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Summary

Complex networks abound in physical, biological and social sciences. Quan-

tifying a network’s topological structure facilitates network exploration and

analysis, and network comparison, clustering and classification. A number

of Wiener type indices have recently been incorporated as distance-based

descriptors of complex networks, such as the R package QuACN. Wiener

type indices are known to depend both on the network’s number of nodes

and topology. To apply these indices to measure similarity of networks of

different numbers of nodes, normalization of these indices is needed to cor-

rect the effect of the number of nodes in a network. Chapter 2 aims to fill

this gap. Moreover, we introduce an f -Wiener index of network G, denoted

by Wf (G). This notion generalizes the Wiener index to a very wide class of

Wiener type indices including all known Wiener type indices. We identify

the maximum and minimum of Wf (G) over a set of networks with n nodes.

We then introduce our normalized-version of f -Wiener index. The normal-

ized f -Wiener indices were demonstrated, in a number of experiments, to

improve significantly the hierarchical clustering over the non-normalized

counterparts.

Neph et al. (2012a) reported the transcription factor (TF) regulatory

networks of 41 human cell types using the DNaseI footprinting technique.

This provides a valuable resource for uncovering regulation principles in

xi



Summary

different human cells. In chapter 3, the architectures of the 41 regulatory

networks and the distributions of housekeeping and specific regulatory in-

teractions are investigated. The TF regulatory networks of different human

cell types demonstrate similar global three-layer (top, core, and bottom)

hierarchical architectures, which are greatly different from the yeast TF reg-

ulatory network. However, they have distinguishable local organizations, as

suggested by the fact that wiring patterns of only a few TFs are enough

to distinguish cell identities. The TF regulatory network of human embry-

onic stem cells (hESCs) is dense and enriched with interactions that are

unseen in the networks of other cell types. The examination of specific reg-

ulatory interactions suggests that specific interactions play important roles

in hESCs.

An Feed-Forward Loop (FFL) consists of 3 nodes A, B and C in which

A regulates B, and both A and B regulate C. In chapter 4, we compared

local regulatory landscapes on each TF in terms of FFLs in regulatory

network of hESC with those in other 40 differentiated cell types reported

by Neph et al. (2012a). Firstly we found that distributional properties

of FFL regulating each TF can reproduce embryonic origin and known

cell-lineage relationship well. The clustering is comparable with clusterings

based on distance matrices produced by netdis (Ali et al., 2014). Secondly

we identified 28 TFs extensively regulated by FFLs in hESC only. Among

them 13 TFs perform hESC related functions. While remaining 15 TFs are

master TFs in various differentiated cell types. Thirdly, our proposed scores

perform better in identifying hESC related TFs than FFL-based centrality

measures in Koschützki et al. (2007).

xii
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Chapter 1

Introduction

1.1 Complex biological networks

Living cells’ characteristics are maintained by complex biological systems

which contain numerous components such as DNA, RNA, proteins, and

their interactions. Each of these components has been extensively studied

to investigate its functions in maintaining cell states and decipher complex

cellular systems. It is increasingly clear that biological functions can rarely

be attributed to an individual component. Instead, recently more and more

evidence demonstrates that important functions are played by interactions

between components in maintaining cellular functions (Barabasi and Olt-

vai, 2004). These discoveries highlight the need to study complex biological

systems as a whole. A key challenge is to study structure and dynamics of

complex biological systems across conditions, e.g. cell stages, cell types or

species, etc. To this direction, complex biological systems are represented by

biological networks. A network can be metabolic network, protein-protein

interaction (PPI) network, regulatory network, etc. Metabolic networks are

classic examples for using a network to represent metabolic pathways. Two
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metabolic substrates, denoted as a and b, are connected by a directed in-

teraction if a known metabolic reaction exists that acts on a and produces

b. PPI networks symbolize physical interactions between proteins. Gene

regulatory networks (GRNs) depict gene expression regulation, where a

gene’s expression is regulated by their regulators (Figure 1.1). Transcrip-

tion factor (TF) regulatory networks represent regulation of a TF by other

TFs (Figures 1.2 and 1.5). Interactions between cellular components rewire

at different conditions, for example, stages of a cell, different cell types or

across species. Thus these networks could be time-specific, cell type-specific

or species-specific, etc. Moreover, these networks are associated with each

other and form a “network of networks” that control cell behaviours.

1.2 High-throughput technologies to map networks

1.2.1 High-throughput technologies

Currently two high-throughput technologies are widely used to map PPI

networks, namely Yeast two-hybrid (Y2H) assays (Chen et al., 2010) and

affinity purification followed by mass spectrometry (AP-MS) assays (Gin-

gras et al., 2007). Y2H assays can detect direct physical interactions be-

tween proteins whereas AP-MS assays can detect protein complexes and

indirect association between proteins.

To map regulatory networks, technologies are Yeast one-hybrid (Y1H)

assays (Deplancke et al., 2004), Chromatin Immunoprecipitation (ChIP)

experiments (Lee et al., 2002) and DNaseI footprinting (Boyle et al., 2011;

Galas and Schmitz, 1978; Gusmao et al., 2014; Neph et al., 2012b) are

widely applied high-throughput technologies. In Y1H assays, a specific reg-
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Figure 1.1. Gene regulatory network of E. coli. There are 197 TFs (red
circle), 1745 target genes (blue circle) and 1942 directed interactions.
Data from RegulonDB (version 8.0, Salgado et al. (2013)). Network
visualization: Cytoscape (version 3.1.0, Kohl et al. (2011)).

ulatory DNA sequence of interest, named as promotor, is used as a bait to

identify all putative TFs (preys) that bind to this sequence. On the other

hand, Chip experiments are applied to delineate all potentially associated

DNA binding sites for a DNA-binding protein of interest.

TF regulatory networks studied in chapters 3 and 4 of this thesis are

produced by this approach. DNaseI footprinting is developed by Galas and
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Figure 1.2. Transcription factor (TF) regulatory network in human
embryonic stem cell. There are 470 TFs and 13176 interactions. Data
from Neph et al. (2012a). Network visualization: Cytoscape (version 3.1.0,
Kohl et al. (2011)).

Schmitz (1978) to analyze regulatory sequences in diverse organisms. DNa-

seI footprinting is a well-established approach for identifying direct regu-

latory interactions and provides a powerful genetic approach for assaying

the occupancy of specific sequence elements which can regulate downstream

genes. It is successfully applied to discover the first human sequence-specific

TFs (Dynan and Tjian, 1983). DNaseI footprinting technology first binds

nuclear chromatin with a protein of interest. Then the chromatin sequence

is cleaved by certain enzyme. The protein will protect the binding region

from being cleaved thus leaving “footprints” which indicate binding of the

protein to the chromatin. The workflow is illustrated in Figure 1.3. Armed
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with next-generation sequencing, upgraded DNaseI footprinting approaches

are able to identify DNA footprints on a genome-wide scale (Boyle et al.,

2011; Gusmao et al., 2014; Neph et al., 2012b). Neph et al. (2012b) im-

proves this approach by integrating DNaseI footprints and the predicted

TRANSFAC motif-binding sites (Ravasi et al., 2010). This approach can ac-

curately and quantitatively recapitulate Chip-seq data for individual TFs,

while simultaneously interrogating the genomic occupancy of potentially

all expressed DNA-binding factors in a single experiment.

Figure 1.3. Illustration of DNaseI footprinting workflow. Figure is
downloaded from Wikipedia
(http://en.wikipedia.org/wiki/DNA_footprinting#cite_note-
PMID22955618-14).
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1.2.2 Errors in the observed biological networks

An observed network is a network detected by experiments to infer the

respective real but unknown network. In an observed network, false posi-

tives (FP ) refer to interactions that do not exist in the real network but

are detected by experiments. False negatives (FN) refer to interactions in

a real network but are not detected by experiments. True positives (TP )

refer to interactions in a real network and are correctly detected by experi-

ments. True negatives (TN) refer to interactions that do not exist in a real

network and are not falsely detected by experiments. A high sensitivity,

TP/(TP + FN), indicates that a large proportion of interactions in the

real network are identified in the observed network, and a high precision,

TP/(TP + FP ), indicates that a high proportion of interactions in the

observed network are actually exist in the real network.

Observed networks are prone to inaccuracy and low coverage due to

limitations in high-throughput technologies and the complex nature of cor-

responding systems. For example, the precision for the human PPI dataset

CCSB-HI1 was estimated at ∼ 79.4% , which corresponds to a false discov-

ery rate ∼ 20.6% (Venkatesan et al., 2008). The precision for a new high-

quality PPI dataset of S. cerevisiae, CCSH-YI1, was estimated at ∼ 94%

by Yu et al. (2008). Although new Y2H assays achieve very high precision,

the sensitivity is quite low, where the best sensitivity is at ∼ 17% for S.

cerevisiae.

1.2.3 Network resources and databases

Recent years witness exponential growth in biological network data thanks

to the rapid development of high-throughput technologies. A number of
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open-access databases have been established to bank numerous network

data sets. To name a few well-known databases, PPI networks of multi-

ple species are available in DIP (Xenarios et al., 2002), BioGRID (Chatr-

aryamontri et al., 2013), STRING (Chatr-aryamontri et al., 2013), etc.

Although the quality of results from Y2H studies, which supply the core

of DIP database, is debated (Von Mering et al., 2002), the manually cu-

rated DIP database represents currently most reliable yeast protein in-

teractions and provides sufficient data for their unambiguous statistical

analyses (Wuchty et al., 2003). GRN can be downloaded from TRANS-

FAC (Matys et al., 2003), RegulonDB (Salgado et al., 2013), AtRegNet

(Palaniswamy et al., 2006), etc. KEGG (Kanehisa and Goto, 2000), per-

haps, is the most comprehensive database for metabolic networks and

pathways. Some other useful resources include MIPS (Pagel et al., 2005),

BIND (Bader et al., 2003), BioCyc (Caspi et al., 2008), Reactome (Croft

et al., 2010), etc. A brief summary of over 300 resources related to biolog-

ical networks and pathways can be found in the meta-database Pathguide

(http://www.pathguide.org).

Besides open-access database, some publications also provide valuable

network data. One example is the 41 human TF regulatory networks pro-

duced by Neph et al. (2012a). The authors combined DNaseI footprinting

technology and TRANSFAC motif-binding sites (Ravasi et al., 2010) to

map regulatory networks across 41 diverse human cell and tissue types.

Each network contains about 475 sequence-specific TFs and 11,200 inter-

actions. This data provide a good opportunity to study structural orga-

nizations and dynamics of human TF regulatory networks across cell and

tissue types.
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1.3 Mathematical formulation

1.3.1 Mathematical representation

A complex biological network is mathematically represented by a graph

G = (V,E), where V = {1, . . . , n} is the set of nodes in the graph and

E ⊆ V × V is the set of edges connecting nodes in V . A node stands for

a functional component in the network. An edge (i, j) stands for a certain

kind of relationship between nodes i and j in the network, depending on the

nature of interactions in the network, (i, j) could be directed or undirected.

For example, in a PPI network, nodes are proteins in the network and (i, j)

denotes the physical interaction or functional association between proteins

i and j and is an undirected edge. In a GRN, i ∈ V denotes a gene and

(i, j) denotes regulation of expression level of gene j by gene i hence a

directed edge. For a TF regulatory network, i is a TF and (i, j) represents

regulation of TF j by TF i, thus a directed edge.

1.3.2 Definitions and notations

Let G = (V,E) be a connected directed or undirected graph. Denote by

N(G) the number of nodes in G. Size of G also refers to the number of nodes

in G. The degree of a node, when G is an undirected graph, is the number

of edges incident to this node. When G is a directed graph, the out-degree

of a node is the number of edges originated from this node, the in-degree

is the number of edges ended with this node, and the total-degree is the

sum of in-degree and out-degree of this node. Degree distribution P (k),

k = 0, 1, 2, . . ., is the probability that a randomly selected node has degree

k. Similarly for out-degree and in-degree distribution. Hubs are nodes with
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high degrees. Throughout this thesis, hubs refer to those nodes with top

20% degrees (Jothi et al., 2009). Out-degree hubs, in-degree hubs, and

total-degree hubs are similarly defined.

Let G = (V,E) be a simple (that is, no self-loops nor multiple edges)

undirected and connected graph. Let Gn denote the set of all simple, con-

nected graphs with n nodes. A graph having no cycles is called a tree, and

we let Tn denote the set of all connected trees with n nodes. The distance

d(i, j) between any pair of nodes, i and j, in G is the number of edges

in a shortest path from i to j. Let D(G) = [d(i, j)]1≤i,j≤n be the distance

matrix. We denote the maximum degree of G by ∆(G).

1.3.3 Biological network analysis and comparison

Complex biological networks are modelled as graphs. So that one can apply

a wide-repertoire of results in graph theory to quantify network topological

structures with the aim to find associations between significant topological

structures and functional properties in biological networks. Many such asso-

ciations have been reported in literature. For example, biological networks

have many topological properties which are different from those in random

networks. It is believed that these differences are attributed to functional

constraints imposed on biological networks. To name a few of these asso-

ciations, degree distributions in many biological networks are scale free, in

other words, it follows a power law distribution, P (k) ∼ k−λ (Barabasi and

Albert, 1999), implying that a few nodes are hubs and connect to many

others while the majority of nodes have a few connections. Biological net-

works are noted for having high clustering coefficients and small diameters

and thus are small-world (Amaral et al., 2000). Good summaries can be
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found in the review papers by Barabasi and Oltvai (2004) and Ma’ayan

(2011). Chapter 2 will focus on Wiener type indices and their applications

in network comparison.

A second area is to discover structural organization principles from com-

plex biological networks, with the hope to universally interpret and model

complex biological systems. A few global and local principles have been

discovered across various biological networks. Global organization princi-

ple includes bow-tie structure organization and hierarchical structure or-

ganization. Local organization principle includes network motifs, which are

viewed as basic building blocks of complex biological networks. The global

and local organization principles nest together in biological networks and

perform multiple functions as the network backbone. They can be start-

ing points to model biological networks and decipher complex biological

systems.

A third area is to study network dynamics. Examples are study on

housekeeping (HK) interactions and cell type-specific interactions. These

two types of interactions provide further understanding on cell dynamic

organizations.

In the following paragraphs, I will first introduce Wiener type indices

and a relevant R package QuACN, then bow-tie, hierarchical structures,

network motifs, HK and cell type-specific interactions. This sub-section

ends with a brief introduction to network analysis and comparison tools.

Wiener type indices

The use of Wiener index and related type of indices dates back to the

seminal work of Wiener in 1947 (Wiener, 1947a,b). Wiener introduced his
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celebrated index to predict the physical properties, such as boiling point,

heats of isomerization and differences in heats of vaporization, of isomers

of paraffin by their chemical structures. Viewing the chemical structure of

an isomer as a connected graph, the Wiener index is defined as
∑

i,j d(i, j)

where i, j represent nodes in the graph, d(i, j) the distance between nodes

i and j, and the sum is over all pairs of nodes in the graph. Wiener in-

dex has since inspired many distance-based descriptors in Chemometrics.

These include Harary index (Plavšić et al., 1993), hyper Wiener index

(Randić, 1993), q-analog of Wiener index (Zhang et al., 2012b), Wiener

polynomial (Hosoya, 1988), Q-index (Brückler et al., 2011), Balaban J in-

dex (Balaban, 1982), and information indices (Dehmer, 2008; Dehmer and

Mowshowitz, 2011; Dehmer et al., 2009). These indices, or commonly called

descriptors, play significant roles in quantitative structure-activity relation-

ship/quantitative structure-property relationship (QSAR/QSPR) models

(Todeschini and Consonni, 2009). The definitions of these indices are de-

tailed in chapter 2.

QuACN: an R package for calculating network indices

Mueller et al. (2011a) introduced the R package QuACN, which facilitates

the systematic calculation of network indices in a network. QuACN com-

putes the values of different categories of indices in a network. There are 4

categories in this package. (1) Descriptors based on distances in a graph:

this class consists of measures using distances to describe the networks

structure (e.g. Wiener index, Harary index, etc.). (2) Descriptors based on

other graph invariants: the descriptors in this class use other graph invari-

ants other than distances (e.g. degree, number of nodes, number of edges,

11
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etc.). (3) Partition-based graph entropy descriptors: these measures use an

arbitrary graph invariant and an equivalence criteria to induce partitions.

A probability value is then calculated for each partition to determine the

entropy. (4) Parametric graph entropy measures: to determine the entropy

measures of this class (Dehmer et al., 2009), by assigning a probability value

to each vertex of the network, using the so-called information functionals.

Mueller et al. (2011b) applied a set of indices in QuACN to quantify

metabolic networks from three domains of life. Each network is represented

by a numeric vector whose elements are the calculated indices. Then three

domains of life are classified based on their numeric vectors from their

metabolic networks. Their classification results show that these selected

indices capture domain-specific structural characteristics of metabolic net-

works.

Bow-tie structure organization in biological network

A Bow-tie network has a conserved core which interacts with numerous

input and output components (Figure 1.4). The three components are con-

nected and each component has global and local feedback regulations. As a

result, there are multiple flows of information from input to output through

the core (Kitano, 2004).

Bow-tie structure organization is shown to be a common but funda-

mental organizing principle evidenced by large amount of accumulated bi-

ological data (Csete and Doyle, 2004; Li et al., 2012; Nelson et al., 2011).

Early evidences for bow-tie structures in biological networks can be found

in the review paper by Csete and Doyle (2004). Recently bow-tie structure

organization was first found in GRN governing male tail tip morphogene-
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 Input

Core

Output

Figure 1.4. A framework for bow-tie structure organization. Red objects
stands for input, core and output components. Blue arrows stands for
regulation within or between components.

sis in C. elegans (Nelson et al., 2011). Li et al. (2012) also found bow-tie

organization with diverse patterns in GRNs of 8 human tissues.

In metabolic networks, the bow-tie structure design is robust. It fa-

cilitates control, accommodating perturbations and fluctuations on many

timescales and spatial scales. Bow-tie structure has inherent fragilities. A

chief source of fragility is that the universal common currencies responsi-

ble for robustness can be easily hijacked by parasites or used to amplify

pathological processes. Bow-tie structure is also capable to maintain evolv-

ability over multiple timescales. Thus it can be viewed as a starting point

for modeling complex biological systems (Csete and Doyle, 2004).

Hierarchical structure of regulatory networks

Hierarchical structure as shown in Figure 1.5 is pervasive in complex sys-

tems and is believed to be attributed by functional constraints in GRNs

(Corominas-Murtra et al., 2013). Hierarchical structure classifies nodes in

13



Chapter 1. Introduction

a network into N -layers (N ≥ 3), i.e., top layer, intermediate layers, and

bottom layer. We call the intermediate layer core in a 3-layer hierarchical

structure. The regulatory networks for E. coli (Yu and Gerstein, 2006), S.

cerevisiae (Jothi et al., 2009; Yu and Gerstein, 2006), worm (Boyle et al.,

2014), fly (Boyle et al., 2014), mouse (Bookout et al., 2006) and human

(Boyle et al., 2014; Gerstein et al., 2012) exhibit hierarchical organiza-

tions. The hierarchical organization of complex networks has been shown

to increase adaptabilities and avoid conflicting constraints compared with

non-hierarchical networks (Kauffman, 1993).

Most importantly, these hierarchical organizations are associated with

TF dynamics (Gerstein et al., 2012; Jothi et al., 2009; Yu and Gerstein,

2006). More specifically, TFs from different layers in one regulatory network

exhibit distinct properties. For example, in human regulatory network, Ger-

stein et al. (2012) showed that the core layer TFs have the highest betwee-

ness and tend to have the most regulatory collaboration among the TFs.

Conversely, top layer TFs have more partners in a protein-protein inter-

action network and a phosphorylome. In yeast regulatory network, Jothi

et al. (2009) showed that (1) top and bottom layers are depleted in hubs

while the core is enriched with hubs. (2) The percentage of essential pro-

teins in the top layer (∼ 12%) is higher than in the core layer (∼ 6%) and

in the bottom layer (∼ 3%). Essential proteins are necessary for performing

basic developmental functions. If they are disrupted, they will cause pre-

or neonatal lethality (Georgi et al., 2013). (3) Top layer TFs are relatively

abundant, had a much longer half-life, and are noisy compared with the

core and bottom layer TFs. Here noise of a TF was calculated as the ratio

of the standard deviation to its mean abundance. In E. coli and S. cere-
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visiae regulatory networks, Yu and Gerstein (2006) showed that (1) TFs

in top layers are close to all proteins in a protein-protein interaction net-

work, and they receive most of the input for the whole regulatory hierarchy

through protein interactions. Moreover, they have maximal influence over

other genes, in terms of affecting expression-level changes. (2) TFs at the

lower levels of both networks have a much higher tendency to be essential.

Moreover, regulatory networks across species exhibit different hierar-

chical structures. Boyle et al. (2014) showed that regulatory network from

human have more TFs in top layer than those from worm and fly. Zhang

et al. (2014) showed that hierarchical structures of regulatory networks from

41 human cell types are different from that of yeast regulatory network, in

terms of distribution of TFs, enrichment of essential proteins, etc.

Furthermore, regulatory networks across human cell types exhibit dif-

ferent hierarchical structures. Zhang et al. (2014) revealed that the hESC

TF regulatory network has a topological structure that is different from

the rest of the 40 non-hESC networks. (1) It has significantly small top

and bottom layers and therefore a large core layer. (2) Its top layer is nei-

ther enriched with nor depleted of hub, essential and housekeeping TFs, in

contrast to the TF regulatory networks of the 40 differentiated cells.

To classify nodes from a directed network into N layers, a number of

deterministic and probabilistic algorithms have been developed by Boyle

et al. (2014); Jothi et al. (2009); Yu and Gerstein (2006) and Gerstein et al.

(2012). This thesis extensively applied vertex-sort algorithm developed by

Jothi et al. (2009) to construct a 3-layer structure for each of these 41

human regulatory networks.
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Figure 1.5. A schematic view of three-layer hierarchical structure of the
hESC TF regulatory network produced by the vertex-sort algorithm. The
TFs are colored red. The links between the top and bottom layers are
colored yellow. The other links are in white color. Network data is from
Neph et al. (2012a). Network visualization: Cytoscape (version 3.1.0, Kohl
et al. (2011)).

Global and local reaching centrality

As mentioned above, hierarchical structure exists in various biological net-

works across different species, cell types, or cell stages, etc. To quanti-

tatively characterize the level of network hierarchy, Mones et al. (2012)

proposed global reaching centrality (GRC) and local reaching centrality

(LRC). Given an unweighted directed graph G, LRC of node i, denoted as

LRC(i) , is defined as proportion of all nodes in the network that can

be reached from node i via outgoing interactions. The authors defined

GRC based on a heterogeneous distribution of the LRC, where GRC =∑
v∈V (G)

(max(LRC)− LRC(v))/(N(G)− 1). The upper bound of GRC is 1

and is attained when the network is a star. GRC is demonstrated to neatly

capture the degree of hierarchy in random networks and real networks. Also

it is strongly associated with controllability from real networks in (Mones
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et al., 2012).

Network motifs

Network motifs are over-represented connected sub-graph patterns in a real

network as compared to a random network (Figure 1.6). For example, to

test significance of over-represented connected n-node sub-graphs in a real

network, Milo et al. (2002) generated random networks satisfy following two

conditions. Each node in randomized networks has the same in-degree and

out-degree as the corresponding node in the real network. The number of all

(n−1)-node sub-graphs are the same as in the real network. Theoretical and

experimental evidences demonstrate that network motifs perform dynamic

and specific functions in context of the respective networks. Alon (2007)

and Shoval and Alon (2010) are two excellent reviews on various motifs and

their functions discovered in GRNs from bacteria to plant to human and

other types of biological network. Discovery of conserved motifs like Feed-

Forward Loop (FFL) in GRNs indicates that motifs are the manifestation of

evolutionary design principles favored by selection (Artzy-Randrup et al.,

2004). Network motifs are building blocks of complex networks thus are one

design principle of complex networks and can control behaviours and states

of the corresponding complex systems (Alon, 2007). Figure 1.6 illustrates

a number of motifs with 2 to 4 nodes found in various biological networks.

One of the important and extensively studied network motifs is FFL.

An FFL, as illustrated in Figure 1.6B, consists of 3 nodes A, B and C in

which A regulates B, and both A and B regulate C. FFL in regulatory

networks can speed-up the response time of the target gene expression or

act as sign-sensitivity delays. FFL can generate pulse of gene expression.
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A B C

Bifan

Biparallel

Feedback

Three chain

Feed-forward loop Uplinked mutual dyad

Feedback
loop

Feedback with 
two mutual dyads

Fully 
connected triad

A

B C

Figure 1.6. Network motifs with 2, 3, and 4 nodes. (A) feedback motif.
(B) All 13 types of three-node connected subgraph. (C) Bifan and
Biparallel motifs.

FFL can cooperatively enhance induction of gene C by inducers of TF

A. Here inducers of A are small molecules, protein partners, or covalent

modifications that activate or inhibit the transcription activities of A (Alon,

2007; Shoval and Alon, 2010). Early studies revealed that FFL is over-

represented in the regulatory networks of organisms from bacteria and yeast

to plants and animals (Alon, 2007). Recent studies show that FFL as a

motif is also found in regulatory networks of worm (Boyle et al., 2014), fly

(Boyle et al., 2014), human (Boyle et al., 2014; Gerstein et al., 2012; Neph

et al., 2012a). Regarding to regulatory networks from embryonic stem cells

(ESCs), FFLs is enriched in hESC (Neph et al., 2012a).

Bearing in mind important and dynamic functions played by FFLs and

other motifs in various biological networks, some network centrality mea-

sures based on network motifs have been proposed to quantify the impor-

tance of nodes in directed networks (Harriger et al., 2012; Koschützki and

Schreiber, 2008; Koschützki et al., 2007; Sporns et al., 2007; Sporns and

Kötter, 2004; Wang et al., 2014). The underlying idea of these centrality
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measures is when a node is involved in more motifs, this node is more likely

to be functionally important. These centrality measures are named as motif

centrality in general and can identify different sets of important nodes in

networks partially because they can integrate structural information be-

tween local and global information.

Given a directed network G, Koschützki et al. (2007) proposed a few

centrality measures. First the authors quantified centrality of a node by the

number of FFLs this node is involved in. Then this centrality measure is

generalized to as node A (or node B, node C) in an FFL. Furthermore, a

path tree is used instead of FFL to define new centrality measures. The pro-

posed centrality measures are comparable with other centrality measures

like PageRank, in-degree, and out-degree. They can identify new important

nodes partially due to the fact that they are not strongly correlated with

previous centrality measures (Koschützki and Schreiber, 2008).

Sporns and Kötter (2004) proposed “network fingerprint” to charac-

terize areas (nodes) in one brain network from Macaque Visual Cortex.

Network fingerprint for a node is a vector with length 13, each element is

the number of times this node is involved in a particular 3-node connected

subgraph. Network fingerprint identified five areas which show highly sim-

ilar patterns of network fingerprints. In their following up work, Sporns

et al. (2007) identified and classified putative hub regions in brain networks

based on network fingerprints and other centrality measures. Rich club re-

gions are hub regions that are densely connected than expected based on

their degree alone. Harriger et al. (2012) discovered that rich club regions

in brain networks tend to form star-like configurations based on application

of network motif analysis, which indicate that hubs regions embed within
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sets of nodes.

Wang et al. (2014) generalized motif centrality measures by taking into

account of 2 to 4 node motifs. For a given network with n nodes, the authors

first calculated B = [bij]1≤i≤n,1≤j≤m, wherem is number of types of motifs in

the network, bij = uij ×wj, uij equals to the number of j-th motif involved

by node i, wj = cj/
∑m

k=1 ck where ck denotes total occurrences of k-th

motif in the network. Then centrality for node i is the i-th element of first

principal component derived from B. The proposed centrality measure can

robustly identify functionally important nodes in five biological networks.

Housekeeping and cell type-specific interactions

It is believed that biological systems undergo differential change depending

on the environments, tissue types, disease states, development or speciation

while part of a system will remain unaffected. Rapid development in tech-

nology and experimental designs enables large-scale differential network

mapping. Some interactions are observed to appear or disappear dynami-

cally, and many others are observed irrespective of conditions. The latter

group of interactions are considered housekeeping interactions. Housekeep-

ing interactions and condition-specific (differential) interactions are pro-

posed to model the two types of interactions and they offer deep biological

insights into complex systems (Bolouri, 2014; Ideker and Krogan, 2012;

Mitra et al., 2013; Srivas et al., 2013). To name one example, in the study

of DNA damage-induced genetic networks in yeast, identified housekeeping

interactions in untreated and treated networks are enriched for housekeep-

ing functions, like transcription, translation, chromatin and other cellular

housekeeping machinery, whereas identified differential interactions effec-
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tively capture DNA damage response genes (Ideker and Krogan, 2012).

Neph et al. (2012a) observed that ∼ 5% of all interactions are common

across the 41 cell types and interactions unique to one cell form a well-

connected subnetwork, highlighting regulatory diversity within humans.

The 41 networks enable us to examine the concepts of housekeeping inter-

actions and cell type-specific interactions in human TF regulatory networks,

in terms of deep topological and functional analysis.

1.3.4 Network analysis and comparison toolsets

Multiple softwares and platforms are developed to provide comprehensive

analysis and comparison on real network data sets. To name a few, Bio-

conductor (http://bioconductor.org), Cytoscape (http://cytoscape.

org/, Kohl et al. (2011)), Galaxy (http://galaxyproject.org/, Goecks

et al. (2010)), GenePattern (http://www.broadinstitute.org/cancer/

software/genepattern), and GenomeSpace (http://www.genomespace.

org/). For brief introduction to and comparison on these toolsets, refer to

a recent review paper by Bolouri (2014).

1.4 Thesis organization

This thesis is organized as follows. In chapter 2, we first introduce f -Wiener

index for a given network G, denoted as Wf (G), which generalizes all exist-

ing Wiener type indices. Then we propose a normalized version of Wf (G).

In section 2.3, we state our main Theorems 1 to 4, which give sharp bounds

of Wf (G) in different classes of networks and trees. We also give a brief de-

scription of related works in section 2.4. Then, we consider special cases of

f in Wf (G) to provide explicit expressions of the maximum and the mini-
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mum of Wiener, Harary, hyper Wiener, generalized Wiener indices. In the

experiment section, we report the performance of hierarchical clustering

based on the usual Wiener type indices and the normalized version of these

in our experiments. Followed is conclusions section. We end chapter 2 with

the proofs of Theorems 1 to 4.

In chapter 3, we first present materials and methods in section 3.2.

In results section, we classify cell types based on local bipartite patterns

constructed by a number TFs and their targets in the 41 TF regulatory

networks reported by Neph et al. (2012a) in section 3.3.1. Next, we inves-

tigate hierarchical structures of 41 human regulatory networks in section

3.3.2. Then, we report dynamic structures of human regulatory networks

in terms of HK interactions and hESC specific interactions in sections 3.3.3

and 3.3.4 respectively. In conclusion section, we summarize our contribu-

tions and discussed limitations of the study.

In chapter 4, we present materials and methods in section 4.2. In results

section, we first classify cell types based on distributions of FFLs regulating

each TF 41 in the TF regulatory networks reported by Neph et al. (2012a)

in section 4.3.1. Next we study functions of TFs which are extensively

regulated by FFLs in hESC only in section 4.3.3. Then we compare our

proposed scores with motif centrality measures in identifying hESC related

TFs in section 4.3.5. In conclusion section, we summarize our contributions

and discuss limitations. Besides we discuss potential generalization of TFs

extensively regulated by FFLs in hESC only.

We end this thesis with Chapter 5 for further discussions and conclu-

sions.
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Chapter 2

Sharp Bounds and Normalization of

Wiener-type Indices

2.1 Introduction

Recent years witness exponential growth of available biological network

data. Thanks to past decades’ breakthrough in biotechnology, researchers

now are able to interrogate molecular interactions at systems level. It has

since been observed that topological properties of these networks provide

important insight into the functions of proteins, and their relationship with

one another (Barabasi et al., 2011; Delprato, 2012; Hu et al., 2011; Junker

and Schreiber, 2008; Milenković et al., 2011; Newman, 2002; Resendis-

Antonio et al., 2012; Vidal et al., 2011). For examples, degree distribution,

average clustering coefficient, diameter, centrality, lethality and graphlet

distribution have been extensively studied. Hopefully, based on a carefully

chosen list of network topological properties and methods in quantifying

them, a complex network is adequately summarized in the form of a numer-

ical d-dimensional vector where d is the number of topological properties

in consideration. This representation enables us to take full advantage of
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a host of classification and clustering techniques to compare complex net-

works.

A significant step towards this direction is facilitated by the introduc-

tion of the R package QuACN by Mueller et al. (2011a). QuACN computes

the values of different categories of descriptors in a network. One such cat-

egory is the distance-based descriptors which include Wiener index, Harary

index, etc. The use of Wiener index and related type of indices dates back

to the seminal work of Wiener in 1947 (Wiener, 1947a,b). Wiener intro-

duced his celebrated index to predict the physical properties, such as boil-

ing point, heats of isomerization and differences in heats of vaporization,

of isomers of paraffin by their chemical structures. Viewing the chemical

structure of an isomer as a connected graph, the Wiener index is defined

as
∑

i,j d(i, j) where i, j represent nodes in the graph, d(i, j) the distance

between nodes i and j which is defined as the length of a shortest path

between them, and the sum is over all pairs of nodes in the graph. Wiener

index has since inspired many distance-based descriptors in Chemomet-

rics. These include Harary index (Plavšić et al., 1993), hyper Wiener index

(Randić, 1993), q-analog of Wiener index (Zhang et al., 2012b), Wiener

polynomial (Hosoya, 1988), Q-index (Brückler et al., 2011), Balaban J in-

dex (Balaban, 1982), and information indices (Dehmer, 2008; Dehmer and

Mowshowitz, 2011; Dehmer et al., 2009). These indices, or commonly called

descriptors, play significant roles in quantitative structure-activity relation-

ship/quantitative structure-property relationship (QSAR/QSPR) models

(Todeschini and Consonni, 2009).

It is known that the Wiener type indices depend both on a network’s

number of nodes and its topology. When the numbers of nodes in the net-
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works are equal, as in the applications to isomers, these indices provide

informative measures of the branching property of the networks and hence

a fair comparison among them. However, when they are used to measure

similarities of networks with different numbers of nodes, the intended mea-

sure of topological structures will be masked by the sizes of the networks.

Normalization of a Wiener type index expectedly minimizes the effect of the

network’s number of nodes and hence brings forth its topological structure

better. Furthermore, it is also desirable for the normalized index to take

value in an absolute scale for better understanding and interpretation. This

chapter seeks to fill this gap. The normalization introduced in definition 2

below fulfils this purpose. This definition will be of limited practical value

if the sharp upper and lower bounds of the index on a graph cannot be

found explicitly. The objective of this chapter is three-fold. First, introduce

a very general Wiener type index. We call it f -Wiener index, and denote

it by Wf (G) for a graph G. This definition includes all known Wiener type

indices as special cases. Second, identify the maximum and minimum val-

ues of Wf (G) over a class of connected networks G or a class of connected

trees G. We are able to derive explicit formulas for these optimal values.

Third, propose a normalized version, W ∗
f (G) which takes value in [0, 1] for

better interpretation and network comparison.

This chapter is organized as follows. We first introduce some standard

graph-theoretic notations and recall some special graphs. We then introduce

the functional analog of Wiener index, Wf (G), and our proposed normal-

ized versions of this functional Wiener index in section 2.2.1. In section

2.3, we provide our main results Theorems 1 to 4. Theorem 1 gives the

maximum and the minimum of Wf (G) over the set of connected graphs
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of n nodes, and characterization of graphs achieving the maximum or the

minimum. Theorem 2 gives a parallel result when the maximum and min-

imum are taken over the set of connected trees of n nodes. Theorem 3,

(respectively Theorem 4) identifies the maximum of Wf (G) over the set of

connected graphs (respectively connected trees) of n nodes with specified

maximum degree. We also give a brief description of related works in next

section. Then, we consider special cases of f in Wf (G) to provide explicit

expressions of the maximum and the minimum of Wiener, Harary, hyper

Wiener, generalized Wiener indices. In the experiment section, we report

the performance of hierarchical clustering based on the usual Wiener type

indices and the normalized version of these in our experiments. Followed

with conclusions section. We end with the proofs of Theorems 1 to 4 of this

chapter.

2.2 Methods

2.2.1 Definitions and terminologies

Let G = (V,E) be a simple (that is, no self-loops nor multiple edges)

connected graph on n nodes where V = {1, . . . , n} and E ⊆ V ×V . Denote

by N(G) as the number of nodes in G. Let Gn denote the set of all simple,

connected graphs with n nodes. A graph having no cycles is called a tree,

and we let Tn denote the set of all connected trees with n nodes. The

distance d(i, j) between any pair of nodes, i and j, in G is the number

of edges in a shortest path from i to j. Let D(G) = [d(i, j)]1≤i,j≤n be the

distance matrix. We denote the maximum degree of G by ∆(G).

