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Summary 
 

Gastrulation is an important step in early embryogenesis. It involves a series of coordinated 

cell movements to organize the germ layers and establish the major body axes of the 

embryo (Lepage and Bruce, 2010; Wang and Steinbeisser, 2009). During the process of 

studying interferon regulatory factor 6 (IRF6) which is known to be involved in syndromic 

oral clefting, we found out a drastic and prominent knockdown phenotype leading by 

Mopholino targeting at the splice junction of exon 3 and intron 3 of irf6 pre-mRNA (E3I3) 

in zebrafish that strongly suggests a critical role of Irf6 in proper gastrulation and early 

embryogenesis. In this study, we profiled the transcriptome of embryos lack of functional 

Irf6 leading by the injection of E3I3 using the Agilent zebrafish gene expression microarray. 

We identified and characterized cyr61 and mapkapk3 as target genes of Irf6 at gastrulation 

stage in zebrafish. The findings gathered from this study will provide novel insights into 

how IRF6 normally function in vertebrate embryogenesis and also contribute new 

knowledge into understanding gastrulation process. 
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Chapter I: Introduction 

 

1.1 Early development of the zebrafish 

 

1.1.1 Zebrafish as a model organism for the study of vertebrate development 

 

With the gradual understanding of the mechanisms involved in development, 

developmental biology has become one of the most exciting and fast-growing fields of 

biology. As a complex branch of biology, understanding developmental processes requires 

combining information from molecular biology, physiology, anatomy, cancer research and 

even evolutionary studies (Gilbert, 1999). Hence, many discoveries that originated from 

investigating development defects, such as the Wnt (Klaus and Birchmeier, 2008), 

Hedgehog (Gupta et al., 2010), and Notch families (Bray, 2006), are now also known to 

play significant roles in cancer or are linked to other human diseases. Animal models are 

widely used in developmental studies. Among them, zebrafish is a well established animal 

model used especially to study early stage developmental processes. 

 

The zebrafish (Danio rerio) belongs to the family Cyprinidae (Detrich et al., 1999), and 

serves a useful role in bridging the gap between Drosophila/Caenhorhabditis elegans and 

mouse/human genetics. As early as the 1930s, this tropical fish was being used as a 

classical developmental and embryological model (Roosen-Runge, 1937). Beginning in the 

1980s, the development of genetic techniques enabled the use of zebrafish for studies of 

developmental biology (Lieschke and Currie, 2007; Streisinger et al., 1981). The advent of 

11



large-scale mutagenic screens (Amsterdam et al., 1999) cemented the zebrafish’s role as an 

important vertebrate model in developmental biology.  

 

Advantages of the zebrafish include its small size (up to 6 cm), short generation time (2~3 

months), external fertilization, and large egg clutches (100-200 eggs per mating).  Zebrafish 

embryos are transparent throughout early development, providing easy visual access to all 

developmental stages and facilitating embryological experiments and morphological 

screening (Detrich et al., 1999). Aside from these advantages, technically, the 

methodologies routinely applied to Xenopus embryos can also be successfully performed 

on zebrafish (Detrich et al., 1999; Eisen, 1996). Forward-genetic screening and reverse-

genetic transient morpholino knockdowns allow for investigation of gene function. 

Nowadays precise genome editing becomes available by several methods, such as TALEN 

and CRISPR approaches (Auer et al., 2014; Bedell et al., 2012). With the availability of 

these techniques, we are able to use the zebrafish to model almost any genetic mutation that 

causes diseases in human. 

 

 

The zebrafish genome has been sequenced and mapped. The genetic map has been 

continually improving, and currently more than 2000 microsatellite markers (Knapik et al., 

1998; Shimoda et al., 1999) and more than 26,000 protein-coding genes have been defined 

(Collins et al., 2012) for the 1.412 gigabases (Gb) genome (Howe et al., 2013). The 

information is available on ZFIN, NCBI and ENSEMBL websites, further facilitating 

research using zebrafish.  
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1.1.2 Epiboly of zebrafish 

 

Epiboly was first described in the teleost fish Cyprinus by von Baer in 1835 as the 

overgrowth of the yolk by the blastoderm (Betchaku and Trinkaus, 1978). The term epiboly 

has now been defined as the thinning and spreading of a sheet of cells to cover the embryo 

during gastrulation (Gilbert 2003).  

 

Before the initiation of epiboly, the embryo is organized into three layers (Fig 1.): the 

enveloping layer (EVL), a single-layer epithelium; the deep cells layer, which eventually 

gives rise to embryonic tissues; and the yolk syncytial layer (YSL), an extra-embryonic 

syncytium populating the interface between the yolk and deep cells (Lepage and Bruce, 

2010). When epiboly starts, the yolk cell domes and deep cells move radially outwards, 

forming a cap of cells over the yolk. With the progression of epiboly, the thinning 

blastoderm (EVL and deep cells) spreads vegetally, expanding its surface area to cover the 

yolk cell, past the equator of the embryo. When the embryo reaches 50% epiboly, the 

blastoderm begins to converge dorsally. In the end, the deep cells, EVL and YSL move 

towards the vegetal pole in a coordinated manner, eventually closing the blastopore 

(Lepage and Bruce, 2010). 
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Figure1: Structure of zebrafish embryo and progression of epiboly  
(A)  Epiboly is organized into 3 layers: enveloping layer (EVL), yolk syncytial layer (YSL) 
and deep cells (Taken from Gilbert 2000). 
(B)  Schematic depiction of epiboly initiation and progression in the zebrafish embryo 
(Taken from Lepage and Bruce 2010).   
 

1.1.3 Gastrulation of zebrafish  

 

Gastrulation is a morphogenetic process that results in the formation and spatial separation 

of the embryonic germ layers: ectoderm, mesoderm, and endoderm and to sculpt the body 

plan (Rohde and Heisenberg, 2007). The gastrulation process includes three major features: 

epiboly, internalization and convergent extension (Warga and Kimmel, 1990), and these 

movements of the cells during gastrulation are conserved within vertebrates (Solnica-

A
 

B
 

14



Krezel, 2005).  In zebrafish, the gastrula period extends from 5.5 hour to about 10 hour 

(Figure 2). At 50% epiboly (6 hour post-fertilization (hpf)), the rim of the blastoderm 

thickens to a bilayered germ-ring, which marks the beginning of gastrulation (H. William 

Dietrich, 1999). The inner layer or hypoblast forms the embryonic mesoderm and 

endoderm, whereas the outer layer or epiblast forms the embryonic ectoderm (Warga and 

Kimmel, 1990). Following gastrulation, cells in the organism are either organized into 

sheets of connected cells or as isolated cells, and the fate of these cells is determined (Brian 

K. Hall, 1998).  

 

Figure 2: The gastrulation period.  
Gastrulation starts at 50% epiboly stage, including three major features: epiboly, 
internalization of and convergent extension, results in the formation of ectoderm, 
mesoderm, and endoderm (Adapted and modified from Kimmel, Ballard et al. 1995 ). 
 

To date, a number of genes have been shown to be involved in gastrulation in zebrafish, 

such as FoxH (Pei et al., 2007) and Mapkapk2 (Holloway et al., 2009). Among these genes, 

IRF6 is considered critical to early development since blocking IRF6 function causes a 

lethal phenotype during gastrulation (Sabel et al., 2009). 
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1.2 Role of IRF6 in development 

 

1.2.1 Interferon Regulatory Factor 

 

The interferon regulatory factor (IRF) family comprises nine transcription factors: IRF1, 

IRF2, IRF3, IRF4 (also known as LSIRF, PIP or ICSAT), IRF5, IRF6, IRF7, IRF8 (also 

known as ICSBP) and IRF9 (also known as ISGF3γ) (Lohoff and Mak, 2005; Taniguchi et 

al., 2001). 

 

All IRF proteins possess a highly conserved N-terminal DNA binding domain (DBD) of 

approximately 120 amino acids that forms a helix-turn-helix motif. This DBD recognizes a 

consensus DNA sequence - the interferon-stimulated response element (ISRE; 

A/GNGAAANNGAAACT, also known as IRF-E) (Taniguchi et al., 2001). By contrast, the 

C-terminal regions of IRFs are less conserved protein interaction domains (PID) which 

mediate interactions with other protein factors thereby conferring specific activities of each 

IRF (Savitsky et al., 2010). All IRFs except IRF1 and IRF2 possess a PID showing 

homology to the Mad-homology 2 (MH2) domains of the Smad family (Mamane et al., 

1999) , whereas IRF1 and IRF2 share an IRF-associated domain 2 (IAD2) (Taniguchi et al., 

2001). These C-terminal regions might function as regulatory regions, and specific protein-

protein interaction mediated by these PIDs may determine whether the IRF protein 

functions as a transcriptional activator or repressor (Savitsky et al., 2010). 

