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Summary
Origamic architecture (OA) is a paper art form that involves cutting

and folding a single piece of paper to resemble three-dimensional ob-

jects. Because of the geometric and physical constraints, OA design is

labor-intensive and requires considerable skills. While similar to pop-up

books, OA is created with no gluing, which puts additional constraints

to the design process.

A number of computer tools have been developed to assist the OA

design process. However, in these tools, the user still needs to manu-

ally determine where and how the cuts and folds should be positioned.

Automatic design of OA has not been well-studied.

In this thesis, we present an algorithm for automatic design of an OA

that closely depicts an input 3D model. Our algorithm is grounded on a

general set of geometric conditions to ensure the stability and foldability

of the pop-ups. The generality of the conditions allows our algorithm

to generate valid structures that were excluded by previous algorithms.

Moreover, our method uses an image-domain approach that allows us

to capture important shapes using image segmentation. Our algorithm

is significantly better than the existing methods in the preservation of

contours, surfaces and volume. The designs have also been shown to

resemble those created by real artists.

In addition, we propose a simple yet effective approach for analyz-

ing the physical strength of OA structures. Our physical formulation is

based on Kirchhoff-Love theory of plate and Finite Difference Method.

It allows our system to automatically detect and correct physically weak

paper structures in real time.

By combining both aspects, we guarantee that our final OA designs

are both geometrically valid and phyiscally strong.

xiii
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Chapter 4

Origamic Architecture with
Non-parallel Folds

In Chapter 3, we presented the theory and algorithm for the automatic

design of traditional parallel origamic architecture. Although the formu-

lated OAs only consisted of parallel fold lines, they were able to feature

numerous types of 3D shapes, from architectural to organic objects.

However, we also observe that in practical OA design, artists oc-

casionally use non-parallel folds (Fig 4.1). Since such folds are not con-

strained in a fixed orientation, they may be used to approximate slanted

surfaces better. In addition, a non-parallel fold may sometimes be used

to replace a series of parallel folds, which reduces the difficulty of the

actual pop-up creation (Fig. 4.2).

Hence, in this chapter, we explore an extended solution for OA

design that take into account both parallel and non-parallel folds. We

FIGURE 4.1: Pop-up designs with non-parallel folds.
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investigate the conditions for geometrically valid OA with non-parallel

folds, as well as an algorithm to generate such folds. For convenience,

from this chapter, we will call an OA with only parallel folds, as de-

scribed in Chapter 3, parallel OA, and an OA with non-parallel folds gen-

eral OA. The work on general OA in this chapter has also been presented

partially in [88, 89].

While non-parallel folds can be used to capture slanted surfaces,

OA still mainly consist of parallel folds, because they create nicely uni-

form shadowing effects when popping up. Hence, we still use the algo-

rithm described in Chapter 3 for parallel OA as the backbone for design-

ing general OA. In this chapter, we will extend it to design non-parallel

folds for suitable slanted surfaces. Note that we only reconstruct sur-

faces that are visible in the 45◦ orthographic view, because our abstrac-

tion method is applied in this view.

First, in order to describe the algorithm for non-parallel fold con-

struction, we need to investigate the geometric conditions for its validity,

including both foldability and stability.

FIGURE 4.2: A series of parallel structures can be replaced by a single non-
parallel one for easier cutting and folding.
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4.1 Geometric Formulations

4.1.1 General OA Components

The components of a general OA are similar to those of a parallel

OA defined in Section 3.1.1 on page 29, except that the fold lines do not

need to be parallel to the central fold. In addition, we denote a popped-

up structure that contains two patches connected by a non-parallel fold

as a v-structure, since these two patches form a v-shape structure. To fa-

cilitate our further discussion, we distinguish between concave folds and

convex folds (Fig. 4.3 (a)). We also call the fold line between the two

patches that a popped-up structure is based on a base fold line, and the

angles formed by this line and the two convex folds base angles. Note

that when we handle an angle between two fold lines, we consider their

extensions, not just the actual fold segments. This is because some v-

structures may be cut off at their tips, as shown in Section 4.3 on the

results.

In our study, we only consider the v-structures whose convex fold

lines intersect along the base fold line. This is similar to the type of struc-

tures considered in [67] and [36]. Specifically, the concurrency of the fold

lines gives the v-structure a potential to pop up. Additionally, in each

v-structure, we assume the angles between its convex and concave fold

lines to be smaller than 90◦. Otherwise, they form a straight line and two

patches of the structure may rotate freely when it is open at 180◦ (Fig 4.3

(b)).

The definition of a general OA plan inherit the properties of a par-

allel OA plan, which were described in Definition 3.3 on page 30. We

add two more properties to incorporate non-parallel folds as follows.
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(a) (b)

FIGURE 4.3: (a) The components in a v-structure. (b) A v-structure with two 90◦

angles may rotate freely when opened at 180◦.

Definition 4.1. A general OA plan is a set of patches where

1. All the patches are co-planar and form a rectangular domain with possible

holes.

2. They are non-intersecting, except at their boundaries.

3. For every patch p, there exists a path traversing from the back patch pB to

the floor patch pF and containing p.

4. For every v-structure, its concave fold line and convex fold lines intersect

at one point along the base fold line.

5. For every v-structure, the inner angles between its convex fold line and

concave fold lines are smaller than 90◦.

General OA plans share the first 3 common properties with tradi-

tional parallel OA plan. Properties 4 and 5 correspond to the assump-

tions on v-structures described earlier.
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4.1.2 Foldability of General OA

The foldability of a general OA is defined similarly to that of a parallel

OA, which means the OA plan needs to be foldable from θ = 180◦ to θ = ε

without affecting the shapes, pairwise adjacency and non-intersection of

the patches.

In Proposition 3.1 on page 31, OA foldability is examined by pro-

jecting the popped-up structure onto the xz-plane and check whether it

matches the OA plan. Such condition is useful for parallel OA design,

because its abstraction utitilizes a 45◦ orthographic projection.

However, non-parallel patches do not project onto the OA plan in

one fixed direction. Hence, we may not re-use Proposition 3.1 for check-

ing the foldability of a general OA. In this section, we present another

set of foldability conditions for v-structures and general OA.

4.1.2.1 Foldability of a Path of v-Structures

First, we consider an OA plan that only consists of a series of n v-structures

forming a 2n-path between two bases p1 and p2. For convenience, we call

this series a v-path. Let us denote the outermost base angles as ωα and

ωβ . The angles between alternating convex and concave fold lines on the

v-structures are denoted as α1, β1, α2, β2, ..., αn, βn. We now present an

angle condition for the foldability of a v-path.

Proposition 4.1. An OA plan consisting of only a path of n v-structures is

foldable if and only if ωα = β1 + β2 + ...+ βn, and ωβ = α1 + α2 + ...+ αn.

An illustration of Proposition 4.1 is shown in Fig. 4.4. The necessity

of this proposition for a single v-structure has been described in some
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FIGURE 4.4: A foldable path of v-structures and its angles.

previous studies, such as [67] and [36]. In this section, we prove the

sufficiency and necessity of this proposition for multiple v-structures.

Proof.

Sufficiency. Assume that we have an OA plan of n v-structures satisfying

ωα = β1 + β2 + ... + βn, and ωβ = α1 + α2 + ... + αn, which lead to

ωα + α1 − β1 + ...+ αn − βn − ωβ = 0. We will show that this OA is fully

foldable.

First, consider an OA plan consisting of only one v-structure. If

ωα0 + α0 − β0 − ωβ0 = 0, then it is possible to put the OA in the fully

closed configuration (Fig. 4.5 (a)). Now we can also prove that the OA is

foldable to any other opening angle. As shown in Fig. 4.5 (b), when the

back patch is rotated, point P remains the intersection of three spheres

centered at O, Oα and Oβ , with radii OP , OαP OβP , respectively. This

intersection can always be found at any arbitrary opening angle, because

OOα < OP +OαP and OOβ < OP +OβP .