Figure 2.1 shows some special graphs we frequently refer to in this
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Figure 2.1. Some special graphs. Figure 2.1 (a) to (g) are trees.

chapter. A path graph, Pn, is a graph that can be drawn so that all of its

vertices and edges lie on a straight line. Figure 2.1(a) shows P8. A star, Sn,

is a tree with one internal node and n − 1 leaves. S8 is shown in Figure

2.1(b). A complete graph, Kn, is a graph with n nodes in which every pair

of distinct nodes is connected by an edge. A caterpillar, Cn,k, is a tree with

a central path with number of nodes ∈ [n/(k + 1), (n+ k)/(k + 1)] where

at most one end node of the central path has less than k leaves, each of

the other nodes in the central path has k leaves. Figures 2.1(d) and 2.1 (e)

show caterpillars C12,2 and C8,3 respectively. A broom Bn,k is a tree joining

a star Sk+1 and a path Pn−k−1 by attaching a pendant node (or leaf) in

Pn−k−1 to a pendant node of Sk+1. For examples, brooms B8,4 and B8,5

are shown in Figures 2.1(f) and 2.1(g) respectively. A kite Kn,` is a graph

obtained from connecting two end nodes one from a complete graph K`
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and one from a path Pn−`. Figure 2.1(h) shows a kite K8,4.

Throughout this chapter, f denotes a monotone function defined on

nonnegative integers. We define a functional-analog Wiener index below.

Our definition contains the Wiener index, Harary index, hyper Wiener

index, compactness, average efficiency, generalized Wiener index, Wiener

polynomial, Q-index, q-analogy of Wiener index as special cases. For detail,

see section 2.4.1. We abbreviate it as f -Wiener index. This definition has

also been independently introduced by Schmuck et al. (2012).

Definition 1. The f -Wiener index of G ∈ Gn is defined by

Wf (G) =
∑

1≤i<j≤n

f(d(i, j)).

Here d(i, j) denotes the shortest distance between nodes i and j.

The number of nodes of G has a very strong effect on Wiener type indices

(Section 2.2.2). In order to apply f -Wiener index for comparing networks,

which often differ in the numbers of nodes, we are led to propose a nor-

malized version for graphs and a normalized version for trees for better

interpretation of the index.

Definition 2. (a) The normalized f -Wiener index for a graph G ∈ Gn is

defined as

W ?
f (G) =

Mf −Wf (G)

Mf −mf

.

Here Mf = maxH∈Gn{Wf (H)} and mf = minH∈Gn{Wf (H)}.

(b) The normalized f -Wiener index for a tree T ∈ Tn is similarly defined

where the maximum Mf and the minimum mf are taken over Tn instead.
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These normalized versions will be of limited practical value if one can-

not compute Mf nor mf . Our main results, stated in Theorems 1 and 2,

show that these optimal upper and lower bounds can be easily computed.

Moreover, they characterize those graphs which attain the maximum or the

minimum.

By definition, W ∗
f (G) takes values in [0, 1]. When f is a non-decreasing

function, Theorem 1 below shows that W ∗
f (G) = 0 if and only if G is a path

graph, and W ∗
f (G) = 1 if and only if G is a complete graph. So W ∗

f (G) ≈ 0

(respectively, W ∗
f (G) ≈ 1) suggests G looks like a path graph (respectively,

a complete graph). And hence the numerical value of W ∗
f (G) provides an

indication how G is like.

2.2.2 Effect of number of nodes on Wiener type indices

It is known that the Wiener index for a connected graph with n nodes

ranges from n(n − 1)/2 to n(n − 1)(n + 1)/6 (see Corollary 5 below or

Dobrynin et al. (2001); Soltés (1991), and Gutman et al. (1997) ). This

wide range can be undesirable if it is used for comparing similarity of graphs

with different number of nodes. For example, consider two path graphs, P4

and P5, with 4 nodes and 5 nodes respectively, and a star graph with 5

nodes, S5. Values of the Wiener index for P4, P5 and S5 are respectively 10,

20 and 16, giving the false impression that P5 and S5 are more similar than

that of P4 and P5. However, values of the normalized Wiener index are 0

for P4 and P5, and 1 for S5. This example is far from being an isolated case,

it can be shown that if the number of nodes of a path graph is at least 26%

more than the number of nodes in another path graph, there exists a star

graph whose Wiener index is closer to that of the path graph with smaller
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number of nodes.

The normalized Wiener index of Sn, star with n nodes, is 1 − 3/n,

suggesting stars of sufficiently large n, based on the normalized Wiener

index, Sn is very similar to a complete graph. This is concordant with the

fact that a Kn is the line graph of Sn+1 (Resendis-Antonio et al., 1931).

2.2.3 Main idea

A key ingredient in our proofs is a matrix majorization (see section 2.8 for

definition) argument. Given a connected graph G, we can transform it to

another graph G′ such that the distance matrix of G, D(G) = [d(i, j)]1≤i,j≤n

majorizes the corresponding distance matrix of G′. Since the Wiener index

of G, or its generalization f -Wiener index for increasing function f , is the

sum of the upper diagonal entries in the distance matrix, it follows that

Wf (G) ≥ Wf (G
′). The construction of G′ is fairly straightforward as can

be seen in the proofs. Similarly, we can transform G to another graph G
′′

such that D(G) is majorized by D(G
′′
). And thus Wf (G) ≤ Wf (G

′′
). The

construction of G
′′

requires delicate and judicious pruning and regrafting.

However, the essential idea remains the same. Technical details of proofs

are given in section 2.8.

2.3 Results

We provide explicit expressions for the maximum and minimum of Wf (G)

over Gn, and over Tn in Theorems 1 and 2 below. We also characterize those

graphs or trees attaining the extremum. Theorems 3 and 4 concern trees or

graphs with a specified maximum degree. For simplicity of presentations,

we shall only state our results for non-decreasing function f . Analogous
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results for non-increasing f can be deduced easily by replacing f by −f .

Theorem 1. Let f be a non-decreasing function on nonnegative integers,

and G ∈ Gn, then

n(n− 1)

2
f(1) ≤ Wf (G) ≤

n−1∑
i=1

(n− i)f(i).

The lower bound is attained if and only if G is Kn. The upper bound is

attained if and only if G is Pn.

Theorem 2. Let f be a non-decreasing function on nonnegative integers,

and T ∈ Tn, then

(n− 1)((n− 2)f(2) + 2f(1))

2
≤ Wf (T ) ≤

n−1∑
i=1

(n− i)f(i).

The lower bound is attained if and only if T is Sn. The upper bound is

attained if and only if T is Pn.

Theorem 3. Let f be a non-decreasing function on nonnegative integers.

Then, for any T ∈ Tn with ∆(T ) = k, we have

Wf (T ) ≤ Wf (Bn,k+1).

The upper bound is attained if and only if T is a broom Bn,k+1.

Theorem 4. Let f be a non-decreasing function on nonnegative integers.

Then, for any G ∈ Gn with ∆(G) = k, we have

Wf (G) ≤ Wf (Bn,k+1).
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Moreover,

Wf (Bn,k+1) =
n−k+1∑
j=1

(n− j)f(j) +
(k − 1)(k − 2)

2
f(2).

Equality holds if and only if G is Bn,k+1.

2.4 Related work

The proofs of Theorems 1 to 4 will be given in section 2.8. Theorem 2

has also been independently obtained by Wagner et al. (see Theorem 2.7

and Corollary 4.1 in Wagner et al. (2013)). Special cases of Theorems 1

to 4 for particular Wiener type index are known in the literature. For

examples, the complete graph (respectively, the path graph) is shown to be

the minimizer (respectively, maximizer) of the Wiener index among simple

connected graphs with the same number of nodes in Dobrynin et al. (2001);

Soltés (1991), and Gutman et al. (1997). Similar conclusions are proved to

hold for the hyper Wiener index in Gutman et al. (1997), and the Harary

index in Gutman (1997). The results in Theorems 1 to 4 in its full generality

as f -Wiener index are novel to the best of our knowledge. Moreover, we

have provided a unifying methodology for the proofs.

2.4.1 Important special cases

Since its introduction, Wiener index has inspired many variants and thor-

oughly studied in a sizeable literature (Todeschini and Consonni, 2009). By

choosing appropriate functions f , the f -Wiener index can be reduced to a

number of commonly used descriptors as follows.

If we take f(k) = k, Wf (G) written as W (G) is the well-studied de-
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scriptor introduced by Wiener in 1947 (Wiener, 1947a,b).

Taking f(k) = 1/k, the f -Wiener index is the Harary index (Plavšić

et al., 1993), denoted by H(G) which is shown to be more discriminating

than the Wiener index (Plavšić et al., 1993). Watts and Strogatz (1998)

used a scaled version of the Harary index (more precisely, f(k) = 2
n(n−1)k )

to measure a network’s efficiency in information exchange.

Taking f(k) = kα, where α can be positive or negative, the f -Wiener

index is called generalized Wiener index, denoted by Wα(G) (Gutman et al.,

1998).

If f(k) = (k2 + k)/2, the f -Wiener index is known as the hyper Wiener

index (Randić, 1993), denoted by WW (G).

Taking f(k) = λk, where λ is regarded as a parameter, the f -Wiener in-

dex is called the Hosoya polynomial or Wiener polynomial (Hosoya, 1988).

With an additional factor 2, the Hosoya polynomial is called Q-index and

denoted by Q(λ) in Brückler et al. (2011).

The q-analog of the Wiener index, introduced by Zhang et al. (2012c) is

simply the f -Wiener index by choosing f(k) = (1− qk)/(1− q) =
∑k−1

t=0 q
t.

2.5 Applications

By specializing f to various forms in Theorems 1 and 2, we provide below

explicit sharp upper bounds and sharp lower bounds for the Wiener index

W (G), the Harary index H(G), the hyper Wiener index WW (G), and the

generalized Wiener index Wα(G) for α > 0 and α < 0.

Corollary 5. Let G be a simple, connected graph with n nodes (that is,
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G ∈ Gn), we have

n(n− 1)

2
≤ W (G) ≤ n(n− 1)(n+ 1)

6
,

n

n−1∑
i=2

1

i
+ 1 ≤ H(G) ≤ n(n− 1)

2
,

n(n− 1)

2
≤ WW (G) ≤ n(n− 1)(n+ 1)(n+ 2)

24
,

when α < 0,

n
n−1∑
i=1

iα −
n−1∑
i=1

iα+1 ≤ Wα(G) ≤ n(n− 1)

2
,

when α > 0,

n(n− 1)

2
≤ Wα(G) ≤ n

n−1∑
i=1

iα −
n−1∑
i=1

iα+1.

Corollary 6. Let T be a tree with n nodes (that is, T ∈ Tn), we have

(n− 1)2 ≤ W (T ) ≤ n(n− 1)(n+ 1)

6
,

n
n−1∑
i=2

1

i
+ 1 ≤ H(T ) ≤ (n− 1)(n+ 2)

4
,

(n− 1)(3n− 4)

2
≤ WW (T ) ≤ n(n− 1)(n+ 1)(n+ 2)

24
,

when α < 0,

n

n−1∑
i=1

iα −
n−1∑
i=1

iα+1 ≤ Wα(T ) ≤ ((n− 2)2α−1 + 1)(n− 1),

when α > 0,

((n− 2)2α−1 + 1)(n− 1) ≤ Wα(T ) ≤ n
n−1∑
i=1

iα −
n−1∑
i=1

iα+1.

2.6 Experiments

We describe below three experiments to compare the hierarchical cluster-

ing using normalized f -Wiener indices with the hierarchical clustering us-
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ing non-normalized f -Wiener indices. Each experiments consists of 3 main

steps.

Step 1: A collection of networks (or graphs) or trees, C, are chosen to

be clustered. The collection is detailed in each experiment below.

Step 2: Seven functions are chosen to form the f -Wiener indices. In all

our experiments, we choose

f1(k) =
√
k, f2(k) = k, f3(k) =

k + k2

2
,

and

f4(k) =
4k

N(G)(N(G)− 1)
,

f5(k) = k−1/2, f6(k) = k−1, f7(k) = k−2.

The first four functions chosen are increasing and the f -Wiener indices

correspond to the usual W1/2 index, Wiener index, the hyper Wiener index

and the compactness index. The remaining 3 functions chosen are decreas-

ing and correspond to the W−1/2 index, the Harary index and the W−2

index. Hopefully these indices collectively capture some essential charac-

ters of networks and useful for clustering. For G ∈ C, we construct two

characteristic vectors,

vG = (Wf1(G), . . . ,Wf7(G)),

v?G = (W ?
f1

(G), . . . ,W ?
f7

(G)).

Step 3: We adopt a clustering algorithm to cluster C using vG and

then produce a dendrogram. We do the same using v∗G. Minimum variance

method algorithm due to Ward (Ward, 1963) which is made available in R
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base package, was used in all the experiments. The computed the Adjusted

Rand Index (ARI) in all the experiments are summarized in Table 2.1

below.

2.6.1 Experiment 1: Hierarchical clustering of random networks

The collection of networks chosen for this experiment is the networks gener-

ated by some commonly used random network models, namely, Erdos-Renyi

(ER) model (Erdős and Rényi, 1959, 1960), scale-free (SF) network model

(Barabasi and Albert, 1999) and 3-D geometric model (GE) (Pržulj et al.,

2004). Each of these random network models is applied to generate 10 ran-

dom networks with the number of nodes ranging from 500 to 950 with step

of increment 50. Experiment 1 consists of 5 small, but similar, experiments.

We enumerate these 5 small experiments as 1.1,. . . , 1.5. The subsection af-

ter experiments provides more details on how to generate these random

networks. We then apply Steps 2 and 3 above to form two dendrograms:

one using f -Wiener indices without normalization (Figure 2.2A) and the

other dendrogram using normalized f -Wiener indices (Figure 2.2B). To

quantify the classification of the two methods: with and without normal-

ization, we adopt the commonly used Adjusted Rand Index (ARI) (Rand,

1971) for classification validation. ARI measures the accuracy of classifica-

tion, and takes values between -1 and 1. The larger the ARI is, the better

is the classification. The ARI for Figures 2.2A and 2.2B are respectively

0.18 and 0.58 for Experiment 1.5. Using normalized f -Wiener indices lead

to a substantial improvement in the classification. We repeat Experiments

1.1 to 1.5 1000 times each. The boxplots of the ARI are shown in Figure

2.3. The means and standard deviations for these experiments are given in
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Table 2.1. They clearly demonstrate the superiority of classification using

normalized f -Wiener indices.

Table 2.1. Adjusted Rand Index (ARI) for clustering (or classification)
of networks in our three experiments. For experiments 1.1 to 1.5, we
report the mean and the standard deviation (number in parenthesis) of
ARI. Mean and standard deviation of ARI for experiments 1.1 to 1.5
under random clustering are 0 and 0.05 respectively.

Non-normalized Normalized
Experiment 1.1 0.44 (0.02) 0.88 (0.07)
Experiment 1.2 0.41 (0.06) 1.00 (0.01)
Experiment 1.3 0.38 (0.10) 1.00 (0.00)
Experiment 1.4 0.36 (0.11) 0.97 (0.10)
Experiment 1.5 0.30 (0.12) 0.62 (0.07)
Experiment 2 0.10 1.00
Experiment 3 0.04 0.86

2.6.2 Experiment 2: Hierarchical clustering of trees

The collection of trees to be classified consists of 10 paths (Pn), 10 stars

(Sn), 10 brooms (Bn,n
2
), 20 caterpillars (Cn,2 which is like a path, and

Cn,n−10
10

which is like a star), and for n ranging from 500 to 950 with step

of increment 50.

Figure 2.4 shows the two dendrograms. The ARI for Figures 2.4A and

2.4B are respectively 0.10 and 1.00. This demonstrates that using normal-

ized f -Wiener indices provides much better accuracy for classification pur-

poses. The result in this experiment is consistent with that of experiment

1.
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Figure 2.2. Hierarchical clustering of random networks. 30 networks
with 10 each generated by the Erdos-Renyi (ER), scale-free (SF) and
geometric (GE) random network models. Panel (A) shows the hierarchical
clustering based on the f -Wiener indices (see Step 1 on page 35 for
functions used). The adjusted rand index (ARI) for this clustering is 0.24.
Panel (B) is the hierarchical clustering based on the normalized versions
of the same f -Wiener indices. The ARI of this clustering is 0.67. Number
of nodes chosen are 500, 550, ... , 950, and p is 0.05 in the Erdos-Renyi
model. A scale-free network with 500 nodes is denoted by SF500. The
others are denoted in a similar way.

2.6.3 Experiment 3: Hierarchical clustering of random networks

and trees

The collection of networks consists of (i) networks generated by three ran-

dom network models, namely, ER model, SF Model and 3-D geometric
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Figure 2.3. Boxplots of Adjusted Rand Index for measuring the extent
of agreement of clustering of the random networks using non-normalized
f -Wiener indices versus normalized f -Wiener indices.

model; (ii) some trees such as paths, brooms, caterpillars, stars. Figure 2.5

shows the two dendrograms formed. And the ARI for Figures 2.5A and

2.5B are respectively 0.04 and 0.86.

2.6.4 Details on generating random networks

We describe here in details on how to choose the networks generated by

the three random network models in experiments 1 and 3.

ER model

There are two parameters in the ER model, namely, n, the number of

nodes, and p, the probability that an edge is formed between a pair of

nodes. All edges are formed independently of each other. In Experiment
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Figure 2.4. Hierarchical clustering of trees. Panel (A) shows the
hierarchical clustering based on the f -Wiener indices (see Step 1 on page
6 for functions used). The Adjusted Rand Index (ARI) is 0.1. Panel (B)
shows the hierarchical clustering based on normalized f -Wiener indices.
The ARI is 1. Trees used in the clustering consist of paths (Pn), stars
(Sn), caterpillar-like trees (Cn,k), kites (Kn,k). Number of nodes
n = 500, 550, ..., 950.

1.5, where p = 0.05, we choose n ranging from 500 to 950 with step of

increment 50. We generate an ER network using the ‘erdos.renyi.game’

function available in the R package igraph (Csardi and Nepusz, 2006). If

the network is connected, we keep it in C and denote it as ER500. If not,

then we repeat the function ‘erdos.renyi.game’ until a connected network
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Figure 2.5. Hierarchical clusters of trees and graphs. Panel (A) shows
the hierarchical clustering based on the f -Wiener indices (see Step 1 on
page 6 for functions used). The Adjusted Rand Index (ARI) is 0.04. Panel
(B) shows the hierarchical clustering based on normalized f -Wiener
indices, and ARI = 0.86. Trees used are paths (Pn), stars (Sn),
caterpillar-like trees (Cn,k), kites (Kn,k). Graphs are generated by
Erdos-Renyi (ERn), scale-free (SFn) and geometric (GEn) random
network models. The parameter, p, in the Erods-Renyi random graph
equals to 0.05, number of nodes n = 500,550,...,950.
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is obtained. Similarly, ER550, . . . , ER950 are generated.

SF model

We also construct ten SF networks by the function ‘barabasi.game’ available

in the R igraph package. We shall describe how to grow a SF network with

500 nodes for a given p, say p = 0.05 . The other 9 SF networks with

550, . . . , 950 nodes are constructed in a similar manner. In ‘barabasi.game’

function, we set number of vertices 500, number of edges to be added in

each time step 500× 0.05/2 rounded to the nearest integer, and the option

to create a directed graph false.

Geometric model

We generate ten 3-D geometric networks with 500, 550, . . . , 950 nodes. We

shall describe how to construct one with 500 nodes as follows. The rest are

constructed similarly. We first place 500 nodes in a unit cube uniformly

and independently, then we compute all the
(
500
2

)
pairwise distances and

rank these distances in ascending order. We choose the top 100p% of these

pairwise distances and connect their corresponding nodes. If this network

is connected, then we keep it in C and denote it by GE500. Otherwise,

we discard it, and repeat the above procedure until we get a connected

network. The other networks GE550, . . . , GE950 are constructed similarly.

2.7 Conclusions

Wiener index and other Wiener type indices have been commonly applied

in Chemometrics to associate structures and physicochemical properties of

molecules. Recently, these indices are incorporated in quantifying complex
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networks as in QuACN (Mueller et al., 2011a) and NetCAD (Ren and

Liu, 2013). In this chapter, we first generalize Wiener index to a general

functional form, called f -Wiener index. This f -Wiener index contains all

well-known Wiener type indices as special cases such as Wiener index,

Harary index, hyper Wiener index, compactness, and average efficiency.

We provide a unifying method to identify the maximum and minimum

over the set of simple connected graphs with n nodes, or the set of simple

connected trees with n nodes (Theorems 1 and 2). Explicit sharp upper and

lower bounds for Wiener index, Harary index, hyper Wiener index and the

generalized index are deduced over networks (Corollary 5) and over trees

(Corollary 6). Moreover, the maximizer and minimizer are characterized in

Theorems 1 and 2. We believe these results are general and of independent

interests.

Armed with these maximum and minimum values, we propose a nor-

malized version of f -Wiener index over networks, and a similar version

over trees. These normalized versions provide better interpretation of in-

dices over networks of varying number of nodes than the non-normalized

one. We conduct a number of experiments to compare the clustering perfor-

mance using normalized f -Wiener indices with that of the non-normalized

f -Wiener indices. The results of these experiments consistently demon-

strate that using normalized versions improved clustering substantially. The

normalized versions capture similar topological structures among networks

with different number of nodes better. Our method of optimizing Wf (G)

can be easily extended to index of the form Φ(Wf (G)) where Φ and f are

monotone functions. For example, taking Φ(x) = 1/x and f(k) = 2
n(n−1)k

leads to Φ(Wf (G)) = n(n−1)
2
∑

i<j 1/d(i,j)
which measures small-world behvaior of
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network G (Newman, 2002). For other descriptors, it is of interest to study

whether normalization is needed; if so, how best to normalize them; and to

what extent normalization improve network comparison.

Observe that Wf (G) =
∑∞

r=1 f(r)nr(G) =
∑∞

r=0[f(r+ 1)− f(r)]Nr(G)

where we assume f(0) = 0, nr(G) denotes the number of pairs of nodes in

G with distance equals r, and Nr(G) the number of pairs of nodes in G

with distance greater than r. Since in most biological networks the number

of nodes is large, one may normalize a scaled-version of Wf (G) in terms

of the asymptotic distribution of the Nr’s under the assumption that the

observed network G is generated by a given random network model M.

This will enable us to determine the likelihood that the observed network

is generated byM. Currently a fair amount of information about shortest

paths in some network models is available in Barbour and Reinert (2011)

and Fronczak et al. (2004). How to make use of these results seems like a

worthwhile future project.

2.8 Proofs for Theorems 1-4

We describe here detailed proofs of Theorems 1-4. We start with some

definitions and three Lemmas.

A matrix A = [aij]1≤i,j≤n is majorized by matrix B = [bij]1≤i,j≤n, de-

noted by A 4 B or B < A if and only if

a(i) ≤ b(i) for 1 ≤ i ≤ n× n,

where a(i) and b(i) are the i-th smallest elements in A and B. A is strictly
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majorized by B, denoted by A ≺ B or B � A if and only if

a(i) ≤ b(i) for 1 ≤ i ≤ n× n

and

a(i) < b(i) for some i.

Matrices A and B are said to be equivalent, denoted by A ≡ B if and only

if

a(i) = b(i) for 1 ≤ i ≤ n× n.

Majorization, strict majorization, and equivalent between two vectors A =

(ai)1≤i≤n and B = (bi)1≤i≤n are defined similarly.

Let G be a graph, define V (G) as the set of nodes in G, and E(G) as

the set of edges in G. Let degG(u) denote the degree of node u in graph G.

When there is no risk of ambiguity which graph G we are considering, we

abbreviate degG(u) to deg(u). Define ne(u) = {v ∈ V (G) : (u, v) ∈ E(G)}

and call it neighborhood of node u. A node of degree 1 is called a pendant

node or a leaf. A node which is not a pendant node is called an internal

node. It is known that a path tree is the only tree on n nodes with maximal

degree 2. Only tree on n nodes with maximal degree n− 1 is a star tree.

A tree is called a starlike tree if it has exactly one node of degree

greater than two. Figures 2.1(c), (f), and (g) show 8-node starlike trees

with maximum degree equal to 5, 4, and 5 respectively.

Lemma 1. Let T be a connected tree, u1 a pendant node and u2 an internal

node. Suppose all nodes, if there is any, in the shortest path connecting u1
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and u2 are of degree 2. Then

(d(u2, v))v∈V (T ) ≺ (d(u1, v))v∈V (T ).

Proof. Let Pu1,u2 denote the path connecting u1 with u2. For v ∈ V (T )\V (Pu1,u2)

d(u1, v) = d(u1, u2) + d(u2, v)

> d(u2, v).

And

(d(u1, v))v∈V (Pu1,u2 )
≡ (d(u2, v))v∈V (Pu1,u2 )

.

Thus

(d(u2, v))v∈V (T ) ≺ (d(u1, v))v∈V (T ).

Lemma 2. Consider two distinct trees T1 and T2. Let u1, u2 ∈ V (T1) with

u1 of degree at least 2 and u2 a pendant node satisfying the property that

any node, if there is any, on the shortest path connecting u1 and u2 is of

degree 2. Let u3 ∈ V (T2). A new tree T is constructed by connecting u1 and

u3, and T ′ is constructed by connecting u2 and u3. Then,

D(T ) ≺ D(T ′).

Proof. Observe that

(d(v1, v2))v1,v2∈V (T1) ≡ (d′(v1, v2))v1,v2∈V (T1),

(d(v1, v2))v1,v2∈V (T2) ≡ (d′(v1, v2))v1,v2∈V (T2).
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For v1 ∈ V (T2), we have

(d′(v1, v2))v2∈V (T1)

≡ d′(v1, u3) + 1 + (d′(u2, v2))v2∈V (T1)

≡ d(v1, u3) + 1 + (d(u2, v2))v2∈V (T1)

and

(d(v1, v2))v2∈V (T1)

≡ d(v1, u3) + 1 + (d(u1, v2))v2∈V (T1)

≺ (d′(v1, v2))v2∈V (T1).

Thus D(T ) ≺ D(T ′).

Manipulations in Lemma 2 are illustrated in Figure 2.6.

Starting from a tree T with m number of nodes with maximum degree

∆(T ). If m ≥ 2, Lemma 2 can be iteratively applied to construct a tree T ′

such that the maximum degree is equal to that of T but the number of nodes

in T ′ with the maximum degree is reduced by 1. If m = 1, then Lemma 2

can also be iteratively applied to construct a tree T ′ with maximum degree

∆(T ′) = ∆(T )− 1.

Lemma 3. Given i + j = k + ` = n, 1 ≤ ` < i ≤ j < k, T is created by

connecting internal node u1 of Si and internal node u2 of Sj. T
′ is created

by connecting internal node u3 of Sk and internal node u4 of S`. Then

(d′(u3, v))v∈V (T ′) ≺ (d(u1, v))v∈V (T ),

D(T ′) ≺ D(T ).

Proof. Note that |V (T )| = |V (T ′)| = n.
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Figure 2.6. Illustrating the choices of u1, u2 and u3 in Lemma 2. Here T1
has 5 nodes, T2 3 nodes. We choose u1 = 3, u2 = 5 and u3 = 6. Tree T is
constructed by joining u1 and u3 while T ′ by joining u2 and u3. D(T ) and
D(T ′) are 8× 8 matrices where the first 5 columns correspondent to the 5
nodes in T1, and the last 3 rows correspondent to the 3 nodes in T2.

Note also that (d(u1, v))v∈V (T ) has 1 entry equals to 0, i entries equal to

1 and j−1 entries equal to 2. Similarly (d′(u3, v))v∈V (T ′) has 1 entry equals

to 0, k entries equal to 1 and `−1 entries equal to 2. Thus (d(u3, v))v∈V (T ′) ≺

(d′(u1, v))v∈V (T ) proving the first majorization.

Both D(T ) and D(T ′) have n entries equal to 0, 2(n− 1) entries equal

to 1. D(T ) has 2(i− 1)(j − 1) entries equal to 3 and the rest of entries 2,

D(T ′) has 2(k− 1)(`− 1) entries equal to 3 and the rest of entries 2. Since

(k − 1)(l − 1) < (i − 1)(j − 1), thus D(T ′) ≺ D(T ) proving the second

majorization, and hence the proof of Lemma 3.
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Manipulations in Lemma 3 are illustrated in Figure 2.7, where n =

10, i = j = 5, ` = 3, k = 7.

Lemma 3

ସݑ ଷݑ

ܵଷ ܵ଻

B ܶᇱ

ଵݑ ଶݑ

ܵହ ܵହ

A ܶ

number of distances equal to 1, 2 and 3 are 18, 40 
and 32

number of distances equal to 1, 2 and 3 are 18, 48 
and 24

Figure 2.7. Illustration of Lemma 3. Here n = 10, i = j = 5, ` = 3, k = 7.
From the counts of the distances above, it is clear that
(d′(u3, v))v∈V (T ′) ≺ (d(u1, v))v∈V (T ) and D(T ′) ≺ D(T ).

2.8.1 Proof of Theorem 2

In this section we will find upper and lower bounds of Wf (T ) for T ∈ Tn.

Lemmas 4 and 5 are dedicated to investigate the relationship between a

tree’s distance matrix and its maximum degree.

Consider the following subtree pruning and regrafting (SPR) algorithm:

Input T ∈ Tn with ∆(T ) ≥ 3:

1. Choose a pendant node u1, and an internal node u2 with deg(u2) ≥ 3

satisfying the condition that all nodes lying on the shortest path

connecting u1 and u2, if any, are of degree 2.

2. Choose u3 ∈ ne(u2) such that u3 does not lie on the shortest path

connecting u1 and u2.
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3. A new tree T 0 ∈ Tn is constructed by first deleting (u2, u3) and then

connecting u3 to u1.

This algorithm outputs a tree T 0 with these properties: (i) D(T ) ≺

D(T 0); (ii) ∆(T )− 1 ≤ ∆(T 0) ≤ ∆(T ); and (iii) number of pendant nodes

is one less than that of T .

To see this, let Pu1,u2 denote the path connecting u1 with u2. Observe

that

(d(v1, v2))v1,v2∈V (T )\V (Pu1,u2 )

≡ (d0(v1, v2))v1,v2∈V (T )\V (Pu1,u2 )

and

(d(v1, v2))v1,v2∈V (Pu1,u2 )

≡ (d0(v1, v2))v1,v2∈V (Pu1,u2 )
.

For v1 ∈ V (T )\V (Pu1,u2), we have

(d(v1, v2))v2∈Pu1,u2

≡ d(v1, u3) + 1 + (d(u2, v2))v2∈Pu1,u2

and

(d0(v1, v2))v2∈Pu1,u2

≡ d0(v1, u3) + 1 + (d0(u1, v2))v2∈Pu1,u2

≡ d(v1, u3) + 1 + (d(u1, v2))v2∈Pu1,u2

� (d(v1, v2))v2∈Pu1,u2
by Lemma 2.

ThusD(T ) ≺ D(T 0) and property (i) follows. Since degT 0(u2) = degT (u2)−

1, degT 0(u1) = 2, degT 0(u) = degT (u) for u 6= u1, u2. Then properties (ii)
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and (iii) follow.

Manipulations of SPR algorithms are illustrated in Figure 2.8.
SPR

ଵݑ

ଶݑ

ଷݑ

ܶ

ଵݑ

ଶݑ

ଷݑ

଴ܶ

SPR

Figure 2.8. Illustration of the subtree pruning and regrafting algorithm.
Here T0 is obtained from T first by deleting the edge (u2, u3) and then
connecting u1 and u3. T0 is proved to satisfy these properties: (i)
D(T ) ≺ D(T 0); (ii) ∆(T )− 1 ≤ ∆(T 0) ≤ ∆(T ); and (iii) number of
pendant nodes is one less than that of T .

Lemma 4. Let T ∈ Tn with ∆(T ) ≥ 3. There exists T ′ ∈ Tn such that

∆(T ′) = ∆(T )− 1 and

D(T ) ≺ D(T ′).

Proof. Let ` be the number of pendant nodes in T . Apply SPR algorithm

to T to obtain T 0. If ∆(T 0) = ∆(T ) − 1, then we stop and take T ′ = T 0.

Otherwise let T = T 0 and apply SPR algorithm again. We repeat this

algorithm until we obtain the desired tree T ′. Note that this algorithm

will be repeated at most `− 2 times to get the desired tree. Because each

application of SPR algorithm reduces number of pendant nodes by 1. There
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are at least 2 pendant nodes in a tree.

Lemma 5. Let T ∈ Tn with 2 ≤ ∆(T ) < n− 1. There exists T ′ ∈ Tn such

that ∆(T ′) = ∆(T ) + 1 and

D(T ′) ≺ D(T ).

Proof. We write ∆(T ) = k. Choose u ∈ V (T ) with degree m, m ≥ 2,

in such a way that all its neighbors except one are pendant nodes. Write

ne(u) = {u1, . . . , um−1, um} where um is the only internal node in T . We

consider two cases: 1: m−1+degT (um) < k+1 and 2: m−1+degT (um) ≥

k + 1.

1. A new tree T 0 is constructed by deleting edge (u, uj), and then con-

necting uj to um for 1 ≤ j ≤ m − 1. We claim that T 0 satisfies

that ∆(T 0) = k and D(T 0) ≺ D(T ). Since degT 0(v) = degT (v), v ∈

V (T )\{u, um}, degT 0(u) = 1, degT 0(um) = degT (um) + m − 1 ≤ k,

so ∆(T 0) = k. Let V = V (T ) = V (T 0), V1 = ne(um)\u, V2 =

V1
⋃
{u, u1, . . . , um} and V3 = V \V2.

(d(i, j))i,j∈V3 ≡ (d(i, j))0i,j∈V3
.

(d(i, j))i,j∈V2 � (d(i, j))0i,j∈V2
by Lemma 3.

(d(i, j))i∈V2,j∈V3 � (d(i, j))0i∈V2,j∈V3
.

Thus D(T 0) ≺ D(T ). Let T = T 0 and repeat this procedure again.

Note that the number of pendant nodes in T increases by 1 for each

application of this procedure.
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2. A new tree T 0 is constructed by deleting edge (u, uj), and connecting

uj to um for 1 ≤ j ≤ k − degT (um) + 1. As in case 1, T 0 satis-

fies D(T 0) ≺ D(T ). Since degT 0(v) = degT (v), v ∈ V (T )\{u1, um},

degT 0(u) = degT (u)− (k+ 1− degT (um)) < k, degT 0(um) = k+ 1, so

∆(T 0) = k + 1. Let T ′ = T 0 and T ′ satisfies conditions in Lemma 5.

As we claimed in case 1, each time case 1 occurs, the number of pendant

nodes in T decreases by 1, and (deg(i))i∈V (T ) ≺ (deg(i))i∈V (T 0). Thus even-

tually only case 2 remains and produces a tree as required in Lemma 5.

In the proof of Lemma 5, we can easily choose u ∈ V (T ) such that its

degree equals to m, m ≥ 2, and all its neighbors except one are pendant

nodes. We write ∆(T ) = k. So T has at least one node with degree k. We

choose one such node and denote it as v. Let v1, . . . , vn1 be the pendant

nodes in T and satisfy d(v, v1) ≤ d(v, v2) ≤ . . . ≤ d(v, vn1). Denote the

path connecting v and vn1 by v → w1 → w2 → · · · → wp → vn1 . Then wp

is one such node u. Otherwise, d(v, v1) ≤ d(v, v2) ≤ . . . ≤ d(v, vn1) does

not hold.

Since the star graph has the largest maximum degree, and the path

graph has the smallest maximum degree among trees in Tn, by Lemmas 4

and 5, we obtain the following corollary.

Corollary 7. Let T ∈ Tn with 2 < ∆(T ) < n− 1. Then

D(Sn) ≺ D(T ) ≺ D(Pn).

Proof of Theorem 2. Applying Corollary 7 and the fact that f is increasing

can prove Theorem 2.
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2.8.2 Proof of Theorem 1

Define Gn(m) as a set of connected graphs with the number of nodes n and

the number of edges m, n− 1 ≤ m ≤ n(n−1)
2

.

First we will show that maximum value of Wf (G) over G ∈ Gn(m) is a

monotone function of the number of edges, m, of G.

Lemma 6. Let G ∈ Gn. Then max
G∈Gn(m)

Wf (G) and min
G∈Gn(m)

Wf (G) are de-

creasing functions in m.

