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Summary

A brain-computer interface (BCI) is a communication device controlled by

brain activity without any actual muscle movement. Motor imagery (MI)

is one of the mental activities to control a BCI which induces changes in

sensorimotor rhythms (SMRs) of electroencephalogram (EEG). A MI-BCI

performance re�ects how well a subject can control an EEG-based MI-BCI.

However, there is a large performance variation among BCI users, and the

reason why some subjects cannot use MI-BCI to achieve even moderate

performance is still unknown. One of the possible reasons, known as BCI

de�ciency in the literature, is the subjects' inability in modulating their brain

rhythms. Another reason is the non-stationarity of EEG signal.

The main goal of this thesis is to improve the MI-BCI performance of the

subjects. To do so, we can help subjects with BCI de�ciency improve their

performance, and develop adaptive algorithms. In this thesis, novel neuro-

physiological predictors are proposed that are correlated to the subject's BCI

performance, and neurofeedback training using these predictors is proposed

to enhance the MI-BCI performance of subjects. Subsequently, two adap-

tive algorithms are proposed to address inter-session non-stationarity and to

enhance the performance of the subjects.

The �rst predictor is a novel neurophysiological coe�cient computed

from the spectral power of pre-cue EEG data over di�erent regions of the

brain. The proposed neurophysiological coe�cient is a possible quanti�ca-

tion of the attention level of the subject that captures spatial information

from the brain in addition to spectral information of alpha, beta, and theta

frequency bands. The second proposed neurophysiological predictor uses

spatio-spectral decomposition (SSD) to extract the spatial-spectral compo-
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Summary

nents from pre-cue and resting state EEG. The extracted spatial-spectral

components have higher signal-to-noise ratio to improve the performance

prediction of subjects using MI-BCI. A new experiment is also designed to

help subjects improve their BCI performance through enhancing their resting

state alpha SSD components in multiple neurofeedback training sessions.

Two adaptive algorithms are also developed to address inter-session non-

stationarity. The �rst proposed algorithm is based on Kullback-Leibler (KL)-

distance weighting to adapt features extracted using �lter bank common

spatial pattern (FBCSP). The second proposed algorithm, adaptive extreme

learning machine (A-ELM), is a method that adapts the initial classi�er to

overcome the features' drift from calibration session using limited number of

data from the evaluation session.

The proposed algorithms were applied on the data collected from healthy

subjects. The results showed that the proposed predictors successfully as-

sessed the MI-BCI performance. Moreover, the results revealed that low

attention level and low alpha band power in resting state resulted in poor

performance. In addition, the neurofeedback training enhanced the resting

sate alpha activity that subsequently led to improved MI-BCI performance.

Finally, by adapting the features and classi�er, the proposed algorithms KL-

distance weighting of FBCSP and A-ELM, also improved the accuracy of

the EEG-based MI-BCI.

In conclusion, the proposed predictors successfully detect BCI de�cient

subjects. The results showed that the MI-BCI performance of subjects can be

improved from neurofeedback training using the proposed alpha SSD-based

predictor and by using the proposed adaptive algorithms. The proposed

algorithms can be applied in real world applications to �nd out whether

MI-BCI is a suitable therapy method for disabled people, and also to help

subjects with BCI de�ciency to better control a MI-BCI system.
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Chapter 1

Introduction

A Brain-Computer Interface (BCI) system is de�ned as a communication

system conveying messages through brain activity without any muscle move-

ment [1�4]. The �rst BCI system which was invented in 1973 [5], used Elec-

troencephalography (EEG) for communication purposes. BCIs have been

successfully used in clinical applications over the past years. As an example,

locked-in patients communicated with their environment via a BCI speller

device [6�8]. Moreover, BCI was used as an assistive device for partially dis-

abled people [9�11]. BCI technologies have also proven e�ective in helping

the physically disabled control a wheelchair using only their brain signals

[12�14]. In recent years, BCI has been also used for stroke rehabilitation

[15�17]. Although the ultimate goal of BCI is to provide a communication

tool for paralyzed or disabled people [18, 19], BCI has other non-medical

applications as well [20�23].

A BCI system records the brain activity either invasively or non-invasively

[7]. However, invasive-BCIs are less popular compared to non-invasive BCIs.

Among several non-invasive techniques for recording brain activities, EEG

is mostly used due to its good temporal resolution, low cost, and porta-

bility. An EEG-based BCI system can be controlled by the modulation of

EEG rhythms. Motor Imagery (MI) or imagination of movement is one of

the mental tasks that induces changes in EEG rhythms and thus can be

used for controlling an EEG-based BCI [24]. Numerous signal processing
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Chapter 1. Introduction

and machine learning algorithms have been developed to detect MI from

the recorded EEG [25] and translate it into a command for controlling an

application such as moving a cursor on a computer screen [26�28].

1.1 Research motivations

Over the years, BCI research breakthroughs and technology developments

have signi�cantly improved the lives of patients with severe motor disabilities

and impairments [28�30]. Current BCI systems are scarcely used in out-of-

lab scenarios and hence they need to be improved in various areas such as

signal acquisition techniques, signal processing methods, machine learning

algorithms, hardware development, and usability [19�21, 31, 32].

The main motivation of this thesis is to predict and improve the per-

formance of EEG-based MI-BCI systems in order to make it a more prac-

tical technology. Ideally any user should be able to control a BCI system.

However, several years of MI-BCI research have demonstrated that the per-

formance of subjects vary considerably [33, 34]. Some subjects have poor

performance and thus cannot use a BCI system [34]. The reasons for the

performance variation of MI-BCI users have not been studied extensively.

One of the current issues in EEG-based MI-BCI systems which can ad-

versely a�ect the performance of the subjects is BCI de�ciency, also known

as BCI illiteracy. BCI de�ciency is de�ned as the inability of subjects to use

a BCI system [34, 35]. It has shown that some subjects cannot modulate

their brain signals [33]. BCI performance predictors [35�38] can help detect

the poor performance subjects. However, none of the proposed predictors

have been used in practical BCI applications to improve performance of the

subjects.

Poor performance can also be a subject of the machine learning algo-
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rithms employed in EEG-based BCIs. Normal machine learning algorithms

cannot intuitively handle the non-stationarity of the EEG, which is still

one of the main issues in EEG-based BCI systems [34, 39, 40]. Due to non-

stationarity, the statistical characteristics of EEG signal may vary over time,

and thus the feature space from calibration session into evaluation session

may be changed. In other words, the classi�er trained based on the calibra-

tion session is no longer optimal for the evaluation session. Adaptive machine

learning algorithms such as adaptive classi�cation methods [41, 42] or adap-

tive feature extraction methods [43, 44] can address the non-stationarity of

EEG data, and accordingly enhance the performance of the MI-BCI users.

1.2 Research objectives

This study mainly focuses on addressing some of the current issues in EEG-

based MI-BCIs to improve the performance of the users. BCI performance

re�ects how well a BCI system is controlled by a user, therefore improving

the BCI performance will yield to a more practical BCI system. To do so,

we can help subjects with BCI de�ciency improve their performance, and

develop adaptive algorithms. BCI de�ciency is one of the reasons of having

poor performance. The neurophysiological reasons behind BCI de�ciency

and performance variation across subjects need to be investigated. The per-

formance predictors previously proposed to detect BCI de�cient subjects

have not been used in practical applications. To the best of our knowledge,

no BCI experiment has been designed to speci�cally help poor performance

subjects enhance their BCI performance. Non-stationarity of EEG signal,

on the other hand leads to BCI performance mitigation. Therefore, develop-

ing adaptive feature extraction or classi�cation algorithms which reduce the

di�erence between sessions can improve the BCI performance.
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Accordingly, the two main objectives of this thesis are de�ned as follows:

◦ Detecting subjects with MI-BCI de�ciency and proposing a

method to improve their BCI performance:

The �rst objective of this thesis is to propose novel performance pre-

dictors to estimate the performance of the subjects. In other words,

we aim to detect subjects with BCI de�ciency, and investigate the

neurophysiological reasons behind MI-BCI performance variations. By

doing so, we can design a novel experiment to help subjects improve

their performance and thus better control a BCI system.

◦ Improving EEG-based MI-BCI performance through address-

ing inter-session non-stationarity:

The second objective of this thesis is to propose novel adaptive algo-

rithms to address inter-session non-stationarity and thereby improve

the MI-BCI performance. Adaptive classi�cation and feature extrac-

tion methods can address inter-session non-stationarity.

The analysis in this thesis are applied to three datasets recorded in

the Neural Signal Processing laboratory of Institute for Infocomm Research

(I2R), Agency for Science, Technology and Research (A*STAR), Singapore.

The experiments at I2R were carried out in accordance with the criteria ap-

proved by the Institutional Review Board of the National University of Sin-

gapore (NUS). Another big dataset used in this thesis was jointly recorded

by the Neurotechnology group at Berlin Institute of Technology (TÜ Berlin)

and Tübingen. The recorded data in Berlin and Tübingen were approved by

the Ethical Review Boards of the Medical Faculty, University of Tübingen.
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1.3 Outline of the thesis

This thesis is organized into eight chapters. The background and basic ideas

about the design of a BCI system are explained in Chapter 2. Chapter 3

and 4 propose two novel performance predictors to estimate the performance

of MI-BCI users. Chapter 5 describes our proposed experiment to improve

the performance of MI-BCI users. Our proposed algorithms to address inter-

sessions non-stationarities are described in Chapter 6 and 7. Some parts of

this thesis are based on our own previous publications in [45] (Chapter 3),

and [46] (Chapter 4), [47] (Chapter 5), [48, 49] (Chapter 6). The detailed

contents of each chapter are listed as follows:

◦ Chapter 2 gives an overview of BCI and explains some of its applica-

tions. This chapter also reviews some of the commonly used methods

for recording brain activity, signal processing and machine learning

methods for analyzing brain signals. Moreover, some of the BCI appli-

cations and their current issues are also discussed in this chapter.

◦ Chapter 3 proposes a novel neurophysiological coe�cient to predict

the performance of MI-BCI. The new proposed coe�cient is computed

from the spectral power of EEG rhythms over di�erent regions of the

brain. The predictor can successfully detect low performance subjects.

◦ Chapter 4 presents another neurophysiological performance predictor

based on the spatio-spectral information in the EEG signal. This new

proposed predictor is computed based on spatial and spectral charac-

teristics of the resting state EEG and pre-cue of feedback runs. The

predictor can successfully estimate the performance of a large group of

novïce subjects.

◦ Chapter 5 proposes a new experimental design to improve the MI-
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BCI performance of the subjects through neurofeedback training of

resting state alpha using the proposed predictor in Chapter 4.

◦ Chapter 6 includes a novel method based on Kullback-Leibler (KL)-

distance weighting to adapt features extracted using Filter Bank Com-

mon Spatial Pattern (FBCSP), to address inter-session non-stationarity

of EEG data and improve the MI-BCI performance of the subjects.

This chapter explains the bene�ts of calibrating MI-BCI with passive

movement.

◦ Chapter 7 describes a novel adaptive classi�cation algorithm, Adap-

tive Extreme Learning Machine (A-ELM), to address inter session non-

stationarity. The proposed algorithm used limited number of data from

the evaluation session to adapt the initial classi�er.

◦ Chapter 8 concludes this thesis and provides a summary of our pro-

posed methods.
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Chapter 2

Brain-Computer Interface

2.1 Introduction

According to the de�nition given by Wolpaw et al. in the �rst international

BCI meeting [50], BCI is a system provides a new communication and control

channel for its users, which is not the normal output channel of peripheral

nerves and muscles. A BCI system extracts the brain patterns associated

with recorded brain activities and thus helps users communicate with the

external environment.

Many aspects of BCI systems are currently being investigated in order

to improve the practical prospects of design in BCI systems. Research ar-

eas include evaluation of invasive and noninvasive technologies to measure

brain activities, evaluation of control signals (i.e. brain activity patterns

used for communication), development of algorithms for translation of brain

activity patterns into computer commands, and development of new BCI

applications. This chapter brie�y reviews the main aspects of a BCI system

and highlights some of the recent developments and current issues. More

complete reviews can be found in [1, 2, 50, 51].

Typically, a BCI system contains three main components which are

shown in Figure 2.1. The �rst component is a signal acquisition unit which

records the brain activity of the user through appropriate sensors. Some

of the commonly used signal acquisition techniques are reviewed in Section

2.2. An ideal signal acquisition technique requires to have minimum side
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e�ects on the user, be cheap and also easy to use. More importantly, the

signal acquisition technique should have high temporal and spatial signal

resolution.

Figure 2.1: General architecture of an online BCI system. BCI has typically
three main components which are responsible for: 1) acquiring brain activities,
2) processing the recorded signal, 3) translating the identi�ed mental state into
command for controlling an application. A feedback is also provided in online
scenario. A calibration phase is needed before online scenario which is not shown
in this �gure.

The second component of a BCI system is a brain signal processing unit.

The recorded brain signals need to be preprocessed to remove the noise

and artifacts. At the next step, the features are extracted from the de-

noised signal and fed into a classi�er to identify the mental state of the user.

More information about the brain signal processing methods are provided in

Section 2.3.3. Since the focus of this thesis is on EEG-based BCI, only those

methods which are commonly used in EEG-based BCI are reviewed.

The third component of a BCI system is responsible for translation of

the identi�ed mental state or the output of the classi�er into a command.

The derived command is used for controlling an application. Finally, based

on the identi�ed mental state a feedback is provided to guide the user better

modulating his brain signals. However, there are several debates about the

role of feedback. More details are provided in Section 2.3.4.
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The ultimate goal of BCI system is to be used in real world applications

such as therapeutic applications. Some of the most practical applications of

EEG-based BCI are reviewed in Section 2.4. Despite many years of research,

there are still some issues limited possible applications of BCI systems. Some

of the current BCI issues which are still under investigation are discussed in

Section 2.5.

The BCI system introduced in Figure 2.1 needs to be calibrated before

being used in an online scenario. Therefore, generally in most BCI experi-

ments, a short calibration session is recorded to train the model. The trained

model is used later in an evaluation session. However, in order to have a more

practical BCI system, the calibration time needs to be minimized [52, 53].

Subject independent classi�ers have been also proposed to reduce the cal-

ibration time of the BCI experiment [54, 55]. Such classi�ers are trained

based on the data collected from other subjects. However, they may not

be as accurate as subject speci�c classi�ers which are typically used in BCI

experiments.

2.2 Signal acquisition techniques

The �rst component in all BCI systems is signal acquisition unit which is

a neural interface component. This component is a hardware device which

detects and records the brain activity. Several methods have been used for

acquiring brain signals. The signal acquisition technique is chosen based on

the intended use of a BCI system and its target users. Generally, the chosen

technique must be safe for the user, and its invasiveness must not be more

than necessary. The technique should be also capable of recording su�cient

information from the brain to control the BCI. In light of these requirements,

several technologies have been developed. The signal acquisition techniques
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in BCI systems can be categorized into invasive and non-invasive methods.

Each of these techniques is more suitable for a speci�c study and application.

2.2.1 Invasive signal acquisition

The invasive methods have some clinical risks and thus have been rarely used

in real applications [7, 56, 57]. Electrocorticography (ECoG) is one of the in-

vasive modalities which records �eld potentials from set of neurons [58]. The

ECoG electrodes are placed directly on the surface of the brain through a

surgery. Another invasive technique involves inserting microelectrode arrays

into the brain for acquiring electrical brain activities [58]. Similar to ECoG

this approach also needs surgery to insert electrodes into the brain. The mi-

croelectrode arrays record neural action potentials (spikes) from each neuron

and/or local �eld potentials from set of neurons. However, this method is

highly invasive to the brain tissue and the recorded signal is unstable and

deteriorated over time, since the brain tissue reacting electrodes as foreign

objects.

2.2.2 Non-invasive signal acquisition

Contrary to invasive signal acquisition techniques, non-invasive methods are

widely used in BCI applications [59]. Clinical risks are minimized in non-

invasive methods. Di�erent non-invasive modalities have been proposed over

the past years. The intended application of the BCI system determines which

modality is more suitable for acquiring the brain activity. The acquired signal

by di�erent modalities has di�erent spatial and temporal resolution.

Magnetoencephalography (MEG) is one of the non-invasive methods which

records the magnetic �elds produced by electrical currents of the brain. Only

a few research groups are working on BCI controlled by MEG. Since the de-

vice is too expensive, bulky and cumbersome, it is not considered the most
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suitable technique in many applications or in out-of-lab scenarios. Functional

Magnetic Resonance Imaging (fMRI) is another non-invasive technique which

captures Blood Oxygen Level Dependent (BOLD) of brain. The blood �ow of

the brain is coupled with neural activation inside the brain. However, fMRI

similar to MEG is too bulky and not appropriate for out-of-lab scenarios.

Functional Near-Infrared Spectroscopy (fMRI) is a functional neuroimaging

technique which measures the hemodynamic or BOLD responses associated

with neural activity of the brain. Contrary to MEG and fMRI, fNIRS can be

used in out-of-lab scenarios. However, the temporal and spatial resolution of

fNIRS compare to other modalities is not high enough. Another non-invasive

method for recording brain activity is EEG. EEG records the electrical ac-

tivity of brain from scalp. Comparing to other modalities, EEG is the most

commonly used signal acquisition technique in BCI through many years. Fig-

ure 2.2 compares the spatial and temporal resolution of non-invasive signal

acquisition techniques.

Figure 2.2: Comparing spatial and temporal resolution of the signal acquisition
techniques used in non-invasive BCI. The temporal resolution varies from 0.05 to 1
second, and the spatial resolution is between 1 millimeter and 10 millimeter.

As shown in Figure 2.2, MEG has high temporal and moderate spatial
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resolution, fMRI has high spatial resolution but low temporal resolution,

and fNIRS comparing to the other methods has lower spatial and temporal

resolution. EEG has high temporal resolution which is a necessity for real-

time BCI. Although spatial resolution of EEG is relatively low, its low cost

and portability makes it practical for many applications.

2.3 EEG-based Brain-Computer Interface

EEG is the mostly used modality for recording brain activity in BCI sys-

tems. Over the years, di�erent parts of EEG-based BCI systems have been

developed to make them more suitable for real-world applications. Design-

ing proper sensors for recording EEG is still one of the current issues in BCI

systems.

EEG records the brain electrical activity from electrodes placed on the

scalp [60]. Typically, Ag/AgCl electrodes are used for recording EEG which

need to be used with conductive-gel. Another type of electrodes has been

emerged named �dry electrode� [61]. The main advantage of the dry electrode

is its convenience to use. Dry electrodes are mostly suitable for long-term

EEG recordings [61]. Despite the improvements over the past few years, the

quality of the recorded signals from dry-electrode technology is still a�ected

by sweat on skin, movement, and environmental noise. Therefore, they are

rarely used in practical applications of EEG-based BCIs.

In EEG recording, an EEG cap is used on which the Ag/AgCl electrode

locations are �xed, so that the locations are not changed during each session

of BCI experiment. The EEG electrode names and locations are usually

assigned according to the international 10-20 system. This system assigns

standardized names to the electrodes. The locations of the electrodes on the

scalp are also determined in 10-20 system. The electrode names stand for

12
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(a) (b)

Figure 2.3: The EEG electrode locations on the scalp based on the international
10-20 system. Two di�erent montage with (a) 27 channels, (b) 118 channels are
shown. Left hemisphere electrodes have odd numbers, and the electrodes on the
right hemisphere have even numbers, and the numbers increase from the center to
the outer electrodes. The electrode names represent the underlying cortical regions:
F is frontal, P is parietal, O is occipital, T is temporal, C is central.

the underlying cortical regions. The electrodes located in the left hemisphere

have odd numbers, and even numbers are assigned to those electrodes located

in the right hemisphere. In this thesis, two di�erent montages had been used:

27 channels and 118 channels. Figure 2.3 shows the electrode montage using

27 channels (a) and 118 channels (b).

2.3.1 EEG rhythms

The EEG signal recorded from the scalp is a superposition of neural os-

cillations. Studying neural oscillations' origins and roles is one of the key

research topics in neuroscience [62�64]. The neural oscillations or rhythms

are denoted by Greek letters. Table 2.1 brie�y introduces these rhythms.