 

With the gene-disruption studies of most of the IRF genes being carried out, the functions 

of IRFs are becoming clearer. Through interaction with family members or other 

16



transcription factors, IRFs have distinct roles in the regulation of host defense, such as 

innate and adaptive immune responses and the development of immune cells (Taniguchi et 

al., 2001). The functions of the IRFs have also expanded to distinct roles in biological 

processes such as pathogen response, cytokine signaling, cell growth regulation, 

oncogenesis and hematopoietic development (Table 1) (Tamura et al., 2008) .  
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1.2.2 IRF6 is important in early development in zebrafish and Xenopus  

 

Among these IRF proteins, IRF6 is a unique member as it is not involved in immune 

regulatory pathways. Instead, mutations in IRF6 have been identified as causative of the 

allelic autosomal dominant clefting disorders Van der Woude syndrome (VWS; OMIM no. 

119300) and popliteal pterygium syndrome (PPS; OMIM no. 119500) (Kondo et al., 2002). 

A more exciting finding was the observation that blocking IRF6 function in zebrafish and 

Xenopus causes a lethal phenotype during gastrulation, indicating a critical role in early 

vertebrate development (Sabel et al., 2009). Even though its function is not related to 

regulation of host defense, IRF6 still shares a highly-conserved N-terminal helix-turn-helix 

DNA-binding domain and a less conserved C-terminal protein-binding domain. A 

comparison of the protein sequences of IRF6 in  human,  mouse,  Xenopus,  zebrafish  and  

Fugu reveals that their DNA-binding domains are highly conserved among all five species 

(Figure.3).  

 

 

 

 IRF6 protein Helix-turn-helix 
DNA-binding domain 

Human IRF6 63 87 
Mouse IRF6 63 87 

Xenopus IRF6 62 85 
Fugu IRF6 71 85 

A 
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Figure 3: Phylogenetic analysis of the irf gene family and Alignment of the predicted 
IRF6 proteins from different species. (A) An unrooted MP phylogenetic tree is generated 
using amino acid sequences, and the numbers reflect the similarity of other species to 
zebrafish IRF6 full protein and DNA-binding domain (Adapted from Ben, Jabs et al. 2005). 
(B) Alignment of the predicted IRF6 proteins from six species (Adapted from Ben, Jabs et 
al. 2005). 

B 
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In zebrafish, irf6 transcript is deposited as a maternal transcript (Ben et al., 2005). During 

the gastrulation period (~7-9 hpf), irf6 expression is concentrated in the forerunner cells. 

From the bud stage to the 3-somite stage (~10–11 hpf), irf6 is highly expressed in the 

Kupffer’s vesicle and at the 14-somite (16 hpf), expression is observed in the otic placode. 

From 2-5 day post fertilization (dpf), irf6 is expressed in the esophagus, pharynx, and 

mouth, as well as in the pharyngeal arches (Ben et al., 2005). 

 

Gene function can be knocked down by using ATG-translation blocking mopholinos (MOs), 

which are antisense 25-base oligo nucleotides that target and bind sequences about 25 bases 

after the start codon, thus blocking translation initiation of transcripts (Summerton, 1999). 

Irf6 knockdowns have produced grossly normal embryos without defects in skin, pectoral 

fins, or craniofacial cartilage after 4 days (Sabel et al., 2009). As Irf6 is a maternal 

transcript and the abundant maternal Irf6 protein may compensate for the reduction of 

zygotic Irf6 expression, translation-blocking MOs may have limited effectiveness. Thus, a 

dominant negative irf6 mRNA containing only the DNA binding domain of irf6 (irf6DBD) 

was introduced into 1-2 cell stage zebrafish embryos to block translation of maternal irf6 

transcripts. With the existence of the irf6DBD, the embryonic development stalled and the 

embryo ruptured at 90% epiboly (~ 9hpf) (Sabel et al., 2009). Embryos injected with a 

lower dose of irf6DBD mRNA survived, and showed short pectoral fins, blistered skin and 

smaller, more disorganized cartilage elements of the craniofacial skeleton at 3 dpf (Sabel et 

al., 2009). The latter phenotypes are consistent with the Irf6-null mouse, which had shorter 

forelimbs, abnormal skin, and craniofacial defects (Ingraham et al., 2006; Richardson et al., 

2006).  
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Independently, our group also generated an antisense MO (E3I3-MO) targeting the exon 3 - 

intron 3 splice junction of irf6 pre-mRNA to investigate the role of zygotic irf6 in early 

embryogenesis. Embryos injected with normal (1mM) or low (0.1mM) dose of E3I3-MO 

exhibited 100% lethality at the gastrula stage (Figure 4) (unpublished data). Time-lapse 

analysis of the injected embryos revealed developmental arrest at the epiboly stage (5 hpf), 

leading to embryonic rupture near the animal pole and spillage of the deep cells at around 9 

hpf. The arrest of epiboly movement and subsequent rupturing of these embryos are 

reminiscent of the phenotypes described in Sabel et al. (2009). Both irf6DBD and E3I3-MO 

are thought to inhibit transcriptional activation of downstream target genes, some of which 

may play important roles in zebrafish early development. 

 

In Xenopus, where two paralogues of irf6 with identical expression patterns exist, irf6 is 

maternally expressed, with later expression surrounding the blastopore and in the tailbud 

blastema (Hatada et al., 1997; Klein et al., 2002). Irf6-depleted embryos are delayed in 

gastrulation and exhibit a blastopore closure defect. Besides, the depleted embryos also fail 

to elongate fully, and exhibit epidermal and head defects (Sabel et al., 2009). Injection of 

zebrafish irf6DBD mRNA into Xenopus embryos also caused rupture of the embryo near 

the animal pole.  
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Figure 4: Aberrant irf6 transcript variants can cause early embryonic lethality of 
zebrafish. Percentage of zebrafish embryos at 24 hpf of E3I3 MO, irf6 DBD, Mock MO 
injected and uninjected sample class that were normal (black), or mutant (head and tail 
defects) (grey), or dead (striped) (unpublished data of our group). 
 

 

1.2.3 IRF6 and oral clefting  

 

Human IRF6 mutations are responsible for Van der Woude syndrome (VWS) and popliteal 

pterygium syndrome (PPS), which show different degrees of cleft lip, cleft palate, lip pits, 

skin folds, syndactyly and oral adhesions (Kondo et al., 2002). Autosomal dominant Van 

der Woude syndrome (VWS) (OMIM  no.119300) is  the most common syndromic form of 

clefting, which is characterized by presence of bilateral lower lip pits and hypodontia 

(Rizos and Spyropoulos, 2004). Some patients have sensorineural hearing loss or otitis 

media (Kantaputra et al., 2002; Salamone and Myer, 2004). Popliteal pterygium syndrome 

(PPS) (OMIM no.119500) exhibits a similar phenotype to VWS, but may present with a 

mixture of oral adhesions, eyelid adhesions (ankyloblepharon), pterygia, webbing of the 
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lower limbs, bands of mucous  membrane between the jaws, syndactyly, and genital 

anomalies as well (Froster-Iskenius, 1990; Stottmann et al., 2010). It was reported that a 

common haplotype associated with IRF6 contains a mutation attributable to approximately 

12% of common forms of cleft lip and palate (Zucchero et al., 2004) .  

 

Cleft lip and/or palate is one of the most common birth defects which is caused by multiple 

genetic and environmental factors (Murray, 2002). Patients with cleft lip and/or palate 

require surgical, nutritional, medical and dental treatment and impose a substantial 

economic and psychological burden (Strauss, 1999). The average worldwide incidence of 

cleft lip and/or palate is 1 in 700 births and this frequency varies among different racial 

populations and different economic status (Vanderas, 1987), 1 in 500 in Asians and 

Amerindians and 1 in 2500 in Caucasians and Africans. Clefts are most often divided into 

cleft lip with or without cleft palate (CL/P) and  those that involve the  palate  only  (CPO),  

as the mechanism of CL/P involves the primary (hard) palate but CPO affects only the 

secondary (soft) palate (Fraser, 1955). Studies of cleft cases suggest that about 70% of 

cases of CL/P and 50% of CPO are nonsyndromic as affected individuals have no other 

physical or developmental anomalies (Jones, 1988). The syndromic cases, who have 

significant physical or developmental defects, can  be  subdivided  into chromosomal 

syndromes, Mendelian  disorders  (Online  Mendelian  Inheritance  in Man, 2002), 

teratogen-induced and uncategorized syndromes (Murray, 2002). Non-syndromic oral 

clefting is a complex trait caused by multiple factors including environmental triggers like 

teratogens (e.g., smoking, pharmaceuticals and pesticides) (Little et al., 2004), infection, 

nutrients (e.g., vitamins or trace elements) and cholesterol metabolism. Besides, several 

genes have been found to be involved in the palate formation. Point mutations of Msx1 and 
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Tgfb3 have been identified in cases of cleft lip and/or palate (Murray, 2002). Other genes 

(P63, PVRL1, TGFA, TBX22 and SATB2) that play a role in human palate development 

were also reported (FitzPatrick et al., 2003) . 

