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Summary

Information privacy is vital for establishing public trust on the Internet. However,
as online social networks (OSNs) step into literally every aspect of our life, they also
further erode our personal privacy to an unprecedented extent. Today, network data
releasing and inadvertent OSN privacy settings have become two main channels caus-
ing such privacy leakage. As such, there is an urgent need to develop practical privacy
preservation techniques. To this end, this thesis studies the challenges raised in the
above two settings and develops practical techniques for privacy-preservation for to-
day’s OSNs.

For the first setting, we investigate two widely-adopted privacy concepts for data
publication, namely, anonymization and differential privacy. We utilize the hierarchi-
cal random graph(HRG) model to develop privacy preserving techniques to ground
privacy from two disparate perspectives, one from anonymization and another from
statistical disclosure control.

Specifically, we first show how HRG manifests itself as a promising structure that
offers space for adding randomness to the original data while preserving good network
properties. We illustrate how the best-fitting HRG structure can achieve anonymity
via obfuscating the existence of links in the networks. Moreover, we formalize the
randomness regarding such obfuscation using entropy, a concept from information
theory, which quantifies exactly the notion of uncertainty. We also conduct experi-
mental studies on real world datasets to show the effectiveness of this approach.

Next, rather than introducing randomness in the best-fitting HRG structure, we
design a differentially private scheme that reaps randomness by sampling in the entire
HRG model space. Compare to other competing methods, our sampling-based strat-
egy can greatly reduce the added noise required by differential privacy. We formally
prove that the sensitivity of our scheme is of a logarithmic order in the network’s
size. Empirical experiments also indicate our strategy can preserve network utility
well while strictly controlling information disclosure in a statistical sense.

For the second setting, we attempt to solve an equally pressing emerging prob-
lem. In today’s OSN sites, many content such as group photos and shared documents
are co-owned by multiple OSN users. This prompts the need of a fast and flexible
decision-making strategy for collaborative access control over these co-owned contents
online. We observe that, unlike traditional cases where co-owners’ benefits usually
conflict with those of each other, OSN users are often friends and care for each other’s

vii



emotional needs. This in turn motivates the need to integrate such peer effects into
existing collaborative access control strategies. In our solution, we apply game theory
to develop an automatic online algorithm simulating an emotional mediation among
multiple co-owners. We present several examples to illustrate how the proposed solu-
tion functions as a knob to coordinate the collective decision via peer effects. We also
develop a Facebook app to materialize our proposed solution.

Thesis Supervisor: Tan Kian-Lee
Title: Professor

viii



List of Tables

3.1 Network dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Initial I-Scores with Method OO . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Peer Effects Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 I-Scores at Equilibrium with Method OO . . . . . . . . . . . . . . . . . . . 89

6.4 Initial I-Scores with Method OC . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 I-Scores at Equilibrium with Method OC . . . . . . . . . . . . . . . . . . . 93

6.6 PE-Scores before adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 PE-Scores after adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 Initial I-Scores in the extreme case . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 I-Scores at Equilibrium in the extreme case . . . . . . . . . . . . . . . . . . 97

6.10 Intercentrality Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.11 Adjusted Initial I-Scores with Method OC . . . . . . . . . . . . . . . . . . 98

6.12 I-Scores at Equilibrium with Method OC in the Second Mediation . . 99

ix



x



List of Figures

2-1 Timeline of Selected Works on Privacy-preserving Data Publishing . . 13

3-1 An example of HRG model in [CMN08; CMN07]. . . . . . . . . . . . . 25

3-2 Perturbed Graph & Node Generalization . . . . . . . . . . . . . . . . . . . 30

3-3 Link Obfuscation VS Random Sparsification . . . . . . . . . . . . . . . . . 36

3-4 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-5 Shortest Path Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-6 Overlap percentage of top-k influential vertices . . . . . . . . . . . . . . . 41

3-7 Mean absolute error of top-k vertices . . . . . . . . . . . . . . . . . . . . . . 41

3-8 Egocentric entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-1 An example of the HRG model in [CMN08] . . . . . . . . . . . . . . . . . 49

4-2 Three configurations of r ’s subtrees [CMN08] . . . . . . . . . . . . . . . 53

4-3 Gibbs-Shannon entropy and plot of∆u . . . . . . . . . . . . . . . . . . . . 59

4-4 Trace of log-likelihood as a function of the number of MCMC steps,

normalized by n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-5 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-6 Shortest path length distribution . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-7 Overlaps of top-k vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4-8 Mean absolute error of top-k vertices . . . . . . . . . . . . . . . . . . . . . . 65

4-9 polblogs with hrg-0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4-10 polblogs with hrg-0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4-11 wiki-Vote with hrg-0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4-12 wiki-Vote with hrg-0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4-13 ca-HepPh with hrg-0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-14 ca-HepPh with hrg-0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



4-15 ca-AstroPh with hrg-0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-16 ca-AstroPh with hrg-0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6-1 The CAPE Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6-2 Two Designs of Intensity Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6-3 Peer effects in OSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6-4 CAPE–Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6-5 CAPE–PEScores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6-6 CAPE–IScores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6-7 CAPE–Mediation Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xii



Chapter 1

Introduction

Information privacy, as it turns out, has now become the cornerstone of public trust

on the Internet. Over the past decade, we have witnessed striking revelations of gov-

ernment surveillance over the Internet, countless lawsuits against big technology com-

panies due to accidental leakage of user data, as well as unexpected embarrassment

and harms caused by careless privacy setting in Facebook(e.g., wide circulation of

personal photos than initially intended, online harassment and stalking powered by

today’s advanced searching engines like Facebook Graph Search). Perhaps without

these incidents raised over the Internet, especially those in online social networks,

we may never realize that privacy is so important and yet so fragile. As one of the

fundamental human rights, privacy is now of utmost importance to us.

What makes privacy so difficult to protect today? One reason is that we are now

more connected than ever. Statistics showed that online social networks(OSN) shrink

our degree of separation in the world - from six degrees in the past to 4.74 degrees

in the Internet today [Bac11]. As we connect to more people, we also open more

channels that can leak our personal data, especially when we do not carefully pick

our audience for what we share online. Secondly, as OSN media greatly enriches

our ways of self-expression, they also advocate further disclosure of ourselves, from

our words(text) to photos(images), from where we are(locations), whom we connect

with (relationships), to what we like(wish list) and what we have bought(transaction

records). This information contains great potential business opportunities and valu-

able research resources. Hence, many e-commerce companies, application developers

and academic researchers crawl OSNs to collect huge amount of user data. However,
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the personal information, once available to malicious attackers, is more than enough

to uniquely identify a person. Thirdly, as all the information is stored online, users

virtually do not have full control over their data. The data can be easily exposed and re-

produced through, for instances, secret surveillance by government or data exchanges

between companies. Lastly, even for the part that user can control, one cannot expect

everyone to be an access control expert, bustling with endless maintenance tasks for

the complicated OSN privacy settings.

Clearly, unrestrained collection of OSN data and careless privacy settings can put

our privacy in serious jeopardy in the era of social media. Acknowledging that it is

impossible for us to perfectly prevent privacy leakage today, we can, however, still

push the boundaries for limiting such leakage, that is, put such leakage under control,

limit unintended data access, and make precise identification difficult to achieve. These

critical privacy issues, once solved, can have a profound impact on reforming data

protection legislation and restoring the trust on the Internet. This thesis is dedicated

to investigating a few new techniques to tackle such problems, aiming to offer new

perspectives as well as technical tools for protecting an individual’s privacy in OSNs.

1.1 Thesis Overview and Contributions

The thesis addresses problems raised as practicing privacy in social networks from two

aspects. We first consider the problem of privacy-aware OSN data publishing. We will

present one perturbation-based anonymization approach as well as one differentially

private randomization strategy. Next, we will address another concern of OSN pri-

vacy protection from a complementary aspect, that is, facilitating individual users in

configuring their privacy setting in OSN sites. In this part, we will mainly focus on

the practical issues of applying access control techniques in a collaborative scenario.

1.1.1 Privacy-aware OSN data publishing

As OSN sites become prevailing worldwide, they also become invaluable data sources

for many applications: personalized recommendation/services; targeted advertisements;

knowledge discovery of human interaction at an unprecedented scale; vital channels

connecting people in emergency and disasters like earthquake, terrorist attacks, etc.

2



In academics, in industry, and in numerous apps in app ecosystems(e.g. google play),

we observe the increasing demands for much more broader OSN data sharing and data

exchanges.

Despite many applications utilizing OSN data for good intentions, unrestrained

collection of OSN data can seriously threaten individual’s privacy. For example, a

great deal of details about government surveillance over the Internet had been revealed

recently(e.g., PRISM1). Even though this action is originally meant for national secu-

rity, it, meanwhile, seriously undermines public trust. To restore user’s trust in OSNs,

the leading companies, e.g., Facebook and Twitter, appeal together to the government

for reforming privacy laws and regulating such surveillance2. However, so far the legal

definition of privacy still remains vague in concept. There is an urgent need to make

the notion of privacy measurable, quantifiable and actionable, which is essential to

make privacy protection operational in the juridical practice.