To fold an OA with n v-structures, we can fold each of them succes-

sively. When we completely fold the first v-structure that is adjacent to

the floor patch, the remaining n− 1 v-structures will form with the floor

patch an angle wα+α1−β1. By continuing to fold completely each of the

first n− 1 v-structures, the last v-structure will form with the floor patch

an angle wα+α1−β1 + ...+αn−1−βn−1. Since ωα+α1−β1 + ...+αn−βn−
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α
β0

α
0ω0

0βω P
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βO
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(a) (b)

FIGURE 4.5: (a) A v-structure in its closed configuration illustrates the relation-
ship between its angles. (b) The points in a v-structure when it is opened.

ωβ = 0, the last v-structure satisfies the foldable condition for a single v-

structure, ωα0+α0−β0−ωβ0 = 0, where ωα0 = wα+α1−β1+...+αn−1−βn−1,

ωβ0 = ωβ , α0 = αn and β0 = βn. Hence, the OA is fully foldable.

Necessity. Assume that we have a foldable OA plan consisting of n v-

structures. We will show that their angles satisfy ωα = β1 + β2 + ...+ βn,

and ωβ = α1 + α2 + ...+ αn.

When it is fully closed, as shown in Fig. 4.5 (a), we have ωα + α1 −

β1 + α2 − β2 + ... − ωβ = 0, which means ωα + α1 + α2 + ... + αn =

ωβ + β1 + β2 + ... + βn. On the other hand, when the OA plan is opened

flat, we also have ωα + ωβ = α1 + β1 + α2 + β2 + ... + αn + βn (Fig. 4.4).

Hence, ωα = β1 + β2 + ...+ βn, and ωβ = α1 + α2 + ...+ αn. �

Our generalization from a single v-structure to multiple v-structures

allows more complex OA. However, the foldability of v-structures is not

the only consideration in the design. We also need to guarantee that

different structures do not overlap or intersect during the opening and

closing process.
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4.1.2.2 Foldability of a Combination of Structures

When there are only parallel fold lines, as discussed in Chapter 3, no

inter-structure overlapping occurs, since the projections of all the points

in the pop-up along the central fold are fixed. In addition, the patches

always remain parallel to the two outermost bases and do not intersect,

except along the fold lines. Fig. 4.6 (a) shows the coverage of a parallel

structure at 180◦ and 0◦ opening angles.

(a) (b)

FIGURE 4.6: (a) OA plan of a parallel structure (top) and its coverage when fully
closed (bottom). (b) OA plan of a v-structure (top) and its coverage when fully
closed (bottom).
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On the other hand, when a v-structure is used, its projection on the

base fold line move during the opening and closing process. We need to

compute the range of movement of a v-structure to avoid inter-structure

overlapping.

Consider a v-structure whose fold lines form two angles α and β,

as shown in Fig. 4.6 (b, top). In order for the structure to be foldable, α,

β, and the base angles ωα, ωβ must satisfy ωα = β and ωβ = α.

If the fold lines of the v-structure intersect at fmin along the base

fold, and its projection lie from fmin to fmax at 180◦ opening angle, then

the actual length of its convex fold line is ‖f‖ = (fmax − fmin)/cos(γ),

where |γ| = |β − ωα| = |α − ωβ| = |β − α|. Then at 0◦ angle, the projec-

tion of this convex fold line on the base fold has length ‖f‖cos(α + β).

Additionally, its projection on the axis perpendicular to the base fold has

length ‖f‖sin(α + β).

Hence, at 0◦ opening angle, the v-structure lies within [fmin−(fmax−

fmin)cos(α + β)/cos(α − β), fmax] along the base fold, and [0, (fmax −

fmin)sin(α + β)/cos(α − β)] along its perpendicular axis Fig. 4.6 (b, bot-

tom).

Knowing the coverage of each structure when folded from 180◦ to

0◦, we present the conditions for the foldability of a general OA plan as

follows.

Proposition 4.2. A general OA plan is foldable if it satisfies

1. All v-structures satisfy the angle condition in Proposition 4.1.

2. No parallel structure is based on a v-structure.

3. For each base fold line, there is no overlapping between the coverages of

structures lying on it when they are folded.
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The first condition follows Proposition 4.1. The second condition is

required for every parallel structure to pop up, because its convex fold

line has to be always parallel to the base fold. Finally, the third condition

is based on the coverage calculation earlier.

4.1.3 Stability of General OA

The stability of a general OA is defined similarly to Definition 3.4

on page 33 for a parallel OA. In brief, it needs to be able to fully pop up

when the user turns only the back and floor patches, but not any other

patch.

As discussed in Section 3.1.3 on page 33, previous studies only con-

sidered 1-paths and 2-paths for stable parallel OAs. Similarly, they con-

sider only 2-paths for stable v-structures. This may greatly limit the pos-

sibility for designing v-structures, especially when we have proven in

Section 4.1.2 that an arbitrary path of v-structures is foldable, as long as

it satifies the angle condition.

In Section 3.2.4 on page 53, parallel structures can be made sta-

ble by creating double connections. We observe that an equivalent ap-

proach can also be used for v-structures. However, since the fold lines

and patches in v-structures are not parallel, we define double connec-

tions slightly differently and based on the angles between the fold lines.

Definition 4.2. Consider 4 mutually non-coplanar patches p1, p2, p3, p4, where

p1 and p2 intersect p3 and p4 at l13, l14, l23, and l24, respectively. The angles

between (l13, l14), (l23, l24), (l13, l23) and (l14, l24) are denoted as δ34/1, δ34/2,

δ12/3 and δ12/4. We say (p1, p2) and (p3, p4) are doubly-connected if δ34/1 =

δ34/2 and δ12/3 = δ12/4. In such case, the structure (p1, p2, p3, p4) is also called

a double connection.
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p5
p6

p7

p8

p0

p9

p10

 =pB

 =pF
p1

p2
3p

4pδ34/2
δ12/3

δ12/4
δ34/1

FIGURE 4.7: Three doubly connected v-structures (p1, p2, p3, p4), (p2, p5, p6, p7)
and (p5, p8, p9, p10), as described in Definition 4.2. For instance, in the first
double connection, we have δ34/1 = δ34/2 and δ12/3 = δ12/4.

Fig. 4.7 illustrates double connections of v-structures. We utilize

this type of connection to introduce a new stability condition for a path

of v-structures.

Proposition 4.3. A path of v-structre is foldable and stable if all pairs of even

(odd) patches along the path are doubly connected.

The odd and even patches are defined similarly to Section 3.1.3 on

page 33. If P = {p0 = pB, p1, . . . , pn, pn+1 = pF} be a path traversing from

the back patch to the floor patch, then along P, p2k is called an even patch

and p2k+1 is called an odd patch, where 0 ≤ k ≤ bn/2c.

A sample foldable and stable path as described in Proposition 4.3

is shown in Fig. 4.7. The stability conditions for parallel structures and

v-structures are analogous. However, while the foldability of parallel
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double connection is intuitive due to parallelism, that of non-parallel

double connection is not straightforward. We prove the foldability of

doubly-connected v-structures as follows.

α1

β1

β2

β3

α2

α'2

α'3

α3

ωα
ωα1

ωα2

ωα3

ωβ

(a)

pF

Bp

O

O

Oβ

O’β

P

P’

Q
α

(b)

FIGURE 4.8: (a) A path of n v-structures can be considered a combination of n
single v-structures based on the floor patch. (b) Extra patches can be added to a
single v-structure to form a foldable, doubly-connected v-structure.

