
REFINEMENT TECHNIQUES IN MINING

SOFTWARE BEHAVIOR

ZHIQIANG ZUO

NATIONAL UNIVERSITY OF SINGAPORE

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48808727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REFINEMENT TECHNIQUES IN MINING

SOFTWARE BEHAVIOR

ZHIQIANG ZUO

BEng., Shandong University (China), 2010

A DISSERTATION SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2015

Copyright © Zhiqiang Zuo 2015

All Rights Reserved

To my parents, for their selfless and endless love

ii

Acknowledgment

It is hard to believe that this poor boy from the countryside in northern China

has got a PhD at such a world-level school of National University of Singapore. I

still remember that at the first semester when I came to Singapore in 2010, I felt

stressed and lost. But now I finish my dissertation. I could not have imagined

what I would be today without the help and support from many people, some of

whom it is possible to mention here.

First and foremost, I would like to express my heartfelt gratitude to my

advisor Dr. Siau Cheng Khoo for his continuous guidance and support during

my PhD study. His rigorous style lets me understand how to do a good research.

His optimism is contagious and motivational to me, especially during the tough

time in the pursuit of my PhD. It is he who teaches me, both consciously and

unconsciously, that there is always a solution to a problem. This has furnished

me with the patience, confidence and enthusiasm, still now and in the future.

I gratefully acknowledge Dr. Wei Ngan Chin, Dr. Mong Li Lee and Dr.

Lingxiao Jiang for agreeing to serve in my thesis committee. I would also like

to thank Dr. Wei Ngan Chin and Dr. Jin Song Dong who served in my qual-

ifying committee. Their insightful and valuable feedback helps to improve this

dissertation a lot.

My thanks also go to my research seniors: Dr. David Lo, Sandeep Kumar,

Chengnian Sun, who set examples for me in terms of hard work and research

productivity. I also thank the labmates in my group: Narcisa Andreea Milea,

Anh Cuong Nguyen, Ta Quang Trung etc., for the stimulating and inspiring

discussions, and for the great pleasure in an awesome lab.

I am grateful to my seniors: Jingbo Zhou, Jinyu Xu and Yugang Liu for

their help and care especially at the beginning of my life in Singapore. I also

thank my friends: Jiexin Zhang, Yukun Shi, Xingliang Liu, Yongzheng Wu, Nan

Ye, Chengwen Luo, Zhuolun Li, Jianxing Wang, Kegui Wu, Jing Zhai, Shuang

Liu, Tao Chen etc., for eating, playing games, watching and sharing movies

together. They are my dear “fair-weather” friends. But I also saw them in the

“bad weather”. I also want to say thanks to all the friends playing basketball

together for almost four years even though we do not know each other’s name. I

iii

indeed got a lot of fun and health from the court with them.

Last but not the least, I would like to thank my parents, Jinliang Zuo and

Xiuying Guan, who raised and educated me to be who I am today. It is their

unworldliness, honesty, guilelessness, diligence, and thrift that teach me what

is worthy and what I should really care about, how to deal with people, and

how to deal with myself. I dedicate this dissertation to them. I also thank my

grandparents Baozhen Zuo, Fengrong Zhao, and my younger sister Ruiping Zuo

who have always been the source of love, support and motivation to me.

February 4, 2015

iv

Contents

Contents v

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Semantics-directed Specification Mining 4

1.3 Statistical Debugging via Hierarchical Instrumentation 5

1.4 Organization . 6

1.5 Papers Appeared . 6

2 Literature Review 9

2.1 Specification Mining . 9

2.2 Statistical Debugging . 14

3 Semantics-directed Specification Mining 21

3.1 Motivation . 22

3.2 Framework . 23

3.3 Mining Dataflow Sensitive Specifications 24

3.3.1 Introduction . 24

3.3.2 Symbolic Instrumentation 25

3.3.3 Dataflow Tracking Analysis 25

3.3.3.1 Concepts . 26

3.3.3.2 Approach . 28

v

Contents

3.3.3.3 Challenges . 31

3.3.4 Constrained Iterative Pattern Mining 32

3.3.4.1 Background . 32

3.3.4.2 Constrained Iterative Pattern 34

3.3.4.3 Apriori Property 35

3.3.4.4 Algorithm . 36

3.3.5 Empirical Evaluation . 38

3.3.5.1 Runtime Performance of Dataflow Tracker 39

3.3.5.2 Performance Comparison 39

3.3.5.3 Case Studies . 40

3.3.6 Discussion . 42

3.4 Related Work . 43

3.5 Chapter Summary . 44

4 Statistical Debugging via Hierarchical Instrumentation 45

4.1 Motivation . 46

4.2 Methodology . 46

4.2.1 Coarse-grained Measure for Pruning 47

4.2.2 Necessary Condition . 48

4.2.3 Coarse-grained Measure for Ranking 49

4.3 Efficient Predicated Bug Signature Mining via Hierarchical Instru-

mentation . 51

4.3.1 Introduction . 51

4.3.2 Background . 52

4.3.2.1 Predicated Bug Signature 54

4.3.2.2 Discriminative Significance 55

4.3.2.3 Preprocessing and Bug Signature Mining 56

4.3.3 Approach . 57

4.3.3.1 Instrumentation 59

4.3.3.2 Predicate Selection for Boosting 60

4.3.3.3 Safeness of Threshold Boosting 61

4.3.3.4 Predicate Pruning 62

4.3.4 Empirical Evaluation . 64

4.3.4.1 Profile Collection 65

vi

Contents

4.3.4.2 Preprocessing & Mining 67

4.4 Iterative Statistical Bug Isolation via Hierarchical Instrumentation 70

4.4.1 Introduction . 70

4.4.2 Background . 72

4.4.2.1 Cooperative Statistical Bug Isolation 72

4.4.2.2 Adaptive Bug Isolation 75

4.4.3 Approach . 75

4.4.3.1 Instrumentation and Deployment 77

4.4.3.2 Pruning Measure Calculation & Necessary Con-

dition Derivation 78

4.4.3.3 Ranking Measure Calculation 79

4.4.3.4 Sufficient Data Collection 80

4.4.4 Empirical Evaluation . 81

4.4.4.1 Instrumentation Effort 82

4.4.4.2 Stability of Results 83

4.4.4.3 Performance Overhead 84

4.4.4.4 Performance Comparison with Adaptive Bug Iso-

lation . 85

4.4.5 Discussion . 85

4.5 Multiple Levels in Hierarchical Instrumentation 86

4.6 Related Work . 90

4.7 Chapter Summary . 90

5 Conclusion 93

5.1 Summary and Contributions . 93

5.2 Future Work . 95

Bibliography 99

Appendices 110

A Complete Scoped Dataflow Tracking Analysis 113

B Proof of Apriori Property 117

C Proof of Pattern Preservation 119

vii

Summary

Mining software behavior has been well studied to assist in numerous software en-

gineering tasks for the past two decades. Two research topics which received much

attention are specification mining and statistical debugging. To tackle the lack of

precise and complete specifications, specification mining is proposed to automati-

cally infer software behavior from the execution traces as specifications. In order

to support debugging activities, researchers have developed various statistical

debugging approaches (e.g., statistical bug isolation and bug signature mining)

which commonly collect two groups of execution traces and employ statistical

techniques to discover the discriminative elements as bug causes or signatures.

Among the execution traces analyzed by both specification mining and sta-

tistical debugging, there exist a significant number of useless elements. Mining

directly over the raw execution traces wastes many computing resources and pos-

sibly produces meaningless results due to the meaningless elements. To enhance

the efficiency and effectiveness of software behavior mining, refinement techniques

are required to remove unwanted elements from raw execution traces. However,

currently there is a lack of systematic refinement techniques for both software be-

havior mining studies. This dissertation presents a specific systematic refinement

technique for each of the above two studies.

For specification mining, we propose a semantics-directed specification mining

framework which exploits a user-specified semantic analysis to filter out the se-

mantically irrelevant events from execution traces before mining. Consequently,

specifications mined are all semantically significant, and mining becomes far more

efficient. Based on the framework, we present a particular dataflow sensitive

specification mining system where dataflow semantics is taken into considera-

tion. The experimental results show that our approach generates high-quality

specifications and scales well to real-world programs. Moreover, the mined spec-

ifications can practically help program understanding and bug detection.

For statistical debugging, we devise a novel hierarchical instrumentation (HI)

technique to refine the execution traces. Based on HI, we safely and effectively

prune away unnecessary instrumentation, and thus greatly reduce the overhead of

statistical debugging. We apply the HI technique to both in-house debugging and

ix

cooperative debugging for field failures. The empirical evaluation validates that

our HI technique effectively refines the execution traces under analysis by pruning

away unnecessary instrumentation. The efficiency of debugging is significantly

strengthened.

Keywords: specification mining, dataflow, automated debugging, hierarchical

instrumentation, statistical bug isolation, bug signature mining, field failures

x

List of Tables

3.1 (a).Sequence (b).Database . 34

3.2 Characteristics of subject programs 38

3.3 Performance of dataflow tracking analysis 38

3.4 Performance comparison . 40

3.5 Discriminative patterns between revision 922309 and 922299 . . . 41

3.6 An additional pattern from revision 911467 42

4.1 Correlation Coefficient . 60

4.2 Characteristics of subject programs 65

4.3 Execution time (in seconds) for profile collection 66

4.4 Disk storage space used (in KB) for profile collection 67

4.5 Time (in seconds) and memory consumption (in KB) for prepro-

cessing . 68

4.6 Time (in seconds) and memory consumption (in KB) for mining . 68

4.7 Time (in seconds) and memory consumption (in KB) for prepro-

cessing and mining together . 69

4.8 Ratio of threshold mass . 80

4.9 Characteristics of subject programs 81

4.10 Average number of iterations and average number of predicates

instrumented per iteration . 83

4.11 Average number of successful runs and average number of test

cases used per iteration . 83

4.12 Time overhead . 84

xi

List of Figures

1.1 Overview of mining software behavior 1

1.2 Overview of refinement techniques 3

2.1 Specification examples mined . 9

2.2 Workflow of statistical debugging 14

3.1 Framework of semantics-directed specification mining 23

3.2 Workflow of dataflow sensitive specification mining 24

3.3 A running example . 26

3.4 Dynamic data dependence graph 26

3.5 Sequence lattice . 33

3.6 Execution time against the number of statements 39

3.7 Code changes between revision 922309 and 922299 in ZipUtil . . 41

4.1 Workflow of predicated bug signature mining via HI 53

4.2 Percentage of predicates instrumented 65

4.3 Percentage of predicates analyzed 67

4.4 Workflow of iterative bug isolation for field failures via HI 73

4.5 Threshold used for pruning versus ordering of predicates consid-

ered for instrumentation . 79

4.6 Sufficient data collection strategy 81

4.7 Percentage of predicates instrumented 82

xiii

List of Algorithms

1 Scoped Dataflow Tracking Analysis 29

2 KillAndGen(Su, Sd, s) . 30

3 CIPM(D(T),min_sup,min_den) 36

4 Coarse-grained Pruning Measure Computation 48

5 Predicated Bug Signature Mining via HI 58

6 Iterative Statistical Bug Isolation via HI 76

7 Predicated Bug Signature Mining via HI (Multi-level) 88

8 Iterative Statistical Bug Isolation via HI (Multi-level) 89

9 Complete Scoped Dataflow Tracking Analysis 114

10 KillAndGen(Su, Sd, Su∗, Sd∗, s) . 115

xv

Chapter 1

Introduction

As modern software systems grow in capability and complexity, they greatly in-

crease the difficulties and challenges in software development and maintenance.

Over the past two decades, in order to improve software productivity and quality,

data mining techniques are widely applied to discover software behavior from

a variety of software engineering data, e.g., source code, documentations, bug

reports, and execution traces [75, 111, 97]. Plenty of such research and devel-

opment studies have provided practical assistance in many software engineering

tasks, such as program development [76, 64, 110, 99, 13], software understanding

[28, 68, 53, 87, 54], fault detection [56, 62, 106, 14, 63, 81], testing [28, 39, 83, 24],

and debugging [48, 58, 4, 15, 96, 22, 50]. Figure 1.1 provides an overview of the

diverse applications of data mining and machine learning techniques on software

engineering tasks.

Figure 1.1: Overview of mining software behavior∗

∗This is partially borrowed from [111].

1

In this dissertation, we focus on the following two specific research topics:

specification mining and statistical debugging.

Specification Mining. Software specifications play a crucial role in many soft-

ware engineering tasks, e.g., program understanding, fault detection, and verifi-

cation. However, due to the short time-to-market constraint, changing require-

ments, and poorly managed product evolution, the lack of precise and complete

specifications is a common situation in practice. One approach to addressing this

challenge is to automatically infer specifications of a system from its execution

traces by a dynamic analysis process referred to as specification mining (see e.g.,

[6]). Recently, various data mining and machine learning techniques have been

adopted to discover software behavior as specifications in different formats [65]:

automata [6, 87], patterns/rules [56, 105, 101] and value-based invariants [28, 21].

Statistical Debugging. Bugs are prevalent in software systems. As is well

known, debugging is a notoriously painstaking and time-consuming task. To re-

duce developers’ burden, researchers have proposed a wide variety of automated

debugging approaches. Statistical debugging is one major family of these auto-

matic approaches. The underlying rationale is that program elements which are

frequently executed in the failing runs but rarely executed in the passing runs are

quite likely to be faulty. These statistical debugging approaches collect failing

and passing execution traces and apply statistical techniques to identify discrim-

inative elements as potential bug causes [47, 58, 3] or signatures [42, 15, 96].

In both specification mining and statistical debugging, developers perform

statistical techniques (frequent pattern mining or statistical analysis) on the exe-

cution traces† to discover significant software behavior. Unfortunately, there are

a considerable number of insignificant or redundant elements (method call events

or data predicates) occurring in these execution traces. As a consequence, min-

ing directly over the raw execution data wastes enormous amount of computing

resources due to these useless elements, and thus severely affects the efficiency

and scalability of mining. Moreover, owing to the presence of the noise in the

datasets, mining may sometimes produce meaningless or even erroneous results.

These meaningless results will cause serious decline in effectiveness and practi-

†Someone also call them execution profiles. We use “traces” and “profiles” interchangeably
in this dissertation.

2

Chapter 1. Introduction

cability of software behavior mining.

To enhance the performance of software behavior mining, refinement tech-

niques are recommended to remove unwanted elements from the raw execution

traces. However, currently there is a lack of systematic refinement techniques

for both software behavior mining applications. In this dissertation, we investi-

gate the above problem and develop systematic techniques so as to improve the

efficiency and effectiveness of software behavior mining.

1.1 Thesis Statement

We give the following thesis statement explored by our research. It shall sum-

marize the key contribution of this dissertation.

Thesis Statement
The efficiency and effectiveness of software behavior mining can
be significantly improved by systematically refining the software
execution data under analysis.

For each of the above two studies (specification mining and statistical debug-

ging), we develop a specific systematic refinement technique, which guarantees

safe removal of unwanted elements from the execution traces and significant re-

duction in mining overhead.

Figure 1.2: Overview of refinement techniques

Specifically, for specification mining, we propose a semantics-directed speci-

fication mining framework which exploits a user-specified semantic analysis to

filter out the semantically irrelevant events from the raw data collected (i.e., the

raw execution traces) before mining. Consequently, the mining dataset is ef-

fectively refined. The mined specifications are all semantically significant, and

3

1.2. Semantics-directed Specification Mining

mining becomes far more efficient. For statistical debugging, a novel hierarchical

instrumentation (HI) technique is devised. Based on HI, we effectively prune

away the unnecessary program elements (i.e., predicates) for instrumentation.

As a result, the execution traces collected and analyzed are significantly refined.

The overhead of statistical debugging can thus be greatly reduced.

Figure 1.2 shows the overview of our refinement techniques. We briefly de-

scribe semantics-directed specification mining and statistical debugging via hier-

archical instrumentation in the following two subsections, respectively.

1.2 Semantics-directed Specification Mining

To tackle the lack of precise and complete specifications, a great number of

specification mining approaches have been studied to discover various software

behavior as specifications. The majority of these specification mining approaches

adopt a statistical technique, and share a common assumption: significant pro-

gram properties occur frequently . They in general discover frequent patterns from

the raw execution traces as specifications. Due to the presence of semantically

insignificant events in the raw mining data (i.e., raw execution traces), a great

number of meaningless specifications are produced. These meaningless specifi-

cations seriously undermine the performance of specification mining in terms of

both efficiency and effectiveness. The underlying reason is that statistical sig-

nificance does not usually correlate to semantic significance. Many statistically

frequent specifications produced are semantically insignificant.

In order to enhance the efficiency and effectiveness of specification mining, we

refine the execution traces before mining by introducing semantic information,

and thus propose a semantics-directed specification mining framework (Chapter

3) to discover semantically significant specifications. The essential idea lies on the

assumption that semantically significant specification should be both semantically

relevant and statistically significant. We propose the respective semantic analy-

sis according to user-specific semantics to extract semantically relevant sequences

from raw execution traces, and then perform frequent pattern mining on these

sequences to generate semantically significant specifications. Since all semanti-

cally irrelevant events are filtered out through the semantic analysis, the mined

specifications are all semantically significant, and mining gets more efficient.

4

Chapter 1. Introduction

We develop a particular semantics-directed specification mining system called

dataflow sensitive specification mining where dataflow semantics is considered

(Section 3.3). The empirical evaluation confirms that insignificant specifications

are effectively pruned away and the efficiency of mining is highly improved by our

approach. Furthermore, the mined specifications capturing the essential program

behavior can practically help program understanding and bug detection.

1.3 Statistical Debugging via Hierarchical Instrumen-

tation

To assist in debugging, researchers have developed a wide variety of statistical

bug isolation‡ and bug signature identification systems. One problem with these

statistical debugging systems is that they consider every program statement to

be potentially relevant to the bug, and thus instrument the entire program to

obtain the full-scale execution information before performing bug discovery task.

However, most program code works well, and only small portions of a program are

relevant to a given bug [16]. Such full-scale program instrumentation surely costs

dearly due to the unnecessary execution data collection, storage and analysis.

In order to refine the execution data collected and analyzed and thus reduce

the overhead of statistical debugging approaches, we propose a novel hierarchical

instrumentation (HI) technique in Chapter 4. The core of HI is to only select

essential program elements for instrumentation so that bug-relevant elements

can be identified with much less instrumentation and analysis cost. The HI

technique consists of two granularities of instrumentation: coarse-grained (e.g.,

function-level) and fine-grained (e.g., predicate-level). In brief, we first perform

a lightweight coarse-grained instrumentation to acquire the execution informa-

tion of coarse-grained elements (functions). We safely and effectively prune away

fine-grained elements (predicates) for instrumentation according to the obtained

coarse-grained information. In other words, we significantly refine the data col-

lected and analyzed while producing the same results as original.

We apply the HI technique to two different types of statistical debugging

approaches, namely in-house debugging and cooperative debugging for field fail-

‡We use “fault localization” and “bug isolation” interchangeably in this dissertation. Both
refer to localizing defects based on execution traces.

5

1.4. Organization

ures. Specifically, we first employ the HI technique to predicated bug signature

mining (MPS) [96] (which is an in-house debugging approach) and propose an

efficient approach via HI, called HIMPS (Section 4.3). Secondly, we investigate

the adoption of HI to cooperative bug isolation for field failures (CBI) [58] and

propose an iterative approach via HI (Section 4.4). The empirical studies show

that our HI technique safely and effectively prunes away unnecessary instrumen-

tation, thus significantly refines the execution traces under analysis. Ultimately,

the efficiency of debugging is substantially strengthened.

1.4 Organization

The organization of this dissertation is as follows.

Chapter 2, gives the preliminaries and literature review on specification mining

and statistical debugging.

Chapter 3, presents a semantics-directed specification mining framework to ef-

ficiently discover semantically significant specifications. We first introduce the

framework and then discuss a particular system called, dataflow sensitive speci-

fication mining which is built based on the framework.

Chapter 4, describes a systematic hierarchical instrumentation technique to

improve the efficiency of statistical debugging. We first propose the systematic

technique and then introduce two particular applications: an efficient predicated

bug signature mining approach via HI and an iterative statistical bug isolation

approach for field failures via HI.

Chapters 5, concludes this dissertation by discussing the contributions and

future work.

1.5 Papers Appeared

The following lists my papers appeared in this dissertation.

• Zhiqiang Zuo and Siau-Cheng Khoo. “Mining Dataflow Sensitive

Specifications” . In Proceedings of the 15th International Conference on

Formal Engineering Methods, (ICFEM’13), pages 36-52, 2013. [122]

6

https://drive.google.com/file/d/0B58Jj9Us3ouQajJpUWxnYTJNWUE/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQajJpUWxnYTJNWUE/edit?usp=sharing

Chapter 1. Introduction

• Zhiqiang Zuo. “Efficient Statistical Debugging via Hierarchical In-

strumentation” . In Proceedings of the 2014 International Symposium

on Software Testing and Analysis, (ISSTA’14 Doctoral Symposium), pages

457-460, 2014. [121]

• Zhiqiang Zuo, Siau-Cheng Khoo and Chengnian Sun. “Efficient Predi-

cated Bug Signature Mining via Hierarchical Instrumentation” .

In Proceedings of the 2014 International Symposium on Software Testing

and Analysis, (ISSTA’14), pages 215-224, 2014. [124]

• Zhiqiang Zuo and Siau-Cheng Khoo. “Iterative Statistical Bug Iso-

lation via Hierarchical Instrumentation” . In DSpace at School of

Computing, NUS, (TRC7-14), pages 1-13, 2014. [123]

7

https://drive.google.com/file/d/0B58Jj9Us3ouQSnlBWGdjTGgtaDA/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQSnlBWGdjTGgtaDA/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQb3NKRTVnMGRnblE/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQb3NKRTVnMGRnblE/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQOEJ0Z0hGSGpFYVU/edit?usp=sharing
https://drive.google.com/file/d/0B58Jj9Us3ouQOEJ0Z0hGSGpFYVU/edit?usp=sharing
https://dl.comp.nus.edu.sg/jspui/handle/1900.100/4666

Chapter 2

Literature Review

We present the preliminaries of specification mining and statistical debugging,

as well as a brief overview of some existing work in the following.

2.1 Specification Mining

As mentioned earlier, specification mining is intended to automatically discover

program specifications. In brief, specification mining takes source code or execu-

tion traces as input and applies data mining or machine learning techniques to

generate specifications in various formats. The work of specification mining can

be briefly categorized in terms of the formalism of their mined specifications, as

follows: finite state machines, frequent patterns/rules, value-based invariants.

(a) finite state machine –
file access

(b) frequent pattern – context menu
in JFace

(c) value-based invariant
– square computation

Figure 2.1: Specification examples mined∗

Each category has its own features and specific applications. Basically, finite

state machines and frequent patterns/rules are event-based specifications. They

are used to describe program behavior, system protocols and interactions of com-

ponents. They usually take as input the sequences of events (e.g., method calls)

∗These examples are taken from [65].

9

2.1. Specification Mining

from execution traces or source code and apply automata learning or frequent

pattern mining techniques to infer models or patterns. Figure 2.1(a) and Figure

2.1(b) show the example of finite state machines and patterns mined, respectively.

On the other hand, value-based invariants describe relationships among various

variables characterizing system’s states, e.g., the precondition and/or postcondi-

tion of a method. They are state-oriented. An example is illustrated in Figure

2.1(c).

Overall, all these different forms of specifications present the functionalities

of the program under analysis to some extent. They provide different focuses and

therefore offer different usages. In the following, we will discuss several studies

of each category in some detail.

Mining Finite State Machines. One of the pioneering works is presented

by Cook and Wolf [20]. They explored methods for automatically deriving the

formal model of a process from the event sequences collected on the process.

They termed this analysis process discovery.

Ammons et al. [6] first proposed the term specification mining, which is a

machine learning approach to discovering formal specifications of the protocols

which the program must obey when interacting with an API or ADT. Based on

the assumption that common behavior is often correct behavior, they collected

the execution traces of the program and summarized the frequent interaction pat-

terns as finite state machines. However, the statistical hypothesis could produce

statistically frequent but semantically insignificant patterns which undermine the

practicability of specification mining. To tackle this problem, Ammons et al. an-

notated the traces with intra-procedural dataflow dependency information, thus

to improve the quality of specifications.

The work by Ammons et al. is extended by Lo and Khoo [64]. They devel-

oped an accurate, robust and scalable specification miner (SMArTIC) to discover

the temporal API specifications. Based on the hypothesis: (1) filtering erroneous

traces and (2) clustering related traces can improve the quality of specification

mining, they introduced the trace filtering and clustering to eliminate the influ-

ence of incorrect traces and over-generalization in automata learning.

In [32], Gabel and Su introduced a symbolic algorithm based on binary deci-

sion diagrams (BDDs) to automatically mine resource usage patterns ((ab∗c)∗).

10

Chapter 2. Literature Review

They later extended their approach to generate complex temporal properties

from the execution traces by composing the simple generic patterns [31].

Lorenzoli et al. [70] enhanced the finite state models capturing interactions

between software components with value-based invariants. They presented GK-

tail approach to extract extended finite state machines (EFSMs) from interaction

traces. Since the extended finite state machines capture constraints of both

component interactions and data values, they can include more detailed and

more precise information.

Pradel and Gross [87] presented a scalable approach to infer automaton-based

specifications of method call sequences associated with multiple related objects

from large volume of runtime traces. The essential idea behind the approach is

to split the large number of runtime events into small sets of related objects and

events, called object collaborations. Each object collaboration can be analyzed

separately. Hence, the approach can analyze large volume of events in reasonable

time. Moreover, since all the events in one object collaboration are semantically

relevant due to the shared object, the mined specifications are semantically sig-

nificant.

