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Summary
Efficiently regulating the arrival of customers through a well-designed

appointment system is a critical factor to the performance of many service

delivery systems. Among various applications, perhaps the most important

application of appointment systems is in healthcare for out-patient and

elective surgery scheduling. In this thesis, a useful managerial insight is

obtained which could improve the performance of appointment systems

in terms of the customers’ waiting times that is a main concern for most

healthcare providers.

We study a single server appointment-based queueing system with two

classes of customers, regular and fast. The excess service time of a fast

customer is stochastically less than that of a regular customer where the

excess service time for each customer is defined to be the difference between

the service duration and the corresponding job allowance (the length of the

appointment slot allocated to the customer). The majority of the appoint-

ment scheduling research focus on finding the optimal schedule (appoint-

ment times) for either homogeneous customers or heterogeneous customers

in a predetermined sequence. Very little is known about the structure of

the optimal arrival sequence for various objective functions. In contrast, we

focus on finding the optimal arrival sequence to minimize the customer’s

waiting time.

We first consider customers with exponential service durations includ-
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ing only one fast customer to provide counter-examples to challenge the

Smallest Variance first (SV) and the Shortest Expected Processing Time

first (SEPT) rules which are widely conjectured to minimize the customer’s

waiting times in the literature. We also provide a sufficient condition to

guarantee that SEPT/SV is not optimal as well as a reasonable explana-

tion for this counter intuitive observation by introducing a new concept,

voucher effect, in appointment systems.

Moreover, we have observed that the optimal slot for the fast customer

is not necessarily the first one, but it is always in the first half of the

sequence. Based on this interesting observation, a useful insight is obtained

which implies that each fast customer must be scheduled in a position that

is in the first half of the positions after the previous fast customer, the First

Half Rule (FHR). This sequencing rule is established under the likelihood

ratio ordering assumption of the excess service times. In addition, a simple

and effective FHR-based heuristic algorithm to completely characterise the

optimal sequence is proposed which shows an impressive performance over

the test problems.

While the application of the FHR is not limited to appointment systems

with constant job allowance, it could be applied to any system with equally

spaced appointment times and two classes of customers from a same service

distribution family with Monotone Likelihood Ratio Property, for example

exponential, beta, Weibull, normal with known variance, uniform, gamma,
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Poisson, geometric and binomial distributions.

Eventually, we extend our results to address two important practical

issues: the server unpunctuality and the customer no-shows. Our results

also could be applied to schedule the breaks in an appointment system with

equally spaced appointment times as well.
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Chapter 1

Introduction

Efficiently regulating the arrival of customers through a well-designed ap-

pointment system is a critical factor to the performance of many service

delivery systems. Among various applications of appointment systems,

e.g. in accounting services, professional consultants, legal services, barber

shops/beauty salons, visa services, container vessel and terminal opera-

tions, airport gates and runway schedules, perhaps the most important

application is in healthcare industry.

Nowadays, healthcare service providers are mostly under a great deal of

pressure to improve efficiency. Besides the high cost of medical resources,

another reason for this pressure is that the world is rapidly ageing. Accord-

ing to the World Health Organization (WHO)1, the world’s population of

people 60 years of age and older has doubled since 1980 and is forecast
1http://www.who.int/features/factfiles/ageing

1
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CHAPTER 1. INTRODUCTION

to reach 2 billion (21%) by 2050. United Nations also reports that the

population ageing is taking place in nearly all the countries of the world 2.

Consequently, the healthcare demand is rapidly growing which emphasizes

the need for improving appointment scheduling systems to increase the uti-

lization of expensive personnel and equipment-based medical resources as

well as reducing waiting times for patients.

Over the past six decades, the problem of designing appointment sys-

tems has been studied widely in the operations research and medical liter-

ature. However, the current literature is still unable to introduce a general

appointment sequencing policy to minimize the customers’ waiting time.

It motivates us to study the appointment sequencing problem.

1.1 Research scope and objective

Appointment scheduling problem is mostly studied in the context of out-

patient and elective surgery scheduling. In the current literature, most

studies consider appointment systems with no customer classification, as-

suming customers are homogeneous and do not address the sequencing as-

pect of the problem. Among studies considering heterogeneous customers,

the majority focus on finding the optimal schedule (appointment times) for

a given sequence of customers. For homogeneous customers or heteroge-
2For more information about population ageing please refer to World Population

Ageing 2013 report by United Nations, Department of Economic and Social Affairs.
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CHAPTER 1. INTRODUCTION

neous customers with a given sequence, the problem can be solved efficiently

mainly based on sub-modularity and convexity properties of the objective

function (see e.g. Begen and Queyranne 2011, Denton and Gupta 2003,

Ge et al. 2014, Kaandorp and Koole 2007, and Wang 1993). Even without

complete information about the service time distributions, the problem of

scheduling arrivals of a fixed sequence can be formulated as a convex conic

optimization problem with a tractable semi-definite relaxation (Kong et al.,

2013).

In contrast, the literature on the appointment sequencing problem is

relatively limited. Very little is known about the structure of the optimal

sequence of customers for various objective functions. While there is no

analytical result for sequencing more than three customers, the optimality

of the smallest variance first rule (SV) is widely conjectured for various

measurements. The reason for this conjecture is that the customers’ waiting

time is usually an important component of the objective, thereby implying

that scheduling a customer with a lower variance of service duration earlier

in the schedule would decrease the expected waiting time of the customers

arriving later.

The appointment scheduling and sequencing problem is extremely diffi-

cult. Since the transient performance measures of the system are analyzed,

standard queueing theory does not apply. The technical complexity origi-

nates from the fact that for calculation of the expected waiting time of an

3



CHAPTER 1. INTRODUCTION

arrival we have to consider the impact of all earlier events. Even under a

deterministic model where the time interval allocated to each customer is

set to a constant, and the service duration for each customer is known in

advance, the sequencing problem is still NP-hard in the strong sense (Kong

et al., 2014).

We study an appointment system with two distinct classes of customers

with random required service durations. Customers within one class are

homogeneous and have the same service time distributions. The problem

is static in the sense that the number of customers of each class and their

service time distribution are known in advance. We investigate the impact

of the sequencing policy on customers’ waiting times when there is a prede-

termined scheduling policy. In other words, we focus on finding the optimal

sequence of customers when the time allowance that should be allocated to

each customer is already decided.

1.2 Summary of research contributions

We start from the simplest case where there are N−1 identical regular cus-

tomers and only one special fast customer to be sequenced in a system with

equally spaced appointment times. The service times are exponentially dis-

tributed and the service rate is higher for the fast customer. We propose

a method to exactly compute the expected customers’ waiting times and

provide counter intuitive examples to show the optimal slot for the fast

4



CHAPTER 1. INTRODUCTION

customer is not necessarily the first one. The results challenge the Small-

est Variance (SV) first rule and the Shortest Expected Processing Time

(SEPT) first rule, which is another famous sequencing policy expected to

be optimal in this case. Then we introduce a new concept, called voucher

effect, in appointment systems to explain this counter intuitive observation.

Moreover, it is observed that the optimal slot for the fast customer is

always within the first half of the sequence. Based on this observation, a

new sequencing rule, called the First Half Rule (FHR), is proposed. We

relax the constant appointment interval and the exponential distribution

assumptions and study a more general appointment system. We establish

the FHR assuming that the excess service time of the fast customer is

smaller than that of a regular customer in likelihood ratio order where the

excess service time of a customer is the difference between his/her service

duration and allocated time interval.

The next contribution of this work is the extension of the applicability

of the FHR to an appointment system with a late server. It could be

helpful especially for the surgical scheduling where the operating room is

still occupied by the previous surgery team at the beginning of the new

session.

After considering an unpunctual server, the results have been extended

to multiple fast customers which makes the FHR a powerful sequencing rule

for appointment systems with two classes of customers. To the best of our

5



CHAPTER 1. INTRODUCTION

knowledge, the FHR is the only appointment sequencing rule analytically

established for sequencing of more than three arrivals with known service

distributions.

A simple and effective appointment sequencing heuristic, based on the

FHR, is proposed which shows an impressive performance to find the opti-

mal sequence.

Finally, we address the no-show phenomenon which is nowadays a main

concern for many service providers especially in the healthcare industry.

The applicability of the FHR is shown where the fast customer is a customer

with a smaller probability of showing up for service. The significance of

this result is that it holds for any service distribution. This result also can

be used to schedule break times in static appointment scheduling problem

with homogeneous customers.

1.3 Notations

We consider the problem of sequencing N punctual customers to a single

server queue. The operational target is to minimize the total expected

customers’ waiting time. We assume the customers can be divided into

two classes based on their excess service times: fast (with an excess service

time distribution F ) and regular (with an excess service time distribution

G), where F is stochastically smaller than G in likelihood ratio order. The

excess service time for each customer is defined to be the difference between

6



CHAPTER 1. INTRODUCTION

his/her service duration and the corresponding job allowance.

Inspired by Kendall’s queueing notation (Kendall et al., 1953), Pegden

and Rosenshine (1990) used the notation S(n)/M/1 to denote a queueing

system in which n identical customers are to be scheduled to a single ex-

ponential server. In a later study, Hassin and Mendel (2008) consider a

showing up probability of p for each customer and denote the system by

S(n, p)/M/1. Following a similar definition, we denote the system as an

S(M,N −M)/(F,G)/1 queue where there are M fast and N −M regular

customers to be sequenced.

We denote the system as S(M,N −M)/(SM,SM ′)/1 where the excess

service times follow shifted exponential distributions with rates µ and µ′,

both shifted by a constant x ≥ 0. Moreover, under deterministic service

time assumption, the problem is denoted by S(M,N −M)/(D,D′)/1.

In the next section, we provide some background information on ap-

pointment scheduling and stochastic ordering.

1.4 Background

In this section, we first briefly review some important aspects of the ap-

pointment scheduling problem and then give an overview of some funda-

mentals of the usual and likelihood ratio stochastic orders.

7
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1.4.1 Appointment scheduling systems overview

We borrow some perspectives from Gupta and Denton (2008). Studies

on appointment scheduling are classified into two categories: static and

dynamic. In the static appointment scheduling, all decisions must be made

prior to the beginning of a service session, while in the dynamic case, the

schedule of future arrivals is revised continuously based on the current state

of the system over the course of the day.

A scheduled customer usually faces two types of access delays: indirect

and direct. Indirect waiting time is the difference between the time that

s/he requests an appointment and the time of that appointment. Direct

waiting time is the difference between the customer’s appointment time (or

his/her arrival time if the customer is tardy) and the time when s/he is

actually served by the service provider.

To evaluate an appointment system, a variety of performance criteria

can be used such as cost-based, fairness and congestion measures. The cost-

based measure is the most common criteria used in the literature. Waiting

time or flow time (the total time a customer spends in the service centre)

of customers and available time, overtime or idle time of server can be used

for calculating the total system cost. The mean and variance of queue sizes

are two examples for congestion and fairness measures respectively.

Arrival process is a key factor that affects the performance of appoint-

ment systems. Presence of late cancellations, unpunctual patients, no-

8



CHAPTER 1. INTRODUCTION

shows (late cancellations that cannot be replaced) and walk-ins (unsched-

uled arrivals that may be urgent) are the most important factors of the

arrival characteristics of customers that make the appointment scheduling

more complicated. Unpunctuality and no-shows of doctors are also chal-

lenging factors for appointment scheduling in healthcare.

Service time variability is another important factor influencing the per-

formance of appointment systems. According to Gupta and Denton (2008),

in the healthcare primary care setting, the vast majority of patients require

services that can be performed within a fixed time length while in specialty

care clinics the patients’ service times tend to vary more depending on the

patients’ diagnoses and other characteristics. Patient classification can be

used to sequence patients as well as to adjust the appointment intervals

based on the distinct service time characteristics of different patient types.

Although there is some evidence that classifying the patients may be advan-

tageous, the majority of the studies assume patients are homogeneous, and

use independently and identically distributed service times for all patients

(Cayirli and Veral, 2003).

A variety of probability distributions are chosen for customer service

times in the literature. Some studies used empirical data to show that the

frequency distributions of observed service times are uni-modal and right-

skewed (e.g. Meza 1998). Many analytical studies use exponential service

times for mathematical tractability purposes.

9
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In this thesis, we consider the static appointment sequencing problem

to minimize the direct waiting time of punctual customers of two classes.

We first study a system with exponential service times, punctual server,

and without no-shows. Then, we relax these assumptions to address more

practical situations.

1.4.2 Fundamentals of stochastic ordering

In probability theory, a stochastic order is a partial order which quanti-

fies the comparison of random variables. Many different orders exist with

various applications. In this section, we briefly give an overview of two im-

portant stochastic orders that compare the location (magnitude) of random

variables: the usual stochastic order and the likelihood ratio order.

Usual Stochastic Order: A random variable X is smaller than a

random variable Y in the usual stochastic order, denoted by X ≤st Y , if

for all t ∈ (−∞,+∞),

P(X > t) ≤ P(Y > t).

It follows that X ≤st Y if, and only if, E[φ(X)] ≤ E[φ(Y )] for all

non-decreasing function φ for which the expectations exist.

Likelihood Ratio Order: A random variable X is said to be smaller

10
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than a random variable Y in the likelihood ratio order, denoted by X ≤lr Y ,

if f(t)
g(t) is non-decreasing in t over the union of the supports of X and Y where

f and g are density functions (mass functions for discrete variables) of X

and Y respectively (a/0 is taken to be +∞ for a > 0).

Let x = {x1, x2, ..., xn} and y = {y1, y2, ..., yn} be two vectors in Rn.

We denote x ≤ y if xi ≤ yi for i = 1, 2, ..., n. Let φ be a multivariate

function with domain in Rn. If φ(x) ≤ [≥]φ(y) whenever x ≤ y, then we

say that the function φ is non-decreasing [non-increasing]. A set U ⊆ Rn

is called upper if y ∈ U whenever y ≥ x and x ∈ U . Now, the multivariate

extension of the usual stochastic order can be described as follows.

Usual Multivariate Stochastic Order: A random vector X is smaller

than a random vector Y in the usual stochastic order, denoted by X ≤st Y,

if for all upper sets U ⊆ Rn,

P{X ∈ U} ≤ P{Y ∈ U}.

It follows that X ≤st Y if, and only if, E[φ(X)] ≤ E[φ(Y)] for all

non-decreasing function φ for which the expectations exist.

We also use “=st” to denote equality in law whenever two random vari-

ables or vectors have the same distribution.

11
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Some useful properties of stochastic orders which are used in this thesis

have been represented in Appendix A.

The most relevant literature to our research is reviewed in the next

section.

1.5 Literature review

Starting with the pioneering work of Bailey (1952) and Welch and Bailey

(1952), the problem of designing appointment systems has been studied

extensively during the past six decades. In this chapter, we briefly review

the most relevant findings to our paper and refer the readers to Cayirli and

Veral (2003), Erdogan et al. (2010), Gupta (2007), and Gupta and Denton

(2008) for comprehensive literature reviews.

In many service delivery systems, the customer population can be dis-

tinctly classified into different groups based on service time characteristics.