Proof. For any G ∈ Gn(m) with D(G) = (d(i, j))1≤i,j≤n. When m ≥ n, G

cannot be a tree and hence contains a cycle. Choose an edge in a cycle

in G and delete it to form G′. Let’s say the deleted edge is (1, 2). Note

that G′ ∈ Gn(m− 1). Write D(G′) = (d′(i, j))1≤i,j≤n. Since E(G′) $ E(G),

d(i, j) ≤ d′(i, j), 1 ≤ i < j ≤ n, Wf (G) ≤ Wf (G
′). So maxG∈Gn(m)Wf (G) ≤

maxG∈Gn(m−1)Wf (G), for m ≥ n.

Consider n ≤ m ≤ n(n−1)
2

. For any G ∈ Gn(m−1), we connect two nodes

with distance greater than 1 in G and call the resulting graph G′′. Now G′′ ∈

Gn(m) with D(G′′) = (d′′(i, j))1≤i≤j≤n. Since E(G) ⊂ E(G′′), d′′(i, j) ≤

d(i, j), 1 ≤ i < j ≤ n, thus Wf (G
′′) ≤ Wf (G). So minG∈Gn(k)Wf (G) ≤

minG∈Gn(m−1)Wf (G) for m ≥ n.

Proof of Theorem 1. From Lemma 6 we have

Wf (Kn) ≤ Wf (G) ≤ max{Wf (T ) : T ∈ Tn}.

From Theorem 2

Wf (Pn) = max{Wf (T ) : T ∈ Tn}.
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Thus Theorem 1 follows.

2.8.3 Proof of Theorem 3

In this section, we consider trees with a given maximum degree. The rela-

tionship between the distance matrix and the number of nodes with degree

equal to maximum degree is investigated.

Lemma 7. Let T ∈ Tn with n1 nodes with degree equal to ∆(T ). Suppose

n1 ≥ 2 and ∆(T ) ≥ 3. There exists T ′ ∈ Tn with ∆(T ′) = ∆(T ) and n1− 1

nodes with degree equal to ∆(T ). Moreover, we have

D(T ) ≺ D(T ′).

Proof. Let ` be the number of pendant nodes in T . Apply SPR algorithm

to T to obtain T 0. If T 0 has n1 − 1 nodes with degree equal to ∆(T ), then

we stop and take T ′ = T 0. Otherwise let T = T 0 and apply SPR algorithm

again. We repeat this algorithm until we obtain desired tree T ′. Note that

this algorithm will be repeated at most `− 2 times to obtain desired tree.

Because each application of SPR algorithm reduces number of pendant

nodes by 1. There are at least 2 pendant nodes in a tree.

Corollary 8. Let T ∈ Tn with 2 < ∆(T ) < n − 1. There exists a starlike

tree T ′ with ∆(T ) = ∆(T ′) such that

D(T ) ≺ D(T ′).

Corollary 8 states that among trees with equal maximum degree, dis-

tance matrix of a tree with more than one node with maximum degree is

55



Chapter 2. Sharp Bounds and Normalization of Wiener-type Indices

strictly majorized by a distance matrix of a starlike tree. Next to find a

tree whose distance matrix majorizes all starlike trees.

Lemma 8. Let T be a starlike tree with ∆(T ) = k ≥ 3. Then

D(T ) � D(Bn,k+1),

with equality holds if and only if T is Bn,k+1.

Proof. Assume T is non-isomorphic to Bn,k+1. T is a starlike tree thus T

has k pendant nodes by definition. Denote by u the node with maximum

degree k, by u1, . . . , uk pendant nodes in T and satisfy d(u, u1) ≤ d(u, u2) ≤

. . . ≤ d(u, uk), and by Vi set of nodes in the shortest path connecting node

u and ui, 1 ≤ i ≤ k. Next a new tree T 0 is constructed by deleting edge

(uk−1, ne(uk−1)) and connecting uk−1 to uk.

For i, j ∈ V \{uk−1},

d(i, j) = d0(i, j).

For i ∈ V \(Vk−1 ∪ Vk)

d(i, uk−1) = d(i, u) + d(u, uk−1)

d0(i, uk−1) = d0(i, u) + d0(u, uk−1)

= d(i, u) + d(u, uk) + 1

thus

d(i, uk−1) < d0(i, uk−1).
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And

(d(i, uk−1))Vk−1∪Vk ≡ (d0(i, uk−1))Vk−1∪Vk ,

since both vectors are distances of a pendant node to other nodes in

one path with length d(uk−1, uk). Thus D(T ) ≺ D(T 0). If T 0 satisfies

d0(u, u1) = · · · = d0(u, uk−1) = 1, then we stop and T 0 is Bn,k+1. Oth-

erwise let T = T 0 and we repeat this process until get tree Bn,k+1. Note

that this algorithm will be repeated n − k − d(u, uk) times. Because each

repetition will increase d(u, uk) by 1. And maximum of d(u, uK) is n − k

and is attained when T is Bn,k+1.

Lemma 9. For k ≥ 3,

D(Bn,k+1) ≺ D(Bn,k)

Proof. Lemma 9 follows directly from Lemmas 4 and 8.

Proof of Theorem 3. Applying Lemma 8 and the fact that f is increasing.

Remark It has been proven in corollary 3.5 of Schmuck et al. (2012) that

Wf (Tn(k)) = min{Wf (T ) : T ∈ Tn, ∆(T ) = k} (?)

where Tn(k) is a k-ary tree, also called Volkmann tree (Fischermann et al.,

2002). It remains open whether

D(Tn(k)) � D(T ) for T ∈ Tn, ∆(T ) = k (??)
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holds for all k, n and k ≤ n . We have verified that (??) holds for 6 ≤ n ≤ 9

and k = 3. If (??) is true for all n and k, it provides an alternative proof of

Wf (Tn(k)) ≤ Wf (T )

for T ∈ Tn, ∆(T ) = k, and f monotonically increasing.

2.8.4 Proof of Theorem 4

Proof. Let T be a spanning tree of G satisfying ∆(T ) = k. Similar to the

proof of Theorem 1, one can prove that D(G) � D(T ). By Theorem 3,

D(T ) � D(Bn,k+1). Thus Wf (G) ≤ Wf (Bn,k+1).
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Chapter 3

Profiling the Transcription Factor

Regulatory Networks of Human Cell

Types

3.1 Introduction

Living cells are the products of transcription programs involving thousands

of genes. Sequence-specific transcription factor (TF) proteins regulate tar-

get genes by binding to promoter regions adjacent to the DNA sequences of

the genes. There are less than 2,000 TFs in the human genome (Babu et al.,

2004; Ravasi et al., 2010; Vaquerizas et al., 2009; Zhang et al., 2012a). They

work cooperatively to enhance or inhibit their target genes to achieve high

specificity, and thus to precisely control the condition-dependent expression

of the genes to respond to extracellular stimuli. Hence, the mutual inter-

actions among TFs determine cellular identity and shape complex cellular

functions (Csermely et al., 2014; Davidson, 2010). This makes the study of

human TFs on a system-wide scale of vital importantce (Csermely et al.,

2013). In systems biology, regulatory interactions among TFs are modeled
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as a TF regulatory network in which the nodes are the TFs and the links

represent the regulatory relationship among TFs.

Over the past decade, a great deal of information on the organization

of regulatory interactions has been obtained particularly for E. coli and S.

cerevisiae (Balazsi et al., 2005; Banerjee and Zhang, 2003; Gerstein et al.,

2012; Ma et al., 2004; Yu et al., 2006). However, comprehensive generation

of cell-type regulatory interactions for humans has been a challenge. First,

there are a large number of human TFs as mentioned above, but the data

collected from individual experiments often target one cell type and only

a few TFs in a particular condition (Davidson et al., 2002; Gerstein et al.,

2010; Kim et al., 2008). Second, correlation-based analyses of microarray

gene expression data often do not capture the direction of transcriptional

regulations, a necessity for deep analyses of regulatory interactions (Basso

et al., 2005; Carro et al., 2009). Fortunately, the genome-wide DNaseI foot-

printing technique has recently been adopted to determine the regulatory

interactions of sequence-specific TFs in the 41 human cell types (Neph

et al., 2012a). This provides a valuable resource for deciphering regulatory

mechanisms in different human cells.

The TF regulatory networks for E. coli (Yu and Gerstein, 2006), S.

cerevisiae (Jothi et al., 2009; Yu and Gerstein, 2006), mouse (Bookout

et al., 2006) and humans (Gerstein et al., 2012) exhibit hierarchical orga-

nizations. Most importantly, these organizations are associated with TF

dynamics (Jothi et al., 2009; Yu and Gerstein, 2006). In the present thesis,

we investigate the structural organizations and dynamics of the 41 human

cell-type TF regulatory networks reported in Neph et al. (2012a) using the

vertex-sort algorithm developed in Jothi et al. (2009). Our findings are
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interpreted to indicate three insightful conclusions. First, the human cell-

type TF regulatory networks share similar global three-layer (top, core,

and bottom) hierarchical architectures, which are markedly different from

that of the yeast TF regulatory network. On the other hand, there are sig-

nificant differences in the TF regulatory interactions among cell types, as

suggested by our finding that wirings around a few TFs can distinguish cell

identities well. Second, the TF regulatory network of the human embryonic

stem cell (hESC) is dense and has different topological properties from all

the other networks. Finally, there are more specific regulatory interactions

than thought in the hESCs. These cell-type regulatory interactions and the

TFs involved may play unique roles in maintaining pluripotency.

3.2 Materials and Methods

3.2.1 Network data

The TFs regulatory networks of 41 human cell types have been taken from

the recent work by Neph et al. (2012a). These networks were derived from

DNaseI footprinting data and the predicted TRANSFAC motif-binding

sites (Ravasi et al., 2010). Each network contains about 475 TFs and 11,200

interactions.

According to the physiological and functional properties, Neph et al.

(2012a) divided the 41 cell types into eight classes: blood (seven cell types),

cancer (two cell types), endothelia (four cell types), epithelia (six cell types),

ESCs (one cell type), fetal (three cell types), stroma (14 cell types), and

viscera (four cell types).
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3.2.2 Discovery of the hierarchical structures of the regulatory

networks

We used the vertex-sort algorithm (Jothi et al., 2009) to identify the hier-

archical structure of a regulatory network. The vertex-sort algorithm first

collapses strongly connected components into super-nodes to form a di-

rected acyclic graph, and then constructs its transposed graph by reversing

the directions of the edges. A strongly connected component is a subnet-

work in which, for each pair of nodes u and v in the subnetwork, these exists

a directed path from u to v and from v to u. Next, it uses the topological

structures of both the directed acyclic graph and its transposed graph to

classify the original nodes into the top, core and bottom layers.

3.2.3 Classifying cell types based on TF regulatory networks

Neph et al. (2012a) made use of the connectivity of the TF regulatory net-

works to classify the 41 human cell types. Specifically, they computed all the

pairwise Euclidean distances between the normalized node-degree (NND)

vectors of the networks, and then applied the Ward clustering method

(Ward, 1963) to cluster the cell types.

Instead, we used local connectivity, defined by a subset of nodes in the

networks, to classify the cell types. Given a small set of TFs, A, we define

the feature vector of each cell type to be (x1, . . . , xn), where n is the number

of TFs in the corresponding network and where xi = 1 if the i-th TF is

a target of some TFs in A and 0 otherwise. Principal component analysis

was then applied to the feature vectors to reduce the dimension and the

noise of feature vector data. We computed the pairwise Euclidean distances

based on the first seven principal components of the 41 feature vectors and
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then applied Ward clustering to classify the cell types.

To answer one question that how well local topological features of ran-

domly selected TF group distinguish the cell identities, we apply the de-

scribed strategy for 1000 randomly selected TF groups with n TFs (n =

1, . . . , 12)

3.2.4 Measuring the accuracy of the classifications of cell types

The Rand Index (RI) (Rand, 1971) was used to assess the quality of cell

type classifications. To this end, the 41 cell types are partitioned into four

categories: (i) stromal and epithelial, (ii) blood, (iii) endothelial, and (iv)

cancer, ESC, and fetal tissues.

3.2.5 Detection of regulatory complex-target modules in hESCs

The hESC specific interactions are interactions that are only found in the

regulatory network of hESCs. A total of 1,509 interactions were identified

(Table A.1).

We used these interactions to identify regulatory complex-target mod-

ules that are specific to hESCs. For a protein complex, C, and a set of

TFs, B, we say that C and B form a regulatory complex-target module if

C contains two or more TFs such that all TFs in B are regulated by every

TF (in C) only in the hESCs. We detected 55 regulatory complex-target

modules (Table A.2 using the protein complexes reported in Vinayagam

et al. (2013).
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3.2.6 Comparing two distributions

The Wilcoxon rank-sum test was used to determine whether the RI was

significantly higher when grouping the 41 cell types based on the targets

of a few TFs compared to random grouping.

The gene expression data of 79 human tissues (Su et al., 2004) was

used to investigate whether a TF gene was stably expressed across tissues.

The deviation of an expression level from being a constant is measured in

terms of its relative entropy (also known as Kullback-Leibler divergence).

In our context, for a gene, it is computed as log2 79 +
∑

j fj log2(fj), where

fj = ej/(
∑79

k=1 ek) and ej is the expression level of the gene in tissue j

(Ravasi et al., 2010). The entropy equals 0 if the gene expression levels

are identical in all 79 tissues. The Wilcoxon rank-sum test was also used

to test whether the TFs involved in housekeeping (HK) interactions were

more stably expressed than the other TFs.

Wilcoxon rank-sum test require below 3 assumptions. (1) Data are

paired and come from the same population. (2) Each pair is chosen ran-

domly and independently. (3) The data are measured at least on an ordinal

scale (cannot be nominal). In our applications, the first two assumptions

may not be entirely satisfied. For example the independence assumption

may not hold considering potential bias in TFs detection.

3.3 Results

3.3.1 Wirings around a few TFs are enough to distinguish cell

identities

Neph et al. (2012a) made use of the global connectivity of the TF regu-

64



3.3. Results

latory networks to classify the 41 human cell types (Section 3.2.3). The

resulting grouping (redrawn in Figure 3.1A) strikingly groups the anatom-

ical and functional cell-type groups into clearly pre-annotated classes with

RI=0.801. Surprisingly, the local connection patterns involving five to nine

arbitrarily selected TFs are also good enough to obtain comparable classi-

fications with the RI being in the range from 0.7 to 0.9 on average (Section

3.2.4, Figure 3.2).
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Figure 3.1. The hierarchical clustering of 41 cell types, where the color
indicates which classes they belong to (Section 3.2.1). (A) The clustering
reported in Neph et al. (2012a) and redrawn for the purpose of
comparison, which is based on the pairwise Euclidean distances between
the NND vectors of the corresponding TF regulatory networks, has
RI=0.801. (B) Our clustering, which is based on the distribution of the
downstream targets of the seven STATs, has RI=0.856.

Let us consider the seven mammalian signal transducer and activa-

tor of transcription (STAT) proteins. The activation of STATs by the

Janus kinase proteins serves as an alternative to the second messenger sys-

tem, transmitting extracellular signals from a wide spectrum of cytokines,
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Figure 3.2. The evaluation of how the clustering results of limited
number of TFs reflect the original cell/tissue groups. The red triangle
marks the RI value of the STAT family.

growth factors and other polypeptide ligands to the nuclei (Horvath, 2000;

Levy and Darnell, 2002). A close examination finds that the TFs regulated

by the STATs are annotated with different gene ontology (GO) terms in

different regulatory networks. For example, as illustrated in Figure 3.3, TFs

that are regulated by STATs in hESCs but not in hematopoietic stem cells

(HSCs) are enriched in GO:0045165 (cell fate commitment, Benjamini cor-

rected p-value =2.72e-7). By contrast, TFs that are regulated by STATs

in HSCs but not in hESCs are enriched in GO:0048534 (hemopoietic or

lymphoid organ development, Benjamini corrected p-value =0.03).

The diversity of the downstream TFs of the STATs might indicate their

strong distinguishability for the classification of human cell types. Indeed,

using the information on how the STAT proteins connect with their targets

to classify the cell types, we obtained a grouping with RI=0.856 (Figure

3.1B), which is even higher than the RI of the grouping of Neph et al.

(2012a) mentioned above.
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Figure 3.3. The STATs and their downstream regulatory targets in
hESCs (A) and HSCs (B). Purple TFs are those regulated by some
STATs in both cell types. The cell fate commitment process
(GO:0045165) is enriched in the targets of STATs in hESCs (Benjamini
corrected p-value =2.72e-7). Dark red and blue targets are the TFs
annotated with the GO term. The hemopoietic or lymphoid organ
development process (GO:0048534) is enriched in the targets of STATs in
HSCs (Benjamini corrected p-value =0.03). Green and blue targets are
the TFs annotated with this GO term. Brown targets are other targets
whose GO annotations are not given.

3.3.2 The hierarchical structures of 41 cell-type regulatory net-

works

The E. coli, yeast, rat, mouse, and human regulatory networks all exhibit

hierarchical organization (Bookout et al., 2006; Gerstein et al., 2012; Jothi

et al., 2009; Yu and Gerstein, 2006). We investigate the hierarchical organi-

zation of the 41 human cell type networks using the vertex-sort algorithm

(Jothi et al., 2009).

For each network, the vertex-sort algorithm partitioned its nodes into
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the top, core and bottom layers (Figure 3.4A) (Section 3.2.2). The percent-

ages of TFs in the three layers of the 41 regulatory networks are reported

in Table A.3. On average, 23% of TFs are classified into the top layer, 67%

into the core layer, and the lowest amount of TFs (10%) into the bottom

layer (Figure 3.4B). The top, core and bottom layers of the 41 networks

have 1 (that is HNF4G), 141 and 15 TFs in common, respectively.

DMRT3

FOXD1

SOX17

PRRX1

ONECUT1

MYF5

HOXD13

MSX1

FOXO4

SMAD1

HMGA2

HOXC13ELF3

SIX2 IRF3

NFIXFOXM1

HSF2

MEF2A

FOXA3

ATF3

ALX4

IRF6

FOXO1

IRX5

EN2

HOXD1

ATF7

BRF1

MSX2 MEIS1

TBP NFE2

PITX3 NKX6-1

SIX4

EOMES

LMX1A

NFATC3

NKX3-2 CEBPA

PPARD

MAFB

GLIS1

LTF

DMBX1

HOXA2

FOXN1

HOXC4

NKX6-2

POU6F1

POU1F1

MECP2

GBX2

ZIC1

FGF9

BACH2

EMX2NR1H4

ARNT2

MEF2C

BDP1

PGR

SOX10

MYBL2

HOXB5

STAT5B

TP63OTP

GLI2 ALX3

BPTF

SOX5

FOXP3CUX1

PAX8

CBFB

TBX22 ZBTB6

THRB

TERF1

HOXA11

ESR1

THRA

POU4F3

NFATC1

NR5A2

TP73

FOXL1

HMGA1

HIF1A

OAZ1

CEBPB

FOXC1

RELB

TFCP2

MYB

POU3F2

ZBTB7A

IRF7

TGIF1

ZFP161

ATF5

CREM

STAT1

TEF

USF1

SMAD2

PAX6

TCF12

GTF2A1

GFI1

RXRB

NFE2L2

JUNB

NFKB1

IKZF1

FOXO3

NEUROD1

PAX5

PURA

NR2F6

POU3F3

NFKB2

ELK1

SMAD3

RFX1

EBF1

FOSL1

GABPA

DEAF1

GATA3

PRDM1

MECOM

IRF2

MAF

NFIB

RELA

FOXJ1

EBF2 PARP1

NR2C2PBX1

FLI1

USF2ESRRA

RUNX3

MTF1 DLX5 ZIC2

SOX21 E2F6

ATOH1 FOXH1

FOXG1HOXB13

HMX3 PKNOX1

RARA ZEB1

CDX1

NR0B1

TFCP2L1

RORA

SRY HNF1A

MITF TCF7 SOX9 GATA6 MEIS3 ARID5BLEF1 HAND1 NKX2-2SOX4 NFATC4 LMX1BHSF1 ELF1 POU2F2PAX2TIRF1

RBPJBCL6POU3F1HOXB3

NKX2-1 POU2F3 LMO2

NFE2L1HNF1B ZIC3 RFX5 ZNF589

POU2AF1

PPARG

ERG

ZNF350

NR1I2

TFDP2

GATA1

HNF4G

HNF4A

ISX PPARA

LHX3 ELF2

SPZ1

HOXA7

ING4

ISL1

HMBOX1

FOXJ3

CHURC1

HINFP

DLX1

DLX4

SIX6

HOXA6

SP2

EGR4EGR1

ZNF219

MAZ CTCF ZFX

TRIM28WT1TCF3ZNF263HIC1

PATZ1KLF4

CNOT3ZNF148

NFYA GTF2I REST MZF1 NR2F1SREBF1 PAX4

TFAP4

SREBF2

OVOL2

PAX7 ARID3A

ETV4

HBP1

TFAP2C EGR3EGR2TFAP2A

KLF15

SIRT6

TFAP2B

RORB

NR2F2

HES1

POU5F1

STAT3

RREB1

MNX1

MAFA

PKNOX2

GATA4

FOXP1

STAT6

GATA2

NANOG

TCF4

ZNF238

BACH1

AHR

SPIB

ATF2

NR1I3

FOXA1

LHX4

GABPB1

NR1H2

MYC

SIX3

SMAD7

OTX2

GLI1

MAFG

NRF1

IRX2

ERF

MAFF

IRF9

GLIS3

ZNF628

CRX

IRX3

ETS2

ETV7

CDX2

REL

EP300

IRX4

NR3C1

E2F7

TGIF2

NHLH1

FOXA2

TBX15

TOPORS

SMAD4

BHLHE41

E2F5

BARX2

HLF

HOMEZ

HOXC8

BARX1

ZNF333

ELF5

RB1

HOXC11

ZBTB16

PAX1

SHOX2

NFATC2

ESR2 CEBPG

HOXB8

HOXB4

NR2E3

HIVEP2 EVX1

RUNX2

HOXB9NKX3-1

HOXA10

VSX1MTERF GFI1B

DMRT2 CIZ1EN1CEBPE

DLX3

BRCA1

SIX1

GZF1

UBP1

NR4A2

ARNTL2

DBP

ZNF217

NFIL3

KLF12SATB1

ELF4

GSX2 HOXC12 ESX1 NR5A1HOXA3

HOXB7

HOXB6 LHX5

HMX1

EHF HOXC9HOXD3 AIREVSX2 POU3F4MEOX1GCM1HOXD9 LHX6 SP3 SP4PRRX2 SP1 ZBTB7B

ARX

ATF6

STAT5A

RUNX1

RFX2

FOXF1

PDX1HOXD12

ALX1

STAT4

HOXA1

IRF4

HOXA13

HOXA4

TLX2

LHX2

MEIS2

IKZF2

TBX5

DMRT1

HOXA9

BARHL1

E4F1 VAX1 NR4A1

FOXN2

TFDP1

PITX2

BARHL2

ESRRB AR

OTX1VAX2

PITX1

EPAS1

HAND2

DLX2

IRF8

ZBTB33

XBP1 NKX2-5

HOXA5HOXC5

STAT2 FOXI1 GTF2IRD1

E2F4

LHX8PAX3

FOXJ2

FOXF2

HOXC10 RAX

CEBPD

CDC5L

TBX18

YY1

ZFP42

CREB1

NR6A1

ATF1

RXRA

DDIT3

ETS1

SPI1

MYOG

JUND

ARNT

MYCN

ELK4

MYOD1

NF1

SRF

ATF4

E2F1

ZNF143

SOX2

GLI3

TP53

FOXD3

MYF6

VDR

POU2F1

BHLHE40

MAX

JUN

KLF11

TAL1

Top (23%)

Core (67%)

Bottom (10%)

76%

13%

9%

2%

A B

Figure 3.4. (A) A schematic view of the three-layer hierarchical
structure of the hESC TF regulatory network. The links between the top
and bottom layers are colored yellow. (B) A summary of average
percentages of nodes (dark red) in the three layers and of links (blue)
within and across the top, core and bottom layers in a human cell-type
TF regulatory network.

When compared to the regulatory networks of other cell types, the

hESC TF regulatory network has a significantly low number of TFs in the

top layer (6%, p-value < 0.01, one-tailed test) and its core layer contains

a significantly high number of TFs (85%, p-value < 0.01, one-tailed test).

However, its bottom layer has a size (9%) similar to those of the other cell

type networks (Table A.3).

To measure the degree of hierarchy in the three-layer structures ob-

tained above, we calculated the local reaching centrality (LRC) of TFs in

each of the 41 networks (Mones et al., 2012). As expected, the LRC of each
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TF in a layer is always greater than that of each TF in the layers below it

in all except two stromal (HCF and HCM) networks. In the HCF network,

only HOXC9 and NKX2-1 in the top layer have an extremely low LRC,

smaller than the LRC of the TFs in the core layer. In the HCM network,

only HOXC9 and NKX6-1 in the top layer have smaller LRC than that of

TFs in the core layer. The mean values of the LRC of the TFs in a layer

in the 41 regulatory networks are given in Table A.4. The global reaching

centrality (GRC) of the 41 regulatory networks ranges from 0.065 to 0.125.

Low GRC for each network is due to (1) there are only three hierarchal

layers, (2) the core layer is much larger than the top layers (67% vs 23%

on average), and (3) the LRC of a TF is slightly smaller in the core layer

than in the top layer. These facts leads to the distribution of LRCs skew

to the maximum LRC resulting in small GRC.

Distributions of network links. Seventy-six percent of links are dis-

tributed within the core layer (Table A.3 and Figure 3.4B). Both the size

of the core layers and the links within them reveal the complex regulatory

relationships among TFs in different human cells. The remaining links are

distributed as follows: top→ core (13%), top→ bottom (2%), and core→

bottom (9%), suggesting that TFs in the top layer mainly regulate TFs in

the core layer.

Distributions of hubs. TFs with high out-degrees are crucial in that

they have a large numbers of downstream targets. Following Jothi et al.

(2009), the top 20% TFs with the largest out-degree are defined as hubs

in a regulatory network. There are 96 to 98 hubs that regulate at least 21

TFs in each of the 41 cell-type regulatory networks. The core layers of the

networks are all enriched in hubs (all p-values ≤ 0.005, hypergeometric test,
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Figure 3.5A). All the top layers are depleted in hubs (all p-values ≤ 0.05,

hypergeometric test) except in the networks of hESCs, HSCs, hippocampal

astrocytes and mammary fibroblasts (Figure 3.5A). These results on hub

enrichment are concordant with those of the yeast transcription network

(Jothi et al., 2009).

Distributions of essential TFs. Essential proteins are necessary for per-

forming basic developmental functions. If they are disrupted, they will cause

pre- or neonatal lethality (Georgi et al., 2013). There are 280 essential TFs

in each of the 41 networks. For each network, the percentages of essential

proteins in the top and core layers are about the same (average difference

1%) (Figure 3.5B). By contrast, the percentage of essential proteins in the

top layer ( 12%) is higher than in the core layer ( 6%) and in the bottom

layer ( 3%) in the yeast transcription network (Jothi et al., 2009).

Distributions of HK TFs. Here TFs encoded by HK genes (Eisenberg

and Levanon, 2013) are called HK TFs. There are 63 HK TFs in each of

the 41 networks. There are 2, 54 and 7 HK TFs respectively in the top, core

and bottom layers of the hESC TF regulatory network. In the remaining

40 networks, all the core layers are enriched, whereas all the top layers are

depleted in HK TFs (Figure 3.5C).

3.3.3 HK and specific regulatory interactions

In analogy to genes, some regulatory interactions appear in only certain cell

types, whereas many others are found in all cell types. Regulatory interac-

tions that are only found in one cell type are called specific interactions;

those that are found in all cell types are called HK interactions. Identifying

the regulatory interactions belonging to the classes provides important bi-
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Figure 3.5. Percentages of TFs that are hubs (A), essential (B) and HK
(C) in the top (green circle), core (brown triangle) and bottom (blue
diamond) layers in 41 human cell-type TF regulatory networks, grouped
according to cell class. Abbreviations: BL, blood; CA, cancer; EN,
endothelia; EP, epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI,
visceral cells.

ological insights into complex biological systems (Bolouri, 2014; Ideker and

Krogan, 2012; Mitra et al., 2013; Srivas et al., 2013).
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Figure 3.6. Proportion of increase in number of HK interactions in all
potential 41-k TF regulatory networks. Where for each k, we enumerate
all possible percentage of increase in number of common interactions in
41-k TF regulatory networks.

Neph et al. (2012a) remarked that 5% of all interactions (i.e. 2041

interactions) (Table A.5) are common across the 41 cell types. Encouraging

fact is that HK interactions are remarkable robust with median increase

from 0.24% (k = 1) to 3.87% (k = 5) (Figure 3.6). We therefore take these

2041 interactions as HK regulatory interactions. Enrichment analyses show

that the proportions of HK links within the core layer and between the core

and bottom layers are comparable and higher than those between the top

and core layers and between the top and bottom layers (Figure 3.7C).

There are 296 TFs involved in HK interactions (Figure 3.7A). These

TFs are not necessarily encoded by HK genes. But, as expected, they are

enriched with TFs encoded by the HK genes listed in Eisenberg and Lev-

anon (2013) (p-value =1.27e-10; hypergeometric test). Additionally, the

expressions of genes encoding them are much stabler than other TF genes
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Figure 3.7. A) The intersection of the subset of TFs that are involved in
HK interactions and the subset of TFs that are encoded by HK genes. (B)
The box plots of the relative entropy of the expression values of the genes
encoding TFs involved in HK interactions (above) and other TFs (below).
(C) The box plots of the proportions of HK interactions within the core
layer and among the top, core, and bottom layers in the 41 human
cell-type TF regulatory networks. (D) TFs and HK interactions among
them in a protein complex (id: HC5737) (Vinayagam et al., 2013)

across 79 human tissues (p-value =4.32e-10) based on the entropy analysis

of the gene expression data reported in Su et al. (2004) (Figure 3.7B). Sim-

ilar results hold for the HK gene list obtained from combining the lists in

Eisenberg and Levanon (2003); She et al. (2009), and Chang et al. (2011)
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(Figure 3.8).
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Figure 3.8. The TFs involved in HK interactions that appeared in all of
the 41 TF regulatory networks are significantly (p value=5.62e-07)
enriched in HK TFs list obtained by combining the lists in Eisenberg and
Levanon (2003); She et al. (2009), and Chang et al. (2011).

3.3.4 Regulatory interactions specific to hESCs

ESCs are derived from the inner cell mass of an early-stage embryo. Al-

though OCT4, NANOG and other markers of hESCs have been identified,

the whole picture of how TFs cooperate with each other in hESCs is largely

unclear (Chen et al., 2008; Liu et al., 2009; Young, 2011). There are 1509

regulatory interactions specific to hESCs, involving 411 TFs. The network

induced by specific interactions over these TFs is referred to as the hESC

specific network (ESCSN). There are 82 hubs (the top 20% of the TFs with

the largest total degree) (Table 3.1). Among the 82 hubs, only 35 are the

hub TFs in the original hESC TF regulatory network. The remaining 47

hubs, including popular NANOG, seem to play unique roles in hESCs.
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Table 3.1. There are 82 hub TFs in the ESCSN. Forty-seven of them,
include NANOG, are not hubs in the original hESC TF regulatory
network. TFs encoded by hESC-specific genes with super-enhance are
colored red.

Hubs only in the specific netowrk Hubs also in the original network

T
o
p

HNF4A PPARA SPZ1

ALX1 FOXA1 LMX1B PAX6 ETS1 NR2F2 SOX2 TFAP2B

ALX3 FOXA2 MNX1 POU2F3 FOXD3 NR2F6 SP1 TFAP2C

ALX4 FOXC1 MSX2 POU4F3 GTF2I PAX4 SP2 VDR

ARX FOXH1 NANOG SIX3 IKZF1 PAX5 SP3 ZBTB7B

ATOH1 FOXI1 NKX2−2 SMAD4 MAZ POU2F1 SP11 ZFP42

BARHL2 FOXJ1 NR5A2 TBX22 MYCN OCT4 SREBF2 ZNF148

CDX2 GFI1 OTP VAX1 NF1 PURA STAT3 ZNF216

CRX HOXB13 OTX2 ZIC1 NFKB2 REST TCF3 ZNF219

DMRT1 LHX4 PARP1 ZIC2 NR2F1 RXTA

DMRT3 LMX1A PAX2 ZIC3

C
o
re

ETV7

B
o
tt

o
m

HBP1 OVOL2 PAX7 SIX6

Super-enhancers are large collections of transcriptional enhancers. Genes

with super-enhancer domain play important roles in the control of cell iden-

tity and diseases (Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013).

In mouse and human ESCs, master transcription factors OCT4, SOX2

and NANOG are each encoded by a gene with super-enhancer. They also

have DNA binding motifs that are often found in super-enhancer domains

(Whyte et al., 2013). Most interestingly, nine hub TFs (colored red in Table

3.1) are each encoded by hESC-specific genes with super-enhancer (p-value

= 0.03; hypergeometric test) based on super-enhancers reported in Hnisz

et al. (2013). They are FOXD3, GTF2I, NANOG, NR2F6, OCT4, SIX3,

SOX2, ZBTB7B, and ZIC3.
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Assou et al. (2007) in a meta-analysis compiled a list of 1076 genes

that are overexpressed in hESCs. In the ESCSN the hubs are significantly

enriched with the TFs encoded by the overexpressed genes in this list (p-

value =1.61e-3; hypergeometric test, Figure 3.9A). More interestingly, 12 of

the hubs that are encoded by the genes in the list are well connected, except

for ZIC2 (Figure 3.9B). Interestingly, NANOG, OTX2, PARP1, ZIC2 and

ZIC3 are not hubs in the original hESC TF regulatory network.

ESCs self-renew indefinitely while maintaining pluripotency. Activin A

is a member of the transforming growth factor beta superfamily. It is found

to play a central role in maintaining stemness (James et al., 2005; Xiao

et al., 2006). Activin A initially binds to type II Activin A receptors and

then recruits the Activin A receptor, type IB (ALK4). ALK4 further phos-

phorylates SMAD2/3. Upon activation by phosphorylation and association

with SMAD4, SMAD2/3 translocates to the nucleus and up-regulates the

expression of other TF genes, such as Oct4, Nanog, Modal, Wnt3, and Fgf8,

and down-regulates Bmp7 (James et al., 2005). In hESCs, SMAD3 tends

to co-occupy DNA binding sites with OCT4, SOX2 and NANOG in re-

sponses to transforming growth factor beta signaling (Mullen et al., 2011).

The Nadal/Activin A signaling pathway is also enriched (False discovery

rate=9.86e-5) with the hubs in the ESCSN.

In addition, a core transcriptional regulatory network of hESCs (Chen

et al., 2008) is enriched in hESC specific interactions (p-value =6.92e-6;

hypergeometric test, Figure 3.9C), as shown in Figure 3.9D.
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Figure 3.9. (A) Proportions of hub TFs that are in Assou et al. (2007)
and the significance of their enrichment in the ESCSN. (B) The
subnetwork induced by the hub TFs in the Assou et al.s list in the
ESCSN. (C) Proportions of known hESC interactions (38) and the
significance of their enrichment in the ESCSN. (D) The hESC specific
regulatory interactions appearing in a reported core transcription network
for hESCs (Chen et al., 2008). (E) and (F) Two specific regulatory
complex-target modules in the hESCs.

3.4 Discussion

We have studied the organizational architectures of the 41 human cell-type

TF regulatory networks that were reported by Neph et al. (2012a). First, we
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have showed that the wiring around five to seven TFs in the networks can

be used to classify all the 41 cell types well. Both Neph et al. (2012a) and

our studies indicate that the human TF regulatory networks are different

globally as well as locally.

Human regulatory networks exhibit hierarchical and modular structure

(Rodriguez-Caso et al., 2005). We have examined the three-layer hierar-

chical organizations of the human cell-type TF regulatory networks. The

networks are each partitioned into the top, core and bottom layers, con-

taining 23%, 67% and 10% of TFs on average (Figure 3.4B, Table A.3),

respectively. The large size and well-connectedness of the core layers are

probably due to (1) master cell-type specific TFs have a large number of

target genes and (2) their encoding genes have a super-enhancer domain

(Hnisz et al., 2013; Whyte et al., 2013). For example, in the core layer of

the hESC TF regulatory network, 326 TFs (81.3%) out of 401 are either

the regulators or regulated by nine TFs each encoded by a gene with super-

enhancer domain, forming a large bow-tie subnetwork (Csete and Doyle,

2004).

The same hierarchical analysis (Jothi et al., 2009) indicates that in

the yeast TF regulatory networks both the core and bottom layers have

similar sizes (43% vs 40%) whereas the top layer contains only 13% of

the TFs. Taken together, these two facts together imply a difference in

the topological organizations between the human and yeast TF regulatory

networks.