Lee et al. [54] proposed parametric specification mining. They distinguished

different object interactions using parameters. A parametric trace slicing is first

adopted to slice the parametric execution traces into a set of independent object

interactions corresponding to different parameter bindings. An FSA learner is

then employed to infer a finite state machine from a set of separate interactions

generated by the trace slicing. The inferred finite state machines annotated with

parameters are reported as the final parametric specifications.

Mining Patterns and Rules. PR-Miner is developed by Li and Zhou to

automatically extract implicit programming rules from software code [56]. In this

work, they adopted frequent itemset mining to efficiently mine programming rules

in general forms. These rules can be composed of various program elements such

as functions, variables and data types. These mined rules are then used to detect

violations. As PR-Miner does not take semantic information into account, many

semantically insignificant rules could be generated. These meaningless rules can

produce considerable false positives when they are used to detect violations.

In [66], Lo et al. presented a novel technique to discover software temporal

11

2.1. Specification Mining

patterns from execution traces. They termed the particular pattern iterative

pattern. In essence, iterative pattern is a sequence of events, which must satisfy

total ordering and one-to-one correspondence properties. In their work, a depth-

first search mining algorithm CLIPER is proposed to mine a closed set of iterative

patterns. In subsequent work [67], they mined a non-redundant set of statistically

significant temporal rules of arbitrary length from program execution traces.

Again, due to the lack of semantic significance, their approach could produce

meaningless specifications, which severely affect the efficiency and effectiveness

of specification mining.

JADET is developed by Wasylkowski et al. to discover frequent usage pat-

terns and detect anomalies via these patterns [105]. It constructs a set of object

usage models which is composed of the associated method calls invoked by a spe-

cific object or use this object as a parameter. It then produces for each method

M under analysis a set of call pairs appearing in an object usage model within

M . JADET next discovers the frequent patterns as “normal” usage patterns over

the sets of call pairs for all methods using frequent itemset mining [37]. If a pat-

tern is supported by many methods but violated by few methods, it represents

an anomaly. In essence, similar to [87], JADET considers the object sharing

relation before mining to guarantee semantic significance of specifications.

Thummalapenta and Xie [101] mined exception-handling rules as sequence

association rules to capture common exception-handling behavior. They first

constructed a static trace database via a code search engine, next adopted a

frequent sequence mining tool [104] to mine frequent closed subsequences from

the database. Each mined subsequence is then transformed into an association

rule. Note that the intra-procedural data-dependency is also analyzed to filter

out unrelated calls before mining.

Lo and Maoz [69] integrated the scenario-based specification mining with in-

ference of value-based invariants. This combination produces more expressive

specifications, i.e., the scenario-based specifications annotated with value-based

invariants. Briefly speaking, they first mined the frequent scenario-based speci-

fications in the form of live sequence charts (LSC) [40]. They then inferred the

scenario-specific invariants with respect to the mined LSCs using the scenario-

based slicing technique.

12

Chapter 2. Literature Review

Nguyen and Khoo also noticed the problem that many meaningless specifi-

cations could be produced by the mining process alone. Different from several

work considering the semantic information before mining, they extracted signif-

icant specifications from the mined specification candidates through mutation

testing [79, 80]. They first performed frequent pattern mining over the execution

traces to discover the frequent patterns as specification candidates. Given a spec-

ification candidate, they next mutated the associated method body such that it

violates the given candidate. The mutated method is run over the specific input

to see if an exception is thrown. If the mutation indeed leads to misbehavior,

the specification candidate is regarded as significant.

Mining Value-based Invariants. One pioneering work of discovering value-

based invariants is Daikon [27, 28, 30] which infers likely program invariants

from program execution traces. An invariant is a property which holds at a

program point or points. These properties can be useful for many software tasks,

from design to maintenance. Specifically, Daikon firstly runs the instrumented

program over a set of test cases to obtain execution traces containing variable

values of interest. It checks a set of possible invariants against the observed

values in the trace. Once an invariant encounters a contradictory sample during

checking, it will be discarded. Eventually, Daikon reports those invariants that

are tested to a sufficient degree without falsification. Csallner et al. [21] applied

dynamic symbolic execution for invariant inference. Different from Daikon that

falsifies pre-set invariants by checking the observed values, they directly inferred

the likely program invariants by dynamic symbolic execution.

These value-based invariants can be used for many applications, e.g., program

understanding, verification, anomaly detection. They can also combined with the

automaton- and rules-based specifications discussed above to further enhance the

expression power of specifications, just like what have done by [70, 69].

All in all, mining specifications without considering semantic information could

produce too many program properties, many of which are found to be seman-

tically insignificant. The presence of these insignificant specifications severely

affects the efficiency and effectiveness of specification mining. Several stud-

ies [62, 56, 66, 32, 31] mentioned above that do not consider semantic infor-

13

2.2. Statistical Debugging

mation have shown their drawbacks. On the other hand, some researchers

[105, 101, 100, 87] have attempted to address this semantics-deficiency issue.

However, none of these remedies proposed really incorporate in-depth semantic

information into specification mining by refining the data under analysis be-

forehand. In Chapter 3, we develop a semantics-directed specification mining

framework to refine the execution traces before mining by considering in-depth

semantic information, finally to efficiently discover semantically significant spec-

ifications.

2.2 Statistical Debugging

Statistical debugging approaches in essence collect two groups of execution pro-

files† and apply statistical techniques to pinpoint discriminative elements as the

potential bug cause or bug signature.

Figure 2.2: Workflow of statistical debugging

The procedure is as follows. Given a buggy program, we instrument it and

then run the instrumented program over test cases. Thus each run will generate

an execution profile recording the runtime execution information. Various types

of coverage elements have been adopted to capture the execution information,

e.g., the statements [47, 3], basic blocks [15] or functions [22] executed, def-use

pairs [94], data predicates [58, 60] tracked during execution. The profile asso-

ciated with the run behaving as expected (say, producing the correct output as

oracle) is called passing, the profile associated with misbehavior is called failing.

The rationale of statistical debugging is that program elements which appear

frequently in failing executions but rarely in passing ones are highly correlated
†We use execution traces and profiles interchangeably in this dissertation.

14

Chapter 2. Literature Review

to the failure and potentially faulty. Therefore, various statistical discriminative

measures are utilized to quantify this correlation. We call these measures as sus-

piciousness measures. Different measures have been investigated [71], all based

on the intuition that: if an element is highly discriminative from the failing and

passing executions, then it is highly suspicious. Figure 2.2 shows the workflow

of statistical debugging.

Statistical Bug Isolation. Statistical bug isolation is a family of approaches

which isolate a single suspicious element as the root cause of failure by identi-

fying the discriminative behavior between passing and failing execution profiles.

As mentioned above, there are two essential issues to consider: type of cover-

age elements capturing program execution behavior and discriminative measure

utilized to quantify the suspiciousness of elements.

Tarantula [48, 47] and Ochiai [4, 3] both use statement coverage information

to represent the execution behavior and assess the suspiciousness of each state-

ment based on their proposed suspiciousness measures. Instead of considering

statement coverage information, Liblit et al. [58] collected runtime values of

predicates and introduce Importance metric to measure each predicate.

Nainar et al. [9] introduced complex predicates composed of atomic pred-

icates from [58] using logical operators (such as conjunction and disjunction).

They demonstrated that complex boolean predicates are informative and useful.

Gore et al. [33] also extended [58] by introducing the notion of elastic predicates

such that statistical bug isolation can be tailored to a specific class of software

involving floating-point computations and continuous stochastic distributions.

Different from the uniform and static predicates capturing the negative and pos-

itive nature of a variable in [58], elastic predicates are constructed to capture

the relations of a variable with its mean and standard deviation computed be-

forehand from all executions. Note that runtime predicates provide finer-grained

execution information than statement coverage, therefore more precise results

can be achieved. However, it suffers heavier instrumentation and higher analysis

cost than statement coverage.

Furthermore, several researchers have noticed that the suspiciousness mea-

sures employed in the statistical debugging approaches could be susceptible to

confounding biases [77, 86] so that the effectiveness of debugging is weakened.

15

2.2. Statistical Debugging

To this end, causal inference has been recently applied to reduce the control

and data flow dependence confounding biases in statement-level [11, 12] and also

failure flow confounding bias in predicate-level [34] statistical bug isolation.

Bug Signature Identification. As is well known, debugging is an integral pro-

cess of localizing the bug, understanding and then fixing it. Most of automated

debugging approaches proposed focus only on the first bug localization phase, as

we have reviewed many such works earlier. These studies commonly try to isolate

the root cause of the bug, which is usually a single buggy statement. However, in

practice, it is difficult to understand the bug by examining that single statement

in isolation. The perfect bug understanding [85] does not hold. To better support

debugging, more information than sole buggy statement or root cause is required.

The “context” where the bug occurs is likely to provide more useful clue for iden-

tifying, understanding and correcting bugs. Hsu et.al [42] coined the term bug

signature which comprises multiple elements providing bug context information.

They adopted sequence mining algorithm to discover longest sequences in a set

of failing executions as bug signatures. Cheng et.al [15] identified bug signatures

using discriminative graph mining. They mined the discriminative control flow

graph patterns from both passing and failing executions as bug signatures. Since

only control flow transitions are considered in [15], bugs not causing any devia-

tion in control flow transitions can not be identified. To enhance the predictive

power of bug signatures, Sun and Khoo [96] proposed predicated bug signature

mining, where both data predicates and control flow information are utilized.

They devised the discriminative itemset generator mining technique to discover

succinct predicated bug signatures.

In addition, Jiang and Su [44] proposed context-aware statistical debugging.

Different from directly mining signatures, their approach first identifies suspi-

cious bug predictors by feature selection, then groups correlated predictors by

clustering and finally builds faulty control flow paths linking predictors to provide

contextual information for debugging.

The problem with these statistical debugging approaches (statistical bug isolation

[48, 47, 58, 4, 3, 33] and bug signature mining [15, 96]) is that they consider ev-

ery program statement to be potentially relevant to the bug, and thus instrument

16

Chapter 2. Literature Review

the entire program to obtain the full-scale execution information for debugging.

As a matter of fact, most program code works well. Such full-scale program in-

strumentation costs dearly in terms of wastage of execution time, storage space,

CPU and memory usage due to the unnecessary execution data collection, storage

and analysis. In this dissertation, we devise a hierarchical instrumentation tech-

nique to conduct selective instrumentation such that only the necessary program

elements which are highly correlated to the failure are instrumented, ignoring

irrelevant ones. The statistical debugging approaches can thus become more

efficient. We will present it in detail in Chapter 4.

Cooperative Bug Isolation for Field Failures. In general, developers run

the instrumented program in the laboratory to collect the execution profiles and

then analyze them for debugging. We call these approaches in-house debugging,

which is inherently suitable for debugging the failures occurring before software

deployment. However, most software deployed remains buggy in spite of exten-

sive in-house testing and debugging. These failures that occur after deployment

on user machines are called field failures [18, 46]. To debug these field fail-

ures, developers are required to reproduce them in the laboratory according to

the bug reports and then perform the same process shown by Figure 2.2 as in-

house debugging. However in practice, it is hard for developers to reproduce

field failures (especially client-side failures) in the laboratory due to the different

environments, configurations, and/or nondeterminism. In [59, 58], Liblit et al.

proposed a different execution data collection scheme for debugging field failures.

They directly gathered the execution profiles from end-users. Specifically, they

deployed the instrumented program to users and collected user’s execution pro-

files for debugging with user’s approval. They term this approach cooperative bug

isolation [59]. In order to encourage active users’ participation, the overhead for

running the instrumented programs should be kept sufficiently low. To this end,

sparse random sampling [57, 8] is adopted. Specifically, only a sparse and ran-

dom subset of predicates are sampled to record their execution information while

the instrumented program is running. Thus each user’s overhead for running the

instrumented program is sharply reduced. From the perspective of developers,

the execution information of different predicates can be collected from different

users. Based on the large user base, the complete execution information of all

17

2.2. Statistical Debugging

the predicates can be obtained so as to perform the statistical debugging.

This sampling technique amortizes the monitoring cost to a considerable num-

ber of end-users so that each user suffers a relatively low time overhead. Nev-

ertheless, from the perspective of developers, the total monitoring overhead and

the total size of execution data collected and analyzed remain unchanged. In

this sense, the cooperative approach still suffers the same problem as mentioned

earlier that: plenty of unnecessary execution data is collected and it consumes

many resources such as network bandwidth, storage space, CPU time etc. due

to the need for data transfer, storage and analysis.

As an extension of cooperative bug isolation, iterative (cooperative) bug iso-

lation approaches [16, 10] have been proposed to ensure minimal effort spent by

both end-users and developers. These approaches perform the instrumentation

and statistical analysis in an iterative manner. Instead of the entire program,

only partial code is instrumented and analyzed at each iteration. In these ap-

proaches, developers checked the bug predictors reported during each iteration

and adjusted the instrumentation plan for the next iteration. The iterative de-

bugging process proceeds until the bug is found or the entire program is explored.

Specifically, Chilimbi et al. [16] monitored a set of functions, branches and paths

to analyze whether these are strong predictors of the failure at each iteration.

If so, they terminated the iterative process by returning these strong predictors.

Otherwise, they expanded the search via a static analysis to monitor other parts

of code closely interacting with the weak predictors. Similarly, Arumuga et al.

[10] proposed an adaptive monitoring strategy based on the following principle of

locality: if a predicate is highly predictive of failure, then predicates in its vicinity

are potentially good bug predictors as well. To this end, the strategy monitors a

few predicates at each iteration and adaptively adjusts the instrumentation plan

to include predicates close to the highly suspicious predicate currently explored.

However, there are two main drawbacks of iterative approaches. Firstly, both

iterative approaches [16, 10] make use of the principle of locality to guide their

search for bugs; this principle however is not always effective in localizing bugs,

as experiments have found [10]. Secondly, both iterative approaches require de-

velopers to check the predictors reported at each iteration, until the bug cause

is found. As claimed in [85], developers are reluctant to go through a list of

18

Chapter 2. Literature Review

predictors, not to mention the need to repetitively perform this check at every

iteration. In this dissertation, we will tackle the above drawbacks for coopera-

tive bug isolation and propose an iterative statistical bug isolation approach via

hierarchical instrumentation in Section 4.4.

Other Automated Debugging Approaches. Apart from the statistical

approaches mentioned above, there also exist other automated debugging ap-

proaches. Program slicing [108, 72] is one commonly used technique for debug-

ging. Recently, to improve the effectiveness, dynamic slicing [119] is adopted for

debugging. Zeller et al. proposed delta debugging to isolate the failure-inducing

difference in source code [114], inputs [116], and program states [115, 19] between

one failing and one passing run. Gupta et al. [36] integrated dynamic slicing with

delta debugging to narrow down the search for faulty code, while introducing the

concept of failure-inducing chops. Similar to delta debugging for program states,

Zhang et al. [117] forcibly switched the branch predicate’s outcome in a failing

run and localize the bug by examining the predicate whose switching produces

correct result. In [93, 92], Renieris and Reiss selected from a large number of

passing runs one passing run which most resembles the failing run using program

spectra, and differentiated the program spectra of these two runs to help isolate

the cause of the bug.

19

Chapter 3

Semantics-directed Specification

Mining

Specification mining has become an attractive tool for assisting in numerous

software development and maintenance tasks. The majority of these approaches

directly mine frequent behavior as specifications from the raw execution traces.

Unfortunately, directly mining frequent behavior from the raw execution traces

containing semantically insignificant events produces too many frequent program

properties, many of which are found to be semantically insignificant. The pres-

ence of these insignificant specifications severely undermines the efficiency and

effectiveness of specification mining.

In this chapter, we develop a semantics-directed specification mining frame-

work to refine the execution traces before mining by considering in-depth seman-

tic information, finally to efficiently discover semantically significant specifica-

tions. On the basis of this framework, we take into account dataflow semantics

and thus propose a particular specification mining system called dataflow sensi-

tive specification mining. It is validated by the experiments that our approach

effectively refines execution traces and efficiently produces semantically signifi-

cant specifications.

In the following, Section 3.1 first gives the motivation of our work. The

framework is then presented in Section 3.2, followed by an application in Section

3.3. We discuss the related work in Section 3.4. Section 3.5 finally summarizes

this chapter.

21

3.1. Motivation

3.1 Motivation

Program comprehension has been found to be a crucial and time-consuming com-

ponent of software maintenance task. While the comprehension task can be made

easier by the presence of program specifications, the short time-to-market con-

straints, changing requirements, and poorly managed product evolution reduce

the availability of such specifications, causing them to be incomplete, incorrect

and obsoletely documented. One approach to addressing this challenge, which

has been gaining much recognition by the software development community, is

to automatically infer specifications of a system from its execution traces by a

dynamic analysis process referred to as specification mining (see e.g., [6, 66]).

The majority of these specification mining approaches adopt a statistical ap-

proach, and share a common assumption: significant program properties occur

frequently . Unfortunately, statistical inference of program properties remains

unsatisfactory. A prevalent obstacle to these specification mining approaches is

that a great number of meaningless specifications could be produced by directly

mining over the raw traces. It is painful and laborious to separate them from

those semantically meaningful specifications. Consequently, the presence of these

meaningless specifications will seriously weaken the quality of inferred specifica-

tions, and diminish their value in use. Moreover, generating these meaningless

patterns can consume enormous amount of mining time.

The underlying reason for these shortcomings is that statistical significance

does not usually correlate to semantic significance. The events in the raw execu-

tion traces are not all semantically relevant. Some (in fact, many) semantically

insignificant program specifications may be statistically significant, and get gen-

erated when we directly perform the mining over the raw execution traces. As

a case study, we investigate the behavioral change resulted from a bug fix from

Compress revision 922299 to 922309. We attempt to understand the bug fix

from the significant patterns which discriminate the two versions. By mining

over the raw traces via a traditional miner such as Iterative Pattern Miner [66],

we obtain 63 discriminative patterns, many of which provide little value to our

understanding of the change. On the other hand, by refining the traces such that

events (i.e., method calls) in the patterns are dataflow related, we obtain just 4

discriminative patterns, all of which display the expected behavioral change of

22

Chapter 3. Semantics-directed Specification Mining

the revisions. We will elaborate on this case study in Section 3.3.5.3.

Several studies [62, 56, 66, 32, 31] not taking into account semantic infor-

mation have shown their drawbacks. On the other hand, some researchers

[105, 101, 100, 87] have attempted to address this semantics-deficiency issue.

However, none of these remedies proposed really incorporate in-depth semantic

information (e.g., dataflow semantics) into specification mining by refining the

data under analysis beforehand.

3.2 Framework

To address the lack of semantic significance and further improve the efficiency of

specification mining, we introduce semantic information, and perform the respec-

tive semantic analysis to refine the mining input. We propose a semantics-directed

specification mining framework to discover semantically significant specifications

from execution traces.

The essential idea lies on the following assumption.

Assumption
Semantically significant specification should be both semantically
relevant and statistically significant.

Specifically, we first refine the mining input by extracting semantically rel-

evant sequences from execution traces according to the user-specific semantics.

We next employ frequent pattern mining algorithm on these sequences to gener-

ate semantically significant specifications. Figure 3.1 shows the workflow of our

semantics-directed specification mining framework.

Figure 3.1: Framework of semantics-directed specification mining

Through the semantics analyzer (at the lower right corner of Figure 3.1),

we only extract semantically relevant sequences satisfying the user-specific se-

23

3.3. Mining Dataflow Sensitive Specifications

mantics. All the semantically irrelevant events are filtered out in advance be-

fore mining. Therefore, the mined specifications are all semantically significant.

Moreover, the search space of frequent pattern mining is drastically reduced;

hence mining becomes more efficient.

3.3 Mining Dataflow Sensitive Specifications

We demonstrate the application of our semantics-directed specification mining

framework by considering a particular dataflow semantics and develop dataflow

sensitive specification mining. Our experimental results validate that our ap-

proach can significantly refine the execution traces by filtering out dataflow irrele-

vant events and thus greatly improve the efficiency and effectiveness of mining. In

addition, we also show that our mined specifications reflect the essential program

behavior and can practically help program understanding and bug detection.

3.3.1 Introduction

Figure 3.2: Workflow of dataflow sensi-
tive specification mining

Program specifications play a crucial

role in program comprehension. In

[66], Lo et al. proposed an auto-

matic mining approach to discover

specifications in a particular formal-

ism termed iterative pattern from ex-

ecution traces. These iterative pat-

terns shed light on program behav-

iors. They can be interpreted as inter-

action diagrams between classes/ob-

jects, and be used to construct high-

level scenario-based models such as

live sequence chart (LSC) [23]. As

usual, the mined specifications directly over the raw traces by [66] include numer-

ous semantically insignificant ones, which severely undermines the practicability

of this specification mining approach.

Based on our semantics-directed specification mining framework, we develop

a particular system called dataflow sensitive specification mining. We investi-

24

Chapter 3. Semantics-directed Specification Mining

gate the introduction of dataflow semantics to extract from execution traces

dataflow related sequences as the mining input, and demonstrate that mining

specifications from these dataflow related sequences reduces a great number of

meaningless specifications, resulting in a collection of specifications which are

both semantically relevant and statistically significant.

Specifically, a particular dataflow semantics over the runtime events is taken

into consideration. We propose a dynamic, inter-procedural dataflow tracking

analysis, which analyzes execution traces to extract the dataflow related se-

quences. Lastly, we perform a novel constrained iterative pattern mining over

these sequences to discover semantically significant iterative patterns as specifi-

cations. The workflow of our system is shown as Figure 3.2. We will discuss each

component of this system in the following.

3.3.2 Symbolic Instrumentation

The symbolic instrumentor conducts static instrumentation on the programs

under analysis. The footprint produced by the instrumentor during execution

is a sequence of symbolic statements, which enables tracking and reasoning of

dataflow relations. Our trace is in Jimple format (refer to [91] for the formal

Jimple grammar), which is a 3-address intermediate representation of Java in

Soot framework∗.

In this work, the events used to form iterative patterns are method calls and

method returns. In order to capture precise and inter-procedural dataflow rela-

tions among events, we instrument five kinds of statements, namely IdentityStmt

(e.g., statements 3, 4, 5), AssignStmt (9, 20), InvokeStmt (2, 6), ReturnStmt

(10) and ThrowStmt, as they either contain dataflow information or represent

the desired events. They are necessary to be instrumented and included in the

execution traces. Figures 3.3(a) and 3.3(b) show a code example and its trace

fragment, respectively.

3.3.3 Dataflow Tracking Analysis

Having the execution traces, we refine them via a semantic analysis. In this

section, we introduce this semantic analysis, called dataflow tracking analysis

∗http://www.sable.mcgill.ca/soot/

25

3.3. Mining Dataflow Sensitive Specifications

(a) Code (b) Trace

Figure 3.3: A running example

which takes as arguments the execution traces and produces a set of dataflow

related sequences (i.e, the refined mining input).

3.3.3.1 Concepts

Figure 3.4: Dynamic data dependence
graph

Consider the data dependence graph

(Figure 3.4) of the example trace (Fig-

ure 3.3(b)). As defined in [41], a state-

ment s1 is data dependent on a state-

ment s2 iff† there is a variable x and a

control flow path h from s2 to s1 such

that x is defined at s2, used at s1, and

not redefined along any subpath of h.

In a data dependence graph, if s1 is

data dependent on s2, then there is an

edge (solid arrow line in Fig. 3.4) from

s2 to s1. A dataflow path is a sequence

of statements such that from each statement there is a data dependency edge to

the next statement in the sequence. For instance, the graph (Figure 3.4) con-

tains four dataflow paths. One of them is the sequence of statements 〈4, 8, 9, 17, 20〉

†iff means if and only if.

26

Chapter 3. Semantics-directed Specification Mining

whose data dependency edges are marked as bold (and red).

While dataflow paths are defined over symbolic statements in the execution

trace, our expected final results are sequences of events; i.e., method calls and

method returns, shown as rectangles (with blue background) in the above graph.

As an example, InvokeStmt 2 and ReturnStmt 21 represent a call event and a

return event, respectively. We call the set of all events associated with a trace

T an event set , and denote it by E(T). Considering the trace T in Figure 3.3(b),

the event set E(T) contains those events which are highlighted in bold in Figure

3.3(b).

An event can have some arguments. For a call event, its arguments include

the callee, its actual parameters, and all the class variables and instance vari-

ables used during method execution. Similarly, the arguments of a return event

constitute the value returned by ReturnStmt, as well as all the defined or rede-

fined class variables and instance variables during this method execution. The

argument set of an event e is denoted by A(e).

Definition 1 (Dataflow Association). An event e is dataflow associated with

a dataflow path H iff there exists a statement s in H such that at least one

argument of e is defined or used at s.

In Figure 3.4, the dashed line shows this association. For example, the event

〈Demo : int invoke (int, int)〉_2‡ in E(T) is dataflow associated with H 〈4, 8, 9, 17, 20〉,

since its first argument is used in statement 4.

Definition 2 ((Maximum) Dataflow Related Sequence). Given a trace

T , a dataflow path H of T , and the event set E(T), a sequence of events Q

(〈e1, e2, . . . , en〉) is a dataflow related sequence with respect to H iff ∀ek(k ∈

[1, n]), ek ∈ E(T) and ∀ei, ej(i, j ∈ [1, n] ∧ i < j), the following holds:

• Temporal relation: ei appears before ej in T ;

• Dataflow relation: ei and ej are both dataflow associated with H.

Furthermore, Q with respect to H is a maximum dataflow related sequence iff

there exists no dataflow related sequence Q′ of H such that Q′ is a super-sequence

of Q.

From the above example, we can derive that the event sequence 〈Demo :

‡It indicates the call event 〈Demo : int invoke(int, int)〉 represented by statement 2.

