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Summary 

There are no places left on Earth that are untouched by the consequences of 
anthropogenic activities; the Yangtze River is no exception. Over the past 
decades, The Yangtze River has been being dammed at a dazzling pace. Previous 
studies have reported the impacts of individual dams from different perspectives; but 
the cumulative impacts of multiple dams/reservoirs have not been well investigated 
due to lack of needed information on nearly 44,000 dams/reservoirs. Focusing on the 
fast-damming Yangtze River, this thesis developed a parsimonious approach based on 
remote sensing techniques to delineate reservoirs in the entire Yangtze River basin. 
Using the data, this study proposed new models to assess the cumulative impacts of 
dams/reservoirs on water regulation, sediment retention, river connectivity and river 
landscape fragmentation. 

This study delineated nearly 43,600 reservoirs with a total water storage capacity of 
approximately 288 km3 which is equivalent of approximately 30% of the annual 
runoff of the Yangtze River. Compared to the existing natural lakes with a combined 
storage volume of only 46 km3, the artificial reservoirs have undoubtedly become the 
dominant water bodies in the Yangtze River basin. However, there is considerable 
geographic variation in the potential surface water impacts of the reservoirs.  

The results indicate that annual sediment accumulated in the 43,600 reservoirs is 
approximately 691 (± 94) million tons (Mt), 669 (± 89) Mt of which is trapped by 
1,358 large and medium-sized reservoirs and 22 (± 5) Mt is trapped by smaller 
reservoirs. The estimated mean annual rate of storage loss is approximately 5.3 x 108 
m3 yr-1; but against the world trend, the Yangtze River is now losing reservoir capacity 
at a rate much lower than new capacity being constructed.  

Based on three proposed metrics, the assessments revealed that the Gezhouba Dam 
and the Three Gorges Dam have the highest impact on river connectivity. The values 
for weighted dendritic connectivity index (WDCI) and weighted habitat connectivity 
index for upstream passage (WHCIU) for the whole Yangtze River have decreased 
from 100 to 34.12 and 33.96, respectively, indicating that the Yangtze has experienced 
strong alterations over the past decades. The measurement of the weighted river 
landscape fragmentation index (WRLFI) indicated that the Wu, Min and Jialing 
tributaries only maintain connectivity among one to three river landscapes. Situation in 
the middle and lower basin is the highest. Even so, only a small part of the streams still 
maintains connectivity in 7 out of 12 river landscapes. 

This study revealed that previously overlooked small dams can also exert significant 
impacts in flow regulation and river landscape fragmentation on regional river systems 
through their sheer number and density. The results indicated that the impacts of small 
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dams are comparable to large dams for the fourth- and fifth-order streams, or even 
significantly exceed large dams for the first-, second- and third-streams. Although the 
impacts of small dams are weaker than large dams for large streams, they do worsen the 
impacts caused by large dams. Therefore, regional water resources management 
schemes should be “optimized” by prioritizing the siting of new small dams based on 
which locations would have the lowest estimated cumulative impacts downstream. 

The knowledge obtained in this study is essential to identify environmental risks 
associated with further impacts on river systems. Also, using this knowledge, it is 
possible to quantify the potential impacts of incremental dam development on river 
systems at basin and sub-basin levels in terms of environmental intactness. This 
knowledge will also make it easier to develop the Yangtze River basin with a relatively 
lower environmental footprint. Ultimately, this would lead us to a situation where local 
energy demands are met, and relevant ecosystem processes can be conserved 
basin-wide. 
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1 Introduction 

1.1 General background 

The desire and ability to impound water by different civilizations dates back many 

millennia. Some of the early societies in Mesopotamia, Pakistan and China were termed 

‘Hydraulic civilizations’ and were probably formed specifically to organize the large 

labor necessary to construct canals and flood embankments. By 1950, Asia had 1,541 

large dams, accounting for 30% of the global total; by 1982 that figure had grown to 

22,701 (65% of the global total). Most—18,595, or 82%—were in China (Dudgeon, 

2000). Absolute numbers of dams have changed over the last several decades, of course, 

but Asia's proportionate share of the global total of dams remains high. According to 

the estimates of the International Commission on Large Dams (ICOLD), there are 

more than 45,000 large dams worldwide – defined as those higher than 15 m – used for 

water supply, power generation, flood control, navigation and downstream releases. 

(White, 2000; ICOLD, 2011; Lehner et al., 2011). Their associated impoundments are 

estimated to have a cumulative storage capacity in the range of 7,000 to 8,300 km3 

(Vörösmarty et al., 2003; Chao et al., 2008). This compares to nearly 10% of the water 

stored in all natural freshwater lakes in the world, and represents about one-sixth of the 

total annual river flow into the oceans (Downing et al., 2006; Lehner et al., 2011).  

A reservoir operated for water conservation traps irregular flows to make subsequent 
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deliveries to users at scheduled rates; but operation for hydropower dams seeks to 

balance two conflicting objectives: to maximize energy yield per unit of water, the 

pool should be maintained at the highest possible level, yet the pool elevation should 

be low enough to capture all inflowing flood runoff for energy generation (Morris and 

Fan, 1998). However, large dams usually generate hydroelectricity and the impacts of 

dams vary greatly depending on whether a rock or alluvial channel is present. The 

resultant operation indicates a compromise between high-head and storage 

requirements. Now, about 20% of cultivated land worldwide is irrigated, about 300 

million hectares, which produces about 33% of the worldwide food supply; about 20% 

of the worldwide generation of electricity is attributable to hydroelectric schemes, 

which equates to about 7% of worldwide energy usage (White, 2001). Many dams have 

been built with flood control and storage as the main motivator, e.g., the Hoover dam, 

the Tennessee Valley dams and some of the more recent dams in China. The benefits 

attributable to dams and reservoirs, most of which have been built since 1950, are 

considerable and stored water in reservoirs has improved the quality of life worldwide. 

Dams and reservoirs play an important role in the control and management of water 

resources. 

On the other hand, dams and reservoirs have adversely affected fluvial processes at 

global and catchment scales, inducing direct or indirect impacts to biological, 

chemical and physical properties of rivers and riparian environments, although the 

impacts of dams and reservoirs vary greatly depending on whether a rock or alluvial 
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channel is present. Dams hold back sediments that would naturally replenish 

downstream river systems, leading the flow to become sediment-starved and prone to 

erode the channel bed and banks, producing channel incision (downcutting), 

coarsening of bed material, and leading to the loss of spawning gravels for fish 

species (Kondolf, 1997). Half of all discharge entering large reservoirs shows a local 

sediment trapping efficiency of 80% or more. Several large basins such as the 

Colorado and Nile show nearly complete trapping due to large reservoir construction 

and flow diversion (Vörösmarty et al., 2003). Reservoir construction currently 

represents the most important influence on land-ocean processes. Due to sediment 

retention, it has exerted severe influence on land-ocean processes thereby triggering 

various harmful effects, such as, loss of floodplains and adjacent wetlands (Rosenberg 

et al., 2000), and deterioration and loss of river deltas and ocean estuaries (Milliman, 

1997; Syvitski et al., 2009) in the Nile (Stanley and Warne, 1993), Colorado (Topping 

et al., 2000), Mississippi (Blum and Roberts, 2009), and Yellow (Wang et al., 2007b) 

river basins. 

Another significant and obvious impact is the transformation upstream of the dam 

from a free-flowing river ecosystem to an artificial slack-water reservoir habitat. 

Changes in temperature, chemical composition, dissolved-oxygen levels and the 

physical properties of a reservoir are often not suitable to the aquatic plants and 

animals that evolved with a given river system. Dynesius and Nilsson (1994; 2005) 

concluded that 77% of the total water discharge of the 139 largest river systems in 
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North America and north Mexico, Europe and the republics of the former Soviet Union 

is strongly or moderately affected by fragmentation of river channels by large dams. 

Similar results on Mississippi, Colorado and Mekong rivers were also reported in a 

recent study (Grill et al., 2014). 

Although the oft-heard colloquial wisdom that “the dam building era is over in 

developed countries” was born since 1980 (Graf, 1999), dam construction in Asia still 

keeps a strong momentum, especially after the 1990s. Most of the large Asian rivers 

(such as the Mekong, Indus, Ganges, Yangtze and Yellow rivers) are being dammed at 

a dazzling pace. Like other countries in different parts of the world, such as, Australia 

(Callow and Smettem, 2009), Romania (Radoane and Radoane, 2005), Spain 

(Verstraeten and Poesen, 2000; de Vente et al., 2005), and the United States (Minear 

and Kondolf, 2009), the formation of an increasingly dense multiple dam system in 

large Asian river basins has also been observed (Milliman, 1997; Xu and Milliman, 

2009; Yang et al., 2011).  

Under such a context, it is widespread agreement in the ongoing sustainable reservoir 

management debate about the importance of better assessing the impacts of dams and 

reservoirs and of minimizing associated environmental costs while leveraging the 

benefits in multi-dam river systems. Meanwhile, there have been many new 

challenges to face, such as, soaring dam development, increased complex interactions 

between dams and complex fluvial responses, which are coupled with increased 
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public awareness of associated environmental issues. For example, agencies in the 

United States have adopted procedures and methods for predicting and assessing the 

environmental impacts of dams. They define three types of effects: direct, indirect, 

and cumulative. While federal agencies routinely consider the direct and indirect 

impacts of dams, almost all agencies say they have difficulty addressing the 

cumulative effects (Clark, 1994). In order to address these challenges, scientists have 

been developing novel methods to assess the increasingly complex interactions 

between dam development and the current and future impacts. As these impacts 

manifest in a cumulative manner over broad temporal and spatial scales, methods 

which address these impacts must be developed. 

In recent academic literature, cumulative impacts have been defined as “the 

incremental impacts of a single action assessed in the context of past, present and 

future actions, regardless of who undertakes the action” (Ma et al., 2009). For the 

purposes of this thesis, cumulative impacts are several effects associated with multiple 

dams or reservoirs, which exist over space and persist over time. An impact is defined 

as “a change” response to multi-dam or multi-reservoir operations and relative to a 

chosen benchmark determined by comparing temporally or spatially differing points 

of reference. Cumulative impact assessments are the process of systematically 

evaluating effects (changes) resulting from incremental, accumulating and interacting 

multi-dam or multi-reservoir operations. 
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It is important to assess the cumulative impacts at a basin-wide scale. Historically 

methods have been criticized for being conducted at too small a spatial scale (Ziemer, 

1994). Within each river basin is a branching network of channels. The main, or trunk, 

channel is fed by numerous small tributaries which join to form progressively larger 

channels. The development and evolution of drainage networks is influenced by a 

number of factors, including geology, relief, climate and long-term drainage basin 

history (Charlton, 2007). Dams are often constructed in the upper stream reaches 

which have rich water power resources; but dams can also present serious problems 

downstream, creating sediment-starved flows and disrupting the connectivity of river 

systems (Graf, 2006). The impacts can even extend to deltas, leading to deterioration 

and loss of river deltas and ocean estuaries (Stanley and Warne, 1993; Milliman, 1997; 

Blum and Roberts, 2009; Syvitski et al., 2009) . Therefore, including an assessment of 

the entire basin (headwaters to mouth) is an important aspect of cumulative impact 

assessment. In addition, limited spatial magnitudes generally narrow impact analysis 

to considerations of single dam and simple cause-effect relationships which can be 

attributed a specific environmental attribute at an individual site. To minimize bias, 

the spatial scale of the assessment should be defined by the spatial scale of the fluvial 

processes. This means that many of the impacts that occur can also be attributed 

natural variations that occur within the whole river system and they should be 

assessed at a basin-wide scale. For example, sediment retention by dams can cause 

delta shoreline recession due to insufficient sediment supply; but insufficient 
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precipitation as a result of climate change and land cover change as a result of human 

activities can also lead to similar results in the delta area. Incorporating these natural 

changes will help to differentiate between those impacts that are man-made and those 

which are not. On the basis then, an assessment for dams should include impacts 

accumulating along the river continuum. Impacts should also be considered over 

multiple scales such as reach, catchment, sub-basin and regional landscape (Sindorf 

and Wickel, 2011; Grill et al., 2014). Obviously, this level of assessment is beyond the 

capacity of individual dam project proponents to conduct under the existing 

assessment processes. 

As stated above, assessing the cumulative impacts of dams at a basin-wide scale is 

important, but existing methods are unable to conduct such assessment due to various 

limitations. 

The first limitation is lack of needed dam data. Although many researchers and 

organizations (ILEC, 1988-1993; Birkett and Mason, 1995; Vörösmarty et al., 1997; 

MSSL and UNEP, 1998; Lehner and Doll, 2004; ICOLD, 2011; Lehner et al., 2011) 

have created their own georeferenced, global and regional datasets of dams and 

reservoirs in previous attempts, these attempts are primarily based on national archives. 

These datasets usually have incomplete reservoir information for developing countries, 

especially the countries in Africa, South America and Asia because national 

inventories of dams are usually unavailable in these countries. In addition, no small or 
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medium reservoirs are included in current global datasets, making it impossible to 

assess the cumulative impacts caused by these dams. Therefore, developing a 

parsimonious approach to rapidly delineate reservoirs in developing countries is a 

prerequisite for cumulative impact assessment. As an alternative data source, recent 

developments in remote sensing techniques promise global land cover images in 

increasing quality and resolution (Gupta et al., 2002; Lehner and Doll, 2004; Gupta and 

Liew, 2007). Remote sensing techniques could be used as a parsimonious approach to 

rapidly delineate reservoirs in developing countries where national inventories are 

unavailable and field survey is laborious and expensive, but few studies have been 

conducted to obtain reservoirs in all size classes, although delineation of large 

reservoirs has been done by many researchers. 

Secondly, although many previous studies focused on the impacts of dams and 

reservoirs, these studies have predominantly been focused on the effects of general 

scour of the main channel below the dams, sediment retention behind individual dams, 

and changes in water and sediment discharge (Erskine, 1985; Dade et al., 2011; Draut et 

al., 2011); yet literature is rare concerning the cumulative impacts of reservoirs in a 

multi-reservoir system. Modeling the impacts in such a multi-reservoir system is still a 

challenge at present. There are two research challenges in terms of the impact of dams 

on sediment retention. First, the estimation of surface erosion and sediment yield from a 

large catchment has large uncertainty due to the spatial variation of rainfall and to great 

heterogeneity in relief, slope and soil (Williams, 1975). How to calculate more accurate 
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sediment yield by integrating these factors (such as relief, slope, soil and rainfall) 

directly determines the success of the following assessment. Second, in a 

multi-reservoir system, trapping efficiency is insufficient to explain the true sediment 

retention of a dam, because sediment trapping by upstream reservoirs is also important. 

By considering the effect of trapping by upstream reservoirs in a multi-reservoir system, 

the rate of sediment retention in each individual reservoir could be significantly 

different. 

Thirdly, in order to quantify the cumulative impacts on river connectivity and river 

landscape fragmentation caused by dam construction, various models have been 

proposed over the past decades in global or catchment scale studies; but most of the 

models are debatable. For example, serving as a first-level approximation of the 

potential impact on flow regulation, Dynesius and Nilsson (1994; 2005) used the flow 

regulation ratio or degree of regulation to investigate fragmentation and flow 

regulation of the world's large river systems; but these studies are just a very coarse 

assessment for flow regulation because no reservoir locations were considered. 

Alternatively, graph-theoretic models started to emerge (Cote et al., 2009; Sindorf and 

Wickel, 2011; McKay et al., 2013). However, river sizes and stream length between 

dams are also not considered in these models. To avoid this problem, Grill et al. (2014) 

proposed the river connectivity index (RCI) by simply replacing the ‘river length’ 

measure with ‘river volume’, but the model is somewhat impractical because river 

volume for each river section is often unknown. 
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A fourth problem is that the cumulative impacts of numerous small dams are unclear 

but have been understudied due to lack of needed data for large-scale river basins 

(Jager and McManamay, 2014). As introduced above, the impacts of large dams have 

been examined, but few studies have investigated impacts of more ubiquitous small 

dams. In contrast to large dams, most small dams are constructed on small streams 

with small catchments. Small hydropower projects are often considered to have fewer 

environmental impacts than large, main-stem projects (Kibler and Tullos, 2013) 

because these more moderate changes to streams associated with small dams produce 

relatively subtle and spatially-limited changes along stream continua (Gangloff et al., 

2011). Despite the subtle impacts by individual small dams, the cumulative impacts 

could be extended unlimitedly with the sharp increase in dam number. However, the 

cumulative impacts of small dams have not been well investigated. 

As stated above, further work is required to provide precise quantitative cumulative 

impact assessments of dams on fluvial processes at a basin-wide scale. This study, 

using the Yangtze River basin as a case study, attempts to quantify the cumulative 

impacts caused by multiple reservoirs on water regulation, sediment retention, river 

connectivity and river landscape fragmentation at basin and sub-basin scales. It hopes 

to inform the public about how a river basin-wide assessment provides the ability to 

evaluate dam development in a multi-dam system in terms of water and sediment 

transport and environmental intactness, by providing a series of modeling methods on 

the general siting of dams.  
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1.2 Justification for the study area 

The Yangtze River is one of the typical large rivers in river length, having almost all 

the important characteristics of fluvial landforms. It flows from the glaciers on the 

Qinghai-Tibet Plateau, running eastward through a mountainous upper reach, flat 

middle reach with numerous lakes, and reaching the East China Sea at Shanghai. Its 

distinctive climatic features, typical hydrological features and comprehensive fluvial 

landforms make the Yangtze River stand out as an ideal study area. 

In addition, the Yangtze has been continuously measured by an extensive hydrological 

monitoring program cross the entire Yangtze River basin, which was established in the 

1950s by the Changjiang (Yangtze) Water Resources Commission (CWRC). The 

program includes 384 hydrological gauge stations and 163 meteorological stations 

scattered across the entire basin. The monitoring program includes discharge and 

suspended load in accordance with national data standards. The original records for 

each station provide information on station coordinates (latitude and longitude), 

catchment area, mean monthly and annual water discharge, and the magnitude and date 

of occurrence of the maximum and minimum daily discharges (Yan et al., 2011). 

Besides, supplementary data on geological background, spatial heterogeneity of soil 

erosion intensity and land-change data (e.g. soil conservation programs and reservoir 

sediment investigation reports in the upper Yangtze reach), are also publicly available 

for use. These data made it possible to conduct this study on the assessment of 
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cumulative impacts of dam construction. 

The Yangtze River is rich in hydropower resources. The total potential power is 

estimated to be more than 200 million kilowatts (kW), representing about 40% of the 

total energy potential of all the rivers of China. China has planned 13 hydropower 

bases, six of which are in the Yangtze River basin (Huang and Yan, 2009). The 

Yangtze River and its tributaries are being dammed at a dazzling pace, today reaching 

44,000 dams because of a large demand for water caused by a population boom and 

rapid economic development (Yang and Lu, 2013a). Together with planned 

developments in the Amazon (Fearnside, 2006) and the Mekong (Lu and Siew, 2006; 

Kummu et al., 2010), the Yangtze region can be considered to be one of the hotbeds of 

dam development in the world.  

The Yangtze River basin is therefore a potentially incomparable experimental basin 

for investigating the cumulative impacts by dams. Using the long-term continuous 

hydrological data covering the entire river basin started before large-scale dam 

development, the cumulative impacts can be fully investigated at basin and sub-basin 

scales. In particular, given the development of contiguous cascade dams on the major 

tributaries, it is an excellent opportunity to integrate a large amount of existing 

information in a cumulative impact context. 
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1.3 Objectives and significance 

The Yangtze River is a large river experiencing fast reservoir development and 

associated environmental issues (Stone, 2011). Consequently, it is required to gain 

better knowledge involving more accurate and highly resolved monitoring of the 

cumulative impacts of reservoir development over time to meet the challenges caused 

by reservoir development. As stated in the above section, the Yangtze River basin is an 

excellent model to carry out assessments of cumulative impacts by dam development 

because of its typical river-landscape characteristics, fast dam development and public 

availability of long-term hydrological data. This study offers a unique opportunity to 

develop these methods to quantify these cumulative impacts in the multi-dam Yangtze 

River system. Through the cumulative impact assessments this study can be proactive 

in reservoir management decisions rather than reactive. This will make it easier to 

develop the Yangtze River basin with a relatively lower environmental footprint. 

Ultimately, this would lead us to a situation where local energy demands are met, and 

relevant ecosystem processes could be conserved in the Yangtze River basin.  

Four specific objectives of this research were to: 

I. develop a parsimonious method to delineate reservoirs across the entire Yangtze 

River basin to explore their spatial distribution pattern and cumulative impacts on 

water regulation; 
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II. develop a framework to estimate reservoir sedimentation in a multi-dam system to 

investigate the cumulative impacts on sediment retention by integrating the effects 

of upstream dams; 

III. design novel indices based on Geographic Information System (GIS) to quantify 

cumulative impacts of large dams on river connectivity and river landscape 

fragmentation at the basin and sub-basin scales; 

IV. quantify the cumulative impacts of numerous small dams on flow regulation and 

river landscape fragmentation. 

Based on the objectives established, this research is based on three assumptions: 

a) Water discharge and sediment load within a catchment can be predicted from the 

interactions between land cover properties, anthropogenic activities (such as, 

reservoir construction and water diversion) and climate; 

b) Reservoir operation usually follows this procedure: reservoirs start to impound 

water after the wet season in September; stored water is then gradually released to 

improve conditions for navigation, irrigation and water quality. 

c) Environmental factors, such as climate (precipitation, temperature), topography 

(slope, altitude) and geology (karst geology), can create different river landscapes; 

the river landscapes can also be classified based on these factors. 
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1.4 Research questions and framework of the methodology 

In order to achieve the research objectives stated above, several questions to be 

addressed have been proposed: 

I. How reservoirs and their associated dams are spatially distributed in the Yangtze 

River basin? What is the impact on flow regulation? 

II. Reservoirs are a crucial component in sediment retention, how much sediment is 

annually trapped in reservoirs? And what is the impact on land-ocean sediment 

transfer? What contributions have been made by large, medium and small 

reservoirs, respectively? 

III. To what degree has the Yangtze River has been disconnected due to dam 

development? How does river landscape fragmentation vary in different tributary 

basins? And what are the implications of the assessment for future dam 

development? 

IV. There are more numerous small dams built in the Yangtze River basin, what are 

the cumulative impacts of small dams on flow regulation and river landscape 

fragmentation? How to quantify the impacts and compare against the impacts 

caused by large dams? 
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1.5 Arrangement and structure of the dissertation 

To address the questions and to achieve the objectives highlighted in the previous 

section, the research framework was designed as shown in Figure 1.1. Data used in this 

study were diverse, including climatological data, geomorphological maps, geological 

thematic maps, hydrological records, digital elevation model (DEM) data, reports 

about human activities in the past decades and remotely sensed data (Landsat 

TM/ETM+ imagery). The climatological data, geomorphological maps, geological 

thematic maps, hydrological records were also used as parameters to assess the 

cumulative impacts of dams, such as, providing water discharge and sediment yield at 

dams. DEM data were used to derive river network, reservoir catchments, and 

catchment properties, such as, mean slope, mean elevation.  

The remotely sensed images were firstly used to delineate reservoirs in Chapter 3. Data 

for reservoir geographical distribution was the basic information for further analysis; 

thus, the first is image processing, based on which the impact on water regulation was 

examined. The historical hydrological and climatological data, DEM data, geological 

maps were then used to establish a relationship between sediment yield at each dam 

and these variables in Chapter 4. These variables were further used to classify river 

landscapes in different classes; the classification map was used as an input for the 

impact assessment of river landscape fragmentation.  
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Figure 1.1 Framework of the overall research methodology. 

Based on the overall framework, the structure of this thesis and the main content that 

each chapter covered are briefly described below. To ensure the content flows smoothly, 

literature reviews for each specific research topic are first provided in Chapter 3, but 

short separate introductions are provided at the beginning of each chapter before 

presenting the results. However, some of the chapters have been organized in a 
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manuscript format when already published in scientific journals. Therefore, there is 

some repetition of introduction, materials and methods and figures throughout. 

Chapter 2 provides brief literature reviews for each specific research topic. 

Contributions by previous studies are introduced; related research progress, research 

gaps and challenges are also identified. 

Chapter 3 provides overall description about the background information of the 

Yangtze River, such as, geographic setting, geological context, climate change and 

human activities in the past six decades. 

Chapter 4 provides reservoir delineation and examines the spatial distribution of 

reservoirs on water regulation at basin and sub-basin scales. Other human activities 

(such as land reclamation) are also discussed in this chapter. 

Chapter 5 presents a new framework to assess the cumulative impacts of dams on 

sediment retention in the multi-reservoir Yangtze system with respect to upstream 

sediment trap; the impact of sediment trapping on land-ocean sediment load is also 

discussed in the chapter. 

Chapter 6 illustrates new metrics to quantify the cumulative impacts of large dams on 

river connectivity and river landscape fragmentation at basin and sub-basin scales. 

The implications of the metrics are also stated in this chapter. 
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Chapter 7 shows two new models to assess the cumulative impacts of numerous small 

dams on flow regulation and river landscape fragmentation; the implications of the 

models are also shown in this chapter. Some comparisons with large dams are also 

discussed in this chapter. 

Chapter 8 displays some possible projections of the future trends of the Yangtze River 

in terms of future dam construction, water diversion from Yangtze to North China. 

Possible impacts on water regulation, sediment retention, river connection and river 

landscape fragmentation and others are discussed in this chapter. 

A summary of the major findings, an evaluation of methods, and suggestions for 

future work appear in the final chapter. 
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2 Brief literature review 

2.1 Cumulative impacts assessment at a basin-wide scale 

The field of geoscience has undergone increased fast expansion and scrutiny in recent 

years. There have been many new challenges to face, such as climate change and 

increased human activities (e.g., dam construction, water diversion, irrigation, land 

reclamation and urban development), which are coupled with increased public 

awareness of environmental issues. In order to address these challenges, researchers 

have been developing novel methods which attempt to evaluate the increasingly 

complex interactions between our environment and the current and future demands of 

human beings. As these demands manifest in a cumulative manner over broad spatial 

scales, approaches which address these types of impacts must be developed. 

In terms of dam construction, environmental impact assessments (EIAs) have become 

a fundamental component of the planning process for large dams to characterize and 

minimize environmental effects associated with proposed dam projects (Tullos, 2009). 

In the United States, the EIA process was created in 1969 with the passage of the 

National Environmental Policy Act, which mandated assessment of the environmental 

outcomes of large dam projects. The EIA process was quickly adopted by 

governments and legislatures around world, including Japan (1972), Hong Kong 

(1972), Canada (1973), Australia (1974) and China (1979) (Gilpin, 1995). Under this 

context, cumulative impact assessments, as an important part of EIA, are required 
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when a new dam project is proposed. However, there are a number of issues 

concerning the consideration of cumulative impacts. First, there is no definition of 

cumulative impacts and no specific requirements as to how cumulative effects could 

be addressed (Cooper and Sheate, 2002). Second, the guidance to the procedures does 

not mention methods or frameworks for the assessment of cumulative effects 

(Department of Environment (DOE), 1989). In addition, these approaches used for 

cumulative impact assessments have been criticized for being conducted at a too small 

spatial scale over a too short time period (Ziemer, 1994). 

It has recently been recognized that there is a need to shift from local, project scale to 

broader, basin-wide scale or regional scale assessments to accurately assess 

cumulative impact assessments (Duinker and Greig, 2006). Consequently, a variety of 

approaches have been developed at a basin-wide scale. The methods frequently used 

by researchers to evaluate the cumulative impacts of dams are summarized in Table 

2.1. However, it seems that different methods have priorities in coping with different 

issues caused by dam operation. 

When investigating water- and sediment-related issues, such as, reservoir 

sedimentation, bank erosion, channel dynamics and variation in flow regimes, spatial 

analysis techniques are commonly adopted. These methods often map geomorphic 

variations over time using computer-aided models, GIS models or remotely sensed 

images to demonstrate the spatial changes caused by dam operation. One of the  



 

22 

 

Table 2.1 Analytical methods for assessing the cumulative impacts of dams 

Category Description Source 

Spatial analysis Map spatial changes (e.g., variations in river 
channels, water attributes and water 
availability) over time using computer-aided 
models, GIS models or remotely sensed 
images 

Channel erosion: Kondolf and Curry (1986), Kondolf (1997), 
Brandt (2000), Shields et al. (2000), Phillips et al. (2005), 
Hupp et al. (2009); sediment retention: Milliman and Meade 
(1983), Vörösmarty et al. (2003), Syvitski et al. (2005), Minear 
and Kondolf (2009), Yang and Lu (2014b); Water availability: 
Lehner and Doll (2004), Downing et al. (2006), Chao et al. 
(2008); changes in water attributes: King et al. (1998), Wright 
et al. (2009) 

Network analysis Identify river network structure and 
interactions of confluences and sections 

Benda et al. (2004b), Flitcroft (2007), Cote et al. (2009), Crook 
et al. (2009), McKay et al. (2013) 

Biogeographic analysis Analyze structure and function of river 
landscape unit 

Graf (1999), Chin et al. (2008), Sindorf and Wickel (2011) 

Observational analysis Demonstrate changes with before and after 
dam construction based on actual 
observations 

Watters (1996), Fu et al. (2003), Park et al. (2003), Keefer et al. 
(2004), Wu et al. (2004), Magilligan and Nislow (2005), Graf 
(2006), Yang et al. (2006), Poff et al. (2007), Xu and Milliman 
(2009), Zhang et al. (2012b) 

Ecological modeling Model behavior of a river system or river 
system component (e.g., aquatic animals) 

Power et al. (1996), Benstead et al. (1999), Gowans et al. 
(1999), Coutant and Whitney (2000), Jager et al. (2001), Neraas 
and Spruell (2001), Vinson (2001), Schilt (2007) 

Expert option Problem-solving using professional 
knowledge 

Willis and Griggs (2003), Wu et al. (2003), Xie (2003), Dugan 
et al. (2010), Grumbine and Xu (2011), Grumbine and Pandit 
(2013) 
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advantages is these methods are efficient and easy-to-implement, as long as spatial 

data are available. Thus, these methods are often used at basin-wide scale (e.g., 

Minear and Kondolf, 2009; Yang and Lu, 2013b), national scale (e.g., Kondolf and 

Curry, 1986; Kondolf, 1997), or even global scale (e.g., Vörösmarty et al., 2003; 

Syvitski et al., 2005; Chao et al., 2008; Lehner et al, 2011). In addition, these methods 

can also quantify the impacts; the quantitative evaluation provides some important 

references for policy-makers. However, the biggest issue for these methods is the 

heavy dependence on spatial data, but spatial data are often not available or 

incomplete, especially at a large scale. Data collection for these methods is laborious 

and expensive. 

As an alternative to spatial analysis techniques, network analysis methods are often 

employed when evaluating the impacts of dams on the entire river network (e.g., river 

connectivity and river landscape fragmentation). These methods are based on a 

network dynamics hypothesis that hierarchical and branching river networks interact 

with dynamic watershed disturbances to impose a spatial and temporal organization 

on the nonuniform distribution of riverine habitats with consequences for biological 

diversity (Benda et al., 2004b). When taken in the context of a river network as a 

population of channels and their confluences, it allows the development of testable 

predictions about how dams and basin shape, drainage configuration, and network 

geometry interact to regulate the spatial distribution of physical diversity in channel 



 

24 

 

and riparian attributes throughout a river basin. Different models based network 

analysis have been proposed, such as, dendritic connectivity index (Cote et al. 2009), 

index of longitudinal riverine connectivity (Crook et al. 2009), habitat connectivity 

index for upstream passage (McKay et al. 2013), patch-based spatial graph (Flitcroft 

2007; Erős et al. 2012). However, critics said that these metrics often demonstrate the 

impacts using single values; they are therefore unable to detect the variation in degree 

of the impacts caused by dams at regional scale. 

Biogeographic analysis and Ecological modeling are often used by ecologist to 

investigate the impacts of dams on the distribution of aquatic species and ecosystems 

in river systems based on the change in numbers and types of organisms (Power et al. 

1996). These methods have been widespread used by ecologist. Like network analysis, 

biogeographic analysis and ecological modeling also reveal the impacts of dams on 

river connectivity and river landscape fragmentation from ecological perspective. A 

detailed discussion of the methods is beyond the scope this study. Valuable reviews on 

these methods can be found from Power et al. (1996) and Poff et al. (2007). 

Observational analysis has been involved in almost all the issues related to dam 

operation, such as, water and sediment monitoring, and field investigation of the 

numbers and types of organisms. It collects firsthand data on the impacts and 

illustrates the impacts caused by dams based on field investigation results. Although it 

has been used by numerous researchers (Table 2.1), these investigations are 
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commonly conducted at small-watershed scale, or incompletely at large scale. It is 

limited because it focuses on a target species or one specific issue in a specified river 

section. Thus, it cannot provide an overall result. Another problem is that 

observational analysis is time-consuming and expensive, which disables the 

implications at a large scale. 

As discussed above, it can be found that the core cumulative impacts caused by dams 

are water regulation, sediment retention (and related channel dynamics), river 

connectivity and river landscape fragmentation. In the following sections, detailed 

literature reviews about research progress, research gaps and challenges on these 

issues were summarized below.  

2.2 Dam spatial configuration and impact on water 

regulation 

Many researchers and organizations (ILEC, 1988-1993; Birkett and Mason, 1995; 

Vörösmarty et al., 1997; MSSL and UNEP, 1998; Lehner and Doll, 2004; ICOLD, 2011; 

Lehner et al., 2011) have created their own georeferenced, global and regional datasets 

of dams and reservoirs in previous attempts. The majority of currently available data 

sets can be grouped into two categories: 

(i) Databases, registers and inventories that focus on descriptive attributes, such 

as, Birkett and Mason (1995), Vörösmarty et al. (1997), ICOLD (2011), ILEC 
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(1988-1993), Ryanzhin et al. (2001) and Wetlands International (2002) in 

Table 2.2. These data can supply extensive characterizations for individual 

lakes or reservoirs; but they generally tend to select only the largest or most 

important representatives, and they often lack detailed geo-referencing 

information. For example, Birkett and Mason (1995) represent 13 global and 

regional lake datasets, which partly include spatial information, the largest of 

them including 1,755 large lakes and reservoirs. After that, some new datasets 

were created, including up to 40,000 individual records (Ryanzhin et al., 2001), 

but all of them provide geo-referencing information only in terms of 

longitude/latitude point coordinates, instead of shoreline polygons. 

(ii) Analog or digital maps that display lakes, reservoirs in their spatial extent. The 

digital maps include (1) polygon datasets of global hydrography, i.e. 

vectorized maps of river, lake and reservoir outlines as derived from various 

source maps (Table 2.2, Nos. 7–8), and (2) rasterized global land use or land 

cover characterizations as derived from remote sensing images or other 

sources.  

Both type (1) and (2) data provide information on extent and distribution of lakes and 

reservoirs, but have limitations when individual attributes, e.g. name or ecological 

condition, are of interest. An important difference between type (1) and (2) data sets is 

that remote sensing maps span only the most recent time period, while the polygon 

datasets are largely based on analog maps which were drawn from local observations 
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Table 2.2 Overview of existing global and regional datasets of lakes and reservoirs; updated after Lehner and Doll (2004)  
No. Name and citation Geo-spatial characteristics Attribute characteristics 

1 MSSL Global Lakes database - 

MGLD; Birkett and Mason (1995) 

Global; point coordinates derived from satellite 

imagery and 1:1 million Operational Navigation 

Charts (ONC) 

Comprises 1,409 large natural lakes and reservoirs with surface 

areas larger than 100 km2; attributes include name, and area of 

lakes 

2 Dataset of Large Reservoirs - LRs; 

Vörösmarty et al. (1997) 

Global; point coordinates approximated on a 

global 0.5 × 0.5 degree grid 

Comprises 713 large reservoirs with storage capacities larger 

than 0.5 km3 

3 The World Register of Dams; ICOLD 

(2011) 

Global; no geo-referencing information (location 

only indicated by name of river and nearest city) 

Comprises 33,000 large dams; attributes include dam name, 

dam geometry, reservoir capacity and purpose of dam 

4 Survey of the State of World Lakes; 

ILEC (1988-1993) 

Global; point coordinates Comprises 752 lakes and reservoirs, attributes include general 

information, physiographic, biological and socioeconomic data 

5 Global Database and GIS 

WORLDLAKES; Ryanzhin et al. 

(2001) 

Global; point coordinates Currently comprises about 35,000 natural lakes, 5,000 

reservoirs, and 220 wetlands; attributes include geography, 

morphometry, hydrology, meteorology, chemistry and biology 

6 Ramsar Database - RDB; Wetlands 

International (2002) 

Global; representative point coordinates Currently comprises  1,200 wetlands;  

attributes include site names, area, designation date and wetland 

characteristics 

7 Global Lakes and Wetlands Database 

- GLWD; Lehner and Doll (2004) 

Global vector map Comprises 654 largest reservoirs, 3,067 largest lakes and about 

250,000 smaller lakes 

8 Global Reservoir and Dam database - 

GRanD; Lehner et al. (2011) 

Global vector map Comprises 6,862 largest reservoirs 

 



 

28 

 

and knowledge over a longer period of time. The polygon maps can thus be assumed 

to incorporate, at least to some extent, historic conditions and may tend towards 

representing lakes or reservoirs as known in their maximum recorded extents. The 

inadequate data at regional and global scales have hindered the advancement of new 

and rigorous studies, although scientific research has provided critical assessments of 

the impacts caused by reservoirs. Therefore, the development of a parsimonious 

approach that can rapidly delineate reservoirs in developing countries is extremely 

urgent for reservoir-related studies. 

