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Summary

Image registration is one of the fundamental computer mipr@b-
lems, with applications ranging from motion modeling, iradg-
sion, shape analysis, to medical image analysis. The Bdres
the spatial correspondences between different imagesragatbe
taken at different time or by modalities of acquisition. Betty, it
has been shown that incorporating prior knowledge into ugsr
tration process has the potential to significantly imprdweeimage
registration results. Therefore, many researchers hae jatting

lots of effort in this field.

In this thesis, we investigate the possibility of improvihg robust-
ness and accuracy of image registration, by incorporatiagcsn-
ical and appearance priors. We explored and formulatedraleve
methods to incorporate anatomical and appearance priovigdge
into image registration process explicitly and implicitly

To incorporate the anatomical prior, we propose to utilize $eg-
mentation information that is readily available. An intéypdased
similarity measure named structural encoded mutual inftion

is introduced by emphasizing the structural informatiohei we
use registration of the anatomical-meaningful point deds ére ex-

tracted from the surface/contour of the segmentation teigea an
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anatomical meaningful deformation field. The two types dhda
driven prior information are then combined in a hybrid mantoe
jointly guide the image registration process. The propesethod
is fully validated in a pre-operative CT and non-contragtanced
C-arm CT registration framework for Trans-catheter AoMaive

Implantation (TAVI) and other applications.

To incorporate the appearance prior, we proposed to destiréd
intensity matching information by using normalized poirg@&/mu-
tual information which can be learnt from the training sa@splThe
intensity matching information is then incorporated irtte image
registration framework by introducing two novel similgrinea-
sures, namely, weighted mutual information and weightetbew.

The proposed similarity measures have demonstrated ticzrap-
plicability ranging from natural image examples to mediozges

from different applications and modalities.

Lastly, we explored the feasibility of generating differemage
modalities from one source image based on prior image nrajchi
knowledge that is extracted from the database. The syattksn-
ages based on prior knowledge can be then used for imagé&raegis
tion. Using the synthesized images as the intermediateirstie
multi-modality registration process explicitly simplisighe prob-

lem to a single modality image registration problem.

The methods and techniques we proposed in this thesis cambe ¢

bined and/or tailored for any specific applications. Wedadithat
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with more population databases made available, incorpgrptior
knowledge can become an essential component to improvang th

robustness and accuracy of image registration.
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Chapter 1

Introduction

1.1 Image Registration: An Overview

In the field of image processing, itis often important to sggtalign the images
taken from different instants, from different devices, dfedent perspectives,
so as to perform further qualitative and quantitative asialgf the images. The
process of spatially aligning the images, is call®adge registrationMore pre-
cisely, the goal of image registration is to find an optimaltgg transformation
that maps the target image to the source image. From a matilahpeerspec-
tive, given two input images, namely the source and targages, the image
registration process is an optimization problem that firdsgeometric trans-
formation that brings the source image to be spatially akdgwith the target
image. The types of geometric transformation depends omsgbkeific appli-
cation. Generally, the transformation can be divided imto groups —global
andlocal. The selection of the transformation model is highly degenidn the

application.



1.1 Image Registration: An Overview

As a fundamental computer vision problem, image registnaias a wide
range of applications, including motion modeling, imag&dn, shape analysis,
and medical image analysis. Detailed surveys and ovenaevegplications of
image registration can be found ih|[[2], [2], [3], [4], [5], [6] and [7]. In this
thesis, we will mainly focus on but not limited to deformalohedical image
registration, although the proposed methods can be stfarglardly applied to
other applications, which we will also demonstrate in thissis.

Image registration helps the clinicians to interpret thageinformation ac-
quired from different modalities, different time points jgve- and post- contrast-
enhancement. Combining the image information from difietéme instants
helps the clinicians to examine the disease progressiartiove. As the imag-
ining technology develops, there are more and more imagiodatities that
provide spatial co-localization of complementary infotroma, including struc-
tural and functional information. These image modalitiass be generally clas-
sified as eitheanatomicalor functional[8, 9, 10]. Morphological information
is explicitly depicted in the anatomical modalities, whiohlude CT (computed
tomography), MRI (magnetic resonance imaging), X-ray, Ulgsound), etc.
Metabolic information on the target anatomy is emphasizethé functional
modalities, which include scintigraphy, PET (position ssmn tomography),
SPECT (single photon emission computed tomography), aril fffinctional
MRI). Complementary information from different imaging dalities makes
the assessment to be more convenient and accurate for theasis. With
the rapid development of the clinical assessment techragdemaging tech-
niques, medical applications increasingly rely more onithage registration;

such applications range from examination of disease pssgme to the usage



1.1 Image Registration: An Overview

of augmented reality in the minimal-invasive intervensorTherefore, image
registration plays an essential role in medical image amaly

Both mono- and multi- modality image registration play aywanportant
role in medical applications. Applications of mono-motaimage registration
include treatment comparison between pre- and post- tezdtimages, regis-
tration of dynamic contrast enhanced (DCE) MRI for detegt@bnormalities
in myocardial perfusion with that have great potential fagthosing cardiovas-
cular diseasesdl[l]. Multi-modality image registration also has a wide rangie o
applications. In cardiology, for example, to support Traatheter Aortic Valve
Implantation (TAVI) procedure, the 3D aortic model acqdifeom contrast-
enhanced C-arm CT can be overlaid onto 2D fluoroscopy to gecamatomical
details thus enabling more optimal valve deploymé®.[ The procedure of
extracting the 3D aortic model from contrast-enhancedr@-@f requires ex-
tra radiation which may not be applicable for patients withnley problems. To
address this problem, a 3D/3D image registration betweear@hon-contrast-
enhanced C-arm CT is performed to obtained the 3D aortic hi@8g In neu-
rosurgery, stereotaxy technology generally uses CT imdmyggor tumor iden-
tification MRI are typically preferred. Image registratialiows the transfer of
the tumor coordinates from the MR to the CT images. More disicun and
analysis of the applications in neurosurgery can be fouii4h Besides intra-
subject registration, inter-subject image registratgoplaying a much more im-
portant role than ever before. Image registration has bemgvely used in
constructing statistical atlag$] and atlas-based image segmentatis).

Image registration algorithms consist of three major congmés. Firstly, a

transformation spaces needed to restrict the spatial transformation to a plau-
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sible space. It is highly application-dependent. Rigidinaf splines and non-
parametric free-form are the typical spaces used for imagsstration. Sec-
ondly, asimilarity metricis required to quantitatively measure the alignment
between two images. Specifically, it quantifies the sintjdyetween the source
and target images using a mathematical expression. Siiyilaeasures are
generally classified into three groups, namely, intenséged methods, feature-
based methods, and hybrid methods. Thirdlypptimization methods required
to find the optimum parameters in the transformation spacie that the defined
similarity metric is optimized. This thesis will focus onsigning adequate sim-
ilarity metrics for more robust and accurate image redistna

Although numerous image registration techniques have begealoped in
the past few decadeg,[17, 18], ordinary image registration algorithms still
fail to produce robust and accurate results due to diffefigators, for example,
noise, occlusion, etc. Since medical images often contgmficant amount of
noise, contrast changes, occlusion and distortions d@ekodf data acquisition
protocols in some applications, image registration isipaldrly challenging
for medical applications. In this thesis, we aim to develmage registration
algorithms that increase the robustness and accuracy @eimegistration by

incorporating anatomical and appearance priors.

1.2 Thesis Organization and Contributions

This thesis is organized as follows. Chapter 2 describegrihge registration
problem in more detail, and discusses existing image ragish techniques.

In Chapter 3, we propose an algorithm that utilizes the segaten in-
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formation that is readily available. The anatomical pr®rencoded into the
registration framework by introducing a novel similarityeasure, the struc-
tural encoded mutual information, and an anatomical megmirdeformation
field to guide the image registration process. Featureebmsage registration
methods require highly accurate feature correspondentzhing. statistically-
constrained transformation model based methods usuatiade for large size
of training data which may not be practical in many applmas$i. And intensity
based methods only rely on the intensity information whiétero cost prob-
lems while optimizing the cost function. The proposed hylaata-driven im-
age registration framework draw upon the strength and avbiel shortcomings
from the above mentioned methods, it benefits from the anasdmformation
which is extracted from the readily available segmentatard the the prior
anatomical prior deformation field does not require a la@ get to train, thus
providing a more robust and practical solution to the imaggstration problem.
In Chapter 4, we propose to describe the intensity matchfgrmation
by using normalized pointwise mutual information. By laéagthe intensity
matching information from the training images, the intgnhanatching prior is
then incorporated into the image registration algorithnmdbgigning two novel
similarity measures: weighted mutual information and wé&g entropy. The
proposed normalized pointwise mutual information as aenisity matching
prior is superior to the state-of-the-art methods wherensity joint histogram
is learnt to guide the image registration process becausdl MRess sensitive
to the change of field-of-view and size of the objects. Suchpesor property
is very important because now we can then obtain the intensatching prior

from a subset or even just a slice of the volume. NPMI bettpresents the
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correlations between the intensities instead of being datad by the number
of co-occurrence, and thus brings the utilization of thempintensity matching
to a new level.

In Chapter 5, we explore the possibility of generating dédfé image modal-
ities from one source image based on prior image matchinglkuye that is
extracted from the database. Having the synthesized invegessentially re-
duce the multi-modal image registration problem to a lesdlehging mono-
modality registration problem. We propose to utilize thatfees such as in-
tensity histogram and the Weber Local Descriptor for thecimaty process.
The proposed matching framework provides much more roldtazcurate
matching results compared to the state-of-the-art methedevSSD is used for
the matching process. The more general and accurate mgisthieme clearly
shows its potential in helping image registration in theifat

Concluding remarks and discussion about future work arggmted in Chap-

ter 6.






Chapter 2

Background

This chapter aims to provide a comprehensive backgroundnage registra-
tion. We first give a general introduction about the imagestegtion problem.
Then the major components of the image registration praeeae elaborated

in details, with a literature review of state-of-the-artthuals.

2.1 Introduction

Image registration is one of the fundamental computer migimblems, with
applications ranging from motion modeling, image fusioma®e analysis, to
medical image analysis. During the past decades, the rapelabment of the
image acquisition devices and more and more needs for intedgsés invoked
the research on image registration, targeting differeptiegtions. The process
of image registration consists of establishing spatiatespondence between
images acquired by different devices and/or at differenétinstances.

In general, image registration can be performed on a groumades L9,
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20] or only two images. In this thesis, we focus on the imagestegiion meth-
ods that involve only two images. Here, we give a more mathiealaefinition

of the image registration problem. Given a source imageotehby S, and

a target image, denoted by, the goal of image registration is to estimate the
optimal transformatioi/’* such that the similarity metrid(7", S o W) of the
target image, and the transformed source image is optimiziedhematically,
image registration is to estimate the optimal transforamali’* such that the

following objective function is optimized:
arg max J(T,SoW). (2.1)

A image registration algorithm typically involves three imaomponents:
1) a transformation model, 2) a matching criterion (siniijametric), and 3) an
optimization method. In this thesis, we will mainly reviewthe transformation
model and matching criterion. And in the methods we propasechapter 3
and 4, we adapt the variational framework, and using gradiescent to solve

the optimization problem.

2.2 Transformation Models

In this thesis, the definition of registration is based onngewical transforma-
tions — we map the points from space X of the source image toesygaf the
target image. The transformatid¥ applied to a poink in space X produces a
pointinx’,

X = W(x). (2.2)



2.2 Transformation Models

We say that the registration is performed successfultyig matched or close to
matchedy in space Y, which is the exact correspondence. dfhe set of possi-
ble transformation$l’” can be divided into two groups: 1) global transformation
models and 2) local transformation models. Each transfbomgroup can be
further classified into many subsets. Global transfornmatimdels make use of
the information from the image for estimating a set of transfation parame-
ters that is valid for the entire image. Global transforimaiis used to correct
the misalignment of the images in a global scale, thus, isisally a necessity
as the first step of image registration. However, a globalpimapis not able to
handle images with local deformation, thus local mappinglet® are usually
required after the global registration to further refine tegistration process.
Compared to global registration models, in which limitedgmaeters are capa-
ble of specifying the transformation in 3D, local registwatmodels are usually

more application-dependent and require more parametées ¢stimated.

2.2.1 Global Transformation Models

Linear models are the most frequently used for estimatingalltransforma-
tions. Although violations of the linearity assumption nraguire the use of
higher order polynomial models, such as second or thirémrdigher order

polynomial models are rarely used in practical application

2.2.1.1 Rigid Transformations

Rigid transformations preserve all distances, and funtioee, they preserve the

straightness of lines, the planarity of surfaces, and gllesbetween the straight

10



2.2 Transformation Models

lines. The ubiquity of rigid objects in the real world maké&gd registration
one of the most popular global transformation models. Tjie transformation
model is very simple to specify, since it comprises onlytiotaand translation.
In the 3D space, and under Cartesian coordinates, the dtenmsliectort can
be specified as a3l matrix|t,, t,,t.]’, wherez, y, z are the Cartesian axes. It
can also be specified in other coordinate systems, for exarapherical coor-
dinates, however, we will consistently use Cartesian doatd system to avoid
confusion. Other coordinate systems can be easily deriegd fhe Cartesian
coordinate system. Specified using Euler angles, rotabarbe parameterized
in terms of three angles of rotatiof,, 6,,, 0., with respect to the Cartesian axes.

Here, we define the three basic rotations, using the righd hale, as follows:

1 0 0
R.(0) = |0 cos(§) —sin(h) (2.3)
0 sin(f) cos(f)

cos(f) 0 sin(6)
R,(0) = 0 1 0 (2.4)

—sin(#) 0 cos(f)

R.(0) = |sin(@) cos(d) 0 (2.5)

11



2.2 Transformation Models

To generalize, other rotation matrices can be obtained Hiptying the three

basic rotation matrices:

We want to emphasize here thiatis an orthogonal matrix, witdet(R) = +1,
wheredet is the determinant operator. Now, with the transformatidra rigid
transformation, then

X = RX +1. (2.7)

2.2.1.2 Affine Transformations

Another popularly used global transformation models agedfffine transforma-
tions:

X' = AX +t. (2.8)

Affine transformations do not have any restriction on theneletsa;; in the
matrix A. It preserves straight lines (and the planarity of surfpeesl straight
line (and surface) parallelism. However, angles betweetfinles are allowed to
change. Affine transformations are appropriate, becauagearacquisition may
introduce a skew factor. Furthermore, it is widely used fartimiew image
registration, assuming that the distance from the cametiaetgcene is much
larger than the scene area, with a pin-hole camera, a fla¢ saed the geometric

distortions do not contain local factors.
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2.2 Transformation Models

2.2.2 Local Transformation Models

The global transformations average out the geometric geftion over the en-
tire image domain. Consequently, local deformation mayteoproperly han-
dled. However, local deformation is a very important cormgrann many appli-
cations, for example, medical applications where largammeformation oc-
curs. Therefore, local areas of the images should be takero€avith specific
local transformation models.

Local transformation models are often referred to as ngiatar deformable
transformation models, we use them interchangeably irthieisis. It has been
shown that local transformation models are superior to tbleay models when
local geometric distortion is inherent in the images to kgstered §, 7, 21,
22, 23]. Moreover, the choice of local transformation models ipariant as
it relates to the compromise between computational effogiemnd richness of
the description, as well as the relevance to the participali@tion. Here,
we classify local transformation models into three mairegaties: 1) derived
from physical models, 2) based on basis function expansamis3) knowledge-

based transformation models.

2.2.2.1 Transformations derived from physical models

Following Modersitzki R1], we further divide the transformations derived from
physical models into five categories: 1) linear elastic botydels, 2) diffu-
sion models, 3) viscous fluid flow models, 4) flows of diffeoplsms and 5)
curvature registration.

1) Linear Elastic Body Models

13



2.2 Transformation Models

The linear elastic body models are described by the Navaerey Partial Dif-

ferential Equation (PDE):

pV2u+ (u+ A\V(V-u) +F =0, (2.9)

whereu(x) is the transformation vector at location F(x) is the force field
that drives the registration process which is derived froaximizing the image
matching criteria) is the Lameés first coefficient andspecifies the stiffness of
the material.

The Navier-Cauchy partial differential equati2r®is an optimization prob-
lem that balances the external force that comes from makigihe matching
criteria and the internal force that exhibits the elastmperties of the material.
It was first proposed by Broit2{], in which the image grid was modeled as
an elastic membrane. Subsequently, the models have bekedajgprange of
applications.