For instance, in ambulatory care, some variables used for classifying pa-

tients include major problem, acute problem, acute problem follow-up and

chronic problem (Arbitman, 1986), or for CAT scans, patients could be

classified by procedure type (such as head, spine, brain, chest), or by age,

if pediatric and geriatric patients typically have longer consultation time

compared to adult patients (Cayirli et al., 2006). Another common situa-

tion in healthcare is the new/repeat classification of patients (see Cayirli

et al. 2008 and Kong et al. 2013). The mean and variance of the consul-

12
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tation times of the new patients are usually higher than those of repeat

patients, because the conditions of the new patients are unknown prior to

the first visit. According to Cayirli et al. (2008), a higher percentage of

more complicated cases (e.g., new patients) normally translates into higher

variability in the system performance, and thus proper sequencing of pa-

tients becomes more valuable. In another study, Cayirli et al. (2006) found

that the impact of sequencing on the performance measure can be more

important than the impact of the appointment scheduling rule, and the

panel characteristics such as walk-ins, no-shows, punctuality and overall

session volume, influence the effectiveness of appointment systems.

There are two sequencing policies mostly recommended by researchers

for various objectives in the appointment scheduling literature: the Small-

est Variance first rule (SV), and the Shortest Expected Processing Time

first rule (SEPT).

Smallest Variance first rule (SV) was initially proposed by Weiss

(1990). He can be considered as the first to address the problem of jointly

determining the optimal order of customers and the optimal appointment

times. He showed that sequencing lower-variance procedure first is optimal

in two-customer case under exponential or uniform service duration where

the objective function includes the customer waiting cost and the server idle

cost. He also conjectured that the SV rule could be optimal in more compli-

cated systems. Many researchers subsequently recommended the SV rule

13
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for various appointment scheduling settings (e.g., Klassen and Rohleder

1996, Wang 1999, Rohleder and Klassen 2000, Dexter and Ledolter 2005,

Denton et al. 2007, Pinedo (2009), and Choi and Wilhelm 2012).

Klassen and Rohleder (1996) consider the problem of sequencing pa-

tients of two classes, low and high variance patients, when appointment

intervals are constant. They use simulation to compare alternative ways

of sequencing and find that low-variance patients should be scheduled at

the beginning of the session (called the LVBEG rule) when the objective

is to minimize a linear combination of the patient waiting time and the

operating room idle time costs. In a later study, Rohleder and Klassen

(2000) consider the possibility that the scheduler cannot sequence patients

perfectly when some patients insist on particular slots. In addition, they

consider the possibility that the scheduler can make an error when classify-

ing patients and find that the LVBEG rule still performs well under these

assumptions.

Wang (1999) investigates the sequencing and scheduling problem of

a set of customers with different exponential service rates. He proposes

recursive expressions to find the customers’ flow time distributions as well

as an efficient method to evaluate an objective function that includes the

customers’ flow times and the server’s completion time. Wang explicitly

states that the optimal sequencing policy is in order of increasing variance.

However, no analytical proof is provided for the case of sequencing more

14
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than two customers. We will challenge this result in the next chapter.

Dexter and Ledolter (2005) study prediction bounds for operating room

times (the time we can start surgery for each patient) and consider the effect

of sequencing on the mean tardiness. They point out that sequencing less

uncertain cases earlier reduces the patients’ waiting times.

Denton et al. (2007) formulate the appointment sequencing and schedul-

ing problem as a two-stage stochastic mixed-integer programming model

and incorporate the service time uncertainty into the model using a sample

approximation approach. They have shown that the scheduling problem of

the start times for a given sequence is a linear stochastic program which can

be solved efficiently by the L-shaped algorithm described in Denton and

Gupta (2003). They have considered several simple sequencing heuristic

rules and found that SV can provide the best results among the proposed

heuristics. However, it is concluded that finding a general optimal sequenc-

ing policy is very complicated.

Pinedo (2009) considers the sequencing of two surgeries with indepen-

dent uniform durations. He found that the variance of the surgery duration

has a much stronger influence on the optimal schedule than does the mean.

He also conjectured the optimality of the SV rule for more than two pa-

tients.

Recently, Choi and Wilhelm (2012) study the problem of sequencing

two or three surgeries with durations that follow the lognormal, gamma

15
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or normal distributions. The time allocated to each surgery is its mean

duration time. They consider patient waiting, surgeon idle and operating

room overtime cost, and have shown the optimality of SV rule for the

two-patient case with normal service times. For other cases, they have

numerically confirmed the efficiency of the SV rule.

Shortest Expected Processing Time first rule (SEPT) is optimal

for various machine scheduling models in manufacturing systems. In the

single machine setting, when all jobs are available at time zero, the SEPT

has been shown to minimize the total completion time and the average

number of jobs waiting for processing (Pinedo, 2012). The appointment

scheduling model approaches to the classic single machine scheduling model

when the appointment intervals approach to zero, i.e. all customers arrive

at the beginning of the service session. The SEPT rule therefore minimizes

the total expected customer waiting time under this extreme assumption.

Moreover, in general, the calculation of the waiting times in an appointment

system appears to be similar to the calculation of the job tardiness times

in the counterpart manufacturing system. The SEPT has been shown to

minimize the total expected tardiness under some considerations (Pinedo,

2012). Based on the above discussion, one may expect SEPT to be optimal

for some appointment scheduling measurements.

Lehaney et al. (1999) implemented an appointment system that sorts

patients in ascending order of mean service duration in a National Health
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Service hospital in the US. It is found that SEPT could significantly im-

prove the performance of the clinic in terms of the patient waiting times.

Lebowitz (2003) also reports that scheduling short procedures first im-

proved operating room efficiency in another hospital and provided a bet-

ter operating room schedule by decreasing staff member overtime expense

without reducing surgical throughput.

Marcon and Dexter (2006) consider the impact of sequencing on post

anesthesia care unit staffing. They compare seven sequencing rules using

discrete event simulation and find that the longest case first rule which is

usually used in practice, performs poorly from a staffing perspective. They

recommend the shortest case first rule for a number of decision rules.

Gul et al. (2011) evaluates how 12 different sequencing and scheduling

heuristics perform with respect to the expected patient waiting time and

expected surgical suite overtime. It is found that among the sequencing

heuristics, SEPT performs best.

Besides the papers capturing special patterns for the structure of the

optimal sequence, there are researchers who found that it is very difficult

to generalize any sequencing results (e.g. Bosch and Dietz 2000, 2001,

Jebali et al. 2006, and Mancilla and Storer 2012).

In Bosch and Dietz (2000, 2001), the authors assume that patients may

only be scheduled at regularly-spaced times (every 10 minutes), called lat-

tice program, with the objective of minimizing a weighted sum of waiting
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time and overtime costs. They considered three classes of patients with

phase type and log-normal distributions. Given a sequence, an efficient

gradient-based algorithm is proposed to find the optimal schedule of start-

ing times based on sub-modularity properties of the objective function.

Then, they proposed a pairwise interchange heuristic to sequence patients

of different classes based on sub-modularity and convexity of the objective

function with respect to the arrival time vector. They found that it is very

difficult to generalize any appointment sequencing rule.

Jebali et al. (2006) develop a two-step approach to solve the surgery

assignment and sequencing problem. Firstly, operations are assigned to

operating rooms with regards to the operating room under-time and over-

time costs. Secondly, optimal sequences are found to minimize the total

overtime cost for each operating room. No special pattern is captured for

the optimal sequence.

Mancilla and Storer (2012) formulate a sample approximation two-

stage stochastic programming model for the appointment sequencing and

scheduling problem which is quite similar to the model proposed by Den-

ton et al. (2007). The master problem is used to find sequences and the

sub-problems are scheduling problems (stochastic linear programs). They

propose a heuristic solution approach based on Benders’ decomposition. It

is realized that the master problem becomes extremely hard to solve as

cuts are added. They consider waiting time, idle time and overtime costs
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and have shown that the problem is NP-complete even with two scenarios.

The proposed heuristic could provide better results than just sorting by

variance over the test problems where it utilized much more computing

time than SV rule. No special pattern has been captured for the structure

of the optimal sequence.

In summary, very little is known about the structural properties of the

optimal sequence for various appointment scheduling objective functions.

We look at the problem from a new perspective assuming that the job

allowances are predetermined and focusing on the structure of the optimal

sequence to minimize the customers’ waiting time. By developing an exact

waiting time calculation method, we are able to investigate the performance

of the SEPT and SV rules. After showing that they are not necessarily

optimal, we introduce a new sequencing rule, the First Half Rule (FHR)

which works for sequencing a finite number of customers of two classes

under a mild assumption.

1.6 Organization of the thesis

The structure of this thesis is as follows. In §2, an appointment sequencing

problem with exponential service time and one fast customer is investi-

gated. Counter-examples for the optimality of SEPT/SV are presented

in §2.2.2, followed by an explanation which introduce the voucher effect

to justify scheduling a customer with a higher variance and mean service
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duration first in §2.3. In §3, we establish the FHR based on the likeli-

hood ratio order assumption of the excess service times. Then, we present

two important FHR extensions: late server case in §3.2, and multiple fast

customers in §3.3. A effective FHR-based appointment sequencing heuris-

tic algorithm is developed in §3.4. Later, through incorporating no-shows

in §4, another practical application of the FHR is addressed. Finally, we

conclude in §5 and present some potential directions for future research.
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Chapter 2

Sequencing customers of two

classes with exponential

service durations

We first study an appointment system with one fast customer and N − 1,

N ≥ 2, regular customers. The service durations are exponentially dis-

tributed with rate µ for the fast customer and µ′ for the regular customers,

µ > µ′. The job allowances are set to a predetermined constant x ≥ 0.

That is the customers will arrive punctually at times 0, x, ..., (N − 1)x.

The question we are interested to answer is in order to minimize the

total expected waiting time, should we schedule the fast customer first?

As discussed in §1.5, according to both SV and SEPT rules, the answer

is expected to be yes. Wang (1999) considers appointment sequencing
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of customers with exponential service times and explicitly expresses that

SV is optimal for minimizing the weighted average of the total customers’

flow time and the server completion time where the flow time for each

customer is summation of the waiting time and the service duration (see

Preposition 4 in Wang 1999). Considering the fact that the total expected

service duration is constant, independent of the sequence, and assuming the

server availability cost is zero, our objective function exactly matches the

Wang’s objective. Also, Pinedo (2009), after showing the optimality of SV

in sequencing two surgeries, expressed that “showing that SV is optimal

in an environment with n surgeries is considerably harder”. We first in

§2.1, show that the conjecture of optimality of SV and SEPT is true for

the three-customer case and then in §2.2 provide some counter-examples

which show that this is not true in general. Later in §2.3, we give an

explanation for this counter-intuitive observation.

Let sequence m, be the arrival sequence in which the fast customer is

sequenced in the m-th position, i.e. the fast customer is scheduled at the

m-th slot and will arrive at time (m− 1)x. Let EWm
n denote the expected

waiting time of the n-th arrival of sequence m. Also, let EWm denote the

total expected waiting time of sequence m, i.e. EWm = ∑N
n=1 EWm

n .
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2.1 S(1, 2)/(SM,SM ′)/1

When there are one fast and two regular customers to be sequenced, the

total expected waiting time for different sequences can be calculated by

the following expressions. Without loss of generality, we can assume that

µ′ = 1.

EW 1 = e−x + 1
µ
e−µx + 1

µ− 1e
−(µ+1)x + 1

µ(1− µ)e
−2µx

EW 2 = e−x + 1
µ
e−µx + 1

1− µe
−(µ+1)x + µ

µ− 1e
−2x

EW 3 = 2e−x + (x+ 1)e−2x

The calculation details can be found in Appendix B.1. The following

result shows that SEPT/SV is optimal for S(1, 2)/(SM,SM ′)/1.

Lemma 2.1. The optimal sequence to minimize the total expected waiting

time of three customers with exponential service durations in an equally

spaced appointment system is the descending order of the customer service

rates.
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Proof.

EW 2 − EW 1 = µ

µ− 1e
−2x − 2

µ− 1e
−(µ+1)x + 1

µ(µ− 1)e
−2µx

= [(µ− e−(µ−1))e−x]2
µ(µ− 1)

It is obviously positive, since µ > 1.

In addition, the last arrival’s service duration does not affect the waiting

time of any customer. Therefore, the slowest customer should be scheduled

last.

In the next section, we increase the number of regular customers to

more than 2 and violate the optimality of SV/SEPT.

2.2 S(1, N − 1)/(SM,SM ′)/1, N > 3

For more than three customers, the first challenge is to compute the ex-

pected waiting times. The waiting time of the n-th arrival is a function

of the service time of all the first n − 1 arrivals and can be computed

recursively by

Wm
n = [Wm

n−1 + Smn−1 − xmn−1]+
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where Wm
1 = 0, and for n = 2, 3, ..., N , Wm

n ,Smn and xmn are the waiting

time, the service time and the job allowance of the nth arrival of sequence

m respectively and [.]+ = max{0, .}. Define the excess service time of the

nth arrival Zm
n = Smn − xmn . The total waiting time calculation can be

represented as a Maximum Cost Flow problem and Wm
n can be calculated

using the following Max-Flow expression (Kong et al., 2013).

Wm
n = max{0, Zm

n−1, Z
m
n−1 + Zm

n−2, ...,
n−1∑
i=2

Zm
i ,

n−1∑
i=1

Zm
i } (2.1)

We have benefited from the memoryless property of the exponential

distribution and recursively computed the probability that there are j,

j = 1, 2, ..., n − 1, customers in the system upon the nth arrival. We

then have used these probabilities to find the expected waiting times. The

calculation is tedious and there is no closed form formula for the expected

waiting times. Our proposed method to compute the expected waiting

times for S(1, N − 1)/(SM,SM ′)/1 is presented in the next section.

2.2.1 Expected waiting time calculation

Consider an S(1, N − 1)/(SM,SM ′)/1 queue with constant job allowance

of x and exponential service rates of µ and µ′ for fast and regular customers

respectively. Let ti denote the i-th appointment time in the schedule, i.e.

ti = (i − 1)x where i = 1, 2, ..., N . Denote the probability that the i-th

arrival visits j customers in the system upon his/her arrival by P{N(ti) =
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j}, the expected waiting time of this arrival can be calculated as follows.

EWm
i =



i−1∑
j=1

P {N (ti) = j} ×
(
j
µ′

)
;i ≤ m

i−1∑
j=1

P {N (ti) = j} ×
(

1
µ

+ j−1
µ′

)
;i = m+ 1

i−m−1∑
j=1

P {N (ti) = j} ×
(
j
µ′

)
+

i−1∑
j=i−m

P {N (ti) = j} ×
(

1
µ

+ j−1
µ′

)
;i > m+ 1

(2.2)

The visiting probabilities P{N(ti) = j}, i = 1, 2, ..., N and j = 1, 2, ..., i−

1, can be recursively computed by the following expressions.

P{N(ti) = 0} =
i−1∑
k=1

P{N(ti−1) = k − 1} × P{ND(ti−1) = k} (2.3)

and for j = 1, 2, ..., i− 1,

P{N(ti) = j} =
i−j−1∑
k=0

P{N(ti−1) = j + k − 1} × P{ND(ti−1) = k} (2.4)

where P{N(t1) = 0} = 1 and ND(ti), i = 1, 2, ..., N−1 denotes the number

of customer departures in time period (ti, ti+1).

When the fast customer does not enter the system yet, we only have

identical customers with exponential service durations with mean of 1
µ′

in

the system, and therefore the departure process as long as the server is

continuously busy is a Poisson process with rate µ′. In this case, when

there are k customers in the system then the probability that all of them
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will depart in a time period with the length of x is

1−
k−1∑
q=0

(µ′x)q

q! e−µ
′x

which is indeed the probability that x units of time is sufficient for k or

more departures. Hence, from (2.3), we obtain

P{N(ti) = 0} =
i−1∑
k=1

P {N (ti−1) = k − 1} ×
1−

k−1∑
q=0

(µ′x)q

q! e−µ
′x


(2.5)

whenever i ≤ m.