In this thesis, we will present two specific techniques for privacy-aware OSN data

publishing. Most earlier notable works in this line employed k-anonymity, a privacy

definition that requires the information for each person contained in the data to be

indistinguishable from at least k − 1 individuals. This is based on the initial attempt

to define privacy by considering it equivalent to preventing individuals from being

re-identified. However, each of these works based on k-anonymity is only defined to

satisfy an ad-hoc privacy measure. This means one method is only resilient to one

specific type of attack, and hence would always be susceptible to new types of attacks.

Anonymity-based Data Publication

Our first contribution in this thesis is to adopt a random perturbation approach (an-

other main branch of anonymity-based privacy methods) to achieve anonymity. In

our works, we put our focus on protecting the existence of links in networks. We will

show that, from information theory’s point of view, the proposed method can ground

privacy via obfuscation, which can be accurately quantified by entropy. Briefly, we

introduce a method that utilizes the hierarchical random graph(HRG) model to con-

textualize such obfuscation regarding link existence into the original network data.

We will show how HRG manifests itself to be a promising structure that offers space
1http://www.cnn.com/2013/12/10/opinion/oppenheim-privacy-reform/index.html
2https://www.reformgovernmentsurveillance.com/
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for adding randomness in the original data while preserving good network properties.

Briefly, we will illustrate how a best-fitting HRG can be used to recognize the set of

substitute links, which can replace real links in the original network without greatly

sacrificing the network’s global structure. Hence, instead of scrubbing the original

network to rule out the data “finger-prints”(e.g. degree, neighborhood structure) from

re-identification, the typical paradigm under k-anonymity framework, we can tailor

the network regarding its own structure as carrying out perturbation to achieve link

existence obscurity.

Furthermore, we formalize the notion of “link entropy” to quantify the privacy

level regarding the existence of links in the network. We specifically present in details

how to measure “link entropy” given a best-fitting HRG structure with regard to the

original network. We also conduct experiments on four real-life datasets. Empirical

results also show that, the proposed method allows a great portion of links to be

replaced, which indicates the eligible perturbed network to release shall contain a

significant amount of uncertainty concerning the existence of links. Results also show

that the proposed method can still harvest good data-utility(e.g., degree distribution,

shortest path length and influential nodes) after large numbers of edges being per-

turbed.

Differentially Private Data Publication

Despite many works on anonymity, subsequently, researchers began to realize that

it can never provide full privacy guarantee in case of linkage attack. The reason is

that, one can always anticipate, with sufficient auxiliary information, an attacker can

always uniquely re-identify a person in OSN with the released dataset satisfying any

privacy definition based on anonymity. To protect against linkage attack, differential

privacy(DP) was introduced and has been widely adopted by researchers recently. Un-

like anonymization methods, DP judges the data-releasing mechanism under consider-

ation itself. More precisely, it measures the privacy level the data-releasing mechanism

is able to provide for any arbitrary dataset(worst case guarantee), rather than directly

measuring the mechanism’s output given a particular data input(one-time adhoc mea-

surement). Our second contribution is to introduce a randomized algorithm which

can satisfy this strong definition of privacy while still preserving good data utility.
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We still adopt the same graph model, HRG, in this algorithm. The critical difference

is that we impose randomness on the distribution from the model’s structure(i.e., the

output of the original algorithm), instead of only enforcing randomness on the output

itself.

As it is being pointed out, “Mathematically, anything yielding overly accurate

answers to too many questions is non-private” [DP13]. In order to guarantee a strict

sense of privacy, DP requires not only enforcing randomness on the answers but also

restrain the number of queries being asked. One can quantify exactly the privacy

loss in terms of the number of questions being answered, and in turn treat acceptable

privacy loss as a budget that can be distributed to answer questions. However, with

only limited access to the original data, it turns out to be very challenging to pick the

right set of queries to effectively approximate the data’s properties. Furthermore, to

guarantee good data utility, effective DP approaches also require the query’s sensitiv-

ity to be sufficiently low. In other words, the addition or removal of one arbitrary

record should only incur limited change in the privacy-aware mechanism’s output

distribution. Unfortunately, many existing approaches are not able to meet these

challenges, i.e., they cannot provide reasonably good data utility guarantee after their

data sanitization procedures.

Most existing DP schemes rely on the injection of Laplacian noise to add uncer-

tainty to the query output, or more precisely, transform any pre-determined output to

be a random sample from a statistical distribution. We, however, advocate a different

approach that introduces uncertainty to queries directly. That is, we first use the

HRG model to construct an output space, and then calibrate the underlying query

distribution by sampling from the entire output space. Meanwhile, we make sure

the series of sampled queries are independent of each other. Hence, the sensitivity

of our scheme can be controlled to the magnitude of log n, where n is the network

size, as compared to O(n) and O(
p

n) in state-to-art competing schemes [SZW+11;

WW13; WWW13]. Intuitively, this indicates our scheme demands much less noise to

be injected in perturbing the original data than other schemes.

From another prospective, as we draw random queries from a calibrated distri-

bution, the set of sampled queries are unlikely to be the optimal for approximating

the original data; however, we can still expect that, as long as the queries are good
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enough, the resultant data utility should still be reasonably good. To further evaluate

the effectiveness of our scheme, we also conduct empirical experiments on four real

world datasets. Results show that the proposed method can still preserve good data

utility even under stringent privacy requirements.

1.1.2 Collaborative access control

Next, we turn our attention to the individual user’s perspective and study an equally

pressing problem. As mentioned above, besides the potential privacy loss caused by

unrestrained collection and usage of OSN data, another major reason for unexpected

privacy disclosure is due to user’s failure in managing the privacy settings to meet

his/her privacy expectation. Ideally, one can always effectively limit the disclosure

of information with sophisticated access control rules. However, OSNs today still

lack tools to guide users to correctly manage their privacy settings. Hence, it is very

important to develop practical tools that can relieve users from trivial maintenance of

their privacy settings. To this end, the third contribution of this thesis is to develop

such a tool for managing the access control policy in OSNs with ease.

In this work, we focus on the problem of collaborative access control. In today’s

OSNs, it is common to see many online contents are shared and co-owned by multiple

users. For example, Facebook allows a user to share his photos with others and tag the

co-owners, i.e., friends who also appear in the photos. However, so far Facebook only

provides very limited access control support where the photo publisher is the sole

decision maker to restrict access. There is thus an urgent need to develop mechanisms

for multiple owners of the shared content to collaboratively determine the access

rights of other users, as well as to resolve the conflicts among co-owners with different

privacy concerns. Many approaches to this question have been devised, but none of

them consider one critical difference between OSNs and traditional scenarios, that

is, rather than competing with each other and just wanting one’s own decision to be

executed in traditional scenarios, OSN users may be affected by their peers’ concerns

and adjust their decisions accordingly. As such, we approach the same collaborative

access control problem from this particular perspective, integrating such peer effects

into the strategy design to provide a more “considerate” collaborative access control

tool.
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Our solution is inspired by game theory. In this work, we formulate a game theory

model to simulate an emotional mediation among multiple co-owners and integrate it

into our framework named CAPE. Briefly, CAPE considers the intensity with which

the co-owners are willing to pick up a choice (e.g. to release a photo to the public) and

the extent to which they want their decisions to be affected by their peers’ actions.

Moreover, CAPE automatically yields the final actions for the co-owners as the me-

diation reaches equilibrium. It frees the co-owners from the mediation process after

the initial setting, and meanwhile, offers a way to achieve more agreements among the

co-owners. To materialize the whole idea, we also implement an app on a real OSN

platform, Facebook. Details of the design and user interface will also be presented.

1.1.3 Thesis Organization

This thesis proceeds as follows. In Chapter 2, we will look at the background of

network data releasing problems. We will review recent progress on defining privacy,

as well as existing works for network data releasing that deploy different privacy def-

initions. In Chapter 3, we will present LORA, a randomization data perturbation

method based on anonymization. Chapter 4 is then devoted to another mechanism

that adopts a disparate privacy model – differential privacy. Next, we will introduce

collaborative access control and motivate the problem in Chapter 5. Chapter 6 will

then present our proposed peer-aware collaborative access control tool in details. We

will conclude our work by summarizing our contributions and discussing directions

for future work in Chapter 7.

The research in this thesis has been published and reported in various international

conferences [XWT11; XCT14; XT12].
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Chapter 2

Background and Related Works of

OSN Data Publishing

In this chapter we review the background and related works on OSN data publishing.

We give a brief history of privacy research by looking at how the academia started off

to understand it, how the various academic disciplines have contributed to its under-

standing in recent years, and lastly, how our work fits into this discovery journey.