2) Diffusion Models

The diffusion models can be described by the diffusion eqoat

Au+F =0, (2.10)

whereA is the Laplace operator. Most of the algorithms based onithestbn

transformation model do not st&2€10in their formulation or objective function.
Nevertheless, in the regularization step, the transfaonas convolved with a
Gaussian kernel. This is based on the fact that Gaussiaelkerthe Green’s

function of 2.10 thus applying a convolution with the Gaussian kernel is an
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2.2 Transformation Models

effective yet theoretically supported regularizatiorpste

Inspired by Maxwell’s Demons, Thirior2p] proposed to model image reg-
istration as a diffusion process. The idea is to consided#raons in the tar-
get image as semi-permeable membranes and to let the souage idiffuse
through the demons. The algorithm is an iterative procesgdsn: 1) estimat-
ing the forces for every demons (based on optical flow), andp2ating the
transformation based on the calculated forces in 1). Thatite process ends
till it converges. In the course of medical image registmatiit is common to
treat all image elements as demons. Furthermore, a Gaugamcan be ap-
plied after each iteration for regularization purpose. phblication of P5] has
inspired many methods that share the iterative approaeteeetestimating the
forces and then regularizing the deformation field.

3) Viscous Fluid Flow Models

In this case, the transformation is modeled as a viscous. flagsuming
there is only a small spatial variation in the hydrostatiegsure, and thus a
low Reynold’s number, the viscous fluid flow is described iy Navier-Stokes
equation:

VA A+ (4 A)V(V V) + F = 0. (2.11)

The 1, V?v term is related to the constant volume or incompressibiftyhe
viscous flow. The expansion or contraction of the fluid is oolied by (1; +
Ar)V(V -v). Different from the linear elastic body models, no assuopts
made on the small transformations, therefore, the modelsagrable of recover-
ing large deformations2jg]. Multi-modal image registration using viscous fluid

models is made possible i@7]. And an inverse consistent variant of viscous
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2.2 Transformation Models

fluid models is proposed ir2f].

4) Flows of Diffeomorphisms

Local transformations can be also modeled by flows of diffegrhisms.
The velocity field over time is constrained to be smooth utideregularization

term:

1
R= / Ivell2dt, (2.12)
0

where|| - ||y is @ norm on the smooth velocity vector space V. Differenety/p
of spatial regularization can be specified through chantfiadkernel associated
with V' [29]. The choice of kernel may be either a single Gaussian k¢!
or adaptive Gaussian kernel selections on the entire imageih [30, 31].

5) Curvature Registration

Under curvature registration, the constraint of the mosdbrmulated by
the equilibrium equation:

AU+ F = 0. (2.13)

Fischer and Modersitzki3p] show that curvature based image registration not
only provides accurate and smooth solutions for the imagjstration task, but
also avoids a pre-registration step. This is because thdamzation scheme
based or2.13does not penalize affine transformations. Equa®idi8is solved

by a finite difference scheme, which imposes the Neumanndaryconditions.
Imposing the Neumann boundary conditions may have theteffguenalizing
the affine transformations, HenB3 proposed a full curvature based image
registration method which includes second-order termasdary conditions

to solve the problem.
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2.2.2.2 Transformations based on basis function expansien

Another category of local transformation are modeled based set of basis
functions. The coefficients of the basis functions are adgisuch that the re-
sulted transformation maximizes some similarity metrat theasures the align-
ment of the source and target images. The fundamental mattoainframe-
work behind these set of transformation models are maiiyfthe theory of
function interpolation 34] and approximation theory3p, 36]. Here, we only
review five of the most important models that are based orsbasction ex-
pansions, namely, 1) radial basis functions, 2) elastiylsptines, 3) B-splines,
4) Fourier and wavelets, and 5) locally affine models.

1) Radial Basis Functions

Radial basis functions are ones of the most important iotetjpn strategies
[37, 38, 39]. The value of the interpolation poirtis calculated as a function of

its distances to the landmark positions. It is defined as:

N

u(z) =Y a;R(||Ix = x]), (2.14)

1=0

wheresi is the index for the landmarks, amd assigns different weights to the
corresponding landmarks. The common choice of funcRoran be Gaussian
[40] or inverse multiquadric41]. A remarkable strength of the radial basis
function to point out is its global support. The radial bdsisction are positive
defined functions in which a closed-form solution of findihg bptimal set of
coefficients exists. Having said that, as the displacenesryalandmark point
would introduce influence to the whole image domain, sufficee more dense

landmarks are required at the area where local deformatiomore dominant.
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For medical image registration, landmark-based methoutg tise radial basis
functions were extensively studied it and [43]. A comparative evaluation
study on the use of the radial basis functions in non-rigidgeregistration can
be found in §4].

2) Elastic Body Splines

Davis et al. 5 introduced the Elastic Body Splines (EBS) which is a
physics-based coordinate transformation. The Elastio/ERylines are the so-
lutions to the Navier-Cauchy PDE9. The equation can be solved analytically
when the force field is given as a radial symmetric functiothefdistance from
the landmark. The work was extended by Kohlrausch e#é].ysing Gaussian
EBS, thus the local transformation can be better repreddiyt¢he transforma-
tion model. Gaussian EBS was further developed by Worz aottr R 7], by
taking into account the errors in the landmark displacerfieltt using an ap-
proximated strategy instead of exact interpolation. Liaeéibn uncertainty was
considered in47], and an analytic solution was provided.

3) B-splines

Back to 1940s, Schoenbergd first introduced the B-splines for interpola-
tion. Since then, the applications of B-splines have beelekyideveloped, and
it has become a popular tool for solving the interpolatiooigbems in the field
of signal processingdp, 50, 51]. In the course of image registration, free-form
deformations (FFDs) is of the most commonly used local fansation models
that belong to B-splines family. More specifically, coupgliRFDs with cubic-
B splines has been widely accepted in the medical image sisalgmmunity
[52, 53, 54, 55]. In this section, we will mainly focus on reviewing the FEDs

Given a 3D image size df, x N, x N, arectangular grid ok, x K, x K,
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2.2 Transformation Models

is superimposed on the image. The transformation is modsid¢de using the
translations of the control points ; . on the grid. The displacement field is

defined as:

3 3 3
U(ZL‘) = Z Z Z Bl(uaﬁ)Bm(uy)Bn(uz)di—i—l,j—i—m,k—i—na (215)

=0 m=0 n=0

whereB; is thelth basis function of the B-spline.

Despite the superiority of the FFDs in providing simple affetient smooth
transformations and requiring few degrees of freedom fecdeing the trans-
formations, topology preservation is not guaranteed. Rer¢@t al. p6] pro-
duced diffeomorphic deformation fields with some hard c@msts imposed.
The extensions of the original FFDs have been carried ouelwid Differ-
ent methods for placing the control points non-uniformlyd®een proposed
[57, 58, 59]. Symmetric and inverse consistency of the transformdiid is
studied in B0, 61, 62].

4) Fourier and Wavelets

Fourier and wavelets are used to model the local transfaomsin many ap-
plications. An important, or probably the most importargsen is that, Fourier
and wavelets methods naturally decompose the transfamégid in a multi-
resolution manner, which is desirable in the image regdistiaapplications —
less computational demand, larger capture range, hardeeiiog trapped in the
local optimum during the optimization process, etc.

Amit [63] considered image registration as a nonlinear variatiprablem,
and presented two approaches for image matching — one badéaloier ba-

sis and one based on wavelets. It was reported that, wanmetsl method
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was more capable of capturing the local deformation thanFihrier-based

method. Deformation field modeled by Fourier or waveletsase reported

in [64, 65, 66]. These methods all emphasized on the multi-resolutioraand
multi-band decomposition for accelerating the calculatmd increasing the
computational efficiency. Furthermore, the topology of ithage is preserved
by imposing additional constraints. For example, hard tairgs on the Jaco-
bian were imposed irg[7].

5) Locally Affine Models

As the name suggests, in this case, the local transfornsasiendefined by
locally affine models. The main strength of locally affine ralsds its compu-
tational efficiency. These family of local transformatiolaels can be further
divided into two categories: piecewise affine models ang+affine models.
The basic idea is to mosaic the image by a set of regions whaesrparame-
terize the transformation. While the piecewise affine medsually define the
regions quite evidently, the poly-affine models use fuzgjaes to avoid the
lack of smoothness at the boundary regions.

Piecewise affine modelsiellier et al. B8] first introduced a multi-grid and
multi-resolution approach based on a piecewise affine motalh was regu-
larized with an optical flow model. Not globally invertiblethe main drawback
of applying piecewise affine transformation in each regimatependently. This
issue is partly addressed and tackledag]]

Poly-affine modelsTo overcome the drawback of the piecewise affine mod-
els, poly-affine models use fuzzy regions. Arsigny et &l] jntroduced poly-
affine transformations, which was later extended by Arsighgl. [71]. A set

of anchor points were defined and assigned with differengktsi(importance).
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Fuzzy regions are defined according to the influences of tbhaampoints to
each positiorx. The approach does not have a closed-form solution, thss it i

computationally expensive.

2.2.2.3 Knowledge-based transformation models

Specific knowledge on the transformation can be incorpdratt® the trans-
formation models to result in favorable transformationeThotivation behind
incorporating knowledge into the transformation modets isicrease the accu-
racy, robustness and plausibility of the transformatiaym® general knowledge
including topology preservation and volume preservatiavehbeen well stud-
ied, as briefly mentioned in the previous sections. In thisise, we will focus
more on knowledge that are derived from statistics and bobraeical/biophys-
ical models.

1) Statistically-Constrained

Statistically-Constrained transformation models, otisti@al deformations
models (SDMs) are models that utilize the statistical infation from the trans-
formation fields. The statistical information is usuallylleoted from a popula-
tion of subjects. Due to the prior knowledge introduced,dbgree of freedom
of the transformation is constrained and thus reduced, wtliiectly leads to
less demand on computational power.

Principal component analysis (PCA) has be widely used wedening the
statistical models. Tang et all]] accelerate the SDM learning process by ap-
plying PCA. Rueckert et al1f] studied the movement of each of the FFD con-
trol points, and then used the statistical result to coimstma the transformation

of the FFD control points. The stiffness of different stuwress influences the
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deformability of the objects/tissues, statistical prioolledge on this was in-
troduced by Commowick et al7g]. One common drawback of statistical learn-
ing model was the high dimensionality of the prior knowledgee et al. /4]
tackled the problem of high dimensional SDMs using wavedestelol decompo-
sitions. Nevertheless, SDMs still relies on the repregeiitya of its training
samples for a good transformation model.

2) Biomechanical/Biophysical inspired

Biomechanical/biophysical properties of the tissues carexplicitly en-
coded, thus the complex transformation field can be morédyealsiained with
the reduced degree of freedom. The searching space of tisédranation is thus
much reduced, and therefore the increase of computatianesity. Embed-
ding the biomechanical/biophysical properties into thage registration pro-
cess also helps to produce more anatomically plausiblefsemation. These
models are closely related to anatomy and physiology. Toexethey should
be very carefully examined. Failing to represent the angtphysiology and
assign the parameters correctly may produce undesirahlése

These models are usually applicable to specific tasks. Fample, [75],
[16] and [76] focus on modeling the tumor growth7T], [78] and [79] work on
biomechanical models of the breast. And biomechanical tsadf¢he prostate

are also reported ir8p, 81].

2.3 Matching Criterion

The alignment of the target and source images is describatidoynatching

criterion, or the similarity metric. There are mainly thisggproaches in design-

22
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ing similarity measures, namely, 1) feature-based meth@dmtensity-based
methods, and 3) hybrid methods. The feature-based method® astablish
an optimum correspondences for the landmark points, engtomical loca-
tions, salient points, etc. It involves feature points deta, and then solving
for the correspondence problem. Intensity-based methedsunes the images
alignment based on the information extracted from the sitgmelationships
between the images. While hybrid methods combines therrdtion provided

by landmarks and intensity.

2.3.1 Feature-Based
2.3.1.1 Feature Points Detection

Detecting the features from the source and target imagdseidirnst step of
feature-based registration methods. Depending on thécatiph, features can
be salient points/regions, lines, corners, line intefeast anatomical meaning-
ful points/regions, etc. An extensive review on point-d&ies and descriptors
and be found in§2]. The detection and matching of the landmark points are
highly dependent on the richness of the description. Thergeers should be
discriminant enough for distinguishing between the pagéémiatching candi-
dates. Furthermore, it is desirable for the descriptorsetoariant to factors,
such as, rotation, translation, deformation, and intgreianges, thus a robust

matching can be obtained.
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2.3.1.2 Transformation Estimation based on Feature Points

In the field of image registration, we hope to estimate a pdeisransformation
such that the two landmark point sets are aligned. In the whsee the land-
mark correspondences are made known, the transformatidmecealculated by
adapting interpolation strategy, e.g., radial basis fienst or thin-plate splines
straightforwardly §i2, 47], or incorporating a regularization energy based on
correspondence constraint.

When the landmark correspondences are unknown, the lakguaats can
be represented as probability distributions. The transébion is thus estimated
by minimizing the distance between two distributions. Kaerrorrelation 83]
and kernel density correlatioB84] were used as the distance measure. More re-
cently, Gaussian mixture models (GMMs) have been moreelgtivsed in this
research area. I18p], each point set is modeled as GMM, the distance between
the point set is measured Iy distance. Each feature of each shape is modeled
as GMM in [86]. Geometric information can also be adopted to estimate the
transformation without exact landmark correpondencegné®l distance func-
tions were used for shape representatidn 88]. Euclidean distance transform

was deployed ing49].

2.3.2 Intensity-Based

Intensity-based methods measures the registration agcbiesed on the in-
formation extracted from the intensity relationships bedw the images. The
intensity-based methods do not require landmarks detedherefore, the pro-

cedure for intensity-based methods is more straightfawidevertheless, com-
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pared to landmarks based methods where only a subset ofxis pre consid-
ered as landmarks, intensity-based methods make use afftrenation from
every pixel. This comes at the cost of consuming more contiput power.
Based on the modalities of two images, we further classigyititensity-based
methods into two categories: 1) for mono-modal image reggisin applications,

and 2) for multi-modal image registration applications.

2.3.2.1 Mono-modal Image Registration

In the mono-modal setup, both the source and target images from the same
modality, and thus share the same intensity propertiesmids straightforward

matching criterion is the sum of squared difference:

SSD(T,S) = i(T(xi) — S(x))?, (2.16)

1=0

where the squared difference is summed up over the wholedmagain. This
similarity metric assumes that the same structures haveame intensity val-
ues in the two images. Similar assumption has been made irosaivsolute

difference (SAD):
SSD(T,S) = |IT(x:) — S(x;)I. (2.17)

The SSD and SAD as matching criteria are reported to be senwitthe noise

and outliers. Later, the intensity matching relationshepaeen the source and
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target images is relaxed to linear — cross coefficient:

_ Cou(T,9)*
Ce(r, 9) = Var(T)Var(S)’ (2.18)

whereCov andV ar are the covariance and variance operators respectively. Or

functional — correlation ratiod0]:

Var(E(S|T))

CRT.S) = — @

(2.19)

whereF is the expectation.

Besides purely relying on the pixel-based intensity valasibute-based
methods were also proposed to provide richer informatioms some ambigu-
ous matching resulted from purely relying on pixel-basdérisity values as
stated above can be avoided. Shen and Davatzikgefoposed a hierarchical
attribute matching mechanism for elastic registrationerghthe attribute vec-
tor includes geometric moment invariants. Local histogramere utilized in
[92]. Gabor P3| and alpha stable filter9f] were applied in different image
registration tasks. Myronenko and Sor#p| analyzed the complexity of the
residual image, by minimizing the basis functions of thedwesl image, image

registration can be thus obtained.

2.3.2.2 Multi-modal Image Registration

Multi-modal image registration is naturally more difficiti solve compared
with mono-modal registration problems, because the imtiensatching infor-

mation is not as predictable. Furthermore, the structyspkarance may be
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significantly different in the images from different modis.

For the cases, where the intensity matching informatiotilisisear or func-
tional, or at least can be assumed as linear or functionbbitocal region, cross
correlation and correlation ratio can be still applicabiéhwhe location con-
straints P6]. Nevertheless, the most widely used approaches for mdtial
image registration is based on information theory. Amohgmé&rmation theo-
retic approaches, mutual information (Ml) is the most papalpproach which

has been extensively investigat&d,[98]. Mutual information is defined as:

MI(T,S) = H(T) + H(S) — H(T, S), (2.20)

where H is the differential entropy. MI removes the assumption amcfional
relationship, and uses the statistical dependency betteemtensity values
from the corresponding pixel to evaluate the registratesults. Many follow-
ing studies came out to solve the shortcomings of MI. Studieoét al. P9
proposed the normalized mutual information (NMI) to solke overlap invari-
ant problem. Higher order of mutual information, which taketo account of
the spatial information were also developed rapidi9q, 101, 102, 103.