The EEG rhythms in a certain frequency band have a special location and

function. The spatial location and neurophysiological role of the rhythms

are also reported in the Table 2.1. The α, µ, and β rhythms have prominent

role in EEG-based BCIs.
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Table 2.1: Overview of the EEG rhythms

Rhythm Frequency (Hz) Location Characteristics

δ (Delta) 0.1-4 Frontal and
posterior regions

Sleep study

θ (Theta) 4-7 various locations Attention analysis,
sleep study

α (Alpha) 8-13 Parietal, occipital and
temporal regions

Motor activity,
Visual attention,
Resting state analysis,
Wakefulness and
drowsiness analysis

µ (Mu) 8-13 Sensorimotor cortex Motor activity

β (Beta) 13-30 Frontal and
somatosensory cortex

Motor activity,
Attention and
Engagement study

γ (Gamma) >30 Various locations Motor activity,
Emotion recognition,
Visual and
spatial attention

Alpha rhythms

Alpha waves are the neural oscillations in the frequency range 8-13 Hz. They

usually appear during relaxation with eyes open, wakefulness, drowsiness and

sleep [60, 65]. The Alpha rhythms can be measured in parietal, occipital and

posterior temporal regions of the brain. In fact, alpha rhythms can be orig-

inated in di�erent cortical areas [66]. Depending on the desired functional

task, the recorded alpha waves measured from various locations of the brain

may be studied.

Typically, the amplitude of alpha rhythms in eyes open condition are

lower than the amplitude of alpha rhythms in eyes-closed condition [67].

Alpha waves suppress in task relevant regions and enhance in non-relevant

brain regions [68]. Alpha rhythms have also been proven to correlate with

several mental tasks including attention, consciousness, and perception. In

general, alpha suppression requires external attention such as visual stimuli

[69]. In contrast, alpha is enhanced during mental tasks such as short- and

long-term memory task and working memory task [70]. The suppression and
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enhancement of alpha rhythms, and their topographic distribution mostly

depends on the task performed by the subject. In addition, the frequency

range of alpha waves are also subject speci�c [71].

Mu rhythms

Mu or �Rolandic alpha rhythms� are EEG oscillations appearing in the fre-

quency range of 8-13 Hz over sensorimotor cortex. There is also another peak

frequency in the beta band around 20 Hz named �Rolandic beta rhythm�

[72, 73]. The location of these rolandic rhythms and their modulation by

actual limb movement and somatosensory input proved a functional rela-

tionship between these rhythms and sensorimotor system. Moreover, the

motor cortex excitability depends on the strength of these rhythms [73].

Although the frequency range of alpha and mu rhythms are almost simi-

lar, they have di�erent functionality and topography. Mu rhythms usually do

not show symmetry between the two hemispheres. Mu rhythms had shown

to be attenuated during motor execution [74], motor imagination [75], and

motor observation [76, 77], while less a�ected by visual stimulation [73].

Beta rhythms

Beta waves are oscillation in the range of 13-30 Hz associated to attention,

engagement, concentration and also motor activity tasks. Rolandic beta

rhythms are associated with the motor cortex, while mu rhythms are related

to the somatosensory areas. The amplitude of beta oscillations are generally

lower than mu oscillations. In fact, the amplitude of EEG rhythms are

negatively correlated with the frequency of the rhythms [78]. Similar to mu

rhythms, beta rhythms over sensorimotor area are also decreased during the

motor execution, motor imagination, and motor observation. However, beta

rhythms have shown to be enhanced after the motor task (please refer to

15



Chapter 2. Brain-Computer Interface

Section 2.3.2.3).

2.3.2 Control signals used in EEG-based BCI

Neurophysiological signals or brain activity patterns used to drive EEG-

based BCI systems can be categorized into two types: 1) Evoked Potentials

(EPs), and 2) spontaneous signals. In the following these two types of signals

are brie�y reviewed.

2.3.2.1 Evoked potentials

The EPs are automatically generated by the brain in response to a stimulus,

thereby users do not need any speci�c training. However, these control

signals are uncomfortable and tiring for the users since they require external

stimulus. Two of the main examples of EPs include Steady Sstate Evoked

Potentials (SSEPs) [79] and P300 [6, 13, 80].

Steady state evoked potentials

SSEPs are brain activities generated in response to periodic stimuli. Analyz-

ing the EEG power spectral demonstrates a rhythmic increase in the power of

the EEG signals at stimulation frequency, its harmonics or sub-harmonics.

Steady State Visual Evoked Potentials (SSVEPs) have been used more in

comparison to the other types of SSEP control signals [79]. SSVEP appears

mostly in visual areas, since a visual stimulus is provided for the user. Other

SSEPs such as somatosensory SSEP [81] or auditory SSEP [82] have been

also used for controlling an EEG-based BCI system.

P300

The P300 wave is elicited from EEG approximately 300 ms after unexpected

stimuli. This potential is mainly generated when using �odd-ball� paradigm.
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The users should pay attention to frequent and non-frequent target items.

Typically, the appearance of non-frequent items triggers a P300 which is

usually located in parietal area. The EEG-based BCI systems controlled

by P300 have been extensively used in helping patients who su�ered from

Amyotrophic Lateral Sclerosis (ALS) [80]. The most well known application

of P300 for ALS patients is speller device [8]. P300 has been also used for

internet browsing [83], controlling a wheelchair [13] and also as an assistive

devices [84].

2.3.2.2 Spontaneous signals

The other group of control signals used to drive an EEG-based BCI sys-

tem are spontaneous signals. Table 2.2 compares some of the important

advantages and disadvantages of spontaneous signals and EPs. Spontaneous

signals are intuitive and natural to use without any external stimulus. There-

fore, they might be less tiring for the users in comparison with EPs. However,

the BCI users need some training to control a BCI system with spontaneous

signals. Advanced machine learning and signal processing methods reduce

the need of subject training [85].

Table 2.2: Comparing the neuro-physiological signals used to drive an EEG-based
BCI system. Two examples of control signals along with some of their advantages
and disadvantages are listed in the table.

Control Signal Examples Advantages Disadvantages

Evoked
potentials

- SSEP
- High information
transfer rate

- No user's attention

- P300 - No learning
- Require external
stimulus

Spontaneous
signals

- SMRs
- Intuitive and natural
to use

- Require learning

- SCPs - No external stimulus
- Lower information transfer
rate than evoked potentials

Sensorimotor Rhythms (SMRs) [86�88] are undoubtedly the most com-

monly exploited signals in the category of spontaneous signals. Due to their
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importance, they are introduced in more details in Section 2.3.2.3. Slow

Cortical Potentials (SCPs) [89] also fall within the category of spontaneous

signals to drive EEG-based BCIs.

Slow cortical potentials

SCPs are the slow cortical activity changes in the frequency range of 1-2

Hz. SCPs are stable signals that last from hundreds milliseconds to several

seconds [90�92]. Users need to generate negative and positive SCPs to control

a BCI system. As an example, increasing or decreasing excitation is one of

the possible methods for generating SCPs. However, controlling SCPs need

a long term training which is one of the main limitations of the BCI systems

controlled by SCPs.

2.3.2.3 Sensorimotor rhythms

Sensorimotor rhythms (SMRs) are in the category of spontaneous signals

and mostly used to drive EEG-based BCI systems. SMRs are de�ned as

brain rhythms in mu (8-13 Hz) and beta (13-30 Hz) frequency bands over

sensorimotor areas. During motor behaviours the rolandic rhythms or SMRs

decrease, which is known as event-related desynchronization (ERD) [78, 93,

94]. This decrease is due to an internally or externally paced event such

as a voluntary movement. An increase of SMRs known as event-related

synchronization (ERS) may occur after the motor task, which is typically

observed in beta band [78]. Two strategies have been proposed to control

these sensorimotor rhythms:

Operant conditioning

Operant conditioning [26, 95] is one of the earliest methods in BCI appli-

cations. In operant conditioning-based BCI, the user performs a mental
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strategy which is comfortable for him. A �xed translation algorithm is used

to generate a feedback signal from EEG. Feedback guides the user to better

modulate his brain activities and control the BCI system. However, this

method needs a very long training time from several weeks to even several

months [26] which is not very desirable specially for the users.

Motor Imagery (MI)

MI can be de�ned as a dynamic state during which the representation of a

speci�c motor action is internally reactivated within working memory with-

out any actual motor movement [96]. MI induces changes in SMRs over

sensorimotor areas [24]. Several imaginary actions can be used for modulat-

ing the SMRs. It has shown that MI of hand [16], foot [97], and swallow [98]

can control an EEG-based BCI. MI in comparison with operant conditioning

needs less training time. Therefore, it is more desirable in real applications.

In this thesis, we have focused on EEG-based BCI systems which controlled

by MI.

MI can be performed in di�erent ways, some of the common paradigms

are: visual versus kinesthetic, �rst or third person imagination [99]. Vi-

sual MI is the mental image of the movement or in simple words a subject

imagines how is the movement looks like, while kinesthetic MI is the propri-

oceptive aspects of the movement. Typically, kinesthetic imagery performed

in �rst person perspective which means the subject imagines his own move-

ment. Third person MI is not easy for some subjects since they have to

imagine watching movement of another person. All data used in this thesis

are collected from subjects while performing �rst person kinesthetic MI.
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2.3.3 EEG processing

The recorded EEG signals need to be processed and translated into com-

mands to be used for controlling a computer-based application. EEG pro-

cessing includes preprocessing, feature extraction and classi�cation which

are brie�y explained in the following sections.

2.3.3.1 Preprocessing

The acquired EEG signal is typically noisy, and contaminated by artifacts

such as muscular artifacts or eye movements. Preprocessing enhances the

signal to noise ratio of the recorded EEG signal by removing the irrelevant

information from EEG. Some of the preprocessing methods are explained as

follows:

◦ Temporal �lters

The neurophysiological signals are extracted from a speci�c frequency

band. Temporal �lters such as band-pass �lters are generally used to

restrict our analysis to the frequency band of interest. As an example,

generally in MI-BCI the ERD/ERS can be found over mu (8-13 Hz) and

beta (13-30 Hz) bands [27, 78], thereby the acquired EEG is band-pass

�ltered in 8-30 Hz frequency band.

◦ Artifact removal

Artifacts are undesirable and can easily a�ect the extraction of neuro-

physiological signals. They may be generated due to di�erent reasons

such as: movement of body parts like, eyes, tongue, arms or change

in skin resistance (i.e., sweating). Independent Component Analysis

(ICA) is one of the e�ective tools for artifact removal in BCI [100, 101].

In the most BCI experiments, subjects are typically instructed to min-

imize their body limb movement. Moreover, the collected EEG data
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are visually inspected and those EEG trials with excessive artifacts

are removed. The other sources of interferences, such as power line

interference, can be usually removed by the EEG hardware device.

◦ Spatial �lters

Similar to temporal �ltering, spatial �ltering aims to reduce the e�ect

of irrelevant information embedded in the EEG. A spatial �lter gives

weights to electrodes, less weights are assigned to the electrodes which

are irrelevant to the targeted task. Common Average Reference (CAR)

[102] and the Surface Laplacian (SL) [33] are two of the simplest spatial

�lters used in EEG processing. CAR removes the average activity of

the other electrodes from each electrode, while SL removes the average

activity of the neighboring electrodes. The most commonly used spatial

�lter is Common Spatial Pattern (CSP) [88, 103, 104]. CSP spatially

�lters EEG signal to maximize the discrimination between the classes

involved.

◦ Other preprocessing algorithms

Some other such as Principal Component Analysis (PCA) [105] or Do-

main Space Adaptation (DSA) [106] has been also used in BCI appli-

cations to enhance extraction of neurophysiological signals.

2.3.3.2 Feature extraction

Numerous feature extraction techniques have been studied and proposed

for BCI applications [107]. Three main categories of features are described

below:

◦ Temporal features

Temporal features are those de�ned based on the temporal variations
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of the signals. The amplitude of raw EEG signals [80], auto-regressive

parameters [108, 109] are the commonly used temporal features.

◦ Spectral features

Performing a mental task induces changes in neurophysiological sig-

nals. As an example, MI results in ERD/ERS. These changes can

be captured from the power of EEG rhythms over speci�c frequency

bands. The spectral or band-power features are commonly used in BCI

applications [15, 88].

◦ Temporal-spectral features

Due to signi�cance of both temporal and signal frequency informa-

tion in BCI, temporal-spectral features are introduced to consider both

sources of information into account. Short-time fourier transform [110]

or wavelets [111] are the two examples of temporal-spectral features.

2.3.3.3 Classi�cation

The extracted features from EEG signal are fed into a classi�er. So far, sev-

eral di�erent classi�ers have been applied in BCI applications [112]. However,

linear classi�ers such as Support Vector Machine (SVM) [43, 47, 113�116]

and Linear Discriminant Analysis (LDA) [41, 42, 46] are the most popular

linear classi�ers. Some nonlinear classi�ers such as Naïve Bayesian Parzen

Window (NBPW) has been also used in BCI applications [117, 118].

2.3.4 Feedback

A feedback in a BCI system informs a subject about his performance. The

role of feedback may vary across subjects. McFarland et al. in [119] showed

that feedback can have both positive and negative e�ect on modulating EEG

rhythms. As an example, during MI a subject may receive wrong feedback,
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while correctly imagining the movement. This may lead the user to change

his strategy of imagination and �nally decrease the performance. Therefore,

providing feedback is not always suggested [120].

2.4 EEG-based MI-BCI applications

Over the past few decades, motor imagery (MI) has been widely used for

controlling EEG-based BCI in various applications. In this section some of

the applications of the EEG-based MI-BCI, which is the focus of this thesis,

are reviewed.

Neurorehabilitation

Motor impairment after stroke is the most important reason of permanent

disability [96]. During the last decade, several methods were developed

to support stroke rehabilitation [96, 121�124]: Active Movement Training

(AMT), electromyography biofeedback, robotics, and mental practice with

MI. Currently, there are enough evidences showed that imagination of move-

ment has positive role on rehabilitation after stroke [96]. MI in combination

with physical therapy leads to enhanced motor outcomes for stroke survivors.

Motor system has shown to be activated similarly during MI and actual

movement [9]; therefore, MI would be useful approach for subjects with

di�erent levels of disabilities. However, there are unsolved issues associated

with MI: it is hard for a therapist to evaluate the performance of the MI

performed by a subject and also a subject himself has no feedback about his

own performance. BCI system can help to overcome these problems [10, 122].

In fact, MI-BCI is known as a possible approach to functional recovery after

stroke. MI-BCI has been used for both upper limb [15�17, 96] and lower

limb therapy [97, 125, 126].
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Other medical applications

Some of the patients with severe disabilities such as ALS or completely

locked-in patients lack communication ability with their environment. Con-

trolling a cursor on the monitor using MI-BCI was a promising method which

provided the patients a new communication pathway [26, 127]. MI can be a

control signal for controlling a wheelchair. It has shown that a subject with

a Tetraplegic can control a wheelchair in virtual environment [128]. MI can

be used for controlling an orthosis to open and close a paralyzed hand of a

subject [129].

Non-medical applications

Although cursor control and speller were initially introduced to help patients

with motor disabilities, they can be also used by healthy subjects in some

entertaining applications. Using BCI for gaming or virtual reality purposes

is quite interesting for healthy subjects. As an example, virtual and real

helicopter control are the two interesting applications of the MI-BCI [130�

132].

2.5 Current issues in EEG-based MI-BCI

Despite of development in signal processing and machine learning algorithms

over the past few years, BCI systems still face some issues such as:

BCI de�ciency :

One of the fundamental issues in BCI is that around 15% to 30% of subjects

are not capable of using a BCI system [133], and their BCI performance is

relatively low. This phenomenon is known as BCI de�ciency or illiteracy [33].

One of the possible reasons of BCI de�ciency is related to the functionality of
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the brain. It seems that subjects BCI de�ciency are unable to modulate their

brain rhythms [45]. However, the possible reasons of such inability have not

been extensively studied. The other reason lies within the machine learning

used for detecting the brain patterns [134]. It is quite possible that the

brain waves have been modulated, but this modulation cannot be detected

by machine learning algorithm. Non-stationarity of EEG signal caused a

di�erence between feature space of the two sessions [47]. Therefore, the

employed machine learning algorithms are no longer appropriate to handle

the transition from calibration to evaluation session.

Non-stationarity of EEG:

The EEG signal in response to a stimulus or during a speci�c task di�ers

from one subject to another. Moreover, the EEG signal di�ers from trial to

trial and from day to day. This change in EEG signal properties over time

is known as non-stationary of EEG which is one of the major challenges in

EEG-based BCIs [39]. Non-stationarity of EEG occurs due to di�erent fac-

tors such as changing the subject states or moods, artifacts, or even changing

the EEG cap from one session to another session [48].

The non-stationarity of EEG signal can be seen in both inter- and intra-

session [40, 106]. Analyzing the feature space of the calibration and eval-

uation session demonstrates that there might be a shift inside the feature

space, therefore the trained model based on the calibration data might not

be optimal for the evaluation session anymore.

Other issues:

Apart from BCI de�ciency and EEG non-stationarity, there are some other

challenges in MI-BCI which are not the focuses of this thesis. EEG signals are

usually noisy and can be a�ected by artifacts such as eye blinking or muscle
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movements, therefore suitable preprocessing methods should be applied to

remove noise and artifacts. A calibration session which is typically required

in MI-BCI systems is time-consuming for both user and operator and it is

desirable to minimize or eliminate the BCI calibration time [52, 85]. Finally,

EEG-based MI-BCI systems are scarcely used in out-of-lab scenarios. One

reason could be could be due to use of conductive gel on the scalp during

setup, which causes inconvenience to the user.

2.6 Summary

Imagination of movement or MI is one of the brain activities which can be

used to control an EEG-based BCI system. EEG-based MI-BCI has shown

e�ective in many medical applications; even in subjects with sever motor

impairment.

Despite the improvement in BCI technology, signal processing and ma-

chine learning algorithms, BCI systems are not yet fully equipped to be used

in out-of-lab scenarios. There are still several issues regarding EEG-based

BCI systems. One of the important challenges is BCI de�ciency. It had

shown that not all the subject can use a BCI system, understanding the

reason of such inability may help us to have a novel design of a BCI system

which can help these poor performance users control a BCI system.

Another important issue is non-stationarity of EEG signals. The sta-

tistical characteristics of EEG signal varies over the time, which makes the

initial calibrated model to be suboptimal for latter sessions. Addressing this

issue can lead to improve the BCI performance.
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Predicting the performance of

MI-BCI using a novel

neurophysiological coe�cient

3.1 Introduction

EEG-based MI-BCI systems have been widely used for both therapeutic and

non-therapeutic applications [15, 21]. However, one of the current issues in

most MI-BCI systems is that a non-negligible number of users (15 to 30%)

cannot perform MI well [134]; hence they cannot properly use BCI systems.

In fact, there is a big variance in the performance of BCI users [35]; however,

the reason of why some users are BCI de�cient is still under investigation by

many researchers.

Performing MI results in ERD/ERS of EEG rhythms [78]. In other words,

stronger ERD/ERS can indicate how well the subject performs MI task. BCI

de�ciency in subjects using MI-BCI can be possibly attributed to their inabil-

ity in modulating EEG rhythms [134]. It may be also because of a mismatch

between calibration session and evaluation session due to non-stationarity in

the EEG [40]. Machine learning algorithms used in BCI systems may not be

capable to deal with such non-stationarity, which may adversely a�ect the

BCI performance in the evaluation session [134]. Moreover, the reasons of
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BCI de�ciency may vary among subjects.

The �rst step towards a cure for BCI de�ciency is to detect the po-

tential BCI de�cient subjects. Performing a BCI experiment is quite time

consuming, therefore it is highly preferable to identify the poor performance

subjects, prior to the whole BCI experiment. Having some prior knowledge

about the performance of the subjects may lead us to investigate other pos-

sible reasons of performance variation in di�erent subjects and also yield in

designing a novel experiment which aimed to help users with BCI de�ciency

[35, 38].

De�ning a performance predictor to predict performance of BCI users is

highly valuable. The predictor may estimate the performance of BCI users

without performing a long time experiment. It can be e�ectively used in

clinical applications, as an example it can quickly help us to investigate

whether the BCI system is an appropriate assistant device for a patient.

Although several predictors have been proposed over the past few years, so

far none of them has been widely used in BCI experiments. To the best of

our knowledge, no study has e�ectively used the BCI performance predictors

to help the subjects better control a BCI system.

In this chapter, a novel neurophysiological coe�cient is proposed to pre-

dict the classi�cation performance of MI-BCI. The proposed coe�cient is

computed from the spectral power of pre-cue EEG rhythms over di�erent re-

gions of the brain. The feasibility of predicting the classi�cation performance

of the MI-BCI users from the proposed coe�cient is further investigated. We

assume that there is a correlation between our proposed EEG rhythm-based

coe�cient and the performance of the users. In comparison with previously

proposed predictors, this coe�cient captures spatial information from the

brain in addition to spectral information.

The remainder of this chapter is organised as follows: Some of the previ-
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predictors

ous performance predictors are reviewed in Section 3.2. Section 3.3 describes

our proposed predictor, followed by experimental setup in Section 3.4. The

performance evaluation method used in this chapter is explained in Section

3.5. Section 3.6 and 3.7 present the experimental results and discussion.

Finally, the summary of this chapter is brought in Section 3.8.

