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SUMMARY 

 

 
Sustainability has become a hot issue globally and renewable energy sources 

are among the most important themes of sustainability research. Despite this 

trend, there are a few marketing papers addressing the renewable energy topic. 

To fill this gap, I study the diffusion of solar photovoltaic (PV) panels among 

households. More specifically I investigate why different households adopt at 

different points in time and how uncertainty affects their decisions. I use 

micromodeling approach to shed light on the underlying adoption mechanisms. 

I model solar panel adoption by forward looking households (or electricity 

producers in this context) as an investment decision in a technology with 

uncertain payoff. Using the visibility of rooftop solar PV panels from outside, 

I incorporate observational learning as the mechanism for information 

spillover across time and across households. I estimate the model using a 

unique household-level data set on the adoption timings of the solar PV panels 

in Germany. The estimation of parameters enables me to perform 

counterfactual policy experiments on the incentive instruments aimed at 

accelerating the diffusion process. I demonstrate that by leveraging the 

observational learning phenomenon, policy makers can adjust the timing of 

the incentive policies in order to maximize the diffusion of solar PV panels. 

The proposed framework can be adapted to other sustainable technologies and 

to different geographical contexts. 
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1- INTRODUCTION 
 

Sustainability has become a hot issue globally, and renewable energy sources 

are among the most important topics of sustainability research. During the past 

two decades there has been a big movement among different countries to 

support the adoption of renewable energy on a small scale (i.e. among 

households). This might result in the creation of a huge potential market for 

renewable energy sources which would ultimately replace conventional energy 

sources. Despite the importance and significance of this trend, the adoption of 

renewable energy has not been sufficiently studied in the marketing literature1. 

Looking at the diffusion pattern of solar PV (Photovoltaic) panels, it is 

important to understand why different households adopt at different points in 

time. Investigating the adoption dynamics can help answering this research 

question. The insights generated when applied to the policy experiments can 

have important implications for policy makers in the renewable energy field.   

  In this dissertation I aim to fill the gap in the marketing literature by 

studying the adoption of renewable energy. I take the consumers’ perspective 

to study the diffusion of solar photovoltaic (PV) panels among households. 

More specifically I investigate what drives the temporal distribution of 

residential solar PV panels and why different households adopt at different 

points in time2. My structural model captures the investment aspect of the 

                                                            
1 A recent Economist article points to the same phenomenon in the business literature: 
http://www.economist.com/whichmba/making-climate-change-one’s-business 
2 Since our data set only covers the households who have adopted solar panels, the 
focus of our study is on the adoption timing decisions (i.e. adoption now or delay) 
rather than the adoption decision per se.  Most of the diffusion models take the 
similar position.  
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adoption decisions in an uncertain environment; in other words, I treat 

households as forward-looking producers of electricity who decide to invest in 

solar PV panels with uncertain payoff.  Using the visibility of solar panels 

from outside, I model observational learning as the mechanism to reduce the 

inherent uncertainty in the adoption payoff. I estimate the model using a 

unique individual-level data on the adoption timings of the solar panels in 

Germany. The estimation of parameters enables me to perform policy 

experiments on the role of incentive policy instruments in accelerating the 

diffusion process.    

 

2- LITERATURE 
 

Studying the diffusion of solar PV panels is both important and complex. It 

crosses over different streams of research in economics and marketing. These 

broad areas include new technology diffusion models, durable goods adoption 

models, learning models, and renewable energy policy.   In this section I 

briefly discuss the relevant literature in each area and their interrelatedness. 

2-1- Diffusion models of new products 
 

Traditionally marketing researchers have been interested in modeling the 

diffusion of new products. Stemming from the seminal Bass model, Bass 

(1969), different aggregate models have been suggested to explain the 

adoption pattern of the new products as the function of the previous adopters, 

innovativeness of the adopters, and marketing variables (e.g. Generalized Bass 

model of Bass et. al. (1994) ). While these models could forecast the adoption 
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pattern well, the lack of theoretical foundations and their aggregate approach 

make them unsuitable for explaining the underlying mechanisms behind the 

diffusion pattern. Aggregate diffusion models assume that the population is 

homogenous and that only stochastic forces affect the spread of adoption 

timings. Thus they may not capture the underlying behaviors by 

heterogeneous customers such as learning. As such, they may not be very 

suitable for policy experiments.  

 

2-2- Micromodels of Durable Goods Adoption  
 

With the goal shedding more lights on the adoption process, marketing 

researchers have tried to use the micromodeling frameworks. The early 

theoretical works by Horsky (1990) and Catterjee and Eliashberg (1990) have 

built individual-level utility maximization as the foundation of the new 

product diffusion. In Horsky (1990), the diffusion curve is generated from 

individuals’ utility maximization over the household’s production function of 

all the commodities. It is then aggregated by assuming that the income follows 

extreme value distribution across the population. He incorporates uncertainty 

while not using the conventional Bayesian learning framework. By estimating 

an aggregate model, he shows that both income heterogeneity and uncertainty 

can affect the diffusion pattern. Chatterjee and Eliashberg (1990) propose a 

utility maximization framework allowing for heterogeneity in the preferences 

and beliefs of adopters. Their model incorporates the Bayesian learning 

mechanism with risk aversion to construct different aggregate diffusion curves. 

They demonstrate via a pilot survey-based estimation procedure that utility 
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maximization and learning are important in affecting the aggregate diffusion 

pattern.  Their model may not be easily applicable to estimating the typical 

individual-level adoption data used in the literature.  

Continuing this trend, several structural models have been proposed in 

the literature ever since, to provide deeper insights into the durable goods 

diffusion process.  Forward-looking behavior is an important aspect in the 

adoption of durable goods where quality improves and price falls over time.  

Melinkov (2000) and Song and Chintagunta (2003) are among the earliest 

papers bringing forward-looking behavior to the micromodels of diffusion. 

Melinkov (2000) proposes a dynamic model of computer printer adoption 

incorporating the expectation over the future quality. The setting is an optimal 

stopping problem for when to buy (e.g. hazard model) decisions. The 

estimation is done on aggregate sales data of the U.S. computer printer market. 

He shows that forward-looking is an important aspect in estimating 

micromodels of new durable products. Song and Chintagunta (2003)’s model 

is similar except for the built-in heterogeneity for both price and preference 

parameters. They estimate the model using aggregate data on the digital 

camera category in the U.S. market. Their model can generate flexible 

aggregate diffusion patterns incorporating heterogeneity and forward-looking.  

Despite having the micromodeling foundation, these two models are tailored 

for aggregate-level estimation. In other words, these models are estimated at 

the aggregate level and are unable to capture the dynamics in individuals’ 

behavior, like learning and information spillover. Thus they may not provide 

the best means for policy experiments in markets where uncertainty and 

learning play salient roles.  
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Another interesting paper to note is Yang and Ching (2013). They 

study the adoption of ATM cards by building a micromodel with dynamic 

usage optimization and static adoption decision. They benefit from a rich 

individual level data plus the cash withdrawal patterns before and after 

adoption. In their model, heterogeneity comes from age which affects the life 

horizon of individuals and therefore the total discounted adoption benefits they 

get. They are able to demonstrate why elderly have lower adoption rates. Their 

model does not incorporate any form of uncertainty into the adoption 

decisions.  

2-3- Learning Models 
 

In adopting products or services, there are usually uncertainties involved. They 

may be quality uncertainty (either because of quality variation or match 

uncertainty), actual cost uncertainty (uncertainty regarding the cost and 

benefits over the long term), and usage uncertainty (over subscribing to mobile 

phone plans). Modeling uncertainty and learning in new technology diffusion 

is the focus of an extant body of literature. The early decision-theoretic paper 

by Jensen (1982), and subsequent papers like McCardle (1985)3,  have 

proposed individual-level new technology adoption models incorporating 

uncertainty into the diffusion framework. While these models do a good job in 

behaviorally explaining the diffusion curve, they are ill-suited for empirical 

applications.  