2.1 On Defining Information Privacy

Privacy, probably a bit surprising to see, is in fact a pretty modern concept. Western

cultures have little formal discussion of information privacy in law until late 18th

century [WB90]. The study of information privacy started off with the notion of

anonymization, a definition aiming at removing personally identifiable information to

prevent identity objects from being re-identified. The concept personally identifiable

information (PII) now is frequently used in privacy laws to describe any information

that can be used to uniquely identify an individual, such as names, social security

numbers, IP addresses, etc. In particular, a set of several pieces of information that

each of them is not PII by itself, can be combined to form a PII. In this case, it is called

a quasi-identifier (QID).

In the study of privacy-preserving data publishing, it is commonly assumed an

attacker who can use any methods or auxiliary tools to learn exact information of indi-

vidual users. One type of notable attacks is called linkage attack, where the attacker can
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re-identify individual users by joining different data resources(e.g., database, auxiliary

background information) via QIDs. Apparently, under such attack, simply removing

QIDs in each data source separately is inadequate to prevent re-identification. This is

because combining multiple releases from different data sources can easily form new

QIDs. To limit attackers’ such ability to link to other information/data resources

using QID and in turn thwart the risk of linkage attack, Sweeney proposed the notion

of k-anonymity [Swe02]. k-anonymity, as well as other works in the same spirit such

as l-diversity [MKG+07] and t-closeness [LLV07], are all based on the idea of hiding

an individual in a crowd so that no individual’s identity can be distinguished from

the others in the crowd. We can categorize these works into the group that achieves

anonymity by indistinguishability. In parallel to this group was another family of

works, namely, anonymity by randomization. As suggested literally, this type of

works usually randomly perturb the data source(e.g., add or delete records) to limit

the attacker’s confidence of certainty on the information he can obtain.

Comparing to randomization techniques, the main advantage of the former approach(k-

anonymity [Swe02] and notions akin to this idea) is that it can provide a data-independent

privacy guarantee. Hence comparatively, the former privacy model had attracted

more attention and has been widely-adopted in many privacy-preserving data pub-

lishing works.

For decades, both academia and the society consider anonymization to be robust

enough for effectively eliminating the privacy risk after each release of data. In other

words, it is a “release-and-forgot” strategy [Pau09], a done deal after each release. The

widespread adoption of anonymization makes it literally ubiquitous in our life. It has

also been commonly accepted as the best practice to protect privacy both technically

and legislatively. Big companies like Google also used to rely on anonymization tech-

niques in practice to protect customers’ privacy. Though acknowledged that “it is dif-

ficult to guarantee complete anonymization”, they firmly believed that the anonymi-

zation techniques “will make it very unlikely for users to be identified” [Sog08].

However, a series of striking incidents challenged the presumption that anonymi-

zation can make re-identification difficult. In 2006, America Online(AOL) released 20

million search query logs to the public for research purpose. Even though the data is

already suppressed and anonymized(i.e., identifiers such as names and IDs have been
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removed), people soon found out that it was in fact quite easy to track a particular

person with the released data [BJ06]. Two months right after this leakage, the famous

Netflix Prize [Dem07] incident turned out to become the second warning that cast

doubts on the effectiveness of anonymization techniques. Using the Netflix Prize

dataset as an example, Narayanan demonstrated detailed de-anonymization techniques

in [NS08] to show that k-anonymity failed to guarantee privacy. These revelations

have shaken researchers’ faith in anonymization as an effective mechanism for privacy

protection. Prompted by these failures and acknowledging the critical defects of k-

anonymity, researchers consequently proposed a series of improved privacy notions,

e.g., l -diversity [MKG+07], t -closeness [LLV07]. Each was aimed at patching some

flaws of the previous privacy notion based on anonymization, hoping to provide a

stronger notion of privacy that can make re-identification difficult. However, as for-

mally demonstrated in [NS08] and [Agg07], neither k-anonymity nor randomization

methods can protect privacy on high-dimensional datasets [NS08; Agg07]. In fact, it

is always possible (often also quite easy) to re-identify a person given enough auxiliary

information or background knowledge. Attackers can always utilize cross-relations

between data’s attributes to trigger linkage attacks, rendering all anonymization-based

strategies completely incapable to prevent re-identification.

Having identified and acknowledged the fatal defects of anonymity, differential

privacy (DP) was proposed as a substitute to provide full protection against linkage

attacks [DMN+06]. This definition was introduced in 2006 from the statistical dis-

closure community. The goal of DP is to form an adequate and principled definition

that can quantify “privacy” in a rigorous sense under arbitrary attacks. To this end,

differential privacy requires, no matter what auxiliary background knowledge that an

attacker can have, the attacker will learn roughly the same information(the informa-

tion disclosure is within a small multiplicative factor) no matter whether the individual

participates in the database or not [DMN+06]. This worst case guarantee and clear

semantic interpretation equip differential privacy to be a very strong and yet database-

friendly privacy definition.

Mathematically speaking, DP requires any small changes in the input database

should only result in small changes in the distribution of the output. As it turns out,

DP is formalized within a mathematically rigorous framework. This lays a solid foun-
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dation for DP and equips it to a useful formulation since many existing mathematical

tools can be used to analyze and fulfill such definition.

The above apparent advantages, as well as its nice composition property, and a

few known mechanisms found so far that achieve its formal requirement [DP13],

leads differential privacy soon become an emerging de facto standard of information

privacy.

2.2 On Practicing Privacy in Social Networks

With the increasing prevalence of social networks, the problem of privacy-preserving

network data publishing has attracted substantial research interest. However, the

nature of the complexity of social network data makes it much harder to apply any

privacy models on it than on tabular data. Figure 2-1 depicts a timeline of the devel-

opment in this research arena. It lists a few representative works on privacy notions

and related privacy-preserving techniques in chronological order. It is easy to see that

works on social networks clearly lag behind works on traditional tabular data(i.e., the

same time when the privacy definitions were initially proposed). In this section, we

will first review the early works that employed k-anonymity and randomization as the

privacy model. We will also highlight the problems as applying anonymiazation on

social networks. Lastly, we will turn to the recent development as applying differential

privacy on the same network data-publishing problem.

2.2.1 Applying k-anonymity on social networks

Backstrom et al. [BDK07] point out that naive anonymization practice such as just

removing user ids or names in social graphs poses serious threaten to user privacy.

Recall that anonymization requires all PIIs to be sanitized. However, in networks,

such “data-fingerprint” PII can turn out to be many different forms. That is, the

attacker can uniquely identify an individual in graphs via many graph patterns, such as

node’s degree, subgraph, hub, node attribute and neighborhood structure. To protect

against the attacks on these PIIs, the majority of work based on k-anonymity had

defined various ad-hoc definitions, each assumes a particular type of adversarial knowl-

edge. For example, Liu and Terzi [LT08] propose k-degree anonymity that requires
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that, for every node v in the network, there exist at least k − 1 other nodes with the

same degree as v. Zhou and Pei [ZP08] demand that each node should have the same

1-neighborhood structure as at least k − 1 nodes. Zou et al. [ZCO09] propose k-

automorphism, which enforces k−1 automorphic functions in the anonymized data.

Cheng et al. [CFL10] introduce the notion of k-isomorphism, which requires an input

graph to be transformed into k disjoint isomorphic subgraphs. Yuan et al. [YCY10]

allow the user to customize their privacy protection needs via defining k-anonymity

on different strength of the attacker’s background knowledge.

In a nutshell, the above methods all adopt the same paradigm to achieve anonymity:

using deterministic methods to alter the network structure in order to satisfy some

types of structure uniformity. In parallel to this family of works, k-anonymity can

also be achieved via node generalization and suppression [CT08; CSY+08; BCK+09;

HMJ+08]. For example, Hay et al. [HMJ+08] investigate applying generalization

and suppression techniques on nodes to achieve k-anonymity.

Broadly, the goal of all these works is to scrub the original data to remove a partic-

ular type of “data-fingerprint” in the social graphs, while at the same time restrain

the amount of modification(i.e., information loss) upon the data to be as little as

possible. However, subjected to the drawbacks of k-anonymity, all k-anonymous

network sanitation techniques are vulnerable to attackers with stronger background

knowledge than assumed. In hidesight, the line of these works seems to be trapped in a

cycle of “identify–anonymize–re-identify–anonymize again”. There is to date still no

satisfactory definition that offers a general concept of k-anonymity on social networks

precisely.

2.2.2 Applying anonymity by randomization on social networks

Another line of works considers randomization to be the privacy model. Rather

than protecting the nodes by constructing structural uniformity base on k-anonymity

mentioned above, most works in this family directly perturb the links (a.k.a. ran-

domly add/delete edges). The direct effect of randomization is to limit the attacker’s

confidence as he attempts to infer the existence of true edges in the network. The

node’s identity in turn can also be effectively protected with high probabilities, since

the formation of most PIIs often rely on some structure patterns consisting of the
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links. Hay et al. explore this problem in [HMJ+07] by introducing an anonymi-

zation framework based on edge perturbation. Empirical experiments in this report

demonstrate that such strategy can substantially reduce the risk of privacy breach.

