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Summary

Image registration is one of the fundamental computer vision prob-

lems, with applications ranging from motion modeling, image fu-

sion, shape analysis, to medical image analysis. The process finds

the spatial correspondences between different images thatmay be

taken at different time or by modalities of acquisition. Recently, it

has been shown that incorporating prior knowledge into the regis-

tration process has the potential to significantly improve the image

registration results. Therefore, many researchers have been putting

lots of effort in this field.

In this thesis, we investigate the possibility of improvingthe robust-

ness and accuracy of image registration, by incorporating anatom-

ical and appearance priors. We explored and formulated several

methods to incorporate anatomical and appearance prior knowledge

into image registration process explicitly and implicitly.

To incorporate the anatomical prior, we propose to utilize the seg-

mentation information that is readily available. An intensity-based

similarity measure named structural encoded mutual information

is introduced by emphasizing the structural information. Then we

use registration of the anatomical-meaningful point sets that are ex-

tracted from the surface/contour of the segmentation to generate an
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anatomical meaningful deformation field. The two types of data-

driven prior information are then combined in a hybrid manner to

jointly guide the image registration process. The proposedmethod

is fully validated in a pre-operative CT and non-contrast-enhanced

C-arm CT registration framework for Trans-catheter AorticValve

Implantation (TAVI) and other applications.

To incorporate the appearance prior, we proposed to describe the

intensity matching information by using normalized pointwise mu-

tual information which can be learnt from the training samples. The

intensity matching information is then incorporated into the image

registration framework by introducing two novel similarity mea-

sures, namely, weighted mutual information and weighted entropy.

The proposed similarity measures have demonstrated their wide ap-

plicability ranging from natural image examples to medicalimages

from different applications and modalities.

Lastly, we explored the feasibility of generating different image

modalities from one source image based on prior image matching

knowledge that is extracted from the database. The synthesized im-

ages based on prior knowledge can be then used for image registra-

tion. Using the synthesized images as the intermediate stepin the

multi-modality registration process explicitly simplifies the prob-

lem to a single modality image registration problem.

The methods and techniques we proposed in this thesis can be com-

bined and/or tailored for any specific applications. We believe that
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with more population databases made available, incorporating prior

knowledge can become an essential component to improving the

robustness and accuracy of image registration.
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Chapter 1

Introduction

1.1 Image Registration: An Overview

In the field of image processing, it is often important to spatially align the images

taken from different instants, from different devices, or different perspectives,

so as to perform further qualitative and quantitative analysis of the images. The

process of spatially aligning the images, is calledimage registration. More pre-

cisely, the goal of image registration is to find an optimal spatial transformation

that maps the target image to the source image. From a mathematical perspec-

tive, given two input images, namely the source and target images, the image

registration process is an optimization problem that finds the geometric trans-

formation that brings the source image to be spatially aligned with the target

image. The types of geometric transformation depends on thespecific appli-

cation. Generally, the transformation can be divided into two groups –global

andlocal. The selection of the transformation model is highly dependent on the

application.
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1.1 Image Registration: An Overview

As a fundamental computer vision problem, image registration has a wide

range of applications, including motion modeling, image fusion, shape analysis,

and medical image analysis. Detailed surveys and overviewson applications of

image registration can be found in [1], [2], [2], [3], [4], [5], [6] and [7]. In this

thesis, we will mainly focus on but not limited to deformablemedical image

registration, although the proposed methods can be straightforwardly applied to

other applications, which we will also demonstrate in this thesis.

Image registration helps the clinicians to interpret the image information ac-

quired from different modalities, different time points, or pre- and post- contrast-

enhancement. Combining the image information from different time instants

helps the clinicians to examine the disease progression over time. As the imag-

ining technology develops, there are more and more imaging modalities that

provide spatial co-localization of complementary information, including struc-

tural and functional information. These image modalities can be generally clas-

sified as eitheranatomicalor functional[8, 9, 10]. Morphological information

is explicitly depicted in the anatomical modalities, whichinclude CT (computed

tomography), MRI (magnetic resonance imaging), X-ray, US (ultrasound), etc.

Metabolic information on the target anatomy is emphasized in the functional

modalities, which include scintigraphy, PET (position emission tomography),

SPECT (single photon emission computed tomography), and fMRI (functional

MRI). Complementary information from different imaging modalities makes

the assessment to be more convenient and accurate for the clinicians. With

the rapid development of the clinical assessment techniqueand imaging tech-

niques, medical applications increasingly rely more on theimage registration;

such applications range from examination of disease progression to the usage

2



1.1 Image Registration: An Overview

of augmented reality in the minimal-invasive interventions. Therefore, image

registration plays an essential role in medical image analysis.

Both mono- and multi- modality image registration play a very important

role in medical applications. Applications of mono-modality image registration

include treatment comparison between pre- and post- treatment images, regis-

tration of dynamic contrast enhanced (DCE) MRI for detecting abnormalities

in myocardial perfusion with that have great potential for diagnosing cardiovas-

cular diseases [11]. Multi-modality image registration also has a wide range of

applications. In cardiology, for example, to support Trans-catheter Aortic Valve

Implantation (TAVI) procedure, the 3D aortic model acquired from contrast-

enhanced C-arm CT can be overlaid onto 2D fluoroscopy to provide anatomical

details thus enabling more optimal valve deployment [12]. The procedure of

extracting the 3D aortic model from contrast-enhanced C-arm CT requires ex-

tra radiation which may not be applicable for patients with kidney problems. To

address this problem, a 3D/3D image registration between CTand non-contrast-

enhanced C-arm CT is performed to obtained the 3D aortic model [13]. In neu-

rosurgery, stereotaxy technology generally uses CT images, but for tumor iden-

tification MRI are typically preferred. Image registrationallows the transfer of

the tumor coordinates from the MR to the CT images. More discussion and

analysis of the applications in neurosurgery can be found in[14]. Besides intra-

subject registration, inter-subject image registration is playing a much more im-

portant role than ever before. Image registration has been extensively used in

constructing statistical atlas [15] and atlas-based image segmentation [16].

Image registration algorithms consist of three major components. Firstly, a

transformation spaceis needed to restrict the spatial transformation to a plau-

3



1.2 Thesis Organization and Contributions

sible space. It is highly application-dependent. Rigid, affine, splines and non-

parametric free-form are the typical spaces used for image registration. Sec-

ondly, asimilarity metric is required to quantitatively measure the alignment

between two images. Specifically, it quantifies the similarity between the source

and target images using a mathematical expression. Similarity measures are

generally classified into three groups, namely, intensity-based methods, feature-

based methods, and hybrid methods. Thirdly, anoptimization methodis required

to find the optimum parameters in the transformation space such that the defined

similarity metric is optimized. This thesis will focus on designing adequate sim-

ilarity metrics for more robust and accurate image registration.

Although numerous image registration techniques have beendeveloped in

the past few decades [4, 17, 18], ordinary image registration algorithms still

fail to produce robust and accurate results due to differentfactors, for example,

noise, occlusion, etc. Since medical images often contain significant amount of

noise, contrast changes, occlusion and distortions due to lack of data acquisition

protocols in some applications, image registration is particularly challenging

for medical applications. In this thesis, we aim to develop image registration

algorithms that increase the robustness and accuracy of image registration by

incorporating anatomical and appearance priors.

1.2 Thesis Organization and Contributions

This thesis is organized as follows. Chapter 2 describes theimage registration

problem in more detail, and discusses existing image registration techniques.

In Chapter 3, we propose an algorithm that utilizes the segmentation in-

4



1.2 Thesis Organization and Contributions

formation that is readily available. The anatomical prior is encoded into the

registration framework by introducing a novel similarity measure, the struc-

tural encoded mutual information, and an anatomical meaningful deformation

field to guide the image registration process. Feature-based image registration

methods require highly accurate feature correspondence matching. statistically-

constrained transformation model based methods usually demand for large size

of training data which may not be practical in many applications. And intensity

based methods only rely on the intensity information which often cost prob-

lems while optimizing the cost function. The proposed hybrid data-driven im-

age registration framework draw upon the strength and avoids the shortcomings

from the above mentioned methods, it benefits from the anatomical information

which is extracted from the readily available segmentation, and the the prior

anatomical prior deformation field does not require a large data set to train, thus

providing a more robust and practical solution to the image registration problem.

In Chapter 4, we propose to describe the intensity matching information

by using normalized pointwise mutual information. By learning the intensity

matching information from the training images, the intensity matching prior is

then incorporated into the image registration algorithm bydesigning two novel

similarity measures: weighted mutual information and weighted entropy. The

proposed normalized pointwise mutual information as an intensity matching

prior is superior to the state-of-the-art methods where intensity joint histogram

is learnt to guide the image registration process because NPMI is less sensitive

to the change of field-of-view and size of the objects. Such a superior property

is very important because now we can then obtain the intensity matching prior

from a subset or even just a slice of the volume. NPMI better represents the
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1.2 Thesis Organization and Contributions

correlations between the intensities instead of being dominated by the number

of co-occurrence, and thus brings the utilization of the prior intensity matching

to a new level.

In Chapter 5, we explore the possibility of generating different image modal-

ities from one source image based on prior image matching knowledge that is

extracted from the database. Having the synthesized image,we essentially re-

duce the multi-modal image registration problem to a less challenging mono-

modality registration problem. We propose to utilize the features such as in-

tensity histogram and the Weber Local Descriptor for the matching process.

The proposed matching framework provides much more robust and accurate

matching results compared to the state-of-the-art method where SSD is used for

the matching process. The more general and accurate matching scheme clearly

shows its potential in helping image registration in the future.

Concluding remarks and discussion about future work are presented in Chap-

ter 6.
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Chapter 2

Background

This chapter aims to provide a comprehensive background on image registra-

tion. We first give a general introduction about the image registration problem.

Then the major components of the image registration procedure are elaborated

in details, with a literature review of state-of-the-art methods.

2.1 Introduction

Image registration is one of the fundamental computer vision problems, with

applications ranging from motion modeling, image fusion, shape analysis, to

medical image analysis. During the past decades, the rapid development of the

image acquisition devices and more and more needs for image analysis invoked

the research on image registration, targeting different applications. The process

of image registration consists of establishing spatial correspondence between

images acquired by different devices and/or at different time instances.

In general, image registration can be performed on a group ofimages [19,

8



2.2 Transformation Models

20] or only two images. In this thesis, we focus on the image registration meth-

ods that involve only two images. Here, we give a more mathematical definition

of the image registration problem. Given a source image, denoted byS, and

a target image, denoted byT , the goal of image registration is to estimate the

optimal transformationW ∗ such that the similarity metricJ(T, S ◦ W ) of the

target image, and the transformed source image is optimized. Mathematically,

image registration is to estimate the optimal transformation W ∗ such that the

following objective function is optimized:

argmax
W

J(T, S ◦W ). (2.1)

A image registration algorithm typically involves three main components:

1) a transformation model, 2) a matching criterion (similarity metric), and 3) an

optimization method. In this thesis, we will mainly review on the transformation

model and matching criterion. And in the methods we proposedin Chapter 3

and 4, we adapt the variational framework, and using gradient descent to solve

the optimization problem.

2.2 Transformation Models

In this thesis, the definition of registration is based on geometrical transforma-

tions — we map the points from space X of the source image to space Y of the

target image. The transformationW applied to a pointx in space X produces a

point inx’,

x’ = W (x). (2.2)

9
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We say that the registration is performed successfully ifx’ is matched or close to

matchedy in space Y, which is the exact correspondence ofx. The set of possi-

ble transformationsW can be divided into two groups: 1) global transformation

models and 2) local transformation models. Each transformation group can be

further classified into many subsets. Global transformation models make use of

the information from the image for estimating a set of transformation parame-

ters that is valid for the entire image. Global transformation is used to correct

the misalignment of the images in a global scale, thus, it is usually a necessity

as the first step of image registration. However, a global mapping is not able to

handle images with local deformation, thus local mapping models are usually

required after the global registration to further refine theregistration process.

Compared to global registration models, in which limited parameters are capa-

ble of specifying the transformation in 3D, local registration models are usually

more application-dependent and require more parameters tobe estimated.

2.2.1 Global Transformation Models

Linear models are the most frequently used for estimating global transforma-

tions. Although violations of the linearity assumption mayrequire the use of

higher order polynomial models, such as second or third-order, higher order

polynomial models are rarely used in practical applications.

2.2.1.1 Rigid Transformations

Rigid transformations preserve all distances, and furthermore, they preserve the

straightness of lines, the planarity of surfaces, and all angles between the straight

10
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lines. The ubiquity of rigid objects in the real world makes rigid registration

one of the most popular global transformation models. The rigid transformation

model is very simple to specify, since it comprises only rotation and translation.

In the 3D space, and under Cartesian coordinates, the translation vectort can

be specified as a 3×1 matrix [tx, ty, tz]′, wherex, y, z are the Cartesian axes. It

can also be specified in other coordinate systems, for example, spherical coor-

dinates, however, we will consistently use Cartesian coordinate system to avoid

confusion. Other coordinate systems can be easily derived from the Cartesian

coordinate system. Specified using Euler angles, rotation can be parameterized

in terms of three angles of rotation,θx, θy, θz, with respect to the Cartesian axes.

Here, we define the three basic rotations, using the right hand rule, as follows:

Rx(θ) =













1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)













(2.3)

Ry(θ) =













cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)













(2.4)

Rz(θ) =













cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1













(2.5)
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To generalize, other rotation matrices can be obtained by multiplying the three

basic rotation matrices:

R = Rz(α)Ry(β)Rx(γ) (2.6)

We want to emphasize here thatR is an orthogonal matrix, withdet(R) = +1,

wheredet is the determinant operator. Now, with the transformationW a rigid

transformation, then

x′ = Rx + t. (2.7)

2.2.1.2 Affine Transformations

Another popularly used global transformation models are the affine transforma-

tions:

x′ = Ax + t. (2.8)

Affine transformations do not have any restriction on the elementsaij in the

matrixA. It preserves straight lines (and the planarity of surfaces) and straight

line (and surface) parallelism. However, angles between the lines are allowed to

change. Affine transformations are appropriate, because image acquisition may

introduce a skew factor. Furthermore, it is widely used for multiview image

registration, assuming that the distance from the camera tothe scene is much

larger than the scene area, with a pin-hole camera, a flat scene, and the geometric

distortions do not contain local factors.
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2.2.2 Local Transformation Models

The global transformations average out the geometric deformation over the en-

tire image domain. Consequently, local deformation may notbe properly han-

dled. However, local deformation is a very important component in many appli-

cations, for example, medical applications where large organ deformation oc-

curs. Therefore, local areas of the images should be taken care of with specific

local transformation models.

Local transformation models are often referred to as non-rigid or deformable

transformation models, we use them interchangeably in thisthesis. It has been

shown that local transformation models are superior to the global models when

local geometric distortion is inherent in the images to be registered [4, 7, 21,

22, 23]. Moreover, the choice of local transformation models is important as

it relates to the compromise between computational efficiency and richness of

the description, as well as the relevance to the particular application. Here,

we classify local transformation models into three main categories: 1) derived

from physical models, 2) based on basis function expansions, and 3) knowledge-

based transformation models.

2.2.2.1 Transformations derived from physical models

Following Modersitzki [21], we further divide the transformations derived from

physical models into five categories: 1) linear elastic bodymodels, 2) diffu-

sion models, 3) viscous fluid flow models, 4) flows of diffeomorphisms and 5)

curvature registration.

1) Linear Elastic Body Models

13
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The linear elastic body models are described by the Navier-Cauchy Partial Dif-

ferential Equation (PDE):

µ∇2u + (µ+ λ)∇(∇ · u) + F = 0, (2.9)

whereu(x) is the transformation vector at locationx, F(x) is the force field

that drives the registration process which is derived from maximizing the image

matching criteria,λ is the Lamés first coefficient andµ specifies the stiffness of

the material.

The Navier-Cauchy partial differential equation2.9is an optimization prob-

lem that balances the external force that comes from maximizing the matching

criteria and the internal force that exhibits the elastic properties of the material.

It was first proposed by Broit [24], in which the image grid was modeled as

an elastic membrane. Subsequently, the models have been applied to range of

applications.

2) Diffusion Models

The diffusion models can be described by the diffusion equation:

△u + F = 0, (2.10)

where△ is the Laplace operator. Most of the algorithms based on the diffusion

transformation model do not state2.10in their formulation or objective function.

Nevertheless, in the regularization step, the transformation is convolved with a

Gaussian kernel. This is based on the fact that Gaussian kernel is the Green’s

function of 2.10, thus applying a convolution with the Gaussian kernel is an

14
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effective yet theoretically supported regularization step.