Also, in (2.4), where i ≤ m, we can replace P{ND(ti−1) = k} by

(µ′x)q

q! e−µ
′x,

which is the probability that there are exactly k departures in time period

(ti−1, ti), to obtain the following equation.

P{N (ti) = j} =
i−j−1∑
k=0

(
P{N (ti−1) = j + k − 1} × (µ′x)k

k! e−µ
′x

)
(2.6)

where j is a positive integer less than i. Similar expressions could be found

in the waiting time calculation method proposed for identical customers

with exponential service times by Pegden and Rosenshine (1990).
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For the customers scheduled after the fast customer, i.e. i > m, the

calculation of P{N(ti) = j}, j = 0, 1, ..., i − 1 is very complicated. We

obtain more than ten different formulations for different situations that

may happen in the time period (ti−1, ti). The detailed formulations are

presented in Appendix B.2.

The complexity of the waiting time formulas makes it almost impossible

to obtain any analytical result about the structure of the optimal sequence.

It motivates us to apply stochastic ordering approach to tackle the problem.

We present some numerical results in the next section.

2.2.2 Numerical results

We have applied the calculation method proposed in the previous section to

provide numerical results investigating whether SEPT/SV is really optimal.

Table 2.1 shows the expected waiting time of three regular customers with

exponential service rate of 1 and one fast customer with exponential service

rate of 10 where the job allowance is x = 1.5.

Table 2.1: Expected waiting times, S(1, 3)/(SM,SM ′)/1, µ = 10, µ′ = 1, x = 1.5

EWm
1 EWm

2 EWm
3 EWm

4 EWm % gap
m = 1 0 0 0.2231 0.3476 0.5707 7.2
m = 2 0 0.2231 0.0553 0.254 0.5324 0
m = 3 0 0.2231 0.3476 0.1033 0.674 26.6
m = 4 0 0.2231 0.3476 0.4295 1.0003 87.9

As can be seen, surprisingly, it is optimal to schedule the fast customer

in the second slot. Similar examples can be found for any N > 3. This
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result implies that the SEPT/SV is not necessarily optimal for N > 3.

For N = 4, a sufficient condition which guarantees that SEPT/SV is not

optimal is the following. Again, without loss of generality the service rate

for the regular customers is assumed to be one and for the fast customer is

µ > 1.

Lemma 2.2. For S(1, 3)/(SM,SM ′)/1 with µ > 1 and µ′ = 1, if x >

0.80647 and

µ >
1

x
x+1 − e−x

(2.7)

then EW 1(x) > EW 2(x).

Proof. Using the method presented in Appendix B.2, we have

EW 1(x) = 2e−x + (x+ 1)e−2x + 1
µ(µ− 1)2 e

−3µx + 1
µ(1− µ)e

−2µx

+ 1
µ− 1e

−(µ+1)x + x+ 1
µ− 1e

−(µ+2)x + 1
µ
e−µx − 1

(µ− 1)2 e
−(2µ+1)x

EW 2(x) = 2e−x + µ

µ− 1e
−2x + µ(x+ 1)

µ− 1 e−3x + 1
µ(1− µ)e

−2µx

− µ

(µ− 1)2 e
−(µ+2)x + 1

µ
e−µx + 1

(µ− 1)2 e
−(2µ+1)x

Thus,
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EW 1(x)− EW 2(x) = µx− x− 1
µ− 1 e−2x + 1

µ(µ− 1)2 e
−3µx + µ(x+ 1)

1− µ e−3x

+ 1
µ− 1e

−(µ+1)x + (µ− 1)x+ 2µ− 1
(µ− 1)2 e−(µ+2)x

− 2
(µ− 1)2 e

−(2µ+1)x

Since µ > 1, then

1
µ(µ− 1)2 e

−3µx + 1
µ− 1e

−(µ+1)x > 0 (2.8)

Also, it follows from (2.7) that

µ >
(x+ 1)ex
xex − x− 1

For x > 0.80647, we have xex − x− 1 > 0 and thus

µ(xex − x− 1)− (x+ 1)ex > 0

Dividing both sides by (µ− 1)e3x gives

µx− x− 1
µ− 1 e−2x + µ(x+ 1)

1− µ e−3x > 0 (2.9)

Moreover, for x > 0.80647, (2.7) implies that µ > x+1
x

. Then we have
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(µ− 1)x+ 2µ− 1
(µ− 1)2 e−(µ+2)x − 2

(µ− 1)2 e
−(2µ+1)x > 0 (2.10)

The desired inequality can be obtained from (2.8), (2.9) and (2.10).

From the above lemma, we can draw some interesting insights. For

x > 0.80647, the function ( x
x+1 − e

−x)−1 is decreasing and convex. Hence,

when x and µ are relatively large, (2.7) is satisfied. Also, for a larger x, the

condition (2.7) can be satisfied by a smaller µ. For example, if x = 1, then µ

should be at least 7.57 to satisfy (2.7), i.e. the fast customer should be 7.57

times faster than a regular customer, while for x = 2, µ should be at least

1.89. Overall, we can conjecture that when the job allowance x is large

enough and the special customer is much faster than regular customers,

then SEPT/SV is not optimal.

Table 2.2 shows the total expected waiting time of 9 regular and 1 fast

customers with service rates of 1 and 10 respectively for various x values.

An interesting phenomenon observed in this table is that the optimal

position for the fast customer is always within the first half of the sequence.

More exactly, it has been observed that when x is relatively small, as we

would expect, SEPT and SV are optimal, and when x increases, the op-

timal position for the fast customer goes later but it becomes fixed after

some x and never goes to the second half. A similar behaviour has been ob-

served for a wide range of test problems. A similar behaviour also has been
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Table
2.2:
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w

aiting
tim
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µ

=
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µ
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x
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W
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4
E
W
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observed for deterministic appointment sequencing which is studied in Ap-

pendix C. We call this pattern First Half Rule (FHR) and will analytically

obtain it in Theorem 3.1.

Table 2.3 indicates the expected waiting time of each arrival in various

sequences for S(1, 9)/(SM,SM ′)/1, µ = 10, µ′ = 1, x = 1.5.

The results suggest that the expected waiting time of the n-th arrival

decreases when the position of the fast customer moves from the first slot

to the (n − 1)-th slot. Moreover, it is maximized and constant as long as

the fast customer is not scheduled behind him/her. Later in Corollary 3.1,

this property will be analytically obtained. An important insight that can

be drawn here is that in order to minimize the waiting time of a customer,

the fastest customer must be scheduled right before him/her.

The next section explains why scheduling a slower customer first could

decrease the total customer waiting time.

2.3 Why SEPT/SV may not be optimal?

As mentioned before, it seems strange to put a customer with a higher

mean and variance of service duration first in the schedule to minimize the

customers’ waiting times. A reasonable explanation to this observation is

as follows.

Suppose there are N identical regular customers scheduled at equally

spaced appointment times with width of x and we want to exchange one
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Table
2.3:

Expected
w

aiting
tim

es,
S(1

,9)/(S
M
,S
M

′)/1,
µ

=
10,

µ
′=

1,
x

=
1.5

E
W

m1
E
W

m2
E
W

m3
E
W

m4
E
W

m5
E
W

m6
E
W

m7
E
W

m8
E
W

m9
E
W

m10
m

=
1

0
0

0.22313
0.3476

0.42953
0.48778

0.53112
0.56437

0.59043
0.6112

m
=

2
0

0.22313
0.05532

0.25399
0.36791

0.44397
0.49852

0.53936
0.57083

0.59558
m

=
3

0
0.22313

0.3476
0.10332

0.28386
0.38865

0.45919
0.5101

0.54838
0.57798

m
=

4
0

0.22313
0.3476

0.42953
0.14161

0.30929
0.40696

0.47296
0.52075

0.55678
m

=
5

0
0.22313

0.3476
0.42953

0.48778
0.17199

0.33036
0.42254

0.4849
0.53011

m
=

6
0

0.22313
0.3476

0.42953
0.48778

0.53112
0.19627

0.34774
0.43566

0.49511
m

=
7

0
0.22313

0.3476
0.42953

0.48778
0.53112

0.56437
0.21587

0.3621
0.44669

m
=

8
0

0.22313
0.3476

0.42953
0.48778

0.53112
0.56437

0.59043
0.23183

0.37402
m

=
9

0
0.22313

0.3476
0.42953

0.48778
0.53112

0.56437
0.59043

0.6112
0.24494

m
=

10
0

0.22313
0.3476

0.42953
0.48778

0.53112
0.56437

0.59043
0.6112

0.62797
T

he
m

inim
um

cellofeach
colum

n
is

highlighted.
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of them by a faster customer. If we exchange the kth customer, then the

service time of the faster customer does not affect the waiting time of the

customers who are scheduled before him (i.e. the first k customers) while

it can reduce the waiting time of all customers scheduled after him through

the waiting time of the (k+1)st customer, as the waiting time of the (k+1)st

customer may affect the waiting time of the (k+ 2)nd customer which may

affect the waiting time of the (k + 3)th customer and so on. That is, if we

exchange the last arrival, the service time of the faster customer does not

affect the waiting time of all customers at all. From this perspective, we

want the faster customer to be in the earlier slot as possible, because the

time saving will affect the waiting times of more customers.

On the other hand, if we put the faster customer in the first slot, there

would be another concern. Note that, the (k + 1)st customer’s waiting

time depends on two factors: The service time of the kth customer and

the waiting time of the kth customer. The effects of these two factors are

intertwined. If the kth customer’s waiting time is too short, the effect of

the kth customer’s service time on the (k+1)st customer’s waiting time will

reduce. For example, if x is 10 minutes, the service time of the kth customer

is 8 minutes and if there is no wait for the kth customer, 1 minute’s saving

on the kth customer’s service time will have no impact on the (k + 1)st

customer’s waiting time. However, if the kth customer waits for 5 minutes,

1 minute’s saving on his service time will reduce the (k + 1)st customer’s

35



CHAPTER 2. SEQUENCING CUSTOMERS OF TWO CLASSES
WITH EXPONENTIAL SERVICE DURATIONS

waiting time by 1 minute. We call this second concern, the voucher effect.

A rational customer, who has a $100 voucher which cannot be partially

used, will try to find an item which is around $100, and not much cheaper.

The potential saving can be provided by the faster customer can be viewed

as a voucher which can help us to catch up when we are running behind

the schedule after serving some customers. To make the best use of this

potential saving, we need to possibly accumulate some delays.

In short, we hope the fast customer should be put in the early slot,

because we hope the reduction of the customer’s service time can affect

more customer’s waiting times. But on the other hand, we hope the fast

customer can wait for sufficient time so that the reduction of his service

time can generate an effect.

All these are due to the appointment intervals (job allowances). If there

is no allowance (i.e., x = 0), every minute’s saving will definitely reduce the

waiting times of all the subsequent customers by one minute. Thus, there

is no need to accumulate delay and the save, and so SEPT should be the

best rule. On the other hand, even when the job allowance goes to infinity,

it should be always impossible to put the faster customer at the end. Our

numerical study shows that the faster customer should be scheduled latest

at the middle slot, and thus motivates us to propose the First Half Rule

(FHR) policy which is presented in the next section.

36



Chapter 3

Sequencing customers of two

classes with stochastically

ordered excess service times

In this section, we study a more general case where the appointment times

are not necessarily equally spaced and the service durations are not nec-

essarily exponentially distributed. We consider an S(M,N −M)/(F,G)/1

queueing system. As explained in §1.3, there are M fast and N−M regular

customers to be sequenced where the excess service time of a fast customer

is stochastically smaller than the one of a regular customer in likelihood

ratio order sense.

The queueing system investigated in the previous section is a special

case of S(M,N −M)/(F,G)/1. In fact, under constant job allowance as-
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sumption, the likelihood ratio order assumption of the excess service times

is equivalent to the same assumption on the service times themselves. It is

because the likelihood ratio order is preserved under adding or subtracting

a constant (Shanthikumar and Yao, 1986). Therefore, any appointment

system with fixed job allowance and two classes of customers from the

same service time distribution family which has Monotone Likelihood Ratio

Property (MLRP) can be considered as an S(M,N −M)/(F,G)/1 system.

It turns out that most of the known families of distributions have monotone

likelihood ratio in some statistics (Bartoszynski and Niewiadomska-Bugaj,

2008, p. 485). Exponential, Beta, Weibull, Normal with known variance,

Uniform, Gamma, Poisson, Geometric, Binomial and Negative Binomial

are some instances of MLRP distributions. It is worthwhile to note that

scheduling patients in constant appointment intervals is a common practice

in healthcare (Hall, 2012).

For the rest of the chapter, we first analytically establish FHR in §3.1

and then in §3.2 extend the application of FHR to the case with a late

server. Finally, we extend the results to multiple fast customers in §3.3,

and propose an effective FHR-based appointment sequencing heuristic al-

gorithm in §3.4.
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3.1 S(1, N − 1)/(F,G)/1: The First Half Rule

Let Z denote the excess service time of the fast customer and Zi (i =

1, .., N − 1) denote the excess service time of the i-th regular customer in

the appointment sequence. We assume that Zi’s are i.i.d. random vari-

ables which are also independent of Z. We also assume that the excess

service time Z of the fast customer is stochastically smaller than the one

of the regular customers in likelihood ratio order, i.e., Z ≤lr Zi for all

i = 1, ..., N − 1.

Define sequence m as an arrival sequence in which the fast customer is

scheduled in the m-th appointment slot. Let Wm
n be the waiting time of

the n-th customer in sequence m. Wm
n can be represented in the following

Max-Flow form (see (2.1)):

Wm
n =



0 ; when n = 1

max{0, Z} ; when n = 2 and m = 1

max{0, Zn−1, ...,
n−1∑
i=1

Zi} ; when 1 < n < m+ 1

max{0, Z, Z + Zn−2, ..., Z +
n−2∑
i=1

Zi} ; when n = m+ 1 > 2

max{0, Zn−2, ...,
n−2∑
i=m

Zi, Z +
n−2∑
i=m

Zi, ..., Z +
n−2∑
i=1

Zi} ; when n > m+ 1

(3.1)

The following lemma shows that the waiting time of the n-th arrival is

stochastically minimized when the fast customer is scheduled at the (n−1)-
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th slot.

Lemma 3.1. The waiting time of the n-th customer has the following

properties.

(a) Wm
n ≥st Wm+1

n for all m+ 1 < n

(b) W 1
n ≤st W n

n

(c) W n
n =st W

n+1
n =st ... =st W

N
n

(d) Wm
n ≤st Wm

n+1 for all m > n

Proof. Comparing sequence m with m + 1, as long as the fast customer is

scheduled before the nth arrival (i.e. for m < n−1), based on the Max-Flow

representation (2.1), we have

Wm+1
n = max{0, Zn−2, ...,

n−2∑
i=m+1

Zi, Z+
n−2∑

i=m+1
Zi, Z+

n−2∑
i=m

Zi, Z+
n−2∑

i=m−1
Zi, ..., Z+

n−2∑
i=1

Zi}

Wm
n = max{0, Zn−2, ...,

n−2∑
i=m+1

Zi,
n−2∑
i=m

Zi, Z+
n−2∑
i=m

Zi, Z+
n−2∑

i=m−1
Zi, ..., Z+

n−2∑
i=1

Zi}

According to Theorem A.5, since Zi’s are i.i.d and independent of Z and

Z ≤lr Zm, then a set of partial sums for the sequence {0, Zn−2, ..., Zm+1, Z, Zm, ..., Z1}

is stochastically smaller than a set of partial sums for {0, Zn−2, ..., Zm, Z, Zm−1, ..., Z1}.