Ying et al. [YW08] further explore the same problem by considering graph’s spectra

as an indicator to navigate the choices of links to add/delete during the perturbation.

In [YW09] and [HGP09], Ying and Hanhijarvi consider generating synthetic graphs

with Metropolis-Hasting algorithms. Essentially, both works extract statistical sum-

maries of the original graph (e.g., degree distribution and average clustering coefficient

and characteristic path length), and then use Metropolis-Hasting method to sample the

set of graphs with same parameters as the original graph.

Compared with k-anonymous methods, randomization have a few very attractive

advantages for network anonymization problems. First of all, it is not subjected to

a particular type of attack, which is the main limitation of k-anonymity methods.

Secondly, the flexible nature of randomization allows a great amount of perturba-

tion on the real-world network data(which is usually large and sparse) without signif-

icant deteriorating the network structure. Even though in literature, some empirical

evaluation on moderate-sized datasets in [WYW10] suggests the network’s topolog-

ical features “will be significantly lost in the randomized graph when a medium or

large perturbation is applied”. Ying et al. [YPW+09] also compared the randomized

edge perturbation method to k-degree anonymous method proposed in [LT08] using

three moderate-sized datasets, and reach the conclusion that k-degree method pre-

serves better network properties. However, we should stress that such randomization

approaches’ privacy-preserving ability is data-dependent. The two above works both

demonstrate empirical evaluation only on moderate-sized datasets(polblogs with 1,222

nodes, 16714 edges; polbooks with 105 nodes, 441 edges; Enron with 151 nodes, 869

edges). Bonchi et al. [BGT11] argue that previous works in fact underestimate ran-

domization’s competence in solving privacy-preserving problems. They demonstrate

on real-world datasets randomization strategy can yield meaningful privacy protec-

tion while still preserving good network properties. They also point out that poste-

rior belief probability, the metric previously used to assess randomization techniques’

privacy-preserving level in many works, is rather a local measure of privacy level.

They advocate to use entropy as a more global-sense measure to quantify randomiza-
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tion’s ability in preserving privacy. Moreover, they further extend their work in [BGT14]

to show the detailed analysis of how to quantify random perturbation’s resilience to

attacks.

Our first work can also be categorized into this line of works. Specifically, we

adopt a hierarchical random graph(HRG) graph model [BGT11] to randomly perturb

the links in the networks. We show that the best-fitting HRG model carefully capture

all “link equivalent class”, in which all links play similar roles in topology globally and

locally. The advantage of such a method is that it can tailor the network with regard

to the network’s own structure while allowing large amount of edge perturbation on

it. Besides, inspired by [BGT11], we formulate “link entropy”, the counterpart of

“identity entropy” in [BGT11], to quantify the link privacy of our methods from the

perspective of information theory.

For more detailed account on applying anonymity on network data-publishing,

we refer interested readers to a few nice surveys [FWC+10; AMP10; ZPL08] and a

tutorial in [HLM+11].

2.2.3 Applying differential privacy on social networks

Recently, differential privacy has been widely investigated in privacy-aware data min-

ing and data-publishing communities. Its success stems from its rigorous privacy guar-

antee, as well as its nice formulation as an interactive mechanism, where the analyst can

only query the database and collect the answer without full access to the raw data. This

particularly facilitates the development of applying DP to gain certain statistical results

via posing queries. Specifically in networks, a line of works along this direction aims to

release certain differentially private data mining results, such as degree distributions,

subgraph counts and frequent graph patterns [HLM+09; KRS+11; HR12; SY13].

Hay et al. [HLM+09] make use of the constrained inference technique to release a

private estimate of a network’s degree distribution. Karwa et al. [KRS+11] approx-

imate answers to different subgraph counting queries based on local sensitivity and

smooth sensitivity, which achieves weaker privacy guarantee. Hardt and Roth [HR12]

give an efficient algorithm for finding a low rank approximation of a matrix. Shen

and Yu [SY13] consider the problem of frequent graph pattern mining by proposing

a MCMC sampling based algorithm.
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However, the problem we confront, the task of full release of network data, actu-

ally falls into another direction of problems. Our goal is to employ DP in the task of

synthetic data generation. This essentially seeks to approximate all functions that a

network possesses. Clearly, publishing the entire networks is much more challenging

than publishing just certain network statistics or data mining results. The main ob-

stacle to publish the entire graph can easily incur a large global sensitivity. Note that

the sensitivity in the problem setting of [SY13] is only 1. In contrast, existing works

dealing with graph releasing problems often have much larger sensitivities. Compared

with these state-of-the-art competitors, our key technical contribution in our second

work is to achieve a much smaller sensitivity in releasing a graph (i.e., O(log n) as

opposed to O(n) and O(
p

n) in [SZW+11; WW13; WWW13]).

Inspired by [SY13], our second work also utilize MCMC sampling strategy to

achieve differential privacy. We still use HRG as the graph model in this work. But,

instead of directly enforcing random perturbation on MCMC’s output (as in our first

work), our second work carefully calibrates the underlying distribution of MCMC

to meet differential privacy’s requirements. By sampling the entire HRG space, the

algorithm can reap both differential privacy and good data utility simultaneously.

It worths pointing out that even though based on the same graph model, HRG, our

first and second work instantiate the concept of privacy with two disparate paradigms.

The first work looks at the best-fitting HRG model itself and look for the room to

perturb the data while preserving the original network topology. In this case, the

privacy guarantee is data-dependent, relying on the network’s own structure. Con-

versely, in the second work, the privacy guarantee is strictly fulfilled by differential

privacy. We aim to treat graph itself as statistical data, that is, the original network

can be considered as a random sample drawn from an underlying distribution. By

carefully inferring back such distribution and calibrating it with regard to DP, we can

harvest uncertainty and privacy via sampling procedure. In some sense, the second

method is a reminiscent of classical statistical inference problems.
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Chapter 3

LORA: Link Obfuscation by

RAndomization in Social Networks

3.1 Introduction

Information on social networks are invaluable assets for exploratory data analysis in

a wide range of real-life applications. For instance, the connections in OSNs(e.g.,

Facebook and Twitter) are studied by sociologists to understand human social re-

lationships; co-author networks are explored to analyze the degree and patterns of

collaboration between researchers; voting and election networks are used to expose

different views in the community; trust networks like Epinions are great resources

for personalized recommendations. However, many of such networks contain highly

sensitive personal information, such as social contacts, personal opinions and private

communication records. To respect the privacy of individual participants in social

networks, network data cannot be released for public access and scientific studies

without proper “sanitization”.

In this work, we consider simple graphs to represent network data, where the

nodes capture the entities and the edges reflect the relationships between the entities.

For example, in social networks such as Facebook (facebook.com), a graph captures

the friendships (edges) between individuals (nodes). Our goal is to preserve personal

privacy when releasing such graphs.

While there has been numerous attempts along this line of works, these methods

are still vulnerable to various types of attacks [LT08; ZP08; BDK07; HMJ+08]. Back-
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strom et al. [BDK07] show that, with very limited background knowledge, a large

number of nodes can be easily re-identified even after sanitizing the node’s identity

information such as social ID and name. More recently, Liu et al. [LT08] report that

the degree of a node can be used as a quasi-identifier to re-identify the node’s identity

in the graph. Zhou et al. also claim that local subgraph knowledge such as a node’s

neighborhood can be easily retrieved by attackers. By matching the structure of the

victim node’s subgraph, attackers can trace and find the victim node [ZP08]. Hay

et al. [HMJ+08] also point out that hubs, as the fingerprints of graphs, are often

uniquely identifiable. In fact, the popularity of social networks in recent years and

the availability of powerful web crawling techniques have made accessing personal

information much easier to achieve. Therefore, it is almost impossible to foresee an

attacker’s background knowledge in advance. Meanwhile, it is also unrealistic to make

any assumptions on the constraints of an attacker’s ability to collect such knowledge.

As such, it is challenging to preserve privacy on graphs. This has prompted researchers

to develop robust network/graph data protection techniques.

Existing works on preserving privacy of graphs fall into two main theoretical pri-

vacy models: k-anonymity-based model [ZCO09; WXW+10; CFL10; LT08] and

randomization model [HMJ+08; BGT11]. Under the former privacy model, a source

graph is manipulated so that it has at least k corresponding entities satisfying a same

type of structural knowledge. However, these methods are designed to be robust to

certain specific attacks. For example, k-degree [LT08] and k-automorphism [ZCO09]

anonymization schemes are specially designed to protect the privacy of node degrees.