3.2 Neurophysiological versus psychological perfor-

mance predictors

The previous studies on BCI performance prediction can be categorized into

two di�erent groups: the �rst group focused on modulation of slow cortical

potentials [91, 92, 135, 136], while the second group proposed psychological/

neurophysiological predictors for SMR-based BCIs which are the main focus

of this thesis [35, 37, 38, 86, 137�139].

Psychological parameters have shown to have moderate but meaningful

role on BCI performance [37, 86, 138]. Several psychological parameters such

as visuo-motor coordination, attention, personality or motivation were stud-

ied in [138]. However, it has been shown that only the visuo-motor coordina-

tion and concentration ability of the users can be considered as psychological

predictors for SMR-based BCIs. They can be tested by Two-Hand Coordina-

tion Test (2HAND) and Attitude Towards Work (AHA) test, respectively. It

has shown in [86] that mood and motivation a�ect the ability of the subjects

in learning how to use a BCI system. Hence, these psychological predictors,

which re�ects the users' feelings, can predict the BCI performance. However,

some of the psychological parameters (e.g. personality test B5PO [138]) are

based on self-assessment criteria and not well quanti�ed. Therefore they may

not be reliable for predicting the performance of the users.

The second category of the performance predictors proposed for SMR-
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based BCI are neurophysiological predictors which are de�ned based on the

EEG rhythms. A neurophysiological predictor was proposed in [35] based on

the µ- (9-14 Hz) and β- (20-30 Hz) rhythms over sensorimotor area. They

found positive correlation, r=0.53 between their proposed predictor and the

BCI performance of the subjects. In a more recent paper, the alpha band

activity extracted from 1 second pre-stimulus EEG data has been intro-

duced for predicting the performance of EEG trials. It has shown, higher

alpha band activity prior the cue resulted in signi�cantly better classi�ca-

tion performance [139]. Gamma band power was also proposed as another

performance predictor for SMR-based BCI [38, 137]. It has shown that γ

oscillation has causal in�uence on SMR, thus can be used for predicting the

performance of SMR-BCI.

The pre-stimulus alpha [140�145] and theta [146, 147] have been used

for predicting the performance of some other mental tasks rather than MI.

However, the reported e�ects vary according to the performed mental task.

In other words, for some mental tasks such as visual perception lower alpha

results in higher performance, while for some other tasks such as cognitive

or memory tasks higher alpha leads to better performance.

Considering all previously mentioned studies, it can be concluded that

pre-stimulus EEG contains useful information about the task outcome per-

formance. In other words, the state of the brain before providing a stimulus

has a role on the performance of the subject. Therefore, it can be assumed

that by knowing the state of brain over pre-stimulus time segment, the task

performance of the user can be predicted.
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prediction

3.3 Proposed neurophysiological coe�cient for per-

formance prediction

In this chapter, we aim to propose a novel neurophysiological coe�cient to

predict the classi�cation performance of MI-BCI from pre-cue EEG data.

The state of subject's brain preceding a cue or stimulus can be de�ned using

EEG rhythms. In some Attention Defcit Hyperactivity Disorder (ADHD)

studies, the ratio of (theta/beta) has been used as an attention score [148,

149]. In fact, this ratio quanti�es the attention level of the subject which

somehow identi�es the state of the brain.

The role of α and θ band power on attention has been previously stud-

ied [147, 150, 151]. Studies have shown that higher pre-stimulus α power

represents low attention state. While, higher θ power represents higher at-

tention state. In other words, the e�ect of alpha and theta band are related

in an opposite way [71], which means that better performance is achieved

by increasing theta band power and decreasing alpha band power. Hence,

we de�ne a novel coe�cient which is computed from power of pre-cue EEG

data over three frequency bands of theta, beta, and alpha.

Before calculating spectral powers, the recorded EEG signals are visually

inspected and those trials with excessive eye-blinks are removed. The cleaned

EEG data from all the channels are then �ltered over θ (4-8 Hz), α (8-

13 Hz), and β (16-24 Hz) frequency bands. In the next step, the �ltered

data are spatially �ltered by means of Local Average Reference (LAR). The

average activity of the closest neighboring electrodes is subtracted from each

individual electrode.

The EEG band power in each of the three speci�ed frequency bands is
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calculated and normalized over all trials (Eq. 3.1):

E
2
i =

E2
i

NT∑
j=1

E2
j

(3.1)

where Ei ∈ Rc×τ denotes the �ltered single trial EEG measurement of the ith

trial; Ei ∈ Rc×τ denotes the normalized spectral power of the ith trial over all

trials; and nt shows the number of trials; τ is the number of EEG samples per

channel; and c denotes the number of channels. Subsequently, the normalized

band power Ei is averaged over pre-cue time segment according to Eq. 3.2.
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nt∑
i=1

∑
t∈pre cue

(E
b
i,t)

2 (3.2)

where E
b
i ∈ Rc×τ denotes the �ltered single trial EEG measurement of the

ith trial in frequency band of b∈ {θ, α, β}; Pb ∈ Rc denotes the average

pre-cue frequency band-power over all trials, and τ denotes the number of

EEG samples per channel. The proposed coe�cient is �nally de�ned from

the averaged frequency band powers as follows:

F =

∑
c∈Cθ

pθc∑
c∈Cα

pαc +
∑
c∈Cβ

pβc
(3.3)

where pbc denotes the average of pre-cue frequency band-power of c
th channel;

b denotes the frequency band of ∈ {θ, α, β}; and Cθ, Cα, and Cβ denote

selected channels from frontal, parietal and central area.

Di�erent regions of the brain have di�erent activation patterns over spe-

ci�c frequency band. This led us to consider topographical information in

our proposed coe�cient. It can be assumed that a coe�cient which is based

on EEG rhythms computed from di�erent brain regions might be more infor-
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mative in predicting the performance of the users. It was shown previously

in some studies that theta band power over frontal area and alpha band

power over parietal area can somehow represent the attention of the sub-

jects [147, 152]. Therefore, to have a more meaningful neurophysiological

predictor, we calculate the pre-cue EEG band powers over di�erent regions

of the brain. Accordingly, theta, alpha and beta band powers in Eq. 3.3 are

averaged over frontal area Cθ ={F3, Fz, F4}, parietal area Cα ={P7, P3,

Pz, P4, P8} and central midline area Cβ ={Cz, Cpz}.

To improve the proposed predictor in Eq. 3.3, some weights are assigned

to di�erent band powers. Therefore, Eq. 3.3 is modi�ed by normalizing theta

band power over weighted sum of alpha and beta band powers as follows:

Fnew =

∑
c∈Cθ

pθc

λ
∑
c∈Cα

pαc + (1− λ)
∑
c∈Cβ

pβc
(3.4)

where λ ∈ [0, 1] is a weighting factor.

3.4 Experimental setup

The EEG data was collected from 17 healthy subjects. Two out of 17 subjects

were left handed. All the subjects participated in two di�erent sessions: a

calibration session on a �rst day and a non-feedback session on a separate

day. No feedback was provided for the subjects during the experiment.

During the experiment a visual cue was displayed on the computer screen

which informed the subject to perform either MI or idle. During MI trials,

subjects were instructed to perform kinaesthetic hand MI due to their hand-

edness. To de�ne the idle state for subjects, they were instructed to perform

mental counting in idle trials. The main reason was to make the idle state

more consistent to reduce both inter- and intra-subject inconsistency during
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the idle state. Prior to the experiments, subjects were instructed to mini-

mize any physical movement and eye blinking throughout the EEG recording

process. All subjects were asked for ethics approval and informed consent.

Figure 3.1: Timing scheme of each trial of experiment. A beep sound followed by
a �xation cross on the screen noti�es the subject about the start of each trial. A
cue is shown on the screen at time 0. A subject starts performing either MI or idle
right after the cue.

In the calibration session two runs of EEG data were collected. Each run

comprised of 40 trials of MI and 40 trials of idle state and lasted about 16

minutes. Figure 3.1 represents the timing scheme of each trial. As shown,

each trial comprised a preparatory segment of 2 s, the presentation of the

visual cue for 4 s, and a rest segment of at least 6 s. Each trial lasted

approximately 10 s, and a break period of at least 2 min was given after

each run of EEG recording. The EEG data collected in calibration session

was then used to calibrate a subject-speci�c model. During the non-feedback

session three runs of EEG data were collected while subjects were performing

MI of the chosen hand versus idle state. These three runs were almost similar

to that of the calibration session, each lasted approximately 16 minutes and

comprised of 40 trials of MI and 40 trials of idle state.

The Nuamps EEG acquisition hardware (http:\\www.nueroscan.com)

with unipolar Ag/AgCl electrodes channels was used to collect EEG data.

The recorded signal was digitally sampled at 250 Hz with a resolution of 22

bits for voltage ranges of ±130 mV. EEG recordings from all 27 channels

were band pass �ltered from 0.05 to 40 Hz by the acquisition hardware.
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3.5 Methods

3.5.1 Evaluating the classi�cation performance of MI-BCI

using FBCSP

The performances of subjects are evaluated based on the classi�cation ac-

curacy of the non-feedback session. As mentioned earlier in Section 3.4, a

model is trained based on the EEG data collected in calibration session to

detect MI in the non-feedback session. For estimating the performance of

the users, FBCSP algorithm which was proposed in [117] is used. FBCSP

selects subject-speci�c frequency bands and results in better performance in

comparison to CSP. It has four stages:

◦ Multiple frequency band-pass �ltering : A total of 9 Chebyshev Type II

band-pass �lters are used, namely, 4-8 Hz, 8-12 Hz, ... , 36-40 Hz.

◦ Spatial �ltering : The CSP algorithm (please see Section 6.3.1) is ap-

plied to spatially �lter the signal. The m �rst and last CSP �lters are

only selected for computing the features for each band.

◦ Features selection: The k best pair of features are selected among all

2m×9 features by using the mutual information-based best individual

feature (MIBIF) algorithm.

◦ Classi�cation: SVM classi�cation algorithm is employed to model and

classify the selected FBCSP features.

3.5.2 Proposed methodology for correlation analysis

We hypothesize that there is a positive correlation between the proposed

EEG rhythm-based neurophysiological coe�cient (Eq. 3.3) and subjects

performance. To investigate our hypothesis a group level analysis is per-

formed and Pearson's correlation coe�cient between the proposed coe�cient
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Figure 3.2: Methodology for calculating the correlation between the proposed co-
e�cient and the classi�cation performance of the subjects. The performance is
calculated based on FBCSP method. The pre-cue time segment is selected accord-
ing to the design of the experiment.

of all users and their accuracies is computed. The signi�cance level of the

test proves the validity of our initial assumption and shows how well the

proposed novel coe�cient can predict the performance of users. Figure 3.2

demonstrates our methodology for calculating the correlation between clas-

si�cation performance and the proposed coe�cient.

3.6 Results

The recorded EEG signals were visually inspected and those trials with am-

plitude higher than 220 µvolts were rejected. This was mainly done to avoid

theta band power being obscured by eye-blinks components in our proposed

coe�cient. Figure 3.3 shows the number of removed trials for each individual

subject. As shown, for all of the subjects except one, less than 5% of trials

are removed.
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Figure 3.3: Number of trials (%) with excessive eye-blinks which were removed
from our study.

3.6.1 Time course of EEG relative power

The proposed coe�cient (Eq. 3.3) was computed from 2 s of pre-cue EEG

data. In order to show the changes of EEG power over each of the studied

frequency bands, the ERD/ERS time courses for each single channel were

calculated based on the method described in [78].

Figure 3.4 shows ERD/ERS time courses of several channels from di�er-

ent regions of the brain. The ERD/ERS shown in this �gure were calculated

for subject kk who had high performance. The average relative power of each

theta, alpha, and beta frequency bands over selected channels from frontal,

parietal and central area are also plotted in Figure 3.5. As can be seen, EEG

band powers start to decrease before a cue is provided for the subject at

time 0. Hence, we may infer that pre-cue time segment contains information

about the task that the subject is instructed to perform after cue timing.

3.6.2 Classi�cation performance of the subjects

In this study, the accuracy of subjects is used as a measure of performance.

Table 3.1 summarizes the performance accuracy of the the 17 healthy sub-

jects. The session-to-session transfer accuracy showed the performance of
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Figure 3.4: ERD/ERS time courses of healthy subject kk in di�erent channels.
The Frontal channels (F3, Fz, F4) show the theta activity. The central channels
(Cz, CPz) show beta activity, and parietal channels (P7, P3, Pz, P4, P8) reveal
alpha activity.

the users in evaluation session. As can be seen, the average performance of

the subjects was 61.25%, and 10 out of 17 subjects had accuracies above 70%

which is an acceptable threshold in most BCI systems. In other words, sub-

jects with accuracy less than 70% were not successful in using BCI system

and may be considered as subjects with BCI de�ciency [153].

However, the session-to-session transfer performance can be a�ected by

non-stationarity of EEG signal. Therefore, the 10×10-fold Cross-Validation

(CV) accuracies of the subjects in both calibration session and evaluation

session were calculated. The average CV accuracy of the calibration and

evaluation session were 74.66% and 72.64%, respectively. The overall CV

accuracies of evaluation session was higher than the session-to-session trans-

fer results. The non-stationarity between calibration and evaluation session

can be one of the possible reasons of such a low performance. Therefore, in

our analysis we used 10×10-fold CV accuracies of the evaluation session as
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Figure 3.5: ERD/ERS time courses of healthy subject kk. Plots show (a) θ, (b) α,
and (c) β bands ERD/ERS averaged over selected channels from frontal (F3, Fz,
F4), central (Cz, Cpz) and parietal (P7, P3, Pz, P4, P8) area, respectively. The
graphs are smoothed by means of moving average.

a measure of subjects' performance, since CV results are not a�ected by the

inter-session non-stationarity. This can help us to better identify the BCI

de�cient subjects.

Figure 3.6 shows box plot of 10×10-fold CV accuracies for 17 healthy

subjects in the non-feedback session. As shown, the median accuracy of the

subjects varies from 50% to 95.8%. Subjects with accuracy less than 70%

were considered as low performance subjects [136]. Hence, the subjects were

divided into two groups: subjects with low performance (median=58.33%)

and subjects with high performance (median=85.42%).

3.6.3 Correlation analysis

After calculating the proposed neurophysiological coe�cient for each indi-

vidual subject, a Pearson's correlation coe�cient was then computed to as-
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Table 3.1: Classi�cation performance of 17 healthy subjects. The table includes
the 10×10-fold cross-validation accuracies of calibration and non-feedback sessions,
and also session-to-session transfer accuracies.

Subjects
10x10-CV
acc (%) on

calibration session

10x10-CV
acc (%) on

evaluation session

Session-to-session
transfer acc (%)

at 59.13 64.08 53.75
hh 55.25 58.46 52.50
hd 64.50 54.63 63.33
hj 91.50 90.29 71.25
jh 79.83 74.71 70.00
kk 88.25 83.75 75.83
ks 62.42 85.29 77.08
pl 94.58 94.67 92.92
s 88.94 80.96 77.08
wy 48.17 51.38 57.50
yz 50.50 66.75 47.08
zy 87.33 81.17 72.92
ad 64.50 64.75 50.00
kx 81.25 62.21 86.67
lj 87.75 84.88 67.92
ab 92.25 79.46 82.92
ly 73.00 57.46 78.33

AVG 74.66 72.64 61.25
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Figure 3.6: Box-plot of 10×10-fold cross-validation accuracy of 17 healthy subjects
during non-feedback session.

sess the relationship between the proposed predictor and the classi�cation

performance of the subjects. The higher correlation value r and lower cor-
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responding signi�cant level p, demonstrate the strength of this correlation.

A signi�cant positive correlation between the proposed predictor and CV

accuracies (r=0.53, p=0.02) was achieved. This means that the proposed

predictor explained as much as r2=29% of the variance in classi�cation per-

formance of the subjects. Therefore, the correlation result indicates that

subjects with higher classi�cation accuracy have higher value of the predic-

tor and vice versa. Figure 4.1 represents the values of the proposed predictor

versus CV accuracies for each individual subject. As can be seen in this �g-

ure, high performance subjects (pl, s, ks, lj, kk, hj, ab, zy) have higher

values of the predictor in comparison with low performance subjects (hh,

hd, wy, kx, ly, at).
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Figure 3.7: Correlation of the proposed EEG rhythm-based coe�cient F with BCI
classi�cation accuracy. The accuracies are 10×10-fold CV accuracies of the users
over non-feedback session. Each circle represents a healthy subject. The solid line
(slope=0.32) is linear regression result.

The correlation between the proposed coe�cient and the classi�cation

accuracy of the subjects without removing eye blinks was r=0.49, p=0.04.
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This shows that removing the eye blinks enhances the correlation results.

3.6.4 Comparison of high and low performance subjects

AMann-Whitney U-test was conducted to compare the value of the proposed

predictor for low (Group 1) and high performance subjects (Group 2). The

result of the test is shown in Figure 3.8.
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Figure 3.8: Comparing the proposed EEG rhythm-based coe�cient F for two
groups of subjects. Group 1 are six subjects with accuracy less than 35th percentile
and Group 2 are the six subjects with accuracy above 65th percentile (Mann-
Whitney U-test *p<0.05).

The subjects in Group 1 and Group 2 were chosen based on their clas-

si�cation performance. Group 1 contains subjects with accuracy less than

35th percentile, while Group 2 contains subjects with accuracy above 65th

percentile. The results of the test showed that the value of the predictor for

subjects with high performance (Fmedian=0.54) was signi�cantly (p=0.008)

higher than the value of the predictor for subjects with low performance

(Fmedian=0.33). Therefore, it can be concluded that subjects with higher

classi�cation accuracy have signi�cantly higher value of the proposed pre-
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dictor or higher attention level. It should be noted that, the signi�cance

level of the result may change by grouping the subjects in other ways.

The values of the proposed predictor for two of the subjects yz and ad

with low performance (accuracy less than 70%) are quite comparable to that

of the subjects with high performance such as kk. On the other hand, subject

jh with CV accuracy=74.7% has the lowest value of the predictor. As shown

in Figure 3.6, these three subjects have moderate accuracies, that are placed

somehow in the middle of the graph between two groups of subjects with

high and low performance accuracies.

3.6.5 Weighting the proposed coe�cient

The e�ect of weighting the coe�cient is studied in Figure 3.9. This �gure

shows the results of group level correlation analysis for di�erent values of λ in

Eq. 3.4. The Pearson's correlation coe�cient r-value and its corresponding

p-value for each value of λ are plotted. As can be seen, for λ ≤ 0.67 there was

a signi�cant correlation between Fnew and performance. Highest correlation

(r=0.63, p=0.007) was achieved by λ=0.16.

Figure 3.10 shows the group level correlation analysis for some of the se-

lected λ values. As can be seen in this �gure, for di�erent values of weighting

factor λ, the six lowest performance subjects had always signi�cantly lower

values of Fnew in comparison with the six highest performance subjects.

3.7 Discussion

In this study, we proposed a novel neurophysiological coe�cient to predict

the performance of the subjects in EEG-based MI-BCI. The proposed predic-

tor was de�ned based on pre-cue EEG. Several previous studies have shown

that the ongoing oscillatory activity preceding an event has e�ect on sub-
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Figure 3.9: Analysis of the e�ect of weighting factor λ=[0 1] on the correlation
coe�cient between the proposed weighted coe�cient Fnew and CV accuracies of
the subjects. The r -values (solid line) and p-values (dashed line) are the Pearson's
correlation coe�cients and their corresponding signi�cant levels, respectively.
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Figure 3.10: Correlation of the proposed weighted EEG rhythm-based coe�cient
Fnew with 10×10-fold CV accuracies of the users over evaluation session for selected
values of λ=0, 0.16, 0.5, and 1. Each circle represents a healthy subject. The solid
lines are linear regression results.
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sequent task outcome. As an example, pre-cue EEG data has been used

to predict the performance of the subject in memory, mental workload and

visual attention tasks. Therefore, it may infer that the state of the brain

or readiness of the brain over the pre-cue time segment can predict the per-

formance of the subject in performing motor imagery tasks. According to

our experimental design, the subject was instructed to avoid any movement

and be ready for the following task after hearing a beep sound. Before the

beep sound there was a resting time during which the subject was allowed

to be relaxed without any special instruction. Hence, the recorded signal

contained several artifacts and it was not reliable to be used for our analysis.

The time between hearing the beep sound and the cue timing was around 2

s.

As stated earlier the power of EEG signal over pre-cue time segment was

computed for α, β, and θ frequency bands and used to quantify the current

state of brain. ERD/ERS time course shown in Figure 3.5 reveals that the

relative powers start to decrease 2 s before cue timing. Therefore, this time

segment was used in calculating the attention level of the user prior to the

start of trial at time 0.

Although the brain's functionalities during di�erent tasks are not the

same, it is common in all tasks that state of brain can a�ect the subject's

performance. To de�ne the brain's state we tried to capture spatial and

spectral information in our proposed coe�cient. Several studies proposed

performance predictors which was reviewed in Section 3.2; however, pre-cue

information of di�erent frequency bands over di�erent regions of the brain

has not been used for prediction so far.