Roberts and Urban (1988) is among the first empirical papers in 

marketing that model uncertainty and learning in the adoption of durable 

                                                            
3 Some recent papers in operations research literature have started tackling this 
problem (e.g. Ulu and Smith (2009)).  



6 
 

goods. The authors propose a model and utilize individual-level survey data to 

estimate the effect of attribute uncertainty on automobile brand choice 

decisions. Since then, there have been proposed various Bayesian learning 

papers modeling quality uncertainty (e.g. Erdem et al. (2005) utilize panel 

surveys to study the active information searching in choosing between 

different brands of personal computers). Since there is no repeat purchase, 

these models have mainly used survey data and have focused on individual 

learning, where private signals are the source of information.  

 In a similar vein, observational learning models study the setting 

where observing the adoption decisions of others is the source of information. 

Since actions reflect underlying beliefs, they give the attentive observer the 

ability to infer those beliefs via private signals. Thus the public will gradually 

converge in their actions (right or wrong) such that individuals neglect their 

private signals and only look at the predecessors actions. This phenomenon is 

called “Information Cascade”. The seminal theoretical papers in this field are 

Banerjee (1992) and Bikhchandani et al. (1992). So far, different variations of 

the classic observational learning models have emerged in the literature with 

the goal of making the settings more general (e.g. Rational observational 

learning introduced in Eyster and Rabin (2011)).  

There have been a few empirical papers in economic journals on the 

adoption of durable goods in the presence of observational and social learning. 

Grinblatt et.al (2008) is among the early papers studying the role of social 

learning in the adoption of automobiles4. It leverages the unique data of the 

                                                            
4 It is to be noted that automobiles are not conventionally considered as a new 
technology. 
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location of individual households and their purchase decisions in Finland. 

Individual-level choice model with the car purchases in the near proximity as 

the independent variable of interest. It establishes that the purchase history of 

the close neighbors affects the purchase of automobile by the focal consumer5 

while does not tackle the process behind this phenomenon. The other 

interesting paper to be mentioned is Conley and Udry (2010) that studies the 

impact of social learning on the adoption of new agricultural technology. It 

utilizes a unique dataset of the pineapple farmers in Ghana and their adoption 

of new fertilizers. The data allows the researchers to define the information 

reference groups of each farmer and to establish the sequence of information 

one receives on the performance of fertilizers used by peers. By assuming that 

the focal farmer can observe the performance of new technologies by others, 

the setting resembles information sharing (where one observes the outcome 

and the reasons behind it) as compared to observational learning (in which one 

doesn’t know the reasons behind adoption).   

It has taken some time for the marketing research scholars to study this 

established phenomenon. Zhang (2010) is a recent interesting paper with 

empirical model of observational learning. She studies the acceptance of 

kidneys for transplant in the U.S. market. In her paper, the perceived quality of 

kidney is influenced by number of refusals earlier in the waiting list. She uses 

a unique individual-level data of the sequence of decisions by patients in 

different queues allowing a clear formulation of observational learning. She 

assumes that each patient knows the preferences of its peers in the waiting list 

and thus shows that earlier rejections negatively affect the quality perception 
                                                            
5 In this sense it is similar to Bollinger and Gillingham (2010) while their model is at 
the aggregate-level.  
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for the focal patient. The unique setting (i.e. where learning is only from the 

past non-adopters) and the assumptions taken (i.e. one knows the preference 

distribution of others) make it difficult for the adoption model to be applied to 

the typical new products. There have been attempts to use novel settings to 

study the social influence on the adoption of durable goods. Narayan et. Al. 

(2011) construct a conjoint experiment to investigate the peer influence on the 

adoption of E-book readers and mobile phones. Contrary to the conventional 

models where learning is on quality or other product attributes, they show that 

social learning can also affect the attribute weights.  In general the lack of 

proper individual-level data (i.e. to allow for a clean construction of 

observational learning) and difficulty in defining quality perception (i.e. 

quality is subjective and hard to model in most contexts) are among the main 

reasons that we have not seen substantial similar models for the adoption of 

durable goods. 

Table 1 shows an overview of the micromodelds of durable goods 

adoption in marketing literature. Since I use the same methodological 

framework, it helps clarifying my thesis’s position in terms of the 

methodology and data. 
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Table 1 - Micromodels of Durable Goods Adoption 

Model Context Individual Level Panel Data Forward Looking Individual Learning Observational Learning 

Roberts and Urban 
(1988) 

Automobile models      

Horsky (1990) Appliances      

Chatterjee and 
Eliashberg (1990) 

Career counselling  
software      

Song and 
Chintagunta (2003) 

Digital camera      

Erdem et. al. (2005) 
PC 

   *    

Gordon (2009) 
CPU 

(Adoption/Replacement) 
     

Heutel and 
Muehlegger (2010) 

Hybrid vehicle      

Yang and Ching 
(2013) 

ATM cards      

My model 
Solar PV panels 

(Investment)      

* They have used a survey in which respondents were asked explicitly how they search and gather information. 
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2-4- Diffusion models of sustainable technologies 
 

Only recently a new trend has been started to study the adoption of renewable 

energy from a marketing perspective. Somehow similar to the topic of this 

thesis, Bollinger and Gillingham (2010) look at the significance of peer 

influence in the spatial diffusion of solar panels in California. They use an 

aggregate hazard model at street level and focus on a quasi-experimental 

approach to identify the peer effects. They could show the positive influence 

of previous adoptions on the decision to adopt at the street level which results 

in clustering. While they control for neighborhood demographics, time trend, 

and cumulative number of installations, they do not structurally construct the 

adoption utility. The reduced form of the model can show the peer effects on 

adoption but not the mechanism through which it works6 and therefor it can’t 

be used for policy experiments.  

Heutel and Muehlegger (2010) use an individual-level model to study 

the consumer learning phenomenon in hybrid vehicle adoption. They focus on 

model-specific quality learning using aggregate sales data (they had to make 

assumptions to handle learning with aggregate data). They show that model-

specific learning is effective and can be either positive or negative. Shriver 

(2010) uses a full structural model of both demand and supply in a two-sided 

market setting (the automobile as the platform for consumers and fuel retailers) 

to study the role of network effects on ethanol fuel adoption. He uses zip code-

level data to estimate the demand parameters in a BLP-style model (as in 

Berry et al. (1995)). He shows that the network effect of the ethanol retailer 

positively affects the adoption of ethanol-compatible vehicles. All these 
                                                            
6
 They have mentioned this as a “prime topic for future research”. 



11 
 

studies had to deal with the aggregate nature of the data used for estimation. 

The aggregate estimation doesn’t allow the proper heterogeneity incorporation 

which may results in biased estimates.  Moreover, it doesn’t allow to explicitly 

modeling the uncertainty and the process through which it gets resolved 

during the diffusion process.  

 

2-5- Solar PV case 
 

Solar PV panels can be considered durable goods since they are one-time 

adoptions (with long operating life) and they experience rapid improvement in 

performance and decline in price over time. As in the case of durable goods, 

consumers form expectation about the trends of price and performance before 

they decide to adopt or wait depending option value of waiting. This makes it 

necessary to incorporate the dynamics of forward-looking behavior into the 

adoption model.   

Unlike most of the durable goods studied in the extant literature, solar 

PV panels do not bring any additional functionality (utility) to the adopters, 

but merely replace the conventional non-renewable electricity sources. Under 

the Feed-in Tariff scheme7, the electricity generated by solar panels will be fed 

into the grid at a rate higher than the one household buys conventional 

electricity from the grid8. Thus the adoption decision can be intuitively viewed 

                                                            
7 Among the incentive policies used by the policy makers around the world, Feed-in 
Tariff (FIT) has gained more attention especially in the case of solar PV panels. This 
is contract based with long horizon in European countries (e.g. 20 years fixed Feed-In 
Tariff contract in Germany). Please refer to the Appendix 1 for the brief introduction 
and historical account on the Feed-in Tariff policy in Germany. 
8 Here we assume that the electricity consumption would be the same regardless of 
adopting solar panels. In this case, the adopters pay for the fixed cost of the solar 
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as an investment decision (i.e. households acts as electricity producers who 

decide to invest in a new technology).  