 

1.2.4 IRF6 in mouse development 

 

In Irf6-null mice, embryos lack external ears and have snouts and jaws that are shorter and 

more rounded than their wild-type littermates (Ingraham et al., 2006; Richardson et al., 

2006). This phenotype is consistent with the observation that Irf6 is expressed at key stages 

of facial development, and especially high levels are present in the ectoderm covering the 

facial processes immediately prior to and during palatal fusion to form the lip and primary 

palate (Knight et al., 2006) .  

 

Aside from the craniofacial defects, Irf6- null mice exhibit taut, shiny skin and an epidermis 

that is thicker than in wild-type mice. The skin also lacks the normal wrinkled appearance 

(Ingraham et al., 2006; Richardson et al., 2006). Cell proliferation and apoptosis 

experiments suggest that the suprabasal keratinocytes of Irf6- null mice fail to stop 

proliferating and fail to terminally differentiate (Ingraham et al., 2006). The severe defects 

in the Irf6-null mouse embryos emphasize the important role of IRF6 in mouse craniofacial 

development and keratinocyte differentiation.  
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1.3 Other functions and regulation of IRF6  

 

1.3.1 IRF6 functions as a transcriptional factor 

  

Even though all IRF proteins possess a highly conserved N-terminal DNA binding domain 

(DBD) and recognize the ISRE (Taniguchi et al., 2001), different members may act as 

transcriptional activator or repressor. IRF1, IRF3 and IRF9 usually act as transcriptional 

activators, whereas IRF8 acts as a repressor. IRF6 was reported to function as a 

transcriptional activator as it activated the expression of ISRE-containing promoter reporter 

constructs in transfected cells (Fleming et al., 2009; Savitsky et al., 2010). IRF6 itself has 

an identical binding site. Full length IRF6 failed to bind the known consensus sites in the 

electrophoretic mobility shift assays, but the IRF6-DBD showed specific, high affinity 

binding to the consensus sequence of AACCGAAACC/T in vitro (Little et al., 2009). 

Furthermore, ChIP-seq of keratinocytes under differentiating conditions show the 

consensus binding site of full length IRF6 is more likely to be NACC/TGAAACN (Botti et 

al., 2011). IRF6 knock-down in primary human keratinocytes cause down regulation of 269 

genes. Gene ontology analysis shows that these down-regulated genes are significantly 

related to cell adhesion, cell motion, cell morphogenesis, regulation of cell death, and stem 

cell development (Botti et al., 2011) .  

 

1.3.2 IRF6 and cell proliferation and differentiation  

 

The cell cycle is an intricate, temporally organized system that allows for the tightly 

regulated process of cell division. This progress involves the precise control of many cell 
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cycle regulators, which express in different stages of the cell cycle and consists of 

checkpoints (Bailey et al., 2008). The entry or exit of the cell cycle plays an important role 

in regulation of cell proliferation and differentiation. 

 

The re-induction of IRF6 in breast cancer cells induces cell cycle arrest, which suggests 

that IRF6 may act as a mediator of cellular proliferation and differentiation in mammary 

epithelial cells (Bailey et al., 2008). Recent findings also suggest IRF6 is involved in cell 

proliferation, as down-regulation of IRF6 can promote invasive behavior of squamous cell 

carcinoma (SCC) cells (Botti et al., 2011). Besides, several genes related to cell 

proliferation (NGF, VEGFC et al.) are directly regulated by IRF6 (Botti et al., 2011). These 

findings imply that IRF6 can play an important role in the regulation of cell proliferation. 

 

Complete knockout of Irf6 in the mouse results in severe skin abnormalities (Ingraham et 

al., 2006). Cell proliferation and cell death analysis of the skin showed over-proliferation in 

the spinous layer, and failure of termination of cell differentiation, contributing to the 

abnormal skin (Ingraham et al., 2006). This finding suggests that IRF6 is necessary for 

regulating proliferation and terminal differentiation of keratinocytes. An in vitro study of 

Irf6-/- keratinocyte figures out that the absence of Irf6 causes a defect of differentiation, 

whereas over expression of Irf6 can’t promote differentiation, indicating it is necessary but 

not sufficient to promote keratinocyte differentiation (Biggs et al., 2012).  Recently, IRF6 is 

also reported to function as a primary downstream target of Notch in keratinocyte, and 

contribute to the regulation of differentiation and repression of tumor (Restivo et al., 2011).  
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1.3.3 Regulation of IRF6 

 

Dysregulation of genes involved in cell proliferation are often related the carcinogenesis 

and IRF6 may show a similar link. The protein level of IRF6 is down-regulated in 71% of 

SCCs, and the amount of IRF6 is found to correlate with histological stage, the highest in 

well-differentiated tumors and the lowest in high-grade, poorly differentiated SCCs (Botti 

et al., 2011). The reduction of IRF6 mRNA and protein is also observed in poorly 

aggressive human breast cancer cell lines (MCF-7, T47-D).  In aggressive and metastatic 

breast cancer cell lines (MDA-MB-231 and HS578T), IRF6 is completely absent (Bailey et 

al., 2005). These findings suggest that IRF6 is strictly regulated in both RNA and protein 

level. 

 

Methylation at CpG islands of tumor suppressor gene promoters is a common phenomenon 

in cancer cells. The presence of 5-methyl cytosine within the CpG island of SCCs has been 

confirmed, and inhibition of DNA methyl transferase activity can induce IRF6 expression 

(Botti et al., 2011). These findings suggest that that repression of IRF6 transcription in SCC 

may be caused by promoter methylation, and IRF6 may act as a tumor suppressor. 

 

IRF6 protein level is regulated in a cell cycle-dependant pattern. Cell cycle arrest (stopping 

at G0 phase) is associated with a significant increase in total amount of IRF6, and the non-

phosphorylated IRF6 is the prominent isoform (Bailey et al., 2008). When cells enter the 

G1 phase, phosphorylated IRF6 begins to decrease, this decrease being mediated by 

ubiquitination and proteasome degradation (Bailey et al., 2008). These findings suggest that 
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IRF6 protein expression and phosphorylation are regulated by proteasome degradation in a 

cell cycle-dependant pattern. 

 

IRF6 is also a direct target of p63. The p53-related transcriptional activator p63 plays a 

central role in maintaining cellular proliferation during development. As a result of the 

alternative usage of 2 promoters and of complex alternative splicing, the p63 gene encodes 

6 isoforms (Moretti et al., 2010).  Among these isoforms, ∆Np63 is the major isoform 

expressed in primary keratinocytes and the palatal epithelia (Thomason et al., 2010). 

During early differentiation, ∆Np63 promotes transcription of IRF6, and the IRF6 protein 

in turn promotes ∆Np63 degradation (Moretti et al., 2010).  This feedback regulation may 

play an important role in controlling the proliferation and differentiation of keratinocytes. 

 

1.4 Microarray  
 

Microarray is a hybridization of a nucleic acid sample to large amount of oligonucleotide 

probes which are printed to a solid platform to determine gene sequence or to detect gene 

expression or for gene mapping 

(http://www.ncbi.nlm.nih.gov/genome/probe/doc/TechMicroarray.shtml). In a typical 

microarray to detect the expression level of different samples, the RNA samples of 

interested will be reverse-transcript into cDNA, followed by labeling with dyes (Cyanine3, 

Cyanine 5). After the hybridization to the chip printed with probes, those DNA with 

specific binding to the probes will be attached to the chip, whereas the others will be 

washed out. The signal of each probe will be scanned and further analysis.  With the huge 

amount of information get from microarray, the process of understanding the functions of 
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genes or proteins is greatly accelerated. With the wide application of microarray, many 

useful tools and software, like Tools BioconductorGene Map Annotator and Pathway 

Profiler (GenMAPP), Spotfire DecisionSite for Functional Genomics, Genespring, are 

designed and facilitate the usage of microarray data (Hoheisel, 2006).   