The idea of incorporating prior knowledge of the underlynegistration
problem has shown significant improvement in registratmustness and ac-
curacy. The effort of intensity standardizing of differenbdalities makes in-
corporating intensity matching prior more practical. Magecifically, using
divergence measures to comparing the joint intensityidigions from training
and testing cases has attracted much attention. Chundg £04|. Guetter et al.

[109 and Cremers et al.1pg proposed to use Kullback-Leibler divergence
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(KLD) as the similarity measure to register multimodal irmagLiao et al. 107
used Jensen-Shannon divergence (JSD) to compare leantrdigtribution with
the observed joint distribution. JSD is more robust comgh&weKLD due to its
symmetry, being theoretically upper-bounded, and wefihée with histogram
non-continuity. Despite the reported success of usingaégoint intensity dis-
tributions to increase the registration robustness angracg, a major drawback
of using the leaned joint intensity distributions is that fhint intensity distri-
butions may deviate a lot from the training to testing imagbg&h degenerate
the effectiveness of the intensity matching prior. To satheeabove mentioned
problem, in this thesis, we propose to learn the intensitichiag relationship
from pre-registered image training pairs. Instead of utiegearnt joint distri-
butions, we proposed to learn the intensity matching i@hatiip from the joint
histogram through the normalized pointwise mutual infarora(NPMI), and
apply the learnt intensity matching as a more general, flexabd robust prior.
Another group of researchers try to solve the multi-modagmregistra-
tion problem by reducing the multi-modal setup to mono-nodad hence
only mono-modal image registration needs to be performédesyuently. In
particular, ultrasound images are simulated from MRB{ and CT [L09 im-
ages respectively. Andronache et dl1(] and Maintz et al. 111] try to map
the source and target images to a common pseudo modalitly.thiditintroduc-
tion of modality synthesis techniquekl2, 113 that are based on constructed
dictionaries, databases, we believe that there is a hugafmtto improve the
image registration accuracy by reducing the multi-modalges to mono-modal

images.
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2.3.3 Hybrid

Hybrid methods aim to combine the strengths from featusetand intensity-
based methods, and capitalize them in a complementary wegtufe-based
and intensity-based methods are taking independentlyarsteps in 114, 115
114. In most of these methods, one type of information (eitleatdre or in-
tensity) dominates in coarse registration, while the otleninates at the finer
level. Another group of researchers utilize the additianedrmation as con-
straints in the registration process. In particular, laadde/surfaces were used
as soft constraints infLl7,118 119. And Joshi et al. 120 imposed a hard con-
straint of geometric correspondences in brain image ragish. In most of the
above mentioned methods, only one type of information beseém another.
However, these two types of information can be beneficiahtthether, so the
solution of each problem can take advantage of its counterSach approach

can be found in121, 122, 123.

2.3.4 Group-wise

Although many techniques have been proposed for imagetratyis, most of
them belong to the category of pairwise image registratwinere only two
images, naming the source and target images are involvedistRaion of a
group of images has traditionally been tackled by repewtapgplying a pair-
wise registration 124, 125. Recently, group-wise registration has been pro-
posed for simultaneous and consistent registration ofnadlges in a group
[19, 126 127, 128 129. Group-wise image registration is well studied for

atlas constructionl[30, 131, 137. More specifically, Seghers et al. performed
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pairwise registration between all possible pairs of imageise group, and con-
structed the atlas by voxelwise averaging of all images afi@pping them to
their mean morphological image$d3. Park et al. [34] defined an image
closest to the population mean geometry as a tentative ééenphd generated
the atlas by iteratively registering all images onto thepkte and replacing
the template with the mean of the aligned images. More effigeoup-wise
registration methods are then subsequently proposedi &bah proposed a
method for atlas estimation in a large deformation diffegohic setting [35.
A gradient-based stochastic optimizer proposed by Zotlal.eis employed to
minimize an information-theoretic objective functiondaan affine congealing
mechanism is used to drive each image to the center of th@ giowltaneously
[126]. [124] is further extended to a nonrigid group-wise registratgorithm
by incorporating free-form B-Splines to represent nowriggformations136.
More recently, it has been pointed out that a single mode issafficient to
account for the variation of all images in a population, amagstmulti-class ap-

proaches are proposetd7, 138 139.

2.4 Conclusions

To this end, we have carefully introduced the backgroundnaige registration,
including two of the most important components: the tramsftion model and
similarity measure. Despite the efforts from the reseasch# over the world,
image registration is still a very challenging problem andsistill open for

the researchers to improve and solve. In particular, we Vi the angle

of incorporating additional knowledge to improve the aecyrand robustness
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of the image registration process, including anatomicdl gppearance priors,

which will be presented in the subsequent chapters of tesish
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Chapter 3

Image Registration: Utilizing

Anatomical Priors

In this chapter, we present a hybrid multi-modal deformaétgstration frame-
work using a data-driven deformation prior. The deformapaoor is generated
by utilizing the anatomical information contained the iraagfor example, the
segmentation of certain organs or objects. The proposecbagip belongs to
the hybrid approach as described in Chapter 2. We will ptegendetailed

algorithm in the following sections.

3.1 Introduction

Image registration helps the clinicians to combine the ienexjormation ac-
quired from different modalities, different time points jgve- and post- contrast-
enhancement for better evaluation. For some cases, flie/aegistration may

be sufficient; however, in many cases, deformable registra needed to com-
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Figure 3.1: Structure appearance may be largely different due to diftdevels of
contrast-enhancement. (a) and (b) is a pair of images fresoperative contrast-
enhanced CT and intra-operative non-contrast-enhancadnCzT for TAVI pro-
cedure. (c) and (d) is a pair of images from a perfusion carsiguence at different
phases.

pensate for local movements.

Deformable registration is inherently ill-posed and urdenstrained from
the mathematical point of view. It becomes more challengihgn dealing with
different structural appearances due to different levetoatrast-enhancement
between two images. This problem widely exists in the fielanafdical im-
age registration, e.g., registration of the perfusion ie&rdmages at the wash
in/out phases, and 3D/3D registration of pre-operativetrestrenhanced CT
and intra-operative non-contrast-enhanced C-arm CT imégee Fig3.1). In
these cases, purely relying on the intensity informaticdpces anatomically
implausible deformation. Integratirg priori information about the deforma-
tion is thus highly desirable. Landmark constraint was psaal to increase the
registration accuracy and robustne$4( 141, 147. These methods added a
penalty term to constrain the correspondence pairs fromnmgadeo far apart,
and thus exact correspondence matching is very crucialy dpegmize the en-
ergy function using the thin-plate spline (TPS) and B-spinodels. TPS are
based on the bending energy of a thin plate, thus it only sgmts a relatively

coarse deformation. B-spline models usually require nigaksolutions at each
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3.2 Dense Matching and The Variational Framework

iteration during the optimization process, which is conapionhally expensive.
There is another group of methods incorpora@ngriori information from the
statistical point of view. Statistical analysis on shapd displacement field
variability is incorporated into the image registratiomgess. Xue et al.74]
tackled the problem of high dimensional statistical defation models (SDMs)
using wavelet based decompositions. Despite the promissdts, training the
SDMs suffers from the curse of dimensionality, and how tedethe training
data to represent the population remains unclear. Amongftirementioned
methods, one important and potentially readily availabfermation is missing
and may be utilized — the segmentation of some dominant amdnmnm objects
in the images. The motion of these segmented objects couiddaeled and
may greatly improve registration accuracy. In additionnirthe clinical work-
flow perspective, this segmentation may be needed for deagamd guidance
purpose alone, and as a result, utilization of the availabtgnentation results

does not impose additional requirement for the purpose afemregistration.

3.2 Dense Matching and The Variational Frame-
work

In this thesis, we use the variational framework for imaggsteation P6]. We
shall provide a brief introduction here as it is extensiuggd in Chapter 2 and
3.

Given the image domaift, we want to find a functioih to transform each

pointx with a displacement vectdi(x). We briefly review the variational frame-
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work in this section. The functioh is optimized such that an energy functional

J(h) is minimized. The energy functiondl(h) is of the form
J(h) = Ji(h) + R(h), (3.1)

where.J; (h) measures the "dissimilarity” between the source and tangeges,
andR(h) is designed for smoothness regularization. Thus, imagstration is
to find theh such that/; (h) + R(h) is minimized.

The first variation of/(h) ath in the direction ok is defined by

5.J (N + k)

bl () = ===

‘e:O- (32)
The gradien¥ J(h) of J is defined by requiring the equality
5cJ(h) = (Vi (h), k) (3.3)

to hold for everyk. &.J(h) equals to zero for every for the minimizerh to
be existed. This is equivalent .J(h) = 0. The above functions are the
Euler-Lagrange equations associated with the energyitmait/ which is usu-
ally impossible to find the close solution. Therefore, a gratldecent strategy
is usually deployed to find the minimizér A time-dependent, differentiable
function h , given an initial estimaté, is computed as the following initial

value problem:

LN N

dt (3.4)
h(0)(.) = ho(.)

The solution of the matching problem is choseh@) wheret — oc.
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3.3 Method

3.3.1 Anatomical Knowledge-based Deformation Field Prior

A TPS can be used to represent an image deformation fiélgl {44. 1t maps a
pointx from source imagé, to the corresponding pointx) in the target image
I. Given a set of control points, € R* and the associated coefficients, wy;

€ Rwith:=1,2,3,5=1,2,3,4,andk = 1,2, ..., K, the TPS transformation

Vv can be written as:

K

Vi(X) = @101 + aip®s + a33 + @i + Zwki¢(||x — Cll), (3.5)
k=1
with the condition
K K
> wy =0, and » cpwy =0, i,u= 123, (3.6)
k=1 k=1

whereo¢ is a radial-basis function which is defined as

o(r) = r’log(r?). (3.7)

Note that parameters include 12 global affine parameteend 3« local coef-
ficientswy,; for the control points. In our method, the two additional sivaints
in (3.6) ensure that the plate would not move or rotate under the sitipo of
the loads and remain stationad]. The control points are placed in a uniform
grid to capture the deformations.

Landmark-based methods are commonly used for non-rigidaakidnage

registration 140 141, 142, 145. However, in many applications, it is very dif-
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ficult to find exact/accurate landmark correspondences fhenimages. It may
be due to poor image quality and/or lack of feature pointshadbject, e.g.,
heart surface. Instead of assuming a one-to-one correspoadased on the
nearest neighbor criterion, one-to-many relaxations len proposed to al-
low for fuzzy correspondences. These approaches do ndilisktéhe explicit
point correspondence, and thus are less sensitive to tlsggisorrespondences
and outliers. In particular, the registration problem ipressed as a joint opti-
mization over the transformation parameter and correspacelmatrix in 144|.
Tsin and Kanaded3] proposed a kernel correlation based point set registratio
approach where the cost function is proportional to theetation of two ker-
nel density estimates. Myronenko et d4[] proposed another robust nonrigid
point set registration algorithm, where they maintain taime Gaussian affinity
matrix and also adopt a similar alternating update straiteigypreted in an ex-
pectation maximization framework. For the group of methoésitioned above,
where fuzzy correspondences are used, they all can be viasvepgecial cases
in Jian and Vemuri’s framework using Gaussian mixture me¢&d]. Because
of its generality 85], in this thesis, we use mixture of Gaussians to represent
the point sets of interest, which can be sampled from the satation. Then
we efficiently and robustly register the point sets usi@f’'s method. More
specifically, the Gaussian mixture model from the given peet in a simpli-
fied setting is as follows: 1) The number of Gaussian compitsristhe number
of the points in the point set and all components are weightpdlly, 2) for
each component, the mean vector is given by the spatiaidocat each point,
and 3) all components share the same spherical covariartce.ndean and Ve-

muri’s framework using Gaussian mixture models for robushpset registra-
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tion is well suited for our application because of its sirapy, and insensitivity
to missing correspondences and outliers which commonBt @xiour applica-
tion. Here, we generate an anatomical knowledge-basedmeafion field prior

using TPS model by optimizing the following cost function:

ErpelV) = / (fys — 9)2% + ABrencind ), (3.8)

where f, is the distribution representing the transformed pointvetped by
v, g is the distribution of the target point set, axds the location. A small
ensures that the TPS approximates local deformations W4ll [n our work,
we experimentally sek to 0.001. Ejendging is the bending energy of the TPS,

which can be written as:

FEpendind V) = ///L(vx) + L(v,) + L(v,)dzdydz, (3.9)

L() = (22 + (Z2)* + (&) + 2(32;) + 2(3%) +2(5%2),  (3.10)

wherev,, v, andv, are components for at different directions respectively.
TPS is chosen to represent the underlying transformatiotiehue to its
nice properties, including its smoothness, no free pararséd tune manually,
closed-form solutions for both warping and parameter esion, and physical
explanation for its energy functiori42 148. Compared to other transforma-
tion models that have been successfully applied in the ecofrieart surface
registration, for instance, B-spline modelstf], TPS is more suited to our ap-
plication mainly in two aspects: 1) the deformation is mdobgl: the generated

deformation prior is sufficient to provide a high-level knedge of the plausible
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deformation field to guide the deformable registration pes¢ and 2) The com-
putational complexity is much lower than other transfolioraimodels where
the iterative calculation in the optimization process egusng running time. In
addition, the distribution of the point sets are modeled adure of Gaussians
for the purpose of efficient and robust registrati8fl|[ It was demonstrated in
[85] that even with outliers and missing parts in the point sets,algorithm

is still able to register the point sets robustly and colyedRegistration using
mixtures of Gaussians may not be highly accurate at the edgespared to
other computationally-expensive landmark-based registt methods that fo-
cus on point-to-point matching. However, the deformatiodonmenerated from
the point sets registration results is sufficient to proviagh-level knowledge of
the plausible deformation field. Note that, unlike many o8@ine-based opti-
mization schemes where iterative volume intensity intkfpan is required, we
only use TPS to generate a deformation prior based on thedaadistributions

of the point sets, which leads to a much higher computatieffigiency.

3.3.1.1 Penalty from Prior Deformation Field

Optimizing Equatior8.11provides a data-driven prior deformation fieldand
we want the prior deformation fiekdto guide the deformable registration pro-

cess. The penalty term is thus defined as:

Bor(h) = = [ w00]In(0) = V) o (3.11)

A local weight termw(x) is included in the penalty termw(x) should be large

at the structure mismatching area where the deformatiomdinely more on the
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prior deformation knowledge, and small at the area whessnsity information

is rich in both images.

3.3.2 Similarity Measure for Deformable Registration

To further refine the registration results, deformable stegtion is performed
after rigid-body registration. MI124] is widely used in the field of multi-modal
image registration. Readers can refer to Chapter 2 of thestlier the review
of MI-based image registration techniques. However, inNHesetup, every
pixel is treated equally, regardless of the importance ongsgric location or
structural information. We propose a novel intensity-llasienilarity metric —

structure-encoded mutual information, which assignsesifit weights to the
pixels according some anatomical prior knowledge. Heregovebine the prior
deformation field as described in the previous section aactvel structure-
encoded mutual information (described in the followingtmey) for the follow-

ing energy functional:

E(h) = ESN“(h) + OéEp,—ior(h), (312)

where Fsy denotes the structure-encoded mutual information of tlseied
and target data, anHpi,, denotes the similarity measure of the current defor-
mation fieldu and the prior deformation fieldwhich is generated by optimiz-
ing Equation3.11 A deformation field that maximizes the SMI is influenced
by the prior deformation field to achieve a more clinicallyanmgful align-
ment. The factory controls the amount of guidance by the prior deformation

field. It can be seen that our similarity measure considets tiee low-level
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information from the image content and the high-level poarthe deforma-
tion field. The combination of the two soft constraints imtgs the anatomical
information which largely helps the registration proce€xompared to other
registration methods that use some image salient featulesumdary features
as additional constraints, our proposed method does noiresgumerical solu-
tions to optimize the energy function. The optimum of theiknty measure

can be found by means of variational calculus. We derive thdignt of the

combined functional with respect to the displacement filds the computa-
tional time is largely reduced which is very important fomatal usage. The
details of structural encoded mutual information and ragetion are given in

the following subsection.