That is
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(Zn−2, Zn−2 + Zn−3, ...,
n−2∑

i=m+1
Zi, Z +

n−2∑
i=m+1

Zi, ..., Z +
n−2∑
i=1

Zi)

≤st (Zn−2, Zn−2 + Zn−3, ...,
n−2∑
i=m

Zi, Z +
n−2∑
i=m

Zi, ..., Z +
n−2∑
i=1

Zi).

Moreover the function max{·} is non-decreasing. Hence, for m < n−1,

we obtain Wm+1
n ≤st Wm

n by Theorem A.1.

Parts (b), (c) and (d) hold even under the weaker assumption of Z ≤st

Zi, i = 1, . . . , N − 1. For Part (b), we have

W 1
n = max{0, Zn−2, Zn−2 + Zn−3, ...,

n−2∑
i=1

Zi, Z +
n−2∑
i=1

Zi}

W n
n = max{0, Zn−1, Zn−1 + Zn−2, ...,

n−1∑
i=2

Zi,
n−1∑
i=1

Zi }

As Zi’s are identically and independently distributed, it can be easily ob-

tained that W 1
n ≤st W n

n from Theorems A.3 and A.1.

The proof of Part (c) is trivial. It is intuitive that the waiting time of

the n-th arrival is independent of the position of the fast customer as long

as the fast customer is scheduled after him/her. In fact, for any m ≥ n,

the waiting time of the n-th arrival is constant and independent of m with

the following expression.

Wm
n = max{0, Zn−1, Zn−1 + Zn−2, ...,

n−1∑
i=2

Zi,
n−1∑
i=1

Zi }
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Part (d) can be shown as follows.

Wm
1 = 0 ≤st max{0, Z1} = Wm

2

As Zi’s are i.i.d, we have Zn−1 ≤st Zn. Also, Wm
n is independent of Zn.

Therefore, by Theorem A.1 (b), if Wm
n−1 ≤st Wm

n and 1 < n < m, then

Wm
n−1 + Zn−1 ≤st Wm

n + Zn. It follows

Wm
n = max{0,Wm

n−1 + Zn−1} ≤st max{0,Wm
n + Zn} = Wm

n+1

By induction Part(d) is proved. Indeed, Wm
n is stochastically increasing

and concave in n where n < m. An appointment-based queue with constant

job allowance and homogeneous arrivals is investigated in Appendix D. It

is shown in Lemma D.1 and Lemma D.3 that the waiting time of the n-th

arrival in such a system is stochastically increasing and concave in n.

We can immediately obtain Corollary 3.1.

Corollary 3.1. EWm
n is decreasing in m for m ≤ n− 1, and constant for

m > n− 1. Specifically,

EW n−1
n ≤ EW n−2

n ≤ ... ≤ EW 1
n ≤ EW n

n = EW n+1
n = ... = EWN

n
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The following property of the customer waiting times plays a critical

role in establishing the First Half Rule in Theorem 3.1.

Lemma 3.2. For n > m+ 1,

EWm
n − EWm+1

n ≥ EWm+1
n+1 − EWm+2

n+1

Proof. By the Max-Flow forms of the waiting times, for n > m+ 2

Wm
n = max{0, Zn−2, ...,

n−2∑
i=m+1

Zi,
n−2∑
i=m

Zi , Z +
n−2∑
i=m

Zi , ..., Z +
n−2∑
i=1

Zi}

Wm+1
n = max{0, Zn−2, ...,

n−2∑
i=m+1

Zi, Z +
n−2∑

i=m+1
Zi, Z +

n−2∑
i=m

Zi , ..., Z +
n−2∑
i=1

Zi}

Wm+1
n+1 = max{0, Zn−1, ...,

n−1∑
i=m+2

Zi,
n−1∑

i=m+1
Zi , Z +

n−1∑
i=m+1

Zi, ..., Z +
n−1∑
i=1

Zi}

Wm+2
n+1 = max{0, Zn−1, ...,

n−1∑
i=m+2

Zi, Z +
n−1∑

i=m+2
Zi, Z +

n−1∑
i=m+1

Zi, ..., Z +
n−1∑
i=1

Zi}

We remove the term Z+
n−1∑
i=1

Zi from both Wm+1
n+1 and Wm+2

n+1 to represent

Ŵm+1
n+1 and Ŵm+2

n+1 .

Ŵm+1
n+1 = max{0, Zn−1, ...,

n−1∑
i=m+2

Zi,
n−1∑

i=m+1
Zi , Z+

n−1∑
i=m+1

Zi, ..., Z+
n−1∑
i=2

Zi}

Ŵm+2
n+1 = max{0, Zn−1, ...,

n−1∑
i=m+2

Zi, Z+
n−1∑

i=m+2
Zi, Z+

n−1∑
i=m+1

Zi, ..., Z+
n−1∑
i=2

Zi}

Replacing the sequence Z1, Z2, ...Zn−2 by Z2, Z3, ...Zn−1 in Wm
n and

Wm+1
n , we reach exactly the same expressions as Ŵm+1

n+1 and Ŵm+2
n+1 re-
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spectively. In addition, Zi’s are i.i.d. random variables. Thus,

Wm
n −Wm+1

n =st Ŵ
m+1
n+1 − Ŵm+2

n+1

and then

EWm
n − EWm+1

n = EŴm+1
n+1 − EŴm+2

n+1

Now, in order to complete this proof we just need to show

EŴm+1
n+1 − EŴm+2

n+1 ≥ EWm+1
n+1 − EWm+2

n+1 (3.2)

which can be obtained from

Wm+2
n+1 − Ŵm+2

n+1 ≥st Wm+1
n+1 − Ŵm+1

n+1 (3.3)

We pull out Z +
n−1∑
i=2

Zi from Wm+1
n+1 ,W

m+2
n+1 , Ŵ

m+1
n+1 and Ŵm+2

n+1 to obtain

Wm+1
n+1 = Z +

n−1∑
i=2

Zi − Y m+1
n+1

Wm+2
n+1 = Z +

n−1∑
i=2

Zi − Y m+2
n+1

Ŵm+1
n+1 = Z +

n−1∑
i=2

Zi − Ŷ m+1
n+1

Ŵm+2
n+1 = Z +

n−1∑
i=2

Zi − Ŷ m+1
n+2
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where

Y m+1
n+1 = min{Z+

n−1∑
i=2

Zi, Z+
n−2∑
i=2

Zi, ..., Z+
m+1∑
i=2

Zi, Z+
m∑
i=2

Zi,
m∑
i=2

Zi,
m−1∑
i=2

Zi, ..., Z2, 0,−Z1}

Y m+2
n+1 = min{Z+

n−1∑
i=2

Zi, Z+
n−2∑
i=2

Zi, ..., Z+
m+1∑
i=2

Zi,
m+1∑
i=2

Zi ,
m∑
i=2

Zi,
m−1∑
i=2

Zi, ..., Z2, 0,−Z1}

Ŷ m+1
n+1 = min{Z+

n−1∑
i=2

Zi, Z+
n−2∑
i=2

Zi, ..., Z+
m+1∑
i=2

Zi, Z+
m∑
i=2

Zi,
m∑
i=2

Zi,
m−1∑
i=2

Zi, ..., Z2, 0}

Ŷ m+2
n+1 = min{Z+

n−1∑
i=2

Zi, Z+
n−2∑
i=2

Zi, ..., Z+
m+1∑
i=2

Zi,
m+1∑
i=2

Zi ,
m∑
i=2

Zi,
m−1∑
i=2

Zi, ..., Z2, 0}

Thus, (3.3) is equivalent to

Ŷ m+2
n+1 − Y m+2

n+1 ≥st Ŷ m+1
n+1 − Y m+1

n+1 (3.4)

According to Theorem A.5,

(
Z2, ...,

m+1∑
i=2

Zi, Z +
m+1∑
i=2

Zi, ..., Z +
n−1∑
i=2

Zi

)
≥st

(
Z2, ...,

m∑
i=2

Zi, Z +
m∑
i=2

Zi, ..., Z +
n−1∑
i=2

Zi

)

Furthermore, φ(x) = min{0, x1, x2, ..., xn} is a non-decreasing function

in x = (x1, x2, ..., xn). Therefore, based on Theorem 1.A.3(a),

Ŷ m+2
n+1 ≥st Ŷ m+1

n+1

For any given realization of Z1 = θ, since Ŷ m+1
n+1 and Ŷ m+2

n+1 are indepen-

dent of Z1, we still have Ŷ m+2
n+1 ≥st Ŷ m+1

n+1 . Moreover, x −min{x,−θ} is a
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non-decreasing function of x. Therefore, given Z1 = θ,

Ŷ m+2
n+1 −min{Ŷ m+2

n+1 ,−θ} ≥st Ŷ m+1
n+1 −min{Ŷ m+1

n+1 ,−θ}

which is equivalent to (3.4). Finally, according to Theorem 1.A.3(d), since

(3.4) holds for any θ belonging to the support of Z1, it holds in general

and the proof is completed for n > m + 2. For n = m + 2, we can update

Wm+1
n , Wm+2

n+1 , Ŵm+2
n+1 , Y m+2

n+1 , and Ŷ m+2
n+1 to the followings and develop a

similar proof.

Wm+1
n = max{0, Z, Z + Zn−2, ..., Z +

n−2∑
i=1

Zi}

Wm+2
n+1 = max{0, Z, Z + Zn−1, ..., Z +

n−1∑
i=1

Zi}

Ŵm+2
n+1 = max{0, Z, Z + Zn−1, ..., Z +

n−1∑
i=2

Zi}

Y m+2
n+1 = min{Z +

n−1∑
i=2

Zi,
n−1∑
i=2

Zi,
n−2∑
i=2

Zi, ..., Z2, 0,−Z1}

Ŷ m+2
n+1 = min{Z +

n−1∑
i=2

Zi,
n−1∑
i=2

Zi,
n−2∑
i=2

Zi, ..., Z2, 0}

We can quickly obtain the following corollary.

Corollary 3.2. Given n > m+ 1,

EWm
n − EWm+1

n ≥ EWm+k
n+k − EWm+k+1

n+k
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for any non-negative integer k ≤ N − n.

Denote the total waiting time of all customers in sequence m as Wm.

The following theorem shows that, to minimize the total waiting time, the

fast customer should be assigned to the first half of the sequence.

Theorem 3.1. First Half Rule (FHR): The optimal slot for the fast

customer is within the first half of the sequence (including N
2 for an even

N and N+1
2 for an odd N). Specifically,

EW dN
2 e ≤ EW dN

2 e+1 ≤ ... ≤ EWN .

Proof. We want to show that for any m ≥ dN2 e,

EWm+1 − EWm ≥ 0

By Corollary 3.1, we have EWm
n = EWm+1

n given n ≤ m. Therefore,

EWm+1 − EWm =
N∑

n=m+1

(
EWm+1

n − EWm
n

)

Thus, to complete the proof we just need to show

EWm+1
m+1 − EWm

m+1 ≥
N∑

n=m+2

(
EWm

n − EWm+1
n

)
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We divide the left hand side to two parts as follows.

EWm+1
m+1 − EWm

m+1 = (EWm+1
m+1 − EW 1

m+1) + (EW 1
m+1 − EWm

m+1)

By Corollary 3.1, EWm+1
m+1 − EW 1

m+1 ≥ 0. Therefore, the following

inequality can complete the proof.

EW 1
m+1 − EWm

m+1 ≥
N∑

n=m+2

(
EWm

n − EWm+1
n

)
(3.5)

Again we divide the left hand side to smaller parts.

EW 1
m+1 − EWm

m+1 =
m−1∑
k=1

(EW k
m+1 − EW k+1

m+1)

Sincem ≥ dN2 e, for each term (EWm
n − EWm+1

n ) of
N∑

n=m+2
(EWm

n − EWm+1
n )

there is a corresponding term (EW 2m−n+1
m+1 − EW 2m−n+2

m+1 ) in
m−1∑
k=1

(EW k
m+1 −

EW k+1
m+1) which is larger according to Corollary 3.2. Therefore, form ≥ dN2 e,

m−1∑
k=1

(EW k
m+1 − EW k+1

m+1) ≥
N∑

n=m+2

(
EWm

n − EWm+1
n

)

which completes the proof.

To make it more clear, we give an example. Figure 3.1 shows the ex-

pected customer waiting times of various sequences of an S(1, 9)/(SM,SM ′)/1
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Figure 3.1: Comparison of sequences 5 and 6, S(1, 9)/(SM,SM ′)/1,µ = 10, µ′ =
1, x = 1.5

queue. Suppose we want to show

EW 6 − EW 5 ≥ 0

According to Corollary 3.2, a′ ≤ a, b′ ≤ b, c′ ≤ c and d′ ≤ d. Moreover,

based on Corollary 3.1, e ≥ 0. Therefore, we can conclude that

a+ b+ c+ d+ e ≥ a′ + b′ + c′ + d′

That is sequence 6 is not better than sequence 5 in terms of the total
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customer waiting time.

In the next section, we consider the case in which the server could have

some delay. For example, it could be related to the lateness of a doctor

in a clinic or occupation of an operating room by the previous surgeon in

a hospital. Another late server situation happens when a service provider

(dentist, barber, consulter, etc.) stuck in traffic jam on the way of the

service centre.

3.2 Late start of server in S(1, N−1)/(F,G)/1

queues

Let Wm
n (Θ) denote the waiting time of the n-th customer in sequence m

given that the first customer has to wait for Θ ≥ 0 units of time to receive

the service (i.e. the server is not available until Θ units of time after the

first customer’s arrival.) We assume that the server lateness Θ is random

and independent of all the service times of the customers. Then
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Wm
n (Θ) =



Θ ;n = 1

max{0, Z + Θ} ;n = 2 and m = 1

max{0, Zn−1, ...
n−1∑
i=2

Zi,
n−1∑
i=1

Zi + Θ} ;1 < n < m+ 1

max{0, Z, Z + Z1 + Θ} ;n = m+ 1 = 3

max{0, Z, Z + Zn−2, ..., Z +
n−2∑
i=2

Zi, Z +
n−2∑
i=1

Zi + Θ} ;n = m+ 1 > 3

max{0, Zn−2, ...,
n−2∑
i=m

Zi, Z +
n−2∑
i=m

Zi, ..., Z +
n−2∑
i=1

Zi + Θ} ;n > m+ 1

(3.6)

Note that, given any realization θ of Θ, the waiting time Wm
n (θ) has

similar properties to the ones in Lemma 3.1.

Lemma 3.3. The waiting time of the n-th customer has the following

properties:

(a) Wm
n (Θ) ≥st Wm+1

n (Θ) for all n > m+ 1

(b) W 1
n(Θ) ≤st W n

n (Θ)

(c) W n
n (Θ) =st W

n+1
n (Θ) =st ... =st W

N
n (Θ)

(d) Given n < m, if Wm
1 (Θ) ≤st [≥st]Wm

2 (Θ), then

Wm
n (Θ) ≤st [≥st]Wm

n+1(Θ).