 

1.5 Objectives of the project 

 

The objectives of this project were: 

 

1. To identify differentially expressed genes in irf6 knockdown morphants; 

 

2. To validate putative downstream target genes of Irf6; 

 

3. To perform preliminary knockdown analysis of differentially expressed genes. 

 

The knowledge gathered from this study will provide novel insights into how Irf6 functions 

in vertebrate early embryogenesis.   
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Chapter II: Materials and Methods 

 

2.1:  Ethics statement/ fish strain 

 

Singapore wild-type and AB strain (Eugene, Oregon) zebrafish were maintained in a life 

support system at 28 °C. Embryos were staged according to standard criteria as described 

(Kimmel et al., 1995). All animal work was performed and approved by the NUS 

Institutional Animal Care and Use Committee (IACUC).  

 

2.2: Morpholino injection 

Gene know down analysis was carried out by Morpholinos injection (explained in the 

introduction part) to study the functions of target genes. Morpholinos were purchased from 

Gene Tools LLC (Philomath, OR). They were injected into the embryos at the one- to four-

cell stage at a concentrations of  1.0 mM in 1X Danieau’s buffer (58 mM NaCl; 0.7 mM 

KCl; 0.4 mM MgSO4; 0.6 mM Ca(NO3)2 and 5.0 mM Hepes, pH 7.6). Approximately 2 nl 

of morpholino was injected into each embryo by using a FemtoJet® Microinjector 

(Eppendorf) under a dissection microscope (MZ FL III, Leica). The morpholino was 

designed to block the irf6 pre-mRNA splicing: E3I3, 5’-ctg tgt gtg tgt tac CAG GGT TGC 

T-3’ (exon sequence capitalized). A generic morpholino oligo was used as the morpholino 

toxicity control: STD, 5’-CCT CTT ACC TCA GTT ACA ATT TAT A-3’. Two 

morpholinos to knockdown the cyr61 and mapkapk3 genes were:  cyr61 MO, 5’- GCC 

TGG ACA GCC ACG AGA CAT CTC T-3’and mapkapk3 MO, 5’-TCT GAG ACT TTC 

CAT TCT GGA GCA T-3’. 
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2.3:  Total RNA extraction from fish embryos 

 

To search for genes regulated by Irf6, we conducted a whole transcriptome microarray 

analysis of zebrafish embryos subjected to dominant-negative Irf6 perturbation. The total 

RNA was used as the biological sample to perform the microarray analysis. Total RNA of 

fifteen to twenty zebrafish embryos were collected and homogenized in 0.5ml TRIZOL® 

RNA isolation reagent (Invitrogen, catalog no.15596-026) using a plastic pestle. The 

samples were then incubated for five minutes at room temperature for complete 

dissociation of the nucleoprotein complex. 0.1 ml of chloroform (EMD Chemicals Inc, 

CX1055) was added and shaked vigorously for 15 seconds and then incubated at room 

temperature for two to three minutes. The sample was then centrifuged at 16,000 g for 15 

minutes at 4°C. The aqueous phase was transferred to a new 2 ml microfuge tube and 0.25 

ml of isopropyl alcohol was added to precipitate the RNA at room temperature for 10 

minutes. After that, the sample was centrifuged at 16,000 g for 10 minutes at 4°C and the 

supernatant was discarded. The RNA pellet was washed in 0.5 ml of 70% ethanol and 

centrifuged at 8000 g for five minutes at 4°C. The supernatant was discarded and the air-

dried RNA pellet was dissolved in 0.1% DEPC (Sigma, D5758) water. The RNA 

concentration was determined by using the Nanodrop Spectrophotometer (Thermo 

Scientific). 

 

  

32



2.4: Microarray sample preparation and hybridization 

 

Four biological replicates of the E3I3-MO injected and mock injected embryos were 

harvested at the 1k cell stage and 40% epiboly stage. The total RNA was extracted by using 

TRIZOL® RNA isolation reagent (Invitrogen, catalog no.15596-026) and quantified. The 

total RNA was subsequently sent for zebrafish gene expression microarray analysis 

(Agilent). Briefly, cDNA reversely-transcribed from the total RNA was used for the 

synthesis of Cyanine-3 labeled cRNA by using Agilent Low Input Quick Amp Labeling kit 

(Agilent). After purification, the labeled cRNA was used for the hybridization with the 

slides (Agilent SurePrint G3 (Zebrafish), one color, 8x60K format). The slides were then 

scanned and the raw data was extracted using Agilent Feature Extraction Software for 

further analysis. 

 

2.5: Microarray analysis and statistics 

 

The raw data extracted by the Agilent Feature Extraction Software was included in the final 

analysis to detect differentially expressed genes by using GeneSpring software (Agilent, 

USA). Briefly, the raw data were subjected to summarization, normalization and filtering. 

After that, the one-way ANOVA was subsequently used to detect the p-value for the 

respective gene expression fold changes. The criteria for a gene to be considered 

differentially expressed were set at p ≤ 0.05 and a minimal fold change of two. Gene 

Ontology analysis was performed using the GO analysis function within GeneSpring 

(Agilent).  
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2.6:  Semi-quantitative reverse-transcription PCR:  

 

To validate the result of the microarray data, semi-quantitative reverse-transcription PCR 

was carried out. The first strand cDNA was generated using SuperScript™ II Reverse 

Transcriptase (Invitrogen, 18064-014). 0.5 μg of total RNA (100 ng/ μl), 1 μl Oligo-(dT) 

primer (500 μg/ml), 1 μl dNTP (10 mM each) and 13 μl nuclease free water were mixed 

together in a 200 μl PCR tube and incubated for five minutes at 65 °C. After the incubation, 

the mixture was quickly chilled on ice. 4 μl of 5 X First-Strand Buffer and 2 μl of 0.1 M 

DTT were added into the PCR tube and incubated at 42 °C for two minutes. Subsequently, 

1 μl (200 units) of SuperScript™ II RT was added into the reaction followed by incubation 

at 42°C for 50 minutes. After the incubation, the whole reaction was stopped by heating at 

70°C for 15 minutes. RNA was removed from the cDNA by adding 1 μl (2 units) of RNase 

H (Invitrogen, 18021-071) and incubated at 37°C for 20 minutes. 

 

100 ng of the cDNA template was used for PCR amplification using Hotstart Taq 

Polymerase (Qiagen, 203203). The primers pairs: cyr61 F/R 5’-AGT GAC CAA CAG 

TAA CGC TCA GTG C -3’ / 5’-CCG GCT TAC GAG GTC TTG TTG TAC G -3’and 

mapkapk3 F/R 5’-GAG GAG CCG TCG CAC CTG -3’/ 5’-GCC ACT CGG ATC TTA 

TTC AC-3’were used for the amplification of cyr61 and mapkapk3 respectively. Another 

primer pair: β-actin F/R 5’- TGA CCC TGA AGT ACC CAA TTG AG -3’ / 5’- GGC AAC 

ACG CAG CTC ATT G-3’ was used to amplify the internal control β-actin.  

 

 The PCR cycling conditions were set as follows:  
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Initial denaturation               95°C          15 mins 

Denaturation                         95°C            30 sec 

Annealing                             60°C            30 sec 

Extension                              72°C            30 sec 

Final extension                     72°C            10 mins        

 

Amplified products were then analyzed by agarose gel electrophoresis. 

 
2.7: pcDNA/His-Irf6-FL and pcDNA/His-Irf6-E3I3 plasmid construction 

2.7.1 Amplification of full length and truncated Irf6 
 

The pcDNA/His-Irf6-FL and pcDNA/His-Irf6-E3I3 plasmid were constructed to express 

His-tagged IRF6 full length and truncated proteins. The full length and truncated irf6 were 

amplified from the first strand cDNA that was reversely-transcribed from the total RNA 

extracted from wild-type and E3I3 MO-injected embryos respectively. The primers used for 

full length irf6 (around 1.5 kb) amplification were irf6 F 5’-ATG TCG TCT CAT CCA 

CGG CG -3’ and irf6 FL R 5’-TTA CTG CGT GTG TGC AGG GCG G -3’, whereas the 

primers for truncated irf6 (426 bp) amplification were irf6 F (mentioned above) and irf6 

E3I3 R 5’- TCA TGC CAT GTG ATG CAT AT-3’. For PCR reaction,  40.6 μl of nuclease-

free water, 5 μl of 10 X reaction buffer, 0.4 μl of dNTPs (25 mM each), 1.25 μl of each 

primers (10 μM), 1 μl of Pfu DNA polymerase (2.5 U/ μl) (Stratagene, 600135) and 0.5 μl 

of DNA template (100 ng/ μl) were mixed together in a 200 μl PCR tube. The PCR 

condition was: 95 °C for 15 minutes, 35 cycles of 95 °C for 30 seconds, 60 °C for 30 

seconds and 72 °C for two minutes, followed by a final extension of 72°C for 10 minutes. 