27

3.3. Mining Dataflow Sensitive Specifications

int invoke (int, int)〉_2, 〈Demo : int square (int)〉_6, R :〈Demo : int square (int)〉_10§,

〈Demo : int max (int, int)〉_16, R :〈Demo : int max (int, int)〉_19, R :〈Demo : int

invoke (int, int)〉_21 is a maximum dataflow related sequence with respect to H

〈4, 8, 9, 17, 20〉.

3.3.3.2 Approach

The objective of the dataflow tracking analysis is to obtain all maximum dataflow

related sequences by analyzing the symbolic traces. A naive way is to first con-

struct the dynamic data dependence graph as an intermediate data and then

traverse all the paths in the graph to get all dataflow related sequences. How-

ever, such an intermediate data is usually quite big. Its generation can severely

affect the scalability of our analysis. Instead, our tracking analysis eliminates

the generation of such intermediate data by directly outputting the dataflow re-

lated sequences while tracking each dataflow path. Briefly, we keep track of each

dataflow path through analyzing the use-def pairs¶ statement by statement in

chronological order. At the same time, we maintain one specific event list for

each dataflow path. During the dataflow tracking, upon encountering an event

which is associated with the currently tracked dataflow path, we append it to

the end of the corresponding event list. When this dataflow path is completely

tracked, the event list we maintain constitutes the desired maximum dataflow

related sequence.

Our dataflow tracking analysis is called stack-based scoped because it dynami-

cally maintains an “analysis stack” of “scopes” to help emulate the actual runtime

execution. A scope mimics an activation record, which is pushed onto the stack

during method invocation and popped out at call return. It contains triples

representing dataflow paths which are currently tracked by the analysis. Specif-

ically, a triple is denoted (vs, L, vc) , where L is an event list forming a dataflow

related sequence spanning across procedures with respect to the dataflow path

currently tracked, vs refers to the start variable of this dataflow path, vc refers to

the currently arrived variable. For efficiency, each scope is represented by a hash

set consisting of triples, with hash keys constructed from the currently arrived
§“R” denotes the corresponding return event.
¶A use-def pair (u, d), associates a statement in a program where variable u is used in

defining variable d. For example, given the AssignStmt 14 in Figure 3.3(b), there is a use-def
pair associated with this statement: (i0, $i1).

28

Chapter 3. Semantics-directed Specification Mining

variable of the triple.

Algorithm 1: Scoped Dataflow Tracking Analysis
Input: trace T
Output: all the maximum dataflow related sequences

1 foreach statement s in chronological order in trace T do
2 switch s do
3 case InvokeStmt(s)
4 S ← ∅;
5 push(S, Stack);
6 break;
7 case ReturnStmt(s)
8 Su ← pop(Stack);
9 Sd ← peek(Stack);

10 KillAndGen(Su, Sd, s); // the top element Sd of Stack is updated
11 for each t(vs, L, vc) ∈ Su do
12 if isComplete(t) then output L;
13 end
14 break;
15 case IdentityStmt(s)
16 Su ← peek2nd(Stack); // peek at the second top element of Stack

17 Sd ← peek(Stack);
18 KillAndGen(Su, Sd, s);
19 break;
20 case AssignStmt(s)
21 Su ← collapse(Stack);
22 Sd ← peek(Stack);
23 KillAndGen(Su, Sd, s);
24 end
25 endsw
26 end

As shown in Algorithm 1, the analyzer handles the trace statements in chrono-

logical order. When encountering an InvokeStmt, the analyzer pushes a new

scope S into Stack (lines 4-5). On the other hand, ReturnStmt indicates the

end of the existing scope, and the analyzer pours out all the dataflow related se-

quences associated with the complete dataflow paths (lines 11-13). isComplete(t)

determines if t represents a complete dataflow path (i.e., completely tracked

dataflow path). For each kind of statements encountered, the analyzer handles

each variable (used variable and defined variable) active at the statement in its

legitimate scope. Specifically, for ReturnStmt, the legitimate scope Su for used

variables is the scope popped from Stack. The legitimate scope Sd for defined

variable is the top scope of Stack (lines 8-10). For IdentityStmt, Su is the second

top element of Stack (line 16). The top element of Stack corresponds to Sd (line

17). Similarly, as for AssignStmt, Sd is the currently top element of Stack (line

22). Su is likely to be any scope in the Stack (due to the liveness of instance vari-

ables or class variables). The analyzer searches Stack from top towards bottom

29

3.3. Mining Dataflow Sensitive Specifications

to obtain the desired triples; this is performed by the function collapse(Stack)

(Line 21).

Algorithm 2: KillAndGen(Su, Sd, s)

Input: statement s, scope for used variable Su, scope for defined variable Sd

Update: scope Sd which is the currently top element of Stack

1 Pairs← get_UD_Pairs(s); // get the use-def pairs associated with s

2 foreach use-def pair p(vu, vd) ∈ Pairs do
3 GS ← ∅;
4 if vu is a constant or a new instance then
5 L′ ← [];

// A(e) is the set containing all the arguments of event e

6 if ∃ event e associated with s, vu ∈ A(e) then
7 L′ ← L′ ++ [e];
8 end
9 GS ← GS ∪ {(vu, L′, vd)}; // generate the new triple

10 else
11 foreach t′(vs, L, vu) ∈ Su do // the currently arrived variable of t′ is vu

12 mark t′ as incomplete;
13 L′ ← L;
14 if ∃ event e associated with s, vu ∈ A(e) then
15 L′ ← L′ ++ [e];
16 end

// extend the tracked dataflow path and generate the new triple
17 GS ← GS ∪ {(vs, L′, vd)};
18 end
19 end
20 foreach t(v∗, L∗, vd) ∈ Sd do // the currently arrived variable of t is vd
21 if isComplete(t) then output L∗;
22 Sd ← Sd − {t(v∗, L∗, vd)}; // kill the old triple
23 end
24 Sd ← Sd ∪GS;
25 end

Given a statement s and the corresponding legitimate scopes Su and Sd, the

analyzer uses the typical “kill-and-gen” dataflow analysis mechanism to update

the stack by modifying the scope Sd at its top. More specifically, for each use-def

pair (vu, vd) contained in statement s (where vd is defined in s), the algorithm

tries to extend the relevant dataflow paths in Sd (or create new dataflow paths

when necessary) by generating new triples or to remove some paths the ending

variable of which is redefined by killing the corresponding triples. Going through

the algorithm, Lines 4-9 handle the case where a new dataflow path is created

due to a constant or new instance; Lines 11-18 extend the current dataflow paths

through composing def-use chains. Lines 20-23 remove the triples whose currently

arrived variable is redefined, and simultaneously output all the dataflow related

sequences if t represents a complete dataflow path. Lastly, all generated triples

are added into Sd (Line 24).

30

Chapter 3. Semantics-directed Specification Mining

3.3.3.3 Challenges

To make our analysis more precise, we need to consider two important challenges

namely object aliasing and scope mismatch.

Object Aliasing. As the execution traces contain symbolic variables, it is

possible that more than one reference variables refer to or point to the same object

in the program. Such situation is called object aliasing. Modifying the object

through one reference variable implicitly affects the state of the object associated

with other aliased variables. In turn, the manipulations of the same memory data

can be operated through different variables. In order to keep track of the dataflow

paths precisely, we have to determine whether two different variables in the trace

refer to identical data. If two reference variables are alias of each other, we will

treat them as the same one. Any field access on the object through different

aliased variables should be always considered as the same field access.

To address this aliasing problem, we perform dynamic alias tracking analysis.

Briefly, for each instantiated instance object, we maintain a unique reference

variable which represents the absolute memory location of the object. All the

aliased variables of the object will be mapped to this unique reference variable.

All these mapping information is maintained in the environment of the analysis.

When the statements containing field access occur in the trace, we first track the

unique reference variable of the object, and then search or update the instance

field of the object.

Scope Mismatch. In our analysis, we take advantage of InvokeStmt and Re-

turnStmt to identify the start and termination of each scope, respectively. How-

ever, due to the presence of uninstrumented code and exceptions, certain scopes

are not explicitly represented by InvokeStmt and ReturnStmt. Failing to identify

certain scopes leads to scope mismatch. Specifically, it is likely that a method

call in uninstrumented code executes the instrumented method body. Therefore,

no InvokeStmt representing the start of new scope appears in the trace. Besides,

when an exception is thrown, the execution stack can be popped back arbitrary

levels. Many scopes are terminated. Unfortunately, there is no explicit statement

in the trace to denote it. If we do not terminate scopes appropriately, we may

assign the subsequent statements into incorrect scopes.

31

3.3. Mining Dataflow Sensitive Specifications

To avoid scope mismatch, we perform scope matching analysis which guar-

antees we can start and terminate all the scopes correctly. In our analysis, we

use an artificial statement DeclarationStmt to assist in identifying the start of a

scope. Specifically, we instrument one DeclarationStmt at the beginning of each

method body. When a method is executed, the corresponding DeclarationStmt

will be printed out in the trace. Therefore, even though the InvokeStmt is missed,

we can identify the start of method scope via the DeclarationStmt. To avoid the

exception-caused mismatch, we determine the termination of scopes by checking

method signatures. Specifically, we check each statement under analysis to see

whether its method signature corresponds to the current scope’s signature. If so,

the scope is matching. Otherwise, we terminate the current scope, pop it and

check again until scope matching succeeds.

Eventually, we integrate the above dynamic alias tracking analysis and scope

matching analysis with the simplified analysis described in Algorithms 1 and

2. The pseudo code of complete scoped dataflow tracking analysis is shown in

Appendix A.

3.3.4 Constrained Iterative Pattern Mining

We present a constrained iterative pattern mining algorithm which mines frequent

patterns from the generated dataflow related sequences as final specifications in

the following.

3.3.4.1 Background

The concept of iterative pattern is first introduced by Lo et al. [66] to capture

program behaviors involving repeated event occurrences (possibly caused by loop

iterations). It forms the basis for temporal rules, which have been used to formu-

late specifications such as Live Sequence Chart (LSC) [23]. An iterative pattern

is a sequence of events which must satisfy total-ordering [43] and one-to-one cor-

respondence [52] properties. It can be identified by a set of instances, and one

sequence can contain multiple instances. The following definition proposed in

[66] expresses an iterative pattern instance in the form of Quantified Regular Ex-

pression [82] with ‘;’ as concatenation operator, ‘[-]’ as exclusion operator ([−p, q]

means any event except p and q) and ‘*’ as Kleene closure.

32

Chapter 3. Semantics-directed Specification Mining

Definition 3 (Iterative Pattern Instance – QRE). Given a pattern pn

(〈e1e2. . .en〉), a substring (〈f1f2. . .fm〉) of a temporal sequence t (〈t1t2. . .tend〉)

in a sequence database SeqDB is an instance of pn iff it can be expressed by the

following QRE expression:

e1; [−e1, . . . , en]∗; e2; . . . ; [−e1, . . . , en]∗; en.

Consider the following sequence representing a trace 〈a,b,a,c,b,a,c,b〉. The

only three instances found in it for the iterative pattern 〈a, b〉 are substrings:

〈a, b〉 at index 1, 〈a, c, b〉 at index 3, and 〈a, c, b〉 at index 6. Note that 〈a, b, a, c, b〉

is not an iterative pattern instance, according to Definition 3.

The support of an iterative pattern P with respect to a sequence database

SeqDB is the number of instances of pattern P in SeqDB. A pattern P is

frequent if its support sup(P) exceeds a specified threshold min_sup.

Figure 3.5: Sequence lattice

To mine all the frequent patterns

efficiently, instead of checking for all

possible patterns in the search space,

we actively prune those sub-spaces

containing infrequent (aka., insignifi-

cant) patterns using Apriori property.

This property was first presented by

Agrawal et al. [5] as follows: if a pat-

tern is frequent, so do its sub-patterns. As a simple example, consider the se-

quence lattice with subsequence relation as the partial order in Figure 3.5. By

the contrapositive of the Apriori property, if the pattern 〈A〉 (red background) is

found to be infrequent, then all its super-patterns (with gray background) cannot

be frequent. Therefore, they need not be subject to checking.

However, due to the additional constraints (i.e. total-ordering and one-to-

one correspondence) on the event sequence, iterative pattern does not possess the

traditional Apriori property in [5]. Here, we propose a particular Apriori property

for the iterative patterns, which will be discussed later in Section 3.3.4.3.

33

3.3. Mining Dataflow Sensitive Specifications

3.3.4.2 Constrained Iterative Pattern

We analyze traces to derive dataflow related sequences which constitute a se-

quence database in last section. Our goal is to mine all dataflow relevant and

frequent iterative patterns from the derived dataflow related sequence database.

For example, consider the trace (Fig. 3.3(b)), the original sequence of events

occurring in it is shown in Table 3.1(a)‖. The generated dataflow related se-

quences by analyzing the trace are listed in Table 3.1(b). In order to track

the origins of events in the dataflow sequences, we tag each event by the index

with which the event is associated in the original event sequence (Table 3.1(a)).

Let T be a trace. The sequence of all the events occurring in T is denoted by

L(T). We refer to the ith event in L(T) as L(T)(i). We use D(T) to denote the

dataflow related sequence database obtained by analyzing the trace T . There are

two problems we need take into account, which are not present in the original

iterative pattern mining context.
Table 3.1: (a).Sequence (b).Database

(a)

Index 1 2 3 4 5 6 7 8

Event a c d c d e f b

(b)

Tid Transaction

0
1 2

a c

1
1 4

a c

2
1 2 3 6 7 8

a c d e f b

3
1 4 5 6

a c d e

The first problem is Duplication.

Since one event in the trace may be

involved in multiple dataflow paths, it

may occur multiple times in the se-

quence database D(T). These dupli-

cated events confuse the miner when

it attempts to calculate the support of

an event. In Table 3.1, the support for

the event a, as determined from the

trace, is 1; however, it appears 4 times

in D(T). A normal miner working on

the sequence database will count it as

4, instead of 1.

Another problem is Correspon-

dence. Since we focus solely on

dataflow relation, some events in

traces may be omitted in dataflow re-

lated sequences. Therefore, an iterative pattern instance detected from the se-

‖For brevity, we use a single character to represent an event.

34

Chapter 3. Semantics-directed Specification Mining

quence database may not be a valid instance in the original trace. For instance,

given the 2-pattern 〈a, d〉, we scan sequence transaction 3 in D(T) to obtain an it-

erative pattern “instance”, 〈1, 5〉. But in fact, this “instance” does not correspond

to a valid instance due to the additional 3rd event d in the trace. To address the

above two problems, we introduce a novel definition of iterative pattern instance,

called constrained iterative pattern instance.

Definition 4 (Constrained Iterative Pattern Instance). Given a trace T

and its event sequence L(T), an ordering number subsequence 〈o1o2 . . . on〉 of a

sequence in D(T) is a constrained iterative pattern instance of pn(〈e1e2 . . . en〉)

iff the following conditions hold:

• ∀q ∈ [1, n] , L(T)(oq) = eq;

• ∀i ∈ [1, n− 1] ,
(
∀j ∈ (oi, oi+1) , L(T)(j) /∈ pn

)
.

Let’s look at some examples. Consider sequence 3 in Table 3.1(b), the or-

dering number subsequence 〈1, 6〉 is a constrained iterative pattern instance of

pattern 〈a, e〉. Specifically, n = 2, o1 = 1, o2 = 6, ∀q ∈ [1, 2] , L(T)(oq) = eq and

∀j ∈ (1, 6) , L(T)(j) /∈ 〈a, e〉 hold. On the other hand, 〈1, 5〉 is not a constrained it-

erative pattern instance of pattern 〈a, d〉, since for 3 ∈ (1, 5), L(T)(3) = d ∈ 〈a, d〉,

which contradicts the second condition in the definition. Every constrained iter-

ative pattern instance is represented by a unique ordering number subsequence.

Each unique number indexes one unique event occurrence in the trace. There-

fore, we can determine the duplication by comparing the instances (sequences of

ordering numbers). Besides, in our definition, we do not only check the events

in sequences (i.e. the first condition), but also consider the events discarded by

the sequences (i.e. the second condition). We can ensure that any constrained

iterative pattern instance is an iterative pattern instance in the original trace.

The correspondence problem is thus solved.

3.3.4.3 Apriori Property

Apriori property has been introduced to prune the search space of mining algo-

rithm [5]. It states that if a pattern P is not frequent, then it is not possible

for any super-pattern of P to be frequent. Thus, it is unnecessary to search for

any frequent super-pattern of P . However, due to the additional constraints (i.e.

total-ordering and one-to-one correspondence) on the event sequence, iterative

35

3.3. Mining Dataflow Sensitive Specifications

pattern does not possess the traditional apriori property in [5]. Here, we propose

a special Apriori property for iterative pattern. We first provide some definitions.

Definition 5 (Prefix_pattern, Suffix_pattern, Infix_pattern). For a k-

pattern pk(〈e1, e2, . . . , ek〉), its prefix_pattern is defined as pre_pk−1(〈e1, e2, . . . ,

ek−1〉); its suffix_pattern as suf_pk−1(〈e2, e3, . . . , ek〉); and its infix_pattern as

in_pk−1(〈e1, . . . , ei−1, ei+1, . . . , ek〉), where i ∈ [2, k − 1] and ei /∈ in_pk−1.

For example, given a 5-pattern p5(〈A, B, C, D, B〉), it has the prefix_pattern

pre_p4(〈A, B, C, D〉), suffix_pattern suf_p4(〈B, C, D, B〉), and infix_patterns

in_p41(〈A, B, D, B〉) and in_p42(〈A, B, C, B〉). However, 〈A, C, D, B〉 is not

an infix_pattern of p5 since B ∈ 〈A, C, D, B〉.

Theorem 1 (Apriori Property). If a pattern pk is frequent, then its pre-

fix_pattern, suffix_pattern and all infix_patterns are frequent.

Having the above definitions, we arrive at the following specific Apriori prop-

erty possessed by the (constrained) iterative pattern in Theorem 1. The proof is

given by Appendix B.

3.3.4.4 Algorithm

Algorithm 3: CIPM(D(T),min_sup,min_den)

Input: database D(T), support threshold min_sup, density threshold min_den
Output: set of all frequent closed patterns Fclosed

1 F1 ←
{
p1| sup(p1) ≥ min_sup

}
;

2 for (k ← 2; Fk−1 6= ∅; k ++) do
3 Ck ← apriori_gen(Fk−1);
4 Fk ← apriori_count(Ck,min_sup);
5 Fk ← prune_density(Fk,min_den);
6 Fclosed ← process_closed(Fk, Fclosed);
7 end
8 return Fclosed;

Algorithm 3 gives the mining algorithm involving two main phases. The first

phase simply scans the sequence database once to detect all frequent singleton

patterns (Line 1). The second phase is an iterative phase (Lines 2-7), which

consists of four subprocedures. Firstly, the set of frequent (k − 1)-patterns Fk−1

is used to generate candidate k-patterns Ck using the apriori_gen function. Sec-

ondly, an apriori_count function is called to count the support of each candidate

36

Chapter 3. Semantics-directed Specification Mining

pattern in Ck. A set of frequent patterns Fk is thus generated. Next, we apply

a density-based pruning strategy to prune the search space further and finally

discard all non-closed iterative patterns.

Apriori Candidate Generation. This procedure consists of two steps, namely

join and prune. First, in the join step, we check each pair of frequent (k − 1)-

patterns pk−1i (〈e1, e2, . . . , ek−1〉) and pk−1j (〈f1, f2, . . . , fk−1〉) in Fk−1 to see if

the prefix_pattern pre_pk−2i 〈e1, e2, . . . , ek−2〉 of pk−1i is same as suffix_pattern

suf_pk−2j 〈f2, f3, . . . , fk−1〉 of pk−1j . If so, the candidate k-pattern 〈f1, f2, f3, . . . ,

fk−1, ek−1〉 will be generated by joining the two frequent (k−1)-patterns pk−1i and

pk−1j . Besides the prefix_pattern and suffix_pattern, all the infix_patterns of the

given frequent pattern must be also frequent according to the Apriori Property.

Next, in the prune step, we delete all candidate patterns whose infix_patterns

are not all in Fk−1.

For instance, let F3 be {〈ABC〉 , 〈BCD〉 , 〈ACD〉 , 〈BCB〉 , 〈ABB〉}. After

the join step, 〈ABCD〉 and 〈ABCB〉 are generated.(〈ABCD〉 is generated by

joining 〈ABC〉 with 〈BCD〉, 〈ABCB〉 is composed of 〈ABC〉 and 〈BCB〉.). In

the prune step, 〈ABCD〉 is deleted because one of its infix_patterns, 〈ABD〉 is

not in F3 (i.e. 〈ABD〉 is not frequent). Another candidate 〈ABCB〉 is retained

since its only infix_pattern 〈ABB〉 is in F3. Eventually, C4 will be {〈ABCB〉}.

Apriori Support Counting. In order to address the duplication problem de-

scribed earlier, we maintain an instance set V (pk) for each candidate pattern pk,

which contains all the already generated instances of pk. We scan each sequence

transaction to find all the constrained iterative pattern instances Ins(pk, tid) of

pattern pk in sequence tid. We then check each instance in Ins(pk, tid) to see

if it has already been in V (pk) (i.e. whether it is duplicate or not). If not, we

add the instance to V (pk) and increment the support of pk. After scanning all

the transactions, we compare the support of each candidate pattern pk with the

threshold min_sup. Finally, the frequent pattern set Fk is returned.

Density Pruning. We observed that the patterns whose density are low do not

contain much information. In addition, mining these patterns can be costly. We

elect to perform pruning on the basis of patterns’ density.

den(pk) = |distinct events in pk| / k

37

3.3. Mining Dataflow Sensitive Specifications

The pattern whose density is lower than a threshold min_den is pruned out.

Closed Iterative Pattern Processing. The closed iterative pattern processing

addresses the “compactness” issue of mined patterns by substantially reducing the

number of patterns discovered while preserving the complete information on the

frequent patterns.

Definition 6 (Closed Iterative Pattern). A frequent k-pattern pk is closed

iff there exists no super-pattern pk+1 such that:

• pk and pk+1 has the same support;

• pk is the prefix_pattern or suffix_pattern or infix_pattern of pk+1.

Based on the definition 6, we can identify all the non-closed iterative patterns

and further discard them. In turn, from the closed frequent iterative patterns,

we can readily derive all the frequent iterative patterns and their supports.

3.3.5 Empirical Evaluation

We conduct the experiments on five real-world programs using our implemented

prototype. Table 3.2 shows the subjects used. All experiments are conducted

on an Intel Quad 2.83GHz PC with 4GB main memory running Windows XP

Professional.

Table 3.2: Characteristics of subject programs

Subject Version LoC Class Method Description

JDepend 2.9.1 2,723 18 224 Java dependency analyzer
Libsvm 3.1 3,188 21 98 SVM implementation
Compress 1.3 9,629 59 502 Commons Compress library
PMD 4.2.5 66,881 720 4,991 Java source code analyzer
Fop 0.95 185,186 1,313 9,840 XSL-FO to PDF transformer

Table 3.3: Performance of dataflow tracking analysis

Trace Generation Dataflow Analysis

Subject Test Trace Stmt Event Size(MB) Time(s) Seq AL∗∗ Time(s)

JDepend 5 5 494k 93k 57.4 5 73k 6.9 5
Libsvm 5 5 854k 36k 75.3 7 8k 5.7 5
Compress 5 5 949k 254k 155 10 156k 4.7 10
PMD 4 8 2119k 498k 235 17 299k 26.8 20
Fop 5 5 3480k 621k 417 42 535k 10.6 53

∗∗“AL” represents the average length of these generated dataflow related sequences.

38

Chapter 3. Semantics-directed Specification Mining

3.3.5.1 Runtime Performance of Dataflow Tracker

Table 3.3 provides the detailed information on trace generation and dataflow

tracking analysis. Even though the number of events (Event) or statements

(Stmt) in traces is huge, our analysis managed to complete its task for each

subject within a minute.

 0

 10

 20

 30

 40

 50

 60

 400 1200 2000 2800 3600

Ti
m

e
 (

s)

Statement (k)

JDepend
Libsvm

Compress

PMD

Fop

Figure 3.6: Execution time against the number of statements

Figure 3.6 shows the execution time of dataflow tracker against the number

of statements analyzed in traces. It shows that the time required to track the

dataflow is roughly linear with respect to the number of analyzed statements.

Our dataflow tracking analysis is scalable to large traces.

3.3.5.2 Performance Comparison

Table 3.4 demonstrates the performance comparison of two different specification

mining schemes in terms of number of patterns mined and time taken by mining.

One is our dataflow sensitive specification mining (DSSM), which mines only

semantically significant patterns over the generated dataflow related sequences

using our constrained iterative pattern miner. Another directly performs the

original iterative pattern mining (IPM) over the original sequence of events oc-

curring in the trace. We further verified that the set of patterns generated by

DSSM is a proper subset of that generated by IPM.

For each subject, we choose three absolute support thresholds to carry out

the experiments. We choose the same density value (0.6) in all experiments.

The asterisk “*” denotes a number which is more than 10 times bigger than the

corresponding number of patterns generated by DSSM. The dash “-” denotes a

time longer than 3600 seconds. As can be seen from Table 3.4, the number of

patterns mined by IPM is much larger than that mined by DSSM. The ratios are

39

3.3. Mining Dataflow Sensitive Specifications

Table 3.4: Performance comparison

DSSM IPM Ratio(IPM/DSSM)

Subject Support Pattern Time(s) Pattern Time(s) Pattern Time

JDepend
15 221 17 * -

>1030 181 15 * -
50 54 9 * -

Libsvm
5 130 16 * -

>1010 115 15 * -
30 48 7 175 99 3.6 >10

Compress
15 79 22 * -

>1050 44 19 * -
100 32 18 * -

PMD
150 205 97 * -

>10250 100 45 * -
450 32 35 149 - 4.7 >10

Fop
400 211 171 * -

>101000 70 81 * -
1500 21 60 636 1342

mostly greater than 10. This indicates that our approach can effectively filter out

dataflow irrelevant patterns. As a result, the effectiveness of the specifications

will be substantially increased. We will further verify it in Section 3.3.5.3. In

addition, the time cost of DSSM is much lower than that of IPM, at least 10

times faster in most cases. This shows that the efficiency of specification mining

can be greatly improved.