Proof.

Consider a foldable OA consisting of only a v-path. As shown in

Fig. 4.8 (a), at any opening angle, we can hold the patches so that the

intersections of their extensions with the base patches satisfy ωαi
= βi for
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all i ∈ [1, n], ωβ = αn + α′n, and α′i+1 = αi + α′i for all i ∈ [1, n− 1]. This is

possible because ωα =
n∑
1

βi, and ωβ =
n∑
1

αi.

Hence, the OA can be treated as a vertical accumulation of n simple

OAs, each consisting of only one foldable v-structure. In order to show

that the doubly-connected v-path is foldable, now we only need to show

that doubly connecting each foldable v-structure still allows it to fold

completely.

Consider a foldable v-structure containing patches pB, pF , OOαP

and OOβP (Fig. 4.8 (b)). We add patches OPP ′ and OP ′O′β on top of

this v-structure such that P̂OP ′ = ÔβOO′β and P̂OOβ = P̂ ′OO′β . By

Proposition 4.1, the v-structure (OOβP, pB, OPP
′, OP ′O′β) is also fold-

able, making the structure (pB, pF , OOαP
′, OP ′O′β) foldable and leading

to ÔαOP ′ = Q̂OO′β . Note that we also have Q̂OO′β = Q̂OOβ + ÔβOO′β =

ÔαOP + P̂OP ′. Hence, ÔαOP ′ = ÔαOP + P̂OP ′. In other words, three

patches OαOP , OαOP
′ and POP ′ are co-planar. Hence, the resulting

structure is a foldable doubly-connected v-structure, according to Defi-

nition 4.2.

�

Besides the foldability of doubly-connected v-structures, we also

examine its stability by using both simulated models and actual paper

pop-ups. We create a number of OAs consisting of up to 5 v-structures.

The angles between the fold lines are randomized such that they satisfy

Proposition 4.1 and Definition 4.2.

Figs. 4.9 and 4.10 show a simulated model and an actual paper

pop-up that make use of double connections to create foldable and sta-

ble v-structures. The simulation is done using V-REP software [24] and

rendered with OpenGL. We observe that no patch is stuck or collapses,
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FIGURE 4.9: A simulated OA containing a path of 3 doubly connected v-
structures. The closing motion of the OA is captured from top to bottom and
left to right.

and all the patches move in a stable manner when we hold and turn only

the two outermost patches.

Our experiments with both simulated and actual pop-ups empiri-

cally show the stability of doubly-connected v-structures. It is also ob-

servable that, for every doubly-connected v-structure, the possible ori-

entation of each patch is constrained by that of the opposite patch. In a
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FIGURE 4.10: A real OA paper pop-up containing a path of 4 doubly connected
v-structures.

v-path that consists of doubly-connected patches, their orientations are

mutually constrained. Together with the positional constraints of the

first and last patches, it may be possible to formulate a mathematical

proof for the stability of doubly-connected v-structure.

Presently, such formal proof has yet been achieved. The main chal-

lenge is to find an appropriate relationship between the patches, the fold

lines, or the points on the fold lines, such that it remains unchanged dur-

ing the opening and closing of the v-structures. Earlier, for parallel OA,

the parallelism between the patches holds true at any opening angle and

guarantees their stability. An equivalent property is difficult to find for

non-parallel folds. In particular, the points on the fold lines move along

non-coplanar and non-parallel circles (Fig. 4.11). As a result, the orien-

tations of the vectors connecting these points vary in a complex manner,
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FIGURE 4.11: The points on a line in a non-parallel OA plan (top) will move
along non-coplanar and non-parallel circles during the opening and closing
process (bottom).

and investigating the constraints between them is not trivial.

Based on the empirical results, in this work, we use double con-

nections as a means to stabilize paths of v-structures. We discuss our al-

gorithm for designing general OAs that contain v-structures in the next

section.
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4.2 General OA Design Algorithm

We presented our algorithm for designing parallel origamic archi-

tecture in Section 3.2 on page 43. In order to design a general OA con-

taining non-parallel structures, we extend that algorithm to create v-

structures for appropriate slanted regions, instead of using parallel struc-

tures for all regions.

As described in Section 3.2.1 on page 45, the input surface is di-

vided into distinct non-overlapping, smooth segments before patch gen-

eration. This pre-processing step is still performed for general OA de-

sign.

In our pipeline, the generation of v-structures is done after the sur-

face segmentation and before the generation of parallel patches. By de-

signing the OA in this order, we do not need to construct multiple paral-

lel patches for a slanted surface if simpler v-structures can be used.

The design of v-structures starts with the surface segments pro-

duced from the pre-processing step. It then follows three main steps.

1. Finding the potential surface segments that can be approximated

using v-structures: We select a list of surface segments that are po-

tential for v-structure construction based on property 5 of Defini-

tion 4.1 on general OA plans, and conditions 2 and 3 of Proposition

4.2 on general OA foldability. More details are described in Section

4.2.1.

2. Constructing foldable v-structures from the selected surface seg-

ments: We compute the angles of the v-structures so that they ap-

proximate the selected surface segments closely, while satisfying

property 4 of Definition 4.1, Proposition 4.1 and condition 1 of

Proposition 4.2. We separate this step from the segment selection as
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it requires exact calculation of the angles between the folds. More

details are described in Section 4.2.2.

3. Stabilizing v-structures: We generate extra patches to form double

connections, which are used to support the stability of v-structures,

according to Proposition 4.3. More details are described in Section

4.2.3.

As the generation of non-parallel structures is a component of a

unified pipeline for general OA design, in this algorithm, we still process

the input surface using a 45◦ orthoggraphic view. V -structures are only

generated for appropriate surface segments that are visible in this view.

The details of our v-structure generation are described in the following

subsections.

4.2.1 Potential Surface Segments for V -Structure Genera-
tion

Since each v-structure contains only two patches sharing a straight

fold line, to construct it we first need to detect straight boundaries be-

tween adjacent surface segments. Similar to the approach in Section 3.2.1

on page 45, the adjacency of the segments is examined by thresholding

the changes in depth and normal values in the segments. Then straight

boundaries between adjacent segments are detected using Canny edge

operator [13] and Progressive Probabilistic Hough Transform [73] tech-

niques. The segments containing only straight fold lines that are not par-

allel to the base patches are marked for the next processing steps, which

check whether the segments can be approximated using v-structures.

From the pairs of adjacent segments that share a straight boundary,

we select those that do not have any two consecutive fold lines forming
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(a) (b)

FIGURE 4.12: (a) A model with a parallel block basing on a non-parallel block is
not a good candidate for v-structure generation, because the resulting OA will
not be foldable. (b) A model with a non-parallel block basing on another one
can still be converted into a foldable OA containing two foldable v-structures.

a 90◦ or larger angle. This criteria is to satisfy property 5 in Definition 4.1

(Fig. 4.3 (b)).

Next, we refine the list of selected segments so that they meet con-

ditions 2 and 3 of Proposition 4.2. For condition 2, we remove from the

list any non-base segment that is adjacent to another segment not po-

tential for v-structure generation (Fig. 4.12 (a)). By doing this, we will

not have any parallel structures basing on a v-structure. Note that the

fold lines in a parallel structure need to be parallel to the base patches in
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order for it to be foldable.

Finally, to fulfil condition 3 of Proposition 4.2, we compute the pos-

sible range of movement of the segments if the two outermost bases close

fully at 0◦. This computation is based on section 4.1.2.2 on page 76. From

the coverage of the folded segments along each base fold line, we find

out the overlapping segments. We then remove the segments that over-

lap with the most other segments until there is no more overlapping.