Inspired by Maxwell’s Demons, Thirion [25] proposed to model image reg-

istration as a diffusion process. The idea is to consider thedemons in the tar-

get image as semi-permeable membranes and to let the source image diffuse

through the demons. The algorithm is an iterative process between: 1) estimat-

ing the forces for every demons (based on optical flow), and 2)updating the

transformation based on the calculated forces in 1). The iterative process ends

till it converges. In the course of medical image registration, it is common to

treat all image elements as demons. Furthermore, a Gaussianfilter can be ap-

plied after each iteration for regularization purpose. Thepublication of [25] has

inspired many methods that share the iterative approach between estimating the

forces and then regularizing the deformation field.

3) Viscous Fluid Flow Models

In this case, the transformation is modeled as a viscous fluid. Assuming

there is only a small spatial variation in the hydrostatic pressure, and thus a

low Reynold’s number, the viscous fluid flow is described by the Navier-Stokes

equation:

µf∇
2v + (µf + λf )∇(∇ · v) + F = 0. (2.11)

Theµf∇
2v term is related to the constant volume or incompressibilityof the

viscous flow. The expansion or contraction of the fluid is controlled by (µf +

λf)∇(∇ · v). Different from the linear elastic body models, no assumption is

made on the small transformations, therefore, the models are capable of recover-

ing large deformations [26]. Multi-modal image registration using viscous fluid

models is made possible in [27]. And an inverse consistent variant of viscous
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fluid models is proposed in [28].

4) Flows of Diffeomorphisms

Local transformations can be also modeled by flows of diffeomorphisms.

The velocity field over time is constrained to be smooth underthe regularization

term:

R =

∫ 1

0

‖vt‖
2
V dt, (2.12)

where‖ · ‖V is a norm on the smooth velocity vector space V. Different types

of spatial regularization can be specified through changingthe kernel associated

with V [29]. The choice of kernel may be either a single Gaussian kernel[30]

or adaptive Gaussian kernel selections on the entire image domain [30, 31].

5) Curvature Registration

Under curvature registration, the constraint of the model is formulated by

the equilibrium equation:

△2u + F = 0. (2.13)

Fischer and Modersitzki [32] show that curvature based image registration not

only provides accurate and smooth solutions for the image registration task, but

also avoids a pre-registration step. This is because the regularization scheme

based on2.13does not penalize affine transformations. Equation2.13is solved

by a finite difference scheme, which imposes the Neumann boundary conditions.

Imposing the Neumann boundary conditions may have the effect of penalizing

the affine transformations, Henn [33] proposed a full curvature based image

registration method which includes second-order terms as boundary conditions

to solve the problem.
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2.2.2.2 Transformations based on basis function expansions

Another category of local transformation are modeled basedon a set of basis

functions. The coefficients of the basis functions are adjusted such that the re-

sulted transformation maximizes some similarity metric that measures the align-

ment of the source and target images. The fundamental mathematical frame-

work behind these set of transformation models are mainly from the theory of

function interpolation [34] and approximation theory [35, 36]. Here, we only

review five of the most important models that are based on basis function ex-

pansions, namely, 1) radial basis functions, 2) elastic body splines, 3) B-splines,

4) Fourier and wavelets, and 5) locally affine models.

1) Radial Basis Functions

Radial basis functions are ones of the most important interpolation strategies

[37, 38, 39]. The value of the interpolation pointx is calculated as a function of

its distances to the landmark positions. It is defined as:

u(x) =
N
∑

i=0

αiR(‖x − xi‖), (2.14)

wherei is the index for the landmarks, andαi assigns different weights to the

corresponding landmarks. The common choice of functionR can be Gaussian

[40] or inverse multiquadric [41]. A remarkable strength of the radial basis

function to point out is its global support. The radial basisfunction are positive

defined functions in which a closed-form solution of finding the optimal set of

coefficients exists. Having said that, as the displacement at any landmark point

would introduce influence to the whole image domain, sufficient or more dense

landmarks are required at the area where local deformation is more dominant.
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For medical image registration, landmark-based methods using the radial basis

functions were extensively studied in [42] and [43]. A comparative evaluation

study on the use of the radial basis functions in non-rigid image registration can

be found in [44].

2) Elastic Body Splines

Davis et al. [45] introduced the Elastic Body Splines (EBS) which is a

physics-based coordinate transformation. The Elastic Body Splines are the so-

lutions to the Navier-Cauchy PDE2.9. The equation can be solved analytically

when the force field is given as a radial symmetric function ofthe distance from

the landmark. The work was extended by Kohlrausch et al. [46] using Gaussian

EBS, thus the local transformation can be better represented by the transforma-

tion model. Gaussian EBS was further developed by Wörz and Rohr [47], by

taking into account the errors in the landmark displacementfield using an ap-

proximated strategy instead of exact interpolation. Localization uncertainty was

considered in [47], and an analytic solution was provided.

3) B-splines

Back to 1940s, Schoenberg [48] first introduced the B-splines for interpola-

tion. Since then, the applications of B-splines have been widely developed, and

it has become a popular tool for solving the interpolation problems in the field

of signal processing [49, 50, 51]. In the course of image registration, free-form

deformations (FFDs) is of the most commonly used local transformation models

that belong to B-splines family. More specifically, coupling FFDs with cubic-

B splines has been widely accepted in the medical image analysis community

[52, 53, 54, 55]. In this section, we will mainly focus on reviewing the FFDs.

Given a 3D image size ofNx×Ny×Nz, a rectangular grid ofKx×Ky×Kz
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is superimposed on the image. The transformation is modeledby the using the

translations of the control pointsdi,j,k on the grid. The displacement field is

defined as:

u(x) =
3

∑

l=0

3
∑

m=0

3
∑

n=0

Bl(ux)Bm(uy)Bn(uz)di+l,j+m,k+n, (2.15)

whereBl is thelth basis function of the B-spline.

Despite the superiority of the FFDs in providing simple and efficient smooth

transformations and requiring few degrees of freedom for describing the trans-

formations, topology preservation is not guaranteed. Rueckert et al. [56] pro-

duced diffeomorphic deformation fields with some hard constraints imposed.

The extensions of the original FFDs have been carried out widely. Differ-

ent methods for placing the control points non-uniformly have been proposed

[57, 58, 59]. Symmetric and inverse consistency of the transformationfield is

studied in [60, 61, 62].

4) Fourier and Wavelets

Fourier and wavelets are used to model the local transformations in many ap-

plications. An important, or probably the most important reason is that, Fourier

and wavelets methods naturally decompose the transformation field in a multi-

resolution manner, which is desirable in the image registration applications —

less computational demand, larger capture range, harder for being trapped in the

local optimum during the optimization process, etc.

Amit [63] considered image registration as a nonlinear variationalproblem,

and presented two approaches for image matching — one based on Fourier ba-

sis and one based on wavelets. It was reported that, wavelets-based method
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was more capable of capturing the local deformation than theFourier-based

method. Deformation field modeled by Fourier or wavelets arealso reported

in [64, 65, 66]. These methods all emphasized on the multi-resolution and/or

multi-band decomposition for accelerating the calculation and increasing the

computational efficiency. Furthermore, the topology of theimage is preserved

by imposing additional constraints. For example, hard constraints on the Jaco-

bian were imposed in [67].

5) Locally Affine Models

As the name suggests, in this case, the local transformations are defined by

locally affine models. The main strength of locally affine models is its compu-

tational efficiency. These family of local transformation models can be further

divided into two categories: piecewise affine models and poly-affine models.

The basic idea is to mosaic the image by a set of regions whose nodes parame-

terize the transformation. While the piecewise affine models usually define the

regions quite evidently, the poly-affine models use fuzzy regions to avoid the

lack of smoothness at the boundary regions.

Piecewise affine models: Hellier et al. [68] first introduced a multi-grid and

multi-resolution approach based on a piecewise affine modelwhich was regu-

larized with an optical flow model. Not globally invertible is the main drawback

of applying piecewise affine transformation in each region independently. This

issue is partly addressed and tackled in [69].

Poly-affine models: To overcome the drawback of the piecewise affine mod-

els, poly-affine models use fuzzy regions. Arsigny et al. [70] introduced poly-

affine transformations, which was later extended by Arsignyet al. [71]. A set

of anchor points were defined and assigned with different weights (importance).
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Fuzzy regions are defined according to the influences of the anchor points to

each positionx. The approach does not have a closed-form solution, thus it is

computationally expensive.

2.2.2.3 Knowledge-based transformation models

Specific knowledge on the transformation can be incorporated into the trans-

formation models to result in favorable transformation. The motivation behind

incorporating knowledge into the transformation models isto increase the accu-

racy, robustness and plausibility of the transformation. Some general knowledge

including topology preservation and volume preservation have been well stud-

ied, as briefly mentioned in the previous sections. In this section, we will focus

more on knowledge that are derived from statistics and biomechanical/biophys-

ical models.

1) Statistically-Constrained

Statistically-Constrained transformation models, or statistical deformations

models (SDMs) are models that utilize the statistical information from the trans-

formation fields. The statistical information is usually collected from a popula-

tion of subjects. Due to the prior knowledge introduced, thedegree of freedom

of the transformation is constrained and thus reduced, which directly leads to

less demand on computational power.

Principal component analysis (PCA) has be widely used whilelearning the

statistical models. Tang et al. [72] accelerate the SDM learning process by ap-

plying PCA. Rueckert et al. [15] studied the movement of each of the FFD con-

trol points, and then used the statistical result to constrain on the transformation

of the FFD control points. The stiffness of different structures influences the
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deformability of the objects/tissues, statistical prior knowledge on this was in-

troduced by Commowick et al. [73]. One common drawback of statistical learn-

ing model was the high dimensionality of the prior knowledge, Xue et al. [74]

tackled the problem of high dimensional SDMs using wavelet based decompo-

sitions. Nevertheless, SDMs still relies on the representability of its training

samples for a good transformation model.

2) Biomechanical/Biophysical inspired

Biomechanical/biophysical properties of the tissues can be explicitly en-

coded, thus the complex transformation field can be more easily obtained with

the reduced degree of freedom. The searching space of the transformation is thus

much reduced, and therefore the increase of computation efficiency. Embed-

ding the biomechanical/biophysical properties into the image registration pro-

cess also helps to produce more anatomically plausible transformation. These

models are closely related to anatomy and physiology. Therefore, they should

be very carefully examined. Failing to represent the anatomy/physiology and

assign the parameters correctly may produce undesirable results.

These models are usually applicable to specific tasks. For example, [75],

[16] and [76] focus on modeling the tumor growth. [77], [78] and [79] work on

biomechanical models of the breast. And biomechanical models of the prostate

are also reported in [80, 81].

2.3 Matching Criterion

The alignment of the target and source images is described bythe matching

criterion, or the similarity metric. There are mainly threeapproaches in design-
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ing similarity measures, namely, 1) feature-based methods, 2) intensity-based

methods, and 3) hybrid methods. The feature-based methods aim to establish

an optimum correspondences for the landmark points, e.g., anatomical loca-

tions, salient points, etc. It involves feature points detection, and then solving

for the correspondence problem. Intensity-based methods measures the images

alignment based on the information extracted from the intensity relationships

between the images. While hybrid methods combines the information provided

by landmarks and intensity.

2.3.1 Feature-Based

2.3.1.1 Feature Points Detection

Detecting the features from the source and target images is the first step of

feature-based registration methods. Depending on the application, features can

be salient points/regions, lines, corners, line intersections, anatomical meaning-

ful points/regions, etc. An extensive review on point-detectors and descriptors

and be found in [82]. The detection and matching of the landmark points are

highly dependent on the richness of the description. The descriptors should be

discriminant enough for distinguishing between the potential matching candi-

dates. Furthermore, it is desirable for the descriptors to be invariant to factors,

such as, rotation, translation, deformation, and intensity changes, thus a robust

matching can be obtained.
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2.3.1.2 Transformation Estimation based on Feature Points

In the field of image registration, we hope to estimate a plausible transformation

such that the two landmark point sets are aligned. In the casewhere the land-

mark correspondences are made known, the transformation can be calculated by

adapting interpolation strategy, e.g., radial basis functions or thin-plate splines

straightforwardly [42, 47], or incorporating a regularization energy based on

correspondence constraint.

When the landmark correspondences are unknown, the landmark points can

be represented as probability distributions. The transformation is thus estimated

by minimizing the distance between two distributions. Kernel correlation [83]

and kernel density correlation [84] were used as the distance measure. More re-

cently, Gaussian mixture models (GMMs) have been more actively used in this

research area. In [85], each point set is modeled as GMM, the distance between

the point set is measured byL2 distance. Each feature of each shape is modeled

as GMM in [86]. Geometric information can also be adopted to estimate the

transformation without exact landmark correpondences. Signed distance func-

tions were used for shape representation [87, 88]. Euclidean distance transform

was deployed in [89].

2.3.2 Intensity-Based

Intensity-based methods measures the registration accuracy based on the in-

formation extracted from the intensity relationships between the images. The

intensity-based methods do not require landmarks detection, therefore, the pro-

cedure for intensity-based methods is more straightforward. Nevertheless, com-
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pared to landmarks based methods where only a subset of the pixels are consid-

ered as landmarks, intensity-based methods make use of the information from

every pixel. This comes at the cost of consuming more computational power.

Based on the modalities of two images, we further classify the intensity-based

methods into two categories: 1) for mono-modal image registration applications,

and 2) for multi-modal image registration applications.

2.3.2.1 Mono-modal Image Registration

In the mono-modal setup, both the source and target images come from the same

modality, and thus share the same intensity properties. Themost straightforward

matching criterion is the sum of squared difference:

SSD(T, S) =

N
∑

i=0

(T (xi)− S(xi))
2, (2.16)

where the squared difference is summed up over the whole image domain. This

similarity metric assumes that the same structures have thesame intensity val-

ues in the two images. Similar assumption has been made in sumof absolute

difference (SAD):

SSD(T, S) =
N
∑

i=0

|T (xi)− S(xi)|. (2.17)

The SSD and SAD as matching criteria are reported to be sensitive to the noise

and outliers. Later, the intensity matching relationship between the source and
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target images is relaxed to linear — cross coefficient:

CC(T, S) =
Cov(T, S)2

V ar(T )V ar(S)
, (2.18)

whereCov andV ar are the covariance and variance operators respectively. Or

functional — correlation ratio [90]:

CR(T, S) =
V ar(E(S|T ))

V ar(S)
, (2.19)

whereE is the expectation.

Besides purely relying on the pixel-based intensity values, attribute-based

methods were also proposed to provide richer information, thus some ambigu-

ous matching resulted from purely relying on pixel-based intensity values as

stated above can be avoided. Shen and Davatzikos [91] proposed a hierarchical

attribute matching mechanism for elastic registration, where the attribute vec-

tor includes geometric moment invariants. Local histograms were utilized in

[92]. Gabor [93] and alpha stable filters [94] were applied in different image

registration tasks. Myronenko and Song [95] analyzed the complexity of the

residual image, by minimizing the basis functions of the residual image, image

registration can be thus obtained.

2.3.2.2 Multi-modal Image Registration

Multi-modal image registration is naturally more difficultto solve compared

with mono-modal registration problems, because the intensity matching infor-

mation is not as predictable. Furthermore, the structural appearance may be
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significantly different in the images from different modalities.

For the cases, where the intensity matching information is still linear or func-

tional, or at least can be assumed as linear or functional in the local region, cross

correlation and correlation ratio can be still applicable with the location con-

straints [96]. Nevertheless, the most widely used approaches for multi-modal

image registration is based on information theory. Among all information theo-

retic approaches, mutual information (MI) is the most popular approach which

has been extensively investigated [97, 98]. Mutual information is defined as:

MI(T, S) = H(T ) +H(S)−H(T, S), (2.20)

whereH is the differential entropy. MI removes the assumption on functional

relationship, and uses the statistical dependency betweenthe intensity values

from the corresponding pixel to evaluate the registration results. Many follow-

ing studies came out to solve the shortcomings of MI. Studholme et al. [99]

proposed the normalized mutual information (NMI) to solve the overlap invari-

ant problem. Higher order of mutual information, which takes into account of

the spatial information were also developed rapidly [100, 101, 102, 103].

The idea of incorporating prior knowledge of the underlyingregistration

problem has shown significant improvement in registration robustness and ac-

curacy. The effort of intensity standardizing of differentmodalities makes in-

corporating intensity matching prior more practical. Morespecifically, using

divergence measures to comparing the joint intensity distributions from training

and testing cases has attracted much attention. Chung et al.[104], Guetter et al.