The assessments of the cumulative impacts of dams on water regulation based on the 

above discussed data have been performed by researchers, such as, Graf (1999) 

Downing et al. (2006), Lehner et al (2011). Since there are numerous small reservoirs 

that are not included in these datasets, the assessment of the impact of water 

regulation for smaller rivers may be severely skewed by the omission of small 

reservoirs. Also, although they may contribute less to the overall alteration of flow 

regimes as a result of their limited storage capacities, small dams can still have a 

profound effect on river fragmentation at a regional scale (Lehner et al. 2011). 

2.3 Cumulative impacts on sediment trapping 

Extensive research on water-sediment regulation has propelled researchers to look 

into various aspects of dam effects in the hydrological system. Sedimentation behind 

dams is still a general area of focus. Over past decades, large number of methods and 



 

29 

 

models (Table 2.3) were proposed to estimate reservoir sedimentation. Each model 

differs greatly in terms of their complexity, inputs and other requirements. In the 

simplest way, the amount of sediment deposit in the reservoir can be estimated using 

empirical models based on its trapping efficiency (TE) (Jothiprakash and Garg, 2008). 

The models relate trapping efficiency to a capacity/watershed ratio (C/W), a 

capacity/annual inflow ratio (C/I) or a sedimentation index (SI) (Verstraeten and 

Poesen, 2000). Today, these models are the most widely used models to predict 

reservoir sedimentation, even for reservoirs that have totally different characteristics 

from the reservoirs used in these models. However, it should be noted that, for small 

reservoirs, these empirical models seem to less appropriate. They also cannot be used 

for predicting trapping efficiency for a single event. To overcome these restrictions, 

different theoretical models have been developed based on sedimentation principles. 

Differences between the developed models are: 1) whether they are for quiescent flow 

conditions in a pond or turbulent flow; and 2) whether they are for steady discharge 

conditions or variable discharge conditions (Haan et al., 1994). On the consumption 

of steady discharge conditions, Camp (1945) studied sedimentation in an ideal 

rectangular continuous flow basin by simulating particles’ settling velocity which is 

dependent on the water depth and the time that the water needs to flow through the 

reservoir. After that, Chen (1975) proposed a model with respect to the changing 

inflow and outflow. He simulated the total distance of a particle has to travel before 

being deposited with changing inflow and outflow. The both theoretical models are  
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Table 2.3 A summary of the existing models for reservoir sedimentation prediction 

Model Study area References Notes 

Trap efficiency for individual reservoirs 
Capacity–watershed area 
ratio 

Small scale or individual reservoirs Brown, 1944 Empirical model 

capacity–annual inflow ratio Small scale or individual reservoirs Brune, 1953 Empirical model; hydrological data required 
Sedimentation index Small scale or individual reservoirs Churchill, 1948 Empirical model; hydrological data required 
Theoretical models Small scale or individual reservoirs Camp, 1945 

Ward et al., 1977 
Based on sedimentation principles and 
variable discharge conditions 

Trap efficiency for multiple reservoirs 
Basin-wide trap efficiency Global/basin-wide scale Vörösmarty et al., 

2003; Kummu et al., 
2010; Ran et al., 2013 

Measurement of the interception of global or 
basin-wide sediment flux by large 
reservoirs; hydrological data required 

Sedimentation rate for multiple reservoirs 
Semi-quantitative model National scale de Vente et al., 2005 Less data required 
Spreadsheet-based model State-wide scale Minear and Kondolf, 

2009 
accounting for the effect of upstream traps 
but massive sedimentation survey data 
required 

Other black box models    
Computer models Multi-reservoir systems Labadie, 2004; Garg et 

al., 2010 
The drawback of the “black box” nature 
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developed to incorporate variable discharge conditions. Likewise, similar models 

were proposed other researchers, such as, variable flow models (Ward et al., 1977), 

modified overflow rate model (Haan et al., 1994), mathematical process model 

(Sundborg, 1992). 

As a result of the improvements in computer technology, some computer models 

based on artificial neural networks or Genetic programming have been introduced to 

estimate sedimentation in reservoirs (Labadie, 2004; Garg et al., 2010). These models 

offer a number of advantages, including requiring less formal statistical training, 

ability to implicitly detect complex nonlinear relationships between dependent and 

independent variables, ability to detect all possible interactions between predictor 

variables, and the availability of multiple training algorithms. However, one of the 

issues of these models is its ‘black box’ nature and they hence have limited ability to 

explicitly identify possible causal relationships. From this point, empirical- and 

theoretical-based models are superior to computer models. All in all, theoretical-based 

models usually operate at small spatial scales and require data such as yearly or daily 

hydrologic records, detailed reservoir bathymetry and sediment grain size 

distributions; but empirical-based models are suitable at large spatial scales, although 

these also need hydrologic records.  

In a more sophisticated way, reservoir sedimentation in a multi-reservoir system can 

be estimated through basin-scale trap efficiency (Vörösmarty et al., 2003; Kummu et 
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al., 2010; Ran et al., 2013), or GIS models (de Vente and Poesen, 2005; Minear and 

Kondolf, 2009) on the basis of land use and hydrological data at a large scale. 

However, the applications of existing reservoir sedimentation models at a large scale 

are limited by some factors, such as, lack of reliable hydrological records and the 

complexity of the interaction between dams depending on local sediment supplies, 

geomorphic constraints, climate, dam structure and operation. Reliable hydrological 

records accompanying reservoir construction history are important to predict sediment 

trapped in reservoirs, but they are usually absent for reservoirs of interest. In addition, 

in a huge basin, the models based on basin-scale trapping efficiency can predict 

decreased sediment load at the catchment outlet, but sometimes the amount of 

reservoir sedimentation is not directly equivalent to the reduction in sediment load at 

its outlet due to the considerable distance of dams from the outlet and the interaction 

of different drivers (Walling, 2006). It should also be noted that existing models do 

not account for the effect of trapping by upstream reservoirs in a multi-dam system. 

As upstream reservoirs are built, they can significantly reduce sediment yield to 

downstream reservoirs. This effect is particularly important in areas with numerous 

reservoirs within the same watershed (Minear and Kondolf, 2009). These points are 

probably the most important gaps in the research of reservoir sedimentation 

estimation.Estimating sediment retention in a multi-dam system remains a daunting 

challenge. 
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2.4 Cumulative impacts on river connectivity and river 

landscape fragmentation 

To quantify river fragmentation caused by dams, various models have been proposed 

over the past decades in global- or catchment-scale studies (Table 2.4). Serving as a 

first-level approximation of the potential impact on flow regulation, Dynesius and 

Nilsson (1994; 2005) used flow regulation ratio or degree of regulation and concluded 

that 77% of the total water discharge of the 139 largest river systems in North America 

and north Mexico, Europe and the republics of the former Soviet Union is strongly or 

moderately affected by fragmentation of the river channels by dams. Liermann et al. 

(2012) also measured the length of the longest undammed stretch of the five largest 

rivers in each ‘freshwater ecoregion’ to derive the percentage of free-flowing rivers; 

however these two studies are just a very rough assessment for flow regulation because 

no operating rules or reservoir locations were considered. 

Meanwhile, graph-theoretic models were also presented. So-called graph-theoretic 

models combine a network of links and nodes, which represent river reaches and 

confluences, respectively, into a network. A simple yet elegant example in this category 

is the dendritic connectivity index (DCI) (Cote et al., 2009). It is based on the 

proportion of the length of the disconnected network fragments in relation to the entire 

network, and it can be applied to river networks of different scales. A disadvantage of 

the approach, however, is that it can lead to the same index if a barrier is  
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Table 2.4 Metrics used in the literature to assess river connectivity and fragmentation 

Metrics Abbreviation Formula Description 

A. Hydrological metrics    

Degree of regulation 

( Dynesius and Nilsson 1994; 

Nilsson et al. 2005; Lehner et 

al. 2011) 

DOR 
%1001 




Q

V
DOR

n

i
i

 
Where Vi is the reservoir storage capacity in km3, n is number of upstream 

reservoirs, Q is the river’s annual flow volume in km3. 

River regulation index (Grill 

et al. 2014) 
RRI 




n

i

i
i RV

rv
DORRRI

1

 

Where n is the number of reaches in the network; DORi is the DOR values of river 

reach i; rvi is the river volume of reach i; and RV is the total river volume of the 

entire river network. 

Ratio of capacity to 

catchment area (Graf, 1999) 
RCA 

A

V
DOA

n

i
i

 1  

Where Vi is the reservoir storage capacity in km3, n is number of upstream 

reservoirs, A is the river’s catchment area in km2. 

Ratio of catchment area to 

number of reservoirs (Graf, 

1999) 

RAN 
n

A
RAN   Where n is number of upstream reservoirs, A is the river’s catchment area in km2. 

Percentage of free-flowing 

river (Liermann et al. 2012) 
PFF 

%1001 



n
L

l

RAN

n

i

i

 

Where li is the longest undammed distance of each of an ecoregion’s n connected 

pathways, regardless of stream order; RAN is the average of the n undammed 

percentages, which ranges between 0% and 100%, where 100% denotes a 

free-flowing ecoregion, and a value less than 50% is referred to a heavily 

obstructed ecoregion.  

Change in river flows (Döll et 

al. 2009) 
CRF 

%100



NAT

ANTNAT
CRF

 

Where NAT is naturalized river discharge in km3 yr-1; ANT is water volume 

impacted by water withdrawals and reservoirs; this index is to assess how 

long-term river are flows affected. 
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Indicator of change in 

seasonal amplitude (Döll et 

al. 2009) 

ISA 
%100minmax 




natQ

QQ
CRF

 

Where Qmax and Qmin are maximum and minimum long-term average monthly 

river discharge under anthropogenic impacts; Qnat is annual river discharge under 

naturalized conditions. This indicator is to evaluate how the seasonal amplitude is 

affected. 

Indicator of impact on 

interannual variability of 

monthly flows (Döll et al. 

2009) 

IIV di NNIIV   

Where Ni is the number of months (Jan, Feb, etc.) in which the coefficient of 

variation of monthly flows increases; Nd is the number of months in which it 

decreases (−12, −10, −8, . . . , +8, +10, 12) under anthropogenically impacted 

conditions as compared to naturalized conditions. This indicator is to investigate 

how the interannual variability of monthly flows is affected. 

B. Graph-theoretic metrics    

Dendritic connectivity index 

(Cote et al. 2009) 
DCI %100

1

1 











n

i
i

n

i
ii

s

sc
DCI  

Where si is the length of section i; ci is the cumulative passability depending on the 

number and passability (p) of dams in section i; Assuming the passability of 

multiple dams is independent, if there are m dams on a river, then ci is defined as: 





m

m
mi pc

1
. This index is to quantify longitudinal connectivity of river networks.  

River landscape 

fragmentation index (Sindorf 

and Wickel, 2011) 

RLFI 10
)(

2
1

2









EE

plee
RLFI

n

i
iii

 

Where ei is total number of distinct landscape classes in network section i; E is 

total number of landscape classes fund in the basin; pli is percentage of river length 

in network section i relative to the total river network length in the basin. This 

index quantifies ecosystem connectivity based a function of the number of 

ecosystems that remain connected combined with the length of river networks. 

Moving-average spatial 

covariance model 

incorporating stream distance 

and flow (Hoef et al. 2006; 

 Equation omitteda 

Incorporating flow, stream distance to develop a spatial statistical model to 

estimate an average or total in nutrient concentration for a stream or a steam 

segment 
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aMany equations were used to establish the model; the equations therefore are not given here due to lack of space. 

Peterson et al. 2007) 

Habitat connectivity index for 

upstream passage (HICU) 

(McKay et al. 2013) 

HICU %100

1

1 











n

i
i

n

i
ii

r

rc
HCIU

Where ri is the number of immediately upstream notes for note i; ci is the 

cumulative passability. The index uses a graph-theoretic algorithm for assess 

upstream habitat connectivity to investigate both basic and applied fish passage 

connectivity problems. 

Index of longitudinal riverine 

connectivity (ILRC) (Crook 

et al. 2009) 

ILRC kk UCDILRC PrPr   

Where Pr Dk is the probability of downstream larval passage of dam k; Pr UCk is 

the probability that juveniles migrate past multiple dams to a given point 

(cumulative upstream passage). This index quantifies the cumulative effect of 

individual water dams on longitudinal riverine connectivity 

Patch-based spatial graph 

(Flitcroft 2007; Erős et al. 

2012) 

 No formula available 
This index tries to measure habitat connectivity of freshwater ecosystems by 

considering the branching river networks 

C. Models incorporating behavioral elements 

Observational movement 

studies (Fu et al. 2003; Park 

2003; Wu et al. 2004; Zhang 

et al. 2012) 

  
The studies Demonstrate biodiversity loss or population variety with before and 

after dam construction based on actual observations. 

D. Others    

inSTREAM model (Harvey 

et al. 2012; Railsback et al. 

2009) 

inSTREAM No formula available The model Explores the effects of dams or other barriers on fish population by 

assuming fish cannot move upstream past a barrier or dam and move downstream 

over a barrier. 

Barrier Analysis Tool (BAT) 

(Martin and Apse 2011) 
BAT 

Computer program; no formula 

available 

The tool Executes the weighted ranking process to facilitate several of river 

fragmentation assessment 
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placed very far upstream river section in the river network or very far downstream river 

section, as long as the disconnected fragments have the same length. Yet in 

hydrological, environmental and ecological applications it is commonly argued that 

dams placed further downstream pose a higher threat than their counterparts in 

headwater reaches as the former disconnect large portions of the critical river systems 

of the main stem or the delta and the dams directly affect the generally crucial parts of 

large rivers (Gupta, 2008; Kanno et al., 2012). Also, this measurement does not account 

for different river landscapes although different river landscapes may have different 

importance (e.g. delta systems, unique main-stem areas and headwater permafrost 

areas). To overcome the problem, Sindorf and Wickel (2011) developed the river 

landscape fragmentation index (RLFI) to measure the extent of river landscape 

fragmentation by measuring river length and the number of disconnected river 

landscapes based on a river-landscape classification map. As an alternative technique, 

Mckay et al. (2013) developed a model to assess upstream longitudinal river 

connectivity on the basis of dendritic network morphology, partial passage 

improvement and stochastic passage rates, but the two models still does not take river 

size and stream length into account. As a remedy, Grill et al. (2014) proposed the river 

connectivity index (RCI) by simply replacing the ‘river length’ measure with ‘river 

volume’, but the model is less generally applicable because exact river volume for each 

river section is often unknown. 
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Some researchers (Gupta, 1998; Fu et al., 2003; Park et al., 2003; Wu et al., 2004; 

Zhang et al., 2012a) also investigated the impacts of dams on river connectivity and 

fragmentation using data on migratory species based on observational movement 

studies, but spatially explicit and reliable data on migratory species are often 

unavailable for large rivers. A way that addresses the absence of species data is to use 

ecosystems or habitats as a proxy. There is general agreement within the conservation 

community that protecting representative ecosystems or ‘coarse-filter’ targets, should 

conserve common communities, the ecological processes that support them, and the 

environments in which they are evolved (Grill et al., 2014). Coarse-filter targets can be 

derived through the development of river-landscape classifications based on river basin 

characteristics such as climate (e.g., precipitation, temperature), topography (e.g., slope, 

elevation) and geology (e.g., karst geology). The river-landscape classifications can 

then serve as a proxy for representative ecosystems (Gupta, 2009). The abundance and 

distribution of river landscapes within the river basin can act as a surrogate for the 

actual species distribution (Sindorf and Wickel, 2011). The River environment 

fragmentation index (RLFI) based river-system classification map was proposed by 

Sindorf and Wickel (2011) as an index to assess river landscape fragmentation in the 

Mekong River basin. 

In terms of large Asian river basins, dam building still booms nowadays, although 

worldwide dam construction significantly reduced after the 1980s. Most of the large 
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Asian rivers are being dammed at a dazzling pace. There are even more than 10 cascade 

dams built on some large rivers and their major tributaries. Under this context, more 

detailed knowledge is required to quantify the degree of river fragmentation. This 

knowledge can also be essential to identify environmental risks associated with further 

impacts on river systems. Also, using this knowledge, it is possible to quantify the 

potential impacts of incremental dam development on river connectivity at the basin 

and sub-basin level in terms of environmental intactness. 

2.5 The overlooked role of small reservoirs 

Small dams are always built on smaller river systems, designed to divert small amounts 

of water. There has been little interest in small dams and reservoirs because of the 

assumption that such units have fewer severe environmental impacts than large ones. 

However, few comprehensive analyses of this assumption have been done. 

A pioneer study to validate this assumption was executed by Gleick (1992). He 

compared the environmental and ecological impacts of small and large hydroelectric 

facilities, with a focus on land requirements, evaporative water losses, seepage, and 

sediment rates, suggesting that many of the environmental impacts of small dams are 

comparable to or even worse than conventional large dams when measured on a 

unit-energy basis. Like this study, Kibler and Tullos (2013) investigated the cumulative 

biophysical effects of small and large hydropower dams in China’s Nu River basin, and 
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compared effects normalized per MW of power produced. They obtained similar 

conclusions that biophysical impacts of small hydropower may exceed those of large 

hydropower dams, particularly with regard to habitat and hydrologic change. However, 

there are many other important environmental impacts, including downstream flow 

alterations and impacts on terrestrial and aquatic biota, which are not addressed in the 

two studies. 

Another representative study was carried out by Graf (1999) based on simple statistical 

analysis; but this study focuses an impact of 75,000 dams on water regulation in the 

continental United States. Some simple metrics, such as, the ratio of area to number of 

dams, the ratio of storage capacity to area, and the ratio of storage to runoff were used to 

quantify the degree to which the continental United States is regulated by small dams. It 

suggested that water resource regions have experienced individualized histories of 

cumulative increases in reservoir storage and thus of downstream hydrologic and 

ecologic impacts. Unfortunately, the study did not compare the environmental and 

ecological impacts of small and large dams. The metrics proposed in this study were 

also used by other researchers (Smith et al., 2002; Renwick et al., 2006; Chin et al., 

2008), indicating that the impacts of small dams and reservoirs on hydrology, 

sedimentology, geochemistry, and ecology are apparently large in proportion to their 

area. Nevertheless, most of the conclusions were given based on simple statistical 

analysis. No new observational data were used in these studies. 
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Alternatively, Investigations based on observational movement studies on the impact of 

small dams on aquatic species have been increasingly documented in recent years 

(Lessard and Hayes, 2003; Almeida et al., 2009; Czerniawski et al., 2010; Mantel et al., 

2010; Gangloff et al., 2011; Singer and Gangloff, 2011; Thoni et al., 2014) due to 

widespread concerns over biodiversity conservation. These studies often compare fish 

assemblage composition and aquatic habitat directly upstream and downstream of dams, 

or before and after dam construction, to illustrate the effects of small dams on river 

ecosystems. One of the pioneer studies shows that there is circumstantial evidence that 

the distributions of aquatic species are limited by small dams in the investigated river 

systems (Watters, 1996). This statement was then supported by Anderson et al. (2006); 

but the study by Anderson et al. emphasized that one of the primary causes of change in 

river ecosystem is flow reduction after the construction of several dams. Reductions in 

stream flow are a substantial ecological impact frequently associated with dams. Flow 

reductions affect the physical characteristics of a stream (e.g. water velocity, sediment 

and nutrient transport, water temperature) and alter the quantity and quality of aquatic 

habitat (Tiessen et al., 2011), with cascading impacts on stream biota. Hence, 

investigating the quantity of flow reduction after the construction of small dams is an 

important measure to examine the impacts led by small dams. 
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3 Description of the Yangtze River basin 

The Yangtze River, known in China as the Changjiang, flows for 6,300 km from the 

glaciers on the Tibet Plateau in Qinghai Province eastward across southwest, central 

and eastern China before emptying into the East China Sea at Shanghai. In this 

chapter, a general description of the Yangtze River basin was presented for the aspects 

geographical characteristics, climate, hydrology, geology and major human impacts 

exerted during the past decades. As this PhD study tried to investigate the cumulative 

impacts of dams on water regulation, sediment retention river connectivity and river 

landscape fragmentation, it can be found that the study subjects were diverse although 

closely correlated. To carry out this study, datasets from different sources were 

utilized. Therefore, it is important to present necessary descriptions of the river basin 

at different aspects. In addition to the brief description given here, an additional 

description of corresponding datasets analyzed in each individual chapter was also 

presented. 

3.1 Geography 

The Yangtze River in southern China lies between 91°E and 122°E and 25°N and 35°N, 

has a basin area of approximately 1.8 x 106 km2 and is the third largest river by river 

length and water discharge volume in the world (Figure 3.1). The river is generally 

divided into three parts: the upper, middle and lower reaches based hydrological 

processes and sediment transport mechanisms (sediment source zone, sediment  
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Figure 3.1 Geographical setting of the Yangtze River and its sub-basins. 
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Table 3.1 Basic information about the major tributaries and key hydrological stations 
on the Yangtze River 

  Rivers Stations 
Area 

(104 km2)

Water discharge*

(km3 yr-1) 

Sediment load* 

(Mt yr-1) 

Jinsha Pingshan 45.86 142.6 255 

Jialing Beibei 15.61 66.54 120.1 

Min Gaochang 13.54 50 26 

Tuo Lijiawan 2.79 35.1 11.7 

Tributary Wu Wulong 8.3 49.73 28.03 

Han Huangzhuang 14.21 48.1 55.9 

Xiang Xiangtan 8.16 65.9 10.3 

Zi Tao 2.67 23.25 2.27 

 Yuan Taoyuan 8.52 64.65 12 

 Lei Shimen 1.53 14.97 6.05 

 Gan Waizhou 8.35 68.7 9.25 

 Xiu Qiujin 1.48 10.8 1.53 

 Fu Lijiadu 1.6 14.7 1.4 

  Xin Meigang 1.55 17.8 2.61 

Zhutuo 69.47 269 302 

Upper Cuntan 86.66 339.7 418 

Mainstem   Yichang 100.55 438.2 501 

Middle Hankou 148.8 711.2 404 

  Lower Datong 170.54 905.1 433 

*Values are multi-year averages of water discharge and sediment load (1950s-2000); data from (CWRC, 

2002a). 

transfer zone and sediment deposition zone). The upper reach, including four major 

tributaries — the Jinsha, Min, Jialing and Wu rivers, extends approximately 4,512 km 

to Yichang from the headwaters in the Himalayan Mountains (Saito et al., 2001), with 

a drainage area of approximately 1.0 x 106 km2. High plateaus, mountains, deep river 

valleys, and large intermontane basins characterize the landforms in the upper Yangtze 

River basin. The channels are about 0.5-1.5 km wide, 5-20 m deep, and vary in slope 

from 10 - 40 x 10-5, reaching a maximum of 450 x 10-5 (Chen et al., 2001b). 

Meltwater from glaciers and snow, rainfall and groundwater are important sources of 
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water supply to the river (Chen et al., 2001a).  

The Jinsha, the Min, the Jialing and the Wu tributaries are the four large tributaries in 

the upper basin (Figure 3.1), with catchment areas of 3.4 x 105, 1.33 x 105, 1.6 x 105 

and 8.7 104 km2, respectively. Of these four tributaries, the Jialing tributary basin is 

the most exploited by dam construction, land cover change (deforestation and 

reforestation), and urbanization. The Wu River is 1,037 km long, a rainwater-supplied 

river, with an annual water discharge of 53 km3 yr-1. The vegetation cover in this is up 

to 18.7% including shrubs (Mo, 1988). 

At Yichang, the Yangtze River exits the Three Gorges Dam (TGD) and enters the 

950-km middle reach (Yichang to Hukou). It receives more water from three large 

water bodies in this section: the Dongting Lake, the Han River and the Poyang Lake. 

The 930-km lower reach extends from Hukou to the river mouth approximately 20 km 

north of Shanghai and has a drainage area of 1.2 x 105 km2. The Poyang Lake receives 

water from four major rivers: the Gan, Fu, Xin and Xiu rivers. The Dongting Lake has 

four major tributaries: the Xiang, Zi, Yuan and Lei rivers. The 1,756 km long Han 

River has a catchment of 159 x103 km2. In contrast to the upper reach, extensive 

floodplains, large lakes, low mountains and hills characterize the middle-lower 

reaches. The channel of the middle Yangtze is wider than the upper course, with the 

width between 1 and 2 km and the depth between 6 and 15 m. A typical meandering 

river pattern with many cutoffs prevails in this river reach, where the river exits from 
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the upper rock-confined valley into the Jingjiang floodplain. 

Downstream from Datong to the estuary, no large tributary flows into the Yangtze 

River; thus, the additional input of water into this part of river is small. The tidal 

fluctuations, however, can influence the water level at Datong. Therefore, the water 

discharge at Datong is commonly used to represent the total discharge from the 

Yangtze to the sea, although it is still 680 km from the sea. This segment of the river 

wanders among plains and hills, on which a high-stage water level about 8 m above 

mean water level, is clearly marked. The slope of the riverbed decreases to 0.5 - 1.0 x 

10-5, and the channel widens to 2 - 4 km and deepens to 10 - 20 m (Chen et al., 2001b). 

The river channel can however, be wider than 15 km and as shallow as 6 m in its 

estuarine region. The lower Yangtze drainage basin, including its large estuarine 

system, benefits largely from upstream discharge and sediment accumulation. 

The Yangtze River basin includes a complex variety of geomorphological units. The 

headwater drainage basins of the Yangtze, covering an area of 1.1 x 104 km2, are 

situated at an elevation of about 4,900 m in the Tanggula Mountains. Fed by glaciers on 

the roof of the world, most of this river basin is far away from influences of 

anthropogenic activities (e.g. pollution, dams). The upper Yangtze, with elevation 

ranging from 1,100 m to 4,900 m, is primarily located in a mountainous region. In this 

region, the Yangtze River also passes through a mountain-girt basin, namely, the 

Sichuan Basin (Figure 3.1). Due to its relative flatness and fertile grounds, it 
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demonstrates a unique geomorphological feature in the upper Yangtze reach. The 

middle reach is made up of a series of floodplains along the Yangtze River and its major 

tributaries. The floodplains are somewhat swampy, made up of a large number of lakes 

and small streams, making it suitable for freshwater fishes. It is therefore known as the 

"land of fish and rice". The Lower Yangtze is an area of anabranching rivers with 

constricted floodplains and early to late Pleistocene terraces along the valley (Chen et 

al., 2008b). The various geomorphological units provide downstream a wealth of 

freshwater, sediment, nutrients and other resources. 

3.2 Climate 

Subtropical monsoon climate prevails over most of the Yangtze River basin. The 

spatial and temporal variations of precipitation in the Yangtze River basin are closely 

related to summer monsoon activities that transport a huge amount of atmospheric 

moisture from the East and South China Sea to the basin (Jiang et al., 2007). 

Normally, the summer monsoon starts to influence the Yangtze River basin in April 

decreasing in October. Summer rainfall from June to August, accounts for 45% of the 

annual total of about 1,100 mm (CWRC, 2002b). 

The long-term mean annual precipitation in the Yangtze River basin is approximately 

1,070 mm but the spatial and temporal distribution of rainfall is highly uneven (Yang et 

al., 2002; Xu and Milliman, 2009). Annual precipitation ranges from < 400 mm in the 

west to > 1,600 mm in the southeast (Figure 3.2). Because most of the basin is affected 
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by the southeast monsoon in the summer season, most precipitation occurs from May to 

October. 

 

Figure 3.2 Annual mean precipitation in the Yangtze River basin; the raster map was 
outputted using Kriging spatial interpolation based on precipitation collected at 
meteorological stations in the Yangtze River basin. 

It should be emphasized that, during the five decades from 1951 to 2010 annual 

precipitation increased in the south-east (> 100 mm) while it decreased in the upper 

reaches (-200 mm), particularly in the Jialing and Min tributary basins (Xu et al., 

2007) (Figure 3.3). The sub-basins of the Jinsha River, Dongting Lake and Poyang 

Lake showed a slight increase in precipitation, whereas a striking decrease in 

precipitation occurred in the Jialing and Min tributary basins and a slight decline in 

the Han tributary basin. Correspondingly, runoff (water discharge per unit area) also 

increased in the sub-basins of the Jinsha River, Dongting Lake and Poyang Lake but 

decreased in the tributary basins of the Jialing, Min and Han rivers. 

Despite these sub-basin changes, water discharges along the mainstem in upper, 
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middle  and lower  reaches of the Yangtze have varied little since 1950, reflecting 

increases in some sub-basins being offset by decreases in others. Basin-wide runoff 

measured at Datong correlated well with precipitation, but neither showed a 

significant change over time (Yang et al., 2005a) (Figure 3.4). 

 

Figure 3.3 Precipitation change (mm) in the Yangtze River basin, 1951 to 2000. Solid 
and dashed lines correspond to increased or decreased precipitation, respectively. 
Figure was modified after Xu et al. (2007) and Dai and Tan (1996). 

3.3 Hydrology 

Hydrological records covering a 60-year period from the upper, middle and lower 

Yangtze River were collected to examine the temporal and spatial distribution of 

discharge and sediment load in the basin. The Yangtze discharge, as expected, 

increases from the upper drainage basin downstream. Only an estimated 50% of the 

discharge is derived from the upper Yangtze, with the rest being derived from the 

numerous tributaries of the middle-lower reaches (Chen et al., 2001a). However, the 

distribution of sediment load along the Yangtze is the reverse of that observed for 

water discharge, with most of the sediment being derived from the upper reach. A 
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dramatic reduction in sediment load happens in the middle Yangtze as a result of a 

marked decrease in slope and the change to a meandering pattern from the upper 

Yangtze rock sections. Considerable siltation also occurs in the middle Yangtze reach 

as the river cuts through a large interior Dongting Lake system. Sediment load in the 

lower Yangtze, while significantly less than that of the upper river, is somewhat higher 

than the middle Yangtze due to additional load contributed by adjacent tributaries. A 

strong correlation exists between the discharge and sediment load along the Yangtze 

River basin during the dry season as lower flows carry lower sediment concentration. 

During the wet season, a strong correlation is also present in the upper Yangtze owing 

to the high flow velocity that suspends sand on the bed. However, a negative to poor 

correlation occurs in the middle and lower Yangtze because the flow velocity in these 

reaches is unable to keep sand in suspension, transporting only fine-grained particles 

downstream(Chen et al., 2008b). 

About half of the river water and nearly all its sediment originate from the upper reach 

upstream from Yichang (Lu et al., 2003b), which has a catchment area of about 55.6% 

of the whole river basin. The annual water discharge and sediment load from the upper 

Yangtze River, recorded at the Yichang station, averaged 451 km3 yr−1 and 516 Mt yr-1 

between 1955 and 1965, amounting to approximately 50 and 116% of those at Datong 

(Chen et al., 2002; Yang et al., 2002). The main sources of sediment load at Yichang 

are the Jinsha and Jialing rivers, totally accounting for 73-90% of the total sediment 

load (Wang et al., 2007c). Most of the sediment is from the area between the 
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confluence of the Yalong River and the Jinsha River down to Pingshan (Zhou et al., 

2002). 

 

Figure 3.4 Temporal variations of runoff and sediment load along the main stem of the 
Yangtze River from 1950 to 2010.  

The Dongting Lake plays a key in sediment transport processes in the Yangtze River 

basin. Previous studies (Shi et al., 1999; Xiang et al., 2002) demonstrated that the 

inflow from the four tributaries of the Dongting Lake contributes approximately 58% 

of the total water into the lake, while the runoff from the Yangtze River via four 

intakes occupies 34%. However, among the sediment transported into the lake, 80% is 
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from the Yangtze River, comparing to 18% provided by the four tributaries. Up to 74% 

of the sediment into the lake is deposited in the lake, with the rest carried out of the 

lake to the Yangtze River again. By comparing the sediment import and export, it is 

estimated that the sediment deposition rate of Lake Dongting was 111 Mt yr-1 from 

1956 to 2003 (Dai et al., 2005). Siltation and raised embankments decreased the size 

and its capacity to accommodate floods. However the construction of the TGD has 

significantly reduced the sediment deposition in the Dongting Lake. For instance, in 

2003, the deposition in the lake dropped to 25 — 18% of the annual average in the 

period 1956 — 2002. The influence of the sediment deposited in the Dongting Lake 

on the sediment transport process has fallen since the completion of the TGD, and will 

be further decreased in future due to completion of more large dams. 

Over the past 60 years, annual sediment discharges in all parts of the Yangtze River 

basin have varied considerably more than water discharges, and have declined 

markedly since the 1980s (Figure 3.4). As a result of several major decreases, annual 

discharges of sediment from upper (as measured at Yichang) and lower (as measured 

at Datong) reaches during the 2003–2005 period after the closure of TGD were 

approximately 50 and 100 Mt, respectively, only 10% and 33% of their 1950–1960s 

averages. 

Figure 3.4 shows that sediment discharge data from the upper, middle, and lower 

reaches of the river indicate that the reduction of the Yangtze sediment load has 
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occurred in three phases: following the closure of the Danjiangkou Reservoir on the 

Han tributary in 1968, following the closure of numerous reservoirs after 1970 and 

following the closure of the TGR in 2003 (Yang, Z. et al., 2006; Wang, Z.Y. et al., 

2007). However, up to now, the exact reservoir sedimentation rate has been unclear. 

It may be noted that previous studies principally reported the decreased sediment 

loads at hydrological stations as a result of reservoir development; but sometimes the 

amount of reservoir sedimentation is not directly equivalent to the reduction in the 

sediment load at its outlet due to the considerable distance of dams from the sea and 

the interaction of different drivers (Walling, 2006). Therefore, up to now, the exact 

reservoir sedimentation rate and impact on storage loss has been unknown. 

It should be highlighted that, the bed load proportion in the Yangtze River is very low 

compared to other large rivers in the world where bed load usually contributes 5—10% 

of the total sediment load (Eisma, 1998). On average, bed load represented only 0.044% 

of the total sediment load (Yang et al., 2002). In other words, the sediment flux in the 

Yangtze River was dominated by suspended load. For example, for the same period at 

Yichang station, suspended load and bed load were 530 x Mt yr-1 and 8.45 Mt yr-1, 

respectively (Xiang and Zhou, 1986), suggesting that suspended load was 98.4% of 

the total sediment load. Thus, bed load was not considered in this study in light of the 

negligible role in sediment transport processes of the Yangtze River. 
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Figure 3.5 Geological transect from the upper to lower Yangtze River, modified after Chen et al. (2008b). 
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3.4 Geology 

The Yangtze River basin includes a complex variety of geological units, primarily 

sedimentary rocks of different ages. The geological transect (Figure 3.5) from the 

upper to lower Yangtze summarizes the geological characteristics of the basin. 

Limestone and terrigenous sedimentary rocks of Palaeozoic age with granite NW–SE 

across the east-central basin highlight the alternate anticlines and synclines of Permian 

and Triassic age (Chen et al., 2008b). The Yangtze River cuts through these geological 

structures to enter the Three Gorges. 

 

Figure 3.6 Pre- and post-landslide aerial-image comparison on the landslide occurred 
on August 8, 2010 in the upper reach of the Jialing River; images were provided by 
the National Administration of Surveying, Mapping and Geoinformation of China. 
The arrow in the left panel indicates the residential area, which has destroyed and 
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moved down to the shore of the Bailong River (arrow in the right panel). 

constitute the upper Yangtze River basin (Chen et al., 2008b). The sedimentary strata 

have been highly fractured due to the Himalayan uplift and erode easily. Cretaceous to 

Jurassic sandstone forms the Sichuan Basin, connecting the upstream Yangtze Plateau 

with the downstream Three Gorges Valley (Figure 3.5). The Sichuan Basin is 

surrounded by a complex of mountains framed by distinctive tectonic units (Tang and 

Xie, 1994). The alignment of highlands in the western and eastern basin are controlled 

by sets of major faults trending approximately NW–SE, and those in the northern and 

southern basin by faults running southwest. A set of linear faults running NW–SE 

across the east-central basin highlight the alternate anticlines and synclines of Permian 

and Triassic age (Chen et al., 2008b). The Yangtze River cuts through these geological 

structures to enter the Three Gorges. 

The upper reach of the Jialing River and the lower reach of the Jinsha River are 

underlain by a wide variety of sedimentary and metamorphic rock and unconsolidated 

sedimentary deposits and exposed strata of Cambrian, Silurian, Devonian, 

Carboniferous, Triassic, and Jurassic age and Quaternary high erodible deposits (Tang 

et al., 2009). The rocks include Cambrian metavolcanite, metasandstone and slate, 

Silurian phyllite, and Devonian and Carboniferous limestone, Triassic quartzitic 

sandstone and shale, Jurassic sandy gravel and Sandshale; Quaternary high erodible 

deposits are widely distributed in the terraces and alluvial fans. These rocks are 

typically poorly or moderately indurated, structurally deformed by pervasive folding 
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and faulting, and covered by residual and colluvial soils as much as several meters 

deep. Sediment contribution to the Jialing, lower Jinsha rivers is periodically 

accelerated by seismic events such as the landslide occurred on August 8, 2010 

(Figure 3.6). 

Downstream of the Three Gorges, the geological framework of the Middle Yangtze 

River basin is primarily delineated by the two large tectonically-controlled subsidence 

basins: Jianghan and Dongting. The basins subsided since the late Cretaceous to the 

early Tertiary time (Huang et al., 1965). The Huarong Rise separates the two basins. 

An earlier Yangtze channel flowed across the Jianghan floodplain to the north when 

the subsidence rate was higher there than in the Dongting Lake drainage area (Chen et 

al., 2008b). The river channel migrated southward to Dongting Lake drainage area 

following a subsequent shift in the location of rapid subsidence. 

 

Figure 3.7 Spatial distribution of karst areas in the Yangtze River basin 

The distribution of Karstic rocks is widespread in the Yangtze River basin (Figure 3.7). 