3.3.5.3 Case Studies

Through two case studies, we shall demonstrate how dataflow sensitive specifi-

cations can be used to highlight changes in software evolution.

Compress Revision 922299-922309. Figure 3.7 illustrates the code changes

between revision 922309 and 922299 in class ZipUtil in order to fix a bug

(COMPRESS-100). “+” denotes the additional code in new revision. “-” de-

notes the code deleted from the old revision. Specifically, it primarily involves

two methods. Firstly, method supportsDataDescriptorFor is added to determine

whether an entry requires a data descriptor. As can be seen, it consists of two

semantic scenarios. One is that supportsDataDescriptorFor first calls getGener-

alPurposeBit, then returns a GeneralPurposeBit object which as a callee further

calls usesDataDescriptor. Another is supportsDataDescriptorFor calls getMethod

with the parameter entry as the callee. Secondly, method supportsEncryptionOf

is changed. It originally invokes isEncrypted. In the new revision, supportsEn-

cryptionOf calls getGeneralPurposeBit to acquire a GeneralPurposeBit object,

40

Chapter 3. Semantics-directed Specification Mining

and then usesEncryption is called to check if this entry is encrypted or not.

Figure 3.7: Code changes between revision 922309 and 922299 in ZipUtil

We perform our dataflow sensitive specification mining (DSSM) on two revi-

sions using the same input and derive 4 discriminative patterns shown in Table

3.5 (against the common patterns mined from both revisions). The first three are

additional patterns mined from the new revision. The fourth pattern is deleted

from the old revision. As can be seen, the first two additional patterns capture

the added behavior of method supportsDataDescriptorFor. The third additional

pattern and the deleted pattern correspond to the changes of supportsEncryp-

tionOf.

Table 3.5: Discriminative patterns between revision 922309 and 922299

〈ZipUtil: boolean supportsDataDescriptorFor(ZipArchiveEntry)〉;
〈ZipArchiveEntry: GeneralPurposeBit getGeneralPurposeBit()〉;
R: 〈ZipArchiveEntry: GeneralPurposeBit getGeneralPurposeBit()〉;
〈GeneralPurposeBit: boolean usesDataDescriptor()〉;

〈ZipUtil: boolean supportsDataDescriptorFor(ZipArchiveEntry)〉;
〈ZipArchiveEntry: int getMethod()〉;
R: 〈ZipArchiveEntry: int getMethod()〉;

〈ZipUtil: void checkRequestedFeatures(ZipArchiveEntry)〉;
〈ZipUtil: boolean supportsEncryptionOf(ZipArchiveEntry)〉;
〈ZipArchiveEntry: GeneralPurposeBit getGeneralPurposeBit()〉;
R: 〈ZipArchiveEntry: GeneralPurposeBit getGeneralPurposeBit()〉;
〈GeneralPurposeBit: boolean usesEncryption()〉;

〈ZipUtil: void checkRequestedFeatures(ZipArchiveEntry)〉;
〈ZipUtil: boolean supportsEncryptionOf(ZipArchiveEntry)〉;
〈ZipArchiveEntry: boolean isEncrypted()〉;
R: 〈ZipArchiveEntry: boolean isEncrypted()〉;

To further assess the applicability of our approach (DSSM), we compare with

the original iterative pattern mining (IPM). Similarly, we employ IPM to two

revisions using the same input. With the same threshold setting, IPM generates

much more discriminative patterns (48 additional and 15 deleted patterns) than

41

3.3. Mining Dataflow Sensitive Specifications

DSSM (3 additional and 1 deleted pattern). Although these patterns include the

four semantically significant patterns, other semantically meaningless patterns

would seriously weaken the efficacy of inferred specifications.

Compress Revision 911465-911467. Table 3.6 shows an additional pattern

we discovered from revision 911467 for Compress. It describes a scenario that

fill should call count to update the number of bytes read. It corresponds to a

bug fixing. Specifically, in the previous revision 911465, fill missed calling count

(COMPRESS-74).

Table 3.6: An additional pattern from revision 911467

〈zip.ZipArchiveInputStream: void fill()〉;
〈ArchiveInputStream: void count(int)〉;
〈ArchiveInputStream: void count(long)〉;
R: 〈ArchiveInputStream: void count(long)〉;
R: 〈ArchiveInputStream: void count(int)〉;
R: 〈zip.ZipArchiveInputStream: void fill()〉;

From another perspective, this case shows that our approach can assist in

detecting bugs to some extent. When performing our approach on the older

buggy revision (911465), we failed to discover the above pattern. Specifically,

7 dataflow related patterns are produced. None of them contain method fill or

count. A programmer with knowledge of how fill and count interact will easily

find this bug due to lack of the pattern by checking the mining results. Compared

with our approach, IPM reports much more patterns (151 patterns) under the

same setting. 11 of them involve method fill. Clearly, manually checking 11/151

patterns needs much more efforts than checking 0/7 patterns.

3.3.6 Discussion

Threats to Validity. The number of subjects tested remains small, possibly

causing a threat to external validity of our experiments. To mitigate this, we

ensure that they are all real-world programs from different domains with varying

sizes. A potential threat to internal validity lies with the choice of the sup-

port and density thresholds used during mining. Here, we take into account the

characteristics of the sequence data (e.g., number of sequences, average sequence

length) while choosing these absolute support values, to limit the unnecessary

randomness. Lastly, we note that the effectiveness of applying dataflow sensi-

42

Chapter 3. Semantics-directed Specification Mining

tive specifications to characterize program changes is prominent only when the

program change is indeed dataflow related, and can be represented at call level.

Limitations. Firstly, we notice that symbolic instrumentation may suffer from

high time and space overheads, especially for long-running programs. This can

be circumvented by eliminating trace generation through fusing dataflow track-

ing analysis with instrumentation. In addition, we can restrict instrumentation

activities only on entrances to basic blocks (in the sense of control flow graph),

thus minimizing the cost. Secondly, we did not instrument JVM’s library, and

assume that there is no dataflow through JVM calls. On the other hand, our

experiments do not indicate any loss of valuable specifications due to this ap-

proximation. Thirdly, duplication of events at multiple dataflow paths can affect

the scalability of our approach, and we intend to apply incremental mining [74]

to eliminate this limitation. Finally, the approach does not discover interactive

behavior among multiple threads, which will remain one of the future work.

3.4 Related Work

Semantics-based Specification Mining. As mentioned before, several re-

searchers have considered semantic information during specification mining. Am-

mons et al. [6] collected execution traces and annotated them with intra-

procedural data dependency information. Their approach then infers call inter-

action patterns as finite state machines. Thummalapenta and Xie [101] also ana-

lyzed intra-procedural data dependency to filter out unrelated calls, while mining

common exception-handling behavior. At the object-level semantics, Pradel and

Gross [87] and Wasylkowski et al. [105] used object sharing relations to infer

object usage models; Lee et al. [54] proposed specification mining parameter-

ized by object interactions. At predicate-level semantics, Daikon [28] discovers

from execution traces value-based invariants at specific program points. Our

work differs from the above in the granularity of semantic information involved.

Specifically, we track fine-grained inter-procedural dataflow information, and at-

tempt to leverage complete dataflow relation to ensure that mined specifications

are guaranteed to be dataflow relevant.

Dynamic Program Slicing. Our work is also related to dynamic data slicing

43

3.5. Chapter Summary

[118, 102] where only dynamic data dependences are considered ignoring control

dependences. There are however differences: (1) Our mined patterns are both

dataflow related and statistically frequent . (2) Mined patterns are viewed as

program properties as they are derived from multiple traces, contrary to slices

which are obtained from a single execution trace. (3) Mined patterns contain

more abstract information than traditional slices as they only record method

calls and returns. (4) Mined patterns capture more concrete runtime execution

information than slices, because it can consist of multiple occurrences of the same

statement in source code, whereas program slices record each statement uniquely.

(5) Our result is a sequence or path of events instead of set or graph of statements

for slicing.

3.5 Chapter Summary

In this chapter, we propose a novel semantics-directed specification mining frame-

work to efficiently discover semantically significant specifications by exploiting

semantic information to refine the execution traces. Based on this framework,

we develop a dataflow sensitive specification mining system to mine frequent

dataflow related iterative patterns from the execution traces as specifications.

The empirical evaluation shows that our system is (1) effective in filtering off se-

mantically irrelevant patterns, (2) efficient in generating semantically significant

patterns, and (3) practical in program understanding and bug detection.

44

Chapter 4

Statistical Debugging via

Hierarchical Instrumentation

Debugging is known to be a notoriously painstaking and time-consuming task.

As one major family of automated debugging, statistical debugging approaches

have been well investigated over the past decade. All these approaches instrument

the entire buggy program to collect the full-scale execution profiles for debug-

ging. Consequently, they often incur hefty instrumentation and analysis cost.

As a matter of fact, major parts of the program code are error-free. The execu-

tion information collected corresponding to the error-free code is unnecessary for

debugging. The instrumentation for these parts of code is wasteful.

In this chapter, a novel hierarchical instrumentation (HI) technique is de-

vised to refine the execution profiles collected and analyzed by pruning away

unnecessary instrumentation so as to make statistical debugging more efficient

while upholding the debugging effectiveness. We apply the HI technique to two

different categories of statistical debugging: in-house debugging and coopera-

tive debugging for field failures. The experiments validate that the HI technique

can greatly improve the efficiency of statistical debugging approaches without

jeopardizing the debugging effectiveness.

We first provide the motivation in Section 4.1. Next, we present the details of

our HI technique in Section 4.2, followed by two applications in Sections 4.3 and

4.4. Section 4.5 discusses the extension of our HI technique to multiple levels.

Related work is given by Section 4.6 and Section 4.7 summarizes.

45

4.1. Motivation

4.1 Motivation

Bugs are prevalent in software systems. As is well known, debugging is a no-

toriously painstaking and time-consuming task. To reduce developers’ burden,

researches have proposed a wide variety of automated debugging approaches.

As one major family of automated debugging, statistical debugging approaches

collect failing and passing executions and apply statistical techniques to identify

discriminative elements as potential bug cause [47, 58, 3] or signature [42, 15, 96].

The rationale is that program elements which are frequently executed in the fail-

ing runs but rarely executed in the passing runs are quite likely to be faulty.

One problem with these statistical debugging approaches is that they consider

every program element to be potentially relevant to the failure, and thus instru-

ment the entire program for debugging. Such full-scale program instrumentation

incurs hefty cost in terms of disk storage space usage, CPU time and memory

consumption, etc, not just during instrumentation but also analysis thereafter.

However, in fact, most parts of the program code work well, and only small por-

tions of a program are relevant to a given bug [16]. As stated in [58], the majority

(often 98-99%) of program elements (e.g., predicates) monitored are irrelevant to

program failures. The execution information corresponding to these elements is

not necessary to be collected in the execution profiles by instrumentation. This

motivates us to devise a selective instrumentation technique such that only the

necessary program elements which are highly correlated to the failure are in-

strumented, ignoring irrelevant ones. Therefore, the execution profiles collected

and analyzed are refined. The statistical debugging approaches can thus become

more efficient.

4.2 Methodology

In order to make statistical debugging approaches more efficient while not affect-

ing their effectiveness, we devise a novel hierarchical instrumentation technique

to refine the execution profiles collected and analyzed. The core of HI is to safely

and effectively prune away unnecessary instrumentation and only instrument a

set of prospective program elements such that bug-relevant elements can be dis-

covered with much less instrumentation and analysis effort. HI is based on the

46

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

following insight.

Insight
Information collected and measured by instrumenting composite
syntactic constructs (e.g., functions) can be used to guide the se-
lection of program elements (e.g., predicates) for subsequent in-
strumentation.

We call the former instrumentation coarse-grained whereas the latter fine-

grained . In brief, we first perform a lightweight coarse-grained instrumentation

and obtain suspiciousness information of coarse-grained elements (e.g., func-

tions). By means of such coarse-grained suspiciousness information, we safely

and effectively prune away instrumentation of fine-grained elements (e.g., predi-

cates∗).

Specifically, given a fine-grained suspiciousness measure F which can quanti-

tatively assess the suspiciousness of fine-grained elements (e.g., predicates) with

respect to a failure, a statistical debugging approach analyzes two distinct groups

of executions and returns the top-k suspicious elements. The goal of the HI tech-

nique is to make the statistical debugging approach more efficient by performing

selective instrumentation, while upholding the original effectiveness of debugging

(i.e., producing the same top-k elements with identical F values). To this end,

our HI technique requires two coarse-grained measures: one Cp for pruning and

another Cr for ranking.

4.2.1 Coarse-grained Measure for Pruning

A coarse-grained pruning measure Cp assigns a real to each coarse-grained el-

ement (such as function). This real number will be used to determine if the

predicates within the corresponding function need to be instrumented during

fine-grained instrumentation. We formalize this measure as follows:

Definition 7 (Coarse-grained Pruning Measure). Given a fine-grained mea-

sure F : N2→R defined over the intervals ([0, X], [0, Y]), a function Cp : N2→R

under the same domain is defined as a coarse-grained pruning measure if it sat-

isfies the following conditions:

• Cp is an upper bound of F , i.e., Cp(x, y) ≥ F (x, y)
∗The predicates we considered in this dissertation are statement-level predicates [58].

47

4.2. Methodology

• Cp is nondecreasing, i.e., Cp(x, y) ≥ Cp(x− 1, y) ∧Cp(x, y) ≥ Cp(x, y − 1)

• Cp is as close to F as possible, i.e.,
∑X,Y

x,y=0{Cp(x, y) − F (x, y)} is kept

minimal

According to the above definition, given a fine-grained suspiciousness measure

F in a close integer sub-interval domain (x ∈ [0, X], y ∈ [0, Y]), the best coarse-

grained measure Cp(x, y) can be computed by dynamic programming. Algorithm

4 gives the details. As is widely known, its complexity is linear to the size of its

domain space, i.e., O(XY).

Algorithm 4: Coarse-grained Pruning Measure Computation

Input: fine-grained suspiciousness measure F
Output: coarse-grained pruning measure Cp

// base case
1 Cp(0, 0)← F (0, 0)
2 for x← 1 to X do
3 Cp(x, 0)← max{F (x, 0), Cp(x− 1, 0)}
4 end
5 for y ← 1 to Y do
6 Cp(0, y)← max{F (0, y), Cp(0, y − 1)}
7 end

// body
8 for x← 1 to X do
9 for y ← 1 to Y do

10 Cp(x, y)← max{F (x, y), Cp(x− 1, y), Cp(x, y − 1)}
11 end
12 end

4.2.2 Necessary Condition

Having the coarse-grained pruning measure, we can derive a necessary condition

for a coarse-grained element to contain fine-grained elements of high suspicious-

ness.

Theorem 2 (Necessary Condition Derivation). Let e denote a fine-grained

element, m be the corresponding syntactic construct (i.e., coarse-grained element)

encompassing e. s(e) (or s(m)) and n(e) (or n(m)) denote the number of passing

and failing runs where e (or m) is executed, respectively. Given a threshold θ,

fine-grained suspiciousness measure F and coarse-grained pruning measure Cp,

we have the following implication.

F (s(e), n(e)) ≥ θ =⇒ Cp(s(m), n(m)) ≥ θ

48

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Proof.

F (s(e), n(e)) ≥ θ (4.1)

=⇒ Cp(s(e), n(e)) ≥ θ (4.2)

=⇒ Cp(s(m), n(m)) ≥ θ (4.3)

According to Definition 7, we know that Cp is an upper bound of F . Therefore,

(4.2) holds. Since m corresponds to a syntactic construct of e, whenever e is

executed, m must be executed, i.e., s(e) ≤ s(m) and n(e) ≤ n(m). In addition,

Cp is not decreasing, we can thus derive (4.3).

Theorem 2 derives a necessary condition for instrumenting fine-grained ele-

ments in a coarse-grained element m: Cp(s(m), n(m)) ≥ θ. It asserts that, when

the coarse-grained pruning value for m is less than certain threshold θ, we do

not need to consider the fine-grained elements in m for instrumentation, as none

of them has suspiciousness value greater than or equal to θ. We formalize this

condition check as follows.

Corollary 1. Given a threshold θ, a coarse-grained element m, let s(m) and

n(m) denote the number of passing and failing runs where m is executed, respec-

tively. If Cp(s(m), n(m)) ≥ θ is false, then the fine-grained elements in m need

not be instrumented.

4.2.3 Coarse-grained Measure for Ranking

Note that a threshold θ is required when checking the above necessary condition.

We have to consider the following issues when determining θ:

• Safeness. The value of θ ensures that the top-k elements that have been

identified from the fully instrumented program are still derivable.

• Effectiveness. The value of θ enables many bug-irrelevant elements to be

excluded during fine-grained instrumentation.

Specifically, on one hand, to guarantee the safeness of pruning, the threshold

θ must be kept low – it must be no bigger than the F value of ultimate kth top

element returned by the original statistical debugging approach. On the other

49

4.2. Methodology

hand, this threshold should be as high as possible so that more fine-grained

elements could be pruned away.

To guarantee safeness, we perform the same statistical debugging process

on partially instrumented subject programs. Specifically, only a small subset

of elements in the entire subject program are instrumented. The debugging

algorithm then produces the current top-k suspicious elements each with their

respective suspiciousness values. We set the threshold θ to be the suspiciousness

value of the current kth top element. Since this small set of elements chosen

for instrumentation is a proper subset of the set of elements instrumented in the

original approach, the current top-k elements returned here will also be returned

by the original approach, except that their suspiciousness values might not all be

within the range of the ultimate top-k elements. θ thus set is safe because it is

a lower bound of the ultimate kth top suspiciousness value.

To ensure effectiveness, we introduce another coarse-grained measure Cr in

HI such that the Cr value of a coarse-grained element is highly correlated with

the F values of the enclosed fine-grained elements. In other words, if the Cr value

of a coarse-grained element is high, then it is quite likely that the F values of the

enclosed fine-grained elements are high as well. Thus, based on this correlation,

and the fact that the value of θ is obtained from the F value of the kth top element

obtained at previous iterations, we are likely to obtain a high threshold by giving

the priority of performing fine-grained instrumentation to those functions with

high Cr values.

There are several possible ways to obtain Cr. For instance, we can utilize

the fine-grained suspiciousness measure F as Cr. We adopt this solution in our

first application, and empirically validate our belief that the Cr value of coarse-

grained element is highly correlated with the F values of their respective enclosed

fine-grained elements. We will elaborate on it in Section 4.3.3.2. However, this

solution does not work properly when the fine-grained measure depends on other

variables, besides negative and positive supports, which are not meaningful at

coarse granularity†. In that case, a possible solution is to adopt a modified version

of fine-grained measure with reduced dimensions. We will discuss it in detail in

Section 4.4.3.3.

†For example, Importance [58] depends on st(e) and nt(e), which are not meaningful at
function level.

50

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

4.3 Efficient Predicated Bug Signature Mining via Hi-

erarchical Instrumentation

We first demonstrate the effectiveness of HI technique by applying it to predicated

bug signature mining (MPS) described in [96]. MPS is an in-house debugging

approach which requires developers to run the instrumented program in house to

obtain execution profiles for analysis. For MPS as well as other in-house debug-

ging approaches, we apply the HI technique to reduce the size of execution data

collected and analyzed so as to make debugging more efficient. Here, we propose

an efficient predicated bug signature mining approach via HI, called HIMPS.

The empirical study reveals that our technique can achieve around 40% to 60%

saving in disk storage usage, time and memory consumption, and performs espe-

cially well on large programs. It greatly enhances the efficiency of bug signature

mining, making a step forward to painless debugging.

4.3.1 Introduction

As is well known, debugging is an integral process of localizing the bug, un-

derstanding and then fixing it. To assist in debugging, a considerable number

of automatic approaches have been studied in the past decades. Most of them

[48, 47, 58, 60, 4, 3, 33] focus only on the first phase which is termed as fault

localization or bug isolation‡. These approaches commonly collect two groups

(i.e., failing and passing) of executions and apply the statistical techniques to

isolation the discriminative element as the potential failure cause.

However, Parnin and Orso [85] recently claimed that perfect bug understand-

ing does not hold. It is difficult in practice to understand the bug by examining

a single buggy statement. More contextual information where the bug occurs is

likely to provide useful clue for identifying, understanding and correcting bugs.

Hsu et al. [42] coined the term bug signature. Instead of a single suspicious

element (statement or predicate) isolated by automated bug isolation, bug sig-

nature comprises multiple elements providing the bug context information. They

adopted sequence mining algorithm to discover longest sequences in a set of fail-

ing executions as bug signatures. Subsequently, Cheng et al. [15] identified bug

‡We use these two terms “fault localization” and “bug isolation” interchangeably in this
dissertation.

51

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

signatures using discriminative graph mining. They mined discriminative con-

trol flow graph patterns as bug signatures from both passing and failing execu-

tions. Since only control flow transitions are considered in [15], bugs not causing

any deviation in control flow transitions cannot be identified. To enhance the

predictive power of bug signatures, Sun and Khoo [96] proposed predicated bug

signature mining, where both data predicates and control flow information are

utilized. They devised a discriminative itemset generator mining technique to

discover succinct predicated bug signatures. As usual, it requires instrumenting

the entire program to produce full-scale execution profiles for mining. Such full-

scale instrumentation is unnecessary and severely undermines the efficiency of

debugging.

We here propose an efficient predicated bug signature mining approach via

HI, called HIMPS, whose workflow is demonstrated by Figure 4.1. Specifically,

HIMPS comprises two phases: one-pass coarse-grained phase followed by two-

pass fine-grained phase. At coarse-grained phase, we instrument all the function

entries (called coarse-grained elements) of the program and run the instrumented

program over all the failing and passing test cases. We then capture the execu-

tion information of these function entries, which is then used in the fine-grained

phase to guide the selective fine-grained instrumentation. The fine-grained phase

comprises two passes, namely boosting and pruning . The boosting pass instru-

ments and analyzes a selected subset of predicates (called fine-grained elements),

and computes a fine-grained suspiciousness threshold from it. This threshold is

then exploited in the pruning pass, for pruning away unnecessary predicates and

returning a set of prospective predicates for fine-grained instrumentation. Only

these prospective predicates will be instrumented during the pruning pass which

finally returns the top-ranked bug signatures as output for our entire analysis.

4.3.2 Background

We explain some of the steps used in predicated bug signature discovery pro-

posed by Sun and Khoo [96]. Specifically, we discuss in some details how a

program is instrumented to produce predicates during execution, the metrics

used in assessing the suspiciousness of signatures – in the form of itemset, and

how preprocessing is done to reduce the size of database for signature mining.

52

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Figure 4.1: Workflow of predicated bug signature mining via HI

53

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

4.3.2.1 Predicated Bug Signature

An instrumentation scheme widely used in the statistical debugging community

was developed by Liblit et al. [58]. It was also adopted by Sun and Khoo

[96] in their design of predicated bug signature discovery. Here, a program is

instrumented to collect the runtime values of predicates at particular program

points. Each program point to be instrumented is called instrumentation site.

At each instrumentation site, several predicates are tracked. There are three

categories of instrumentation sites considered:

• Branches. For each conditional, two predicates are tracked to indicate

whether the true or false branch is taken at runtime.

• Returns. At each scalar-returning call site, six predicates are created to

capture whether the return value r is ever > 0,≥ 0, < 0,≤ 0,= 0, or 6= 0.

• Scalar-pairs. At each assignment of a scalar value, six predicates are

considered: x <,≤, >,≥,=, 6= yi (or cj), where x is the assigned value, yi

and cj represent one of the other same-typed in-scope variables and one of

the constant-valued integer expressions seen in the program, respectively.

A profile is obtained for each run of the instrumented program. It consists

of a set of predicate counts which records the number of times each predicate

is evaluated to true during the run. In [96], only those predicates whose counts

are not less than 1 (i.e., the predicate is evaluated to true at least once), are

retained. Each profile is thus regarded as a set of items, each of which is a

predicate evaluated to true at least once during execution. In addition, each

profile is labeled as passing or failing according to the oracle. All the profiles

constitute a labeled itemset database, whose each transaction corresponds to

one profile.

Formally, let I = {e1, e2, . . . , em} be a set of items, C = {+,−} be the set of

class labels, D be a class-labeled itemset database constituting n transactions,

i.e., D = {(T1, c1), . . . , (Tn, cn)} where ∀i ∈ [1, n], Ti ⊆ I ∧ ci ∈ C. As discussed

above, in the context of predicated bug signature mining, I corresponds to the

set of all the instrumented predicates. Each transaction Ti in D corresponds to

a profile consisting of predicates evaluated to true during execution – a subset

54

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

of I. Each profile is generated by running the instrumented program using one

test case. The class label (+) identifies the passing profile (which is associated

with the correct execution behaving as expected), whereas (-) labels the failing

profile (which is associated with the faulty execution). We call the corresponding

transactions positive and negative transactions, respectively.

In [96], a bug signature is a set of predicate itemsets, which are observed to-

gether frequently in the failing executions but rarely in the passing ones, and thus

regarded to be correlated to program failures. Given the class-labeled itemset

database, predicated bug signature identification is formulated as a discrimina-

tive itemset pattern mining task. Sun and Khoo mined the highly discriminative

predicate itemsets based on the discriminative measure discussed later in Section

4.3.2.2. Those itemsets with high discriminative significance values constitute

the desired bug signatures.