Enrichment analyses (Table 3.2) indicate that for each TF regulatory

network of the 40 non-ESC cell types, (a) the top layer is lacking in both

hub and HK TFs, (b) the core layer is enriched with both hubs and HK
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TFs and (c) the bottom layer is only enriched with hub TFs. However,

essential TFs seem to be distributed evenly in the top and core layers, but,

by and large, sparsely in the bottom layers.

Table 3.2. The summary of the enrichments of hubs, essential and HK
TFs in the top, core and bottom layers of the 41 cell-type TF regulatory
networks. For clarity, the cell types are divided into eight classes, listed
(together with the numbers of cell types) in the first column. The symbols
+ and represent the enrichment and depletion of TFs of a type in a
hierarchical layer in all the networks of a class.

Hub TFs Essential TFs Housekeeping TFs
Top Core Bottom Top Core Bottom Top Core Bottom

Blood (7) − + − − − +
Cancer (2) − + − +c −c − +
Endothelia (4) − + − − − +
Epithelia (6) − + − −b − +
ESC (1) + − + −
Fetal (3) − + − + − − +
Stroma (14) −a + − −a − +
Viscera (4) − + − − − +

a 13 out of 14 are poor in hubs or essential TFs;
b 3 out of 6 are poor in essential TFs;
c 1 out of 2 are enriched with or poor in essential TFs.

Interestingly, the hESC TF regulatory network has a topological struc-

ture that is different from the rest. It has significantly small top and bottom

layers and therefore a large core layer. Indeed, seven STATs and 15 key TFs

(appearing in Figures 3.9B and 3.9D) are all found in the core layer. More-

over, 87.6% of links are within the core layer, whereas there are only 40

links (0.3%) between the top and bottom layers. These two facts together

suggest that hESCs have a highly dense and well-connected TF regulatory

network. And our analyses indicate that master TFs and super-enhancers

associated TFs are in the kernel of the core layer. Its top layer is neither

enriched with nor depleted of hub, essential and HK TFs, in contrast to

the TF regulatory networks of the other cell types.

We have also studied the dynamic properties of the human cell-type TF

regulatory networks. The HK interactions are related to basic life support
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such as bio-molecular synthesis and transcription mechanisms. One of our

findings is that most HK interactions are within the core layer or between

the core and bottom layers. Using the identified HK interactions to inves-

tigate the protein complex database, we identified 23 protein complexes in

which the proteins are highly connected with HK links (Table A.6). One

of these complexes is given in Figure 3.7D. Most of the identified protein

complexes are as predicted and hence it would be interesting to investigate

their biological functions.

The ESCSN, the subnetwork induced by specific links in the hESC TF

regulatory network, has also been investigated. The 82 hub TFs in the

ESCSN (Table 3.1) seem to play important roles in hESCs due to the

following facts: (i) their genes are overexpressed, (ii) they are enriched in

the Activin A/Nodal signaling pathway, and (iii) specific interactions are

enriched in a core transcriptional regulatory network of the hESCs reported

in Chen et al. (2008). In general, specific regulatory interactions are difficult

to detect because the network of each cell type is based on independent

data, leading to a high false negative rate. Since the number of specific

interactions in hESCs is much higher than that in other cell types, our

results should not be greatly affected by the limitations of the data chosen.

Cell type specificity is believed to be the outcome of the interplay of the

DNA sequence binding specificity of TFs, co-factors and epigenetics (Boyer

et al., 2005; Chen et al., 2008). Through the integration of a database of

protein complexes (Vinayagam et al., 2013) and the ESCSN, we identified

55 hESC- specific regulatory complex-target modules (Section 3.2.5, Table

A.2). One of these modules is illustrated in Figure 3.9E: in a complex

(id #: HC4463), both KLF4 and ZFX have three common downstream
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targets: FOXD3, OCT4 and ZFP42. As expected, KLF4, ZFX and their

targets are important in the maintenance of pluripotency, self-renewal and

development processes in ESCs (Boyer et al., 2005; Chan et al., 2009; Chen

et al., 2008; Galan-Caridad et al., 2007; Jiang et al., 2008; Ramalho-Santos

et al., 2002; Rogers et al., 1991). Another is given in Figure 3.9F, in which

both ALX4 and MZF1 regulate FOXD3 and TFAP2C. Notably, FOXD3

has recently been demonstrated to be responsible in directing pluripotency

and paraxial mesoderm fates in hESCs (Arduini and Brivanlou, 2012). All

these facts together suggest that specific regulatory interactions may play

important roles in hESCs.
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Chapter 4

Profiling Human Embryonic Stem

Cell via Feed-Forward Loops in

Transcription Factor Regulatory

Network

4.1 Introduction

Embryonic stem cells (ESCs) are derived from the inner cell mass of an

early-stage embryo. ESCs are capable to maintain self-renewal and pluripo-

tency simultaneously. Self-renewal is the process that ESCs divide to pro-

duce more ESCs. Pluripotency is the ability that ESCs differentiate into

endoderm, mesoderm, or ectoderm germ layer, then into all human cell

types. Deciphering molecular mechanisms which control ESC self-renewal

and pluripotency is key to understanding development. It may also help to

discover new therapies for diseases resulted from defects in development.

Living human cells are the products of transcription programs involv-

ing approximately 21,000 protein-coding genes (Pennisi, 2012). TF proteins
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regulate target genes by binding to either promoter or enhancer regions

adjacent to the DNA sequences of the genes. There are less than 2,000

TFs in the human genome (Babu et al., 2004; Ravasi et al., 2010; Vaque-

rizas et al., 2009; Zhang et al., 2012a). Pluripotency of ESCs are largely

controlled by TFs OCT4, SOX2, and NANOG. OCT4 and NANOG are

essential for establishing or maintaining a robust pluripotent state. SOX2

functions as a heterodimer with OCT4 in ESCs. Expression of SOX2 is

generally required for reprogramming somatic cells into induced pluripotent

cells (Young, 2011). Super-enhancers are large collections of transcriptional

enhancers. Genes with super-enhancer domain play important roles in the

control of cell identity and diseases (Hnisz et al., 2013; Lovén et al., 2013;

Whyte et al., 2013). In mouse and human ESCs, OCT4, SOX2 and NANOG

are each encoded by a gene with super-enhancer. Their DNA binding mo-

tifs are found in super-enhancer domains (Whyte et al., 2013). Hnisz et al.

(2013) reported 60 TFs which are encoded by hESC-specific genes with

super-enhancers. In another study, Assou et al. (2007) in a meta-analysis

compiled a list of 1076 genes that are overexpressed in hESCs.

TFs work cooperatively to enhance or inhibit their target genes to

achieve high specificity, and thus to precisely control the condition-dependent

expression of the genes to respond to extracellular stimuli. Hence, the mu-

tual interactions among TFs determine cellular identity and shape complex

cellular functions (Csermely et al., 2014; Davidson, 2010). This makes the

study of human TFs on a system-wide scale of vital importance (Csermely

et al., 2013). In systems biology, regulatory interactions among TFs are

modeled as a TF regulatory network in which the nodes are the TFs and

the links represent the regulatory relationship among TFs.
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Over the past decade, a great deal of information on the organization

of regulatory interactions has been obtained particularly for E. coli and S.

cerevisiae (Balazsi et al., 2005; Banerjee and Zhang, 2003; Gerstein et al.,

2012; Ma et al., 2004; Yu et al., 2006). However, comprehensive genera-

tion of cell-type regulatory interactions for humans has been a challenge.

First, there are a large number of human TFs, but the data collected from

individual experiments often target one cell type and only a few TFs in

a particular condition (Davidson et al., 2002; Gerstein et al., 2010; Kim

et al., 2008). Second, correlation-based analyses of microarray gene expres-

sion data often do not capture the direction of transcriptional regulations,

a necessity for deep analyses of regulatory interactions (Basso et al., 2005;

Carro et al., 2009). Fortunately, the genome-wide DNaseI footprinting tech-

nique has recently been widely adopted to determine the regulatory inter-

actions of sequence-specific TFs in the 41 human cell types including hESC

(Neph et al., 2012a). This provides a valuable resource for deciphering local

regulatory mechanisms on ESC related TFs by comparing local structures

of regulatory networks in hESC with those in the other 40 differentiated

cell types.

Network motifs are connected sub-graph patterns which are over-represented

in the observed network as compared against a network model. One of the

most important and extensively studied network motifs is Feed-Forward

Loop (FFL) (Alon, 2007). An FFL, as illustrated in Figure 1.6B, consists

of 3 nodes A, B and C in which A regulates B, and both A and B regulate

C. FFL in regulatory networks can speed-up the response time of the target

gene expression or act as sign-sensitivity delays. FFL can generate pulse

of gene expression. FFL can also cooperatively enhance induction of gene
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C by inducers of TF A. Here inducers of A are small molecules, protein

partners, or covalent modifications that activate or inhibit the transcrip-

tion activities of A (Alon, 2007; Mangan and Alon, 2003; Shoval and Alon,

2010). Early studies revealed that FFL is over-represented in the regula-

tory networks of organisms ranging from bacteria and yeast to plants and

animals (Alon, 2007). Recently FFL as a motif is also found in regula-

tory networks of worm (Boyle et al., 2014), fly (Boyle et al., 2014), human

(Boyle et al., 2014; Gerstein et al., 2012; Neph et al., 2012a). Core TFs in

hESC regulatory network form an FFL where OCT4/SOX2 can be viewed

as node A, NANOG as node B, and ESC related genes as node C (Boyer

et al., 2005). The number of FFLs varies according to the developmental

stages in worm and in fly, with L1 stage in worm and late-embryo stage

in fly showing the highest number of FFLs, suggesting increased filtering

fluctuations and accelerating responses in these stages (Boyle et al., 2014).

Recognising that FFLs play important and dynamic functions in various

biological networks, some network centrality measures based on network

motifs have been proposed to quantify the importance of nodes in directed

networks (Harriger et al., 2012; Koschützki and Schreiber, 2008; Koschützki

et al., 2007; Sporns et al., 2007; Sporns and Kötter, 2004; Wang et al.,

2014). The underlying idea of these centrality measures is that the more

motifs a node is involved in the network, the more important the node could

be. These centrality measures are called motif centrality in general and can

identify different sets of important nodes in networks partially because they

can integrate structural information between local and global information.

However these centrality measures only take into account of the structural

information, e.g. FFLs, in a single network. They fail to capture dynamic
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organization principles of regulatory network across cell types.

Our objectives in this chapter are two folds: (1) to study whether the

distributional properties of FFL are distinctive in hESC network as com-

pared with those in the differentiated tissue/cell types; and (2) to identify

TFs that are extensively regulated by FFL in the hESC network only.

In this chapter, we compare local regulatory landscape on each TF in

terms of FFLs in regulatory network of hESC with those in the other 40

differentiated cell types reported by Neph et al. (2012a). Firstly we find

that distributional properties of FFL regulating each TF can recapture

embryonic origin and classify known cell-lineage relationship well. Secondly,

we identify 28 TFs extensively regulated by FFLs in hESC only. Among

them 13 TFs perform hESC related functions, and the remaining 15 TFs

are master TFs in various differentiated cell types. Thirdly, our proposed

scores perform better in identifying hESC related TFs than FFL-based

centrality measures in Koschützki et al. (2007).

4.2 Materials and Methods

4.2.1 FFL count matrices

We constructed an FFL count matrix MC = [mci,j]1≤i≤475,1≤j≤41: the ij-th

element mci,j is the number of times TF i is regulated by FFLs in network

j. In other words, the ij-th element represents the number of times TF

i taking position C in FFLs in network j. Seven TFs, GCM1, HNF4G,

POU1F1, PROP1, SPZ1, SPY and TFDP2, are not regulated at all by any

FFL in the 41 networks. As a result, the rows in MC for these TFs have

constant value 0, and then we removed constant rows of 0’s in matrix MC
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before further analysis. Without loss of generality, we label the network of

hESC as network 1 and the other 40 networks as network j (2 ≤ j ≤ 41).

Table 4.1 illustrates a portion of FFL count matrix MC.

Table 4.1. A portion of FFL count matrix MC. Values are numbers of
FFLs regulating each of 475 TFs in the 41 networks. Abbreviation: H7,
h7-ESC; BL1, B-Lymphocyte; HEM, hematopoietic stem cell; BL2,
B-Lymphoblastoid; ERY, erythroid; PRO, promyelocytic leukemia; TLY,
T-Lymphocyte; HEP, hepatoblastoma; NEU, neuroblastoma.

hESC Blood Cancer · · ·

H7 BL1 HEM BL2 BL2 ERY PRO TLY HEP NEU · · ·

OTX2 431 0 0 0 0 0 0 0 0 0 · · ·

POU5F1 495 0 0 0 0 0 0 0 0 0 · · ·

ZFP42 309 0 0 0 0 6 0 0 0 0 · · ·

ZIC3 263 0 0 0 0 0 0 0 0 3 · · ·

FOXD3 920 27 154 1 224 157 0 277 0 6 · · ·

SIX3 592 146 2 0 123 0 452 4 0 191 · · ·

SOX2 457 67 58 170 1 0 1 57 79 67 · · ·

NANOG 24 0 0 0 0 0 53 0 2 0 · · ·

KLF4 82 234 282 75 145 16 152 187 127 0 · · ·

STAT3 243 249 232 262 411 194 206 292 213 226 · · ·

PAX4 69 0 0 0 0 0 0 0 0 0 · · ·
.
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Furthermore, we introduced normalized versions of MC, denoted by

MCc and MCr. Since total occurrences of FFLs in the 41 networks has an

extremely wide range: from 27264 in epithelia cell HRCEpiC to 122646 in

blood cell NB4. MCc is derived from normalizing MC in a way that each

column is divided by the total of this column. Each column in MCc sums

to 1 and is a distribution of the relative frequencies of FFLs regulating

475 TFs in the corresponding network. MCc will be used as the input for

hierarchical clustering on cell types.

Then MCr is derived from standardizing MCc in a way that each row

is subtracted from its empirical mean and divided by its empirical standard

deviation. Thus each row of MCr is z-score of corresponding row in MCc
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and has mean of 0 and standard deviation of 1. A higher z-score of a TF in

network j1 than in network j2 means a higher number of FFLs regulating

this TF in network j1 than in network j2. MCr will be used as the input

for principal component analysis on cell types.

Similarly we can construct FFL count matrices MA, MB, and MSum,

where the ij-th element is the number of times TF i taking position A,

taking position B, and involved in FFLs in network j, respectively. Here

MSum = MA + MB + MC. We define their normalized versions in a

similar fashion.

4.2.2 TFs extensively regulated by FFLs in hESC only

We introduced a score, denoted by RC, to quantify to what extent a TF is

regulated by FFLs in hESC only. For a TF i, the score

RCi = mci,1/ max
2≤j≤41

{mci,j},

that is, RCi is the ratio of the number of FFLs regulating TF i in hESC

network to the maximum number of FFLs regulating TF i in the other 40

tissue/cell-type networks. TFs with scores exceeding a threshold, which is

to be chosen suitably, are defined as TFs extensively regulated by FFLs in

hESC only. Following a 2-fold gene expression analysis practice, we chose

threshold of 2. To determine the significance of TFs extensively regulated

by FFLs in hESC only at threshold 2, we found that the distribution of

number of FFLs regulating each TF in the 41 networks can be approxi-

mated by a lognormal distribution (Figure 4.1). Let Xj be the number of

FFLs regulating a TF in network j for 1 ≤ j ≤ 41. Let Φ and φ be the

distribution and density functions of a standard normal distribution. We
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assumed that Xj independently follows a lognormal distribution. Let t > 0

and represent Xj = eµj+σjZj where Zj’s are independent standard normal

random variables. Write s = log t. We have

P (X1/ max
2≤j≤41

{Xj} > t)

= P (X1 > t max
2≤j≤41

{Xj})

= P (X1 > tX2, . . . , X1 > tX41)

= P (µ1 + σ1Z1 > s+ µ2 + σ2Z2, . . . , µ1 + σ1Z1 > s+ µ41 + σ41Z41)

=
1√
2π

∫ ∞
−∞

e−z
2/2

41∏
j=2

Φ
(µ1 − µj + σ1z − log t

σj

)
dz

Parameters µ̂j, σ̂j were estimated from MC by equation (4.1)

µ̂j = ln

(
m2
j√

vj +m2
j

)
and σ̂2

j = ln
(

1 +
vj
m2
j

)
, (4.1)

wheremj and vj are the mean and variance of the j-th column inMC. Plug-

ging in t = 2 and the estimated µj and σj, we have P (X1/max2≤j≤41{Xj} >

2) = 4.6e-18. An extremely small probability indicates that TFs extensively

regulated by FFLs in hESC only at threshold 2 are most likely not caused

by chance. This phenomenon may be attributed to organization principles

and dynamic properties of regulatory networks that maintain self-renewal

and pluripotency of hESC. Considering that the 41 cells belong to 8 cell

types, the independence assumption between Xi, 1 ≤ i ≤ 41, may not be

satisfied.

Similarly we introduced RA, RB and RSum based on matrices MA,

MB, andMSum respectively. Then we can quantify TFs extensively taking

position A in FFLs in hESC only, TFs extensively taking position B in
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FFLs in hESC only, and TFs extensively involved in FFLs in hESC only.
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Figure 4.1. Histogram and fitted log-normal density curve of number of
FFLs regulating each TF in the regulatory network of hESC.

4.2.3 hESC specific TF lists

In a meta-analysis, Assou et al. (2007) compiled a list of 1076 genes that

are overexpressed in hESCs by at least three studies. Among them 29 are

found in 475 TFs of the 41 networks. We labeled the list of these 29 TFs

as “Assou TFs”

Super-enhancers are large collections of transcriptional enhancers. Genes

with super-enhancer domain play important roles in the control of cell iden-

tity and diseases (Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013).

In mouse and human ESCs, master TFs OCT4, SOX2, NANOG are each

encoded by a gene with super-enhancer and also have DNA binding mo-

tifs that are often found in super-enhancer domains (Whyte et al., 2013).

We used “Master TFs” to label 24 TFs out of 475 TFs which are encoded

by hESC-specific genes with super-enhancer based on super-enhancers re-

ported in Hnisz et al. (2013).
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“Duplicated TFs” denotes a list of 8 TFs which belong to both the

“Assou TFs” and “Master TFs”. “Combined TFs” denotes a list of 45 TFs

which is the union of the two lists “Assou TFs” and “Master TFs”.

4.3 Results

4.3.1 FFLs in regulatory networks globally distinguish hESC

from the other 40 differentiated cell types

Considering that FFLs play multiple important functions in regulatory

networks and hESC represents a common developmental ancestor to the

other differentiated tissue/cell-types, it is interesting to investigate whether

hESC can be distinguished from the other 40 differentiated tissue/cell-types

by FFLs in regulatory networks, and whether FFLs can recover known

cell-lineage relationships between the 41 tissue/cell-types. To answer these

questions, we first constructed an FFL count matrix MC whose ij-th ele-

ment is number of FFLs regulating TF i in network j. Then we calculated

distances between cell types by the Manhattan distance of MCc which is

the normalized MC (Section 4.2.1). Next hierarchical clustering was car-

ried out with complete linkage method. Hierarchical clustering has RI=0.69

and produced a dendrogram that reproduced known cell-lineage relation-

ship with remarkable detail, as well as broader features of embryonic origin.

On a gross level, hESC was the root of the dendrogram, and functional or

anatomical related cells were in one major cluster group, e.g. blood cells,

cancer cells, endothelia cells, fetal tissues and stromal cells (Figure 4.2A).

hESC was also the root in dendrograms produced by hierarchical clustering

with a number of linkage methods (Figure 4.3).
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To confirm these observations, we applied principal component analysis

on MCr (Section 4.2.1). The first two principal components (PC1 and PC2)

together explain 21.4% of total variance of MCr. The scatterplot of PC1

and PC2 clearly shows the distinctiveness of these major cluster groups

(Figure 4.2C). The scatterplot also reveals that hESC is far away from the

other 40 tissue/cell-types.

These results together suggest that regulatory networks of functional or

anatomical related cells share similar local organization principles. So local

structures could shed light on cell type related TFs.

4.3.2 Netdis and FFL based measure produce comparable cell

type classification

Ali et al. (2014) proposed an alignment-free distance measure netdis ∈ [0, 1]

to compare two simple undirected networks. Given two query networks

and a gold-standard network, the authors first counted occurrences of all

k-node induced subgraphs, k = 3 or 4, in the two-step ego graph of each

node. Two-step ego graph of a node is the subgraph induced by this node

and its neighbours within two edges. Netdis of the two query networks is

constructed after k-node induced subgraphs counts are normalized by those

in the gold-standard network. It is demonstrated to be able to reconstruct

phylogenetic tree of species and separate different random network models.

To apply netdis to the 41 TF regulatory networks, we first converted

them to simple undirected networks by removing self-loops and duplicated

edges. Then we iteratively chose a network as a gold-standard network

and classified the other 40 networks by hierarchical clustering with ward

method (Ward, 1963) on a distance matrix built from netdis between re-
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Figure 4.2. (A) Hierarchical clustering of the 41 cell types based on
MCc. It has RI=0.69. (B) z-score of number of FFLs regulating master
TFs in the 41 networks. For a given TF and cell type, high z-score (dark
color) indicates this TF is regulated by large number of FFLs in that cell
type. For example, pluripotent marker OCT4 is regulated by most FFLs
in hESC than in the other 40 cell types. (C) Scatterplot of first 2
principal components (PC1 and PC2) from MCr. (D) Proportion of
variance explained by the first 6 PCs. PC1 and PC2 explained 21.4% of
total variance. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP,
epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells.
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Figure 4.3. Dendrograms produced by hierarchical clustering with
linkage Method=“average” (A) and Method=“mcquitty” (B) in hclust
function in R. The classifications have RI=0.49 (A) and RI=0.85 (B).

spective networks. The clusterings produced by netdis are comparable with

the results based on FFL count. Because there is no significant difference

between RIs based on netdis and RI based on FFL count. Table 4.2 re-

ported the five-number summary of RI based on netdis. The median RI

is 0.603 and 0.565 for k=3 and 4, respectively. The maximum RI=0.74 is

obtained when k = 4 and the network of fetal brain is the gold-standard

network (Figure 4.4).

4.3.3 TFs extensively regulated by FFLs in hESC only carry out

important hESC specific functions

We next investigated differences on local regulatory landscapes between

hESC and the other 40 tissue/cell-types. Among TFs in “Combined TFs”

list (Section 4.2.3 ), OTX2, OCT4, ZFP42, ZIC3, TFAP2C, FOXD3, SIX3,

RORB, and PARP1 are extensively regulated by FFLs in hESC when com-
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Table 4.2. Five-number summary of RIs from hierarchical clusterings
based on distance matrices produced by netdis. We iteratively chose one
out of the 41 networks as a gold-standard network and constructed
pair-wise netdis with k=3 or 4 for remaining 40 networks. Then we
performed hierarchical clustering with Ward method and computed RI for
resulting clustering.

Minimum Lower quartile Median Upper quartile Maximum
k = 3 0.415 0.517 0.603 0.659 0.732
k = 4 0.413 0.5 0.565 0.621 0.74
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Figure 4.4. Dendrogram produced by hierarchical clustering based on a
distance matrix produced by netdis (Ali et al., 2014). The network of
fetal brain is used as the gold-standard network for netdis. The clustering
has RI=0.74. The classification is comparable with the result (Section
4.3.1) produced by the distributional properties of FFL (RI=0.69).
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Figure 4.5. (A) Subgraph induced by OCT4 and its upstream
neighbours (76) in the regulatory network of hESC. There are 495 FFLs
regulating OCT4 in this subnetwork. (B) Subgraph induced by OCT4 and
its upstream neighbours (18) in the network of fetal heart (fHeart). There
are 32 FFLs regulating OCT4 in this subnetwork. Interactions involving
in FFLs are colored in green.

pared against other cell types (Figure 4.2B). For example, OCT4 was regu-

lated by 495 FFLs in hESC, while it were regulated by only 32 FFLs in fetal

heart, and it was not even regulated by FFLs in the other 39 tissue/cell-

types. Induced subgraphs by OCT4 and its upstream neighbours in hESC

(Figure 4.5A) and in fetal heart (Figure 4.5B) clearly show that OCT4 was

extensively regulated by FFLs in hESC only, indicating that the local reg-

ulatory landscape of OCT4 in hESC is very different from that of the other

40 cell types. Given the fact that OCT4 is a master TF for pluripotency in

hESC (Young, 2011), we further asked whether other TFs extensively regu-

lated by FFLs in regulatory network of hESC only also perform important

functions in hESC.
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To answer this question we used the score, RC, defined earlier for each

TF. We defined TFs with score not less than 2 as TFs extensively regulated

by FFLs in hESC only (Section 4.2.2). Totally 28 TFs are identified. We

denoted the list of these 28 TFs by TFC.

We first did enrichment analysis of TFC in TFs in hESC specific TFs

lists (Section 4.2.3). Overall TFC is significantly enriched in hESC specific

TFs. Detailed results are listed below.

1. TFC is significantly (p-value=0.039) enriched in hESC specific TFs

list “Combined TFs”. There are 6 TFs common to TFC and “Com-

bined TFs”. They are FOXD3, POU5F1, TFAP2C, ZFP42, ZIC3 and

OTX2.

2. TFC is significantly (p-value=0.005) enriched in hESC specific TFs

list “Assou TFs”. There are 6 TFs common to TFC and “Assou

TFs”. They are FOXD3, POU5F1, TFAP2C, ZFP42, ZIC3 and OTX2.

3. TFC is not significantly (p-value=0.161) enriched in hESC specific

TFs list “Master TFs”. There are only 3 TFs common to TFC and

“Master TFs”. They are FOXD3, OCT4 and ZIC3.

4. TFC is significantly (p-value=0.008) enriched in hESC specific TFs

list “Duplicated TFs”. There are 3 TFs common to TFC and “Du-

plicated TFs”. They are FOXD3, OCT4 and ZIC3.

The hESC specific TF lists do not necessarily include all TFs that play

some functions related to hESC. Thus we searched functions of TFs in

TFC by Google Scholar. Totally 13 TFs in TFC have been reported in

literature to perform hESC related functions. These TFs are ALX1, CDX2,

DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4,
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PAX4, ZFP42, and ZIC3. Tables 4.3 and 4.4 list important functions played

by these 28 TFs. Table 4.4 lists TFs that are uniquely regulated by FFLs

in hESC, no FFL regulates these TFs in the other tissue/cell-types.

Table 4.3. TFs extensively regulated by Feed-Forward Loops (FFLs) in
hESC regulatory network only.

TF Score Function Reference

PAX7 64.8 Plays a central role in muscle development Seale et al. (2000)
Involved in brain development and neuronal differentiation.
OTP has been identified as specifically required forOTP 33
development of the A11 DA group in mice

Ryu et al. (2007)

Encoded gene expressed selectively
ALX1 10

in chondrocyte lineage during embryonic development
Beverdam and Meijlink (2001)

ZFP42 8.4 Specific to very early stages of development in hESCs Rogers et al. (1991)
PAX2 7.4 Relates to midbrain and eye development Bäumer et al. (2003)

In zebrafish, Foxi1 is required for cells to respond to FGF
FOXI1 5.8

signalling in patterning the developing ear and jaws
Solomon et al. (2003)

Associated with development and maintenance of ocular
VSX1 3.6

tissues, which expressed in embryonic craniofacial
Semina et al. (2000)

Involved in specification and morphogenesis of the eye in
SIX6 2.9

the first few weeks of human development
Jean et al. (1999)

One of trophectoderm markers and markedly up-regulated
CDX2 2.4

upon POU5F1 reduction
Loh et al. (2006)

In mouse ESCs, HOXB13 is involved in
HOXB13 2.4

tail and neuronal development
John et al. (2004)

Activate genes involved in a large spectrum of important
biological functions including proper eye, face, body wall,
limb and neural tube development. They also suppress a number

TFAP2C 2.3

of genes including MCAM/MUC18, C/EBP alpha and MYC

Safran et al. (2010)

Required for normal brain development. May be important
for maintenance of specific neuronal subtypes in the cerebral

D
e
v
e
lo

p
m

e
n
t

ARX 2
cortex and axonal guidance in the floor plate

Safran et al. (2010)

POU4F3 10 Essential for hair cell differentiation and maintenance Kim et al. (2002)
Markedly induced during differentiation in ESCs.

NKX2-2 4.3
It is a marker of the endocrine lineage

Xiang et al. (1997)

A member of the Oct transcription factor family. It is
POU2F3 3.3

involved in keratinocyte and epidermal differentiation
Jensen (2004)

Controls endocrine cell differentiation, it promotes the
development of insulin-producing cells such asPAX4 3.2
pancreatic cell during differentiation of mouse ESCs

Andersen et al. (1997)

Associated with control dopaminergic differentiation,
LMX1B is a key TF in directed differentiation ofLMX1B 3
dopaminergic neuronal subtypes from human ESCs

Blyszczuk et al. (2003)

Plays a role in the differentiation of subsets of neural cells

D
iff

e
r
e
n
t
ia

t
io

n

ATOH1 2.3
by activating E box-dependent transcription (By similarity) Safran et al. (2010)

POU5F1 15 Crucial for ESC self-renewal and pluripotency Young (2011)
ZIC3 8.3 Required for maintenance of pluripotency in ESCs Lim et al. (2007)

Important in maintaining pluripotency of mouse ESCs,
FOXD3 3.3

and is specific to the very early stages of development in hESCs
Hanna et al. (2002)
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Table 4.4. TFs regulated by FFLs in regulatory network of hESC only.

TF NO. FFLs Function Reference

OTX2 431 Associated with early pan-neural epithelium in day 7 embryoid bodies Goulburn et al. (2011)
CRX 335 Belonging to homebox family and is one photoreceptor marker Safran et al. (2010)
DMRT3 221 Plays key roles in neurogenesis Bellefroid et al. (2013)
LMX1A 190 Plays a pivotal role in the mDA differentiation of human ESCs Cai et al. (2009)

One sex determination gene, DMRT1 is present during
DMRT1 43

embryogenesis in Sertoli and germ cells
Raymond et al. (2000)

TBX22 37 Part of one pathway to regulate mammalian palate development Liu et al. (2008)
A trophoblast-specific transcription factor, regulating placental

ESX1 6
development and fetal growth

Li and Behringer (1998)
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4.3.4 Significance of TFs extensively regulated by FFLs in hESC

only

We tested the significance of TFs extensively regulated by FFLs in hESC

only by procedures listed below. Let N = 10, 000 and 1 ≤ i ≤ 28 stands for

the 28 TFs extensively regulated by FFLs in hESC only. Firstly we gener-

ated one random network for the network of hESC by randomly rewiring

its interactions while preserving the degree sequence. We counted number

of FFLs regulating TF i in this random network and denoted it by xi. Sec-

ondly we generated one random graph for each of the other 40 networks in

the same way and counted numbers of FFLs regulating TF i in the resulted

40 random networks. We denoted the maximum number by yi. We repeated

the above two steps N times and constructed two vectors X i = (xik) and

Y i = (yi`), 1 ≤ k, ` ≤ N for TF i. We calculated p-value, denoted by pi, for

TF i extensively regulated by FFLs in hESC only by equation (4.2).

pi =
1

N2

N∑
k=1

N∑
`=1

1(xik > 2yi`). (4.2)

P -values for TFs extensively regulated by FFLs are not greater than 0.0001,

suggesting these TFs extensively regulated by FFLs are unlikely due to

chance.

4.3.5 Comparison with motif centrality measures

Koschützki et al. (2007) proposed 4 centrality measures (4.3)-(4.6) based on

FFL to quantify importance of each node in a directed network. A higher
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value implicates greater importance of a node in the network.

fflSum = Number of times a node involved in an FFL, (4.3)

fflA = Number of times a node taking position A of an FFL, (4.4)

fflB = Number of times a node taking position B of an FFL, (4.5)

fflC = Number of times a node taking position C of an FFL. (4.6)

To identify hESC related TFs in regulatory network of hESC, Koschützki

et al. (2007) proposed centrality measures is limited to TFs participating

FFLs in regulatory network of hESC only. However, our proposed ratio-

based scores RSum, RA, RB, and RC take into account TFs participating

in FFLs in the network of hESC as well as in the networks of the other 40

differentiated cell types. We compared RSum against fflSum, RA against

fflA, RB against fflB, and RC against fflC in identifying hESC re-

lated TFs. Reference lists used for hESC related TF lists are “Assou TFs”,

“Master TFs”, “Duplicated TFs ”, and “Combined TFs” (Section 4.2.3).

Receiver operating characteristic (ROC) curves (Figures 4.6A to D) and

area under the curve (AUC) (Figure 4.6E) consistently demonstrate supe-

riority of our proposed ratio based scores to the 4 centrality measures.

4.4 Conclusions

In this chapter, we contrasted the local regulatory landscape of each TF

in terms of FFLs in regulatory network of hESC with the other 40 differ-

entiated cell types reported by Neph et al. (2012a). We first found that

the distributional properties of FFL regulating each TF can recapture em-

bryonic origin and classify known cell-lineage relationship. These results
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Assou Master Combined Duplicated
(29) (24) (45) (8)

RSum 0.685 0.594 0.624 0.773
�Sum 0.624 0.554 0.583 0.655

RA 0.475 0.528 0.509 0.452
�A 0.498 0.504 0.483 0.593

RB 0.657 0.599 0.611 0.754
�B 0.555 0.526 0.517 0.675

RC 0.683 0.591 0.630 0.722
�C 0.664 0.561 0.603 0.710

Figure 4.6. Receiver operating characteristic (ROC) curves and area
under the curve (AUC). We compared RSum against fflSum, RA
against fflA, RB against fflB, RC against fflC in identifying hESC
related TFs in reference lists of “Assou TFs” (A), “Master TFs” (B),
“Combined TFs” (C), and “Duplicated TFs”(D). (E) Area under the
curve (AUC). ROC and AUC demonstrate superiority of RSum to
fflSum, RA to fflA, RB to fflB, RC to fflC.
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Figure 4.7. Venn diagram between TFs extensively involving in FFLs,
taking positions A, B, or C in FFL in hESC only. The lists of TFs are
labeled as TFSum, TFA, TFB, and TFC respectively. Interesting the 4
lists of TFs have many common TFs. Especially TFC and TFSum have
20 common TFs, TFC and TFB have 13 common TFs. But TFC and
TFA only has 1 common TF (ESX1). Total number of TFs in each list is
given in parentheses.

together suggest that regulatory networks of functionally or anatomically

related cells share similar local organization principles. Local structures

could shed light on identifying cell type related TFs.

Next we identified 28 TFs extensively regulated by FFLs in hESC

only. These 28 TFs are significantly extensively regulated by FFLs in

hESC only as evidenced by simulation results. Among them ALX1, CDX2,

DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4,

PAX4, ZFP42, and ZIC3 perform hESC related functions. Even though

remaining 15 TFs are not evidenced to carry out direct functions in hESC,

they are demonstrated to play multiple important roles in differentiated

cell types (Tables 4.3 and 4.4). This may indicate FFLs play roles in re-

pressing the expression of key TFs encoded genes of differentiated cell types

in hESC to maintain self-renewal and pluripotency of hESC.

TFs extensively regulated by FFLs in hESC only can be generalized to

TFs extensively taking positions A, B, or involved in FFLs in hESC only.
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Interestingly, a remarkable number of TFs can be found in at least 2 lists,

and only a small number of TFs can only be found in one list (Figure 4.7).

The list of TF’s extensively taking position B in FFLs in hESC only at

threshold 2 has 19 TFs. Among them 13 are also extensively regulated by

FFLs in hESC only, including OCT4, OTX2, ZFP42, which are well-known

ESC markers The other 6 TFs are ALX3, EVX1, LHX4, MNX1, SOX17,

and T. ALX3 involves in cell-type differentiation and development. EVX1

may play an important role as a transcriptional repressor during embryoge-

nesis. LHX4 is involved in the control of differentiation and development of

the pituitary gland. SOX17 involves in the regulation of embryonic devel-

opment and in the determination of the cell fate. T is an embryonic nuclear

TF. It effects transcription of genes required for mesoderm formation and

differentiation. One master TF of hESC is SOX2 and it is extensively taking

position B in FFLs in hESC only at threshold 1.

TFs extensively taking position A in FFLs in hESC only at threshold 1

has 11 TFs including GATA1, GATA2, HOXC5, and TBX5. Interestingly

only one TF (ESX1) is also extensively regulated by FFLs in hESC only.

GATA1 and GATA2 play an essential role in regulating transcription of

genes involved in the development and proliferation of hematopoietic and

endocrine cell lineages. HOXC5 plays an important role in morphogenesis

in all multicellular organisms. TBX5 may play a role in heart development

and specification of limb identity.