Karstic rocks are primarily distributed in the Wu tributary basin, Dongting Lake 
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drainage area, main-stem area of the middle Yangtze, and a small part of the Han 

tributary basin. Soils in the karst areas are relatively thin and scattered, because of the 

low soil-forming capability of soluble bedrock and the highly weathered, leached, and 

impoverished soil nutrients in tropical and subtropical regions (Yuan, 1997). Streams 

and tributaries form a particular river system as a result of the special geological 

setting. 

3.5 Major anthropogenic activities 

Anthropogenic activities in the Yangtze River basin have been a long history. The 

Yangtze River supports more than 30% of China’s population and help to produce 

about 40% of the county’s industrial and agricultural value (Dai et al., 2010). The 

upper Yangtze River basin is sparsely populated (i.e. < 100 person km-2) but rich in 

hydropower resources; the middle-lower reaches are characterized by quite high 

population density (up to 800 people km-2) (Zhang et al., 2003). The unevenly 

distributed population has resulted in different anthropogenic activities to water 

resources, for example, deforestation, water withdraw, water diversion, water and soil 

conservation, dam construction, land reclamation, embankment of lakes, and land 

cover change (e.g. agriculture, urban development, road construction). 

3.5.1 Deforestation in the upper Yangtze reach 

Before the mid-1980s, there was no specific law protecting forests in China. Forest 
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coverage in the Sichuan Basin, which is one of the agricultural and industrial centers 

in China, with a population of about 100 million, declined from 20% in the 1950s to 

12% in the 1980s as a result of increasing demand for timber and forest clearance for 

grain production. For the same period, forest coverage within the catchments of Min 

and Jialing rivers was also reduced from 1.3 x 106 hectares to 0.47 x 106 hectares (Lu 

and Higgitt, 1999; Zong and Chen, 2000). 

Apart from the Jialing and the Min tributary basins, deforestation also occurred with 

varying intensity in other tributary basins. The hillside forests along the tributary 

rivers have almost disappeared as a result of excessive exploitation. The basin of 

1,757 km long Yalong River used to be covered by natural forest due to the difficulty 

of access and the extremely low population. However, deforestation has reached even 

this remote area. The turbidity of river water has increased rapidly over the past 

decades according to the local residents (Zong and Chen, 2000; Lu et al., 2003a), but 

detailed information is currently not available. 

The obvious consequences of deforestation are soil erosion and the reduction in water 

storage capacity of surface soil and reservoirs. As estimated by the Chongqing 

Municipal Government, in the areas around Chongqing, about 4.33 x 106 hectares of 

land is under severe soil erosion, producing about 200 x 106 tons of sediment each 

year, i.e., approximately 46 tons of sediment per hectare is lost annually. About 2/3 of 

this sediment is deposited in local reservoirs, ponds and river networks, and the other 
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1/3 is transported into the main channel of the Yangtze (Zong and Chen, 2000). At the 

end of the 1970s, forest coverage reached to its lowest point. After 1980, great efforts 

have been made to construct a shelter forest system in southwestern China. Vegetation 

has gradually recovered in the upper Yangtze valley. Forest coverage ratio has risen 

from 13 % in 1978, to the current 21 % for the Sichuan Basin (Cheng, 1999), which is 

slightly higher than the historical level of 20% in the 1950s. 

3.5.2 Soil and water conservation in the upper Yangtze reach 

As stated in the climate section, the upper Yangtze Reach has a variety of 

physiographic features in its different parts and is characterized by diversity of 

erosion patterns. In general the basic patterns of surface erosion involve water erosion, 

gravitational erosion and a combination of the two in most regions (Walling and Fang, 

2003), except in the Qinghai-Tibet Plateau with its higher elevation and severe cold 

climate, where glacial and freeze-thaw processes are also an important pattern of 

surface erosion (Wang et al., 2007a; Wang et al., 2009a). 

Water erosion, including sheet erosion and gully erosion, is the main type of surface 

erosion in the basin. Hillslope erosion (sheet and rill erosion) is the most important 

contributor to soil loss from the basin. It occurs over the widespread cultivated slope 

land, and on crop-rotation land and wasteland, which constitute a large proportion of 

the farmland in the basin. In the upper Jialing basin, for example, 70 % of farmland is 

found on slopes of 20-30°. In the mountain and hill areas of the Lower Jinsha basin, 
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cultivated slope land accounts for 50-90% of the total farmland, and one third of the 

cultivated land has slopes of over 25° (Dai and Tan, 1996; Lu et al., 2003a). When 

heavy rainfall occurs over the area, the topsoil, being characterized by steep slopes, 

thin soil layers and sparse vegetation in many places, is easily eroded by rain splash 

and overland flow. 

 

Figure 3.8 Map of soil erosion in the Yangtze River basin 

Water conservancy plans, focusing on irrigation and water-soil conservation, had been 

proposed as early as in the 1950s, while substantial work, the Changzhi Project, 

inaugurated in 1989 (Xu, 2004). Four regions with severe water and soil loss have 

been selected in the first phase: the lower Jinsha River, the upper and middle reaches 

of the Jialing River and the Three Gorges Reservoir region. The total soil-loss area in 

the Yangtze River basin is 531,000 km2, of which affects 524,000 km2 (Figure 3.8). 

The percentages of regions where erosion is extremely severe to severe, moderate and 

slight levels are 3.2%, 14.5%, 40.5% and 41.8%, respectively (CWRC, 2007b). 

The Changzhi Project has involved terracing, afforestation and small hydraulic 
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engineering measures over 700 watersheds, controlling sediment production from 

150,000 km2 (Dai et al., 2002). As a result of the Changzhi Project, the sediment yield 

in upper Yangtze reach decreased gradually, especially in two high-yield regions: the 

Jialing River and the lower Jinsha River (Xu et al., 2006). 

The soil and water conservation has complicated the assessment of the cumulative 

impacts of reservoirs on sediment retention because decreased sediment loads are a 

joint result of the above discussed factors and reservoir retention. For example, 

despite the evidence for increased precipitation in the lower Jinsha tributary basin, 

sediment load at Yichang station has decreased. In such a large river basin as the 

Yangtze River, the effects of increased sediment fluxes from some tributary basins 

could be ‘averaged out’ and, equally, some increases could be offset by decreases 

elsewhere (Walling and Fang, 2003). Therefore, it is challenging to distinguish the 

impact of reservoir sediment trapping from the effects of other factors. 

3.5.3 Dam and reservoir construction 

In the Yangtze River basin, rapid economic growth has increased the pressure for 

greater hydropower production and other water-related developments, such as 

large-scale irrigation. Before 1949, there were only several small hydroelectric dams 

in the Yangtze River basin. Since the 1950s, the reservoir construction experienced fast 

development; numerous reservoirs have been constructed in the river basin. The 

development of reservoirs can be divided into three phases (Yang and Lu, 2013a). The 
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first phase (from the 1950s to the 1970s) was set for a dramatic development of the 

country’s hydropower industry. From the 1950s and 1970s, China experienced a "great 

leap forward" in terms of hydraulic engineering projects, leading to the construction of 

most of China's reservoirs. By the end of the 1970s, the state-organized campaigns for 

electricity, irrigation, and flood control succeeded in building nearly 80,000 reservoirs, 

more than half of which were located in the Yangtze River basin (National Bureau of 

Statistics of China, 1993). During the second phase (from the 1980s to 1990s), Less 

than 4,000 reservoirs were built in the Yangtze River basin; but the growth rate of large 

reservoirs maintained a higher level than in the first phase, indicating that the 

government principally focused on large reservoir projects. The same trend continued 

in the next phase after the 1990s. By 1992, when the Three Gorges Project was 

approved for construction, China already had 369 large reservoirs, 125 of which are in 

the Yangtze River basin. By 2009, when the Three Gorges project was completed, the 

number of large reservoirs in the Yangtze River basin increased to 190 (Yang and Lu, 

2014a). 

Despite the economic benefits, such as energy generation, construction of these 

reservoirs has also caused severe environmental and ecological problems (Yang and 

Lu, 2013b). For example, after the construction of the Three Gorges Dam, the riparian 

ecosystem has been significantly disrupted (Wu et al., 2003). For example, stagnant 

water in the tributaries has elevated pollution levels –– an existing concern for 

populations along the Yangtze River. The dam has blocked approximately ten million 
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tons of plastic bags, bottles, animal corpses, trees, and other detritus that would have 

otherwise flowed out to sea (Yang and Lu, 2013b). Since 2004, algal blooms caused 

mainly by dinoflagellates have occurred each February in 22 Yangtze tributaries 

including the Xiangxi, Pengxi, and Daning rivers (Fu et al., 2010). Water 

impoundment has also resulted in lower water levels in the downstream channel and 

less water storage in the adjoining riparian lakes (e.g., Dongting and Poyang lakes), 

which contributed to extreme drought conditions in 2011 when precipitation was low 

(Lu et al., 2011). Additionally, the delta front has shifted from sediment accumulation 

during the 1960s to an erosion rate of approximately 100 x 106 m3 year-1 in recent 

years (Yang et al., 2011), exacerbating saltwater intrusion in the Yangtze estuary. 

As stated above, the direct and indirect impacts of a certain dam (e.g. the TGD) have 

been widely reported; but few studies have addressed the cumulative impacts by 

multiple dams because these impacts manifest in a cumulative manner over broad 

temporal and spatial scales. Given the development of contiguous cascade dams on 

the major tributaries of the Yangtze River, it is an excellent to opportunity to integrate 

a large amount of existing information in a cumulative impact context.  

3.5.4 Land reclamation and lake shrinkage 

Another important factor affecting fluvial processes is lake shrinkage caused by land 

reclamation in the middle and lower Yangtze reaches. Previous studies (Shi and Wang, 

1989; MWR, 1998; Wang and Dou, 1998) have reported that the sharp decrease in the 
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number and surface area of lakes occurred from the 1950s to the 1970s due to land 

reclamation. Since when I delineated reservoirs, natural lakes were also extracted in 

this study, a more detailed discussion on lake shrinkage is given later in Chapter 4. On 

this point, there is no longer discussion here.
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4 Reservoir delineation and water 

regulation assessment 

4.1 Introduction 

It is estimated that today 8 million lake larger than 1 ha (Meybeck, 1995) and 304 

million small ones (Downing et al., 2006), approximately 45,000 reservoirs with dam 

higher than 15 m (Lehner et al., 2011) and some 800,000 smaller ones (McCully, 

2001) exist worldwide. Due to the their basic ability to retain, store, clean, and evenly 

provide water, as well as their distinct characteristics as still-water bodies, lakes and 

reservoirs constitute essential components of the hydrological water cycle, and affect 

many aspects of environment, ecology, economy, and human welfare. Therefore, 

knowledge about the distributions of lakes, reservoirs and wetlands is therefore of 

great interest in many scientific disciplines. Despite this regional significance, few 

comprehensive data sets exist which comprise information on location, extent and 

other basic characteristics of open water bodies and wetland areas on a global scale 

(Lehner and Doll, 2004). 

However, the correct classification (on aerial imagery) of an open water surface or a 

mixed vegetation area, say into ‘lake’, ‘pond’ or ‘reservoir’, is difficult. 

Misinterpretation of the spectral signal may lead to errors, and the provided raster-cell 

representation hinders a clear identification of separate lake pools, individual 

reservoirs or single components of braided river and lake systems. Despite their 
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individual limitations, the existing lake and reservoir registers, maps and databases are 

highly valuable sources of information, focusing on different geographic regions or 

aspects.  

As an alternative to the above data sources, recent developments in the field of remote 

sensing, including increases in data quality and resolution, promise large-scale land 

cover images making it possible to monitor spatio-temporal changes in lake and 

reservoir extent. For example, Landsat Thematic Mapper (TM)/Enhanced Thematic 

Mapper Plus (ETM+) imagery has been employed in recent studies to delineate water 

bodies in Zimbabwe (Sawunyama et al., 2006), India (Mialhe et al., 2008), Ghana 

(Annor et al., 2009) and the Yellow River of China (Ran and Lu, 2012). This chapter 

presents a parsimonious approach to rapidly delineate reservoirs, which combines 

information of both categories i and ii introduced in section 2.2 in a consistent manner. 

The specific aims of this chapter are to: (a) explore the advantages of using remote 

sensing techniques to delineate water bodies across the entire Yangtze River basin, (b) 

establish empirical formulas to quantify the storage capacity of reservoirs and lakes and 

(c) assess the magnitude and distribution of the potential impacts of reservoirs on 

water regulation at a basin-wide scale. 

4.2 Data and methods 

4.2.1 Data sources and data preprocessing 

Remotely-sensed data provide a means of delineating water body boundaries over a 
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large area at a given point in time. The Landsat program is the longest running 

enterprise for acquisition of satellite imagery of Earth. Its Landsat Thematic Mapper 

(TM) and Enhanced Thematic Mapper Plus (ETM+), which acquired digital-format 

imagery with 30 m spatial resolution in seven spectral channels, have become a unique 

resource in the study of albedo and its relationship to water scape change. Landsat 

TM/ETM+ images, mainly acquired after the monsoon season (September–October) in 

the period 2005 to 2008, were used in this study. A total of 104 images, including 94 

TM images and 10 ETM+ images, were used (Figure 4.1). On 31 May 2003, the ETM+ 

Scan Line Corrector (SLC) failed, causing the scanning pattern to exhibit 

wedge-shaped scan-to-scan gaps. Images acquired after the SLC failure are referred to 

as SLC-off images. In this study only SLC-off images were used. An approach 

(Scaramuzza et al., 2004) was used to fill gaps in Landsat ETM+ SLC-off images.  

Ideally, contemporary data for the same year were used, but the limited availability of 

cloud-free data necessitated the use of data from multiple years (from 2005-2008). 

Even then, cloud-free images covering the entire Yangtze River basin could not be 

found. Haze correction and cloud removal for some images was used in image 

pre-processing. Five images with clouds were used. For images with thin clouds or haze, 

the approach proposed by Martinuzzi et al. (2007) was used for haze correction. For 

images with thick clouds, this study have developed a program based on thresholding 

that segments an image into two categories (cloud, non-cloud) defined by a single DN 

(digital number) threshold. The detected thick clouds were then replaced with a suitable 
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value by looking into the next or previous available images. After that, the images 

could be used in this study. All the images were acquired from the United States 

Geological Survey (USGS) (http://glovis.usgs.gov/, last accessed in October 2013).  

Additionally, the very high-resolution satellite data IKONOS and QuickBird images 

from the Google Earth mapping service were used for selected areas to improve and 

validate the classification of water bodies. DEMs (digital elevation models) with a 

spatial resolution of 90 m were downloaded from the Consultative Group on 

International Agricultural Research (CGIAR) (http://srtm.csi.cgiar.org, last accessed in 

October 2013) and used to determine the backwater region of each reservoir. 

 

Figure 4.1 Landsat TM/ETM+ images used in this study. 

4.2.2 Water body detection and classification 

The overall procedure of image processing can be summarized into two phases, namely, 

water body detection and water body classification (Figure 4.2). Because processing 

approximately 100 satellite images would have been time-consuming and 
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labor-intensive, this study developed an automated procedure that employs multiple 

thresholds, generating the DN magnitudes normalized difference vegetation index 

(NDVI)(Tucker, 1979) and normalized difference water index (NDWI) (Gao, 1996) 

and differences in the spectral characteristics of different land cover types (e.g., water, 

snow, bare land and vegetation) in visible, near infrared and mid-infrared bands. An 

automated computer program has been developed, which employs multiple thresholds 

to generate the DN magnitudes NDVI and NDWI and differences in the spectral 

characteristics of different land cover types (e.g., water, snow, bare land and vegetation) 

in visible (band 3), near infrared (band 4) and mid-infrared bands (band 5). The 

normalized difference snow index (NDSI)(Sidjak, 1999) threshold was also used to 

remove the impact of snow on the Tibetan Plateau. Also, Digital elevation model 

(DEM) data was integrated in this program to remove the impact of shadows in 

mountainous areas (Figure 4.3). However, it should be noted that no specific thresholds 

for the parameters were set because I could manually adjust the threshold to achieve the 

best overall result for each image. In this step, satellite images were classified into two 

categories: water and non-water. The results were then converted into polygons with 

contiguous pixels and stored in a shapefile. Subsequently, as a result of filtering, any 

object smaller than 4 pixels or 0.0036 km2 was automatically removed from the data to 

remove image noises. The removed water bodies are insignificant in size; therefore, 

they had an insignificant effect on the total area. 
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Figure 4.2 Flow chart of water body detection and classification using remote sensing 
techniques. NDWI is the normalized difference water index derived from Landsat TM 
bands 4 and 5, (TM4 - TM5)/(TM4 + TM5) (Gao, 1996); NDVI is the normalized 
difference vegetation index derived from Landsat TM bands 4 and 3, (TM4 – TM3) / 
(TM4 + TM3) (Tucker, 1979). 

 

Figure 4.3 A computer program developed by me for water discrimination, the 
program was integrated into the software of ENVI 4.7. 
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Figure 4.4 The tool kit used for visual interpretation. 1. Polygon to be classified; 2. 
Tools to operate map (zoom in, zoom out, pan, etc.) (the “Write data” button is used to 
save information such as water types, locations and names); 3. Electronic 
maps/images (shown in left panel) used as auxiliary data; 4. Real-time data request 
from GeoNames geographical database based on the polygon’s coordinates. Using 
visual cues, such as tone, texture, shape, pattern, and relationship to other objects, I 
could easily classify polygons into different types. The auxiliary data were 
automatically extracted by the tool kit; it could be carried out the classification 
efficiently.  

In the second step, based on secondary data and high-resolution satellite data from 

Google Earth, the polygons were visually interpreted to classify water bodies into three 

classes: lakes (lakes and ponds), artificial reservoirs and rivers. One of the major 

impediments to the classification was that there are numerous paddy fields and 

aquacultural farms which have similar spectral characteristics to natural lakes in the 

lower reaches of the Yangtze and Pearl rivers. To reduce misclassification error, this 
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study used ancillary data, visual interpretation and expert knowledge of the area 

through GIS to visually interpret the images. Using visual cues, such as tone, texture, 

shape, pattern, and relationship to other objects (a reservoir has an associated dam), an 

observer can identify many features on high-resolution images (such as Google Earth 

image). This study has also developed a computer program to assist me visually classify 

each polygon into different water-body types. I could easily and efficiently classify 

each polygon into different water-body types. After classification, other features of the 

water bodies such as surface area, names and administrative divisions were also added 

to the dataset. 

 

Figure 4.5 Identification of the backwater region of cascade hydropower reservoirs to 
identify reservoir boundary using the Three Gorges Reservoir as an example. 

The cascade reservoirs were identified by the dam locations identified in the 

high-resolution Google Earth images, which was necessitated by the lack of data on 

backwater curves. The shape of each reservoir was determined based on the assumption 

that the water surface within the reservoir was flat. The Three Gorges Reservoir (TGR) 
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as an example (Figure 4.5). First, the Yangtze River polygon was divided into two parts 

at the location of the Three Gorges Dam (TGD). The section behind the TGD was then 

superimposed on the DEM. If a pixel near the dam intersected the polygon boundary, 

the pixel was marked and the water surface level at that point was determined from the 

DEM. The average elevation of all marked pixels was used to estimate the water 

surface level in the TGR. Second, for each cell located inside or partially inside the 

Yangtze River polygon, the height difference between the DEM value for that cell and 

the water level was calculated. The boundary of the TGR was delineated by connecting 

the cells for which the difference between the elevation for the cell and water level for 

the dam was zero. Figure 4.5 shows the water level at 165 m, with the area delineated 

as backwater reaching almost to Chongqing.  

4.2.3 Estimating reservoir and lake storage capacity 

Many studies have demonstrated the existence of a robust relationship between the 

surface area and storage capacity of reservoirs at both regional and global scales 

(Lehner et al., 2011; Ran and Lu, 2012). This relationship was used to develop a 

method for area-based estimation of reservoir storage capacities. Meigh (1995) first 

developed a formula for the power relationship between capacity (C; 106 m3) of a 

reservoir and its surface area (A; km2): 

 
baC A   (4.1) 
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where a and b are constants. 

To build the regression equation, data on the storage capacities of 1,185 reservoirs 

(0.01–10 km3) and 1,118 large lakes (surface area ≥ 1 km2) were collected from 

official documents of the Chinese government, particularly a series of reports on 

reservoir development from the Yangtze (Changjiang) Water Resources Commission 

(CWRC). A number of other ancillary data sources as well as information from 

previous studies (MWR, 1998; Wang and Dou, 1998) were also used. This study 

adopted a very conservative approach to data collection; i.e., only storage capacity 

values that appeared in multiple sources were used in order to guarantee data quality.  

The equations established for reservoirs and lakes in the Yangtze River basin were as 

follows: 

 Large reservoirs (A ≥ 3.3 km2): 0516.1386.28 AC   (R2 = 0.8438)  (4.2) 

 Small reservoirs (A < 3.3 km2): 9859.0382.30 AC   (R2 = 0.8801) (4.3) 

        Large lakes (A ≥ 10 km2): 1104.15018.1 AC   (R2 = 0.9236)  (4.4) 

        Small lakes (A < 10 km2): 0611.1625.1 AC   (R2 = 0.7374) (4.5) 

In China, reservoirs are classified based on volume into the categories of large (C ≥0.1 

km3 or A ≥ 3.3 km2), medium (0.1> C ≥ 0.001 km3) and small (C < 0.001 km3), 

whereas the lake classification is based on surface area, with small, medium and large 



 

76 

 

lakes having a surface area of < 1.0, 1–10, and > 10 km2, respectively. Based on these 

two physical characteristics of reservoirs and lakes, this study divided the reservoirs 

into two groups (large and small) to obtain better regression equations (Eqs. 4.2 – 

4.5). 

Because of the relatively low resolution of Landsat TM/ETM+ images and the effects 

of mixed pixels and shadow removal, it was not possible to accurately identify smaller 

water bodies (< 3,600 m2) using the Landsat images. Therefore, this study estimated 

their surface area and volume based on previous studies that have suggested that the 

global distribution of natural lakes and their surface area can by described by a power 

law distribution (Lehner and Doll, 2004) and a similar distribution has been proposed 

for artificial reservoirs at global and regional scales (Downing et al., 2006). By fitting 

such a statistical distribution to the data, the number of lakes in the Yangtze River 

basin can be expressed as a power function of their area as follows: 

 768.0581 
  AN

tAA  (R2 = 0.9985) (4.6) 

and the number of reservoirs can be expressed as: 

 796.0871 
  AN

tAA  (R2 = 0.9884) (4.7) 

where 
tAAN   is the number of reservoirs or lakes with an area greater than or equal 

to a threshold area (At ; km2). Using Eqs. (4.6) and (4.7), this study estimated the total 

number and surface area of the small lakes and reservoirs in the basin. 
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4.3 Results 

4.3.1 Quantity and surface area of delineated lakes and 

reservoirs 

This study delineated 43,602 reservoirs and 42,708 lakes, covering approximately 

8,606 km2 and 16,236 km2, respectively, of the territorial land surface. The surface area 

distribution for lakes and reservoirs are shown in Figure 4.6. When the surface area 

data were transformed to a log scale, a linear regression could not be fit to either the 

reservoir or the lake data. It reveals that while most lakes and reservoirs in the 

Yangtze River basin are small, large lakes and reservoirs account for most of the 

basin’s water surface area. For example, small lakes (< 1 km2) are the largest in 

number (~99%), but their total surface area is only 1,419 km2. Medium and large 

lakes (>1 km2), of which there are 573, make up approximately 1% of the total 

number of lakes and represent 91.2% of the total surface area (Table 4.1). The 

relatively large contribution of large lakes to total surface area is consistent with 

previous reports (Wetzel, 1990; Kalff, 2001). Similarly, large reservoirs (C ≥ 0.1 km3 

or A ≥ 3.3 km2) with a capacity of approximately 189.6 km3, account for only 0.7% of 

the total number of reservoirs, yet they provide 65.8% of the total storage capacity 

(Table 4.2). Therefore, large reservoirs are most likely to have the greatest impact on 

downstream river systems. Global proportions are similar, with the 633 world largest 

reservoirs (storage capacity > 0.5 km3) representing 60% of the total global capacity 
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(Vörösmarty et al., 1997). Small reservoirs are numerous, but their aggregate effect is 

likely to be small except in highly localized contexts (Graf, 1999). The results shown 

in Tables 4.1 and 4.2 show that artificial reservoirs have overtaken natural lakes in 

terms of total number and storage capacity and have become the dominant water 

bodies in the Yangtze River basin.  

 

Figure 4.6 Lake and reservoir size distributions in the Yangtze River basin. 

The frequency distributions for lake and reservoir surface area closely follow a power 

law distribution (Tables 4.1 and 4.2). The smallest reservoirs occur at the highest 

frequency (> 95%) and the frequency of reservoirs descends exponentially with 

increasing surface area. The distributions are roughly consistent with certain general 

laws in stream morphometry, such as Horton’s law of stream numbers (Horton, 1945). 
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This law refers to the expected number of streams in a certain stream order, where 

lower-order stream segments are more frequent than higher-order stream segments. 

Thus, the two frequency distributions of lake and reservoir surface area closely mirror 

Honton’s law, which is applied to and derived from stream morphometry. The surface 

area frequency distributions of lakes and reservoirs in the Yangtze River basin, 

according to Horton’s law, are presumably indicative of their fractal nature. 

 

Figure 4.7 Number of reservoirs and lakes (y axis) exceeding increasing surface areas 
(x axis), based on remotely sensed results and data presented by Lehner et al. (2011). 
For global lakes and reservoirs, they assume that the reservoirs (> 10 km2) and lakes (> 
1 km2) surface are complete records, and trend lines (not shown) were fitted for lakes 
and reservoirs, respectively. 

In addition, the results of the integral distributions of lake and reservoir surface area 

(total number N of lakes larger than area At) are interesting from a statistical 
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Table 4.1 Number of lakes from remote sensing and estimation using Eq. (4.6). 

Lake area (km2) Extracted results Predicted results 

Min Max 
Num. of 
lakes 

Avg area 
(km2) 

Total area 
(km2) 

Volume 
(km3) 

Num. of 
lakes 

Avg area 
(km2) 

Total area 
(km2) 

Volume 
(km3) 

0.0001 0.001     461,342  0.00028 129 0.1 
0.001 0.0036     59,855  0.00183 109 0.1 
0.0036 0.01 20,571  0.007 143  0.17     
0.01 0.1 18,715  0.029 536  0.71     
0.1 1 2,849  0.26 740  1.12     
1 10 453  3.2 1,451  2.57     
10  100  101  26.7 2,695  5.98     
100  1,000  16  226.7 3,627  10.1     
1,000  10,000  3  2348 7,044  25     

Total  42,708  16,236 45.65 521,197  238 0.2 

The results include both completely natural lakes and regulated natural lakes. 
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Table 4.2 Number of reservoirs from remote sensing and estimation using Eq. (4.7). 

Reservoir area (km2) Values based on remote sensing Estimated values 

Min Max 
Num. of 
reservoirs 

Avg area 
(km2) 

Total area 
(km2) 

Volume 
(km3) 

Num. of 
reservoirs

Avg area 
(km2) 

Total area 
(km2) 

Volume 
(km3) 

0.0001 0.001 609,448  0.000278 169 3.2 
0.001 0.0036 74,958  0.001823 137 2.9 
0.0036 0.01 8,358 0.0071 59.8 1.9   
0.01 0.1 29,825 0.029 877 27.9   
0.1 1 4,597 0.28 1,282 39.6   
1 10 711 2.6 1,875 57.4   
10 100 105 25.6 2,697 91.5   
100 1000 6 302.48 1,815 70   

Total  43,602  8,606 288.3 684,406  306 6.1 

The minimum reservoir area (0.0001 km2) corresponds to the smallest reservoirs practically recognizable (Downing et al. 2004). Reservoirs do 
not include regulated natural lakes which occupy because more than 80% of natural lakes in the middle and lower Yangtze watersheds. 
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perspective. Lehner et al. (2004; 2011) reported that the most striking statistical 

feature of global lakes and reservoirs is the linearity of their distributions when drawn 

on a double logarithmic scale. A similar trend was also observed in the Yangtze River 

basin (Figure 4.7). Compared to the global reservoir distribution, the distribution of 

Yangtze reservoirs has an even steeper rise and thus has a relatively higher total 

number of small reservoirs (derived from Eq. 4.7). This result suggests that reservoir 

density in the Yangtze River basin is greater than the global average and therefore, the 

basin has experienced a relatively high density of anthropogenic impacts. However, 

the lake surface area distribution has a much flatter rise than that of global lakes. This 

curve suggests that the average density of lakes in the Yangtze River basin is lower 

than the global average. For a formerly glaciated area such as Canada, the lake 

distribution curve is much steeper than the global average distribution (Lehner and 

Doll, 2004). 

4.3.2 Spatial distribution of lakes and reservoirs 

Reservoir density in the Yangtze River basin (Figure 4.8) shows a clear east-to-west 

gradient except in the Sichuan Basin. The reservoirs are mainly distributed in the 

middle and lower reaches. The highest density of dams occurs on the Poyang Lake 

floodplain, which has a density of 0.71 reservoirs km-2. The high reservoir density 

reflects the legacy of this region’s long history of mill dams for irrigation and 

aquaculture. In addition, Figure 4.8 shows that more than half of the large reservoirs 
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Figure 4.8 Spatial distribution of reservoirs with respect to topography. The reservoirs are mainly located in the middle and lower reaches in 
low-relief areas (within -1 to 1 standard deviation from the main elevation of 1,778 m. 
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Figure 4.9 Spatial distribution of lakes with respect to topography. Most lakes are distributed in the middle and lower reaches, but many lakes 
also occur in the upper reaches. 
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are built along the mainstream channel and major tributaries, indicating that reservoir 

construction is the combined result of naturally occurring stream morphometry 

phenomena and man-made features that have anthropogenic impacts. Additionally, the 

higher frequency of lower-order segments shown in Table 4.2 indicates a greater 

number of opportunities for dam construction, and vice-versa. The dimensions of 

reservoirs on lower-order segments are comparably small, but the construction is 

easier and cheaper, which again addresses a large number of potential needs. 

Figure 4.9 shows the density of lakes in the Yangtze River basin. Most lakes are located 

in the middle and lower reaches, especially in the areas near Poyang, Dongting, Chaohu 

and Taihu Lakes. The highest density occurs in the lower reaches around Chaohu Lake 

at 0.92 lakes km-2. However, many lakes also occur in the upper reaches in areas such 

as the Qinghai-Tibet Plateau. The density of lakes in the Sichuan Basin is relatively low 

compared to the density of reservoirs (Figure 4.8). Most large lakes in the middle and 

lower Yangtze River basin are located along the main trunk stream and major 

tributaries, which feed into or drain the lakes. However, many large lakes in the 

Qinghai-Tibet Plateau do not follow this pattern because they are glacial lakes (Chen 

et al., 2007).  

Topography helps explain why the spatial distributions of quantity and surface area of 

artificial reservoirs differ from those of natural lakes. The maps in Figure 4.8 and 

Figure 4.9 show the steps of standard deviation (1,782 m) of the mean elevation 
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(1,778 m) against the distributions of lakes and reservoirs. Figure 4.8 indicates that 

the reservoirs are mainly located in low-relief areas (within -1 to 1 standard 

deviations of the mean) and there are no reservoirs outside of 1 standard deviation of 

the mean elevation. In contrast, the distribution of natural lakes corresponds to the 

full range of standard deviation values, although most of the lakes are located in the 

lower-elevation range. These results suggest that, despite the natural topographic 

constraints, the distribution of artificial reservoirs is determined to a great extent by 

human needs.  

4.3.3 Estimated volume of lakes and reservoirs 

The total estimated reservoir storage capacity is approximately 288 km3, representing 

approximately 28% of the annual discharge of the Yangtze River (Table 4.2) but only 

46 km3 of the total estimated lake volume (Table 4.1). The total reservoir storage 

capacity is slightly higher than the 250 km3 value reported by MWR (2011). This 

difference in capacity is mainly due to changes that have occurred between the two 

periods of data collection, given that reservoir construction has progressed rapidly in 

recent years.  

This study estimated a total of 684,406 small impoundments and 521,197 small lakes 

of <3,600 m2 in size, with a total capacity of approximately 6.1 km3 and 0.2 km3, 

respectively (Tables 4.1 and 4.2). The total capacity of all reservoirs is approximately 

294 km3 and their total area is approximately 8,910 km2. Nevertheless, it should be 
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highlighted that the total area of natural lakes (> 0.0036 km2) is 16,236 km2, which is 

much less than the 21,000 km2 previously reported by Wang et al. (2006) using data 

produced in the 1980s. although some of the difference could be a result of different 

measurement methods (e.g., field survey and remote sensing), the difference should 

be much low because the results reported Wang et al. (2006) was based on 

topographic maps and thus the accuracy could be guaranteed. The lakes in the Yangtze 

River basin have experienced dramatic shrinkage in recent years due to land 

reclamation and urbanization.  

The results for quantity, surface area, and storage capacity of smaller reservoirs and 

natural lakes also differ considerably from some previous studies (Lehner and Doll, 

2004; Downing et al., 2006; Lehner et al., 2011). First, previous studies indicate that 

natural lakes are much more abundant than reservoirs. However, this study found the 

opposite result in the Yangtze River basin. Second, at the global scale, the average 

area of small reservoirs (Lehner et al., 2011) is larger than the average area of small 

reservoirs in the Yangtze River basin (Table 4.1), indicating that the waterscape in the 

Yangtze watershed is more fragmented. The differences between these results and the 

results of previous studies indicate that there have been strong anthropogenic impacts 

in the Yangtze River basin. 

4.4 Discussion 

4.4.1 Accuracy assessment 
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Errors occurred at the three stages, i.e., the extraction of water bodies, the 

classification of water bodies into reservoirs and lakes and the estimation of storage 

capacity. The accuracy of the identification and extraction of water bodies was mainly 

influenced by aspects of image quality such as resolution, cloud cover, shadows and 

sedimentation in the tail-water of reservoirs. First, the mixed pixels made some small 

water bodies, including small reservoirs, difficult to extract. Based on my experience, 

reservoirs with a width of less than two pixels cannot be extracted because both sides of 

the feature are affected by the mixed pixels. Thus, delineated water bodies that were 

smaller than 2x2 pixels or 0.0036 km2 were removed to ensure that the delineated 

features were real water bodies. In addition, in rugged mountainous areas such as the 

upper Yangtze River basin, shadows may block solar radiation in narrow river valleys, 

making the identification of smaller water bodies difficult. However, these small 

reservoirs have a minimal effect on total surface area and storage capacity. 

Smaller reservoirs and lakes were also difficult to distinguish from paddy fields and 

aquacultural farms because natural lakes, paddy fields and aquacultural farms share 

similar spectral characteristics. In fact, many aquacultural farmlands are reclaimed 

natural lakes. Visual interpretation can partly solve this problem. Based on my 

measurements, the accuracy for lakes with a surface area > 1 km2 was 96% but the 

accuracy for small lakes was somewhat low (85%) because of misclassification of 

aquacultural farms and natural lakes. Some small lakes were misclassified as 

aquacultural farms because parts of the lakes were used for fish farming. Because of 
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these misclassifications and the results of my field measurements, the lake 

classification was double-checked and updated. However, it should also be noted that 

small lakes represent only 8.8% of the total surface area of lakes and thus the 

relatively low accuracy in the classification of small lakes has negligible impacts on 

the study results. 

 

Figure 4.10 DAI distribution against area of lakes and reservoirs delineated in high 
resolution images using Google EarthTM polygon tool 

In addition, sediments accumulate in the backwater of reservoirs, making the reservoir 

surfaces appear smaller than they are. Using remote sensing images that are acquired 

when the reservoirs are fully regulated is a possible solution, but some reservoir 

capacities were still underestimated due to the lack of available data for the study 

period. 
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Because image acquisition mainly took place in 2005 and 2008 and there was no field 

work during this period, there was no possible comparison between water body found 

in the field and in the images. The deviation area index (DAI) was therefore used to 

quantify the difference between the surface area derived from Landsat TM/ETM+ 

images and the area delineated in high resolution images provided by Google Earth in 

the similar period. Nevertheless, it should be noted that the slight discrepancy 

between Landsat TM/ETM+ images and high-resolution images provided by Google 

Earth is an objective phenomenon due to different acquisition time. Thus, the method 

based on DAI is just a rough assessment. The DAI is defined as follows: 

 GSG AreaAreaAreaDAI )(   (4.8) 

where AreaG is the surface area of lakes and reservoirs delineated in high resolution 

images using Google EarthTM polygon tool; AreaS is the surface area derived from 

Landsat TM/ETM+ images. The DAI values obtained from this equation range from 

-∞ to 1. Water bodies with values close to zero have the best match between AreaG 

and AreaS while moving to extremes indicates increasing deviations between the two 

areas (Liebe et al., 2005). 

Manual digitizing of high-resolution images is extremely laborious, especially for 

large water bodies because the accuracy of manual digitizing depends on how 

accurate a water-body boundary is duplicated on a computer by hand. To get an 

accurate water-body boundary, one had to pick as many points as possible. Two 
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hundred randomly selected water bodies with an area range of 0.05 km2—100 km2, 

including 100 reservoirs and 100 lakes, were used to assess the accuracy. The 200 

water bodies are randomly distributed in all the large river basins.  

The DAI distribution is shown in Figure 4.10. It can be seen that most DAI values 

range between -0.3 and 0.3 and, with the increase of the surface area, the absolute 

values of DAI close to zero, indicating that the larger are the water bodies, the better 

match of the surface areas. Figure 4.10 also shows that more DAI values for small 

water bodies are greater than zero, indicating small water bodies delineated in 

high-resolution images are slightly larger than their corresponding areas extracted 

from Landsat TM/ETM+ images. On average, the satellite based areas were found to 

be 8.1% smaller than the Google EarthTM image based area estimates. This is not 

surprising because in Landsat TM/ETM+ images, reservoir and lake inlets could be 

identified until the width of the inlet/arm/peninsula is larger than 30 m due to the 

coarse resolution. This phenomenon was more common for small water bodies as it is 

more difficult to extract their boundaries on the coarse-resolution TM/ETM+ images. 