4.2.2 Generation of Foldable V -Structures

After finalizing the surface segments that can be approximated us-

ing v-structures, we proceed to create the actual pop-up. We do this by

generating a path of v-structures for each path of potential surface seg-

ments. We first generate each v-path such that their angles between the

fold lines are equal to the angles on the corresponding input segments.

We then adjust the angles of the v-structures to satisfy the foldability

condition in Proposition 4.1.

Let us use α10 , β10 , α20 , β20 , ..., αn0 , βn0 to denote the angles between

the edges of the input segments, and ωα0 , ωβ0 to denote their base angles.

Each path of v-structures is generated with the initial angles ωα = ωα0 ,

ωβ = ωβ0 , αi = αi0 and βi = βi0 for all i ∈ [1, n], where n is the number of

pairs of segments forming a potential path.

In order for the v-path to be foldable, according to Proposition 4.1,

the angles must satisfy ωα =
n∑
1

βi and ωβ =
n∑
1

αi, for all i ∈ [1, n].

To achieve this, we compute the average amount that each angle

ωα, ωβ , αi and βi needs to be adjusted to achieve foldability, ∆α = (ωα −∑
βi0)/(n+ 1) and ∆β = (ωβ −

∑
αi0)/(n+ 1). We recompute the angles

of the v-structures as ωα = ωα0 −∆β , ωβ = ωβ0 −∆α, αi = αi0 + ∆α and
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βi = βi0 + ∆β . By doing this, the constructed patches form a foldable v-

path, while still approximating of the original segments reasonably (Fig.

4.13).

If there are more than one v-paths, they may share some of the

patches. However, since each path is distinct, it contains at least one

patch that is not shared by any other paths. Hence, we can divide it

into shorter paths and adjust the angles on each individual path inde-

pendently to make it foldable. Fig. 4.14 shows a simple example of such

situation. Paths P1 = {p1, p2, p3, p4} and P2 = {p3, p4} are overlapping.

If we compute the angles for these two paths, α2, α3 and β2 will be con-

strained by the foldability condition of both paths. However, since path

P1 can be divided into {p1, p2} and {p3, p4}, we can compute two inde-

pendent sets of angles, {α3, β2} based on {ωα2 , ωβ2} and {α1, β1} based

on {ωα1 , ωβ1}.

By generating the paths of v-structures as above, we allow the whole

OA to be foldable, while obtaining a reasonable approximation of the in-

put surface segments.

ωα0

ωβ0

α10
β10

α20
β20

ωα

ωβ

α1
β1

α2
β2

FIGURE 4.13: (Left) A selected path of segments for v-structure generation.
(Right) The generated path of v-structures. The angles along the v-path
{ωα, ωβ, αi, βi} are computed based on the angles along the segment path
{ωα0 , ωβ0 , αi0 , βi0 , ...}.
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4.2.3 Stabilization of V -Structures

The next step of the v-structure generation is to make them stable.

If a v-path has only one structure, it is readily stable. If it contains more

than one v-structures, we stabilize it by simply adding double connec-

tions to each of the v-structures. Fig. 4.15 shows such a doubly-connect

v-structure. We set the angle on the new patch, P̂OP ′, to range from

1/5 to 1/3 of the angle on the original patch, ÔαOP . In addition, similar

to the case of parallel double connections, the width of the new patch,

||PQ||, is set to 1/6 of that of the original patch, ||OP ||.

4.3 Results

In practice, that parallel structures and v-structures are not com-

monly used together in a single OA. From our observation, it is possibly

because parallel structures can create nicely uniform shadowing effects.

Nevertheless, v-structures are often used to illustrate interesting slanted

surfaces.

pB

pF
p1

p2

p3

p4

α1

β1

β2

α2
α3

ωα1

ωα2

ωβ1

ωβ2

FIGURE 4.14: Overlapping v-paths can be divided into shorter, separate paths,
and the angles along each path can be computed independently of those on
other paths.
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O

O

P

P’

Q

α

FIGURE 4.15: A doubly-connected v-structure.

In this section, we demonstrate a few results of our method for gen-

erating v-structures from input 3D models. As described in section 4.2,

we choose to use v-structures only for appropriate planar surfaces that

share straight fold lines. In general, given an arbitrary surface, deter-

mining whether it should be approximated using parallel structures or

v-structures is a challenging problem that will require further compre-

hensive studies.

We experimented our v-structure generation on input models with

FIGURE 4.16: An arbitrary series of triangular blocks and its corresponding OA.
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FIGURE 4.17: A series of triangular blocks heading in different directions and
its corresponding OA.

various ranges of angles. Figs. 4.16 and 4.17 illustrate two such cases.

While the double connections lie on the same side in Fig. 4.16, they some-

times need to be constructed on different sides of the v-path, as shown

in Fig. 4.17, due to the limited space between consecutive v-structures.

Note that, although the angles in the input models do not satisfy

the foldability condition of non-parallel OAs, we do not need to alter

them significantly in our generated structures. In fact, the differences in

angles between the input models and the generated OAs are hardly no-

ticeable. This is the result of the simple but effective averaging approach

that we use for v-structure generation in section 4.2.2.

Figs. 4.18 and 4.19 demonstrate our generated OAs that resemble

interesting shapes. In Fig. 4.18, a v-structure is used to approximate

a house model that is intentionally misaligned with the back and floor

patches. Note that such model cannot be approximated nicely using par-

allel structures, as shown in Fig. 3.20 on page 68. In contrast, the slanted

house model in Fig. 4.18 can be easily approximated using a simple v-

structure.

Fig. 4.19 shows our attempt to create a simple foldable OA that ar-

tistically illustrate a pine tree, which is similar to the card in Fig. 4.1 on
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FIGURE 4.18: Non-parallel OAs can be used nicely to illustrate input models
that are not aligned to the back and floor bases.

page 69. The input model we use is created in Blender software by plac-

ing three simple tetrahedra, without the need to constrain any specific

angles for them. Our v-structure algorithm then automatically generates

the corresponding patches with appropriate angles so that they are fully

foldable.

FIGURE 4.19: User-defined triangular blocks with arbitrary angles can be easily
converted into a fully foldable OA.
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FIGURE 4.20: Non-parallel OA may not always be better than parallel OA for
preserving the visual appearance of slanted surfaces.

Note that, while it is relatively easy to create triangular model in 3D

modeling software, such as Maya or Blender, it is not trivial to use the

correct angles on the faces of the model, so that they can be folded com-

pletely when being converted into origamic architecture pop-ups. Our

method solves this issue by adjusting each input angle by a reasonable

amount so that they satisfy the foldability condition. As shown from

Figs. 4.16 to 4.19, the resulting OA structures still approximate the input
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models closely.

However, v-structures may not always be the optimal choice for

slant-ed surfaces. Fig. 4.20 illustrates a case where parallel structures

might possibly be preferred. In this case, the connectivity of the two tri-

angular blocks are not preserved when v-structures are employed. Since

only a single piece of paper can be used, the v-structures leave a signifi-

cant gap between opposite structures when the OA is opened. In paral-

lel structures, the connecting line between two blocks lies on the central

patches, and hence no unwanted gap appears during opening and clos-

ing.

4.4 Discussion and Conclusion

In this chapter, we have presented a method for designing non-

parallel structures in origamic architecture pop-ups, which is also known

as v-structures. This method is grounded on our formulated foldability

and stability conditions for paths of v-structures. Our simple yet effec-

tive algorithm allows creating v-structures as an extended stage in the

existing pipeline for OA design. In our extended pipeline, the genera-

tion of v-structures comes after the input surface segmentation and be-

fore the generation of parallel structures. By selecting appropriate sur-

face segments for approximation using v-structures, we avoid employ-

ing over-complicated parallel structures for those segments. Addition-

ally, because the v-structure creation is performed in a separate stage, it

does not affect the generated parallel structures later.