In this setting, there would be no perfect information regarding the 

actual electricity output of the installed solar panel in future (i.e. it can be a 

function of weather and many other factors) and thus the payoff of the 

investment beforehand. As the result, uncertainty is an important factor to be 

accounted for. Specifically in the case of rooftop solar PV panels, the panels 

are installed on the roofs and can be visible from the outside. Therefor it can 

be safely assumed that the adoption decisions are observable by others 

immediately after installation. This makes the adoption of solar panels a 

suitable context to study the role of observational learning on the durable 

goods adoption. This can have important implications for the types of 

information spillover in the solar PV panel market.  

The above mentioned features add to the merits of studying the 

adoption of solar PV panels from the methodological standpoint. I build on 

micromodels of durable goods adoption to study the adoption of solar panels 

by forward-looking households.  I incorporate the investment nature of 

adoption, the option value of waiting, the uncertainty of the adoption payoff, 

and the visibility of adoptions as the distinguishing features of my model. I 

contribute to the durable goods literature by customizing a dynamic individual 

level model suitable for uncertain investment scenarios and accounting for 

cross-individual information spillover. The specific context and the unique 

                                                                                                                                                            
system and will receive stream of revenues by feeding the generated electricity to the 
grid in the future.  



13 
 

individual level solar PV adoption dataset allow us to avoid the limitations 

faced in the extant diffusion literature.   

In the following sections I elaborate on the proposed model and the 

dataset used. I will then continue by discussing of the estimation procedure 

and the results. 

 

3- MODEL 
 

The utility of adopting solar panels for household i at time t is a function of 

benefits Q  and cost  p   of investing in solar energy. I use a general indirect 

utility specification: 

U 	 Q 	p                                                         (1)                                            

 is IID an additive random shock to the utility which follows the standard 

normal distribution.  is the base utility of adoption (it is a function of 

neighborhood-level demographics), θ  is the propensity to the net financial 

benefits derived from adopting the solar panel (it is a function of 

neighborhood-level demographics), Q  is the potential benefits of adoption 

which is basically equals the average payoff  PV   of investment9. However, 

since solar PV panel is a new technology and the future income stream (i.e. the 

stream of revenues from selling the solar-generated electricity to the grid 

                                                            
9 I assume the life of the solar panel to be 20 years and the average annual electricity 
yield of the panel to be 1000 KWh per 1KWp (to be multiplied by FIT of the 
installation year). The discount rate of 0.95 is assumed for calculating the payoff of 
the income stream in the next 20 years. 
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based on the federal Feed-In Tariff rate over the life of the panels)10 depends 

on many unknown factors at the point of adoption (weather in the long run, 

quality of the panel in the long run, etc.), the households will have some 

uncertainty as to if they will fully receive the benefits or not. I call this 

uncertainty as ‘belief about investment payoff’, q , which is assumed to be 

between zero and one11. Therefore, I modify equation (1) as follows: 

U 	θ 	 	p                                                   (2)                                   

In the extant marketing literature, consumers are usually considered to be 

forward looking with respect to the adoption of the new technology. The 

utility of not adopting at time t, U , is the value12 that household i would get if 

he forgoes adopting now but keeps the option of adoption in the future periods. 

Since one does not have the perfect information about the future market, 

household i forms expectation over the value she gets in the next period. 

Therefore we have:  

U β ∗ E |                                                                               (3)                                     

where E |  is the expectation of the value function in t+1 given the 

current state13   and β is the discount factor.  

                                                            
10 I can also make the payoff net of the risk-free interests from investing Pit in bank 
deposits. I have run trial estimation and found that it doesn’t improve the estimates 
much.   
11 This uncertainty is different from the discount rate that one may use. Discount rate 
is known to the investor while the belief about the investment payoff is a function of 
the information one has prior to the investment.  
12 In the dynamic programing context, value (or value function) captures the utility 
one gains if he acts optimally given the state of the world.  
13 In the dynamic programing context, state (or state variables) encapsulates all the 
information one needs to know about the state of the world at time t.  
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I further assume that initially all the households have a common 

knowledge about the realization of investment payoff, q , although no one 

would know the true payoff. Each places faith on her belief. The initial belief 

for household i is:  

q t 0 	~N ω 	, σ                                                                              (4)                                  

where ω  is the mean of initial belief and σ  is its standard deviation14.  

Companies marketing the product would be contacting the potential 

customers through mass media, direct mails and telephones and trying to 

convince customers on the product quality or the potential income stream in 

the solar PV case using scientific reports that support their claims. I assume 

that the signals received by the individual households follow normal 

distribution around the true q  (unknown to the households): 

~N q	, σ  )                                                                                     (5)                           

where q is the true realization (between 0 and 1) of investment payoff and σ  

is the noise associated with the signal. The private signals received by each 

household are15: 

λ ,		λ , λ , … , λ , …                                                                           (6)                           

Combining the initial common belief with the private signal, each 

household updates its belief in a Bayesian fashion as follows: 

                                                            
14 In the learning models literature, for the ease of estimation, usually  ω  is assumed 
to be zero and σ  is set to be 1. I have estimated ω  in trial estimation and the value 
turned out to be almost zero. 
15 Each household only observes her signal and not others’ signals; otherwise they 
could get to know the distribution of signals and thereby the true quality. 
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ω        and       σ                                                           (7)                               

where ω  is the posterior belief of the true realization and σ  is the posterior 

variance of the belief. Acting on the posterior belief, each household decides 

whether to adopt the solar panel or not. I assume the households to be risk 

neutral (i.e. maximizing expected value) which means:  

Adopt	if:		 	θ 	 ω 	p 	 β ∗ E | 				

																				
Wait	if:			Otherwise																																																																														

    (8)                                 

Given the normality assumption for the random shock, the probability of 

adoption by household i at t=1 would be16:  

1 CDF	 θ ∗ p θ 	 ω β ∗ E | 								        (9)                                        

In the conventional learning models like Erdem and Keane (1996), it is 

assumed that there would be incoming signals in the subsequent periods (i.e. 

each time a consumer experiences a product) and in each period consumers 

update their beliefs according to (7) and make adoption decisions according to 

(8). Since my model is about the adoption of a new durable product, there will 

be no such product experience signal to influence the beliefs (i.e. my model is 

different from the conventional Bayesian learning models in a sense).  

Further, I assume that no new information is made available by the 

companies or acquired by the households in the subsequent periods, in effect 

implying that there are no more private signals after the initial period. 

                                                            
16 Each household knows its utility with certainty. From outsider’s point of view (e.g. 
neighbors), it is a random variable. 
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However, an important aspect of deciding to adopt a new technology is 

learning from others. In the solar PV case, households can observe the 

adoption of rooftop solar panels by other households in the neighborhood and 

use that information to infer about the investment payoff. Although I do not 

have data on the actual word of mouth (i.e. consumers share their private 

signals to each other), the mere observation of other households’ adoption in 

the same neighborhood can reveal something about the investment payoff. I 

hence incorporate observational learning (i.e. inferring private signals from 

observing the actions of others) in my proposed model. This observation is a 

source of probabilistic inference because the observed number of adoptions in 

the neighborhood is just one of many possible outcomes and the focal 

household may never know the reasoning behind the adoptions by others. 

Further, as long as the household has not adopted the product, she would keep 

updating her belief every period via observation. I model this process as 

follows. 

Representing the neighborhood17 as consisting of homogenous 

consumers, the average household’s utility of adoption at time t in 

neighborhood k is given by: 

	 θ 	 	 pkt                                                 (10)                       

This is very similar to equation (2) but operates at the average household at the 

neighborhood level18. The average household is expected to adopt if the utility 

                                                            
17 I use street segment vicinity as the neighborhood where each street has a unique 
code. 
18   and θ are the same for all since they are function of neighborhood 
demographics.   and p  are calculated based on the average panel size in the 
neighborhood.  
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of adopting is greater than zero. Here  19 is the mean belief across the 

neighborhood k in time t while the standard deviation is assumed to be  σ . 

The standard deviation is same as that of the quality signal received from the 

company (i.e. as in (5)) for the reason that the market level belief will be 

reflecting the underlying uncertainty of the signal generating source. Since a 

household observes the fraction of households adopting the solar PV panels in 

its neighborhood out of those who have not adopted yet, she can make an 

inference. Using (9) and by using the probability of adoption and acceptance 

rate in neighborhood k interchangeably, we’ll have20: 

, θ ∗ p
θ ∗ 	                                    

                                                                                                                 (11)                              

This defines the payoff inference a household in neighborhood k will be 

getting by observing others’ adoption decisions. This will be same for all the 

households in neighborhood k21.  

