |


| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 895 | NFYA | DBP | 896 | NFYA | DLX1 | 897 | NFYA | E2F7 |
| 898 | NFYA | FOXP3 | 899 | NFYA | HES1 | 900 | NFYA | HSF1 |
| 901 | NFYA | NFE2L1 | 902 | NFYA | NFYA | 903 | NFYA | RFX5 |
| 904 | NFYA | SMAD2 | 905 | NFYA | SP2 | 906 | NFYA | SP3 |
| 907 | NFYA | SRF | 908 | NFYA | STAT3 | 909 | NFYA | TEF |
| 910 | NFYA | TERF1 | 911 | NFYA | YY1 | 912 | NFYA | ZBTB7B |
| 913 | NFYA | ZNF628 | 914 | NHLH1 | EGR1 | 915 | NHLH1 | RFX1 |
| 916 | NKX2-1 | HINFP | 917 | NKX2-1 | TRIM28 | 918 | NKX6-1 | CNOT3 |
| 919 | NR0B1 | CREM | 920 | NR0B1 | SP2 | 921 | NR1H2 | DDIT3 |
| 922 | NR1H2 | ING4 | 923 | NR1H2 | IRF9 | 924 | NR1H2 | SREBF1 |
| 925 | NR1H4 | ATF4 | 926 | NR1I2 | BHLHE40 | 927 | NR1I2 | CNOT3 |
| 928 | NR1I2 | ING4 | 929 | NR1I2 | IRF9 | 930 | NR1I2 | SREBF1 |
| 931 | NR1I2 | TBP | 932 | NR1I3 | BHLHE40 | 933 | NR1I3 | CNOT3 |
| 934 | NR1I3 | ING4 | 935 | NR1I3 | IRF9 | 936 | NR1I3 | SREBF1 |
| 937 | NR1I3 | TBP | 938 | NR2F1 | CNOT3 | 939 | NR2F1 | FOXO3 |
| 940 | NR2F1 | ING4 | 941 | NR2F1 | IRF9 | 942 | NR2F1 | MAFF |
| 943 | NR2F1 | RBPJ | 944 | NR2F1 | RELA | 945 | NR2F1 | SREBF1 |
| 946 | NR2F1 | TFAP4 | 947 | NR2F1 | YY1 | 948 | NR2F1 | ZBTB7B |
| 949 | NR2F2 | CNOT3 | 950 | NR2F2 | FOXO3 | 951 | NR2F2 | ING4 |
| 952 | NR2F2 | IRF9 | 953 | NR2F2 | MAFF | 954 | NR2F2 | RBPJ |
| 955 | NR2F2 | RELA | 956 | NR2F2 | SREBF1 | 957 | NR2F2 | TFAP4 |
| 958 | NR2F2 | YY1 | 959 | NR2F2 | ZBTB7B | 960 | NR3C1 | DDIT3 |
| 961 | NR3C1 | HMBOX1 | 962 | NR3C1 | NR6A1 | 963 | NR3C1 | RXRB |
| 964 | NR5A2 | ARNT | 965 | NR6A1 | GABPA | 966 | NRF1 | ATF5 |
| 967 | NRF1 | CHURC1 | 968 | NRF1 | DDIT3 | 969 | NRF1 | GTF2I |
| 970 | NRF1 | GZF1 | 971 | NRF1 | HBP1 | 972 | NRF1 | JUNB |
| 973 | NRF1 | MAZ | 974 | NRF1 | NF1 | 975 | NRF1 | NFYA |
| 976 | NRF1 | POU2F1 | 977 | NRF1 | RXRB | 978 | NRF1 | SIRT6 |
| 979 | NRF1 | SMAD4 | 980 | NRF1 | SREBF1 | 981 | NRF1 | TEF |
| 982 | NRF1 | TOPORS | 983 | NRF1 | ZFP161 | 984 | OAZ1 | JUND |
| 985 | OTX1 | DDIT3 | 986 | OTX2 | DDIT3 | 987 | OTX2 | ZNF589 |
| 988 | PATZ1 | ATF2 | 989 | PATZ1 | DDIT3 | 990 | PATZ1 | EGR1 |
| 991 | PATZ1 | ELK4 | 992 | PATZ1 | EP300 | 993 | PATZ1 | ESRRA |
| 994 | PATZ1 | FOXN2 | 995 | PATZ1 | HIF1A | 996 | PATZ1 | JUN |
| 997 | PATZ1 | MAZ | 998 | PATZ1 | NFATC3 | 999 | PATZ1 | NFYA |
| 1000 | PATZ1 | PITX3 | 1001 | PATZ1 | PKNOX1 | 1002 | PATZ1 | POU2F1 |
| 1003 | PATZ1 | SP1 | 1004 | PATZ1 | SP4 | 1005 | PATZ1 | TEF |
| 1006 | PATZ1 | TGIF1 | 1007 | PATZ1 | TP53 | 1008 | PATZ1 | ZBTB7B |
| 1009 | PAX2 | STAT3 | 1010 | PAX3 | DBP | 1011 | PAX4 | ATF5 |
| 1012 | PAX4 | ATF7 | 1013 | PAX4 | CBFB | 1014 | PAX4 | DBP |
| 1015 | PAX4 | DDIT3 | 1016 | PAX4 | FOXN2 | 1017 | PAX4 | HIF1A |
| 1018 | PAX4 | JUND | 1019 | PAX4 | MZF1 | 1020 | PAX4 | NFE2L2 |
| 1021 | PAX4 | NR6A1 | 1022 | PAX4 | OAZ1 | 1023 | PAX4 | REL |
| 1024 | PAX4 | RELB | 1025 | PAX4 | SP4 | 1026 | PAX4 | SRF |
| 1027 | PAX5 | BRF1 | 1028 | PAX5 | SMAD2 | 1029 | PAX5 | TCF3 |
| 1030 | PAX6 | TEF | 1031 | PDX1 | ZNF143 | 1032 | PGR | HMBOX1 |
| 1033 | PGR | RXRB | 1034 | POU1F1 | TEF | 1035 | POU2AF1 | EGR2 |
| 1036 | POU2AF1 | JUND | 1037 | POU2AF1 | SREBF2 | 1038 | POU2F1 | EGR2 |
| 1039 | POU2F1 | FOXN2 | 1040 | POU2F1 | JUND | 1041 | POU2F1 | SMAD3 |
| 1042 | POU2F1 | SREBF2 | 1043 | POU2F2 | EGR2 | 1044 | POU2F2 | JUND |

Appendix .
Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1045 | POU2F2 | SREBF2 | 1046 | POU2F3 | EGR2 | 1047 | POU2F3 | JUND |
| 1048 | POU2F3 | SMAD3 | 1049 | POU2F3 | SREBF2 | 1050 | POU3F1 | EGR2 |
| 1051 | POU3F1 | JUND | 1052 | POU3F1 | SREBF2 | 1053 | POU3F1 | STAT3 |
| 1054 | POU3F2 | EGR2 | 1055 | POU3F2 | JUND | 1056 | POU3F2 | SREBF2 |
| 1057 | POU3F2 | STAT3 | 1058 | POU3F3 | EGR2 | 1059 | POU3F3 | JUND |
| 1060 | POU3F3 | SREBF2 | 1061 | POU5F1 | EGR2 | 1062 | POU5F1 | JUND |
| 1063 | POU5F1 | SREBF2 | 1064 | PPARA | ATF2 | 1065 | PPARA | JUND |
| 1066 | PPARG | GABPA | 1067 | PPARG | SP2 | 1068 | PURA | BHLHE40 |
| 1069 | PURA | CNOT3 | 1070 | PURA | ZBTB7B | 1071 | RARA | ING4 |
| 1072 | RARA | IRF9 | 1073 | RARA | SREBF1 | 1074 | RARA | ZNF143 |
| 1075 | RBPJ | RBPJ | 1076 | REL | HES1 | 1077 | REL | IRF2 |
| 1078 | REL | NFKB2 | 1079 | RELA | EGR1 | 1080 | RELA | HES1 |
| 1081 | RELA | IRF1 | 1082 | RELA | IRF2 | 1083 | RELA | JUNB |
| 1084 | RELA | NFE2L2 | 1085 | RELA | NFKB2 | 1086 | RELA | RBPJ |
| 1087 | RELA | REL | 1088 | RELA | RFX5 | 1089 | RELB | IRF2 |
| 1090 | RELB | NFE2L2 | 1091 | RELB | REL | 1092 | REST | CDC5L |
| 1093 | REST | GLI1 | 1094 | REST | NRF1 | 1095 | REST | ZNF219 |
| 1096 | RFX1 | ATF7 | 1097 | RFX1 | BDP1 | 1098 | RFX1 | BRCA1 |
| 1099 | RFX1 | FOXN2 | 1100 | RFX1 | GTF2I | 1101 | RFX1 | JUNB |
| 1102 | RFX1 | MZF1 | 1103 | RFX1 | NR2F2 | 1104 | RFX1 | RFX2 |
| 1105 | RFX2 | JUNB | 1106 | RFX5 | JUNB | 1107 | RORA | DBP |
| 1108 | RREB1 | NR6A1 | 1109 | RXRA | ATF2 | 1110 | RXRA | ATF4 |
| 1111 | RXRA | BHLHE40 | 1112 | RXRA | CNOT3 | 1113 | RXRA | DDIT3 |
| 1114 | RXRA | ING4 | 1115 | RXRA | IRF9 | 1116 | RXRA | JUND |
| 1117 | RXRA | SREBF1 | 1118 | RXRA | TBP | 1119 | RXRA | ZNF143 |
| 1120 | RXRB | BHLHE40 | 1121 | RXRB | CNOT3 | 1122 | RXRB | ING4 |
| 1123 | RXRB | IRF9 | 1124 | RXRB | SREBF1 | 1125 | RXRB | TBP |
| 1126 | RXRB | ZNF143 | 1127 | SIX4 | GLI1 | 1128 | SMAD4 | NFYA |
| 1129 | SMAD4 | PKNOX1 | 1130 | SP1 | ATF1 | 1131 | SP1 | ATF2 |
| 1132 | SP1 | ATF4 | 1133 | SP1 | ATF5 | 1134 | SP1 | ATF7 |
| 1135 | SP1 | BHLHE40 | 1136 | SP1 | BRF1 | 1137 | SP1 | CEBPB |
| 1138 | SP1 | CHURC1 | 1139 | SP1 | CNOT3 | 1140 | SP1 | CREM |
| 1141 | SP1 | CTCF | 1142 | SP1 | DBP | 1143 | SP1 | DDIT3 |
| 1144 | SP1 | DLX2 | 1145 | SP1 | E4F1 | 1146 | SP1 | EGR1 |
| 1147 | SP1 | ELK4 | 1148 | SP1 | EP300 | 1149 | SP1 | ERF |
| 1150 | SP1 | ESRRA | 1151 | SP1 | ETV4 | 1152 | SP1 | FOXA3 |
| 1153 | SP1 | FOXH1 | 1154 | SP1 | FOXJ1 | 1155 | SP1 | FOXJ3 |
| 1156 | SP1 | FOXN2 | 1157 | SP1 | FOXO3 | 1158 | SP1 | FOXP3 |
| 1159 | SP1 | GABPA | 1160 | SP1 | GTF2A1 | 1161 | SP1 | GTF2I |
| 1162 | SP1 | GZF1 | 1163 | SP1 | HBP1 | 1164 | SP1 | HES1 |
| 1165 | SP1 | HIF1A | 1166 | SP1 | HINFP | 1167 | SP1 | HOMEZ |
| 1168 | SP1 | HSF1 | 1169 | SP1 | HSF2 | 1170 | SP1 | IRF1 |
| 1171 | SP1 | IRF2 | 1172 | SP1 | JUN | 1173 | SP1 | JUNB |
| 1174 | SP1 | JUND | 1175 | SP1 | KLF11 | 1176 | SP1 | MAFF |
| 1177 | SP1 | MAX | 1178 | SP1 | MAZ | 1179 | SP1 | MECP2 |
| 1180 | SP1 | MZF1 | 1181 | SP1 | NFATC3 | 1182 | SP1 | NFE2L1 |
| 1183 | SP1 | NFE2L2 | 1184 | SP1 | NFKB2 | 1185 | SP1 | NFYA |
| 1186 | SP1 | NR1H2 | 1187 | SP1 | NR2C2 | 1188 | SP1 | NR3C1 |
| 1189 | SP1 | NR4A1 | 1190 | SP1 | NR6A1 | 1191 | SP1 | OAZ1 |
| 1192 | SP1 | PARP1 | 1193 | SP1 | PITX3 | 1194 | SP1 | PKNOX1 |

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1195 | SP1 | POU2F1 | 1196 | SP1 | PPARD | 1197 | SP1 | RBPJ |
| 1198 | SP1 | REL | 1199 | SP1 | RELA | 1200 | SP1 | RELB |
| 1201 | SP1 | RFX1 | 1202 | SP1 | RFX2 | 1203 | SP1 | RXRB |
| 1204 | SP1 | SIRT6 | 1205 | SP1 | SMAD2 | 1206 | SP1 | SP1 |
| 1207 | SP1 | SP2 | 1208 | SP1 | SP3 | 1209 | SP1 | SP4 |
| 1210 | SP1 | SREBF1 | 1211 | SP1 | SREBF2 | 1212 | SP1 | SRF |
| 1213 | SP1 | STAT1 | 1214 | SP1 | STAT2 | 1215 | SP1 | STAT3 |