TFs extensively involved in FFLs in hESC only at threshold 2 has

23 TFs with 20 of these 23 TFs are also found in TFs extensively regu-

lated by FFLs in hESC only. The other 3 TFs are ALX3, BARHL2, and

EVX1. As discussed above, ALX3 and EVX1 play some functions related
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to ESCs. Functions of these TFs presented in this section were extracted

from GeneCards encyclopedia (www.genecards.org, Safran et al. (2010)).

Thirdly, we compared RSum versus fflSum, RA versus fflA, RB

versus fflB, and RC versus fflC in identifying hESC related TFs. ROC

and AUC consistently demonstrate superiority of our proposed ratio based

scores, RSum, RA, RB, and RC, to the FFL-based centrality measures

fflSum, fflA, fflB, and fflC (Koschützki et al., 2007).

Advantage of Netdis is that it counts all k-node induced subgraphs in

the two-step ego graph of a node i. Disadvantage of applying netdis in

measuring pairwise distance among the 41 directed networks is that it is

originally designed for undirected networks. Applying netdis requires us

to remove the direction of regulation, key information contained in a TF

regulatory network. In contrast, advantage of our FFL based method is that

it naturally takes into account the regulation direction attribute. But the

disadvantage of our FFL based method is that it only counts FFLs involving

in the node i in the two-step ego graph. The advantage and disadvantage

in both Netdis and our FFL based methods may be the reason why the

two methods produce comparable classification results.

The 41 regulatory networks were constructed using DNaseI footprinting

technology, which possibly contain some spurious links and missing links.

TFs extensively regulated by FFLs in hESC only are defined by choosing

threshold of 2. These TFs are most likely to be regulated by a higher

number of FFLs in the network of hESC than in the networks of the other

cell types. Also hierarchical clustering results is confirmed by a few linkage

methods and by principal component analysis. Our results should not be

greatly affected by the limitations of the data chosen.
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4.4. Conclusions

The 41 regulatory networks are from 8 cell/tissue types. Studying asso-

ciations between FFLs and master TFs in the other 7 cell/tissue types is

an interesting future work.
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Chapter 5

Conclusion and Future Work

Many biological networks have become available in the recent decade. De-

signing methods to compare and analyze them will enhance understanding

of the biological systems at system level. Studies (Alon, 2007; Barabasi and

Oltvai, 2004; Jothi et al., 2009; Neph et al., 2012a) show that the topolog-

ical properties of a complex biological network often unravel its global and

local organization structure, and functionally similar nodes. The three re-

sults (Chapters 2-4) represent our attempts to explore the relationship of

topological structures and biological functions. Our works in Chapter 2 on

f-Wiener type indices stem from our purpose to provide summarize statis-

tics for a given network. We also underscore the need to normalize these

indices for the objectives to compare networks which often have differ-

ent number of nodes. In chapter 3, we compare in greater detail about the

global and local organization principles of the 41 human cell type networks.

We discover similar as well as distinct structures across them. In Chapter

4, based on an important network motif, FFL, we compare and contrast

the distributional properties of FFL in these networks. We describe below

some of our findings.
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5.1 Conclusion

5.1.1 f-Wiener index

Wiener index and other Wiener type indices have been commonly applied

in Chemometrics to associate structures and physicochemical properties of

molecules. Recently, these indices are incorporated in quantifying complex

networks as in QuACN and NetCAD. In chapter 2, we first generalized

Wiener index to a general functional form, called f -Wiener index. This f -

Wiener index contains all well-known Wiener type indices as special cases.

We provided a unifying method to identify the maximum and minimum

over the set of simple connected graphs with n nodes, or the set of simple

connected trees with n nodes (Theorems 1 and 2). Explicit sharp upper and

lower bounds for Wiener index, Harary index, hyper Wiener index and the

generalized index were deduced over networks (Corollary 5) and over trees

(Corollary 6). Moreover, the maximizer and minimizer were characterized in

Theorems 1 and 2. We believed these results are general and of independent

interests.

Armed with these maximum and minimum values, we proposed a nor-

malized version of f -Wiener index over networks, and a similar version

over trees. These normalized versions provide better interpretation of in-

dices over networks of varying number of nodes than the non-normalized

one. The normalized versions capture similar topological structures among

networks with different number of nodes better, evidenced by significant

improvement in network classification in five simulations.

Our method of optimizing Wf (G) can be easily extended to index of

the form Φ(Wf (G)) where Φ and f are monotone functions. For example,
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taking Φ(x) = 1/x and f(k) = 2
n(n−1)k leads to Φ(Wf (G)) = n(n−1)

2
∑

i<j 1/d(i,j)

which measures small-world behavior of network G (Newman, 2002).

5.1.2 Profiling TF regulatory networks of human cell types

In chapter 3, we have studied the organizational architectures of the 41

human cell-type TF regulatory networks that were reported by Neph et al.

(2012a). First, we have showed that the wiring around five to seven TFs

in the networks can be used to classify all the 41 cell types well. Both

Neph et al. (2012a) and our studies indicate that the human TF regulatory

networks are different globally as well as locally.

We have examined the three-layer hierarchical organizations of the hu-

man cell-type TF regulatory networks. The networks are each partitioned

into the top, core and bottom layers, containing 23%, 67% and 10% of TFs

on average, respectively. The same hierarchical analysis (Jothi et al., 2009)

indicates that in the yeast TF regulatory networks both the core and bot-

tom layers have similar sizes (43% vs 40%) whereas the top layer contains

only 13% of the TFs. Taken together, these two facts imply a difference in

the topological organizations between the human and yeast TF regulatory

networks.

Enrichment analyses indicate that for each TF regulatory network of

the 40 non-ESC cell types, (a) the top layer is lacking in both hub and

HK TFs, (b) the core layer is enriched with both hubs and HK TFs and

(c) the bottom layer is only enriched with hub TFs. However, essential

TFs seem to be distributed evenly in the top and core layers, but, sparsely

in the bottom layers. Interestingly, the hESC TF regulatory network has

a topological structure that is different from the rest. It has significantly

108



5.1. Conclusion

small top and bottom layers and therefore a large core layer. Its top layer

is neither enriched with nor depleted in hub, essential and HK TFs.

We have also studied the dynamic properties of the human cell-type TF

regulatory networks. The HK interactions are related to basic life support

such as bio-molecular synthesis and transcription mechanisms. One of our

findings is that most HK interactions are within the core layer or between

the core and bottom layers.

The ESCSN, the subnetwork induced by specific links in the hESC

TF regulatory network, has also been investigated. The 82 hub TFs in

the ESCSN seem to play important roles in hESCs due to the following

facts: (i) their genes are overexpressed, (ii) they are enriched in the Activin

A/Nodal signaling pathway, and (iii) specific interactions are enriched in a

core transcriptional regulatory network of the hESCs. In one hESC- spe-

cific regulatory complex-target module, both KLF4 and ZFX have three

common downstream targets: FOXD3, OCT4 and ZFP42 in ESCSN. No-

tably KLF4, ZFX and their targets are important in the maintenance of

pluripotency, self-renewal and development processes in ESCs. All these

facts together suggest that specific regulatory interactions may play im-

portant roles in hESCs.

In general, specific regulatory interactions are difficult to detect because

the network of each cell type is based on independent data, leading to a

high false negative rate. Since the number of specific interactions in hESCs

is much higher than that in other cell types, our results should not be

greatly affected by the limitations of the data chosen.
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5.1.3 Profiling Human Embryonic Stem Cell via Feed-Forward

Loops in Transcription Factor Regulatory Network

In chapter 4, we compared local regulatory landscape on each TF in terms

of FFLs in the regulatory network of hESC and in the other 40 differen-

tiated cell types reported by Neph et al. (2012a). Firstly we found that

distributional properties of FFL regulating each TF can reproduce em-

bryonic origin and known cell-lineage relationship. These results together

suggest that regulatory networks of functional or anatomical related cells

share similar local organization principles. Local structures could shed light

on identifying cell type related TFs. Moreover the hierarchical clustering of

cell types by distributional properties of FFL regulating each TF is compa-

rable with clustering based on network distances produced by netdis (Ali

et al., 2014).

Secondly we identified 28 TFs extensively regulated by FFLs in hESC

only. These 28 TFs are significantly extensively regulated by FFLs in

hESC only as evidenced by simulation results. Among them ALX1, CDX2,

DMRT1, FOXD3, HOXB13, LMX1A, LMX1B, NKX2-2, OTX2, OCT4,

PAX4, ZFP42, and ZIC3 perform hESC related functions. The other 15

TFs are not evidenced to carry out direct functions in hESC. But they are

demonstrated to play multiple important roles in differentiated cell types.

This may indicate that interacting FFLs play roles in repressing expression

of key TFs encoded genes of differentiated cell types in hESC to maintain

self-renewal and pluripotency of hESC.

TFs extensively regulated by FFLs in hESC only can be generalized to

TFs extensively taking position A, B, or involving in FFLs in hESC only.

Interestingly, there are large number of TFs that are common to the 4 lists
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of TFs. Only a small number of TFs are unique to each list.

Thirdly, we compared RSum against fflSum, RA against fflA, RB

against fflB, and RC against fflC in identifying hESC related TFs. ROC

and AUC consistently demonstrate superiority of our proposed ratio based

scores, RSum, RA, RB, and RC, to the FFL-based centrality measures

fflSum, fflA, fflB, and fflC (Koschützki et al., 2007).

The 41 regulatory networks data set is produced based on DNaseI foot-

printing technology, which is believed to contain some spurious links and

missing links. TFs extensively regulated by FFLs in hESC only are defined

by choosing threshold at 2. These TFs are most likely to be regulated by

a higher number of FFLs in hESC that in other cell types. Also hierarchi-

cal clustering results is confirmed by a few linkage methods and principal

component analysis. Our results should not be greatly affected by the lim-

itations of the data chosen.

5.2 Future work

5.2.1 f-Wiener index

Observe thatWf (G) =
∑N(G)−1

r=1 f(r)nr(G) =
∑N(G)−1

r=0 [f(r+1)−f(r)]Nr(G)

where we assume f(0) = 0, nr(G) denotes the number of pairs of nodes in

G with distance equals r, and Nr(G) the number of pairs of nodes in G with

distance greater than r. Since in most biological networks the number of

nodes is large, one may normalize a scaled-version of Wf (G) in terms of the

asymptotic distribution of the Nr’s under the assumption that the observed

network G is generated by a given random network model M. This will

enable us to determine the likelihood that the observed network is gener-
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ated byM. Currently a fair amount of information about shortest paths in

some network models is available in Barbour and Reinert (2011)and Fron-

czak et al. (2004). How to make use of these results seems like a worthwhile

future project.

For other descriptors, it is of interest to study whether normalization is

needed; if so, how best to normalize them; and to what extent normalization

improves network comparison.

5.2.2 Profiling TF regulatory networks of human cell types

The 41 regulatory networks are produced based on DNaseI footprinting,

which is believed prone to high false positive rate. More generally, network

data produced by high-throughput technologies are prone to low coverage

rate and inaccuracy. Thus how to cleanup these noisy network data is an

interesting future work.

By integrating identified HK interactions and the protein complex database,

we identified 23 protein complexes in which the proteins are highly con-

nected with HK interactions. Most of the identified protein complexes are

as predicted and hence it would be interesting to investigate their biological

functions.

5.2.3 Profiling Human Embryonic Stem Cell via Feed-Forward

Loops in Transcription Factor Regulatory Network

In this chapter we investigated network motif, FFLs, in identifying master

TFs in the TF regulatory networks of hESC. There are other important

networks motif, for example 4-node bi-fan. How to identify master TFs in

regulatory networks based on other motifs is an interesting future work. The
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41 regulatory networks are from 8 cell/tissue types. Studying associations

between FFLs and master TFs in the other 7 cell/tissue types is another

interesting future work.
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(2013). On the origins of hierarchy in complex networks. Proceedings

of the National Academy of Sciences, USA, 110(33):13316–13321.

Croft, D., OKelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy,

M., Garapati, P., Gopinath, G., Jassal, B., et al. (2010). Reactome: a

database of reactions, pathways and biological processes. Nucleic Acids

Research, 39(S1):D691–D697.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex

network research. InterJournal, Complex Systems, 1695.
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Koschützki, D. and Schreiber, F. (2008). Centrality analysis methods for

biological networks and their application to gene regulatory networks.

Gene Regulation and Systems Biology, 2:193–201.

Koschützki, D., Schwöbbermeyer, H., and Schreiber, F. (2007). Ranking

of network elements based on functional substructures. Journal of The-

oretical Biology, 248(3):471–479.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Ger-

ber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon,

I., et al. (2002). Transcriptional regulatory networks in Saccharomyces

cerevisiae. Science, 298(5594):799–804.

Levy, D. E. and Darnell, J. (2002). STATs: transcriptional control and

biological impact. Nature Reviews Molecular Cell Biology, 3(9):651–662.

Li, J., Hua, X., Haubrock, M., Wang, J., and Wingender, E. (2012). The

architecture of the gene regulatory networks of different tissues. Bioin-

formatics, 28(18):i509–i514.

126



Bibliography

Li, Y. and Behringer, R. R. (1998). Esx1 is an X-chromosome-imprinted

regulator of placental development and fetal growth. Nature Genetics,

20(3):309–311.

Lim, L. S., Loh, Y.-H., Zhang, W., Li, Y., Chen, X., Wang, Y., Bakre, M.,

Ng, H.-H., and Stanton, L. W. (2007). Zic3 is required for maintenance

of pluripotency in embryonic stem cells. Molecular Biology of the Cell,

18(4):1348–1358.

Liu, W., Lan, Y., Pauws, E., Meester-Smoor, M. A., Stanier, P., Zwarthoff,

E. C., and Jiang, R. (2008). The Mn1 transcription factor acts upstream

of Tbx22 and preferentially regulates posterior palate growth in mice.

Development, 135(23):3959–3968.

Liu, Y., Jiang, B., and Zhang, X. (2009). Gene-set analysis identifies master

transcription factors in developmental courses. Genomics, 94(1):1–10.

Loh, Y.-H., Wu, Q., Chew, J.-L., Vega, V. B., Zhang, W., Chen, X.,

Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and

Nanog transcription network regulates pluripotency in mouse embryonic

stem cells. Nature Genetics, 38(4):431–440.

Lovén, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R.,

Bradner, J. E., Lee, T. I., and Young, R. A. (2013). Selective inhibition of

tumor oncogenes by disruption of super-enhancers. Cell, 153(2):320–334.

Ma, H.-W., Buer, J., and Zeng, A.-P. (2004). Hierarchical structure and

modules in the escherichia coli transcriptional regulatory network re-

vealed by a new top-down approach. BMC Bioinformatics, 5:199.

127



Bibliography

Ma’ayan, A. (2011). Introduction to network analysis in systems biology.

Science Signaling, 4(190):tr5.

Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward

loop network motif. Proceedings of the National Academy of Sciences,

USA, 100(21):11980–11985.

Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R.,
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Appendix

Table A.1. 1509 ESC specific interactions which are found in hESC
network, but not found in the other 40 TF regulatory networks.

N Source Target N Source Target N Source Target

1 AHR BARHL2 2 AHR EN2 3 AHR IKZF1

4 AHR SIX3 5 ALX1 HBP1 6 ALX1 NR1H4

7 ALX1 TFAP2C 8 ALX3 FOXJ1 9 ALX3 HBP1

10 ALX4 EBF2 11 ALX4 FOXD3 12 ALX4 NR1H4

13 ALX4 TFAP2C 14 AR SIX6 15 ARID5B DMRT1

16 ARID5B HNF1B 17 ARID5B NKX3-2 18 ARID5B OVOL2

19 ARID5B ZFP42 20 ARNT EN2 21 ARNT IKZF1

22 ARNT SIX3 23 ARNT SOX2 24 ARNT2 IKZF1

25 ARNT2 SIX3 26 ATF1 FOXC1 27 ATF2 FOXC1

28 ATF3 FOXC1 29 ATF4 DLX2 30 ATF4 FOXC1

31 ATF4 ZIC3 32 ATF5 ARX 33 ATF5 FOXC1

34 ATF5 NKX2-2 35 ATF5 PAX2 36 ATF5 SIX3

37 ATF6 FOXC1 38 ATF7 FOXC1 39 ATOH1 FGF9

40 ATOH1 HOXB13 41 ATOH1 POU3F1 42 ATOH1 REST

43 ATOH1 SIX4 44 ATOH1 STAT5A 45 ATOH1 TBX22

46 ATOH1 ZBTB7A 47 BACH1 XBP1 48 BACH2 GLI1

49 BCL6 MYF5 50 BCL6 SIX4 51 BDP1 DLX2

52 BDP1 HBP1 53 BDP1 HMGA1 54 BDP1 LHX2

55 BHLHE40 CRX 56 BHLHE40 DMRT1 57 BHLHE40 OVOL2

58 BHLHE40 ZFP42 59 BHLHE41 CRX 60 BHLHE41 DMRT1

61 BHLHE41 OVOL2 62 BHLHE41 ZFP42 63 BPTF FOXO4

64 BPTF WT1 65 BRF1 DLX2 66 BRF1 LHX2

67 CBFB IRX2 68 CBFB OTX2 69 CBFB PARP1

70 CBFB POU4F3 71 CDC5L LEF1 72 CDX1 REST

73 CDX1 T 74 CDX1 VAX1 75 CDX2 GCM1

76 CDX2 ONECUT1 77 CDX2 REST 78 CDX2 VAX1

79 CEBPA EOMES 80 CEBPA POU5F1 81 CEBPA SIX4

82 CEBPG TBX22 83 CIZ1 ISL1 84 CNOT3 HOXB13

85 CNOT3 MSX2 86 CNOT3 PAX2 87 CNOT3 PAX4

88 CREB1 EN2 89 CREB1 FOXC1 90 CREM FOXC1

91 CRX AIRE 92 CRX NR2E3 93 CTCF CDX2

94 CTCF DLX1 95 CTCF ESX1 96 CTCF OTP

97 CTCF POU5F1 98 CTCF SOX10 99 CTCF TBX22
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N Source Target N Source Target N Source Target

100 CTCF VSX2 101 CTCF ZIC3 102 CUX1 MYF5

103 DDIT3 POU5F1 104 DEAF1 ESR1 105 DEAF1 GFI1

106 DEAF1 HOXB13 107 DEAF1 POU4F3 108 DEAF1 RORB

109 DEAF1 T 110 DLX5 CRX 111 DMBX1 CRX

112 DMRT2 VAX1 113 DMRT3 HOXB13 114 E2F1 DMRT1

115 E2F1 FOXA2 116 E2F1 LMX1A 117 E2F4 LMX1A

118 E2F6 LMX1A 119 E2F7 LMX1A 120 EBF1 LHX4

121 EBF1 NF1 122 EBF1 PAX4 123 EBF1 POU5F1

124 EBF2 PAX4 125 EBF2 POU5F1 126 EGR1 ALX1

127 EGR1 CRX 128 EGR1 DMRT3 129 EGR1 OTP

130 EGR1 OTX2 131 EGR1 PAX4 132 EGR1 PAX7

133 EGR1 POU2F3 134 EGR2 ALX1 135 EGR2 CRX

136 EGR2 DMRT3 137 EGR2 OTP 138 EGR2 OTX2

139 EGR2 PAX4 140 EGR2 PAX7 141 EGR2 POU2F3

142 EGR3 ALX1 143 EGR3 CRX 144 EGR3 DMRT3

145 EGR3 OTP 146 EGR3 OTX2 147 EGR3 PAX4

148 EGR3 PAX7 149 EGR3 POU2F3 150 EGR4 CRX

151 EGR4 DMRT3 152 EGR4 NKX6-1 153 EGR4 OTX2

154 EGR4 PAX7 155 EGR4 POU2F3 156 EGR4 SIX6

157 ELF1 SMAD3 158 ELF1 ZIC1 159 ELF1 ZIC2

160 ELF2 FOXD3 161 ELF2 HMX3 162 ELF2 NKX2-2

163 ELF2 POU4F3 164 ELF2 REST 165 ELF2 SIX4

166 ELF2 ZIC1 167 ELF2 ZIC2 168 ELF3 ETV7

169 ELF3 ISL1 170 ELF3 OTX2 171 ELF3 TP63

172 ELK1 DMRT3 173 ELK1 HBP1 174 ELK1 TCF7

175 ELK1 ZIC1 176 ELK1 ZIC2 177 ELK4 TCF7

178 ELK4 ZIC1 179 ELK4 ZIC2 180 EMX2 CEBPB

181 EN1 FOXD3 182 EN2 FOXD3 183 EP300 DMRT3

184 EP300 GFI1 185 EP300 NKX2-2 186 EP300 OTX2

187 EP300 PAX7 188 EP300 RORB 189 EP300 SIX3

190 EPAS1 SOX2 191 ERF ZIC1 192 ERF ZIC2

193 ERG OTX2 194 ERG TCF7 195 ERG ZIC1

196 ERG ZIC2 197 ESR1 PAX2 198 ESR1 POU5F1

199 ESR2 POU5F1 200 ESRRA HOXB13 201 ESRRB EBF2

202 ESRRB HOXB13 203 ESRRB POU4F3 204 ESX1 HBP1

205 ETS1 BARHL2 206 ETS1 FOXD3 207 ETS1 HBP1

208 ETS1 MSX2 209 ETS1 TCF7 210 ETS1 ZIC1

211 ETS1 ZIC2 212 ETS1 ZIC3 213 ETS2 FOXD3

214 ETS2 HBP1 215 ETS2 ZIC1 216 ETS2 ZIC2

217 ETV7 HBP1 218 ETV7 TCF7 219 ETV7 ZIC1

220 ETV7 ZIC2 221 EVX1 SOX2 222 FGF9 FOXD3

223 FGF9 GATA3 224 FLI1 MYCN 225 FLI1 NR5A2

226 FLI1 PAX1 227 FLI1 POU5F1 228 FLI1 TCF7

229 FLI1 ZIC1 230 FLI1 ZIC2 231 FOSL1 GLI1

232 FOSL1 LMX1A 233 FOSL1 PAX6 234 FOXA1 DMRT1

235 FOXA1 ETV7 236 FOXA1 FOXD3 237 FOXA1 HOXA1

238 FOXA1 HOXA11 239 FOXA2 ETV7 240 FOXA2 HOXA1

241 FOXA2 HOXA11 242 FOXA3 ETV7 243 FOXA3 HOXA1

244 FOXA3 HOXA11 245 FOXD1 FOXD3 246 FOXD1 IRX5

247 FOXD1 MEIS1 248 FOXD3 ETV7 249 FOXD3 FOXI1
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250 FOXD3 HOXB3 251 FOXD3 OTX2 252 FOXD3 PAX5

253 FOXD3 PAX7 254 FOXF1 ETV7 255 FOXF1 FOXI1

256 FOXF1 OTX2 257 FOXF1 PAX5 258 FOXF1 PAX7

259 FOXF2 ETV7 260 FOXF2 FOXI1 261 FOXF2 OTX2

262 FOXF2 PAX5 263 FOXF2 PAX7 264 FOXG1 DMRT1

265 FOXG1 XBP1 266 FOXH1 ETV7 267 FOXH1 FOXI1

268 FOXH1 HOXB3 269 FOXH1 OTX2 270 FOXH1 PAX5

271 FOXH1 PAX7 272 FOXI1 ETV7 273 FOXI1 FOXI1

274 FOXI1 PAX5 275 FOXI1 PAX7 276 FOXJ1 ETV7

277 FOXJ1 FOXI1 278 FOXJ1 HOXB3 279 FOXJ1 OTX2

280 FOXJ1 PAX5 281 FOXJ1 PAX7 282 FOXJ2 ETV7

283 FOXJ2 FOXI1 284 FOXJ2 HOXB3 285 FOXJ2 PAX5

286 FOXJ2 PAX7 287 FOXL1 CDX2 288 FOXL1 PAX3

289 FOXM1 ETV7 290 FOXM1 HOXA1 291 FOXM1 HOXA11

292 FOXO1 DMRT1 293 FOXO1 XBP1 294 FOXO3 FOXI1

295 FOXO3 NANOG 296 FOXO4 MAFA 297 FOXP1 BARHL2

298 FOXP1 HOXB13 299 FOXP1 OTX2 300 FOXP1 PAX2

301 FOXP3 ONECUT1 302 GABPA BARX1 303 GABPA NR5A2

304 GABPA OVOL2 305 GABPA PAX6 306 GABPB1 BARX1

307 GABPB1 NR5A2 308 GABPB1 OVOL2 309 GABPB1 PAX6

310 GATA1 OTX2 311 GATA1 PAX2 312 GATA1 SIX3

313 GATA1 STAT3 314 GATA1 STAT4 315 GATA2 FOXC1

316 GATA2 FOXJ3 317 GATA2 MSX2 318 GATA2 NR5A2

319 GATA2 SIX3 320 GATA2 STAT3 321 GATA3 FOXA2

322 GATA3 FOXC1 323 GATA3 FOXJ3 324 GATA3 MSX2

325 GATA3 NR5A2 326 GATA3 PGR 327 GATA4 CRX

328 GATA4 TFAP2B 329 GBX2 SOX2 330 GCM1 CDX2

331 GFI1 MEIS1 332 GLI1 SMAD2 333 GLI2 RORB

334 GLI2 SMAD2 335 GLI3 HMX3 336 GLI3 HOXA1

337 GLI3 POU5F1 338 GLI3 RORB 339 GLI3 VSX2

340 GLIS1 SMAD2 341 GLIS3 PAX7 342 GLIS3 POU5F1

343 GSX2 SOX2 344 GTF2A1 LHX4 345 GTF2I ALX3

346 GTF2I ALX4 347 GTF2I ARNTL2 348 GTF2I CRX

349 GTF2I DMRT3 350 GTF2I E2F4 351 GTF2I EGR4

352 GTF2I ONECUT1 353 GTF2I OTX1 354 GTF2I TFAP2B

355 GTF2I VAX2 356 GTF2IRD1 CDX2 357 GTF2IRD1 FOXD3

358 GTF2IRD1 POU5F1 359 HAND1 DLX1 360 HAND1 DMRT1

361 HAND1 OVOL2 362 HAND1 SIX2 363 HAND1 SIX3

364 HAND1 ZFP42 365 HAND2 DMRT1 366 HAND2 OVOL2

367 HAND2 ZFP42 368 HES1 NEUROD1 369 HES1 PAX6

370 HIC1 BARHL2 371 HIC1 CDX2 372 HIC1 CRX

373 HIC1 DMRT1 374 HIC1 DMRT3 375 HIC1 HNF1B

376 HIC1 LMX1A 377 HIC1 NKX2-2 378 HIC1 OTP

379 HIC1 ZIC3 380 HIF1A IKZF1 381 HIF1A IRF3

382 HIF1A POU3F2 383 HIF1A SIX3 384 HIF1A SOX2

385 HIVEP2 CRX 386 HIVEP2 OTX2 387 HMGA1 LMX1A

388 HMGA1 PARP1 389 HMGA1 PAX6 390 HMGA1 SOX21

391 HMGA2 LMX1A 392 HMGA2 PARP1 393 HMGA2 PAX6

394 HMGA2 SOX21 395 HNF1A MNX1 396 HNF1B DMRT2

397 HNF1B EGR4 398 HNF1B IRX4 399 HNF1B NF1
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N Source Target N Source Target N Source Target

400 HNF4A ALX4 401 HNF4A DMRT2 402 HNF4A DMRT3

403 HNF4A FOXD3 404 HNF4A FOXH1 405 HNF4A LHX4

406 HNF4A LMX1A 407 HNF4A NR5A1 408 HNF4A OTP

409 HNF4A POU5F1 410 HNF4A ZNF628 411 HNF4G DMRT3

412 HNF4G FOXD3 413 HNF4G FOXH1 414 HNF4G LHX4

415 HNF4G POU5F1 416 HNF4G ZNF628 417 HOXA1 SOX2

418 HOXA10 REST 419 HOXA10 VAX1 420 HOXA11 LHX4

421 HOXA13 FOXD3 422 HOXA13 RAX 423 HOXA3 SOX2

424 HOXA4 TFAP2C 425 HOXA5 MYCN 426 HOXA9 LMX1B

427 HOXB3 CEBPB 428 HOXB3 SOX2 429 HOXB4 TFAP2C

430 HOXB7 BARHL2 431 HOXB8 BARHL2 432 HOXB9 GLI1

433 HOXB9 VAX1 434 HOXC10 LHX4 435 HOXC11 LHX4

436 HOXC4 NR1H4 437 HOXC4 TFAP2C 438 HOXC5 TFAP2C

439 HOXC9 REST 440 HOXD13 SOX9 441 HOXD9 MYCN

442 HSF1 FOXD3 443 HSF1 FOXJ3 444 HSF1 LEF1

445 HSF1 MECP2 446 HSF1 NKX2-1 447 HSF1 NKX2-2

448 HSF2 FOXJ3 449 HSF2 GATA3 450 HSF2 LEF1

451 HSF2 MECP2 452 HSF2 NKX2-1 453 IKZF1 CRX

454 IKZF1 ESX1 455 IKZF1 HBP1 456 IKZF1 PAX6

457 IKZF1 RUNX3 458 IKZF1 SIX4 459 IKZF1 TBX15

460 IKZF2 FOXD3 461 IRF1 ALX1 462 IRF1 EOMES

463 IRF1 GFI1 464 IRF1 SOX17 465 IRF1 ZFP42

466 IRF2 ALX1 467 IRF2 EOMES 468 IRF2 FOXD3

469 IRF2 GFI1 470 IRF2 SOX17 471 IRF2 ZFP42

472 IRF3 ALX1 473 IRF3 EOMES 474 IRF3 FOXD3

475 IRF3 GFI1 476 IRF3 PAX7 477 IRF3 SOX17

478 IRF3 ZFP42 479 IRF4 ALX1 480 IRF4 EOMES

481 IRF4 GFI1 482 IRF4 SOX17 483 IRF4 ZFP42

484 IRF6 ALX1 485 IRF6 EOMES 486 IRF6 SOX17

487 IRF6 ZFP42 488 IRF7 ALX1 489 IRF7 GFI1

490 IRF7 SOX17 491 IRF7 ZFP42 492 IRF8 ALX1

493 IRF8 EOMES 494 IRF8 GFI1 495 IRF8 SOX17

496 IRF8 ZFP42 497 IRF9 GFI1 498 IRF9 PAX2

499 IRX2 PAX3 500 IRX3 PAX3 501 IRX4 PAX3

502 IRX5 PAX3 503 ISX FOXJ1 504 JUN GLI1

505 JUN LMX1A 506 JUN PAX6 507 JUNB GLI1

508 JUND GLI1 509 JUND LMX1A 510 JUND PAX6

511 KLF11 ATF2 512 KLF11 DLX1 513 KLF11 EN2

514 KLF11 FOXH1 515 KLF11 NKX2-2 516 KLF11 POU5F1

517 KLF11 SREBF2 518 KLF15 CRX 519 KLF15 DMRT3

520 KLF15 MAFA 521 KLF15 MSX2 522 KLF15 NKX2-2

523 KLF15 OTX2 524 KLF15 PAX2 525 KLF15 PAX7

526 KLF15 POU5F1 527 KLF15 ZIC3 528 KLF4 DMRT3

529 KLF4 FOXD3 530 KLF4 MSX2 531 KLF4 NANOG

532 KLF4 PAX2 533 KLF4 POU5F1 534 KLF4 TBX15

535 KLF4 TFAP2B 536 KLF4 TP63 537 KLF4 ZFP42

538 LEF1 FOXD1 539 LEF1 HMGA1 540 LEF1 MNX1

541 LEF1 MYOG 542 LHX2 HBP1 543 LHX3 TFAP2C

544 LHX4 FOXJ1 545 LHX4 SOX2 546 LHX5 FOXI1

547 LHX5 NR1H4 548 LHX5 TFAP2C 549 LHX6 FOXJ1
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550 LHX8 FOXJ1 551 LHX8 SOX2 552 LMO2 ATOH1

553 LMO2 FOXJ3 554 LMO2 OTX2 555 LMO2 POU3F1

556 LMO2 SOX2 557 LMX1A FOXI1 558 LMX1A NR1H4

559 LMX1A TFAP2C 560 LMX1B FOXI1 561 LMX1B NR1H4

562 MAF CRX 563 MAF DLX4 564 MAF PURA

565 MAF TBX15 566 MAFA DLX3 567 MAFA PARP1

568 MAFA POU5F1 569 MAFG REST 570 MAX DMRT1

571 MAX NKX2-5 572 MAX OVOL2 573 MAX SATB1

574 MAX SMAD4 575 MAX ZFP42 576 MAX ZNF219

577 MAZ ALX3 578 MAZ ALX4 579 MAZ CDX2

580 MAZ CRX 581 MAZ FOXD3 582 MAZ LMX1B

583 MAZ MSX1 584 MAZ MYF5 585 MAZ NKX6-1

586 MAZ OTX2 587 MAZ PAX7 588 MAZ SIX6

589 MAZ TBX22 590 MECOM FOXJ3 591 MECOM MSX2

592 MECOM OTX2 593 MECOM PAX2 594 MECP2 PAX7

595 MEF2A IRX2 596 MEF2A TBX15 597 MEIS1 LMX1B

598 MEIS3 ARX 599 MEOX1 SOX2 600 MITF DMRT1

601 MITF OVOL2 602 MITF ZFP42 603 MNX1 FOXD3

604 MTF1 FOXD3 605 MYB LMX1A 606 MYB NKX2-2

607 MYB PARP1 608 MYB PAX7 609 MYB RAX

610 MYB RUNX3 611 MYB STAT3 612 MYB ZIC3

613 MYC DMRT1 614 MYC NKX2-5 615 MYC OVOL2

616 MYC SATB1 617 MYC SMAD4 618 MYC ZFP42

619 MYC ZNF219 620 MYCN ATOH1 621 MYCN DMRT1

622 MYCN OVOL2 623 MYCN ZFP42 624 MYF5 DMRT1

625 MYF5 HNF1B 626 MYF5 NKX3-2 627 MYF5 OVOL2

628 MYF5 ZFP42 629 MYF6 ATOH1 630 MYF6 DMRT1

631 MYF6 OTX2 632 MYF6 OVOL2 633 MYF6 T

634 MYF6 ZFP42 635 MYOD1 ATOH1 636 MYOD1 DLX1

637 MYOD1 DMRT1 638 MYOD1 HOXB13 639 MYOD1 OTX2

640 MYOD1 OVOL2 641 MYOD1 T 642 MYOD1 ZFP42

643 MYOG ATOH1 644 MYOG DMRT1 645 MYOG OTX2

646 MYOG OVOL2 647 MYOG T 648 MYOG ZFP42

649 MZF1 CRX 650 MZF1 FOXC1 651 MZF1 FOXD3

652 MZF1 PAX2 653 MZF1 PAX5 654 MZF1 PURA

655 MZF1 TBX22 656 MZF1 TFAP2C 657 MZF1 ZFP42

658 NANOG ETS1 659 NANOG LMX1A 660 NANOG MECP2

661 NANOG OTX2 662 NANOG POU3F2 663 NANOG POU5F1

664 NANOG VAX1 665 NANOG XBP1 666 NEUROD1 CDX2

667 NEUROD1 FOXD3 668 NEUROD1 FOXO4 669 NEUROD1 HOXB13

670 NEUROD1 MNX1 671 NEUROD1 REST 672 NF1 ALX3

673 NF1 CDX2 674 NF1 DMRT3 675 NF1 HMX3

676 NF1 MSX2 677 NF1 NANOG 678 NFATC1 FOXA1

679 NFATC1 HOXD12 680 NFATC1 ZNF219 681 NFATC2 FOXA1

682 NFATC2 ZNF219 683 NFATC3 FOXA1 684 NFATC3 ZNF219

685 NFATC4 FOXA1 686 NFATC4 POU2F3 687 NFATC4 ZNF219

688 NFE2 HMX3 689 NFE2 LMX1A 690 NFE2 PAX7

691 NFE2L1 REST 692 NFE2L2 BARX1 693 NFE2L2 LMX1A

694 NFE2L2 NR5A2 695 NFE2L2 OVOL2 696 NFE2L2 PAX6

697 NFE2L2 REST 698 NFIB ALX3 699 NFIB CDX2

Continued on next page

141



Appendix .