[105] and Cremers et al. [106] proposed to use Kullback-Leibler divergence
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(KLD) as the similarity measure to register multimodal images. Liao et al. [107]

used Jensen-Shannon divergence (JSD) to compare learnt joint distribution with

the observed joint distribution. JSD is more robust compared to KLD due to its

symmetry, being theoretically upper-bounded, and well-defined with histogram

non-continuity. Despite the reported success of using leaned joint intensity dis-

tributions to increase the registration robustness and accuracy, a major drawback

of using the leaned joint intensity distributions is that the joint intensity distri-

butions may deviate a lot from the training to testing imageswhich degenerate

the effectiveness of the intensity matching prior. To solvethe above mentioned

problem, in this thesis, we propose to learn the intensity matching relationship

from pre-registered image training pairs. Instead of usingthe learnt joint distri-

butions, we proposed to learn the intensity matching relationship from the joint

histogram through the normalized pointwise mutual information (NPMI), and

apply the learnt intensity matching as a more general, flexible and robust prior.

Another group of researchers try to solve the multi-modal image registra-

tion problem by reducing the multi-modal setup to mono-modal, and hence

only mono-modal image registration needs to be performed subsequently. In

particular, ultrasound images are simulated from MR [108] and CT [109] im-

ages respectively. Andronache et al. [110] and Maintz et al. [111] try to map

the source and target images to a common pseudo modality. With the introduc-

tion of modality synthesis techniques [112, 113] that are based on constructed

dictionaries, databases, we believe that there is a huge potential to improve the

image registration accuracy by reducing the multi-modal images to mono-modal

images.
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2.3.3 Hybrid

Hybrid methods aim to combine the strengths from feature-based and intensity-

based methods, and capitalize them in a complementary way. Feature-based

and intensity-based methods are taking independently in two steps in [114, 115,

116]. In most of these methods, one type of information (either feature or in-

tensity) dominates in coarse registration, while the otherdominates at the finer

level. Another group of researchers utilize the additionalinformation as con-

straints in the registration process. In particular, landmarks/surfaces were used

as soft constraints in [117, 118, 119]. And Joshi et al. [120] imposed a hard con-

straint of geometric correspondences in brain image registration. In most of the

above mentioned methods, only one type of information benefits from another.

However, these two types of information can be beneficial to each other, so the

solution of each problem can take advantage of its counterpart. Such approach

can be found in [121, 122, 123].

2.3.4 Group-wise

Although many techniques have been proposed for image registration, most of

them belong to the category of pairwise image registration,where only two

images, naming the source and target images are involved. Registration of a

group of images has traditionally been tackled by repeatedly applying a pair-

wise registration [124, 125]. Recently, group-wise registration has been pro-

posed for simultaneous and consistent registration of all images in a group

[19, 126, 127, 128, 129]. Group-wise image registration is well studied for

atlas construction [130, 131, 132]. More specifically, Seghers et al. performed
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pairwise registration between all possible pairs of imagesin the group, and con-

structed the atlas by voxelwise averaging of all images after mapping them to

their mean morphological images [133]. Park et al. [134] defined an image

closest to the population mean geometry as a tentative template and generated

the atlas by iteratively registering all images onto the template and replacing

the template with the mean of the aligned images. More efficient group-wise

registration methods are then subsequently proposed. Joshi et al. proposed a

method for atlas estimation in a large deformation diffeomorphic setting [135].

A gradient-based stochastic optimizer proposed by Zollei et al. is employed to

minimize an information-theoretic objective function, and an affine congealing

mechanism is used to drive each image to the center of the group simultaneously

[126]. [126] is further extended to a nonrigid group-wise registrationalgorithm

by incorporating free-form B-Splines to represent nonrigid deformations [136].

More recently, it has been pointed out that a single mode is not sufficient to

account for the variation of all images in a population, and thus multi-class ap-

proaches are proposed [137, 138, 139].

2.4 Conclusions

To this end, we have carefully introduced the background of image registration,

including two of the most important components: the transformation model and

similarity measure. Despite the efforts from the researchers all over the world,

image registration is still a very challenging problem and it is still open for

the researchers to improve and solve. In particular, we workfrom the angle

of incorporating additional knowledge to improve the accuracy and robustness
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of the image registration process, including anatomical and appearance priors,

which will be presented in the subsequent chapters of this thesis.
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Chapter 3

Image Registration: Utilizing

Anatomical Priors

In this chapter, we present a hybrid multi-modal deformableregistration frame-

work using a data-driven deformation prior. The deformation prior is generated

by utilizing the anatomical information contained the images, for example, the

segmentation of certain organs or objects. The proposed approach belongs to

the hybrid approach as described in Chapter 2. We will present the detailed

algorithm in the following sections.

3.1 Introduction

Image registration helps the clinicians to combine the image information ac-

quired from different modalities, different time points, or pre- and post- contrast-

enhancement for better evaluation. For some cases, rigid/affine registration may

be sufficient; however, in many cases, deformable registration is needed to com-
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Figure 3.1: Structure appearance may be largely different due to different levels of
contrast-enhancement. (a) and (b) is a pair of images from pre-operative contrast-
enhanced CT and intra-operative non-contrast-enhanced C-arm CT for TAVI pro-
cedure. (c) and (d) is a pair of images from a perfusion cardiac sequence at different
phases.

pensate for local movements.

Deformable registration is inherently ill-posed and under-constrained from

the mathematical point of view. It becomes more challengingwhen dealing with

different structural appearances due to different levels of contrast-enhancement

between two images. This problem widely exists in the field ofmedical im-

age registration, e.g., registration of the perfusion cardiac images at the wash

in/out phases, and 3D/3D registration of pre-operative contrast-enhanced CT

and intra-operative non-contrast-enhanced C-arm CT images (See Fig3.1 ). In

these cases, purely relying on the intensity information produces anatomically

implausible deformation. Integratinga priori information about the deforma-

tion is thus highly desirable. Landmark constraint was proposed to increase the

registration accuracy and robustness [140, 141, 142]. These methods added a

penalty term to constrain the correspondence pairs from moving too far apart,

and thus exact correspondence matching is very crucial. They optimize the en-

ergy function using the thin-plate spline (TPS) and B-spline models. TPS are

based on the bending energy of a thin plate, thus it only represents a relatively

coarse deformation. B-spline models usually require numerical solutions at each
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3.2 Dense Matching and The Variational Framework

iteration during the optimization process, which is computationally expensive.

There is another group of methods incorporatinga priori information from the

statistical point of view. Statistical analysis on shape and displacement field

variability is incorporated into the image registration process. Xue et al. [74]

tackled the problem of high dimensional statistical deformation models (SDMs)

using wavelet based decompositions. Despite the promisingresults, training the

SDMs suffers from the curse of dimensionality, and how to select the training

data to represent the population remains unclear. Among theaforementioned

methods, one important and potentially readily available information is missing

and may be utilized — the segmentation of some dominant and common objects

in the images. The motion of these segmented objects could bemodeled and

may greatly improve registration accuracy. In addition, from the clinical work-

flow perspective, this segmentation may be needed for diagnosis and guidance

purpose alone, and as a result, utilization of the availablesegmentation results

does not impose additional requirement for the purpose of image registration.

3.2 Dense Matching and The Variational Frame-

work

In this thesis, we use the variational framework for image registration [96]. We

shall provide a brief introduction here as it is extensivelyused in Chapter 2 and

3.

Given the image domainΩ, we want to find a functionh to transform each

pointx with a displacement vectorh(x). We briefly review the variational frame-
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3.2 Dense Matching and The Variational Framework

work in this section. The functionh is optimized such that an energy functional

J(h) is minimized. The energy functionalJ(h) is of the form

J(h) = J1(h) +R(h), (3.1)

whereJ1(h) measures the ”dissimilarity” between the source and targetimages,

andR(h) is designed for smoothness regularization. Thus, image registration is

to find theh such thatJ1(h) +R(h) is minimized.

The first variation ofJ(h) at h in the direction ofk is defined by

δkJ(h) =
δJ(h + ǫk)

δǫ
|ǫ=0. (3.2)

The gradient∇J(h) of J is defined by requiring the equality

δkJ(h) = (∇kJ(h), k) (3.3)

to hold for everyk. δkJ(ĥ) equals to zero for everyk for the minimizerĥ to

be existed. This is equivalent toδkJ(ĥ) = 0. The above functions are the

Euler-Lagrange equations associated with the energy functionalJ which is usu-

ally impossible to find the close solution. Therefore, a gradient decent strategy

is usually deployed to find the minimizerĥ. A time-dependent, differentiable

function h , given an initial estimateh0 is computed as the following initial

value problem:










dh
dt

= −∇J(h)

h(0)(.) = h0(.)

(3.4)

The solution of the matching problem is chosen ath(t) wheret → ∞.
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3.3 Method

3.3.1 Anatomical Knowledge-based Deformation Field Prior

A TPS can be used to represent an image deformation field [143, 144]. It maps a

pointx from source imageI2 to the corresponding pointv(x) in the target image

I1. Given a set of control pointsck ∈ R3 and the associated coefficientsaij , wki

∈ R with i = 1, 2, 3, j = 1, 2, 3, 4, andk = 1, 2, ..., K, the TPS transformation

v can be written as:

vi(x) = ai1x1 + ai2x2 + ai3x3 + ai4 +

K
∑

k=1

wkiφ(‖x − ck‖), (3.5)

with the condition

K
∑

k=1

wki = 0, and
K
∑

k=1

ckuwki = 0, i, u = 1, 2, 3, (3.6)

whereφ is a radial-basis function which is defined as

φ(r) = r2log(r2). (3.7)

Note that parameters include 12 global affine parametersaij and 3K local coef-

ficientswki for the control points. In our method, the two additional constraints

in (3.6) ensure that the plate would not move or rotate under the imposition of

the loads and remain stationary [44]. The control points are placed in a uniform

grid to capture the deformations.

Landmark-based methods are commonly used for non-rigid medical image

registration [140, 141, 142, 145]. However, in many applications, it is very dif-
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ficult to find exact/accurate landmark correspondences fromthe images. It may

be due to poor image quality and/or lack of feature points in the object, e.g.,

heart surface. Instead of assuming a one-to-one correspondence based on the

nearest neighbor criterion, one-to-many relaxations havebeen proposed to al-

low for fuzzy correspondences. These approaches do not establish the explicit

point correspondence, and thus are less sensitive to the missing correspondences

and outliers. In particular, the registration problem is expressed as a joint opti-

mization over the transformation parameter and correspondence matrix in [146].

Tsin and Kanade [83] proposed a kernel correlation based point set registration

approach where the cost function is proportional to the correlation of two ker-

nel density estimates. Myronenko et al. [147] proposed another robust nonrigid

point set registration algorithm, where they maintain the same Gaussian affinity

matrix and also adopt a similar alternating update strategyinterpreted in an ex-

pectation maximization framework. For the group of methodsmentioned above,

where fuzzy correspondences are used, they all can be viewedas special cases

in Jian and Vemuri’s framework using Gaussian mixture models [85]. Because

of its generality [85], in this thesis, we use mixture of Gaussians to represent

the point sets of interest, which can be sampled from the segmentation. Then

we efficiently and robustly register the point sets using [85]’s method. More

specifically, the Gaussian mixture model from the given point set in a simpli-

fied setting is as follows: 1) The number of Gaussian components is the number

of the points in the point set and all components are weightedequally, 2) for

each component, the mean vector is given by the spatial location of each point,

and 3) all components share the same spherical covariance matrix. Jian and Ve-

muri’s framework using Gaussian mixture models for robust point set registra-
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tion is well suited for our application because of its simplicity, and insensitivity

to missing correspondences and outliers which commonly exist in our applica-

tion. Here, we generate an anatomical knowledge-based deformation field prior

using TPS model by optimizing the following cost function:

ETPS(v) =
∫

(fv − g)2dx + λEbending(v), (3.8)

wherefv is the distribution representing the transformed point setwarped by

v, g is the distribution of the target point set, andx is the location. A smallλ

ensures that the TPS approximates local deformations well [42]. In our work,

we experimentally setλ to 0.001. Ebending is the bending energy of the TPS,

which can be written as:

Ebending(v) =
∫ ∫ ∫

L(vx) + L(vy) + L(vz)dxdydz, (3.9)

L(.) = ( ∂2

∂x2 )
2 + ( ∂2

∂y2
)2 + ( ∂2

∂z2
)2 + 2( ∂2

∂x∂y
) + 2( ∂2

∂x∂z
) + 2( ∂2

∂y∂z
), (3.10)

wherevx, vy andvz are components forv at different directions respectively.

TPS is chosen to represent the underlying transformation model due to its

nice properties, including its smoothness, no free parameters to tune manually,

closed-form solutions for both warping and parameter estimation, and physical

explanation for its energy function [142, 148]. Compared to other transforma-

tion models that have been successfully applied in the course of heart surface

registration, for instance, B-spline models [149], TPS is more suited to our ap-

plication mainly in two aspects: 1) the deformation is more global: the generated

deformation prior is sufficient to provide a high-level knowledge of the plausible
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deformation field to guide the deformable registration process; and 2) The com-

putational complexity is much lower than other transformation models where

the iterative calculation in the optimization process causes long running time. In

addition, the distribution of the point sets are modeled as mixture of Gaussians

for the purpose of efficient and robust registration [85]. It was demonstrated in

[85] that even with outliers and missing parts in the point sets,the algorithm

is still able to register the point sets robustly and correctly. Registration using

mixtures of Gaussians may not be highly accurate at the edges, compared to

other computationally-expensive landmark-based registration methods that fo-

cus on point-to-point matching. However, the deformation prior generated from

the point sets registration results is sufficient to providehigh-level knowledge of

the plausible deformation field. Note that, unlike many other spline-based opti-

mization schemes where iterative volume intensity interpolation is required, we

only use TPS to generate a deformation prior based on the location distributions

of the point sets, which leads to a much higher computationalefficiency.

3.3.1.1 Penalty from Prior Deformation Field

Optimizing Equation3.11provides a data-driven prior deformation fieldv, and

we want the prior deformation fieldv to guide the deformable registration pro-

cess. The penalty term is thus defined as:

Eprior(h) = −

∫

Ω

w(x)||h(x)− v(x)||2dx. (3.11)

A local weight termw(x) is included in the penalty term.w(x) should be large

at the structure mismatching area where the deformation should rely more on the
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prior deformation knowledge, and small at the area where intensity information

is rich in both images.

3.3.2 Similarity Measure for Deformable Registration

To further refine the registration results, deformable registration is performed

after rigid-body registration. MI [124] is widely used in the field of multi-modal

image registration. Readers can refer to Chapter 2 of the thesis for the review

of MI-based image registration techniques. However, in theMI setup, every

pixel is treated equally, regardless of the importance in geometric location or

structural information. We propose a novel intensity-based similarity metric —

structure-encoded mutual information, which assigns different weights to the

pixels according some anatomical prior knowledge. Here, wecombine the prior

deformation field as described in the previous section and the novel structure-

encoded mutual information (described in the following section) for the follow-

ing energy functional:

E(h) = ESMI(h) + αEPrior(h), (3.12)

whereESMI denotes the structure-encoded mutual information of the observed

and target data, andEPrior denotes the similarity measure of the current defor-

mation fieldu and the prior deformation fieldv which is generated by optimiz-

ing Equation3.11. A deformation field that maximizes the SMI is influenced

by the prior deformation field to achieve a more clinically meaningful align-

ment. The factorα controls the amount of guidance by the prior deformation

field. It can be seen that our similarity measure considers both the low-level
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information from the image content and the high-level prioron the deforma-

tion field. The combination of the two soft constraints integrates the anatomical

information which largely helps the registration process.Compared to other

registration methods that use some image salient features or boundary features

as additional constraints, our proposed method does not require numerical solu-

tions to optimize the energy function. The optimum of the similarity measure

can be found by means of variational calculus. We derive the gradient of the

combined functional with respect to the displacement field,thus the computa-

tional time is largely reduced which is very important for clinical usage. The

details of structural encoded mutual information and regularization are given in

the following subsection.