| 1216 | SP1 | STAT6 | 1217 | SP1 | TBP | 1218 | SP1 | TCF12 |
| 1219 | SP1 | TCF3 | 1220 | SP1 | TEF | 1221 | SP1 | TGIF1 |
| 1222 | SP1 | TOPORS | 1223 | SP1 | TP53 | 1224 | SP1 | TRIM28 |
| 1225 | SP1 | UBP1 | 1226 | SP1 | USF1 | 1227 | SP1 | YY1 |
| 1228 | SP1 | ZBTB33 | 1229 | SP1 | ZBTB7A | 1230 | SP1 | ZBTB7B |
| 1231 | SP1 | ZFP161 | 1232 | SP1 | ZNF143 | 1233 | SP1 | ZNF238 |
| 1234 | SP1 | ZNF333 | 1235 | SP1 | ZNF628 | 1236 | SP2 | ATF1 |
| 1237 | SP2 | ATF2 | 1238 | SP2 | ATF4 | 1239 | SP2 | ATF5 |
| 1240 | SP2 | ATF7 | 1241 | SP2 | BHLHE40 | 1242 | SP2 | BRF1 |
| 1243 | SP2 | CEBPB | 1244 | SP2 | CHURC1 | 1245 | SP2 | CNOT3 |
| 1246 | SP2 | CREM | 1247 | SP2 | CTCF | 1248 | SP2 | DBP |
| 1249 | SP2 | DDIT3 | 1250 | SP2 | DLX2 | 1251 | SP2 | E4F1 |
| 1252 | SP2 | EGR1 | 1253 | SP2 | ELK4 | 1254 | SP2 | EP300 |
| 1255 | SP2 | ESRRA | 1256 | SP2 | ETV4 | 1257 | SP2 | FOXH1 |
| 1258 | SP2 | FOXJ1 | 1259 | SP2 | FOXN2 | 1260 | SP2 | FOXO3 |
| 1261 | SP2 | GABPA | 1262 | SP2 | GTF2A1 | 1263 | SP2 | GTF2I |
| 1264 | SP2 | GZF1 | 1265 | SP2 | HBP1 | 1266 | SP2 | HES1 |
| 1267 | SP2 | HIF1A | 1268 | SP2 | HINFP | 1269 | SP2 | HOMEZ |
| 1270 | SP2 | HSF1 | 1271 | SP2 | IRF1 | 1272 | SP2 | IRF2 |
| 1273 | SP2 | JUN | 1274 | SP2 | JUNB | 1275 | SP2 | JUND |
| 1276 | SP2 | KLF11 | 1277 | SP2 | MAX | 1278 | SP2 | MAZ |
| 1279 | SP2 | MECP2 | 1280 | SP2 | MZF1 | 1281 | SP2 | NFATC3 |
| 1282 | SP2 | NFE2L1 | 1283 | SP2 | NFE2L2 | 1284 | SP2 | NFYA |
| 1285 | SP2 | NR1H2 | 1286 | SP2 | NR2C2 | 1287 | SP2 | NR4A1 |
| 1288 | SP2 | NR6A1 | 1289 | SP2 | OAZ1 | 1290 | SP2 | PARP1 |
| 1291 | SP2 | PITX3 | 1292 | SP2 | PKNOX1 | 1293 | SP2 | POU2F1 |
| 1294 | SP2 | PPARD | 1295 | SP2 | RBPJ | 1296 | SP2 | REL |
| 1297 | SP2 | RELB | 1298 | SP2 | RFX1 | 1299 | SP2 | RFX2 |
| 1300 | SP2 | RXRB | 1301 | SP2 | SIRT6 | 1302 | SP2 | SMAD2 |
| 1303 | SP2 | SP1 | 1304 | SP2 | SP2 | 1305 | SP2 | SP3 |
| 1306 | SP2 | SP4 | 1307 | SP2 | SREBF2 | 1308 | SP2 | SRF |
| 1309 | SP2 | STAT2 | 1310 | SP2 | STAT3 | 1311 | SP2 | TBP |
| 1312 | SP2 | TCF12 | 1313 | SP2 | TCF3 | 1314 | SP2 | TEF |
| 1315 | SP2 | TGIF1 | 1316 | SP2 | TOPORS | 1317 | SP2 | TP53 |
| 1318 | SP2 | TRIM28 | 1319 | SP2 | UBP1 | 1320 | SP2 | USF1 |
| 1321 | SP2 | YY1 | 1322 | SP2 | ZBTB33 | 1323 | SP2 | ZBTB7B |
| 1324 | SP2 | ZFP161 | 1325 | SP2 | ZNF143 | 1326 | SP2 | ZNF238 |
| 1327 | SP2 | ZNF333 | 1328 | SP2 | ZNF628 | 1329 | SP3 | ATF1 |
| 1330 | SP3 | ATF2 | 1331 | SP3 | ATF4 | 1332 | SP3 | ATF5 |
| 1333 | SP3 | ATF7 | 1334 | SP3 | BHLHE40 | 1335 | SP3 | BRF1 |
| 1336 | SP3 | CEBPB | 1337 | SP3 | CHURC1 | 1338 | SP3 | CNOT3 |
| 1339 | SP3 | CREM | 1340 | SP3 | CTCF | 1341 | SP3 | DBP |
| 1342 | SP3 | DDIT3 | 1343 | SP3 | DLX2 | 1344 | SP3 | E4F1 |

Appendix .
Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1345 | SP3 | EGR1 | 1346 | SP3 | ELK4 | 1347 | SP3 | EP300 |
| 1348 | SP3 | ESRRA | 1349 | SP3 | ETV4 | 1350 | SP3 | FOXA3 |
| 1351 | SP3 | FOXH1 | 1352 | SP3 | FOXJ1 | 1353 | SP3 | FOXJ3 |
| 1354 | SP3 | FOXN2 | 1355 | SP3 | FOXO3 | 1356 | SP3 | GABPA |
| 1357 | SP3 | GTF2A1 | 1358 | SP3 | GTF2I | 1359 | SP3 | GZF1 |
| 1360 | SP3 | HBP1 | 1361 | SP3 | HES1 | 1362 | SP3 | HIF1A |
| 1363 | SP3 | HINFP | 1364 | SP3 | HOMEZ | 1365 | SP3 | HSF1 |
| 1366 | SP3 | HSF2 | 1367 | SP3 | IRF1 | 1368 | SP3 | IRF2 |
| 1369 | SP3 | JUN | 1370 | SP3 | JUNB | 1371 | SP3 | JUND |
| 1372 | SP3 | KLF11 | 1373 | SP3 | MAX | 1374 | SP3 | MAZ |
| 1375 | SP3 | MECP2 | 1376 | SP3 | MZF1 | 1377 | SP3 | NFATC3 |
| 1378 | SP3 | NFE2L1 | 1379 | SP3 | NFE2L2 | 1380 | SP3 | NFYA |
| 1381 | SP3 | NR1H2 | 1382 | SP3 | NR2C2 | 1383 | SP3 | NR3C1 |
| 1384 | SP3 | NR4A1 | 1385 | SP3 | NR6A1 | 1386 | SP3 | OAZ1 |
| 1387 | SP3 | PARP1 | 1388 | SP3 | PITX3 | 1389 | SP3 | PKNOX1 |
| 1390 | SP3 | POU2F1 | 1391 | SP3 | PPARD | 1392 | SP3 | RBPJ |