In the proposed coe�cient theta band power is calculated over frontal

area. Frontal theta activity has previously shown to be related to attention

[147]. It has been shown that attentional processes and working memory are
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closely related, which means that an increase in frontal theta activity is due

to an increase of working memory load. In other words, higher attention level

is expected when there is higher frontal theta activity. This can justify the

reason of focusing on frontal theta as a part of the coe�cient proposed for

attention level quanti�cation. According to our electrode setup the frontal

channels F3, Fz, and F4 were selected to calculate the theta activity. Several

studies have shown the role of pre-stimulus alpha over parietal and occipital

area [142, 144, 145]. They concluded that lower alpha results in higher

accuracy [144, 145] and faster reaction time [142]. Therefore, in our proposed

coe�cient, alpha band power was calculated over parietal area (P7, P3, Pz,

P4, P8).

As we de�ned the brain's state by the attention level, we assumed that

those subjects with higher accuracies had higher attention level, which means

that they had higher values of the proposed neurophysiological coe�cient.

Due to the de�nition of our proposed coe�cient in Eq. 3.3, higher attention

level is achieved by having higher frontal theta and lower parietal alpha.

The results of this chapter showed a signi�cant positive correlation between

the proposed coe�cient and the accuracies of the users, which implies our

initial assumption was correct. It has been previously investigated in [138]

whether attention span as a psychological parameter could predict the BCI

performance, nevertheless no signi�cant results were achieved.

The group level analysis in this chapter also revealed that giving dif-

ferent weights to alpha and beta band power in Eq. 3.4 yields to higher

correlation. This may suggest that EEG rhythms have di�erent weights in

quantifying the attention level of subjects. Although signi�cant positive cor-

relation was achieved in group level analysis, as shown in Figure 4.1, the

value of the proposed coe�cient was totally di�erent for subject yz, ad, jh.

These three subjects had moderate accuracies with di�erent values of the
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predictor. Hence, it may be assumed that the predicted accuracies for some

of the subjects are not precise.

Currently our �ndings were tested on a group of 17 subjects with various

range of performance. This can be considered as a limitation of our study.

It would be appreciated to test the proposed coe�cient on a bigger data set

with larger number of subjects. In comparison with other previous predic-

tors such as SMR predictor [35], this coe�cient captures spatial information

from the brain in addition to spectral information. In fact, the proposed

coe�cient is computed from the spectral power of pre-cue EEG data for

speci�c rhythms over di�erent regions of the brain. In contrast, the SMR

predictor is computed from the alpha band over C3 and C4 channels, which

are not the two channels with highest alpha activity for all the subjects.

The proposed coe�cient in this chapter cannot estimate the performance of

the subjects from the resting state EEG data, this can be also considered as

another limitation of the proposed method.

3.8 Summary

In this chapter, we demonstrated that pre-cue EEG rhythms contain use-

ful information about the following MI task. It has been shown in several

previous studies that pre-stimulus EEG data can be used for predicting the

performance of the users for the following task regardless of the type of the

task (i.e., memory task, mental workload, engagement, oddball). In fact,

pre-cue EEG data can somehow show the current state of brain.

De�ning the current state of brain is not straightforward, since it may

be a�ected by di�erent factors such as changes in subject's attention, con-

centration, engagement, mood and some other factors. Therefore, it can be

concluded that by de�ning the current state of brain, we can predict the
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performance of the subjects.

It was assumed that the attention level of the subjects can be an indica-

tor of the brain's state. Accordingly, we tried to quantify the attention level.

The proposed coe�cient may be considered as one of the possible quanti�-

cation of the attention level. In order to include topographic information in

the proposed coe�cient, power of EEG signal over di�erent regions of the

brain was computed. Therefore both spatial and spectral information were

captured and thus the current state of brain was better represented.

The group level correlation analysis represented that the new proposed

coe�cient was positively correlated to the accuracies of users during MI

versus idle task. The results suggested that subjects with higher (lower)

accuracies have higher (lower) values of the proposed coe�cient. However,

from this study we cannot infer that this is a causal correlation.

In conclusion, although the results of this chapter were based on group

level analysis, they are promising enough to lead us into a new experimental

design that speci�cally helps subjects with BCI de�ciency.
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Spatio-spectral based

performance predictor

4.1 Introduction

MI induces changes in SMRs over sensorimotor areas [24]. The SMRs com-

prise oscillations of alpha (8-13 Hz) and beta (18-30 Hz) frequency bands.

A decrease of SMR during MI task is known as ERD, while an increase of

SMR is known as ERS [78]. Studies have shown that alpha ERD and beta

ERS were observed during preparation, execution and imagination of motor

activity over sensorimotor areas [24]. Hence, an EEG-based BCI system can

be designed to decode the modulation of alpha and beta oscillations, but not

all subjects can modulate their rhythms to control the BCI system properly.

For some subjects BCI performance may drop below an acceptable threshold

of 70% [34, 153].

Recently, several methods has been proposed to predict the performance

of the MI-based BCI users [35, 38, 137�139]. Psychological predictors such

as attention, personality or motivation have moderate but meaningful roles

on BCI performance [138]. In contrary, neurophysiological predictors de�ned

based on EEG rhythms has been shown to be more reliable in predicting the

BCI performance than psychological predictors [35, 137] (please see Section

3.2 for more information about psychological and neurophysiological perfor-
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mance predictors)

One of the proposed neurophysiological predictors [35] was based on the

power spectral of two min EEG recordings of resting state (i.e., relax with

eyes open). The average di�erence between the maximum peaks of the power

spectral of the EEG and 1/f noise spectrum over two laplacian channels C3

and C4 was found to be signi�cantly correlated (r=0.53) to the BCI perfor-

mance of 80 healthy subjects. Therefore, it may be assumed that subjects

with higher spectral peak at rest have higher BCI performance. The in�uence

of the pre-stimulus subject-speci�c alpha band power on classi�cation per-

formance was also studied in [139]. They showed that the trials with higher

pre-stimulus band power in comparison with trials with low pre-stimulus

band power were better classi�ed. However, only subjects with BCI perfor-

mance above 70% who performed right versus left hand motor imagery were

included in their study.

The above-mentioned neurophysiological predictors were all based on

the power of EEG rhythms at prede�ned frequency bands. However, the

recorded EEG is superposition of neural signals from several sources with

a relatively strong background noise. Accordingly, Spatio-Spectral Decom-

position (SSD) [154] was proposed to extract neural oscillations based on a

linear decomposition of the recorded multichannel EEG. SSD maximises the

EEG power at desired frequency band while minimizing the power at neigh-

boring frequency bands, therefore it can extracts the neural oscillations in

presence of strong background noise. It may be assumed that using SSD may

yield a more reliable estimation of EEG activity over the frequency band of

interest from multichannel EEG data. However, the SSD method had only

been used only for analyzing brain sources.

In this chapter, we applied SSD to enhance the extracted alpha band

activity that was shown previously to be correlated to the performance of

50



4.2. Spatio-spectral decomposition (SSD)

the MI-BCI system [24, 78]. On the other hand, it has been shown [35, 139]

that alpha band power from pre-stimulus or resting state can predict the BCI

performance of the users. Therefore, in this chapter we investigated whether

the extracted SSD components with enhanced alpha band spectral charac-

teristics can better predict the BCI performance of the users to mitigate the

e�ect of strong background noise.

4.2 Spatio-spectral decomposition (SSD)

Spatio-spectral decomposition [154] has been proposed to extract neural os-

cillations form multichannel EEG signal. Compared to methods based on

independent component analysis, SSD is a much faster method. SSD method

�nds spatial �lters which maximize the signal to noise ratio (SNR). It con-

comitantly maximizes the power of EEG signal over a desired frequency band

and minimizes the EEG power over neighboring frequency bands. Hence, the

extracted components have peaky spectral pro�les. SSD method can suc-

cessfully extract oscillatory signals even in presence of low signal to noise

ratio [154]. In the following paragraphs, the main computational steps of

SSD are brie�y explained.

Let Es ∈ Rτ×c and En ∈ Rτ×c be the �ltered EEG signal over desired

frequency band f (e.g., 8-13 Hz) and neighboring frequency bands f + ∆f

and f−∆f (e.g., 6-8 and 13-15 Hz), where τ and c are the number of samples

and channels, respectively. Therefore, the covariance matrices of signal (Cs)

and noise (Cn) are estimated as follows:

Cs =
ET
s Es

τ
(4.1)

Cn =
ET
nEn

τ
(4.2)
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The spatial �lters (wi ∈ Rc×1) are then determined by maximizing the

following SNR [154]:

SNR(wi) =
wT
i Cswi

wT
i Cnwi

(4.3)

which leads to generalized eigenvalue decomposition [155]:

Cswi = λiCnwi (4.4)

where λi is the corresponding eigenvalue. The extracted SSD components X̃

can be obtained by:

X̃ = XW (4.5)

where X ∈ Rτ×c denotes the recorded EEG signal before band-pass �ltering,

X̃ = [x̃(1), x̃(2), · · · , x̃(τ)]T , and x̃(t) ∈ R1×nm ; nm denotes the selected

number of SSD �lters used for spatially �ltering the EEG data (nm ≤ c);

c denotes the total number of channels; and W ∈ Rc×c denotes a spatial

�lter where its columns W = (w1, · · · ,wnm) are sorted in descending order

according to their corresponding SNR values.

4.3 SSD-based performance predictor

It has been shown in previous studies [35, 139] that higher SMR ampli-

tude over resting state (relax with eyes open) and also over pre-cue EEG of

feedback runs yielded higher classi�cation performance. Therefore, extract-

ing alpha activity is crucial part for predicting the BCI performance of the

users. The SSD method can extract the components with highest SNR over

a frequency band of interest. Therefore, we hypothesise that the power of

SSD components with highest alpha activity are positively correlated with

performance of the subjects and thus can be used for predicting the perfor-

mance of the subjects. Our proposed SSD-based performance predictor in
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this chapter is based on the power of SSD components. To de�ne our predic-

tor, the spatially �ltered EEG data X̃ in Eq. 4.5 is band-pass �ltered over

desired frequency band f and the power of SSD components p
X̃
is estimated

as follows:

p
X̃

(t) = ‖x̃(t)‖2 (4.6)

where p
X̃

(t) ∈ R1×nm . Subsequently, the power of SSD components p
X̃

(t)

is averaged over the selected number of components and time in Eq. 4.7.

p =
1

nm

nm∑
i=1

1

τ

τ∑
t=1

p
X̃

(t, i) (4.7)

where p can be named as SSD-based performance predictor.

4.4 Experimental data

In this study, a large data set of 80 healthy BCI-novice subjects is used [35].

Each subject participated in one session that comprised of calibration runs

and feedback runs recorded on the same day.

The subjects sat on a comfortable chair with their arms being relaxed on

an armrest during the whole experiment. The EEG signals were recorded

from 119 Ag/AgCl electrodes using multi-channel EEG ampli�er (BrainAmp

DC by Brain Products, Munich, Germany). The recorded brain activity was

sampled at 1000 Hz and band-pass �ltered between 0.05 and 200 Hz. Elec-

troencephalogram (EOG) and electromyogram (EMG) were also recorded.

At the start of the session and before the calibration session, ten periods

of 15 s of alternating relax with eyes open and relax with eyes closed EEG

were recorded. In calibration runs, no feedback was provided for the subjects.

The subjects were instructed to perform right, left, or foot motor imagery

task. A total of 225 trials of MI were recorded which comprised of 75 trials for
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each MI task. The two classes which led to the highest classi�cation accuracy

were selected. During the feedback runs, the subjects were instructed to

perform MI of the two selected classes. For a majority of the subjects, three

runs of 100 trials with BCI feedback were recorded. For more information

on the experimental set up, please refer to [35, 138].

4.5 Methods

4.5.1 Artifact removal

The EOG channels were used to remove the eye blinks from the recorded

EEG signal. To minimize the eye motions and blinks, a method previously

proposed in [156] was used. Let X ∈ Rc×τ be the recorded EEG and A

represents the coupling of sources Ŝ ∈ Rc×τ which are desired to be removed

(i.e., eye blinks); c denotes the number of channels; τ denotes the number

of samples in each channel. The sources can be estimated from EEG as,

Ŝ = A†X, where A† denotes the pseudo inverse of A. The sensor activity

generated by the undesired sources is X‖ = AŜ. Therefore, this activity can

be subtracted from original EEG as follows:

X⊥ = X−X‖ = (I−AA†)X (4.8)

where X⊥ is the EEG data without eye blinks.

4.5.2 Evaluating BCI performance of the subjects

For evaluating the BCI performance of the subjects, the recorded calibration

runs were �ltered in a subject-speci�c frequency band and time interval [88].

On the next step, CSP was used to spatially �lter the data. The number of

CSP �lters were selected heuristically. Finally, the log-variance of the �ltered

54



4.6. Results

data were calculated and used as features for training the LDA classi�er.

The performance of the subjects during the online feedback runs were

evaluated based on the adapted LDA classi�er. The �rst initial 20 trials of

each feedback run were used for bias adaptation of the LDA classi�er. The

�nal reported performance is the average performance of the recorded runs.

More information can be found in [35].

4.5.3 Correlation analysis

In this chapter, we de�ned the proposed predictor over resting state and

pre-cue time segment. Therefore, the SSD-based predictor for both cases

were computed using Eq. 4.5 to 4.7. Subsequently, the Pearson's correlation

coe�cient between the derived predictor and the feedback BCI performance

of the subjects was calculated.

4.6 Results

The SSD-based predictor proposed in the chapter was used to predict the

BCI performance of the subjects. Its e�ectiveness was evaluated on resting

state (relax with eyes open) EEG, and pre-cue EEG from the feedback runs

and was compared to the previously proposed spectral-based predictor in

[35] (see Section 4.7).

4.6.1 BCI performance results

Figure 1 summarizes the accuracies of all 80 subjects during feedback runs.

The classi�cation performances vary considerably, ranging from 47.8% to

100% with a mean of 74.4% ± 16.5%. The intra-subject variability between

runs ranged from 0% to 19.8%. 30 subjects performed right versus left

hand MI during the feedback runs (Group 1, mean=81.13%), 34 subjects
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performed left hand versus foot MI (Group 2, mean=71.74%), and the resting

16 subjects performed foot versus right hand motor imagery. Group 3 has

the lowest average performance (Group 3, mean=67.52%) comparing to the

other two groups.
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Figure 4.1: Classi�cation accuracies of the feedback runs. Each cross (×) repre-
sents the median of classi�cation accuracies of the recorded runs for each subject,
and the vertical lines represent the corresponding standard deviations. Subjects
are sorted according to their BCI performance.

4.6.2 Resting state EEG analysis

As stated earlier in Section 4.4, during the resting state 10 trials of relax

with eyes open and 10 trials of relax with eyes closed were recorded. In this

chapter we only analyze eyes open trials of resting state.

To choose the number of SSD components nm, one may only select the

�rst SSD component, since it has the highest SNR value and the most peaky

pro�le. However, for some subjects using two or more components may

enhance the results. In order to de�ne a consistent measure for all the

subjects, we performed a group level correlation analysis between the SSD-
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based predictor and BCI performance of the subjects using di�erent number

of components nm. The results are shown in Figure 4.2. Each dot represents

the correlation result using the corresponding nm components. The �gure

shows the e�ects of using the �rst 30 components nm = {1, 2, · · · , 30}. Group

level analysis of all subjects showed the maximum signi�cant correlation of

r = 0.53, when the �rst two SSD components were used. However, by

using more than two SSD components the correlation started to decrease.

Moreover, the highest correlation for Group 1 (RL) and Group 2 (LF) of

participants were r = 0.57 and r = 0.49 when using the �rst two SSD

components. However, Group 3 (FR) of subjects had the highest correlation

r = 0.73 using only the �rst SSD component. In summary, due to group

level analysis we selected two SSD components.
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Figure 4.2: The e�ect of using di�erent number of SSD components on the cor-
relation (Pearson) between the SSD-based predictor and BCI performance of the
subjects. Alpha-SSD components are extracted from resting state (relax with eyes-

open). The blue dotted line represents the results of group analysis using all sub-
jects. The red, black, and green dotted lines are the within group results for Group
1 (RL), Group 2 (LF), and Group 3 (FR), respectively. Each dot (•) represents a
correlation result when using nm SSD components.

Analyzing the results of SSD-based predictor suggested that subjects
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with higher performance had higher value of the proposed predictor. As

stated previously in [34], 48 subjects (Cat.I) had accuracy above 70% in both

calibration and feedback runs, 14 subjects (Cat.II) had feedback accuracy

less than 70%, and the resting 18 subjects (Cat.III) had performance less

than 70% during the calibration session. Analysis of Variance (ANOVA)

showed that the SSD-based predictor was signi�cantly di�erent between

these three categories of users F (2,77)=10.778, p <0.01. Post hoc compar-

isons using the Bonferroni test revealed that Cat.I of has signi�cantly higher

value of SSD-based predictor than Cat. II (p=0.02) and Cat.III (p <0.01).

This is similar to previous �ndings that subjects with higher alpha activity

at rest state have higher BCI performance [35].

The selected components for one of the subjects with high feedback per-

formance (98.12%) are visualized in Figure 4.3. This subject performed right

versus left hand motor imagery during the feedback session. The �rst/second

row of the �gure presents the �rst/second SSD pattern, �lter, and spectra of

resting state. As expected, the spectra of the �rst extracted SSD component

in comparison with the second one has higher peak at alpha band.

As can be seen in Figure 4.3, both components are extracted from the

sources mostly located over sensorimotor area. However, the location of the

sources are not the same for all the subjects. Figure 4.4 shows the �rst

extracted α-SSD �lter for six selected subjects. As shown, although higher

weights are assigned to the channels over sensorimotor area, the channels are

not exactly the same for di�erent subjects. This shows that highest alpha

activity is not always over C3 and C4 channels.

4.6.3 Pre-cue EEG analysis

Here in this section, we investigate the feasibility of predicting the perfor-

mance of the users based on the SSD-based predictor computed from pre-cue
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Figure 4.3: The �rst two α-SSD patterns, and their corresponding �lters and
spectras extracted from resting state (relax eyes-open) for subject 19 with feedback
accuracy of 98.12%. The color-scale is in arbitrary units.
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Figure 4.4: First SSD �lter over the resting state (relax eyes-open) for the six
selected subjects. The color-scale is in arbitrary units.

time segment of EEG. The SSD-based predictor (Eq. 4.7) was computed over

1 s of pre-cue EEG data. Then, the group level correlation between the SSD-

based predictors and BCI performances was calculated. The best number of
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SSD components were selected from the resting state analysis. It was shown

that nm = 2 results in the highest correlation between the proposed pre-

dictor and the BCI performance of the subjects (Section 4.6.3). Therefore,

we used the �rst two SSD components computed from pre-cue EEG. Group

level correlation analysis showed signi�cant correlation r = 0.39 between

SSD-based predictor and BCI performance of the subjects. Within group

correlation analysis for Group 1 (RL) and Group 2 (LF) also showed signi�-

cant correlation of r = 0.40 and r = 0.34. Therefore, it may be inferred that

the SSD-based predictor computed from resting state EEG in comparison

with the predictor computed from pre-cue EEG can better predict the per-

formance of the subjects. However, the correlation result for Group 3 (FR)

was much higher r = 0.80 even in comparison with resting state analysis.

Although two components were selected for pre-cue analysis, we also inves-

tigated the e�ect of choosing various number of SSD components nm on the

correlation between the pre-cue SSD predictor and BCI performance of the

subjects. Figure 4.5 shows the correlation results for di�erent nm values.

As shown, the within group analysis results of Group 1 and Group 2

are somehow similar to the results of group level analysis. Similar to resting

state results in Section 4.6.3, within group analysis of Group 3 showed higher

correlation in overall. Although the resting state analysis showed that the

best number of components was nm = 2, the highest correlation for Group

3 of subjects was r = 0.83 when nm = 5. In conclusion, the results showed

selecting the �rst initial SSD components of resting state or pre-cue EEG

resulted in the highest correlation value. ANOVA test showed that the SSD-

based predictor for Cat.I, II, and III of subjects was signi�cantly di�erent

F (2,77)=5.331, p=0.007. Bonferroni test proved that the signi�cant di�er-

ence was only between Cat.I and Cat.III p=0.007. This �nding shows that

subject with higher predictor value for pre-cue EEG may result in better
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spectral-based predictor
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Figure 4.5: The e�ect of using di�erent number of SSD components nm on the cor-
relation (Pearson) between the pre-cue SSD-based predictor and BCI performance
of the subjects. The blue dotted line represents group analysis. The red, black, and
green dotted lines are the within group results for Group 1 (RL), Group 2 (LF),
and Group 3 (FR), respectively. Each dot (•) represents a correlation result when
using nm SSD components.