3.3.2.1 Structure-Encoded Mutual Information

Encoding location/structural information into the Ml slarity measure is in-
vestigated by Suh et al1lb( where they only consider the statistics in the re-
gion of interest. Different from]50, we emphasize the structure information
contained in each voxel. In particular, we propose to agdiffierent weights to
the pixels according to some anatomical prior knowledgg, structures that
appear in both images should be given higher weights, sudngas bound-
aries which can be easily extracted if segmentation is kegasailable. Lower
weights are given to the pixels in the homogeneous regiomevhet much in-
formation was contained or in the area with mismatchingestmes, which may

lead to significant registration errors. Specifically, oensity estimator is based
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on a normalized Gaussian kernel of variapc@otedG(i):

: 1 :
P(i,u) = W/QD(X)GBUU(X) —i)dx, (3.13)

wherei represents the co-occurrence of an intensity gaix) is a weighting
factor assigned to every pixel. For each pair of intensitighe value of the
estimated joint pdf is a nonlinear function of Note that in the conventional
way of calculating the joint density)(x) is assigned to 1. However, we intro-
duce a weighting factor so that we can incorporate the straicinformation
into the calculation of the joint pdf, e.g., the pixels thet aloser to the object
borders will be given higher weights because the intertsgtyed SMI term is
more capable of matching such discriminant areas.
The definition of the SMI is the same as MI which takes the feifay form:
P(i,h)

ESMI = /1;2 P(l, h) log mdl, (314)

wherep(i;) andp(iy) are the marginal probability density function of the target
and source images respectively. Compared to the convehtibin we encode
the anatomical segmentation information into the caloutadf joint density
function, where pixels that are around the segmentatiotidvsrare given higher
weights because of its reliability. Such a weighting schem@icitly makes the
SMI content-aware — the similarity measure is dominatecdeypixels that are
more anatomically reliable. The deformation field therefmr driven more by
the areas that are regarded as more reliable, making thaiaation less prone

to noise and local optima, and therefore leading to morerateuegistration
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results.

3.3.3 Optimization

For the optimization step, we follow the variational frantetvproposed by Her-
mosillo et al. P6] that has demonstrated nice properties in terms of accanady
capture range compared to the parametric deformable rafgist. In particu-
lar, we perform variational minimization of the proposeegy functional by

gradient descent:

oh  0E(h)  0Bsw(h)  9Epor(h)

ot on  oh Y on (3.15)

Based on3.15), the deformation fieldh is updated at every iteration. The gra-
dient of SMI is similar to the gradient of MBf] with an additional term on the

structure weight ternd(x), and can be shown to be:

oBgn _ _ D(X) G6*<®HW(D ZNDMX)VPKX+h()) (3.16)

ah(x) ‘Z P(i,h(x)) pliz,N(

whered, P denotes the partial derivative of P with respect to its sda@miable,
p’ is the derivative of the marginal pdf, ards the convolution operator.

Following the notation ing6], the gradient ofFpio(h) is derived from:

Ok Eprior(h) = /Q %M(X)Hh(X) +ek(X) = v(X)[[*e=odx
= /Qw(x)(Q(h(x) — V(X)) - k(x))dx, (3.17)

wheredy Eprior(h) is the first variation ofprio(h) ath in the direction ok (see

43



3.3 Method

[151)).

Thus we have
et = 2u((h() ~ V() (3.18)

From (3.16 and @8.18, we immediately notice the terl(r?;];(ir;t’)g‘)” — ’; ((fj’:((;)))))

and(h(x)—V(x)) as the comparison functions of our registration mettfgg:t

X

tends to cluster the joint histografti, h), while —% prevents the marginal
distribution of the deformed source image from becomingdiustered. For
(h(x) — v(x)), the deformation fieldh is lead byv, thush will not deviate sig-
nificantly from the prior deformation field. In addition, the use of the weight
termsD(x) andw(X) leads to desirable properties while updating the deforma-
tion field at each iteration. Specifically, in the locationsere D(x) is large, the
deformation field will be dominated by the SMI term, becausthese regions,
there is clear structure information in both source andetairgages. Thus the
registration benefits from the intensity information. Vé¢hiih the regions with
largerw(x), these regions typically contain nonradiopaque strusturéhe tar-

get images and mismatched structures between the sourcerged images
occur. A largerw(x) imposes a stronger prior deformation knowledge at loca-
tion x to avoid anatomically implausible deformation. The conaltion effect

from D(x) andw(x) ensures that our deformable registration is context-aware

and well regularized.
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3.4 Experiments

To validate the proposed framework, here, we present tletseo§experiments,
on 1) pre-operative CT and non-contrast-enhanced C-arn2Ciyocardial

perfusion MRI, and 3) simulated pre- and post- liver tumaeion MRI.

3.4.1 Pre-operative CT and Non-contrast-enhanced C-arm CT

Registration of pre-operative contrast-enhanced CT andcoatrast-enhanced
C-arm CT eliminates the need for acquiring contrast-end@@zarm CT, which

is harmful to trans-catheter aortic valve implantation\{T¥patients with kid-
ney impairments]527. We validated our proposed method on 20 TAVI patients
who had undergone both CT and contrast-enhanced C-arm @§.s¢he 20
C-arm CT images are with standard quality. The size of each 8l a volume

is 256x 256 or 512512 pixels. A volume contains around 100 - 300 slices. The
image resolution is isotropic and varies from 0.49 to 0.92°mwie artificially
removed the contrast in the aorta area for C-arm CT by repjaicitensities
corresponding to the contrast agent with intensities ggadrfrom a Gaussian
distribution with the mean equal to the heart area of ther@-@rm volume. The
generated data are visually inspected to be non-distihghle from the real
non-contrast enhanced C-arm CT volumes (Big). Thus in the experiments,
we are essentially matching the CT volume with non-corteastanced C-arm
CT volume. The experimental setup takes advantage of therkgoound truth.
Although artificially generated non-contrast enhancedri@-€T image may
not be an ideal experiment setup, it is so far the best way temaantitative

evaluation on the performance of the proposed registratigarithm for real
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Figure 3.2: Pre-operative CT, intra-operative contrast-enhancednC@T and
Simulated non-contrast-enhanced C-arm CT image exampias tivo patients.
Column (a): Pre-operative CT. Column (b): Intra-operatiomtrast-enhanced C-
arm CT. Column (c): Simulated non-contrast-enhanced CGFm

patient data. Compared to possibly alternative validatm@ihods on animal
/ cadaver data, the deformation property of the heart is meabstic for the

target (live human being) application. In addition, usingtatlic markers to

generate ground truth positions raises the issue of theengéece of the mark-
ers on registration performance due to their high gradientse images. For
all the experiments, the parameters are fixed and withotriguor the best per-
formance for individual data. For quantitative evaluatpampose, a cardiologist

manually delineated the aortic root of all the CT and C-armdaia sets.
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3.4 Experiments

3.4.1.1 Qualitative Evaluation on Artificial Non-Contrast Enhanced C-

arm CT

To evaluate the deformable registration results, we futbenpared the results
obtained from rigid-body registration initialized usirfietheart center (for the
three cases where both initialization methods failed, wezlube manual rigid
registration results), conventional MI-based deformabétgstration under vari-
ational framework 96], purely relying on our proposed deformation prior, Lu
et al’s method 157, and the proposed method. Our earlier methodlinZ]
only incorporates the rigid nature of the spine while getiegahe deformation
field prior. More specifically, the point sets are samplednfrihe spine area,
whereas in this thesis, we extend the sample points to th¢ $iedace area to
better model the heart motion, thus giving a more effectie®mamation field
prior. For evaluation purposes, we extract surface mesh#seaaortic roots
from the deformed CT and the C-arm CT images (see Fif). In our experi-
ment, the segmentation of the aortic roots is done by a dagigi, however, it
can also be achieved automatically by using the metho#l56 ] The mesh-to-
mesh distance is calculated by the average distance fropothts on the aortic
root surface mesh root of the deformed CT to the closest mrirnthe aortic
root surface mesh of the C-arm CT. The mesh-to-mesh errer3. 2 + 1.14
mm, 3.26 £ 1.60 mm, 2.05 £ 0.67 mm, 2.16 = 0.64 mm, and1.76 & 0.43 mm,
respectively. The comprehensive comparison can be fouRa)ir8.3.

The mesh-to-mesh error from the rigid registration is lathan 3 mm on
average, which exceeds the tolerance in the practical rgent. The result

from the rigid registration indicates that the residual imobdf the heart still ex-
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ists after rigid registration. Therefore, deformable ségition should be applied
to compensate for the residual motion.

However, using pure intensity-based conventional Ml dossreduce the
amount of registration error on average, adversely, ibthices a much larger
variance. A closer look at every individual cases reveads fure intensity-
based MI reduces the registration error in majority of theesacomparing to
rigid registration. But unfortunately, pure intensitysked M| produces signifi-
cant errors for the cases in which C-arm CT has bad qualitih&it incorporat-
ing any anatomical information, pure intensity-based Migyates deformation
fields that are anatomically implausible, which leads togigant registration
errors (See Fig3.5 column (b)). As robustness is extremely critical for medi-
cal applications, and there is no guarantee to acquire G=armata with good
image quality, pure intensity-based conventional MI cariv® applied in the
practical situation due to its unreliability.

On the other hand, we also tested the reliability of our psepladeformation
field prior. Without incorporating any of the intensity imfoation, we directly

apply our proposed prior deformation field on the pre-opeza@ T data. It can

9
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Figure 3.3: Registration performance of 20 patients measured using-teesiesh
error.
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Figure 3.4: Point sets extracted from the aortic root surface, befeft) @gnd after
(right) deformable registration. Red point set is the gobtmith, and blue point
sets are extracted from pre-operative CT. The black arr@nsoéhdicate the errors
calculated at the three corresponding points.

be seen that our proposed prior deformation field produdagstaand reason-
able registration results. This is because the proposeatrdation field prior
is derived based on the global motion of the heart, thus thaltrebtained us-
ing the prior directly is quite robust. A comparison is madetioe results ob-
tained from solely the deformation field prior and the pragbmethod where
intensity information is further incorporated through S/aired t-test between
these two methods results a two-tailed P-value of 0.0293cdByentional cri-
teria, this difference is considered to be statisticalgngicant, indicating that
the proposed method is statistically significantly betiemntapplying the prior
deformation field alone. The improvement can be explaineti@$ollowings.
The deformation field prior is derived using the method ohpeet registration,
which is less sensitive to points at the area with sharp atangherefore, the
deformation at those areas may not be fully captured by tfermation prior.

To demonstrate this, one registration example from Pa%id@atshown in Fig.
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Figure 3.5: The registration results from Patients 5 (Row 1) and 9 (Row(2)
Rigid. (b) Deformable using MI. (c) Directly applying pridieformation field. (d)
Lu’'s method (e) The proposed method. The red lines delindegeaortic root,
the green lines delineate the myocardium and the yellovs ld@ineate the other
visible structures from the CT images.

3.5 Row 1. In this case, the deformation field prior is not welegeted mainly
because point sets registration using TPS model does nottlanvthe region
with sharp structures, e.g., the sharp thoracic cavitygbse the image was ac-
quired at the inspiratory phase). Furthermore, althoughpttiior deformation
field provides a high level prior knowledge about how the hdaforms, inac-
curate estimation may occur due to the errors from the luggsatation. One
such case is shown in Fi.5 Row 2. In this case, because of the inaccurate
segmentation on the right lung, solely applying the defdiomaprior would
cause the epicardium area to be misaligned and thus leadadourate regis-
tration result in the aortic root area. Despite the abovetimeed shortcomings
of the deformation field prior, with further incorporatinget SMI term, the mis-
aligned area can be well corrected which leads to a moreatésiregistration
result. Therefore, the aortic root is registered to a motarapn position.

Our proposed method is closely related to Lu et al.’s metlia&d][which

combines strength from intensity-based method and theameal knowledge
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into the deformable registration framework. Compared &1s method where
only rigid nature of the spine is incorporated, our propasethod further con-
strains the deformation field by using a TPS model to estithma&t&deart motion.
With the least registration error and standard deviatioa réesult demonstrates
the superiority of the proposed similarity measure whicmbmes soft con-
straints derived from the anatomy, as well as the numertadllgy of our gra-
dient descent based optimization scheme. Clinically, sstegion error below
2.5 mm is deemed acceptable. Compared to Lu et al.'s meth®dnprove the
results for Patient 3, 15 and 16 from borderline acceptablety accurate, and
furthermore, the results for Patient 10, 18 and 19 are ingmdrom clinically
not acceptable to acceptable. We further perform a paitesttbetween these
two methods, and the two-tailed P value equals to 0.0012yislgahat the pro-
posed method is statistically significantly better than Lalés method. This
is largely attributed to the proposed deformation priorjohhs able to model
the deformable heart motion, instead of simple rigid-bodytiom in the spine
area as proposed in%2. It is noted that in certain cases, the improvement of
the proposed method is minor compared167. This is because in the cases
where heart motion is not significant, modeling the spineonds sufficient for
the registration task, while in the cases where heart mdtemomes apparent,
the proposed method provides significantly improved regfisin results.

To qualitatively compare our method with Lu et al.'s methag, show an-
other registration example from Patient 9 in FB§)5 Row 2. In this case, the
C-arm CT image is very noisy especially at the area near time s he pro-
posed method produces the most accurate registration at$hé targeted area

— the aortic root (red contours). Furthermore, the anatahsttucture at the
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heart area is nicely preserved, due to the incorporatedetmn prior. We
can see that Ml-based method fails completely because tdrttpe area of mis-
matched structures, while Lu et al.'s method performs welliad the spine and
heart surface (yellow contours). However, because thécamt is quite far
away from both the heart surface and the spine area, theraotstimposed
by [157 is not strong enough to produce a good registration redultrther-
more, due to the significant noise, the registration reguli@heart area is not

clinically meaningful, e.g., the myocardium (green com&)uis badly distorted.

A nice property of our proposed similarity measure is thebe¢ between
Eswi and Epior. At the initial stages of the registration procegs,iq is the
main driving force because initially, the deformation fieddvery different from
the deformation prior, thus the magnitudeQj; is large. As the registration
process continues, thBsy, term acts to fine tune the registration results by
utilizing the intensity information. And,ior cOnstrains the registration process
by penalizing significant deviation from the prior. Notetttieese two terms are
both soft constraints, and the combination of these canssraicely present the

best registration results.

Aortic Ostia

Mean | STD | Median
After Rigid-body Registration 6.78 | 7.19 7.32

After Deformable Registration | 2.86 | 0.77 2.73

Figure 3.6: The left and right coronary ostia at the aortic valve of twareple
data: (a) C-arm CT image (b) Pre-operative CT image. Thestahlthe right
shows the landmark registration error between the regidteoronary ostia in the
CT image to the corresponding points in the C-arm CT image. miban, standard
deviation (STD), and median of the errors are reported (oredsn millimeters).
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Registration accuracy in the aortic valve landmark dete@ds measured to
further validate the clinical applicability of the propaisegistration framework.
During the TAVI procedure, the left and right coronary ostra overlaid onto
2-D fluoroscopic images to provide guidance to physicianavimd blocking
the ostia after valve deployment. Thus accurate registrati left and right
coronary ostia is crucial for the TAVI procedure. The landkneegistration
accuracy of the coronary ostia is measured using the Eaclidestance from
the coronary ostia in the C-arm CT image to the correspondamgnary ostia
in the registered CT image. We can see that the landmarkna&tips accuracy
of the coronary ostia is significantly improved frahv8 + 7.32 mm t02.86 +
0.77 mm. The average landmark registration error of below 3 mncatds the
clinical feasibility of our proposed registration framewoFigure3.6shows the

coronary ostia from C-arm CT and pre-operative CT respelgtiv

3.4.1.2 Qualitative Evaluation on Real Non-Contrast Enhaned C-arm

CT

We also perform our proposed registration framework onettsets of CT/real
non-contrast enhanced C-arm CT data. The specs of the thtesets are sim-
ilar to those in Section 3.1.1. The non-contrast C-arm CTgesado not have
any visible structure at the targeted area of this appboat- aorta. Further-
more, as mentioned in Section 3.1.1, the only way to detexrmpositions on
non-contrast-enhanced C-arm CT image is to place metalikens to obtain
the ground truth. However, doing so raises the issue of tegference of the
markers on registration performance due to their high gradiin the images.

Therefore, we are not able to provide quantitative compariand only quali-
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tative evaluation is performed.