(e) Wm
n (θ) is stochastically increasing in θ, i.e., Wm

n (θ′) ≥st Wm
n (θ), when-

ever θ′ ≥ θ.
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Proof. For Part (a), if m > 1, then Wm
n (Θ) is the maximum of the set of

partial sums of {0, Zn−2, ..., Zm+1, Zm, Z, Zm−1, ..., Z1 + Θ} and Wm+1
n (θ) is

the maximum of the set of partial sums of {0, Zn−2, ..., Zm+1, Z, Zm, Zm−1, ..., Z1+

Θ}. Since Z ≤lr Zm, Wm
n (Θ) ≥st Wm+1

n (Θ) by theorems A.5 and A.1.

For m = 1 and n > 3,

W 1
n(Θ) = max{0, Zn−2, ...,

n−2∑
i=2

Zi,
n−2∑
i=1

Zi , Z +
n−2∑
i=1

Zi + Θ}

W 2
n(Θ) = max{0, Zn−2, ...,

n−2∑
i=2

Zi, Z +
n−2∑
i=2

Zi, Z +
n−2∑
i=1

Zi + Θ}

Thus,

W 1
n(Θ) = Z +

n−2∑
i=1

Zi −min{A,−Θ}

W 2
n(Θ) = Z +

n−2∑
i=1

Zi −min{B,−Θ}

whereA andB are the minimums of the sets of partial sums of {Z,Z1, ..., Zn−2}

and {Z1, Z, Z2, ..., Zn−2}. Because A ≤st B and the function −min{·,−Θ}

is non-increasing, we obtain W 1
n(Θ) ≥st W 2

n(Θ).

52



CHAPTER 3. SEQUENCING CUSTOMERS OF TWO CLASSES
WITH STOCHASTICALLY ORDERED EXCESS SERVICE TIMES

Finally, when m = 1 and n = 3,

W 1
3 (Θ) = max{0, Z1, Z + Z1 + Θ} = (Z + Z1)−min{Z,Z + Z1,−Θ}

W 2
3 (Θ) = max{0, Z, Z + Z1 + Θ} = (Z + Z1)−min{Z1, Z + Z1,−Θ}

Then, we can obtain W 1
3 (Θ) ≥st W 2

3 (Θ), since (Z,Z +Z1) ≤st (Z1, Z +Z1)

by Theorem A.5 and the function −min{·,−Θ} is non-increasing.

Parts (b) and (d) can be shown in a way similar to the proof of Lemma

3.1 (b) and (d) respectively. The proof of parts (c) and (e) are trivial.

We can now extend Corollary 3.1 as follows.

Corollary 3.3. EWm
n (Θ) is decreasing in m for m ≤ n− 1, and constant

for m > n− 1. Specifically,

EW n−1
n (Θ) ≤ EW n−2

n (Θ) ≤ ... ≤ EW 1
n(Θ) ≤ EW n

n (Θ) = EW n+1
n (Θ) = ... = EWN

n (Θ)

Given Θ = θ ≥ 0, the following lemmas show that EWm
n (θ)−EWm+1

n (θ)

is monotonic in θ and n. The first property helps in the generalization of

the First Half Rule to the late server case.

Lemma 3.4. Given n > m, EWm
n (θ)− EWm+1

n (θ) is non-increasing in θ.
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Proof. We first prove the lemma for n > m+ 1. Let

A = min{Z1, ...,
m−1∑
i=1

Zi, Z +
m−1∑
i=1

Zi, ..., Z +
n−2∑
i=1

Zi}

B = min{Z1, ...,
m∑
i=1

Zi, Z +
m∑
i=1

Zi, ..., Z +
n−2∑
i=1

Zi}

Then,

Wm
n (θ) = Z +

n−2∑
i=1

Zi − Y 0
n (θ)

Wm+1
n (θ) = Z +

n−2∑
i=1

Zi − Y 1
n (θ)

where

Y 0
n (θ) = min{A,−θ}

Y 1
n (θ) = min{B,−θ}

By theorems A.5 and A.1, A ≤st B. In addition, φ(x) = min{x,−θ′}−

min{x,−θ} is non-increasing in x whenever θ ≤ θ′. Therefore φ(A) ≥st

φ(B), which leads to

Y 0
n (θ′)− Y 0

n (θ) ≥st Y 1
n (θ′)− Y 1

n (θ)

It further implies that

Wm
n (θ)−Wm

n (θ′) ≥st Wm+1
n (θ)−Wm+1

n (θ′) (3.7)
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Hence, for θ ≤ θ′,

EWm
n (θ)− EWm+1

n (θ) ≥ EWm
n (θ′)− EWm+1

n (θ′)

That is EWm
n (θ)−EWm+1

n (θ) is non-increasing in θ for n > m+ 1. For

n = m+ 1, we can establish a similar proof by the following amendments.

B = min{Z1, Z1 + Z2, ...,
n−1∑
i=1

Zi}

Wm+1
n (θ) =

n−2∑
i=1

Zi − Y 1
n (θ)

Lemma 3.5. Given θ ≥ 0, EWm
n (θ) − EWm+1

n (θ) is non-increasing in n,

for all n > m+ 1.

Proof. We know that for n > m+ 1,

Wm
n+1(θ) = max{0,Wm

n (θ) + Zn−1}

Wm+1
n+1 (θ) = max{0,Wm+1

n (θ) + Zn−1}

For any given realization of Zn−1 = zn−1, φ(x) = x−max{0, x+ zn−1}

is a non-decreasing function of x. From Lemma 3.3(a), we have Wm
n (θ) ≥st

Wm+1
n (θ). Therefore, φ(Wm

n (θ)) ≥st φ(Wm+1
n (θ)), which is equivalent to
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Wm
n (θ)−Wm

n+1(θ) ≥st Wm+1
n (θ)−Wm+1

n+1 (θ)

According to Theorem A.1, we can ignore the condition Zn−1 = zn−1.

Hence,

EWm
n (θ)− EWm+1

n (θ) ≥ EWm
n+1(θ)− EWm+1

n+1 (θ)

when n > m+ 1, which completes the proof.

The following lemma is slightly stronger than Lemma 3.2.

Lemma 3.6. For n > m+ 1,

EWm
n (θ)− EWm+1

n (θ) ≥ EWm+1
n+1 (θ)− EWm+2

n+1 (θ)

Proof. We have,

[Wm
n (θ)−Wm+1

n (θ)|Wm
m (θ) = λ] = W 1

n−m+1(λ)−W 2
n−m+1(λ)

[Wm+1
n+1 (θ)−Wm+2

n+1 (θ)|Wm+1
m+1 (θ) = λ′] = W 1

n−m+1(λ′)−W 2
n−m+1(λ′)

According to Lemma 3.4, EW 1
n−m+1(λ)−EW 2

n−m+1(λ) is non-increasing

in λ. In addition, having homogeneous customers in the system , as it is

shown in Appendix D, the waiting time is stochastically increasing with

respect to the arrival number. Thus, Wm
m (θ) ≤st Wm+1

m+1 (θ). Therefore,
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according to Theorem A.2,

E[Wm
n (θ)−Wm+1

n (θ)|Wm
m (θ)] ≥st E[Wm+1

n+1 (θ)−Wm+2
n+1 (θ)|Wm+1

m+1 (θ)]

It follows that,

E[Wm
n (θ)−Wm+1

n (θ)] ≥ E[Wm+1
n+1 (θ)−Wm+2

n+1 (θ)]

We can quickly obtain the following corollary.

Corollary 3.4. Given n > m+ 1,

EWm
n (θ)− EWm+1

n (θ) ≥ EWm+k
n+k (θ)− EWm+k+1

n+k (θ)

for any non-negative integer k ≤ N − n.

Using this corollary and Lemma 3.3, it is not too difficult to obtain the

following theorem which extends the application of FHR to the late server

case.

Theorem 3.2. First Half Rule for Late Server (FHRL): Given the

server is late for Θ ≥ 0 units of time, the optimal slot for the fast customer

is within the first half of the sequence (including N
2 for even N and N+1

2
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for odd N). Specifically,

EW dN
2 e(Θ) ≤ EW dN

2 e+1(Θ) ≤ ... ≤ EWN(Θ)

The proof is very similar to the proof of Theorem 3.1 and omitted.

Now, we can increase the number of fast customers to more than one

which is investigated in the next section.

3.3 S(M,N −M)/(F,G)/1: Multiple fast cus-

tomers

We can extend the case of single fast customer to the one with multiple fast

customers. Suppose there are M fast customers whose excess service times

are stochastically smaller than that of a regular customer in the likelihood

ratio order. The server starts its service after Θ0 units of time after the first

customer arrives, where Θ0 is a non-negative random variable independent

of all the service times. Let m̃ = {m1,m2, ...,mM}, 1 ≤ mk < mk+1 ≤ N

for k = 1, 2, ...,M−1, and define sequence m̃ as an arrival sequence in which

the k-th fast customer arrives in the mk-th place (k = 1, ...,M .) Note that

the waiting time W m̃
n (Θ0) of the customer arriving in the n-th place has

a Markovian property. That is, the waiting time depends on the service

history only through the previous customer’s waiting and service times. As
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a result, the waiting time of a customer who arrives in (n+ l)-th place can

be re-modelled as the waiting time of the l-th customer in another queue

whose server starts late by W m̃
n (Θ0) units of time. Specifically speaking,

let m0 = 0 and k̄ = max{k|mk ≤ n, k ∈ Z+}. If k̄ < M , we can define

m̃′ = {m′1, ...,m′M−k̄} = {mk̄+1 − n, ...,mM − n}. We have

W m̃
n+l(Θ0) =st W

m̃′

l (Θn) ; for 1 ≤ n ≤ N − 1 and 1 ≤ l ≤ N − n,

where m̃′ is a sequence for an S(M− k̄, N−n−M+ k̄)/(F,G)/1 queue with

a delayed start Θn, which follows the same distribution with W m̃
n+1(Θ0).

The previous sections identify some properties of the customer’s waiting

times when there is only one fast customer to be sequenced. For more than

one fast customer, we start with an S(1, N−1)/(F,G)/1 queue and replace

a regular customer with the second fast one.

Lemma 3.7. Given an S(1, N − 1)/(F,G)/1 queue (with a non-negative

late start Θ0 of the server) where the fast customer is assigned to the m1-th

place, and if the m2-th place (m2 > m1 + 1) is assigned to another fast

customer,

EW m̃a
n (Θ0)− EW m̃′a

n (Θ0) ≥ EW m̃b
n (Θ0)− EW m̃′b

n (Θ0), for 1 ≤ n ≤ N

where m̃a = {m1}, m̃′a = {m1 + 1}, m̃b = {m1,m2} and m̃′b = {m1 + 1,m2}

Proof. For 1 ≤ n ≤ m2, the lemma holds as W m̃a
n (Θ0) and W m̃′a

n (Θ0)
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have the same distribution with W m̃b
n (Θ0) and W

m̃′b
n (Θ0) respectively. As

W m̃a
m2 (Θ0) ≥st W m̃′a

m2 (Θ0) by Lemma 3.3(a), we can find two random variables

Ŵ and Ŵ ′ whose distributions are identical respectively with W m̃a
m2 (Θ0) and

W m̃′a
m2 (Θ0), independent of the n-th customer’s service time for all n ≥ m2,

and such that

P{Ŵ ≥ Ŵ ′} = 1

Define a multivariate function hj(w, z1, ..., zj) for j ∈ N as

hj(w, z1, ..., zj) =


max{w + z1, 0} ; if j = 1

max{hj−1(w, z1, ..., zj−1) + zj, 0} ; if j > 1

It is easy to see that, for example,

W m̃a
n (Θ0) = hn−m2(W m̃a

m2 (Θ0), Z1, ..., Zn−m2)

for all n > m2 .

We can further define

fj(w,w′, z1, ..., zj) ≡ hj(w, z1, ..., zj)− hj(w′, z1, ..., zj)

It can be shown that, given w ≥ w′, fj is non-decreasing in zi’s for
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i = 1, ..., j. We then have

fj(Ŵ , Ŵ ′, Z1, Z2, ..., Zj) ≥st fj(Ŵ , Ŵ ′, Z, Z2, ..., Zj)

due to the fact that Zi’s are stochastically larger than Z. As a result, given

n > m2, we can let j = n−m2 and obtain

EW m̃a
n (Θ0)− EW m̃′a

n (Θ0) = E(Ŵ , Z1, ..., Zj)]− E(Ŵ ′, Z1, ..., Zj)]

= E(Ŵ , Ŵ ′, Z1, Z2, ..., Zj)]

≥ E(Ŵ , Ŵ ′, Z, Z2, ..., Zj)]

= EW m̃b
n (Θ0)− EW m̃′b

n (Θ0)

This completes the proof.

Lemma 3.7 can be easily generalized to the case with more than two

fast customers. By a similar proof, we have the following corollary:

Corollary 3.5. Given a sequence m̃a = {m1, ...,mMa} for an S(Ma, N −

Ma)/(F,G)/1 queue and a sequence m̃b = {m1, ...,mMa , ...,mMb
} for an

S(Mb, N−Mb)/(F,G)/1 queue, with a common non-negative random server

delay Θ0 for both queues, if Ma ≤Mb and m2 > m1 + 1,

EW m̃a
n (Θ0)− EW m̃′a

n (Θ0) ≥ EW m̃b
n (Θ0)− EW m̃′b

n (Θ0), for 1 ≤ n ≤ N
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where m̃′a = {m1 +1,m2, ...,mMa} and m̃′b = {m1 +1,m2, ...,mMa , ...,mMb
}

Denote the total customers’ waiting time of sequence m̃ as W m̃(Θ0). An

extended version of the First Half Rule can be derived from the corollary.

Theorem 3.3. General First Half Rule (GFHR): Given any arrival

sequence m̃′ = {m′1,m′2, ...,m′M} of an S(M,N −M)/(F,G)/1 queue with

a non-negative random delay Θ0 at the start of the server, if there exists a

k such that 1 ≤ k ≤M − 1 and

m′k+1 > m′k + dN −m
′
k

2 e,

we can always build another arrival sequence m̃ = {m1,m2, ...,mM} where

mi = m′i for i 6= k + 1 and mk+1 = m′k+1 − 1 > mk. We have

EW m̃(Θ0) ≤ EW m̃′(Θ0)

Proof. Let m̃a = {mk+1−mk} and m̃′a = {m′k+1−m′k} be arrival sequences

of an S(1, N −m′k − 1)/(F,G)/1 queue. Also let

m̃b = {mk+1 −mk,mk+2 −mk, ...,mM −mk}

m̃′b = {m′k+1 −m′k,m′k+2 −m′k, ...,m′M −m′k}
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be arrival sequences of an S(M−k,N−m′k−M+k)/(F,G)/1 queue. Both

queues have a common start delay

Θk =st W
m̃′

m′
k
+1(Θ0) =st W

m̃
mk+1(Θ0).

We then obtain

EW m̃(Θ0)− EW m̃′(Θ0) =
N∑
n=1

EW m̃
n (Θ0)−

N∑
n=1

EW m̃′

n (Θ0)

=
N∑

n=m′
k
+1

EW m̃
n (Θ0)−

N∑
n=m′

k
+1

EW m̃′

n (Θ0)

=
N−m′k∑
n=1

EW m̃b
n (Θk)−

N−m′k∑
n=1

EW m̃′b
n (Θk)

≤
N−m′k∑
n=1

EW m̃a
n (Θk)−

N−m′k∑
n=1

EW m̃′a
n (Θk)

≤ 0.

which follows from Corollary 3.5 and Theorem 3.2 for the inequalities. Thus

the First Half Rule holds.