Although the accuracy for small water bodies (< 1 km2) is relatively low, lakes and 

reservoirs with area greater than 1 km2 contribute respectively 92% and 81% of the 

total surface area. Therefore, the relatively low accuracy for small water bodies has 

insignificant impact on further area-based analysis. 

In the second stage, the classification of water bodies into lakes, reservoirs and rivers 
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was initially based on the GeoNames database and thematic map of water resources. 

This study used the center coordinates of the classified features on the thematic map 

and in the GeoNames database to facilitate the classification. Each water body was 

matched by its center coordinates to the corresponding feature on the thematic map 

and in the GeoNames database. For the water bodies without corresponding features 

on the thematic map and in the GeoNames database, visual interpretation using 

high-resolution Google Earth images was performed. A water body with the striking 

mark of a dam on the high-resolution images was classified as a reservoir and other 

bodies of water were classified as natural lakes. Thus, in this stage, accuracy 

depended largely on the accuracy of the GeoNames database and the thematic map. 

However, the reservoirs that did not have corresponding features on the thematic 

maps and in the GeoNames database could have been misclassified as natural lakes if 

their dams were not easily identified through visual interpretation. This was the major 

impediment to obtaining a high accuracy in the classification of water bodies. 

The errors in the third stage, i.e., the estimation of storage capacity, were due to the 

shape of the terrain and topography. Most of the large reservoirs are constructed in 

valleys and rely on the natural topography to supply most of the reservoir basin, 

whereas most small reservoirs are bank-side reservoirs that are constructed to store 

the water pumped or siphoned from a river. This study used the area-capacity model 

introduced by Liebe et al. (2005) to develop area-capacity relationships for large (C ≥ 

0.1 km3) and small reservoirs (C < 0.1 km3): 
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 AdC
6

1
  (4.9) 

where d is the depth of water stored behind the dam in meters (m) (Figure 4.11A). The 

value of d for valley-dammed reservoirs is slightly higher than for bank-side 

reservoirs within the same size range. To eliminate this influence, this study 

established two different area-capacity curves and fitted them separately to large and 

small reservoir data. The established empirical equations (Eqs. 4.2 and 4.3) also help 

to address this issue.  

 

Figure 4.11 Reservoir model and reservoir shape examples. The theoretical derivation 
of this relationship starts with a cut V-shaped valley in order to approximately 
represent the shape and volume of a reservoir. The U-shaped reservoirs, built on 
U-shaped valleys formed by the process of glaciation, are observed in few regions of 
the Qinghai-Tibet Plateau. 

In addition, the model used in this study is mainly based on the V-shaped reservoirs 

and arc-shaped lakes that are dominant in the study area. The established equations 

may not be a good fit for deep U-shaped reservoirs (Figure 4.11B) with very steep 
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sides because the area-capacity relationship of these reservoirs differs slightly from 

that of V-shaped reservoirs. However, there are few deep U-shaped reservoirs in the 

Yangtze River basin. Thus, the effect of reservoir shape seems to be fairly small in this 

study. 

4.4.2 Changes in the lakes and reservoirs 

Before the founding of the People's Republic of China in 1949, there were few 

reservoirs in the Yangtze River basin. However, when the Three Gorges project was 

completed in 2009, the number of large reservoirs was greater than 190 (MWR, 2009). 

The growth in both the number and storage capacity of the reservoirs in the Yangtze 

River basin has occurred during several periods of rapid growth (Yang et al., 2005b).  

A more detailed examination of decade-by-decade increases in the total storage 

capacity of reservoirs with capacity of >0.01 km3 shows that the greatest rate of 

increase was from the late 1940s to the late 1970s Figure 4.12A). By the end of the 

1970s, nearly 80% of the 1,358 reservoirs (capacity ≥ 0.01 km3) had been built, but 

their total capacity was only 89.3 km3. Only 12 reservoirs with a capacity > 1 km3 (e.g., 

Danjiangkou Reservoir at 20.8 km3, Zhelin Reservoir at 7.9 km3) had been built by the 

end of the 1970s (Yin et al., 2011). After 1980, the growth in reservoir construction 

slowed down (Xu, 2005); however, total capacity experienced a sharp increase (Zhang 

et al., 2009). This trend can be explained by a shift to large reservoir projects after the 

1980s.  
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Figure 4.12 Fast increase in both the number and capacity of reservoirs (capacity ≥ 
0.01 km3) and dramatic decrease in the number and surface area of natural lakes over 
the past 60 years. Reservoir construction time was mainly obtained from (ICOLD, 
2011). Although this study identified 1,358 reservoirs, only 1,120 reservoirs are 
presented in this figure due to unknown reservoir construction time. Lake data are 
mainly from Shi and Wang (1989), Zhao et al. (1991), Wang and Dou (1998) and Ma 
et al. (2010). 

As a result of reservoir impoundment, the spatial distribution of water resources in the 

Yangtze River basin has undergone dramatic changes. Before 1949, water resources in 

the middle and lower reaches were sufficient to meet water requirements, especially in 

the Jianghan Floodplain, which is known as the "water bag" because of its abundance 

of lakes (Gemmer, 2003). These lakes held nearly 30 km3 of water that was used for 

agriculture and aquaculture (Fang et al., 2005). Based on this study, the total capacity 

of the 11,000 reservoirs in the upper reaches is approximately 85 km3. With the 

construction of numerous large reservoirs in the upper reaches, much water was 

impounded upstream and the natural water supply to the lakes in the middle-to-lower 

reaches was severely impacted.  
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Table 4.3 Status of some large lakes (> 10 km2) in the middle and lower reaches of the 
Yangtze River 
Name Isolation 

time 
Causes Name Isolation 

time 
Causes 

Dong Lake 1930 Land 
reclamation 

Wang 
Lake 

1975 Levee 
construction 

Caisang 
Lake 

1958 Levee 
construction and 
land reclamation

Chi Lake 1963 Levee 
construction 

Taibai Lake 1742 Levee 
construction 

Sai Lake 1983 Levee 
construction 

Dadong 
Lake 

1951 Levee 
construction and 
land reclamation

Junshan 
Lake 

 Sluice 
construction 

Huanggai 
Lake 

1959 Levee 
construction 

Wuchang 
Lake 

1959 Sluice 
construction 

Hong Lake 1955 Levee 
construction 

Huangda 
Lake 

1950s Sluice 
construction 

Xiliang 
Lake 

1935 Sluice 
construction 

Shengjin 
Lake 

1962 Sluice 
construction 

Liangzi 
Lake 

1956 Sluice 
construction 

Caizi Lake  Sluice 
construction 

Zhangdu 
Lake 

1964 Sluice 
construction 

Chao Lake  Sluice 
construction 

Daye Lake 1970 Sluice 
construction 

Gucheng 
Lake 

 Sluice 
construction 

Other causes of waterscape change are land reclamation and lake isolation in the 

middle and lower reaches. From the late 1950s to the 1970s, sluice gates were 

constructed for water conservation projects in almost all large lakes, except for 

Dongting Lake and Poyang Lake (Liu and Wang, 2010) (Table 4.3 and Figure 4.13). 

The sluice gates blocked the interchanges of water, sediment and nutrients in the 

river-lakes ecosystem, which further led to severance of species exchange and the 

decrease in species richness and abundance of migratory fishes (Xie and Chen, 1999). 

For example, migratory fish abundance of Lake Bohu in the lower reaches decreased 



 

97 

 

from 56% of the total catch before the building of sluice gates in 1956 to 20% of the 

total catch after the building of sluice gates (Fu et al., 2003). 

 

Figure 4.13 Spatial distribution of 20 regulated lakes in the middle and lower reaches 
of the Yangtze River 

A comparison of the results with the results of previous studies (Figure 4.12B) (Shi and 

Wang, 1989; MWR, 1998; Wang and Dou, 1998) shows that the sharp decrease in the 

number and surface area of lakes occurred from the 1950s to the 1970s due to land 

reclamation. Half of the lakes > 1 km2 have disappeared during the past six decades and 

their total surface area has shrunk by nearly 9,000 km2. After 1990, the rate of decrease 

of the number and area of lakes was reduced (Fang et al., 2005). The dramatic decrease 

in lake surface area reflects the severe anthropogenic impacts in the Yangtze River 

basin. The Dongting and Poyang lakes are the two key examples showing the rapid 

decrease in lake surface area since 1950s. The surface area of the Dongting Lake has 

decreased by 37%, from 2,825 km2 in 1950s to 1,785 km2 in 2008 primarily due to 

human activity, such as littoral land reclamation (Figure 4.14). Du et al. (2011) 

indicated that human activities may have contributed to the decrease in lake area 
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because the decrease in total lake area appears to coincide with periods of rapid land 

reclamation in the middle reaches of the Yangtze River. The area of the Poyang Lake 

has also decreased significantly as a result of land reclamation (Shankman and Liang, 

2003). Total reclaimed land from 1949 to 2007 measured 2,300 km2 and resulted in a 

decrease in surface lake area from 5,200 km2 to 2,900 km2, indicating a 45-percent 

decrease in the sixty-year period (Figure 4.15).  

 

Figure 4.14 Area changes of the Dongting Lake in the 1950s, 1970s and 2008 based 
on the historical maps released by the Department of Land and Natural Resources 
(DLNR) of Hunan Province (DLNR, 2011) and Landsat images used in this study. 
The enlarged remote image shows that previous lake surface area has been replaced 
by cropland. 
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Figure 4.15 Decrease in area of the Poyang Lake in the middle Yangtze River basin 
since the 1950s (data based on this study result and Chen et al. 2001). 

4.4.3 Potential impacts of the lakes and reservoirs 

The ratio of reservoir storage capacity to watershed area is a gross measure of the 

magnitude of potential change in river flows and the consequent water flow disruption 

and river fragmentation caused by reservoir construction (Milliman and Meade, 1983; 

Graf, 1999). Regions with high storage capacity-to-drainage area ratios show the 

greatest potential changes. Table 4.4 shows a comparison of the ratios among global 

large rivers. With the exception of the Nile, Colorado and Columbia rivers in arid and 

semi-arid regions, the highest ratios and thus the greatest potential changes 

correspond to the Mississippi and Yangtze rivers because of the numerous large 
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Table 4.4 Comparison of general characteristics, capacity-area and capacity-runoff ratios for some large world rivers 

River 
Drainage area 

(106 km2) 
Runoff a 

(km3 yr-1) 
Reservoir capacity b 

(km3) 
Capacity/Area 
(103 m3 km-2) 

Capacity/runoff c 
(yr) 

Amazon 6.16 6,300 22 3.6 0.003 
Congo 3.68 1,293 < 1 < 0.27 < 0.001 
Mississippi 3.27 580 331 177 0.57 
Nile 2.96 30 379 128 12.6 
Yenisey 2.58 631 113.6 44 0.18 
Río de la Plata 2.58 662 185.4 71.9 0.28 
Niger 2.09 192 29 13.9 0.15 
Yangtze 1.8 1,035 250 138 0.27 
Murray 1.06 24 16.1 15.2 0.67 
Indus 0.96 207 27 28 0.13 
Mekong 0.79 470 19 24 0.04 
Yellow 0.745 66 65 87.2 0.98 
Colorado 0.64 17 74 115.6 4.3 
Columbia 0.42 236 56.6 135 0.24 

a Data source: (Milliman, 1993). 
b Data source: (Nilsson et al. 2005; ICOLD 2011); data were updated based on the current status of the hydropower plants; this reservoir capacities 
exclude reservoirs with dams less than 15m. 
c Capacity/runoff ratio = water discharge/total reservoir capacity. 
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Table 4.5 Sub-basins, their general characteristics, reservoir capacity data and information on capacity-area and capacity-runoff ratios 

 
Sub-basin 

Drainage area
(106 km2) 

Runoff 
(km3 
yr-1) 

No. of 
reservoir

s 

Reservoir 
capacity 

(km3) 

Area/reservoirb

(km2) 
Capacity/area 
(103 m3 km-2) 

Capacity/runoff 
(yr) 

Upper 
reaches 

Jinsha 0.5 135.1 1,817 11.3 275 22.6 0.08 
Min 0.16 87.5 2,683 11.2 59.6 70.0 0.13 
Jialing 0.16 72.7 3,531 17.1 45.3 106.9 0.24 
Wu 0.08 42.9 1,086 11.6 73.7 145.0 0.27 
Mainstem area 0.13  1,719 33.9a 75.6   
Upper Yangtze 
River 

1.03 405.8 10,836 85.1 95 82.6 0.21 

Middle 
reaches 

Han 0.15 55.3 3,461 49.8 43.3 332 0.90 
Poyang Lake Region 0.16 184.4 10,476 55.6 15.3 347.5 0.3 
Dongting Lake 
Region 

0.27 389.6 7,731 49.7 34.9 184.1 0.13 

 Main stream area & 
lower reach 

0.19  11,098 48.1 17.12   

Basin-wide 1.8 1035.1 43,602 288.3 41.3 160.2 0.28 
a The Three Gorges Reservoir is located in this area; however it was not fully regulated from 2005 to 2008 when the remote sensing image were 
acquired. Thus the estimated capacity is far much less than its contemporary capacity. 
b Area/reservoir ratio = drainage area/number of reservoirs 
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reservoirs in these basins (total reservoir capacities of 331 and 250 km3 for the 

Mississippi and Yangtze, respectively). In contrast, there are few potential changes 

predicted for the Congo, Mekong and Amazon River basins. At the sub-basin scale, 

the highest ratios of 332,000 and 347,500 m3 km-2 are for the Han tributary and the 

Poyang Lake Region, respectively. Reservoirs partition the two regions into units 

averaging only 43.3 and 15.4 km2 for the Han River and Poyang Lake, respectively 

(Table 4.5). Thus, these two areas may have experienced flow alteration. However, in 

the Han tributary basin, this is due to limited runoff (only 55.3 km3 yr-1), whereas for 

the Poyang Lake Region, this is partly due to the numerous impoundments located in 

this low-relief region that give the region the highest dam concentration in the entire 

Yangtze River basin.  

Perhaps a more informative measure of the potential impact of reservoirs is a 

comparison of the amount of reservoir capacity to the mean annual runoff. Although 

runoff varies from year to year, long-term averages provide a basis for a general 

analysis (Leeden et al., 1990). The basin-wide total storage capacity of approximately 

288 km3 for the Yangtze River, largely from large and medium reservoirs, is nearly 30% 

of the mean annual runoff of 1,000 km3 (Table 4.5). The ratios of storage to annual 

runoff are less than 0.1 years for the Amazon and Mekong, 0.57 years for the 

Mississippi, and 13 years for the Nile. In terms of individual sub-basins, in the upper 

Yangtze reaches the ratios of capacity to runoff range from 0.08 to 0.27 years (Table 

4.5). At the opposite extreme is the Han tributary, for which the constructed reservoirs 
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store approximately 90% of the mean annual runoff.  

The impoundment of river channels regulates discharge downstream, potentially 

affecting flooding patterns, flow regimes, and nutrient transport (Lu, 2005; Wellmeyer 

et al., 2005; Graf et al., 2010). It is likely that with increases in the average time that 

water is retained in reservoirs (increases in the capacity-runoff ratio), the impacts will 

become more evident. For example, an average ratio of 0.27 years indicates the 

reservoirs in the Wu tributary have a large capacity to absorb flows, and thus the 

downstream channel would experience a diminished flow regime; conversely, an 

average ratio of 0.08 years indicates that the reservoirs in the Jinsha tributary would 

have little impact on the flow regime downstream of the reservoirs. Evidence of this 

idea has been reported in the Yangtze River basin by many researchers (Lu et al., 

2003b; Xu et al., 2008; Hassan et al., 2010). As a case in point, a severe drought that 

occurred in the middle and lower reaches, from April to June 2011, exposed the 

impacts from reservoir construction and lake shrinkage. When water was released 

from the Three Gorges Reservoir in response to the water shortage, over 50 km3 of 

water, which is more than the maximum storage of the Three Gorges Reservoirs, 

remained impounded and available for power generation in the many large reservoirs in 

the upper reach. The cumulative effect of these reservoirs on the Yangtze’s large-scale 

hydrologic regime are evident (Lu et al., 2011). 
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4.5 Summary and conclusions 

Compared with conventional methods such as hydrographic surveys, which are 

expensive, time-consuming and laborious, remote sensing techniques are a rapid and 

cost effective approach to information acquisition for short time intervals and large 

spatial scales. Using Landsat TM/ETM+ imagery and a variety of free data and 

information, this study created a new basin-wide lake and reservoir dataset. The 

application of GIS to data obtained from the best available free sources for lake and 

reservoir data at the basin-wide scale enabled the generation of a dataset that included 

all natural lakes and artificial reservoirs with a surface area larger than 0.0036 km2. 

This is the first time such a dataset has been created across such a large river basin. The 

following conclusions can be drawn from this study. 

This study delineated nearly 43,600 reservoirs and 42,700 lakes, and based on these 

results this study estimated a quantity of nearly 0.7 million smaller (< 0.0036 km2) 

reservoirs and approximately 0.5 million smaller lakes. The study’s estimates are 

consistent with published inventories in terms of the number and total storage 

capacity of lakes and reservoirs in the Yangtze River basin, indicating that remote 

sensing is an effective application for the quantification of water bodies. Cloud cover, 

shadows (in the upper reach) and paddy fields (in the middle and lower reaches) are 

unavoidable interferences in the identification of small lakes and reservoirs because 

the shadows and paddy fields are sometimes misinterpreted as water bodies. Visual 
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interpretation of auxiliary data (from sources such as Google image service, 

GeoNames and thematic maps) and the collection of field data are useful methods for 

differentiating among shadows, water bodies and paddy fields. 

The analyses of the remote sensing results revealed that the Yangtze River basin, 

while previously dominated by natural lakes, has become reservoir-dominated due to 

anthropogenic impacts, especially reservoir construction and lake shrinkage. However, 

there is considerable geographic variation in the potential surface water impacts of the 

reservoirs. The greatest impacts to water discharge, environmental destruction and 

river fragmentation may occur in the Poyang Lake Region, which have the greatest 

capacity-area ratio. Future anthropogenic impacts could worsen the situation as 

additional large hydropower projects are completed in the upper reaches of the basin 

(MWR, 2011), potentially affecting the water cycle in the entire basin. 
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5 Estimate of cumulative sediment 

retention by multiple reservoirs 

5.1 Introduction 

There are around 45,000 large reservoirs worldwide used for water supply, power 

generation, flood control, and navigation (Vörösmarty et al., 2003). For example, 

about 20% or 3 million km2 of cultivated land worldwide is irrigated by reservoirs; 

about 20% of the worldwide generation of electricity is attributable to hydroelectric 

projects, equating to about 7% of worldwide energy usage (White, 2001). Reservoir 

construction currently represents the most important anthropogenic influence on 

land-ocean sediment fluxes (Syvitski et al., 2005; Kummu and Varis, 2007). However, 

due to dramatic reservoir sedimentation, it has dramatically decreased sediment loads 

of many rivers thereby triggering erosion of many deltas (Milliman, 1997; Syvitski et 

al., 2009), including those of the Nile (Stanley and Warne, 1993), Colorado (Topping 

et al., 2000), Mississippi (Blum and Roberts, 2009), and Yellow (Wang et al., 2007b) 

rivers. Inadequate investigations of these and other rivers, unfortunately, have limited 

the extent to which changes in sediment discharge and their impacts could be 

identified, let alone adequately quantified. 

Dams hold back sediments that would naturally replenish downstream river systems, 

leading the flow to become sediment-starved and prone to erode the channel bed and 

banks, producing channel incision (downcutting), coarsening of bed material, and loss 
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of spawning gravels for fish species (Kondolf, 1997). Half of all discharge entering 

large reservoirs shows a local sediment trapping efficiency of 80% or more. Several 

large basins such as the Colorado and Nile show nearly complete trapping due to large 

reservoir construction and flow diversion (Vörösmarty et al., 2003). 

Numerous previous studies have focused on the impacts of individual dams and 

reservoirs on sediment retention; yet literature is rare concerning the cumulative 

impacts of reservoirs on sediment retention in a multi-reservoir system. Modeling the 

impacts in such a multi-reservoir system is still a great challenge at present. There are 

two research challenges: First, the estimation of surface erosion and sediment yield 

from a large catchment has large uncertainty due to the spatial variation of rainfall and 

to great heterogeneity in relief, slope and soil (Williams, 1975); second, in a 

multi-reservoir system, trapping efficiency is insufficient to explain the true sediment 

retention of a dam, because sediment trapping by upstream reservoirs is also important. 

By considering the effect of trapping by upstream reservoirs in a multi-reservoir system, 

the rate of sediment retention in each individual reservoir could be significantly 

different. 

In terms of the two research challenges, the specific aims of this chapter are to (a) 

develop a model to estimate reservoir sedimentation in a multi-reservoir system by 

integrating the effect of upstream traps; (b) estimate the current impact of sediment 

retention by reservoirs in the Yangtze River basin; and (c) analyze the variation in the 
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rates of storage loss in different tributary basins. 

5.2 Data and methods 

5.2.1 Data sources and data processing 

An extensive hydrological and sediment monitoring program over the entire basin was 

established in the 1950s by the Changjiang (Yangtze) Water Resources Commission 

(CWRC). The monitoring program includes discharge, suspended sediment 

concentration, and suspended load, in accordance with national data standards. The 

original records for each station provide information on station coordinates (latitude 

and longitude), catchment area, mean monthly and annual water discharge and 

sediment load, and the magnitude and date of occurrence of the maximum daily 

discharge. Suspended sediment is measured daily, with an estimated daily error of 16% 

(Yan et al., 2011). 

Sediment load data used in this study were primarily obtained from the CWRC. In this 

study, the data of 223 sites were used to study the variation in sediment yield with a 

number of climatic and topographic variables (Figure 5.1). Here this study only used 

the data between 1950 and 1965 because most large reservoirs were put into operation 

after 1965 and this could lead to sharp reductions in sediment yield at corresponding 

hydrological stations. Each station was examined in order to identify any disturbance 
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Figure 5.1 Spatial distribution of hydrological stations which were used to establish empirical relationships for sediment yield prediction.
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(e.g. dams, sand mining) that might obscure regional trends: such stations were 

removed from the analysis. There are some inconsistencies in the original data set (Lu 

and Higgitt, 1999); it took considerable time to correct those errors during the 

conversion from paper to digital format. The drainage areas and locations for many 

stations are not consistent throughout the time series. This may reflect correction of 

previous measurement of drainage area or a slight change of station location.  

It should be highlighted that large-scale deforestation and land reclamation primarily 

occurred at the end of the 1950s in response to the disastrous political campaign of 

Mao Zedong’s “great leap forward”. The compensatory measures of water and soil 

conservation did help to reduce soil erosion, but the measures were mainly taken in 

the Jialing River and lower Jinsha River, or only 3% of the basin area (Xu, 2007). 

Thus, the data covering the period 1950-65 can be used as a reasonable reference of 

sediment yield in the Yangtze River basin before large-scale reservoir construction. 

In addition, long-term average precipitation data were collected from the national 

meteorological network in China for the same period from 1950 to 1965. The spatially 

explicit precipitation data for different drainage areas of reservoirs and hydrological 

stations were obtained using Kriging interpolation and were then used as a climatic 

variable to predict sediment yield. While terrain plays an important role for the 

process of soil erosion and sediment transport, in order to extract terrain variables, a 

DEM was obtained from the global topography database (http://srtm.csi.cgiar.org/, 
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last accessed in January 2013), which has a 90 x 90 m spatial resolution. The terrain 

variables were derived using ArcGIS. 

According to the study results in Chapter 4, there are 1,358 reservoirs with storage 

capacity greater than 1 x 107 m3 in the Yangtze River basin. Literature on dam 

construction and deposition in reservoir of the drainage basin were collected. The dam 

coordinates were marked in Google Earth and were calibrated using the river network 

extracted from DEM data so that all the dams are correctly located on the river 

network. Field trips were also carried out to investigate sediment trapped in some 

reservoirs. These materials were used to relate the human activities with variation in 

river sediment load. 

5.2.2 Sediment yield prediction 

It is believed that many factors influence sediment yield, and sediment yield will vary 

considerably unless all the factors are uniform from watershed to watershed (Walling, 

1999). A number of studies have addressed the relationships between sediment yield 

and its controlling factors through correlation and regression analysis at the global and 

regional scales (Lu and Higgitt, 1999; Van Rompaey et al., 2005; Restrepo et al., 2006; 

Ali and de Boer, 2008). Some of these factors are the types of sediment sources, the 

magnitude of the sediment sources, climatic factors, texture of the materials, 

environments of deposition, and watershed characteristics. At a global scale, variables 

expressing basin relief characteristics and runoff magnitude tend to be most strongly 
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associated with sediment yields (Milliman and Syvitski, 1992; Syvitski and Milliman, 

2007).  

Based on differences in geomorphology, geology and climate, this study divided the 

Yangtze River basin into 6 sub-basins: Jinsha and upper reach along the mainstem, 

Min and Tuo, Wu, Jialing and Han, Poyang Lake Region and middle-lower reach 

along the mainstem, Dongting Lake Region. Because there is no sediment yield map 

available yet, this study used multiple regression analyses to develop models to 

predict sediment yields for each sub-basin. 17 catchment properties were analyzed in 

order to understand the variation in sediment yield. Stepwise regression analyses were 

used to obtain the best area-specific sediment yield (SSY in t km-2 yr-1) model. Since 

these 17 variables may inter-correlated (multicollinearity), variance inflation factor 

(VIF) was used to detect if multicollinearity is significant in the regression models. 

VIF assesses how much the variance of an estimated regression coefficient increases 

if variables are correlated. If no factors are correlated, the VIFs will all be 1. If 

multicollinearity was detected, principal components analysis was used to cut the 

number of variables to a smaller set of uncorrelated components to establish a 

regression model again. 

Based the regression models, the annual sediment yield (SY in t yr-1) within the 

drainage area of a reservoir was calculated using the following equation: 

 ASSYSY   (5.1) 
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where SSY was estimated using the regression model in each reservoir’s sub-basin; A 

is the reservoir’s drainage area in km2. 

5.2.3 Estimating reservoir sedimentation for representative 

reservoirs 

A representative reservoir is defined as the reservoir that has no upstream reservoirs in 

its drainage area. The single most informative attribute for a representative reservoir is 

its trap efficiency (TE) (Heinemann, 1981). This value is defined as the ratio of 

deposited sediment to the total sediment inflow for a given period. Here this study 

used the following equation from Brown (1944) to calculate trap efficiency: 

 )
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  (5.2) 

where C is the reservoir storage capacity (m3); A is the reservoir’s drainage area (km2) 

derived from DEM data; D is a coefficient (particle size) with values ranging from 

0.046 to 1.0 and a mean value of 0.1 (Brown, 1944). Liu et al. (2010) investigated the 

frequency of grain size of suspended sediment delivered from the Yangtze River to the 

estuary. Their results show that medium-sized suspended sediment constitutes the 

largest part in the Yangtze River estuary. The study by Wang and Chen (2009) also 

indicated that medium-sized sediment constitutes a large part the middle-lower Yangtze 

riverbed. Gill (1979), Verstraeten and Poesen (2000) and Tesfahunegn and Vlek (2013) 

indicate that Values of D = 1.0, 0.1 and 0.046 may be used for coarse, medium and fine 

sediments, respectively. Since medium-sized sediment constitutes the largest part, this 

study used the value of D = 0.1 in this study to estimate all trap efficiencies. Here the 

Brown equation was used instead of the better known Brune curve (Brune, 1953) 
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because the Brune relation requires water inflow data, which were absent for most 

large reservoirs in the Yangtze River basin. 

For a representative reservoir the annual sedimentation rate (S) was estimated using 

this equation: 

 TESYS   (5.3) 

where SY is sediment yield in t yr-1 calculated from Eq. 5.1; TE is the reservoir’s trap 

efficiency calculated from Eq. 5.2. 

5.2.4 Estimating reservoir sedimentation in a multi-reservoir 

system 

One problem of Eq. 5.3 is that this model does not account for the effect of upstream 

traps in a multi-reservoir system. As upstream reservoirs are built, they can 

dramatically reduce sediment yield to downstream reservoirs. This effect is particularly 

important in such an area as the Yangtze River basin with numerous reservoirs within 

the same watershed. Reservoirs can be roughly classified into three types in relation to 

other reservoirs (Figure 5.2): (1) a representative reservoir (reservoir c, d and e), 

which has no upstream traps; (2) a reservoir that has both upstream and downstream 

traps (reservoir a and b); (3) reservoirs that have only upstream reservoirs (reservoir f). 

To calculate the sediment yield from a basin with multiple reservoirs, this study 

constructed a model to calculate the weighted sediment yield for a reservoir of interest, 
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while taking into account the effect of upstream traps. Taking the reservoirs in Figure 

5.2 as an example, corresponding to the three reservoir types, this study created a set 

of equations to calculate weighted sediment yield and annual rate of reservoir 

sedimentation:  

 

Figure 5.2 Protocol for predicting reservoir sedimentation in a multi-reservoir system. 
Reservoir f is the farthest downstream; reservoirs a, d, and e are immediately 
upstream of f and they are direct sediment-contributing reservoirs to reservoir f. 
Reservoirs c, d, e are representative reservoirs that have no upstream reservoirs. SY′ is 
weighted sediment yield for each reservoir, for example, sediment yield at reservoir f 

is the sediment yield in '
fSY  plus the sediment released from its immediately 

upstream reservoirs a, d and e. 

 })({'
cccc SYAASY   (5.4) 

 })({'
aabaa SYAAASY   (5.5) 

 })({'
ffedaff SYAAAAASY   (5.6) 

 }{ '
ccc SYTES   (5.7) 
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where SY′ is the weighted sediment yield (t yr-1); A is the catchment area (not 

sediment contributing area) (km2), derived from DEM data; S is the annual amount of 

sediment (t) trapped by reservoirs; TE is trap efficiency, calculated from Eq. 5.2; [•] in 

Eqs. 5.7−5.9 is the sediment delivered downstream from immediately upstream 

reservoirs and (•) is the sediment trapped by immediately upstream reservoirs; 

subscripts a, b, c, d, e and f denote different reservoirs. In this case of Figure 5.2, 

reservoir f is the farthest downstream; Reservoirs a, d, and e are immediately 

upstream of f and they are directly sediment contributing reservoirs to reservoir f. 

Reservoirs c, d, e are representative reservoirs that have no upstream reservoirs; thus, 

the equations used for reservoirs d and e are similar to Eq. 5.4 and Eq. 5.7. 

5.2.5 Estimating reservoir sedimentation in small reservoirs 

Over the past 60 years, numerous small reservoirs with capacity less than 107 m3 were 

constructed for domestic water supply, agricultural irrigation, livestock watering and 

aquaculture in the Yangtze River basin. Since a major proportion of the sediment input 

to a small reservoir actually could not previously reach its downstream large reservoir 

except in mountain catchments or during extreme floods, it could not become 



 

117 

 

sediment yield at its downstream large reservoir. Small reservoirs were therefore 

considered as representative reservoirs and the annual reservoir sedimentation can be 

calculated directly using Eq. 5.3. 

The estimates of sedimentation rates for small reservoirs were fundamentally aspatial, 

necessitated by the difficulty in catchment area delineation due to the coarse 

resolution of the DEM data. This study used a statistical method proposed by 

Vörösmarty et al. (2003) to make the estimates. The strategy of this method used the 

statistical characteristics of the geographically referenced large and medium-sized 

reservoirs to predict the role of small reservoirs in sediment trapping. 

 

Figure 5.3 Statistical relationships of reservoir volume capacity (in km3) and of 
reservoir catchment area (in km2) to reservoir rank. 
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These computations require a characterization of the statistics of three key attributes 

of small reservoirs: storage capacity (C, in km3), catchment area (A, in km2) and trap 

efficiency (TE). This study examined cumulative distribution functions, ranked by 

storage capacity (Rr) for each of these variables (Figure 5.3). For the 1,358 large and 

medium-sized reservoirs, these curves were stable and predictable, and this study 

assumed that they are sufficient to extrapolate the cumulative behavior of the 

remaining 42,000 small reservoirs with capacity ≥ 0.1 million m3. This study 

specifically fit three nonlinear functions: 

 )4249.0(598001 2431.1   RRA r  (5.10) 

 )9957.0(787.86 2271.1   RRC r  (5.11) 

 )762.0(86.278 20071.0  RASSY  (5.12) 

where Rr is reservoir rank which was defined according to reservoir capacity. Figure 

5.3 presents these relationships represented by Eqs. 5.10 and 5.11, plus the observed 

distributions from large and medium-sized reservoirs. 

5.3 Results 

5.3.1 Established multiple regression models for each 

sub-basins 

Table 5.1 shows the established multiple regression models along with model 
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assessment for each sub-basin. For the sub-basin of the Jinsha River and upper reach 

along the mainstem, this sub-basin is characterized by small basins, which drain 

directly into the main channel, a strong positive relationship between SSY and runoff 

(RO) was exhibited. The Min sub-basin is located in the transition zone between the 

Tibetan plateau and the Sichuan Basin. 42% of this sub-basin has slopes steeper than 

25º, which accounts for 94% of the total erosion area (Yan et al., 2011). The strong 

positive relationship between SSY and relief ratio (RR) implies the intensity of erosion 

processes operating on slopes of the sub-basin. For the sub-basin of the Jialing and 

Han, relating SSY to precipitation (P), slope (Smean) and NDVI, a relationship implies 

the joint function of all the three relative factors.  In terms of lithology, the Wu 

sub-basin is covered by limestone, shales, and sandstones. Most of the sediment 

comes from the highly erodible upper and middle sections, implying a positive 

relationship between SSY and mean elevation (Hmean) and slope (Smean). Influenced by 

the East Asian summer monsoon in the Poyang Lake Region and middle-lower reach 

along the mainstem, the SSY shows a strong relationship to annual precipitation (P). 

The Dongting Lake Region and Poyang Lake Region are similar in terms of land 

surface characteristics and climate conditions (Yan et al., 2011). However, part of this 

sub-basin is very steep implying a strong relationship with morphometric indices (e.g. 

hypsometric index and slope). 
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Table 5.1 Regression models predicting specific sediment yield in 6 sub-basins 

Sub-basin Regression model R2 Number of stations 

Jinsha and upper reach along the 
mainstem 

LOG(SSY) = 5.1103 + 0.9785*LOG (R) – 2.4114*LOG(Hmean) + 
0.9056*LOG(RO) 

0.7658 53 

Min and Tuo LOG (SSY ) = 1.1823 + 2.7896* LOG (R) - 3.5566* LOG (Hmax) + 
1.6979*LOG(RR) + 0.5283*LOG(SS) 

0.7597 37 

Wu LOG (SSY) = -6.9044 + 2.0031* LOG (Hmean) + 2.8628*LOG(Smean) 0.8334 19 
Poyang Lake Region and 
middle-lower reach along the 
mainstem 

LOG (SSY) = 22.6648 - 13.0370* LOG (NDVI) + 2.5648* LOG (P) 0.8074 25 

Dongting Lake Region LOG (SSY) = 2.5282 + 0.9899* LOG (HI) + 0.3465* LOG (Smean) 0.6721 32 
Jialing and Han LOG(SSY) = 0.5751 + 1.5098*LOG(P) + 1.6797*LOG(Smean) – 

1.9546*LOG(NDVI) 
0.7780 57 

a 17 catchment properties were analyzed in order to understand the variation in sediment yield; SSY: area-specific sediment yield (t km-2 yr-1); A: 
drainage area (km2); DL: drainage length (km); Hmean: mean elevation (m); Hmin: minimum elevation (m); Hmax: maximum elevation (m); HD: 
elevation difference (m); HI: hypsometric integral, given by: (Hmean-Hmin)/(Hmax-Hmin); R: basin relief (m); RR: ratio of the basin relief and the 
basin length; RG: index of basin ruggedness, given by HD*A-0.5; SS: rate of change of elevation with respect to distance proxy to surface runoff 
velocity, given by HD/DL; DD: balance between erosive forces and surface resistance, degree of dissection of terrain, given by DL/A; Smean: 
mean slope (degree); NDVI: normalized difference vegetation index, driven from remote sensing images; P: mean annual precipitation (mm yr-1); 
Pmax: Maximum monthly precipitation (mm month-1); RO: mean annual runoff (mm). 
b The global digital elevation model (DEM) provided by the Shuttle Radar Topographic Mission (SRTM) with a resolution of 90 m was used to 
derive drainage areas as well as basic topographic parameters. 
c Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) images, acquired from the United States Geological Survey (USGS), were 
used to calculate normalized difference vegetation index (NDVI). These are earliest remote sensing data available from public access. 
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5.3.2 Quantity of cumulative sediment trapping by 

reservoirs 

The mean estimated area-specific sediment yield in the Yangtze River is 384 t km-2 

yr-1, with the highest yield (2,080 t km-2 yr-1) in the lower Jinsha sub-basin and the 

lowest (38 t km-2 yr-1) in the central Poyang Lake Region. Walling (1983) indicated 

that area-specific yields tend to be lower for larger basins. The same trend was also 

observed in the Yangtze River basin. Based on the estimated sediment yield, this study 

predicted that the annual sediment accumulated in the Yangtze reservoirs is 

approximately 691 Mt, 669 Mt of which is trapped by 1,358 large and medium-sized 

reservoirs and only 22 Mt is trapped by smaller reservoirs, indicating that sediment is 

primarily trapped by large reservoirs with storage capacity greater than 0.01 km3.  