It is found that the experiment results are very similar ®rgsults obtained
by using artificially generated non-contrast enhancedr@-@r. This validates
that the quantitative evaluation in the Section 3.1. We itptalely evaluate our
image registration framework on CT and real non-contrasaeoed C-arm CT.
An example is shown in Figur8.7. Firstly, rigid-body registration brings the
pre-operative CT to the same coordinate system as C-arm @denHowever,
major misalignment still exits mainly due to the cardiac aespiratory motion
(see the red arrows in Figu&7 Row 2). After performing deformable regis-
tration, the cardiac and respiratory motion is correcteu] #he aortic root is
registered to a more optimum location (Figl8& Row 3). In this example,
we show that the proposed image registration frameworkesstally registers
the CT image to the non-contrast enhanced C-arm CT imagearticplar, the
spine is correctly registered with its rigid nature embetlohethe deformable
registration process. Furthermore, the heart structurieedy preserved and the
aortic root is registered to a optimum position, which isidally applicable,

thanks to the anatomic knowledge based deformation fietd. pri

3.4.2 Myocardial Perfusion MRI

We perform our second set of experiment on 8 myocardial penfuMRI se-
guences. The data was acquired by Siemens Sonata/AvantcdiReys fol-
lowing bolus injection of gadolinium-DTPA contrast ageDue to the intensity
change caused by the contrast enhancement, registratiogarfardial perfu-

sion MRI is treated as multi-modal image registration.
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Figure 3.7: Qualitative evaluation on image registration of CT and neaih-
contrast enhanced C-arm CT. Row 1: Non contrast-enhancadnG=T. Row 2:
After rigid-body registration. Row 3: After deformable rsation.

3.4.2.1 Experimental Setup.

We select a source frame which has the best contrast in theseg, and the
selected floating frame is registered to every frame of thpieece. In this
experiment, we can obtain the epicardium segmentatiomgyi$bv]. The point
sets are sampled from the epicardium outlide(x) is larger at the locations
near edges, and(x) is larger at the locations near the segmented epicardium.
The information of epicardium segmentation is thus imgijoembedded into

the registration process.

3.4.2.2 Experiment Results

For our data set, myocardial contours (epicardium and eardagn) of all the

slices are drawn by a cardiologist. These contours serveeaground truth.
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Figure 3.8: Quantitative comparison of the registration errorsgixel) obtained
by rigid registration, MI, SMI and the proposed method.

We calculated the root mean square distance from the groutidtod the propa-
gated contours (yellow contours in Fig.9). The paired t-test indicates that our
hybrid method is statistically significantly better thae thtensity-based meth-
ods with P values equaling to 0.039 and 0.0263 when compargd &nd SMI
respectively. In particular, for the example shown in F3g9), simple warping
using the segmentation information results in noticeadyéstration errors at the
structure-rich areas as the intensity information is igdotintensity-based reg-
istration does not perform well in the homogeneous areausecaf the lack of
structure information. However, combining the strengtbath intensity-based
and segmentation-based methods, our hybrid method prethedest result. It
is clearly shown that our proposed method provides the nobsist registration
result, especially when the initial alignment is unsatafieg. Case 5. Thanks
to the guidance from the high-level knowledge prior defdiorafield, the reg-

istration problem is much better constrained and a morer@ptsolution can
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Figure 3.9: Registration results (a) Rigid (b) Simple warping usingrsegtation
information (c) SMI (d) Proposed method. Yellow and bluesrare the propogated
and the ground truth contour.
be found. Note that in certain cases, e.g., Case 4 and Case 8ifference is
insignificant with and without the proposed deformationdfigtior, this is be-
cause in these cases, less motion of at the myocardium aybsdasved, thus the
intensity based SMI is sulfficient to register these imageseces even without

incorporating the deformation field prior.
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3.4.3 Simulated Pre- and Post- Liver Tumor Resection MRI

The proposed hybrid method could be potentially appliedntotizer category
of registration problems with mismatching structures, registration between
volumes of pre- and post- tumor resection. In this experintée registration

is performed on pre-operative MRI and simulated post-dperdRI.

3.4.3.1 Experimental Setup

We simulated a post tumor resection image by manually setyjngetne tumor
and the surrounding tissues, and then replacing the segtharga with O inten-
sities. Then we artificially deform the pre-operative MRidahe registration
is performed between the deformed pre-opeartive MRI andithalated post-
operative MRI.D(x) is set to one except for the resected area:@afd is one

at the resected area and zero otherwise. We assume thedgmestation is

available, the point set is extracted from the liver surface

3.4.3.2 Results

Here we get the preliminary results using one data set. @tigély, intensity-

based registration does not perform well in the resecteal ared simple warp-
ing using the liver segmentation does not preserve theldétsiructures well.
The proposed hybrid method guides the registration usiagéformation prior
at the resected area, while at the rest of the area, intelpaggd method domi-
nates. By combining the strength of both, the hybrid methaddesxves the best

registration result as demonstrated in RBdLQ
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Figure 3.10: (a) Pre-operative MRI. (b) Simulated post-operative MR), (d) and
(e) are the registration results using simple warping, Sl aur method respec-
tively.

3.5 Conclusion

In this chapter, we presented a hybrid multimodal deformaddjistration frame-
work with incorporates two sources of anatomical prior infation. The pro-
posed method addresses the image registration issue velailieg with images
with different structure appearance due to different lewélcontrast medium,
and was validated on both TAVI, perfusion MR data. In additipreliminary
results show that the proposed method can also be appliedigination of pre-
and post- tumor resection images. The experimental reatdt®€ncouraging
which demonstrates its superiority compared to intensétged method and sim-
ple warping using segmentation. Furthermore, we descendrtdient of the
combined functional with respect to the deformation fieldemthe variational
framework which is more computationally efficient compatedpline-based

optimization schemes.
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Chapter 4

Multi-modal Image Registration:

Utilizing Appearance Priors

Incorporating context-specific prior knowledge of the n#i®y mapping has
shown promising registration results. In this chapter, vagpse to learn the in-
tensity matching information through normalized poinswisutual information,
from existing perfectly aligned training images or imag@pthat are roughly
registered. Then novel similarity measures — weighted adutdiormation and
weighted entropy of intensity mapping confidence map arpgsed. The de-

tails of the algorithm will be presented in the following s8ens.

4.1 Introduction

As mentioned in Chapter 1, mutual information is widely usedhe field of
multi-modal image registration. Nevertheless, incorfiogaprior knowledge

of the underlying registration problem has shown signifigerprovement in
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registration robustness and accuracy. Hence, it is commarcorporate prior

information into the energy optimization scheme by thedwihg formula:

J(T, So W) = JMI(T, So W) + OéJprior(T, So W), (41)

where the similarity measurkconsists of the mutual information based simi-
larity Jy and a prior similarity terndpi,.

There is much prior information that can be incorporated the image reg-
istration process. The effort of intensity standardizingradifferent modalities
makes incorporating intensity matching prior more pradtidMore specifically,
using divergence measures to compare the joint intensitydastributions from
training and testing cases has attracted much attentidn], [[105 and [106]
proposed to use Kullback-Leibler divergence (KLD) as thmilgirity measure
to register multi-modal images. Liao et al. used Jensem$bra divergence
(JSD) to compare learnt joint distribution with the obseryeint distribution
[107. The major drawback of using the leant joint intensity dimitions is
that these joint intensity distributions may deviate a letiteen the training and
testing images, which reduces the effectiveness of thasittematching prior.
This is because the joint intensity distribution dependsamdy on the inten-
sity matching relationship, but also the quantity of thensgity matching pairs.
The number of the intensity matching pairs may vary signifiigefrom training
cases to testing cases. In this chapter, we propose to leaintensity match-
ing relationship from pre-registered image training palrsstead of using the
learnt joint distributions, we propose to learn the intgnsiatching relationship

from the joint histogram through the normalized pointwisaetaal information
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(NPMI), and apply the learnt intensity matching as a moresganflexible and
robust prior. The motivation comes from the observation tie joint distribu-
tions not only account for how the intensities are matcheatiatso the amount
of each intensity pair. The acquired intensity matchingmpis thus sensitive to
field-of-view and size of the objects, while the statistigaignificant intensity
mapping relationship remains unchanged. For example,gn 42, the joint
intensity distributions change a lot from slice to slice fwain images, while
the proposed learnt intensity matching relationship base#lPMI is largely
the same.

Compared to direct application of the joint distributiotigg proposed method
further utilizes the intensity mapping information. UsiNgMI as the measure
of intensity matching relationship makes the proposedrélgn more robust to
changes in both the object and the background; the latteravety become the
dominant force in the learnt joint distributions due to ignant size in many
applications. More importantly, we can obtain our inteynsiatching prior from
a subset or even just a slice of the volume, provided thatlibeis representa-
tive of the object to be registered. This makes the acqarsif the prior much
simpler. In this chapter, two novel similarity metrics bé.gm weighted mutual

information and weighted entropy are proposed.

62



4.2 Method

Figure 4.1: Two corresponding PD/T1 brain MRI slices and the compute/INP
The red value shown in the NPMI map shows high correlatiowéen the intensity
pairs.

4.2 Method

4.2.1 Normalized Pointwise Mutual Information

Normalized pointwise mutual information (NPMI) is widelged in the text cat-
egorization field 1559. It ranges from—1 to 1 where a positive value indicates
the trend of appearing together and a negative value irefidhe trend of not
appearing together, 0 indicates statistical independdvie#l is defined as:

p(i1,i2)

g - -
NPMI(i i) — p(ip(i2) 4.2
(i1,72) = — log(max(p(i1),p(iz)))’ o

where in the application of image registratienandi, are the intensity values
from the image pairp(i;) andp(i,) are the marginal distributions of the training
image pair ang(iy, i) is their joint distribution. Figurd.1shows an example
the learnt NPMI based on two corresponding PD/T1 brain MRyiesa

NPMI reflects the correlation between the intensity valuemfsource and
target images. The low frequencies bias is much reduced byalzing with
the factorlog(max(p(i1), p(i2))). Therefore, it provides more insight regarding
the correlation between the values from two sources. Thpepties of NPMI

nicely fit into the application of image registration, espég multi-modality
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400

(2)

Figure 4.2: Different training slices may result in different joint tegrams but
similar intensity matching relationship. (a) (b) A traigimpair of brain image
(T1/PD). (c) (d) another training pair of brain image. (€)ttfe resulting learnt
joint histograms from pair (a) (b) and (c) (d) respectivelg) (h) the resulting
learnt intensity matching prior from pair (a) (b) and (c) fd¥pectively.
image registration where one to many and many to one infemsitchings are
possible. To be more specific, in the field of medical imagéysig two regions
may have the same mean intensity in one modality but totaiydifferent in-
tensities in another modality. The NPMI mainly reflects thiensity matching
information, because the bias that would have been intedifrom the quan-
tity of the intensity values has been normalized (see Eig). To capture the

regional intensity mappings more accurately, we calculaeNPMI at every

patch of the training images (the patch size may depend cayipiécation), and
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then obtain the final NPMI by choosing the maximum value anmaihtpe patch

pairs. In the context of image registration, when two inigngalues always

appear at the same time, NPMI will be given a value of 1, the tesrelation

the two intensities have, the smaller value NPMI would beegivWe do not

consider the intensities that have negative correlatiatduheir rarity.. The

training images may be obtained from the prior image paias llave already
been carefully aligned. Alternatively, as in this chaptiee training images are
obtained by MI-based registration rather than from pricag® pairs.

The NPMI obtained from the training process has the capaldi model
the intensity relationship from the source and target imagg&ompared to the
joint intensity histogram as the intensity matching prtbe influence from the
number of intensity matching co-occurrence has been magichithanks to the
normalization factor. Furthermore, as NPMI is much lese@éd by the size
of the object and the proportion of the background, the imgirprocess for
NPMI is more straightforward. In many cases, we can easiisaekthe NPMI
information from only few slides of the image volume as lomsgtlae intensity
matching in these slices are representative for the entileme. NPMI is a
more elegant intensity matching prior compared to the joinsity histogram,
because of its simplicity in the training process, and raiess and accurateness
as an intensity matching prior. In the next subsection, wigpnopose two novel

similarity measures that use the learnt NPMI for image teafi®n.
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4.2.2 Weighted Mutual Information

4.2.2.1 Formation of WMI

In the traditional formulation of mutual information:

Jaal = / ph(il,ig)logwdildig (4.3)
R2 pfl(zl)pfz(h)

every intensity paifiy, i) is weighted by the corresponding co-occurrence prob-
ability p(i1,i). This assumes that apart from the probability of occurretie
intensity pairs are treated equally. However, such an aggsamis not com-
pletely true in the course of image registration. Some gitgipairs are seman-
tically more important than the others, because certagmsities from source
and target images are inherently related to each otherdiega of the probabil-
ity of occurrence, e.g., the thin structures in the imagiisoagh the probability
of occurrence is low, the correlation of the intensity matghpair is very high.

To address this issue, we propose to incorporate the lesemsity matching
prior into the MI framework. The weighted mutual informatiQ/V/MI) is thus

defined as:

JWMI:/ ph(ll,w)IOng(h,lz)dhdh, (4-4)
R? pfl(zl)pfz(h)

wherew(iy, i) is the weight learnt from the training data for each intgngdir.

Whenw(iy, i5) is assigned to 1 for every intensity pair, WMI degeneratehéo
conventional Ml where every intensity pair is treated etyuélowever, it can be
easily understood that, certain intensity pairs shoulgl plenore important part

in the image registration process, e.g., intensities trehaghly correlated. A
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higher weight is given to the intensity pairs that are moghlyi correlated while
calculating the weighted mutual information. The coriielatof the intensity

pairs can be learnt from the training data sets. In particula

1+ NPMI(“, 22) NPMI(Zl, 22) >0

1 NPMI (i, i3) < 0

The weightw(iq,75) indicates the matching relationship between the two
intensitiesi; andi,. Intensity pairs that are positively correlated will resal
higher NPMI values and thus the higher weights. On the othadhif the in-
tensities are negatively correlated or independent, a lewght will be given.
By giving weights to the intensity pairs, weighted mutudbmmation explicitly
encodes the intensity matching information into the fororabf the original
mutual information. Therefore, unlike mutual informatjevhich is an unsuper-
vised similarity measure, the proposed weighted mutuarmétion makes use
of the prior information obtained from the training datatedtcilitate the image
registration process. As the intensity matching infororathas been incorpo-
rated by assigning different weights to different inteypgtirs, the weighted
mutual information is theoretically superior in descrijpitne image alignments
compared to mutual information. Naturally, it may lead toedtér image regis-
tration result. Note that, the weight(i,, i) is always greater than or equal to
1, so the weighted mutual information in fact combines theveational mutual

information and the contribution from the learnt intensitgtching prior.
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4.2.2.2 Probabilistic Interpretation Using Bayesian Infeence

In probability terms, minimization of our energy function Equation 4.8
can be interpreted as maximizing the posterior distriloutd the diffeomor-
phic warpingh, given the target imagé', the source imagé#, and the learnt

intensity mapping\/:

h = argsuplog p(h|T, S, M)
" (4.6)
= argsup log(p(T, S, M|h)p(h)).

The second termpg p(h), can be recognized as the geometric prior on the dis-
placement field, and in our model, it is considered as gemegglarization. In
our implementation, we apply a fast filtering technique ® dieformation field

at each iteration to regularize the deformation. Hence wadmn the first term
logp(T, S, M|h). It can be shown from Bayesian inference theory that:

p(T, S, M|h) oc/

R2

4.7)
x / p(T, SIM, b, )p(M]h, Dypn(i)di,
RQ

wherei = (i, 1,) is a given intensity mapping pair in th¢* domain. Propor-
tionality in the above equation means that only those fadtwat do not depend
on the deformation fieltd and thus do not affect the maximization are neglected.
Thus the probability calculation separates into threesgart can be interpreted
as follows: the first termy (7', S| M, h, i), measures the similarity of the two im-
ages given one intensity mapping pair, and in our model cart®gnized as

the termEMI(i, h) in Equation ¢.10); the second terny(M|h, i), denotes the
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learnt prior probability for a given intensity mapping pand in our method is
modeled using the weight(i) defined in Equatior4.5). When the prior on the
intensity mapping is not available and hem¢@/ |h, i) is the same (i.ew(i) =1)

for all the intensity pairs, the above equation boils dowtheconventional mu-
tual information similarity measure. The conditional dizsition is integrated

along the dimension of possible intensity mapping pairgheethird ternmp (i).