Table A.1 – Continued from previous page

N Source Target N Source Target N Source Target

700 NFIB DMRT3 701 NFIB MSX2 702 NFIB NANOG

703 NFIX ALX3 704 NFIX CDX2 705 NFIX DMRT3

706 NFIX HMX3 707 NFIX MSX2 708 NFIX NANOG

709 NFKB1 ALX3 710 NFKB1 BARHL2 711 NFKB1 GATA3

712 NFKB1 ISL1 713 NFKB1 LMX1B 714 NFKB1 NKX2-1

715 NFKB1 OTP 716 NFKB1 PAX4 717 NFKB1 RUNX3

718 NFKB1 ZIC3 719 NFKB2 ALX3 720 NFKB2 ISL1

721 NFKB2 LMX1B 722 NFKB2 OTP 723 NFKB2 PAX4

724 NFKB2 RUNX3 725 NFKB2 ZIC3 726 NFYA LHX4

727 NFYA OTX2 728 NFYA SIRT6 729 NHLH1 DMRT1

730 NHLH1 HOXB9 731 NHLH1 OVOL2 732 NHLH1 POU5F1

733 NHLH1 SMAD4 734 NHLH1 ZFP42 735 NHLH1 ZNF219

736 NKX2-1 FOXH1 737 NKX2-2 HBP1 738 NKX2-2 LMX1A

739 NKX3-1 LMX1A 740 NKX3-2 OTP 741 NKX6-2 FOXD3

742 NR0B1 BARHL1 743 NR0B1 EBF2 744 NR0B1 FOXO4

745 NR0B1 GFI1 746 NR0B1 HOXB13 747 NR0B1 PAX1

748 NR1H2 GLI1 749 NR1H2 HOXB13 750 NR1H2 IRX4

751 NR1H2 NKX2-2 752 NR1H2 POU5F1 753 NR1H4 GLI1

754 NR1H4 HOXB13 755 NR1H4 IRX4 756 NR1H4 PAX6

757 NR1I2 GFI1 758 NR1I2 HOXB13 759 NR1I3 GFI1

760 NR1I3 HOXB13 761 NR2C2 MYCN 762 NR2C2 POU5F1

763 NR2C2 ZIC1 764 NR2C2 ZIC2 765 NR2E3 MNX1

766 NR2F1 ALX1 767 NR2F1 ALX4 768 NR2F1 BARHL1

769 NR2F1 DLX1 770 NR2F1 EOMES 771 NR2F1 FOXD3

772 NR2F1 HOXB13 773 NR2F1 LHX4 774 NR2F1 LMX1A

775 NR2F1 MSX2 776 NR2F1 MYCN 777 NR2F1 NKX6-1

778 NR2F1 PARP1 779 NR2F1 PAX2 780 NR2F1 POU5F1

781 NR2F1 TBX22 782 NR2F1 ZNF628 783 NR2F2 ALX1

784 NR2F2 ALX4 785 NR2F2 BARHL1 786 NR2F2 DLX1

787 NR2F2 FOXD3 788 NR2F2 HOXB13 789 NR2F2 ISL1

790 NR2F2 LHX4 791 NR2F2 LMX1A 792 NR2F2 MSX2

793 NR2F2 MYCN 794 NR2F2 NKX6-1 795 NR2F2 ONECUT1

796 NR2F2 PARP1 797 NR2F2 PAX2 798 NR2F2 PAX4

799 NR2F2 POU5F1 800 NR2F2 TBX22 801 NR2F2 ZNF628

802 NR2F6 BARHL2 803 NR2F6 NR5A1 804 NR2F6 OTP

805 NR2F6 RAX 806 NR2F6 SIX3 807 NR2F6 SMAD4

808 NR3C1 CDX2 809 NR3C1 FOXO1 810 NR3C1 HOXB13

811 NR3C1 LEF1 812 NR3C1 MYCN 813 NR3C1 PBX1

814 NR4A1 BARHL1 815 NR4A1 EBF2 816 NR4A1 GFI1

817 NR5A1 POU4F3 818 NR5A2 NKX2-2 819 NR5A2 POU4F3

820 NR5A2 PRRX1 821 NR5A2 ZIC1 822 NR5A2 ZIC2

823 NR6A1 NKX2-2 824 NR6A1 SIX6 825 NRF1 POU4F3

826 OAZ1 FOXO4 827 OAZ1 NKX2-2 828 ONECUT1 HOXD12

829 ONECUT1 HOXD13 830 OTP TFAP2C 831 OTX1 SIX4

832 OTX2 CRX 833 OTX2 NR2E3 834 PARP1 HOXB3

835 PARP1 ZFP42 836 PATZ1 CRX 837 PATZ1 FOXD3

838 PATZ1 NKX2-2 839 PATZ1 OTX2 840 PATZ1 PAX7

841 PATZ1 TFAP2C 842 PAX2 ALX3 843 PAX4 DMRT3

844 PAX4 NF1 845 PAX4 OTP 846 PAX4 OTX2

847 PAX4 PAX7 848 PAX4 POU5F1 849 PAX4 RORB

Continued on next page

142



Table A.1 – Continued from previous page

N Source Target N Source Target N Source Target

850 PAX4 SIX6 851 PAX4 TBX15 852 PAX4 ZFP42

853 PAX5 FLI1 854 PAX5 FOXH1 855 PAX5 HMX3

856 PAX5 PAX2 857 PAX5 POU2F3 858 PAX6 FOXD3

859 PAX6 SMAD3 860 PAX8 LHX5 861 PBX1 BARHL2

862 PBX1 MNX1 863 PBX1 OTX2 864 PBX1 ZIC3

865 PDX1 BARHL2 866 PDX1 FOXJ3 867 PDX1 MNX1

868 PGR CDX2 869 PGR MYCN 870 PGR PBX1

871 PGR ZNF628 872 PITX1 AIRE 873 PITX1 MEOX1

874 PITX1 NR2F6 875 PITX1 STAT4 876 PITX1 WT1

877 PITX2 ATOH1 878 PITX2 BRF1 879 PITX2 CRX

880 PITX2 NR2E3 881 PITX2 ZFP42 882 PITX3 CRX

883 PITX3 NANOG 884 PKNOX1 ARX 885 PKNOX1 BARHL2

886 PKNOX1 TP63 887 PKNOX2 ARX 888 PKNOX2 ETS1

889 POU2AF1 CDX2 890 POU2AF1 NR2F6 891 POU2AF1 OTX2

892 POU2AF1 PAX6 893 POU2AF1 SMAD4 894 POU2AF1 ZIC3

895 POU2F1 CDX2 896 POU2F1 FOXD1 897 POU2F1 FOXJ1

898 POU2F1 HBP1 899 POU2F1 IRX2 900 POU2F1 MECP2

901 POU2F1 OTX2 902 POU2F1 PAX2 903 POU2F1 PAX6

904 POU2F1 SMAD4 905 POU2F1 ZIC3 906 POU2F2 CDX2

907 POU2F2 MECP2 908 POU2F2 NR2F6 909 POU2F2 OTX2

910 POU2F2 PAX2 911 POU2F2 PAX6 912 POU2F2 SMAD4

913 POU2F2 ZIC3 914 POU2F3 CDX2 915 POU2F3 FOXD1

916 POU2F3 NR2F6 917 POU2F3 OTX2 918 POU2F3 PAX6

919 POU2F3 SMAD4 920 POU2F3 ZIC3 921 POU3F1 CDX2

922 POU3F1 IRX2 923 POU3F1 NR2F6 924 POU3F1 OTX2

925 POU3F1 PAX6 926 POU3F1 SMAD4 927 POU3F1 ZIC3

928 POU3F2 CDX2 929 POU3F2 NR2F6 930 POU3F2 OTX2

931 POU3F2 PAX6 932 POU3F2 SMAD4 933 POU3F2 ZIC3

934 POU3F3 CDX2 935 POU3F3 NR2F6 936 POU3F3 OTX2

937 POU3F3 PAX6 938 POU3F3 SMAD4 939 POU3F3 ZIC3

940 POU5F1 CDX2 941 POU5F1 ESX1 942 POU5F1 ETS1

943 POU5F1 FOXD1 944 POU5F1 HOXD12 945 POU5F1 HOXD13

946 POU5F1 ISL1 947 POU5F1 LHX5 948 POU5F1 NANOG

949 POU5F1 NR2F6 950 POU5F1 OTX2 951 POU5F1 PAX6

952 POU5F1 POU5F1 953 POU5F1 SIX3 954 POU5F1 SMAD4

955 POU5F1 TFAP2C 956 POU5F1 THRB 957 POU5F1 VSX1

958 POU5F1 ZIC3 959 POU6F1 FOXJ3 960 POU6F1 OTX2

961 PPARA CDX2 962 PPARA LHX4 963 PPARA LHX8

964 PPARA MNX1 965 PPARA MYCN 966 PPARA OTX2

967 PPARA PAX6 968 PPARA POU5F1 969 PPARA RORB

970 PPARA SIX3 971 PPARA SMAD3 972 PPARD LHX4

973 PPARD MNX1 974 PPARD MYCN 975 PPARD POU5F1

976 PPARD SIX3 977 PPARD ZNF628 978 PPARG LHX4

979 PPARG MNX1 980 PPARG MYCN 981 PPARG POU5F1

982 PPARG SIX3 983 PPARG SMAD4 984 PPARG ZNF628

985 PRDM1 ALX1 986 PRDM1 BARHL2 987 PRDM1 FOXD3

988 PRDM1 HOXB13 989 PRDM1 MYF6 990 PRDM1 NKX2-1

991 PRDM1 POU4F3 992 PRDM1 VAX1 993 PRDM1 ZIC3

994 PURA ALX1 995 PURA ALX4 996 PURA FOXA2

997 PURA IRX4 998 PURA MSX2 999 PURA NKX2-2
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1000 PURA NKX3-2 1001 PURA PITX1 1002 PURA PITX2

1003 PURA POU5F1 1004 PURA RORB 1005 RARA CRX

1006 RARA FOXA2 1007 RARA MYCN 1008 RARA POU5F1

1009 RARA REST 1010 RARA VAX1 1011 RAX AIRE

1012 RAX NR2E3 1013 RBPJ NF1 1014 REL ISL1

1015 REL NR5A1 1016 REL PAX4 1017 REL ZIC3

1018 RELA ISL1 1019 RELA LMX1B 1020 RELA NR5A1

1021 RELA PAX4 1022 RELA RUNX3 1023 RELA ZIC3

1024 RELB ISL1 1025 RELB PAX4 1026 RELB ZIC3

1027 REST DMRT3 1028 REST LMX1A 1029 REST PAX6

1030 RFX1 CRX 1031 RFX1 FOXD3 1032 RFX1 OTX2

1033 RORA PAX6 1034 RORA REST 1035 RREB1 ARX

1036 RREB1 EN2 1037 RREB1 FOXD3 1038 RREB1 HAND1

1039 RREB1 HMGA1 1040 RREB1 OTX2 1041 RREB1 PAX7

1042 RREB1 RAX 1043 RREB1 ZIC3 1044 RUNX1 IRX2

1045 RUNX1 OTX2 1046 RUNX1 PARP1 1047 RUNX1 POU4F3

1048 RUNX2 IRX2 1049 RUNX2 OTX2 1050 RUNX2 PARP1

1051 RUNX2 POU4F3 1052 RUNX3 IRX2 1053 RUNX3 OTX2

1054 RUNX3 PARP1 1055 RUNX3 POU4F3 1056 RXRA CDX2

1057 RXRA CRX 1058 RXRA HOXB13 1059 RXRA LHX4

1060 RXRA MNX1 1061 RXRA NKX2-2 1062 RXRA OTX2

1063 RXRA PAX6 1064 RXRA POU5F1 1065 RXRA REST

1066 RXRA SIX3 1067 RXRA VAX1 1068 RXRB CRX

1069 RXRB FOXA2 1070 RXRB GFI1 1071 RXRB POU5F1

1072 RXRB REST 1073 RXRB VAX1 1074 SIX4 FOXA1

1075 SMAD1 CRX 1076 SMAD1 LMX1A 1077 SMAD1 POU5F1

1078 SMAD1 XBP1 1079 SMAD2 ATF4 1080 SMAD2 CRX

1081 SMAD2 LMX1A 1082 SMAD2 POU5F1 1083 SMAD3 ATF4

1084 SMAD3 CRX 1085 SMAD3 HOXD13 1086 SMAD3 LMX1A

1087 SMAD3 POU5F1 1088 SMAD3 TBX15 1089 SMAD4 ATF4

1090 SMAD4 CRX 1091 SMAD4 FOXA2 1092 SMAD4 FOXD3

1093 SMAD4 GATA2 1094 SMAD4 LMX1A 1095 SMAD4 POU5F1

1096 SMAD4 RAX 1097 SMAD4 SIX2 1098 SMAD4 TBX15

1099 SMAD7 ATF4 1100 SMAD7 CRX 1101 SMAD7 LMX1A

1102 SMAD7 POU5F1 1103 SOX10 CDX2 1104 SOX10 NFKB2

1105 SOX17 SOX2 1106 SOX2 CDX2 1107 SOX2 ETS1

1108 SOX2 HOXD12 1109 SOX2 HOXD13 1110 SOX2 NANOG

1111 SOX2 NFKB2 1112 SOX2 POU5F1 1113 SOX2 SIX3

1114 SOX2 TGIF2 1115 SOX2 THRB 1116 SOX21 CDX2

1117 SOX21 NFKB2 1118 SOX4 CDX2 1119 SOX4 NFKB2

1120 SOX5 CDX2 1121 SOX5 NFKB2 1122 SOX9 CDX2

1123 SOX9 FOXI1 1124 SOX9 NFIB 1125 SOX9 NFKB2

1126 SOX9 NKX2-2 1127 SP1 ALX3 1128 SP1 CDX2

1129 SP1 CRX 1130 SP1 DMRT3 1131 SP1 EVX1

1132 SP1 FOXI1 1133 SP1 LMX1A 1134 SP1 NR5A2

1135 SP1 OTP 1136 SP1 OTX2 1137 SP1 PAX7

1138 SP2 ALX3 1139 SP2 CDX2 1140 SP2 CRX

1141 SP2 DMRT3 1142 SP2 EVX1 1143 SP2 FOXI1

1144 SP2 LMX1A 1145 SP2 MSX2 1146 SP2 NKX2-2

1147 SP2 OTX2 1148 SP2 PAX7 1149 SP3 ALX3
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1150 SP3 CDX2 1151 SP3 CRX 1152 SP3 DMRT3

1153 SP3 EVX1 1154 SP3 FOXI1 1155 SP3 LMX1A

1156 SP3 NKX2-2 1157 SP3 OTP 1158 SP3 OTX2

1159 SP3 PAX7 1160 SP4 ALX3 1161 SP4 CDX2

1162 SP4 CRX 1163 SP4 DMRT3 1164 SP4 EVX1

1165 SP4 FOXI1 1166 SP4 LMX1A 1167 SP4 MSX2

1168 SP4 NKX2-2 1169 SP4 OTX2 1170 SP4 PAX7

1171 SPI1 ALX1 1172 SPI1 EOMES 1173 SPI1 EVX1

1174 SPI1 FOXH1 1175 SPI1 HMX3 1176 SPI1 IRX2

1177 SPI1 LHX4 1178 SPI1 MYCN 1179 SPI1 MYOG

1180 SPI1 POU5F1 1181 SPI1 T 1182 SPI1 TFAP2B

1183 SPI1 TP63 1184 SPIB LMX1A 1185 SPZ1 ALX1

1186 SPZ1 CDX2 1187 SPZ1 CRX 1188 SPZ1 FOXA1

1189 SPZ1 FOXA2 1190 SPZ1 HOXB3 1191 SPZ1 NKX2-2

1192 SPZ1 PAX7 1193 SPZ1 POU4F3 1194 SPZ1 POU5F1

1195 SPZ1 PURA 1196 SPZ1 RAX 1197 SPZ1 ZIC3

1198 SREBF1 ARX 1199 SREBF1 EN2 1200 SREBF1 FOXD3

1201 SREBF1 IRX4 1202 SREBF1 NKX2-2 1203 SREBF1 PAX7

1204 SREBF1 POU5F1 1205 SREBF1 TBX22 1206 SREBF1 ZNF148

1207 SREBF2 ARX 1208 SREBF2 CDX2 1209 SREBF2 DMRT3

1210 SREBF2 EN2 1211 SREBF2 FOXD3 1212 SREBF2 IRX4

1213 SREBF2 NKX2-2 1214 SREBF2 NR5A2 1215 SREBF2 PAX6

1216 SREBF2 PAX7 1217 SREBF2 POU5F1 1218 SREBF2 TBX22

1219 SREBF2 ZNF148 1220 SRF ESX1 1221 SRF IRX2

1222 SRY CDX2 1223 SRY NFKB2 1224 STAT1 FOXO4

1225 STAT1 LHX2 1226 STAT1 POU4F3 1227 STAT1 VAX1

1228 STAT3 ARX 1229 STAT3 DLX3 1230 STAT3 FOXD3

1231 STAT3 FOXO4 1232 STAT3 HMX3 1233 STAT3 LHX5

1234 STAT3 OTX2 1235 STAT3 PAX7 1236 STAT3 PKNOX2

1237 STAT3 POU4F3 1238 STAT3 SOX2 1239 STAT3 VAX1

1240 STAT4 POU2F3 1241 STAT5A TBX22 1242 T ATF2

1243 T POU5F1 1244 TAL1 CDX2 1245 TAL1 DMRT1

1246 TAL1 EHF 1247 TAL1 OVOL2 1248 TAL1 TP63

1249 TAL1 ZFP42 1250 TAL1 ZNF219 1251 TBX15 FOXA1

1252 TBX15 HOXD13 1253 TBX15 TFAP2C 1254 TBX18 FOXA1

1255 TBX18 TFAP2C 1256 TBX22 TFAP2C 1257 TBX5 DMRT3

1258 TBX5 EGR2 1259 TBX5 ETV7 1260 TBX5 FOXA2

1261 TBX5 REST 1262 TBX5 SIX3 1263 TCF12 DMRT1

1264 TCF12 HNF1B 1265 TCF12 LMX1A 1266 TCF12 NKX3-2

1267 TCF12 NR2F6 1268 TCF12 OVOL2 1269 TCF12 POU5F1

1270 TCF12 ZFP42 1271 TCF3 ATOH1 1272 TCF3 DMRT1

1273 TCF3 HOXB13 1274 TCF3 HOXD12 1275 TCF3 LMX1A

1276 TCF3 OTX2 1277 TCF3 OVOL2 1278 TCF3 POU3F1

1279 TCF3 POU5F1 1280 TCF3 REST 1281 TCF3 SIX2

1282 TCF3 SIX3 1283 TCF3 T 1284 TCF3 TBX22

1285 TCF3 ZFP42 1286 TCF4 DMRT1 1287 TCF4 FOXD1

1288 TCF4 HNF1B 1289 TCF4 NKX3-2 1290 TCF4 OVOL2

1291 TCF4 ZFP42 1292 TCF7 MNX1 1293 TCF7 MYOG

1294 TEF PAX7 1295 TEF ZIC1 1296 TEF ZIC2

1297 TERF1 OTX2 1298 TERF1 POU5F1 1299 TFAP2A DMRT3
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1300 TFAP2A HOXC12 1301 TFAP2A LHX8 1302 TFAP2A OVOL2

1303 TFAP2A PAX2 1304 TFAP2A PAX7 1305 TFAP2A SIX6

1306 TFAP2A TBX22 1307 TFAP2A ZFP42 1308 TFAP2A ZIC3

1309 TFAP2B DMRT3 1310 TFAP2B HOXC12 1311 TFAP2B LHX8

1312 TFAP2B PAX2 1313 TFAP2B PAX7 1314 TFAP2B RORB

1315 TFAP2B SIX6 1316 TFAP2B TBX22 1317 TFAP2B ZFP42

1318 TFAP2B ZIC3 1319 TFAP2C DMRT3 1320 TFAP2C HOXC12

1321 TFAP2C LHX8 1322 TFAP2C PAX2 1323 TFAP2C PAX7

1324 TFAP2C RORB 1325 TFAP2C SIX6 1326 TFAP2C TBX22

1327 TFAP2C ZFP42 1328 TFAP2C ZIC3 1329 TFAP4 ESX1

1330 TFAP4 GFI1 1331 TFAP4 OTX2 1332 TFAP4 TBX22

1333 TFAP4 ZNF628 1334 TFCP2 ARX 1335 TFCP2 EBF2

1336 TFCP2 EN2 1337 TFCP2 EOMES 1338 TFCP2 LHX5

1339 TFCP2 ZBTB7A 1340 TFCP2L1 HMGA1 1341 TFCP2L1 LHX4

1342 TFCP2L1 ZFP42 1343 TFDP1 LMX1A 1344 TFDP2 LMX1A

1345 TGIF1 ARX 1346 TGIF1 ETS1 1347 TGIF1 RXRB

1348 TGIF2 ARX 1349 THRA CRX 1350 THRA MYCN

1351 THRA POU5F1 1352 THRA REST 1353 THRA VAX1

1354 THRB CRX 1355 THRB MYCN 1356 THRB POU5F1

1357 THRB REST 1358 THRB VAX1 1359 TLX2 IRX4

1360 TLX2 TBX15 1361 TOPORS FOXA2 1362 TOPORS PARP1

1363 TOPORS PRRX1 1364 TOPORS TERF1 1365 TOPORS ZFP42

1366 TP53 DMRT3 1367 TP53 FOXD1 1368 TP53 LMX1A

1369 TP53 MEOX1 1370 TP53 NKX3-2 1371 TP53 PAX2

1372 TP53 POU5F1 1373 TP63 DMRT3 1374 TP63 LMX1A

1375 TP63 NKX3-2 1376 TP63 POU5F1 1377 TP73 DMRT3

1378 TP73 LMX1A 1379 TP73 NKX3-2 1380 TP73 POU5F1

1381 TRIM28 ARX 1382 TRIM28 BARHL2 1383 TRIM28 FOXA2

1384 TRIM28 HOXA11 1385 TRIM28 LHX8 1386 TRIM28 SOX10

1387 USF1 DMRT1 1388 USF1 OVOL2 1389 USF1 ZFP42

1390 USF2 DMRT1 1391 USF2 OVOL2 1392 USF2 ZFP42

1393 VDR ALX3 1394 VDR ALX4 1395 VDR CRX

1396 VDR DMRT1 1397 VDR EVX1 1398 VDR LMX1B

1399 VDR NKX2-1 1400 VDR ONECUT1 1401 VDR OTX2

1402 VDR PAX2 1403 VDR POU5F1 1404 VDR SIX6

1405 VSX1 TFAP2C 1406 VSX2 SOX2 1407 WT1 ALX3

1408 WT1 CRX 1409 WT1 FOXD3 1410 WT1 FOXH1

1411 WT1 LMX1B 1412 WT1 PAX7 1413 WT1 PURA

1414 WT1 SIX6 1415 WT1 TFAP2C 1416 XBP1 CDX2

1417 YY1 CDX2 1418 YY1 LMX1B 1419 YY1 ZFP42

1420 ZBTB33 POU5F1 1421 ZBTB33 ZNF589 1422 ZBTB6 FOXJ3

1423 ZBTB6 LHX8 1424 ZBTB6 NANOG 1425 ZBTB6 OTX1

1426 ZBTB7A PAX5 1427 ZBTB7A POU5F1 1428 ZBTB7B ALX3

1429 ZBTB7B CDX2 1430 ZBTB7B CRX 1431 ZBTB7B DMRT3

1432 ZBTB7B EVX1 1433 ZBTB7B FOXD3 1434 ZBTB7B MSX2

1435 ZBTB7B NKX2-2 1436 ZBTB7B NKX6-1 1437 ZBTB7B OTX2

1438 ZBTB7B PAX7 1439 ZBTB7B SIX6 1440 ZEB1 ETV7

1441 ZEB1 HOXA11 1442 ZEB1 MNX1 1443 ZEB1 ONECUT1

1444 ZEB1 OTX1 1445 ZEB1 REST 1446 ZEB1 SOX2

1447 ZFP161 POU4F3 1448 ZFP42 CDX2 1449 ZFP42 HOXB13
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1450 ZFP42 PAX7 1451 ZFP42 VAX1 1452 ZFX CRX

1453 ZFX DMRT3 1454 ZFX EN2 1455 ZFX OTP

1456 ZFX OTX2 1457 ZFX PAX7 1458 ZFX POU4F3

1459 ZFX POU5F1 1460 ZFX SOX10 1461 ZFX ZFP42

1462 ZIC2 FOXG1 1463 ZIC3 NF1 1464 ZNF143 FOXD1

1465 ZNF143 POU5F1 1466 ZNF143 TLX2 1467 ZNF148 ALX3

1468 ZNF148 CRX 1469 ZNF148 EVX1 1470 ZNF148 FOXD3

1471 ZNF148 FOXH1 1472 ZNF148 LMX1B 1473 ZNF148 NKX6-1

1474 ZNF148 OTX2 1475 ZNF148 PAX7 1476 ZNF148 PURA

1477 ZNF148 SIX6 1478 ZNF148 TFAP2C 1479 ZNF148 ZFP42

1480 ZNF148 ZIC3 1481 ZNF219 DMRT3 1482 ZNF219 NKX2-2

1483 ZNF219 OTX2 1484 ZNF219 PAX7 1485 ZNF219 POU5F1

1486 ZNF219 PURA 1487 ZNF219 SIX6 1488 ZNF219 ZIC3

1489 ZNF263 ALX4 1490 ZNF263 CRX 1491 ZNF263 DMRT3

1492 ZNF263 E2F4 1493 ZNF263 ESX1 1494 ZNF263 EVX1

1495 ZNF263 FOXC1 1496 ZNF263 FOXD3 1497 ZNF263 MEOX1

1498 ZNF263 ONECUT1 1499 ZNF263 PARP1 1500 ZNF263 PAX7

1501 ZNF263 POU5F1 1502 ZNF263 SMAD4 1503 ZNF263 TBX22

1504 ZNF350 ATOH1 1505 ZNF350 FOXC1 1506 ZNF350 NKX6-1

1507 ZNF589 PAX2 1508 ZNF589 TP63 1509 ZNF628 PAX2
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Table A.2. 55 ESC regulatory complex-target modules using the ESC
specific interactions and protein complexes. TFs are separated by
semicolon.

N Complex TFs in Common Common targeted TFs
ID complex targeted TFs in Assou’s list

1 HC5737 SREBF1;SREBF2 ARX;EN2;FOXD3;IRX4;NKX2-2; FOXD3;POU5F1
PAX7;POU5F1;TBX22;ZNF148

2 HC4791 KLF4;MZF1 FOXD3;PAX2;ZFP42 FOXD3;ZFP42
3 HC4463 KLF4;ZFX DMRT3;POU5F1;ZFP42 POU5F1;ZFP42
4 HC5737 KLF4;SREBF2 DMRT3;FOXD3;POU5F1 FOXD3;POU5F1
5 HC8397 ALX4;MZF1 FOXD3;TFAP2C FOXD3;TFAP2C
6 HC5737 KLF4;SREBF1 FOXD3;POU5F1 FOXD3;POU5F1
7 HC5737 KLF4;SREBF1;SREBF2 FOXD3;POU5F1 FOXD3;POU5F1

8 HC7980 SP1;SP4
ALX3;CDX2;CRX;DMRT3;EVX1;

OTX2
FOXI1;LMX1A;OTX2;PAX7

9 HC6813 SP1;ZFX CRX;DMRT3;OTP;OTX2;PAX7 OTX2
10 HC4806 ELK1;ETS1 HBP1;TCF7;ZIC1;ZIC2 ZIC2
11 HC4830 MZF1;TFAP2A PAX2;TBX22;ZFP42 ZFP42
12 HC6813 TFAP2A;ZFX DMRT3;PAX7;ZFP42 ZFP42
13 HC6706 KLF4;TFAP2A DMRT3;PAX2;ZFP42 ZFP42
14 HC6706 KLF4;SPI1 POU5F1;TFAP2B;TP63 POU5F1
15 HC6161 FOXD3;SP1 FOXI1;OTX2;PAX7 OTX2
16 HC7106 ELK4;ETS1 TCF7;ZIC1;ZIC2 ZIC2
17 HC7106 ELK1;ELK4 TCF7;ZIC1;ZIC2 ZIC2
18 HC7106 ELK1;ELK4;ETS1 TCF7;ZIC1;ZIC2 ZIC2
19 HC5737 EP300;SP1 DMRT3;OTX2;PAX7 OTX2
20 HC8674 USF1;USF2 DMRT1;OVOL2;ZFP42 ZFP42
21 HC4830 TFAP2A;USF1 OVOL2;ZFP42 ZFP42
22 HC4829 ETS1;KLF4 FOXD3;MSX2 FOXD3
23 HC8945 MYB;TFAP2A PAX7;ZIC3 ZIC3
24 HC8981 MZF1;ZFX CRX;ZFP42 ZFP42
25 HC4791 KLF4;MZF1;TFAP2A PAX2;ZFP42 ZFP42
26 HC4750 MAX;TFAP2A OVOL2;ZFP42 ZFP42
27 HC4463 KLF4;TFAP2A;ZFX DMRT3;ZFP42 ZFP42
28 HC6507 ETS1;NFKB1 BARHL2;ZIC3 ZIC3
29 HC5737 MZF1;SREBF1 FOXD3;TBX22 FOXD3
30 HC5737 MZF1;SREBF2 FOXD3;TBX22 FOXD3
31 HC5737 MZF1;SREBF1;SREBF2 FOXD3;TBX22 FOXD3
32 HC4824 GATA2;GATA3 FOXC1;FOXJ3;MSX2;NR5A2
33 HC9343 HSF1;HSF2 FOXJ3;LEF1;MECP2;NKX2-1
34 HC5737 SP1;SREBF2 CDX2;DMRT3;NR5A2;PAX7
35 HC5737 EP300;SREBF2 DMRT3;NKX2-2;PAX7
36 HC5737 SREBF2;TFAP2A DMRT3;PAX7;TBX22
37 HC4812 FOXI1;SP1 FOXI1;PAX7
38 HC6813 SP1;TFAP2A DMRT3;PAX7
39 HC6813 SP1;TFAP2A;ZFX DMRT3;PAX7
40 HC4771 MYB;SP1 LMX1A;PAX7
41 HC7991 SOX10;SOX5 CDX2;NFKB2
42 HC7837 FOXA1;ZEB1 ETV7;HOXA11
43 HC2082 GATA1;GATA2 SIX3;STAT3
44 HC9023 TFAP2A;TP53 DMRT3;PAX2
45 HC6196 EP300;TFAP2A DMRT3;PAX7
46 HC9394 FOXM1;ZEB1 ETV7;HOXA11
47 HC5737 EP300;SREBF1 NKX2-2;PAX7
48 HC5737 SREBF1;TFAP2A PAX7;TBX22
49 HC5737 EP300;SREBF1;SREBF2 NKX2-2;PAX7
50 HC5737 SREBF1;SREBF2;TFAP2A PAX7;TBX22
51 HC5737 EP300;SP1;SREBF2 DMRT3;PAX7
52 HC5737 SP1;SREBF2;TFAP2A DMRT3;PAX7
53 HC5737 EP300;SREBF2;TFAP2A DMRT3;PAX7
54 HC5737 EP300;SP1;TFAP2A DMRT3;PAX7
55 HC5737 EP300;SP1;SREBF2;TFAP2A DMRT3;PAX7
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Table A.3. The distributions of nodes and interactions among three
layers: top, core, bottom in the hierarchical organization of 41 networks.
The entries in red color are those significantly low/high percentages when
compared to the others. Abbreviations. T-T: Top→Top. T-C: Top→Core;
T-B: Top→Bottom;C-C: Core→Core; C-B: Core→Bottom; B-B:
Bottom→Bottom.

% of nodes in 3 layers % of interactions between 3 layers

Network
Top Core Bottom T-T T-C T-B C-C C-B B-B

01 AG10803 Skin Fib 23.7 65.7 10.6 0 13.2 2 74.1 10.6 0
02 AoAF Aortic Fib 21.8 69.4 8.8 0 11.5 1.3 78.6 8.5 0
03 CD20+ B Lymphocyte 22.6 66.8 10.6 0 14.4 1.8 74.7 9.1 0
04 CD34+ Hemat Stem Cell 11.5 77 11.5 0 6.7 0.9 82.6 9.8 0
05 fBrain 24.3 63.4 12.4 0.1 13.6 2.1 73 11.2 0
06 fHeart 21.2 68.2 10.6 0 11.1 1 80.6 7.3 0
07 fLung 11.5 79.5 9 0 6.5 0.8 83.7 9 0
08 GM06990 B Lymphoblastoid 30.6 58.5 10.8 0 17 2.3 71.1 9.5 0
09 GM12865 B Lymphoblastoid 23.9 66 10.1 0 13.5 1.5 76.7 8.3 0
10 H7-hESC Embryonic Stem Cell 6.2 85.3 8.5 0 3.8 0.3 87.6 8.2 0
11 HAEpiC Amniotic Epi 25.9 64.4 9.7 0.1 16.4 1.9 73.9 7.8 0
12 HA-h Hippocampal 13.3 76.8 9.9 0 9.9 0.8 81.6 7.6 0
13 HCF Cardiac Fib 20.9 69.3 9.8 0 10.7 1.1 79.8 8.3 0
14 HCM Cardiac Fib 19.4 70.3 10.3 0 10.2 1.1 80.5 8.3 0
15 HCPEpiC Choroid Plexus Epi 22.5 68.3 9.2 0 12 1.1 79.9 6.9 0
16 HEEpiC Esophageal Epi 20.9 68.2 11 0 9.1 1.1 79.8 9.9 0
17 HepG2 Hepatoblastoma 28.3 61 10.7 0 19.3 2.9 68.8 8.9 0
18 HFF Foreskin Fib 20.2 65.7 14.1 0 10.6 1.4 76.4 11.5 0
19 HIPEpiC Iris Pigment Epi 24.4 64.9 10.7 0 11.6 1.3 78.6 8.5 0
20 HMF Mamary Fib 21.1 71.1 7.8 0 12.7 1.3 78.6 7.4 0
21 HMVEC LLy Lung Lymphatic 22.3 67 10.7 0 14.3 2 73.8 9.9 0
22 HMVEC-dBl-Ad Adult Derm Blood 26.4 62.6 11 0 16.8 2.3 71.3 9.6 0
23 HMVEC-dBl-Neo Derm Blood 19.6 69.5 10.9 0 12.3 1.6 76.3 9.8 0
24 HMVEC-dLy-Neo Derm Lymph 22.8 67.4 9.8 0 14.2 1.6 75.6 8.6 0
25 HPAF Pulmonary Artery Fib 22.5 67.2 10.4 0 11.1 1.1 79.8 8 0
26 HPdLF Periodontal Fib 26.4 65.5 8.1 0 14.2 1.5 76 8.3 0
27 HPF Pulmonary Fib 23.5 67.9 8.6 0 14.9 1.4 75.8 7.7 0
28 HRCEpiC Renal Cortical Epi 32.8 57.1 10.1 0.1 23 3.3 63.8 9.8 0
29 HSMM Skeletal Myoblast 19.4 71 9.6 0 13.8 1.5 76.7 7.9 0
30 HVMF Mesenchymal Fib 23.6 67.7 8.7 0 14.4 1.3 77.1 7.1 0
31 IMR90 Fetal Lung Fib 27 62.3 10.7 0 15.3 2.4 71.3 10.9 0
32 K562 Erythroid 33 57.6 9.4 0 17.4 2.2 70.7 9.6 0
33 NB4 Leukemia 18.5 72.8 8.7 0 9.3 1.1 81.4 8.2 0
34 NH-A Astrocyte 29.5 59.4 11.2 0 15.5 2.3 72.3 9.9 0
35 NHDF-Ad Adult Dermal Fib 22.9 66.4 10.7 0 12.7 1.7 76.3 9.2 0
36 NHDF-neo Neonatal Dermal Fib 22.6 70 7.5 0 13.7 1.1 78.8 6.3 0
37 NHLF Lung Fib 20.3 68 11.8 0 10.8 1.5 76.8 10.8 0
38 SAEC Small Airway Epi 31.3 58.9 9.8 0 13.7 1.9 74.3 10.1 0
39 SKMC Skeletal Muscle 17.6 73.3 9 0 9.3 1 81.3 8.4 0
40 SK-N-SH RA Neuroblastoma 25.5 59.3 15.2 0 16.5 3.1 68 12.4 0
41 Th1 T Lymphocyte 28.9 62.7 8.4 0 15.9 1.3 75.1 7.7 0

Mean(SD) 23(5.6) 67(5.9) 10(1.5) 0 13(3.6) 2(0.6) 76(4.6) 9(1.3) 0

1 -1 0.1 1 0.9 -0.9 0.2
-1 1 -0.4 0.9 1 -1 0.6
0.1 -0.4 1 -0.9 -1 1 -0.5

Correlation

0.2 0.6 -0.5 1
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Table A.4. Local reaching centrality (LRC) and global reaching
centrality (GRC) in each of 41 networks. Here we report average LRC of
TFs in Top, Core, and Bottom layers. As expected, the LRC of each TF in
a layer is always greater than that of each TF in the layers below it in all
except two stromal (HCF and HCM) networks from Cardiac Fibroblast.