35 cycles 
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Amplified products were analyzed by agarose gel electrophoresis and the target bands were 

purified using illustra GFX PCR DNA and Gel Band Purification kit (GE Healthcare, 28-

9034-70). 

2.7.2 Plasmid digestion  

 

The vector pcDNATM 3.1/His A (Invitrogen, 350512) was digested with Kpn I (Fermentas, 

ER0521) at 37 oC for four hours. The digestion reaction mixture consisted of 2 μl of Kpn I 

enzyme (10 U/μl), 2 μl of 10X Buffer Kpn I, 1μl of plasmid (1μg/μl) and nuclease - free 

water.        

2.7.3 Creating blunt end 

    

The blunt ended pcDNATM 3.1/His A plasmid was created by treating the linearized 

plasmid with T4 polymerase (Fermentas, EP0061). The 20 μl reaction mixture consisted of 

4 μl of 5X reaction buffer, 1 μg linearized plasmid, 0.2 μl of T4 DNA Polymerase (5U/μl), 

2 μl dNTP (25 mM each) and nuclease - free water. The reaction was carried out at 11°C 

for 20 minutes and was stopped by heating at 75°C for 10 minutes.  

 

 2.7.4 Ligation  

 

The blunt ended vector pcDNATM 3.1/His A was ligated with full length and truncated irf6 

fragment using T4 ligase (Fermentas, EL0014) respectively. The insert fragment was 5:1 

molar ratio over vector in a 20 μl of reaction mixture. Ligation was performed at 4 °C 

overnight. 
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 2.7.5 Transformation  

 

Fifty microliters of Subcloning Efficiency™ DH5α™ Competent Cells (Invitrogen, 18265-

017) were removed from –85oC freezer, and thawed on ice. 5 μl of the DNA ligation 

reaction was added directly to tube containing 50 µl competent cells. The mixture was 

incubated on ice for 30 minutes and then heat-shocked for 20 seconds at 42°C without 

shaking. After incubation on ice for two minutes, 0.95 ml of room temperature S.O.C. 

medium (Invitrogen, 15544-034) was added, and the tube was incubated one hour at 37°C 

in a shaker at 225 rpm. Thereafter, 100 µl of the reaction was spread on LB agar plates 

containing 100 µg/ml ampicillin. The plate was incubated overnight at 37°C (16 hours) and 

the colonies were picked randomly. Colony PCR was carried out to check the insert. The 

constructed plasmids containing full length irf6 and truncated irf6 sequence were recorded 

as pcDNA/His-Irf6-FL and pcDNA/His-Irf6-E3I3 respectively. 

 

2.8: In vitro protein expression  

 

2.8.1: Generation of DNA templates for full length and truncated Irf6 protein 
expression 

 

As TNT® SP6 High-Yield Wheat Germ Protein Expression System (Promega, L3261) was 

used as the in vitro protein expression system, the SP6 promoter is necessary for the protein 

expression. Thus, a SP6 promoter was added to the full length and truncatedn His-tag Irf6 

DNA sequence.  The DNA template for the expression of His-tagged full length Irf6 

protein was amplified from  pcDNA/His-Irf6-FL plasmid using SP6 plus primer: 5’- GCG 
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AAA TTA TAT TTA GGT GAC ACT ATA GAA CAG ACC ACC ATG GGG GGT TCT 

CAT CAT-3’ and irf6 FL R primer: 5’- TTA CTG CGT GTG CAG GGC GG-3’. The DNA 

template for His-tagged truncated protein expression was amplified from pcDNA/His-Irf6-

E3I3 plasmid using SP6 plus primer and irf6 E3I3 R primer 5’-TCA TGC CA CAT GTG 

ATG CAT AT-3’. The PCR condition was: 95 °C for 15 minutes, 35 cycles of 95 °C for 30 

seconds, 60 °C for 30 seconds and 72 °C for two minutes, followed by a final extension of 

72°C for 10 minutes. Amplified products were analyzed by agarose gel electrophoresis and 

the target bands were gel purified (GE Healthcare). 

 

2.8.2: Protein expression using TNT wheat germ expression system 
 

TNT® SP6 High-Yield Wheat Germ Protein Expression System (Promega, L3261) was 

used to express the recombinant His-tagged Irf6 full length protein and His-tagged E3I3 

truncated protein. Thirty microliters of wheat germ mixture was removed from -80°C and 

thawed on ice, and 1mg purified DNA was added into the mixture and incubated at 25°C 

for two hours to express the target protein. A reaction without any DNA template was 

carried out in parallel as a negative control. The results of translation were checked by 

SDS-PAGE.  

 

2.9: Protein purification 

 

His-tagged protein purification was carried out by using Dynabeads® His-Tag Isolation & 

Pulldown system (Invitrogen, 10103D). 50 μl (2 mg) well-mixed Dynabeads were 

transferred to a microcentrifuge tube and place on a magnet for two minutes, then the 
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supernatant was discarded. The protein lysate generated from TNT® SP6 High-Yield Wheat 

Germ Protein Expression System was prepared with 700 μl of 1X Binding buffer / Wash 

Buffer (50 mM Sodium- Phosphate, 300 mM NaCl, 0.01% Tween-20 pH 8.0 ) and 

incubated with Dynabeads for 10 minutes at room temperature with rotation. After the 

incubation, the Dynabeads were washed 4 times with 300 μl 1X Binding/Wash Buffer by 

placing the tube on a magnet for two minutes, and the supernatant was discarded. 50 μl of 

His-Elution Buffer (300 mM Imidazole, 50 mM Sodium-phosphate, 300 mM NaCl and 

0.01% Tween-20; pH 8.0) was added to the Dynabeads and incubated on a roller for 5 

minutes at room temperature to elude his-tagged protein. 

 

2.10: Western blotting 

 

15% SDS-PAGE gels were used in this study. The gels were prepared as follows: 
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Table 2: SDS-PAGE gel recipe 

 Component Volume 

15% Resolving gel ddH2O 1.8 ml 

30% Acrylamide 4 ml 

1.5M Tris pH8.8 2 ml 

10% SDS 80 ul 

10% Ammonium persulphate 80 ul 

TEMED 8 ul 

Total Volume  8 ml 

   
6% Stacking gel ddH2O 2.6 ml 

30% Acrylamide 1 ml 

0.5M Tris pH6.8 1.25 ml 

10% SDS 50 ul 

10% Ammonium persulphate 50 ul 

TEMED 5 ul 

Total Volume  5 ml 

 

Protein samples were loaded and run on a MiniProtean II system (Biorad) at 80V until the 

sample passed the stacking gel, followed by 120V for two hours. After an electrotransfer 

for one hour at 100V, the PVDF membranes were blocked overnight in blocking buffer at 

4 °C (5% skim milk, 10 mM Phosphate buffer, 137 mM NaCl, 2.7 mM KCl, 0.1% Tween-

20, pH7.4). After blocking, the membranes were placed in primary antibody diluted in 10 

ml blocking buffer for two hours at room temperature. The membranes were then washed 

for 3 times with PBST buffer (10mM Phosphate buffer, 137mM NaCl, 2.7mM KCl, 0.1% 

Tween-20, pH7.4), 10 minutes each. After washing, the membranes were incubated with 

diluted secondary antibody for one hour at room temperature. The blots were developed 

with substrate for one minute and exposed with CL-XPosure (TM) Film (Pierce). 
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Table 3: Antibodies used in western blotting 

 Dilution Host Company 

Primary Antibody    

Anti-His tag antibody 1:2000 Mouse Invitrogen, 372900 

Anti-Irf6 antibody 1:2000 Rabbit Abcam, ab58915 

Secondary antibody    

Goat anti-mouse antibody 1:40,000 Goat Santa Cruz Biotechnology,sc-2031 
 

Goat anti-rabbit antibody 1:40,000 Goat Santa Cruz Biotechnology, sc-2030  
 

 

 

2.11: Electrophoretic mobility shift assay (EMSA)  

 

The electrophoretic mobility shift assay (EMSA) has been used extensively for studying 

DNA-protein interactions (Hellman and Fried, 2007). The DNA-protein complexes migrate 

slower than non-bound DNA in a native polyacrylamide or agarose gel, resulting in a “shift” 

in migration of the labeled DNA band. Double stranded oligonucleotide probes containing 

the IRF6 binding site: 5’-TTC CAA ATG GAC CGA AAC ATA TAA ATT TTG-3’for 

mapkapk3 and 5’-GCG ATG ACG CTA ACC GAA ACT TGC TAG ATG-3’ for cyr61 

were labeled with biotin using Biotin 3’-DNA Labeling Kit (Pierce, 89818). The labeling 

reaction was carried out by mixing 10 μl of 5X terminal deoxynucleotidyl transferase (TdT) 

reaction buffer, 5 μl unlabeled oligo (1 μM), 5 μl biotin-11-UTP (5 μM), 5 μl TdT (2U/μl) 

and 25 μl nuclease free water and incubated at 37°C for one hour. Thereafter, 2.5 μl of 0.2 
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M EDTA was added to stop the reaction. 50 μl chloroform:isoamyl alcohol (24:1) was 

added to each reaction to extract the TdT. The mixture was vortex briefly and centrifuge for 

two minutes at 16,000 g to separate the phases. The top (aqueous) phase was saved. The 

probes were annealed by mixing equal amounts of labeled complementary oligos, 

denatured at 95°C for one minute, and then slowly cooled (1°C/6 minutes), and incubated 

at the melting temperature 50°C for two hours.  