Considering a bulk density of 1.3 tons m-3 (Yang et al., 2007), the reservoirs in the 

Yangtze River basin are losing their cumulative storage capacity at an average rate of 

approximately 5.3 x 108 m3 yr-1. Vörösmarty et al. (2003) found that the global annual 

sedimentation rate of all registered reservoirs was estimated to be on the order of 

4,000-5,000 Mt yr-1. This means that sediment trapped in the Yangtze River basin 

contributes approximately 14%–17% to the global reservoir sedimentation. In view of 

the Yangtze River's importance in global sediment transport and the continuing 

sediment retention efforts, the estimated annual sedimentation rate of 691 Mt is 

consistent with its contribution to global annual sedimentation rate. Figure 5.4 shows  
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Figure 5.4A Geographical distribution of large reservoirs with storage capacity greater than 0.01 km3 across the Yangtze River basin 
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 Figure 5.4B Spatial distribution of sedimentation rates of large reservoirs with storage capacity greater than 0.01 km3 across the Yangtze River 
basin. 
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Table 5.2 Sub-basins, their general characteristics, reservoir capacities and sediment trapped in sub-basins 

 
Tributary basin 

Drainage area 
(106 km2) 

No. of 
reservoirs 

Reservoir capacity 
(km3) 

Trapped sedimentb 
(Mt yr-1) 

Upper 
reaches 

Jinsha 0.5 1,817 11.3 86 
Min and Tuo 0.16 2,683 11.2 44 
Jialing 0.16 3,531 17.1 94 
Wu 0.08 1,086 11.6 26 
Mainstem areaa 0.13 1,719 40.2 244 
Upper Yangtze River 1.03 10,836 91.4 494 

Middle and 
lower 

reaches 

Han 0.15 3,461 49.8 126 
Poyang Lake Region 0.16 10,476 55.6 16 
Dongting Lake region 0.27 7,731 49.7 36 

 Mainstem and lower 
reaches 

0.19 11,098 48.1 19 

Basin-wide 1.8 43,602 294.6 691 
a The Three Gorges Reservoir is located in this area. 
b The reservoir sedimentation also includes the sediment trapped by small reservoirs, which was allocated in proportion to the number of 
reservoirs in each tributary basin.  
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the comparison between the capacities of the 1,358 reservoir and their sedimentation 

rates across the Yangtze River basin. In Figure 5.4A, reservoirs are almost uniformly 

located in all reaches except the headwater areas, but reservoirs with sedimentation 

rate greater than 4 Mt are primarily located in the severely eroded areas mapped by 

CWRC (2007a) (Figure 5.4B). The study predicted that, at present, over 23 reservoirs 

have the ability to trap sediment more than 4 Mt per year and 3 reservoirs can trap 

sediment more than 50 Mt per year, which are the Danjiangkou Reservoir (51 Mt yr-1), 

the Ertan Reservoir (61 Mt yr-1) and the Three Gorges Reservoir (217 Mt yr-1), 

respectively. The total annual sediment accumulated in the 23 reservoirs is estimated 

to be 532 Mt per year. This indicates that these 23 reservoirs play a crucial role in 

sediment retention. 

5.3.3 Cumulative sediment trapping in different reaches 

Geographically, 494 Mt of sediment is annually trapped by the reservoirs in the 

upstream reaches, approximately 217 Mt of which is trapped by the TGR (Table 5.2). 

The reservoirs in the upper reaches are losing storage capacity at an average rate of 

3.8 x 108 m3 yr-1, or 0.4% of the total capacity per year. The bathymetric surveys at 

the end of the 1980s by CWRC indicated the reservoir sedimentation rate in upper 

reaches was approximately 150 Mt yr-1, the equivalent to 1.15 x 108 m3 or 0.6% of the 

total capacity per year (CWRC, 1992). Xu (2007) estimated the total sediment trapped 

by reservoirs excluding the TGR in the upper reaches from 1991 to 2005 was 
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approximately 2,934 Mt, with an annual average of approximately 200 Mt. However, 

the sedimentation rate after 2000 was definitely higher than the average due to the 

closure of many large reservoirs after 2000. The two studies corroborate that the 

proposed model yielded a very modest estimate of the annual sediment trapped by 

reservoirs in the upper reaches. The amount of soil lost in the upper Yangtze reaches is 

approximately 1,570 Mt per year (Wang et al., 2007c), indicating that 31% of the soil 

loss amount annually deposit in reservoirs. A reasonable explanation for the large 

amount of sediment trapped in the upstream reaches is that severe soil erosion 

happens in the upstream reaches and most large reservoirs were built on major 

tributaries, which intensifies the effect of reservoirs on sediment retention.  

In the middle and lower reaches 197 Mt of sediment is trapped by reservoirs per year, 

although two-thirds of reservoirs are located in these areas, contributing to 

approximately 69% of the total capacity in the Yangtze River basin (Table 5.2). Due to 

relatively low soil erosion the amount of soil lost in the middle and lower Yangtze 

reaches is approximately 690 Mt per year (Xu, 2007), 29% of which is annually 

trapped by reservoirs. However, the spatial distribution of sediment trapped in middle 

and lower reaches is very non-uniform because of the extremely inhomogeneous 

distribution of soil erosion. For example, nearly two thirds of soil erosion occurs in 

the Han sub-basin, although its drainage area is only 15 x 104 km2 (Table 5.2). 

More specifically, the highest reservoir sedimentation rate (126 Mt yr-1) occurs in the 
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Han tributary basin (Table 5.2). Although, 3,461 reservoirs have been built in this 

tributary basin over the last 60 years, the Danjiangkou Reservoir, constructed in the 

upper Han basin in the late 1960s, is responsible for approximately 40% of reservoir 

sedimentation. The second highest reservoir sedimentation rates happen in the Jialing 

and Jinsha sub-basins after the closure of a series of large reservoirs (e.g. Bikou 

Reservoir 1977, Ertan Reservoir in 1993 and Baozhusi Reservoir in 1998). Like the 

Danjiangkou Reservoir, the Ertan Reservoir annually traps approximately 61 Mt, or 

71% of the total sediment impounded in the Jinsha tributary basin. The amounts of 

sediment trapped in the Wu tributary basin, Dongting and Poyang lake regions are 

relatively low (Table 5.2). 

 

Figure 5.5 Observed water and sediment discharge to the TGR and annual sediment 
deposited in the TGR over the period 2003 − 2011. 
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The estimated annual sediment (217 Mt yr-1) trapped in the TGR is somewhat higher 

than 160 Mt yr-1 observed over the period from 2003 to 2011 (Figure 5.5). The 

discrepancy is primarily attributable to two causes: first, the TGR was not fully 

regulated during the period 2003−2011 and thus the observed trap efficiencies in 

Figure 5.5 are much lower than predicted (89%); second, Yangtze’s runoff and 

sediment load have distinct seasonal and secular variability as a result of climate 

change (Dai et al., 2008; Liu et al., 2008; Lu et al., 2013). For example, the severe 

drought in the upper Yangtze River basin in 2006 was the worst in the last 50 years. 

The precipitation in the Yangtze River basin in 2006 was 15–25% lower than that in 

the years 2000–2005 (Dai et al., 2011). A similar event also occurred in 2011 (Lu et 

al., 2011). The combined influences of these factors caused sediment entering the 

TGR to be the lowest during the last 50 years (Dai and Liu, 2013).  

5.4 Discussion 

5.4.1 Uncertainty and limitations of the model 

A validation dataset provided by CWRC was used to evaluate how well the model 

predicted reservoir sedimentation rates in terms of accuracy, consistency, and ease of 

application. At the end of the 1980s CWRC carried out a series of bathymetric surveys. 

A total of 221 reservoirs, including 12 large reservoirs, 25 medium-sized reservoirs 

and 184 small reservoirs, were investigated, which represented 100% of large 

reservoirs, 17% of medium-sized reservoirs and 2% of small reservoirs (CWRC, 
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1992). In addition, from June to August 2012, this study conducted more bathymetric 

and sedimentation surveys in 28 reservoirs (20 small and 8 medium-sized reservoirs) 

using a dual frequency (83/200 kHz) echo sounder system (Hummingbird 798ci) with 

integrated GPS. Some sporadic bathymetric survey reports carried out by local 

governments in the middle Yangtze reaches after 2000 were also collected. The 

bathymetric surveys were primarily conducted in mega reservoirs, such as, the 

Danjiangkou, Wuqiangxi, Zhexi and Fengtan reservoirs. These reports were valuable 

for validation of the model. Based on the measured sedimentation rates this study also 

back calculated the true sediment yields. 

 

Figure 5.6 Comparison of estimated sedimentation rates to observed sedimentation 
rates by bathymetric surveys. 

A comparison of the predicted sedimentation rates to the measured sedimentation rates 
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was used to evaluate each model (Figure 5.6). The comparison shows that the average 

uncertainty of SY for all the investigated reservoirs is relatively large (±12.4%) but the 

average uncertainty of TE is relatively low (±5%). If SY and TE have independent 

random errors δSY and δTE, according to the rule of error propagation the error in 

reservoir sedimentation S = SY x TE can be expressed as δS/S = 

22 )()( TETESYSY   . The estimated uncertainty of S is ±13.4%; therefore, this 

study could calculate the total annual sediment trapped in the 1,358 reservoirs is 669 

Mt yr-1 with an error estimate of ±13.4%, or 89.1 Mt. The uncertainty assessment for 

the smaller reservoirs shown that the total annual sediment trapped in smaller 

reservoirs is 22 Mt yr-1 with an error estimate of ±20.9%, or 4.6 Mt. 

Given the complexity of sediment production in the large basin and the long duration 

of reservoir construction, the obtained estimates should be considered with caution. 

Other factors that could affect the sedimentation amount were not accounted for here. 

Downstream bank erosion after reservoir operation could be one of the most 

significant factors affecting downstream sediment transport because rivers tend to 

erode and lower their beds downstream of large reservoirs. However, in general, the 

response of bank erosion rates (and channel width) to upstream reservoir closure is 

very complex, with trends of widening, narrowing and no change reported for various 

rivers (Williams and Wolman, 1984). For example, on the Wu tributary with 10 

cascade reservoirs end to end on the 900-km river, the impoundments have caused the 

velocity of the water behind the dams to drop dramatically and thus caused decreased 
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bank erosion in the 900-km river between dams. Little sediment is trapped in farthest 

downstream cascade reservoirs (e.g. Silin, Shatuo and Pengshui reservoirs), although 

their total capacity is nearly 3.6 km3 (Chen et al., 2008a). Relatively little work has 

been done on the effect of dam closure on bank erosion rates (Shields et al., 2000). 

Given the complexity of the response of bank erosion rates to upstream reservoir 

closure, this study thus did not quantify this effect in this study. 

Other variables may influence sediment deposition within a reservoir, including flow, 

relative pool depth, sediment supply from upstream, and sediment size and 

distribution, which vary regionally with geology, geomorphic delivery processes, 

land-use history, and climatic cycles (Minear and Kondolf, 2009). The proposed 

model assumed that similar processes occur within this basin which is a simplification 

necessary for computation. This model is appropriate for detecting a basin-wide trend 

and highlighting reservoirs potentially at risk of sedimentation but may not give 

accurate estimates of sedimentation rates within individual reservoirs.  

Besides, the calculations for small reservoirs (< 0.01 km3) were aspatial, necessitated 

by lack of high-resolution DEM data to delineate the reservoirs’ drainage areas. It 

should be noted that these estimates are somewhat speculative because this is based 

on the assumption that reservoir data are a homogeneous distribution. However, the 

real reservoir density in the Yangtze River basin shows a clear east-to-west gradient. 

This means small reservoirs are primarily located in the middle and lower Yangtze 
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reaches, where sediment yield is relatively low, instead of a homogeneous distribution. 

Thus, the estimates for small reservoirs may need a more complete geographically 

referenced analysis. Nevertheless, small reservoirs only trap approximately 22 Mt of 

sediment per year; their effects on the overall predication are negligible. 

5.4.2 Loss of reservoir storage 

Reservoir capacity lost to sedimentation could pose a complex problem because many 

existing reservoirs in the Yangtze basin are irreplaceable due to their unique site 

characteristics. Figure 5.7 shows that the annual rates of storage loss for individual 

tributary basins vary greatly from 0.017% in the lower reach to 0.65% in the Tuo 

tributary basin. It suggests that the upper Yangtze reach (especially the Min and 

Jialing tributary basins) are a geographic singularity in the distribution of annual rates 

of loss for storage capacity in reservoirs: four of the five major tributary basins with 

the highest annual loss of storage capacity are in the upper Yangtze basin: Jinsha, Min, 

Tuo and Jialing. The annual rate of loss for storage capacity in the Tuo tributary basin 

(0.65%) is just slightly lower than that (0.75%) in the Yellow River basin (Ran et al., 

2013) which previously often was reported as a typical case in severe reservoir 

sedimentation. Thus, reservoirs in the upper Yangtze reaches probably experience 

localized sedimentation problems. Nevertheless, the sedimentation problem is not 

evident in the middle-lower reaches except the Han tributary basin, especially in the 

Poyang and Dongting lake regions with annual loss rates less than 0.1% (Figure 5.7). 
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Figure 5.7 Distribution of mean annual loss of reservoir capacity in different Yangtze reaches; it shows a clear east-to-west gradient with a range 
from 0.017% in the lower Yangtze reach to 0.65% in the Tuo tributary basin. 
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Table 5.3 Regional sedimentation rates in different parts of the world 
Region Storage capacity 

(km3) 

Inventoried reservoirs

 

Annual storage loss 

(%) 

Data source 

China (Yellow River) 52.3 601 ~1.0 MWR 2001 

China (Yellow River) 60 3000 0.75 Ran et al. 2013 

China ( Upper Yangtze River) 19 10,000 0.6 CWRC 1992 

China (Yangtze River) 294.6 43,602 0.02 − 0.65 This study 

Asia excluding China 861 7,230 0.3 − 1.0 Basson 2008 

North America 1,845 7,205 0.2 White 2001 

Europe 1,083 5,497 0.17 – 0.2 White 2001 

South and Central America 1,039 1,498 0.1 White 2001 

North Africa 188 280 0.08 – 1.5 White 2001 

Middle East 224 895 1.5 Basson 2008 

Worldwide 6,325 45,571 0.5 − 1 White 2001 
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The world's reservoirs are currently losing their storage capacity to sedimentation at 

an estimated rate of 0.5–1% per year (Morris and Fan, 1998; White, 2001; Walling, 

2012). Some distinctive features can be obtained by comparison with the rates of 

storage loss in other parts of the world (Table 5.3). First, the sedimentation problem is 

highly site specific. In general, the average rate of storage loss in the Yangtze River 

basin is higher than in North America and Europe, but lower than in some arid and 

semi-arid regions such as Middle East and the Yellow River basin in China. Second, 

the world is now losing reservoir capacity much faster than new capacity being 

constructed (Morris et al., 2008), but the opposite trend is observed in the Yangtze 

River basin. The mean annual loss of reservoir capacity in upper reaches was 

approximately 1.15 x 108 m3 yr-1 at the end of the 1980s (CWRC, 1992), increasing to 

approximately 1.5 x 108 m3 yr-1 by 2003 (Xu, 2007) and peaking at 3.8 x 108 m3 yr-1 at 

present; but the total reservoir capacity increased about fivefold from only 19 km3 in 

1990 to 294 km3 over the same period. Despite that, it seems this trend will continue 

throughout the first half of the twenty-first century because the construction of 

hydroelectric dams, especially in the upper Yangtze River basin with vast exploitable 

hydroelectric resources, is the first option to help the Chinese government boost the 

share of non-fossil fuels in national energy consumption caused by tremendous 

economic boost (MWR, 1990). 
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5.4.3 Complexities in river response to sediment trapping 

In many large river basins, reservoir sedimentation as the key driver of changing 

sediment load will interact with other drivers and the resultant signal, as reflected by 

the sediment load at the catchment outlet, could show little evidence of the changes 

occurring in the upstream basin (Walling, 2006). Despite the estimated annual 

reservoir sedimentation rate of 691 (± 94) Mt yr-1, sediment load reduction at Datong, 

closer to the outlet of the basin, was merely 305 Mt over the last 60 years (Yang et al., 

2006; CWRC, 2012). Some of this difference may reflect uncertainties discussed 

above. However, it also indicates that the discrepancy between the estimate of the 

current rate of sediment sequestration in reservoirs and the estimate of the reduction in 

the land-ocean sediment flux. The former represents the total amount of sediment 

trapped behind dams and the latter represents the reduction in downstream sediment 

flux resulting from sediment trapping by dams (Gupta and Krishnan, 1994; Walling, 

2012). 

The inconsistency between the estimate of annual reservoir sedimentation and the 

reduction in sediment load at the outlet also suggests the interaction between reservoir 

sedimentation and other drivers of changing sediment load, including reduced 

precipitation and runoff in the Jialing tributary basin, the impact of soil conservation 

programs in the Lower Jinsha and Jialing tributary basins, as well as sediment trapped  
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Table 5.4 Annual water discharge, sediment load change and key drivers of changing sediment load at hydrological stations in the upper Yangtze 
reaches 

Station Before 1990s 1991-2010 Key drivers of changing sediment load a 

 
Runoff 
(km3) 

Sediment 
(Mt) 

Runoff 
(km3) 

Sediment 
(Mt) 

Climate 
change 
(Mt) 

Reservoir 
sedimentation

(Mt) 

Water and soil 
conservation 

(Mt) 

Others 
(Mt) 

Jinsha (Pingshan) 144.0 246.0 144.7 152.0 0 -86 -28.8 -23 

Min (Gaochang) 88.2 52.6 80.0 33.0 -3.5 -33 N/A b -2.6 

Tuo (Lijiawan) 12.56 11.7 10.7 1.6 -3.2 -11 N/A -3.1 

Jialing (Beibei) 70.4 134.0 57.1 35.0 -40.6 -94 -54.5 -9.9 

Wu (Wulong) 48.6 30.4 51.0 15.0 3.0 -26 -2.7 -2.3 

a Data sources: (CWRC, 2001-2010; Xu 2007; Chen et al. 2008; Xu 2012). 
b N/A: no data is available. 
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Table 5.5 Annual water discharge and sediment load to the Dongting Lake in different periods 

Period Four outfalls (inflow)a Four rivers (inflow)b Outflow Trapped sediment

Water (km3) Sediment (Mt) Water (km3) Sediment (Mt) Water (km3) Sediment (Mt) (Mt) 

Before 1990s 98.5 157.8 165 36 296.5 51.4 142.4 

1991 − 2002 62.3 70.4 174 23 269.8 27.6 65.8 

2003 − 2008 49.9 13.8 154 9.3 229.5 15.3 7.8 

a Partial water of the Yangtze River flows into the Dongting Lake via the "Four Outfalls" (Songzi, Taiping, Ouchi and Diaoxian outfalls) on the 
southern bank of the Yangtze River with four tributaries (Songzi, Hudu, Ouchi and Huarong rivers). The Diaoxian Outfall was blocked in 1958, at 
present, which does not divert the water of the Yangtze River into Dongting Lake any more. 
b Four major tributaries (Xiang, Zi, Yuan, and Lei rivers) discharge water into the lake from south, west and northwest, respectively. 
c Data sources: (Chen et al., 2001; Dai et al., 2005; Xu, 2012) 
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by dams. For example, Lu and Higgitt (1998) suggest that in the upper Yangtze River 

increases in sediment load in some tributaries, caused by forest clearance and 

expansion of cultivated land, have been offset by reductions in the sediment load of 

other tributaries, as a result of programs of soil and water conservation. Table 5.4 

shows the decreasing trend in sediment loads in the upper Yangtze reaches over past 

60 years as a result of a combination of reservoir sedimentation, soil and water 

conservation, climate change and other effects (e.g. debris torrents, sand dredging, 

revegetation). Among the drivers, reservoir construction is the key driver of sediment 

reduction, although climate change is also an important cause in the Jialing tributary 

basin. Although drivers vary greatly in different tributary basins, the estimated 

cumulative reduction in sedimentation in each tributary basin is still much higher than 

the reduction in sediment load at its outlet. In the lower and middle Yangtze reaches, 

river floodplains and other sediment sinks, such as the Dongting Lake floodplain, an 

important driver to buffer changes in upstream sediment flux. The Dongting Lake 

received and supplied sediment from and to the Yangtze River. It annually retained 

approximately 142 Mt of sediment before the 1990s (Table 5.5). Because of the 

decrease in inflow sediment from its major tributaries (Xiang, Zi, Yuan and Lei rivers) 

and the four outfalls (Songzi, Taiping, Ouchi and Diaoxian outfalls), The annual 

sediment load carried down to the lower Yangtze River sharply decreased from 51.4 

Mt before the 1990s to 15.3 Mt during the period 2003 – 2008 (Chen et al., 2001b; 

Dai et al., 2005; Xu, 2012), suggesting that the riverbed has changed from stable to 
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erosional since 2003 (Dai and Liu, 2013). 

In brief, this opinion emphasizes that any attempt to assess the impact of reservoir 

sedimentation within the reaches of the Yangtze River on downstream land−ocean 

sediment flux must take account of the potential for buffering within the river system 

and for the downstream signal to reflect complex time-variant interactions between 

sediment supply and depositional losses. 

5.5 Summary and conclusions 

Sediment accumulated in reservoirs creates costly problems for dam operation and 

ultimate decommissioning. Many of the dams on the landscape can be viewed as 

future maintenance problems, which will become more urgent as they fill with 

sediment and lose capacity. Given the inefficient, expensive reservoir investigations 

for reservoir sedimentation, managers can benefit from an effective approach with 

which to identify at a large-scale level those reservoirs at higher risk of filling in the 

near future. The model introduced in this study is an effective model to estimate 

reservoir sedimentation in a multi-reservoir system while taking into account the 

effect of reduced sediment input due to upstream traps. The model could be applied 

equally well to other large river basins despite varying sediment yields.  

The results indicate that the cumulative sedimentation rate in the Yangtze River basin 

is approximately 691 (± 94) Mt yr-1, but sedimentation rates vary greatly in different 
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sub-basins. In the upper Yangtze reaches, especially the TGR and the reservoirs in the 

Jinsha and Jialing sub-basins are the major contributors to the sedimentation rate of 

approximately 494 Mt per year, while in the lower and middle reaches reservoirs in 

the Han tributary basin are another major contributor to sedimentation rate of 

approximately 197 Mt per year. Despite the large amount of sediment trapped by 

reservoirs, the reduction in sediment load at outlet (Datong station) was merely 305 

Mt over the last 60 years. The difference indicates the important discrepancy between 

the estimate of the current rate of sediment sequestration in reservoirs and the estimate 

of the reduction in the land-ocean sediment flux. Despite the high sedimentation rate, 

numerous reservoirs are under construction or being planned driven by tremendous 

economic boost and growing energy shortages. Accordingly, the magnitude of 

sediment retention by reservoirs will be further increased. The resultant changes in 

downstream channel morphology near the estuary require more efforts to elucidate. 
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6 Assessing the cumulative impacts of large 

dams on river connectivity and river 

landscape fragmentation 

6.1 Introduction 

At present, there are approximately 45,000 large reservoirs worldwide used for water 

supply, power generation, flood control, etc. (Vörösmarty et al., 2003). They have 

exerted severe influence on land-ocean processes thereby triggering various adverse, 

often unwanted consequences both locally and regionally, such as, loss of floodplains 

and adjacent wetlands (Rosenberg et al., 2000), and deterioration and loss of river 

deltas and ocean estuaries (Milliman, 1997; Syvitski et al., 2009) in the Nile (Stanley 

and Warne, 1993), Colorado (Topping et al., 2000), Mississippi (Blum and Roberts, 

2009), and Yellow (Wang et al., 2007b) river basins. 

A prominent example of the challenging trade-offs between benefits and risks related to 

dam construction is apparent in the Yangtze River basin. In the Yangtze River basin, 

rapid economic growth has increased the pressure for greater hydropower production 

and other water-related developments, such as large-scale irrigation. The mainstream 

and its tributaries are being dammed at a dazzling pace. Since the 1950s, numerous 

reservoirs have been constructed in the river basin. There are 43,600 reservoirs of 

different sizes in the Yangtze River basin with a total storage capacity of approximately 
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290 km3, among which 1,358 reservoirs with storage capacity greater than 0.01 km3 

(Yang and Lu, 2013a). As a result of reservoir construction, the Yangtze River has been 

strongly fragmented, impeding not only the movement of species but also the delivery 

of sediments and other nutrients downstream. For example, after the construction of 

the Three Gorges Dam, the riparian ecosystem has also been significantly disrupted 

(Wu et al., 2003). The latest investigation in 2012 shows that the population of finless 

porpoises in the Yangtze River basin has declined to approximately 1,000, making them 

even rarer than giant pandas in the wild (Qiu, 2012). On the hand, the international 

conservation community pays close attention to the issues caused by dam 

developments. For example, the World Wide Fund for Nature (WWF) and Chinese 

government have implemented more than one-hundred conservation projects which 

focus on species, forest, freshwater, climate change and adaptation, capacity building, 

policy advocacy as well as environmental education.  

As both the plans for the economic development and the goal to conserve the integrity 

of the Yangtze River system are implemented on large scales, a sustainable hydropower 

strategy to reduce environmental impacts is required for the Yangtze River basin in 

which the risks of dam development is assessed for the entire basin. This chapter first 

investigated the impacts of the 1,358 ‘large’ dams with storage capacity greater than 

0.01 km3; detailed analysis on small dams with storage capacity less than 0.01 km3 are 

given later. Focusing on the Yangtze River’s 14 major tributaries (Figure 6.1), this 

chapter therefore tries, (a) to set up a basic framework for assessing the 
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Figure 6.1 Geographical setting of the Yangtze River and its 14 major tributaries. Four tributaries including the Xiang, Zi, Yuan, and the Li rivers, 
flow into the Dongting Lake which converges into the Yangtze at Chenglingji; the Gan, Fu, Xiu and Xin rivers are the four major tributaries of 
the Poyang Lake which drains into the Yangtze at Hukou.
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impacts of dams on river connectivity and river landscape fragmentation, which can be 

considered as an initial attempt to investigate what can be done with simple, but 

powerful analyses in river connectivity and river landscape fragmentation; (b) to 

investigate the current condition of the Yangtze River and provide an important 

reference for policy makers for future dam development in the Yangtze River basin. 

6.2 Data and methods 

6.2.1 Data sources and data processing 

Data used in this chapter included dam information obtained in Chapter 4, digital 

elevation model (DEM) data which was used to derive river network, reservoir 

catchments, and catchment properties, such as, mean slope, mean elevation, 

hydrological data providing water discharge for each tributary, thematic maps for river 

landscape classification and visualization. 

The DEM data were downloaded from the Consortium for Spatial Information of the 

Consultative Group on International Agricultural Research (CGIAR – CSI, 

http://srtm.csi.cgiar.org/). The data are available on a global scale through the C-Band 

synthetic aperture radars imagery of the Shuttle Radar Topographic Mission (SRTM). 

The spaceborne SRTM circled the globe over a wide swath generating radar data that 

allowed for the digital reconstruction of the surface relief, producing the DEM data. 

The DEM data, with a horizontal resolution of 3’’ (~90 m near equator) and a vertical 
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resolution of 1 m, constitutes the finest resolution and most accurate topographic data 

available for most of the globe. The river network and catchment properties were 

derived using ArcGIS 10 with integrated ArcHydro tools. 

The hydrological data were provided by an extensive hydrological monitoring program 

cross the entire Yangtze River basin, which was established in the 1950s by the CWRC. 

The monitoring program includes discharge and suspended load in accordance with 

national data standards. The original records for each station provide information on 

station coordinates (latitude and longitude), catchment area, mean monthly and annual 

water discharge, and the magnitude and date of occurrence of the maximum and 

minimum daily discharges (Yan et al., 2011). 

The 1,358 reservoirs with storage capacity greater than 1 x 107 m3 in the Yangtze 

River basin were delineated in Chapter 4. Except their surface area and estimated 

storage capacity, other attributes (i.e. construction date) were collected from various 

sources, including government reports and the Internet, but only construction date that 

appeared in multiple sources were used in order to guarantee data quality. The dam 

coordinates were marked on Google Earth and were calibrated using river network 

extracted from DEM data so that all the dams are correctly located on the river 

network. 
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6.2.2 Theoretical framework and definition of geospatial 

metrics 

Considerable obstacles need to be overcome to achieve the monitoring of the extent 

and condition of river systems, but the major drivers affecting their condition are quite 

clear and, for the most part, easier to assess and monitor. This is especially true in 

those areas lacking sufficient resources for extensive fieldwork (Revenga et al., 2005). 

For example, using data on the size and location of dams, this study can derive some 

basic conclusions about the relative degree of alteration or stress affecting a river 

system. These geospatial metrics are often called proxies or surrogates because they 

are indicators of current threat and give only indirect information about the actual 

integrity of a river system. The geospatial metrics employed here are a series of 

quantitative indices representing the degree of alteration or stress exerted by large 

dams. In this chapter, three metrics were proposed to assess the impacts from different 

angles. This study employed these metrics using geospatial datasets and geographic 

information system (GIS), which allows us to analyze the spatial relationships 

between anthropogenic dam construction and river systems.  

6.2.2.1 Weighted dendritic connectivity index (WDCI) 

Cote et al. (2009) proposed the dendritic connectivity index (DCI) to assess river 

connectivity in terms of coincidence probability which is the probability that species 

can move between two randomly chosen points in a river network. Hence, 
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connectivity depends on how many dams are built between the two points, and the 

passability of these dams. Here, passability refers to the probability of species being 

able to cross a dam in the upstream direction. An obvious difference between riverine 

and terrestrial systems is the effect of the unidirectional water flow on movement. 

Specifically, this translates into dams that are potentially more likely to impede 

upstream than downstream movement. Thus, this conceptual view of connectivity can 

be simplified by considering upstream movement only (Figure 6.2). 

The DCI can be calculated for any size of stream network, or portion of a stream 

network. For example, the DCI could be calculated for the entire Yangtze River, by 

choosing the estuary as the furthest downstream point, or for any tributary of the 

watershed, by choosing the intersection of the tributary with the main stem as the 

furthest downstream point. However, this model does not consider different river sizes 

in different sections. For example, the main-stem section of a river can usually sustain 

more species than its tributaries, even though they have similar channel lengths. 

Therefore, before calculating DCI values, each stream section can be assigned a 

weight to indicate the relative stream size. Stream order (Strahler, 1952) is a 

well-accepted way to define the size of a stream, thus it was used as the weight of the 

stream. The new index thereafter is termed “weighted dendritic connectivity index 

(WDCI)” in this study: 
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Where si is the length of section i; wi is the weight or Strahler number of section i; ci is 

the cumulative passability depending on the number and passability (p) of dams in 

section i; Assuming the passability of multiple dams is independent, if there are M 

dams on a river, then ci is defined as:  
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Where pm is the upstream passability of the mth dam. 

One of the obstacles for WDCI is how to define the passability p for each dam. 

Passability can be assessed as a binary outcome, i.e., a dam meets designated fish 

passability criteria (p = 1) or does not (p = 0) (e.g. Clarkin et al. 2005). However, it is 

almost impossible to obtain the passability for each dam in such a large-scale river 

basin as the Yangtze River basin with numerous dams. Alternatively, a uniform 

passability of 0.5 to all dams could be applied (e.g. Cote et al. 2009; Mckay et al. 

2013) for the sake of expediency. In this study, a uniform passability of 0.5 was used 

for the calculations due to lack of passability data. It should be emphasized that these 

calculations are somewhat speculative because this assignment is arbitrary. If possible, 

passability data should be preferred. 



 

150 

 

 

Figure 6.2 Illustration of the WDCI model based on channel lengths, river sizes 
(indicated by stream order) and passabilities for dams in upstream direction. In a river 
system without dam (A), the system is fully connected and the WDCI has the 
maximum value of 100; when a dam is constructed on its small tributary (B), the 
WDCI decreases slightly to 98.3; when another dam is constructed on its major 
tributary (C), the WDCI plunges to 81.9. Refer to the data and methods section for 
additional description about this index. 
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6.2.2.2 Weighted habitat connectivity index for upstream passage (WHCIU) 

The index of WDCI measures river connectivity primarily on the base of stream length. 

This is reasonable because river length is one of the most important properties for a 

river. However, this index does not consider number of branches of a stream, although 

different branches may provide various high-quality river habitats in a dendritic river 

network (Urban and Keitt, 2001; Grant et al., 2007). River confluences, which 

correspond to the nodes on a dendritic river network, are known to exhibit particular 

hydrodynamic traits (Rhoads and Kenworthy, 1995; Benda et al., 2004a; Rice et al., 

2008). For example, Benda et al. (2004a) investigated several cases of river 

ecosystems created by confluences, e.g., the formation of fans and erosion-resistant 

deposits, which may influence ecosystem diversity. 

In terms of the important of confluences, Mckay et al. (2013) developed the habitat 

connectivity index for upstream passage (HCIU) to assess river connectivity. This 

model initially constructed a river network with nodes at locations along the 

longitudinal dimension where dams are constructed and edges as river system 

between these nodes. Applying this assumption, the topology of a river network may 

be represented as a series of nodes and edges summarizing connectivity (Figure 6.3). 

However, one of the major criticisms of this model is that all nodes in this model, no 

matter on main stem or small streams, are of equal importance. Obviously, this is not 

appropriate because the main stem or major tributaries are usually able to sustain 

more species than the small streams. Like the WDCI, each node can be assigned a 
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weight to indicate the carrying capacity based on stream order(Strahler, 1952). The 

new index is thus termed “Weighted habitat connectivity index upstream passage 

(WHCIU)” in this study: 
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Where wi is the weight or stream order of section i; ri is the number of immediately 

upstream notes for note i; ci is the cumulative passability. 

 

Figure 6.3 Illustration of the WHCIU model based on number of river confluences 
(nodes in the figure), river sizes (indicated by stream order) and passabilities for dams 
in upstream direction. Refer to the data and methods section for additional description 
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about this index. 

It should be highlighted that, unlike WDCI which is on the basis of river length, 

WHCIU is based on the number of nodes; thus, the two indices were used in this 

study to complement, not to substitute for. 

6.2.2.3 Weighted river landscape fragmentation index (WRLFI) 

Observation-based investigations can obtain exact insights in how fragmented a river 

has become under river development, but spatially explicit and reliable data on 

migratory species are often unavailable for large rivers. A way that addresses the 

absence of species data is to use representative ecosystems or habitats as a proxy. There 

is general agreement within the conservation community that protecting representative 

ecosystem types, or ‘coarse-filter’ targets, should conserve common communities, the 

ecological processes that support them, and the river landscapes in which they are 

evolved (Grill et al., 2014). Coarse-filter targets can be derived through the 

development of river-landscape classifications based on river basin characteristics such 

as climate (precipitation, temperature), topography (slope, altitude) and geology (karst 

geology). The river-landscape classifications can then serve as a proxy for 

representative ecosystems. The abundance and distribution of river landscapes within 

the river basin can therefore act as a surrogate for the actual species distribution 

(Sindorf and Wickel, 2011).  

River landscapes are often defined as stream networks that share distinct 
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geomorphology and similar environmental characteristics (Groves et al., 2002; Higgins 

et al., 2005; Johnson and Host, 2010). This study specifically approaches 

river-landscape classification as an important input to evaluate river landscape 

fragmentation of the Yangtze River. The classification framework proposed by Snelder 

et al. (2004), using climate, topography, geology and network structure as classification 

variables, was used for the river-landscape classification. The premise of this approach 

is that by conserving representative river systems and the hydrological processes that 

maintain the environments in which river landscape integrity are conserved. 

Nevertheless, it should be emphasized that this method is not intended to capture 

stream-level nuances, but aims to capture the specifically relevant characteristics that 

shape the integrity of river systems as a whole. 

Using the river-landscape classification map as an input, this study redefined the river 

landscape fragmentation index (RLFI) (Sindorf and Wickel, 2011) to measure how 

fragmented the Yangtze River has become under dam development by considering 

stream size based on Stream order (Strahler, 1952) (Figure 6.4): 
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Where ei is total number of distinct river landscapes in network section i; E is total 

number of river landscape classes found in the basin; wpi is weighted percentage of 

river length for section i relative to the total river network length, which is defined as: 
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Where wi and li are the stream order and stream length for each stream in section i; m 

is number of streams in section i; k is total number of streams in the entire river basin. 

The index is defined as a function of the number of distinct river landscapes that remain 

connected upstream or downstream of a dam combined with the length of river network 

upstream or downstream of a dam. The assumption that every representative  river 

landscapes provides equal functional connectivity to any of the other river landscapes, 

allows us to lump those parts of the Yangtze’s river network that offer connectivity by 

the amount of river landscapes, and attribute this by network length. The functional 

connectivity of a river system can therefore be quantified by summing the total number 

of connected river landscapes upstream of each dam and incorporating the total 

weighted length of the low network upstream of each dam relative to the total number 

of river landscapes and total weighted network length. In practice, it does not matter 

how many different river landscapes are identified for a river system. The method 

assesses river-landscape layouts, but increasing or decreasing the number of 

river-landscapes does not automatically increase the sensitivity of connectivity to dam 

development. 
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Figure 6.4 Illustration of the WREFI model based on channel lengths and 
river-landscape classification map. The river-ecosystem classification map is an 
important input to this model. 

6.3 Results 

6.3.1 Preliminary comparative assessment 

Some basic metrics, such as the ratio of reservoir capacity to basin area and the ratio 

of reservoir capacity to river runoff, can serve as a first-level approximation of the 

potential impact on river systems. The ratio of reservoir storage capacity to basin area 
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is a gross measure of the magnitude of potential change in river flows and the 

consequent water flow disruption and river fragmentation caused by reservoir 

construction (Milliman and Meade, 1983; Graf, 1999). Regions with high storage 

capacity-to-area ratios show the greatest potential changes. At the tributary-basin scale, 

the highest ratio of 718,800 m3 km-2 occurs in the Xiu tributary basin. This tributary 

basin may have experienced the greatest river regulation. The comparison of the 

amount of reservoir capacity to the mean annual runoff also reveals similar information. 