4.3.2.2 Discriminative Significance

The discriminative significance of a pattern (itemset) is typically measured by

the notion of information gain (IG) [90].

Let D be a class-labeled itemset database, D+ and D− denote all the positive

and negative transactions in D, respectively. Given an itemset pattern P , the

support of P wrt. an itemset database D is defined as the number of transactions

in D containing P , i.e., sup(P,D) = |td(P,D)| where td(P,D) = {(T, c) ∈ D|P ⊆

T}. let s = sup+(P,D) = |td(P,D+)| and n = sup−(P,D) = |td(P,D−)| be the

number of all the positive and negative transactions containing P , which are

called positive support and negative support of P , respectively. The information

gain of pattern P can be defined as follows:

IG(s, n) = H(|D+|, |D−|)− s+ n

|D|
×H(s, n)−

|D| − (s+ n)

|D|
×H(|D+| − s, |D−| − n) (4.4)

where

H(a, b) = − a

a+ b
× log2(

a

a+ b
)− b

a+ b
× log2(

b

a+ b
)

In [96], Sun and Khoo define the following discriminative significance measure

55

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

based on IG:

DS(s, n) =

IG(s, n) if n

|D−| >
s
|D+|

0 otherwise
(4.5)

Since all the itemsets within one bug signature possess the same positive and

negative support, their DS values are also the same. Therefore, the DS value is

used as the discriminative significance score of a signature.

4.3.2.3 Preprocessing and Bug Signature Mining

In [96], Sun and Khoo first performed preprocessing on the profiles to produce a

dataset which is subsequently fed into the bug signature miner. To begin with,

some unimportant or redundant predicates are filtered out in advance. Specifi-

cally, three filtering strategies are applied. Firstly, according to the definition of

discriminative significance (Equation 4.5), all predicates such that n
|D−| ≤

s
|D+|

are filtered as their DS values are always zero. Secondly, all predicates whose

Increase [58] value not greater than zero are also filtered. Thirdly, all predicates

with operators ≥,≤, 6= are filtered if they and their subsumed predicates§ are

both true in the same set of profiles. For instance, consider a predicate a ≥ b,

this predicate is true in all the same profiles where a > b is true. That means

a ≥ b does not capture additional execution information than its subsumed pred-

icate a > b. The predicate a ≥ b is actually redundant and thus can be filtered.

Note that preprocessing is essential as it constructs the database in a suitable

format for the subsequent mining step; furthermore, it filters a great number of

predicates so as to effectively reduce the scale of mining. However, it is also quite

expensive especially if the profiles processed are of big size.

Sun and Khoo [96] devised the discriminative itemset generator mining al-

gorithm. Given a predicate itemset database constructed from profiles through

preprocessing, and the number of top discriminative signatures to mine k, the

algorithm discovers the top-k discriminative bug signatures based on the dis-

criminative significance measure discussed in Section 4.3.2.2. Specifically, they

adopted a tree-based representation of the database as [55] and proposed a depth-

§a ≥ b subsumes a > b and a = b. Similarly, a ≤ b subsumes a < b and a = b, a 6= b
subsumes a > b and a < b.

56

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

first search algorithm over the pattern space while effectively pruning the search

space in a branch and bound fashion. They provided two modes of signature

mining: inter-procedural and intra-procedural. In the first mode, a bug signature

is identified over the whole program. The items in a signature can span across

multiple functions. In the latter mode, the mining is employed to each function

separately, and the items in a signature must reside in the same function. Since

the inter-procedural signature mining is much more expensive than the intra-

procedural, we focus on improving the efficiency of the inter-procedural mode in

this work. We refer the readers to [96] for the detailed mining algorithm.

4.3.3 Approach

Given a buggy program and two groups (failing and passing) of test cases, the

objective of our approach is to efficiently mine the top-k bug signatures which

are highly correlated to the bug as measured by the DS values. The essence of

our approach is a safe pruning of predicates instrumented and mined, making

the bug signature mining more efficient. Briefly, we first capture the execution

information of functions by a lightweight coarse-grained (function-level) instru-

mentation and analysis phase. Subsequently such information about functions

is exploited to safely prune away unnecessary predicates. Algorithm 5 gives the

detailed predicated bug signature mining algorithm via HI involving two phases,

namely coarse-grained and fine-grained phase.

At the coarse-grained phase, only function entries of the subject program are

instrumented (Line 1). This sparsely instrumented program is then run against

all the failing and a small portion of passing test cases to collect the coarse-

grained profiles (Line 2). Each coarse-grained profile consists of a set of functions

which are executed at least once during execution. Having these coarse-grained

profiles, a coarse-grained analysis is performed to produce a list of functions with

their respective negative and positive supports (i.e., the number of failing and

passing coarse-grained profiles containing the function, respectively) (Line 3).

This function list will guide the ensuing fine-grained phase.

The fine-grained phase has two passes, each of which performs fine-grained

instrumentation followed by bug signature mining. The first pass is called “thresh-

old boosting”. It aims to set a threshold which will be used as a lower bound of

57

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

Algorithm 5: Predicated Bug Signature Mining via HI

Input: buggy program G, test suite T , number of signatures mined k,
percentage of predicates instrumented for boosting γ

Output: top k suspicious signatures PS

// coarse-grained instrumentation and analysis
1 Instrument all function entries in the entire program G;
2 Run all the failing and passing tests in T to collect coarse-grained profiles CP ;
3 list← AnalyzeCoarseGrainedProfiles(CP);

// fine-grained instrumentation and analysis

// first pass: threshold boosting
4 boost← SelectPredicatesForBoosting(list, γ);
5 Instrument all predicates in boost;
6 Run all the failing and passing tests in T to collect fine-grained profiles BP ;
7 BD ← Preprocess(BP);
8 BS ← MineBugSignatures(BD, k);
9 θ ← kth top DS value of signatures;

// second pass: safe pruning
10 prospect← PrunePredicates(list, θ);
11 Instrument all predicates in prospect−boost;
12 Run all the failing and passing tests in T to collect fine-grained profiles PP ;
13 PD ← Preprocess(PP+BP);
14 PS ← MineBugSignatures(PD, k);
15 return PS;

the ultimate kth top DS value of bug signatures mined by [96]. This is done by

mining the kth top DS value of signatures having only a small fraction of highly

suspicious predicates instrumented (Lines 4-9). The second pass will efficiently

produce the top-k bug signatures through safely pruning considerable predicates

whose DS values are less than the threshold determined in the first pass (Lines

10-15).

Specifically, in the first pass, we first select a few predicates which are likely to

be of high DS values (Line 4). The selection detail will be expounded in Section

4.3.3.2. Next, we perform the fine-grained instrumentation to instrument all these

selected predicates (Line 5), and then run the instrumented program using all the

failing and passing test cases to acquire fine-grained profiles (Line 6). The profiles

are preprocessed to create the mining dataset (Line 7), which is fed into the bug

signature miner to discover the top-k bug signatures (Line 8). Note that Lines

5-8 indicate the traditional procedure of predicated bug signature mining stated

by [96], making it possible for modular plug-in of new debugging algorithm. After

mining, we attain a threshold θ, which is the kth topDS value of signatures mined

during boosting (Line 9). We prove that this boosted threshold θ is a lower bound

of the ultimate kth top DS value of signatures mined in [96]. We will discuss

58

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

this in Section 4.3.3.3. In the second pass, predicates with DS value lower than

θ are pruned away, leaving behind a set of prospective predicates constituting

the top-k bug signatures (Line 10), which will be discussed in Section 4.3.3.4.

Only these prospective predicates are considered in the pruning pass. Lines 11-

14 perform the bug signature mining as usual. Finally, the identical top-k bug

signatures as mined by [96] are returned (Line 15). Note that since we have

obtained the fine-grained profiles corresponding to the predicates in boost during

the first pass, we only need to instrument other predicates in prospect−boost

in the second pass so as to further reduce execution time and storage space for

profile collection (Line 11). However, we have to preprocess all the profiles (i.e.,

PP+BP) in order to perform inter-procedural signature mining (Line 13).

4.3.3.1 Instrumentation

A salient feature of the HI technique is to have multiple levels of instrumenta-

tion, where instrumentation at higher/coarser-grained level can help prune un-

necessary instrumentation at lower/finer-grained level, resulting in big saving in

performance cost. In this work, two levels of instrumentation are applied, namely

coarse-grained (Line 1) and fine-grained (Lines 5 and 11).

At the coarse-grained phase, only the function entries across the program are

instrumented (Line 1). Each function entry corresponds to one instrumentation

site. After running the coarse-grained instrumented program over all the failing

and a portion of passing test cases, we obtain a set of coarse-grained profiles

each for one test case. Each profile records a set of functions which are executed

during the run.

The instrumentation scheme discussed in Section 4.3.2.1 is used for the fine-

grained instrumentation (Lines 5 and 11). At each of the two passes, different

parts of the program are instrumented, and the instrumented programs are ex-

ecuted using all the failing and passing test cases to generate two groups of

fine-grained profiles, marked as failing and passing respectively. As mentioned

in Section 4.3.2.1, each fine-grained profile is a set of predicates evaluated to

true during the run. It corresponds to an itemset transaction in the fine-grained

profiles database. Notice that our technique is also orthogonal to the instrumen-

tation scheme. More types of predicates can be introduced without affecting our

59

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

framework.

4.3.3.2 Predicate Selection for Boosting

Recall that the objective of the boosting pass is to generate a sufficiently high DS

threshold of signatures for use in the pruning pass. Operationally, the threshold

is generated by performing signature mining (aka., MPS) on the subject with a

small selected set of predicates being instrumented. As the whole mining process

is involved, we wish to instrument as few predicates as possible so as to reduce

overhead incurred and yet discover bug signatures with as high DS value as

possible so as to prune more predicates away in the ensuing pruning pass.

Here we adopt the DS measure as Cr. We believe that the DS value com-

puted during coarse-grained phase for each function, as an approximation to

the DS values of the enclosed predicates, plays an important role in selecting

predicates for boosting (i.e., the predicates instrumented during boosting pass).

Specifically, we have the following hypothesis:

Hypothesis
If the DS value of a function is high, then it is quite likely that
the DS values of predicates within this function are high as well.

In other words, there is a high correlation between DS values of a function

and the predicates within. We test this hypothesis empirically by measuring

the correlation coefficient (i.e., Pearson’s r [73, 7]) between the DS value of a

function and the averageDS value of all predicates within that function using 102

faulty versions in 5 buggy programs. For each version, we compute a correlation

coefficient. Table 4.1 shows the averaged correlation coefficient among all the

versions in each subject, excluding the statistically insignificant ones with p-

value [73, 7] bigger than 0.05. The results indicate a strong positive correlation

between DS values of a function and their predicates.

Table 4.1: Correlation Coefficient

Subject replace space grep sed gzip Overall

CC 0.70 0.71 0.63 0.45 0.64 0.63

Based on the above hypothesis, we elect to choose the predicates within func-

60

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

tions of high DS values as the predicates for boosting. These predicates will

be instrumented in the boosting pass for boosting a threshold. Specifically, we

rank the functions in descending DS values, and select the predicates within the

top few functions, until the total number of predicates selected reaches a pre-

determined percentage γ of the total number of predicates in the entire program

(Line 4). In our experiments, to guarantee low overhead, we set γ to be 5%.

4.3.3.3 Safeness of Threshold Boosting

We obtain a threshold θ, i.e., the kth top DS value of signatures mined during

boosting pass (Line 9). In the ensuing pruning pass, we will prune away those

predicates whose DS values are less than θ, preventing them from being instru-

mented and thus saving the instrumentation and mining effort. To guarantee

the safety of mining results (i.e., the ultimate top-k bug signatures mined by the

original predicated signature mining [96] having all the predicates in the pro-

gram instrumented, continue to appear in the results of pruning pass), we need

to ensure that this boosted threshold is indeed a lower bound of the ultimate

kth top DS value (as stated by Theorem 4), such that no real top-k signatures

will be erroneously missed. Before the proof, we first introduce a definition and

a theorem, which will be used in pruning Theorem 4.

Definition 8 (Projected Database). Given a set of distinct items I, a subset

I ′ ⊆ I, a set of class labels C, and a class-labeled itemset databases D constituting

n transactions, i.e., D = {(T1, c1), . . . , (Tn, cn)} where ∀i ∈ [1, n], Ti ⊆ I ∧ ci ∈

C, a same-sized itemset database D′ = {(T ′1, c′1), . . . , (T ′n, c′n)} is said to be the

projected database from D wrt. I ′ if and only if the following condition holds:

∀i ∈ [1, n], c′i = ci ∧ T ′i = Ti ∩ I ′

Theorem 3 (Pattern Preservation). Given a set of items I ′, two class-labeled

itemset databases D and D′ such that D′ is the projected database from D wrt.

I ′, for an itemset pattern P ⊆ I ′, the following holds:¶

DS(sup+(P,D′), sup−(P,D′)) = DS(sup+(P,D), sup−(P,D))

¶The proof is provided in Appendix C.

61

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

Theorem 4 (Lower Bound). Let θ be the boosted threshold, i.e., the kth top

DS value of signatures mined by boosting pass, dsk be the ultimate kth top DS

value of signatures mined by the original predicated signature mining with all

the predicates in the program instrumented, then we can derive that θ is a lower

bound of dsk, formally θ ≤ dsk.

Proof. Consider the original predicated signature mining, first instruments all the

predicates in the entire program, then runs all the failing and passing test cases

to collect profiles which are then constructed to a class-labeled itemset database

for bug signature mining. As mentioned in Section 4.3.2.1, let I denote the set of

all the instrumented predicates by the original signature mining, D denotes the

class-labeled itemset database thus constructed. Accordingly, let I ′ correspond

to the set of predicates instrumented at the boosting pass which is a subset of

I. D′ is the itemset database derived during boosting. We can derive that D′

is the projected database from D wrt. I ′. Since for each executed test case, we

will attain the same labeled profile in both databases (i.e., let n be the number

of test cases executed, then ∀i ∈ [1, n], c′i = ci). Meanwhile, for those predicates

instrumented during boosting (i.e., e ∈ I ′), they are evaluated to true if and only

if they are also evaluated to true in the original mining for the same test case.

Therefore, these predicates will identically appear in both transactions Ti ∈ D

and T ′i ∈ D′, i.e, ∀i ∈ [1, n], T ′i = Ti ∩ I ′.

Since D′ is the projected database from D wrt. I ′, based on Theorem 3, we

can conclude that for any itemset pattern mined in boosting pass, its DS value

is identical to that computed in the original mining.

As mentioned before, a signature is a pattern consisting of itemsets with

the same DS values. Therefore, given any signature mined in boosting, we will

discover the same signature with the same DS value in the original mining. As a

consequence, the ultimate kth top DS value of signatures mined in the original

signature mining dsk will be at least the boosted threshold θ, i.e., the kth top

DS value of signatures mined during boosting pass, i.e., θ ≤ dsk.

4.3.3.4 Predicate Pruning

In the pruning pass, we aim to discover the actual top-k bug signatures. We

leverage the results from the coarse-grained phase (which is a list of functions

62

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

associated with their respective negative and positive supports) and the boosting

pass (which is the boosted threshold θ) to safely prune away predicates for in-

strumentation whose DS value is less than θ, leaving behind a list of prospective

predicates (Line 10 in Algorithm 5). According to the methodology presented in

Section 4.2.1, we derive a specific coarse-grained pruning measure and exploit it

for pruning based on a safe necessary condition.

Concretely, given the fine-grained suspiciousness measure DS which can be

regarded as a function of two variables in natural number domain, i.e., DS =

F (s, n) where s ∈ [0, |D+|], n ∈ [0, |D−|]. (Please refer to Section 4.3.2.2 for

notations.) The coarse-grained pruning measure can be defined recursively as

Equation 4.6. We can thus employ dynamic programming (Algorithm 4) to

derive our coarse-grained pruning measure.

Cp(s, n) =

DS(0, 0) if s = 0, n = 0

max{DS(s, 0), Cp(s− 1, 0)} if s ∈ (0, |D+|], n = 0

max{DS(0, n), Cp(0, n− 1)} if s = 0, n ∈ (0, |D−|]

max{DS(s, n), Cp(s− 1, n),

Cp(s, n− 1)} if s ∈ (0, |D+|], n ∈ (0, |D−|]

(4.6)

Conceptually, the predicates within functions whose Cp values fall below θ

can be safely exempted from fine-grained instrumentation, since they cannot

contribute a bug signature whose DS value is no less than θ. Specifically, this

safe pruning condition can be formalized as follows.

Theorem 5 (Necessary Condition Derivation). Let ei denote a predicate,

mi be the function in which ei is located, s(m) and n(m) be the positive and

negative supports of function m, respectively. Given a predicate itemset database

D, a bug signature P comprising a set of predicate itemsets all having the same

negative and positive supports, for ease of presentation, let P = {{e1, e2, ..., ek}}

and a threshold θ, the following implication holds:

DS(sup+(P,D), sup−(P,D)) ≥ θ =⇒ ∀i ∈ [1, k], Cp(s(mi), n(mi)) ≥ θ

63

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

Proof.

DS(sup+(P,D), sup−(P,D)) ≥ θ (4.7)

=⇒ Cp(sup
+(P,D), sup−(P,D)) ≥ θ (4.8)

=⇒ ∀i ∈ [1, k], Cp(sup
+({ei},D), sup−({ei},D)) ≥ θ (4.9)

=⇒ ∀i ∈ [1, k], Cp(s(mi), n(mi)) ≥ θ (4.10)

Inequality (4.8) holds because Cp is an upper bound of DS. Since Cp is non-

decreasing and we have s(mi) ≥ sup+({ei},D) ≥ sup+(P,D) and n(mi) ≥

sup−({ei},D) ≥ sup−(P,D) hold, Inequalities (4.9) and (4.10) are thus derived.

As a result, we have proved Theorem 5.

Based on the above necessary condition derived, we prune away all the pred-

icates within the functions whose Cp values are less than θ. Predicates that are

not pruned away are called prospective predicates. As mentioned earlier, these

prospective predicates will be instrumented and mined in the pruning pass.

From Theorem 5, we know that any bug signatures with DS value no less

than θ, have to have their constituent predicates coming from these prospective

predicates. Moreover, we have proved that this boosted threshold θ is a lower

bound of the ultimate kth top DS value of signatures in Section 4.3.3.3. Thus,

mining done at the pruning pass can discover all the actual top-k bug signatures.

4.3.4 Empirical Evaluation

We have conducted an empirical evaluation of our approach using 102 faulty

versions in 5 buggy programs on an Intel Core 2 Quad 3.0GHz PC with 16GB

main memory running 64-bit Fedora 19. Table 4.2 lists the subjects used, number

of faulty versions, lines of code, number of functions, number of instrumentation

predicates, and the size of test suite used. Note that in our experiments, all

the results displayed for each subject are the average values computed across all

the faulty versions in that subject. Moreover, the number of top discriminative

signatures to mine k is set to 1, and γ which is the percentage of predicates

instrumented during the boosting pass is set to 5%.

The original predicated signature mining [96] is composed of four main steps,

namely instrumentation, profile collection, preprocessing and mining. Since each

64

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Table 4.2: Characteristics of subject programs

Subject Versions LoC Functions Predicates Tests

replace 31 564 21 22,412 5,542
space 34 6,199 136 459,030 1,248
grep 12 10,068 129 1,412,055 809
sed 16 14,427 169 2,377,612 363
gzip 9 5,680 90 3,741,611 213

instrumentation is only performed once and then the instrumented program can

be run forever, its cost is not significant compared with the other steps (i.e., profile

collection, preprocessing and mining). In the following, we mainly discuss the

performance improvement during the other three steps. Specifically, we measure

the improvement of our approach in reducing execution time and storage space

during profile collection in Section 4.3.4.1. In Section 4.3.4.2, we compare with

[96] in terms of time and memory consumption for preprocessing and signature

mining. We abbreviate the original predicated bug signature mining [96] as MPS

(Mining Predicated Bug Signatures), whereas our approach as HIMPS (MPS via

HI).

4.3.4.1 Profile Collection

In this step, we run the failing and passing test cases to collect profiles. This

corresponds to Lines 2, 6 and 12 in Algorithm 5. Here we consider two aspects

of performance cost, namely the execution time for running the instrumented

programs and the disk storage space used for profiles.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

replace
space

grep
sed gzip

Overall

%
 o

f
pr

ed
ic

at
es

 in
st

ru
m

en
te

d boost
prune

Figure 4.2: Percentage of predicates instrumented

As both performance costs are to some extent dependent on the number of

predicates instrumented, we first present the percentage of predicates which are

instrumented in our approach. Figure 4.2 depicts the percentage of predicates

65

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

instrumented during boosting and pruning in HIMPS. As can be seen, compared

with MPS where all the predicates (100%) in the whole program are instru-

mented, HIMPS manages to prune away considerable predicates. It only needs

to instrument less than 45% of predicates for all subjects except for replace.

Overall, more than half of the predicates are exempted from instrumentation

compared with MPS. Note that HIMPS performs quite well especially on large

programs. For gzip, even more than 75% of predicates are safely pruned away.

For replace, it is of small size and most of the functions are executed during

each run. HIMPS can hardly prune away predicates based on the coarse-grained

information (i.e., negative and positive supports). As a consequence, it can only

reduce 20% of predicates instrumented. We believe that the larger the program,

the higher percentage of predicates our approach can prune away.

We have discussed the effectiveness of our approach in pruning unnecessary

predicates in Figure 4.2. This provides an empirical evidence that HIMPS incurs

relatively less time in executing instrumented programs and also utilizes less

disk storage space for profiles than MPS. We further validate this hypothesis by

directly measuring the execution time and the storage space for profiles.

Table 4.3: Execution time (in seconds) for profile collection

MPS HIMPS Ratio

Subject original coarse boost prune total total/original

replace 12,023 6,272 6,603 9,811 22,686 188.70%
space 26,942 2,258 2,709 11,392 16,359 60.72%
grep 156,843 1,837 8,823 18,763 29,423 18.76%
sed 69,453 839 3,717 38,583 43,139 62.11%
gzip 665,144 4,463 113,129 57,217 174,809 26.28%
Overall 186,081 3,134 26,996 27,154 57,283 71.31%

Table 4.3 illustrates the execution time spent for running the instrumented

program to collect profiles. We compare HIMPS including the coarse-grained

phase (Column coarse) and two fine-grained passes (Columns boost and prune)

with MPS adopting full instrumentation. As mentioned earlier, the coarse-

grained instrumentation is lightweight. That is why Column coarse is quite

small. Column total indicates the total execution time, which is the sum of all

three columns in HIMPS. As can be seen, for grep and gzip, HIMPS only takes

less than 30% of the execution time that MPS takes. But for replace, our ap-

proach costs more time than MPS due to running the fine-grained instrumented

66

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

program twice. Note that we employ sampler-cc [57] as the instrumenter in this

experiment. Moreover, in order to ensure credible and stable results, we run each

instrumented program four times, ignore the first run and compute the average

execution time of the other three runs.

Table 4.4: Disk storage space used (in KB) for profile collection

MPS HIMPS Ratio

Subject original coarse boost prune total total/original

replace 125,883 903 13,819 89,136 103,857 82.50%
space 567,025 522 35,089 195,290 230,901 40.72%
grep 1,141,582 318 116,325 395,454 512,096 44.86%
sed 864,367 191 49,465 288,836 338,491 39.16%
gzip 821,573 66 57,187 130,588 187,840 22.86%
Overall 704,086 400 54,377 219,861 274,637 46.02%

Table 4.4 presents the storage space used for profiles in kilobytes for HIMPS

and MPS. Three groups of profiles were collected for HIMPS: the coarse-grained

profiles (Column coarse), the fine-grained profiles during boosting (Column

boost) and pruning (Column prune). It shows that HIMPS only requires less

than 45% of the profile storage space required by MPS for all the subjects except

for replace.

4.3.4.2 Preprocessing & Mining

Having fine-grained profiles, we perform preprocessing to construct the mining

dataset (Lines 7 and 13), and then mine bug signatures (Lines 8 and 14). Here,

we compare HIMPS with MPS in terms of time cost and memory consumption

for preprocessing and mining. Note that in our experiment, both HIMPS and

MPS perform the same procedure as stated in Section 4.3.2.3 under the same

setting.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

replace
space

grep
sed gzip

Overall

%
 o

f
pr

ed
ic

at
es

 p
re

pr
oc

es
se

d boost
prune

(a) preprocessing

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

replace
space

grep
sed gzip

Overall

%
 o

f
pr

ed
ic

at
es

 m
in

ed

boost
prune

(b) mining

Figure 4.3: Percentage of predicates analyzed

67

4.3. Efficient Bug Signature Mining via Hierarchical Instrumentation

We first demonstrate the percentage of predicates preprocessed and mined

in HIMPS against that of MPS as the base (100%). Figures 4.3(a) and 4.3(b)

plot the percentage during preprocessing and mining, respectively. As mentioned

earlier, the profiles collected during boosting have to be preprocessed again in

the pruning pass for the inter-procedural mining (Line 13 in Algorithm 5). That

is why the percentage of predicates preprocessed (Figure 4.3(a)) is slightly bigger

than that of instrumented (Figure 4.2). Nevertheless, around 50% of the total

predicates are preprocessed during boosting and pruning together. Compared

with 50% reduction in the number of predicates for preprocessing, overall only

about 10% of predicates are reduced for mining shown as Figure 4.3(b). The un-

derlying reason is that a certain number of predicates have been pruned through

the filtering strategy during preprocessing discussed in Section 4.3.2.3, which

weakens the pruning effectiveness of our technique. Again, HIMPS can prune

away higher percentage of predicates for larger programs than for smaller ones.