 

The binding reaction was tested using LightShift Chemiluminescent EMSA Kit (Pierce, 

20148). The biotin labeled probe was incubated at room temperature for 30 min with Irf6 

full length or truncated protein in the presence of binding reaction mixture (1X binding 

buffer; 2.5% glycerol; 5 mM MgCl2;50 ng/ul bovine serum albumin and 50 ng/ul 

poly(dI:dI)-poly(dI:dC)]. The DNA-protein complexes were resolved on a 6% non-

denaturing polyacrylamide gel in 0.5X TBE (45 mM Tris-HCl, 45 mM Boric Acid, 1 mM 

EDTA, pH 8.3) for 1.5 h at 120 V. Proteins and bound probes were transferred to a 

positively charged nylon membrane (Pierce, 0077016) in 0.5X TBE at 380 mA for 30 

minutes. The transferred membrane was UV cross-linked at 120mJ/cm2 for one minute 

(Stratagene). The biotin-labeled DNA was detected with a Chemiluminescence Nucleic 

Acid Detection Module (Pierce, 0089880), the film was developed and exposed to with CL-

XPosure (TM) Film (Pierce, 0034090) after which. 
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Chapter III: Results 
 

3.1: Genome-wide gene profiling microarray analysis of the E3I3 injected embryos 
 

Perturbation of Irf6 either by injection of Irf6 mRNA encoding only its DNA-binding 

domain (Sabel et al., 2009) or a splice-modifying Morpholino-E3I3 (our unpublished data) 

leads to distinct gastrulation defects and subsequent rupture of the injected zebrafish 

embryos at the animal pole, strongly suggesting that Irf6 is critical for early development. 

Since Irf6 is a transcriptional factor, identifying genes regulated by Irf6 during early 

development can aid in understanding the role of Irf6 in early development and gastrulation 

in particular. Thus, transcriptome profiling was performed to identify genes differentially 

expressed after injection of E3I3 mopholino into zebrafish embryos using the Agilent 

zebrafish gene expression microarray system.  

 

At 40% epiboly (~5 hpf), four biological replicates (40% epiboly set one) of both the mock 

MO-injected and the E3I3 MO-injected embryos were harvested and a genome-wide 

microarray analysis was performed to identify differentially expressed genes. Another three 

biological replicates (40% epiboly set two) were analyzed separately to further confirm the 

expression array result. To identify genes that may be expressed at earlier stage, embryos 

were also harvested at the 1k cell stage. Gene expression profiles were analyzed using 

GeneSpring software (Agilent). After normalization and appropriate filtering, only those 

genes with significant changes of more than two fold (p ≤ 0.05) in all replicates were 

classified as differentially expressed. 
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Datasets of differentially regulated genes were generated for the 1k cell stage (222 genes, 

62 up-regulated and 160 down-regulated), 40% epiboly set one (577 genes, 251 up-

regulated and 326 down-regulated) and 40% epiboly set two (552 genes, 238 up-regulated 

and 314 down-regulated). Among the hundreds of differentially regulated genes identified 

at 40% epiboly, 172 genes (125 down-regulated and 47 up-regulated) (Table 4) were 

consistently detected in both 40% epiboly datasets. Of note, 49 of the differentially 

expressed genes at the 40% epiboly stage (two up-regulated and 47 down-regulated) were 

also differentially expressed at 1k cell stage, as opposed to genes that were differentially 

expressed only at the 1k cell stage or the 40% epiboly stage. 
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3.2: Gene ontology study of differentiated expressed genes in E3I3 MO-injected 

embryos 

 

The 172 genes founded differentially expressed in both 40% epiboly data sets were 

subjected to Gene Ontology (GO) analysis to allow an interpretation on their putative 

functions, as gene ontology provides the consistent description of attributes of genes and 

gene products across species (Consortium, 2000). The GO analysis includes molecular 

function, biological process and cellular component catalogs, each of which includes 

several sub categories.  

 

For molecular function, binding was the most outstanding function, with 53% of genes 

related to binding activities (Figure 6). Irf6 is a transcriptional factor and likely regulates 

the expression of many down-stream targets. As approximately half of the putative 

candidate targets identified in the microarray are related to binding activities, Irf6 could 

significantly affect interactions between molecules (e.g. DNA-protein binding). Catalytic 

activity was also a noticeable function as 31% of the genes have functions related to 

catalytic activity. 

 

Approximately 20% of genes were tagged as processing cellular and metabolic functions. 

Cellular processes include cell communication, cellular senescence, and programmed cell 

death. Metabolic processes include transformation of small molecules and macromolecular 

processes, such as DNA repair and replication, protein synthesis and degradation.  
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Figure 6: Gene ontology analysis of differentially expressed genes. The GO analysis 
includes (A) molecular function, (B) biological process and (C) cellular component 
catalogs, each of which includes several sub categories. 

 

3.3: Microarray differential gene expression validation  

 

Among the differentially expressed genes, cyr61 and mapkapk3 were the most highly 

down-regulated, with 123 and 109 fold reduction respectively. CYR61 is an extracellular 

matrix-associated protein involved in cell adhesion, cell migration and cell proliferation 

(Tatiana, 2001). MAPKAPK3 is a member of the Ser/Thr protein kinase family, known to 

interact with E47, which is involved in the regulation of tissue-specific gene expression and 

cell differentiation (Neufeld et al., 2000).  
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Reverse transcription PCR (RT-PCR) of biological quadruplicates was performed to 

validate the differential expression of cyr61 and mapkapk3. The RT- PCR results confirm 

the down-regulation of these two genes, consistent with the microarray expression data 

from both the 40% epiboly data sets (1 and 2). Both cyr61 and mapkapk3 were not found 

differentially expressed at 1k cell stage. This is consistent with an mRNA deep sequencing 

analysis of the transcriptome dynamics during zebrafish embryonic stages, where cyr61 and 

mapkapk3 transcripts were detected at 3.5h or later (Aanes et al., 2011), which is after the 

1k cell stage. 

 

 

 

cyr61             

mapkapk3      

β-actin           

 

Figure 7: Validation of differentially expressed cyr61 and mapkapk3 

The down-regulation of cyr61 and mapkapk3 are confirmed with 4 replicates of E3I3 MO-
injected and mock MO-injected samples by using reverse-transcription PCR. 
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3.4: cyr61 and mapkapk3 are direct downstream targets of Irf6 

 

In addition to the remarkable down-regulation of cyr61 and mapkapk3 expression in E3I3-

MO injected embryos, I identified sequence matching the canonical IRF6 binding site 

NACC/TGAAACN (Botti et al., 2011) in both genes, AACCGAAACT and 

GACCGAAACA respectively. To determine whether cyr61 and mapkapk3 are direct 

downstream targets of Irf6 and directly bound by Irf6 protein, electrophoretic mobility shift 

assays (EMSA) were performed by using both Irf6 full length protein and E3I3 truncated 

protein. His-tagged recombinant Irf6 proteins were generated using the TNT wheat germ 

expression system, followed by His-tag protein purification. Successful protein expression 

was detected using anti-his tag antibody (Figure 8A). For the EMSA reaction, a purified 

TNT wheat germ lysate without any template was used as the negative control. Purified Irf6 

full length protein and E3I3 protein truncated protein were mixed with a double-stranded 

DNA containing the putative IRF6-binding sequence of cyr61 and mapkapk3. Both Irf6 full 

length protein and E3I3 truncated protein showed binding and gel-shifted migration of the 

cyr61 and mapkapk3 DNA fragments (Figure 8B). It is noteworthy that the E3I3 truncated 

protein – DNA complex run at the same height as the full-length Irf6 protein. Considering 

the protein and DNA complex were run in a native gel, this shift may be caused by the 

oligomerization of the E3I3 truncated protein. The competition with a non-labeled oligo 

was done to demonstrate that the binding of full-length and truncated Irf6 protein to both 

cyr61 and mapkapk3 were specific (Figure 8 C and D).  
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Figure 8: cyr61 and mapkapk3 are directly bound by Irf6 and E3I3 truncated protein. (A). 