Note that since at t=1 (before realization of the adoption decisions in each 

neighborhood) there was no observation.  To initialize the process I assume 

that the household i has a prior belief about the proportion of households in its 

                                                            
19 The mean belief, γ , is time variant and captures the belief at the neighborhood 
level about the investment payoff. In other words,   is what one infers about the 
investment payoff by observing the adoption pattern at neighborhood k at time t.  
20 The proof is given in Appendix 3. 
21 Note that γ  is the inference taking place in time t by observing the adoption 
pattern in the neighborhood in t-1. 
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neighborhood that would adopt (i.e. acceptance rate). This prior belief is 

assumed to stem from a beta distribution22:  

	 	 	 | 	 ~ Α1	, Β1      (12)                                      

For tractability, I assume that households don’t have any knowledge (i.e. 

ignorance) of the proportion of adopters beforehand which can be modeled by 

choosing (1,1) as priors for Α  and  Β 23.             

At the end of period one, the decisions of all households in the 

neighborhood k become realized (in total N1k adoptions out of M1k households 

in neighborhood k). Observing this, household i updates its belief regarding 

the acceptance rate in its neighborhood. 

	 	 | , ~ α1 N1 	, β1 M1 N1 	    

                                                                                                                      (13) 

As noted above (equation 11), there is a one to one correspondence 

between the acceptance rate and the quality inference. Thus household i 

combines her prior belief with this new signal from the market (mean quality 

inference from observation as in 11) to arrive at her posterior belief in t=2  and 

afterwards. 

                                                            
22 Beta distribution is chosen for its range (between 0 and 1) which makes it suitable 
for the proportion (i.e. acceptance rate) and also its conjugacy with 
Bernoulli/Binomial observations (i.e. adoption proportion observations).  

23 Alternatively, I can use the adoption proportion in different neighborhoods before 
t=1 to exogenously define the priors Α  and  Β  (i.e. I need to equate the historic 

proportion to the mean of the Beta distribution   and solve for them accordingly). 
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   ω 1        and   σ 1                                                         (14)                                              

It can be seen from (14) that the effect of observing others’ behavior (at the 

neighborhood level) has been incorporated into the learning model.  

Given the posterior belief, household i decides to adopt or not depends on: 

adopt	if:	 	θ 	 ω 	p 	 β ∗ E | 													

																				
: 																																																																									

(15)                    

Those households who have not adopted till time t would go through the same 

process.  

       I need to solve for the value function before I can proceed with the 

likelihood function. The adoption decision depends on the price and payoff of 

investment (observable states) as well as the belief about the quality and the 

random shock (unobservable states). For the new technologies, the price falls 

down dramatically over time and usually consumers form rational expectation 

over the price in future before deciding to adopt or not. This makes the 

dynamic problem non-stationary (or time dependent). The adoption of solar 

panels is a one-time investment (i.e. if you adopt the solar panel there is a little 

chance you repeat the same adoption in the near future) which makes the 

dynamic problem similar to the optimal stopping problems. Therefor I can cast 

the solar panel adoption into the finite horizon optimal stopping problem. 

Following the extant literature on this methodology (e.g. Pakes (1986), 

Eckstein and Wolpin (1989)), I solve for the value function at each time and 

for each household using the backward induction algorithm starting from the 



21 
 

terminal period T24. I assume that each household forms rational expectation 

over price and payoff given all the historic data points up to t (this makes the 

expectations time specific which seems intuitive). Moreover, I assume that the 

future quality belief (ω ) is expected to be the same given the unobserved 

nature of it. Lastly, I use the conditional independence assumption for random 

shocks to make the individual-level backward induction algorithm tractable.  

Having solved for the value function in (15), I can construct the likelihood 

function for household i as follows: 

∏ 1 CDF	 θ ∗ p θ 	 ω β ∗

E | ∗ , CDF	 θ ∗ p θ 	 ω β ∗

E | ∗ _ ,                                             (16)                                                 

Where 1-CDF(…) is the probability of adoption given in (9) and therefor 

CDF(…) is probability of not adopting. ,  and _ ,  (i.e. 

adopt later) are dummy variables for adoption and not adoption respectively; 

their sum is 1 at each time.  

I take the log of the  to get . This way the product 

term in (16) (i.e. ∏ …) will become the summation (i.e.  ∑ …) which is 

easier to handle. By summing over the log likelihood of each household, I will 

have the total log likelihood.  Minimizing the total log likelihood, I can 

                                                            
24 We assume T to be 10 years ahead of time t. Given the rapid changes in the solar 
photovoltaic technology, having a very far terminal period would make little sense.  
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estimate the model parameters (q	, σ , , )25 using Simulated Maximum 

Likelihood Estimation.  

 

4- DATA 
 

I utilize a unique dataset on adoption timings of the residential solar PV panels 

in Germany. The sizes of the residential solar panel systems are equal to or 

less than 10 KWp26. The data covers nine years, from 2002-2010, and I 

consider each year as a discrete time unit. In total there are over 11000 

adopters. Table 2 shows the distribution of adoptions as well as market 

statistics across the nine years27: 

  

Table 2 – Annual Adoptions Statistics 

Year Adoptions 
Average Panel 

Size 

Price 

(€/1KWp) 

Feed in Tariff 

(€/KWh) 

 2002 
 584  6.09  5100  0.48 

 2003 
 563  6.18  4900  0.46 

 2004 
 923  6.24  5800  0.574 

 2005 
 1276  6.31  5400  0.54 

 2006 
 844  6.35  5100  0.52 

 2007 
 884  6.41  4400  0.49 

                                                            
25 q	, σ  are not shown in the likelihood function but they are the essential part of the 
process generating ω  as in (6), (7), and (14). They are treated as parameters and get 
estimated. Also to be noted that I assume  0.95, 0, and  1  due to the 
lack of data for identification; this is a common practice in the marketing literature. 
26 This is the conventional definition of residential solar PV installations. 
27 The number of adoption and the average panel sizes in each year are calculated 
from the adoption dataset. The values of price and Feed-in Tariff are taken from the 
public solar PV market data in Germany; they are controlled for inflation.   
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 2008 
 1488  6.47  4260  0.46 

 2009 
 2082  6.54  3500  0.43 

 2010 
 2402  6.51  2800  0.39 

  

As can be seen from Table 2, the average size of the installed panels 

increases over time. On the other hand, as with other new technologies, the 

price decreases substantially over time. Having the information on price and 

Feed in Tariff rate, we can calculate the net present value (NPV) of investing 

in 1KWp solar PV panel from 2002 to 201028. The following figure shows the 

trend of the number of solar panel adoptions in each year contrasted against 

the calculated NPV of the corresponding investment at each year. 

 

  

 

  

  

 

 

 

 

                                                            
28 The NPV is calculated for 1KWp unit. We assume the life of the solar panel to be 
20 years and the average annual electricity yield of the panel to be 1000 KWh per 
1KWp. The discount rate of 0.95 is assumed. 

Figure 1 - Number of Adopters vs NPV of Investing Solar PV over Time 
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solar PV panels), tell us that social learning is playing role in adoption of solar 

PV panels and thus it should be incorporated into the model.  

Furthermore we can see form figure 2 that the adoption centers29 are 

shifting over time. This suggests that the demographics of early and late 

adopters are not necessarily similar and thus it might be important to account 

for the observed heterogeneity in modeling the diffusion process. To this end, 

I further supplement the adoption timings data with the rich demographics 

information of the households at the neighborhood level (there are 7338 

neighborhoods in my sample). For each neighborhood I know the average 

income, proportion of singles and married (with and without children), 

proportion of residential and commercial buildings. Moreover using consumer 

lifestyle segmentation, I augment the neighborhood demographics with the 

percentage of households with different lifestyle30. Table 3 shows the 

summary statistics and definition of the demographic variables used in my 

analysis. 