| 1393 | SP3 | REL | 1394 | SP3 | RELA | 1395 | SP3 | RELB |
| 1396 | SP3 | RFX1 | 1397 | SP3 | RFX2 | 1398 | SP3 | RXRB |
| 1399 | SP3 | SIRT6 | 1400 | SP3 | SMAD2 | 1401 | SP3 | SP1 |
| 1402 | SP3 | SP2 | 1403 | SP3 | SP3 | 1404 | SP3 | SP4 |
| 1405 | SP3 | SREBF1 | 1406 | SP3 | SREBF2 | 1407 | SP3 | SRF |
| 1408 | SP3 | STAT1 | 1409 | SP3 | STAT2 | 1410 | SP3 | STAT3 |
| 1411 | SP3 | TBP | 1412 | SP3 | TCF12 | 1413 | SP3 | TCF3 |
| 1414 | SP3 | TEF | 1415 | SP3 | TERF1 | 1416 | SP3 | TGIF1 |
| 1417 | SP3 | TOPORS | 1418 | SP3 | TP53 | 1419 | SP3 | TRIM28 |
| 1420 | SP3 | UBP1 | 1421 | SP3 | USF1 | 1422 | SP3 | YY1 |
| 1423 | SP3 | ZBTB33 | 1424 | SP3 | ZBTB7A | 1425 | SP3 | ZBTB7B |
| 1426 | SP3 | ZFP161 | 1427 | SP3 | ZNF143 | 1428 | SP3 | ZNF238 |
| 1429 | SP3 | ZNF333 | 1430 | SP3 | ZNF628 | 1431 | SP4 | ATF1 |
| 1432 | SP4 | ATF2 | 1433 | SP4 | ATF4 | 1434 | SP4 | ATF5 |
| 1435 | SP4 | ATF7 | 1436 | SP4 | BHLHE40 | 1437 | SP4 | BRF1 |
| 1438 | SP4 | CEBPB | 1439 | SP4 | CHURC1 | 1440 | SP4 | CNOT3 |
| 1441 | SP4 | CREM | 1442 | SP4 | CTCF | 1443 | SP4 | DBP |
| 1444 | SP4 | DDIT3 | 1445 | SP4 | DLX2 | 1446 | SP4 | E4F1 |
| 1447 | SP4 | EGR1 | 1448 | SP4 | ELK4 | 1449 | SP4 | EP300 |
| 1450 | SP4 | ESRRA | 1451 | SP4 | ETV4 | 1452 | SP4 | FOXH1 |
| 1453 | SP4 | FOXJ1 | 1454 | SP4 | FOXJ3 | 1455 | SP4 | FOXN2 |
| 1456 | SP4 | FOXO3 | 1457 | SP4 | GABPA | 1458 | SP4 | GTF2A1 |
| 1459 | SP4 | GTF2I | 1460 | SP4 | GZF1 | 1461 | SP4 | HBP1 |
| 1462 | SP4 | HES1 | 1463 | SP4 | HIF1A | 1464 | SP4 | HINFP |
| 1465 | SP4 | HOMEZ | 1466 | SP4 | HSF1 | 1467 | SP4 | IRF1 |
| 1468 | SP4 | IRF2 | 1469 | SP4 | JUN | 1470 | SP4 | JUNB |
| 1471 | SP4 | JUND | 1472 | SP4 | KLF11 | 1473 | SP4 | MAX |
| 1474 | SP4 | MAZ | 1475 | SP4 | MECP2 | 1476 | SP4 | MZF1 |
| 1477 | SP4 | NFATC3 | 1478 | SP4 | NFE2L1 | 1479 | SP4 | NFE2L2 |
| 1480 | SP4 | NFYA | 1481 | SP4 | NR1H2 | 1482 | SP4 | NR2C2 |
| 1483 | SP4 | NR4A1 | 1484 | SP4 | NR6A1 | 1485 | SP4 | OAZ1 |
| 1486 | SP4 | PARP1 | 1487 | SP4 | PITX3 | 1488 | SP4 | PKNOX1 |
| 1489 | SP4 | POU2F1 | 1490 | SP4 | PPARD | 1491 | SP4 | RBPJ |
| 1492 | SP4 | REL | 1493 | SP4 | RELA | 1494 | SP4 | RELB |

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1495 | SP4 | RFX1 | 1496 | SP4 | RFX2 | 1497 | SP4 | RXRB |
| 1498 | SP4 | SIRT6 | 1499 | SP4 | SMAD2 | 1500 | SP4 | SP1 |
| 1501 | SP4 | SP2 | 1502 | SP4 | SP3 | 1503 | SP4 | SP4 |
| 1504 | SP4 | SREBF1 | 1505 | SP4 | SREBF2 | 1506 | SP4 | SRF |
| 1507 | SP4 | STAT2 | 1508 | SP4 | STAT3 | 1509 | SP4 | TBP |
| 1510 | SP4 | TCF12 | 1511 | SP4 | TCF3 | 1512 | SP4 | TEF |
| 1513 | SP4 | TGIF1 | 1514 | SP4 | TOPORS | 1515 | SP4 | TP53 |
| 1516 | SP4 | TRIM28 | 1517 | SP4 | UBP1 | 1518 | SP4 | USF1 |
| 1519 | SP4 | YY1 | 1520 | SP4 | ZBTB33 | 1521 | SP4 | ZBTB7B |
| 1522 | SP4 | ZFP161 | 1523 | SP4 | ZNF143 | 1524 | SP4 | ZNF238 |
| 1525 | SP4 | ZNF263 | 1526 | SP4 | ZNF333 | 1527 | SP4 | ZNF628 |
| 1528 | SPI1 | MAZ | 1529 | SPI1 | MTF1 | 1530 | SPI1 | NR1I3 |
| 1531 | SPI1 | RBPJ | 1532 | SPI1 | RELB | 1533 | SPI1 | RFX5 |
| 1534 | SPI1 | TBP | 1535 | SPIB | RXRB | 1536 | SPZ1 | DBP |
| 1537 | SPZ1 | EGR1 | 1538 | SPZ1 | ELK4 | 1539 | SPZ1 | GABPA |
| 1540 | SPZ1 | HMBOX1 | 1541 | SPZ1 | IRF2 | 1542 | SPZ1 | NR4A1 |
| 1543 | SPZ1 | SREBF1 | 1544 | SPZ1 | ZBTB7B | 1545 | SREBF1 | IRF2 |
| 1546 | SREBF1 | JUND | 1547 | SREBF1 | MAZ | 1548 | SREBF1 | NFYA |
| 1549 | SREBF1 | PPARD | 1550 | SREBF1 | RELB | 1551 | SREBF1 | SP2 |
| 1552 | SREBF1 | SREBF2 | 1553 | SREBF1 | TOPORS | 1554 | SREBF1 | USF1 |
| 1555 | SREBF2 | IRF2 | 1556 | SREBF2 | JUN | 1557 | SREBF2 | JUND |
| 1558 | SREBF2 | MAZ | 1559 | SREBF2 | NFE2L1 | 1560 | SREBF2 | PPARD |
| 1561 | SREBF2 | SP2 | 1562 | SREBF2 | SREBF2 | 1563 | SREBF2 | UBP1 |
| 1564 | SRF | E4F1 | 1565 | SRF | EGR1 | 1566 | SRF | EGR2 |
| 1567 | SRF | EGR3 | 1568 | SRF | ING4 | 1569 | SRF | JUNB |