Our algorithm first examines the potential surface segments for

v-structure generation, then create those structures so that they satisfy

our foldability condition, while still approximating the input segments

closely. Finally, the generated paths of v-structures are made stable using

double connections.
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Our stabilizations for parallel structures and for v-structures are

strikingly analogous. In both cases, we successfully utilize double con-

nections to stabilize the paths of structures. For v-structures, double con-

nections are defined based on the angles between the fold lines. For par-

allel structures, double connections are defined based on the distances

between the fold lines.

In this chapter, we have proven that doubly-connected v-structures

are foldable. From our empirical study, they are also stable during the

opening and closing process. However, a formal mathematical proof

for the stability of doubly-connected v-structures has yet been achieved.

Such proof would strengthen our formulation significantly.

In terms of visual appearance, determining whether v-structures or

parallel structures should be used to approximate slanted surfaces with

arbitrary fold lines is a challenging question. If v-structures are used, it

is not trivial to compute the best angles that are both foldable and closely

resemble the non-straight fold lines. In contrast, using parallel structure

will lead to an over-complicated and undesired pop-up, as shown in Fig.

3.20. An optimal solution for this problem may require more elaborate

shape abstraction techniques.
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Strengthening Origamic
Architecture Pop-Ups

In the previous chapters, to facilitate our geometric formulation, we have

temporarily assumed that paper has no weight and does not bend. Un-

der that assumption, we were able to construct OA structures that are

geometrically both foldable and stable. The latter means when the user

holds the two outer patches stationary, no other patches may move.

However, the geometric stability in both our work and [4, 68] does

not always hold in practice, when physiscal properties exist. In some

cases, most area of a patch is stable, but a small part of it bends because

it is too long or not well-supported (Fig. 5.1 (a, c)). In other cases, a

horizontal patch may be too big and only supported at the two ends,

causing itself to bend down in the middle (Fig. 5.1 (d)).

The instability of patches may not always be because of their weight.

In many cases, they may bend due to external forces during the making

and holding process (Fig. 5.1 (b)). Hence, such impact also needs to be

taken into account in our structural strength analysis.

In computer graphics, much research has been done on the visual-

ization of thin material deformation, notably cloth. A few studies of pa-

per modeling were done based on developable surfaces [12, 57]. These
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(a) (b)

(c) (d)

FIGURE 5.1: Bendings in OA structures may occur due to many reasons: (a)
Gravity on a long part. (b) External forces during folding and storing. (c) Not
being well-supported. (d) Big size.

approaches were mainly for visualization and may not correspond to the

actual physical properties of paper, such as mass density and bending

stiffness. More recent approaches took into account paper properties,

and solved the mesh deformation using Finite Element Method (FEM)

[81]. However, this numerical method is computationally expensive. It

also involves various types of physical discretization; and hence, is not

easy to implement or be readily embed into our design system.

As paper is a thin material, we consider our structural strength

analysis a subset of plate analysis, a well-known field in mechanical en-

gineering. In this field, Kirchoff-Love’s governing equation [71] is com-

monly used to compute the plate deflection without the need of carrying
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out a full three-dimensional stress analysis as for other types of struc-

tures. Although the equation involves differentiation of fourth order,

we can find quite accurate results by using Finite Difference Method

(FDM). It is a simple method for approximating the solutions of differ-

ential equations. FDM is suitable for the scope of our project, as it is very

intuitive and easy to implement.

In this study, it is not our goal to produce a highly accurate defor-

mation model of paper pop-ups. We mainly aim to obtain a simple and

efficient method to examine whether any parts in an OA paper pop-up

may be weak and require fixing. In other words, the method should

work efficiently as a post-processing stage of the OA design pipeline.

Since the current pipeline takes less than 10 seconds for most input mod-

els (section 3.3.2), the method for OA structural strength analysis should

be appropriately lightweight. Moreover, we believe that the FDM-based

method will be highly reproducible for other interested researchers and

developers.

In the following sections, we present our analysis on the physi-

cal strength of paper structures using Kirchhoff-Love theory and FDM.

From the analysis, we can find out the weak parts and correct them by

adding extra supports. This physical analysis is the first of its kind in

paper pop-up research.

5.1 Formulations

5.1.1 Governing Equation of Plate Bending

Before analyzing a plate, we need to know how flexible it is. In me-

chanical engineering, it is called the bending stiffness of the plate, and is

computed as
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D =
Eh3

12(1− ν2)
(5.1)

where h is the plate thickness, E is the Young’s modulus and ν is the

Poisson’s ratio of the material [21]. Young’s modulus measures the stiff-

ness of a material. Poisson’s ratio indicates how a material tends to com-

press (or expand) in one direction when being expanded (or compressed)

in the other two directions perpendicular to it.

Kirchhoff-Love theory treats a plate originally as a grid of points on

a 2D plane, and computes the deflection at each point on the plate. Let

us assume the plate lies in the xy-plane and w(x, y) is the transverse de-

flection of point (x, y). The theory computes w(x, y) using the following

governing differential equation.

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=
pz(x, y)

D
(5.2)

where pz(x, y) is the external lateral load at each point.

By using the two-dimensional Laplacian operator

∇2(•) =
∂2(•)
∂x2

+
∂2(•)
∂y2

(5.3)

we can rewrite Eq. (5.2) in a more condensed form as

∇2∇2w(x, y) =
pz(x, y)

D
(5.4)

In mechanical engineering, when a plate bends significantly, more

terms are involved to compute an accurate deformation. However, in

our context of paper pop-up, our goal is not to obtain such accurate de-

formation, but to achieve an approximate amount of bending that may
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occur with each patch of paper. From that knowledge, we can determine

the patches that may be weak and require more support.

5.1.2 FDM-based Numerical Solution

When a plate has primitive shape, such as round or square, it is possible

to find the exact solutions for Eq. 5.4. However, if it has an arbitrary

shape, an analytical solution is hard to achieve.

Hence, numerical approaches have been employed to much suc-

cess. Commonly used methods include Finited difference method (FDM),

Finite element method (FEM), Grid-Work Method (GWM) and Bound-

ary Element Method (BEM), to name a few [96].

We choose FDM as its formulations are well-developed and en-

tirely transparent. Unlike FEM, which employs various types of phys-

ical discretization, FDM only involves simple mathematical discretiza-

tion. The number of equations is small, thus they can be conveniently

implemented and embedded into our system.

In general, FDM approximates the derivatives using simple lin-

ear equations. Consider function y = f(x), where x are discrete points

placed equally at the interval ∆x = xi+1 − xi. The derivatives of y at

point k can be approximated as follows.

(
dy

dx

)
k

≈ 1

2∆x
(yk+1 − yk−1)(

d2y

dx2

)
k

≈ 1

(∆x)2
(yk+1 − 2yk + yk−1)(

d4y

dx4

)
k

≈ 1

(∆x)4
(yk+2 − 4yk+1 + 6yk − 4yk−1 + yk−2)

(5.5)

We can also apply FDM on a bivariate function, as in the case of
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FIGURE 5.2: The setup of points for computing of the plate deflection at (m,n).

plate analysis. We assume the points on the plate are equally spaced and

∆x = ∆y = δ (Fig. 5.2). Then the terms on the left-hand side of Eq. 5.2 at

point (m,n) can be approximated using the following equations.