  

Table 3 - Demographics Summary Statistics 

Variable Explanation Mean 
Standard 

Deviation 

Average net income (€/10000) Average monthly 

income 
0.34 0.16 

Proportion of married families 

with children 

 
0.38 0.19 

Proportion of married families  0.36 0.18 

                                                            
29 A different color is used for the adoptions in each year while the size of circles 
shows the density of adoptions in each location. 
30 These include the percentage of households in each neighborhood belonging to a 
segment with different values, behavior and interests. The segmentation scheme is 
developed by GfK. 
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without children 

Proportion of single  

households* 

 

0.26 0.18 

Proportion of residential building  0.74 0.17 

Proportion of commercial 

buildings* 

 

0.26 0.17 

Proportion of Settled* Looking for peace and 

harmony 
0.16 0.06 

Proportion of Homebodies  Looking for material 

security 
0.22 0.05 

Proportion of Dreamers  Looking for happiness 0.08 0.05 

Proportion of Adventurers  Following passion 0.13 0.05 

Proportion of Open-minded  Balancing self-

actualization, social 

responsibility and 

pleasure 

0.11 0.05 

Proportion of Organics  Searching for 

sustainability and self- 

actualization

0.06 0.05 

Proportion of Rational/Realists  Valuing hard work and 

responsibility 
0.12 0.05 

Proportion of Demanding Balancing 

responsibilities and 

pleasure 

0.12 0.06 

 * Chosen as the base group in analysis. 

Having the rich demographics information of the households allows us 

to incorporate the heterogeneity across neighborhoods into the adoption model, 

which is shown to be important in studying the diffusion of new products.   

5- RESULTS 

5-1- Full Structural Model 
 

As households in my model are forward-looking, I needed to solve for the 

value functions before being able to derive the adoption probabilities and 
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substitute them into the likelihood function. I formulate a finite-horizon 

dynamic programing problem31 with 10 years ahead as the terminal stage. The 

corresponding values were calculated for each household at each time. The 

conventional discount factor of 0.95 was used for the backward induction 

algorithm. The exact details of the procedure used are given in the Appendix 2.  

I have estimated the model using household-level adoption data over the 

period of 2002-2010, supplemented with the demographics data at the 

neighborhood level. As the model incorporates individual and observational 

learning, I needed to use simulation-based estimation methods. The random 

draws were taken from the normal and beta distributions and supplemented 

into the model to generate the evolution of beliefs about the adoption payoff 

for each household across time. I used the Simulated Maximum Likelihood 

Estimator. I have used a bunch of demographics variables to capture the 

heterogeneity among the households. For  (i.e. propensity to the adoption 

payoff), I have chosen the demographics which may influence the importance 

of adoption in lieu of the financial payoff. Average income and the socio-

behavioral attributes (i.e. lifestyle segments in my study) seem to be suitable 

alternatives. For  (i.e. General perception of the solar technology), I have 

chosen another set of demographics which are mostly related to the 

neighborhood characteristics. Percentage of single and married (with and 

without children) households as well as the percentage of residential and 

commercial buildings in the neighborhood were chosen.  Given the richness of 

the data, the number of observations, and the complexity of the model (i.e. 

                                                            
31 It’s to be contrasted with the stationary infinite-horizon dynamic programing 
problems, where a common value is calculated for all individuals irrespective of the 
time.  
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individual-level, forward-looking, observed heterogeneity for α and θ32, 

uncertainty, observational learning), each round of estimation took a few days 

to converge using the Gauss Optimum package. The estimation results for the 

structural model are given in Table 4. 

Table 4 - Estimation Results (Full Structural Model) 

Parameter Estimate Standard Error 

Average Alpha ( )      ‐0.21*  0.03 

Percentage of Families with Children ( ) 0.00  0.04 

Percentage of Families without Children ( ) 0.06 0.04 

Percentage of Residential Buildings ( )  ‐0.16*  0.04 

True Quality (q) 
0.26*  0.00 

Signal Noise (σ ) 
2.53*  0.22 

Average Theta ( ̅)  2.47    7.19  

Average Income ( )  6.72*    2.78  

Percentage of Homebodies ( )   49.23*     9.98 

Percentage of Dreamers ( )   42.31*     7.91  

Percentage of Adventurers ( )   47.81*    7.25  

Percentage of Open-minded ( )   45.11*     7.17  

Percentage of Organics ( )   36.92*     9.61  

Percentage of Rationales ( )   42.37*     9.04  

Percentage of Demanding ( )   54.45*     9.91  

Log Likelihood ‐27068.42 

AIC    54233.09 
 

                                                            
32 	 	 	
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From the results in Table 4, we can see that the true quality is significant 

and is 0.26. This means that households scale down the average payoff to 

almost a quarter of its value in their own beliefs; thus for a new technology 

such as solar PV panels the payoff information given by marketers can be 

scaled down significantly. Signal noise is also significant and is high. This 

shows the diversity of initial beliefs over the payoff of solar PV panels among 

the population; it makes sense for a new technology where the perceptions are 

heterogeneous initially.  

  is negative and significant which means that on average households 

have negative view on the performance of solar panels; this can be true for all 

the new technologies in their initial diffusion phases. This can also be 

interpreted as on average households having low environmental or 

sustainability concerns as opposed to the economic concerns.  and  are 

insignificant which means that Compared to the singles, the families don’t 

have much different attitudes to the solar PV technology.  is negative and 

significant. In other words, households in the neighborhoods with more 

residential buildings (in contrast to the areas with higher commercial buildings) 

have lower perception on the solar technology or have lower sustainability 

concerns. This might be explained by looking deeper at the distinction 

between these two types of urban settings in Germany (i.e. the difference 

between demographic profiles like their income or education).    

̅, the intercept for the propensity to the net investment payoff, is positive 

but insignificant. , the effect of income on the propensity to the investment 

payoff is positive and significant; it means that households with higher income 
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attach more weight to the net payoff. This might be attributed to the higher 

education of the households with higher income. Looking at it differently, if 

the net payoff is positive households with higher income may adopt earlier and 

if the payoff is negative they may delay the adoption.  

Looking at the coefficients of lifestyle segments33, to , we can see all 

of the coefficients have positive and significant values. Since I have chosen 

“settled” as the base lifestyle variable, we can say that compared to the settled 

segment the rest attach more weight to the net payoff of the solar panel 

investment. Looking deeper into at the coefficients, we can see that the 

Demanding segment has the highest propensity to the payoff while the 

Organics have the lowest and all other segments are falling somewhere in 

between. In the initial stages of product definition where the price is high and 

thus the NPV of investment is negative, the Organics are more likely to adopt. 

In other words, early adopters of solar PV technology are mostly among those 

with Organics lifestyle or similar ones like Open-Minded and Dreamers. Once 

the price goes down and the NPV of the investment increases sufficiently, 

we’ll see more adoptions form other segments depending on their profile. The 

Demanding households tend to be among those adopting later (i.e. the late 

adopters are mostly from the Demanding segments). The coefficient estimates 

seems to be in line with the diffusion literature and the definition of different 

lifestyle segments. 

 

 

                                                            
33 The definition of the lifestyle segments are given in table 3.  
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5-2- Reduced-From Model (No Uncertainty and No Forward Looking) 
 

Modeling the adoption decisions without incorporating the payoff uncertainty 

and forward looking behavior, would result in biased estimates. This could 

eventually lead to inaccurate recommendations to the policy makers. To check 

this, I have estimated a benchmark adoption model without forward looking 

and payoff uncertainty (i.e. Q  was set to 1 in equation 1). Table 5 shows the 

estimates: 

Table 5 - Estimation Results (Reduced-Form Model) 

Parameter Estimate Standard Error 

Average Alpha ( ) ‐1.45*  0.03 

Percentage of Families with Children ( ) 0.01 0.04 

Percentage of Families without Children ( ) 0.01  0.04 

Percentage of Residential Buildings ( )  ‐0.09*  0.04 

Average Theta ( ̅) 66.93* 8.04* 

Average Income ( ) 3.19 3.14 

Percentage of Homebodies ( ) ‐30.97*  10.84 

Percentage of Dreamers ( ) ‐22.17*  8.66 

Percentage of Adventurers ( )  ‐25.94*  9.50 

Percentage of Open-minded ( ) ‐7.58  11.05 

Percentage of Organics ( ) ‐15.01 10.15 

Percentage of Rational ( ) ‐18.05  9.47 

Percentage of Demanding ( ) ‐23.88  12.24 

Log Likelihood ‐ 29391.69

AIC 58809.38

Looking at the estimation results of the reduced-form model with no 

uncertainty and forward looking, and comparing them to those of the full 

structural model in Table 4, we can see that there are significant changes in 
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sign and magnitude of the coefficients. The magnitude of  is almost eight 

time of the same variable in table 4.  The magnitude of the ̅ in the benchmark 

model is almost thirty times that of the full model. On the other hand, the 

effect of income on  is insignificant. Moreover, we can see that the sign of 

lifestyle segments is negative, which is opposite the full structural model. 