In the following, we directly provide the time cost and memory consumption for

preprocessing and mining.

Table 4.5: Time (in seconds) and memory consumption (in KB) for preprocessing

MPS HIMPS Ratio

original boost prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 65.10 141,455 1.90 39,112 38.89 128,448 40.79 128,448 62.66% 90.81%
space 155.43 427,286 3.52 57,590 55.09 201,124 58.61 201,124 37.71% 47.07%
grep 220.94 867,907 12.11 166,308 79.94 452,685 92.05 452,685 41.66% 52.16%
sed 147.17 696,303 5.34 135,928 65.23 374,397 70.57 374,397 47.95% 53.77%
gzip 115.19 731,132 6.14 184,280 28.41 312,901 34.55 312,901 29.99% 42.80%
Overall 140.77 572,816 5.80 116,644 53.51 293,911 59.32 293,911 44.00% 57.32%

Table 4.6: Time (in seconds) and memory consumption (in KB) for mining

MPS HIMPS Ratio

original boost prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 28.88 240,061 0.07 16,120 26.39 230,307 26.46 230,307 91.62% 95.94%
space 77.24 260,895 0.25 12,085 65.03 240,507 65.28 240,507 84.52% 92.19%
grep 335.07 351,248 1.88 25,009 197.32 273,248 199.19 273,248 59.45% 77.79%
sed 24.67 65,754 0.05 5,595 19.51 59,170 19.56 59,170 79.29% 89.99%
gzip 56.80 70,730 0.13 7,259 35.13 49,478 35.27 49,478 62.09% 69.95%
Overall 104.53 197,738 0.48 13,214 68.68 170,542 69.15 170,542 75.39% 85.17%

Tables 4.5 and 4.6 show the time cost in seconds and peak memory used in

kilobytes for preprocessing and mining, respectively. Column total gets the sum

of boost and prune for Time and the maximum for Memory. For preprocessing,

HIMPS only takes less than 45% of time that MPS takes on average. The peak

68

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

memory consumed is also smaller than 55% of that used by MPS for all the

subjects except for replace. As for mining, HIMPS can also save around 25% of

time and 15% of peak memory consumption in general.

Table 4.7: Time (in seconds) and memory consumption (in KB) for preprocessing
and mining together

MPS HIMPS Ratio

original coarse boost & prune total total/original

Subject Time Memory Time Memory Time Memory Time Memory Time Memory

replace 93.98 240,061 0.28 60,918 67.25 230,307 67.53 230,307 71.86% 95.94%
space 232.67 427,286 0.33 57,221 123.90 240,507 124.23 240,507 53.39% 56.29%
grep 556.01 867,907 0.85 101,256 291.24 452,685 292.09 452,685 52.53% 52.16%
sed 171.84 696,303 1.39 128,319 90.13 374,397 91.52 374,397 53.26% 53.77%
gzip 171.99 731,132 2.16 184,506 69.82 312,901 71.98 312,901 41.85% 42.80%
Overall 245.30 592,538 1.00 106,444 128.47 322,159 129.47 322,159 54.58% 60.19%

Table 4.7 demonstrates the total time cost and memory consumption for

preprocessing and mining together. In addition, HIMPS also includes the time

and memory used by the coarse-grained analysis, shown as Column coarse. We

can see that the coarse-grained analysis is quite cheap compared with the fine-

grained analysis (Column boost & prune). Overall, HIMPS can save more than

45% of total time and near 40% of memory consumption compared with MPS

for the whole analysis.

69

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

4.4 Iterative Statistical Bug Isolation via Hierarchical

Instrumentation

We illustrate the employment of the HI technique to cooperative bug isolation

(CBI) for field failures [58] in the following. Different from in-house debug-

ging where developers run the instrumented program to obtain execution data,

CBI directly gathers execution profiles from end-users running the deployed in-

strumented program. Therefore, besides considering the scale of execution data

collected and analyzed by developers, we have to consider another important

performance aspect - user’s overhead for running the instrumented programs. To

this end, we propose a novel iterative (and cooperative) statistical bug isolation

approach for field failures via HI. Our experiments show that this new approach

via HI saves significant instrumentation effort and sharply reduces runtime over-

head, while upholding the accuracy of bug isolation.

4.4.1 Introduction

Most software deployed around the world remains buggy in spite of extensive

in-house testing. Hitherto, debugging continues to be a tedious and painstaking

effort for developers. As an essential and yet expensive process in debugging, bug

isolation (or fault localization) aims to isolate or locate program faults [103]. It

has spun off many research activities aiming to automate this process. One auto-

mated bug isolation approach for field failures which has received much attention

recently is cooperative (statistical) bug isolation [57, 58]. This approach applies

the idea of crowd-sourcing in sampling classes of program runtime behavior from

a large pool of end-users running instrumented programs for bug tracking. The

gathered program traces enable developers to apply statistical techniques to pin-

point the likely causes of failures. The success of this approach hinges on the

availability of a sufficiently large user base to run the instrumented programs. In

order to encourage a great number of users to participate, the user’s overhead for

running the instrumented programs should be kept sufficiently low. To this end,

Liblit et al. adopted a sparse random sampling technique [57]. This technique

amortizes the cost of monitoring user-end executions to a large number of users

so that each user suffers a relatively low time overhead. Nevertheless, from the

70

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

perspective of developers, this approach does not really reduce the monitoring

cost or the total size of execution data, which consumes many resources such as

network bandwidth, storage space, CPU time, etc, due to the need for data trans-

fer, storage and analysis. This constrains the practicability of post-deployment

bug hunting, especially for large applications.

To ensure minimal effort spent by both end-users and developers, iterative

bug isolation approaches have been proposed [16, 10]. They perform the instru-

mentation and statistical analysis in an iterative manner. Instead of the entire

program, only partial code is instrumented and analyzed at each iteration. They

check the bug predictors reported during each iteration and adjust the instru-

mentation plan for the next iteration based on the following principle of locality

[10]: if a program element (e.g., predicate) is highly predictive of failure, then

the elements in its vicinity are potentially good bug predictors as well. The iter-

ative debugging process proceeds until the bug is found or the entire program is

explored.

However, there are two main drawbacks of iterative approaches. Firstly, both

iterative approaches [16, 10] make use of the principle of locality to guide their

search for bugs; this principle however is not always effective in localizing bugs, as

experiments have found [10]. Secondly and also more importantly, both iterative

approaches require developers to check the predictors reported at each iteration,

until the bug cause is found. As claimed in [85], developers are reluctant to go

through a list of predictors, not to mention the need to repetitively perform this

check at every iteration.

In order to tackle the above drawbacks, we employ HI to perform selective

instrumentation and propose an iterative bug isolation approach for field failures

via HI. Our approach via HI consists of two phases: a one-pass coarse-grained

phase followed by an iterative fine-grained phase guided by results obtained from

the first phase. The process runs as follows: first we instrument the entire pro-

gram at a coarse granularity (e.g., function entry-level) and deploy the instru-

mented program to users for execution; such instrumentation is guaranteed to be

lightweight. Once a sufficient number of user executions are collected, we calcu-

late the coarse-grained execution information for each function. This information

is then exploited to guide the iterative fine-grained (predicate-level) instrumenta-

71

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

tion. In the iterative phase, we use the coarse-grained information and feedback

from previous iterations to help select a function at each iteration and instrument

all the predicates in that function. This fine-grained instrumented program is

then deployed. As we only instrument one function, the runtime overhead in-

curred at user side is kept minimal. We again collect the execution data and

measure the suspiciousness value for each predicate in the function. We iterate

the process until all the selected functions are exhaustively examined. Even-

tually, the globally top-k predictors are reported to the developers. Figure 4.4

illustrates the workflow of our system.

4.4.2 Background

Before presenting our work, we give a brief overview of cooperative statistical bug

isolation approach and its extension to adaptive bug isolation. We also briefly

associate our work with these approaches.

4.4.2.1 Cooperative Statistical Bug Isolation

Cooperative bug isolation (CBI) is a dynamic analysis for locating the causes

of program field failures. It collects execution information of an instrumented

program from both failing and passing end-user runs, and employs statistical

techniques to pinpoint the likely root causes of software failures [59, 58].

Specifically, a program is instrumented to collect the runtime values of pred-

icates at particular program points. Each program point to be instrumented is

called instrumentation site. At each instrumentation site, several instrumenta-

tion predicates are tracked. There are three categories of instrumentation sites

considered:

• Branches: For each conditional, two predicates are recorded to indicate

whether the true or false branch is taken at runtime.

• Returns: At each scalar-returning call site, six predicates are tracked to

capture whether the return value r is ever > 0,≥ 0, < 0,≤ 0,= 0, or 6= 0.

• Scalar-pairs: At each assignment of a scalar value, six relationships be-

tween the assigned value x and each other same-typed in-scope variable

yi are considered. Specifically, for each yi, six predicates are created:

72

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Figure 4.4: Workflow of iterative bug isolation for field failures via HI

73

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

x <,≤, >,≥,=, 6= yi.

A profile is obtained for each run of the instrumented program. It consists

of a set of predicate counts which records the number of times each predicate

is evaluated to be true during this execution. In CBI [58], these counts are

simplified to binary values (i.e., they only distinguish whether the predicate is

true at least once or never). In addition, each profile is labeled as passing or

failing. Having these profiles, the statistical technique is applied to compute a

suspiciousness value for each predicate. The top scored predicate is regarded as

the best predictor of the failure.

The following measure called Importance (Equation 4.11) has been used to

assess the suspiciousness of predicates [58]. Importance is actually the harmonic

mean of Increase (Equation 4.12) and Sensitivity (Equation 4.13). Notation-wise,

for a predicate e, st(e) and nt(e) are the number of passing and failing runs where

e is observed to be true, respectively. s(e) and n(e) are the number of respective

passing and failing runs in which e is observed, regardless of whether e is evaluated

to be true or false. Note that Importance is actually a function under the natural

number domain. Specifically, s ∈ [0, S], n ∈ [0, N], st ∈ [0, s], nt ∈ [0, n] where S

and N are the total number of passing and failing runs, respectively.

Importance(e) =
2

1
Increase(e) +

1
Sensitivity(e)

(4.11)

Increase(e) =
nt(e)

nt(e) + st(e)
− n(e)

n(e) + s(e)
(4.12)

Sensitivity(e) =
log nt(e)

logN
(4.13)

In order to reduce the performance impact of instrumentation, CBI adopts

sparse random sampling [57] derived from the work of Arnold and Ryder [8]. This

technique generates instrumentation which samples a sparse and random subset

of predicate counts during the execution. This helps to protect privacy and di-

minish performance overhead. However, the total monitoring and computational

cost is not reduced as a whole. Moreover, sampling [8, 57] doubles the size of the

executable, which constrains the practicality especially for large applications.

74

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

In this work, we adopt CBI as our fine-grained statistical model : we employ

the instrumentation scheme discussed above to perform our fine-grained instru-

mentation, and Importance measure to assess the suspiciousness of predicates.

However, instead of sampling, we conduct iterative monitoring. We select one

function to be monitored at each iteration and instrument all the predicates

within this function.

4.4.2.2 Adaptive Bug Isolation

Based on the observation that only small portions of a program are relevant to

a given bug [16], two adaptive statistical bug isolation approaches [16, 10] have

been proposed. HOLMES employs an iterative, locality-based instrumentation

scheme to address both time and space overheads [16]. At each iteration, it

identifies predictors of the reported failure. Based on the suspiciousness values

of these predictors, HOLMES either decides that these predictors are the root

causes, or expands the search by monitoring code in other functions that closely

interact with these weak predictors.

Adaptive bug isolation presented by Arumuga et al. [10] is a fine-grained

adaptive monitoring system which adaptively monitors the program at the gran-

ularity of predicates. It monitors a fraction of predicates at each iteration and

adaptively adjusts the instrumentation plan to include predicates closer to the

highly suspicious predicate currently explored. It is formulated as a search on

the control dependence graph and presents several heuristics to guide the search.

Similarly, we also perform statistical bug isolation in an iterative way. Dif-

ferent from them, we propose a novel hierarchical instrumentation to facilitate

iterative monitoring.

4.4.3 Approach

Based on the systematic HI technique discussed in Section 4.2, we propose an it-

erative bug isolation approach via HI. In brief, our approach aims to discover

the top-k suspicious predictors at less instrumentation effort, while ensuring

lightweight instrumentation throughout.

Algorithm 6 depicts the pseudo code of our approach which consists of a

coarse-grained phase followed by an iterative fine-grained phase. At the first

75

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

Algorithm 6: Iterative Statistical Bug Isolation via HI

Input: buggy program G, number of predicates returned k
Output: top k suspicious predicates Pk

1 Pk ← ∅;
2 θ ← 0;

// coarse-grained instrumentation and analysis
3 Instrument all function entries in the entire program G;
4 Deploy the instrumented program;
5 CollectSufficientData();
6 list← AnalyzeCoarseGrainedProfiles();

// fine-grained instrumentation and analysis
7 while list 6= ∅ do
8 m← function with the highest Cr value from list;
9 list← list−m;

10 if NecessaryCondition(m, θ) is false then
11 continue;
12 end
13 Instrument all predicates in function m;
14 Deploy the instrumented program;
15 CollectSufficientData();
16 Update(Pk, predictors in m);
17 θ ← getTopKthImportance(Pk);
18 end
19 return Pk;

phase, a coarse-grained instrumentation is performed to instrument all the func-

tion entries of the entire program, and then the instrumented program is deployed

in the field (Lines 3-4). We collect sufficient execution data from a large number

of end-users running the instrumented program (Line 5). We analyze the col-

lected execution data (i.e., profiles) and eventually obtain a list of functions with

their respective execution information (i.e., the number of failing and passing

profiles containing the function) (Line 6). This list provides the coarse-grained

execution information which will be utilized to guide the iterative fine-grained

instrumentation in the second phase. The second phase is an iterative phase.

At each iteration, we instrument at most one function at fine granularity. We

select the function with the highest ranking value (i.e., Cr value) in the current

list (Line 8). Based on the feedback θ which is the highest suspiciousness value

(Importance value) explored so far, we verify the necessary condition for function

m (by comparing its Cp value against θ) to contain predicates whose Importance

value can be greater than or equal to θ. If the necessary condition is not satisfied,

we skip this function m and proceed to the next iteration (Lines 10-12). Oth-

erwise, we instrument all predicates within m according to the instrumentation

76

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

scheme of CBI discussed in Section 4.4.2.1, and redeploy the instrumented pro-

gram (Lines 13-14). We wait for sufficient execution data to be collected (Line

15). We next compute the Importance value of predicates in m and update the

top-k predicates Pk as well as the kth top Importance value θ (Lines 16-17). If

the current list of functions is not empty, we proceed to the next iteration. It is

worth noticing that each function in the list can be examined at most once as

it is removed from the list after it is considered (Line 9). We will provide the

detailed discussion for each step in the remaining section.

4.4.3.1 Instrumentation and Deployment

The HI technique involves two different levels of instrumentation. At the coarse-

grained instrumentation level (Line 3), we only instrument the function entries in

the whole program. There is only one instrumentation site (function entry) per

function, thus fairly lightweight. For each function entry, we count the number of

times this function is called during a run. After a sufficient number of end-users

running the instrumented program, we successfully collect the required number

of coarse-grained profiles. Each profile consists of a set of functions which are

called at least once, as well as a label marking this run as failing or passing. For

fine-grained instrumentation (Line 13), we adopt the instrumentation scheme of

CBI discussed in Section 4.4.2.1. Obviously, the number of predicates is much

larger than that of function entries in coarse-grained instrumentation. However,

here we only instrument the predicates within one function at each iteration.

The performance overhead is much lower than that of sampling (cf. [57]), as

validated in our experimental evaluation (Section 4.4.4.3).

During each iteration of fine-grained instrumentation, developers need to in-

strument the program and deploy the instrumented program to users (Lines

13-14). In practice, it is not feasible to recompile and reinstall the entire pro-

gram each time, especially for large-scale programs. To this end, we adopt a

technique called weak recompilation [89]. Instead of recompiling the entire pro-

gram, we only compile the changed component (i.e., the function instrumented

at each iteration) as a patch to a shared library. During execution phase, we

replace the original function with the patch corresponding to the instrumented

version of this function through utilizing function wrapping mechanism provided

77

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

by runtime instrumentation tools such as Valgrind [78]. In other words, we wrap

a function such that the calls to this function are intercepted and rerouted to

the specific instrumented version of this function included in the shared library.

As such, we are only required to recompile the instrumented function as a patch

and deploy it to users at each iteration. The empirical evaluation conducted by

[89] shows that the weak recompilation technique saves tremendous compilation

cost and is scalable and practical.

4.4.3.2 Pruning Measure Calculation & Necessary Condition Deriva-

tion

By employing the systematic approach presented in Section 4.2.1, we derive a

specific coarse-grained pruning measure and use it to derive a necessary condition

for the purpose of pruning (Line 10).

Concretely, given the fine-grained suspiciousness measure Importance which

can be regarded as a function of four variables in natural number domain, i.e.,

Importance = F (s, n, st, nt) where s ∈ [0, S], n ∈ [0, N], st ∈ [0, s], nt ∈ [0, n].

(Please refer to Section 4.4.2.1 for notations.) The coarse-grained pruning mea-

sure can be defined recursively as follows:

Cp(s, n) =

M(0, 0) if s = 0, n = 0

max{M(s, 0), Cp(s− 1, 0)} if s ∈ (0, S], n = 0

max{M(0, n), Cp(0, n− 1)} if s = 0, n ∈ (0, N]

max{M(s, n), Cp(s− 1, n),

Cp(s, n− 1)} if s ∈ (0, S], n ∈ (0, N]

and

M(s, n) = max{F (s, n, st, nt) | st ∈ [0, S], nt ∈ [0, n]} (4.14)

Notice that in this particular case, the fine-grained suspiciousness measure

Importance is of four dimensions whereas the coarse-grained measure only has

two‖. We reduce the dimensions just by computing the maximum over the entire

domain of additional variables st and nt, as shown in Equation (4.14). Conse-

‖Importance distinguishes whether a predicate is evaluated to true or false (i.e., st(e) and
nt(e)). However, such values are not meaningful at function level.

78

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

quently, we are able to employ dynamic programming (Algorithm 4) to compute

our coarse-grained suspiciousness measure.

Having the coarse-grained measure Cp, let e be a predicate, m be the function

where e is located, and a threshold value θ, we can readily deduce the following

implication.

Importance(e) ≥ θ =⇒ Cp(s(m), n(m)) ≥ θ

In other words, Cp(s(m), n(m)) ≥ θ is a necessary condition for function m to

contain predicates with Importance value at least θ. Consequently, when this

necessary condition is invalid , we can safely skip function m for fine-grained

instrumentation.

4.4.3.3 Ranking Measure Calculation

In order to effectively prune away unnecessary instrumentation, a coarse-grained

ranking measure is required (Line 8). As we mentioned earlier, Importance mea-

sure has additional variables (st and nt). Here, we propose to adopt the pruning

measure derived above as the ranking measure. We will validate its effectiveness

in the following.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000Th
re

sh
ol

d
fo

un
d

fr
om

 p
re

vi
ou

s
ite

ra
tio

ns

Ordering of predicates considered for instrumentation

Figure 4.5: Threshold used for pruning versus ordering of predicates considered
for instrumentation

Let’s consider the case where we are looking for top-1 suspicious element.

We order each predicate by the iteration in which it was considered for instru-

mentation; i.e., predicates with lower order are considered for instrumentation

at earlier iteration. Predicates considered in the same iteration are randomly

ordered. Figure 4.5 plots the threshold used when a predicate is considered for

instrumentation versus the predicate order for a faulty version of subject space.

Ideally, we want threshold to be set sufficiently high for as many predicates as

79

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

possible, because this will increase the chance for necessary condition to be fal-

sified, and the instrumentation of predicates be pruned. As such, it is desirable

to have a plot in which the threshold raises very quickly and stabilizes at a high

level.

To quantify the effectiveness of ranking measure, we represent the curve in

Figure 4.5 by a function θ = f(x) under the integer domain (x ∈ [1, X]) and real

number codomain (θ ∈ [0, θmax]) where X and θmax denote the total number of

predicates and the maximum threshold found in the entire program, respectively.

Given this function, we introduce a metric called threshold mass which is defined

as follows:

threshold mass =
X∑

x=1

f(x)

Note that the value of threshold mass is exactly the area under the curve. We

then define the effectiveness of ranking measure as the following ratio:

ratio =
threshold mass
θmax ×X

The higher the ratio, the more effective the ranking measure is. To test the

practicality of our adopted ranking measure (which is the same as the pruning

measure, as mentioned earlier in this section), we compute this ratio for multiple

subject programs. Table 4.8 shows the averaged ratio over all the versions in

each subject. On average, the ratio is about 83%. This indicates that, in practice

our ranking measure can guide the iterative process to raise the threshold to a

relatively high level at very early stage.

Table 4.8: Ratio of threshold mass

Subject replace space grep sed gzip Overall

Ratio 0.64 0.77 0.83 0.97 0.94 0.83

4.4.3.4 Sufficient Data Collection

Statistical bug isolation relies on a huge amount of data to ensure the stability of

results. In other words, given a sufficiently large number of execution profiles, we

can obtain the same result (e.g., the same ranked list of functions or predictors)

even if the profiles under analysis are different.

80

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Figure 4.6: Sufficient data collection strategy

In practice, we can wait for sufficient user executions until a stable result

is achieved. Specifically, once we have collected a good number of profiles, we

can start generating a result. Next, we can continue to wait for the arrival of

additional number of profiles and analyze all the profiles collected so far to get

a new result. We keep this iterative process until we always achieve the same

result in the recently consecutive iterations. Figure 4.6 illustrates the procedure.

Although this is not the main focus of our work, we will adopt this strategy in

our experiments discussed later in Section 4.4.4.1.

4.4.4 Empirical Evaluation

The effectiveness of statistical bug isolation has been validated by lots of prior

work [57, 58, 120, 60, 44]. We thus mainly focus on validating the performance of

our technique in reducing instrumentation effort in Section 4.4.4.1 and runtime

overhead in Section 4.4.4.3 compared with non-iterative sampling-based statis-

tical approach [58]. In addition, we also experimentally compare our approach

with adaptive bug isolation [10] in Section 4.4.4.4.

Table 4.9: Characteristics of subject programs

Subject Versions LoC Functions Predicates Tests

replace 31 564 21 2,920 5,542
space 34 6,199 136 25,449 1,248
grep 12 10,068 129 226,286 809
sed 16 14,427 168 96,389 363
gzip 9 5,680 91 179,408 213

We have conducted an empirical evaluation using the subject programs from

SIR repository [25]. Table 4.9 lists our subjects used, number of faulty versions,

lines of code, number of functions, number of instrumentation predicates, and the

size of test suite used. The Importance measure we adopted as the fine-grained

suspiciousness measure is not applicable if the faulty version fails in less than

two test cases. Such versions were omitted and not included in Table 4.9. All

81

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

experiments are conducted on an Intel Core 2 Quad 3.0GHz PC with 16GB main

memory running 64-bit Fedora 19.

To mimic a real deployment, we randomly choose a subset of test cases at

each iteration of the fine-grained phase according to the data collection strategy

proposed in Section 4.4.3.4. Test cases used at different iterations are mostly

different. This is quite similar to the practical situation where no two user ex-

ecutions are exactly same. For the coarse-grained phase, the entire test suite is

exploited in our experiments.

4.4.4.1 Instrumentation Effort

We take the traditional, non-iterative statistical bug isolation (Liblit et al. [58])

as the baseline approach and identify top-k suspicious predictors using the entire

test suite. In order to verify the performance of our approach, we measure the

total instrumentation effort required, i.e., the percentage of predicates instru-

mented to obtain the same top-k predictors. The smaller the percentage, the

better the performance of our approach is. Here we set k to 1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

replace
space

grep
sed gzip

Overall

%
 o

f
pr

ed
ic

at
es

 in
st

ru
m

en
te

d

Figure 4.7: Percentage of predicates instrumented

Figure 4.7 plots the percentage of predicates instrumented to find the top

predictor for each subject (averaged across all versions). Overall, we can guaran-

tee that more than 50% of instrumentation predicates can be pruned away using

our approach even without developers’ effort. Our iterative approach performs

better for larger programs. For sed and gzip, only about 25% of predicates need

to be examined, 75% are skipped. For replace, it is of small size and most of

the functions are executed in both failing and passing runs. It is hard to dis-

tinguish them based on the coarse-grained information. Therefore, more than

80% of predicates have to be instrumented. In more detail, Table 4.10 shows

82

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

the average number of iterations required (Column “Iterations”) to find the top

predictor and the average number of predicates instrumented during an iteration

(Column “Predicates_per”).

Table 4.10: Average number of iterations and average number of predicates in-
strumented per iteration

Subject Funs_total Iterations Predicates_total Predicates_per

replace 21 15.9 2,920 157.8
space 136 69.1 25,449 206.0
grep 129 41.3 226,286 2952.5
sed 168 55.6 96,389 532.4
gzip 91 20.8 179,408 2516.8

4.4.4.2 Stability of Results

According to the data collection strategy stated in Section 4.4.3.4, we randomly

select a subset of test cases at each iteration. Such a data collection strategy

is effective in practice due to a large pool of data available from users. In our

experiment though, the number of test cases can be limited, and there might be

a challenge to obtain stable experiment result; i.e., our iterative approach might

not be able to attain the same top predictor as the baseline approach (i.e., the

traditional, non-iterative approach). In this section, we discuss the success rate

of our approach in attaining the desired result using the data collection strategy

in our experiment.