Western blotting of His-tagged Irf6 full length protein and E3I3 are expressed by TNT wheat germ 

expression system and purification. The control is the TNT wheat germ lysate without any DNA 

template and purified under the same condition. Protein samples are blotted with anti-his tag 

antibody. (B). EMSA showing binding of Irf6 full length and E3I3 truncated protein to putative 

IRF6 binding site of cyr61 and mapkapk3. (C) and (D) EMSA with non-labeled competitors. 

Arrows indicate gel-shifted DNA band. 
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3.5: Preliminary morphology study of cyr61 and mapkapk3 MO blocked embryos 
 

A preliminary assessment of the role of Cyr61 and Mapkapk3 in early embryonic 

development was undertaken. Transcriptional blocking MO targeting cyr61 and mapkapk3 

were injected into the embryos at 1 mM concentration, with uninjected and 1mM standard 

MO injected embryos used as controls.  

 

mapkapk3 MO-injected embryos were grossly normal but displayed a kinked notochord 

and an aberrant epithelial layer of the skin (Figure 10). Survival ratios showed no 

significant difference compared to the STD MO-injected embryos (p=0.92).  

 

For cyr61, injection of the translational MO resulted in 25% embryonic lethality 24hpf, 

which was significantly different from the STD MO-injected group (p ≤ 0.05). Surviving 

embryos showed gross development defects and tissue disorganization of the cephalic 

region (Figure 11). All the embryos died by 3dpf.  

 

The preliminary morphology study of cyr61 and mapkapk3 MO perturbed embryos did not 

reproduce the early rupture phenotype of irf6 E3I3-MO injected embryos. However, the 

aberrant skin epithelial layer in mapkapk3 MO-injected embryos is suggestive of a defect of 

skin epithelial development, reminiscent of Irf6 knock-out mouse skin defects. This 

observation suggests that the epithelial defect caused by loss of function of Irf6 may be 

mediated through mapkapk3. The gross developmental defects observed in cyr61 

knockdown embryos are also generally consistent with the severe developmental defects 
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observed in Irf6 knockdown mice, suggesting that they may be mediated through cyr61. 

 

 

Figure 9: mapkapk3 MO-injected embryos show a defect of epithelial layer. 
Embryos injected with 1mM mapkapk3 MO developed grossly normally except for the 
kinked notochord and an aberrant epithelial layer at 24 hpf (arrow). 
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 Number of injected 

/uninjected at 1-cell stage 

Number of survival 

embryos at 24hpf 

Survival Rate 

Uninjected 43 43 100% 

1mM STD MO 52 47 90% 

1mM mapkapk3 MO                49 44 90% 

 
 
Figure 10: mapkapk3 MO does not cause lethal phenotype for embryos. 
Survival rate of mapkapk3 MO-injected embryos does not show a significant difference 
comparing to the mock MO-injected embryos at 24 hours post fertilization. 
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                                           1 dpf                                                 2 dpf 

 

 

Figure 11: cyr61 MO-injected embryos show gastrulation defects.  
At 24 hpf, cyr61 MO-injected embryos show severe development defects and an obvious 
cell death around head region is observed (arrow).  
 

 

 

1 
m

M
 C

yr
61

 M
O

   
   

   
   

   
   

   
   

 1
 m

M
 S

T
D

 M
O

   
   

   
   

   
   

   
  U

ni
nj

ec
te

d 

60



 

 

 

 Number of injected 

/uninjected at 1-cell stage 

Number of survival 

embryos at 24hpf 

Survival 

Rate 

Uninjected 142 139 98% 

1mM STD MO 60 58 97% 

1mM cyr61 MO 65 48 74% 

 

Figure 12: One-quarter of cyr61 MO-injected embryos die after 24 hours. 
Survival rate of cyr61 MO-injected embryos (74%) is significant different from the mock 
MO-injected embryos (97%) (Chi-square test, p ≤ 0.05) at 24 hour post fertilization. 
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Chapter IV: Discussion 

 

4.1: Interpretation of expression profile of E3I3 MO-injected embryos: Irf6 functions 

as an essential transcriptional factor during early development 

 

IRF6 is a unique member of the IRF family of transcription factor genes. Although it shares 

a highly conserved helix-turn-helix DNA binding domain (DBD) and a less conserved 

protein interaction domain (PID) of the IRF family, it is neither involved in any regulatory 

pathways nor known functions of other IRF family members. Mutations in the IRF6 gene 

have been identified as causative of the allelic autosomal dominant clefting disorders Van 

der Woude syndrome (VWS; OMIM no. 119300) and popliteal pterygium syndrome (PPS; 

OMIM no. 119500) (Kondo et al., 2002). Irf6 is critical in zebrafish development as the 

introduction of a putative dominant negative Irf6 containing only the Irf6 DNA binding 

domain produces early embryonic lethality (Sabel et al., 2009). A antisense MO (E3I3-MO) 

targeting at the splice junction of exon 3 and intron 3 of irf6 pre-mRNA leads to a rupture 

phenotype of the embryos during gastrulation (unpublished data), reminiscent of the 

phenotype described in Sabel et al. (2009) and confirms an extremely important role of Irf6 

in gastrulation. Thus, identification of genes that are affected by absence of functional Irf6 

will aid in our understanding of the role of Irf6 in the regulation of gastrulation.  

 

A genome-wide transcriptome microarray analysis was performed to detect the differential 

gene expression between mock MO-injected and E3I3 MO-injected embryos at 40% 

epiboly. 172 genes (125 down-regulated and 47 up-regulated) were identified as 

differentially regulated at 40% epiboly, just before E3I3 MO-injected embryos start 
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exhibiting gastrulation stalling. Since the E3I3 MO-injected embryos begin to stall at the 40% 

epiboly stage, we hypothesized that the downstream molecules disruptions causing this 

effect must have occurred earlier. Hence, a microarray analysis was also performed at the 

1k cell stage and 222 genes (62 up-regulated and 160 down-regulated) were identified.  

 

Among the differentially regulated genes identified at 40% epiboly, 49 (2 up-regulated and 

47 down-regulated) were also found to be already differentially expressed at the 1k cell 

stage. Thus, the differentially regulated genes identified at 40% epiboly can be divided into 

two groups: the genes dys-regulated as early as the 1k cell stage and genes only dys-

regulated at 40% epiboly. The first group of early-expressed genes indicated that Irf6 has 

started activating expression of other genes by the 1k cell stage. Given this early time-point, 

it is also likely that many of these genes are downstream targets directly transactivated by 

Irf6. For genes differentially regulated only at 40% epiboly but not at the 1k cell stage, it is 

likely that only some of them are direct Irf6 targets, while others represent genes regulated 

by the Irf6 targets. 

 

An important observation from the Irf6 disruption expression array results was the fact that 

there were many more down-regulated genes than up-regulated ones, especially for genes at 

both the 1k cell stage and 40% epiboly stage, 47 down-regulated vs 2 up-regulated, strongly 

suggesting that Irf6 acts predominantly as a transcriptional activator rather than a repressor, 

supporting the findings of an earlier study (Fleming et al., 2009). 
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4.2 The multi-function role of IRF6 

 

Since the discovery of IRF6 as the causative gene for VWS and PPS (Kondo et al., 2002), 

numerous functional studies have been carried out to elucidate its role in development, and 

regulation of cellular processes, such as differentiation, proliferation, apoptosis, autophagy 

and oncogenesis.  

 

The role of IRF6 in development and disease has been studied in different species. In 

human, a common IRF6-linked haplotype contains an unobserved mutation attributable to 

approximately 12% to all common forms of cleft lip and palate (Zucchero et al., 2004). In 

mice, loss of IRF6 causes a craniofacial defect with absent external ears, shorter and more 

rounded snouts and shorter jaws (Ingraham et al., 2006; Richardson et al., 2006). Irf6-null 

mice also exhibit severe skin defects caused by the over proliferation and failure of 

differentiation of the epithelial layer (Ingraham, Kinoshita et al. 2006, Richardson, Dixon et 

al. 2006). In zebrafish and Xenopus, the introduction of a dominant negative Irf6 causes 

gastrulation defects and embryonic rupture near the animal pole (Sabel et al., 2009). The 

rupture of the embryos during epiboly was postulated to be caused by a failure of EVL 

integrity. Our GO analysis of differentially regulated genes supports this hypothesis as 

many cell and cell part component genes were observed.  