Moreover, these works typically assume the attackers’ background knowledge is lim-

ited. In addition, graph modification is often restricted as the released graphs need to

respect some symmetric properties in order for k candidates to share certain properties

in the graph.

On the other hand, in randomization models [BGT11; YW08; YW09; HGP09],

the released graph is picked from a set of graphs generated from a random perturbation

of the source graph (through edge addition, deletion, swap or flip). Such an approach

offers more freedom in “shaping” the released graph, i.e., no additional properties

are intentionally injected. More importantly, an attacker’s background knowledge

would become less reliable because of the random process. For example, by allowing
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random insertion and deletion of edges, an attacker is no longer 100% certain of an

edge’s existence. Moreover, randomization techniques are typically designed to be

independent of any specific attacks, and hence are robust to a wider range of attacks.

However, uncontrolled random perturbation means the space of the distribution from

which the released graph is picked is effectively “unbounded”, making it difficult to

preserve the source graph’s structure. For example, if we allow only edge deletion,

since edges are arbitrarily selected for deletion, important ties in a graph, such as bridge

edges, may be eliminated resulting in a partitioned graph.

In this work, we advocate and focus on randomization techniques. Our goal is to

ensure that the released graph is privacy preserving, and yet useful for a wide range

of applications. In particular, for the latter, the released graph should be “similar” to

the source graph in terms of most properties (e.g., degree distribution, shortest path

length and influential nodes). This raises three questions:

1. How to randomize a source graph so that the resultant released graph is still

similar to it?

2. How to provide a measurement of shared information between the source and

released graphs, to indicate the utility of the released graph? Conversely, the

measurement reflects the information loss due to randomization.

3. How to quantify the effectiveness of the randomized technique (and random-

ized graph) with regard to privacy preservation? In other words, what is an

appropriate measurable definition of privacy on graph?

From existing works, we can see much effort to address the first question above. In

[YW08], the proposed approach restrains the changes in the random graphs’ spectra

to provide rough bounds of the random graph distribution. Another approach adopts

the Metropolis-Hastings algorithm (specifically, the Markov Chain Monte Carlo method)

to sample graphs with feature constraints [HGP09; YW09]. This approach can pre-

serve several graph statistical summaries, such as degree distribution, average cluster-

ing coefficient and average path length. However, since many statistical summaries

typically provide descriptions of a graph from different perspectives, but do not di-

rectly determine the graph structure, it is hard to quantify information lost since

other graph features are not intentionally preserved. It is also not easy to evaluate its
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effectiveness with regard to privacy preservation. In these works, the popular privacy

measurement adopted merely relies on the different numbers of edges between the two

graphs [YW09].

In this chapter, we propose a randomization scheme, LORA (Link Obfuscation by

RAndomization), to generate a synthetic graph (from a source graph) that preserves

the link (i.e., the extent of two node’s relationship) while blurring the existence of

an edge. In our context, link refers to the relation between two nodes. It is a virtual

connection relationship, and is not necessarily a real edge that physically exists in the

graph. We use the concept link probability as a quantity to measure the strength of

link.

Next, we explain how LORA addresses the three questions that we raised. Firstly,

we adopt the hierarchical random graph (HRG) model [CMN07; CMN08] to estimate

each link probability in the source graph. The HRG model is a generic model that

can capture assorted statistical properties of graphs. Based on the HRG model, we can

randomly generate graphs that are similar to the source graph with regard to statistical

properties (i.e., dealing with the first challenge). Next, by reconstructing statistically

similar graphs that preserve the source graph’s HRG structure, we can select one to be

released. In the ideal scenario, the released graph and source graph would share exactly

the same HRG structure (i.e., addressing the second challenge).

Third, to investigate how our method can preserve link privacy and how to quan-

tify its strength, we introduce the notion of link entropy. Entropy has been widely used

to measure the uncertainty of random variables in information theory. We will show

that entropy is also appropriate in our scheme in terms of clarification and simplicity,

compared to posterior belief that is used in previous works. Instead of analysing

privacy with node’s entropy [BGT11], we define entropy based on links to theoreti-

cally quantify the effectiveness (regarding privacy preservation) of our randomization

scheme. As an attempt to address the third challenge, we will show how to derive the

entropy for each individual link and then the composition of entropy of a set of links.

We specifically define the notion of entropy of a node’s egocentric network, which is

an entropy ensemble and quantifies our scheme’s privacy-preserving strength towards

egocentric subgraphs. We will show how entropy quantifies an attacker’s uncertainty

accurately and clearly towards an egocentric network.
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The rest of this work is organized as follows. In Section 3.2, we provide some

preliminaries. Section 3.3 gives an overview of our proposed LORA, and Section 3.4

presents the technical details of LORA. In Section 3.5, we analyze the privacy of our

proposed LORA. Section 3.6 presents results of experimental studies. Finally, we

conclude this work in Section 3.7.

3.2 Preliminaries

3.2.1 Graph Notation

In this study, we follow the convention to model a network as a simple undirected

graph G = (V , E). V is the set of vertices and E ⊆ V ×V is the set of edges. Let

|V |= n and |E |= m.

A mathematical representation of G is the adjacency matrix of G. We denote it

with A ∈ {0,1}n×n. Ai j = 1 if there is an edge between vertices i and j in G and

Ai j = 0, otherwise. Moreover, we use G̃(ñ, m̃) = (Ṽ , Ẽ) to denote the released graph

reconstructed by randomization.

3.2.2 Hierarchical Random Graph and its Dendrogram Represen-

tation

A graph often exhibits a hierarchical organization. Vertices can be clustered into

subgraphs, each of which can be further subdivided into smaller subgraphs, and so

forth over multiple scales. The hierarchical random graph (HRG) model is a tool to

explicitly describe such hierarchical organization at all scales for a graph. According

to Clauset’s experiments [CMN08], the graphs “resampled” with HRG can match

the statistical properties of the source graphs closely, including degree distributions,

clustering coefficients, and distributions of shortest path lengths.

The hierarchical structure of G in an HRG is captured by a dendrogram T , which

is a rooted binary tree with n leaf nodes corresponding to the n vertices of G. Each

internal node r of T is associated with a probability pr . For any two vertices i , j in

G, their probability of being connected pi j = pr , where r is their lowest common

ancestor in T . Formally, an HRG is defined by a pair (T ,{pr }).
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Let Lr and Rr be the left and right subtrees of r respectively. nLr and nRr are the

numbers of leaves in Lr and Rr . Let er be the number of edges in G whose endpoints

are leaves of each of the two subtrees of r in T . The likelihood of an HRG for a given

graph G can be calculated, by Bayes’ theorem, as follows:

L (T ,{pr }) =
∏

r∈T

p er
r (1− pr )

nLr nRr−er (3.1)

For a fixed dendrogram T , the maximum likelihood estimator of pr is er
nLr ·nRr

. It

represents the fraction of potential edges between the leaves of Lr and Rr that actually

exist in G. In our scheme, we work with the logarithm of the likelihood :

logL (T ,{pr }) =−
∑

r∈T

nLr nRr h(pr ) (3.2)

where

h(pr ) =−pr log pr − (1− pr ) log(1− pr ) (3.3)

is the Gibbs-Shannon entropy function.

Essentially, the likelihood of a dendrogram measures how plausible this HRG is

to represent a graph. A dendrogram paired with a higher likelihood is a better rep-

resentation of the network’s structure than those with lower likelihoods. We denote

logL (T ,{pr }) by logL (T ) from now on when no confusion arises.

The best-fitting HRG of an orginal graph can be obtained using the Markov Chain

Monte Carlo method (MCMC). In practice, most real world networks will have many

plausible hierarchical representations of roughly equal likelihood, which may slightly

differ in arrangement of tree’s branches. We sample dendrograms at regular intervals

and calculate the mean probability pi j for each pair of vertices (i , j ). In our analysis, we

assume the dendrogram derived by MCMC is always the ideal one that fits the source

data best. For instance, we assume Figure 3-1c is Figure 3-1a’s best-fitting dendrogram.

From Figure 3-1c, we note that all pi j can be quantified with er
nLr ·nRr

as shown in the

probability matrix in Table 3-1d.
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(a) Source Graph (b) Graph Obfuscation

a b

1/1

3/3

c

1/1

3/3

d e f

1/9

(c) Best-fitting Dendrogram

va vb vc vd ve v f

va 1 1 1 1/9 1/9 1/9
vb 1 1 1 1/9 1/9 1/9
vc 1 1 1 1/9 1/9 1/9
vd 1/9 1/9 1/9 1 1 1
ve 1/9 1/9 1/9 1 1 1
v f 1/9 1/9 1/9 1 1 1

(d) Link Probability Matrix

va vb vc vd ve v f

va 0 0 0 0.50 0.50 0.50
vb 0 0 0 0.50 0.50 0.50
vc 0 0 0 0.50 0.50 0.50
vd 0.50 0.50 0.50 0 0 0
ve 0.50 0.50 0.50 0 0 0
v f 0.50 0.50 0.50 0 0 0

(e) Link Entropy Matrix

Figure 3-1: An example of HRG model in [CMN08; CMN07].
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Example 3.1. Figure 3-1c is a best-fitting dendrogram representation of the graph in Fig-

ure 3-1a. At the top scale of dendrogram in Figure 3-1c, vertices in graph G are divided

into two groups from the root r in dendrogram T , corresponding to the leaf set {a,b,c} in

the left subtree of T and leaf set {d,e,f} in the right subtree, respectively. Each group has 3

leaf nodes, so nLr = nRr = 3. Since only one edge (c,d) exists in the real graph, er should

be one. And the probability pr of connections between two groups can be estimated as

pr =
er

nLr ·nRr
= 1

9 .