The proof of Theorem 3.3 also implies that, given any schedule for the

first k slots, if there are still fast customers to be scheduled, then at least

one of them should be scheduled in the first half of the remaining slots

after slot k. In other words, at least one fast customer should be scheduled

within the first half of the slots k + 1, k + 2, ..., N (including N−k
2 for even

N − k and N−k+1
2 for odd N − k). The following corollary concludes the
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section:

Corollary 3.6. Let sequence m̃∗ = {m∗1,m∗2, ...,m∗M} be the optimal arrival

sequence of an S(M,N −M)/(F,G)/1 queue with a non-negative random

delay Θ0 at the start of the server. For 1 ≤ k ≤M − 1,

m∗k < m∗k+1 ≤ m∗k + dN −m
∗
k

2 e

This corollary helps us to ignore more than half of the possible se-

quences which do not follow FHR, and perform an effective search to find

the optimal sequence. For example, among 10 possible sequences of 2 fast

and 3 regular customers, only 5 of them follow FHR and can be optimal.

These 5 proper sequences are underlined as follows: FFRRR, FRFRR,

FRRFR, FRRRF, RFFRR, RFRFR, RFRRF, RRFFR, RRFRF, RRRFF.

The letter “F” stands for fast and “R” for regular customer customers in

the sequence.

As another illustration, when there are 3 fast and 7 regular customers,

there are 120 possible sequences, since C(10, 3) = 120. Among these 120

sequences, only 50 of them are consistent with FHR which are shown in

Table 3.1.
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Table 3.1: FHR sequences, S(3, 7)/(F,G)/1

m1,m2 Proper Sequences based on FHR
1,2 FFFRRRRRRR, FFRFRRRRRR, FFRRFRRRRR, FFRRRFRRRR
1,3 FRFFRRRRRR, FRFRFRRRRR, FRFRRFRRRR, FRFRRRFRRR
1,4 FRRFFRRRRR, FRRFRFRRRR, FRRFRRFRRR
1,5 FRRRFFRRRR, FRRRFRFRRR, FRRRFRRFRR
1,6 FRRRRFFRRR, FRRRRFRFRR
2,3 RFFFRRRRRR, RFFRFRRRRR, RFFRRFRRRR, RFFRRRFRRR
2,4 RFRFFRRRRR, RFRFRFRRRR, RFRFRRFRRR
2,5 RFRRFFRRRR, RFRRFRFRRR, RFRRFRRFRR
2,6 RFRRRFFRRR, RFRRRFRFRR
3,4 RRFFFRRRRR, RRFFRFRRRR, RRFFRRFRRR
3,5 RRFRFFRRRR, RRFRFRFRRR, RRFRFRRFRR
3,6 RRFRRFFRRR, RRFRRFRFRR
3,7 RRFRRRFFRR, RRFRRRFRFR
4,5 RRRFFFRRRR, RRRFFRFRRR, RRRFFRRFRR
4,6 RRRFRFFRRR, RRRFRFRFRR
4,7 RRRFRRFFRR, RRRFRRFRFR
5,6 RRRRFFFRRR, RRRRFFRFRR
5,7 RRRRFRFFRR, RRRRFRFRFR
5,8 RRRRFRRFFR

In the next section, we propose a simple and effective FHR-based ap-

pointment sequencing heuristic algorithm to minimize the total expected

customer waiting time.

3.4 An Effective FHR-based Appointment

Sequencing Heuristic Algorithm

Although the optimal sequence cannot be completely characterized by

FHR, we can propose effective sequencing heuristics based on this rule.

To develop a good heuristic, we first need to investigate the structure of

the optimal sequence through numerical experiments.
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Table 3.2 shows the optimal sequences for an S(3, 7)/(SM,SM ′)/1

queue, for various values of the job allowance x, and the fast customers’

service rate µ. The optimal sequence is found by complete enumeration.

Table 3.2: Optimal sequences, S(3, 7)/(SM,SM ′)/1, µ′ = 1, various x and µ
values.

µ = 1.5 µ = 5 µ = 10
Job allowance m̃∗ Job allowance m̃∗ Job allowance m̃∗

0.00 ≤ x < 0.79 1,2,3 0.00 ≤ x < 0.40 1,2,3 0.00 ≤ x < 0.30 1,2,3
0.79 ≤ x < 1.24 2,3,4 0.40 ≤ x < 0.60 2,3,4 0.30 ≤ x < 0.49 2,3,4
1.24 ≤ x < 1.36 2,3,5 0.60 ≤ x < 0.81 2,3,5 0.49 ≤ x < 0.70 2,3,5
1.36 ≤ x < 1.59 2,4,5 0.81 ≤ x < 0.89 2,4,5 0.70 ≤ x < 0.79 2,4,5
1.59 ≤ x < 2.56 2,4,6 0.89 ≤ x < 1.72 2,4,6 0.79 ≤ x < 1.60 2,4,6
2.56 < x 3,5,7 1.72 < x 3,5,7 1.60 ≤ x 3,5,7

x = 0.5 x = 1 x = 1.5
Fast service rate m̃∗ Fast service rate m̃∗ Fast service rate m̃∗

1.00 < µ < 3.12 1,2,3 1.00 < µ < 1.08 1,2,3 1.00 < µ < 1.01 1,2,3
3.12 ≤ µ < 9.12 2,3,4 1.08 ≤ µ < 1.93 2,3,4 1.01 ≤ µ < 1.26 2,3,4
9.12 ≤ µ 2,3,5 1.93 ≤ µ < 2.66 2,3,5 1.26 ≤ µ < 1.31 2,3,5

2.66 ≤ µ < 3.42 2,4,5 1.31 ≤ µ < 1.61 2,4,5
3.42 ≤ µ 2,4,6 1.61 ≤ µ < 63.3 2,4,6

63.33 ≤ µ 3,5,7

As can be seen, when x and µ are relatively small, the optimal sequence

follows SEPT/SV. In addition, as either x or µ increases, the fast customers

move toward the middle position in the optimal sequence. Furthermore,

the movement of the fast customers occurs iteratively from the last fast

customer to the first one. A similar behaviour is observed for a wide range

of sequencing problems with exponential service times.

Inspired by this observation and based on FHR, we propose the fol-

lowing heuristic algorithm which shows an impressive performance in our

numerical experiments.
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Step 1: For k = 1 to M
set mk = m′k = k

Step 2: While (mM < mM−1 + dN−mM−1
2 e and the total waiting time of sequence

{m1, ...,mM−1,mM + 1} is less than that of sequence {m1, ...,mM−1,mM})
set mM = mM + 1

Step 3: For k = M − 1 to 2
while (mk < mk−1 + dN−mk−1

2 e, mk < mk+1 − 1, and the total waiting
time of sequence {m1, ...,mk + 1, ...,mM} is less than that of sequence
{m1, ...,mk, ...,mM})

set mk = mk + 1
Step 4: While (m1 < dN2 e, m1 < m2 − 1, and the total waiting time of sequence

{m1 + 1, ...,mM} is less than that of sequence {m1, ...,mM})
set m1 = m1 + 1

Step 5 If there exists k ∈ {1, ...,M} such that m′k 6= mk, then
for k = 1 to M

set m′k = mk

go to Step 2

To investigate the performance of the proposed heuristic, four S(M,N−

M)/(SM,SM ′)/1 appointment-based queues withN = 10 andM = 2, 4, 6, 8

are considered. For each queueing system, one thousand test problems are

randomly generated, where the service rate for the regular customers is

assumed to be one, the service rate for the fast customers follows a con-

tinuous uniform (1, 20) distribution and the job allowance x is generated

by a continuous uniform (0, 2) distribution. For each test problem, the op-

timal sequence is found by complete enumeration and compared with the

heuristic sequence. Table 3.3 shows the numerical results. The second col-

umn shows the percentage of the optimal sequences found by the proposed

heuristic. The third column shows the average percentage of the differ-

ence between the total waiting time of the heuristic sequence and that of

the optimal sequence, and the forth column presents this difference in the
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worst case. The last column shows the computation time of the heuristic

algorithm compare to the computation time of the complete enumeration

method.
Table 3.3: FHR-based heuristic performance,
S(M,N −M)/(SM,SM ′)/1, N = 10, µ ∼ U(1, 20), µ′ = 1, x ∼ U(0, 2)

Num. of fast cus. OS found % Av. gap % Wst gap % CTh/CTE %
M = 2 93.5 0.23 12.08 10.48
M = 4 86 0.18 8.87 3.21
M = 6 99.6 7.04E-5 3.19 2.89
M = 8 100 0 0 2.22

As can be seen, the proposed heuristic can find the optimal sequence

in most cases by much less computational effort compare to the complete

enumeration. Moreover, the total waiting time of the heuristic solution on

average is less that 1% higher than that of the optimal sequence and in the

worst case the performance of the heuristic is still very good.

We have also compared the performance of our FHR-based heuristic

with SEPT/SV. To this end, two thousands test problems (100 tests for

each combination of N and M) are generated using the following parame-

ters.

N 10, 20, 30, 40, 50
M 20% of N, 40% of N, 60% of N, 80% of N
µ U(1, 20)
µ′ 1
x U(0, 2)

Table 3.4 shows the numerical results for the comparison of the proposed

heuristic with SEPT/SV.
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Table 3.4: FHR-based heuristic algorithm vs SEPT/SV

N M TW-S TW-H A-IM % B-IM % TNS TNH TNH
TNS

%

10

2 9.94 9.31 10.81 18.71 4.50E+01 4.67 2.21E+01
4 5.70 5.21 15.12 25.93 2.10E+02 6.88 2.71E+00
6 2.99 2.87 9.4 19.13 2.10E+02 6.32 1.42E+00
8 1.20 1.20 0 0 4.50E+01 1.00 2.67E+00

20

4 34.97 31.33 17.14 28.31 4.85E+03 19.10 7.22E-01
8 25.11 22.13 23.33 40.79 1.26E+05 26.19 1.99E-02
12 15.47 13.94 21.52 40.24 1.26E+05 24.57 1.23E-02
16 10.73 10.62 8.87 19.3 4.85E+03 14.76 2.21E-01

30

6 83.24 73.66 20.21 35.16 5.94E+05 42.08 1.40E-02
12 58.00 47.46 30.09 50.18 8.65E+07 63.18 6.71E-05
18 25.81 21.45 33.4 52.03 8.65E+07 68.59 2.98E-05
24 17.49 16.83 19.37 33.72 5.94E+05 40.66 2.94E-03

40

8 110.21 96.15 21.02 39.96 7.69E+07 86.58 1.43E-04
16 99.00 81.72 31.36 55.59 6.29E+10 118.82 1.58E-07
24 45.68 36.14 36.04 58.9 6.29E+10 125.92 7.27E-08
32 17.82 16.07 26.34 43.79 7.69E+07 79.73 2.32E-05

50

10 192.45 166.34 23.65 44.22 1.03E+10 132.42 1.87E-06
20 147.86 114.90 36.7 60.62 4.71E+13 192.51 3.14E-10
30 81.98 66.96 38.01 64.55 4.71E+13 196.45 1.74E-10
40 23.15 19.57 32.06 51.45 1.03E+10 127.43 2.25E-07

TW-S: Average total waiting time provided by SEPT/SV
TW-H: Average total waiting time provided by heuristic
A-IM: Average improvement provided by heuristic compare to SEPT/SV
B-IM: Best improvement provided by heuristic compare to SEPT/SV
TNS: Total number of possible sequences
TNH: Total number of sequences explored by heuristic

As the problem size increases, the performance of the proposed heuristic

becomes more impressive. It can be seen that the heuristic could find a

sequence with about 60% lower waiting time compare to SEPT/SV where

N = 50 and M = 20 or 30. The proposed heuristic is very effective,
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since it can find such good sequences by exploring a very tiny piece of the

feasible area. It is very promising that this simple heuristic can improve

the waiting time of SEPT/SV by more than 21 % where there are 40 or

50 customers to be sequenced. For a given total number of customers, the

improvement provided by the heuristic is more significant when around half

of the customers are fast.

Although, the proposed heuristic is applied only to the case with expo-

nential service times in this section, it can be used for general service time

distribution as well. In case of general service time distribution, we can

apply the calculation method proposed in Millhiser and Valenti (2012) to

numerically compute the total expected customers’ waiting time for each

sequence.

In the next chapter, we address an important practical concern in the

appointment scheduling problem, the no-show phenomenon.
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Appointment sequencing with

no-shows

An important aspect of customer behavior that influences the overall effi-

ciency of an appointment system is the phenomenon of no-shows (Hassin

and Mendel, 2008). A no-show happens when a customer either does not

show up for service or cancels his/her appointment too late so that the

service provider is not able to replace him/her by another customer.

We consider the case where the customers have different probabilities

to show up at their appointment times. Suppose that, among the N cus-

tomers in the appointment schedule, there are M special customers whose

show up probability is ps. On the other hand, each of the remaining N−M

regular customers has a show up probability pr > ps. If a customer in the

n-th place of an appointment sequence shows up, his/her service time Sn,
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n = 1, ..., N , is independently and identically distributed with the distri-

bution function F , regardless of the customer class. As the service time

distributions are identical, we also let the job allowance x to be a con-

stant for all the customers. The objective is to minimize the total expected

waiting time of the customers who actually show up. Let P denote the

sequencing problem of no-shows.

A practical situation motivates us to explore this problem is the common

situation in healthcare clinics when there are new and repeat patients with

the same service time distributions but different show up probabilities in a

clinic.

4.1 S(1, N − 1)/(F, F )/1 queue with no-shows

We start from the simplest case where there is only one special customer.

We assume that the server is available at the first appointment time. That

is, the server delay Θ is negligible. Following the notations in Section 3.1,

let sequence m be an arrival sequence in which the special customer is

assigned to the m-th appointment slot, m = 1, ..., N . Let Wm
n and Wm

each denote the waiting time of the n-th arrival and the total waiting time

of sequence m respectively. That is Wm =
N∑
n=1

Wm
n .

Let {Im1 , ..., ImN } be a set of mutually independent showing up indicator
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random variables for sequence m where

P(Imn = 1) =


ps ; when n = m

pr ; otherwise

P(Imn = 0) = 1− P(Imn = 1)

The waiting time Wm
n is considered to be zero if the n-th arrival does

not show up for service. Otherwise, it can be calculated using the following

Max-Flow expression.

Wm
n = max{0, Zm

n−1, Z
m
n−1 + Zm

n−2, ...,
n−1∑
i=1

Zm
i } (4.1)

where Zm
i = Imi Si − x for i = 1, ..., n.

The following theorem extends the application of FHR to the no-show

problem P where there is only one special customer.

Theorem 4.1. First Half Rule for No-Shows (FHRNS): In S(1, N−

1)/(F, F )/1 with a lower show up probability for the special customer, the

special customer should be scheduled in the first half of the sequence (in-

cluding N
2 for even N and N+1

2 for odd N). Specifically,

EW dN
2 e ≤ EW dN

2 e+1 ≤ ... ≤ EWN .