In terms of individual sub-basins, in the upper Yangtze reaches the ratios of capacity to 

runoff range from 0.08 year in the Jinsha tributary-basin to 0.49 year in the Tuo 

tributary-basin (Table 6.1). The opposite extreme are the Xiu, Han and Fu tributaries, 

for which the constructed reservoirs store 106%, 90% and 90% of their corresponding 

annual runoffs, suggesting that these tributary basins are likely to experience the 

greatest flow alternation.  

The impoundment of river channels regulates discharge downstream, potentially 

affecting flooding patterns, flow regimes, and nutrient transport (Lu, 2005; Wellmeyer 

et al., 2005; Graf et al., 2010). It is likely that with increases in the average time that 

water is retained in reservoirs (increases in the capacity-runoff ratio), the impacts will 

become more evident. For example, an average ratio of 1.06 years indicates the 

reservoirs in the Xiu River have a large capacity to absorb flows, and thus the 

downstream channel would experience a diminished flow regime; conversely, an 
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Table 6.1 Tributaries, their general characteristics, reservoir capacity data and information on capacity-area and capacity-runoff ratios 

 
Sub-basin 

Drainage area
(104 km2) 

Runoff 
(km3 yr-1)

Reservoir capacity 
(km3) 

Capacity/area 
(103 m3 km-2) 

Capacity/runoff
(yr) 

Upper 
reach 

Jinsha River 47 135.1 11.3 24.0 0.08 
Min River 13 87.5 3.9 30.0 0.04 
Tuo River 3 14.9 7.3 243.3 0.49 
Jialing River 15 72.7 17.1 114.0 0.24 
Wu River 9 42.9 11.6 128.9 0.27 

Han 15 55.3 49.8 332.0 0.90 
Dongting Lake Region      

Middle 
reach 

Li River 2.7 13.1 3.7 137.0 0.28 

Yuan River 9.4 64.3 15.5 164.9 0.24 

Zi River 3 21.7 5.9 196.7 0.27 

Xiang River 9.8 72.2 17.4 177.6 0.24 

Poyang Lake Region      

Xiu River 1.6 10.8 11.5 718.8 1.06 

Gan River 7.4 68.7 18.5 250.0 0.37 

Fu River 1.5 14.7 4.3 286.7 0.90 

Xin River 1.6 17.8 2.8 175.0 0.16 
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average ratio of 0.08 years indicates that the reservoirs in the Jinsha River would have 

little impact on the flow regime downstream of the reservoirs. Evidence of this idea has 

been reported in the Yangtze River basin by many researchers (Lu et al., 2003b; Xu et 

al., 2008; Hassan et al., 2010).  

6.3.2 Quantifying the impact of individual dams on river 

connectivity 

To accurately measure variation in impact on river connectivity due to dam 

characteristics (e.g. location), it is essential to measure each dam’s effect on river 

connectivity. Here the impact of individual dams on river connectivity was measured 

based on the index of WDCI. When calculating the WDCI value for a dam, this study 

assumed that this dam was one and the only one dam in the Yangtze River basin. 

Dams with low WDCI values show the greatest potential impact on river connectivity. 

The overall result is an index-based ranking for the individual dams, which may 

provide guidance for decision makers wishing to include basin wide effects into dam 

planning. The lowest WDCI values of 72.90 and 72.94 are for the Gezhouba Dam and 

TGD (Figure 6.5). These two dams, regulating about 1 million km2, or 55% of the 

Yangtze River basin, were built at the outlet of the upper Yangtze reach, leading to a 

sharp decrease in WDCI. 
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Figure 6.5 List of the dams with the lowest ten WDCI values. The Gezhouba and 
TGD dams are built on the main stem of the Yangtze River. Other eight dams are built 
on the major tributaries. 

Ten dams with the lowest WDCI values are shown in Figure 6.5. The two dams with 

lowest WDCI values (Gezhouba and TGD) are all built on the main stem of the 

Yangtze River. The other eight dams were built on the major tributaries. Due to the 

construction of the Gezhouba and TGD, a large part of the 6,400-km free-flowing river 

was disconnected at the outlet of the upper Yangtze reach. This not surprising as it is 

inherent to any dam on the main stem, though it does add the perspective of 

subsidiarity. This assessment, both in disconnectivity status and in scale, illustrates 

that dam development shows a certain path of incremental degradation, but dam built 

on main stem can cause sharp degradation. 

6.3.3 Quantifying the cumulative impacts of dams on river 

connectivity 

In the assessment, The WDCI and WHCIU provided a mechanism for assessing 
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general trends in upstream connectivity. By calculating the two indices this study was 

able to consider the impacts of dam location and number of dams. This study 

calculated the cumulative impacts of 1,358 reservoirs/dams with storage capacity 

greater than 0.01 km3 on river connectivity in the Yangtze River basin (Table 6.2). The 

results illustrate the importance of considering hydrological connectivity, expressed 

by the location of dams in relation to other already existing dams. The WDCI and 

WHCIU values for the whole Yangtze River have decreased from 100 to 43.97 and 

44.00, respectively, indicating the Yangtze River has experienced strong alterations in 

river connectivity over the past decades, placing the basin among other heavily 

dammed rivers in the world. 

 

Figure 6.6 A comparison between the Wu River with WDCI value of 11.66 and the Fu 
River with WDCI value of 86.55: ten large dams are constructed on the Wu River and 
its major tributaries, while only two dams are constructed on the major tributary of the 
Fu River. 

As anticipated, a single dam near the mouth of a tributary basin is sufficient for 
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Table 6.2 Summary of model parameterization and WDCI as well as WHCIU values for each tributary 
 Tributary Stream length (km) No. of nodes No. of dams WDCI WHCIU 

Upper reach 

Jinsha River 51,453 5,613 82 42.60 42.64 

Min River 15,225 1,661 23 22.83 20.9 

Tuo River 3,769 361 30 12.37 13.42 

Jialing River 20,550 1,851 91 15.83 15.32 

Wu River 10,140 1,089 71 11.66 12.89 

Middle reach 

Han River 21,212 1,948 189 34.80 35.11 

Yuan River 11,567 1,062 110 17.55 19.56 

Li River 3,255 279 36 65.33 63.63 

Zi River 3,555 359 44 33.66 33.27 

Xiang River 11,418 1,137 134 49.57 52.25 

Gan River 8,685 861 99 50.99 51.42 

Xiu River 1,835 178 15 54.10 58.6 

Fu River 1,892 199 21 86.55 89.64 

Xin River 2,007 188 34 59.90 62.08 

Total Overall Yangtze 211,527a 21,530 1,358 43.97 44.00 
aThis is the total length of streams in the Yangtze River basin; thus, it is not equivalent to the sum of the total length of streams in the 14 tributary 
basins. 
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reduction in river connectivity (McKay et al., 2013), but the impact to river 

connectivity varies greatly with location due to differences in basin topology and the 

locations of dams. For example, the lowest WDCI and WHCIU are in the Wu 

tributary basin, which is mainly attributable to ten large cascade dams constructed on 

the main stem of the Wu River (Figure 6.6). Conversely, the Fu River, with the highest 

values of WDCI and WHCIU, still has no dams on its main stem. Collectively, rivers 

in the middle Yangtze reach obtained relatively higher WDCI and WHCIU values 

than their counterparts in the upper reach, indicating a sharp decline in river 

connectivity in the upper Yangtze reach. Indeed, the eco-system of the upper branches 

of the Yangtze has collapsed. For example, the fish species in the upper branches have 

declined dramatically in recent years (Zhang et al., 2015).  

It should also be highlighted that the rivers with low WDCI and WHCIU values are 

all the rivers with rich water power resources. The Min, Jinsha, Tuo, Wu rivers and 

the main stem of the upper Yangtze River have already disconnected due to dam 

construction. The Yuan and Zi rivers in the middle reach of the Yangtze River are also 

disconnected and fragmented. The rivers, such as the Fu River and Xin River with 

few hydropower resources, have narrowly escaped being disconnection.  

These results show that the location of a dam determines its relative effect on river 

connectivity. The WDCI and WHCIU can demonstrate the magnitude of the 

cumulative impacts on river connectivity. As evidenced in the tributaries of the 
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Yangtze River, dams located at the headwaters or small streams can minimize loss of 

river connectivity (e.g. the Fu and Li rivers), while dams placed on main stem or a 

major tributary can lead to a noticeable impact on river connectivity.  

6.3.4 Quantifying the cumulative impacts on river landscape 

fragmentation using WRLFI 

There is general agreement within the conservation community that protecting 

representative ecosystems or ‘coarse-filter’ targets, should conserve common 

communities, the ecological processes that support them, and the river landscapes in 

which they are evolved. Coarse-filter targets can be derived through the development of 

river-landscape classifications based on river basin characteristics such as climate 

(precipitation, temperature), topography (slope, altitude) and geology (karst geology). 

The river-landscape classification was used as a proxy for ecosystem types. With 

careful consideration of the river basin characteristics, this study identified 12 distinct 

river landscapes (Figure 6.7A) based on the classification framework proposed by 

Snelder et al. (2004). It should be reiterated that this classification is only an 

interpretation of what are thought to be relevant variables based on data availability. It 

should also be noted that the final classification is never all encompassing and that the 

master factors of importance are basin-specific.
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Figure 6.7 Results of river landscape fragmentation analysis based river-landscape classification map (A). The result (B) shows that substantial 
part of tributary basins, especially the Wu, Min, Jialing and the Yuan rivers, only maintain connectivity among one to three distinct river 
landscapes. Connectivity between different river landscapes in the middle and lower basin is the highest. Even so, only a small part of the system 
still maintains connectivity between seven out of twelve river landscapes. 
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Based on the basin-wide river-landscape classification map, the Yangtze River with 12 

distinct river landscapes, and with full integrity, would have 100% connectivity. 

Nevertheless, the result in Figure 6.7B shows that the Yangtze River already shows a 

high degree of river fragmentation. In the upper Yangtze reach, with seven distinct river 

landscapes being locked behind the dams of the TGD, only six river landscapes remain 

connected in the main-stem area. What is even worse: a substantial part of tributary 

basins, especially the Jinsha, Wu, Min, Jialing and the Yuan rivers only maintain 

connectivity among one to three distinct river landscapes. The result shows that 

connectivity between different river landscapes in the middle and lower basin is the 

highest because no dams have been constructed on the middle-lower main stem. Even 

so, only a small part of the system still maintains connectivity between seven out of 

twelve river landscapes — no part of the Yangtze connects all twelve river landscapes.  

From these results, it can be seen that a proposed dam on the Yangtze main stem or 

major tributary would significantly further fragment the river basin. The results show 

that the middle-lower main-stem area and some tributary basins in the Poyang Lake 

Region are relatively ‘better’ left without dams. The analysis on river landscape 

fragmentation provides insights into how different river landscapes are distributed 

across the Yangtze River basin and how they relate to each other in terms of spatial 

configuration. This allows the identification of links between different river landscapes 

and supporting processes where connectivity is a key variable (Sindorf and Wickel, 

2011), such as, sediment transport and migratory processes.  
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6.4 Discussion 

6.4.1 Uncertainty analysis 

Because of data unavailability, universal passability standards were applied to all 

dams in the Yangtze River basin. Yet these calculations are somewhat speculative 

because this assignment is arbitrary. If possible, passability data should be collected. 

In practice, although passability will vary for each dam, all the large and most 

medium-sized dams are constructed, supervised and managed by the CWRC or its 

provincial agencies. However, few fish passes have been constructed at these dams 

(Lin et al., 2013). For example, The Gezhouba Dam and the TGD have no fish pass 

facilities and thus totally block fish migration (passability ≈ 0) (Wei et al., 1997; Gao 

et al., 2010). Therefore, the situation may be more serious than predicted in this study. 

Another impediment is that current methods of estimating passability are often 

problematic as the estimates need to consider hydrologic factors, such as, water 

chemistry changes and other variables. In addition, the passability can fluctuate 

stochastically in a nonlinear pattern, which would vary spatially and temporally 

within a catchment (Spens et al., 2007; Jones et al., 2008). As an example of an 

approach to estimate passability of dams, the proposed metrics could be merged with 

hydrological models that estimate variations in water discharge and sediment load and 

relate these parameters to variation in passability as a function of flow for species 

with different swimming abilities (Cote et al., 2009), but this approach may be 
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inoperable and impractical because it is very complicated. 

 A second challenge is identifying whether the probability of passing a dam is 

independent among nearby dams. Independence may not be appropriate in situations 

where passability is dependent on water discharge (which varies at large spatial 

scales). For example, because the Gezhouba Dam is close to the TGD (38 km), the 

water discharge at the Gezhouba Dam is significantly affected by the water discharged 

from the TGD. In this case, the probability of passing the Gezhouba Dam may not be 

independent. In addition, on such a river as the Wu tributary with ten cascade dams on 

the 900-km river, the impoundments have caused changes in physical condition; for 

example, the velocity of the water behind the dams dropped dramatically (Yang and 

Lu, 2014b). The changes in physical condition have complicated the estimation of 

passability for each cascade dam. Although the WDCI and WHCIU require estimates 

of passability at individual dams and better estimates of passability will serve to 

reduce uncertainty, designing an approach to estimate passability of dams is still a 

challenge to the academic community. Also the approach should be validated against 

observed connectivity patterns.  

A third challenge is that each river landscape was considered to be equal relevance 

throughout the entire Yangtze River basin when this study analyzed river landscape 

fragmentation using the WRLFI based river-landscape classification map. In fact, 

more crucial information could be obtained if the individual river landscapes and their 



 

169 

 

association with specific processes, basin layout can be better geographically 

quantified. Besides, it is to be noted that the WRLFI value is extremely dependent on 

the river-landscape classification map. You may get slightly different results with 

different classification maps. Thus, an appropriate classification map is the 

fundamental determinant of the assessment based on the WRLFI. 

Another limitation for the three metrics is that they may undervalue the impacts of 

small dams because the three metrics can only provide an overall assessment on the 

impacts of dams, but small dams may contribute less to the overall alteration of 

large-river flows as a result of their limited storage capacities. Therefore, a method 

which can provide not only overall results but also detailed regional results is needed. 

This method is demonstrated in the next chapter. 

Despite the many current limitations related to the implementation of the metrics, 

results have to be judged against large-scale needs of water resources managers and 

policy makers. Many critical characteristics along the Yangtze River network, such as 

highly fragmented condition, disruptions in river connectivity are well represented 

using the current metrics. Major changes between the tributaries or within 

geographical reaches (upper, middle and lower reaches) can easily be mapped. These 

metrics provide valuable information on expected impacts, supporting large-scale 

decision making. 
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6.4.2 Comparison of different metrics 

This study quantified the impacts of 1,358 dams on river connectivity and river 

landscape fragmentation in the Yangtze River basin using three different metrics. The 

WDCI facilitated the consideration of longitudinal connectivity in the Yangtze River 

network. An advantage of the index is that it allows the evaluation of the impacts of 

individual projects at the scale of the entire river network that encompasses cumulative 

impacts of many large and medium-sized dams (Cote et al., 2009). Yet, the WHCIU, 

regardless of the length of streams, is a graph-theoretic model to assess river 

connectivity by incorporating both quantity of confluences accessed and the cumulative 

passage rate to that point (McKay et al., 2013). Both metrics present similar 

fragmentation history for the Yangtze River indicating a steady loss of river 

connectivity.  

However, if we compare the two metrics with WRLFI, we may find some meaningful 

findings. For example, when the Gongzui hydropower dam was built on the Dadu 

River (the major tributary of the Min River) in 1978, the values of WDCI and WHCIU 

decreased by 2.79% and 3.11% respectively, relative to a drop of 5.5% in WRLFI. The 

decrease in WRLFI was almost twice of the decrease in WDCI; but it did not mean that 

the WRLFI has exaggerated the impacts caused by the Gongzui dam. Before 

construction of the Gongzui dam, the Min River maintained connectivity between six 

river landscapes. After the dam was constructed in 1978, a large part of the Dadu 
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River was disconnected with connectivity between only three river landscapes, 

leading to a sharp drop in WRLFI. WRLFI heavily depends on the number of river 

landscapes blocked by dams and it is therefore an important indicator of river 

landscape fragmentation. When the TGD was closed in 2003, leading to sharp drops 

in WDCI, WHCIU and WRLFI (20.02%, 20.37% and 23.50%, respectively), the 

drops in the three metrics were consistent, although the decreases in WDCI and 

WHCIU are slightly lower than that of WRLFI. However, they also indicate the 

impact of the TGD on river landscape fragmentation is slightly greater than the 

impact on river connectivity. 

 
Figure 6.8 Location of the Gongzui Dam and its fragmented river landscapes in Min 
River basin. Before construction of the dam, the Min River maintained connectivity 
between six river landscapes. After the dam constructed in 1978, the large part of the 
Dadu River is now locked and maintains connectivity between only three landscapes, 
leading to a sharp drop in WRLFI. 

In addition, the study results show that WDCI and WHCIU are more sensitive than 
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WRLFI in extreme circumstances. For example, in a specific river section, if the river 

already maintains connectivity among only one river landscape due to previous dam 

construction, WRLFI would not decrease any more even if more dams are constructed 

on the river. Conversely, WDCI and WHCIU can still reflect the variation in river 

connectivity.  

6.4.3 Past and future trends 

Figure 6.9 presents the year-by-year fragmentation history of the Yangtze River in 

comparison with the world’s five largest rivers on the basis of the variation in 

DCI/WDCI. It illustrates that the indices decrease over time as dams are built on the 

rivers. Graf (1999) reported that, in North America, the greatest rate of increase was 

from the late 1950s to the late 1970s. The resulting value of DCI then decreased 

rapidly from the 1950s to 1970s, such as in the Columbia and Mississippi rivers. The 

oft-heard colloquial wisdom that “the nation’s dam building era is over” was born out 

by the relatively minor increases in storage after 1980 in North America. This general 

history explains why the downstream environmental costs of dams have only recently 

captured the attention of scientists. The maximum potential for the downstream 

hydrologic disruptions through reservoir storage has been in place for less than three 

decades, and the effects have only recently become obvious (Graf, 1999). In Asia, 

however, dam construction still keeps a strong momentum, especially after the 1990s. 

Most of the large Asian rivers (such as the Mekong, Indus, Ganges and Yangtze) are 
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being dammed at a dazzling pace. Figure 6.9 shows that a sharp decrease in 

DCI/WDCI for the Mekong and Yangtze occurred since 1975. Moreover, the 

decreasing trend will remain in next 10 years based on the prediction. Although Asian 

rivers experienced river fragmentation later than their counterparts in North America, 

all the rivers ended up with quite low DCI/WDCI value or high river disconnectivity 

eventually.  

 

Figure 6.9 Fragmentation history for selected large rivers in the world. Data for the 
Yangtze was provided by this study; data for other rivers were provided by Grill et al. 
(2014). In North America, the greatest rate of increase in dams was from the late 
1950s to the late 1970s leading to a nosedive in DCI, such as the Columbia and 
Mississippi rivers. The sharp decrease in DCI for Asian rivers (the Mekong and 
Yangtze) occurred since 1975, but the decreasing trend will remain in next 10 years 
based on the prediction. 

6.5 Summary and conclusions 

This study performed a pilot investigation in implementation of a basin-wide river 

fragmentation assessment in the Yangtze River basin. It provides environmental 
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insights to all major tributaries. The value of this study extends beyond the Yangtze 

River example in presenting an analytical approach that can be replicated on other 

river basins. The metrics provide insights into river connectivity and fragmentation as 

components of river integrity, thereby allowing resource managers to characterize 

watersheds and determine priorities for optimizing resource allocation and 

infrastructure plans (placement of dams). 

For the Yangtze River, the results indicate that the Gezhouba Dam and the TGD have 

highest impact on river connectivity and fragmentation. The WDCI and WHCIU 

values for the whole Yangtze River have decreased from 100 to 43.97 and 44.00, 

respectively, indicating that the Yangtze has experienced strong alterations over the 

past decades. In terms of the major tributaries, the lowest WDCI and WHCIU values 

happen in the Wu tributary basin, which is mainly attributable to contiguous cascade 

dams on the main stem of the Wu River. The measurement of WRLFI provides more 

insights to river landscape fragmentation, which shows that the Yangtze River already 

has a high degree of river landscape fragmentation. A substantial part of tributary 

basins, especially the Wu, Min, Jialing and the Yuan tributaries only maintain 

connectivity among one to three river landscapes. 

As demands on energy and water resources increase in the Yangtze River basin, the 

Chinese government is now engaged in a new expansion of dams in great staircases. 

This research can help address the environmental risks associated with further impacts 
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caused by newly constructed dams. For example, the metrics used in this study would 

allow aiming at different specific processes, such as, fish migration, dam design and 

operation (e.g., flood protection, environmental flows, or hydropower potential) and 

quantification of different issues at difference scales. Integrating the assessment into 

environmental impact assessments can also present a new framework to effectively 

integrate river connectivity and free-flowing functionality into dam planning and adds a 

basin-wide perspective to conventional environmental impacts assessments. Based on 

the assessments, dam projects which focus economic reward but may cause 

irretrievable environmental damage should be halted. Environment-friendly 

alternative programs should be prioritized to develop the Yangtze River basin with 

relatively lower environmental costs. 



 

176 

 

7 Assess the cumulative impacts of small 

dams on flow regulation and river 

landscape fragmentation 

7.1 Introduction 

Today about 800,000 dams operate worldwide, most of which are small (Keiser et al., 

2005; Richter and Thomas, 2007). According to Kucukali and Baris (2009), about 

19,000 micro- and 19,606 mini-hydropower dams with total installed capacities of 687 

and 7171 MW respectively were constructed between 1994 and 2004. Their benefits 

have been widely reported (Downing et al., 2006; Marks, 2007): rainwater harvest, 

water table recharge, flood control, affordable energy, and more importantly, improved 

water availability for irrigation and domestic uses in rural communities. The global 

installed capacity of small hydropower dams is around 47,000 MW against an 

estimated potential of 180,000 MW. China has over half of the world's developed small 

hydropower capacity in about 42,000 stations with an installed capacity of over 35,000 

MW (Ohunakin et al., 2011).  

A growing number of nations have recently highlighted development of small 

hydropower resources in national energy policies. In Sri Lanka, approximately 30 small 

hydropower projects are either in operation or planned for the country’s rivers (Ljung et 

al., 2000). Growth of the electricity industry in Zimbabwe is expected to result in a 
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significant increase in the number of small dams as the country looks toward 

developing chains of hydropower plants as a means to provide rural electrification 

(Mungwena, 2002; Kalitsi, 2003; Klunne, 2007). The Nigerian Government has also 

taken steps to diversify energy sources in order to promote small hydropower 

development by encouraging private investments in the energy sector through reforms 

(Ohunakin et al., 2011). India also added approximately 300 MW of small hydropower 

projects in 2011 for a cumulative small hydropower capacity of 3,200 MW; another 

1,100 MW of small hydropower dams are under construction (Sharma et al., 2013). 

Likewise, total installed capacity at small hydropower plants in China had grown from 

100 MW in 1949 to 59 GW be the end of 2011 at an annual growth rate of 29.6% (Zhai 

et al., 2013). 

However, unlike single large dams, which have attracted the most attention from the 

environmental science and environmental advocacy communities because they often 

create enormous reservoirs, flood large land areas, displace large populations and form 

significant barriers to aquatic species and navigation, small dams may be built on 

smaller river systems, and be designed to divert small amounts of irrigation water. 

Small dams may be easier to manage than large dams that combine many stakeholders 

across many levels of society (Taylor et al., 2007); but their effects cannot be well 

quantified due to their huge number and lack of needed data. Therefore, the impacts of 

small dams are still unclear, although much has been written about the environmental 

impacts of large dams. 
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With respect to small dams and reservoirs, considerable uncertainty exists about the 

environmental impacts of single small dams or the cumulative impacts of many small 

dams on river systems (Anderson et al., 2006; Kibler and Tullos, 2013). For example, 

in some cases, small dams actually dewater or fragment more kilometers of stream, 

flood more land area, or lose more water to evaporation per unit of energy produced 

than larger dams (Gleick, 1992; Kibler and Tullos, 2013). Despite their size, small 

hydropower dams almost always result in significant hydrologic alterations and losses 

in hydrologic connectivity. For example, small dam developments in tropical regions 

have been shown to affect movement patterns and persistence of migratory animals 

such as shrimps and fishes and to substantially alter physical habitat conditions 

(Anderson et al., 2006). However, previous studies often evaluated the impacts at a 

basin-wide scale, which have considerably underestimated the impacts at a regional 

scale. 

In addition, small dams also intercept the natural nutrient cycle in a river, which was 

initially delivered downstream where it is again available for ecosystems. Many small 

dams in developing countries are rapidly being constructed on previously unaltered 

systems draining rural areas. Consequently, the magnitude of environmental changes to 

water resources resulting from new small dam development may be much greater. 

Although they tend to avoid the more obvious environmental and social disruption of 

large projects, their cumulative impacts are still unknown to the public. Unfortunately, 

few comprehensive studies have been conducted to investigate the cumulative impacts 
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of small dams because information on small dams is especially limited in developing 

countries, where baseline environmental data, small-dam spatial information, and 

environmental assessments are less commonly available (Gleick, 1998). For example, 

in the report on the application of a hydrological modeling approach to investigate the 

uncertainty associated with simulating the impacts of small dams in several South 

African catchments, Hughes and Mantel (2010) concluded that the biggest source of 

uncertainty in South Africa appears to be associated with a lack of reliable information 

on volumes and patterns of water abstraction from the dams.  

Fortunately, this study has obtained basic information about small dam distribution in 

the Yangtze River basin. Based on the data obtained in Chapter 4, the aims of this 

chapter is to: (a) develop a new model to quantify the cumulative impacts of small dams 

on water regulation in the Yangtze River basin; (b) propose a simple GIS model to 

measure the impact of small dams on river landscape fragmentation. 

7.2 Data and methods 

7.2.1 Data sources and data processing 

Several datasets were used in this chapter, including spatial dataset of small dams and 

reservoirs delineated in Chapter 4 (Figure 7.1), DEM data which was used to derive 

river network and reservoir catchments, precipitation data used to estimate river runoff, 

various thematic maps for river landscape classification and visualization. 
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The dataset of small dams was obtained in Chapter 4 using remote sensing techniques. 

As stated in Chapter 4, this study only extracted dams with water surface area greater 

than 0.0036 km2. Thus, further study based on this dataset could yield relatively 

conservative estimates of the impacts of small dams. Despite this limitation, it is 

nevertheless the best dataset available that provides basic spatial information on small 

dams in the Yangtze River basin, which gives valuable insight into cumulative impacts 

assessment and management implications. It thus enabled the calculation of indices to 

evaluate the impacts of small dams, as described later. 

The DEM data were downloaded from (CGIAR – CSI, http://srtm.csi.cgiar.org/). The 

data are available on a global scale through the C-Band synthetic aperture radars 

imagery of SRTM. The DEM data, with a horizontal resolution of 3’’ (~90 m near 

equator) and a vertical resolution of 1 m, constitutes the finest resolution and most 

accurate topographic data available for most of the globe. The river network and 

catchment properties were derived using ArcGIS 10 with integrated ArcHydro tools. 

River runoff data from 223 gauging stations obtained primarily from the CWRC were 

collected to simulate runoff variation across the Yangtze River basin. The original 

records provided by CWRC for each station provide information on station coordinates 

(latitude and longitude), catchment area, mean monthly and annual water discharge, 

and the magnitude and date of occurrence of the maximum and minimum daily 

discharges (Yan et al., 2011). Here runoff was calculated by dividing mean annual  



 

181 

 

 

 

Figure 7.1 Spatial distribution of 43,600 dams in the Yangtze River basin. The reservoirs are mainly distributed in the middle and lower reaches. 
Dams are mainly located in low-relief areas; few dams located at high-relief (> 3,500m) areas. 
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water discharge by its corresponding drainage basin area upstream from the station. 

Annual precipitation data (1955-2008) from 220 meteorological stations (163 stations 

located in the Yangtze River basin, 57 stations located outside the basin but in the 

vicinity of the basin) were extracted from a 728-station precipitation dataset released 

by the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/). 

Since these stations are not evenly distributed in space, basin-wide and sub-basin 

annual average precipitation was predicted using spatial interpolation by Kriging tool 

within ArcGIS 10.0. 

7.2.2 Methods 

The analysis was carried in two aspects: flow regulation and river landscape 

fragmentation. Flow regulation based on the ratio of reservoir storage capacity to runoff 

represents the potential degree to which the river section is affected by its upstream 

small dams; thus, it is a primary indicator of the magnitude of potential disruption to the 

hydrologic cycle.  

However, one hindrance is that the runoff for each river section is often unknown. Even 

in highly monitored areas, only a fraction of catchments possess a stream gauge; all 

other stream sections are ungauged (Viglione et al., 2013). Besides, in terms of the huge 

number of small dams, collection and analysis of dam would be very expensive and 

time consuming. The only recourse is therefore to predict runoff in these catchments or 

locations using alternative data or information (Sivapalan, 2005; Hrachowitz et al., 
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2013). Various methods have been proposed to estimate runoff in ungauged basins, 

such as regression methods (Omang and Parrett, 1984; Driver and Troutman, 1989; 

Viglione et al., 2013), index methods (Budyko, 1974; Choudhury, 1999; Zhang et al., 

2001; Arora, 2002), geostatistical and proximity methods (Storm et al., 1989; Sauquet, 

2006) and computer models (Hsu et al., 1995; Smith and Eli, 1995; Freer et al., 1996; 

Tokar and Johnson, 1999). The regression method was used in this study as some 

results in Chapter 4 can be used as variables in the regression model. 

The river landscape fragmentation, on the other hand, indicates the extent of 

fragmentation in the river network. Dams pose physical barriers to the flow of water, 

regardless of their size or reservoir storage capacity, so that dammed river networks are 

composed of disconnected channel segments between dams (Chin et al., 2008). 

Therefore, it is a primary indicator of potential environmental impacts with many 

associated implications. 

7.2.2.1 Estimating annual runoff for each river section 

The regression method was used in this study, where the specific runoff (SR) is 

estimated based on relationships with catchment and climatic attributes via some 

analytical expression. Hawley and McCuen (1982) and Vogel et al. (1999) cited 

numerous advantages to the use of regression approaches for estimating annual stream 

flow. Regression approaches produce objective equations that are easily programmed 

into comprehensive watershed planning procedures. Regression equations that relate 
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annual average stream flow to geomorphic, land use, and climatic basin 

characteristics are easily integrated into and implemented using GIS. Regression 

approaches offer the opportunity to document the accuracy and uncertainty associated 

with water yield estimates, including estimation of confidence intervals and 

information content. Perhaps the most important advantage documented in the two 

studies may be developed to quantify both the mean and variance of annual stream 

flow for any watershed in a region. This was exactly what the study in this chapter 

needed.  

Vogel and Wilson (1996) found that lognormal distributions provide a good fit to the 

distribution of annual stream flow throughout the continental United States based on 

multivariate relationships among annual stream flow and the basin characteristics, 

which is expressed as flows: 

 m
mXXXeSR  210

21   (7.1) 

Where i
iX  , i = 1, m are basin characteristics; i   i = 1, m are model 

parameters. The model in Eq. 7.1 termed a log-linear model because taking natural 

logarithms yields 
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The goals in this model development were to, first, maximize the adjusted R2, and 

second, include both geomorphic and climate characteristics while keeping the 



 

185 

 

number of basin characteristics used to a minimum. Thirteen catchment properties 

were analyzed in order to understand the variation in runoff. Stepwise regression 

analyses were then used to obtain the best specific runoff (SR in km3 km-2 yr-1) model. 

The annual river flow (Q in km3 yr-1) within the drainage area of a river section was 

calculated using the following equation: 

 ASRQ   (7.3) 

where SR was estimated using the regression model; A is the river section’s drainage 

area in km2. 

 

Figure 7.2 An illustrative example to show the approach to delineate drainage area for 
each river section using ArcGIS 10.  

The drainage area for each river section was delineated using ArcGIS 10.0. Firstly, 

based on the DEM data, the river flow direction and flow accumulation grids were 
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created using an eight-direction (D8) flow model which follows an approach presented 

in Greenlee (1987). The flow accumulation data has a value for each pixel; that value 

represents the number of pixels upstream from that pixel. Apparently, pixels with 

higher values would tend to be located in drainage channels, based on which the 

software could snap the watershed outlets to the nearest pixel of highest accumulation. 

Catchment areas were then delineated based on the snapped pour points (Figure 7.2). 

7.2.2.2 Calculating flow regulation for river sections 

Smaller dams are often built on smaller river systems which have relatively limited 

river flow. When the small dams are designed to divert some amounts of water from 

these river systems, they would significantly affect aquatic species by disrupting the 

life cycles of aquatic species due to decreased river flow or volume. The effect of dams 

on the regulation of downstream flows can only be fully assessed if the operation rules 

of the reservoirs are known; yet it is rarely available at large scales. To quantify flow 

regulation, Lehner et al. (2011) used the degree of regulation (DOR) to assess the 

potential effect of dams on the natural flow regime. Likewise, this study defined the 

degree of regulation for each river section (DORs) as: 
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Where Ci is the reservoir storage capacity in km3, n is number of upstream reservoirs, Q 

is the river section’s annual runoff in km3, which was calculated using Eq. 7.3. A high 
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DORs value indicates an increased probability that substantial discharge volumes can 

be stored throughout a given year and released at later times (Figure 7.3). For example, 

10% is used as a threshold by Lehner et al. (2011) to mark the possibility of substantial 

changes in the natural flow regime to occur. However, unlike the DOR model proposed 

by Lehner et al. (2011), this index is derived for each individual river section and 

therefore does not capture the effect of dams on the entire network in one single value. 

 

Figure 7.3 Simplified river network to demonstrate computation of DORs. For a river 
section with no upstream dams (section 7), the river is not regulated and has a 
minimum DORs value of 0.0%; when two dams are constructed on the headwater 
rivers, they have a relatively small effect on mainstem river sections 8 and 9 but very 
significant effect on their immediately downstream river section 6. Refer to the 
Methods section for additional description of the DORs computational algorithm.  

7.2.2.3 Estimating the impact on river landscape fragmentation 

Rivers originate from different river landscapes (e.g., glacial, mountain, and karst) 
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which work as functioning systems, exhibiting continual movements of materials, 

energy, and biota, which in turn constrain the natural processes and balances of the river 

environment (Moore and Archdekin, 1980). For example, karst landscape develops an 

overall calcium-rich riverine environment, while steep mountains with large gradients 

create fast-flowing rivers. Investigations on the impact of small dams on river 

landscape fragmentation can help us identify severely affected river landscapes and 

propose remedies based on the landscape characteristics. 

This study employed area-weighted dam density (AWDD) as a proxy to quantify the 

impact on river landscape fragmentation. The formula to calculate AWDD is expressed 

as: 
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Where n is the total number of river landscapes in a large river basin; ai is the area of 

river landscape i in km2; A is the total area of the whole river basin in km2; Di is the dam 

density (number of dams per 100 km2) in river landscape i, which is defined as: 

 100
i

i
i a

N
D  (7.6) 

Where Ni is the number of dams in river landscape i. The number of dams in each river 

landscape was obtained based on river-landscape classification map given in the 

previous chapter. 
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The model was proposed based on the assumption that a single river landscape 

provides equal function to any of the other river landscapes, allowing us to combine 

those parts of the river network that offer materials, energy, and biota by the amount of 

river landscapes, and attribute this by river network. It indicates the extent of 

fragmentation in the river network because dams pose physical barriers to the flow 

where they occur, regardless of their size or reservoir storage capacity, so that dammed 

river networks are composed of disconnected channel segments in between dams. A 

higher value of AWDD indicates a more severe degree of river landscape 

fragmentation. 

7.3 Results 

7.3.1 Established multiple regression model for predicting 

steam flows 

The linkages between river landscape characteristics and runoff at gauging station 

revealed multivariate controls on runoff in the Yangtze River basin. Therefore, stepwise 

multivariate regression analysis was employed to examine these multiple controls on 

runoff variation at both the basin and catchment scales. This research examined runoff 

at 130 long-term gauging stations across Yangtze River basin. Twelve catchment 

properties listed in Table 7.1 were analyzed in order to understand the variation in 

runoff. It shows that precipitation alone explains 60.86% of the observed variance in 

runoff for the whole Yangtze River basin, but the remaining independent variables 



 

190 

 

show relatively poor linkages with runoff at the basin scale. The five variables showing 

the strongest linkages with runoff at the basin scale are P (precipitation) > T 

(temperature) > NDVI > Hmean (mean elevation) > DL (drainage length). 