4.2.2.3 Optimization of Variational Formulation

Based on the proposed WMI, our learning-based registratbeme is defined
as the minimization of the following energy functional witkspect to the de-
formation fieldh:

J(h) = —Jwur (4.8)

For the optimization step, we follow the variational franwek proposed by
Hermosillo et al. §6]. In particular, we adopt the variational minimization of

the energy functional by gradient descent:

oh _ 9J(h) _ dJwau(h)

ot oh oh (4.9)

The remaining challenge is to calculate the gradient of tita term.Jy, .
For simplicity, we use the notatian= (i, i), In(X) = (17(x),15(x + h(x))),
and define:
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We estimate the joint density estimation by:

: 1 :
p(i,h) = — / Gp(lnh(x) —i)dx, (4.11)
192] Ja
whereG/; is a normalized Gaussian kernel of variantend

Ip(i, h)
oh

_ ﬁ / 0,G(In(X) — VIS (x+ h(x))dx,  (4.12)

whered, denotes the partial derivative 6%; (I, (x) —i) with respect to its second
variable. It can be shown that the gradient of the data tEyx, can then be

simplified to:

0J 0 . . o
Sh =~ /R o en() (i, hw(i))di (4.13)
By substituting (8-9) into (10) with some algebraic mangiidn, we obtain

OJwwr
oh

= —{Gp * [(Qow(i)) Jwu(i, h)] + Gp*

Oop(i,h)  piz,h) o

wherep(iy, h) is the marginal distribution of the transformed source imagd
7' (i2, h) is the derivative op(iy, h), * is the convolution operator. We applied a
fast filtering techniquel5¢ to the deformation field at each iteration to regu-

larize the deformation.

70



4.2 Method

4.2.3 Weighted Entropy of Intensity Mapping Confidence Map

We now use the Weighted Entropy of Intensity Mapping ConfigeMap to
utilize the learnt NPMI. It consists of two steps: first, dbtag an intensity
matching confidence map; second, calculating the weightedmy of the in-

tensity matching confidence map.

4.2.3.1 Intensity Matching Confidence Map

For any given pair of images, there is a corresponding iftiensatching confi-
dence map. The intensity matching confidence map reprethenidPMI value
of the corresponding pixels between the target and (tram&fd) source images
(Fig. 4.3). Let IMCM denote the intensity matching confidence map. MG
defined as:

IMCM(x) = NPMI(T(X), (S 0 W)(x)) (4.15)

where we assign each poki (2 an intensity matching value based on NPMI,
and thus form an intensity matching confidence map. If we naakanalogy
with mono-modal images, intensity matching confidence neap lze viewed

as the difference map in the multi-modal set-up. In the moalal setup, we
can easily create the difference map by subtracting thecedarage from the
target image. However, it is not as straightforward for thdtismodal setup.

We obtain the intensity matching confidence map by incopuyahe infor-
mation from the learnt NPMI. At every location € (2, the intensity match-

ing confidence map reflects the matching score of the comelsipg intensity
pair (T'(x), S(x)), and thus is capable of describing the accuracy of the image

alignment in the multi-modal setup. The intensity matchamgfidence map
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naturally incorporates intensity mapping where a highérevan the confidence
map indicates higher probability of correct registratibarthermore, a smooth
confidence map indicates a better registration, becausptatinanges should
only occur at the places where tissue type has changed asdnsignificant

change of the intensity.

To gain a deeper understanding of the intensity matchinfiaemce map,
we can make an analogy to the intensity difference map in tbeoamodal
setup. In the mono-modal setup, the intensity difference maobtained by
simply subtracting the source image from the target imagleusTeach pixel
of the intensity difference map reflects the image regisinaaccuracy of the
source and target images — the larger the difference, theesmbie matching
result. SSD is designed based on the assumption that the fstiva squared
difference map should be minimized to achieve the besttragjisn accuracy.
SSD provides decent image registration results when suelssumption is not
violated. However, in the real situation, the intensityfeiénces of pixels can-
not be exactly zero, especially in the situation where thletihg condition has
changed, and the assumption of applying SSD does not haddéisulting in un-
satisfactory image registration. To increase the robgstaed accuracy when
utilizing the image difference map for registration purgpgs{Ll57] proposed to
use Shannon entropy of the image intensity difference mapsasilarity mea-
sure, which is shown to be more accurate and robust compa®8D, MI and
NMI in the mono-modality situationl[57).

The intensity matching confidence map is closely relatebdarttensity dif-
ference map, but it works even in the multi-modal setup (9ge #.3). Each

individual pixel of the intensity matching confidence maferets the matching
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confidence at that particular location. It is therefore reltto design a similar-
ity measure based on the sum of the intensity matching cordemap values.
However, itis easy to realize that summing up the intensayamng confidence
map values as the similarity measure may be affected by alv@rig accuracy
of the NPMI, as well as the noise level of the source and tangagjes. These
are the same reasons that cause SSD to be defective in themuatad setup.
Inspired by the entropy-based similarity measure/], we here propose to uti-
lize intensity matching confidence map using weighted gytrand thus make

the entropy-based similarity measure applicable in thaimubdal setup.

Figure 4.3: (a)Intensity matching confidence map before image registrathe
black area indicates low matching confidence which is a sfgmis-alignment.
(b)Intensity matching confidence map after registratioesgrigh matching con-
fidence value is across the map. (¢) NPMI obtained from theitiga data set. (d)
Training images.

4.2.3.2 Weighted Entropy

To utilize the information provided by the intensity matafpiconfidence map,
we propose to use weighted entropy of the intensity matotongidence map to
measure the accuracy of the image registration resultsgiésd entropy is the
measure of information supplied by a probabilistic expenitnwhose elemen-

tary events are characterized both by their objective fitibas and by some
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guantitative weightsl5§. It is defined as:

JIprior = —/ w(y) Povem (v) log Povuen () dy. (4.16)
R

In our formulation,y is the value from every pixel of the intensity matching
confidence map; the weighted teinty) is larger for larget, P (y) is the
histogram of the intensity matching confidence map. Spedyiove estimate

the histogram based on a normalized Gaussian kernel oheari denoted by

Gs(y):
Pion(y, h) = ‘—é‘ /Q Go(NPMI(T(X), (S o W)(X)) — y)dx.  (4.17)

The formulation is very similar to the well-known Shannortrepy, except
for the newly introduced weighting factar(y). Shannon entropy is not suited
to our application, because by minimizing the Shannon ewgtod the intensity
matching confidence map, the value of the confidence map vwabuidk to O,
which leads to a total mis-alignment. Therefore, we defieentkighting factor
w(y) as:

w(y) = tanh((: — a)/b), (4.18)

wheretanh is the hyperbolic tangent,defines the smooth transition region, and
a defines the switch point of the IMCM. For valu¢hat is greater thaa in the
IMCM, we consider it as a good matching. The proposed weigtfactorw(y)
differentiates the intensity matchings. It gives positia&ies to intensity match-
ings that are likely to appear according to the training gdatawhile penalizing

the intensity matchings that are not likely to appear in taening data set by
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giving them negative weights. Unlike the Heavyside stepcfiom, Equation
4.18is differentiable, and the transition region controlledbgrovides a buffer
region, in case the switch pointis not accurately defined. Furthermorey)
allows weighted entropy to be biased towards certain evbatscarry higher
weight, in our application, the intensity matching confidemrmap has higher
values; in contrast, the heavyside step function gives twiyflat values for the
entire domain. For our image registration problem, a gooagienregistration
produces an intensity matching confidence map that is smeoadhwith high
values. From the mathematical perspective, this requiesveighted entropy
of the intensity matching confidence map to be small givehtti@weight for
the higher values are larger. Therefore, weighted entrepyeil suited for the

problem.

4.2.3.3 Optimization of Variational Formulation

Our deformable registration scheme is defined as miniminegum of the mu-
tual information and the weighted entropy of the intensigtoching confidence

map with respect to the deformation fieid

J(h) = Jvi(h) + Jprior (D). (4.19)

The gradient ofly;;(h) at each locatiox is calculated as

Va(h,X) = Ly, (11 (x), L(x, h)) VIS (x + h(x)), (4.20)
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where

|—(12|GB o (2PON) P h)y (4.21)

Ly (11 (X), I2(x, ) = P(i,h)  p(is, h)

with p being the marginal distribution of the respective imageretiere further

derive the first variation of thép,;,, ath:

diJprior (M) = w(y)(1 + log P(y))dP(y), (4.22)

where

NPMI(I; (), I2(X, h)) —y

B (4.23)
x OoaNPMI(I7(X), I (X, h)) VIS (X + h(x)) - k(x)dX,

5P (y) = / 9G(NPMI(H () Io(x 1) ~ )

&, NPMI denotes the partial derivative dfP MI with respect to its second vari-

able. The gradient ofp,;,.(h) at each location is calculated as:

VJPriOI"(hv X) = LJPrior(Il(X)7 [2()(7 h)>V[g<X + h(X)), (424)

where

Ly(I1(x), Ix(x,h)) =
) (4.25)
WGB * (w(y(x)) (1 +log P(y(x))))92NPMI(I1 (x), I>(x + h(x))),

4.3 Experiments

We evaluate the proposed registration method through figeofexperiments.

In Section 4.3.1, a phantom study is performed to demosthet flexibility
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and robustness of utilizing the normalized pointwise mutfarmation as the
intensity matching prior. Section 4.3.2 shows that eveinwdrtial occlusions
and background change, the proposed method still provite$lexibility of

object-specific image registration. In Section 4.3.3, antjtetive and qualitative
comparison is performed in synthetic brain MR images. Wetlhis&nowledge
of the ground truth of the deformation field and the corresigmce of the land

marks to perform the evaluation.

4.3.1 Synthetic Image Study

Utilizing the intensity matching prior can guide the imaggistration process
to converge to the desired optimum point. To demonstratdiave an ambigu-
ous setup (Figurd.4) such that there are two optimum alignments. In Figure
4.4, (a) (b) and (c) are the synthetic images of the target iméxgesource im-
age, and the contour of the source image overlaid onto thettanage before
image registration. Without incorporating any prior knedde, the circle in
the source image will match to the outer circle of the targetge, by applying
mutual information as the similarity measure (Figdré(d)). On the contrary,
by changing the prior intensity matching information, batighted mutual in-
formation and the proposed method with weighted entroph@1MCM as the
prior can flexibly match the circle in the source image toesithe outer or inner
circle of the target image (see Figutel(e) and (f)). This experiment shows the
importance of incorporating context-specific prior infatmon, which helps to
lead to the desire alignment.

A comparison between our proposed method driidj[s method is further
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(a) (b) () (d) (¢) ey

Figure 4.4: (a) Target image. (b) Source image. (c) Contour of the sounege
overlaid onto the reference image before registrationR@histration result using
MI. (e) (f) Registration result using the proposed methothwlifferent matching
profiles. For (d) (e) (f), green line indicates the contouthaf source image after
registration.

performed, to test the robustness of the training prior vagpect to the change
in the size of the object. We increase the radius of the d@rcidoth the target
and source images, while the prior remains. Due to the chahge radius,
the joint histogram of the target and source images is nodotige same as the
training prior joint histogram; thus using KL divergenceneasure the devi-
ation of the test and training joint histogram is inapprafgi The experiment
result also validates the issue we raised above, the methdd converges
to the undesired global optima, where the circle in the soimage is matched
to the outer circle of the target image. This is because tiw fgarnt from

the image with a certain object size cannot be generalizéetifo register the

O[(e/0/0/0

(a) (b) (c) (d) (e)

Figure 4.5: (a) Target image. (b) Source image. (c) Contour of the sounege
overlaid onto the target image before registration. (d)ifeagion result using the
method in L05. (e) Registration result using the proposed method. In(e€)l)
green line indicates the contour of the source image aftgstration.
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object with a slightly different size. On the contrary, ouoposed method still
correctly registers the circle in the source image to therimircle of the target

image (Figured.5e)).

4.3.2 Face Images with Occlusion and Background Changes

In this experiment, we show that the proposed method whicbrporates the
intensity matching prior improves the registration resignificantly in the pres-
ence of occlusion, change of lighting condition and backgth We aim to
show that the proposed method can be applied to generakapphs, rather
than limited to the field of medical image where most of thegemsin this the-
sis are from. We use the data sets as been employd@ih where the source
image is taken under different lighting conditions with fherson wearing sun
glasses. The first two images of Figut® show a pair of manually registered
training data used to learn the intensity matching priore Tho training im-
ages were captured under different lighting conditionsl, &ith the person in
the source image wearing a sunglasses. To demonstratewss pbcontext-
specific capability of our proposed algorithm, only the angth the person oc-
cupied is used for training, without including the white kgound. In the reg-
istration process, we change the background of both thees@md the target
images, and the entire image with the added background dsinsegistration.
We compared the registration results using the proposebadst(both WMI
and weighted entropy) with conventional MI, and the methagppsed in 109
which incorporates the trained joint histogram as the pnfmrmation. The reg-

istration results are shown in Figude/, where we superimpose the edge maps
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A48

(a) (b) (c) (d)

Figure 4.6: Face images used for training and registration. (a) (bipitrg im-
ages. (c) (d) target and source images used for registratimthe addition of the
different backgrounds.

of the registered source images on the target images farhaesualization of
the registration results. The image registration resuiltsvsthat conventional
Ml fails for all of the three cases possibly because the idahbackground in
the source and target images makes the mutual informatsrskensitive in the
foreground change, in these cases, the human. In the sexamgpke, although
Ml is able to match the outline of the person correctly, thiadein the human
face, especially region around the sun glasses, is largesigligned, due to lack
of prior matching information. Incorporating the inteysmatching prior using
learnt joint histogramJ05 helps to align the outline of the person correctly in
the first and third cases, but fails to align the sun glass#éstive eye region. The
drop in performance of the metho@lJ5 in this case is expected and simple to
interpret. Firstly, the intensity matching knowledge of tthanging background
is not in the prior, and thus using the global intensity jdiistogram as the prior
is inaccurate. Secondly, global intensity joint histogrartess sensitive to the
local changes, in this case, the sunglasses, where it oolypaes a small portion
of the image. The joint histogram prior is not be able to gaigemisalignment

on the sunglass area due to the fact that it only contributesyasmall amount
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in the calculation of the joint histogram. The above mergmtwo factors make
the effectiveness of the prior weaker. On the other handpmposed methods
are able to detect the region that we want to register andithal the three
cases, our proposed method reaches a perfect alignmehefbutnan region.
This example demonstrates the advantage of using intemsipping over
joint histogram. Using the joint histogram directly as thepfails when the
background changes significantly and/or if the backgrosmubt in the training
pool, while our proposed method enables the registratioogss to focus on the

region of interest and correctly performs the image aligntnethe target area.
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Figure 4.7: Three different backgrounds are tested during registratfa) (b) (c)
overlay the edge of the source image to the target image deégjistration. (d)
(e) (f) show the result obtained by conventional mutual rimfation. (g) (h) (i)
show the result obtained by the method proposedltf][ (j) (k) (I) show the
result obtained by using WMI. And (m) (n) (0) show the resddtained by using
weighted entropy
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4.3.3 Simulated MRIs

In Section4.3.1and Sectio.3.3.1 we have shown qualitatively that incor-
porating the appearance prior can significantly increasarttage registration
robustness and accuracy. Furthermore, in the scenaricevsier of the object-
s/backgrounds change significantly, we demonstratedicatporating NPMI
as the intensity matching prior information, is superiarttusing the joint his-
togram as the priorl[05. Qualitatively, the two similarity measures we pro-
posed achieve similar registration results in Sedfidland Sectiod.3.3.1 To
provide more insights of the proposed similarity measureshis experiment,
we focus on examining the strengths and weakness of the gedpmilarity
measures.

In this study, we used the simulated MR brain images gergrsang the
BrainWeb MR simulator159. A pair of perfectly aligned T1/PD brain data
with resolutionl x 1 x 1 mm?, noise level 3% and 20% non-uniformity are
created. With this data set, we perform two sets of experinBno examine
the similarity measure with respect to translation andtimta and 2) to study

on the deformable registration application.

4.3.3.1 Similarity Measure Comparison

To quantitatively evaluate the effectiveness of our prepasethod, we examine
the similarity measures, including MI, WMI and weightedreply, with respect
to the horizontal (from -20 mm to 20 mm), and rotational stiittm -30 degree
to 30 degree) of the brain MR image T1 over PD.

1) NPMI Learnt From The Exact Alignment
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Figure 4.8: Plot of three similarity measures (MI, WMI and weighted eptr

with an accurate NPMI) with respect to the translational amdtional shift. Zero

translation and rotation corresponds to the perfect alggtm

In this section, the NPMI is learnt from the exact alignmehts the inten-

sity matching information is well presented. It is shown ig.F4.8 that, the
three similarity measures all achieve optimum at the coireage alignment.
However, the similarity measure curve generated from Miossmooth while
the image is moving away from the optimum alignment. In castirfor the
two proposed similarity measures, the similarity scoreagiesmoothly while
the image shifts away. A smooth similarity measure curvecatds that the
proposed similarity measures are good measurements dighenant, because
the similarity scores are highly correlated to the amoumh®alignment. Fur-
thermore, as we can see from Fig.8 weighted mutual information shows a
narrower, but sharper attraction basin to the optimum; ithigies that WMI
may have a better discrimination power for local misaligntse On the con-
trary, weighted entropy shows a wider attraction basin ¢oagptimum; this is a
strong indication that it has a wider capture range, whiéhdgsirable property
especially when the deformation is large.