 

The observation that Irf6-null mice exhibit severe skin defects led to further investigation 

on the role of IRF6 in differentiation and proliferation of keratinocytes. An in vitro study of 

Irf6-/- keratinocytes observed that absence of IRF6 caused a defect of differentiation, while 

over expression did not promote differentiation, indicating it is necessary but not sufficient 

64



to promote keratinocyte differentiation (Biggs et al., 2012). IRF6 has been reported to 

function as a primary downstream target of Notch in keratinocytes, and contribute to the 

regulation of differentiation and repression of tumors (Restivo et al., 2011). Besides, 

several genes related to cell proliferation and cell differentiation in keratinocyte are directly 

regulated by IRF6 (Botti et al., 2011). These findings imply that IRF6 likely functions to 

regulate cell proliferation (Botti et al., 2011). Even though the genes detected differentially 

expressed in IRF6 knock-down keratinocyte did not show up in our differentially expressed 

gene list, considering that keratinocytes are highly differentiated, the genes differentially 

regulated in the keratinocytes may not be exactly the same as those in a pluripotent embryo 

cell. Our expression array data show that 20% of the differentially expressed genes are 

involved in cellular processes (cell communication, cellular senescence, and programmed 

cell death), which is in line with this hypothesis.  

 

4.3 cyr61 and mapkapk3 are direct downstream targets of Irf6 

 

Among the differentially regulated genes caused by the induction of E3I3 MO, cyr61 and 

mapkapk3 were outstanding as they were highly down-regulated in E3I3 MO-injected 

embryos, and further confirmed by RT-PCR analysis. As the expression of these two genes 

were activated at 3.5 or later (Aanes et al., 2011), they were not detected as differentially 

expressed genes at 1k cell stage. An electrophoretic mobility shift assays (EMSA) with 

both Irf6 full length protein and Irf6 E3I3 truncated protein confirmed the direct binding of 

Irf6 to upstream elements of these two genes containing the canonical DNA-binding 

sequence. Together, these results provide compelling evidence that cyr61 and mapkapk3 

are the direct down-stream targets of Irf6. 
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CYR61 is a multifunctional matricellular protein belonging to the CCN protein family, 

whose members also include CTGF, Nov, WISP-1, WISP-2, and WISP-3 (Lau, 2011). As a 

matricellular protein, CYR61 is involved in the regulation of inflammation and wound 

repair (Chiodoni et al., 2010). The main functions of CYR61 differ depending on the cell 

type having distinct interaction with integrins and heparan sulfate proteoglycans (HSPGs), 

(Lau, 2011).  With the characters of extracellular matrix, CYR61 is tightly but non-

covalently associated with the cell surface, as a result, CYR61 can support cell adhesion 

and induce adhesive signaling in many types of adherent cell (Chen and Lau, 2009). In 

human skin fibroblasts, CYR61 supports cell adhesion and leads to the formation of 

structures critical for cell motility (Chen et al., 2001). With the formation of these critical 

structures for motility, CYR61 stimulates cell migration in fibroblasts, smooth muscle cells 

(Grzeszkiewicz et al., 2002) and endothelial cells (Leu et al., 2002). Given the importance 

of CYR61 in cell adhesion and cell mobility, the down-regulation of cyr61 in E3I3 MO-

injected embryos may be a contributing factor leading to the final rupture in these embryos. 

  

Aside from functions in cell adhesion and cell mobility, CYR61 is also reported to induce 

cell apoptosis in fibroblasts (Todorovic et al., 2005) and prostate carcinoma cells (Franzen 

et al., 2009), whereas it is involved in cell survival in endothelial cells (Leu et al., 2002) 

and breast cancer cells (Lin et al., 2004). Expression of Cyr61 during mouse embryogenesis 

is accompanied by development of the skeletal, cardiovascular, and neuronal systems 

(O'Brien and Lau, 1992), and CYR61 has also been reported to regulate osteoblastic 

differentiation (Su et al., 2010) and affect cell adhesion (Lau, 2011). CYR61 is also 

important in embryonic development (Mo and Lau, 2006; Mo et al., 2002). In Xenopus, 
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Cyr61 knockdown causes defects in gastrulation resulting in delay of blastopore closure 

(Latinkic et al., 2003). In our preliminary morphology study of cyr61 MO-injected embryos, 

injection of the translation blocking cyr61 MO caused around 25% of the embryos to die by 

24hpf, which was significantly higher than the STD MO-injected group (p ≤ 0.05). 

Surviving embryos showed severe gross developmental defects, and all embryos were dead 

by 3dpf. It should be noted that unlike Xenopus, there are two other paralogs of cyr61 

existing in zebrafish (Fernando et al., 2010), which are not significantly affected by the loss 

of functional Irf6 (tested by reverse-transcription PCR).  

 

The other putative direct target of Irf6 identified in this study, Mapkapk3, is a member of 

the mitogen-activated protein kinase (MAPK) family. Mapkapk3 is targeted by all 3 

cascades of MAPK, ERK, p38, and JNK, and mainly activated by the first two (Luig et al., 

2010). Mapkapk3 and its family member, Mapkapk2 are bifunctional switches with 

multiple functions (Gaestel, 2006) . 

 

Mapkapk3 and Mapkapk2 are reported to interact with E47, a helix-loop-helix transcription 

factor, to repress its transcriptional activity (Neufeld et al., 2000). E47 contains more than 

100 potential phosphorylation sites and is known to be phosphorylated in many cell types 

(Neufeld et al., 2000). It is involved in regulation cell cycle progression, cytokine-mediated 

signaling, T lineage development and other functions (Schwartz et al., 2006). Since 

Mapkapk3 and Mapkapk2 can phosphorylate E47 and repress its function, they can also 

conceivably regulate the above processes.  
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Mapkapk3 and Mapkapk2 are also involved in the phosphorylation of the epithelial keratins, 

Keratin 18-Ser52 and Keratin20-Ser13 (Menon et al., 2010). As the Keratin 18-Ser52 is a 

hotspot of phosphorylation modification during the S and G2/M phases of the cell cycle 

(Liao et al., 1995), Mapkapk3 and Mapkapk2 could affect cell cycle function via their 

phosphorylation function. 

 

Mapkapk3 MO-injected zebrafish embryos developed grossly normally except for a kinked 

notochord and an aberrant skin epithelial layer, and embryo survival was unaffected. Given 

that Irf6 knock-out mouse show significant skin epithelial defects (Ingraham et al., 2006), 

the aberrant skin epithelial layer of mapkapk3-MO injected embryos suggests that the 

epithelial defect after Irf6 perturbation may be mediated via down-regulation of mapkapk3. 

 

4.4 Conclusion and future work 
 

In this study, we identified and characterized cyr61 and mapkapk3 as target genes of Irf6 at 

gastrulation stage in zebrafish by profiling the transcriptome of embryos lack of functional 

Irf6 leading by the injection of E3I3 morpholino. The findings gathered from this study will 

provide novel insights into how IRF6 normally function in vertebrate embryogenesis and 

also contribute new knowledge into understanding gastrulation process. Moreover, as IRF6 

is the causative factor of VWS and PPS, the identification of IRF6 downstream targets 

which may affect the differentiation of epithelium (mapkapk3) will contribute new 

knowledge into understanding the pathogenesis of human oral clefting.  
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For the future work, characterization other strongly regulated putative target identified from 

the Irf6 perturbation screen will enable precise dissection of the contribution of each of 

these Irf6-regulated genes to both early and late embryonic development, and construct a 

net work of how Irf6 functions in development. Except for the methodology used here, the 

chromatin immunoprecipitation (ChIP) will be useful to validate the actual binding of Irf6 

to its downstream targets. Besides, Irf6 functions as a transcriptional activator, a luciferease 

assay needs to be performed to demonstrate the activate effect of the downstream targets. 

 

As the fundamental mechanism for the analysis of the function of a protein translated from 

a specific gene in vivo, gene modification allows testing the specific functions of the 

particular protein and to observe the processes that the particular protein could regulate. 

Constructing of an Irf6 knockin model to recapitulate the mutations identified in human 

VWS and PPS (eg., R84C) by using clustered, regularly interspaced, short palindromic 

repeats (CRISPR)–CRISPR-associated (Cas) systems By constructing this mode, we will 

have a clinically relevant zebrafish orofacial cleft model and have the chance to dissect the 

mechanism of the pathogenesis of oral clefting. 
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