3.3.2.1 Structure-Encoded Mutual Information

Encoding location/structural information into the MI similarity measure is in-

vestigated by Suh et al. [150] where they only consider the statistics in the re-

gion of interest. Different from [150], we emphasize the structure information

contained in each voxel. In particular, we propose to assigndifferent weights to

the pixels according to some anatomical prior knowledge, e.g., structures that

appear in both images should be given higher weights, such asorgan bound-

aries which can be easily extracted if segmentation is readily available. Lower

weights are given to the pixels in the homogeneous region where not much in-

formation was contained or in the area with mismatching structures, which may

lead to significant registration errors. Specifically, our density estimator is based
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on a normalized Gaussian kernel of varianceβ, notedGβ(i):

P (i, u) =
1

|
∑

Ω

D(x)|

∫

Ω

D(x)Gβ(Iu(x)− i)dx, (3.13)

wherei represents the co-occurrence of an intensity pair,D(x) is a weighting

factor assigned to every pixel. For each pair of intensitiesi, the value of the

estimated joint pdf is a nonlinear function ofu. Note that in the conventional

way of calculating the joint density,D(x) is assigned to 1. However, we intro-

duce a weighting factor so that we can incorporate the structural information

into the calculation of the joint pdf, e.g., the pixels that are closer to the object

borders will be given higher weights because the intensity-based SMI term is

more capable of matching such discriminant areas.

The definition of the SMI is the same as MI which takes the following form:

ESMI =

∫

R2

P (i, h) log
P (i, h)

p(i1)p(i2)
di, (3.14)

wherep(i1) andp(i2) are the marginal probability density function of the target

and source images respectively. Compared to the conventional MI, we encode

the anatomical segmentation information into the calculation of joint density

function, where pixels that are around the segmentation borders are given higher

weights because of its reliability. Such a weighting schemeimplicitly makes the

SMI content-aware — the similarity measure is dominated by the pixels that are

more anatomically reliable. The deformation field therefore is driven more by

the areas that are regarded as more reliable, making the optimization less prone

to noise and local optima, and therefore leading to more accurate registration
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results.

3.3.3 Optimization

For the optimization step, we follow the variational framework proposed by Her-

mosillo et al. [96] that has demonstrated nice properties in terms of accuracyand

capture range compared to the parametric deformable registration. In particu-

lar, we perform variational minimization of the proposed energy functional by

gradient descent:

∂h
∂t

= −
∂E(h)
∂h

= −
∂ESMI(h)

∂h
− α

∂EPrior(h)
∂h

. (3.15)

Based on (3.15), the deformation fieldh is updated at every iteration. The gra-

dient of SMI is similar to the gradient of MI [96] with an additional term on the

structure weight termD(x), and can be shown to be:

∂ESMI
∂h(x) =

D(x)

|

∑

Ω

D(x)|
Gβ ∗ (

∂2P (i,h(x))
P (i,h(x)) − p′(i2,h(x))

p(i2,h(x))
)∇Iσ2 (x + h(x)), (3.16)

where∂2P denotes the partial derivative of P with respect to its second variable,

p′ is the derivative of the marginal pdf, and∗ is the convolution operator.

Following the notation in [96], the gradient ofEPrior(h) is derived from:

δkEPrior(h) =
∫

Ω

∂

∂ǫ
w(x)||h(x) + εk(x)− v(x)||2|ǫ=0dx

=

∫

Ω

w(x)(2(h(x)− v(x)) · k(x))dx, (3.17)

whereδkEPrior(h) is the first variation ofEPrior(h) at h in the direction ofk (see
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[151]).

Thus we have
∂EPrior(h)
∂h(x)

= 2w(x)(h(x)− v(x)). (3.18)

From (3.16) and (3.18), we immediately notice the term(∂2P (i,u(x))
P (i,h(x)) − p′(i2,h(x))

p(i2,h(x))
)

and(h(x)−v(x)) as the comparison functions of our registration method.∂2P (i,h(x))
P (i,h(x))

tends to cluster the joint histogramP (i, h), while−p′(i2,h(x))
p(i2,h(x))

prevents the marginal

distribution of the deformed source image from becoming tooclustered. For

(h(x) − v(x)), the deformation fieldh is lead byv, thush will not deviate sig-

nificantly from the prior deformation fieldv. In addition, the use of the weight

termsD(x) andw(x) leads to desirable properties while updating the deforma-

tion field at each iteration. Specifically, in the locations whereD(x) is large, the

deformation field will be dominated by the SMI term, because in these regions,

there is clear structure information in both source and target images. Thus the

registration benefits from the intensity information. While in the regions with

largerw(x), these regions typically contain nonradiopaque structures in the tar-

get images and mismatched structures between the source andtarget images

occur. A largerw(x) imposes a stronger prior deformation knowledge at loca-

tion x to avoid anatomically implausible deformation. The combination effect

from D(x) andw(x) ensures that our deformable registration is context-aware

and well regularized.
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3.4 Experiments

To validate the proposed framework, here, we present three sets of experiments,

on 1) pre-operative CT and non-contrast-enhanced C-arm CT,2) myocardial

perfusion MRI, and 3) simulated pre- and post- liver tumor resection MRI.

3.4.1 Pre-operative CT and Non-contrast-enhanced C-arm CT

Registration of pre-operative contrast-enhanced CT and non-contrast-enhanced

C-arm CT eliminates the need for acquiring contrast-enhanced C-arm CT, which

is harmful to trans-catheter aortic valve implantation (TAVI) patients with kid-

ney impairments [152]. We validated our proposed method on 20 TAVI patients

who had undergone both CT and contrast-enhanced C-arm CT scans. The 20

C-arm CT images are with standard quality. The size of each slice in a volume

is 256×256 or 512×512 pixels. A volume contains around 100 - 300 slices. The

image resolution is isotropic and varies from 0.49 to 0.92 mm3. We artificially

removed the contrast in the aorta area for C-arm CT by replacing intensities

corresponding to the contrast agent with intensities generated from a Gaussian

distribution with the mean equal to the heart area of the C-arm CT volume. The

generated data are visually inspected to be non-distinguishable from the real

non-contrast enhanced C-arm CT volumes (Fig.3.2). Thus in the experiments,

we are essentially matching the CT volume with non-contrast-enhanced C-arm

CT volume. The experimental setup takes advantage of the known ground truth.

Although artificially generated non-contrast enhanced C-arm CT image may

not be an ideal experiment setup, it is so far the best way to make quantitative

evaluation on the performance of the proposed registrationalgorithm for real
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Figure 3.2: Pre-operative CT, intra-operative contrast-enhanced C-arm CT and
Simulated non-contrast-enhanced C-arm CT image examples from two patients.
Column (a): Pre-operative CT. Column (b): Intra-operativecontrast-enhanced C-
arm CT. Column (c): Simulated non-contrast-enhanced C-armCT.

patient data. Compared to possibly alternative validationmethods on animal

/ cadaver data, the deformation property of the heart is morerealistic for the

target (live human being) application. In addition, using metallic markers to

generate ground truth positions raises the issue of the interference of the mark-

ers on registration performance due to their high gradientsin the images. For

all the experiments, the parameters are fixed and without tuning for the best per-

formance for individual data. For quantitative evaluationpurpose, a cardiologist

manually delineated the aortic root of all the CT and C-arm CTdata sets.
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3.4.1.1 Qualitative Evaluation on Artificial Non-Contrast Enhanced C-

arm CT

To evaluate the deformable registration results, we further compared the results

obtained from rigid-body registration initialized using the heart center (for the

three cases where both initialization methods failed, we used the manual rigid

registration results), conventional MI-based deformableregistration under vari-

ational framework [96], purely relying on our proposed deformation prior, Lu

et al.’s method [152], and the proposed method. Our earlier method in [152]

only incorporates the rigid nature of the spine while generating the deformation

field prior. More specifically, the point sets are sampled from the spine area,

whereas in this thesis, we extend the sample points to the heart surface area to

better model the heart motion, thus giving a more effective deformation field

prior. For evaluation purposes, we extract surface meshes of the aortic roots

from the deformed CT and the C-arm CT images (see Fig.3.4). In our experi-

ment, the segmentation of the aortic roots is done by a cardiologist, however, it

can also be achieved automatically by using the method in [153]. The mesh-to-

mesh distance is calculated by the average distance from thepoints on the aortic

root surface mesh root of the deformed CT to the closest pointon the aortic

root surface mesh of the C-arm CT. The mesh-to-mesh errors are 3.22 ± 1.14

mm,3.26 ± 1.60 mm,2.05 ± 0.67 mm,2.16 ± 0.64 mm, and1.76 ± 0.43 mm,

respectively. The comprehensive comparison can be found inFig. 3.3.

The mesh-to-mesh error from the rigid registration is larger than 3 mm on

average, which exceeds the tolerance in the practical requirement. The result

from the rigid registration indicates that the residual motion of the heart still ex-
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ists after rigid registration. Therefore, deformable registration should be applied

to compensate for the residual motion.

However, using pure intensity-based conventional MI does not reduce the

amount of registration error on average, adversely, it introduces a much larger

variance. A closer look at every individual cases reveals that pure intensity-

based MI reduces the registration error in majority of the cases comparing to

rigid registration. But unfortunately, pure intensity-based MI produces signifi-

cant errors for the cases in which C-arm CT has bad quality. Without incorporat-

ing any anatomical information, pure intensity-based MI generates deformation

fields that are anatomically implausible, which leads to significant registration

errors (See Fig.3.5 column (b)). As robustness is extremely critical for medi-

cal applications, and there is no guarantee to acquire C-armCT data with good

image quality, pure intensity-based conventional MI cannot be applied in the

practical situation due to its unreliability.

On the other hand, we also tested the reliability of our proposed deformation

field prior. Without incorporating any of the intensity information, we directly

apply our proposed prior deformation field on the pre-operative CT data. It can

Figure 3.3: Registration performance of 20 patients measured using mesh-to-mesh
error.
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Figure 3.4: Point sets extracted from the aortic root surface, before (left) and after
(right) deformable registration. Red point set is the ground truth, and blue point
sets are extracted from pre-operative CT. The black arrows demoindicate the errors
calculated at the three corresponding points.

be seen that our proposed prior deformation field produces robust and reason-

able registration results. This is because the proposed deformation field prior

is derived based on the global motion of the heart, thus the result obtained us-

ing the prior directly is quite robust. A comparison is made on the results ob-

tained from solely the deformation field prior and the proposed method where

intensity information is further incorporated through SMI. Paired t-test between

these two methods results a two-tailed P-value of 0.0293. Byconventional cri-

teria, this difference is considered to be statistically significant, indicating that

the proposed method is statistically significantly better than applying the prior

deformation field alone. The improvement can be explained asthe followings.

The deformation field prior is derived using the method of point set registration,

which is less sensitive to points at the area with sharp changes. Therefore, the

deformation at those areas may not be fully captured by the deformation prior.

To demonstrate this, one registration example from Patient5 is shown in Fig.
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Figure 3.5: The registration results from Patients 5 (Row 1) and 9 (Row 2). (a)
Rigid. (b) Deformable using MI. (c) Directly applying priordeformation field. (d)
Lu’s method (e) The proposed method. The red lines delineatethe aortic root,
the green lines delineate the myocardium and the yellow lines delineate the other
visible structures from the CT images.

3.5, Row 1. In this case, the deformation field prior is not well generated mainly

because point sets registration using TPS model does not do well in the region

with sharp structures, e.g., the sharp thoracic cavity (because the image was ac-

quired at the inspiratory phase). Furthermore, although the prior deformation

field provides a high level prior knowledge about how the heart deforms, inac-

curate estimation may occur due to the errors from the lung segmentation. One

such case is shown in Fig.3.5, Row 2. In this case, because of the inaccurate

segmentation on the right lung, solely applying the deformation prior would

cause the epicardium area to be misaligned and thus leads to inaccurate regis-

tration result in the aortic root area. Despite the above mentioned shortcomings

of the deformation field prior, with further incorporating the SMI term, the mis-

aligned area can be well corrected which leads to a more desirable registration

result. Therefore, the aortic root is registered to a more optimum position.

Our proposed method is closely related to Lu et al.’s method [152] which

combines strength from intensity-based method and the anatomical knowledge
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into the deformable registration framework. Compared to [152]’s method where

only rigid nature of the spine is incorporated, our proposedmethod further con-

strains the deformation field by using a TPS model to estimatethe heart motion.

With the least registration error and standard deviation, the result demonstrates

the superiority of the proposed similarity measure which combines soft con-

straints derived from the anatomy, as well as the numerical stability of our gra-

dient descent based optimization scheme. Clinically, a registration error below

2.5 mm is deemed acceptable. Compared to Lu et al.’s method, we improve the

results for Patient 3, 15 and 16 from borderline acceptable to very accurate, and

furthermore, the results for Patient 10, 18 and 19 are improved from clinically

not acceptable to acceptable. We further perform a paired t-test between these

two methods, and the two-tailed P value equals to 0.0012, showing that the pro-

posed method is statistically significantly better than Lu et al.’s method. This

is largely attributed to the proposed deformation prior, which is able to model

the deformable heart motion, instead of simple rigid-body motion in the spine

area as proposed in [152]. It is noted that in certain cases, the improvement of

the proposed method is minor compared to [152]. This is because in the cases

where heart motion is not significant, modeling the spine motion is sufficient for

the registration task, while in the cases where heart motionbecomes apparent,

the proposed method provides significantly improved registration results.

To qualitatively compare our method with Lu et al.’s method,we show an-

other registration example from Patient 9 in Fig.3.5, Row 2. In this case, the

C-arm CT image is very noisy especially at the area near the spine. The pro-

posed method produces the most accurate registration result at the targeted area

– the aortic root (red contours). Furthermore, the anatomical structure at the
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heart area is nicely preserved, due to the incorporated deformation prior. We

can see that MI-based method fails completely because of thelarge area of mis-

matched structures, while Lu et al.’s method performs well around the spine and

heart surface (yellow contours). However, because the aortic root is quite far

away from both the heart surface and the spine area, the constraints imposed

by [152] is not strong enough to produce a good registration result.Further-

more, due to the significant noise, the registration result at the heart area is not

clinically meaningful, e.g., the myocardium (green contours) is badly distorted.

A nice property of our proposed similarity measure is the balance between

ESMI andEprior. At the initial stages of the registration process,Eprior is the

main driving force because initially, the deformation fieldis very different from

the deformation prior, thus the magnitude ofEprior is large. As the registration

process continues, theESMI term acts to fine tune the registration results by

utilizing the intensity information. AndEprior constrains the registration process

by penalizing significant deviation from the prior. Note that these two terms are

both soft constraints, and the combination of these constraints nicely present the

best registration results.

Figure 3.6: The left and right coronary ostia at the aortic valve of two example
data: (a) C-arm CT image (b) Pre-operative CT image. The table on the right
shows the landmark registration error between the registered coronary ostia in the
CT image to the corresponding points in the C-arm CT image. The mean, standard
deviation (STD), and median of the errors are reported (measured in millimeters).
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Registration accuracy in the aortic valve landmark detection is measured to

further validate the clinical applicability of the proposed registration framework.

During the TAVI procedure, the left and right coronary ostiaare overlaid onto

2-D fluoroscopic images to provide guidance to physicians toavoid blocking

the ostia after valve deployment. Thus accurate registration of left and right

coronary ostia is crucial for the TAVI procedure. The landmark registration

accuracy of the coronary ostia is measured using the Euclidean distance from

the coronary ostia in the C-arm CT image to the correspondingcoronary ostia

in the registered CT image. We can see that the landmark registration accuracy

of the coronary ostia is significantly improved from6.78 ± 7.32 mm to2.86 ±

0.77 mm. The average landmark registration error of below 3 mm indicates the

clinical feasibility of our proposed registration framework. Figure3.6shows the

coronary ostia from C-arm CT and pre-operative CT respectively.

3.4.1.2 Qualitative Evaluation on Real Non-Contrast Enhanced C-arm

CT

We also perform our proposed registration framework on three sets of CT/real

non-contrast enhanced C-arm CT data. The specs of the three data sets are sim-

ilar to those in Section 3.1.1. The non-contrast C-arm CT images do not have

any visible structure at the targeted area of this application — aorta. Further-

more, as mentioned in Section 3.1.1, the only way to determine positions on

non-contrast-enhanced C-arm CT image is to place metallic markers to obtain

the ground truth. However, doing so raises the issue of the interference of the

markers on registration performance due to their high gradients in the images.

Therefore, we are not able to provide quantitative comparison, and only quali-
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tative evaluation is performed.

It is found that the experiment results are very similar to the results obtained

by using artificially generated non-contrast enhanced C-arm CT. This validates

that the quantitative evaluation in the Section 3.1. We qualitatively evaluate our

image registration framework on CT and real non-contrast enhanced C-arm CT.