Stepwise regression analysis tested the addition of each variable using a chosen model 

comparison criterion, adding the variable (if any) that improves the model the most, and 

repeating this process until none improves the model. Table 7.2 summarizes the 

procedure and significance of independent variables in each chosen model. Finally, a 

combination of precipitation (P), relief (R), drainage length (DL), mean elevation 

(Hmean) temperature (T), and maximum elevation (Hmax) explain 89.1% of the variance 

in runoff (Q). Therefore, a multiple regression model including the six factors was 

established to predict area-specific runoff (SR) in the Yangtze River basin: 

meanLnHTLnHLnDLLnRLnPLnSRLn 323.0154.095.0165.0147.1852.1664.7 max 

  (7.7) 

For the log-linear model developed here, the coefficients for P and T represent the 

elasticity of runoff to precipitation and temperature: the precipitation elasticity is 

positive and is quite large, indicating the highly nonlinear response of runoff to 

precipitation. As expected, the coefficient for the temperature term is negative, 

indicating that an increase in temperature tends to increase evapotranspiration, leading 

to a decrease in runoff. 
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Table 7.1 Correlation matrix between log-transformed catchment properties and river runoff 

A R DL NDVI HI Hmean Hmax Hmin HD RR Smean P T Runoff 

A 1.00 

R 0.62 1.00 

DL 0.98 0.63 1.00 

NDVI -0.33 -0.25 -0.35 1.00 

HI 0.15 0.42 0.19 -0.31 1.00 

Hmean 0.32 0.73 0.35 -0.51 0.84 1.00 

Hmax 0.54 0.94 0.55 -0.44 0.55 0.88 1.00 

Hmin -0.28 0.09 -0.26 -0.27 0.46 0.50 0.26 1.00 

HD 0.62 1.00 0.63 -0.25 0.42 0.72 0.94 0.09 1.00 

RR -0.83 -0.11 -0.84 0.27 0.05 0.06 -0.05 0.39 -0.11 1.00 

Smean 0.16 0.26 0.19 -0.12 0.21 0.27 0.27 0.07 0.26 -0.06 1.00 

P -0.39 -0.59 -0.43 0.46 -0.66 -0.82 -0.73 -0.46 -0.59 0.14 -0.33 1.00 

T -0.45 -0.62 -0.49 0.52 -0.62 -0.73 -0.69 -0.31 -0.62 0.20 -0.25 0.78 1.00 

Runoff -0.34 -0.16 -0.38 0.47 -0.34 -0.44 -0.32 -0.29 -0.16 0.38 -0.26 0.78 0.49 1.00 
a DA: drainage area (km2); DL: drainage length (km); Hmean: mean elevation (m); Hmin: minimum elevation (m); Hmax: maximum elevation (m); HD: 
elevation difference (m); HI: hypsometric integral, given by: (Hmean-Hmin)/(Hmax-Hmin); R: basin relief (m); RR: ratio of the basin relief and the 
basin length; Smean: mean slope (degree); NDVI: normalized difference vegetation index, driven from remote sensing images; P: mean annual 
precipitation (mm yr-1); T: annual mean temperature (ºC). 
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The river flow for each river section was predicted by multiplying the output of the 

equation by its drainage area (A in km2). It should be emphasized that the precipitation 

was predicted using spatial interpolation by Kriging method. The accuracy of flow 

prediction is therefore heavily dependent on the accuracy of precipitation prediction. A 

large sample size of meteorological stations and the ‘best’ semivariogram model are the 

prerequisites of a high-accuracy precipitation prediction. 

Table 7.2 Summary of models and significance of independent variables in stepwise 
multiple regression analysis 

No. Model Predictorsa Coefficients t Sig. R2 Adjusted R2 

1 
(Constant) -1.863 0.583 -3.196 0.002

P 1.185 0.083 0.785 14.279 0

2 

(Constant) -8.222 0.856 -9.599 0

P 1.612 0.082 1.068 19.768 0

R 0.432 0.049 0.476 8.805 0

3 

(Constant) -7.086 0.716 -9.901 0

P 1.561 0.067 1.034 23.268 0

R 0.62 0.047 0.683 13.295 0

DL -0.178 0.022 -0.364 -7.934 0

4 

(Constant) -8.359 0.694 -12.041 0

P 1.784 0.074 1.182 23.999 0

R 0.589 0.043 0.649 13.768 0

DL -0.158 0.021 -0.321 -7.578 0

HI 0.231 0.044 0.228 5.238 0

5 

(Constant) -6.705 0.881 -7.608 0

P 1.65 0.086 1.093 19.286 0

R 0.88 0.108 0.97 8.14 0

DL -0.173 0.021 -0.353 -8.287 0

HI 0.255 0.044 0.252 5.838 0

Hmax -0.348 0.119 -0.385 -2.915 0.004

6 

(Constant) -6.908 0.87 -7.941 0

P 1.758 0.096 1.164 18.356 0

R 0.907 0.107 0.999 8.49 0
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No. Model Predictorsa Coefficients t Sig. R2 Adjusted R2 

DL -0.184 0.021 -0.376 -8.748 0

HI 0.244 0.043 0.241 5.665 0

Hmax -0.383 0.118 -0.423 -3.239 0.002

T -0.136 0.058 -0.124 -2.341 0.021

7 

(Constant) -7.972 0.93 -8.573 0

P 1.885 0.104 1.248 18.138 0

R 1.255 0.163 1.382 7.7 0

DL -0.157 0.023 -0.32 -6.917 0

HI -0.13 0.141 -0.129 -0.922 0.358

Hmax -1.206 0.318 -1.334 -3.788 0

T -0.165 0.057 -0.151 -2.869 0.005

Hmean 0.474 0.171 0.872 2.774 0.006

8 

(Constant) -7.664 0.868 -8.834 0

P 1.852 0.097 1.226 19.017 0

R 1.147 0.114 1.264 10.08 0

DL -0.165 0.021 -0.336 -7.816 0

Hmax -0.95 0.156 -1.05 -6.108 0

T -0.154 0.056 -0.141 -2.74 0.007

Hmean 0.323 0.051 0.595 6.383 0

(Table continued) 
aDependent Variable: Runoff 

7.3.2 The impact of small dams on flow regulation 

The result shows that approximately 170,000 km2, or 9.4% of the Yangtze River basin 

is locked by small dams. Figure 7.4 shows the cumulative frequency of the number of 

small dams: dams with catchments less than 5 km2 occur at the highest frequency, and 

with increasing catchment area, their frequency decreases sharply. It illustrates that 

most dam catchments are small: 84.06% of them are less than 5 km2; small dams can 

therefore play a significant role in fragmenting river systems by their sheer number. 
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Figure 7.4 Cumulative frequency of number and catchment area of small dams. The 
dot line indicates that most dam catchment areas are small: 84.06% of all the dam 
catchments are less than 5 km2. 

The direct effect is reduction in downstream flow, which is a substantial impact 

frequently associated with small dams. Flow reductions affect the physical 

characteristics of a stream (e.g. water velocity, sediment transport, water temperature) 

and alter the quantity and quality of aquatic habitat, with cascading impacts on river 

systems (Anderson et al., 2006). The statistics and map of the affected river sections are 

provided in Table 7.3 and Figure 7.5. They show that the relative impact increases 

slightly with river size peaking at fourth-order streams. Large stream sections show 

sharply reduced levels again because massive flows (e.g., the main stem and major 

tributaries) cannot easily be impacted by small dams. When adopting a DORs threshold 

of 5%, it shows that 54, 977 km, or 26% of the streams are affected by upstream small 
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dams. Of these, 45,878 km are first-, second- and third-order streams, representing 25% 

of all streams in the three size classes. Approximately 771 km, or 11% of large streams 

with stream order greater than 5 are affected. Among the streams, the fourth-order 

streams are the most severely affected, 32% of which are affected. 

Table 7.3 Summarized results for DORs analysis for small dams, tabulated by stream 
order and degree of regulation 

Stream 

order 

Total length 

(km) 

Extent of affected river sections downstream small dams 
Unit

DORs(%)0-5% 5-10% 10-20% 20-30% 30-50% >50% 

1 101,623 75,946 7,490 7,529 3,883 2,853 3,922 km 

74.7 7.4 7.4 3.8 2.8 3.9 % 

2 52,592 38,148 4,316 4,381 2,198 1,749 1,801 km 

72.5 8.2 8.3 4.2 3.3 3.4 % 

3 28,429 20,873 2,495 2,598 1,013 772 678 km 

73.4 8.8 9.1 3.6 2.7 2.4 % 

4 13,991 9,476 2,203 1,292 647 289 84 km 

67.7 15.7 9.2 4.6 2.1 0.6 % 

5 7,458 5,473 1,425 431 129 0 0 km 

73.4 19.1 5.8 1.7 0.0 0.0 % 

6 4,634 3,920 661 53 0 0 0 km 

84.6 14.3 1.1 0.0 0.0 0.0 % 

7 1,971 1,914 57 0 0 0 0 km 

97.1 2.9 0.0 0.0 0.0 0.0 % 

8 674 674 0 0 0 0 0 km 

100.0 0.0 0.0 0.0 0.0 0.0 % 

Total 211,372 156,424 18,674 16,285 7,870 5663 6,485 km 

74.0 8.8 7.7 3.7 2.7 3.1 % 

Several tributaries stand out as being highly affected with many impacted river 

sections resulting from numerous small dams built on these river sections, such as , 

such as the Tuo River, Xin River, Zi River and Xiang River (Table 7.4). For example, 

More than 77% of the Tuo River is affected by small dams. Other three rivers are little 
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Figure 7.5 Affected river sections downstream of small dams. Different colors show an increasing degree of regulation, whereas line width is 
proportional to stream order. 
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Table 7.4 Total tributary length, number of dams, and extent of affected tributaries (in kilometers and percentages) downstream of small 
reservoirs for different tributaries in the Yangtze River basin, tabulated by river size and by DORs 

Extent of affected river with a DORs >= 5% Extent of affected rivers (all river sizes combined)

Total length No. of By stream order By DORs 

Tributary (km) dams 1 2 3 4 5 6 >=5% >= 10% >=30% >=50% Unit 

Jinsha River 51,696  1,817 1975 1366 823 292 0 0 4457 3227 1468 733 km 

7.9 11.5 10.7 11.8 0.0 0.0 8.6 6.2 2.8 1.4 % 

Min River 15,225  889 429 386 124 0 0 0 939 659 133 14 km 

5.8 10.7 5.4 0.0 0.0 0.0 6.2 4.3 0.9 0.1 % 

Tuo River 3,769  1793 1322 729 426 459 0 0 2937 2563 1098 526 km 

79.0 66.3 85.2 100.0 0.0 0.0 77.9 68.0 29.1 14.0 % 

Jialing River 20,550  3,531 3162 1638 1021 422 37 104 6385 4823 1208 466 km 

33.4 30.4 37.8 27.4 4.9 14.7 31.1 23.5 5.9 2.3 % 

Wu River 10,148  1,086 1026 833 372 246 339 0 2817 1090 123 49 km 

20.5 33.0 25.1 41.3 63.1 0.0 27.8 10.7 1.2 0.5 % 

Hanjiang 21,212  3,461 3067 2246 713 517 156 480 7179 5662 2908 1831 km 

50.0 38.0 29.1 39.6 18.0 100.0 33.8 26.7 13.7 8.6 % 

Dongting Lake Region 

Lei River 3,255  500 184 168 11 153 0 0 517 285 83 15 km 

12.4 21.3 2.4 29.7 0.0 0.0 15.9 8.8 2.5 0.5 % 

Yuan River 11,567  1,662 1836 573 200 51 0 0 1661 638 95 46 km 

32.4 20.8 15.6 4.0 0.0 0.0 14.4 5.5 0.8 0.4 % 

Zi River 3,555  1,241 700 245 220 572 0 0 1736 648 122 3 km 

40.2 29.0 55.6 100.0 0.0 0.0 48.8 18.2 3.4 0.1 % 
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Extent of affected river with a DORs >= 5% Extent of affected rivers (all river sizes combined)

Total length No. of By stream order By DORs 

Tributary (km) dams 1 2 3 4 5 6 >=5% >= 10% >=30% >=50% Unit 

Xiang River 11,418  3,854 2302 1159 727 373 567 0 5130 2678 486 181 km 

41.7 40.8 48.4 39.0 100.0 0.0 44.9 23.5 4.3 1.6 % 

Poyang Lake Region 

Xiu River 1,835  644 304 55 28 35 26 0 449 243 44 29 km 

34.2 9.0 38.4 15.1 100.0 0.0 24.5 13.2 2.4 1.6 % 

Gan River 8,685  2,918 950 542 289 179 66 0 2026 981 215 151 km 

23.4 24.9 21.0 30.8 13.9 0.0 23.3 11.3 2.5 1.7 % 

Fu River 1,892  1,125 293 154 86 8 42 0 583 407 88 20 km 

29.7 36.8 26.1 7.0 100.0 0.0 29.4 20.5 4.4 1.0 % 

Xin River 2,007  1,862 533 142 76 235 0 0 987 551 20 2 km 

49.4 31.0 32.5 100.0 0.0 0.0 49.2 27.5 1.0 0.1 % 

(Table continued) 
a For the results “by stream order”, the percent value refers to all river sections of the respective size class in the tributary basin; for the results “by 
DORs”, the percent value refers to all rivers of all sizes in the tributary basin. 
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better, but still have more than 40% of stream sections affected by small dams. The 

four rivers are in the dam-dense areas, such as, the Sichuan Basin in the upper 

Yangtze reach, the Poyang Lake Region and the Dongting Lake Region in the middle 

Yangtze reach (Figure 7.1). 

The analysis indicates that, although large dams can clearly exert a sizable impact on 

the hydrological cycle through the vast quantities of water that they can store, small 

dams can also significantly alter regional river flows through their sheer number. River 

basin development and management plans use approaches similar to this DORs 

assessment can inform decisions regarding the distribution of new dams and/or the 

operation of existing dams. Regional management schemes could also be “optimized” 

by prioritizing the siting of new small dams based on which locations would have the 

lowest estimated cumulative impacts downstream. 

7.3.3 The impact of small dams on river landscape 

fragmentation 

The AWDD analysis indicates that the density of dams and the extent of fragmentation 

in the hydrological system are decidedly unequal across the Yangtze River basin (Table 

7.5). The greatest density of small dams occurs in the ridge-and-valley area in the 

middle Yangtze reach, with AWDD of approximately 9.1 dams per 100 km2, especially 

on the plain side of the border between the plain and hills. This means that people can 
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find one small dam approximately every 11 km2 of area on average. The floodplains in 

the middle reach, ranked second, are actually little better than the ridge-and-valley area: 

with an average partition area of 16 km2. The AWDD is a gross measure of the extent of 

fragmentation in river networks. River networks in those river landscapes 

(ridge-and-valley area, floodplain and coastal plain) with highest AWDD values 

experience the greatest segmentation or fragmentation caused by small dams. The 

greatest density of dams occurs in plain areas, most of which are in the middle and 

lower Yangtze reaches, suggesting a large number of potential needs in these areas (Dai 

et al., 1998). The primary reason is that dry-season agriculture and the pre-rainy season 

establishment of food and cash crops in these areas cannot be undertaken without large 

quantities of water. To rely upon precipitation in the dry season is unrealistic and risky. 

It is essential for a dam constructed on streams to allow for off-season storage of vital 

water supplies. Although primarily for irrigation, such dams can be used, either 

separately or combined, for fish farming, stock and domestic water purposes.  

The results further show that, in the Yangtze River basin, the extent of river landscape 

fragmentation by small dams varies with river landscapes. It is lowest in the landforms 

of glaciated plateaus, plateaus and mountain ranges and increases generally to the east, 

where a large number of potential needs (irrigation, domestic uses and fish farming) 

encourage more farm ponds to be constructed. Unlike large dams which are often 

constructed in unfrequented river valleys with sufficient drop (height) to provide a 

hydropower opportunity, small dams are often built on rivers close to populated areas 
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(Yang et al., 2006) and therefore have a more direct impact on human beings as a result 

of river landscape fragmentation. 

Table 7.5 Summarized results from AWDD analysis for different landscapes 

Landform type 
Total area 

(km2) 

No. of 

dams 

Average catchment area

 (km2) 

AWDD 

(Dams per 100 km2)

Inner coteau 76,630 4377 14 5.7 

Low mountain 197,089 7371 27 3.7 

Mountain 272,540 2388 61 0.9 

Valley and hill 31,826 535 58 1.7 

Hill 63,564 2162 28 3.4 

Ridge and valley 15,818 1435 7 9.1 

Glaciated plateau 150,565 5 199 0.0 

Karst mountain 356,884 6229 54 1.7 

Floodplain 190,536 11782 9 6.2 

Coastal plain 83,259 4846 4 5.8 

Plateau 104,959 5 19 0.005 

Mountain range 254,212 66 287 0.026 

Overall 1,800,000 42,002 23 2.3 

Another factor to the high fragmentation in those plains is that the dam catchment areas 

are relatively small due to relatively low relief. The small dams in those regions have 

relatively small average catchment area (less than 10 km2) (Table 7.5), compared with 

their counterparts in the regions of glaciated plateau and mountain ranges with average 

catchment area of 199 and 287 km2, respectively. The small reservoirs isolate their 

catchments, making the catchments “isolated islands”. These isolations can often 

support only small river systems; thus, they are more sensitive to environmental 

fluctuations and stochastic perturbations of flow.  

Previous studies (Dunham et al., 1997; Jager et al., 2001; Wofford et al., 2005) have 

indicated that fragmentation of river landscapes changes migration patterns, and alters 
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riparian vegetation. The impacts of the small dams imply many ecological 

consequences. The river landscape fragmentation created by small dams might be 

similar to, although on a small scale, the habitat fragmentation caused by roads in 

forested environments (Reed et al., 1996; Forman and Alexander, 1998; Benítez-López 

et al., 2010). Thus, the impact could be most apparent in these isolated catchments. 

7.4 Discussion 

7.4.1 Accuracy and uncertainty analysis 

The results of the DORs study need careful interpretation to avoid arriving at 

misleading generalizations. First, the impacts and consequences of flow regulation may 

vary for different river size classes. Sixth-, seventh- and eighth-order streams are more 

likely to be of high importance, including far-reaching environmental and 

socioeconomic aspects. Yet, first-, second-, third- and fourth-order streams can provide 

local ecosystem services, serve as ecological refuges, provide water resources for 

irrigation, or may represent headwater reaches for municipal water supply. When these 

streams are affected by small dams, the impacts are hidden at a basin-wide scale. 

Second, the DORs ratio is important. For river sections with high DORs values, major 

implications for the intra- and inter-annual flow regimes are to be expected. However, 

smaller values may indicate critical alterations as well, but of shorter duration or 

smaller amplitude. Third, it will largely depend on the individual reservoir operation 

scheme and additional impacts. For example, some small dams are operated as 
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run-of-the-river hydropower plants; thus they may not regulate river flows as expected. 

Finally, this study also recognized that environmental effects may vary and that some 

rivers may be threatened more than others by a certain level of regulation because the 

effects are the consequences of joint forces, such as, dam construction, deforestation, 

water diversion, land cover change and climate change. Undoubtedly, more research is 

required regarding the associated environmental consequences. 

In addition, the DORs approach intrinsically is subject to various uncertainties. Beyond 

technical issues, such as flow estimation using multiple regression techniques, some 

aspects could be addressed because of a lack of data, such as high-resolution DEM data, 

the role of dam operation. River runoff is strongly related to precipitation, evaporation 

(temperature), soil moisture and geomorphic characteristics (Vogel et al., 1999). Since 

the estimated river runoff was based on multi-year average records, we could simply 

assume that the change in soil moisture is insignificant and only consider precipitation, 

temperature and geomorphic characteristics. However, when predicting runoff for a 

single event or a short period, the omission of soil moisture may cause significant 

uncertainties. Besides, for small dams, the annual amount of water withdrawals and 

water transfers for various purposes (irrigation and domestic uses), plus the regulated 

volumes for energy generation, could be much larger than the total reservoir capacity. 

The impact of small dams could be underestimated based on Eq. 7.2. Besides, the DORs 

approach only accounted for impacts from upstream dams on downstream river 

sections; yet, for many additional upstream tributaries, connectivity and species 
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migration routes may be disrupted directly by the presence of downstream small dams 

or indirectly by downstream large dams. These impacts are not addressed in this study. 

Considering these impacts, it can be believed that the estimates of the extent of affected 

river sections are therefore conservative. 

The river landscape fragmentation assessment was carried out based on a river 

landscape map. Therefore, this analysis is heavily dependent on how a researcher 

formulates criteria to classify river landscapes. Additionally, the river landscape 

fragmentation results should not be viewed in isolation; rather, this index should be 

used with other metrics (e.g., DORs) to evaluate the impact of small dams on the 

regional hydrological cycle. Also, the analyses in this study should never be considered 

as stand-alone; as they do not cover socioeconomic impacts, nor fully represent the 

spectrum of environmental impacts. However, this study does present a framework to 

effectively integrate river landscape fragmentation and free-flowing functionality into 

small dam planning and adds regional and basin-wide perspectives to conventional 

environmental impact assessments. 

7.4.2 Comparative discussion and possible implications 

To investigate the role of small and large dams in flow regulation based on DORs, a 

comparative analysis was carried out (Figure 7.6). Figure 7.6A and B reveal that small 

dams primarily affect streams at regional scale (steams with stream order < 5) while 

large dams principally affect large streams (stream order > 4). In terms of the impacts 
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on the fourth-order streams, small dams draw almost equal with large dams. For 

example, 26% of first-order streams are affected by small dams, while only 

approximately 4% of first-order streams are affected by large dams. The impacts on 

large streams (sixth-, seventh, eighth-order streams) is the reverse of that observed for 

the first-order streams, with most of the effects being caused by large dams. However, 

small dams have worsened the impacts on large streams. For example, excluding the 

impacts of small dams, no seventh- and eighth-order streams with DORs > 30% 

(Figure 7.6B and Figure 7.7). When small and large dams are all taken into account, 

20% of seventh-order streams and 100% of eighth-order streams are affected with 

DORs > 30% (Figure 7.6C and Figure 7.8). Previous research has emphasized the 

impacts of large dams on river connectivity and fragmentation but believed that the 

impacts of small dams are marginal. This study revealed that the impacts of small dams 

are comparable to large dams for fourth-order streams, or even significantly exceed 

large dams for first-, second- and third-order streams. 

Lehner et al. (2011) revealed that the relative impact by large dams increases with river 

size, peaking in large rivers (Figure 7.6D), although very large rivers show slightly 

reduced levels again, most likely because massive flows, such as those of the Amazon 

or Mississippi rivers, cannot easily be impounded in their entirety. However, as 

numerous small dams are not used in Lehner’s study, the impacts by small dams are not 

really shown in Figure 7.6D. This study indicated that Lehner’s study results are 

skewed by 
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Figure 7.6 Comparison of the impacts caused by large dams and small dams based on DOR and DORs ratios; (A) DORs ratios for small dams in 
the Yangtze basin; (B) DORs ratios for large dams in the Yangtze basin; (C) DROs ratios for all dams in the Yangtze basin; (D) was modified 
after Lehner et al. (2011); (A-C) was drawn based this study results.  
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Figure 7.7 Affected river sections downstream of large dams in the Yangtze River basin. Different colors show an increasing degree of regulation, 
whereas line width is proportional to stream order. 
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Figure 7.8 Affected river sections downstream of all dams (including large and small dams) in the Yangtze River basin. Different colors show an 
increasing degree of regulation, whereas line width is proportional to stream order. 
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Figure 7.9 Comparison of dam distribution in the Yangtze River basin and the 
continental United States; (A) number of dams per 100 km2 in the 18 water resource 
regions of the continental United States; (B) number of dams per 100 km2 in the 
Yangtze River basin. Figure 7.9A was designed based on Graf (1999). 

the omission of small reservoirs, which are typically located on smaller rivers. 

Although small dams may contribute less to the overall alteration of large-river flows as 

a result of their limited storage capacities, small dams can still have a profound effect 

on regional flow regulation. 

Some more interesting results can be found by comparing dam distribution in the 
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Yangtze River basin and the continental United States (Figure 7.9). On average, people 

can find 2.2 small dams every 100 km2, compared to only 0.5 small dams in the 

continental United States (Graf, 1999), suggesting the significant role that small dams 

can play in fragmenting a river system by their sheer and number and density. In the 

Yangtze River basin, approximately 630,000 km2, or one-third of the river basin is 

fragmented with dam density greater than 2 dams per 100 km2, in contrast to only 2% of 

the continental United States. The results give an order of magnitude estimate of the 

extent of river landscape fragmented by small dams in the Yangtze River basin. One of 

the possible implications is that small dams should be emphasized in mitigating 

environmental impact associated with the fragmentation of river landscapes, including 

the degradation of aquatic habitat and the movement of nutrients as well as aquatic 

species. 

7.5 Summary and conclusions 

Based on small dam data obtained in Chapter 4, this chapter investigated the impacts of 

small dams on flow regulation and river landscape fragmentation. The study results 

revealed that 54, 977 km, or approximately 26% of the streams, are affected by 

upstream small dams. Of these, the first-, second-, third- and fourth-order streams are 

the worst-affected by small dams. The river landscape fragmentation analysis also 

revealed similar significant effects in regional areas such as the plain areas in the 

middle and lower Yangtze reaches. On average, one can find 2.2 small dams every 100 
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km2; but the dam density can as high as 9.1 small dams per 100 km2 in ridge-and-valley 

areas in the middle Yangtze reach. 

Although previous research has emphasized the impacts of large dams on river 

connectivity and fragmentation, at least implying that the impacts of small dams are 

negligible, the analyses in this chapter revealed that small dams can also exert 

significant impacts in flow regulation and river landscape fragmentation on regional 

river systems through their sheer number and density. The implications of this study is 

that the effects of small dams should be fully emphasized in mitigating environmental 

impact associated with the fragmentation of river landscapes, including the degradation 

of aquatic habitat and the movement of nutrients. This DORs assessment can also 

inform decisions regarding the distribution of new small dams and/or the operation of 

existing small dams. Regional management schemes could also be “optimized” by 

prioritizing the siting of new small dams based on which locations would have the 

lowest estimated cumulative impacts downstream. One of the real challenges facing 

decision-makers may prove to be balancing uncertain or largely unquantified 

ecological and environmental threats with the socio-economic benefits of additional 

small dam construction.
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8 Possible projections of the future trends 

of the Yangtze River 

8.1 Dam development 

In the Yangtze River basin, the recent trend has been toward more and bigger dams 

(Dudgeon, 2000) because an increasing national demand for energy is being directed 

towards the installation of increasing numbers of hydropower facilities. For example, 

China intends to increase its hydropower capacity from 566×109 kW.h yr-1 in 2010 to 

1,200×109 kW.h yr-1 in 2020. According to the distribution of hydropower resources, 

China has planned 13 hydropower bases, six of which are located in the Yangtze River 

basin (Figure 8.1) (Huang and Yan, 2009), namely the Jinsha River, Yalong River (one 

major tributary of the Jinsha River), Dadu River (one major tributary of the Min 

River), Wu River, main stem of the upper Yangtze River, and the Yuan River, although 

the Yangtze River has already been dramatically disconnected due to dam 

construction. 

The lower Jinsha River is a very important river section in terms of water supply to 

the TGD. This stretch of the river is also ecologically important as it contains the 

greatest diversity of fish species found in the upper Yangtze basin (Lu et al., 2010). 

The China Three Gorges Project Corporation (CTGPC), a state-authorized investment 

institution responsible for the construction of the TGD, began building a new dam on 

the Jinsha River in 2005. Now completed (but not yet operating), the Xiluodu Dam 
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(12.6 million kW; 278 m tall) ranks second in size to the TGD (Dudgeon, 2010). 

Apart from the Xiluodu Dam, three more cascade dams (Wudongde, Baihetan, 

Xiangjiaba, Upper Hutiaoxia) have been under construction for the main stem of the 

lower Jinsha River. However, it will be part of a 12-dam cascade along the Jinsha 

River because construction is not proceeding in a coordinated fashion; the ultimate 

number of dams could exceed this number (Figure 8.1). The tail waters of each dam 

will extend backward to the dam wall of its upstream counterpart, so that the river will 

descend in a series of cascade dams with few or no free-flowing sections. The 

potential impacts of the dams will be highly significant. 

 
Figure 8.1 Map of hydropower development in the Yangtze River basin in future; data 
source: MWR (1982) updated with the latest information of dam status. 
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8.2 Water diversion from Yangtze to the north 

Because of the large population, China suffers from water shortage in terms of a very 

low quantity of per capita water volume, only accounting for one-quarter of the world 

average. In particular, China’s northern and northwestern regions mainly lie in vast 

semi-arid and arid zones, making up 44% of the total area of the country; but the 

annual runoff of those zones is less than 10% of the nation’s total amount (Liu and 

Zheng, 2002). To cope with this problem, the South-to-North Water Diversion Project 

from the Yangtze to the more arid and industrialized North China was proposed in the 

1950s when three broad alignments were described (the Western, Middle and Eastern 

Routes) (Figure 8.2). 

The Western Route diverts water from the upper Yangtze tributaries in difficult and 

remote terrain in the Sichuan and Qinghai mountains to the upper reach of the Yellow 

River. The first stage will take water from a dam on the Yalong River via a 170 km 

tunnel to the upper Yellow River. Subsequent stages divert water from the Tongtian 

River to the Yalong River, and from the Zumuzu River to the Tongtian River, each 

stage dependent on completing the earlier works. Preliminary estimates suggest up to 

20 km3 could be diverted; but this project has not started yet. 

The Central Route, starting at the Danjiangkou reservoir on the Han River, mainly 

serves domestic and industrial water uses in Beijing, Tianjin, and some cities in Hebei, 

Henan, and Hubei provinces. The first phase has just completed at the end of 2014. Its 
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total length is 1,230 km, with a branch to Tianjin of 142 km. The first stage will 

annually divert 9.5 km3 yr-1 or 25–35% of Han flows at the Danjiangkou Reservoir. 

 

Figure 8.2 Sketch map of the South–North Water Diversion Project 

The Eastern Route diverts water from the lower reach of the Yangtze River to the 

north along roughly the ancient Beijing-Hangzhou Grand Canal. The first phase was 

completed in 2013, which can annually divert about 9 km3 of water to the north, half 

of which is transferred to the north of the Huai River basin (Yang and Zehnder, 2005). 

The water is lifted 65 m by twelve pump stations to the Yellow River, crossed by 

tunnel. From there, water can flow north by gravity to Tianjin. 

8.3 Possible impact on water regulation 

Although there is no complete information (e.g., reservoir storage capacity) on the 
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planned dams on the Yangtze River, some future trends can also be obtained based on 

the available data. The total estimated reservoir storage capacity in the upper Yangtze 

reach is approximately 103 km3, but the figure will jump to 133 km3 if the water 

diverted to the north is considered. By combined the existing reservoirs with a total 

storage capacity of 85 km3, the total regulated water volume will be 215 km3, or 53% 

of the runoff of the upper Yangtze River. It means that the average time that water is 

retained in the reservoirs will be approximately 0.53 year. The impoundment of river 

channels regulates discharge downstream, potentially affecting flooding patterns, flow 

regimes, and nutrient transport (Lu, 2005; Wellmeyer et al., 2005; Graf et al., 2010). 

It is likely that with increases in the average time that water is retained in reservoirs 

(increases in the capacity-runoff ratio), the impacts will become more evident (Figure 

8.3). 

In the upper Yangtze reach, the Jinsha and Yalong rivers are the biggest victims of the 

dams currently under construction. For example, the DORs for the main stem of the 

Jinsha and Yalong rivers will jump to 62% and 47% respectively, when the 

under-construction dams are complete. The change for the Jinsha River is primarily 

caused by the construction of five large dams with mega storage capacity: Xiangjiaba 

(5.2 km3), Xiluodu (12.7 km3), Wudongde (7.6 km3), Baihetan (18.8 km3) and Upper 

Hutiaoxia (17.95 km3). The tail waters of each dam will extend backward to the dam 

wall of its upstream counterpart, making the originally free-flowing Jinsha main stem 

into five connected artificial stagnant “lakes”. Similarly, the degradation for the 
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Yalong River is led by the construction of the Lianghekou and Jinping-I dams with 

storage capacity of 10.7 km3 and 7.76 km3, respectively. However, unlike the five 

mega dams constructed on the Jinsha River, the two large dams are being constructed 

closer to the source of China’s key large river systems (Yangtze, Yellow and Mekong 

rivers), and are operational in the valley. Operating with other four relatively small 

dams which are under construction, the dams are central to exacerbate the fragility of 

the area by affecting fragile river ecosystem stability. These projects can significantly 

endanger the fragile ecosystem and cultural heritage of the Qinghai-Tibetan Plateau 

due to high water regulation. In view of the planned dams, the Dadu River will 

become another victim of dam construction. The water regulation for the Dadu River 

is less than 3%, followed by an increase to 6.5% when the seven under-construction 

dams are complete, and a peak at 31.2% after the completion of 13 planned dams on 

the Dadu River (Figure 8.4). Eventually, all the major Yangtze tributaries in the upper 

reach will be highly regulated. The impacts on the river ecosystems are apparent. 

There are also some dams under construction in the middle reach. The total storage 

capacity of the under-construction dams is 11.2 km3. Although the total capacity is 

much less than their counterparts in the upper reach, it can also worsen the impact of 

the dams in the middle Yangtze reach on downstream water supply. As a case in point, 

a severe drought in the middle and lower reaches from April to June 2011 exposed the 

impacts from reservoirs in the middle Yangtze reach. When water was released from  
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Figure 8.3 Predicted water regulation change based on DORs with respect to dams under construction. Different colors show an increasing 
degree of water regulation, whereas line width is proportional to stream order. Please note that this predicted result could be underestimated as a 
result of incomplete data on dam construction because many dams which are not being built on the major tributaries were excluded in the data. 
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Figure 8.4 Predicted water regulation change based on DORs with respect to planned and under-construction dams. Different colors show an 
increasing degree of water regulation, whereas line width is proportional to stream order. This predicted result could be underestimated because 
some planned dams have no storage capacity data available. 
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Table 8.1 Comparison of water regulation change for different river sections based on 
DORs analysis, tabulated by stream order and degree of regulation 

Stream 

ordera 

Dam 

statusb 

Extent of affected river sections downstream small dams 

Unit
DORs(%)0-5% 5-10% 10-20% 20-30% 30-50% >50% 

4 

A 
4,841  2,174 2,139 1,317 1,525  1,994  km 

34.6  15.5 15.3  9.4  10.9  14.3  % 

B 
4,719  2,061 2,324 1,274 1,619  1,994  km 

33.7  14.7 16.6  9.1  11.6  14.3  % 

C 
4,719  2,045 2,340 1,274 1,619  1,994  km 

33.7  14.6 16.7  9.1  11.6  14.3  % 

5 

A 
3,119  310 944  1,603 687  795  km 

41.8  4.2 12.7  21.5  9.2  10.7  % 

B 
1,816  1,022 927  1,734 1,165  795  km 

24.4  13.7 12.4  23.2  15.6  10.7  % 

C 
1,740  313 927  1,734 1,949  795  km 

23.3  4.2 12.4  23.2  26.1  10.7  % 

6 

A 
2,515  239 1,055 304  40  480  km 

54.3  5.2 22.8  6.6  0.9  10.4  % 

B 
1,818  126 237  344  1,320  789  km 

39.2  2.7 5.1  7.4  28.5  17.0  % 

C 
1,656  126 237  501  1,325  789  km 

35.7  2.7 5.1  10.8  28.6  17.0  % 

7 

A 
214  14  433  391  918  0  km 

10.9  0.7 22.0  19.9  46.6  0.0  % 

B 
4  0  86  1  1,503  378  km 

0.2  0.0 4.4  0.0  76.2  19.2  % 

C 
4  0  86  1  1,503  378  km 

0.2  0.0 4.4  0.0  76.3  19.2  % 

8 

A 
0  0  0  0  674  0  km 

0.0  0.0 0.0  0.0  100.0  0.0  % 

B 
0  0  0  0  674  0  km 

0.0  0.0 0.0  0.0  100.0  0.0  % 

C 
0  0  0  0  0  674  km 

0.0  0.0 0.0  0.0  0.0  100.0  % 
a Data for the first-, second- and third-order streams were not given here because this 
prediction was mainly based on under-construction and planned dams placed on large 
Yangtze tributaries; 
b Dam status: A: only dams in operation were considered; 
           B: only dams in operation or under construction were considered; 
           C: all dams (in operation, under construction, planned) were considered. 
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the TGR in response to the water shortage, much of water remained impounded and 

available for power generation in the many large reservoirs in the middle reach. The 

cumulative impacts of these reservoirs on the Yangtze’s large-scale hydrologic regime 

are evident.  

Overall, the proportion of the unregulated or slightly regulated river sections will 

sharply drop with the completion of the under-construction and planned dams in 

coming decades (Table 8.1). For example, the total length of fifth-order streams with 

DORs less than 5% will be almost halved; approximately one third of the total length 

of sixth-order streams with DORs less than 5% will vanish; the seventh- and 

eighth-order streams with DORs less than 5% will even completely disappear. After 

the completion of the under-construction and planned dams, the main stem and major 

tributaries will be dominated by strongly regulated river sections. Although the 

condition for smaller river sections is a little ‘better’ than large ones, one should not 

be overly optimistic at the condition because real condition are still unclear due to 

lack of information about under-construction and planned small dams. As the degree 

of water regulation increases with the completion of more dams, the ecological risks 

associated with further impacts on river systems should be rigorously investigated. 

It should also be emphasized the impact of the South-North Water Diversion Project 

on water regulation of the Han tributary. On the middle route of the South-to-North 

Water Diversion Project, the project transfers 14.7 km3 of water to North China. This 
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amounts to approximately 2 per cent of the average flow at the Hankou Station and 

1.5 per cent of that at the Datong Station. Although the regulating role of the large 

lakes will ensure that on the whole there will be no significant effect on the amount of 

water in the middle and lower reaches of the Yangtze River, the impact on shipping 

and irrigation in the lower reaches of the Han River should be carefully investigated. 