(
∂4w

∂x4

)
m,n

≈ 1

δ4
(wm+2,n − 4wm+1,n + 6wm,n − 4wm−1,n + wm−2,n)(

∂4w

∂y4

)
m,n

≈ 1

δ4
(wm,n+2 − 4wm,n+1 + 6wm,n − 4wm,n−1 + wm,n−2)

(5.6)

and(
∂4w

∂x2∂y2

)
m,n

≈
{

∆2

(∆y)2

[
∆2w

(∆x)2

]}
m,n

=
1

(∆y)2

{[
∆2w

(∆x)2

]
m,n+1

− 2

[
∆2w

(∆x)2

]
m,n

+

[
∆2w

(∆x)2

]
m,n−1

}
=

1

δ4
(4wm,n − 2(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ wm+1,n+1 + wm+1,n−1 + wm−1,n+1 + wm−1,n−1)

(5.7)

The points involved in approximating the derivatives of w(m,n) are

shown in Fig. 5.2. From Eq. 5.6 and 5.7, we can rewrite Eq. 5.4 into the
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following form.

pz(m,n)

D
= 20wm,n − 8(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ 2(wm+1,n+1 + wm−1,n+1 + wm+1,n−1 + wm−1,n−1)

+ wm+2,n + wm−2,n + wm,n+2 + wm,n−2]

(5.8)

This is the main governing equation we use for computing the

bending at every point on the paper plate. When we combine these

equations for all the points into a linear system, we obtain a very sparse

matrix. If the dimension of the plate is M × N , the left-hand side ma-

trix of the system will have dimension MN ×MN , but each row only

contains at most 13 nonzero coefficients. Hence, we can effectively use

available linear system solvers for sparse matrix in our implementation.

For convenient discussion, we also use the following grid format to

denote the full form of the governing equation in an intuitive way.

+20-8 -8

-8

-8

+2

+2

+2

+2

+1 +1

+1

+1

5.1.3 Boundary Conditions

A solution of the discrete governing equation 5.8 must simultaneously
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satisfy the equation and the boundary conditions of the plate. Each equa-

tion involves 13 points, but these points do not always physically exist.

Along the plate boundaries, we must introduce fictitious points outside

the plate and express them in terms of the existing ones.

In the scope of paper pop-ups, we consider two types of bound-

aries. A fixed edge is the fold line between two patches, and a free edge is

along the contour of a cut line. Note that in general structures, we may

also have other types of boundaries, such as simple supporting edge,

where a plate is placed on top of a supporting point but not fixed to that

point.

For each type of boundaries, we need to consider fictitious points

outside the plate at distance δ and 2δ from the edge, respectively. As-

sume the considered edge is parallel to the y-axis, and on the right-hand

side of the plate.

On a fixed edge, the bending and its gradient are both zero. Hence,

we have the following equations.

wm,n = 0(
∂w

∂x

)
m,n

≈ 1

2δ
(wm+1,n − wm−1,n) = 0

(5.9)

which give the boundary conditions for a fixed edge.

wm+1,n = wm−1,n

wm+2,n = wm−2,n

(5.10)
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On a free edge, the force and moment about the edge axis have

been proven to be zero [96]. They are expressed as

(my)m,n =

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
m,n

= 0

(vy)m,n =

[
∂3w

∂y3
+ (2− ν)

∂3w

∂y∂x2m,n

]
= 0

(5.11)

Again, using FDM to approximate the derivatives, we can trans-

form Eq. 5.11 into

(my)m,n ≈ −(2 + 2ν)wm,n + wm,n+1 + wm,n−1 + ν(wm+1,n + wm−1,n) = 0

(vy)m,n ≈ (6− 2ν)(wm,n−1 − wm,n+1)

+ (2− ν)(wm+1,n+1 + wm−1,w+1 − wm−1,n−1 − wm+1,n−1)

− wm,n−2 + wm,n+2 = 0

(5.12)

From these approximations, we obtain the following linear bound-

ary conditions for a free edge.

wm+1,n = (2 + 2ν)wm,n − wm−1,n − ν(wm,n−1 + wm,n+1)

wm+2,n = (−6ν2 + 12ν + 12)wm,n + (4ν2 − 8ν − 4)(wm,n−1 + wm,n+1)

+ (4ν − 12)wm−1,n + (−2ν + 4)(wm−1,n−1 + wm−1,n+1)

+ (−ν2 + 2ν)(wm,n−2 + wm,n+2) + wm−2,n

(5.13)

From the boundary conditions in Eq. 5.10 and 5.13, we are able to

construct the bending equations for every point on the plate, including

those along the boundaries.

An arbitrary point may lie on a fixed edge, or a free edge, or it

may not lie near any edge. We categorize the position of a point into the
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following 11 possible cases.

0. (m,n) has at least distance 2δ from all the edges. In this case, all

the involved points in Eq. 5.8 are available, and we do not need to

compute the boundary conditions.

1. (m,n) is on a fixed edge.

2. (m,n) is at distance δ from a fixed edge, and is not near any other.

3. (m,n) is at distance δ from two fixed edges.

4. (m,n) is on a free edge, and is not near any other edge.

5. (m,n) is at distance δ from a free edge, and is not near any other.

6. (m,n) is at a corner of two free edges.

7. (m,n) is on a free edge, and at distance δ from another free edge

8. (m,n) is at distance δ from two free edges.

9. (m,n) is on a free edge, and at distance δ from a fixed edge

10. (m,n) is at distance δ from a free edge, and δ from a fixed edge.

An illustration of the points that fall into each of these 11 cases can

be seen in the following grid.
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Besides case 0, in which we have the complete governing equation

(Eq. 5.8), we need to formulate the equations for the other 10 boundary

cases. By using suitable conditions for the fictitious points in each of

these cases, we achieve valid equations for all the actual points on the

plate. The resulting coefficients of the actual points in each case are as

follows.

Case 1: Point (m,n) is on a fixed edge.

The bending at (m,n) is wm,n = 0. Hence, no further governing

equation is needed.

Case 2: Point (m,n) is at distance δ from a fixed edge but is not near any

other edge.

Without loss of generality, we can assume the fixed edge is on the

left side of the considered point. From the boundary conditions in Eq.

5.10, we obtain the following governing equation, illustrated in grid form.

Note that the bending of points along the fixed edge is zero. Thus, we

can ignore their coefficients in the equation.

+21 -8

-8

-8

+2

+2

+1

+1

+1

Case 3: Point (m,n) is at distance δ from two fixed edges.
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We assume the fixed edges are above and on the left side of the

considered point. From Eq. 5.10, we obtain the following governing

equation.

+22 -8

-8 +2

+1

+1

Case 4: Point (m,n) is on a free edge but is not near any other edge.

Assume the considered point is at the bottom of the patch. From

Eq. 5.13, we have the following governing equation.

−6ν2 − 8ν + 164ν2 + 4ν − 8 4ν2 + 4ν − 8

4ν − 12−2ν + 4 −2ν + 4

+2

−ν2 + 1 −ν2 + 1

Case 5: Point (m,n) is at distance δ from a free edge but is not near any

other edge.

Assume the free edge is below the considered point. From Eq. 5.13,

the governing equation becomes
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+19-8 -8

−ν + 2 2ν − 6 −ν + 2

+2 -8 +2

+1

+1 +1

Case 6: Point (m,n) is at the corner of two free edges.

Assume the considered point is at the bottom right corner of the

patch. The governing equation becomes

−4ν2 − 8ν + 124ν2 + 8ν − 12

4ν2 + 8ν − 12−8ν + 8

−2ν2 + 2

−2ν2 + 2

Case 7: Point (m,n) is on a free edge and at distance δ from another free

edge.

Assume the considered point is on the right edge and near the bot-

tom edge of the patch. The governing equation becomes
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−5ν2 − 8ν + 154ν − 12

2ν2 + 4ν − 6

4ν2 + 4ν − 8

−2ν + 4

−2ν + 4

+2

−ν2 + 1

Case 8: Point (m,n) is at distance δ from two free edges.