An example is shown in Figure3.7. Firstly, rigid-body registration brings the

pre-operative CT to the same coordinate system as C-arm CT image. However,

major misalignment still exits mainly due to the cardiac andrespiratory motion

(see the red arrows in Figure3.7 Row 2). After performing deformable regis-

tration, the cardiac and respiratory motion is corrected, and the aortic root is

registered to a more optimum location (Figure3.7 Row 3). In this example,

we show that the proposed image registration framework successfully registers

the CT image to the non-contrast enhanced C-arm CT image. In particular, the

spine is correctly registered with its rigid nature embedded in the deformable

registration process. Furthermore, the heart structure isnicely preserved and the

aortic root is registered to a optimum position, which is clinically applicable,

thanks to the anatomic knowledge based deformation field prior.

3.4.2 Myocardial Perfusion MRI

We perform our second set of experiment on 8 myocardial perfusion MRI se-

quences. The data was acquired by Siemens Sonata/Avanto MR scanners fol-

lowing bolus injection of gadolinium-DTPA contrast agent.Due to the intensity

change caused by the contrast enhancement, registration ofmyocardial perfu-

sion MRI is treated as multi-modal image registration.
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Figure 3.7: Qualitative evaluation on image registration of CT and realnon-
contrast enhanced C-arm CT. Row 1: Non contrast-enhanced C-arm CT. Row 2:
After rigid-body registration. Row 3: After deformable registration.

3.4.2.1 Experimental Setup.

We select a source frame which has the best contrast in the sequence, and the

selected floating frame is registered to every frame of the sequence. In this

experiment, we can obtain the epicardium segmentation using [154]. The point

sets are sampled from the epicardium outline.D(x) is larger at the locations

near edges, andw(x) is larger at the locations near the segmented epicardium.

The information of epicardium segmentation is thus implicitly embedded into

the registration process.

3.4.2.2 Experiment Results

For our data set, myocardial contours (epicardium and endocardium) of all the

slices are drawn by a cardiologist. These contours serve as the ground truth.
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Figure 3.8: Quantitative comparison of the registration errors (inpixel) obtained
by rigid registration, MI, SMI and the proposed method.

We calculated the root mean square distance from the ground truth to the propa-

gated contours (yellow contours in Fig.3.9). The paired t-test indicates that our

hybrid method is statistically significantly better than the intensity-based meth-

ods with P values equaling to 0.039 and 0.0263 when compared to MI and SMI

respectively. In particular, for the example shown in Fig.3.9), simple warping

using the segmentation information results in noticeable registration errors at the

structure-rich areas as the intensity information is ignored. Intensity-based reg-

istration does not perform well in the homogeneous area because of the lack of

structure information. However, combining the strength ofboth intensity-based

and segmentation-based methods, our hybrid method produces the best result. It

is clearly shown that our proposed method provides the most robust registration

result, especially when the initial alignment is unsatisfied, e.g. Case 5. Thanks

to the guidance from the high-level knowledge prior deformation field, the reg-

istration problem is much better constrained and a more optimal solution can
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Figure 3.9: Registration results (a) Rigid (b) Simple warping using segmentation
information (c) SMI (d) Proposed method. Yellow and blue lines are the propogated
and the ground truth contour.

be found. Note that in certain cases, e.g., Case 4 and Case 8, the difference is

insignificant with and without the proposed deformation field prior, this is be-

cause in these cases, less motion of at the myocardium area isobserved, thus the

intensity based SMI is sufficient to register these image sequences even without

incorporating the deformation field prior.
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3.4.3 Simulated Pre- and Post- Liver Tumor Resection MRI

The proposed hybrid method could be potentially applied to another category

of registration problems with mismatching structures, i.e. registration between

volumes of pre- and post- tumor resection. In this experiment, the registration

is performed on pre-operative MRI and simulated post-operative MRI.

3.4.3.1 Experimental Setup

We simulated a post tumor resection image by manually segmenting the tumor

and the surrounding tissues, and then replacing the segmented area with 0 inten-

sities. Then we artificially deform the pre-operative MRI, and the registration

is performed between the deformed pre-opeartive MRI and thesimulated post-

operative MRI.D(x) is set to one except for the resected area andw(x) is one

at the resected area and zero otherwise. We assume the liver segmentation is

available, the point set is extracted from the liver surface.

3.4.3.2 Results

Here we get the preliminary results using one data set. Qualitatively, intensity-

based registration does not perform well in the resected area, and simple warp-

ing using the liver segmentation does not preserve the detailed structures well.

The proposed hybrid method guides the registration using the deformation prior

at the resected area, while at the rest of the area, intensity-based method domi-

nates. By combining the strength of both, the hybrid method achieves the best

registration result as demonstrated in Fig.3.10.
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Figure 3.10: (a) Pre-operative MRI. (b) Simulated post-operative MRI. (c), (d) and
(e) are the registration results using simple warping, SMI and our method respec-
tively.

3.5 Conclusion

In this chapter, we presented a hybrid multimodal deformable registration frame-

work with incorporates two sources of anatomical prior information. The pro-

posed method addresses the image registration issue while dealing with images

with different structure appearance due to different levels of contrast medium,

and was validated on both TAVI, perfusion MR data. In addition, preliminary

results show that the proposed method can also be applied to registration of pre-

and post- tumor resection images. The experimental resultsare encouraging

which demonstrates its superiority compared to intensity-based method and sim-

ple warping using segmentation. Furthermore, we descend the gradient of the

combined functional with respect to the deformation field under the variational

framework which is more computationally efficient comparedto spline-based

optimization schemes.
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Chapter 4

Multi-modal Image Registration:

Utilizing Appearance Priors

Incorporating context-specific prior knowledge of the intensity mapping has

shown promising registration results. In this chapter, we propose to learn the in-

tensity matching information through normalized pointwise mutual information,

from existing perfectly aligned training images or image pairs that are roughly

registered. Then novel similarity measures — weighted mutual information and

weighted entropy of intensity mapping confidence map are proposed. The de-

tails of the algorithm will be presented in the following sections.

4.1 Introduction

As mentioned in Chapter 1, mutual information is widely usedin the field of

multi-modal image registration. Nevertheless, incorporating prior knowledge

of the underlying registration problem has shown significant improvement in
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registration robustness and accuracy. Hence, it is common to incorporate prior

information into the energy optimization scheme by the following formula:

J(T, S ◦W ) = JMI(T, S ◦W ) + αJPrior(T, S ◦W ), (4.1)

where the similarity measureJ consists of the mutual information based simi-

larity JMI and a prior similarity termJPrior.

There is much prior information that can be incorporated into the image reg-

istration process. The effort of intensity standardizing over different modalities

makes incorporating intensity matching prior more practical. More specifically,

using divergence measures to compare the joint intensity joint distributions from

training and testing cases has attracted much attention. [104], [105] and [106]

proposed to use Kullback-Leibler divergence (KLD) as the similarity measure

to register multi-modal images. Liao et al. used Jensen-Shannon divergence

(JSD) to compare learnt joint distribution with the observed joint distribution

[107]. The major drawback of using the leant joint intensity distributions is

that these joint intensity distributions may deviate a lot between the training and

testing images, which reduces the effectiveness of the intensity matching prior.

This is because the joint intensity distribution depends not only on the inten-

sity matching relationship, but also the quantity of the intensity matching pairs.

The number of the intensity matching pairs may vary significantly from training

cases to testing cases. In this chapter, we propose to learn the intensity match-

ing relationship from pre-registered image training pairs. Instead of using the

learnt joint distributions, we propose to learn the intensity matching relationship

from the joint histogram through the normalized pointwise mutual information
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(NPMI), and apply the learnt intensity matching as a more general, flexible and

robust prior. The motivation comes from the observation that the joint distribu-

tions not only account for how the intensities are matched, but also the amount

of each intensity pair. The acquired intensity matching prior is thus sensitive to

field-of-view and size of the objects, while the statistically significant intensity

mapping relationship remains unchanged. For example, in Fig. 4.2, the joint

intensity distributions change a lot from slice to slice forbrain images, while

the proposed learnt intensity matching relationship basedon NPMI is largely

the same.

Compared to direct application of the joint distributions,the proposed method

further utilizes the intensity mapping information. UsingNPMI as the measure

of intensity matching relationship makes the proposed algorithm more robust to

changes in both the object and the background; the latter mayeven become the

dominant force in the learnt joint distributions due to its dominant size in many

applications. More importantly, we can obtain our intensity matching prior from

a subset or even just a slice of the volume, provided that the slice is representa-

tive of the object to be registered. This makes the acquisition of the prior much

simpler. In this chapter, two novel similarity metrics based on weighted mutual

information and weighted entropy are proposed.
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Figure 4.1: Two corresponding PD/T1 brain MRI slices and the computed NPMI.
The red value shown in the NPMI map shows high correlation between the intensity
pairs.

4.2 Method

4.2.1 Normalized Pointwise Mutual Information

Normalized pointwise mutual information (NPMI) is widely used in the text cat-

egorization field [155]. It ranges from−1 to 1 where a positive value indicates

the trend of appearing together and a negative value indicates the trend of not

appearing together, 0 indicates statistical independence. NPMI is defined as:

NPMI(i1, i2) =
log p(i1,i2)

p(i1)p(i2)

− log(max(p(i1), p(i2)))
, (4.2)

where in the application of image registration,i1 andi2 are the intensity values

from the image pair,p(i1) andp(i2) are the marginal distributions of the training

image pair andp(i1, i2) is their joint distribution. Figure4.1shows an example

the learnt NPMI based on two corresponding PD/T1 brain MR images.

NPMI reflects the correlation between the intensity values from source and

target images. The low frequencies bias is much reduced by normalizing with

the factorlog(max(p(i1), p(i2))). Therefore, it provides more insight regarding

the correlation between the values from two sources. The properties of NPMI

nicely fit into the application of image registration, especially multi-modality
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Figure 4.2: Different training slices may result in different joint histograms but
similar intensity matching relationship. (a) (b) A training pair of brain image
(T1/PD). (c) (d) another training pair of brain image. (e) (f) the resulting learnt
joint histograms from pair (a) (b) and (c) (d) respectively.(g) (h) the resulting
learnt intensity matching prior from pair (a) (b) and (c) (d)respectively.

image registration where one to many and many to one intensity matchings are

possible. To be more specific, in the field of medical image analysis, two regions

may have the same mean intensity in one modality but totally two different in-

tensities in another modality. The NPMI mainly reflects the intensity matching

information, because the bias that would have been introduced from the quan-

tity of the intensity values has been normalized (see Fig.4.2). To capture the

regional intensity mappings more accurately, we calculatethe NPMI at every

patch of the training images (the patch size may depend on theapplication), and
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then obtain the final NPMI by choosing the maximum value amongall the patch

pairs. In the context of image registration, when two intensity values always

appear at the same time, NPMI will be given a value of 1, the less correlation

the two intensities have, the smaller value NPMI would be given. We do not

consider the intensities that have negative correlation due to their rarity.. The

training images may be obtained from the prior image pairs that have already

been carefully aligned. Alternatively, as in this chapter,the training images are

obtained by MI-based registration rather than from prior image pairs.

The NPMI obtained from the training process has the capability to model

the intensity relationship from the source and target images. Compared to the

joint intensity histogram as the intensity matching prior,the influence from the

number of intensity matching co-occurrence has been minimized, thanks to the

normalization factor. Furthermore, as NPMI is much less affected by the size

of the object and the proportion of the background, the training process for

NPMI is more straightforward. In many cases, we can easily extract the NPMI

information from only few slides of the image volume as long as the intensity

matching in these slices are representative for the entire volume. NPMI is a

more elegant intensity matching prior compared to the jointintensity histogram,

because of its simplicity in the training process, and robustness and accurateness

as an intensity matching prior. In the next subsection, we will propose two novel

similarity measures that use the learnt NPMI for image registration.
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4.2.2 Weighted Mutual Information

4.2.2.1 Formation of WMI

In the traditional formulation of mutual information:

JMI =

∫

R2

ph(i1, i2) log
ph(i1, i2)

pf1(i1)pf2(i2)
di1di2 (4.3)

every intensity pair(i1, i2) is weighted by the corresponding co-occurrence prob-

ability p(i1, i2). This assumes that apart from the probability of occurrence, the

intensity pairs are treated equally. However, such an assumption is not com-

pletely true in the course of image registration. Some intensity pairs are seman-

tically more important than the others, because certain intensities from source

and target images are inherently related to each other, regardless of the probabil-

ity of occurrence, e.g., the thin structures in the images, although the probability

of occurrence is low, the correlation of the intensity matching pair is very high.

To address this issue, we propose to incorporate the learnt intensity matching

prior into the MI framework. The weighted mutual information (WMI) is thus

defined as:

JWMI =

∫

R2

ph(i1, i2) log
ph(i1, i2)

pf1(i1)pf2(i2)
w(i1, i2)di1di2, (4.4)

wherew(i1, i2) is the weight learnt from the training data for each intensity pair.

Whenw(i1, i2) is assigned to 1 for every intensity pair, WMI degenerates tothe

conventional MI where every intensity pair is treated equally. However, it can be

easily understood that, certain intensity pairs should play a more important part

in the image registration process, e.g., intensities that are highly correlated. A
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higher weight is given to the intensity pairs that are more highly correlated while

calculating the weighted mutual information. The correlation of the intensity

pairs can be learnt from the training data sets. In particular,

w(i1, i2) =















1 + NPMI(i1, i2) NPMI(i1, i2) > 0

1 NPMI(i1, i2) ≤ 0

(4.5)

The weightw(i1, i2) indicates the matching relationship between the two

intensitiesi1 andi2. Intensity pairs that are positively correlated will result in

higher NPMI values and thus the higher weights. On the other hand, if the in-

tensities are negatively correlated or independent, a low weight will be given.

By giving weights to the intensity pairs, weighted mutual information explicitly

encodes the intensity matching information into the formation of the original

mutual information. Therefore, unlike mutual information, which is an unsuper-

vised similarity measure, the proposed weighted mutual information makes use

of the prior information obtained from the training data setto facilitate the image

registration process. As the intensity matching information has been incorpo-

rated by assigning different weights to different intensity pairs, the weighted

mutual information is theoretically superior in describing the image alignments

compared to mutual information. Naturally, it may lead to a better image regis-

tration result. Note that, the weightw(i1, i2) is always greater than or equal to

1, so the weighted mutual information in fact combines the conventional mutual

information and the contribution from the learnt intensitymatching prior.
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4.2.2.2 Probabilistic Interpretation Using Bayesian Inference

In probability terms, minimization of our energy function in Equation (4.8)

can be interpreted as maximizing the posterior distribution of the diffeomor-

phic warpingh, given the target imageT , the source imageS, and the learnt

intensity mappingM :

h = arg sup
h

log p(h|T, S,M)

= arg sup
h

log(p(T, S,M |h)p(h)).
(4.6)

The second term,log p(h), can be recognized as the geometric prior on the dis-

placement field, and in our model, it is considered as genericregularization. In

our implementation, we apply a fast filtering technique to the deformation field

at each iteration to regularize the deformation. Hence we focus on the first term

log p(T, S,M |h). It can be shown from Bayesian inference theory that:

p(T, S,M |h) ∝
∫

R2

p(T, S,M |h, i)ph(i)di

∝

∫

R2

p(T, S|M, h, i)p(M |h, i)ph(i)di,
(4.7)

wherei = (i1, i2) is a given intensity mapping pair in theR2 domain. Propor-

tionality in the above equation means that only those factors that do not depend

on the deformation fieldh and thus do not affect the maximization are neglected.

Thus the probability calculation separates into three parts and can be interpreted

as follows: the first term,p(T, S|M, h, i), measures the similarity of the two im-

ages given one intensity mapping pair, and in our model can berecognized as

the termEMI(i, h) in Equation (4.10); the second term,p(M |h, i), denotes the
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learnt prior probability for a given intensity mapping pair, and in our method is

modeled using the weightw(i) defined in Equation (4.5). When the prior on the

intensity mapping is not available and hencep(M |h, i) is the same (i.e.w(i) =1)

for all the intensity pairs, the above equation boils down tothe conventional mu-

tual information similarity measure. The conditional distribution is integrated

along the dimension of possible intensity mapping pairs viathe third termph(i).

4.2.2.3 Optimization of Variational Formulation

Based on the proposed WMI, our learning-based registrationscheme is defined

as the minimization of the following energy functional withrespect to the de-

formation fieldh:

J(h) = −JWMI (4.8)

For the optimization step, we follow the variational framework proposed by

Hermosillo et al. [96]. In particular, we adopt the variational minimization of

the energy functional by gradient descent:

∂h
∂t

= −
∂J(h)
∂h

=
∂JWMI(h)

∂h
(4.9)

The remaining challenge is to calculate the gradient of the data termJWMI .