Table 4.11: Average number of successful runs and average number of test cases
used per iteration

Subject Runs Tests_total Tests_per(#) Tests_per(/)

replace 84.03 5,542 2,993 0.54
space 79.71 1,248 998 0.80
grep 82.50 809 542 0.67
sed 83.06 363 229 0.63
gzip 69.67 213 185 0.87
Overall 79.79 1,635 989 0.70

Specifically, we ran our approach for 100 times and measured how many

times our approach can successfully obtain the same top predictor as identified

by the baseline approach. Table 4.11 shows the average number of successful runs

(Column “Runs”) among all 100 runs, and the average number of test cases used at

each iteration (Column “Tests_per(#)”). Column “Tests_per(/)" indicates the

83

4.4. Iterative Statistical Bug Isolation via Hierarchical Instrumentation

ratio of the number of selected tests at each iteration (Column “Tests_per(#)”)

to the total number of tests (Column “Tests_total”) we have.

As can be seen, we can get the same top predictor as the baseline approach in

most of runs, overall around 80%. The test suite available for gzip is very small

and thus it is difficult to achieve the really stable result for each iteration. That

is why gzip has a relatively low success rate.

4.4.4.3 Performance Overhead

We compared the user’s time overhead of our (non-sampling) fine-grained iter-

ative instrumentation against that of the sampling scheme [58] with different

sampling rates (1/1, 1/100, 1/10000). In addition, we measured the time over-

head of our coarse-grained instrumentation scheme (shown as Column “coarse”),

where only function entries are instrumented without sampling. We ran each sub-

ject four times, ignored the first run and computed an average execution time of

the other three runs.

Table 4.12: Time overhead

Sampling HI

Subject 1/1 1/100 1/10000 coarse fine

replace 0.721 0.690 0.671 0.393 0.540
space 1.617 1.517 1.460 0.294 0.384
grep 26.475 15.954 11.482 0.197 0.395
sed 8.006 5.328 4.628 0.230 0.286
gzip 4.678 2.346 1.745 0.021 0.057
Overall 8.299 5.167 3.997 0.227 0.332

Table 4.10 shows that only a few predicates instrumented during each iter-

ation (shown as Column “Predicates_per”) with respect to the total number of

predicates (Column “Predicates_total”) in the program. This provides an empir-

ical evidence that our approach has rather low user’s time overhead. We further

validated this expectation by assessing the average execution time for executing

the fine-grained instrumented program at each iteration, as well as the execution

time for coarse-grained instrumentation in the first phase of our approach. Table

4.12 presents the time overhead for running the instrumented programs of our

approach (Column “HI”) and that of the sampling (Column “Sampling”). All the

instrumentation in our experiments is performed via sampler-cc developed by

Liblit et al. [57] using two different schemes: sampling and non-sampling.

84

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Overall, our fine-grained iterative instrumentation (Column “fine”) suffers a

much lower overhead than sampling. Especially for grep, sed and gzip, the over-

head of our approach is at least an order of magnitude smaller than that of

sampling. For replace, the overhead difference between our instrumentation and

the sampling schemes is not so significant as other subjects. This is because the

program is of small size and we instrument most of the predicates at each itera-

tion. As for our coarse-grained instrumentation (Column “coarse”), its overhead

is even smaller than that of the fine-grained iterative instrumentation.

4.4.4.4 Performance Comparison with Adaptive Bug Isolation

We also compared our approach with adaptive bug isolation [10]. Recall that the

adaptive approach requires developers to check and verify the identified predic-

tors for bug at each iteration. This is in stark contrast to our approach, where

developers only need to check the top-k predictors at the end of all iterations.

For instrumentation effort saved, without developers’ intervention, the adaptive

approach can not save any instrumentation effort. In this sense, our approach

(50% saving) definitely outperforms theirs. For performance overhead, the adap-

tive approach in general performs better than ours. At each iteration, it only

instruments a small fraction of predicates on the control flow graph, while our

approach instruments all the predicates within one function. As a result, our

approach could suffer from higher time overhead than theirs. However, on the

other hand, their approach requires running more iterations than ours. This

further increases the developers’ burden for checking predictors. The debugging

process will also take longer time. In fact, the trade-off between the overhead and

debugging time can be tuned in our approach by considering additional levels in

the HI technique. For example, we can add the block level between function level

and predicate level such that only the predicates within a block are instrumented

during each iteration. The performance overhead can thus be further reduced.

We will expound this idea later in Section 4.5.

4.4.5 Discussion

As an iterative approach, Algorithm 6 needs to run the bug isolation process mul-

tiple iterations. Consequently, it relieves users of running instrumented programs

85

4.5. Multiple Levels in Hierarchical Instrumentation

with high overhead, but increases the waiting time for results. The productiv-

ity trade-off between users and developers is common in approaches that adopt

crowd-sourcing. In what follows, we suggest several ways to better balance this

trade-off.

Multiple Deployment. Since we have a tremendous number of end-users, we

can simultaneously deploy multiple different instrumented programs to different

users for execution. As a result, the waiting time for execution data can be signifi-

cantly reduced. Specifically, we can identify n functions which are of high ranking

values and can not be pruned away. We separately instrument the predicates in

each of n functions and eventually obtain totally n instrumented programs which

are then deployed at the same time. As a consequence, developers can collect

execution profiles for debugging with less waiting time.

Multi-function Instrumentation. While only the predicates in one function

are instrumented in one instrumented program, it does not prevent us from doing

fine-grained instrumentation on multiple functions in one instrumented program.

This particularly works well for functions of small size, where such additional

performance overhead remains tolerable to users. We can thus reduce the number

of iterations. Developers can obtain the final top-k predictors earlier.

4.5 Multiple Levels in Hierarchical Instrumentation

So far, we only consider two levels of instrumentation in the hierarchy of a pro-

gram: function-level and predicate-level. Our HI technique needs not to be

restricted to these two particular levels. According to practical requirements,

different levels and different numbers of levels can be taken into account in our

technique.

For example, if a program is very large-scale and has a great number of

functions, the cost saved from having full-scale function-level instrumentation

and analysis may not be sufficient. In this case we can add one more level in

the hierarchy, e.g., class-level. We exploit the class-level information to prune

away unnecessary instrumentation of functions at the first place. Thus only

some of the functions in the whole program are instrumented at the function-

level. The gain compared to the two levels will be the saved cost at function level

86

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

instrumentation and analysis minus the additional cost at class level. Moreover,

if a function has a big piece of code, the execution information of this function

may not be a sufficiently precise approximation to the information of enclosed

predicates. In this case, the pruning effectiveness can be further improved by

introducing another level, like block-level. Therefore, more predicates can be

pruned away. But notice that we need to pay the extra cost for this added block-

level instrumentation and analysis. Similarly, the gain here will be the saved cost

at predicate level minus the additional cost at block level.

Specifically, let’s assume four levels considered in hierarchical instrumenta-

tion: class-level, function-level, block-level, predicate-level. All levels of instru-

mentation except for the most fine-grained one (predicate-level) are regarded as

coarse-grained (1st coarse-grained:class-level, 2nd coarse-grained:function-level,

and 3rd coarse-grained:block-level). We perform the instrumentation level by

level from the most coarse-grained to the fine-grained. The coarse-grained prun-

ing and ranking measures presented earlier in Section 4.2 are applied to each

coarse-grained level. Algorithms 7 and 8 show the pseudo code for the extended

versions of Algorithms 5 and 6 respectively, handling multiple levels. The num-

ber of levels considered are specified by a parameter n where n ≥ 2. Note that

the algorithms of multi-level versions are mostly the same as the original versions

except recursive procedures: recBoosting and recPruning in Algorithm 7, recIML

in Algorithm 8. Once an additional level is involved in the hierarchy, the code

fragments: Lines 10-13 and 24-27 in Algorithm 7, Lines 17-26 in Algorithm 8,

will be invoked one more time.

87

4.5. Multiple Levels in Hierarchical Instrumentation

Algorithm 7: Predicated Bug Signature Mining via HI (Multi-level)

Input: buggy program G, test suite T , number of signatures mined k,
percentage of elements instrumented for each level boosting γ, number of
levels n (n ≥ 2)

Output: top k suspicious signatures PS

1 Instrument the entire program G at level 1;
2 Run all the failing and passing tests in T to collect all the profiles CP ;
3 L1 ← AnalyzeCoarseGrainedProfiles(CP);

// threshold boosting
4 boost← SelectElementsForBoosting(L1, γ);
5 θ ← recBoosting(2, n, boost, T, k, γ);

// safe pruning
6 prospect← PruneElements(L1, θ);
7 PS ← recPruning(2, n, prospect, T, k, θ);
8 return PS;

Procedure: recBoosting(i, n, boost, T, k, γ)
Input: current level i, instrumentation candidate boost, n, T , k, γ
Output: threshold for pruning θ

9 if i < n then
10 Instrument boost at level i;
11 Run all the failing and passing tests to in T collect all the profiles CP ;
12 Li ← AnalyzeCoarseGrainedProfiles(CP);
13 boost← SelectElementsForBoosting(Li, γ);
14 return recBoosting(i+ 1, n, boost, T, k, γ);
15 else if i == n then
16 Instrument all predicates in boost;
17 Run all the failing and passing tests in T to collect all the profiles BP ;
18 BD ← Preprocess(BP);
19 BS ← MineBugSignatures(BD, k);
20 θ ← kth top DS value of signatures;
21 return θ;
22 end

Procedure: recPruning(i, n, prospect, T, k, θ)
Input: current level i, instrumentation candidate prospect, n, T , k, threshold θ
Output: top k suspicious signatures PS

23 if i < n then
24 Instrument prospect at level i;
25 Run all the failing and passing tests in T to collect all the profiles CP ;
26 Li ← AnalyzeCoarseGrainedProfiles(CP);
27 prospect← PruneElements(Li, θ);
28 return recPruning(i+ 1, n, prospect, T, k, θ);
29 else if i == n then
30 Instrument all predicates in prospect;
31 Run all the failing and passing tests in T to collect all the profiles PP ;
32 PD ← Preprocess(PP);
33 PS ← MineBugSignatures(PD, k);
34 return PS;
35 end

88

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

Algorithm 8: Iterative Statistical Bug Isolation via HI (Multi-level)

Input: buggy program G, number of predicates returned k, number of levels n
(n ≥ 2)

Output: top k suspicious predicates Pk

1 Pk ← ∅;
2 θ ← 0;

3 Instrument the entire program G at level 1;
4 Deploy the instrumented program;
5 CollectSufficientData();
6 L1 ← AnalyzeCoarseGrainedProfiles();
7 while L1 6= ∅ do
8 e← element with the highest Cr value from L1;
9 L1 ← L1 − e;

10 if NecessaryCondition(e, θ) is false then
11 continue;
12 end
13 recIML(2, n, e, k, Pk, θ);
14 end
15 return Pk;

Procedure: recIML(i, n, e, k, Pk, θ)
Input: current level i, instrumentation candidate e, n, k
Update: Pk, threshold θ

16 if i < n then
17 Instrument e at level i;
18 Deploy the instrumented program;
19 CollectSufficientData();
20 Li ← AnalyzeCoarseGrainedProfiles();
21 while Li 6= ∅ do
22 e← element with the highest Cr value from Li;
23 Li ← Li − e;
24 if NecessaryCondition(e, θ) is false then
25 continue;
26 end
27 recIML(i+ 1, n, e, k, Pk, θ);
28 end
29 else if i == n then
30 Instrument all the predicates in e;
31 Deploy the instrumented program;
32 CollectSufficientData();
33 Update(Pk, predictors in e);
34 θ ← getTopKthImportance(Pk);
35 end
36 return;

89

4.6. Related Work

4.6 Related Work

There are quite a few related studies which refine the data under analysis for

debugging by performing selective instrumentation. HOLMES [16] and Adaptive

Bug Isolation [10] are the most related work to our iterative approach presented

in Section 4.4. HOLMES employs an iterative, bug-directed instrumentation

scheme to isolate the causes of failures. Specifically, at each iteration, it moni-

tors a set of functions, branches and paths to analyze whether they are strong

predictors of the failure. If so, it terminates by returning these strong predictors.

Otherwise, it expands the search via a static analysis to monitor other parts of

code that closely interact with the weak predictors. Similarly, adaptive bug iso-

lation adopts an adaptive monitoring strategy based on the following principle

of locality [10]: If a predicate is highly predictive of failure, then predicates in its

vicinity are potentially good bug predictors as well. It monitors a few predicates at

each iteration and adaptively adjusts the instrumentation plan to include pred-

icates close to the highly suspicious predicate currently explored. This iterative

process proceeds until the bug cause is found.

Both studies perform selective instrumentation in the sense that only partial

program code is instrumented at each iteration. However, their performance

strongly relies on the principle of locality. They also need developers’ intervention

to terminate the process. In contrast, we devise hierarchical instrumentation

and exploit the coarse-grained information to safely and effectively prune away

unnecessary fine-grained instrumentation in an automatic way.

4.7 Chapter Summary

We devise a novel hierarchical instrumentation technique performing selective

instrumentation to refine the execution data collected and analyzed, finally en-

hancing the efficiency of statistical debugging. We apply the HI technique to two

different types of statistical debugging approaches: in-house debugging and co-

operative debugging for field failures. The results reveal that our technique safely

and effectively prunes away unnecessary instrumentation. The execution profiles

are significantly refined, and therefore the efficiency of statistical debugging is

improved. Specifically, we first employ the HI technique to predicated bug signa-

90

Chapter 4. Statistical Debugging via Hierarchical Instrumentation

ture mining (MPS) and propose an approach called HIMPS. The empirical study

shows that HIMPS can achieve around 40% to 60% saving in time and space com-

pared with MPS while discovering the same top-k bug signatures. Secondly, we

investigate the adoption of HI to cooperative bug isolation for field failures and

propose an iterative approach via HI. The experimental results validate that our

approach not only greatly saves the total monitoring and computational costs,

but also sharply reduces the end-user’s runtime overhead.

91

Chapter 5

Conclusion

For the past two decades, mining software behavior has been well investigated

to assist in various software engineering tasks. Two topics which received much

attention are specification mining and statistical debugging.

Among the execution data analyzed by both specification mining and statis-

tical debugging, there exist a significant number of useless elements. Mining di-

rectly over the raw execution data wastes a great amount of computing resources

and possibly produces unexpected results due to the redundant and meaningless

elements. This severely undermine the efficiency and effectiveness of software

behavior mining. In this dissertation, we investigate, explore and validate the

thesis statement that: the efficiency and effectiveness of software behavior min-

ing can be significantly improved by systematically refining the software execution

data under analysis. We devise the specific refinement technique for each of two

studies to refine the data collected and analyzed, thus improving the efficiency

and effectiveness of software behavior mining.

In the following, we summarize our research discussed above by giving the

main contributions, and talk about the potential future work.

5.1 Summary and Contributions

We have the following contributions for specification mining.

Semantics-directed Specification Mining. We propose a semantics-directed

specification mining framework which injects semantic information into mining.

We propose the respective semantic analysis to extract semantically relevant se-

93

5.1. Summary and Contributions

quences from execution traces. We then perform frequent pattern mining on

these sequences to generate semantically significant specifications. Since all se-

mantically irrelevant events are pruned away through the semantic analysis, the

mined specifications are all semantically significant, and mining becomes more

efficient.

Dataflow Sensitive Specification Mining. Based on the semantics-directed

specification mining framework, we present a particular dataflow sensitive speci-

fication mining system where dataflow semantics is taken into consideration. We

present a dynamic, inter-procedural dataflow tracking analysis to extract all the

dataflow related sequences from execution traces. A novel Apriori-like constrained

iterative pattern mining algorithm is particularly developed to discover frequent

patterns from a set of dataflow related sequences. We conduct experiments on

five real-world subjects using our implemented prototype. The results show that

our approach produces high-quality semantically significant specifications and

scales to large real-world programs.

For statistical debugging, the contributions are as follows.

Hierarchical Instrumentation. We devise a novel hierarchical instrumenta-

tion (HI) technique to refine the execution data by pruning away unnecessary

instrumentation. In brief, we first perform a lightweight coarse-grained instru-

mentation and obtain the execution information of coarse-grained elements (e.g.,

functions). By means of such coarse-grained execution information, we safely

and effectively prune away instrumentation of fine-grained elements (e.g., pred-

icates). Therefore, the execution traces collected and analyzed are significantly

refined. We formalize the underlying principles of the hierarchical instrumen-

tation technique and provide a general and systematic approach to applying it.

Various statistical debugging approaches can thus benefit from this technique.

Efficient Predicated Bug Signature Mining via HI. We propose HIMPS,

an efficient predicated bug signature mining via HI to safely and effectively prune

away considerable unnecessary predicates for instrumentation. We conduct ex-

periments to compare HIMPS against the MPS system developed in [96]. The

experiments validate that HIMPS can achieve around 40% to 60% saving in disk

storage space usage, time and peak memory consumption compared with MPS

94

Chapter 5. Conclusion

without jeopardizing the effectiveness of mining for top-ranked signatures.

Iterative Statistical Bug Isolation via HI.We propose an iterative statistical

bug isolation approach for field failures via HI. We iteratively perform fine-grained

instrumentation as guided by the coarse-grained information, and dynamically

prune unnecessary instrumentation away. We conduct the experiments on real-

world programs. The experimental results validate that our approach not only

saves the total monitoring and computational costs, but also sharply diminishes

the performance overhead for end-users.

5.2 Future Work

For specification mining, we talk about the following potential directions for

investigation.

Semantics & Specification Formalisms. We would like to introduce other

semantic relations among events such as calling relation [35], object collabora-

tive relation [87], and resource acquire-release relation [109], into our semantics-

directed specification mining framework just like the dataflow semantics we have

studied. Based on the user-specific semantics, we develop the respective seman-

tics analysis to filter our irrelevant data from execution traces, and then mine

the semantically significant specifications with respect to the specific semantics.

Moreover, apart from the iterative pattern, we are also interested in mining

other formalisms of specifications, such as graphs. Specifically, we will construct

a set of graphs capturing certain semantic relation among events. We then em-

ploy frequent subgraph mining algorithm [112] to discover frequent subgraphs as

specifications.

At the technical level, while we have provided a framework for introducing se-

mantic information into the specification mining process, we have not considered

how such introduction of semantic information can be fully automated. To this

end, we can consider the design of a domain specific language for describing (1)

what semantic information should be introduced, and (2) where and how they

should be introduced, and collected during program execution. Moreover, we will

also investigate the application of program transformation techniques, such as fu-

sion and partial evaluation [17, 49], to automatically merge the domain-specific

95

5.2. Future Work

program with the specification miner to obtain an automated semantics-based

specification miner.

Value-based Invariants. As an extension, we also plan to integrate value-

based invariants with our iterative patterns [69]. The value-based invariants

[27] capture the properties among variables. They can enrich our event-based

iterative patterns. Therefore, the final specifications will be more expressive

and can be used in more applications. Specifically, we can extract the runtime

variable values which are relevant to the events in the mined patterns. Such

variable information forms execution traces. The invariant inference algorithm

[29] can then be employed to detect value-based invariants from these traces.

Finally, we produce the event-based patterns enriched by value-based invariants

as the final specifications.

For statistical debugging, we would like to investigate the following potential

studies in the future.

Semantic Hierarchy. Our HI technique is currently dependent on the syntac-

tic hierarchy of program source code. On the basis of the syntactic containment

relation between program elements (e.g., functions and the predicates contained

within), we exploit the execution information of syntactic coarse-grained elements

(e.g., functions) to guide the instrumentation of fine-grained elements (e.g., pred-

icates). In future, we plan to investigate the semantic hierarchy. For example,

complex predicates can be constructed to form a hierarchy by means of logical

operators. In this sense, a path condition [51] can be regarded as a semantic

coarse-grained element of branch conditionals. Program slices [107] are also a

kind of semantic coarse-grained elements of code statements. Similar to the syn-

tactic hierarchy, we can also utilize various program semantic hierarchies in our

HI technique.

Automated Debugging for Performance Problems. As we mentioned

earlier, automated debugging has been studied for decades, for sequential bugs

[47, 58] and concurrency bugs [84], in the context of one version program [115]

or multiple versions [88]. Most of these studies focus on the functional bugs

which refer to the bugs leading to functional misbehavior (e.g., incorrect out-

puts, crashes, and exceptions). Quite recently, several studies on debugging

96

Chapter 5. Conclusion

performance problems (i.e., performance degradation and energy waste [45, 61])

have been investigated [38, 95, 113]. These approaches achieve some useful re-

sults, but are far away from maturity. Profilers [1, 2] as the most commonly

used and available tool for diagnosis, can tell where and how many computation

resources are spent, but not whether or why they are wasted. They still require

enormous manual effort for performance debugging. Several non-profiling, trace

analysis debugging approaches have been recently proposed [38, 113]. However,

all of them aim to identify the performance-causality relation among system

events and components, none on fine-grained source code level. Song and Lu [95]

applied predicate-based statistical debugging (originally proposed for functional

bugs [58]) to performance problems. It isolates predicates highly correlated to

the root cause, but it is still difficult for developers to locate and understand the

bug by only examining the single predicate in isolation [85]. To better support

debugging for performance problems, we would like to explore the combination

of both profiling [98] and contrast data mining [26]. Specifically, we can represent

the program behavior as control flow graph annotated with runtime information

(e.g., execution cost) via profiling tools and then adopt contrast data mining

techniques to identify the discriminative patterns, which aid in localizing and

understanding the root cause of performance problems. Our HI technique can

be applied to achieve better scalability.

97

Bibliography

[1] http://sourceware.org/binutils/docs-2.21/gprof/.

[2] http://oprofile.sourceforge.net.

[3] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. Spectrum-based multiple fault

localization. In Proceedings of the 2009 IEEE/ACM International Conference on

Automated Software Engineering, ASE ’09, pages 88–99, Washington, DC, USA,

2009. IEEE Computer Society.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-

based fault localization. In Proceedings of the Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION, pages 89–98, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the

Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14,

Washington, DC, USA, 1995. IEEE Computer Society.

[6] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In Proceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM.

[7] G. Argyrous. Statistics for Research: With a Guide to SPSS. SAGE Publications

Ltd; Third Edition edition (February 9, 2011), 2011.

[8] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented

code. In Proceedings of the ACM SIGPLAN 2001 conference on Programming

language design and implementation, PLDI ’01, pages 168–179, New York, NY,

USA. ACM.

[9] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical debugging using

compound boolean predicates. In Proceedings of the 2007 International Sympo-

sium on Software Testing and Analysis, ISSTA ’07, pages 5–15, New York, NY,

USA, 2007. ACM.

99

http://sourceware.org/binutils/docs-2.21/gprof/
http://oprofile.sourceforge.net

Bibliography

[10] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering, ICSE ’10,

pages 255–264, New York, NY, USA. ACM.

[11] G. K. Baah, A. Podgurski, and M. J. Harrold. Causal inference for statistical

fault localization. In Proceedings of the 19th international symposium on Software

testing and analysis, ISSTA ’10, pages 73–84, New York, NY, USA, 2010. ACM.

[12] G. K. Baah, A. Podgurski, and M. J. Harrold. Mitigating the confounding effects

of program dependences for effective fault localization. In SIGSOFT FSE, pages

146–156, 2011.

[13] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code

completion systems. In Proceedings of the the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’09, pages 213–222, New York,

NY, USA, 2009. ACM.

[14] R.-Y. Chang, A. Podgurski, and J. Yang. Finding what’s not there: A new

approach to revealing neglected conditions in software. In Proceedings of the 2007

International Symposium on Software Testing and Analysis, ISSTA ’07, pages

163–173, New York, NY, USA, 2007. ACM.

[15] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug signatures

using discriminative graph mining. In Proceedings of the eighteenth international

symposium on Software testing and analysis, ISSTA ’09, pages 141–152, New York,

NY, USA, 2009. ACM.

[16] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani. Holmes: Ef-

fective statistical debugging via efficient path profiling. In Proceedings of the 31st

International Conference on Software Engineering, ICSE ’09, pages 34–44. IEEE

Computer Society, 2009.

[17] W.-N. Chin. Towards an automated tupling strategy. In Proceedings of the 1993

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program

Manipulation, PEPM ’93, pages 119–132, New York, NY, USA, 1993. ACM.

[18] J. Clause and A. Orso. A technique for enabling and supporting debugging of field

failures. In Proceedings of the 29th International Conference on Software Engi-

neering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE Computer

Society.

[19] H. Cleve and A. Zeller. Locating causes of program failures. In ICSE, pages

342–351, 2005.

100

Bibliography

[20] J. E. Cook and A. L. Wolf. Automating process discovery through event-data anal-

ysis. In Proceedings of the 17th international conference on Software engineering,

ICSE ’95, pages 73–82, New York, NY, USA, 1995. ACM.

[21] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: dynamic symbolic execution

for invariant inference. In Proceedings of the 30th international conference on

Software engineering, ICSE ’08, pages 281–290, New York, NY, USA, 2008. ACM.

[22] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java.

In Proceedings of the 19th European Conference on Object-Oriented Programming,

ECOOP’05, pages 528–550, Berlin, Heidelberg, 2005. Springer-Verlag.

[23] W. Damm and D. Harel. Lscs: Breathing life into message sequence charts. Tech-

nical report, Jerusalem, Israel, Israel, 1998.

[24] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and M. C.

Rinard. Inference and enforcement of data structure consistency specifications. In

ISSTA, pages 233–244, 2006.

[25] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical

Software Engineering: An International Journal, 10(4):405–435, 2005.

[26] G. Dong and J. Bailey, editors. Contrast Data Mining: Concepts, Algorithms, and

Applications. CRC Press, 2013.

[27] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering

likely program invariants to support program evolution. In Proceedings of the 21st

international conference on Software engineering, ICSE ’99, pages 213–224, New

York, NY, USA, 1999. ACM.