3.2.3 Entropy

Entropy measures the uncertainty regarding the value of one random variable in in-

formation theory. The less probable the outcome of one random variable X is, the

greater its entropy is.

A random variable X has a probability p to render an outcome x, and a probability

1− p to generate another alternative outcome x ′. The uncertainty of an outcome of

this random variable X is defined as a binary entropy function,

H (X ) =−p log2 p − (1− p) log2 (1− p) (3.4)

with the convention that 0× log0= 0.

An ensemble random variable X , where the outcome x is the value of X , can take

on one of a set of possible values, CX = {c1, c2..., cK}. CX has probabilities PX =

{p1, p2, ..., pK}. The entropy of the ensemble variable X is,

H (X ) =H (p1, p2, ..., pK) =−
K
∑

k=1

pk log2 pk , (3.5)

Entropy has additive properties for independent variables. That is, if variable X

and Y are independent, the entropy of the outcome (x, y) satisfies,

H (X ,Y ) =H (X )+H (Y ) (3.6)

In addition, H (X )≥ 0 with equality if and only if pk equals to 0 or 1 for each k.

26



3.3 LORA: The Big Picture

Our proposed LORA framework consists of two main steps: (1) Find an HRG model

that fits the source graph best; (2) Based on the best-fitting HRG, reconstruct a new

graph by random link sampling. Algorithm 3.1 outlines the framework of LORA.

We firstly introduce two critical concepts: link and link probability. In our context,

the term link refers to the relation between two nodes. The term link probability is

a quantity to measure the strength of link. These two concepts are appropriate to

depict such a scenario: A pair of nodes, although not directly connected in the source

graph, may still have a weak relation (link) if the two share many common neighbours.

Due to these common neighbours, a promising connection may appear in the future.

For example, in social networks, friends of friends would more likely become friends

soon. To distinguish, we use the term “edge” if there is a direct connection between

two nodes in a graph.

The role of each link differs in its impact on topology. For instance, in Figure 3-1a,

links (c , d ) and (a, f ) exhibit the same topological effect, i.e., they are exchangeable.

Thus, we can replace edge (c , d ) in Figure 3-1a with link (a, f )without sacrificing any

topological structure (see Figure 3-2). Moreover, the role of vertex is fully determined

by the links incident upon the vertex. As Figure 3-1a shows, vertices c and d have the

same roles, and so are vertices a and b .

In order to estimate such link probabilities in the source graph, we adopt the hier-

archical random graph (HRG) model in LORA. More specifically, we use the Markov

Chain Monte Carlo (MCMC) method to find the HRG model that best fits the source

graph. We choose HRG as our model because it is a generic model, which describes a

graph’s structure in detail, including all the probabilities of a connection between any

two vertices in the graph. Here we extend the concept of this probability to be link

probability in order to quantify our “link” notion. In addition, in [CMN08], Clauset

et al. claim that the HRG model can capture assorted statistical properties of a graph.

It is also shown that hierarchy is a central organizing principle of networks [CMN08].

In contrast to simple clustering, HRG describes the vertices’ organization at all scales

in a network. The differences between graphs generated with one specific HRG would

be limited. Hence, HRG can effectively bound the distribution of regenerated random

graphs.
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Algorithm 3.1: The LORA Framework
Data: A simple source Graph G(V , E)
Result: A reconstructed random Graph G̃(Ṽ , Ẽ) for release, where Ṽ ⊆V

1 Dendrogram T ←− fitHRG(G)

2 foreach non-leaf node r in T do
3 Vl e f t (r )← findLeafVertices(left subtree of r)

4 Vr i g h t (r )← findLeafVertices(right subtree of r)

5 link equivalent class L(r )← Vl e f t (r )×Vr i g h t (r )

6 er ← the number of observed edges ∈Vl e f t (r )×Vr i g h t (r ) in G

7 randomly pick up er links in current equivalent class L(r ) to be new edges in G̃
8 end

Now, we begin to describe the two steps in LORA. At the first step of LORA,

we determine the best-fitting HRG model of the source graph by running MCMC

sampling algorithm until equilibrium and represent it as a dendrogram tree T (See Al-

gorithm 3.1, line 1). Leaf nodes in T correspond to vertices in the graph. Each non-leaf

internal node is associated with two communities(i.e. two sets of leaf nodes) induced

by its left and right subtrees (lines 3, 4). Ideally, links across these two communities

are viewed as approximately equivalent and exchangeable relationships in terms of the

inter-community association strength. We denote such a group of equivalent links as

one link equivalent class (line 5).

Secondly, in the reconstruction step (lines 6, 7), we replace true edges in the source

graph with their equivalent links in link equivalent classes. In order to maintain the

same inter-community association strength, we randomly pick the same number of

links in the link equivalent class to substitute the true edges observed in the source

graph. We then set the chosen links to be the new edges in the released graph (line 7).

We should stress that link obfuscation also comes simultaneously from such random

process. In the privacy analysis part, we would introduce the concept of “link entropy”

to assess the degree of privacy brought by link obfuscation.
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3.4 Link Obfuscation by Randomization with HRG

3.4.1 Link Equivalence Class

Given a network G(n, m) = (V , E) and its best-fitting HRG dendrogram tree T , links

bridging the nodes in the left and right subtrees are in the same equivalence class with

respect to their topological roles. Consider the graph G in Figure 3-1a and its best-

fitting dendrogram T in Figure 3-1c. At the top level of T , the dendrogram divides

into two subtrees, which induces two separate leaf sets - left subtree leaf set {a, b , c}

and right subtree leaf set {d , e , f }. All the possible cross links bridging these two leaf

sets consist of one link equivalence class. In this case, as shown by the dash lines in

Figure 3-1b, links (a, d ), (b , d ), (c , d ), (a, e), (b , e), (c , e), (a, f ), (b , f ), (c , f ) are 9 pairs

of links in one equivalence class. Let nLr and nRr be the sizes of the left and right leaf

sets respectively (in our example, nLr = 3, nRr = 3). Let er be the number of edges in

the source graph G linking the two sets (in Figure 3-1a, there is only one edge (c , d ),

so er = 1). We can then estimate the link probability of this link equivalence class as

er/(nLr · nRr ) = 1/(3 · 3) = 1/9. This probability indicates the connection strength

between the nodes in the two leaf groups. As such, we are now ready to obfuscate the

existence of connections of nodes by turning real edges into virtual probabilistic links.

Note that, ideally, if links in one equivalent class share exactly the same topological

roles, the new generated graph should also share exactly the same dendrogram as the

source graph. However, this is not usually the case. Very often, the equivalent link

class derived through HRG is a group of approximately topological similar links.

In this work’s analysis, we assume the released graph shares exactly the same best-

fitting(i.e., global optimal) dendrogram of the source graph. Note that, from a pri-

vacy’s perspective, it is apparent that, if the best-fitting dendrograms of the source and

released graphs are not the same, it would be even much harder to infer the source

graph from the released graph. Therefore, this assumption is biased against LORA

in terms of its privacy strength. Since the statistical relationship of each link in the

graphs are fully preserved in this ideal scenario, such released graphs would share the

same inherent statistical properties with the source graph. Essentially, all information

that the released and source graphs share is the dendrogram T in the ideal scenario.
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Figure 3-2: Perturbed Graph & Node Generalization

3.4.2 Link Replacement

Now we explain the link replacement procedure with an HRG during graph recon-

struction. We reconstruct a random graph by a series of link replacement procedures,

where each inner node in HRG corresponds to one link replacement procedure. Con-

sider one inner node r in dendrogram T . There are er real edges in G bridging

the two leaf node sets in the left and right subtrees in T . In order to maintain the

same connection strength between the two leaf node sets in the released graph G̃, we

randomly pick er links in an inner node r ’s link equivalent class to replace the er

real edges. The whole reconstruction process is done through n−1 independent link

replacement procedures, corresponding to n−1 inner nodes in HRG. Referring back

to our running example, let us consider the root node in the dendrogram. Since there

is only one real edge (c , d ), we need to find a link to replace it. Figure 3-2 shows the

released graph after link (a, f ) replaces edge (c , d ).