Assume the considered point is near the bottom right corner of the

patch. The governing equation becomes

+18 2ν − 6-8

2ν − 6

-8

−2ν + 2

−ν + 2

−ν + 2

+2

+1

+1

Case 9: Point (m,n) is on a free edge and at distance δ from a fixed edge.

Assume the considered point is near the bottom left corner of the

patch. We combine the boundary conditions for both free edge and fixed

edge (Eqs. 5.10 and 5.13), which lead to
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−7ν2 − 8ν + 174ν2 + 4ν − 8 4ν2 + 4ν − 8

4ν − 12−2ν + 4 −2ν + 4

+2

−ν2 + 1

Case 10: The pivotal point is at distance δ from both a free edge and a

fixed edge.

Assume the considered point is near the bottom left corner of the

patch. The governing equation becomes

+20-8 -8

−ν + 2 2ν − 6 −ν + 2

+2 -8 +2

+1

+1

By setting up the equations for all the possible cases of the grid

points, we can easily implement the bending of paper patches in our

system. Further implementation details are described in the next section.
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5.2 Implementation

5.2.1 Bending Approximation for Paper Structures

We assume the generated OA plan has the same dimension as an

A4 sheet. For each patch, we set up a mesh of grid to completely cover

the patch (Fig. 5.3). We place the grid points regularly at distance δ =

∆x = ∆y = 5×10−3m. The physical properties of paper used in our im-

plementation are obtained from the previous literatures. We use card

stock density 250g/m2 [3], bending stiffness D = 5×10−2Nm [1] and

Poisson’s ratio ν = 0.3 [90]. In the governing bending equation (Eq.

5.8 on page 103), the unit for the load at each point is Newton (N ), and

that for the bending amount is metre (m). We use CSparse library [25]

to solve our sparse linear system. All the experimented bendings were

computed in real time.

FIGURE 5.3: The mesh of grids is set up to completely cover the shape of the
patch.

Currently we only take into account the gravity acting perpendicu-

lar to the paper patches. To examine both vertical and horizontal patches,

we consider the forces applied on them when the pop-up stands on its

floor patch, and when it stands on its back patch. The mass of each patch

112



Chapter 5 Strengthening Origamic Architecture Pop-Ups

is distributed uniformly at every grid point. In the future, we may ex-

amine other types of forces, such as rotational forces during the closing

and opening process.

5.2.2 Weak Patch Detection and Correction

From the gravity, we compute the possible bending of each patch when

the pop-up lies on its floor patch, and when it lies on its back patch. For

a pop-up made from an A4 piece of paper, we threshold the bending

amount for a weak patch to be at least 0.5cm. If all the points on a patch

move less than this amount, it is still considered physically strong.

We also assume that the deflections of the patches are independent.

For example, a patch does not bend significantly enough to touch other

patches that are originally not adjacent to it. Under this assumption,

we iteratively detect the weakest patch, correct it and update the whole

structure. The process stops when no more correction is required or can

be done.

The correction is achieved by connecting the considered weak part

to a strong patch that is connectable to it. This process is similar to the

patch connection in Section 3.2.3.2 on page 52, in which we look for

the new connection with lowest cost. By doing this, we minimize the

changes in the structure when correcting the patches.

As the OA was originally generated with only patches connectable

to each other, we can always find a new connection to strengthen a weak

patch. Although a global correction method for optimal visual and nu-

merical results is not yet available, our current greedy approach pro-

duces acceptable solutions for the tested models, as shown in the next

section.
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5.3 Results

5.3.1 Comparison with Analytical Solutions

We examine our FDM-based governing equation (Eq. 5.8) by per-

forming it on simple rectangular patches. We then compare our solu-

tions with the analytical solutions for the original differential equation

(Eq. 5.4). Figs. 5.4 and 5.5 show the visualizations of the computed

bending. In both solutions, we use a patch of size 0.2m× 0.4m, with the

grid points regularly placed at distance ∆x = ∆y = 10−2m. The physical

properties of the patch are as described in section 5.2.1.

FIGURE 5.4: The computed bending of a patch with two fixed edges and two
free edges. Left: Analytical solution of the governing differential equation.
Right: Our solution of the FDM-based governing equation.

FIGURE 5.5: The computed bending of a patch with one fixed edges and three
free edges. Left: Analytical solution of the governing differential equation.
Right: Our solution of the FDM-based governing equation.
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In the first case, the patch has two fixed edges and two free edges

(Fig. 5.4). In the second case, the patch has one fixed edge and three free

edges (Fig. 5.5). We compute the average percentage difference from all

the grid points of our FDM-based solutions, as compared to the analyti-

cal solutions. For the first patch, the percentage difference is 18.22%. For

the second patch, the percentage difference is 10.84%. In both cases, the

amount of bending computed from the FDM-based solutions is slightly

smaller than that from the analytic solutions. However, the positions of

the weakest areas are identical in the FDM-based solution and the ana-

lytical solution.

The maximal amount of bending of the first patch is 0.36cm when

using the FDM-based approach, and 0.53cm when using the analyti-

cal approach. For the second patch, the maximal bending amount for

the second patch is 0.64cm using the FDM-based approach, and 0.82cm

(a) (b)

(c) (d)

FIGURE 5.6: The weak structures in Fig. 5.1 after being corrected.
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(a) (b)

FIGURE 5.7: A patch in the bunny OA is not well-supported (a), and is corrected
by extending (b).

when using the analytical approach. This patch is likely to be weak and

require extra support along its weakest edge.

5.3.2 OA Structural Strength Analysis and Correction

Although we did not consider physical properties of paper in the

previous chapters, our investigation indicates that most of the generated

OAs are sufficiently strong. It may be because most patches are sup-

ported by at least two other patches, and the input models we use are

mostly structurally strong in real life.

Nevertheless, some of the OAs we create contain weak parts that

need to be fixed. Figs. 5.1, 5.8, 5.9 and 5.10 show a number of such cases

and the corrected designs.
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(a) (b)

FIGURE 5.8: The trunk of the elephant OA bends down due to the heavy weight
(a), and is corrected (b).

FIGURE 5.9: The cross in the Capitol OA is strengthened.

Note that, in order to make a patch physically strong, we may have

to alter its originally desired shape. An example is the trunk of the ele-

phant OA, which has to be widen and connected to the floor patch. An

altenative solution in such a situation may be to give the user an option

to leave the structure as designed. We can then provide a list of paper
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FIGURE 5.10: The cross in the Taj Mahal OA is strengthened.

materials in the system, and allow the user to choose a stronger mate-

rial for weak pop-ups. In order to do so, more studies on the physical

properties of other types of paper will be required.

5.4 Discussion and Conclusion

In this chapter, we have presented a physical strength analysis for

paper structures using Kirchhoff-Love theory and FDM discretization.

The strength and weakness of each patch is determined by the amount

of its bending under gravity when the pop-up lies on the floor patch,

and when it lies on the back patch. With its simplicity, the approach is

easy to implement, yet effective. Preliminary experiments also show the

potential of this approach in analyzing arbitrary structures made of thin

materials.

Similar to our stabilization technique in Chapter 3, our physical

str-ength analysis can also be readily embeded into other systems for

designing paper pop-up, or other types of paper craft. It may also be

considered for interactive bending in virtual reality. For instance, a piece
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of paper may bend when being pressed or waved by a virtual character.

Such object that can respond interactively in a physically-correct manner

will be very useful for educational purposes.

Limitations

From our observation in creating pop-ups, the patches seldom bend

under longitudinal forces. This may be due to high longitudinal bending

stiffness of the card stock material often used for paper pop-ups. Theo-

retically, longitudinal stiffness is also significantly higher than transverse

stiffness that we consider in this work [96]. Thus, to keep the formulation

simple, we have yet taken into account longitudinal forces in our work.