Proof. Consider an analogous problem P′ with equivalent service time dis-

tributions instead of no-shows. That is, we assume all the customers would

73



CHAPTER 4. APPOINTMENT SEQUENCING WITH NO-SHOWS

definitely show up, but their service times follow a mixture of the distribu-

tion of a degenerate random variable 0 and the distribution F . The service

time of the n-th arrival of sequence m in problem P′ can be represented as

Smn = Imn Sn.

For problem P′, denote the waiting time of the n-th arrival of sequence

m as W ′m
n and the total waiting time of this sequence as W ′m.

Considering the same arrival sequence for P and P′, the expected wait-

ing time of the n-th arrival in problem P is equal to his/her expected

waiting time in P′ if s/he shows up, otherwise it is zero. Thus we have

EWm
n =


ps EW ′m

n ; when n = m

pr EW ′m
n ; otherwise

(4.2)

Let Z ′mn be the excess service time of the n-th arrival of sequence m

for problem P′, i.e. Z ′mn = Smn − x. It is not too difficult to show that

for any m, by Theorem A.4, Smm ≤lr Smn where n 6= m. Moreover, for

two density functions f and g, if f(t)
g(t) is non-decreasing in t, then f(t+c)

g(t+c) is

non-decreasing in t. Thus, following the definition of the likelihood ratio

order presented in §1.3, for two random variables X and Y , if X ≤lr Y ,

then X − c ≤lr Y − c, where c is a constant. Therefore, it follows from

Smm ≤lr Smn that Z ′mm ≤lr Z ′mn , where n 6= m. It implies that the FHR is

valid for problem P′ in minimizing the total waiting time. Hence, we have
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EW ′1
m+1 − EW ′m

m+1 +
N∑

n=m+2
(EW ′m+1

n − EW ′m
n ) ≥ 0 (4.3)

where m ≥ dN2 e (see the proof of Theorem 3.1).

To prove FHR for the original problem P, we need to show that for

m ≥ dN2 e,

EWm+1 − EWm ≥ 0.

Since EWm
n = EWm+1

n for n = 1, 2, ...,m− 1, it is equivalent to

(EWm+1
m −EWm

m )+(EWm+1
m+1−EWm

m+1)+
N∑

n=m+2
(EWm+1

n −EWm
n ) ≥ 0 (4.4)

We know that EWm
n = prEW

′m
n for n 6= m and EWm

m = psEW
′m
m . Thus,

(4.4) is equivalent to

(prEW
′m+1
m −psEW

′m
m )+(psEW

′m+1
m+1 −prEW

′m
m+1)+pr

N∑
n=m+2

(EW ′m+1
n −EW ′m

n ) ≥ 0

and since EW ′m
m = EW ′m+1

m , it is equivalent to

(1−ps
pr

)EW ′m
m +ps

pr
EW ′m+1

m+1 −EW
′1
m+1+

(
EW ′1

m+1 − EW ′m
m+1 +

N∑
n=m+2

(EW ′m+1
n − EW ′m

n )
)
≥ 0

(4.5)

According to (4.3), the last term of the left hand side is non-negative.

Thus, we just need to show
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∆ = (1− ps
pr

)EW ′m
m + ps

pr
EW ′m+1

m+1 − EW ′1
m+1 ≥ 0 (4.6)

The waiting time of the n-th arrival in problem P′ can be represented

as follows.

W ′m
n = max{0, Z ′mn−1, Z

′m
n−1 + Z ′mn−2, ...,

n−1∑
i=1

Z ′mi }

For any m ≥ 2, let

A = max{0, Z ′1m, Z ′1m + Z ′1m−1, ...,
m∑
i=2

Z ′1i }

B = max{0, Z ′1m, Z ′1m + Z ′1m−1, ...,
m∑
i=2

Z ′1i , S1 − x+
m∑
i=2

Z ′1i }.

Conditioning on whether the first arrival would show up or not, we have

EW ′1
m+1 = psEB + (1− ps)EA

EW ′m+1
m+1 = prEB + (1− pr)EA.

Moreover, since Z ′mi are i.i.d where i 6= m, EW ′m
m = EA. Therefore,

∆ = (1− ps
pr

)EA+ ps
pr

(prEB + (1− pr)EA)− (psEB + (1− ps)EA) = 0

which completes the proof.
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In the next section, we incorporate the server unpunctuality.

4.2 Late start of server in S(1, N−1)/(F, F )/1

queue with no-shows

Now we extend the result considering a possibly late server. We upgrade

problem P to consider the server lateness Θ ≥ 0 and revise the waiting

time notations to Wm
n (Θ) and Wm(Θ). The following theorem shows that

FHR works for the no-show case even with unpunctual server.

Theorem 4.2. First Half Rule for No-Shows with Late Server (FHRNSL):

Given the server is late for Θ ≥ 0 units of time, the optimal slot for the fast

customer for problem P is within the first half of the sequence (including

N
2 for even N and N+1

2 for odd N). Specifically,

EW dN
2 e(Θ) ≤ EW dN

2 e+1(Θ) ≤ ... ≤ EWN(Θ).

Proof. We show that for any m ≥ dN2 e and Θ = θ ≥ 0,

EWm(θ)− EWm+1(θ) ≤ 0

We recall problem P′ as defined in the proof of Theorem 4.1 and upgrade

it to consider the server lateness. We use notations W ′m
n (Θ) and W ′m(Θ)

to represent the waiting time of the nth arrival and the total waiting time
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of sequence m for upgraded P′. Then, Equation (4.2) would change to

EWm
n (Θ) =


ps EW ′m

n (Θ) ; when n = m

pr EW ′m
n (Θ) ; otherwise

(4.7)

We know that EWm
n (θ) = EWm+1

n (θ) given n < m. As a result, we

obtain

EWm(θ)− EWm+1(θ) =
N∑
n=1

EWm
n (θ)−

N∑
n=1

EWm+1
n (θ)

=
N∑

n=m
[EWm

n (θ)− EWm+1
n (θ)]

= (pr − ps)[EW ′m+1
m+1 (θ)− EW ′m

m (θ)]

+pr
N∑

n=m+1
[EW ′m

n (θ)− EW ′m+1
n (θ)]

≤ (pr − ps)[EW ′m+1
m+1 (0)− EW ′m

m (0)]

+pr
N∑

n=m+1
[EW ′m

n (0)− EW ′m+1
n (0)]

=
N∑

n=m
[EWm

n (0)− EWm+1
n (0)]

≤ 0.

As shown in the proof of Theorem 4.1, in problem P′ the excess service

time of the special customer is smaller than that of a regular customer

in likelihood ratio order. Therefore according to Lemma 3.4, EW ′m
n (θ) −

EW ′m+1
n (θ) is non-increasing in θ for n > m. Moreover, since W ′m+1

m+1 (θ) =

[W ′m
m (θ)+Z ′mm ]+ andW ′m

m (θ) is stochastically increasing in θ, using Theorem

A.2, it is not too difficult to show that W ′m+1
m+1 (θ)−W ′m

m (θ) is stochastically
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decreasing in θ. Therefore, EW ′m+1
m+1 (θ) − EW ′m

m (θ) is also non-increasing

in θ. The first inequality comes from these two properties and the last

inequality follows from the application of FHRNS for problem P.

As the inequality holds for any Θ = θ ≥ 0, the proof is completed.

4.3 S(M,N−M)/(F, F )/1: More than one fast

customer with no-shows

We can extend the no-show case of single fast customer with unpunctual

server to the one with multiple fast customers. Following the notations

in Section 3.3, let sequence m̃ = {m1, ...,mM} be an arrival sequence in

which the k-th special customer is assigned to the mk-th appointment slot,

k = 1, ...,M . Denote the total customer waiting time of sequence m̃ as

WP[m̃](Θ), while the waiting time of the n-th arrival of this sequence is

WP[m̃]
n (Θ).

We consider an analogous problem Q with equivalent service time dis-

tributions instead of no-shows. Let WQ[m̃]
n (Θ) and WQ[m̃](Θ) each denote

the waiting time of the n-th arrival and the total waiting time of sequence

m̃ for problem Q respectively. We then have

EWP[m̃]
n (Θ) =


ps EWQ[m̃]

n (Θ) ; when n ∈ m̃

pr EWQ[m̃]
n (Θ) ; otherwise

(4.8)
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We extend Corollary 3.5 to the following lemma.

Lemma 4.1. Considering the no-show case, given a sequence m̃a = {m1, ...,mMa}

for an S(Ma, N−Ma)/(F, F )/1 queue and a sequence m̃b = {m1, ...,mMa , ...,mMb
}

for an S(Mb, N −Mb)/(F, F )/1 queue, with a common non-negative ran-

dom server delay Θ0 for both queues, for any given n, if Ma ≤ Mb and

m2 > m1 + 1,

EWP[m̃a]
n (Θ0)− EWP[m̃′a]

n (Θ0) ≥ EWP[m̃b]
n (Θ0)− EWP[m̃′b]

n (Θ0)

where m̃′a = {m1 +1,m2, ...,mMa} and m̃′b = {m1 +1,m2, ...,mMa , ...,mMb
}

Proof. According to Corollary 3.5, given 1 ≤ n ≤ N ,

EWQ[m̃a]
n (Θ0)− EWQ[m̃′a]

n (Θ0) ≥ EWQ[m̃b]
n (Θ0)− EWQ[m̃′b]

n (Θ0). (4.9)

Then we have,

for n ∈ m̃a, n 6∈ {m1,m1 + 1},

ps
(
EWQ[m̃a]

n (Θ0)− EWQ[m̃′a]
n (Θ0)

)
≥ ps

(
EWQ[m̃b]

n (Θ0)− EWQ[m̃′b]
n (Θ0)

)
,

for n 6∈ m̃a, n ∈ m̃b, n 6∈ {m1,m1 + 1},

pr
(
EWQ[m̃a]

n (Θ0)− EWQ[m̃′a]
n (Θ0)

)
≥ ps

(
EWQ[m̃b]

n (Θ0)− EWQ[m̃′b]
n (Θ0)

)
,
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for n 6∈ m̃a, n 6∈ m̃b, n 6∈ {m1,m1 + 1},

pr
(
EWQ[m̃a]

n (Θ0)− EWQ[m̃′a]
n (Θ0)

)
≥ pr

(
EWQ[m̃b]

n (Θ0)− EWQ[m̃′b]
n (Θ0)

)
.

Therefore, by Equation(4.8), the lemma holds for n 6∈ {m1,m1 + 1}.

In addition, for n ∈ {m1,m1 + 1},

EWP[m̃a]
n (Θ0) = EWP[m̃b]

n (Θ0)

and

EWP[m̃′a]
n (Θ0) = EWP[m̃′b]

n (Θ0)

which completes the proof.

Now, using Lemma 4.1 and Theorem 4.2, we can develop a similar proof

as in Theorem 3.3 and obtain the following important result.

Theorem 4.3. General First Half Rule for No-Shows (GFHRNS):

Considering the no-show case, given any arrival sequence m̃′ = {m′1,m′2, ...,m′M}

of an S(M,N −M)/(F, F )/1 queue with a non-negative random delay Θ0

at the start of the server, if there exists a k such that 1 ≤ k ≤M − 1 and

m′k+1 > m′k + dN −m
′
k

2 e,

we can always build another arrival sequence m̃ = {m1,m2, ...,mM} where
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mi = m′i for i 6= k + 1 and mk+1 = m′k+1 − 1 > mk. We have

EWP[m̃](Θ0) ≤ EWP[m̃′](Θ0)

Now we can partially obtain the optimal sequence for problem P by the

following corollary.

Corollary 4.1. Let sequence m̃∗ = {m∗1,m∗2, ...,m∗M} be the optimal arrival

sequence of an S(M,N −M)/(F, F )/1 queue with a non-negative random

server delay Θ0 where the fast customers are distinguished by their lower

show up probabilities. For 1 ≤ k ≤M − 1,

m∗k < m∗k+1 ≤ m∗k + dN −m
∗
k

2 e

We conclude this section with two significant conclusions of our no-show

results. Firstly, the results could be applied for any service time distribu-

tion. In other words, there is no special stochastic ordering assumption

required to apply GFHR for no-shows. Secondly, the results could be ap-

plied to schedule the break times. The following remark represents this

application.

Remark 4.1. Break Time Scheduling: When ps = 0, the time allocated

to the special customers can be considered as breaks for the server. Thus,

GFHRNS can be used to schedule the breaks to minimize the total customer

waiting time in an equally spaced appointment system with homogeneous
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arrivals.
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Conclusions and future works

In this thesis, we have studied an appointment-based queue with two classes

of customers whose excess service times are stochastically ordered. The

operational target is to find the optimal sequence of arrivals to minimize

the total waiting time of customers. We first show that the optimal se-

quence does not follow the Shortest Expected Processing Time first (SEPT)

and the Smallest Variance first (SV) rules in general. A new concept, the

voucher effect, has been introduced to explain this counter-intuitive obser-

vation. He have shown that the optimal sequence structure is influenced by

the interaction between two effects in sequencing heterogeneous customers

or services: The snowball effect which drives the stochastically faster cus-

tomers toward the beginning of the optimal sequence, and the voucher

effect which pushes the faster customers toward to the end of the sequence.

We have then identified and proved an important property, the First
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Half Rule (FHR), of the optimal sequence. FHR implies that each fast

customer should be scheduled in a position that is in the first half of the

positions after the previous customer in the schedule. While the applica-

tion of FHR is not limited to appointment systems with constant intervals,

it could be applied to any appointment system with constant intervals and

any service time distributions with Monotone Likelihood Ratio Property

(MLRP). The main tool for providing this result is stochastic order argu-

ments. Based on the same framework, we have considered the appointment

sequencing problem in the presence of late server starting.

We have also extended our analysis to a system where the two customer

classes are different in their no-show probabilities instead of the excess

service times. For the optimal sequence to minimize the total waiting time

of the customers who show up, the first half rule still applies. This results

is shown to be applicable in scheduling breaks in the appointment systems

with constant intervals and homogeneous customers.

Moreover, an effective FHR-based appointment sequencing heuristic al-

gorithm is developed in this thesis. This heuristic could find the optimal

arrival sequence in most cases over a wide range of test problems. By ex-

ploring a small piece of the feasible area, the proposed heuristic is able

to improve the total wanting time by more than 60% in comparison with

SEPT and SV rules.

For future work, we are interested
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• to investigate the applicability of FHR where the job allowances are

optimized for each sequence.

• to address more practical situations where FHR could be applied.

For example, the case in which the job allowance for each customer

is proportional to his/her mean service time.

• to develop a an appointment sequencing heuristic which is guaranteed

to find the optimal sequence.

• to find a condition that guarantees SEPT or SV is optimal.

• to address customer unpunctuality and investigate the applicability

of FHR when the fast customer is the customer who is more likely to

arrive earlier than his/her appointment time.

• to develop an easy to implement sequencing heuristic based on FHR

which can be used in hospitals.

• to consider an appointment system with heterogeneous customers

and investigate if we can categorize the customers in two groups and

apply FHR.

• to analytically model the impact of the increase of the job allowance

on the structure of the optimal sequence. It can make a bridge be-

tween machine scheduling and appointment scheduling.
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Appendix A

Some useful properties of

stochastic orders

Many useful properties of stochastic ordering can be found in Shaked and

Shanthikumar (2007). We recall some of them as follows to make our proofs

self-contained.

Theorem A.1. (Recall theorems 1.A.3 of Shaked and Shanthikumar 2007)

(a) For random variables X and Y , if X ≤st Y and g is any non-decreasing

[non-increasing] function, then g(X) ≤st [≥st]g(Y ). The same property

holds for random vectors X and Y.