These drastic changes in  may be the result of omitting the uncertain element, 

Q  , from the equation.  

Looking at the fit of the two models, we see that the full structural model 

outperforms the reduced-form model both in terms of log likelihood and AIC. 

This is due to the fact that uncertainty plays a significant role in adoption of 

new technologies and specifically in the case of solar PV panels. Thus it’s 

important to properly incorporate learning mechanisms (both individual and 

social) into the micromodels of new technology adoption.   

 

5-3- Learning (Evolution of Beliefs) 
 

I have structurally incorporated the observational learning mechanism into the 

diffusion framework. While the estimated parameters in Tables 4 show the 

significance of the true quality and signal noise, we can’t see how 

observational learning works by looking at the estimates. To inform the policy 

decisions, we may need to look at the evolution of households’ beliefs (of the 

investment payoff34) over time in different regions. To demonstrate the power 

of my proposed framework in explaining the underlying adoption mechanisms, 

                                                            
34 Having the parameters estimated, the beliefs are constructed for each household 
over time.  
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I have selected few individual households and have plotted their payoff beliefs 

(ω ) at each time against the number of adoptions they observe in their 

neighborhood.  

 

 

 

 

 

 

 

Figure 3 shows the belief evolution for a sampled household across 

time. We can see that its belief decreases gradually as time goes by, since the 

number of adoptions it observes over time is zero from 2002 to 2004. 

        

 

 

 

 

 

 

Figure 3 - Evolution of Belief (Constant/Declining Case) 

Figure 4 - Evolution of Belief (Increasing Case) 
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Figure 4 shows that the belief increases over time when a household 

observes the adoption decisions by its neighbors along the way. In this figure, 

there is one adoption in 2002 and the next ones take place in 2005 and 2006. 

Therefore we can see that the belief increases by more than two times from the 

2002 to 2006.  

Figures 3 and 4 depict the importance of accounting for observational 

learning in order to be able to explain the evolution of beliefs and 

consequently adoption decisions of households in different neighborhoods 

across time. This is indeed an important factor in explaining why some 

households adopt earlier than the others in contexts where the choices are 

observable by others. The in-depth insights generated can support designing 

incentive policies to cater to the heterogeneous population.    

 

5-4- Policy Experiments 
 

Having estimated the structural parameters of the adoption model, I am able to 

run policy experiments. This allows me to investigate the effect of 

governmental incentive policies on the adoption of the solar PV panels. 

Moreover I can also investigate the impact of the information spillover in the 

diffusion process and to demonstrate how it can benefit the policy makers.   
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5-4-1- Seeding  
 

Seeding is an established marketing strategy in which marketers give 

trial samples of the new product to a group of consumers in order to trigger the 

diffusion process via social learning. This strategy has been documented in the 

literature long time back (e.g. Arndt (1967)) and has been revisited over time 

(e.g. Libai (2005)).  Seeding strategy can be of special interest to the policy 

makers for the solar PV market where uncertainty and observational learning 

play role.  

I run a simple seeding policy experiment in which the government is 

giving away a free solar panel to each neighborhood in 2002. In total, 7338 

additional solar PV installations35 take place in this scenario. I then investigate 

the incremental number of installations, due to observational learning, from 

2003 to 2010 as the result of such incentive scheme.   

To show this, I need to re-run the full structural model with the 

additional 7338 adoptions (equally spread across neighborhoods) in 2002. 

Then the estimates were contrasted to the status quo policy to calculate the 

incremental installations in each year36. The results are shown in Table 6. 

  

Table 6 - Policy Experiment 1:  Seeding One Solar PV Panel in Each 
Neighborhood 

Year Incremental Adoptions (Compared to Status Quo) 

 2002 
 7338 

                                                            
35 There are 7338 distinct neighborhoods in my dataset and with a free solar panel to 
each neighborhood, there would be additional 7338 adoptions in 2002. 
36 We assume that the seeding is an exogenous process and thus doesn’t affect the 
forward looking behavior of the dynamic model.  
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 2003 
 31 

 2004 
 46 

 2005 
 46 

 2006 
 35 

 2007 
 29 

 2008 
 18 

 2009 
 8 

 2010 
 2 

 Total 
 7338 (in 2002) + 215 (from 2003-2010) 

 
 
 

From Table 6, we can see that the seeding policy has resulted in 7338 

additional solar PV panel installations in 2002 directly. More interestingly, 

due to the observational learning across different neighborhoods, there were 

additional installations after 2002. Adding up incremental adoptions from 

2003 to 2010, the total adds up to 215 which can be attributed to the 

observational learning.  The cost of running this seeding policy would be 

roughly around 227 million Euros37.  

5-4-2- Subsidy  
 

Subsidizing the price of the solar PV panels for early adopters is a popular 

incentive policy practiced among the policy makers globally. The objective is 

to make the solar PV technology more affordable such that more people adopt 

it in early stages and help kicking off the diffusion faster.  

                                                            
37 It is calculated based on the average panel size in 2002 (6.08 KWp) and the average 
cost of the panels in 2002 (5100Euros/KWp). 



37 
 

To demonstrate how this scheme works, I run an experiment in which 

the government subsidizes 50 percent of the cost of solar PV panels for 

adopters in 2002. As the results, based on the utility in (8), there would be 

1501 additional adoptions in 2002 across the neighborhoods. Similar to what 

was done in the previous experiment, I can also show the incremental number 

of adoptions in post 2002 as the results of the one shot policy change in 2002. 

The results are shown in Table 7. 

 

Table 7- Policy Experiment 2:  Subsidizing 50 Percent the Installation Cost of 
Solar Panels in 2002 

Year Incremental Adoptions (Compared to Status Quo) 

 2002 
 1501 

 2003 
 5 

 2004 
 8 

 2005 
 9 

 2006 
 7 

 2007 
 6 

 2008 
 5 

 2009 
 3 

 2010 
 2 

 Total 
 1501 (in 2002) + 45 (from 2003-2010) 

 
 

From Table 7, we can see that the subsidy policy has resulted in 45 

additional adoptions from 2003 to 2010 which can be attributed to the 

observational learning in the neighborhoods.  The cost of running this subsidy 

policy would be roughly around 32 million Euros. 
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5-4-3- Feed-in Tariff  
 

Apart from the price of solar PV panels, Feed-in Tariff rate is an important 

aspect which affects the investment return through the future revenues from 

selling solar generated electricity to the grid. From this angel, FIT rate can be 

a policy instrument itself. European policy makers in the renewable energy 

field have leveraged the FIT rate over the past two decades in order to adjust 

the diffusion of renewable energy especially the solar PV. There are still hot 

debates among European Economists and Environmentalist on the right FIT 

rate.  

To demonstrate how this scheme works, I run an experiment in which 

the government increases the FIT rate by 100% for the adopters of solar PV 

panels in 2002. Consequently there would be 432 additional adoptions in 2002 

across the neighborhoods just because of the new FIT rate. I can also 

demonstrate the effect of observational learning through the incremental 

number of installations post 2002. The results are shown in Table 8. 

 

Table 8- Policy Experiment 3:  Increasing the FIT rate for the adopters of 
Solar Panels in 2002 

Year Incremental Adoptions (Compared to Status Quo) 

 2002 
 432 

 2003 
 1 

 2004 
 3 

 2005 
 3 

 2006 
 2 
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 2007 
 1 

 2008 
 1 

 2009 
 1 

 2010 
 1 

 Total 
 432 (in 2002) + 13 (from 2003-2010) 

 
 

From Table 8, we can see that the subsidy policy has only resulted in 

13 additional adoptions from 2003 to 2010.  The cost of running this subsidy 

policy would be roughly around 38 million Euros.  