For simplicity, we use the notationi = (i1, i2), Ih(x) = (Iσ1 (x), I
σ
2 (x + h(x))),

and define:

JMI(i, h) = − log
p(i, h)

p(i1)p(i2, h)
(4.10)
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We estimate the joint density estimation by:

p(i, h) =
1

|Ω|

∫

Ω

Gβ(Ih(x)− i)dx, (4.11)

whereGβ is a normalized Gaussian kernel of varianceβ, and

∂p(i, h)
∂h

=
1

|Ω|

∫

Ω

∂2Gβ(Ih(x)− i)∇Iσ2 (x + h(x))dx, (4.12)

where∂2 denotes the partial derivative ofGβ(Ih(x)−i) with respect to its second

variable. It can be shown that the gradient of the data termEWMI can then be

simplified to:

∂JWMI

∂h
= −

∫

R2

∂

∂h
(ph(i))(JMI(i, h)w(i))di (4.13)

By substituting (8-9) into (10) with some algebraic manipulation, we obtain

∂JWMI

∂h
= −{Gβ ∗ [(∂2w(i))JMI(i, h)] +Gβ∗

[(
∂2p(i, h)
p(i, h)

−
p′(i2, h)
p(i2, h)

)w(i)]}∇Iσ2 (x + h(x)), (4.14)

wherep(i2, h) is the marginal distribution of the transformed source image and

p′(i2, h) is the derivative ofp(i2, h), * is the convolution operator. We applied a

fast filtering technique [156] to the deformation field at each iteration to regu-

larize the deformation.
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4.2.3 Weighted Entropy of Intensity Mapping Confidence Map

We now use the Weighted Entropy of Intensity Mapping Confidence Map to

utilize the learnt NPMI. It consists of two steps: first, obtaining an intensity

matching confidence map; second, calculating the weighted entropy of the in-

tensity matching confidence map.

4.2.3.1 Intensity Matching Confidence Map

For any given pair of images, there is a corresponding intensity matching confi-

dence map. The intensity matching confidence map representsthe NPMI value

of the corresponding pixels between the target and (transformed) source images

(Fig. 4.3). Let IMCM denote the intensity matching confidence map. IMCM is

defined as:

IMCM(x) = NPMI(T (x), (S ◦W )(x)) (4.15)

where we assign each pointx ∈ Ω an intensity matching value based on NPMI,

and thus form an intensity matching confidence map. If we makean analogy

with mono-modal images, intensity matching confidence map can be viewed

as the difference map in the multi-modal set-up. In the mono-modal setup, we

can easily create the difference map by subtracting the source image from the

target image. However, it is not as straightforward for the multi-modal setup.

We obtain the intensity matching confidence map by incorporating the infor-

mation from the learnt NPMI. At every locationx ∈ Ω, the intensity match-

ing confidence map reflects the matching score of the corresponding intensity

pair (T (x), S(x)), and thus is capable of describing the accuracy of the image

alignment in the multi-modal setup. The intensity matchingconfidence map
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naturally incorporates intensity mapping where a higher value in the confidence

map indicates higher probability of correct registration.Furthermore, a smooth

confidence map indicates a better registration, because abrupt changes should

only occur at the places where tissue type has changed and thus the significant

change of the intensity.

To gain a deeper understanding of the intensity matching confidence map,

we can make an analogy to the intensity difference map in the mono-modal

setup. In the mono-modal setup, the intensity difference map is obtained by

simply subtracting the source image from the target image. Thus each pixel

of the intensity difference map reflects the image registration accuracy of the

source and target images — the larger the difference, the worse the matching

result. SSD is designed based on the assumption that the sum of the squared

difference map should be minimized to achieve the best registration accuracy.

SSD provides decent image registration results when such anassumption is not

violated. However, in the real situation, the intensity differences of pixels can-

not be exactly zero, especially in the situation where the lighting condition has

changed, and the assumption of applying SSD does not hold thus resulting in un-

satisfactory image registration. To increase the robustness and accuracy when

utilizing the image difference map for registration purposes, [157] proposed to

use Shannon entropy of the image intensity difference map asa similarity mea-

sure, which is shown to be more accurate and robust compared to SSD, MI and

NMI in the mono-modality situation [157].

The intensity matching confidence map is closely related to the intensity dif-

ference map, but it works even in the multi-modal setup (see Fig. 4.3). Each

individual pixel of the intensity matching confidence map reflects the matching
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confidence at that particular location. It is therefore natural to design a similar-

ity measure based on the sum of the intensity matching confidence map values.

However, it is easy to realize that summing up the intensity matching confidence

map values as the similarity measure may be affected by the training accuracy

of the NPMI, as well as the noise level of the source and targetimages. These

are the same reasons that cause SSD to be defective in the mono-modal setup.

Inspired by the entropy-based similarity measure [157], we here propose to uti-

lize intensity matching confidence map using weighted entropy, and thus make

the entropy-based similarity measure applicable in the multi-modal setup.

Figure 4.3: (a)Intensity matching confidence map before image registration, the
black area indicates low matching confidence which is a sign of mis-alignment.
(b)Intensity matching confidence map after registration where high matching con-
fidence value is across the map. (c) NPMI obtained from the training data set. (d)
Training images.

4.2.3.2 Weighted Entropy

To utilize the information provided by the intensity matching confidence map,

we propose to use weighted entropy of the intensity matchingconfidence map to

measure the accuracy of the image registration results. Weighted entropy is the

measure of information supplied by a probabilistic experiment whose elemen-

tary events are characterized both by their objective probabilities and by some
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quantitative weights [158]. It is defined as:

JPrior = −

∫

R

w(y)PIMCM(y) logPIMCM(y)dy. (4.16)

In our formulation,y is the value from every pixel of the intensity matching

confidence map; the weighted termw(y) is larger for largery, PIMCM(y) is the

histogram of the intensity matching confidence map. Specifically, we estimate

the histogram based on a normalized Gaussian kernel of varianceβ, denoted by

Gβ(y):

PIMCM(y, h) =
1

|Ω|

∫

Ω

Gβ(NPMI(T (x), (S ◦W )(x))− y)dx. (4.17)

The formulation is very similar to the well-known Shannon entropy, except

for the newly introduced weighting factorw(y). Shannon entropy is not suited

to our application, because by minimizing the Shannon entropy of the intensity

matching confidence map, the value of the confidence map wouldshrink to 0,

which leads to a total mis-alignment. Therefore, we define the weighting factor

w(y) as:

w(y) = tanh((i− a)/b), (4.18)

wheretanh is the hyperbolic tangent,b defines the smooth transition region, and

a defines the switch point of the IMCM. For valuei that is greater thana in the

IMCM, we consider it as a good matching. The proposed weighting factorw(y)

differentiates the intensity matchings. It gives positivevalues to intensity match-

ings that are likely to appear according to the training dataset, while penalizing

the intensity matchings that are not likely to appear in the training data set by
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giving them negative weights. Unlike the Heavyside step function, Equation

4.18is differentiable, and the transition region controlled byb provides a buffer

region, in case the switch pointa is not accurately defined. Furthermore,w(y)

allows weighted entropy to be biased towards certain eventsthat carry higher

weight, in our application, the intensity matching confidence map has higher

values; in contrast, the heavyside step function gives onlytwo flat values for the

entire domain. For our image registration problem, a good image registration

produces an intensity matching confidence map that is smoothand with high

values. From the mathematical perspective, this requires the weighted entropy

of the intensity matching confidence map to be small given that the weight for

the higher values are larger. Therefore, weighted entropy is well suited for the

problem.

4.2.3.3 Optimization of Variational Formulation

Our deformable registration scheme is defined as minimizingthe sum of the mu-

tual information and the weighted entropy of the intensity matching confidence

map with respect to the deformation fieldh:

J(h) = JMI(h) + JPrior(h). (4.19)

The gradient ofJMI(h) at each locationx is calculated as

∇JMI(h, x) = LJMI
(I1(x), I2(x, h))∇Iσ2 (x + h(x)), (4.20)
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where

LJMI
(I1(x), I2(x, h)) =

1

|Ω|
Gβ ∗ (

∂2P (i, h)
P (i, h)

−
p′(i2, h)
p(i2, h)

), (4.21)

with p being the marginal distribution of the respective image. Here, we further

derive the first variation of theJPrior ath:

δkJPrior(h) = w(y)(1 + logP (y))δkP (y), (4.22)

where

δkP (y) =

∫

Ω

∂Gβ(NPMI(I1(x), I2(x, h))− y)
NPMI(I1(x), I2(x, h))− y

β

× ∂2NPMI(I1(x), I2(x, h))∇Iσ
2
(x + h(x)) · k(x)dx,

(4.23)

∂2NPMI denotes the partial derivative ofNPMI with respect to its second vari-

able. The gradient ofJPrior(h) at each locationx is calculated as:

∇JPrior(h, x) = LJPrior
(I1(x), I2(x, h))∇Iσ2 (x + h(x)), (4.24)

where
LJ(I1(x), I2(x, h)) =

1

|Ω|
Gβ ∗ (w(y(x))(1 + logP (y(x))))∂2NPMI(I1(x), I2(x + h(x))),

(4.25)

4.3 Experiments

We evaluate the proposed registration method through five sets of experiments.

In Section 4.3.1, a phantom study is performed to demonstrate the flexibility
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and robustness of utilizing the normalized pointwise mutual information as the

intensity matching prior. Section 4.3.2 shows that even with partial occlusions

and background change, the proposed method still provides the flexibility of

object-specific image registration. In Section 4.3.3, a quantitative and qualitative

comparison is performed in synthetic brain MR images. We usethe knowledge

of the ground truth of the deformation field and the correspondence of the land

marks to perform the evaluation.

4.3.1 Synthetic Image Study

Utilizing the intensity matching prior can guide the image registration process

to converge to the desired optimum point. To demonstrate, wehave an ambigu-

ous setup (Figure4.4) such that there are two optimum alignments. In Figure

4.4, (a) (b) and (c) are the synthetic images of the target image,the source im-

age, and the contour of the source image overlaid onto the target image before

image registration. Without incorporating any prior knowledge, the circle in

the source image will match to the outer circle of the target image, by applying

mutual information as the similarity measure (Figure4.4(d)). On the contrary,

by changing the prior intensity matching information, bothweighted mutual in-

formation and the proposed method with weighted entropy of the IMCM as the

prior can flexibly match the circle in the source image to either the outer or inner

circle of the target image (see Figure4.4(e) and (f)). This experiment shows the

importance of incorporating context-specific prior information, which helps to

lead to the desire alignment.

A comparison between our proposed method and [105]’s method is further
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Figure 4.4: (a) Target image. (b) Source image. (c) Contour of the sourceimage
overlaid onto the reference image before registration. (d)Registration result using
MI. (e) (f) Registration result using the proposed method with different matching
profiles. For (d) (e) (f), green line indicates the contour ofthe source image after
registration.

performed, to test the robustness of the training prior withrespect to the change

in the size of the object. We increase the radius of the circles in both the target

and source images, while the prior remains. Due to the changeof the radius,

the joint histogram of the target and source images is no longer the same as the

training prior joint histogram; thus using KL divergence tomeasure the devi-

ation of the test and training joint histogram is inappropriate. The experiment

result also validates the issue we raised above, the method in [105] converges

to the undesired global optima, where the circle in the source image is matched

to the outer circle of the target image. This is because the prior learnt from

the image with a certain object size cannot be generalized tohelp register the

Figure 4.5: (a) Target image. (b) Source image. (c) Contour of the sourceimage
overlaid onto the target image before registration. (d) Registration result using the
method in [105]. (e) Registration result using the proposed method. In (d)(e),
green line indicates the contour of the source image after registration.
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object with a slightly different size. On the contrary, our proposed method still

correctly registers the circle in the source image to the inner circle of the target

image (Figure4.5(e)).

4.3.2 Face Images with Occlusion and Background Changes

In this experiment, we show that the proposed method which incorporates the

intensity matching prior improves the registration resultsignificantly in the pres-

ence of occlusion, change of lighting condition and background. We aim to

show that the proposed method can be applied to general applications, rather

than limited to the field of medical image where most of the images in this the-

sis are from. We use the data sets as been employed in [105], where the source

image is taken under different lighting conditions with theperson wearing sun

glasses. The first two images of Figure4.6 show a pair of manually registered

training data used to learn the intensity matching prior. The two training im-

ages were captured under different lighting conditions, and with the person in

the source image wearing a sunglasses. To demonstrate the power of context-

specific capability of our proposed algorithm, only the areawith the person oc-

cupied is used for training, without including the white background. In the reg-

istration process, we change the background of both the source and the target

images, and the entire image with the added background is used in registration.

We compared the registration results using the proposed methods (both WMI

and weighted entropy) with conventional MI, and the method proposed in [105]

which incorporates the trained joint histogram as the priorinformation. The reg-

istration results are shown in Figure4.7, where we superimpose the edge maps
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Figure 4.6: Face images used for training and registration. (a) (b), training im-
ages. (c) (d) target and source images used for registration, with the addition of the
different backgrounds.

of the registered source images on the target images for better visualization of

the registration results. The image registration results show that conventional

MI fails for all of the three cases possibly because the identical background in

the source and target images makes the mutual information less sensitive in the

foreground change, in these cases, the human. In the second example, although

MI is able to match the outline of the person correctly, the details in the human

face, especially region around the sun glasses, is largely misaligned, due to lack

of prior matching information. Incorporating the intensity matching prior using

learnt joint histogram [105] helps to align the outline of the person correctly in

the first and third cases, but fails to align the sun glasses with the eye region. The

drop in performance of the method [105] in this case is expected and simple to

interpret. Firstly, the intensity matching knowledge of the changing background

is not in the prior, and thus using the global intensity jointhistogram as the prior

is inaccurate. Secondly, global intensity joint histogramis less sensitive to the

local changes, in this case, the sunglasses, where it only occupies a small portion

of the image. The joint histogram prior is not be able to guidethe misalignment

on the sunglass area due to the fact that it only contributes avery small amount
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in the calculation of the joint histogram. The above mentioned two factors make

the effectiveness of the prior weaker. On the other hand, ourproposed methods

are able to detect the region that we want to register and thusin all the three

cases, our proposed method reaches a perfect alignment for the human region.

This example demonstrates the advantage of using intensitymapping over

joint histogram. Using the joint histogram directly as the prior fails when the

background changes significantly and/or if the background is not in the training

pool, while our proposed method enables the registration process to focus on the

region of interest and correctly performs the image alignment in the target area.
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Figure 4.7: Three different backgrounds are tested during registration. (a) (b) (c)
overlay the edge of the source image to the target image before registration. (d)
(e) (f) show the result obtained by conventional mutual information. (g) (h) (i)
show the result obtained by the method proposed in [105]. (j) (k) (l) show the
result obtained by using WMI. And (m) (n) (o) show the result obtained by using
weighted entropy
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4.3.3 Simulated MRIs

In Section4.3.1 and Section4.3.3.1, we have shown qualitatively that incor-

porating the appearance prior can significantly increase the image registration

robustness and accuracy. Furthermore, in the scenario where size of the object-

s/backgrounds change significantly, we demonstrated that incorporating NPMI

as the intensity matching prior information, is superior than using the joint his-

togram as the prior [105]. Qualitatively, the two similarity measures we pro-

posed achieve similar registration results in Section4.3.1and Section4.3.3.1. To

provide more insights of the proposed similarity measures,in this experiment,

we focus on examining the strengths and weakness of the proposed similarity

measures.

In this study, we used the simulated MR brain images generated using the

BrainWeb MR simulator [159]. A pair of perfectly aligned T1/PD brain data

with resolution1 × 1 × 1 mm3, noise level 3% and 20% non-uniformity are

created. With this data set, we perform two sets of experiment: 1) to examine

the similarity measure with respect to translation and rotation; and 2) to study

on the deformable registration application.

4.3.3.1 Similarity Measure Comparison

To quantitatively evaluate the effectiveness of our proposed method, we examine

the similarity measures, including MI, WMI and weighted entropy, with respect

to the horizontal (from -20 mm to 20 mm), and rotational shift(from -30 degree

to 30 degree) of the brain MR image T1 over PD.

1) NPMI Learnt From The Exact Alignment
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Figure 4.8: Plot of three similarity measures (MI, WMI and weighted entropy
with an accurate NPMI) with respect to the translational androtational shift. Zero
translation and rotation corresponds to the perfect alignment.

In this section, the NPMI is learnt from the exact alignment,thus the inten-

sity matching information is well presented. It is shown in Fig. 4.8 that, the

three similarity measures all achieve optimum at the correct image alignment.