BCI performance.

4.7 Comparison of the proposed SSD-based predic-

tor with the spectral-based predictor

The results of the proposed SSD-based predictor are compared to the use of

an existing spectral-based predictor or SMR predictor. The predictor pro-

posed in [35] was calculated based on the power spectrum density (PSD) of

the resting state EEG over two laplacian channels C3 and C4. The aver-

age di�erence of the estimated PSD curve and 1/f noise over two laplacian

channels was de�ned as the SMR predictor.

Figure 4.6 shows the group level correlation results of the proposed (SSD-

based predictor) and the existing predictor (spectral-based predictor) for

both resting state and pre-cue EEG. Two SSD components were selected for
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Figure 4.6: Comparison of the proposed SSD-based predictor and the existing
spectral-based predictor. The SSD-based predictor was computed using α compo-
nents and also by incorporating other spectral components of β, and θ. (a) Group
level (80 subjects) correlation results for two di�erent conditions: resting state (re-
lax eyes-open) and pre-cue of feedback runs; Correlation results of three di�erent
groups of subjects over (b) resting state and (c) pre-cue of feedback runs. (*p-value
< 0.05, **p-value < 0.01)
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4.8. Enhancing SSD-based predictor by incorporating other

oscillatory activities

computing the SSD-based predictor. The group level results of resting state

for both methods were similar (r=0.53, p <0.01). However, the proposed

SSD-based predictor outperformed the existing method over pre-cue EEG

of feedback runs. The overall resting state correlation results were higher

than pre-cue EEG correlation results. Therefore, it may be concluded that

recording a short resting condition prior to the experiment is a good indicator

of BCI users performance.

Figure 4.6 also demonstrates the within group analysis of Group 1 (RL),

Group 2 (LF), and Group 3 (FR). As can be seen, within group analysis

supports our results of group level analysis. Pre-cue EEG analysis of each

group shows that the prediction role of the proposed predictor is not a�ected

by the type of the motor imagery tasks.

4.8 Enhancing SSD-based predictor by incorporat-

ing other oscillatory activities

The role of alpha band power on motor activities has been shown in several

studies [78, 93, 94, 139]. The proposed predictor in this chapter is based on

the alpha-SSD components of EEG, computed from resting state or pre-cue

time segment. However, spectral analysis of EEG during motor task has

revealed that for some subjects the role of beta band is greater than alpha

band [24]. Therefore, using beta band information may be also helpful in

de�ning our predictor.

On the other hand, pre-stimulus theta [71, 141, 146] has been shown

to a�ect the attention and memory performance [147]. It has also been

proven that attention has a moderate but meaning role on performance of the

users [138]. Therefore, we may assume that using theta and beta oscillatory

activities may better predict the BCI performance of the users. So far, the
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SSD-based predictor was computed based on the average of the �rst two

alpha-SSD components. In order to test our hypothesis, the SSD-predictor

is computed from average power of alpha, beta and theta components. As

can be seen in Figure 4.6, de�ning the predictor based on alpha, beta, and

theta components improves the group level correlation results of resting state

r = 0.54 and pre-cue EEG of feedback runs r = 0.43.

4.9 Discussion

In this chapter, we proposed a novel neurophysiological predictor based on

EEG rhythms with high SNR value. The proposed predictor used SSD to

enhance extraction of the neural oscillatory activities over the frequency band

of interest. Since alpha band power had been shown to be a reliable indicator

for MI performance [35], the alpha-SSD components over resting state (relax

with eyes open) and pre-cue EEG from the feedback runs were used to predict

the performance of the users. The results showed that SSD components of

alpha, beta, and theta from pre-cue EEG yielded better prediction. Although

the role of theta oscillatory activity on motor tasks is not well studied, and

there is insu�cient evidence to show that the theta band activity has direct

in�uence on the performance of a motor task, it may re�ect the attention

level of users as shown in [45]. Therefore, this may explain why subjects

with higher alpha, beta and theta power performed better.

Although the results of SSD-based predictor over pre-cue time segment

were signi�cant (r = 0.43), they were not as good as the resting state results

(r = 0.54). A study by Blankertz et al. has shown that the predictor

computed from pre-cue EEG of feedback runs can better predict the BCI

performance [139]. However, they only analyzed the data from subjects with

accuracy above 70% who performed right versus left hand motor imagery.
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However, in this chapter, all recorded trials and all subjects were analyzed

and this could yield to di�erent results in the two studies.

The spectral-based predictor proposed in [35] is computed over two lapla-

cian channels C3 and C4. However, the foci of the minimum classi�cation

error may not be always C3 and C4. The foot motor imagery does not create

a very focal cortical pattern [35]. Moreover, the best SMR channels are not

the same for all the subjects [139]. By changing the laplacian channels from

C3 and C4 to CP3 and CP4, the group level correlation result decreased

from r = 0.53 to r = 0.30. This shows the dependency of the method on the

selected SMR channels. Therefore, it is important to calculate the SMR pre-

dictor over subject speci�c channels. In contrast, SSD-based predictor can

be applied on multi-channel EEG data to �nd the components with highest

SNR over the frequency band of interest. Therefore, it is not necessary to

select speci�c channels for subjects. As can be seen in Figure 4.6 (c) for the

class combination of foot versus right hand motor imagery the correlation

result of SSD-based predictor is much higher r = 0.80 than spectral-based

predictor r = 0.47. Therefore, it may be assumed that the oscillatory activity

can be better captured by SSD-based predictor.

The proposed SSD-based predictor and spectral-based predictor can both

work properly in presence of noise. EEG signal is typically contaminated by

di�erent noise sources. SSD method extracts the neural oscillations from

EEG signal even with a poor SNR [154]. Spectral-based predictor also dis-

cards the e�ect of noise by applying laplacian �ltering and removing the

noise �oor values from the estimated PSD curves, As stated in [35], the cor-

relation between SMR predictor and performance of the subjects decreases

from r = 0.53 to r = 0.33 if the noise is not subtracted.
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4.10 Summary

Despite several years of research, the reason for poor BCI performance of

subjects is still unknown. To investigate this issue neurophysiological pre-

dictors have been proposed to investigate the variation in BCI performance

among subjects. In this work, the SSD-based neurophysiological performance

predictor is proposed to extract informative spatial-spectral components to

enhance signal-to-noise ratio of the spectral characteristics. This will result

in the better prediction of BCI performance.

The results showed that the proposed predictor outperforms the exist-

ing spectral-based predictor on both resting state with eyes open and pre-cue

EEG of the feedback runs. This can be attributed to the enhanced extraction

of oscillatory activities from cortical sources that resulted in a high correla-

tion even for a group with a limited number of subjects (Group 3 with 16

subjects). Moreover, the pre-cue EEG results on di�erent combination of MI

tasks showed that the prediction results is not a�ected by the type of the

MI task performed.

In conclusion, the proposed SSD-based method is an e�ective predictor of

BCI performance. It can be used to better understand the brain topographies

of speci�c frequency band over a desired time segment. Analyzing the SSD

patterns also showed high performance subjects had higher resting state

alpha over sensorimotor area. Therefore, designing a novel experiment which

aimed to enhance EEG rhythms over speci�c regions of the brain can lead

to improve BCI performance and address BCI de�ciency problem..
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Chapter 5

The Role of NeuroFeedback

Training on Improving MI-BCI

Performance

5.1 Introduction

Studies have shown that the MI-BCI performance of users varies extensively.

The reason of why a considerable number of subjects are BCI de�cient needs

to be investigated. One of the possible reasons could be the subject inability

in modulating the brain rhythms. Over the past years, some performance

predictors have been proposed to assess the BCI performance of the users

prior to the experiment. However, these predictors have not been used in real

applications, no experiment has been designed so far to help those detected

poor performance subjects control a BCI system better.

In Chapter 4 of this thesis, a novel neurophysiological performance pre-

dictor was proposed. The SSD-based performance predictor extracted the

spectral components through performing spatio-spectral decomposition. The

proposed predictor that was computed from the resting state EEG data was

positively correlated to the BCI performance of the users. In addition, the

results suggested that the role of alpha band on predicting the performance

of the subjects was more signi�cant comparing to theta and beta frequency
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MI-BCI Performance

bands. Therefore, it may be assumed that enhancing the resting-state alpha

rhythm results in improving the BCI performance and thus better control of

a BCI system.

Neurofeedback training (NFT) is one of the possible methods used for

enhancing the brain rhythms such as alpha rhythm [157]. Neurofeedback is

one type of biofeedbacks which guides a subject to self-regulate his/her brain

rhythms. During several training sessions, a subject may explore distinctive

strategies to �gure out how to regulate his brain rhythms. NFT has been

utilized for di�erent purposes [157�159]. As an example, NFT was a useful

method for treatment of several neurological and psychiatric disorders such

as ADHD [160].

NFT has been previously used for regulating SMRs (please see Section

5.2). In light of positive e�ects of neurofeedback on regulating the brain

rhythms, it may be inferred that NFT can be used to enhance the resting

state alpha rhythms. On the other hand, it was shown earlier in Chapter 4

that the resting-state α-SSD components were positively correlated to BCI

performance of the subjects. Therefore, we hypothesize that enhancing the

resting state α-SSD components through NFT sessions yields better BCI

performance. However, to the best of our knowledge the impact of improving

resting state SMR on the MI-BCI performance has not been studied so far.

In this chapter, a novel experimental design is proposed to explore the impact

of increasing resting state α-SSD components on the BCI performance of the

users. Our proposed design is fully described in Section 5.3.

5.2 SMR regulation with NFT

SMR amplitude in resting state is dominant. However, planning, imagination

or execution of movement desynchronizes the SMR amplitude [78]. Studies
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have shown that subjects learn to self regulate their SMRs through several

NFT sessions [67, 157�159, 161�164]. In these studies, subjects regulated

their SMRs without any de�nite instruction and received a visual feedback

corresponding to their SMR level.

SMR (12�15 Hz) was signi�cantly enhanced by using an instrumental

conditioning over several sessions of training [162]. A continuous visual feed-

back corresponding to the SMR amplitude was provided for the subjects to

keep the SMR above a certain threshold for a speci�c period of time. A

new training approach over C3-A1 and C4-A2 channels was proposed for

alpha (8�12 Hz) training [67]. The relative alpha power in both eyes open

and eyes-closed condition enhanced over training sessions. The protocol pro-

posed in [67] also included a follow up session three months after �nishing

the training sessions.

A recent study [163] used neurofeedback for enhancing the alpha band.

They showed the resting alpha rhythm prior the NFT sessions [163] was

correlated to NFT performance. Both eyes open and eyes-closed resting

state alpha were positively correlated to learning indices and could predict

the learning ability over NFT sessions. However, the relative power over the

training sessions did not show signi�cant improvement.

In summary, SMRs enhancement through several neurofeedback training

sessions is plausible. However, the neurofeedback training protocols of the

above mentioned studies are not identical, which were de�ned based on the

main objective of the studies. None of the previous studies examined the

e�ects of neurofeedback on the BCI performance.
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5.3 Study design

5.3.1 Participants

A total number of 13 healthy participants (6 female, 7 male) took part in

this study after giving written informed consent. Participants were randomly

assigned to two groups: an experimental group (3 males and 3 females,

mean age 25.5 years), and a control group (3 males and 4 females, mean

age 27.29 years). The mean age of two groups was not statistically di�erent

(F (1,11)=0.953, p=0.35). All participants except two subjects from the

experimental group were novices for BCI experiment and all of them had

not performed NF experiment before. Participants were only informed about

the purpose of the study; however, they did not know about the grouping

design.

The experimental design for the experimental and control group are

shown in Figure 5.1 (a) and (b). Subjects of the experimental group partici-

pated in a MI-BCI session followed by 12 sessions of NF and a �nal MI-BCI

session. The control group participated in only two MI-BCI sessions four

weeks apart to diminish the learning e�ect.

5.3.2 MI-BCI session

Each MI-BCI session started by collecting 5 minutes resting state EEG data,

followed by 2 non-feedback calibration runs and 2 feedback runs. Within

the resting state, a visual cue was shown on the screen (Figure 5.2) which

instructed the subjects to keep their eyes open or closed for 15 s. Totally,

10 trials in eyes open condition and 10 trials in eyes closed condition were

recorded randomly and the subjects were informed about the end of each

trial by hearing a beep sound.

During calibration runs, a moving right or left hand was shown on the
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(a)

(b)

Figure 5.1: Schematic of the experimental design for: (a) experimental group, (b)
control group.

Figure 5.2: Visual cues during resting state recording. A �xation cross is shown
on the screen followed by an eyes-opened or an eyes-closed cue.

screen as a visual cue which instructed the subject to perform either right

or left hand kinesthetic MI (Figure 5.3). No feedback was provided for

the subject during these two runs. Subsequently, two feedback runs were

recorded. A real time feedback and a smiley face was shown on the screen

to inform the subject whether MI action was correctly detected (Figure 5.4).

There was a break period of 2 min between each two consecutive runs.

Subjects performed kinesthetic hand MI in both non-feedback and feed-

back runs. Each non-feedback run comprised 40 trials of each MI task and

lasted about 16 min. Figure 5.5 (a) shows the timing scheme of a non-
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Figure 5.3: A visual cue in MI-BCI experiment. The left (right) hand instructs
subject to perform left (right) hand MI. The horizontal blue bar showed the prepa-
ration time before providing a cue.

(a) (b)

Figure 5.4: The feedback provided for subject. The vertical bar shows real time
output of the classi�er, smiley face on top of the bar shows: (a) correct MI detection
and (b) wrong MI detection.

feedback trial. Each trial lasted about 12 s. It contained a preparatory time

segment of 2 s, followed by a visual cue for 4 s, and a 6 s rest period. These

two runs were recorded to train a subject-speci�c MI detection model. The

trained model was used later in the next two subsequent runs to detect right

versus left hand MI for the same subject.

(a)

(b)

Figure 5.5: Timing scheme of: (a) a non-feedback trial, (b) a feedback trial.
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Figure 5.5 (b) shows the timing scheme of an online feedback trial. Each

trial lasted about 18 s, a preparatory time segment of 2 s, followed by a

visual cue for 4 s. After 1 s of online processing the type of MI task was then

detected and a visual feedback was shown for about 3 to 5 s. Each feedback

run lasted about 26 min.

5.3.3 Neuro-feedback training (NFT) sessions

The experimental group participated in 3 NFT sessions per week over one

month, 12 sessions in total. The NFT sessions aimed to enhance the rest-

ing state alpha rhythm (8�13 Hz) of the subjects. Each NFT session was

recorded in a separate day for about 20 min. Before and after each training

session, 5 min of resting state EEG data were recorded. The instruction

for resting state was exactly the same as the the one which is explained in

Section 5.3.2. Subsequently, the participants played a game (See Fig. 5.6)

for 20 min in which an avatar was moved along a path. The speed of the

avatar was controlled by the subjects, and they should keep being relaxed

to increase their alpha rhythms and thus speed up the avatar movement. In

total, each NFT session took around 30 min and the subjects were instructed

to minimize their body limb movement during the whole experiment.

The BCI score shown on the screen was directly proportional to the

amplitude of the subject's brain rhythm. The score was between 0 to 100.

Relaxation, control of breathing and short-term memory tasks are some of

the strategies for enhancing the α-SSD power. Following these strategies

increased the BCI score and therefore moved the avatar faster.
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Figure 5.6: Experimental setup to collect EEG data during NF training sessions.
Subjects should modulate their brain signals to move the avatar on the screen. The
BCI score which is shown on the bottom left corner of the screen is the speed of
the avatar.

5.4 Methods

5.4.1 SSD-components in resting state

In this experiment, EEG data from 25 channels were recorded using the Nu-

amps EEG acquisition hardware with unipolar Ag/AgCl electrodes, digitally

sampled at 250 Hz with a resolution of 22 bits for voltage ranges of ± 130

mV and band-pass �ltered from 0.05 to 40 Hz by the acquisition hardware.

The power of SSD components has been previously proposed as a per-

formance predictor in Section 4.3. The alpha SSD-based components (8�12

Hz) are computed from resting state EEG in both eyes-open and eyes-closed

conditions using Eq. 4.1 to 4.7. The neighboring frequency bands are se-

lected as (6�8 and 12�15 Hz). The spatial �lter W derived from Eq. 4.4 is

used subsequently for online estimation of SSD components in NFT sessions.

The power of SSD components in eyes open condition is calculated over

a 2 s sliding window. The window is shifted 200 ms each time. The 85th
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percentile of the resting state powers is then used as upper bound for scaling

extracted powers between between 0 to 100. Figure 5.7 shows a sample

histogram of resting state α-SSD components power.
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Figure 5.7: Histogram of resting state α-SSD component power in a 2 s sliding
window shifted every 200 ms. The 85th percentile of the powers are used for scaling
the power between 0 to 100.

5.4.2 Online estimation of SSD components in NFT sessions

In order to calculate the α-SSD components in online NFT sessions, every

4 s of the recorded EEG is spatially �ltered by the spatial �lter W derived

from resting state EEG recorded before each NFT session:

X̃ = XW (5.1)

where X ∈ Rτ×c is the recent recorded EEG signal, W is the spatial �lter

derived from resting state EEG data, X̃ = [x̃(1), x̃(2), · · · , x̃(τ)]T is the

spatially �ltered EEG data, where x̃(t) ∈ R1×nm , nm is the selected number

of SSD �lters used for spatially �ltering the EEG data (nm ≤ c), and τ and
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c are the number of samples and channels, respectively.

The spatially �ltered X̃ is then band-pass �ltered. The power p
X̃

of

�rst two SSD components (nm=2) are then calculated and averaged over 4

seconds (τ=1000):

p
X̃

(t) = ‖x̃(t)‖2 (5.2)

p =
1

nm

nm∑
i=1

1

τ

τ∑
t=1

p
X̃

(t, i) (5.3)

Every 200 ms, p is computed and then scaled according to mapping scale

derived from resting state EEG with eyes open. The scaled value is then

smoothed using a moving average over the recent 10 samples and shown

as a continuous BCI score on the screen to inform the subject about his

performance.

5.5 BCI performance evaluation

In BCI sessions, the collected EEG data from calibration runs were processed

using FBCSP algorithm (section 3.5.1) to construct a subject-speci�c MI

detection model. FBCSP band-pass �ltered the EEG signal in 9 di�erent

bands between 4 Hz to 40 Hz. CSP was applied on the second stage to

spatially �lter the signal. Two pairs of features from each band were selected.

Subsequently, the best 4 discriminative pairs of features were selected using

mutual information and then fed into a linear discriminant analysis (LDA)

classi�er. The trained model was then used in online feedback runs. The

output of the trained LDA classi�er was continuously computed and shown

as a feedback to the subjects. A happy (neutral) face was shown on the

screen if the MI action was correctly (wrongly) detected.
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Figure 5.8: The feedback accuracy of the experimental group. (Paired sample
t-test: * p<0.05)

5.6 Results and discussion

5.6.1 Classi�cation performance of MI-BCI sessions

The feedback performance of the experimental group in two MI-BCI sessions,

before and after the NF training sessions, are shown in Figure 5.8. The av-

erage feedback performance of the subjects in the �rst MI-BCI session was

56.77%±15.57 and the performance of the subjects ranged from 46.25% to

87.5%. Only subject `ab' who had prior BCI experience achieved high accu-

racy 87.5% in the �rst BCI session. The rest of the subjects had accuracy

below 70% and thus considered as subjects with BCI de�ciency. However,

the average accuracy of the experimental group in the second MI-BCI ses-

sion, which was accomplished after NF training sessions, was considerably

increased to 71.14%±16.62.

To �nd out whether the performances of the subjects in the second ses-

sion were signi�cantly better than the �rst session, we conducted a paired

sample t-test. The results showed the BCI performance of the subjects were
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signi�cantly improved upon their initial accuracies p=0.02. In order to in-

vestigate the feasibility of addressing BCI de�ciency through NF training,

we excluded subject `ab', who had high performance in the �rst BCI ses-

sion, from our analysis. The results of paired sample t-test revealed the

average accuracy of the 5 poor performance subjects signi�cantly (p=0.018)

improved from 50.63% in the �rst BCI session to 67.75% in the second BCI

session. Moreover, three participants with BCI de�ciency reached accuracy

above 70% in their second BCI session. However, the other two participants

did not achieved 70% accuracy.

The feedback performance of the control group in two BCI sessions are

shown in Figure 5.9. As shown, two out of seven participants had high feed-

back performance in the �rst BCI session, while the rest had accuracy below

70%. Thus, both groups had 5 subjects with poor performance. Moreover,

the control group, similar to experimental group, performed their second

BCI session around one month after their �rst session. However, the av-

erage feedback performance of the control group in the second BCI session

showed slightly improvement, which was not statistically signi�cant p=0.41.