By comparing the subsidy and FIT as the two common incentive 

policy instruments, we can see that subsidizing the price of solar PV panels in 

early years is far more effective and less costly at the same time. This can be 

due to the asymmetric roles of investment cost and return on the adoption 

decisions. Coupled with uncertainty, this can be an interesting area for further 

investigation in the future research. Moreover it seems that subsidy is also 

more efficient than the seeding policy. But this needs to be further investigated 

as per different seeding policies (e.g. giving free samples to all neighborhoods 

or only to the targeted ones).  

This section also highlights the importance of the information spill 

over through observational learning on the diffusion pattern. Thus it would be 

important for the policy makers in the renewable energy market to measure the 

impact of observational learning and to leverage it in determining the timing 

of introducing the incentive policies. As shown in the three policy experiments, 
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this can have substantial financial implications for the policy makers in the 

solar energy field.  

6- CONCLUSION 
 

In this paper I studied the adoption of solar PV panels by households. I used a 

micromodel to shed light on the underlying adoption mechanisms and to 

explain why some households adopt earlier than others. I modeled solar panel 

adoption as investment problem by forward-looking households (or electricity 

producers so to say) in a technology with uncertain payoff. Using the visibility 

of rooftop solar panels from outside, I incorporated observational learning as 

the main mechanism to reduce the inherent uncertainty in adoption payoff. I 

estimated the model using household-level data of the solar panel adoptions in 

Germany augmented with the demographics data at neighborhood-level. I 

showed that uncertainty plays an important role in explaining the diffusion of 

solar panels. Moreover, not incorporating a proper social learning framework 

to the diffusion models of solar PV panels (and to the new technologies in 

general) would result in biased results.  

I contribute to the durable goods adoption literature by casting the new 

technology adoption as a micromodel of investment with uncertain payoff 

incorporating heterogeneity, forward looking, and individual/observational 

learning. I demonstrated the strength of the proposed structural model in 

showing the evolution of beliefs for each household over time and thus 

explaining the underlying adoption mechanism. These could not be achieved 

by the aggregate diffusion models (even by the earlier micromodels in the 
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literature discussed). The parsimony of the proposed framework makes it 

adaptable to other new technology contexts with minor modification.    

Estimating the parameters of the structural adoption model has allowed 

me to run policy experiments to show the effect of governmental incentive 

instruments on the diffusion. I was interested to show how seeding, subsidy, 

and FIT instruments work as incentive policies. I tried to demonstrate that 

observational learning can be leverage in designing the incentive policies. 

Moreover, the timing and the breadth of implementation for such policies can 

be improved using my proposed model.   

The implementation of incentive policies to boost the diffusion of solar 

PV panels can put a heavy financial burden on governments.  Germany has 

become a case of success and is currently number one globally in terms of the 

share of solar energy. Despite this, German government has received lots of 

criticisms for the amount of money it has allocated to the renewable energy 

incentive policies including its generous federal-level Feed-in Tariff rates. 

Adding to the debate, other countries like Spain have followed the German 

way and ended up unable to pay the huge tariff deficit to the solar PV 

adopters38.  Therefore it’s becoming imperative for the policy makers to be 

able to understand the effect of incentive policies on diffusion pattern 

beforehand so that they design the policies sound and spend the tax payers’ 

money wisely. Looking at the ambitious targets set by big emerging 

economies like India and the early debates around it can underline the 

                                                            
38 You may refer to the  Economist’s article: 
http://www.economist.com/news/business/21582018-sustainable-energy-meets-
unsustainable-costs-cost-del-sol 
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implications of diligence in making such policy decisions39. The proposed 

model in this thesis may be of special interest to the policy makers in the solar 

PV market. The framework presented can be adapted to various sustainable 

technologies in different political contexts. 

However, this thesis has several limitations. Firstly, the data used 

didn’t cover the household-level information for the non-adopters. All the 

households in my data ultimately have adopted the solar PV panels in the 

course of my study. Thus my estimates can be interpreted as the timing of 

adoption (i.e. adopt now or delay) rather than the broader decision to adopt or 

not. This is a common problem with most of the aggregate and even 

micromodels of adoption. Secondly, I did not have access to the electricity 

usage data of the households in my data set. This prevents me from looking at 

the difference of the electricity bill before and after adoption of solar PV 

panels which is an interesting research problem itself.  Thirdly, the 

demographics data used were at neighborhood-level. Having finer 

demographic measures at household-level would add to the power of the 

estimates and might bring in new insights. Having finer data on measures such 

as political affiliation of the households and their past adoption of other green 

initiatives would add to the identification power of the estimates and to the 

richness of the insights. Finally, I had to assume that all the households in the 

market were aware of the benefits of the solar PV technology and their initial 

perceptions were similar. The awareness and perceptions can be affected by 

many factors including the local and federal advertisement campaigns for solar 
                                                            
39 You may refer to the article: 
http://www.livemint.com/Politics/lXzGQMT3ilOBUs1kM5Jg6N/Narendra-Modis-
solar-boom-closer-as-German-model-mulled.html 
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PV technology. This can bring another layer of heterogeneity to the model and 

can further improve the estimation power.  
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APPENDIX 
 

1- Feed-in Tariff Policy in Germany 
 

Feed-in Tariff (FIT) is a subsidy policy under which utilities or grid operators 

are obliged to accept and remunerate the feed-in of green electricity at a 

predetermined rate. The electricity may be produced by households or firms.  

Different tariff rates are typically set for different renewable energy 

technologies to compensate for their lack of cost effectiveness (i.e. their higher 

cost compared to conventional energy sources). The first form of feed-in tariff 

was implemented in the USA in 1978 following the energy crisis.  

Germany has gone through different phases in which different incentive 

policies have been implemented to support the adoption of solar panels.  

In 1990s, 1000 Roofs Program (a joint federal-state program) was 

implemented to assess the potential of solar PV. It was targeted for the below 

5 KWp capacities and subsidized 70% of investment cost with an upper limit 

of DM 27000 per KWp. This policy ended in 1995 with 4000 adoptions. 

Later on, Feed-In Law (StrEG) introduced which mandated the purchase 

of solar energy by utilities at 90% of average electricity price. It was supported 

by all parties while being objected by the utility companies.  

In 1998, the Green Party entered the ruling coalition in federal government 

and at the same time the Germany energy market was liberalized. The 

incentive policy in place currently was incepted in 2000. Renewable Energy 

Act (EEG) was passed in April 2000 which guaranteed a fixed feed-in tariff 

for 20 years. It was planned to have 5% decrease annually in the Feed-in rate 
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criticized for the economic burden it has put on the German economy and 

whether there could have been better ways of achieving environmental targets.  

 

2- Dynamic Programming Problem 
 

The adoption of solar panels is a one-time investment decision facing the 

households which makes the dynamic setting similar to the optimal stopping 

problems. Therefor I can cast the solar panel adoption into the finite horizon 

optimal stopping problem (i.e. the problem stops once each household adopts). 

The mathematical representation of the investment decision for household i at 

time t is as follows: 

Adopt		if	 stop :	 	θ 	 ω 	p 	 β ∗ E |

Wait	if:																		 	θ 	 ω 	p 	 β ∗ E |
           

                                                                                                           (A1)                                         

To solve the problem, I need to solve for the expected value function 

E |  (i.e. expected value of delaying the adoption). The value function 

is maximum utility one can gain if he takes optimal decisions in the future (i.e. 

the option value waiting in the investment problems). It is a function of the 

current state . I have four state variables in my model; two observable 

variables (p ,	  ) and two unobservable variables (ω , ). I need to know 

how each state variable evolves over time in order to get the expectation of the 

value function. For tractability, I assume that the belief over the payoff (ω ) 

remains the same as one looks into the future (one can’t predict the behavior 

of others perfectly to know how it will affect his own belief). In other words, 
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each household keeps its status quo belief when it considers how the world 

will look like in the future. As in extant dynamic models literature, I assume 

that the random shocks ( ) are IID and independent from other state variables. 