| 1570 | SRF | NR2F2 | 1571 | SRF | NR4A1 | 1572 | SRF | SRF |
| 1573 | STAT1 | CHURC1 | 1574 | STAT1 | FOXA3 | 1575 | STAT1 | IRF9 |
| 1576 | STAT1 | MAFF | 1577 | STAT1 | MAX | 1578 | STAT1 | SRF |
| 1579 | STAT2 | MAFF | 1580 | STAT2 | MAX | 1581 | STAT3 | CHURC1 |
| 1582 | STAT3 | FOXA3 | 1583 | STAT3 | IRF9 | 1584 | STAT3 | MAFF |
| 1585 | STAT3 | MAX | 1586 | STAT4 | IRF9 | 1587 | STAT4 | MAFF |
| 1588 | STAT4 | MAX | 1589 | STAT5A | FOXA3 | 1590 | STAT5A | IRF9 |
| 1591 | STAT5A | MAFF | 1592 | STAT5A | MAX | 1593 | STAT5B | IRF9 |
| 1594 | STAT5B | MAFF | 1595 | STAT5B | MAX | 1596 | STAT6 | MAFF |
| 1597 | STAT6 | MAX | 1598 | TAL1 | ATF7 | 1599 | TAL1 | GTF2A1 |
| 1600 | TAL1 | TOPORS | 1601 | TCF3 | ATF1 | 1602 | TCF3 | CEBPE |
| 1603 | TCF3 | DLX2 | 1604 | TCF3 | HES1 | 1605 | TCF3 | HMBOX1 |
| 1606 | TCF3 | ING4 | 1607 | TCF3 | SRF | 1608 | TCF3 | TEF |
| 1609 | TCF3 | TERF1 | 1610 | TCF3 | ZBTB7A | 1611 | TFAP2A | ATF1 |
| 1612 | TFAP2A | ATF5 | 1613 | TFAP2A | ATF7 | 1614 | TFAP2A | BCL6 |
| 1615 | TFAP2A | BHLHE40 | 1616 | TFAP2A | CTCF | 1617 | TFAP2A | DEAF1 |
| 1618 | TFAP2A | E2F7 | 1619 | TFAP2A | E4F1 | 1620 | TFAP2A | EP300 |
| 1621 | TFAP2A | ESRRA | 1622 | TFAP2A | ETV4 | 1623 | TFAP2A | FOXO3 |
| 1624 | TFAP2A | GZF1 | 1625 | TFAP2A | HES1 | 1626 | TFAP2A | HMBOX1 |
| 1627 | TFAP2A | HSF1 | 1628 | TFAP2A | IRF2 | 1629 | TFAP2A | JUN |
| 1630 | TFAP2A | JUNB | 1631 | TFAP2A | KLF11 | 1632 | TFAP2A | KLF15 |
| 1633 | TFAP2A | MAFA | 1634 | TFAP2A | MAFF | 1635 | TFAP2A | MAZ |
| 1636 | TFAP2A | NFE2L2 | 1637 | TFAP2A | OAZ1 | 1638 | TFAP2A | PARP1 |
| 1639 | TFAP2A | PATZ1 | 1640 | TFAP2A | POU2F1 | 1641 | TFAP2A | PURA |
| 1642 | TFAP2A | RBPJ | 1643 | TFAP2A | REL | 1644 | TFAP2A | RELB |

Appendix .
Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1645 | TFAP2A | SIRT6 | 1646 | TFAP2A | SP1 | 1647 | TFAP2A | SP4 |
| 1648 | TFAP2A | SREBF2 | 1649 | TFAP2A | SRF | 1650 | TFAP2A | STAT3 |
| 1651 | TFAP2A | TEF | 1652 | TFAP2A | TFAP4 | 1653 | TFAP2A | TGIF1 |
| 1654 | TFAP2A | TOPORS | 1655 | TFAP2A | TP53 | 1656 | TFAP2A | TRIM28 |
| 1657 | TFAP2A | USF1 | 1658 | TFAP2A | ZBTB7B | 1659 | TFAP2A | ZFP161 |
| 1660 | TFAP2A | ZNF143 | 1661 | TFAP2A | ZNF238 | 1662 | TFAP2B | ATF1 |
| 1663 | TFAP2B | BCL6 | 1664 | TFAP2B | BHLHE40 | 1665 | TFAP2B | CTCF |
| 1666 | TFAP2B | DEAF1 | 1667 | TFAP2B | E2F7 | 1668 | TFAP2B | E4F1 |
| 1669 | TFAP2B | EP300 | 1670 | TFAP2B | ESRRA | 1671 | TFAP2B | ETV4 |
| 1672 | TFAP2B | FOXO3 | 1673 | TFAP2B | GZF1 | 1674 | TFAP2B | HES1 |
| 1675 | TFAP2B | HMBOX1 | 1676 | TFAP2B | HSF1 | 1677 | TFAP2B | IRF2 |
| 1678 | TFAP2B | JUN | 1679 | TFAP2B | JUNB | 1680 | TFAP2B | KLF11 |
| 1681 | TFAP2B | KLF15 | 1682 | TFAP2B | MAFF | 1683 | TFAP2B | MAZ |
| 1684 | TFAP2B | NFE2L2 | 1685 | TFAP2B | OAZ1 | 1686 | TFAP2B | PARP1 |
| 1687 | TFAP2B | PATZ1 | 1688 | TFAP2B | POU2F1 | 1689 | TFAP2B | PURA |
| 1690 | TFAP2B | RBPJ | 1691 | TFAP2B | REL | 1692 | TFAP2B | RELB |
| 1693 | TFAP2B | SIRT6 | 1694 | TFAP2B | SP4 | 1695 | TFAP2B | SREBF2 |
| 1696 | TFAP2B | SRF | 1697 | TFAP2B | STAT3 | 1698 | TFAP2B | TFAP4 |
| 1699 | TFAP2B | TGIF1 | 1700 | TFAP2B | TOPORS | 1701 | TFAP2B | TP53 |
| 1702 | TFAP2B | TRIM28 | 1703 | TFAP2B | USF1 | 1704 | TFAP2B | ZBTB7B |
| 1705 | TFAP2B | ZFP161 | 1706 | TFAP2B | ZNF143 | 1707 | TFAP2B | ZNF238 |
| 1708 | TFAP2C | ATF1 | 1709 | TFAP2C | ATF7 | 1710 | TFAP2C | BCL6 |
| 1711 | TFAP2C | BHLHE40 | 1712 | TFAP2C | CTCF | 1713 | TFAP2C | DEAF1 |
| 1714 | TFAP2C | E2F7 | 1715 | TFAP2C | E4F1 | 1716 | TFAP2C | EP300 |
| 1717 | TFAP2C | ESRRA | 1718 | TFAP2C | ETV4 | 1719 | TFAP2C | FOXO3 |
| 1720 | TFAP2C | GZF1 | 1721 | TFAP2C | HES1 | 1722 | TFAP2C | HMBOX1 |
| 1723 | TFAP2C | HSF1 | 1724 | TFAP2C | IRF2 | 1725 | TFAP2C | JUN |
| 1726 | TFAP2C | JUNB | 1727 | TFAP2C | KLF11 | 1728 | TFAP2C | KLF15 |