N Name GRC
LRC

Top Core Bottom

1 B-Lymphocyte 0.085 0.7743 0.7721 0
2 Hemat. Stem Cell 0.108 0.8812 0.879 3e-04
3 B-Lymphoblastoid 0.085 0.6872 0.6849 2e-04
4 B-Lymphoblastoid 0.085 0.7573 0.755 0
5 Erythroid 0.068 0.6667 0.6643 2e-04
6 Promyelocytic Leuk. 0.076 0.813 0.8109 2e-04
7 T-Lymphocyte 0.066 0.7071 0.7048 1e-04
8 Hepatoblastoma 0.081 0.7167 0.7143 2e-04
9 Neuroblastoma 0.121 0.7421 0.7398 1e-04
10 Lung Lymphatic 0.089 0.7768 0.7746 1e-04
11 Adult Dermal Blood 0.086 0.7357 0.7335 1e-04
12 Neonatal Dermal Blood 0.093 0.8039 0.8017 1e-04
13 Neonatal Dermal Lymph. 0.081 0.7718 0.7696 0
14 Amniotic Epi. 0.084 0.7397 0.7374 1e-04
15 Choroid Plexus Epi. 0.079 0.7718 0.7696 2e-04
16 Esophageal Epi. 0.091 0.7931 0.7909 3e-04
17 Iris Pigment Epi. 0.087 0.7544 0.7522 1e-04
18 Renal Cortical Epi 0.078 0.6682 0.6659 1e-04
19 Small Airway Epi. 0.074 0.6856 0.6834 3e-04
20 ESC 0.082 0.9403 0.9382 0
21 Fetal Brain 0.109 0.7523 0.75 2e-04
22 Fetal Heart 0.088 0.7898 0.7876 1e-04
23 Fetal Lung 0.083 0.8868 0.8846 0
24 Skin Fib. 0.092 0.7594 0.7572 0
25 Aortic Fibroblast 0.074 0.7824 0.7802 4e-04
26 Cardiac Fib. 0.083 0.7766 0.7908 0
27 Cardiac Fib. 0.089 0.7899 0.8056 0
28 Foreskin Fib. 0.117 0.7964 0.7942 2e-04
29 Mammary Fib. 0.069 0.7892 0.787 1e-04
30 Pulmonary Artery Fib. 0.088 0.7721 0.7699 0
31 Periodontal Fib. 0.069 0.7347 0.7325 2e-04
32 Pulmonary Fib. 0.074 0.7632 0.761 3e-04
33 Mesenchymal Fib. 0.07 0.7658 0.7636 2e-04
34 Fetal Lung Fib. 0.083 0.7299 0.7277 3e-04
35 Adult Dermal Fib. 0.088 0.7713 0.7691 2e-04
36 Neonatal Dermal Fib. 0.065 0.7743 0.7719 1e-04
37 Lung Fib. 0.099 0.7974 0.7952 2e-04
38 Hippocampal Astrocyte 0.091 0.8667 0.8645 1e-04
39 Skeletal Myoblast 0.083 0.8054 0.8031 1e-04
40 Astrocyte 0.083 0.701 0.6987 1e-04
41 Skeletal Muscle 0.082 0.8237 0.8215 1e-04
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Table A.5. 2041 housekeeping (HK) interactions which are found in all
the 41 TF regulatory networks.

N Source Target N Source Target N Source Target

1 AHR ATF2 2 AHR EGR1 3 AHR GTF2A1

4 AHR HBP1 5 AHR RFX1 6 AHR YY1

7 AHR ZNF219 8 AIRE TCF3 9 ALX4 HMBOX1

10 ALX4 JUN 11 ALX4 RB1 12 ALX4 UBP1

13 AR HMBOX1 14 AR NR6A1 15 AR RXRB

16 ARNT BPTF 17 ARNT DBP 18 ARNT DLX2

19 ARNT EGR1 20 ARNT GTF2A1 21 ARNT GZF1

22 ARNT HINFP 23 ARNT IRF9 24 ARNT NFATC3

25 ARNT TOPORS 26 ATF1 BACH2 27 ATF1 BDP1

28 ATF1 EGR2 29 ATF1 ING4 30 ATF1 JUND

31 ATF1 MAFF 32 ATF1 NF1 33 ATF1 NR6A1

34 ATF1 REL 35 ATF1 RELB 36 ATF1 RFX1

37 ATF1 SREBF1 38 ATF1 STAT3 39 ATF1 TFCP2

40 ATF1 TRIM28 41 ATF2 BACH2 42 ATF2 EGR2

43 ATF2 ING4 44 ATF2 JUND 45 ATF2 MAFF

46 ATF2 NF1 47 ATF2 NR6A1 48 ATF2 RELB

49 ATF2 RFX1 50 ATF2 SREBF1 51 ATF2 STAT3

52 ATF2 TFCP2 53 ATF2 TRIM28 54 ATF3 BACH2

55 ATF3 BDP1 56 ATF3 ING4 57 ATF3 JUN

58 ATF3 MAFF 59 ATF3 NF1 60 ATF3 NR6A1

61 ATF3 RELB 62 ATF3 RFX1 63 ATF3 SREBF1

64 ATF3 STAT3 65 ATF3 TFCP2 66 ATF3 TRIM28

67 ATF4 BACH2 68 ATF4 ING4 69 ATF4 MAFF

70 ATF4 NF1 71 ATF4 NR6A1 72 ATF4 RELB

73 ATF4 RFX1 74 ATF4 SREBF1 75 ATF4 SREBF2

76 ATF4 STAT3 77 ATF4 TFCP2 78 ATF4 TRIM28

79 ATF5 BACH2 80 ATF5 ING4 81 ATF5 MAFF

82 ATF5 NF1 83 ATF5 NR6A1 84 ATF5 OAZ1

85 ATF5 RELB 86 ATF5 RFX1 87 ATF5 SREBF1

88 ATF5 STAT3 89 ATF5 TFCP2 90 ATF5 TRIM28

91 ATF6 BACH2 92 ATF6 ING4 93 ATF6 MAFF

94 ATF6 NF1 95 ATF6 NR6A1 96 ATF6 RELB

97 ATF6 RFX1 98 ATF6 SREBF1 99 ATF6 STAT3

100 ATF6 TFCP2 101 ATF6 TRIM28 102 ATF7 BACH2

103 ATF7 ING4 104 ATF7 MAFF 105 ATF7 NF1

106 ATF7 NR6A1 107 ATF7 RELB 108 ATF7 RFX1

109 ATF7 SREBF1 110 ATF7 STAT3 111 ATF7 TFCP2

112 ATF7 TRIM28 113 ATOH1 CEBPE 114 ATOH1 DLX2

115 BACH1 GTF2A1 116 BACH2 GTF2A1 117 BARHL1 CNOT3

118 BARHL2 CNOT3 119 BCL6 GTF2A1 120 BHLHE41 GTF2A1

121 BHLHE41 HSF2 122 CDX1 HES1 123 CDX2 BCL6

124 CDX2 HES1 125 CEBPA NFE2L1 126 CEBPD SREBF2

127 CNOT3 BACH1 128 CNOT3 CTCF 129 CNOT3 EGR1

130 CNOT3 FOXN2 131 CNOT3 FOXO3 132 CNOT3 HSF2

133 CNOT3 JUND 134 CNOT3 MAFF 135 CNOT3 MAX

136 CNOT3 NF1 137 CNOT3 NFE2L2 138 CNOT3 NFYA

139 CNOT3 PITX3 140 CNOT3 PKNOX1 141 CNOT3 RB1

142 CNOT3 SMAD2 143 CNOT3 SP4 144 CNOT3 SREBF1

Continued on next page
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Table A.5 – Continued from previous page

N Source Target N Source Target N Source Target

145 CNOT3 SREBF2 146 CNOT3 SRF 147 CNOT3 TFAP4

148 CNOT3 ZFP161 149 CNOT3 ZNF143 150 CNOT3 ZNF263

151 CREB1 BACH2 152 CREB1 E4F1 153 CREB1 EGR2

154 CREB1 FOXP3 155 CREB1 ING4 156 CREB1 JUND

157 CREB1 MAFF 158 CREB1 NF1 159 CREB1 NFE2L2

160 CREB1 NR6A1 161 CREB1 REL 162 CREB1 RELB

163 CREB1 RFX1 164 CREB1 SREBF1 165 CREB1 STAT3

166 CREB1 TFCP2 167 CREB1 TRIM28 168 CREM BACH2

169 CREM EGR2 170 CREM ING4 171 CREM JUND

172 CREM MAFF 173 CREM NF1 174 CREM NR6A1

175 CREM RELB 176 CREM RFX1 177 CREM SREBF1

178 CREM STAT3 179 CREM TFCP2 180 CREM TRIM28

181 CRX DDIT3 182 CTCF BCL6 183 CTCF CEBPE

184 CTCF CTCF 185 CTCF DLX2 186 CTCF DLX3

187 CTCF E4F1 188 CTCF EGR1 189 CTCF EP300

190 CTCF ESRRA 191 CTCF GLI1 192 CTCF GZF1

193 CTCF HOMEZ 194 CTCF HSF2 195 CTCF IRF2

196 CTCF IRF9 197 CTCF MAFA 198 CTCF MAZ

199 CTCF MTERF 200 CTCF MTF1 201 CTCF NFE2L1

202 CTCF NFE2L2 203 CTCF NFKB2 204 CTCF NFYA

205 CTCF PATZ1 206 CTCF PKNOX1 207 CTCF POU2F1

208 CTCF PURA 209 CTCF RFX2 210 CTCF SP1

211 CTCF SP3 212 CTCF SRF 213 CTCF STAT1

214 CTCF TCF12 215 CTCF TP53 216 CTCF ZBTB33

217 CTCF ZBTB7A 218 CTCF ZBTB7B 219 DEAF1 CREB1

220 DEAF1 CTCF 221 DEAF1 DEAF1 222 DEAF1 EGR1

223 DEAF1 HMBOX1 224 DEAF1 JUNB 225 DEAF1 MAX

226 DEAF1 MZF1 227 DEAF1 SHOX2 228 DEAF1 TCF12

229 DEAF1 TP53 230 DEAF1 ZBTB33 231 DMRT1 SRF

232 DMRT2 SRF 233 E2F1 ATF2 234 E2F1 ATF4

235 E2F1 CREM 236 E2F1 DLX2 237 E2F1 E2F1

238 E2F1 JUNB 239 E2F1 MAZ 240 E2F1 PKNOX1

241 E2F1 ZFP161 242 E2F1 ZNF143 243 E2F4 ATF4

244 E2F4 E2F1 245 E2F4 MAZ 246 E2F6 ATF4

247 E2F6 E2F1 248 E2F6 MAZ 249 E2F7 ATF4

250 E2F7 E2F1 251 E2F7 MAZ 252 E4F1 RFX1

253 EBF1 EGR1 254 EBF1 HOMEZ 255 EBF1 MAX

256 EBF1 RB1 257 EBF1 ZNF143 258 EBF2 EGR1

259 EBF2 HOMEZ 260 EBF2 RB1 261 EBF2 ZNF143

262 EGR1 ATF1 263 EGR1 ATF2 264 EGR1 ATF4

265 EGR1 BHLHE40 266 EGR1 BRF1 267 EGR1 CEBPB

268 EGR1 CNOT3 269 EGR1 CREM 270 EGR1 DBP

271 EGR1 DDIT3 272 EGR1 EP300 273 EGR1 FOXH1

274 EGR1 FOXJ3 275 EGR1 FOXN2 276 EGR1 FOXO3

277 EGR1 GABPA 278 EGR1 GTF2A1 279 EGR1 GTF2I

280 EGR1 HBP1 281 EGR1 HES1 282 EGR1 HIF1A

283 EGR1 HSF2 284 EGR1 IRF1 285 EGR1 JUNB

286 EGR1 JUND 287 EGR1 MAX 288 EGR1 MAZ

289 EGR1 MZF1 290 EGR1 NFATC3 291 EGR1 NFE2L1

292 EGR1 NFE2L2 293 EGR1 NFYA 294 EGR1 NR4A1

Continued on next page
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N Source Target N Source Target N Source Target

295 EGR1 NR6A1 296 EGR1 OAZ1 297 EGR1 PKNOX1

298 EGR1 POU2F1 299 EGR1 RBPJ 300 EGR1 REL

301 EGR1 RELB 302 EGR1 RFX1 303 EGR1 RFX2

304 EGR1 RXRB 305 EGR1 SP1 306 EGR1 SP4

307 EGR1 SREBF1 308 EGR1 SRF 309 EGR1 STAT1

310 EGR1 STAT3 311 EGR1 TCF12 312 EGR1 TEF

313 EGR1 TOPORS 314 EGR1 TP53 315 EGR1 TRIM28

316 EGR1 UBP1 317 EGR1 YY1 318 EGR1 ZBTB7B

319 EGR1 ZNF143 320 EGR1 ZNF238 321 EGR1 ZNF333

322 EGR1 ZNF628 323 EGR2 ATF1 324 EGR2 ATF2

325 EGR2 ATF4 326 EGR2 BHLHE40 327 EGR2 BRF1

328 EGR2 CEBPB 329 EGR2 CNOT3 330 EGR2 CREM

331 EGR2 DBP 332 EGR2 DDIT3 333 EGR2 EP300

334 EGR2 FOXH1 335 EGR2 FOXJ3 336 EGR2 FOXN2

337 EGR2 FOXO3 338 EGR2 GABPA 339 EGR2 GTF2A1

340 EGR2 GTF2I 341 EGR2 HBP1 342 EGR2 HES1

343 EGR2 HIF1A 344 EGR2 HSF2 345 EGR2 IRF1

346 EGR2 JUNB 347 EGR2 JUND 348 EGR2 MAX

349 EGR2 MAZ 350 EGR2 MZF1 351 EGR2 NFATC3

352 EGR2 NFE2L1 353 EGR2 NFE2L2 354 EGR2 NFYA

355 EGR2 NR4A1 356 EGR2 NR6A1 357 EGR2 OAZ1

358 EGR2 PKNOX1 359 EGR2 POU2F1 360 EGR2 RBPJ

361 EGR2 REL 362 EGR2 RELB 363 EGR2 RFX1

364 EGR2 RFX2 365 EGR2 RXRB 366 EGR2 SP1

367 EGR2 SP4 368 EGR2 SREBF1 369 EGR2 SRF

370 EGR2 STAT1 371 EGR2 STAT3 372 EGR2 TCF12

373 EGR2 TEF 374 EGR2 TFAP4 375 EGR2 TOPORS

376 EGR2 TP53 377 EGR2 TRIM28 378 EGR2 UBP1

379 EGR2 YY1 380 EGR2 ZBTB7B 381 EGR2 ZNF143

382 EGR2 ZNF238 383 EGR2 ZNF333 384 EGR2 ZNF628

385 EGR3 ATF1 386 EGR3 ATF2 387 EGR3 ATF4

388 EGR3 BHLHE40 389 EGR3 BRF1 390 EGR3 CEBPB

391 EGR3 CNOT3 392 EGR3 CREM 393 EGR3 DBP

394 EGR3 DDIT3 395 EGR3 EP300 396 EGR3 FOXH1

397 EGR3 FOXJ3 398 EGR3 FOXN2 399 EGR3 FOXO3

400 EGR3 GABPA 401 EGR3 GTF2A1 402 EGR3 GTF2I

403 EGR3 HBP1 404 EGR3 HES1 405 EGR3 HIF1A

406 EGR3 HSF2 407 EGR3 IRF1 408 EGR3 JUNB

409 EGR3 JUND 410 EGR3 MAX 411 EGR3 MAZ

412 EGR3 MZF1 413 EGR3 NFATC3 414 EGR3 NFE2L1

415 EGR3 NFE2L2 416 EGR3 NFYA 417 EGR3 NR4A1

418 EGR3 NR6A1 419 EGR3 OAZ1 420 EGR3 PKNOX1

421 EGR3 POU2F1 422 EGR3 RBPJ 423 EGR3 REL

424 EGR3 RELB 425 EGR3 RFX1 426 EGR3 RFX2

427 EGR3 RXRB 428 EGR3 SP1 429 EGR3 SP4

430 EGR3 SREBF1 431 EGR3 SRF 432 EGR3 STAT1

433 EGR3 STAT3 434 EGR3 TCF12 435 EGR3 TEF

436 EGR3 TOPORS 437 EGR3 TP53 438 EGR3 TRIM28

439 EGR3 UBP1 440 EGR3 YY1 441 EGR3 ZBTB7B

442 EGR3 ZNF143 443 EGR3 ZNF238 444 EGR3 ZNF333

Continued on next page
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Table A.5 – Continued from previous page

N Source Target N Source Target N Source Target

445 EGR3 ZNF628 446 EGR4 ATF1 447 EGR4 ATF2

448 EGR4 ATF4 449 EGR4 BHLHE40 450 EGR4 BRF1

451 EGR4 CEBPB 452 EGR4 CNOT3 453 EGR4 CREM

454 EGR4 DBP 455 EGR4 DDIT3 456 EGR4 EP300

457 EGR4 FOXH1 458 EGR4 FOXJ3 459 EGR4 FOXN2

460 EGR4 FOXO3 461 EGR4 GABPA 462 EGR4 GTF2I

463 EGR4 HBP1 464 EGR4 HES1 465 EGR4 HIF1A

466 EGR4 HSF2 467 EGR4 IRF1 468 EGR4 JUNB

469 EGR4 JUND 470 EGR4 MAZ 471 EGR4 MZF1

472 EGR4 NFATC3 473 EGR4 NFE2L1 474 EGR4 NFE2L2

475 EGR4 NFYA 476 EGR4 NR4A1 477 EGR4 PKNOX1

478 EGR4 POU2F1 479 EGR4 RBPJ 480 EGR4 REL

481 EGR4 RELB 482 EGR4 RFX1 483 EGR4 RFX2

484 EGR4 RXRB 485 EGR4 SP4 486 EGR4 SRF

487 EGR4 STAT1 488 EGR4 STAT3 489 EGR4 TCF12

490 EGR4 TEF 491 EGR4 TOPORS 492 EGR4 TP53

493 EGR4 TRIM28 494 EGR4 UBP1 495 EGR4 YY1

496 EGR4 ZBTB7B 497 EGR4 ZNF238 498 EGR4 ZNF333

499 EGR4 ZNF628 500 EHF EGR1 501 EHF TBP

502 ELF1 DDIT3 503 ELF2 CNOT3 504 ELF2 DDIT3

505 ELF2 GABPA 506 ELF2 GTF2I 507 ELF2 MTF1

508 ELF2 PITX3 509 ELF2 SP3 510 ELF3 ZNF143

511 ELK1 DDIT3 512 ELK1 ELK4 513 ELK1 ING4

514 ELK1 MTERF 515 ELK1 MTF1 516 ELK1 MZF1

517 ELK1 NR1H2 518 ELK1 SIRT6 519 ELK1 SP3

520 ELK1 TBP 521 ELK4 DDIT3 522 ELK4 MZF1

523 ELK4 TBP 524 EP300 MTF1 525 EP300 UBP1

526 ERF DDIT3 527 ERG DDIT3 528 ERG NR1H2

529 ESR1 CTCF 530 ESR1 JUND 531 ETS1 CDC5L

532 ETS1 DDIT3 533 ETS1 EGR1 534 ETS1 GABPA

535 ETS1 HMBOX1 536 ETS1 MAZ 537 ETS1 MTERF

538 ETS1 MZF1 539 ETS1 NFYA 540 ETS1 NR1H2

541 ETS1 RXRB 542 ETS1 SIRT6 543 ETS1 SP3

544 ETS2 DDIT3 545 ETS2 EGR1 546 ETS2 GABPA

547 ETS2 MAZ 548 ETS2 SP3 549 ETV7 DDIT3

550 ETV7 ELK4 551 ETV7 ING4 552 ETV7 TBP

553 ETV7 UBP1 554 FLI1 ATF4 555 FLI1 DDIT3

556 FLI1 ELK4 557 FLI1 ING4 558 FLI1 TBP

559 FOSL1 BHLHE40 560 FOXJ2 TP53 561 FOXM1 USF1

562 FOXO3 HBP1 563 FOXO4 ZNF263 564 FOXP1 NR1I3

565 GABPA DDIT3 566 GABPA EGR1 567 GABPA ING4

568 GABPA MZF1 569 GABPA NFYA 570 GABPA NR1H2

571 GABPA SIRT6 572 GABPA SP3 573 GABPA TBP

574 GABPB1 DDIT3 575 GABPB1 EGR1 576 GABPB1 ING4

577 GABPB1 MZF1 578 GABPB1 NFYA 579 GABPB1 NR1H2

580 GABPB1 SIRT6 581 GABPB1 SP3 582 GABPB1 TBP

583 GATA1 CTCF 584 GATA2 FOXP3 585 GBX2 NR2C2

586 GFI1 SREBF2 587 GLI3 CNOT3 588 GLI3 HINFP

589 GLIS3 NR6A1 590 GLIS3 SP1 591 GTF2A1 JUND

592 GTF2I EGR1 593 GTF2I FOXN2 594 GTF2I IRF2
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595 GTF2I MAZ 596 GTF2I STAT1 597 GTF2I STAT3

598 HES1 HES1 599 HES1 MAZ 600 HIC1 ATF7

601 HIC1 BHLHE40 602 HIC1 DDIT3 603 HIC1 DEAF1

604 HIC1 FOXJ1 605 HIC1 GLI1 606 HIC1 GZF1

607 HIC1 HIF1A 608 HIC1 HOMEZ 609 HIC1 IRF1

610 HIC1 JUNB 611 HIC1 JUND 612 HIC1 MAX

613 HIC1 MAZ 614 HIC1 NFE2L2 615 HIC1 NFYA

616 HIC1 NR6A1 617 HIC1 PKNOX1 618 HIC1 RELA

619 HIC1 SP1 620 HIC1 SREBF2 621 HIC1 SRF

622 HIC1 TEF 623 HIC1 TP53 624 HIC1 XBP1

625 HIC1 ZBTB7A 626 HIC1 ZFP161 627 HIVEP2 GTF2I

628 HMX1 NFYA 629 HMX3 CNOT3 630 HNF4A ATF7

631 HNF4A FOXO3 632 HNF4G ATF7 633 HNF4G FOXO3

634 HOXA11 E4F1 635 HOXA4 TEF 636 HOXA9 PITX3

637 HOXC10 E4F1 638 HOXC11 E4F1 639 HOXC12 E4F1

640 HOXC4 TEF 641 HOXC5 TEF 642 HOXD12 E4F1

643 HSF1 CHURC1 644 HSF1 POU2F1 645 HSF1 ZNF143

646 HSF2 CHURC1 647 IKZF1 DBP 648 JUN BHLHE40

649 JUNB BHLHE40 650 JUND BHLHE40 651 KLF11 DDIT3

652 KLF11 ESRRA 653 KLF11 JUND 654 KLF11 NFATC3

655 KLF11 TGIF1 656 KLF11 TP53 657 KLF11 ZNF238

658 KLF15 ATF5 659 KLF15 BHLHE40 660 KLF15 BRF1

661 KLF15 CEBPB 662 KLF15 E4F1 663 KLF15 EGR1

664 KLF15 EP300 665 KLF15 ERF 666 KLF15 ESRRA

667 KLF15 FOXN2 668 KLF15 FOXO3 669 KLF15 GTF2I

670 KLF15 HIF1A 671 KLF15 JUND 672 KLF15 MAX

673 KLF15 MAZ 674 KLF15 NFATC3 675 KLF15 NR1H2

676 KLF15 NR4A1 677 KLF15 PKNOX1 678 KLF15 POU2F1

679 KLF15 RBPJ 680 KLF15 RELB 681 KLF15 RFX1

682 KLF15 RXRB 683 KLF15 SIRT6 684 KLF15 SP1

685 KLF15 SREBF1 686 KLF15 SRF 687 KLF15 STAT6

688 KLF15 TCF12 689 KLF15 TEF 690 KLF15 TP53

691 KLF15 TRIM28 692 KLF15 ZBTB7B 693 KLF15 ZFP161

694 KLF15 ZNF143 695 KLF4 ATF5 696 KLF4 ATF7

697 KLF4 BRF1 698 KLF4 CREM 699 KLF4 CTCF

700 KLF4 DBP 701 KLF4 DDIT3 702 KLF4 DLX2

703 KLF4 E4F1 704 KLF4 EP300 705 KLF4 ESRRA

706 KLF4 FOXN2 707 KLF4 GTF2A1 708 KLF4 GTF2I

709 KLF4 GZF1 710 KLF4 HES1 711 KLF4 HINFP

712 KLF4 HSF1 713 KLF4 IRF1 714 KLF4 JUND

715 KLF4 KLF11 716 KLF4 MAZ 717 KLF4 MZF1

718 KLF4 NFATC3 719 KLF4 NFE2L2 720 KLF4 NFYA

721 KLF4 NR1H2 722 KLF4 NR6A1 723 KLF4 OAZ1

724 KLF4 PITX3 725 KLF4 PKNOX1 726 KLF4 RBPJ

727 KLF4 REL 728 KLF4 RELB 729 KLF4 RFX1

730 KLF4 RFX2 731 KLF4 RXRB 732 KLF4 SIRT6

733 KLF4 SP1 734 KLF4 SP4 735 KLF4 SREBF2

736 KLF4 SRF 737 KLF4 STAT3 738 KLF4 TBP

739 KLF4 TCF3 740 KLF4 TEF 741 KLF4 TOPORS

742 KLF4 TRIM28 743 KLF4 UBP1 744 KLF4 USF1
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745 KLF4 YY1 746 KLF4 ZFP161 747 KLF4 ZNF238

748 KLF4 ZNF333 749 KLF4 ZNF628 750 LHX6 E2F7

751 LHX8 E2F7 752 MAF CDC5L 753 MAF GTF2A1

754 MAF MTF1 755 MAF SIRT6 756 MAFB GTF2A1

757 MAFF GTF2A1 758 MAFG GTF2A1 759 MAFG PKNOX1

760 MAX DBP 761 MAX FOXO3 762 MAX GTF2A1

763 MAX HSF1 764 MAX IRF9 765 MAX JUNB

766 MAX JUND 767 MAX MAX 768 MAX NFE2L2

769 MAX PITX3 770 MAX SMAD7 771 MAX ZFP161

772 MAZ ATF2 773 MAZ BHLHE40 774 MAZ DDIT3

775 MAZ E4F1 776 MAZ ELK4 777 MAZ EP300

778 MAZ JUN 779 MAZ MAZ 780 MAZ MECP2

781 MAZ NR6A1 782 MAZ PITX3 783 MAZ POU2F1

784 MAZ RXRB 785 MAZ SP2 786 MAZ SP3

787 MAZ STAT3 788 MAZ TCF12 789 MAZ TEF

790 MAZ ZBTB7B 791 MEF2A BDP1 792 MEF2A JUN

793 MEF2C JUN 794 MEIS1 PITX3 795 MTF1 RELB

796 MYB NFYA 797 MYB PKNOX1 798 MYB RFX2

799 MYB UBP1 800 MYC DBP 801 MYC FOXO3

802 MYC GTF2A1 803 MYC HSF1 804 MYC JUNB

805 MYC JUND 806 MYC NFE2L2 807 MYC NR6A1

808 MYC PITX3 809 MYC ZFP161 810 MYCN MAX

811 MYCN PITX3 812 MYF6 ATF1 813 MYF6 HES1

814 MYF6 HMBOX1 815 MYF6 TEF 816 MYF6 TERF1

817 MYF6 ZBTB7A 818 MYOD1 ATF1 819 MYOD1 HES1

820 MYOD1 HMBOX1 821 MYOD1 TEF 822 MYOD1 TERF1

823 MYOD1 ZBTB7A 824 MYOG ATF1 825 MYOG HES1

826 MYOG HMBOX1 827 MYOG TEF 828 MYOG TERF1

829 MYOG ZBTB7A 830 MZF1 BHLHE40 831 MZF1 DBP

832 MZF1 EGR1 833 MZF1 MAZ 834 MZF1 MECP2

835 MZF1 POU2F1 836 MZF1 SP1 837 MZF1 SP4

838 NANOG ING4 839 NEUROD1 ARNT 840 NEUROD1 CDC5L

841 NF1 FOXP3 842 NF1 HBP1 843 NF1 MAZ

844 NF1 PATZ1 845 NF1 ZFP161 846 NFATC1 MAX

847 NFATC2 MAX 848 NFATC3 MAX 849 NFATC4 MAX

850 NFE2 FOXA3 851 NFE2 GTF2A1 852 NFE2L1 BDP1

853 NFE2L1 GTF2A1 854 NFE2L1 PKNOX1 855 NFE2L1 TBP

856 NFE2L2 DDIT3 857 NFE2L2 EGR1 858 NFE2L2 GTF2A1

859 NFE2L2 ING4 860 NFE2L2 MZF1 861 NFE2L2 NFYA

862 NFE2L2 NR1H2 863 NFE2L2 SIRT6 864 NFE2L2 SP3

865 NFE2L2 TBP 866 NFIB MAZ 867 NFIB ZFP161

868 NFIX FOXP3 869 NFIX HBP1 870 NFIX MAZ

871 NFIX PATZ1 872 NFIX ZFP161 873 NFKB1 EGR1

874 NFKB1 HES1 875 NFKB1 IRF1 876 NFKB1 IRF2

877 NFKB1 JUNB 878 NFKB1 NFE2L2 879 NFKB1 NFKB2

880 NFKB1 NR4A1 881 NFKB1 RBPJ 882 NFKB1 REL

883 NFKB1 RFX5 884 NFKB2 HES1 885 NFKB2 IRF1

886 NFKB2 IRF2 887 NFKB2 NFE2L2 888 NFKB2 NFKB2

889 NFKB2 NR4A1 890 NFKB2 REL 891 NFKB2 RFX5

892 NFYA ATF4 893 NFYA ATF7 894 NFYA CNOT3
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895 NFYA DBP 896 NFYA DLX1 897 NFYA E2F7

898 NFYA FOXP3 899 NFYA HES1 900 NFYA HSF1

901 NFYA NFE2L1 902 NFYA NFYA 903 NFYA RFX5

904 NFYA SMAD2 905 NFYA SP2 906 NFYA SP3

907 NFYA SRF 908 NFYA STAT3 909 NFYA TEF

910 NFYA TERF1 911 NFYA YY1 912 NFYA ZBTB7B

913 NFYA ZNF628 914 NHLH1 EGR1 915 NHLH1 RFX1

916 NKX2-1 HINFP 917 NKX2-1 TRIM28 918 NKX6-1 CNOT3

919 NR0B1 CREM 920 NR0B1 SP2 921 NR1H2 DDIT3

922 NR1H2 ING4 923 NR1H2 IRF9 924 NR1H2 SREBF1

925 NR1H4 ATF4 926 NR1I2 BHLHE40 927 NR1I2 CNOT3

928 NR1I2 ING4 929 NR1I2 IRF9 930 NR1I2 SREBF1

931 NR1I2 TBP 932 NR1I3 BHLHE40 933 NR1I3 CNOT3

934 NR1I3 ING4 935 NR1I3 IRF9 936 NR1I3 SREBF1

937 NR1I3 TBP 938 NR2F1 CNOT3 939 NR2F1 FOXO3

940 NR2F1 ING4 941 NR2F1 IRF9 942 NR2F1 MAFF

943 NR2F1 RBPJ 944 NR2F1 RELA 945 NR2F1 SREBF1

946 NR2F1 TFAP4 947 NR2F1 YY1 948 NR2F1 ZBTB7B

949 NR2F2 CNOT3 950 NR2F2 FOXO3 951 NR2F2 ING4

952 NR2F2 IRF9 953 NR2F2 MAFF 954 NR2F2 RBPJ

955 NR2F2 RELA 956 NR2F2 SREBF1 957 NR2F2 TFAP4

958 NR2F2 YY1 959 NR2F2 ZBTB7B 960 NR3C1 DDIT3

961 NR3C1 HMBOX1 962 NR3C1 NR6A1 963 NR3C1 RXRB

964 NR5A2 ARNT 965 NR6A1 GABPA 966 NRF1 ATF5

967 NRF1 CHURC1 968 NRF1 DDIT3 969 NRF1 GTF2I

970 NRF1 GZF1 971 NRF1 HBP1 972 NRF1 JUNB

973 NRF1 MAZ 974 NRF1 NF1 975 NRF1 NFYA

976 NRF1 POU2F1 977 NRF1 RXRB 978 NRF1 SIRT6

979 NRF1 SMAD4 980 NRF1 SREBF1 981 NRF1 TEF

982 NRF1 TOPORS 983 NRF1 ZFP161 984 OAZ1 JUND

985 OTX1 DDIT3 986 OTX2 DDIT3 987 OTX2 ZNF589

988 PATZ1 ATF2 989 PATZ1 DDIT3 990 PATZ1 EGR1

991 PATZ1 ELK4 992 PATZ1 EP300 993 PATZ1 ESRRA

994 PATZ1 FOXN2 995 PATZ1 HIF1A 996 PATZ1 JUN

997 PATZ1 MAZ 998 PATZ1 NFATC3 999 PATZ1 NFYA

1000 PATZ1 PITX3 1001 PATZ1 PKNOX1 1002 PATZ1 POU2F1

1003 PATZ1 SP1 1004 PATZ1 SP4 1005 PATZ1 TEF

1006 PATZ1 TGIF1 1007 PATZ1 TP53 1008 PATZ1 ZBTB7B

1009 PAX2 STAT3 1010 PAX3 DBP 1011 PAX4 ATF5

1012 PAX4 ATF7 1013 PAX4 CBFB 1014 PAX4 DBP

1015 PAX4 DDIT3 1016 PAX4 FOXN2 1017 PAX4 HIF1A

1018 PAX4 JUND 1019 PAX4 MZF1 1020 PAX4 NFE2L2

1021 PAX4 NR6A1 1022 PAX4 OAZ1 1023 PAX4 REL

1024 PAX4 RELB 1025 PAX4 SP4 1026 PAX4 SRF

1027 PAX5 BRF1 1028 PAX5 SMAD2 1029 PAX5 TCF3

1030 PAX6 TEF 1031 PDX1 ZNF143 1032 PGR HMBOX1

1033 PGR RXRB 1034 POU1F1 TEF 1035 POU2AF1 EGR2

1036 POU2AF1 JUND 1037 POU2AF1 SREBF2 1038 POU2F1 EGR2

1039 POU2F1 FOXN2 1040 POU2F1 JUND 1041 POU2F1 SMAD3

1042 POU2F1 SREBF2 1043 POU2F2 EGR2 1044 POU2F2 JUND
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1045 POU2F2 SREBF2 1046 POU2F3 EGR2 1047 POU2F3 JUND