However, the similarity measure curve generated from MI is not smooth while

the image is moving away from the optimum alignment. In contrast, for the

two proposed similarity measures, the similarity score decays smoothly while

the image shifts away. A smooth similarity measure curve indicates that the

proposed similarity measures are good measurements of the alignment, because

the similarity scores are highly correlated to the amount ofmisalignment. Fur-

thermore, as we can see from Fig.4.8, weighted mutual information shows a

narrower, but sharper attraction basin to the optimum; thisimplies that WMI

may have a better discrimination power for local misalignments. On the con-

trary, weighted entropy shows a wider attraction basin to the optimum; this is a

strong indication that it has a wider capture range, which isa desirable property

especially when the deformation is large.

2) A Shifted NPMI
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Figure 4.9: Plot of three similarity measures (MI, WMI and weighted entropy
with less accurate NPMI) with respect to the translational and rotational shift. Zero
translation and rotation corresponds to the perfect alignment.

It is often concerned that the intensity matching learnt from the training images

may be different from the testing images. To test how the deviation may affect

the similarity measure, in this section, the NPMI is learnt from the exact align-

ment, but we purposely increase the intensity values of the training images by

10 units, thus the trained NPMI is slightly different from the intensity matching

information of the testing images.

It is shown in Fig.4.9that the similarity measures of both WMI and weighted

entropy are not as smooth as they were shown in Fig.4.8, mainly due to imper-

fection of the learnt NPMI. Nevertheless, we can see that thesimilarity measure

of weighted entropy is less affected by the change, it is still monotonically de-

creasing as the image shifted away from the optimum alignment. In contrast,

fluctuation of the similarity measure of WMI can be seen as theimage moved

away.

3) Discussion

The set of experiments shown in Section4.3.3.1demonstrates that, incorpo-

rating NPMI as the appearance prior can help the image registration process in
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general. However, the choice of WMI and weighted entropy maybe application-

dependent. WMI is more suitable to the applications that have significant local

changes, given that the NPMI is accurately learnt. While weighted entropy is

more robust, shown by its wide capture range and less sensitive to the change of

NPMI.

4.3.3.2 Deformable Registration Evaluation

To evaluate the deformable registration results, we randomly generate ten ar-

tificial deformations using thin-plate splines with a maximum displacement of

10 mm. The artificial deformations are applied to the T1 imagefor evaluation

purpose. For quantitative assessment, we chose 433 brain landmark points at

cortex, ventricles etc, with the assistance from an expert.We evaluate the per-

formance using the root mean square error (RMSE) between thetransformed

position and the corresponding ground truth position. And to examine how an

inaccurate NPMI could affect the registration result, we perform the image reg-

istration based on: 1) NPMI that was learnt from the exact alignment, and 2)

NPMI that has been artificially shifted.

1) NPMI Learnt From The Exact Alignment

The prior is learnt from the intrinsically registered volume pair. Only 10 slices

out of a total 181 slices are used for training purpose, whilethe whole brain

volume are tested for registration accuracy.

The quantitative results can be found in Fig.4.10. The root mean squared

errors for MI, WMI and weighted entropy are2.67± 0.75 mm,1.68± 0.16 mm

and1.72 ± 0.21 mm respectively. It is clear to see that the proposed two simi-

larity measures achieve significantly more accurate results and better robustness
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Figure 4.10: Quantitative comparison of the registration results obtained by con-
ventional MI, WMI and the proposed weighted entropy by applying ten randomly
created deformation fields using TPS. Accurate intensity matching prior informa-
tion is used.

(i.e., smaller root mean squared error values on average andvariance) than the

conventional mutual information. To reconfirm, we perform the paired t-tests

with the MI. The paired t-test between MI and WMI shows a P-value of0.0026

which indicates that results obtained from WMI are statistical significantly bet-

ter than MI. Similarly, the paired t-test between MI and weighted entropy gives

a P-value of0.0020, which reconfirms the improvement of our proposed meth-

ods. We further perform the paired t-test between WMI and weighted entropy,

although in this experiment, WMI gives smaller root mean squared error and

variance, the P-value of 0.19 indicates that the differencebetween WMI and

weighted entropy is considered to be not statistically significant.

An qualitative study can be found in Fig.4.11. The purple arrows show

that the proposed methods are still able to perform well at the area where image
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Figure 4.11: Qualitative comparison of the registration results of the MR brain
images obtained by (a) conventional MI, (b) WMI and (c) the proposed weighted
entropy. Accurate intensity matching prior information isused. The major differ-
ences of the registration results are indicated by the arrows.

registration using MI fails significantly. We further compare the result obtained

from WMI and weighted entropy, it can be seen that, WMI performs better at

the edge area as pointed by the black arrows. Such observation reconfirms the

hypothesis we made in Section4.3.3.1that WMI has a better discriminant power

at the local region, given that the NPMI is accurately estimated.

2) A Shifted NPMI

This experiment aims to investigate the robustness of the proposed similarity

measures to the accuracy of NPMI. The prior is still learnt from the intrinsically

registered volume pair. Same as the previous section, only 10 slices out of a

total 181 slices are used for training purpose, while the whole brain volume are

tested for registration accuracy. However, in this time, weartificially increase

the intensity value of the training data by 5 units. This creates an less accurate

appearance prior compared to the previous section.

The quantitative result is shown in Fig.4.12. The root mean squared errors

for MI, WMI and weighted entropy are2.67 ± 0.75 mm, 1.93 ± 0.29 mm and

1.78 ± 0.26 mm respectively. The proposed WMI and weighted entropy still

outperform the conventional MI. However, it is worth noticing that, the image
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Figure 4.12: Quantitative comparison of the registration results obtained by con-
ventional MI, WMI and the proposed weighted entropy by applying ten randomly
created deformation fields using TPS. Shifted intensity matching prior information
is used.

registration results produced by both proposed similaritymeasures deteriorate.

In particular, the root mean squared error using WMI increases significantly

from 1.68 mm to 1.93 mm, while the change of using weighted is much smaller,

from 1.72 mm to 1.78 mm. Again, we perform a formal paired t-test, comparing

the proposed methods with MI. The P-values of 0.0065 and 0.0024 show that the

proposed methods are still statistically significantly better than the conventional

MI. The paired t-test between WMI and weighted entropy indicates that using

the weighted entropy as the similarity measure significantly outperforms WMI

in this experiment setup.

To qualitatively access the experiment result, an example is provided in Fig.

4.13. We used a purple eclipse to highlight the area where significant area of

mis-registration occurs. The mis-registration occurs mainly due to the existence
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Figure 4.13: Qualitative comparison of the registration results of the MR brain
images obtained by (a) conventional MI, (b) WMI and (c) the proposed weighted
entropy. Shifted intensity matching prior information is used. The purple circle
indicates the area where large misalignment occurs for MI and WMI.

of intensity non-uniformity in this area. MI fails to register at the area where

the intensity is faded and becomes more similar to the intensity from the sur-

rounding structure. WMI is not able to discriminate the faded structures, mainly

because of the inaccurate appearance prior information. This coincides with

the findings in Section4.3.3.1, where the inaccurate appearance prior brings a

rough similarity curve for WMI which has many local optima. In the process of

deformable image registration, the local optima leads to premature termination

of the optimization process, which leads to the inaccurate image registration

results. In this case, the proposed weighted entropy is still capable of register-

ing the misaligned structures that could not be recovered using MI and WMI,

thanks to the wider attraction basin as shown in Section4.3.3.1, which indi-

cates the wide capture range, as well as the robustness of theproposed weighted

entropy with respect to NPMI.

3) Discussions

The experiment results shown in Section4.3.3.2coincide with the findings

from Section4.3.3.1. Still, the choice of WMI and weighted entropy may be

application-dependent. WMI has a more discriminant power on local changes
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given that the NPMI is accurate. In the case where the intensity matching rela-

tionship obtained from the training sets deviates from the test images, it is best

to use weighted entropy which is more robust to the deviationof NPMI.

4.4 Conclusion

In this chapter, we propose to incorporate the appearance prior into the image

registration framework, by utilizing the normalized pointwise mutual informa-

tion. Two similarity metrics based on NPMI are proposed. Theproblem is

extensively studied in the deformable registration framework. We showed that

the accuracy and robustness of image registration have beenimproved signif-

icantly when incorporating such prior information. Furthermore, compared to

the state-of-the-art methods, the proposed method provides more flexibility and

robustness with respect to the change in the global profile ofthe learnt joint

histogram. Although the advantages of the proposed method are mainly demon-

strated in the non-rigid image registration setup, it can beeasily extended to

rigid-body registration.
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Chapter 5

Modality Synthesis: From

Multi-modality to Mono-modality

Compared to mono-modality image registration, multi-modality image registra-

tion is a much harder problem due to the complexity of modeling the intensity

matching relationship. Recently, image modality synthesis has attracted much

attention. It has been shown that the synthetic images have the potential to

reduce the amount of image acquisition to perform certain analysis, e.g., tumor

growth. Furthermore, image registration benefits from image modality synthesis

as it can reduce the multi-modal image registration problemto a simpler mono-

modality registration problem. In this chapter, we proposea general framework

for modality synthesis, utilizing the features such as intensity histogram and the

Weber Local Descriptor. We show that the proposed modality synthesis method

is superior to the state-of-the-art methods.

93



5.1 Introduction

5.1 Introduction

In the field of image analysis, images from different modalities reflect different

characteristics of the underlying anatomy. For example, local bone densities

can be shown clearly on CT images while MRI is more suitable for examining

organs and soft tissues. Although acquiring images of the same patient from

different modalities help the physicians/doctors for anatomical analysis, per-

forming image registration for images from different modalities is not simple. It

has been shown that in the case of mono-modal image registration, the optimal

similarity criterion exist, which are cross correlation and correlation coefficient.

With this in mind, it is natural to think of finding a way to transform the multi-

modal image registration problem to a simpler mono-modal image problem for

which there exists an optimal similarity criterion. Recently, the interest of find-

ing methods for performing subject-specific synthesis froma given modality to

some target modality has drawn a lot of attention.

In this chapter, we aim to develop a modality synthesis technique that will

benefit image registration applications. Modality synthesis generally refers to

generating different appearances of the same anatomy basedon prior knowl-

edge, instead of actual acquisition. It has the potential tosolve the dilemma in

choosing multiple image acquisitions and time/money costs. With such tech-

niques, we can also transform images from any modalities to the same modality.

The image analysis difficulties will become much simpler. Modality synthesis

has shown its wide range of applications including multi-modal image regis-

tration [112, 160, 161] and segmentation [112, 162]. Most of the above men-

tioned methods are application-specific, for example, [109] focuses on trans-
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forming CT to ultrasound images for image-guided intervention purpose. Ou

and Chefd’Hotel [163] assume a polynomial intensity matching relationship be-

tween different modalities, but the assumption is not flexible and not always

true. To provide a more general framework for modality synthesis, database

driven, or exemplar-based methods has be considered [112, 113]. The underly-

ing principle of these methods is to utilize a training database from different sub-

jects where images from different modalities are well aligned. Given any source

images, these methods try to synthesize the target images ofanother modality

based on the matching information provided by the database.These methods are

particularly of interest because they avoid explicit modeling of intensity match-

ing information and naturally incorporates the spatial context. Therefore, they

are very general and produce visually impressive results even with limited size

of image databases. Having said that, the exemplar-based methods often suffer

from having a large database because computational efficiency increases signif-

icantly with database size. This problem is not mentioned in[112, 113], which

however is very important, because it relates to the applicability of the proposed

methods.

Our proposed approach for modality synthesis belongs to theexemplar-

based category. For each point in the source image (modalityA), we perform

a local patch-based search in the database to estimate the target value for the

point in modality B. The proposed method is very closely related to methods

in [112, 113]. However, in [112], N most similar candidates were selected and

averaged to produce the final estimation which is very time consuming and inef-

fective. Ye et al. [113] introduced a data-driven regularization technique to pro-

vide a more coherent synthesis of different modalities, which is more advanced
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compared to averaging theN most similar candidate patches as proposed in

[112]. Both [112] and [113] use Sum of Squared Distances (SSD) to measure

the distance between the source patch and the patches in the database. SSD is

not general enough as an image similarity measure, especially when the lighting

condition differs, or the parameters of the medical image changes. And as we

will demonstrate later, using SSD as the similarity measurelimits the possibil-

ity of reducing the size of the database. Therefore, we propose a framework for

modality synthesis that uses patch based intensity histogram and Weber local

descriptor features, which is more general and discriminative than the existing

methods. Compared to SSD, intensity histogram and Weber local descriptor

are more suitable for finding the corresponding patch from the database, which

leads to a much robust and accurate image synthesis result. Furthermore, we

introduce a weighting factor based on normalized pointwisemutual information

which can be learnt from the database. Thanks to the robustness of our pro-

posed distance measure, we can apply a technique for database reduction to fur-

ther decrease the computational time. Our framework potentially outperforms

the state-of-the-art modality synthesis methods in terms of robustness, accuracy

and computational efficiency.

5.2 Method

The process of modality synthesis refers to the following task: Given a source

imageS from modalityMa, we aim to generate a corresponding target imageT

for modalityMb. The target imageT is constructed based on the source image

S and the population database. In the population database, there areN exemplar
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image pairs(Man ,Mbn)|n=1,...,N , where every pair is spatially aligned. The idea

behind our proposed modality synthesis method is that, by searching for the

most similar patchMam to PS, we can automatically find the corresponding

patch in modalityMb asMbm . Therefore, theN exemplar image pairs act as a

black box to map any image from modalityMa to modalityMb.

For each image pointx, T (x) is estimated by first finding the patch which is

most similar toPS(x) in the database, sayPam(y), thenPbm(y) is selected to fill

up the corresponding position in the target imageT (x).

The process of modality synthesis is inspired by [112] and [113], however,

we speed up and improve the synthesis quality by introducing: 1) database re-

duction, and 2) a novel distance measure for patch matching.

5.2.1 Database Reduction

Although a large database provides rich information for thesynthesis task, re-

dundant information will however decrease the computational efficiency. To

remove the redundant information from the database, we aim to select the most

representative exemplars that well represent the data set.By doing that, the

searching task will only be performed within a much reduced database, yet the

information is still well preserved. Elhamifar et al. [164] proposed to find the

representative data points from the data set by finding a subset of the data set

that minimizes the reconstruction error of each data point in the data set as a

linear combination of the representative data. It is formulated as minimizing the

expression:

ΣN
i=1 ‖ yi − Y ci ‖

2
2=‖ Y − Y C ‖2F , (5.1)

97



5.2 Method

with respect to the coefficient matrixC = [c1, c2, ..., cN ] ∈ RN×N . Then the

nonzeros ofC is constrained as

‖ C ‖0,q≤ k. (5.2)

‖ C ‖0,q counts the number of nonzero rows of C, and the indices of the nonzero

rows ofC correspond to the indices of the columns ofY which are chosen as

the data representatives. To reduce the computational complexity, the constraint

onC is relaxed toL1 norm, thus the optimization is formulated as:

min ‖ Y − Y C ‖2F s.t. ‖ C ‖1,q≤ τ. (5.3)

τ is used instead ofk since for thek optimal representatives,‖ C ‖1,q is not

necessarily bounded byk. In our application, for every patch, we stack the

intensity and WLD histograms (see detailed description in the next section) to

form Yi. By reducing the size of the data set, the computational efficiency is

significantly improved, because they are linearly related.

5.2.2 Modality Synthesis

5.2.2.1 Locality Search Constraint

We further reduce the search space by imposing a locality search constraint.

Let’s now assume that all the subjects within the database and the source images

are linearly registered. To achieve the spatial restriction, for any positionx, we

define a small search windowWx centered atx. We only consider the candidates

from the database that are within the searching window. Restricting the search
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space significantly increases the computational efficiency, especially when the

database is large. Although the search space is drasticallyreduced, the accuracy

will not be affected because it is reasonable to assume that the most similar

patch is spatially located nearx.