2) A Shifted NPMI
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Figure 4.9: Plot of three similarity measures (Ml, WMI and weighted epir
with less accurate NPMI) with respect to the translatiomal @tational shift. Zero
translation and rotation corresponds to the perfect aleggrtm

It is often concerned that the intensity matching learntftbe training images
may be different from the testing images. To test how theat®mn may affect
the similarity measure, in this section, the NPMI is learot the exact align-
ment, but we purposely increase the intensity values ofrdiribg images by
10 units, thus the trained NPMI is slightly different frormetimtensity matching
information of the testing images.

Itis shown in Fig.4.9that the similarity measures of both WMI and weighted
entropy are not as smooth as they were shown in4&.mainly due to imper-
fection of the learnt NPMI. Nevertheless, we can see thasithdarity measure
of weighted entropy is less affected by the change, it isratinotonically de-
creasing as the image shifted away from the optimum alignmiencontrast,
fluctuation of the similarity measure of WMI can be seen aditiege moved
away.

3) Discussion
The set of experiments shown in Sectir8.3.1demonstrates that, incorpo-

rating NPMI as the appearance prior can help the image rag®t process in
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general. However, the choice of WMI and weighted entropy beagpplication-
dependent. WMI is more suitable to the applications thaelsagnificant local
changes, given that the NPMI is accurately learnt. WhilegiiEd entropy is
more robust, shown by its wide capture range and less seniitthe change of

NPMI.

4.3.3.2 Deformable Registration Evaluation

To evaluate the deformable registration results, we ramglgenerate ten ar-
tificial deformations using thin-plate splines with a maxim displacement of
10 mm. The artificial deformations are applied to the T1 imgesvaluation
purpose. For quantitative assessment, we chose 433 braimé&ak points at
cortex, ventricles etc, with the assistance from an exjW#.evaluate the per-
formance using the root mean square error (RMSE) betweetrahsformed
position and the corresponding ground truth position. Améxamine how an
inaccurate NPMI could affect the registration result, wefiggen the image reg-
istration based on: 1) NPMI that was learnt from the exagnatient, and 2)
NPMI that has been artificially shifted.

1) NPMI Learnt From The Exact Alignment
The prior is learnt from the intrinsically registered volempair. Only 10 slices
out of a total 181 slices are used for training purpose, wihigewhole brain
volume are tested for registration accuracy.

The quantitative results can be found in F§10 The root mean squared
errors for MI, WMI and weighted entropy are67 4+ 0.75 mm, 1.68 + 0.16 mm
and1.72 + 0.21 mm respectively. It is clear to see that the proposed two-simi

larity measures achieve significantly more accurate reanid better robustness
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Figure 4.10: Quantitative comparison of the registration results otediby con-
ventional MIl, WMI and the proposed weighted entropy by apten randomly
created deformation fields using TPS. Accurate intensitichiag prior informa-
tion is used.

(i.e., smaller root mean squared error values on averagearahce) than the
conventional mutual information. To reconfirm, we perfotme paired t-tests
with the MI. The paired t-test between MI and WMI shows a Rieadf(.0026
which indicates that results obtained from WMI are statatsignificantly bet-
ter than MI. Similarly, the paired t-test between M| and weegl entropy gives
a P-value 0f).0020, which reconfirms the improvement of our proposed meth-
ods. We further perform the paired t-test between WMI andytveid entropy,
although in this experiment, WMI gives smaller root meanasqd error and
variance, the P-value of 0.19 indicates that the differdmetsveen WMI and
weighted entropy is considered to be not statisticallyificamt.

An gualitative study can be found in Figt.11 The purple arrows show

that the proposed methods are still able to perform well@attiea where image
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Figure 4.11: Qualitative comparison of the registration results of thR lgrain
images obtained by (a) conventional MI, (b) WMI and (c) thepgmsed weighted
entropy. Accurate intensity matching prior informatiorused. The major differ-
ences of the registration results are indicated by the arow
registration using Ml fails significantly. We further compahe result obtained
from WMI and weighted entropy, it can be seen that, WMI parfebetter at
the edge area as pointed by the black arrows. Such observatonfirms the
hypothesis we made in SectidrB8.3.1that WMI has a better discriminant power
at the local region, given that the NPMI is accurately estada
2) A Shifted NPMI
This experiment aims to investigate the robustness of thiegsed similarity
measures to the accuracy of NPMI. The prior is still learotbfithe intrinsically
registered volume pair. Same as the previous section, dhilides out of a
total 181 slices are used for training purpose, while thelerbcain volume are
tested for registration accuracy. However, in this time,ant#icially increase
the intensity value of the training data by 5 units. This tesan less accurate
appearance prior compared to the previous section.
The quantitative result is shown in Fig.12 The root mean squared errors
for MI, WMI and weighted entropy ar2.67 + 0.75 mm, 1.93 4+ 0.29 mm and
1.78 + 0.26 mm respectively. The proposed WMI and weighted entropy stil

outperform the conventional MIl. However, it is worth notigithat, the image
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Figure 4.12: Quantitative comparison of the registration results otediby con-

ventional MIl, WMI and the proposed weighted entropy by apten randomly

created deformation fields using TPS. Shifted intensitychiag prior information

is used.
registration results produced by both proposed similanigasures deteriorate.
In particular, the root mean squared error using WMI inaesasignificantly
from 1.68 mm to 1.93 mm, while the change of using weightedusmsmaller,
from 1.72 mm to 1.78 mm. Again, we perform a formal pairedst;teomparing
the proposed methods with MI. The P-values of 0.0065 and?d.68ow that the
proposed methods are still statistically significantlytéethan the conventional
MI. The paired t-test between WMI and weighted entropy iaths that using
the weighted entropy as the similarity measure signifigamtitperforms WMI
in this experiment setup.

To qualitatively access the experiment result, an exansgdeavided in Fig.

4.13 We used a purple eclipse to highlight the area where sigmifiarea of

mis-registration occurs. The mis-registration occursntyadue to the existence
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Figure 4.13: Qualitative comparison of the registration results of thR lgrain

images obtained by (a) conventional MI, (b) WMI and (c) thepgmsed weighted

entropy. Shifted intensity matching prior information ised. The purple circle

indicates the area where large misalignment occurs for MNaiVI.
of intensity non-uniformity in this area. MI fails to regestat the area where
the intensity is faded and becomes more similar to the intiefrem the sur-
rounding structure. WMI is not able to discriminate the fd&uctures, mainly
because of the inaccurate appearance prior informations ddincides with
the findings in Sectiod.3.3.]1 where the inaccurate appearance prior brings a
rough similarity curve for WMI which has many local optima.the process of
deformable image registration, the local optima leads ¢éor@ature termination
of the optimization process, which leads to the inaccunatage registration
results. In this case, the proposed weighted entropy Iscaflable of register-
ing the misaligned structures that could not be recoveretgudl and WMI,
thanks to the wider attraction basin as shown in Secfié3.1 which indi-
cates the wide capture range, as well as the robustnessmiapesed weighted
entropy with respect to NPMI.

3) Discussions

The experiment results shown in Sectidr8.3.2 coincide with the findings
from Section4.3.3.1 Still, the choice of WMI and weighted entropy may be

application-dependent. WMI has a more discriminant powelocal changes
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given that the NPMI is accurate. In the case where the inenstching rela-
tionship obtained from the training sets deviates from &% images, it is best

to use weighted entropy which is more robust to the deviaifddPMI.

4.4 Conclusion

In this chapter, we propose to incorporate the appearanceipto the image
registration framework, by utilizing the normalized poitge mutual informa-
tion. Two similarity metrics based on NPMI are proposed. Ppheblem is
extensively studied in the deformable registration framw We showed that
the accuracy and robustness of image registration have ibggoved signif-
icantly when incorporating such prior information. Fummere, compared to
the state-of-the-art methods, the proposed method previdee flexibility and
robustness with respect to the change in the global profitnefearnt joint
histogram. Although the advantages of the proposed metigamhainly demon-
strated in the non-rigid image registration setup, it careasily extended to

rigid-body registration.
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Chapter 5

Modality Synthesis: From

Multi-modality to Mono-modality

Compared to mono-modality image registration, multi-mibganage registra-
tion is a much harder problem due to the complexity of modgdive intensity
matching relationship. Recently, image modality synthésis attracted much
attention. It has been shown that the synthetic images He@atential to
reduce the amount of image acquisition to perform certaalyars, e.g., tumor
growth. Furthermore, image registration benefits from ienagdality synthesis
as it can reduce the multi-modal image registration prolteesimpler mono-
modality registration problem. In this chapter, we propaggneral framework
for modality synthesis, utilizing the features such asnsity histogram and the
Weber Local Descriptor. We show that the proposed modalityhesis method

is superior to the state-of-the-art methods.
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5.1 Introduction

In the field of image analysis, images from different modeditreflect different
characteristics of the underlying anatomy. For exampleallbone densities
can be shown clearly on CT images while MRI is more suitabteef@amining
organs and soft tissues. Although acquiring images of theegaatient from
different modalities help the physicians/doctors for angtal analysis, per-
forming image registration for images from different maotiles is not simple. It
has been shown that in the case of mono-modal image re@stréie optimal
similarity criterion exist, which are cross correlatiordazorrelation coefficient.
With this in mind, it is natural to think of finding a way to trsfiorm the multi-
modal image registration problem to a simpler mono-modalgenproblem for
which there exists an optimal similarity criterion. Redgnthe interest of find-
ing methods for performing subject-specific synthesis feogiven modality to
some target modality has drawn a lot of attention.

In this chapter, we aim to develop a modality synthesis teglenthat will
benefit image registration applications. Modality synibegnerally refers to
generating different appearances of the same anatomy loaspdor knowl-
edge, instead of actual acquisition. It has the potentiabtee the dilemma in
choosing multiple image acquisitions and time/money cog¥h such tech-
niques, we can also transform images from any modalitidsteame modality.
The image analysis difficulties will become much simpler. ddlity synthesis
has shown its wide range of applications including multidaloimage regis-
tration [112, 160, 161] and segmentationl[l2, 162. Most of the above men-

tioned methods are application-specific, for exampl®d focuses on trans-
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forming CT to ultrasound images for image-guided interi@mpurpose. Ou
and Chefd’Hotel ] 63 assume a polynomial intensity matching relationship be-
tween different modalities, but the assumption is not fliexgnd not always
true. To provide a more general framework for modality sgsth, database
driven, or exemplar-based methods has be considéfeti 113. The underly-
ing principle of these methods is to utilize a training datsdfrom different sub-
jects where images from different modalities are well adiggnGiven any source
images, these methods try to synthesize the target imagasotiier modality
based on the matching information provided by the datat¥dsese methods are
particularly of interest because they avoid explicit mawgbf intensity match-
ing information and naturally incorporates the spatialtegh Therefore, they
are very general and produce visually impressive resutia @xth limited size
of image databases. Having said that, the exemplar-baseudseoften suffer
from having a large database because computational efficisoreases signif-
icantly with database size. This problem is not mentiondd ir?, 113, which
however is very important, because it relates to the admlibaof the proposed
methods.

Our proposed approach for modality synthesis belongs toekeenplar-
based category. For each point in the source image (modglitwe perform
a local patch-based search in the database to estimatergie¢ value for the
point in modality B. The proposed method is very closely telato methods
in[112 113. However, in [L12, N most similar candidates were selected and
averaged to produce the final estimation which is very timsaming and inef-
fective. Ye et al. 1 13 introduced a data-driven regularization technique te pro

vide a more coherent synthesis of different modalities clis more advanced
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compared to averaging th¥ most similar candidate patches as proposed in
[117. Both [1127 and [113 use Sum of Squared Distances (SSD) to measure
the distance between the source patch and the patches iatdizade. SSD is
not general enough as an image similarity measure, eslyagtan the lighting
condition differs, or the parameters of the medical imagenges. And as we
will demonstrate later, using SSD as the similarity mea$ioris the possibil-

ity of reducing the size of the database. Therefore, we m®pdramework for
modality synthesis that uses patch based intensity hestogmnd Weber local
descriptor features, which is more general and discrinvedhan the existing
methods. Compared to SSD, intensity histogram and Webat tescriptor
are more suitable for finding the corresponding patch froenddtabase, which
leads to a much robust and accurate image synthesis resutheFmore, we
introduce a weighting factor based on normalized pointwiséual information
which can be learnt from the database. Thanks to the rolasstrfeour pro-
posed distance measure, we can apply a technique for datazhasction to fur-
ther decrease the computational time. Our framework paignoutperforms
the state-of-the-art modality synthesis methods in terfnslastness, accuracy

and computational efficiency.

5.2 Method

The process of modality synthesis refers to the followirgiktasiven a source
imagesS from modality M,,, we aim to generate a corresponding target iniage
for modality M,. The target imagé’ is constructed based on the source image

S and the population database. In the population database,dneVexemplar
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image pair§ M,, , M, )|.-1...~, Where every pair is spatially aligned. The idea

behind our proposed modality synthesis method is that, byckeng for the
most similar patch),, to Ps, we can automatically find the corresponding
patch in modalityM, asM,, . Therefore, theV exemplar image pairs act as a
black box to map any image from modality, to modality M.

For each image point, 7'(X) is estimated by first finding the patch which is
most similar toPs(X) in the database, s&y, , (y), thenP, (y) is selected to fill
up the corresponding position in the target imdgg).

The process of modality synthesis is inspired b¥d and [113, however,

we speed up and improve the synthesis quality by introducihglatabase re-

duction, and 2) a novel distance measure for patch matching.

5.2.1 Database Reduction

Although a large database provides rich information fordyethesis task, re-
dundant information will however decrease the computali@fficiency. To
remove the redundant information from the database, we@srlect the most
representative exemplars that well represent the dataBetdoing that, the
searching task will only be performed within a much reducathdase, yet the
information is still well preserved. Elhamifar et al.g4] proposed to find the
representative data points from the data set by finding aesuishe data set
that minimizes the reconstruction error of each data poirthe data set as a
linear combination of the representative data. It is foted as minimizing the
expression:

SN i —Ye 3= Y - YC |3, (5.1)
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with respect to the coefficient matriX = [ci, co, ...,cy] € RV*YN. Then the

nonzeros of”' is constrained as

1C llog< k- (5.2)

| C |0, counts the number of nonzero rows of C, and the indices ofaheero
rows of C' correspond to the indices of the columnsYofwhich are chosen as
the data representatives. To reduce the computationallegitypthe constraint

onC'is relaxed tal 1 norm, thus the optimization is formulated as:

min || Y —YC |3 st. || C |1,< T (5.3)

7 is used instead of since for thek optimal representativeg, C' ||, is not
necessarily bounded by. In our application, for every patch, we stack the
intensity and WLD histograms (see detailed descriptiorheriext section) to
form Y;. By reducing the size of the data set, the computationaliefioy is

significantly improved, because they are linearly related.

5.2.2 Modality Synthesis
5.2.2.1 Locality Search Constraint

We further reduce the search space by imposing a localiticlseanstraint.
Let's now assume that all the subjects within the databag¢resource images
are linearly registered. To achieve the spatial restmgtior any positiork, we
define a small search winddw, centered at. We only consider the candidates

from the database that are within the searching window.riR@sg the search
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space significantly increases the computational efficieesgecially when the
database is large. Although the search space is drastiediliced, the accuracy
will not be affected because it is reasonable to assume lileambst similar

patch is spatially located near

5.2.2.2 Modality Synthesis Using a Novel Distance Measure

To synthesizd’(x), we first extract a patcks(x) centered ax from the source
imagesS. Based on the locality search constraint defined above, arelsevithin
the constrained database to find a paigh from the database such that the

dissimilarity betweerPs(x) and P, is minimized. It can be formulated as:

(n".y") = arg min w(Ps(X), Fa,, (¥)) * d(Ps(X), Fa, (¥))- (5.4)

Recent papers on modality synthesid?, 113 use sum of squared error
(SSD) as the dissimilarity measure. However, under diffelighting condi-
tions, or in the case of MRI, the changes in imaging parareetety affect the
intensity value, therefore resulting in the failure of SSfere, we propose a
novel distance measure based on the intensity histogramar{ei Weber local
descriptor (WLD) featureslpy. The intensity histogram reflects the number
of pixels in the patch at each different intensity value. WMWLD reflects
not only the intensity information, but also the change aémsity, using the
WLD histogram is discriminative yet robust in many applioas, including
facial recognition under different illuminatiori g, etc. Intuitively, we for-
mulate our dissimilarity measure as the dissimilarity & thtensity histogram

and WLD histogram betweeRs(x) and P, (y). For histogram comparison,
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5.2 Method

we use Jensen-Shannon divergence (JSD) which is symnhethiearetically
upper-bounded, and well-defined with histogram non-caoutijr{ 107.