(b) Let X1, X2, ..., Xm be a set of independent random variables and let

Y1, Y2, ..., Ym be another set of independent random variables. If Xi ≤st Yi,
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for i = 1, 2, ...,m, then, for any increasing function φ : Rm → R, one has

φ(X1, X2, ..., Xm) ≤st φ(Y1, Y2, ..., Ym)

In particular,
m∑
j=1

Xj ≤st
m∑
j=1

Yj

(c) Let X, Y and Θ be random variables such that [X|Θ = θ] ≤st [Y |Θ = θ]

for all θ in the support of Θ. Then X ≤st Y .

Theorem A.2. (Recall Theorem 1.A.6 of Shaked and Shanthikumar 2007)

Consider a family of distribution functions {Gθ, θ ∈ χ}. Let Θ1 and Θ2

be two random variables with supports in χ and distribution functions F1

and F2, respectively. Let Y1 and Y2 be two random variables such that

Yi =st X(Θi), i = 1, 2. That is the distribution function of Yi is given by

Hi(y) =
∫
χ
GΘ(y)dFi(θ), y ∈ R, i = 1, 2.

If X(θ) ≤st X(θ′), whenever θ ≤ θ
′, and if Θ1 ≤st Θ2, then Y1 ≤st Y2.

Theorem A.3. (Recall Theorem 6.B.3 of Shaked and Shanthikumar 2007)

94



APPENDIX A. SOME USEFUL PROPERTIES OF STOCHASTIC
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Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) be two n-dimensional

random vectors. If

X1 ≤st Y1

and for i = 2, 3, ..., n,

[Xi|X1 = x1, ..., Xi−1 = xi−1] ≤st [Yi|Y1 = y1, ..., Yi−1 = yi−1]

whenever xj ≤ yj, j = 1, 2, ..., i− 1, then X ≤st Y.

Theorem A.4. (Recall Theorem 1.C.30 of Shaked and Shanthikumar 2007)

Let X and Y be two random variables with distribution functions F and

G, respectively. Let W be a random variable with the distribution function

pF + (1− p)G for some p ∈ (0, 1). If X ≤lr Y , then X ≤lr W ≤lr Y .

We also recall a theorem from Boland et al. (1992) as follows.

Theorem A.5. (Recall Theorem 1 of Boland et al. 1992)

Let {X1, ..., Xn} be a sequence of independent random variables. If

X1 ≤lr ... ≤lr Xn
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then

(a) for any permutation π = (π1, ..., πn) of (1, 2, ..., n)

(X1, X1+X2, ...,
n∑
i=1

Xi) ≤st (Xπ1 , Xπ1+Xπ2 , ...,
n∑
i=1

Xπi
) ≤st (Xn, Xn+Xn−1, ...,

n∑
i=1

Xi)

(b) for a given permutation π = (π1, ..., πr, ..., πs, ..., πn) of (1, 2, ..., n)

where πr < πs, if one swaps πr and πs to build a new permutation π′ =

(π′1, ..., π′n) = (π1, ..., πs, ..., πr, ..., πn), then

(Xπ1 , Xπ1 +Xπ2 , ...,
n∑
i=1

Xπi
) ≤st (Xπ′1

, Xπ′1
+Xπ′2

, ...,
n∑
i=1

Xπ′i
)
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Expected waiting time

calculation

B.1 S(1, 2)/(SM,SM ′)/1

Consider an appointment system with fixed job allowance x and three cus-

tomers with exponential service durations where the service rate for the

nth arrival is µn, n = 1, 2, 3. Let pjn(x), n = 1, 2, 3 and j = 1, ..., n − 1,

denote the probability that the nth arrival visits j customers in the system

upon his/her arrival. The expected waiting time of the nth arrival, denoted

by EWn(x) can be calculated as follows.

EW1(x) = 0

EW2(x) = 1
µ1
p1

2(x)

97



APPENDIX B. EXPECTED WAITING TIME CALCULATION

EW3(x) =
(

1
µ1

+ 1
µ2

)
p2

3(x) + 1
µ2
p1

3(x)

where

p1
2(x) = e−µ1x

p2
3(x) = e−2µ1x

p1
3(x) = µ2

µ1 − µ2
e−(µ1+µ2)x − µ1

µ1 − µ2
e−2µ1x + e−µ2x

B.2 S(1, N − 1)/(SM,SM ′)/1, N > 3

Based on Equation (2.3), for l = 1, 2, ..N − m, Pr{N(tm+l) = 0} can be

calculated as follows.

For m = 1 and l = 1,

Pr {N (tm+l) = 0} = Pr {N (t2) = 0} = 1− e−µx

For m > 1 and l = 1,

Pr{N(tm+l) = 0} = Pr {N (tm) = 0} ×
(
1− e−µx

)
+

m−1∑
k=1

Pr {N (tm) = k} ×
∫ x

0

µ′kt
k−1

(k − 1)!e
−µ′t

(
1− e−µ(x−t)

)
dt


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For m = 1 and l > 1,

Pr{N(tm+l) = 0} =
l−1∑
k=1

Pr {N (tl) = k − 1} ×
1−

k−1∑
q=0

(µ′x)q

q! e−µ
′x



+Pr {N (tl) = l − 1}×
1−

e−µx +
∫ x

0
µe−µt ×

l−2∑
q=0

(µ′(x− t))q

q! e−µ
′(x−t) dt



For m > 1 and l > 1,

Pr {N (tm+l) = 0} =
l−1∑
k=1

Pr {N (tm+l−1) = k − 1} ×
1−

k−1∑
q=0

(µ′x)q

q! e−µ
′x



+Pr {N (tm+l−1) = l − 1}×
1−

e−µx +
∫ x

0
µe−µt ×

l−2∑
q=0

(µ′ (x− t))q

q! e−µ
′(x−t) dt



+
m+l−1∑
k=l+1



Pr {N (tm+l−1) = k − 1}

×


1−



∫∞
x

µ′k−ltk−l−1

(k−l−1)! e
−µ′tdt+

∫ x
0
µ′k−ltk−l−1

(k−l−1)! e
−µ′t × e−µ(x−t)dt

+
∫ x

0
∫ x
t
µ′k−ltk−l−1

(k−l−1)! e
−µ′t × µe

−µ
(
t
′−t
)

×∑l−2
q=0

(
µ′
(
x−t′

))q

q! e
−µ′
(
x−t′

)
dt
′
dt






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Based on Equation (2.4), for a given m and l = 1, 2, ..N −m, where j is

a positive integer less than m + l − 1, Pr{N(tm+l) = j} can be calculated

as follows.

For m = 1 and l < j,

Pr{N(tm+l) = j} =
l−j−1∑
k=0

(
Pr {N (tl) = j + k − 1} × (µ′x)k

k! e−µ
′x

)

+ Pr {N (tl) = l − 1} ×
∫ x

0
µe−µt

(µ′(x− t))l−j−1

(l − j − 1)! e−µ
′(x−t)dt

For m > 1 and l = j,

Pr{N(tm+l) = j} = Pr {N (t1+l) = l} = Pr {N (tl) = l − 1}×e−µx = e−µ(lx)

For m > 1 and l < j < m+ l,

Pr {N (tm+l) = j} =
m+l−j−1∑

k=0

(
Pr {N (tm+l−1) = j + k − 1} × (µ′x)k

k! e−µ
′x

)
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For m > 1 and l = j,

Pr{N(tm+l) = j} = Pr {N (tm+l−1) = l − 1}×e−µx

+
m−1∑
k=1

(
Pr {N (tm+l−1) = l + k − 1} ×

∫ x

0

tk−1µ′k

(k − 1)!e
−µ′te−µ(x−t)dt

)

For m > 1 and l > j,

Pr {N (tm+l) = j} =
l−j−1∑
k=0

(
Pr {N (tm+l−1) = j + k − 1} × (µ′x)k

k! e−µ
′x

)

+ Pr {N (tm+l−1) = l − 1} ×
∫ x

0
µe−µt

(µ′(x− t))l−j−1

(l − j − 1)! e−µ
′(x−t)dt

+
m+l−j−1∑
k=l−j+1


Pr {N (tm+l−1) = j + k − 1}

×
∫ x

0
∫ x
t
tj+k−l−1µ′j+k−l

(j+k−l−1)! e−µ
′t × µe

−µ
(
t
′−t
)(

µ′
(
x−t′

))l−j−1

(l−j−1)! e
−µ′
(
x−t′

)
dt
′
dt


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S(M,N)/(D,D′)/1

As mentioned in §1, the appointment sequencing problem is still NP-hard

even under deterministic model where the time interval allocated to each

customer is set to a constant, and the service duration for each customer

is known in advance (Kong et al., 2014).

In this section, we consider a deterministic appointment sequencing

problem with the following characteristics. There are M special customers

with deterministic service time of s and job allowance of xs, and N regular

customers with deterministic service time of r and job allowance of xr.

Sequence m = {m1,m2, ...,mM} is the arrival sequence in which the special

customers are scheduled in positions m1,m2, ...,mM . Let wmi denote the

waiting time of the ith arrival of sequence m, and wm the total waiting

time of sequence m. m∗ denotes the optimal sequence to minimize the

total customers’ waiting time. The excess service times of the special and
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regular customers are denoted by zs and zr respectively, and it is assumed

that zs < zr. Note that in other sections, N denotes to the total number

of customers, but here it denotes to the number of regular customers.

Lemma C.1. Assuming zs < zr,

(a) if zr ≤ 0, then the total waiting time for all possible sequences is zero.

(b) if zs ≥ 0, then the special customers should be scheduled first, i.e.

m∗ = 1, 2, ...,M.

Proof. Where zr ≤ 0, the service time of no customer exceeds his allocated

allowance time and therefore no one has to wait. If zs ≥ 0, then the server

has to continuously serve all the customers and is never idle during the

session. Thus,

wmi = kmi zs + (i− 1− kmi )zr

where kmi is the number of special customers scheduled before the ith arrival

in sequence m. For any given sequence, if we can find a regular customer

followed by a special customer, we can reduce the total waiting time by

zr − zs by swapping these two customers. We repeat this procedure to

reach the optimal sequence m∗ = 1, 2, ...,M .

Now we investigate the structure of the optimal sequence with one spe-

cial customer, where zs < 0 < zr. Without loss of generality, we can assume

that zr = 1. Let α = −zs, 0 < α , which shows the potential saving can be

provided by a special customer. For m = 1, 2, ..., N − 1,

103



APPENDIX C. S(M,N)/(D,D′)/1

wmi =


i− 1 ;when i ≤ m

i−m− 1 + [(m− 1)− α]+ ;when i > m

wm =
m−1∑
i=0

i+
N−m∑
j=0

(
j + [(m− 1)− α]+

)

Hence, for m = 1, 2, ..., N − 1,

∆wm = wm+1−wm =



α + 1 ;when α ≤ m− 1

2m−N + (N −m)(m− α) ;when m− 1 < α < m

2m−N ;when α ≥ m

It is not difficult to show that for any m ≥ dN+M
2 e, ∆wm ≥ 0. Therefore

we have the the following lemma which validates FHR under deterministic

service time assumption.

Lemma C.2. The special customer in S(1, N+1)/(D,D′)/1 must be sched-

uled in the first half of the sequence.

Also, considering equally spaced appointment times with length of x,

i.e. xs = xr = x, it is not too difficult to show the optimal slot for the

special customer moves from the first slot toward the middle of the sequence

as x increases.

In summary, the deterministic results are consistent with our observa-

tions for S(1, N − 1)/(SM,SM ′)/1 in Section 2.2.2.
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Homogeneous customers

arriving at equally spaced

appointment times

In this section, we show that in an appointment system with constant job

allowance and homogeneous customers, the expected waiting time of the

n-th arrival is increasing and concave in n.

Consider an appointment system with homogeneous customers with i.i.d

service time S with distribution function F .

Lemma D.1. Wn is stochastically increasing in n.

Proof. We first show that [Wn+1|Wn = θ] is stochastically increasing in θ.

Wn+1 = [Wn + S − x]+ (D.1)
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Thus

[Wn+1|Wn = θ] = [θ + S − x]+

and

Pr{[θ + S − x]+ > t} =


F (t+ x− θ) t ≥ 0

1 otherwise

where F is the distribution function of S, F (s) = 0 for s < 0, and F is

1− F . Since F is a non-increasing function, for all t ∈ (−∞,+∞)

[Wn+1|Wn = θ] ≤st [Wn+1|Wn = θ
′ ]

whenever θ < θ
′ . Hence, [Wn+1|Wn = θ] is stochastically increasing in

θ. Also W1 ≤st W2, since W1 = 0, and W2 is a non-negative random

variable. Therefore according to Theorem A.2, W2 ≤st W3. Similarly, from

W2 ≤st W3, it can be proved that W3 ≤st W4, and so on. Theorem A.2 can

thus be used recursively to show Wn ≤st Wn+1.

Lemma D.2. [Wn+1 −Wn|Wn = θ] is stochastically decreasing in θ.

Proof. We show that [Wn+1 − Wn|Wn = θ
′ ] ≤st [Wn+1 − Wn|Wn = θ]

whenever 0 ≤ θ < θ
′ . According to (D.1), we have

[Wn+1 −Wn|Wn = θ] = [θ + S − x]+ − θ.
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Let Gθ (Gθ′ ) be the distribution function of [Wn+1−Wn|Wn = θ(Wn = θ
′)].

Then

Gθ(t) =


F (t+ x) (θ ≥ x & t ≥ −x) or (θ < x & t ≥ −θ)

0 otherwise

We have a similar expression for Gθ′ , θ
′
> θ. Therefore, as can be seen in

Figure C.1,

Gθ′ (t)−Gθ(t) =


F (t+ x) (θ < x < θ

′&− x < t < −θ)or(θ′ < x&− θ′ ≤ t < θ)

0 otherwise

Hence, Gθ′ (t) ≥ Gθ(t) for all t ∈ (−∞,+∞) whenever θ < θ
′ . That is

[Wn+1 −Wn|Wn = θ] ≥st [Wn+1 −Wn|Wn = θ
′ ]

which means that [Wn+1−Wn|Wn = θ] is stochastically decreasing in θ.

Lemma D.3. Wn+1 −Wn is stochastically decreasing in n.

Proof. According to Lemma D.1, Wn ≤st Wn+1 and it follows from Lemma D.2

that

[Wn −Wn+1|Wn = θ] ≤st [Wn+1 −Wn+2|Wn+1 = θ
′ ]
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APPENDIX D. HOMOGENEOUS CUSTOMERS ARRIVING AT
EQUALLY SPACED APPOINTMENT TIMES
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Figure D.1: [Wn+1 −Wn|Wn = θ] and [Wn+1 −Wn|Wn = θ
′ ] distributions, where

0 ≤ θ < θ
′

whenever θ ≤ θ
′ . Let Yn = Wn −Wn+1. Then based on Theorem A.2

Yn ≤st Yn+1

Thus, Wn+1 − Wn ≥st Wn+2 − Wn+1 (i.e. Wn+1 − Wn is stochastically

decreasing in n).

Lemma D.4. E[Wn] is increasing and concave in n.

Proof. According to Lemma D.1, E[Wn] is increasing in n. Also, from

Lemma D.3, we have

E[Wn+1]− E[Wn] ≥ E[Wn+2]− E[Wn+1].

Hence E[Wn] is increasing and concave with respect to n.
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