1048 POU2F3 SMAD3 1049 POU2F3 SREBF2 1050 POU3F1 EGR2

1051 POU3F1 JUND 1052 POU3F1 SREBF2 1053 POU3F1 STAT3

1054 POU3F2 EGR2 1055 POU3F2 JUND 1056 POU3F2 SREBF2

1057 POU3F2 STAT3 1058 POU3F3 EGR2 1059 POU3F3 JUND

1060 POU3F3 SREBF2 1061 POU5F1 EGR2 1062 POU5F1 JUND

1063 POU5F1 SREBF2 1064 PPARA ATF2 1065 PPARA JUND

1066 PPARG GABPA 1067 PPARG SP2 1068 PURA BHLHE40

1069 PURA CNOT3 1070 PURA ZBTB7B 1071 RARA ING4

1072 RARA IRF9 1073 RARA SREBF1 1074 RARA ZNF143

1075 RBPJ RBPJ 1076 REL HES1 1077 REL IRF2

1078 REL NFKB2 1079 RELA EGR1 1080 RELA HES1

1081 RELA IRF1 1082 RELA IRF2 1083 RELA JUNB

1084 RELA NFE2L2 1085 RELA NFKB2 1086 RELA RBPJ

1087 RELA REL 1088 RELA RFX5 1089 RELB IRF2

1090 RELB NFE2L2 1091 RELB REL 1092 REST CDC5L

1093 REST GLI1 1094 REST NRF1 1095 REST ZNF219

1096 RFX1 ATF7 1097 RFX1 BDP1 1098 RFX1 BRCA1

1099 RFX1 FOXN2 1100 RFX1 GTF2I 1101 RFX1 JUNB

1102 RFX1 MZF1 1103 RFX1 NR2F2 1104 RFX1 RFX2

1105 RFX2 JUNB 1106 RFX5 JUNB 1107 RORA DBP

1108 RREB1 NR6A1 1109 RXRA ATF2 1110 RXRA ATF4

1111 RXRA BHLHE40 1112 RXRA CNOT3 1113 RXRA DDIT3

1114 RXRA ING4 1115 RXRA IRF9 1116 RXRA JUND

1117 RXRA SREBF1 1118 RXRA TBP 1119 RXRA ZNF143

1120 RXRB BHLHE40 1121 RXRB CNOT3 1122 RXRB ING4

1123 RXRB IRF9 1124 RXRB SREBF1 1125 RXRB TBP

1126 RXRB ZNF143 1127 SIX4 GLI1 1128 SMAD4 NFYA

1129 SMAD4 PKNOX1 1130 SP1 ATF1 1131 SP1 ATF2

1132 SP1 ATF4 1133 SP1 ATF5 1134 SP1 ATF7

1135 SP1 BHLHE40 1136 SP1 BRF1 1137 SP1 CEBPB

1138 SP1 CHURC1 1139 SP1 CNOT3 1140 SP1 CREM

1141 SP1 CTCF 1142 SP1 DBP 1143 SP1 DDIT3

1144 SP1 DLX2 1145 SP1 E4F1 1146 SP1 EGR1

1147 SP1 ELK4 1148 SP1 EP300 1149 SP1 ERF

1150 SP1 ESRRA 1151 SP1 ETV4 1152 SP1 FOXA3

1153 SP1 FOXH1 1154 SP1 FOXJ1 1155 SP1 FOXJ3

1156 SP1 FOXN2 1157 SP1 FOXO3 1158 SP1 FOXP3

1159 SP1 GABPA 1160 SP1 GTF2A1 1161 SP1 GTF2I

1162 SP1 GZF1 1163 SP1 HBP1 1164 SP1 HES1

1165 SP1 HIF1A 1166 SP1 HINFP 1167 SP1 HOMEZ

1168 SP1 HSF1 1169 SP1 HSF2 1170 SP1 IRF1

1171 SP1 IRF2 1172 SP1 JUN 1173 SP1 JUNB

1174 SP1 JUND 1175 SP1 KLF11 1176 SP1 MAFF

1177 SP1 MAX 1178 SP1 MAZ 1179 SP1 MECP2

1180 SP1 MZF1 1181 SP1 NFATC3 1182 SP1 NFE2L1

1183 SP1 NFE2L2 1184 SP1 NFKB2 1185 SP1 NFYA

1186 SP1 NR1H2 1187 SP1 NR2C2 1188 SP1 NR3C1

1189 SP1 NR4A1 1190 SP1 NR6A1 1191 SP1 OAZ1

1192 SP1 PARP1 1193 SP1 PITX3 1194 SP1 PKNOX1
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1195 SP1 POU2F1 1196 SP1 PPARD 1197 SP1 RBPJ

1198 SP1 REL 1199 SP1 RELA 1200 SP1 RELB

1201 SP1 RFX1 1202 SP1 RFX2 1203 SP1 RXRB

1204 SP1 SIRT6 1205 SP1 SMAD2 1206 SP1 SP1

1207 SP1 SP2 1208 SP1 SP3 1209 SP1 SP4

1210 SP1 SREBF1 1211 SP1 SREBF2 1212 SP1 SRF

1213 SP1 STAT1 1214 SP1 STAT2 1215 SP1 STAT3

1216 SP1 STAT6 1217 SP1 TBP 1218 SP1 TCF12

1219 SP1 TCF3 1220 SP1 TEF 1221 SP1 TGIF1

1222 SP1 TOPORS 1223 SP1 TP53 1224 SP1 TRIM28

1225 SP1 UBP1 1226 SP1 USF1 1227 SP1 YY1

1228 SP1 ZBTB33 1229 SP1 ZBTB7A 1230 SP1 ZBTB7B

1231 SP1 ZFP161 1232 SP1 ZNF143 1233 SP1 ZNF238

1234 SP1 ZNF333 1235 SP1 ZNF628 1236 SP2 ATF1

1237 SP2 ATF2 1238 SP2 ATF4 1239 SP2 ATF5

1240 SP2 ATF7 1241 SP2 BHLHE40 1242 SP2 BRF1

1243 SP2 CEBPB 1244 SP2 CHURC1 1245 SP2 CNOT3

1246 SP2 CREM 1247 SP2 CTCF 1248 SP2 DBP

1249 SP2 DDIT3 1250 SP2 DLX2 1251 SP2 E4F1

1252 SP2 EGR1 1253 SP2 ELK4 1254 SP2 EP300

1255 SP2 ESRRA 1256 SP2 ETV4 1257 SP2 FOXH1

1258 SP2 FOXJ1 1259 SP2 FOXN2 1260 SP2 FOXO3

1261 SP2 GABPA 1262 SP2 GTF2A1 1263 SP2 GTF2I

1264 SP2 GZF1 1265 SP2 HBP1 1266 SP2 HES1

1267 SP2 HIF1A 1268 SP2 HINFP 1269 SP2 HOMEZ

1270 SP2 HSF1 1271 SP2 IRF1 1272 SP2 IRF2

1273 SP2 JUN 1274 SP2 JUNB 1275 SP2 JUND

1276 SP2 KLF11 1277 SP2 MAX 1278 SP2 MAZ

1279 SP2 MECP2 1280 SP2 MZF1 1281 SP2 NFATC3

1282 SP2 NFE2L1 1283 SP2 NFE2L2 1284 SP2 NFYA

1285 SP2 NR1H2 1286 SP2 NR2C2 1287 SP2 NR4A1

1288 SP2 NR6A1 1289 SP2 OAZ1 1290 SP2 PARP1

1291 SP2 PITX3 1292 SP2 PKNOX1 1293 SP2 POU2F1

1294 SP2 PPARD 1295 SP2 RBPJ 1296 SP2 REL

1297 SP2 RELB 1298 SP2 RFX1 1299 SP2 RFX2

1300 SP2 RXRB 1301 SP2 SIRT6 1302 SP2 SMAD2

1303 SP2 SP1 1304 SP2 SP2 1305 SP2 SP3

1306 SP2 SP4 1307 SP2 SREBF2 1308 SP2 SRF

1309 SP2 STAT2 1310 SP2 STAT3 1311 SP2 TBP

1312 SP2 TCF12 1313 SP2 TCF3 1314 SP2 TEF

1315 SP2 TGIF1 1316 SP2 TOPORS 1317 SP2 TP53

1318 SP2 TRIM28 1319 SP2 UBP1 1320 SP2 USF1

1321 SP2 YY1 1322 SP2 ZBTB33 1323 SP2 ZBTB7B

1324 SP2 ZFP161 1325 SP2 ZNF143 1326 SP2 ZNF238

1327 SP2 ZNF333 1328 SP2 ZNF628 1329 SP3 ATF1

1330 SP3 ATF2 1331 SP3 ATF4 1332 SP3 ATF5

1333 SP3 ATF7 1334 SP3 BHLHE40 1335 SP3 BRF1

1336 SP3 CEBPB 1337 SP3 CHURC1 1338 SP3 CNOT3

1339 SP3 CREM 1340 SP3 CTCF 1341 SP3 DBP

1342 SP3 DDIT3 1343 SP3 DLX2 1344 SP3 E4F1
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1345 SP3 EGR1 1346 SP3 ELK4 1347 SP3 EP300

1348 SP3 ESRRA 1349 SP3 ETV4 1350 SP3 FOXA3

1351 SP3 FOXH1 1352 SP3 FOXJ1 1353 SP3 FOXJ3

1354 SP3 FOXN2 1355 SP3 FOXO3 1356 SP3 GABPA

1357 SP3 GTF2A1 1358 SP3 GTF2I 1359 SP3 GZF1

1360 SP3 HBP1 1361 SP3 HES1 1362 SP3 HIF1A

1363 SP3 HINFP 1364 SP3 HOMEZ 1365 SP3 HSF1

1366 SP3 HSF2 1367 SP3 IRF1 1368 SP3 IRF2

1369 SP3 JUN 1370 SP3 JUNB 1371 SP3 JUND

1372 SP3 KLF11 1373 SP3 MAX 1374 SP3 MAZ

1375 SP3 MECP2 1376 SP3 MZF1 1377 SP3 NFATC3

1378 SP3 NFE2L1 1379 SP3 NFE2L2 1380 SP3 NFYA

1381 SP3 NR1H2 1382 SP3 NR2C2 1383 SP3 NR3C1

1384 SP3 NR4A1 1385 SP3 NR6A1 1386 SP3 OAZ1

1387 SP3 PARP1 1388 SP3 PITX3 1389 SP3 PKNOX1

1390 SP3 POU2F1 1391 SP3 PPARD 1392 SP3 RBPJ

1393 SP3 REL 1394 SP3 RELA 1395 SP3 RELB

1396 SP3 RFX1 1397 SP3 RFX2 1398 SP3 RXRB

1399 SP3 SIRT6 1400 SP3 SMAD2 1401 SP3 SP1

1402 SP3 SP2 1403 SP3 SP3 1404 SP3 SP4

1405 SP3 SREBF1 1406 SP3 SREBF2 1407 SP3 SRF

1408 SP3 STAT1 1409 SP3 STAT2 1410 SP3 STAT3

1411 SP3 TBP 1412 SP3 TCF12 1413 SP3 TCF3

1414 SP3 TEF 1415 SP3 TERF1 1416 SP3 TGIF1

1417 SP3 TOPORS 1418 SP3 TP53 1419 SP3 TRIM28

1420 SP3 UBP1 1421 SP3 USF1 1422 SP3 YY1

1423 SP3 ZBTB33 1424 SP3 ZBTB7A 1425 SP3 ZBTB7B

1426 SP3 ZFP161 1427 SP3 ZNF143 1428 SP3 ZNF238

1429 SP3 ZNF333 1430 SP3 ZNF628 1431 SP4 ATF1

1432 SP4 ATF2 1433 SP4 ATF4 1434 SP4 ATF5

1435 SP4 ATF7 1436 SP4 BHLHE40 1437 SP4 BRF1

1438 SP4 CEBPB 1439 SP4 CHURC1 1440 SP4 CNOT3

1441 SP4 CREM 1442 SP4 CTCF 1443 SP4 DBP

1444 SP4 DDIT3 1445 SP4 DLX2 1446 SP4 E4F1

1447 SP4 EGR1 1448 SP4 ELK4 1449 SP4 EP300

1450 SP4 ESRRA 1451 SP4 ETV4 1452 SP4 FOXH1

1453 SP4 FOXJ1 1454 SP4 FOXJ3 1455 SP4 FOXN2

1456 SP4 FOXO3 1457 SP4 GABPA 1458 SP4 GTF2A1

1459 SP4 GTF2I 1460 SP4 GZF1 1461 SP4 HBP1

1462 SP4 HES1 1463 SP4 HIF1A 1464 SP4 HINFP

1465 SP4 HOMEZ 1466 SP4 HSF1 1467 SP4 IRF1

1468 SP4 IRF2 1469 SP4 JUN 1470 SP4 JUNB

1471 SP4 JUND 1472 SP4 KLF11 1473 SP4 MAX

1474 SP4 MAZ 1475 SP4 MECP2 1476 SP4 MZF1

1477 SP4 NFATC3 1478 SP4 NFE2L1 1479 SP4 NFE2L2

1480 SP4 NFYA 1481 SP4 NR1H2 1482 SP4 NR2C2

1483 SP4 NR4A1 1484 SP4 NR6A1 1485 SP4 OAZ1

1486 SP4 PARP1 1487 SP4 PITX3 1488 SP4 PKNOX1

1489 SP4 POU2F1 1490 SP4 PPARD 1491 SP4 RBPJ

1492 SP4 REL 1493 SP4 RELA 1494 SP4 RELB
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1495 SP4 RFX1 1496 SP4 RFX2 1497 SP4 RXRB

1498 SP4 SIRT6 1499 SP4 SMAD2 1500 SP4 SP1

1501 SP4 SP2 1502 SP4 SP3 1503 SP4 SP4

1504 SP4 SREBF1 1505 SP4 SREBF2 1506 SP4 SRF

1507 SP4 STAT2 1508 SP4 STAT3 1509 SP4 TBP

1510 SP4 TCF12 1511 SP4 TCF3 1512 SP4 TEF

1513 SP4 TGIF1 1514 SP4 TOPORS 1515 SP4 TP53

1516 SP4 TRIM28 1517 SP4 UBP1 1518 SP4 USF1

1519 SP4 YY1 1520 SP4 ZBTB33 1521 SP4 ZBTB7B

1522 SP4 ZFP161 1523 SP4 ZNF143 1524 SP4 ZNF238

1525 SP4 ZNF263 1526 SP4 ZNF333 1527 SP4 ZNF628

1528 SPI1 MAZ 1529 SPI1 MTF1 1530 SPI1 NR1I3

1531 SPI1 RBPJ 1532 SPI1 RELB 1533 SPI1 RFX5

1534 SPI1 TBP 1535 SPIB RXRB 1536 SPZ1 DBP

1537 SPZ1 EGR1 1538 SPZ1 ELK4 1539 SPZ1 GABPA

1540 SPZ1 HMBOX1 1541 SPZ1 IRF2 1542 SPZ1 NR4A1

1543 SPZ1 SREBF1 1544 SPZ1 ZBTB7B 1545 SREBF1 IRF2

1546 SREBF1 JUND 1547 SREBF1 MAZ 1548 SREBF1 NFYA

1549 SREBF1 PPARD 1550 SREBF1 RELB 1551 SREBF1 SP2

1552 SREBF1 SREBF2 1553 SREBF1 TOPORS 1554 SREBF1 USF1

1555 SREBF2 IRF2 1556 SREBF2 JUN 1557 SREBF2 JUND

1558 SREBF2 MAZ 1559 SREBF2 NFE2L1 1560 SREBF2 PPARD

1561 SREBF2 SP2 1562 SREBF2 SREBF2 1563 SREBF2 UBP1

1564 SRF E4F1 1565 SRF EGR1 1566 SRF EGR2

1567 SRF EGR3 1568 SRF ING4 1569 SRF JUNB

1570 SRF NR2F2 1571 SRF NR4A1 1572 SRF SRF

1573 STAT1 CHURC1 1574 STAT1 FOXA3 1575 STAT1 IRF9

1576 STAT1 MAFF 1577 STAT1 MAX 1578 STAT1 SRF

1579 STAT2 MAFF 1580 STAT2 MAX 1581 STAT3 CHURC1

1582 STAT3 FOXA3 1583 STAT3 IRF9 1584 STAT3 MAFF

1585 STAT3 MAX 1586 STAT4 IRF9 1587 STAT4 MAFF

1588 STAT4 MAX 1589 STAT5A FOXA3 1590 STAT5A IRF9

1591 STAT5A MAFF 1592 STAT5A MAX 1593 STAT5B IRF9

1594 STAT5B MAFF 1595 STAT5B MAX 1596 STAT6 MAFF

1597 STAT6 MAX 1598 TAL1 ATF7 1599 TAL1 GTF2A1

1600 TAL1 TOPORS 1601 TCF3 ATF1 1602 TCF3 CEBPE

1603 TCF3 DLX2 1604 TCF3 HES1 1605 TCF3 HMBOX1

1606 TCF3 ING4 1607 TCF3 SRF 1608 TCF3 TEF

1609 TCF3 TERF1 1610 TCF3 ZBTB7A 1611 TFAP2A ATF1

1612 TFAP2A ATF5 1613 TFAP2A ATF7 1614 TFAP2A BCL6

1615 TFAP2A BHLHE40 1616 TFAP2A CTCF 1617 TFAP2A DEAF1

1618 TFAP2A E2F7 1619 TFAP2A E4F1 1620 TFAP2A EP300

1621 TFAP2A ESRRA 1622 TFAP2A ETV4 1623 TFAP2A FOXO3

1624 TFAP2A GZF1 1625 TFAP2A HES1 1626 TFAP2A HMBOX1

1627 TFAP2A HSF1 1628 TFAP2A IRF2 1629 TFAP2A JUN

1630 TFAP2A JUNB 1631 TFAP2A KLF11 1632 TFAP2A KLF15

1633 TFAP2A MAFA 1634 TFAP2A MAFF 1635 TFAP2A MAZ

1636 TFAP2A NFE2L2 1637 TFAP2A OAZ1 1638 TFAP2A PARP1

1639 TFAP2A PATZ1 1640 TFAP2A POU2F1 1641 TFAP2A PURA

1642 TFAP2A RBPJ 1643 TFAP2A REL 1644 TFAP2A RELB
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1645 TFAP2A SIRT6 1646 TFAP2A SP1 1647 TFAP2A SP4

1648 TFAP2A SREBF2 1649 TFAP2A SRF 1650 TFAP2A STAT3

1651 TFAP2A TEF 1652 TFAP2A TFAP4 1653 TFAP2A TGIF1

1654 TFAP2A TOPORS 1655 TFAP2A TP53 1656 TFAP2A TRIM28

1657 TFAP2A USF1 1658 TFAP2A ZBTB7B 1659 TFAP2A ZFP161

1660 TFAP2A ZNF143 1661 TFAP2A ZNF238 1662 TFAP2B ATF1

1663 TFAP2B BCL6 1664 TFAP2B BHLHE40 1665 TFAP2B CTCF

1666 TFAP2B DEAF1 1667 TFAP2B E2F7 1668 TFAP2B E4F1

1669 TFAP2B EP300 1670 TFAP2B ESRRA 1671 TFAP2B ETV4

1672 TFAP2B FOXO3 1673 TFAP2B GZF1 1674 TFAP2B HES1

1675 TFAP2B HMBOX1 1676 TFAP2B HSF1 1677 TFAP2B IRF2

1678 TFAP2B JUN 1679 TFAP2B JUNB 1680 TFAP2B KLF11

1681 TFAP2B KLF15 1682 TFAP2B MAFF 1683 TFAP2B MAZ

1684 TFAP2B NFE2L2 1685 TFAP2B OAZ1 1686 TFAP2B PARP1

1687 TFAP2B PATZ1 1688 TFAP2B POU2F1 1689 TFAP2B PURA

1690 TFAP2B RBPJ 1691 TFAP2B REL 1692 TFAP2B RELB

1693 TFAP2B SIRT6 1694 TFAP2B SP4 1695 TFAP2B SREBF2

1696 TFAP2B SRF 1697 TFAP2B STAT3 1698 TFAP2B TFAP4

1699 TFAP2B TGIF1 1700 TFAP2B TOPORS 1701 TFAP2B TP53

1702 TFAP2B TRIM28 1703 TFAP2B USF1 1704 TFAP2B ZBTB7B

1705 TFAP2B ZFP161 1706 TFAP2B ZNF143 1707 TFAP2B ZNF238

1708 TFAP2C ATF1 1709 TFAP2C ATF7 1710 TFAP2C BCL6

1711 TFAP2C BHLHE40 1712 TFAP2C CTCF 1713 TFAP2C DEAF1

1714 TFAP2C E2F7 1715 TFAP2C E4F1 1716 TFAP2C EP300

1717 TFAP2C ESRRA 1718 TFAP2C ETV4 1719 TFAP2C FOXO3

1720 TFAP2C GZF1 1721 TFAP2C HES1 1722 TFAP2C HMBOX1

1723 TFAP2C HSF1 1724 TFAP2C IRF2 1725 TFAP2C JUN

1726 TFAP2C JUNB 1727 TFAP2C KLF11 1728 TFAP2C KLF15

1729 TFAP2C MAFF 1730 TFAP2C MAZ 1731 TFAP2C NFE2L2

1732 TFAP2C OAZ1 1733 TFAP2C PARP1 1734 TFAP2C PATZ1

1735 TFAP2C POU2F1 1736 TFAP2C PURA 1737 TFAP2C RBPJ

1738 TFAP2C REL 1739 TFAP2C RELB 1740 TFAP2C SIRT6

1741 TFAP2C SP4 1742 TFAP2C SREBF2 1743 TFAP2C SRF

1744 TFAP2C STAT3 1745 TFAP2C TEF 1746 TFAP2C TFAP4

1747 TFAP2C TGIF1 1748 TFAP2C TOPORS 1749 TFAP2C TP53

1750 TFAP2C TRIM28 1751 TFAP2C USF1 1752 TFAP2C ZBTB7B

1753 TFAP2C ZFP161 1754 TFAP2C ZNF143 1755 TFAP2C ZNF238

1756 TFAP4 CDC5L 1757 TFAP4 E2F7 1758 TFAP4 TP53

1759 TFCP2 CTCF 1760 TFCP2 DBP 1761 TFCP2 GTF2I

1762 TFCP2 MAZ 1763 TFCP2L1 DBP 1764 TFCP2L1 TP53

1765 TFDP1 ATF4 1766 TFDP1 E2F1 1767 TFDP1 MAZ

1768 TFDP2 ATF4 1769 TFDP2 E2F1 1770 TFDP2 MAZ

1771 THRA ZNF143 1772 THRB ZNF143 1773 TLX2 CREM

1774 TP53 GABPB1 1775 TP53 HOMEZ 1776 TP53 RBPJ

1777 TP53 RELB 1778 TP63 RELB 1779 TP73 RELB

1780 TRIM28 CBFB 1781 TRIM28 ELK4 1782 TRIM28 ESRRA

1783 TRIM28 FOXO3 1784 TRIM28 GTF2A1 1785 TRIM28 GZF1

1786 TRIM28 MAFA 1787 TRIM28 PITX3 1788 TRIM28 SMAD2

1789 TRIM28 SREBF2 1790 TRIM28 SRF 1791 TRIM28 TGIF1

1792 TRIM28 TP53 1793 TRIM28 YY1 1794 USF1 DBP
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1795 USF1 GTF2A1 1796 USF1 HINFP 1797 USF1 IRF9

1798 USF1 MAFG 1799 USF1 PITX3 1800 USF1 TOPORS

1801 USF2 DBP 1802 USF2 GTF2A1 1803 USF2 HINFP

1804 USF2 IRF9 1805 USF2 MAFG 1806 USF2 PITX3

1807 VDR BHLHE40 1808 VDR CNOT3 1809 VDR HBP1

1810 VDR MECP2 1811 VDR NR6A1 1812 VDR RFX5

1813 VDR SP1 1814 VDR SP3 1815 VDR SP4

1816 VDR TBP 1817 WT1 BHLHE40 1818 WT1 DBP

1819 WT1 DDIT3 1820 WT1 ELK4 1821 WT1 EP300

1822 WT1 FOXO3 1823 WT1 GZF1 1824 WT1 JUN

1825 WT1 MAZ 1826 WT1 MECP2 1827 WT1 NFATC3

1828 WT1 PATZ1 1829 WT1 POU2F1 1830 WT1 SP3

1831 WT1 STAT3 1832 WT1 TEF 1833 WT1 TP53

1834 WT1 ZBTB7B 1835 WT1 ZFP161 1836 XBP1 RXRB

1837 YY1 ARNT 1838 YY1 DEAF1 1839 YY1 E4F1

1840 YY1 EGR2 1841 YY1 EP300 1842 YY1 ING4

1843 YY1 NFYA 1844 YY1 NR1I3 1845 YY1 RXRB

1846 YY1 USF1 1847 ZBTB6 NFYA 1848 ZBTB7B ATF1

1849 ZBTB7B ATF2 1850 ZBTB7B ATF5 1851 ZBTB7B BHLHE40

1852 ZBTB7B BRF1 1853 ZBTB7B CEBPB 1854 ZBTB7B CREM

1855 ZBTB7B DBP 1856 ZBTB7B DDIT3 1857 ZBTB7B DLX2

1858 ZBTB7B E4F1 1859 ZBTB7B ELK4 1860 ZBTB7B EP300

1861 ZBTB7B ESRRA 1862 ZBTB7B FOXN2 1863 ZBTB7B FOXO3

1864 ZBTB7B FOXP3 1865 ZBTB7B GTF2I 1866 ZBTB7B GZF1

1867 ZBTB7B HBP1 1868 ZBTB7B HES1 1869 ZBTB7B IRF1

1870 ZBTB7B JUN 1871 ZBTB7B JUND 1872 ZBTB7B KLF11

1873 ZBTB7B MAFF 1874 ZBTB7B MAX 1875 ZBTB7B MAZ

1876 ZBTB7B MECP2 1877 ZBTB7B MZF1 1878 ZBTB7B NFATC3

1879 ZBTB7B NFE2L1 1880 ZBTB7B NFYA 1881 ZBTB7B NR4A1

1882 ZBTB7B NR6A1 1883 ZBTB7B OAZ1 1884 ZBTB7B PITX3

1885 ZBTB7B PKNOX1 1886 ZBTB7B POU2F1 1887 ZBTB7B RBPJ

1888 ZBTB7B RELB 1889 ZBTB7B RFX1 1890 ZBTB7B RFX5

1891 ZBTB7B SIRT6 1892 ZBTB7B SP1 1893 ZBTB7B SP2

1894 ZBTB7B SP3 1895 ZBTB7B SP4 1896 ZBTB7B SRF

1897 ZBTB7B STAT3 1898 ZBTB7B TBP 1899 ZBTB7B TCF12

1900 ZBTB7B TCF3 1901 ZBTB7B TEF 1902 ZBTB7B TOPORS

1903 ZBTB7B TP53 1904 ZBTB7B TRIM28 1905 ZBTB7B YY1

1906 ZBTB7B ZBTB7B 1907 ZBTB7B ZNF143 1908 ZBTB7B ZNF238

1909 ZBTB7B ZNF628 1910 ZEB1 TERF1 1911 ZFP161 DDIT3

1912 ZFP161 ELK4 1913 ZFP161 MAZ 1914 ZFP161 SP3

1915 ZFP42 ARNT 1916 ZFP42 E4F1 1917 ZFP42 EP300

1918 ZFP42 ING4 1919 ZFP42 MAZ 1920 ZFP42 NFYA

1921 ZFX BRF1 1922 ZFX CREM 1923 ZFX CTCF

1924 ZFX DBP 1925 ZFX DEAF1 1926 ZFX E2F7

1927 ZFX E4F1 1928 ZFX EGR1 1929 ZFX ELK4

1930 ZFX EP300 1931 ZFX ESRRA 1932 ZFX FOXO3

1933 ZFX GTF2I 1934 ZFX GZF1 1935 ZFX HES1

1936 ZFX HIF1A 1937 ZFX HSF1 1938 ZFX IRF2

1939 ZFX JUNB 1940 ZFX JUND 1941 ZFX KLF15

1942 ZFX MAFF 1943 ZFX NFATC3 1944 ZFX NFE2L1
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1945 ZFX NFE2L2 1946 ZFX NFYA 1947 ZFX NR2C2

1948 ZFX PATZ1 1949 ZFX PKNOX1 1950 ZFX POU2F1

1951 ZFX RBPJ 1952 ZFX RELB 1953 ZFX RFX1

1954 ZFX SMAD2 1955 ZFX SMAD7 1956 ZFX SP1

1957 ZFX SP4 1958 ZFX SREBF2 1959 ZFX SRF

1960 ZFX TCF3 1961 ZFX TFAP4 1962 ZFX TOPORS

1963 ZFX TRIM28 1964 ZFX YY1 1965 ZFX ZBTB7A

1966 ZFX ZNF143 1967 ZFX ZNF263 1968 ZNF143 ATF7

1969 ZNF143 FOXA3 1970 ZNF143 GABPA 1971 ZNF143 GTF2I

1972 ZNF143 MAX 1973 ZNF143 MZF1 1974 ZNF143 NFE2L1

1975 ZNF143 NR6A1 1976 ZNF143 TP73 1977 ZNF143 ZBTB7A

1978 ZNF143 ZNF143 1979 ZNF143 ZNF219 1980 ZNF143 ZNF263

1981 ZNF143 ZNF628 1982 ZNF148 BHLHE40 1983 ZNF148 CNOT3

1984 ZNF148 CTCF 1985 ZNF148 DDIT3 1986 ZNF148 ELK4

1987 ZNF148 EP300 1988 ZNF148 ESRRA 1989 ZNF148 HES1

1990 ZNF148 HOMEZ 1991 ZNF148 JUN 1992 ZNF148 MAZ

1993 ZNF148 MECP2 1994 ZNF148 NFATC3 1995 ZNF148 POU2F1

1996 ZNF148 SP1 1997 ZNF148 SP3 1998 ZNF148 STAT3

1999 ZNF148 TEF 2000 ZNF148 ZBTB7B 2001 ZNF148 ZNF238

2002 ZNF219 BHLHE40 2003 ZNF219 BRF1 2004 ZNF219 CNOT3

2005 ZNF219 CTCF 2006 ZNF219 DBP 2007 ZNF219 DDIT3

2008 ZNF219 DLX2 2009 ZNF219 EP300 2010 ZNF219 ETV4

2011 ZNF219 FOXN2 2012 ZNF219 FOXO3 2013 ZNF219 GTF2I

2014 ZNF219 IRF2 2015 ZNF219 JUN 2016 ZNF219 JUNB

2017 ZNF219 JUND 2018 ZNF219 NFATC3 2019 ZNF219 NFYA

2020 ZNF219 NR4A1 2021 ZNF219 NR6A1 2022 ZNF219 POU2F1

2023 ZNF219 RBPJ 2024 ZNF219 SP4 2025 ZNF219 SRF

2026 ZNF219 TP53 2027 ZNF219 ZBTB7B 2028 ZNF219 ZNF238

2029 ZNF263 BHLHE40 2030 ZNF263 CNOT3 2031 ZNF263 EGR1

2032 ZNF263 MAZ 2033 ZNF263 MECP2 2034 ZNF263 NFE2L2

2035 ZNF263 SP1 2036 ZNF263 SP4 2037 ZNF263 STAT3

2038 ZNF263 ZNF238 2039 ZNF350 FOXM1 2040 ZNF350 TBP

2041 ZNF589 MECP2
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Table A.6. 23 protein complexes in which the proteins in the complex
are highly connected with HK interactions. Rows without background are
TFs in one complex, while rows with gray background are HK
interactions connecting TFs in the complex.

Complex ID TFs or interactions lists N

EP300;ETS1;FOXC1;GATA2;GATA3;GATA5;GATA6;KLF4;MZF1;SP1;SREBF1;SREBF2;TFAP2A;YY1;ZNF354C 15
KLF4-EP300;SP1-EP300;TFAP2A-EP300;YY1-EP300;ETS1-MZF1;KLF4-MZF1;
SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-SREBF1;KLF4-SREBF2;

HC5737

SP1-SREBF2;SREBF1-SREBF2;SREBF2-SREBF2;TFAP2A-SREBF2;KLF4-YY1;SP1-YY1
19

ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NKX2-5;PAX2;SP1;SPIB;TFAP2A;USF1;YY1 13
ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1;HC6033
SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1

13

BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;SP1;SPIB;TFAP2A;USF1;YY1;ZNF354C 14
ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1;HC3896
SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1

13

BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;NKX2-5;SP1;SPIB;TFAP2A;USF1;YY1;ZNF354C 15
ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-USF1;HC6644
SP1-USF1;TFAP2A-USF1;YY1-USF1;KLF4-YY1;SP1-YY1

13

ETS1;FOXC1;FOXL1;GATA2;GATA3;HOXA5;HSF1;MZF1;NFIC;SP1;TFAP2A;USF1;YY1;ZNF354C 14
SP1-HSF1;TFAP2A-HSF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-USF1;HC4454
TFAP2A-USF1;YY1-USF1;SP1-YY1

11

CDC5L;ETS1;FOXC1;GATA2;GATA3;MZF1;NFIC;NKX2-5;REL;SP1;ZEB1 11
HC8755

ETS1-CDC5L;ETS1-MZF1;SP1-MZF1;SP1-REL;MZF1-SP1;SP1-SP1 6

BRCA1;ETS1;FOXC1;FOXL1;GATA2;KLF4;MZF1;NFIC;NR4A2;SP1;SPIB;TBP;TFAP2A;YY1;ZEB1 15
ETS1-MZF1;KLF4-MZF1;SP1-MZF1;KLF4-SP1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;KLF4-TBP;HC6745
SP1-TBP;KLF4-YY1;SP1-YY1

11

ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;NKX3-2;REL;SOX10;SP1;TFAP2A;YY1;ZNF354C 13
HC4615

ETS1-MZF1;SP1-MZF1;SP1-REL;TFAP2A-REL;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 8

ARNT;ELF5;ETS1;FOXC1;GATA2;GATA3;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1 13
HC4912

YY1-ARNT;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 7

BRCA1;ELK1;ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1;ZFX;ZNF354C 15
HC6667

ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;ZFX-SP1;SP1-YY1;ZFX-YY1 9

BRCA1;ELK1;ETS1;FOXC1;FOXL1;GATA2;MZF1;NFIC;SOX10;SP1;SPIB;TFAP2A;YY1;ZFX;ZNF354C 15
HC9842

ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;ZFX-SP1;SP1-YY1;ZFX-YY1 9

BRCA1;ETS1;FOXC1;GATA2;MZF1;NFIC;NKX2-5;REL;SOX10;SP1;SPIB;TFAP2A;YY1;ZEB1;ZNF354C 15
HC2178

ETS1-MZF1;SP1-MZF1;SP1-REL;TFAP2A-REL;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 8

BRCA1;ETS1;FOXC1;FOXL1;GATA2;GATA3;NFYA;NKX2-5;SOX10;SOX5;SP1;SPIB;TFAP2A;YY1;ZNF354C 15
HC9330

ETS1-NFYA;NFYA-NFYA;SP1-NFYA;YY1-NFYA;SP1-SP1;TFAP2A-SP1;NFYA-YY1;SP1-YY1 8

ARID3A;ELF5;ETS1;FOXL1;GATA2;GATA3;HSF1;NFIC;NFIL3;PARP1;SP1;SPIB;TFAP2A;YY1;ZNF354C 15
HC4460

SP1-HSF1;TFAP2A-HSF1;SP1-PARP1;TFAP2A-PARP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 7

ELF5;ETS1;FOXL1;GATA2;GATA3;HSF1;NFIC;NFIL3;PARP1;SP1;SPIB;TFAP2A;YY1;ZEB1;ZNF354C 15
HC6205

SP1-HSF1;TFAP2A-HSF1;SP1-PARP1;TFAP2A-PARP1;SP1-SP1;TFAP2A-SP1;SP1-YY1 7

ARNT;ATF7;BRCA1;ESRRB;ETS1;FOS;FOXC1;GATA2;GATA3;MZF1;NFIC;PAX2;SP1;YY1;ZEB1 15
HC9314

YY1-ARNT;SP1-ATF7;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;SP1-YY1 7

ELK1;ETS1;FOXC1;GATA2;GATA3;HOXA5;MAFB;NFIC;SOX10;SP1;SP4;YY1;ZEB1;ZNF354C 14
HC7980

SP1-SP1;SP4-SP1;SP1-SP4;SP4-SP4;SP1-YY1;SP4-YY1 6

CREB1;ETS1;FOXC1;FOXO3;GATA2;GATA3;MZF1;NFIC;NFYA;PDX1;REL;SOX10;SPIB;TFAP2A;
YY1;ZEB1;ZNF354C

17
HC1277

TFAP2A-FOXO3;ETS1-MZF1;ETS1-NFYA;NFYA-NFYA;YY1-NFYA;CREB1-REL;TFAP2A-REL;NFYA-YY1 8

ELF5;ETS1;FOXC1;FOXL1;GATA2;GATA3;KLF4;NFIC;NFYA;NKX2-5;PDX1;SOX10;TFAP2A;YY1;ZEB1 15
HC7936

ETS1-NFYA;KLF4-NFYA;NFYA-NFYA;YY1-NFYA;KLF4-YY1;NFYA-YY1 6

ELF5;ETS1;FOXC1;FOXL1;GATA2;GATA3;HSF1;KLF4;PDX1;SOX10;TBP;TFAP2A;YY1;ZEB1;ZFX 15
HC4463

KLF4-HSF1;TFAP2A-HSF1;ZFX-HSF1;KLF4-TBP;KLF4-YY1;ZFX-YY1 6

ARID3A;BRCA1;ELF5;ETS1;FOXC1;GATA2;GATA3;MYB;MZF1;NKX2-5;PARP1;SOX10;SP1;YY1;ZNF354C 15
HC6575

ETS1-MZF1;SP1-MZF1;SP1-PARP1;MZF1-SP1;SP1-SP1;SP1-YY1 6

ETS1;FOXC1;FOXO3;GATA2;GATA3;HOXA5;MAFB;MZF1;NFIC;NKX2-5;
PAX2;PDX1;SOX10;SP1;TBP;TFAP2A;YY1;ZEB1;ZNF354C

19
HC2683

SP1-FOXO3;TFAP2A-FOXO3;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;TFAP2A-SP1;SP1-TBP;SP1-YY1 9

ARID3A;BRCA1;CDC5L;CREB1;ELK1;ETS1;FOXC1;FOXL1;GATA2;GATA3;MZF1;NFIC;PDX1;
PRRX2;SOX10;SP1;YY1;ZEB1

18
HC6143

ETS1-CDC5L;ELK1-MZF1;ETS1-MZF1;SP1-MZF1;MZF1-SP1;SP1-SP1;SP1-YY1 7
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