[28] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering

likely program invariants to support program evolution. IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 27:213–224, 2001.

[29] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting

relevant program invariants. In Proceedings of the 22nd international conference

on Software engineering, ICSE ’00, pages 449–458, New York, NY, USA, 2000.

ACM.

[30] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

and C. Xiao. The daikon system for dynamic detection of likely invariants. Sci.

Comput. Program., 69(1-3):35–45, Dec. 2007.

[31] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal properties

from dynamic traces. In Proceedings of the 16th ACM SIGSOFT International

101

Bibliography

Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages

339–349, New York, NY, USA, 2008. ACM.

[32] M. Gabel and Z. Su. Symbolic mining of temporal specifications. In Proceedings of

the 30th international conference on Software engineering, ICSE ’08, pages 51–60,

New York, NY, USA, 2008. ACM.

[33] R. Gore, P. F. Reynolds, and D. Kamensky. Statistical debugging with elastic

predicates. In Proceedings of the 2011 26th IEEE/ACM International Conference

on Automated Software Engineering, ASE’11, pages 492–495, Washington, DC,

USA. IEEE Computer Society.

[34] R. Gore and P. F. Reynolds, Jr. Reducing confounding bias in predicate-level

statistical debugging metrics. In Proceedings of the 2012 International Conference

on Software Engineering, ICSE 2012, pages 463–473, Piscataway, NJ, USA. IEEE

Press.

[35] D. Grove and C. Chambers. A framework for call graph construction algorithms.

ACM Trans. Program. Lang. Syst., 23(6):685–746, Nov. 2001.

[36] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using failure-

inducing chops. In ASE, pages 263–272, 2005.

[37] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2005.

[38] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the

large via mining millions of stack traces. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages 145–155, Piscataway, NJ,

USA, 2012. IEEE Press.

[39] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via operational

abstraction. In Proceedings of the 25th International Conference on Software En-

gineering, ICSE ’03, pages 60–71, Washington, DC, USA, 2003. IEEE Computer

Society.

[40] D. Harel and S. Maoz. Assert and negate revisited: modal semantics for uml

sequence diagrams. In Proceedings of the 2006 international workshop on Scenarios

and state machines: models, algorithms, and tools, SCESM ’06, pages 13–20, New

York, NY, USA, 2006. ACM.

[41] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence

graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming

Language Design and Implementation, PLDI ’88, pages 35–46, New York, NY,

USA, 1988. ACM.

102

Bibliography

[42] H.-Y. Hsu, J. A. Jones, and A. Orso. Rapid: Identifying bug signatures to support

debugging activities. In Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, ASE ’08, pages 439–442. IEEE

Computer Society, 2008.

[43] ITU-T. Itu-t recommendation z.120: Message sequence chart (msc). 1999.

[44] L. Jiang and Z. Su. Context-aware statistical debugging: from bug predictors

to faulty control flow paths. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, ASE ’07, pages 184–

193, New York, NY, USA. ACM.

[45] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting real-

world performance bugs. In Proceedings of the 33rd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’12, pages 77–88,

New York, NY, USA, 2012. ACM.

[46] W. Jin and A. Orso. Bugredux: Reproducing field failures for in-house debug-

ging. In Proceedings of the 34th International Conference on Software Engineering,

ICSE ’12, pages 474–484, Piscataway, NJ, USA, 2012. IEEE Press.

[47] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic

fault-localization technique. In Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, ASE ’05, pages 273–282. ACM,

2005.

[48] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to

assist fault localization. In Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA. ACM.

[49] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[50] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from

human-written patches. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 802–811, Piscataway, NJ, USA, 2013. IEEE

Press.

[51] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, July 1976.

[52] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal logic for

scenario-based specifications. In Proceedings of the 11th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’05,

pages 445–460, Berlin, Heidelberg, 2005. Springer-Verlag.

103

Bibliography

[53] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Mining message sequence

graphs. In ICSE, pages 91–100, 2011.

[54] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In Proceedings

of the 33rd International Conference on Software Engineering, ICSE ’11, pages

591–600, New York, NY, USA, 2011. ACM.

[55] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum description length principle:

Generators are preferable to closed patterns. In Proceedings of the 21st National

Conference on Artificial Intelligence - Volume 1, AAAI’06, pages 409–414. AAAI

Press, 2006.

[56] Z. Li and Y. Zhou. Pr-miner: automatically extracting implicit programming

rules and detecting violations in large software code. In Proceedings of the 10th

European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, ESEC/FSE-13,

pages 306–315, New York, NY, USA, 2005. ACM.

[57] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote

program sampling. In Proceedings of the ACM SIGPLAN 2003 conference on

Programming language design and implementation, PLDI ’03, pages 141–154, New

York, NY, USA. ACM.

[58] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical

bug isolation. In Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’05, pages 15–26, New York, NY,

USA. ACM.

[59] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University of California,

Berkeley, Dec. 2004.

[60] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical model-based

bug localization. In Proceedings of the 2005 Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2005, pages 286–295, 2005.

[61] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting performance bugs

for smartphone applications. In Proceedings of the 36th International Conference

on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY, USA, 2014.

ACM.

[62] B. Livshits and T. Zimmermann. Dynamine: finding common error patterns by

mining software revision histories. In Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT international sym-

posium on Foundations of software engineering, ESEC/FSE-13, pages 296–305,

New York, NY, USA, 2005. ACM.

104

Bibliography

[63] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun. Classification of software

behaviors for failure detection: a discriminative pattern mining approach. In

KDD, pages 557–566, 2009.

[64] D. Lo and S.-C. Khoo. Smartic: towards building an accurate, robust and scal-

able specification miner. In Proceedings of the 14th ACM SIGSOFT international

symposium on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages

265–275, New York, NY, USA, 2006. ACM.

[65] D. Lo, S.-C. Khoo, J. Han, and C. Liu. Mining Software Specifications: Method-

ologies and Applications. CRC Press; 1 edition (May 24, 2011), 2011.

[66] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative patterns for software

specification discovery. In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’07, pages 460–469,

New York, NY, USA, 2007. ACM.

[67] D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules for software maintenance.

J. Softw. Maint. Evol., 20(4):227–247, July 2008.

[68] D. Lo and S. Maoz. Scenario-based and value-based specification mining: better

together. In ASE, pages 387–396, 2010.

[69] D. Lo and S. Maoz. Scenario-based and value-based specification mining: better

together. In Proceedings of the IEEE/ACM international conference on Automated

software engineering, ASE ’10, pages 387–396, New York, NY, USA, 2010. ACM.

[70] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software be-

havioral models. In Proceedings of the 30th international conference on Software

engineering, ICSE ’08, pages 501–510, New York, NY, USA, 2008. ACM.

[71] Lucia, D. Lo, L. Jiang, and A. Budi. Comprehensive evaluation of association

measures for fault localization. In Proceedings of the 2010 IEEE International

Conference on Software Maintenance, ICSM ’10, pages 1–10, Washington, DC,

USA, 2010. IEEE Computer Society.

[72] J. R. Lyle and W. M. Automatic program bug location by program slicing. In

Proceedings of the 2nd International Conference on Computer and Applications,

pages 877–883, 1987.

[73] R. D. Mason, D. A. Lind, andW. G. Marcha. Statistics: An Introduction. Duxbury

Press, 5 Sub edition (1998), 1998.

[74] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental mining of sequential

patterns in large databases. Data Knowl. Eng., 46(1):97–121, July 2003.

105

Bibliography

[75] M. Mendonca and N. L. Sunderhaft. Mining software engineering data: A survey,

1999.

[76] A. Michail. Data mining library reuse patterns using generalized association rules.

In Proceedings of the 22Nd International Conference on Software Engineering,

ICSE ’00, pages 167–176, New York, NY, USA, 2000. ACM.

[77] S. L. Morgan and C. Winship. Counterfactuals and Causal Inference: Methods

and Principles for Social Research. Cambridge University Press; 1 edition, 2007.

[78] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic

binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages 89–100,

New York, NY, USA, 2007. ACM.

[79] A. C. Nguyen and S. Khoo. Extracting significant specifications from mining

through mutation testing. In Formal Methods and Software Engineering - 13th

International Conference on Formal Engineering Methods, ICFEM 2011, Durham,

UK, October 26-28, 2011. Proceedings, pages 472–488, 2011.

[80] A. C. Nguyen and S. Khoo. Discovering complete API rules with mutation testing.

In 9th IEEE Working Conference of Mining Software Repositories, MSR 2012,

June 2-3, 2012, Zurich, Switzerland, pages 151–160, 2012.

[81] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.

Graph-based mining of multiple object usage patterns. In Proceedings of the the

7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, ESEC/FSE

’09, pages 383–392, New York, NY, USA, 2009. ACM.

[82] K. M. Olender and L. J. Osterweil. Cecil: A sequencing constraint language for

automatic static analysis generation. IEEE Trans. Softw. Eng., 16:268–280, March

1990.

[83] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test

inputs. In Proceedings of the 19th European Conference on Object-Oriented Pro-

gramming, ECOOP’05, pages 504–527, Berlin, Heidelberg, 2005. Springer-Verlag.

[84] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: Fault localization in concurrent

programs. In Proceedings of the 32Nd ACM/IEEE International Conference on

Software Engineering - Volume 1, ICSE ’10, pages 245–254, New York, NY, USA,

2010. ACM.

106

Bibliography

[85] C. Parnin and A. Orso. Are automated debugging techniques actually helping

programmers? In Proceedings of the 2011 International Symposium on Software

Testing and Analysis, ISSTA ’11, pages 199–209, New York, NY, USA. ACM.

[86] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.

[87] M. Pradel and T. R. Gross. Automatic generation of object usage specifications

from large method traces. In Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering, ASE ’09, pages 371–382, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

[88] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: An approach for

debugging evolving programs. In Proceedings of the the 7th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ESEC/FSE ’09, pages 33–42, New

York, NY, USA, 2009. ACM.

[89] Y. Qi, X. Mao, and Y. Lei. Making automatic repair for large-scale programs

more efficient using weak recompilation. In ICSM, pages 254–263. IEEE Computer

Society, 2012.

[90] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 1993.

[91] V.-R. Raja. Soot: A java bytecode optimization framework. Master’s thesis,

School of Computer Science, McGill University, Montreal, 2000.

[92] E. Renieris. A research framework for software-fault localization tools. PhD thesis,

Providence, RI, USA, 2005. AAI3174662.

[93] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In

ASE, pages 30–39, 2003.

[94] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-localization

using multiple coverage types. In Proceedings of the 31st International Conference

on Software Engineering, ICSE ’09, pages 56–66, Washington, DC, USA, 2009.

IEEE Computer Society.

[95] L. Song and S. Lu. Statistical debugging for real-world performance problems.

In Proceedings of the 2014 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’14, New

York, NY, USA, 2013. ACM.

107

Bibliography

[96] C. Sun and S.-C. Khoo. Mining succinct predicated bug signatures. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE

2013, pages 576–586, New York, NY, USA, 2013. ACM.

[97] Q. Taylor and C. Giraud-Carrier. Applications of data mining in software engi-

neering. Int. J. Data Anal. Tech. Strateg., 2(3):243–257, July 2010.

[98] J. Thiel. An overview of software performance analysis tools and techniques: from

gprof to dtrace, 2006. http://www1.cse.wustl.edu/~jain/cse567-06/ftp/sw_

monitors1/index.html.

[99] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for reusing

open source code on the web. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, ASE ’07, pages 204–

213, New York, NY, USA, 2007. ACM.

[100] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns for detecting

neglected conditions. In Proceedings of the 2009 IEEE/ACM International Con-

ference on Automated Software Engineering, ASE ’09, pages 283–294, Washington,

DC, USA, 2009. IEEE Computer Society.

[101] S. Thummalapenta and T. Xie. Mining exception-handling rules as sequence as-

sociation rules. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 496–506, Washington, DC, USA, 2009. IEEE Com-

puter Society.

[102] F. Tip. A survey of program slicing techniques. Technical report, Amsterdam,

The Netherlands, The Netherlands, 1994.

[103] I. Vessey. Expertise in debugging computer programs: An analysis of the content

of verbal protocols. IEEE Trans. Syst. Man Cybern., 16(5):621–637, Sept. 1986.

[104] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In

Proceedings of the 20th International Conference on Data Engineering, ICDE ’04,

pages 79–, Washington, DC, USA, 2004. IEEE Computer Society.

[105] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies.

In Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering, ESEC-FSE ’07, pages 35–44, New York, NY, USA, 2007. ACM.

[106] W. Weimer and G. C. Necula. Mining temporal specifications for error detection.

In Proceedings of the 11th international conference on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS’05, pages 461–476, Berlin,

Heidelberg, 2005. Springer-Verlag.

108

http://www1.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html
http://www1.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html

Bibliography

[107] M. Weiser. Program slicing. In Proceedings of the 5th International Conference

on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.

IEEE Press.

[108] M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–

452, July 1982.

[109] Q. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei. Iterative mining of resource-

releasing specifications. In 26th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10,

2011, pages 233–242, 2011.

[110] T. Xie and J. Pei. Mapo: Mining api usages from open source repositories. In

Proceedings of the 2006 International Workshop on Mining Software Repositories,

MSR ’06, pages 54–57, New York, NY, USA, 2006. ACM.

[111] T. Xie, J. Pei, and A. E. Hassan. Mining software engineering data. In ICSE

Companion, pages 172–173, 2007.

[112] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap

search. In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’08, pages 433–444, New York, NY, USA, 2008.

ACM.

[113] X. Yu, S. Han, D. Zhang, and T. Xie. Comprehending performance from real-world

execution traces: A device-driver case. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’14, pages 193–206, New York, NY, USA, 2014. ACM.

[114] A. Zeller. Yesterday, my program worked. today, it does not. why? In ESEC /

SIGSOFT FSE, pages 253–267, 1999.

[115] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings

of the ACM SIGSOFT International Symposium on the Foundations of Software

Engineering, FSE ’02, pages 1–10, 2002.

[116] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

IEEE Trans. Software Eng., 28(2):183–200, 2002.

[117] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate

switching. In ICSE, pages 272–281, 2006.

[118] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. In

Proceedings of the 25th International Conference on Software Engineering, ICSE

’03, pages 319–329, Washington, DC, USA, 2003. IEEE Computer Society.

109

Bibliography

[119] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation of using

dynamic slices for fault location. In AADEBUG, pages 33–42, 2005.

[120] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical de-

bugging: simultaneous identification of multiple bugs. In Proceedings of the 23rd

international conference on Machine learning, ICML ’06, pages 1105–1112. ACM,

2006.

[121] Z. Zuo. Efficient statistical debugging via hierarchical instrumentation. In Pro-

ceedings of the 2014 International Symposium on Software Testing and Analysis,

ISSTA 2014, pages 457–460, New York, NY, USA, 2014. ACM.

[122] Z. Zuo and S.-C. Khoo. Mining dataflow sensitive specifications. In Proceedings of

the 2013 International Conference on Formal Engineering Methods, ICFEM ’13,

pages 36–52, 2013.

[123] Z. Zuo and S.-C. Khoo. Iterative statistical bug isolation via hierarchical instru-

mentation. Technical Report TRC7/14, School of Computing, National University

of Singapore, July 2014. https://dl.comp.nus.edu.sg/jspui/handle/1900.

100/4666.

[124] Z. Zuo, S.-C. Khoo, and C. Sun. Efficient predicated bug signature mining via

hierarchical instrumentation. In Proceedings of the 2014 International Symposium

on Software Testing and Analysis, ISSTA 2014, pages 215–224, New York, NY,

USA, 2014. ACM.

110

https://dl.comp.nus.edu.sg/jspui/handle/1900.100/4666
https://dl.comp.nus.edu.sg/jspui/handle/1900.100/4666

Appendices

111

Appendix A

Complete Scoped Dataflow

Tracking Analysis

113

Algorithm 9: Complete Scoped Dataflow Tracking Analysis
Data: trace T
Result: output all the maximum dataflow related sequences

1 foreach statement s in chronological order in trace T do
2 while peek(Stack).methodSignature 6= s.methodSignature do
3 if DeclarationStmt(s) then
4 S ← ∅;
5 S∗ ← ∅;
6 push((S, S∗), Stack);
7 else
8 (Su, Su

∗)← pop(Stack);
9 foreach t(vs, L, vc) ∈ Su do

10 if isComplete(t) then output L;
11 end
12 end
13 if peek(Stack).isDeclaration = false then
14 (Sd, Sd

∗)← peek(Stack);
15 KillAndGen(Su, Sd, Su

∗, Sd
∗, throw);

16 end
17 end

18 switch s do
19 case InvokeStmt(s)
20 S ← ∅;
21 S∗ ← ∅;
22 push((S, S∗), Stack);
23 break;
24 case ReturnStmt(s)
25 (Su, Su

∗)← pop(Stack);
26 for each t(vs, L, vc) ∈ Su do
27 if isComplete(t) then output L;
28 end
29 if peek(Stack).isDeclaration = false then
30 (Sd, Sd

∗)← peek(Stack);
31 KillAndGen(Su, Sd, Su

∗, Sd
∗, s);

32 end
33 break;
34 case IdentityStmt(s)
35 (Su, Su

∗)← peek2nd(Stack);
36 (Sd, Sd

∗)← peek(Stack);
37 KillAndGen(Su, Sd, Su

∗, Sd
∗, s);

38 break;
39 case AssignStmt(s)
40 (Su, Su

∗)← collapse(Stack);
41 (Sd, Sd

∗)← peek(Stack);
42 KillAndGen(Su, Sd, Su

∗, Sd
∗, s);

43 end
44 endsw
45 end

114

Appendix A. Complete Scoped Dataflow Tracking Analysis

Algorithm 10: KillAndGen(Su, Sd, Su∗, Sd∗, s)

1 Pairs← get_UD_Pairs(s, Su
∗);

2 foreach use-def pair p(vu, vd) ∈ Pairs do
3 GS ← ∅;
4 if vu is a constant or a new instance then
5 L′ ← [];
6 if ∃ event e associated with s, vu ∈ A(e) then
7 L′ ← L′ ++ [e];
8 end
9 GS ← GS ∪ {(vu, L′, vd)};

10 else
11 foreach t′(vs, L, vu) ∈ Su do
12 mark t′ as incomplete;
13 L′ ← L;
14 if ∃ event e associated with s, vu ∈ A(e) then
15 L′ ← L′ ++ [e];
16 end
17 GS ← GS ∪ {(vs, L′, vd)};
18 end
19 end
20 foreach t(v∗, L∗, vd) ∈ Sd do
21 if isComplete(t) then output L∗;
22 Sd ← Sd − {t(v∗, L∗, vd)};
23 end
24 Sd ← Sd ∪GS;

// dynamic alias tracking analysis
25 if isAliasingType(p(vu, vd)) then
26 GS∗ ← ∅;
27 if vu is a constant or a new instance then
28 GS∗ ← GS∗ ∪ {(vu, vd)};
29 else
30 GS∗ ← GS∗ ∪ {(vs, vd)|(vs, vu) ∈ Su

∗};
31 end
32 foreach (v∗, vd) ∈ Sd

∗ do
33 Sd

∗ ← Sd
∗ − {(v∗, vd)};

34 end
35 Sd

∗ ← Sd
∗ ∪GS∗;

36 end
37 end

115

Appendix B

Proof of Apriori Property

Definition 9 (Closure Subpattern). Given a pattern pk, a subpattern pk−1 is

its closure subpattern iff for each inst(pk), there exists a subsequence of inst(pk),

which is an instance of pk−1, inst(pk−1).

Lemma 1 (Closure Subpattern Lemma). Given a (constrained) iterative

pattern pk, its prefix_pattern pre_pk−1, suffix_pattern suf_pk−1 and all in-

fix_patterns in_pk−1 are all closure subpatterns of pk.

Proof. Given a trace T and its event list L(T), a pattern pk (〈e1, e2, . . . , ek〉), and

any one of its constrained iterative pattern instances inst(pk) (〈o1, o2, . . . , ok〉).

Firstly, we can prove that the subsequence (〈o1, o2, . . . , ok−1〉) is an instance

of the prefix_pattern pre_pk−1. Since ∀q ∈ [1, k] , L(T)(oq) = eq and ∀i ∈

[1, k − 1]
(
∀j ∈ (oi, oi+1) , L(T)(j) /∈ pk

)
hold according to the definition 4, we

can easily reach ∀q ∈ [1, k − 1] , L(T)(oq) = eq and ∀i ∈ [1, k − 2] (∀j ∈

(oi, oi+1), L(T)(j) /∈ pre_pk−1). Similarly, it can be proved that the subse-

quence (〈o2, o3, . . . , ok〉) is an instance of the suffix_pattern suf_pk−1. Next,

consider an infix_pattern in_pk−1 (〈e1, . . . , ei−1, ei+1, . . . , ek〉). We will prove

that the subsequence (〈o1, . . . , oi−1, oi+1, . . . , ok〉) is an instance of in_pk−1 where

L(T)(oi) = ei. Since the only change is the absence of oi, we just need to prove

that L(T)(oi) /∈ in_pk−1. According to the definition of the infix_pattern,

i ∈ [2, k − 1] and ei /∈ in_pk−1 hold. Moreover, L(T)(oi) = ei. We can con-

clude that L(T)(oi) /∈ in_pk−1. All in all, we proved that the prefix_pattern,

suffix_pattern and all infix_patterns are closure subpatterns.

117

Theorem 6 (Downward Closure Property). If a pattern pk is frequent, then

all of its closure subpatterns c_pk−1 are frequent.

Proof. Without loss of generality, consider one closure subpattern c_pk−1 of the

given pattern pk. According to the definition of closure subpatterns, each instance

of pk corresponds to an instance of the closure subpattern c_pk−1. Therefore, it is

easy to conclude that the support of pk is not greater than the support of c_pk−1,

that is sup(c_pk−1) ≥ sup(pk). Note that if pk is frequent, sup(pk) ≥ min_sup,

thus sup(c_pk−1) ≥ min_sup, the closure subpattern c_pk−1 is frequent.

118

Appendix C

Proof of Pattern Preservation

The following provides the proof of Theorem 3.

Proof. Since D′ is the projected database from D wrt. I ′, we can derive that

∀i ∈ [1, n], c′i = ci ∧ T ′i = Ti ∩ I ′ according to Definition 8.

Given an pattern P ⊆ I ′ and ∀i ∈ [1, n], T ′i = Ti ∩ I ′, we have the following

deduction:

∀i ∈ [1, n], P ⊆ T ′i (C.1)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti ∩ I ′ (C.2)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti ∧ P ⊆ I ′ (C.3)

⇐⇒ ∀i ∈ [1, n], P ⊆ Ti (C.4)

Thus we proved that ∀i ∈ [1, n], P ⊆ T ′i ⇐⇒ P ⊆ Ti.

Further, recall that the positive support of P wrt. an itemset database D′,

sup+(P,D′) = |td+(P,D′)| where td+(P,D′) = {(T ′, c′) ∈ D′|P ⊆ T ′ ∧ c′ =

+)}. Since ∀i ∈ [1, n], P ⊆ T ′i ⇐⇒ P ⊆ Ti as proved above and

given ∀i ∈ [1, n], c′i = ci, we can derive that td+(P,D′) = td+(P,D) where

P ⊆ I ′. Therefore, sup+(P,D′) = |td+(P,D)| = sup+(P,D). Similarly, we

can get sup−(P,D′) = sup−(P,D). According to Equation 4.5, DS(sup+(P,D′),

sup−(P,D′)) will be equal to DS(sup+(P,D), sup−(P,D)).

119

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Thesis Statement
	Semantics-directed Specification Mining
	Statistical Debugging via Hierarchical Instrumentation
	Organization
	Papers Appeared

	Literature Review
	Specification Mining
	Statistical Debugging

	Semantics-directed Specification Mining
	Motivation
	Framework
	Mining Dataflow Sensitive Specifications
	Introduction
	Symbolic Instrumentation
	Dataflow Tracking Analysis
	Concepts
	Approach
	Challenges

	Constrained Iterative Pattern Mining
	Background
	Constrained Iterative Pattern
	Apriori Property
	Algorithm

	Empirical Evaluation
	Runtime Performance of Dataflow Tracker
	Performance Comparison
	Case Studies

	Discussion

	Related Work
	Chapter Summary

	Statistical Debugging via Hierarchical Instrumentation
	Motivation
	Methodology
	Coarse-grained Measure for Pruning
	Necessary Condition
	Coarse-grained Measure for Ranking

	Efficient Predicated Bug Signature Mining via Hierarchical Instrumentation
	Introduction
	Background
	Predicated Bug Signature
	Discriminative Significance
	Preprocessing and Bug Signature Mining

	Approach
	Instrumentation
	Predicate Selection for Boosting
	Safeness of Threshold Boosting
	Predicate Pruning

	Empirical Evaluation
	Profile Collection
	Preprocessing & Mining

	Iterative Statistical Bug Isolation via Hierarchical Instrumentation
	Introduction
	Background
	Cooperative Statistical Bug Isolation
	Adaptive Bug Isolation

	Approach
	Instrumentation and Deployment
	Pruning Measure Calculation & Necessary Condition Derivation
	Ranking Measure Calculation
	Sufficient Data Collection

	Empirical Evaluation
	Instrumentation Effort
	Stability of Results
	Performance Overhead
	Performance Comparison with Adaptive Bug Isolation

	Discussion

	Multiple Levels in Hierarchical Instrumentation
	Related Work
	Chapter Summary

	Conclusion
	Summary and Contributions
	Future Work

	Bibliography
	Appendices
	Complete Scoped Dataflow Tracking Analysis
	Proof of Apriori Property
	Proof of Pattern Preservation