| 1729 | TFAP2C | MAFF | 1730 | TFAP2C | MAZ | 1731 | TFAP2C | NFE2L2 |
| 1732 | TFAP2C | OAZ1 | 1733 | TFAP2C | PARP1 | 1734 | TFAP2C | PATZ1 |
| 1735 | TFAP2C | POU2F1 | 1736 | TFAP2C | PURA | 1737 | TFAP2C | RBPJ |
| 1738 | TFAP2C | REL | 1739 | TFAP2C | RELB | 1740 | TFAP2C | SIRT6 |
| 1741 | TFAP2C | SP4 | 1742 | TFAP2C | SREBF2 | 1743 | TFAP2C | SRF |
| 1744 | TFAP2C | STAT3 | 1745 | TFAP2C | TEF | 1746 | TFAP2C | TFAP4 |
| 1747 | TFAP2C | TGIF1 | 1748 | TFAP2C | TOPORS | 1749 | TFAP2C | TP53 |
| 1750 | TFAP2C | TRIM28 | 1751 | TFAP2C | USF1 | 1752 | TFAP2C | ZBTB7B |
| 1753 | TFAP2C | ZFP161 | 1754 | TFAP2C | ZNF143 | 1755 | TFAP2C | ZNF238 |
| 1756 | TFAP4 | CDC5L | 1757 | TFAP4 | E2F7 | 1758 | TFAP4 | TP53 |
| 1759 | TFCP2 | CTCF | 1760 | TFCP2 | DBP | 1761 | TFCP2 | GTF2I |
| 1762 | TFCP2 | MAZ | 1763 | TFCP2L1 | DBP | 1764 | TFCP2L1 | TP53 |
| 1765 | TFDP1 | ATF4 | 1766 | TFDP1 | E2F1 | 1767 | TFDP1 | MAZ |
| 1768 | TFDP2 | ATF4 | 1769 | TFDP2 | E2F1 | 1770 | TFDP2 | MAZ |
| 1771 | THRA | ZNF143 | 1772 | THRB | ZNF143 | 1773 | TLX2 | CREM |
| 1774 | TP53 | GABPB1 | 1775 | TP53 | HOMEZ | 1776 | TP53 | RBPJ |
| 1777 | TP53 | RELB | 1778 | TP63 | RELB | 1779 | TP73 | RELB |
| 1780 | TRIM28 | CBFB | 1781 | TRIM28 | ELK4 | 1782 | TRIM28 | ESRRA |
| 1783 | TRIM28 | FOXO3 | 1784 | TRIM28 | GTF2A1 | 1785 | TRIM28 | GZF1 |
| 1786 | TRIM28 | MAFA | 1787 | TRIM28 | PITX3 | 1788 | TRIM28 | SMAD2 |
| 1789 | TRIM28 | SREBF2 | 1790 | TRIM28 | SRF | 1791 | TRIM28 | TGIF1 |
| 1792 | TRIM28 | TP53 | 1793 | TRIM28 | YY1 | 1794 | USF1 | DBP |

Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1795 | USF1 | GTF2A1 | 1796 | USF1 | HINFP | 1797 | USF1 | IRF9 |
| 1798 | USF1 | MAFG | 1799 | USF1 | PITX3 | 1800 | USF1 | TOPORS |
| 1801 | USF2 | DBP | 1802 | USF2 | GTF2A1 | 1803 | USF2 | HINFP |
| 1804 | USF2 | IRF9 | 1805 | USF2 | MAFG | 1806 | USF2 | PITX3 |
| 1807 | VDR | BHLHE40 | 1808 | VDR | CNOT3 | 1809 | VDR | HBP1 |
| 1810 | VDR | MECP2 | 1811 | VDR | NR6A1 | 1812 | VDR | RFX5 |
| 1813 | VDR | SP1 | 1814 | VDR | SP3 | 1815 | VDR | SP4 |
| 1816 | VDR | TBP | 1817 | WT1 | BHLHE40 | 1818 | WT1 | DBP |
| 1819 | WT1 | DDIT3 | 1820 | WT1 | ELK4 | 1821 | WT1 | EP300 |
| 1822 | WT1 | FOXO3 | 1823 | WT1 | GZF1 | 1824 | WT1 | JUN |
| 1825 | WT1 | MAZ | 1826 | WT1 | MECP2 | 1827 | WT1 | NFATC3 |
| 1828 | WT1 | PATZ1 | 1829 | WT1 | POU2F1 | 1830 | WT1 | SP3 |
| 1831 | WT1 | STAT3 | 1832 | WT1 | TEF | 1833 | WT1 | TP53 |
| 1834 | WT1 | ZBTB7B | 1835 | WT1 | ZFP161 | 1836 | XBP1 | RXRB |
| 1837 | YY1 | ARNT | 1838 | YY1 | DEAF1 | 1839 | YY1 | E4F1 |
| 1840 | YY1 | EGR2 | 1841 | YY1 | EP300 | 1842 | YY1 | ING4 |
| 1843 | YY1 | NFYA | 1844 | YY1 | NR1I3 | 1845 | YY1 | RXRB |
| 1846 | YY1 | USF1 | 1847 | ZBTB6 | NFYA | 1848 | ZBTB7B | ATF1 |
| 1849 | ZBTB7B | ATF2 | 1850 | ZBTB7B | ATF5 | 1851 | ZBTB7B | BHLHE40 |
| 1852 | ZBTB7B | BRF1 | 1853 | ZBTB7B | CEBPB | 1854 | ZBTB7B | CREM |
| 1855 | ZВTB7B | DBP | 1856 | ZBTB7B | DDIT3 | 1857 | ZBTB7B | DLX2 |
| 1858 | ZВTB7B | E4F1 | 1859 | ZBTB7B | ELK4 | 1860 | ZBTB7B | EP300 |
| 1861 | ZВTB7B | ESRRA | 1862 | ZBTB7B | FOXN2 | 1863 | ZBTB7B | FOXO3 |
| 1864 | ZВTB7B | FOXP3 | 1865 | ZBTB7B | GTF2I | 1866 | ZBTB7B | GZF1 |
| 1867 | ZBTB7B | HBP1 | 1868 | ZBTB7B | HES1 | 1869 | ZBTB7B | IRF1 |
| 1870 | ZВTB7B | JUN | 1871 | ZBTB7B | JUND | 1872 | ZBTB7B | KLF11 |
| 1873 | ZBTB7B | MAFF | 1874 | ZBTB7B | MAX | 1875 | ZBTB7B | MAZ |
| 1876 | ZВTB7B | MECP2 | 1877 | ZBTB7B | MZF1 | 1878 | ZBTB7B | NFATC3 |
| 1879 | ZBTB7B | NFE2L1 | 1880 | ZBTB7B | NFYA | 1881 | ZBTB7B | NR4A1 |
| 1882 | ZВTB7B | NR6A1 | 1883 | ZBTB7B | OAZ1 | 1884 | ZBTB7B | PITX3 |
| 1885 | ZBTB7B | PKNOX1 | 1886 | ZBTB7B | POU2F1 | 1887 | ZBTB7B | RBPJ |
| 1888 | ZВTB7B | RELB | 1889 | ZBTB7B | RFX1 | 1890 | ZBTB7B | RFX5 |
| 1891 | ZBTB7B | SIRT6 | 1892 | ZBTB7B | SP1 | 1893 | ZBTB7B | SP2 |