In other words, I use the conditional independence assumption in the literature. 

  I assume that each household at each time forms rational expectation over 

price (p ) and average payoff ( ) given all the historic data points up to t 

(this looks as if instead of the two state variables, I have time as the single 

state which makes the estimation much easier). This makes sense intuitively as 

we usually use the observed values from the past to construct our belief for the 

future. This also brings another dimension of temporal heterogeneity to the 

model. Therefore, I have used the observed price and payoff values by the 

households up to time t to extrapolate the future trends for them using time 

series regression. The data covers 2000 to 2010 (I have augmented the historic 

data from 2000 and 2001 to my data set) and I have extrapolated 10-year 

ahead of the state variables at each t (e.g.  2003-2012 for t=2002 and 2004-

2013 for t=2003 , and so on) . Table 9 shows the estimates:  
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Table 9 - Expectation over Observable State Variables ( , ) for 10 years Ahead 

  
  

2002 
  

2003 
  

2004 
  

2005 
  

2006 
  

2007 
  

2008 
  

2009 
  

2010 

Price Payoff Price Payoff Price Payoff Price Payoff Price Payoff Price Payoff Price Payoff Price Payoff Price Payoff 
2000 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 7000 6673.35 
2001 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 6500 6673.35 

2002 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 5100 6280.8 
2003 4300 6166.667 4900 6019.1 4900 6019.1 4900 6019.1 4900 6019.1 4900 6019.1 4900 6019.1 4900 6019.1 4900 6019.1 
2004 3350 5970.4 3950 5821.477 5800 7510.79 5800 7510.79 5800 7510.79 5800 7510.79 5800 7510.79 5800 7510.79 5800 7510.79 
2005 2400 5774.133 3180 5585.947 4660 6936.98 5400 7135.251 5400 7135.251 5400 7135.251 5400 7135.251 5400 7135.251 5400 7135.251 
2006 1450 5577.867 2410 5350.416 4260 7039.043 4752.784 7171.069 5100 6778.488 5100 6778.488 5100 6778.488 5100 6778.488 5100 6778.488 
2007 500 5381.6 1640 5114.885 3860 7141.105 4458.498 7301.359 4656.899 7075.964 4400 6439.56 4400 6439.56 4400 6439.56 4400 6439.56 
2008 -450 5185.333 870 4879.355 3460 7243.168 4164.212 7431.648 4399.756 7164.149 4272.332 6845.195 4260 6117.591 4260 6117.591 4260 6117.591 
2009 -1400 4989.067 100 4643.824 3060 7345.231 3869.926 7561.937 4142.613 7252.335 3993.761 6880.244 3988.403 6557.601 3500 5626.55 3500 5626.55 
2010 -2350 4792.8 -670 4408.293 2660 7447.293 3575.64 7692.227 3885.47 7340.52 3715.19 6915.293 3709.07 6544.053 3514.11 6172.667 2800 5120.161 
2011 -3300 4596.533 -1440 4172.763 2260 7549.356 3281.354 7822.516 3628.327 7428.705 3436.619 6950.343 3429.737 6530.505 3208.171 6108.333 2947.296 5726.325 
2012 -4250 4400.267 -2210 3937.232 1860 7651.419 2987.068 7952.805 3371.184 7516.891 3158.048 6985.392 3150.404 6516.957 2902.232 6044 2608.932 5614.197 
2013 -2980 3701.701 1460 7753.481 2692.782 8083.095 3114.041 7605.076 2879.477 7020.441 2871.071 6503.409 2596.293 5979.667 2270.568 5502.069 
2014 1060 7855.544 2398.496 8213.384 2856.898 7693.261 2600.906 7055.491 2591.738 6489.861 2290.354 5915.333 1932.204 5389.941 
2015 2104.21 8343.673 2599.755 7781.447 2322.335 7090.54 2312.405 6476.313 1984.415 5851 1593.84 5277.813 
2016 2342.612 7869.632 2043.764 7125.589 2033.072 6462.765 1678.476 5786.667 1255.476 5165.685 
2017 1765.193 7160.639 1753.739 6449.217 1372.537 5722.333 917.112 5053.557 
2018 1474.406 6435.669 1066.598 5658 578.748 4941.429 
2019 760.659 5593.667 240.384 4829.301 
2020 -97.98 4717.173 

Notes The red colored years are for the states after the data points in the forward looking model. 
The yellow shaded values are the forecasts while the non-shaded ones are actual values of the states observed by the households.   
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The conventional algorithm to solve the finite horizon dynamic 

programing problem is backward induction. In this algorithm, a terminal stage 

is assumed when the problem can’t go beyond then. In my setting, T=t+10 is 

assumed to be the terminal stage. I start from the terminal point: 

Adopt ∶ 														 U 	θ 	 ω 	p 							

Don t	adopt:						U 																																																									
    (A2)               

The optimal decision would results in the expected value function for T=t+10: 

 		 | max , 	E 	θ 	 ω 	p 		, 	                

                                                                                                                 (A3) 

Going backward one period, we have: 

 

Adopt ∶ 														 U 	θ 	 ω 	p 							

Don t	adopt:						U β ∗ | 																																																		
        

                                                                                                                (A4) 

Which can be solved similarly to have the E V |S .I repeat the same 

procedure 10 times to ultimately solve for the expected value function in 

t+1,	E V |S   ,  which is needed to calculate the adoption probability in 

time t as in equation (9).  

 

3- Inference from Observation 
 

In neighborhood k, the average household’s utility of adoption at time t is 

given by: 
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	 θ 	 	 pkt                                                            (A5)       

Where  γ  is the mean belief across the neighborhood k in time t and is what 

one infers about the investment payoff by observing the adoption pattern at 

neighborhood k at time t. Given the normality assumption for the random 

shock, the probability of adoption by an average household in neighborhood k 

would be40:  

1 CDF	 θ ∗ p θ 	 								                                (A6)                                        

In this equation, the assumption is that by knowing γ  we can solve for the 

probability of adoption for neighborhood k at time t. On the other hand from 

the Frequentist approach to probability, we may substitute probability with the 

ratio (i.e. proportion of households adopted or acceptance rate in 

neighborhood k at time t).  

The reverse is also true; by observing the acceptance rate in neighborhood k 

at time t , , one knows the probability of adoption at the 

neighborhood level. We equate the acceptance rate to (A6): 

1 CDF	 θ ∗ p θ 	     (A7) 

Since Normal is a symmetric distribution, we can have: 

CDF	 θ ∗ p θ 	               (A8) 

We can take inverse Normal CDF of the both sides: 

, θ ∗ p θ 	     (A9) 

                                                            
40 For tractability, we don’t incorporate value function into the average neighborhood 
belief. 
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By using (A9), she can solve for the mean belief:   

, θ ∗ p
θ ∗ 	          

                                                                                                                 (A10) 

 

4- Social Learning Evidence 
 

By looking at Figure 2 we could see that some adoption clusters were being 

formed over time. This means that previous solar PV installations may have 

positive impact on the probability new installations as can be seen from the 

spatial pattern of adoptions. To further test this, and before estimating the full 

model, I have used a simple binary logit model of adoption as follows: 

_  

	 ∗ ∗ ∗ ∗ _

	 ∗ ∗ ∗ ∗ _
 

                                                                                                                 (A11) 

Where the left hand side measures the probability of adoption by household i 

at time t as a function of price of the solar PV panels, Feed-in Tariff, number 

of installations in the last period, and cumulative number of installations. The 

parameters to be estimated are a, b, c, and d respectively. I use data from 2004 

to 2007 (around 8000 installations) to estimate the model. The estimation 

results are shown in Table 10: 
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Table 10 - Estimation Results (Binary Logit Model of Adoption) 

Parameter Estimate Standard Error 

 
-.973* .004 

 
.191* .005 

 
.231* .003 

 
.016* .000 

 

From Table 10 we can see that all of the coefficients are significant. The 

coefficient for price, , is negative and the coefficient for FIT, ,  is positive as 

expected. Related to learning, we can see that the coefficient for cumulative 

installations is positive even after controlling for the installations in the 

previous period. This shows that the main effect (i.e. effect of past adoptions) 

for social learning is positive and significant.  
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