To investigate the impact, this study simulated annual runoff variation in coming 

decades and possible reduction in water discharge and water level due to water 

diversion. The simulation results indicated that the average precipitation may decrease 

by approximately 10% by 2030 due to climate change, leading to a decrease (35 x 108 

m3) in annual runoff entering the Danjiangkou Reservoir. As a result of reduced runoff, 

the water transfer would affect areas along both sides of the main channel of the 

middle and lower reaches of the Han River downstream from the reservoir. The main 

channel is 650 km long from Danjiangkou to Hankou; the nearly 79,000 km2 in the 

middle and lower reaches is an important component of the commodity grain base of 

the Jianghan Plain. The simulation results indicate that the water level will decrease 

significantly. The most significant reduction happens at Xiantao station, which can 

change up to -2.25 m. Although the reduction at the Huangzhuang station is relatively 

low due to the wide and braided river channels between the Xiangfan and Xiantao 

stations. The decline in reservoir's downstream discharge will also cause water depth 

and the flow velocity to diminish further. This would not be favorable to river 

ecosystems.  
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8.4 Possible impact on sediment retention 

Another significant impact could be reservoir sedimentation. The total estimated 

annual sediment trapped in the newly constructed reservoirs will be 160 Mt, which 

will cause a sharp decrease in sediment inflow to the TGR because a great of 

proportion of sediment will be trapped in the dams upstream of the TGR. In addition, 

the implementation of soil conservation projection can also decrease sediment yield in 

the area upstream of the TGR, which will cause a further decrease in sediment inflow 

to the TGR. Since more than half of the sediment entering the TGR comes from the 

Jinsha River, sediment inflow into the mega reservoir will decrease to approximately 

90 Mt yr-1 due to upstream traps, assuming that sediment yield in tributary basins 

remains unchanged. As a result of low sediment inflow, the TGR should maintain 

approximately 34 km3 of its storage capacity by the year of 2100. Accordingly, the 

reservoir will allow a high sediment retention rate and a low downstream sediment 

outflow (15 Mt yr-1). In this way, the reservoir will keep approximately 20 km3 of its 

storage capacity and a retention rate of 70% in 300 years after its closure. It should be 

highlighted that, sediment inflow from the ungauged areas surrounding the TGR will 

become increasingly important as upstream dams are constructed. After the 

construction of the cascade dams on the Jinsha, Yalong and Dadu rivers, the ungauged 

source of sediment supply may amount for approximately half of the gauged sediment 

discharge to the TGR. 
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Although this can significantly extend the life of the TGR for centuries, future 

downstream erosion and riverbed degradation will be much greater than expected, and 

the lower of the main channel will draw down and diminish the connected floodplain 

lakes. According to the prediction by Yang et al. (2014), the sediment discharge from 

the Yangtze to the sea will most likely decrease further to approximately 110 Mt yr-1 

for the rest of this century and the next century, to about 20% of its level in the 1960s. 

The built dams have and will continue to cause dramatic impact on the 

sediment-water balance in coming decades. For example, if we take the mean annual 

sediment load between 1955 and 1960 to represent 100% of the baseline, then during 

the period from 2006 to 2010, the sediment load at Yichang station decreased to 

approximately 32Mt with a reduction of about 92%, followed by a further decrease in 

sediment load as a result of new dam construction (Figure 8.5). The downstream 

riverbed and delta erosion noted over the past decade undoubtedly will be intensified 

into the next century. 

After further dam development, sediment load below Yichang is dramatically lower 

than the sediment-transport capacity of the flow and the dominant sediment transport 

processes have changed dramatically—the river has become sediment-starved and 

degradation has happened. The Yangtze River below Yichang will become a typical 

sediment-starved river. However, there is still a large quantity of erodible deposits in 

the middle-lower Yangtze River, where accretion had occurred for a long time until 

the sediment discharge from the upstream decreased below 250 Mt yr-1 because of 
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anthropogenic activities, especially dam construction (Yang et al., 2011). The 

thickness of the unconsolidated Holocene sediments excluding the lowest gravel layer 

is < 20 m in the first 300 km reach, 20–30 m in the 300–700 km reach, and 30–40 m 

in the 700–1300 km reach downstream of the TGR; thus, the total estimated volume 

of the loose sediments in the middle-lower reaches is approximately 80 km3 (Yang et 

al., 2014). 

 

Figure 8.5 Sediment loads for 1956–1960, 2006–2010 and future after the completion 
of the Xiangjiaba, Wudongde, Xiluodu, Baihetan, Upper Hutiaoxia dams and other 
large dams. 

In the late half of the 20th century, for example, nearly 4,000 Mt of sediment was 

deposited between Yichang and Datong. Considering such a large volume of erodible 

sediments, future channel erosion in the middle-lower reaches will be much greater 

than previously expected. Previous study (IWHR and YSRI, 1990) predicted that the 

erosion rate would a decreasing trend along with the reduction in the storage capacity 
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of the TGR and the increase in sediment outflow from the TGR. By the 2060s—2070s, 

the erosion between Yichang and Datong could reach a maximum of 4,200—4,500 Mt, 

or approximately 3 km3, more than 90% of which could occur between Yichang and 

Hankou (Lu, 2002). However, because the construction of the large dams in the upper 

reach of the Yangtze River, the TGR sediment outflow will be lower than 15 Mt yr-1 in 

the coming decades and will most probably be less than 50 Mt yr-1 within the next 

century, i.e., erosion will occur through this century and the next. Yuan (2014) 

estimated that the riverbed erosion between Yichang and Hankou would be 

approximately 55 Mt yr-1 in the first 50 years after TGR operation and then would 

decrease to 50 Mt yr-1 by the end of this century. Taking the riverbed erosion between 

Hankou and Datong into account, this study roughly estimated that the total 

downstream erosion will probably amount to 7,000 Mt by the year of 2100, and to 

12,000 Mt by 2200. 

In addition, the South-to-North Water Diversion Project will transfer 45 km3 yr-1 to 

North China, approximately 30 km3 of which originally passes the Datong station. 

This would extract 2-4% of the sediment discharging to the sea; furthermore, the 

sediment-transport capacity of the flow could be reduced by 3-5% as a result of water 

diversion. Therefore, the erodibility of the riverbed sediments from Yichang to Datong 

may show a gradual reducing trend in coming decades. The combined impact of the 

TGR, the newly constructed large dams and the South-to-North Water Diversion 

Project can cause a significant decrease in sediment load to the sea in future decades. 
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It is estimated that the riverbed between Yichang and Datong will be deepened by 

approximately 2.3 m on average by the year of 2100, and by approximately 3.8 m by 

2200 (Yuan, 2014). Although most erosion has occurred a few hundred kilometers 

immediately downstream of the TGR (Yang et al., 2014), the section of maximum 

erosion is predicted to move downstream toward the Yangtze estuary in the future 

(Luo et al., 2012). 

The severe riverbed erosion and resultant water level reduction will threaten Lakes 

Dongting and Poyang, the two largest freshwater lakes in China, which are linked 

with the Yangtze River. In fact, the operation of the TGD has already modified the 

seasonal pattern of flow regimes in the Poyang Lake and significantly reduced the 

water level in the lower Yangtze River during the TGD impounding period from 

September to November. Although the impact of the recent droughts in the Poyang 

Lake and upper Yangtze reaches has played a crucial role in the low water level of 

Poyang Lake, more attention should be paid to its sensitivity to the influence of severe 

riverbed erosion and resultant water level reduction.  

Using the Poyang Lake as a case study, based on the predicted water level reduction 

Yang et al. (2014), this study simulated the monthly variation in surface area of the 

Poyang Lake (Figure 8.6). The results show that a decrease in surface area have been 

observed in October, November and December due to water impoundment by the 

TGR after its closure in 2003, although the late water release from the dam can 
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significantly expand the lake’s surface area in February, March, and April. However, 

with increasingly severe riverbed erosion and resultant channel downcutting, the 

water level in the middle-lower Yangtze reaches will decrease significantly, leading to 

a sharp decrease in water level of the Poyang Lake.  

 

Figure 8.6 Prediction of the monthly variation in surface area of the Poyang Lake as a 
result of water level reduction in the middle-lower reaches of the Yangtze River; A: 
the relation curve for lake surface area (in km2) and water level (in m); B: delineated 
and predicted monthly change in surface area of the Poyang Lake in different periods. 

The lake surface area in the dry season will dramatically shrink further. The increase 
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in surface area due to late water release from February to April will also be offset by 

decrease caused by water level drop. The resultant lake surface area in February, 

March and April by the end of next century will even lower than it is now; but higher 

decrease in lake surface area will also happen in other months. However, it should be 

highlighted that the recent extremely low water levels were mainly because of the 

remarkable decline in inflows to the middle-lower reaches due to lack of precipitation 

and possible human activities (Lai et al., 2014). Nevertheless, the effects of the TGD 

and many newly constructed dams on downstream rivers and lakes will be 

considerably intensified via riverbed erosion and resultant water level decrease in the 

foreseeable future. 

In the delta area, the direct response to decreased sediment discharge could be estuary 

degradation. In fact, on the delta front, the salt marsh has significantly slowed 

progradation and the subaqueous slope has changed from accretion to erosion (Yang 

et al., 2011). In coming decades, when the sediment discharge decrease to 

approximately 110 Mt yr-1, further delta recession could be predicted. This has 

significant implications for coastal management around the metropolis of Shanghai. 

Another implication is the impact on suspended sediment concentration in the coastal 

area. In the upper Yangtze estuary, the suspended sediment concentration has 

decreased by 55% since the closure of the TGR. In the lower estuary, where sediment 

resuspension from seabed erosion has partly buffered the decreased suspended 

sediment concentration, a reduction of 20% of suspended sediment concentration has 
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been observed (Liu et al., 2014). In the future, the estuarine suspended sediment 

concentration will most probably continue to decrease, which has great implications 

for wetland ecology and environmental management. 

8.5 Possible impacts on river connectivity and river 

landscape fragmentation 

As stated in Chapters 6 and 7, booming dam construction has already imposed 

dramatic stress on river ecosystems and the integrity of the river system via river 

disconnectivity and river fragmentation and new dams will further reduce connectivity. 

For instance, the TGD threatens 162 species of fishes in the main channel, 44 of 

which are endemic (Park et al., 2003). As more large dams are constructed in the 

upper Yangtze reach, bigger environmental threads will be imposed on the distinctive 

river ecosystems developed in glaciated plateau, mountain ranges, Karst mountains 

and other river landscapes. For example, of the 361 native fish species in the whole 

Yangtze River basin, 267 can be found in the upper Yangtze reach, including 118 

species that are endemic to the upper Yangtze reach (Heiner et al., 2011), which will 

be dramatically affected by future dam construction. 

Using the models proposed in Chapter 6, this study predicted the future trend of river 

landscape fragmentation based river-landscape classification map. The results are 

shown in Figure 8.7. By comparing with the current state in Figure 6.7B, it can be 

seen that the worst-affected areas are the main-stem area upstream of the TGD, the 
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Jinsha, Yalong and Min tributary basins. For example, most of the main-stem sections 

upstream of the TGD presently maintain connectivity among six river landscapes, 

whereas only three river landscapes will remain connected after a cascade of large 

dams are constructed in this area. The cascade dams also intercept the connection 

between the river landscapes in the upper Jinsha tributary basin and the river 

landscapes in the main-stem area, which would worsen the river fragmentation in the 

upper Jinsha tributary basin. Similar effects will also happen to the Yalong and Dadu 

rivers as a result of large dams built on the two rivers. For example, after the closure 

of all the under-construction and planned dams on the Yalong River, most of its river 

sections only keep connectivity among one to two different river landscapes. As a 

result of future dam construction, the percentage contribution of river sections with 

connectivity among one to two river landscapes will dramatically increase from 

approximately 33% at present to 52% after the completion of all the 

under-construction and planned dams. In contrast, the proportion of river sections 

with high connectivity (> 6 river landscapes) will dramatically shrink from 25% at 

present to only 16% in the future (Figure 8.7); but the shrinkage primarily happen in 

the middle-lower reaches downstream of Yichang, especially the main-stem area and 

the areas around the Poyang and Dongting lakes. The river fragmentation in the 

middle-lower reaches of the Yangtze River can also cause dramatic effects to the 

endemic species in this area. For example, The Yangtze finless porpoise is endemic to 

the middle-lower Yangtze reaches, which is now primarily restricted to the main-stem 
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Figure 8.7 Predicted the future trend of river landscape fragmentation based river-landscape classification map in Figure 6.7A. Compared with 
Figure 6.7B, the predicted trend shows that future dam construction will cause further river landscape fragmentation, especially in the main-stem 
area upstream of the TGD, the Jinsha, Yalong and Min tributary basins.  
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area and its two largest appended lakes (Poyang and Dongting lakes) (Zhao et al., 

2008). Of the six extant species of porpoise, this is the only population found in fresh 

water. As a result of river landscape fragmentation, shrinkage in porpoise habitat 

could happen consequently, which could cause further alternations in ecological 

processes and the distribution of the Yangtze finless porpoise by blocking porpoise 

movements. 

 

Figure 8.8 Variation of river connectivity and fragmentation for the Yangtze River 
represented by WDCI and WREFI from 1950 to 2020. 

Except the river fragmentation assessment introduced above, the river connectivity 

assessment also reported a similar future trend of river system degradation. Figure 8.8 

indicates a steady loss of river connectivity in future as a result of new dam 

construction. The steady decreases in WDCI and WHCIU reveal a steadily worsening 

crisis to the river system. The destruction of spawning sites and the obstruction of 

migration routes may result in sharp population decline of fish species and freshwater 
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animals. For example, after the closure of the TGD, the latest investigation in 2012 

shows a total of only around 1,000 finless porpoises in the Yangtze River 

basin−making them even rarer than giant pandas in the wild (Qiu, 2012).  

Another case in point is Chinese sturgeon, a kind of maricolous anadromous 

migratory fish. In 1981, the migratory route was disconnected by the Gezhouba Dam. 

The fish had to naturally reproduce at the downstream river of Gezhouba Dam, and a 

new spawning ground was formed. The length of the new spawning site became less 

than 1% of the historical sites (Zhou et al., 2014). After water storage and power 

generation of the TGD in 2003, the propagation of Chinese sturgeon has been 

impacted dramatically. According to field surveys, the fish used to spawn twice a year 

before the closure of the TGD, but only once happened after that. Besides, the 

spawning scale is also declining with each passing year (Wang et al., 2011). With 

more large dams constructed in the Yangtze River basin, the river will become more 

disconnected; more migratory fishes will be affected. 

Additionally, it is particularly noteworthy that the Jiangxi Province has proposed a 

plan to dam the Poyang Lake to maintain the water levels in the lake. The dam would 

be built at the narrowest part of the channel that extends north from the Poyang Lake 

to enter into the Yangtze River at Hukou. The project was mainly stimulated by 

current severe situation that water is stored behind the TGD during the winter months 

for power generation, starving the Poyang Lake of supplies. Water levels in the 
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Poyang Lake have been dropping since 2003 and in December fell by a record low of 

7.5 meters, although some researchers have argued that recent extremely low water 

levels were mainly caused by the remarkable decline in inflows to the middle-lower 

Yangtze reaches due to lack of precipitation and possible human activities (Lai et al., 

2014). 

The huge dam on the Poyang Lake may cause dramatic river fragmentation and 

adverse effects to the river ecosystems in the middle-lower Yangtze reaches. The 

Poyang Lake and its tributaries would lose the connection with the Yangtze River. The 

disruption of the connection to the Yangtze River would dramatically affect the 

movements of the finless porpoise and fish. For example, 450 Yangtze finless 

porpoises, or 25% of the total in the Yangtze River, are distributed in the Poyang Lake 

(Zhao et al., 2008). The density of porpoises in the Poyang Lake is the highest 

compared to all other river sections. The proposed dam may prevent the finless 

porpoises from movement between the Yangtze River and the Poyang Lake, and thus 

fragment their distribution.  If fish paths could be designed for the passage of fish, the 

facility may not meet the requirements for this species.  Even if the sluice gates are 

open, it is still unclear that if the porpoises will pass through.  The dam could be fatal 

for this flagship species.  

Despite the possible provision of fish paths, the dam would also impact fish species 

by blocking migrations and fragmenting their populations.  According to a previous 
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study (Wu et al., 2006), of 58 species of fish recorded at Nanjishan National Nature 

Reserve during 2003—2004, 20 species were migratory.  Many fishes, including 

commercial fishes, utilize the sedge zone for spawning. After the damming of the 

Poyang Lake, the variations of water levels, which will affect distribution and 

abundance of the sedge communities, will have complex effects on fish spawning. In 

fact, populations for Chinese sturgeon, and other rare species initially found in the 

Poyang Lake, have already plunged across the Yangtze River basin (Dudgeon, 

2010).  The planned dam will worsen the current situation of natural ecosystems in the 

Poyang Lake drainage area. Given the intense negative pressures on many fish 

restricted to the Yangtze River basin, very thorough assessment of these impacts 

should be completed before a dam could be constructed.  

8.6 Other possible impacts 

Apart from the impacts discussed above, there are many possible impacts deserving 

deep discussion. The possible resultant signal of environmental impacts is favoring 

the reproduction of oncomelania snails downstream (McManus et al., 2010). For 

example, the TGD increased the snail’s habitat−and the infection risk. In endemic 

areas near lakes and wetlands in the middle reach, prevalence hovers around 5% 

(Stone, 2011). Although the health authorities are improving sanitation and 

implementing other measures to reduce the infection rate, for many of the villagers 

relocated to downstream schistosome-endemic areas, who have no immunity to 
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schistosomiasis, they will readily acquire a schistosome infection on exposure, and 

likely develop severe disease as a result (Gray et al., 2012).  

Also, as a result of the South–North Water Diversion Project, water pollution along 

the Eastern Route, limited water resources in the origin of the Han River and large 

displacement of 300,000 persons for the Central Route have also been concerned (Zhu 

et al., 2008; Wang et al., 2009b; Zhang, 2009; Liang et al., 2012). Water transferred 

from the lower Yangtze reach will pass through and impound four lakes. The Eastern 

Route is laid on one of the most developed regions of China. Large amounts of 

untreated industrial wastewater are discharged to the lakes, which serves as water 

storage facilities along the route (Zhang, 2009). There are inadequate sewage 

treatment facilities for millions of people living in the rural areas. Although the 

government has been very active on pollution control in past decades, monitoring 

results suggest efforts are not very effective (Mao et al., 2001). In addition, if the 

Poyang Lake is dammed and the water in the lake keeps stagnant in winter, the annual 

exchange rate would be greatly slowed. Water quality would decline. The aquatic 

vegetation of Poyang, highly important for fish and endangered waterbirds like the 

Siberian Crane, is sensitive to deterioration in water quality. Dongting and other lakes 

in the mid Yangtze basin have undergone a sudden transformation from 

macrophyte-dominated vegetation to a system dominated by phytoplankton, partially 

due to declined water quality (Harris and Zhuang, 2010). Such a change in the Poyang 

Lake area would be extremely expensive if not impossible to reverse. 
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8.7 Summary and conclusions 

The expanded study reveals worsened impacts on water regulation, sediment retention, 

river connectivity, river landscape fragmentation and others due to future dam 

construction. By combining the existing reservoirs with a total storage capacity of 85 

km3, the total regulated water volume will be 215 km3, or 53% of the runoff of the 

upper Yangtze River. The total estimated annual sediment trapped in the newly 

constructed reservoirs will be 150 Mt, which will cause a sharp decrease in sediment 

inflow to the TGR and further downstream erosion and riverbed degradation. The 

study also revealed a steady loss of river connectivity as a result of new dam 

construction. Thus, some countermeasures should be taken to preserve the Yangtze 

River and the associated river ecosystems. For example, better management of the 

existing reservoirs to recover the lost river connectivity. If necessary, the dams which 

can cause minor impacts on river connectivity and river landscape fragmentation 

should be prioritized. Where possible, hydropower projects should be built on 

tributaries, not on the main stem. If dams must be built on the mains tem, low-head 

dams sited as far from the estuary as possible should be preferred. 
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9 Conclusion 

9.1 Introduction 

In the Yangtze River basin, there are no places untouched by the consequences of dam 

development, although the extent and impact vary greatly across the river basin. 

These impacts can be seen directly through the inundation of land, crops, cities and 

villages by dam construction, flow regulation through water withdrawals and water 

transfers, fragmentation of river landscapes through river interception by the 

construction of small dams and weirs. Current efforts to assess the consequences, 

identify possible potential environmental risks and thereby control dam development, 

fits precisely with the goals of geographers who seek to explore spatial distribution 

patterns and hydrological processes related to dam development and the impacts on 

the physical river environment. This dissertation in place within the entire Yangtze 

basin includes exploring spatial distribution of dams, investigations of long-term 

impacts of dams on sediment retention and water regulation, developing metrics to 

quantify the impacts of dams on river connectivity and river landscape fragmentation, 

identification of vulnerable river sections to dam development. Without knowledge of 

the spatial patterns of dams and possible impacts related to dam development, it is 

impossible to comment on historical conditions or to speculate on the feasibility of the 

remediation efforts in the future. 

Contributions to geography, fluvial geomorphology in both theoretical and applied 
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sense are an important component in any type of research in these fields. This 

dissertation adds to the numerous studies on anthropogenic impacts to the Earth and 

addresses the lack of detailed knowledge of the spatial patterns of dams and possible 

impacts related to dam development in the Yangtze River basin. The knowledge 

obtained in this study is essential to identify environmental risks associated with 

impacts on river systems. Also, using this knowledge, it has been possible to quantify 

the potential impacts of incremental dam development on river systems at basin and 

sub-basin levels in terms of environmental intactness. With this knowledge, it may be 

possible to develop the Yangtze River basin with a relatively lower environmental 

footprint, meeting local energy demands while conserving ecosystem processes 

basin-wide.  

In the following sections, the major findings of this thesis and their implications are 

summarized, followed by the limitations and corresponding recommendations for 

future research. 

9.2 Major findings and implications 

In Chapter 4, this study used a parsimonious method based on remote sensing 

techniques to identify and extract water bodies in the Yangtze River basin and classify 

them into three main categories: natural lakes, artificial reservoirs and rivers. This 

method combined data from the best available free sources, resulting in higher data 

quality. This study delineated nearly 43,600 reservoirs and 42,700 lakes and estimated 
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a total quantity of 0.7 million smaller reservoirs and 0.5 million smaller lakes (surface 

area <0.0036 km2). The combined surface area of the reservoirs is approximately 8,606 

km2 with a total storage capacity of approximately 288 km3, and the total surface area 

of natural lakes is approximately 16,200 km2, with a total storage capacity of only 46 

km3. These results indicate that the 43,600 reservoirs are capable of storing a volume 

of water equaling nearly 30% of the annual runoff of the Yangtze River. The results 

revealed that the Yangtze River basin, which was previously dominated by natural 

lakes, has become a reservoir-dominated basin due to anthropogenic impacts, 

especially reservoir construction and lake shrinkage. However, there is considerable 

geographic variation in the potential surface water impacts of the reservoirs. The 

greatest impacts to water regulation, environmental destruction and river 

fragmentation may occur in the Poyang Lake Region which has the greatest 

capacity-area ratio. Future dam construction could worsen the situation as additional 

large hydropower projects are closed in the upper reaches of the basin, potentially 

affecting the water cycle in the entire basin. 

In Chapter 5, a framework on 1,358 of large and medium-sized reservoirs (≥ 107 

maximum storage capacity) was developed and applied for calculating reservoir 

sedimentation rates in the multi-dam Yangtze River system while accounting for the 

effect of reduced sediment input due to upstream traps. Statistical inference was 

further used to assess the sedimentation rates of the remaining 42,000 smaller 

reservoirs. Given the inefficient, laborious reservoir investigations for reservoir 
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sedimentation, managers can benefit from an effective approach with which to 

identify at a large scale those reservoirs at higher risk of filling in the near future. The 

model is an effective approach to estimate reservoir sedimentation in a multi-reservoir 

system. The model could be applied equally well to other large river basins despite 

difference of sediment yields. The results indicate that annual sediment accumulated 

in the Yangtze reservoirs is approximately 691 (± 94) million tons (Mt), 669 (± 89) Mt 

of which is trapped by 1,358 large and medium-sized reservoirs. Only 22 (± 5) Mt is 

trapped by smaller reservoirs. The estimated mean annual rate of storage loss is 5.3 x 

108 m3 yr-1; but against the world trend, the Yangtze River is now losing reservoir 

capacity much lower than new capacity being constructed. 

Chapter 6 sets a pilot investigation in implementing a basin-wide assessment of river 

connectivity and river landscape fragmentation in the Yangtze River basin based 

proposed three metrics, WDCI, WHCIU and WRLFI. This study assessed the 

cumulative impacts caused by 1,358 large and medium-sized reservoirs at the scale of 

the entire Yangtze River basin. The overall result shows that the Gezhouba Dam and the 

TGD, have highest impact on river connectivity and fragmentation. The WDCI and 

WHCIU values for the whole Yangtze River have decreased from 100 to 34.12 and 

33.96, respectively, indicating that the Yangtze has experienced strong alterations over 

the past decades. The measurement of WRLFI displays a substantial part of tributary 

basins, especially the Wu, Min and Jialing tributaries, only maintain connectivity 

among one to three river landscapes. Connectivity between different river landscapes in 
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the middle and lower basin is the highest. Even so, only a small part of the system still 

maintains connectivity between seven out of twelve river systems — no part of the 

Yangtze connects all twelve river landscapes. 

Based on small dam data obtained in Chapter 4, Chapter 7 employed two metrics 

(DORs and AWDD) to investigate the impacts of small dams on flow regulation and 

river landscape fragmentation. The study revealed that 54, 977 km, or 26% of the 

streams are affected by upstream small dams. Of these, 45,878 km are first-, second- 

and third-order streams, representing 25% of all streams in the three size classes. 

Among the streams, the fourth -order streams are the most severely affected, 32% of 

which are affected. The AWDD analysis also revealed similar significant effects in 

regional areas such as the plain areas in the middle and lower Yangtze reaches. On 

average, people can find 2.3 small dams every 100 km2; but the dam density can as high 

as 9.1 small dams per 100 km2 in ridge-and-valley area in the middle Yangtze reach. 

The analyses in this chapter reveal that small dams can also exert significant impacts in 

river regulation and river landscape fragmentation on regional river systems through 

their sheer number and density. The results indicated that the impacts of small dams are 

comparable to large dams for fourth- and fifth-order streams, or even significantly 

exceed large dams for first-, second- and third-order streams. Therefore, small dams 

should be emphasized in mitigating environmental impact associated with the 

fragmentation of river landscapes, including the degradation of aquatic habitat and the 

movement of nutrients.  
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9.3 Limitations in this study 

Being an exploratory study, this work made a preliminary assessment of the cumulative 

impacts of dams from three perspectives (sediment retention, river connectivity and 

river landscape fragmentation) in the Yangtze River basin. There are several limitations 

in this thesis and additional efforts are needed in future to obtain a more comprehensive 

understanding of the cumulative impacts caused by dams at basin and sub-basin 

scales. 

9.3.1 Uncertainty in reservoir delineation 

When the reservoir areas were delineated on remote sensing images, the accuracy was 

affected in three aspects: the extraction of water bodies, the classification of water 

bodies into reservoirs and lakes, and the estimation of storage capacity.  

The accuracy of the identification and extraction of water bodies was mainly 

influenced by several aspects of image quality such as resolution, cloud cover, 

shadows and sediments in the tail-water of reservoirs. Thus, delineated water bodies 

that were smaller than 2x2 pixels or 0.0036 km2 were removed to ensure that the 

delineated features were real water bodies. Smaller reservoirs and lakes were also 

difficult to distinguish from paddy fields and aquacultural farms because natural lakes, 

paddy fields and aquacultural farms share similar spectral characteristics. In addition, 

sediments accumulate in the backwater of reservoirs, making the reservoir surfaces 
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appear smaller than they are.  

The classification of water bodies into lakes, reservoirs and rivers was initially based 

on the GeoNames database and thematic maps of water resources. For the water 

bodies without corresponding features on the thematic maps and in the GeoNames 

database, visual interpretation using high-resolution Google Earth images was 

performed. Therefore, in this stage, accuracy depended heavily on the accuracy of the 

GeoNames database and the thematic maps. However, the reservoirs that did not have 

corresponding features on the thematic maps and in the GeoNames database could 

have been misclassified as natural lakes if their dams were not easily identified. 

The errors in the last stage, i.e., the estimation of storage capacity, were due to the 

shape of the terrain and topography. This study used the area-capacity model proposed 

by Liebe et al. (2005) to develop area-capacity relationships. The model is mainly 

based on the V-shaped reservoirs and arc-shaped lakes that are dominant in the study 

area. The established equations may not be a good fit for deep U-shaped reservoirs 

with very steep sides because the area-capacity relationship for these reservoirs differs 

slightly from that for V-shaped reservoirs. 

9.3.2 Uncertainty in reservoir sediment estimation 

When estimating sedimentation trapped in reservoirs, some factors that may affect the 

sedimentation amount were not accounted for here. First, downstream bank erosion 
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after reservoir operation could be one of the most significant factors affecting 

downstream sediment transport because rivers tend to erode and lower riverbed 

downstream from large reservoirs. However, in general, the response of bank erosion 

rates (and channel width) to upstream reservoir closure is very complex, with trends 

of widening, narrowing and no change reported for various rivers (Williams and 

Wolman, 1984). For example, on such a river as the Wu River with 10 cascade 

reservoirs end to end on the 900-km river, the impoundments have caused the velocity 

of the water behind the dams to drop dramatically and thus led to decrease in bank 

erosion between dams. Little sediment is trapped in farthest downstream cascade 

reservoirs (e.g. Silin, Shatuo and Pengshui reservoirs), although their total capacity is 

nearly 3.6 km3 (Chen et al., 2008a). Second, other variables, including flow, relative 

pool depth, sediment supply from upstream, and sediment size and distribution, may 

influence sediment deposition within a reservoir, as these variables vary regionally 

with geology, geomorphic delivery processes, land-use history, and climatic cycles 

(Minear and Kondolf, 2009). The proposed model assumed that similar processes 

occur within this basin which is a simplification necessary for computation. This 

model is appropriate for detecting a basin-wide trend and highlighting reservoirs 

potentially at risk of sedimentation but may not give accurate estimates of 

sedimentation rates within individual reservoirs. Finally, the calculations for small 

reservoirs (< 0.01 km3) were aspatial. These estimates are somewhat speculative 

because this is based on the assumption that reservoir data are a 
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homogeneous distribution. However, the real reservoir density in the Yangtze River 

basin shows a clear east-to-west gradient except in the Sichuan Basin. Thus, the 

estimates for small reservoirs may need a more complete geographically referenced 

analysis. 

9.3.3 Limitations in assessment of the impacts of dams on 

river connectivity and river landscape fragmentation 

Three metrics were proposed in Chapter 6 to evaluate the cumulative impacts of dams 

on river connectivity and fragmentation. Because of data unavailability, universal 

passability standards were applied to the all dams. Yet these calculations may be 

problematic because this assignment is arbitrary. If possible, passability data should 

be collected. A second challenge is identifying whether the probability of passing a 

dam is independent among nearby dams. Independence may not be appropriate in 

situations where passability is dependent on water discharge (which varies at large 

spatial scales). For example, the Gezhouba Dam is close to the TGD (38 km), the 

water discharge at the Gezhouba Dam is significantly affected by the water released 

from the TGD. In this case, the probability of passing the Gezhouba Dam may not be 

independent. A third challenge is that each river landscape was considered to be of 

equal relevance throughout the entire Yangtze River basin when analyzing river 

landscape fragmentation using the WRLFI, but more crucial information could 

actually be obtained if the individual river landscapes and their associations with 
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specific processes and basin layout can be better geographically quantified. Besides, 

the WRLFI value is extremely dependent on the river-landscape classification map. 

Slightly different results may be obtained with a different classification map. Thus, an 

appropriate classification map is the fundamental determinant of the assessment based 

the index of the WRLFI. 

Another limitation for the three metrics is that they may undervalue the impacts of 

small dams because the three metrics can only provide an overall assessment on the 

impacts of dams, but small dams may contribute less to the overall alteration of 

large-river flows as a result of their limited storage capacities. Therefore, a method 

which can provide not only overall results but also detailed regional results is 

demonstrated in chapter 7. 

9.3.4 Limitations in assessment of the impacts of small dams 

on flow regulation and river landscape fragmentation 

In Chapter 7, this study evaluated the impacts of 42,000 dams on flow regulation and 

river landscape fragmentation based the metrics of DORs and AWDD. The results of 

the DORs study need careful interpretation to avoid arriving at misleading 

generalizations. First, the impacts and consequences of flow regulation may vary for 

different river size classes. When the first-, second-, third- and fourth-order streams are 

affected by small dams, the impacts are more significant at a regional scale than at a 

basin-wide scale. Second, the DORs ratio is important. For river sections with high 
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DORs values, major implications for the intra- and inter-annual flow regimes are to be 

expected. However, smaller values may indicate critical alterations as well, but of 

shorter duration or smaller amplitude. Third, it will largely depend on the individual 

reservoir operation scheme and additional impacts. In addition, the DORs approach 

intrinsically is subject to various uncertainties due to the lack of data, such as 

high-resolution DEM data, the role of dam operation. 

9.4 Recommendations for future work 

Based on the study results obtained, the discussion presented in previous chapters and 

the conclusions drawn in this chapter, there are several important and intersecting 

perspectives for future work. Five major research subjects that should be targeted to 

address existing limitations were shortly stated below. 

9.4.1 Reservoir storage estimation using multi-temporal 

remote sensing images 

Water level in a reservoir often follows an annual cycle: trapping water after the wet 

season, releasing water in the dry season. For most reservoirs in the Yangtze River 

basin, impoundment starts at the end of the rainy season in September, peaking at the 

end of October. Reservoir capacity is strongly related to reservoir surface area. Thus, 

the surface area large enough is a prerequisite to the estimate of a reservoir’s storage 

capacity. As stated previously, the Landsat images were obtained for September and 
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October from 2003 to 2008. Using images obtained in September and October is 

actually a compromise to obtain largest reservoir surface area. However, it should be 

highlighted that each water body was covered by only one image. Thus remote 

sensing has been unable to reflect the annual and inter-annual changes in reservoir 

surface area. Recent development and increased availability of satellite images (e.g., 

Landsat 8 launched in 2013) in the public domain has provided an opportunity for 

delineating reservoir surface area using multi-temporal remote sensing images. More 

accurate results could be obtained by analyzing multi-temporal remote sensing images; 

however, the image processing will be laborious and time-consuming, which will be 

another challenge to find a new approach to process the images efficiently. 

In addition, when using multi-temporal remote sensing images, the available images 

differ in spatial and time scales, and give rise to compatibility issues in overlay 

analysis in a GIS environment. Moreover, there is a lack of information regarding the 

accuracy of the images as well. The inconsistency of the spatial and temporal scales in 

different satellite images and doubts regarding the accuracy of the images increase the 

uncertainty of the reservoir storage estimation based on these images. 

9.4.2 More complex but accurate simulation of sediment 

retention in reservoirs 

The proposed modeling framework has made satisfactory predictions of sediment 

yield and sediment trapped in reservoirs in the Yangtze River basin. This framework is 
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relatively simple and it is envisaged that the inclusion of additional processes of 

erosion and sediment yield would further improve the accuracy of predictions from 

the modeling framework. As a next step in this study, the modeling framework could 

be expanded to include bank and channel erosion processes, reservoir characteristics 

(e.g., flow, relative pool depth, sediment supply from upstream, and sediment size and 

distribution), and mass movements resulting from seismic activities. 

In terms of the complexity of the modeling framework, model validation is another 

challenge, which is extremely important for the reliability of predictions. This, 

however, requires a comparison between the measured and predicted values from the 

model. The scarcity of sediment investigations in reservoirs is another source of 

uncertainty for the modeling results. 

9.4.3 Developing new models to estimate passability for each 

dam for river connectivity assessment 

When estimating passability for each dam, there are two future challenges. The first 

challenge is identifying whether the probability of passing a dam is independent of 

among nearby dams. Independence may not be appropriate in situations where 

passability is dependent on water discharge, which varies at large spatial scales. The 

second challenge is the changes in physical condition have complicated the estimation 

of passability for each cascade dam. Although the WDCI and WHCIU require 

estimates of passability at individual dams and better estimates of passability will 
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serve to reduce uncertainty, designing an approach to estimate passability of dams is 

still a challenge for the academic community. Also the approach should be validated 

against observed connectivity patterns. 

9.4.4 Integrating the assessment of river connectivity and 

fragmentation into environmental impact assessment 

An environmental impact assessment for dam construction is a formal process used to 

predict the environmental consequences (positive or negative); it proposes measures 

to adjust impacts to acceptable levels. Although an assessment may lead to difficult 

economic decisions and political and social concerns, environmental impact 

assessments protect the environment by providing a sound basis for effective and 

sustainable development to manage our water resources while taking into account the 

needs of present and future users. Thus, the assessment of river connectivity and 

fragmentation should not be viewed in isolation. It should be integrated into the formal 

environmental impact assessment to evaluate the impact of dams on river systems at 

basin-wide and regional scales because it does not cover socioeconomic impacts, not 

fully represent the spectrum of environmental impacts. Also, the assessment of river 

connectivity and river landscape fragmentation present a framework to effectively 

integrate river connectivity and free-flowing functionality into dam planning and adds 

regional and basin-wide perspectives to conventional environmental impact 

assessments. 
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In addition, it is commonly recognized that environmental effects may vary and that 

some rivers may be more threatened than others by a certain level of flow regulation 

because the effects are the consequences of joint forces, such as, dam construction, 

deforestation, water diversion, land cover change and climate change. Undoubtedly, 

regarding the associated environmental consequences, more research is required when 

carrying out formal environmental impact assessments. 

9.4.5 Application of the developed models to other large 

river basins in the world 

The developed models in this study for the large Yangtze River basin are mainly 

dependent on global datasets available in the public domain. Therefore, they can be 

repeatable to assess the cumulative impacts of dams on sediment retention, river 

connectivity and river landscape fragmentation for other large, data-sparse river 

basins in the world, such as, the Mekong, Indus, and Amazon. The resultant 

assessments can help identify, evaluate, and predict the environmental effects of new 

dam proposals prior to major decisions being taken and commitments made. However, 

the limitations introduced above on the models should also be noted to avoid 

misinterpretation. 
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