| 1894 | ZBTB7B | SP3 | 1895 | ZBTB7B | SP4 | 1896 | ZBTB7B | SRF |
| 1897 | ZBTB7B | STAT3 | 1898 | ZBTB7B | TBP | 1899 | ZBTB7B | TCF12 |
| 1900 | ZBTB7B | TCF3 | 1901 | ZBTB7B | TEF | 1902 | ZBTB7B | TOPORS |
| 1903 | ZBTB7B | TP53 | 1904 | ZBTB7B | TRIM28 | 1905 | ZBTB7B | YY1 |
| 1906 | ZBTB7B | ZBTB7B | 1907 | ZBTB7B | ZNF143 | 1908 | ZBTB7B | ZNF238 |
| 1909 | ZBTB7B | ZNF628 | 1910 | ZEB1 | TERF1 | 1911 | ZFP161 | DDIT3 |
| 1912 | ZFP161 | ELK4 | 1913 | ZFP161 | MAZ | 1914 | ZFP161 | SP3 |
| 1915 | ZFP42 | ARNT | 1916 | ZFP42 | E4F1 | 1917 | ZFP42 | EP300 |
| 1918 | ZFP42 | ING4 | 1919 | ZFP42 | MAZ | 1920 | ZFP42 | NFYA |
| 1921 | ZFX | BRF1 | 1922 | ZFX | CREM | 1923 | ZFX | CTCF |
| 1924 | ZFX | DBP | 1925 | ZFX | DEAF1 | 1926 | ZFX | E2F7 |
| 1927 | ZFX | E4F1 | 1928 | ZFX | EGR1 | 1929 | ZFX | ELK4 |
| 1930 | ZFX | EP300 | 1931 | ZFX | ESRRA | 1932 | ZFX | FOXO3 |
| 1933 | ZFX | GTF2I | 1934 | ZFX | GZF1 | 1935 | ZFX | HES1 |
| 1936 | ZFX | HIF1A | 1937 | ZFX | HSF1 | 1938 | ZFX | IRF2 |
| 1939 | ZFX | JUNB | 1940 | ZFX | JUND | 1941 | ZFX | KLF15 |
| 1942 | ZFX | MAFF | 1943 | ZFX | NFATC3 | 1944 | ZFX | NFE2L1 |

Appendix .
Table A. 5 - Continued from previous page

| N | Source | Target | N | Source | Target | N | Source | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1945 | ZFX | NFE2L2 | 1946 | ZFX | NFYA | 1947 | ZFX | NR2C2 |
| 1948 | ZFX | PATZ1 | 1949 | ZFX | PKNOX1 | 1950 | ZFX | POU2F1 |
| 1951 | ZFX | RBPJ | 1952 | ZFX | RELB | 1953 | ZFX | RFX1 |
| 1954 | ZFX | SMAD2 | 1955 | ZFX | SMAD7 | 1956 | ZFX | SP1 |
| 1957 | ZFX | SP4 | 1958 | ZFX | SREBF2 | 1959 | ZFX | SRF |
| 1960 | ZFX | TCF3 | 1961 | ZFX | TFAP4 | 1962 | ZFX | TOPORS |
| 1963 | ZFX | TRIM28 | 1964 | ZFX | YY1 | 1965 | ZFX | ZBTB7A |
| 1966 | ZFX | ZNF143 | 1967 | ZFX | ZNF263 | 1968 | ZNF143 | ATF7 |
| 1969 | ZNF143 | FOXA3 | 1970 | ZNF143 | GABPA | 1971 | ZNF143 | GTF2I |
| 1972 | ZNF143 | MAX | 1973 | ZNF143 | MZF1 | 1974 | ZNF143 | NFE2L1 |
| 1975 | ZNF143 | NR6A1 | 1976 | ZNF143 | TP73 | 1977 | ZNF143 | ZBTB7A |
| 1978 | ZNF143 | ZNF143 | 1979 | ZNF143 | ZNF219 | 1980 | ZNF143 | ZNF263 |
| 1981 | ZNF143 | ZNF628 | 1982 | ZNF148 | BHLHE40 | 1983 | ZNF148 | CNOT3 |
| 1984 | ZNF148 | CTCF | 1985 | ZNF148 | DDIT3 | 1986 | ZNF148 | ELK4 |
| 1987 | ZNF148 | EP300 | 1988 | ZNF148 | ESRRA | 1989 | ZNF148 | HES1 |
| 1990 | ZNF148 | HOMEZ | 1991 | ZNF148 | JUN | 1992 | ZNF148 | MAZ |
| 1993 | ZNF148 | MECP2 | 1994 | ZNF148 | NFATC3 | 1995 | ZNF148 | POU2F1 |
| 1996 | ZNF148 | SP1 | 1997 | ZNF148 | SP3 | 1998 | ZNF148 | STAT3 |
| 1999 | ZNF148 | TEF | 2000 | ZNF148 | ZBTB7B | 2001 | ZNF148 | ZNF238 |
| 2002 | ZNF219 | BHLHE40 | 2003 | ZNF219 | BRF1 | 2004 | ZNF219 | CNOT3 |
| 2005 | ZNF219 | CTCF | 2006 | ZNF219 | DBP | 2007 | ZNF219 | DDIT3 |
| 2008 | ZNF219 | DLX2 | 2009 | ZNF219 | EP300 | 2010 | ZNF219 | ETV4 |
| 2011 | ZNF219 | FOXN2 | 2012 | ZNF219 | FOXO3 | 2013 | ZNF219 | GTF2I |
| 2014 | ZNF219 | IRF2 | 2015 | ZNF219 | JUN | 2016 | ZNF219 | JUNB |
| 2017 | ZNF219 | JUND | 2018 | ZNF219 | NFATC3 | 2019 | ZNF219 | NFYA |
| 2020 | ZNF219 | NR4A1 | 2021 | ZNF219 | NR6A1 | 2022 | ZNF219 | POU2F1 |
| 2023 | ZNF219 | RBPJ | 2024 | ZNF219 | SP4 | 2025 | ZNF219 | SRF |
| 2026 | ZNF219 | TP53 | 2027 | ZNF219 | ZBTB7B | 2028 | ZNF219 | ZNF238 |
| 2029 | ZNF263 | BHLHE40 | 2030 | ZNF263 | CNOT3 | 2031 | ZNF263 | EGR1 |
| 2032 | ZNF263 | MAZ | 2033 | ZNF263 | MECP2 | 2034 | ZNF263 | NFE2L2 |
| 2035 | ZNF263 | SP1 | 2036 | ZNF263 | SP4 | 2037 | ZNF263 | STAT3 |
| 2038 | ZNF263 | ZNF238 | 2039 | ZNF350 | FOXM1 | 2040 | ZNF350 | TBP |
| 2041 | ZNF589 | MECP2 |  |  |  |  |  |  |

Table A.6. 23 protein complexes in which the proteins in the complex are highly connected with HK interactions. Rows without background are TFs in one complex, while rows with gray background are HK interactions connecting TFs in the complex.