Only one poor performance subject achieved accuracy above 70%. Moreover,

the feedback performances of the two high performance subjects slightly de-

ceased in the second BCI session, but their performances were still around

90%. Although the average performance of the 5 subjects with BCI de�-

ciency from the control group was increased from 56.75% to 62.05%, the

improvement was not statistically signi�cant p=0.14.

5.6.2 Neurofeedback results

The resting state alpha power of subjects with BCI de�ciency from the ex-

perimental group over the 12 NF training sessions are shown in Figure 5.10.

Each dot represents the average relative resting state alpha activity in each
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Figure 5.9: The feedback accuracy of the control group. (Paired sample
t-test: n.s. p>0.05)

NF session. The relative alpha power was calculated by dividing the alpha

band power in the range 8�13 Hz by the broad-band power in the range 4�30

Hz. As can be seen, the resting state alpha activity increased consistently

over time. The resting state alpha of poor performance subjects in the �rst

and last training session were compared in Figure 5.11(a). Conducting a

paired sample t-test revealed that the alpha power in the 12th training ses-

sion was signi�cantly higher than the �rst training session p=0.04. Figure

5.11(b) also revealed that for all subjects the alpha power in the 12th session

was higher than the �rst training session.

In order to better analyze the time course of the resting state alpha power

over the NF sessions, we performed regression analyses for the subjects with

BCI de�ciency. The predictor variable was the NF session number and the

dependent variable was the resting state alpha power. The derived regression

model showed signi�cant trend (F (1,10)=21.65, p=0.001) and explained 68%

of variance of the resting state alpha power over the NF training sessions
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Figure 5.10: Average relative resting state alpha power of subjects with BCI
de�ciency over the 12 NF training sessions.

(R2=0.68).

In contrast, the regression model for the high performance subject did

not reveal signi�cant trend (F (1,10)=1.52, p=0.247) and this subject showed

no prominent changes in the resting state alpha power.

5.7 Summary

In this chapter, we proposed an approach to address BCI de�ciency, which

is one of the challenges in BCI applications. We hypothesized that by en-

hancing the resting state alpha rhythm, the MI-BCI performance can be im-

proved. Therefore, we conducted an experiment to train the subjects increase

their alpha rhythm in 12 NFT sessions. Relaxation was a successful men-

tal strategy to enhance the resting state alpha in NFT sessions. The results

showed that NFT helped subjects signi�cantly improve their resting state al-

pha rhythms over the sensorimotor area. Moreover, the MI-BCI performance

of the subjects signi�cantly improved after NFT sessions. Therefore, it can
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Figure 5.11: Comparing the relative alpha power of subjects in the �rst
and last NF training session. (a) Boxplot of the relative alpha power for
participants with BCI de�ciency. (Paired sample t-test *p<0.05); (b) The
relative alpha power of each subject in the �rst and last training sessions.
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be inferred that the BCI performance of the subjects improved by enhancing

their resting state alpha rhythm. In conclusion, NF can be considered as a

promising method to alleviate BCI de�ciency of the subjects.
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Chapter 6

KL Distance Weighting of

FBCSP to reduce Inter-Session

Non-stationarity

6.1 Introduction

EEG-based BCI is operated by voluntary modulation of SMRs in the alpha,

beta, or both frequency bands. Motor imagery (MI) or imagination of move-

ment can modulate the SMRs [24] and thus MI is one of the commonly used

methods for controlling an EEG-based BCI system.

Several MI tasks such as imagination of hand, foot, and swallow can be

used for modulating the SMRs. However, the performance of the subjects

in each of these imagery tasks are di�erent. Therefore, in some experiments

[33, 35] the subjects were instructed to perform di�erent types of imagery

tasks during calibration session. Those tasks with higher performance are

then chosen for training the BCI.

Hand imagination in comparison with other imagery tasks are more used

in BCI. The brain patterns during right and left hand MI are di�erent [78].

During imagination of right hand movement, the cortical networks under the

sensorimotor cortex in the left hemisphere desynchronizes, while during left

hand motor imagery desynchronization is in the right hemisphere. Typically,
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the desynchronization is more signi�cant around C3 and C4 channels. These

changes in cortical activity are detected by proper EEG processing which was

previously explained in Section 2.3.3.

Typically, a user imagines his own hands movement while performing

hand MI. [93, 109, 165]. Although various strategies such as �nger tapping

or wrist twisting are provided for the subjects to perform MI, several sub-

jects are still unable to perform MI correctly. Consequently, they cannot

modulate their SMRs. On the other hand, some subjects may change their

MI strategy during the experiment, since they may have an impression of

doing MI wrongly. Therefore, these subjects may not perform MI task con-

sistently during a single session of BCI. These problems lead us to think of

a better solution for calibrating an EEG-based MI-BCI.

Motor Execution (ME) is one of the possible activities which can be used

for calibration of a BCI system [166]. However, the �nal goal of BCI is to

help people who may have severe motor disabilities. These disabled people

may not be able to perform actual movement. Therefore, it would be better

to have a more general solution for calibrating MI-BCI. Passive Movement

(PM) is another possible solution which has been applied successfully for

calibrating MI-BCI for both group of healthy [47] and disabled subjects [15].

More details about calibration of MI-BCI with PM are provided in Section

6.2.

Apart from the advantages of calibration of MI-BCI with PM, there might

be a di�erence between feature distribution of PM and MI. The di�erence

between feature distribution of calibration session and evaluation session

is not only because of calibrating with PM. Generally, the inherent non-

stationarity characteristics of EEG signal result in di�erence between feature

distribution of calibration and evaluation session. Therefore, we need to

apply an algorithm which can address inter-session non-stationarity.
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In this chapter a new adaptive algorithm to address inter-session non-

stationarity is proposed. The proposed method iteratively updates the fea-

ture space in order to reduce the inter-session di�erence of calibration session

and evaluation session. The proposed method is explained in Section 6.3.

6.2 EEG-based MI-BCI calibration with passive move-

ment (PM)

PM refers to moving a part of the body by an external force such as a robot,

haptic knob, or therapist rather than its own movement [96]. PM does not

need any voluntary or imaginary motor action. Therefore, both healthy

and disabled subjects can take advantage of PM. Moreover, data collection

during PM is more facilitated since subjects may rarely get fatigue, and

consequently more trials of the EEG can be recorded.

Studies have shown that MI, ME and PM activate the motor system sim-

ilarly [9, 167, 168]. Therefore, the ERD/ERS patterns, which are generated

by each of these activities, are quite similar in both mu and beta frequency

bands over motor area. This �nding proves that the MI-BCI can be cali-

brated with either PM or ME data. It has been shown that foot ME can be

used for training a MI-BCI system [87, 166] for MI detection. The ERD/ERS

patterns of foot MI and foot ME were similar. In other words, not only the

ERD patterns during the movement were similar but also the beta rebound

or ERS patterns generated after the movement were quite identical. How-

ever, as mentioned earlier in 6.1, ME is not practical for MI-BCI calibration

in most clinical applications.

The feasibility of calibrating the MI-BCI with PM was also studied in

[169]. It has been shown that calibration with PM resulted in higher model

accuracy and o�-line session-to-session transfer than calibration with PM.
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The main advantage of setting up the initial classi�er with PM is shortening

the setup time needed for online BCI. A naive subject does not need to

go through any training which could be intensive. Therefore, PM can be

used for calibration of MI-BCI in practical applications. As an example, PM

calibration facilitates BCI-based stroke rehabilitation.

6.2.1 PM in BCI-based stroke rehabilitation

MI-BCI has been shown to be used for neurorehabilitation [15, 17]. Subjects

with di�erent level of disabilities can perform MI, since it does not need any

actual movement. Moreover, MI can access the motor system at all stages

of stroke recovery [16]. However, some subjects cannot perform MI correctly

and consistently.

It was shown previously that MI-BCI was calibrated with PM for stroke

patients therapy [9, 15]. PM generates more consistent data for calibrating

the BCI. Moreover, the PM data collection is easier than MI, because the

subjects do not engage in any mental task, and thus they don't get tired

easily. PM can be conducted by a mechatronic �nger rehabilitation device [9],

or a MIT-Manus robot [15]. Both studies showed the feasibility of calibrating

MI-BCI with PM for stroke patients. Kaiser et al. in [9] also calibrated the

MI-BCI with ME. However, performing ME is not possible for all the subjects

since stroke patients have di�erent level of disability and motor impairment.

6.2.2 Non-stationarity in session-to-session transfer

The non-stationarity may cause because of: 1) inter subject variability and

changes in the subject's brain processes within or across sessions such as

changes in task involvement or fatigue, 2) physiological artifacts such as body

movement, swallowing or blinking, 3) instrumental artifacts such as changes

in impedance of electrodes or changes in their placement across sessions
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The statistical characteristics of EEG signal from calibration session to

evaluation session may be changed and therefore results in a di�erence be-

tween the feature distribution of the calibration and the evaluation session.

The non-stationarity may cause because of: 1) inter subject variability and

changes in the subject's brain processes within or across sessions such as

changes in task involvement or fatigue, 2) physiological artifacts such as

body movement, swallowing or blinking, 3) instrumental artifacts such as

changes in impedance of electrodes or changes in their placement across ses-

sions.

The inherent non-stationarity behavior of the EEG signal can deteriorate

the performance of the session-to-session transfer. Several research have been

done to address inter-session non-stationarity. General speaking, adaptation

is the most commonly used method to address non-stationarity. One cate-

gory of the proposed methods is based on adapting the classier. This group

of methods are brie�y reviewed in Chapter 7.

The second category of the proposed adaptive methods to address inter-

session non-stationarity is based on adapting the feature space. These meth-

ods are based on updating the train model using adaptation. Covariate Shift

adaptation is a successful method to overcome the di�erence between train

and test data and thus it is a suitable method to be used for session-to-

session transfer [170, 171]. Domain space adaptation [106] is another pro-

posed method for session-to-session transfer. This is a preprocessing method

applied before CSP. Some other studies proposed methods for adapting the

CSP and thus adaptively updating the features [44, 172]. By extracting the

updated features, the classi�er can be retrained.

Joint feature extraction and classi�cation has been also proposed in some

previous studies [43, 113]. Expectation Maximization (EM) algorithm was

used iteratively to extract the features and retrain the classi�er. Their

87



Chapter 6. KL Distance Weighting of FBCSP to reduce

Inter-Session Non-stationarity

method was based on semi-supervised learning since the train data was aug-

mented with the predicted labels of the current evaluation data.

All above mentioned studies address inter session non-stationarities. How-

ever, the non-stationarities may also appear within a session as well. Sev-

eral methods has also been proposed for addressing within session non-

stationarity which are not the focus of this chapter. For example, KLCSP

[40] and sCSP [173], which �nd invariant features, or stationary subspace

analysis which �nds the stationary parts of the EEG signal [39] are some of

the examples proposed for tackling within session non-stationarities.

Calibrating MI-BCI with PM may cause the feature distribution of cali-

bration session and evaluation session to be di�erent. Therefore, the perfor-

mance of the subjects in session-to-session transfer may decrease. Figure 6.1

shows two dimensional feature space for a subjects with high performance

in calibration session and low performance in session-to-session transfer.
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Figure 6.1: Two dimensional feature space of a subject kk with high performance
accuracy in calibration session (PM) but low performance accuracy in evaluation
session (MI). MI/ PM class is shown by (*) and idle class is shown by (o)

As can be seen in the �gure, the left plot shows the feature space of

calibration session (PM). The right plot shows the feature space of evaluation

session (MI). As shown, there is a shift in feature space. The two classes
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are not linearly separable and the initial trained hyper plane for calibration

session is not optimal for evaluation session. Adaptive methods may be

useful for addressing such non-stationarities between PM and MI sessions.

6.3 Iteratively Updating FBCSP Using KL Distance

Weighting

To address inter session non-stationarity, a new adaptive algorithm is pro-

posed in this chapter. In our proposed algorithm, the features are extracted

using FBCSP [118] and iteratively updated based on a newly recorded batch

of EEG data. The proposed method can be implemented in on-line scenario.

In the following, �rst the CSP [104] and FBCSP [118] are brie�y reviewed,

then the proposed method is explained in Section 6.3.3 and 6.3.4.

6.3.1 Common Spatial Pattern (CSP)

EEG preprocessing is a crucial part of MI-BCI system. Among di�erent

proposed methods for preprocessing, CSP algorithm [88] serves as an e�ec-

tive tool for discriminating the two classes of EEG data by maximizing the

variance of one class while minimizing the variance of the other class.

The CSP algorithm computes the spatial �lter (i.e., the transformation

matrix W) by solving the eigenvalue decomposition problem. The main

computational steps of CSP are explained in the following:

Zi = WTEi, (6.1)

where Ei ∈ Rc×τ denotes the ith band-pass �ltered EEG trial ; Zi ∈ Rc×τ

denotes Ei after spatial �ltering, W ∈ Rc×c denotes the CSP projection

matrix; c is the number of channels; τ is the number of EEG samples per

channel; and T denotes the transpose operator.
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The CSP algorithm computes the transformation matrix W by solving

the eigenvalue decomposition problem:

Σ1W = (Σ1 + Σ2) WD, (6.2)

where Σ1 and Σ2 are estimates of the covariance matrices of the band-pass

�ltered EEG of the respective motor imagery action, D is the diagonal matrix

that contains the eigenvalues of Σ1.

The m �rst and last rows of Zi i.e. Zip , p ∈ {1 · · · 2m} forms the feature

vector vi given in Eq. 6.3 as inputs to a classi�er.

vi = log(
var(Zip)∑2m
p=1(Zip)

) (6.3)

6.3.2 Filter Bank Common Spatial Pattern (FBCSP)

It has been shown the performance of the spatial �lters constructed by CSP

algorithm are dependant on their operational frequency band [88]. In other

words, choosing the subject speci�c frequency band before applying CSP en-

hances the performance of the users. This is mainly because the ERD/ERS of

SMRs for each subject has a speci�c spectral pattern. Therefore, applying a

method for selecting the subject speci�c frequency band is desirable. FBCSP

algorithm [117, 118, 174] is one of the proposed methods which automatically

selects the key temporal spatial discriminative EEG characteristics. Hence,

due to the subject-speci�c frequency band selection by FBCSP higher per-

formance is achieved in comparison with normal CSP [117]. In this chapter,

we extracted features using FBCSP. Figure 6.2 shows the structure of the

FBCSP.

As explained earlier in Section 3.5.1, FBCSP has four progressive stages.

On the �rst stage it band pass �lters the EEG signal in 9 di�erent bands,

90



6.3. Iteratively Updating FBCSP Using KL Distance Weighting

Figure 6.2: Architecture of �lter bank common spatial pattern (FBCSP) algo-
rithm.

namely, 4-8, 8-12, ... , 36-40 Hz. Then second stage employs the CSP

to spatially �lter the signal. For each band m pairs of features are selected.

Therefore, the total number of features is 2m×9. On the third stage, the best

k pairs of discriminative CSP features are selected using MIFBIF algorithm.

The value of k is selected using 10x10 cross-validations on the calibration

data. Some previous studies used k=4 [117, 118]; however, since the CSP

features are paired, the corresponding pair of features is also included if

it is not selected. Therefore, the �nal number of selected features will be

between 4 and 8. On the last stage, the selected features are fed into SVM

classi�er. The �nal accuracy shows how well the subjects can discriminate

MI versus idle state. More details about the FBCSP algorithm can be found

in [117, 118, 174].

The best number of CSP features is selected using 10x10 cross-validations

on the calibration data. Moreover, some previous studies , used k=4; how-

ever, since the CSP features are paired, the corresponding pair of features

is also included if it is not selected. Therefore, the �nal number of selected

features will be between 4 (if all 4 features selected are from 2 pairs of CSP

features) and 8 (if all 4 features selected are from 4 pairs of CSP features)
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6.3.3 KL Distance Weighting of FBCSP

Although selecting the subject speci�c frequency band enhances the perfor-

mance of the users, adaptation is still required to overcome the inter session

non-stationarity. In this chapter, we proposed a new adaptive method for

updating the extracted features. The CSP of each band is updated itera-

tively. A limited number of EEG trials from the evaluation session is used

for updating the features. The update of CSP is based on update of the

covariance of each class in each band:

Σb,(ω) = (1− α)Σtr
b,(ω) + αΣts

b,(ω), (6.4)

where Σtr
b,(ω) denotes the estimate of the covariance matrix of class ω ∈ {1, 2}

in bth band, and tr and ts denote the covariance of train and evaluation data,

respectively.

The weighting parameter α is de�ned as α = n
N+n , where N is the total

number of trials of passive movement calibration data and n is the number

of recorded trials from evaluation session which we aimed to use for updating

the covariance. This idea is similar to updating CSP in Composite Common

Spatial Pattern (CCSP) [175]. In CCSP the CSP is updated by using the

data from other subjects. Here, the CSP on each band is updated using the

newly recorded data from the evaluation session.

In order to better estimate the covariance matrix of each class, we pro-

posed a new method for updating the covariance matric. Eq. 6.5 is a new

covariance estimation method that includes a new KL-distance [176] weight-

ing term. In fact the new estimation has a similar structure to Eq. 6.4 but

assigns some extra weights to the newly recorded trials from the evaluation

data:

Σb,(ω) = (1− α)Σtr
b,(ω) +

1

KLb,(ω)
αΣts

b,(ω), (6.5)
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where KLb,(ω) is a KL distance that shows the di�erence between probability

distribution of the train and incoming trials from evaluation data, and it is

de�ned as follows:

KLb,(ω) = 0.5{log(
det Σtr

b,(ω)

det Σts
b,(ω)

) + trace((Σtr
b,(ω))

−1Σts
b,(ω))−D}, (6.6)

where D is the dimension of the covariance matrix and det represents deter-

minant of a matrix.

6.3.4 Batch mode updating of KL weighted FBCSP

In order to update the FBCSP with KL distance weighting, we need to

use recently recorded data from current evaluation session. A batch mode

semi-supervised learning method is proposed to update the FBCSP. Semi-

supervised learning is one type of adaptive learning methods dealing with

these cases where both labeled and unlabeled data are available [177].

In online MI-BCI system, the subject may be instructed to perform spe-

ci�c MI action; thus the labels of the evaluation data are known. However,

in real BCI applications it is more preferable that the subject be free to

perform either types of MI task. In such later case the labels are unknown,

since the subject is not instructed to perform any speci�c MI task. Here

in this thesis, we only focused on synchronous BCI where the labels of the

tasks are known.

Figure 6.3 illustrates the schematic diagram of our proposed online batch

mode semi-supervised algorithm. As shown, the algorithm needs some set-

tings from o�ine calibration session. Labeled PM data from o�ine cali-

bration session are used to train the classi�er. During online session, MI is

detected based on the trained classi�er which is updated iteratively. A new

batch of recorded EEG data from online session is used to update FBCSP.
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Figure 6.3: Architecture of online batch mode semi-supervised learning method
based on FBCSP algorithm.

Algorithm 1 describes how the proposed method works [47]. The max-

imum number of iterations K and also the number of EEG trials used for

updating the algorithm are selected through several simulations, that can be

also selected according to some previous literature [43].

Algorithm 1 Batch mode updating FBCSP with KL distance weighting

1: Train FBCSP using the calibration data (o�ine).
2: Choose the number of trials in each batch.
3: Choose the maximum number of iterations K for updating the labels.
4: Estimate the labels of the recent batch of data from evaluation session with current

trained model.
5: Keep the estimated labels for calculating the accuracy performance.
6: for k=1:K : do
7: Add the newly recorded batch of evaluation data with estimated labels to the train

data.
8: Retrain FBCSP to derive the new features, and re-estimate the labels of the newly

recorded evaluation data.
9: end for
10: Update the train model by adding the newly recorded evaluation data with the esti-

mated labels after K iteration.
11: Go to step 4
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6.4 Experimental set-up

Here, the EEG data recorded from the 15 healthy subjects are used. Two of

the subjects were left handed and therefore performed MI and PM by their

left hand while the rest performed by their right hand. All the subjects were

asked for ethics approval and informed consent. EEG signal were recorded by

using the Nuamps EEG acquisition hardware (http://www.neuroscan.com)

with unipolar Ag/AgCl electrodes channels, digitally sampled at 250 Hz with

a resolution of 22 bits for voltage ranges of 130 mV. EEG recordings from

all 27 channels were bandpass �ltered from 0.05 to 40 Hz by the acquisition

hardware. All subjects were instructed to minimize their physical movement

and eye blinking throughout the EEG recording process.

The two sessions of EEG data from each subject were collected on two

separate days. During the �rst session, four non-feedback runs were recorded.