3.4.3 Hide Weak Ties & Retain Strong Ties

Essentially, a best-fitting HRG tends to exchange weak ties(yet true edges) in the source

graph with links that are not connected yet. See the instance of graph in Figure 3-1a

and its perturbed graph in Figure 3-2. By “weak ties”, we mean edges that are bridges

to link two strong-connected components in graphs. The edge between c and d in

Figure 3-1a shows such a case. As real world graphs are typically sparse, weak ties are

not uncommon. In fact, they are important channels between many clustered groups

and hold important roles in shaping the entire graph structure. In pure random edge

deletion schemes, such weak ties may be removed, which will severely undermine

the source graph’s structure. However, under our scheme LORA, link obfuscation is

employed to substitute such weak ties with “fake”(non-existent) ties within the same
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equivalence class. In this way, large amount of changes can be operated on the graph

while preserving the skeleton of the source graph as well as the clique-like components.

Using Figure 3-2 as illustration, we associate (small) link probabilities with weak

links, that is, links between leaf node sets {a, b , c} and {d , e , f }, which give much

freedom to perturb the source graph to obfuscate links in the released graph. In

this case, leaf nodes {a, b , c}, which are rooted in the same inner node, have exactly

the same link relationship towards all the other nodes. Therefore, they are inter-

changeable. In Figure 3-2, the skeleton (the dashed line and dashed circles) of the

perturbed graph (of the graph in Figure 3-1a) remains the same as the source graph.

For complete components, namely, clique, link probability obfuscation usually would

preserve them fully since they link with each other closely. This makes sense since

cliques are obvious features in graphs, one cannot perturb one complete graph without

sacrificing its property of complete graph. To improve the privacy of nodes in a clique,

an alternative way is to coalesce cliques into one super node. That is, in our context,

to generalize all the leaf nodes induced from one subtree in the dendrogram to one

supernode. Clearly, with a best-fitting dendrogram, it is very easy to identify effective

ways to coalesce subcomponents of graph with minimal disruptions to the remaining

structure.

3.5 Privacy Analysis

In this work, we use entropy as the privacy criterion to quantify the strength of link

obfuscation method in preserving link privacy.

As an analogy of binary entropy function, each link Ai j with link probability pi j

has binary link entropy

H (Ai j ) =−pi j log2 pi j − (1− pi j ) log2 (1− pi j ) (3.7)

Link entropy quantifies the degree of uncertainty of the existence of a edge, i.e., whether

nodes i and j are connected or not in source graph. A larger entropy value indicates

better privacy. For example, the table in Figure 3-1e is a matrix consisting of all link

entropies, which is derived by the probability matrix in Figure 3-1d for the graph

in Figure 3-1a. As shown in Figure 3-1e, links between node set {a, b , c} and set
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{d , e , f } have entropy 0.50, indicating the uncertainty level of the true state of the

links measured in entropy.

3.5.1 The Joint Link Entropy

It is not uncommon for attackers to attempt to identify a set of links, e.g. checking

the egocentric network of one node (i.e., all edges incident to that node), searching for

subgraphs and so on. To this end, we now formalize the joint link entropy to quantify

the degree of uncertainty in these scenarios.

Joint entropy of dependent links

For the links associated with the same inner node r in a dendrogram T , they are

dependent (or relevant) random variables. Consider observing the outcome of K (K ≤

nLr · nRr ) dependent links whose endpoints are rooted at the same lowest common

ancestor r in T . We use a joint ensemble variable Xr = Ar
i1 j1

Ar
i2 j2

...Ar
iK jK

to represent

the ensemble of such K link variables under observation. The ensemble variable Xr

can take on one of a set of possible ensemble outcomes, x s
r , which consists of the

outcome of each link variable Ar
i j . Here Ar

i j = 1 denotes link Ar
i j is chosen during

link replacement; otherwise, for non-chosen links, Ar
i j = 0. Each specific outcome x s

r

has a probability ps . In the context of link replacement, ps refers to the possibility

one specific outcome x s
r of the K relevant links (chosen or unchosen) appears after

link replacement. The link ensemble Xr has a joint probability distribution PXr
=

{ps1
, ps2

, ps3
, ...} over all possible outcomes. We use s to denote the specific values taken

by x s
r . s is essentially a sequence consisting of 0 or 1. We use S to denote the set of all

possible such sequences that the outcomes of Xr can have.

As one example, we consider the outcome values(i.e. the possible outcomes) of

links Xr = aad ab d acd in Figure 3-1a. Xr can take on one of 4 ordered sequence out-

comes, that is, no link selected from {Aad ,Ab d ,Acd}(outcome “000”); Acd selected(outcome

“001”); Ab d selected(outcome “010”) and Aad selected(outcome “100”). Consider the

calculation of ps (000), the probability that the outcome value of link set {Aad Ab d Acd}

is 000 after link replacement. First of all, after the link replacement regarding in-

ner node r , there are
�nLr ·nRr

er

�

types of outcomes for the whole link equivalent class.

Among all the outcomes, we count the number of outcomes where link {Aad Ab d Acd}
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is 000. Sequence 000 indicates that in the observed link set {Aad ,Ab d ,Acd}, none of

links is chosen. Let l denote the number of links chosen from the K relevant links.

Hence, in sequence 000, l = 0. The observed link set size K is 3 here. In order to

replace 1 (er = 1) original edge in G, another 1 (i.e., er − l = 1) link needs to be drawn

from the rest links in the inner node r ’s link equivalence class(nLr · nRr − K links).

There are
�nLr ·nRr−K

er−l

�

types of ensemble outcomes for drawing er− l links from the rest

links. Hence ps (000) is
�3·3−3

1−0

�

/
�3·3

1

�

= 6/9. In the following, we give the generalized

formula of ps :

ps =

�nLr ·nRr−K
er−l

�

�nLr ·nRr
er

�
(3.8)

where l is the number of links drawn from the observed K relevant links.

The joint entropy of dependent links is defined as,

H (Xr ) =H (Ar
i1 j1

Ar
i2 j2

...Ar
iK jK
)

=H (ps1
, ps2

, ps3
, ...) =−

∑

s∈S
ps log2 ps

(3.9)

which measures the degree of attacker’s uncertainty regarding a set of dependent links.

As illustration, we again consider the possible outcomes of links Xr =Aad Ab d Acd

in Figure 3-1a. The space of Xr ’s possible worlds consists of 4 binary sequences, i.e.,

{000,001,010,100}, with the probability distribution {6/9,1/9,1/9,1/9}. Note that

the possible outcomes are dependently distributed, yet not identical. The correspond-

ing joint entropy of Xr is 1.45.

Joint entropy of independent links

For the links associated with different inner nodes, they are independent random

variables. The joint ensemble of independent links is the sum of the link entropy

of each link, i.e.,

H (X ) =H (Ar1
i1 j1

Ar2
i2 j2

...ArH
iH jH
) =

H
∑

h=1

H (Arh
ih jh
) (3.10)
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Joint entropy of arbitrary links

Given a set of arbitrary links, we separate them into two categories: independent links

and dependent links. Essentially we arrange the links in different groups according

to the inner node in the dendrogram they associate to. Links in the same group are

dependent. Otherwise, they are independent. The joint entropy of arbitrary links is

the sum of the joint entropy of each group, which is given by the following equation,

H (Xr1,r2...rU
) =

U
∑

u=1

H (Xru
) (3.11)

In order to provide a more meaningful measure of each vertex’s privacy, we next

define the notation of the entropy of a vertex’s egocentric network. The egocentric

network is one smallest subgraph centered on each node. The egocentric network

entropy is an ensemble entropy regarding all the immediate links associated with the

node,

Definition 3.1. ( Joint entropy of vertex i ’s egocentric network) H (vi ) is the entropy

of the joint link entropy H (Ai j1
Ai j2

...Ai jn−1
) which includes all links incident to vertex i .

This definition quantifies an attacker’s uncertainty towards the composition of one

vertex’s egocentric network.

Traditionally, for randomization schemes, the posterior belief is used to measure

an attacker’s uncertainty [YW08; HMJ+08]. Here we use entropy rather than the

posterior belief for clarifying the ensemble uncertainty of possible worlds. Consider

a link with probability p. For an attacker, there are two scenarios: Ai j = 0 or Ai j = 1.

Rather than specifying that the attacker has posterior belief p for Ai j = 1 and posterior

belief 1− p for Ai j = 0, we use H (Ai j ) to evaluate the attacker’s uncertainty of this

link random variable as a whole. H (Ai j ) reflects the extent to which an attacker is

unsure of Ai j ’s real outcome in all its possible worlds. Note that the possible worlds are

not always evenly distributed. Entropy describes the extent of obfuscation compactly

instead of specifying several probabilities of each possible world. This is particularly

convenient in more intricate scenarios, especially in the case of joint entropy.