| Complex ID | TFs or interactions lists | N |
| :---: | :---: | :---: |
| HC5737 | EP300;ETS1;FOXC1;GATA2;GATA3;GATA5;GATA6;KLF4;MZF1;SP1;SREBF1;SREBF2;TFAP2A;YY1;ZNF354C | 15 |
|  | KLF4-EP300;SP1-EP300;TFAP2A-EP300;YY1-EP300;ETS1-MZF1;KLF4-MZF1; <br> SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-SREBF1;KLF4-SREBF2; <br> SP1-SREBF2;SREBF1-SREBF2;SREBF2-SREBF2;TFAP2A-SREBF2;KLF4-YY1;SP1-YY1 | 19 |
| HC6033 | ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NKX2-5;PAX2;SP1;SPIB;TFAP2A;USF1;YY1 | 13 |
|  | ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1; SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1 | 13 |
| HC3896 | BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;SP1;SPIB;TFAP2A;USF1;YY1;ZNF354C ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1; SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1 | 14 13 |
| HC6644 | BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;NKX2-5;SP1;SPIB;TFAP2A;USF1;YY1;ZNF354C | 15 |
|  | ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1; SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1 | 13 |
| HC4454 | ETS1;FOXC1;FOXL1;GATA2;GATA3;HOXA5;HSF1;MZF1;NFIC;SP1;TFAP2A;USF1;YY1;ZNF354C | 14 |
|  | SP1-HSF1;TFAP2A-HSF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-USF1; TFAP2A-USF1;YY1-USF1;SP1-YY1 | 11 |
| HC8755 | CDC5L;ETS1;FOXC1;GATA2;GATA3;MZF1;NFIC;NKX2-5;REL;SP1;ZEB1 | 11 |
|  | ETS1-CDC5L;ETS1-MZF1;SP1-MZF1;SP1-REL;MZF1-SP1;SP1-SP1 | 6 |
| HC6745 | BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;NR4A2;SP1;SPIB;TBP;TFAP2A;YY1;ZEB1 | 15 |
|  | ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-TBP; SP1-TBP;KLF4-YY1;SP1-YY1 | 11 |
| HC4615 | ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;NKX3-2;REL;SOX10;SP1;TFAP2A;YY1;ZNF354C | 13 |
|  | ETS1-MZF1;SP1-MZF1;SP1-REL;TFAP2A-REL;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 | 8 |
| HC4912 | ARNT;ELF5;ETS1;FOXC1;GATA2;GATA3;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1 | 13 |
|  | YY1-ARNT;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 | 7 |
| HC6667 | BRCA1;ELK1;ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1;ZFX;ZNF354C | 15 |
|  | ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;ZFX-SP1;SP1-YY1;ZFX-YY1 | 9 |
| HC9842 | BRCA1;ELK1;ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1;ZFX;ZNF354C | 15 |
|  | ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;ZFX-SP1;SP1-YY1;ZFX-YY1 | 9 |
| HC2178 | BRCA1;ETS1;FOXC1;GATA2;MZF1;NFIC;NKX2-5;REL;SOX10;SP1;SPIB;TFAP2A;YY1;ZEB1;ZNF354C | 15 |
|  | ETS1-MZF1;SP1-MZF1;SP1-REL;TFAP2A-REL;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 | 8 |
| HC9330 | BRCA1;ETS1;FOXC1;FOXL1;GATA2;GATA3;NFYA;NKX2-5;SOX10;SOX5;SP1;SPIB;TFAP2A;YY1;ZNF354C | 15 |
|  | ETS1-NFYA;NFYA-NFYA;SP1-NFYA;YY1-NFYA;SP1-SP1;TFAP2A-SP1;NFYA-YY1;SP1-YY1 | 8 |
| HC4460 | ARID3A;ELF5;ETS1;FOXL1;GATA2;GATA3;HSF1;NFIC;NFIL3;PARP1;SP1;SPIB;TFAP2A;YY1;ZNF354C | 15 |
|  | SP1-HSF1;TFAP2A-HSF1;SP1-PARP1;TFAP2A-PARP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 | 7 |
| HC6205 | ELF5;ETS1;FOXL1;GATA2;GATA3;HSF1;NFIC;NFIL3;PARP1;SP1;SPIB;TFAP2A;YY1;ZEB1;ZNF354C | 15 |
|  | SP1-HSF1;TFAP2A-HSF1;SP1-PARP1;TFAP2A-PARP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 | 7 |
| HC9314 | ARNT;ATF7;BRCA1;ESRRB;ETS1;FOS;FOXC1;GATA2;GATA3;MZF1;NFIC;PAX2;SP1;YY1;ZEB1 | 15 |
|  | YY1-ARNT;SP1-ATF7;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;SP1-YY1 | 7 |
| HC7980 | ELK1;ETS1;FOXC1;GATA2;GATA3;HOXA5;MAFB;NFIC;SOX10;SP1;SP4;YY1;ZEB1;ZNF354C | 14 |
|  | SP1-SP1;SP4-SP1;SP1-SP4;SP4-SP4;SP1-YY1;SP4-YY1 | 6 |
| HC1277 | $\begin{aligned} & \text { CREB1;ETS1;FOXC1;FOXO3;GATA2;GATA3;MZF1;NFIC;NFYA;PDX1;REL;SOX10;SPIB;TFAP2A; } \\ & \text { YY1;ZEB1;ZNF354C } \end{aligned}$ | 17 |
|  | TFAP2A-FOXO3;ETS1-MZF1;ETS1-NFYA;NFYA-NFYA;YY1-NFYA;CREB1-REL;TFAP2A-REL;NFYA-YY1 | 8 |
| HC7936 | ELF5;ETS1;FOXC1;FOXL1;GATA2;GATA3;KLF4;NFIC;NFYA;NKX2-5;PDX1;SOX10;TFAP2A;YY1;ZEB1 | 15 |
|  | ETS1-NFYA;KLF4-NFYA;NFYA-NFYA;YY1-NFYA;KLF4-YY1;NFYA-YY1 | 6 |
| HC4463 | ELF5;ETS1;FOXC1;FOXL1;GATA2;GATA3;HSF1;KLF4;PDX1;SOX10;TBP;TFAP2A;YY1;ZEB1;ZFX | 15 |
|  | KLF4-HSF1;TFAP2A-HSF1;ZFX-HSF1;KLF4-TBP;KLF4-YY1;ZFX-YY1 | 6 |
| HC6575 | ARID3A;BRCA1;ELF5;ETS1;FOXC1;GATA2;GATA3;MYB;MZF1;NKX2-5;PARP1;SOX10;SP1;YY1;ZNF354C | 15 |
|  | ETS1-MZF1;SP1-MZF1;SP1-PARP1;MZF1-SP1;SP1-SP1;SP1-YY1 | 6 |
| HC2683 | ETS1;FOXC1;FOXO3;GATA2;GATA3;HOXA5;MAFB;MZF1;NFIC;NKX2-5; PAX2;PDX1;SOX10;SP1;TBP;TFAP2A;YY1;ZEB1;ZNF354C | 19 |
|  | SP1-FOXO3;TFAP2A-FOXO3;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-TBP;SP1-YY1 | 9 |
| HC6143 | ARID3A;BRCA1;CDC5L;CREB1;ELK1;ETS1;FOXC1;FOXL1;GATA2;GATA3;MZF1;NFIC;PDX1; | 18 |
|  | ETS1-CDC5L;ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;SP1-YY1 | 7 |