The �rst two runs collected EEG from a subject while performing MI of

the chosen hand versus idle state. During these two runs, the subjects were

instructed to perform kinaesthetic MI of their chosen hand right after a visual

cues displayed on the computer screen in each trial. During the idle state,

the subjects were instructed to perform mental counting. This instruction

was given to de�ne the idle state to the subject. During the next two runs

EEG data was collected from the subject while performing PM of the chosen

hand with the haptic knob robot [123] and idle state. During these two runs,

the subjects were supposed to be relaxed while the movement of the chosen

hand was performed using the haptic knob robot [123]. During the idle state

subjects performed mental counting similar to the �rst two sessions.

Each run lasted for about approximately 16 minutes that comprised of

40 trials of either MI or PM, and 40 trials of idle state condition. Each trial

comprised a preparatory segment of 2s, the presentation of the visual cue

95



Chapter 6. KL Distance Weighting of FBCSP to reduce

Inter-Session Non-stationarity

for 4s, and a rest segment of at least 6s. Each trial lasted approximately

10s, and a break period of at least 2 minutes was given after each run of

EEG recording. To calibrate the subject-speci�c model from performing MI

(PM), the �rst (last) two runs were used.

On the second session, four runs of EEG data were collected with feed-

back from the subjects while performing MI of the chosen hand versus idle

state. In the �rst two runs of the second session the BCI system was cal-

ibrated by MI calibration session data, and in the next two runs the BCI

was calibrated by PM calibration session. Each run again lasted for about

approximately 16 minutes that comprised of 40 trials of motor imagery and

40 trials of idle state.

6.5 Results

6.5.1 Classi�cation results of MI and PM calibration session

Figure 6.4 shows the baseline classi�cation accuracy results of the subjects

using FBCSP and SVM classi�er. The 10×10-fold CV accuracy of both

MI and PM calibration sessions were compared. As shown, the averaged

performance of subjects was 73.59%±16.29% in MI calibration session and

75.78%±16.36% in PM calibration session. More speci�cally, the results of

three subjects at, hh and ad showed that the averaged accuracies of detecting

MI versus idle state (59.63%) was much lower than the averaged accuracies

of detecting PM versus idle state (70.19%). A paired t-test was conducted to

compare accuracy of subjects in MI and PM sessions. Although the average

performance of subjects in PM session was higher than MI session, there was

no signi�cant di�erence in accuracy of subjects t(14)=-1.44, p=0.17.

Six of the subjects (i.e., hh, kk, ks, s, zy, lj ) had some prior experience in

operating MI-BCI. The remaining nine were BCI-naive subjects. Based on
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Figure 6.4: 10×10-fold cross-validation accuracies of MI and PM calibration ses-
sions (denoted MIcs and PMcs). Errorbars indicate the standard deviation over
cross-validation folds.

this information, the results shows that the averaged accuracies of detecting

MI (PM) from idle state for naive subjects were lower 70.44% (78.32%) than

the experienced subjects 72.63% (80.50%). Nevertheless, four BCI-naive

subjects jh, hj, pl and kx had accuracies greater than 80% in both MI and

PM sessions and only one experienced subject had accuracy less than 70%

in both MI and PM session.

6.5.2 Visualization of the spatial �lters for MI and PM cal-

ibration session

Figure 6.5 and Figure 6.6 compare the CSP patterns of MI and PM for

selected subjects with high and low performance. Figure 6.5 shows the �rst

CSP pattern and �lter computed from MI and PM calibration sessions for

four subjects kk, pl, s, and zy who had mean CV accuracy above 80%. For

each subject the �rst CSP pattern and �lter corresponding to the largest

eigenvalue is plotted. The �rst row of results shows the MI pattern and
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�lter, and the second row shows the results of PM. Note that the colormap

has no association with the sign of the patterns and �lters. As can be seen

in this �gure, the MI and PM patterns are very similar.

Filter Pattern Filter Pattern

PM

PM PM

PM

MI MI

MIMI

Subject ’pl’Subject ’kk’

Subject ’s’ Subject ’zy’

Figure 6.5: The �rst CSP pattern and �lter for both MI and PM task for subjects
kk, pl, s, zy who had high performance in calibration session. The color-scale is in
arbitrary units.

Figure 6.6 shows the patterns and �lters of subjects hh, ks, wy and ad

with low performance in calibration session. By comparing Figure 6.5 and

6.6, it can be seen that there is less similarity between MI and PM for low

performance subjects. No hand MI pattern was detected over motor area

for subject ad, while during PM there was a desynchronization around C4

channel. Nevertheless, the MI and PM patterns for subject ks were somehow

similar.
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Figure 6.6: The �rst CSP pattern and �lter for both MI and PM task for subjects
hh, ks, wy, ad who had low performance over MI and PM calibration session. The
color-scale is in arbitrary units.

6.5.3 Session-to-session calibration session

In this section the performance of the subjects in session-to-session transfer

is evaluated. The results are based on both MI and PM calibration ses-

sions. Figure 6.7 shows the baseline results in session-to-session transfer

when FBCSP and SVM classi�er are used for evaluating the performance

of the subjects in online evaluation session. Figure 6.7(a) compares the ac-

curacies of the online session when calibrated by MI and PM. As shown,

the averaged performance are 63.94% and 62.86 %, respectively. The per-

formance of the subjects were also estimated in terms of maximum Kappa

value [178]. The Kappa value was computed from two seconds before the

cue time to 2 seconds after cue time for every point in time across all the

trials of the evaluation session. The results shows calibrating MI-BCI with
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MI and PM yielded similar maximum Kappa value (0.39).
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Figure 6.7: O�ine session-to-session transfer performance of the subjects in de-
tecting MI versus idle state when MI-BCI is calibrated by MI or PM (denoted
MIcs-fbcs and PMcs-fbcs) using FBCSP and SVM classi�er. The performance of
the subjects in online feedback session are shown in terms of (a) accuracies and (b)
maximum Kappa values.

On the next step the proposed method, known as online batch mode

semi-supervised learning with KL distance weighting (KLBM-FBCSP), was

applied to evaluate the performance of the subjects in evaluation session.

According to our simulations and also similar to some other literature [43],

the number of iterations were �xed to K=3. Due to the total number of test

trials we planned to record and the speed of the online system, we choose 10

trials in each batch. The e�ectiveness of our proposed method was compared

with baseline FBCSP. Figure 6.8 compares the results of these two methods.

The average accuracy over 15 subjects using KLBM-FBCSP (64.15%) which

was higher than average accuracy of FBCSP (62.86%).

The results of using KLBM-FBCSP also indicated that 10 out of 15 sub-

jects achieved higher accuracy in comparing to baseline FBCSP. Analyzing

the results of KLBM-FBCSP showed that the averaged accuracies of experi-

enced subjects (66.54%) was higher than the accuracies of BCI-naive subjects

(62.55%). Nevertheless, performing an independent-sample t-test showed no

signi�cance di�erence between these two groups t(13)=-0.52, p=0.61. The
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Figure 6.8: The accuracies of subjects in MI-BCI evaluation session when cali-
brated by PM data using FBCSP and online batch mode semi-supervised method
with KL distance weighting (KLBM-FBCSP).

accuracies of the subjects using KLBM-FBCSP when calibrated by PM and

MI were also compared. Figure 6.9 shows the comparison results. As can

be seen, applying our proposed method for online MI detection resulted in

higher performance when calibration was performed by PM (64.15%) than

MI (62.61%).

6.6 Discussion

In this work, the feasibility of calibrating MI-BCI with PM in online scenario

was explored. It has been previously shown that PM can be used for cali-

brating MI-BCI [169]. Although no signi�cant improvement was achieved,

the averaged performance of MI-BCI calibrated by PM was higher. How-

ever, to the best of our knowledge no study has been proposed to take the

advantage of using PM data for adapting the BCI system.

The CV accuracies of MI and PM calibration session showed higher av-
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Figure 6.9: The accuracies of motor imagery (with feedback) detection using pas-
sive movement (denoted PMcs-fbcs) or motor imagery (denoted MIcs-fbcs) for cal-
ibration using online batch mode semi-supervised method with KL weighting.

eraged accuracy for PM than MI which was in line with the �ndings of

previous studies [9, 169]. Although some subjects such as hj performed MI

quite well even in their �rst experience with MI-BCI, it is generally expected

that BCI-experienced subjects have better MI-BCI performance. 10×10-fold

CV accuracies of PM showed that the averaged accuracy of BCI-experienced

subjects was around 8% higher than the averaged accuracies of BCI-naive

subjects.

Studies have shown performing MI and PM results in similar brain pat-

terns [9, 167, 168]. This �nding leads researchers to the idea of calibrating

the MI-BCI with PM. Comparing the CSP patterns and corresponding �lters

of MI and PM in Figure 6.5 and 6.6 showed that the similarity of the patterns

for high performance subjects were more than low performance subjects. It

may be concluded that the selected low performance subjects except ks were

not able to modulate their brain rhythms. Subject ks was the only subject

with low calibration session accuracy (<60%) but higher evaluation session
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accuracy (>70%). It may be inferred that this subject was able to modulate

his brain rhythms but the rhythms were not detected by the algorithms. One

possible reason can be because the subject did not perform motor imagery

well and consistence, so the rhythms' modulations in the calibration session

were not detected as good as in the evaluation session. It might also be hap-

pened because the subject's state or mood was not ideal in the calibration

session. Therefore, the performance of the subject in the calibration session

was lower than the evaluation session.

The o�ine analysis of session-to-session transfer (Figure 6.7) showed that

on average the detection of MI versus idle state when the model is trained

by MI and PM were similar. To have a better comparison maximum Kappa

values were also compared. Kappa coe�cient is a continuous measure com-

puted over the longer period of time from -2 to 2 second. Evaluating the

performance of the subjects using maximum Kappa values also resulted in

a similar performance for both conditions. It may be concluded that the

MI and PM sessions are quite comparable and resulted in a similar session-

to-session transfer performance. Consequently, PM can successfully replace

MI during the calibration session. As stated earlier, PM facilitates data col-

lection during calibration session since less e�ort is required by subject and

thus the subject may get fatigued later during one long session of BCI.

Comparing the proposed adaptive method (KLBM-FBCSP) with non-

adaptive baseline method (FBCSP) showed that adaptation in our problem

was helpful to alleviate the di�erence between the calibration session and the

evaluation session. Using KLBM-FBCSP calibrated by PM improved online

MI detection for 10 out 15 subjects. As an example, subject hj who had a

chance level performance in o�ine analysis, shows about 20% improvement

by using online adaptation. For the rest of the subjects, the drops could be

still because of the di�erence between the MI and PM calibration sessions.
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6.7 Summary

There is a common issue on most MI-BCI systems. It is not possible for

all the subjects either disabled or healthy to perform MI correctly. One

of the feasible proposed methods to overcome this challenge is to calibrate

the system with PM data. However, inter-session non-stationarity may still

exist and adversely a�ect the performance of the subjects. In this chapter

we proposed a new semi-supervised method for adapting the feature space

and thus overcome the possible inter-session non-stationarity. Therefore, a

MI-BCI system calibrated by PM was used for online MI detection with

feedback.

The results showed that on average the accuracies of the MI-BCI system

calibrated by PM data in online system is slightly better than the one cali-

brated by MI in both o�ine and online systems. The results may improve

more by using some advanced adaptation methods to overcome the di�er-

ence between calibration sessions of MI and PM. However, the results were

promising enough to suggest applying the proposed method for online MI

detection in medical applications.
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Chapter 7

Adaptive Extreme Learning

Machine to Enhance

Session-to-Session Transfer

7.1 Introduction

Some of the unsolved challenges in EEG-based BCIs may adversely a�ect

the BCI users' performance. One of the most challenging problems is non-

stationarity of EEG signal which may occur due to several factors such as

[179]: 1) Intra subject variability usually happens because of the changes in

subjects state and mood over di�erent sessions or even within a session; 2)

Physiological artifacts are generated by the user himself through eye blinking,

muscle movement or respiratory; 3) Instrumental artifacts are originated

due to the changes in electrodes position or their impedance during EEG

recording.

Typically in MI-BCI experiment, a calibration session is required to train

a model for MI detection in an evaluation session. Statistical characteristics

of EEG vary over the time as a result of non-stationarity and accordingly

the initial trained model is no more optimal for MI detection in evaluation

session. Adapting an EEG processing unit has been used to address non-

stationarity [41, 44]. An EEG processing unit in a BCI system is responsible
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for feature extraction and classi�cation (please see Section 2.1). Therefore,

adaptation is applied on either feature extraction or classi�cation part. In

Section 7.2 some of these studies are reviewed. An adaptive method needs

to be fast enough to be practically applicable in online BCI scenarios.

In recent years, Extreme Learning Machine (ELM) algorithm has at-

tracted lots of attention [180�182]. ELM proposed by Huang et al. [180]

is an interesting technique with faster learning speed and better generaliza-

tion in comparison with traditional feed-forward neural networks. ELM has

been used in di�erent studies. Incremental learning of ELM was previously

studied in [183, 184]. They applied it for human face and action recognition.

Another study used ELM to automatically detect epileptic seizures [182]. It

has been shown that ELM is an e�ective tool for those applications. Fast

training time of ELM makes it suitable for online analysis. Most BCI sys-

tems in real applications are real time. Therefore, it may be assumed that

ELM method can be used for MI detection in EEG-based MI-BCI systems.

To the best of our knowledge this study used ELM for the �rst time in

BCI applications. ELM method is brie�y reviewed in Section 7.3. In this

chapter we mainly focus on developing a novel adaptive ELM algorithm to

address inter-session non-stationarity and thus enhance the session-to-session

transfer performance. We seek to make our proposed algorithm optimal for

online applications. Our proposed method, adaptive ELM (A-ELM), is fully

explained in Section 7.4.

7.2 Review adaptive methods for addressing inter-

session non-stationarity

Inter-session non-stationarity causes some changes in feature space distribu-

tion of EEG data. Shenoy et al. in [41] showed that there is a statistical dif-
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ference between the calibration and online evaluation session and interpreted

it as a shift in feature space. Generally speaking, adaptation has been the

most commonly used method to address non-stationarity [39, 170�173, 185�

187]. The adaptive methods proposed to address EEG non-stationarity can

be categorized into two major groups. One group of studies focused on adap-

tive feature extraction methods (please see Section 6.2.2). Another group

developed adaptive classi�cation methods. Since the focus of this chapter

is on developing a novel adaptive classi�er, this section only reviews some

of the proposed adaptive classi�cation methods that addressed inter-session

non-stationarity.

Adaptive classi�ers are evolved to overcome the changes in data from one

session to another session or even within a single session. Bias adaptation

for LDA classi�er was proposed in [41] and compared with other adaptive

techniques. The results suggested that their proposed adaptive classi�er

overcomes the shift in distribution of the data.

Adaptive LDA classi�er was also applied to a fully online BCI system

[187]. The initial LDA classi�er was adaptively updated through adaptive

estimation of the information matrix. The results showed an improvement

in performance of the subjects from one session to another session. In [42]

Kalman adaptive LDA and adaptive information matrix QDA was studied.

It was shown that both of these continuously adaptive classi�ers outper-

formed discontinuously adaptive ones.

An unsupervised adaptive method of the LDA classi�er was also proposed

in [33]. It was shown that their proposed method was e�ective for online BCI

system. Ang et al. in [118] used a novel online adaptive and semi-supervised

learning method using NBPW classi�er. They used FBCSP for feature ex-

traction [118] and reported that the averaged Kappa value enhanced using

their proposed adaptive NBPW classi�er.
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Liyanage at al. in [188] proposed a dynamically weighted ensemble classi-

�cation method. Multiple classi�ers were trained based on clustered features.

Their results showed that the SVM classi�er with dynamic weighting signif-

icantly outperforms the normal SVM classi�er. They showed that clustering

was helpful in solving inter-session non-staionarity.

In conclusion, although di�erent adaptive classi�er has been proposed

over the past years, the best adaptive classi�cation algorithm in real on-

line BCI applications was bias adaptation so far [41, 42]. The method can

fast adjust to recent recorded data from evaluation session. However, many

researchers are still looking for better adaptive classi�cation methods.

7.3 Brief review of ELMs

An ELM is a Single-Hidden Layer Feed-Forward Neural Network (SLFN)

[180]. Figure 7.1 shows a simpli�ed structure of ELM used in our study.

The number of output nodes are chosen according to the number of classes.

The hidden layer nodes parameters are selected randomly while the output

weights are determined analytically. Since the weights of the hidden layer

are assigned randomly, the learning process is performed at an extremely fast

speed. In fact, ELM converts a learning problem into a linear system whose

output weights can be determined through inverse operation of hidden layer

weight matrices.

For nt given training feature set (xj ,yj) where xj ∈ Rm̃, yj ∈ R2, and

m̃ denotes the number of selected features, the output of a standard ELM

with activation function g(x) and Ñ hidden nodes is calculated as follows:

Ñ∑
i=1

βig(wixj + bi) = yi, j = {1, 2, · · · , nt} (7.1)

where (wi,bi) are randomly assigned weight and bias of the ith hidden node
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Figure 7.1: A simpli�ed ELM structure for a two class problem. Given a training
set (xj ,yj), βi is the output weight vector of hidden node i. The number of input

nodes m̃ is the number of CSP features used for training an ELM and Ñ is the
number of hidden nodes chosen arbitrary.

and βi is the output weight. Eq. 7.1 can be compactly written as:

Hβ = Y (7.2)

In order to �nd the output weights β, the following least-square �tting is

solved:

min
β
‖Hβ −Y‖ (7.3)

the optimal output weights β̂ is then obtained:

β̂ = H†Y = Ψ−1HTY (7.4)

Ψ = (HTY)−1 (7.5)

where H† denotes the Moore-Penrose pseudo-inverse of the hidden-layer out-

put matrix H and T denotes the transpose operator. By computing β̂ from

the calibration data, the ELM classi�er is trained for detecting MI in evalu-

ation session.

7.3.1 ELM versus SVM

Both ELM and SVM methods have the same general idea of mapping the

original space into a feature space in which the problem can be solved by
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a linear approach. However, they have some di�erences in theory. As an

example bias b in SVM should not be zero while for an ELM bias b is not

needed [181]. In comparison with SVM [181], ELM has superior computa-

tional time. The ELM superiority increases remarkably by augmenting the

number of training samples. Nevertheless, ELM has less generalization abil-

ity comparing to SVM, especially in small training sample size. Finally, the

performance of SVM and ELM have been shown [181] to be quite comparable

in di�erent studies.

7.4 Adaptive ELM (A-ELM)

In order to adapt the ELM classi�er, the output weights of the trained ELM

needs to be updated according to the recently recorded EEG data. To derive

the update rule for the output weight, a �rst chunk of data from evaluation

session is used and the initial minimization error problem is updated to [183]:

min
β
‖
[
H0
H1

]
β −

[
Y0
Y1

]
‖ (7.6)

where H0 is the output of hidden layer using the training data from calibra-

tion session and Y0 is training data labels. Accordingly, H1 is the output

of hidden layer for the �rst chunk of evaluation data and Y1 is their corre-

sponding labels.

Therefore, the new output weight is calculated based on least-square

minimization as follows:

β̂
(1)

= Ψ−11

H0

H1


T Y0

Y1

 (7.7)
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where it can be expanded to:

β̂
(1)

= Ψ−11 (Ψ0Ψ
−1
0 HT

0 Y0) = Ψ−11 (Ψ0β̂
(1)

+ HT
1 Y1) (7.8)

where Ψ1 is calculated as follows:

Ψ1 =

H0

H1


T H0

H1

 = Ψ0 +HT
1H0 (7.9)

Substituting Ψ1 from 7.9, we have:

β̂
(1)

= β̂
(0)

+ Ψ−11 HT
1 (Y1 −H1β̂

(0)) (7.10)

In order to calculate the inverse of Ψ1 we used the matrix inversion lemma.

This lemma states that for a given matrix A = (B + UDV), its inverse is

determined by:

A−1 = B−1 −B−1U(D−1 + VB−1U)−1VB−1

We use this lemma to get the inverse of Ψ1 de�ned in 7.9. Finally, the

recursive formulation for updating the output weights can be de�ned as

follows:

β̂
(k+1)

= β̂
(k)

+ Ψ−1k+1H
T
k+1(Yk+1 −Hk+1β̂

(k)
) (7.11)

Ψk+1 = Ψk +HT
k+1Hk+1 (7.12)

Ψ−1k+1 = Ψ−1k + Ψ−1k HT
k+1[I +Hk+1Ψ

−1
k HT

k+1]Hk+1Ψ
−1
k (7.13)

The adaptive ELM algorithm explained above has two steps: initializa-

tion and adaptation. During �rst step or initialization the training EEG

data recorded during calibration session is used. The data of the evaluation
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session is used during second step or adaptation. Overall, A-ELM algorithm

is explained in Algorithm 2.

Algorithm 2 Adaptive extreme learning machine (A-ELM)

Part I : Initialization
Given a training feature sample (xi,yi), an activation function g : R → R, and Ñ
number of hidden nodes:

1: Randomly assign the weights wi and bias bi of the hidden layer.
2: Compute the output vector H of the hidden layer (Eq. 7.1).