5.2.2.2 Modality Synthesis Using a Novel Distance Measure

To synthesizeT (x), we first extract a patchPS(x) centered atx from the source

imageS. Based on the locality search constraint defined above, we search within

the constrained database to find a patchPan from the database such that the

dissimilarity betweenPS(x) andPa is minimized. It can be formulated as:

(n∗, y∗) = argmin
n,y

w(PS(x), Pan(y)) ∗ d(PS(x), Pan(y)). (5.4)

Recent papers on modality synthesis [112, 113] use sum of squared error

(SSD) as the dissimilarity measure. However, under different lighting condi-

tions, or in the case of MRI, the changes in imaging parameters may affect the

intensity value, therefore resulting in the failure of SSD.Here, we propose a

novel distance measure based on the intensity histogram (H)and Weber local

descriptor (WLD) features [165]. The intensity histogram reflects the number

of pixels in the patch at each different intensity value. While WLD reflects

not only the intensity information, but also the change of intensity, using the

WLD histogram is discriminative yet robust in many applications, including

facial recognition under different illumination [166], etc. Intuitively, we for-

mulate our dissimilarity measure as the dissimilarity of the intensity histogram

and WLD histogram betweenPS(x) andPan(y). For histogram comparison,
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we use Jensen-Shannon divergence (JSD) which is symmetrical, theoretically

upper-bounded, and well-defined with histogram non-continuity [107].

We then define our novel dissimilarity measure as the following:

d(PS(x), Pan(y)) = JSD(H(PS(x)) ‖ H(Pan(y)))+JSD(WLD(PS(x)) ‖ WLD(Pan(y)))

(5.5)

where

JSD(p1 ‖ p2) =
1

2
KL(p1 ‖ M) +

1

2
KL(p2 ‖ M), (5.6)

M =
1

2
(p1 + p2), (5.7)

KL(p1 ‖ p2) =

∫

p1(i)log
p1(i)

p2(i)
. (5.8)

Based on Equation (5.4) and the proposed distance measure (5.5), we can find

the best matching patchPa
n̂
(y)) that best matches the histogram of intensity and

the WLD features. However, intensity and WLD histogram are robust global

measurements. For our application, we aim to find the intensity mapping pixel

by pixel, therefore, it is highly possible that the featuresare nicely matched

while the particular pixel is not. We thus introduce a weighting factorw(i1, i2)

in our formulation.

The global intensity matching information can be learnt using NPMI [167],

which we have introduced earlier in this thesis. Aiming to minimize Equation

(5.4), we definew(i1, i2) as follows:

w(i1, i2) = 1− NPMI(i1, i2), (5.9)

In the field of image matching, NPMI indicates the correlation relationship be-
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Figure 5.1: NPMI training example, using a pair of T1/T2 brain MR images.(a)
T1 image (b) Corresponding aligned T2 image (c) Obtained NPMI.

tween different intensities. Figure5.1 shows the NPMI map using a pair of

perfectly aligned T1/T2 images. When intensity pair(i1, i2) tends to appear

together, NPMI(i1, i2) is positive. The larger the NPMI value, the higher the

correlation between the intensities. When two intensitiesare independent of

each other, NPMI equals zero. In our application, to find a similar patch in the

database,NPMI(PS(x), Pan(y)) has to be a positive value, which is an indica-

tion of correlation of these two intensity values.

Combining the information fromw(PS(x), Pan(y)) and d(PS(x), Pan(y)),

we can now find the best matching patchMa
n̂
(y) thus the corresponding patch

in Modality b — Pb
n̂
(y)). T (x) will be filled in with the intensity value of

Pb
n̂
(y)).

5.2.2.3 Search in Multi-Resolution

A multi-resolution search scheme is employed. For every location x, only the

corresponding patches that are well matched with the sourcepatches under dif-

ferent resolutions will be selected as the corresponding patch / point. The multi-

resolution setup helps to increase the accuracy and robustness of the matching

process, because the matching information in both local andglobal extends are
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all considered.

5.3 Experiments

The proposed modality synthesis framework is generally applicable to any source-

target modality pair provided a database with well aligned examples exists. To

validate the proposed framework, in this section, we provide two sets of experi-

ments. We first use a simple synthetic toy problem to demonstrate the flexibility,

effectiveness and robustness of our proposed method. Then,we synthesize brain

T2 images from T1. Compared with the state-of-the-art solution [113], the pro-

posed method is more accurate and robust.

For the parameter settings, the patch size is fixed at7 × 7 pixels (7 × 7 × 7

voxels in the 3D cases), the local search windowW is set to9× 9 (9× 9× 9 in

the 3D cases). Three resolutions are used in our experiments.

5.3.1 Synthetic Image Study

We illustrate the power of the proposed framework through a simple synthetic

image problem. To build the database, two perfectly alignedcircles are placed

in two images. To reflect the multi-modal setup, the intensity values of these

two circles are different. Gaussian noise is added to the images. If you can

always find an exact matching patch in the database, it is quite obvious that any

matching algorithm for modality synthesis will work. However, it is not usually

the case in real application where some patches from the source imageS is not

available in the database, for example, some structures have been deformed. A

good modality synthesis algorithm should be able to overcome such problem to
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Figure 5.2: (a) Training Image Modality A (b) Training Image Modality B (c)
Source Image Modality A (d) Synthesized Target Image using [113]’s method (e)
Synthesized Target Image using the proposed method.

preserve the quality of the synthesized image. To examine the situation when

there may not be a perfect match from the database, we create asource imageS

with a squared shape at the center. Such a setup creates a problem at the edge

of the square, as there’s no way to find a matched patch in the database, and it is

interesting to see what the synthesized image would be with this setup.

To examine the robustness and the accuracy of the respectiveframework,

we applied our proposed method in the setup mentioned above,and then make

a direct comparison with the method in [113]. The result is shown in Figure5.2.

It is shown clearly that, our proposed method nicely preserve the square shape.

On the other hand, the method in [113] fails at the edge of the square, because

there’s no straight edge in the training database.
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This experiment clearly shows the advantages of the proposed framework.

Firstly, the learnt weightw(i1, i2) based on NPMI constrains the matching pro-

cess in a global intensity point of view, so intensity matchings that are not corre-

lated according to the database will be excluded. Secondly,using the histogram

matching from intensity and the WLD features allows greatertolerance in the

discrepancy between the patch from the source image and the database. Al-

though the circle has deformed to a square, the edge and the intensity distribu-

tion information still remains. The proposed method is still able to produce a

reasonable result. On the other hand, using SSD as the matching criteria [113]

loses the generality of the information learnt from the database, especially near

the edge area, thus resulting in poorer performance when no perfect match is

found from the database. In other words, using SSD as the matching criteria

may require a larger database to achieve a good result. The flexibility and the

robustness of our proposed method make the database reduction possible, which

leads to reduction of the searching space and thus the improvement of the com-

putational efficiency.

5.3.2 Synthesis of T2 from T1 MRI

The second experiment is performed on synthesizing T2 from the correspond-

ing T1-weighted MR brain images. Such modality transformation is useful

for multi-modality registration [161], segmentation and abnormality detection

[113]. In this experiment, we use the NAMIC database (http://hdl.handle.net/1926/1687)

where T2 and T1 images are perfectly aligned. We only use the 13 brain im-

age pairs where both T2 and T1 modalities exist in the database. In the pre-
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Figure 5.3: Correlation coefficients between synthesis T2 and the ground truth T2
computed by proposed method (with full database) (green), proposed method (with
the reduced database) (red) and [113]’s method (with full database) (blue).

processing step, we linearly register the images, the brainimages are skull-

stripped, the inhomogeneity has been corrected and the intensity histogram has

matched in each modality.

To quantitatively assess the experiment, we perform a leave-one-out cross-

validation. Therefore, every synthesized brain image is based on the rest of

the 12 subjects. Such setup allows us to compute the similarity between the

synthesized and ground truth T2 images. Similar to the previous experiment, we

compare our proposed method with method in [113]. Furthermore, we show the

the effectiveness of the database reduction technique we introduced in Section

2.1, by using the full database, and the reduced database when synthesizing T2

using the proposed method. To measure the similarity between the synthesized

and ground truth T2 images, we used correlation coefficient(CC) [168, 169]

because it is the optimal intensity-based matching criterion when linear relation

is assumed between the signal intensities [18].

Graphs in Figure5.3show the similarity measure (CC) calculated from the
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synthesized T2 images and the ground truth. The symbols shown in green,

red and blue indicate the CC value computed by proposed method (with full

database), proposed method (with the reduced database) and[113]’s method

(with full database) respectively. The size of the reduced database is only 1/10

of the full database. We found that reducing the database will cause [113]’s

method to deteriorate quite significantly, thus we did not include [113]’s method

with the reduced database in this paper. It is clearly shown in Figure5.3 that,

in all of the 13 cases, the proposed method outperforms [113]’s method. This

is because the proposed matching criteria using patch basedintensity histogram

and Weber local descriptor features is more reliable compared to SSD. The pro-

posed distance measure utilizes the histogram of the features, and the overall

intensity matching relationship learnt from NPMI. In the modality synthesis ap-

plication, the proposed distance measure is more reliable and demands less in

terms of database size. It is because the intensity and WLD distribution within

a patch is very limited (a patch only contains few tissue types), even the struc-

ture within the patch deforms, the histogram of intensity and WLD may still

remain the same or with minimum changes. Supported by this, on our pro-

posed distance measure can still provide a reasonable estimation even when the

the source patch can only find a deformed match in the database. On the other

hand, [113]’s method could not produce reliable results when there is not a good

match in the database. It is also observed that the proposed method does not de-

viate a lot when using the reduced database compared to the full database. Such

result also demonstrates the robustness of the proposed method.

A qualitative comparison is shown in Figure5.4. Qualitatively, the proposed

method performs better than [113]’s method, especially at the regions where
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Figure 5.4: Visual results for synthesis of T2 from different data sets.Col (a)
Input Images from T1 (b) Synthesis of T2 using [113](c) Synthesis of T2 using the
proposed method (d) Ground truth T2 images.

rich structure exist. To demonstrate, let’s focus on the regions where the red

arrows point to. In the four regions pointed by the red arrow,synthesis of T2

using [113]’s method lose the fine detail of the ventricle, because in such struc-

ture rich region, using SSD to search the matched patch in thedatabase is very

difficult (it is too hard or impossible to find exact ventriclestructures within the

database), which leads to false matchings. In comparison, enforcing by the in-

tensity matching information provided by NPMI, and with a more flexible and

robust matching histogram-based distance measure, the proposed method pre-

serve the fine structure even at the regions where exact similar patch is difficult

to find in the database.
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5.4 Conclusion

In this chapter, we proposed a general framework for modality synthesis. The

proposed framework combined the strength from local intensity and Weber lo-

cal descriptor features, together with the intensity matching information from

the normalized pointwise mutual information, to produce a robust and impres-

sive synthesis results. Furthermore, we adopt a database reduction technique

that significantly reduces the size of the database and thus increases the com-

putational efficiency. We evaluated the proposed method on asynthetic image

study and through synthesis of T2 from T1 brain MR images. We show that the

proposed method outperforms the state-of-the-art method in terms of accuracy

and robustness. Furthermore, we demonstrate and explain that the proposed

method is much less dependent to the size of the database, thus opening up the

possibility of further reducing the size of the database. With more and more

population databases made available, modality synthesis is becoming more im-

portant, how to fully utilize the information from the database is still an open

question. Although the work and experiments presented in this chapter are still

preliminary, we believe our work can become essential component for develop-

ing cross modality analysis tools. Such technique is also capable of bringing the

multi-modal image analysis to a much more straightforward mono-modal image

analysis. And image registration will be one of the biggest beneficiaries of such

development.
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Conclusion and Future Work

In this chapter, we conclude the thesis with an overview of achievements and

future work directions.

6.1 Incorporating Anatomical Prior

We have presented to incorporate the anatomical prior into the image registra-

tion framework. Firstly, a novel intensity-based similarity measure — structural

encoded mutual information is proposed. The similarity metric weigh the pixels

differently according to the anatomical significance. Secondly, an anatomical

knowledge-based deformation field prior is derived. We use mixture of Gaus-

sians to represent the point sets of interest that are extracted from the segmented

organs. Point sets registration using a TPS model is then performed, which

derives our data-driven deformation prior. Lastly, we proposed a novel simi-

larity measure that combines the structural encoded mutualinformation and the

knowledge from the prior deformation field. The similarity measure combines

the low level intensity information from SMI and high level prior information

on the deformation field.
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We validate the proposed image registration work on three sets of experi-

ment. In particular, it is shown that the proposed registration framework works

well on registering pre-operative CT and non-contrast-enhanced C-arm CT, which

is an essential step in the TAVI surgery. The significant improvement of the pro-

posed method makes TAVI more applicable to many patients. The proposed

method also show its strengths in registering perfusion cardiac MRIs and tumor

resection MRIs.

The application of 3D/3D registration of pre-operative CT and non-contrast-

enhanced C-arm CT is still in the research stage, and we plan to apply our pro-

posed framework to the clinical TAVI surgery in the near future. Furthermore,

we seek to further generalize the way of acquiring the anatomical information,

such that it is not limited to the segmentation information.Possible options in-

clude biomechanical information of the objects, analysis of the respiratory and

cardiac cycles, etc. We will also look to improve the effectiveness of the defor-

mation field prior. Further studies include more effective sampling of the point

sets and generating the prior deformation field in a more effective and efficient

manner.

6.2 Incorporating Appearance Prior

We have proposed the use of normalized pointwise mutual information to model

the complex intensity matching relationship in the multi-modality setup. Two

novel similarities based on weighted mutual information and weighted entropy

of the intensity matching confidence map were suggested. We find the optimum

of the proposed similarity measures using the variational calculus, where gra-
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dient of the similarity measures are calculated and gradient descent is used for

finding the optimum solution.

The proposed similarities are validated on three sets of experiment. From

the synthetic image example, and registration of human facewith occlusions

and background changes, we demonstrate that the NPMI is a more flexible and

robust intensity matching prior compared to the state-of-the-art methods which

use joint histogram as the appearance prior. We further compared the two simi-

larity measures using the simulated brain MRIs. It is found that WMI may have

more discriminant power on the local misalignments, given that the NPMI is

very accurate. While weighted entropy has a larger capture range, and a less

sensitive to the deviation of the intensity matching information. The choice of

WMI and weighted entropy is thus very application-dependent.

NPMI has shown its capability of modeling complex intensitymatching in-

formation, however, it should be noted that a good registration result depends

on an accurate NPMI. In the future, more insight into NPMI is worth investi-

gating. Ideally, NPMI should be trained by a small yet representative data set.

We will look for the optimum solution for training the NPMI. More rigorous in-

vestigation on how noise, e.g., with the addition of white noise, biased field etc,

would affect the image registration result of the proposed methods is required in

our future work. Furthermore, the applications of our proposed method shown

in this thesis is limited, and we intend to test the proposed similarity measures

(both WMI and weighted entropy) on more applications.
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6.3 Modality Synthesis

We presented a general framework for modality synthesis, utilizing the features

such as intensity histogram and the Weber Local Descriptor.Such modality

synthesis technique has the potential to transform the multi-modal image regis-

tration problem to a much simpler mono-modal image registration problem.

In the experiments, we validated that the proposed modalitysynthesis method

outperforms the state-of-the-art methods. The experimentresults are still pre-

liminary. As the technique is still in the premature research stage, we thus did

not provide the experiments with image registration applications. However, we

believe that modality synthesis has the potential for developing cross modality

analysis tools. And image registration will soon benefit from it.

It is highly possible that the modality synthesis result will be much improved

if we take the underlying ”physics” of different modalitiesinto consideration in

generating the synthetic images, e.g., the imaging parameters of the MR images.

In the future, we will work towards the direction, so that ourframework can be

better suited to specific applications.
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Publication List

The publication list during the PhD candidature can be foundbelow:

Journal Publication:

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2014). A Pre-operative CT and Non-

contrast-enhanced C-arm CT Registration Framework for Trans-catheter Aortic

Valve Implantation. Computerized Medical Imaging and Graphics, accepted.

Conference Publication:

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2014, April).Learning Based De-

formable Image Registration Using Weighted Entropy of Intensity Mapping

Confidence Map. In Biomedical Imaging (ISBI), 2014 IEEE 11thInternational

Symposium. IEEE.

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2013, April). A new similarity measure

for deformable image registration based on intensity matching. In Biomedical

Imaging (ISBI), 2013 IEEE 10th International Symposium on (pp. 234-237).

IEEE.

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2013). Hybrid Multimodal Deformable
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54). Springer Berlin Heidelberg.

Lu, Y., Sun, Y., Liao, R., Ong, S. H. (2013). Registration of pre-operative CT

and non-contrast-enhanced C-arm CT: An application to trans-catheter aortic
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Springer Berlin Heidelberg.
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November). Learning-based deformable registration usingweighted mutual in-
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2014E09702US 2014.

Liao, R., Lu, Y., Sun, Y., Ong, S. H. A New Similarity Measure for De-

formable Registration Based on Intensity Mapping, 2013P02148US, 2013.
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