Nevertheless, when dealing with long thin patches, or more flexible ma-

terials (Fig. 5.11), we will need a more elaborate governing equation.

FIGURE 5.11: A long thin patch made from a flexible material is bent due to the
weight acting along its longitudial axis.

Our current method detects and corrects one weak patch at a time

until all the patches are strong. However, such approach may not be ef-

fective for complex structures. For instance, there may be weak patches

that can be corrected altogether using a single new connection. Our
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method may need to add several connections, and eventually modify

the structures more than necessary. To deal with this problem, a global

method for structural correction will be needed.
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Chapter 6

Conclusion and Future
Directions

6.1 Conclusion

Origamic Architecture (OA) not only is a paper art form but also

has pratical applications, such as in nano and micro fabrication [30, 47,

107]. As a special type of paper pop-ups, OA has the beauty of using

only a single piece of paper, yet inheriting the ability to resemble many

structures and daily objects.

Despite its popularity, OA creation requires considerable time and

skills. Designing the 2D layout of an OA pop-up is already challenging

itself, because it requires careful considerations in both geometric and

physical aspects. The design has to pop up fully into a desired shape,

while being stable at each opening angle. In addition, it has to be physi-

cally strong.

Existing works on computer-aided and automatic OA design are

still very limited. In commonly used voxel-based methods, the design

process requires high resolution of voxel grid to approximate the input

3D model closely. As a results, the number of cuts and folds caused by

the small voxels is significantly high and the voxel-based designs are
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hard to use in practice. Even so, the voxels are not able to preserve the

meaningful contours on the input surface.

In addition, previous studies only defined a very narrow set of sta-

bility conditions for OA structures. As we have examined, those con-

ditions ignore many commonly seen structures, and limit the possible

designs significantly.

In this thesis, we have presented a set of geometric formulations

and a novel algorithm for automatic OA design. Our comprehensive

foldability and stability conditions allow us to utilize an image-based

slicing approach for artistically abstracting the input model. We are able

to generate foldable and stable pop-up structures that were previously

excluded by other algorithms. Visual and quantitative comparisons of

results have shown that our algorithm is significantly better than the ex-

isting methods in the preservation of contours, surfaces and volume, as

well as the ease of actual creation. Our designs have also been shown to

resemble those created by real artists.

In addition to the geometric foldability and stability conditions, we

formulate a set of linear equations for analyzing the physical strength

of the generated OA structures. We utilize Finite Difference Method to

discretize Kirchhoff-Love’s differential plate equations. By solving the

obtained sparse linear system, we simulate the possible bendings in a

paper structure in real time. The weak parts can be corrected by adding

new supporting connections. Our physical analysis and fixing method

is the first of its kind in paper pop-up studies.

All the approaches presented in this thesis, including our novel slic-

ing method, foldability check, stabilization, and physical strength analy-

sis can be easily integrated into other design systems, such as [36, 44], to
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name a few. They can help to reduce the manual work for the user, while

keeping the pop-ups valid.

6.2 Future Directions

Our study is part of computational design, a research area that is be-

coming more and more active. In this area, our work can be considered

artistic design, as its goal is to generate results that resemble artists’ cre-

ations. Another aspect that we plan to study is functional design, in which

the most important goal is to design objects that function according to

user requirements. We aim to continue our research in these two aspects

of computational design.

6.2.1 Artistic Design

Paper Pop-Up Our study offers interesting possibilities for future

research in general paper pop-up. Theoretically, we have proven the suf-

ficient and necessary condition for foldable OA parallel structures and

v-structures, and the sufficient condition for stable parallel structures.

However, it is still unknown whether a necessary condition for stable

parallel structures is achievable. In addition, the stability condition for v-

structures has only been studied empirically, but not been proven math-

ematically. If a formal proof can be obtained, we will have a stronger

theoretical foundation to support a unified framework for both parallel

and v-structures.

While origamic architecture only allows a single piece of paper, we

may convert it to a general pop-up by adding multiple pieces of paper

to preserve the concave surfaces more easily. To do so, we will need to

capture a complete shape of the input 3D model by extending our single-

view image-based abstraction to multiple views. We have achieve some

preliminary results for multi-piece paper pop-ups in [88], [89] (Fig. 6.1).
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FIGURE 6.1: The multi-piece paper pop-ups produced by our automatic design
systems presented in [88] and [89].
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Currently, our abstraction requires as input a 3D model. However,

such data may not always be available to all users. We plan to extend our

work to allow other types of input representations, for instance draw-

ings and photographs. An OA design system using such inputs will be

exciting, and also requires single-view reconstruction techniques. One

notable work on single-view pop-up generation is [46]. However, its

type of pop-up is still very simple.

Other Paper Art Forms Besides paper pop-up, there are other forms

of paper arts such as origami (paper folding) and paper sculpting [22].

For origamic design, although there have been numerous mathematical

studies, most of them do not propose an automatic approach, or only

generate a complex folding pattern that requires very good skills [97].

For origami learners and beginners, multi-piece origami is a more feasi-

ble choice, in which two or more sheets of paper are folded into origamic

structures and locked together to form a desired 3D shape. With our ex-

perience in origamic architecture and multi-style paper pop-up [88], we

believe it is possible to develop an algorithm that searches for a combi-

nation of folding patterns to form a multi-piece origami.

Aside from origami, paper sculpting has also been studied recently

[72]. However, existing algorithms can only use printed textures to de-

pict subtle details like hair and clothes. In practice, with the flexibility of

paper, those details can be abstracted very lively [22] (Fig. 6.2 (a)). We

believe an automatic design of detailed and artistic paper sculptures can

be achieved by utilizing a multi-view image-domain abstraction method,

and studying the effects of physical paper bending for representing dif-

ferent shapes.

6.2.2 Functional Design

Computational design of daily items is becoming more and more
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a (b)

FIGURE 6.2: (a) A paper sculpture designed by [22]. (b) Foldable and compact
furniture can be designed automatically and 3D-printed in the future.

feasible, especially with the increasing availability of 3D scanning tech-

nologies. We are also interested in the automatic design of household

and office items, like furniture, that function according to user require-

ments. The items will be able to perform user-defined mechanical tasks,

have a desired appearance and fit in a given space. With the spatial con-

straints in houses and offices nowadays, it is useful to have foldable and

portable items. Similar recent studies, such as [91], do not consider the

foldability of the items or their physical balance when the constituent

parts are moving. Our earlier geometric formulation for the foldabil-

ity and stability treats each patch of paper as a rigid plane, and hence,

may share similarities with the corresponding geometric study of fold-

able furniture. However, we will need to take into account the thick-

ness of each part of the furniture, which was not an issue in paper struc-

tures. An automatic design system for functional, physically feasible and

portable furniture will be of much interest and may open a new horizon

for product design (Fig. 6.2 (b)).

Another research direction that requires more elaborate investiga-

tion is the computational design of soft and elastic objects, such as clothes.

Computational fashion design has not become an active research area,
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but will definitely attract much attention. Although cloth simulation

has been studied extensively, designing how pieces of cloths can be cut,

pleated and sewed together to make nice garments is not easy for most

people. It is even more challenging if the garments need to fit the body

measurements of a certain person. In this research direction, we can cre-

ate a system that designs stylish clothes for a person simply from his or

her appearance and choices. Such system will require reconstructing hu-

man body shape and pose from images or simple measurements, which

we have attempted in an earlier project [63, 64]. Moreover, in order to

determine the patterns that look good on a person for a specific activity

or occasion, it is important to understand the psychological choices in

fashion design. This study may benefit from our experience in observ-

ing artists choices for paper craft design.
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