3: Calculate the initial output weight β̂
(0)

according to Eq. 7.4.

Part II : Adaptation

1: Select a recent chunk of EEG data from the evaluation session.
2: Estimate the labels of the trials in the selected chunk based on the current settings of

the ELM.
3: Update the output weights according to Eq. 7.11 to Eq. 7.13.
4: Repeat steps (1-3) of Part II until all the labels of evaluation data are estimated.

The number of input nodes m̃ is the number of features selected for

training the classi�er. The number of hidden nodes Ñ is selected based on

CV accuracies of the train data for di�erent value of the hidden nodes. The

number of trials used in adaptation can be selected arbitrary. Since the �nal

goal of the proposed algorithm is to be used in online scenario, it is preferred

to have a smooth change in classi�er. Every 5 to 10 trials of evaluation data

can be used for adapting the classi�er. The activation function g can be

sigmoid, sine or hard-limit function.

7.5 Experimental setup

In this chapter, the EEG data collected from 17 healthy subjects were used.

Two subjects were left-handed and rest were right-handed. The right (left)

handed subjects were asked to perform right (left) hand MI. All the subjects

were asked for ethics and approval and consent. EEG signals were collected

using the Nuamps EEG acquisition hardware with unipolar Ag/AgCl elec-

trodes channels, digitally sampled at 250 Hz with a resolution of 22 bits for

voltage ranges of ±130 mV. EEG recordings from all 27 channels were band
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pass �ltered from 0.05 to 40 Hz by the acquisition hardware. Prior to the ex-

periments, the subjects were instructed to minimize any physical movement

and eye blinking throughout the EEG recording process.

The EEG data from each subject was collected in two sessions each on

a separate day. On the �rst day, a calibration session was recorded that

contained two non-feedback runs. The evaluation session was recorded on

another day and had three non-feedback runs. During these sessions, the

subjects were instructed to perform kinaesthetic MI of their chosen hand

versus idle state right after a visual cues displayed on the computer screen in

each trial. Each session comprised of 40 trials of MI and 40 trials of idle state

and lasted about 16 minutes. Each trial comprised a preparatory segment

of 2s, the presentation of the visual cue for 4 seconds, and a rest segment of

at least 6s. Each trial lasted approximately 12 seconds, and a break period

of at least 2 minutes was given after each run of EEG recording.

7.6 EEG data processing

7.6.1 Pre-processing

The EEG data from 0.5 to 2.5 s after providing the cue was extracted and

used for feature extraction. The selected time segment was previously sug-

gested by the winner of the BCI competition IV dataset IIa [117]. The

extracted EEG data from all 27 channels was then band-pass �ltered be-

tween 8 to 30 Hz using a �fth-order Butterworth �lter. This frequency band

includes both alpha and beta frequency bands which are mainly involved in

performing MI. Subsequently, the band-pass �ltered data were spatially �l-

tered to select the most discriminative features. The �rst and last two CSP

�lters, m = 2, were chosen. Hence, totally m̃ = 4 features were selected to

be applied to the classi�er.
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7.6.2 Evaluation of session-to-session transfer accuracy

The recorded EEG signal in the calibration session was preprocessed and 2

pairs of features were then extracted from calibration data and used for train-

ing the classi�er. The calibration-to-evaluation session performances of the

subjects were then evaluated by SVM, ELM and A-ELM classi�ers. Figure

7.2 shows the �ow diagram of our analysis. The proposed A-ELM algorithm

updates the initial classi�er sequentially according to a newly selected chunk

of EEG data.

Figure 7.2: Methodology of our analysis.

Here in this chapter we proposed three methods for adaptively updating

of A-ELM: 1) Balanced : the selected chunk of data contained equal number

of trials from each class, 2) Unbalanced : the selected chunk contained un-

balanced number of trials from each class which means that the trials were

in the same order as they were recorded, and 3) Accumulated : the selected

previous chunks were also used for adaptation. The A-ELM methods were

then applied on the data set collected from 17 healthy subjects explained in

Section 7.5.

7.7 Results

7.7.1 ELM initialization

As stated earlier, the number of ELM input nodes is the same as the number

of features m̃ = 4. In order to choose the best number of hidden nodes, we
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calculated the 5×5-fold CV accuracies of subjects in MI calibration session

using various number of hidden nodes. Figure 7.3 shows how the averaged

CV accuracy over all 17 subjects varies by choosing di�erent number of

hidden nodes.
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Figure 7.3: Choosing the best number of hidden nodes. Each dot (·) represents
the averaged 5×5-fold CV accuracies of MI calibration session collected from 17
healthy subjects for di�erent number of hidden nodes.

The best number of hidden nodes was Ñ = 15, and thus in all analysis

provided in the following sections the number of ELM hidden nodes is �xed

at 15. However, as can be seen in Figure 7.3, changing the number of hidden

nodes Ñ does not have a great impact on averaged CV accuracies.

7.7.2 Baseline classi�cation results

The performance of subjects in MI calibration session is shown in Figure 7.4

(a). The 5×5-fold CV accuracies of the calibration session using SVM and

ELM classi�ers were compared. The average performance of subjects using

ELM classi�er was 74.38%± 14.30, while the averaged performance of SVM

classi�er was 74.03%±14.54. A paired sample t-test showed no signi�cant

di�erence between SVM and ELM classi�er t(16)=-0.775, emphp=0.449.

Comparing the total training time of classi�er for all 17 subjects showed
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ELM training was faster (86 s) than SVM training (86.39 s).
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Figure 7.4: Baseline classi�cation accuracy using ELM and SVM classi�ers. The
subjects are sorted according to their ELM accuracies in calibration session. (a)
Comparing 5×5-fold CV accuracies in MI calibration session. Errorbars indicate
the standard deviation over CV folds; (b) Comparing ELM and SVM accuracies in
calibration-to-evaluation session transfer.

The performance of ELM and SVM classi�ers in session-to-session trans-

fer are shown in Figure 7.4 (b). There was also no signi�cant di�erence be-

tween SVM and ELM classi�er t(16)=-1.109, p=0.284 in session-to-session

transfer. Some subjects such as jh, kk, s and ly had calibration accuracy

above 70%, while in session-to-session transfer their performance dropped
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below 70%. Subjects with poor performance in calibration session had also

poor performance in evaluation session.

7.7.3 Visualizing inter-session non-stationarity

As mentioned earlier, the distribution of the features in calibration session

and evaluation session may be di�erent due to non-staionarity of EEG data.

Figure 7.5 visualizes the possible di�erences between the sessions.

Figure 7.5 (a)-(d) are the results of four selected subjects (jh, kk, s,

ly) with poor session-to-session transfer performance. Comparing their �rst

CSP �lter and pattern of calibration and evaluation session showed that all

four subjects performed MI task similarly in both sessions. However, the

feature distribution changed from one session to another, such inter-session

non-stationarity led to inseparable features in evaluation session.

Figure 7.5 (g)-(h) shows the results for four selected subjects with high

performance. The two dimensional feature space of high performance sub-

jects was also changed, but the change was not big enough to a�ect the

separability of features.

7.7.4 Session-to-session transfer results

In this section, session-to-session classi�cation accuracy of subjects using

A-ELM with three di�erent sequential learning methods (i.e., Balanced, Un-

balanced, Accumulated) explained in Section 7.6.2 is evaluated. The results

are shown in Figure 7.6. The �rst row compares the non adaptive ELM with

A-ELM. The accuracies lied above the diagonal showed the better accuracy

for A-ELM. The second row compares the three proposed A-ELM methods.

Using Balanced A-ELM method resulted in higher accuracy than non-

adaptive ELM for 15 out of 17 subjects. This number increased to 16 and 17

subjects when using Unbalanced and Accumulated A-ELM. As can be seen,
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Figure 7.5: Comparing calibration and evaluation session for selected subjects:
'jh' (a), 'kk ' (b), 's' (c), 'ly ' (d), 'ks' (e), 'pl ' (f), 'zy ' (g) and 'lj ' (h). Column 1
and 2 are �rst CSP �lter and pattern. Column 3 shows the two dimensional feature
space. The ellipsoid are distributions of features. The color-scale is in arbitrary
units.
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Figure 7.6: Comparison of various A-ELM methods (Balanced, Unbalanced, Ac-
cumulated) with non adaptive ELM (no adapt) in session-to-session transfer. The
accuracy of subjects are shown by asterisks (*). Each subplot shows a scatter plot
of subjects' accuracies for two di�erent methods.

the results of Balanced and Unbalanced A-ELM methods are quite similar.

Among the three proposed A-ELM methods, Accumulated A-ELM showed

higher accuracies for almost all the subjects.

The averaged session-to-session transfer accuracies of the subjects are

shown in Figure 7.7(a). The averaged performance of all three A-ELM meth-

ods was higher than the averaged baseline accuracy and Accumulated A-ELM

method resulted in highest averaged performance (71.52%). A paired sam-

ple t-test was conducted and the corresponding p-values are listed in Figure

7.7(b). Conducting a sampled paired t-test showed that the average accuracy

of subjects using ELM without adaptation was signi�cantly lower than that

of all three A-ELM methods. However, there was no signi�cant di�erence in

balanced or unbalanced selection of trials (p=0.648).
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Figure 7.7: Comparing the average performance of 17 healthy subjects using non-
adaptive ELM and A-ELM (Balanced, Unbalanced, Accumulated). (a) Box plot (b)
p-values derived from paired t-test.

To evaluate the e�ect of increasing the number of samples in adapting

the classi�er, Accumulated A-ELM was proposed. In this method, the se-

lected chunks of evaluation data were accumulated and used for adaptation.

This increased the average accuracy to 71.52% which was signi�cantly higher

(p <0.001) than non-adaptive ELM, Balanced and Unbalanced methods.

7.8 Discussion

The results of ELM and SVM classi�ers in Figure 7.4 showed no signi�cant

di�erence between these two classi�ers. This is consistent with the results

reported in previous works [181]. However, as we expected the training

time of ELM was less than SVM. Although the time di�erence was not very
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remarkable in our study, it might speed up the training time for subject

independent classi�ers used in BCI.

Visualizing the feature space in session-to-session transfer helps us better

interpret the performance variation of the subjects. Figure 7.5(a)-(d) shows

the selected subjects performing MI similarly in both calibration and evalu-

ation session, nevertheless their feature distribution was di�erent. This can

be possibly one of the reasons of their poor performance. In fact, having such

shifts in feature space makes the initial classi�er to be suboptimal for the

evaluation session. On the other hand, we can hardly see such changes from

calibration into evaluation in Figure 7.5(e)-(h), and thus as we expected

the selected subjects had high performance accuracy in session-to-session

transfer. Non-stationarity of EEG is one of the possible reasons of poor

performance.

A-ELM method was proposed in this chapter to alleviate the inter-session

non-stationarity. Three di�erent learning algorithms were used for adapting

the classi�er. The results showed that adaptation signi�cantly enhances the

performance of the subjects. Using trials Unbalanced with their original

recording order resulted in slightly better averaged accuracy than using Bal-

anced trials from each class. This can be possibly attributed to the time

correlation of trials. Using Accumulated ELM signi�cantly enhanced the ac-

curacies in comparison with other A-ELM methods. This implies that using

more data from evaluation session was helpful to overcome the di�erences

between two sessions.

7.9 Summary

This chapter aimed to propose a method for improving the session-to-session

transfer performance of MI-BCI. Non-stationarity of EEG signal decreases
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session-to-session transfer performance of the users, so adaptive extreme

learning machine (A-ELM) was applied to compensate such deterioration.

A-ELM used limited number of EEG trials from the evaluation session (i.e.,

at least one chunk of EEG data) to adaptively update the initial ELM classi-

�er. The results showed that A-ELM had signi�cantly better performance in

comparison with baseline classi�ers (non-adaptive ELM and SVM). The re-

sults also suggested that using more data from evaluation session for adapting

the classi�er signi�cantly improves the performance of the users. In contrast

to most adaptive methods based on updating the features, A-ELM does not

need balanced data for adaptation. In fact, there was no signi�cant di�erence

in performance of the users when balanced or unbalanced data from the eval-

uation session were selected for updating the classi�er. In conclusion, ELM

can be considered as one of the appropriate solutions for online BCI systems

due to its fast learning process and acceptable performance. Fast training

of ELM classi�er makes it more suitable in presence of large training data

such as subject independent classi�er. Therefore, we can bene�t from using

ELM in BCI applications.
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Chapter 8

Conclusions and future works

8.1 Summary and conclusion

This thesis mainly focuses on improving the performance of EEG-based MI-

BCI. The BCI performance shows how well a subject can control a BCI

system. Two main reasons for poor performance in EEG-based MI-BCI are:

1) BCI de�ciency, and 2) EEG non-stationarity. Addressing these issues may

yield a more practical BCI system that can be controlled by all subjects. To

do so, we can help subjects with BCI de�ciency improve their performance

and also develop adaptive algorithms. The subjects with BCI de�ciency

cannot modulate their brain signals. To help these subjects improve their

performance, �rst we should identify them. Therefore, two performance pre-

dictors were proposed to detect BCI de�cient subjects, and then a novel

experiment was designed to help subjects enhance their performance. Sub-

sequently, two adaptive algorithms were developed to address inter-session

non-stationarity and to improve the BCI performance.

In Chapter 3, a novel neurophysiological coe�cient from pre-cue EEG

rhythms was proposed to predict the MI-BCI performance. The state of the

brain preceding a task a�ects the subsequent task outcome. Thus, pre-cue

EEG was used to predict the performance of subjects. Attention level is one

of the indicators that de�nes the state of the brain. Therefore, quantifying

the attention in the pre-cue time segment led us to propose a novel coe�cient

for predicting MI-BCI performance. The proposed neurophysiological coef-
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�cient which includes brain topographic information, is one of the possible

quanti�cation of attention level. In fact, the proposed coe�cient captures

both spectral and spatial information and yields a better representation of

the brain state. The experimental results showed signi�cant positive corre-

lation between the proposed neurophysiological performance predictor and

the BCI classi�cation accuracy of the subjects. The results suggested that

increases in performance were correlated with increases in subject's attention

level. Therefore, we can conclude that higher performance subjects have a

higher attention level and vice versa.

The second proposed predictor in Chapter 4 used the SSD method to ex-

tract the alpha neural oscillations by taking into account the spatial structure

of noise. The role of alpha band on BCI performance has been investigated

in several studies. However, the extracted alpha activity contained back-

ground noise. The SSD-based neurophysiological performance predictor was

proposed to elicit spatial-spectral components from EEG data with high

signal-to-noise ratio. The experimental results on a big dataset showed that

the proposed predictor based on resting state EEG in eyes open condition

was signi�cantly correlated to the MI-BCI performance of subjects. This

result suggested that increases in resting sate alpha were correlated to in-

creases in BCI-performance. On top of that, although resting state alpha

power in the eyes closed condition was higher than the eyes open condi-

tion, the later had higher correlation with BCI performance than the former.

These �ndings suggested that resting state alpha in the eyes open condition

can be used to predict the performance of the subjects prior to the exper-

iment. Group level analysis showed that the proposed predictor in pre-cue

EEG was also signi�cantly correlated to BCI performance. This �nding is

promising enough to use the predictor for single trial performance predic-

tion. The results also revealed that incorporating theta and beta frequency
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bands enhanced the correlation values. In conclusion, the results of the pro-

posed SSD-based predictor outperformed the spectral-based predictor which

was previously proposed in the literature. This can be mainly because the

extracted components have enhanced signal-to-noise ratio in comparison to

normal extracted alpha band-power and thus led to a better prediction of

the BCI performance.

After predicting the performance of the subjects, we seek a method to

help BCI de�cient subjects control a MI-BCI. Thus, in Chapter 5 a novel ex-

perimental design was proposed to improve the MI-BCI performance. Since

there was signi�cant correlation between resting state alpha band power

and BCI performance, our designed experiment aimed to enhance the rest-

ing state alpha through several NFT sessions using the proposed SSD-based

predictor. To the best of our knowledge, no experiment has been designed to

enhance the BCI performance of the subjects through alpha NFT. Thirteen

healthy subjects participated in our study and randomly assigned to experi-

mental and control group. In the proposed experiment, the BCI performance

of the experimental group was evaluated before and after the NFT sessions.

The results showed that the BCI performance of these subjects signi�cantly

improved after 12 sessions of NFT. However, the BCI performance of the

control group showed no signi�cant improvement. Having small sample size

may be considered as one of the limitations of this study. Having more

subjects can lead to having more conclusive results. The results of NFT

sessions on resting state alpha revealed that the average resting state alpha

was signi�cantly improved by NFT.

Developing adaptive algorithms is another strategy for enhancing the

EEG-based MI-BCI performance. In this thesis, an adaptive feature ex-

traction method and an adaptive classi�er were proposed to address inter-

session non-stationarity that causes changes in feature distribution and thus
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deteriorates the performance. In view of similarities between PM and MI

brain patterns, PM showed to be a plausible method for calibrating MI-BCI.

Nonetheless, the di�erence between the PM calibration session and MI eval-

uation session needs to be addressed. Accordingly, in Chapter 6 we proposed

a novel method to adaptively update the features extracted using FBCSP to

diminish features drift across the sessions. Our proposed algorithm updates

the CSP matrix of each band in FBCSP with the recent recorded batch of

EEG data. In presence of big di�erences between the feature distribution of

the calibration session and the current session, KL distance weighting gives

more weight to the covariance matrix of recent recorded data. The results

showed that MI-BCI, when calibrated by PM, had higher averaged perfor-

mance than calibrated by MI. Thus, due to the applicability of the proposed

method for online scenario, it may be inferred that calibrating MI-BCI with

PM facilitates data collection and results in better online performance.

The second algorithm proposed to address inter-session non-stationarity

in Chapter 7 was A-ELM. Since the distribution of the extracted CSP fea-

tures from calibration and evaluation session was di�erent, we proposed the

A-ELM to update the baseline ELM classi�er using limited number of EEG

trials recorded in the evaluation session. The experimental results showed

that A-ELM signi�cantly improved the performance of the subjects in com-

parison with baseline ELM and state-of-the-art classi�er, SVM. Furthermore,

using accumulated EEG data from the evaluation session for adapting ELM

signi�cantly increased the averaged performance in comparison with using

only limited number of data. The experimental results showed training ELM

in comparison with the state-of-the-art SVM was slightly faster.

In conclusion, the fundamental purpose of the proposed methods sum-

marized above was to come up with a more practical BCI system for real

world applications. One of the main prospects of the performance predictors
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is to decide whether the stroke patients could bene�t from BCI-based ther-

apy. Applying our proposed predictors over the resting state can predict the

performance of the subject, thus those with poor estimated accuracy may

not follow BCI therapy. Our proposed predictor can literally replace the

typical screening session for categorizing the patients.

8.2 Future works

The fundamental purpose of the proposed methods in this thesis was to come

up with a more practical BCI system. In future, the work presented in this

thesis can be potentially extended to be used in real world applications. In

the following, some of these extensions are brie�y explained. The proposed

performance predictors are applicable for both normal subjects and patients.

As an example, one of the main prospects of the performance predictors is

to decide whether the patients can bene�t from the BCI-based therapy. The

performance of the patients can be predicted based on a short recording of

resting state EEG data. Therefore, those patients with poor estimated accu-

racies may follow other interventions rather than the BCI-based therapy. The

resting state in comparison with the BCI screening session is much shorter.

Thus the proposed predictor can literally replace the typical screening session

for categorizing the patients in the future. The proposed predictors can be

also used for detecting healthy subjects with BCI de�ciency. The detected

poor performance subjects may follow the NFT sessions to enhance their BCI

performance. Moreover, in future experiments, subjects may be instructed

to be more attentive prior to a cue to improve their BCI performance. In

addition, a new experiment can be designed to speci�cally help poor perfor-

mance subjects. The new designed experiment may incorporate a varying

preparation time preceding a cue to help the subjects reach a prede�ned at-
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tention level and thus better control a BCI system. Another possible design

may include a small stroop test to help the subjects reach a prede�ned atten-

tion level in the middle of the experiment. These new experimental designs

can make MI-BCI systems to be applicable for all users. Furthermore, the

proposed adaptive algorithms can be applied in online BCI systems to tackle

non-stationarity and thus improve the MI-BCI performance. The proposed

adaptive classi�er can be also extended to a subject independent classi�er.

The calibration session, which is usually required in most BCI experiments

to train a subject speci�c model, is quite time consuming and a tedious step

especially for patients. A subject independent classi�er can be used as an

alternative of a subject dependent classi�er to remove the calibration ses-

sion. The proposed adaptive ELM classi�er, which has a fast training time

in comparison with the other state-of-the-art classi�ers, can be trained by

the calibration data, which collected from a large number of subjects, to

build a subject independent classi�er.
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