We then define our novel dissimilarity measure as the folhguwi

d(Ps(X), Pan(y)) = JSD(H(Ps (X)) || H(Pan(y)))+ISD(WLD(Ps(x)) | WLD(Fan(Y)))

(5.5)
where

ISD(p || 2) = £KL(p1 || M) + SKL(ps || M), (5.6)

M = %(pl + p2), (5.7)

KL(py || pa) = / pl(i)logilgzi. (5.8)

Based on Equatiorb(4) and the proposed distance meas@w&)( we can find
the best matching patdh,. (y)) that best matches the histogram of intensity and
the WLD features. However, intensity and WLD histogram axeust global
measurements. For our application, we aim to find the intyensapping pixel
by pixel, therefore, it is highly possible that the featuege nicely matched
while the particular pixel is not. We thus introduce a weigdtfactorw(iy, is)
in our formulation.

The global intensity matching information can be learnngsNPMI [167],
which we have introduced earlier in this thesis. Aiming toximize Equation

(5.4), we definew(iy, i5) as follows:

U)(’il,’ig) =1- NPMI(Zl, iz), (59)

In the field of image matching, NPMI indicates the correlatielationship be-
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5.2 Method

Figure 5.1: NPMI training example, using a pair of T1/T2 brain MR imagés)

T1 image (b) Corresponding aligned T2 image (c) Obtained NPM
tween different intensities. Figufg1 shows the NPMI map using a pair of
perfectly aligned T1/T2 images. When intensity pgir, i) tends to appear
together, NPMI{;, i5) is positive. The larger the NPMI value, the higher the
correlation between the intensities. When two intensities independent of
each other, NPMI equals zero. In our application, to find alampatch in the
databaseNPMI(Ps(x), P,,(y)) has to be a positive value, which is an indica-
tion of correlation of these two intensity values.

Combining the information fromu(Ps(X), P,, (y)) and d(Ps(X), P,,(Y)),

we can now find the best matching patth . (y) thus the corresponding patch

in Modality b — P,_(y)). T'(x) will be filled in with the intensity value of

5.2.2.3 Search in Multi-Resolution

A multi-resolution search scheme is employed. For evergtioo x, only the
corresponding patches that are well matched with the sqatoes under dif-
ferent resolutions will be selected as the correspondibghggoint. The multi-
resolution setup helps to increase the accuracy and radssstf the matching

process, because the matching information in both localg#wiohl extends are
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all considered.

5.3 Experiments

The proposed modality synthesis framework is generalljiegipe to any source-
target modality pair provided a database with well aligneaheples exists. To
validate the proposed framework, in this section, we prewab sets of experi-
ments. We first use a simple synthetic toy problem to demaiestine flexibility,
effectiveness and robustness of our proposed method. Weesynthesize brain
T2 images from T1. Compared with the state-of-the-art smiLjtL 13, the pro-
posed method is more accurate and robust.

For the parameter settings, the patch size is fixéd>a pixels (7 x 7 x 7
voxels in the 3D cases), the local search windbws setta9 x 9 (9 x 9 x 9in

the 3D cases). Three resolutions are used in our experiments

5.3.1 Synthetic Image Study

We illustrate the power of the proposed framework throughmgpke synthetic
image problem. To build the database, two perfectly aligrieddes are placed
in two images. To reflect the multi-modal setup, the intgng#lues of these
two circles are different. Gaussian noise is added to thg@sa If you can
always find an exact matching patch in the database, it is gbiious that any
matching algorithm for modality synthesis will work. Howaayit is not usually
the case in real application where some patches from thesauages is not
available in the database, for example, some structurestheen deformed. A

good modality synthesis algorithm should be able to oversuth problem to
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Figure 5.2: (a) Training Image Modality A (b) Training Image Modality B)(
Source Image Modality A (d) Synthesized Target Image uslig][s method (e)
Synthesized Target Image using the proposed method.
preserve the quality of the synthesized image. To examiaeithation when
there may not be a perfect match from the database, we create@e image
with a squared shape at the center. Such a setup createslenpatithe edge
of the square, as there’s no way to find a matched patch in tabakse, and it is
interesting to see what the synthesized image would be highsetup.

To examine the robustness and the accuracy of the respécimework,
we applied our proposed method in the setup mentioned abadethen make
a direct comparison with the method itil[3. The result is shown in Figure.2
It is shown clearly that, our proposed method nicely preséne square shape.
On the other hand, the method ih1fj fails at the edge of the square, because

there’s no straight edge in the training database.
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This experiment clearly shows the advantages of the prapmamework.
Firstly, the learnt weightv(i,, i2) based on NPMI constrains the matching pro-
cess in a global intensity point of view, so intensity matgjs that are not corre-
lated according to the database will be excluded. Secousilyg the histogram
matching from intensity and the WLD features allows gre&végrance in the
discrepancy between the patch from the source image andatabate. Al-
though the circle has deformed to a square, the edge andtémsity distribu-
tion information still remains. The proposed method id siille to produce a
reasonable result. On the other hand, using SSD as the matctitieria [L13
loses the generality of the information learnt from the dase, especially near
the edge area, thus resulting in poorer performance whererfegb match is
found from the database. In other words, using SSD as thehimgtcriteria
may require a larger database to achieve a good result. Ttieility and the
robustness of our proposed method make the database medpaesisible, which
leads to reduction of the searching space and thus the iraprent of the com-

putational efficiency.

5.3.2 Synthesis of T2 from T1 MRI

The second experiment is performed on synthesizing T2 flecorrespond-

ing T1l-weighted MR brain images. Such modality transfororais useful

for multi-modality registration 161], segmentation and abnormality detection

[113. In this experiment, we use the NAMIC database (http:/frethdle.net/1926/1687)
where T2 and T1 images are perfectly aligned. We only use 3nierdin im-

age pairs where both T2 and T1 modalities exist in the databhlsthe pre-
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Figure 5.3: Correlation coefficients between synthesis T2 and the grouth T2
computed by proposed method (with full database) (greeapgsed method (with
the reduced database) (red) afdJ’s method (with full database) (blue).

processing step, we linearly register the images, the bnaages are skull-
stripped, the inhomogeneity has been corrected and thesibteénistogram has
matched in each modality.

To quantitatively assess the experiment, we perform a {eaeeout cross-
validation. Therefore, every synthesized brain image seteon the rest of
the 12 subjects. Such setup allows us to compute the sityilagtween the
synthesized and ground truth T2 images. Similar to the pts#xperiment, we
compare our proposed method with methodlihd. Furthermore, we show the
the effectiveness of the database reduction technique tnadirced in Section
2.1, by using the full database, and the reduced database syhéesizing T2
using the proposed method. To measure the similarity betweesynthesized
and ground truth T2 images, we used correlation coeffid@D)([168 169
because it is the optimal intensity-based matching catewhen linear relation
is assumed between the signal intensitie}.

Graphs in Figuré.3 show the similarity measure (CC) calculated from the
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5.3 Experiments

synthesized T2 images and the ground truth. The symbolsrsiowreen,
red and blue indicate the CC value computed by proposed mhetiith full
database), proposed method (with the reduced databasg)lafd method
(with full database) respectively. The size of the reducatdloase is only 1/10
of the full database. We found that reducing the databadecauise 113’s
method to deteriorate quite significantly, thus we did nolide [L13's method
with the reduced database in this paper. It is clearly shawkigure5.3 that,
in all of the 13 cases, the proposed method outperfofh8’s method. This
is because the proposed matching criteria using patch latsesity histogram
and Weber local descriptor features is more reliable coatper SSD. The pro-
posed distance measure utilizes the histogram of the f=gtand the overall
intensity matching relationship learnt from NPMI. In the dadity synthesis ap-
plication, the proposed distance measure is more relialdedamands less in
terms of database size. It is because the intensity and W&iition within
a patch is very limited (a patch only contains few tissue $ypeven the struc-
ture within the patch deforms, the histogram of intensitgd &dLD may still
remain the same or with minimum changes. Supported by thisguw pro-
posed distance measure can still provide a reasonableatistmeven when the
the source patch can only find a deformed match in the datakaséhe other
hand, [L13's method could not produce reliable results when ther@isrgood
match in the database. It is also observed that the proposgtbthdoes not de-
viate a lot when using the reduced database compared tolthatabase. Such
result also demonstrates the robustness of the proposeéddiet

A qualitative comparison is shown in Figused. Qualitatively, the proposed

method performs better than13’'s method, especially at the regions where
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Synthesized T2 Synthesized T2 Ground Truth T2
using [2] Proposed

Figure 5.4: Visual results for synthesis of T2 from different data se®ol (a)
Input Images from T1 (b) Synthesis of T2 usidd.B|(c) Synthesis of T2 using the
proposed method (d) Ground truth T2 images.

rich structure exist. To demonstrate, let’'s focus on theoregwhere the red
arrows point to. In the four regions pointed by the red arreynthesis of T2
using [L13's method lose the fine detail of the ventricle, because ahsiruc-
ture rich region, using SSD to search the matched patch iddtabase is very
difficult (it is too hard or impossible to find exact ventrigdguctures within the
database), which leads to false matchings. In comparisdareng by the in-
tensity matching information provided by NPMI, and with amadexible and
robust matching histogram-based distance measure, tipegegd method pre-
serve the fine structure even at the regions where exactsipatch is difficult

to find in the database.
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5.4 Conclusion

In this chapter, we proposed a general framework for madsajihthesis. The
proposed framework combined the strength from local intgasid Weber lo-

cal descriptor features, together with the intensity matghnformation from

the normalized pointwise mutual information, to producelust and impres-
sive synthesis results. Furthermore, we adopt a databeseti@n technique
that significantly reduces the size of the database and tfuusases the com-
putational efficiency. We evaluated the proposed method mthetic image

study and through synthesis of T2 from T1 brain MR images. Mésthat the

proposed method outperforms the state-of-the-art methoerms of accuracy
and robustness. Furthermore, we demonstrate and expkirhth proposed
method is much less dependent to the size of the databaseypning up the
possibility of further reducing the size of the database thviiore and more
population databases made available, modality synth&ebisdoming more im-
portant, how to fully utilize the information from the datee is still an open
guestion. Although the work and experiments presentedsnctiapter are still
preliminary, we believe our work can become essential corapofor develop-

ing cross modality analysis tools. Such technique is alpaltie of bringing the
multi-modal image analysis to a much more straightforwaothaamodal image
analysis. And image registration will be one of the biggestddiciaries of such

development.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude the thesis with an overview tie@a@ments and

future work directions.

6.1 Incorporating Anatomical Prior

We have presented to incorporate the anatomical prior @arhage registra-
tion framework. Firstly, a novel intensity-based simitarmeasure — structural
encoded mutual information is proposed. The similarityroeteigh the pixels
differently according to the anatomical significance. 3ely an anatomical
knowledge-based deformation field prior is derived. We usdure of Gaus-
sians to represent the point sets of interest that are ¢atf&rom the segmented
organs. Point sets registration using a TPS model is thelorpged, which
derives our data-driven deformation prior. Lastly, we megd a novel simi-
larity measure that combines the structural encoded murtieamation and the
knowledge from the prior deformation field. The similarityeasure combines
the low level intensity information from SMI and high levaiiqr information

on the deformation field.
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We validate the proposed image registration work on thrée afeexperi-
ment. In particular, it is shown that the proposed regigtraframework works
well on registering pre-operative CT and non-contrastaekd C-arm CT, which
is an essential step in the TAVI surgery. The significant mvpment of the pro-
posed method makes TAVI more applicable to many patientse groposed
method also show its strengths in registering perfusiodiaa™RIs and tumor
resection MRIs.

The application of 3D/3D registration of pre-operative Gil@on-contrast-
enhanced C-arm CT is still in the research stage, and we plapgly our pro-
posed framework to the clinical TAVI surgery in the near fetuFurthermore,
we seek to further generalize the way of acquiring the an@a@rmformation,
such that it is not limited to the segmentation informatiBossible options in-
clude biomechanical information of the objects, analy$ithe respiratory and
cardiac cycles, etc. We will also look to improve the effeetiess of the defor-
mation field prior. Further studies include more effectisenpling of the point
sets and generating the prior deformation field in a morece and efficient

manner.

6.2 Incorporating Appearance Prior

We have proposed the use of normalized pointwise mutuainrdton to model
the complex intensity matching relationship in the multghality setup. Two
novel similarities based on weighted mutual informatiod areighted entropy
of the intensity matching confidence map were suggested.ntf¢tfe optimum

of the proposed similarity measures using the variatioakdutus, where gra-
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dient of the similarity measures are calculated and gradiescent is used for
finding the optimum solution.

The proposed similarities are validated on three sets oéraxgnt. From
the synthetic image example, and registration of human Watle occlusions
and background changes, we demonstrate that the NPMI is & fiflemible and
robust intensity matching prior compared to the statehefdrt methods which
use joint histogram as the appearance prior. We further aosathe two simi-
larity measures using the simulated brain MRIs. It is fourat WMI may have
more discriminant power on the local misalignments, giveat the NPMI is
very accurate. While weighted entropy has a larger capamge, and a less
sensitive to the deviation of the intensity matching infatioan. The choice of
WMI and weighted entropy is thus very application-dependen

NPMI has shown its capability of modeling complex intensitgtching in-
formation, however, it should be noted that a good regisimatesult depends
on an accurate NPMI. In the future, more insight into NPMI isril investi-
gating. ldeally, NPMI should be trained by a small yet repreative data set.
We will look for the optimum solution for training the NPMI. dfie rigorous in-
vestigation on how noise, e.g., with the addition of whitésepbiased field etc,
would affect the image registration result of the proposethmds is required in
our future work. Furthermore, the applications of our pgmmethod shown
in this thesis is limited, and we intend to test the proposeularity measures

(both WMI and weighted entropy) on more applications.
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6.3 Modality Synthesis

We presented a general framework for modality synthesiging the features
such as intensity histogram and the Weber Local DescripBuch modality
synthesis technique has the potential to transform thesmatal image regis-
tration problem to a much simpler mono-modal image redisingoroblem.

In the experiments, we validated that the proposed modafityhesis method
outperforms the state-of-the-art methods. The experimesnilts are still pre-
liminary. As the technique is still in the premature reshatage, we thus did
not provide the experiments with image registration agpions. However, we
believe that modality synthesis has the potential for dgsiely cross modality
analysis tools. And image registration will soon benefitirib.

Itis highly possible that the modality synthesis result i much improved
if we take the underlying "physics” of different modalitiego consideration in
generating the synthetic images, e.g., the imaging pasasiet the MR images.
In the future, we will work towards the direction, so that éciamework can be

better suited to specific applications.
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Publication List

The publication list during the PhD candidature can be fooeldw:

Journal Publication:

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2014). A Pre-operativé &d Non-
contrast-enhanced C-arm CT Registration Framework fansratheter Aortic
Valve Implantation. Computerized Medical Imaging and Giiap, accepted.

Conference Publication:

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2014, April).Learningagd De-
formable Image Registration Using Weighted Entropy of sty Mapping
Confidence Map. In Biomedical Imaging (ISBI), 2014 IEEE 1lktternational
Symposium. IEEE.

Lu, Y., Sun, Y, Liao, R., Ong, S. H. (2013, April). A new si@ilty measure
for deformable image registration based on intensity magchin Biomedical
Imaging (ISBI), 2013 IEEE 10th International Symposium pp.( 234-237).
IEEE.

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2013). Hybrid Multimdd2eformable
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vironments for Medical Imaging and Computer-Assistedriveations (pp. 45-
54). Springer Berlin Heidelberg.

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2013). Registration ofperative CT
and non-contrast-enhanced C-arm CT: An application tostatheter aortic
valve implantation (TAVI). In Computer Vision ACCV 2012 (pp268-280).
Springer Berlin Heidelberg.

Lu, Y., Liao, R., Zhang, L., Sun, Y., Chefd'Hotel, C., Ong, I$. (2012,
November). Learning-based deformable registration usiighted mutual in-
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on (pp. 2626-2629). IEEE.

US pending patents:
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2014E09702US 2014.
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formable Registration Based on Intensity Mapping, 2013B82JS, 2013.
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