Essentially, the released graph conveys the same amount of information contained

in the dendrogram, which indicates that the most amount of information attackers
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can infer from one released graph is just the dendrogram, by using MCMC to learn

from the released graph. Note that each link replacement procedure associated with

one inner node in the dendrogram cannot be directly learned, since it operates as a

non-deterministic mapping function. Information transferred after link obfuscation

is inherently blurred according to the HRG model.

3.5.2 Link Obfuscation VS Node Obfuscation

In [BGT11], Bonchi et. al. claim that entropy-based quantification of anonymity

level is more adequate than quantification based on posteriori belief probabilities. Our

approach is similar in spirit to their work, but differs crucially in the quantity under

measurement. Rather than defining the quantity of node identity anonymity level

directly, we consider an entropy quantification for links. Bonchi’s work is mainly

concerned with re-identification of node identity, while our work attempts to address

re-identification of links. Moreover, in [BGT11], node candidates are the vertices in

the released graph G̃. But in our scheme, link candidates are the imaginary possible

worlds during obfuscation scheme.

Furthermore, we show that link entropy distinguishes the uncertainty of links in

different distributions of possible worlds under randomization scheme. As illustra-

tion, we consider the following two situations:

(1) p(Aab = 0,Aac = 1) = 1/2,

p(Aab = 1,Aac = 0) = 1/2,

p(Aab = 0,Aac = 0) = 0,

p(Aab = 1,Aac = 1) = 0.

(2) p(Aab = 0,Aac = 1) = 1/2,

p(Aab = 1,Aac = 0) = 1/6,

p(Aab = 0,Aac = 0) = 1/6,

p(Aab = 1,Aac = 1) = 1/6.

We note that with the probabilities listed above, it is hard to evaluate which of the

two cases brings more uncertainty. We next show how link entropy can distinguish the

extent of these two cases’ uncertainty. According to Equation 7, in case 1, the joint link

entropy is log2 2, but it is log2 2
p

3 in case 2. Although an attacker’s greatest confidence

about the state of links in released graph is both 1/2 in two the cases, the attacker needs

more effort to cross out the more uncertain possible worlds in the second case. Under

LORA, during link replacement, the existence of a weak tie in graph is blurred since

the link probability is effectively being spread among the fake candidate links in the

35



Aij=0 Ãij=0 
100% 

0% 

1-p 

p 
Aij=1 Ãij=1 

(a) Random Sparsification

Aij=? 
Ãij=0 1-pij 

pij Ãij=1 

(b) Link Obfuscation

Figure 3-3: Link Obfuscation VS Random Sparsification

equivalence class. Thus, the uncertainty of possible worlds of links is increased.

Our scheme is specially designed for link privacy in the first place. But more im-

portantly, the uncertainty of links would directly undermine the structural knowledge

that the attackers can hold in any attacks. This is because links, the smallest atomic

elements in graph, are the foundations of all the structure knowledge attackers can

hold in a simple graph.

3.5.3 Randomization by Link Obfuscation VS Edge Addition/Deletion

Unlike randomization schemes in [HMJ+08; YW08; HGP09; BGT11], link probabil-

ity obfuscation is a sophisticated method based on the source graph’s characteristics.

We use Figure 3-3 to illustrate the difference between random sparsification [BGT11]

and link obfuscation. For the pure random sparsification, links are perturbed in a

way similar to a coin flipping game, where the coins are the same and independent.

As it turns out in Figure 3-3a, every Ai j is associated with the same parameter p in the

procedure of perturbation. Each Ai j “flips” like a coin in the same way. Conversely, in

LORA (see in Figure 3-3b), each Ai j owns its specific perturbation parameter pi j . Each

inner node in the dendrogram is associated with one independent link replacement

procedure. During each procedure, links in the link equivalence class are all related.

This means more dedicate modifications are allowed on the source graph.

From entropy’s perspective, in the former scheme, all Ai j = 0 will retain its state

in the released graph. Therefore, the entropy H (Ai j |Ãi j = 1) = −p(Ai j = 0|Ãi j =

1) log p(Ai j = 0|Ãi j = 1)− p(Ai j = 1|Ãi j = 1) log p(Ai j = 1|Ãi j = 1) = −0 · log0− 1 ·

log1 = 0. This implies that an attacker can learn that Ai j = 1 if the observation is

Ãi j = 1 in the released graph. However, in the latter scheme, pi j that Ai j associates
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with is not necessarily always 0 or 1. Hence, if pi j 6= 0 or pi j 6= 1, it is almost not

learnable from the obfuscation procedure. In other words, it is difficult to infer the

true state in the source graph with full confidence.

3.6 Experimental Studies

In this section, we report empirical results of experimental studies to evaluate the

effectiveness of LORA.

3.6.1 Datasets

We conducted our experiments on four real-world datasets, namely polblogs, wiki-Vote,

ca-HepPh and ca-AstroPh1.

polblogs A network recorded in 2005 that contains of hyperlinks between webblogs

on US politics.

wiki-Vote A social network contains Wikipedia voting information for adminship

elections. An edge is created between two participants if one voted on or was

voted by the other.

ca-HepPh A collaboration network depicts scientific collaborations between authors

whose papers submitted to High Energy Physics category. An edge is created if

two authors co-authored a paper.

ca-AstroPh A collaboration network covers collaboration between authors whose

papers submitted to Astro Physics category.

A detailed record about the number of vertices and the number of edges in the above

networks is provided in Table 3.1. All datasets are pre-processed to be undirected

without self-loops.

3.6.2 Experimental Setup

One objective of our experiments is to evaluate to which extent our method can pre-

serve the network data’s features. To this end, we measure several network statistics
1polblogs is available at http://www-personal.umich.edu/~mejn/netdata/; wiki-Vote, ca-HepPh

and ca-AstroPh are available at http://snap.stanford.edu/data/index.html.
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Table 3.1: Network dataset statistics

Dataset #Nodes #Edges Max Degree Pair
polblogs 1,224 16,715 (351, 277)

wiki-Vote 7,115 100,762 (1065, 773)
ca-HepPh 12,008 118,489 (491, 486)

ca-AstroPh 18,772 198,050 (504, 420)

both on the original networks and on the anonymized networks. We then compare

the results and expect to observe that the anonymized networks are similar to the

original ones regarding to such statistics. Specifically, we will examine the networks’

degree distribution (i.e., the distribution of vertices degrees over the whole network),

shortest path lengths (i.e., the shortest path lengths between any two vertices in the

network) and compare the composition of top-k influential vertices(including overlap

percentage and mean absolute error of the vertex’s influence score).

Our second objective is to assess the level of anonymity by our method. Our

strategy is to measure the egocentric entropy for all vertices in the source graph of

each dataset, according to the derived best-fitting HRG model used to reconstruct the

released graph. Notice that the entropy we measure here is a subgraph’s entropy, that

is, each node’s egocentric network. The larger the entropy is, the more uncertainty

possesses by the HRG structure. The lowest value of entropy is zero. It means there

is no uncertainty regarding the node’s egocentric network.

All our experiments were done on Intel Xeon E5607 servers with 2.27G CPU and

32GB RAM.

3.6.3 Data Utility Analysis

Now we report the experiments on network statistics for the four datasets.

Degree Distribution

Figure 3-4 shows the degree distribution histogram of the source and released graphs.

We have on the x-axis the degree size and on the y-axis in log-scale the count of ver-

tices having the corresponding degree. We observe that in each subfigure, the two

histograms share similar shapes. Specifically, we see the released graph can still mimic

the original graph on the large degrees after the perturbation. This indicates both

histograms have “fat tails” with similar length and shapes in their distributions. It is
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known that such networks characterized by the fat-tail have scale-free property.

Shortest Path Lengths

Figure 3-5 reports shortest path length histograms. As it turns out, the released graphs’

distribution does not lose much of the general shape of source graphs in all figures. In

most figures, we also observe an increase in small short path in the released graphs.

However, it should be noted that often short paths correspond to the local structures

in a network. Hence we believe this shall not significantly affect the network’s global

structure.

Influential Vertices

Identifying the most influential vertices/nodes in social networks is a key problem

in social network analysis. In our experiments, we consider the eigenvector centrality

(EVC) score as the measure to rank the vertices in networks. EVC scores correspond to

the values of the first leading eigenvector of the graph’s adjacency matrix (the one with

the greatest eigenvalue). Intuitively, EVC measures the nodes’ influence by virture of

their positions in a network, that is, the sum of the geodesic distances from each vertex

to all others. The eigenvector approach attempts to find the most central vertices (i.e.,

those with the smallest geodesic distance to others) in terms of the “global" or “overall"

structure of the network. The first eigenvector usually captures the “global" aspects of

distances among vertices, while the second and subsequent ones capture more specific

and local structures.

In our experiments, we first test the percentage of common vertices in top-k most

influential vertices of the original graphs and those of the sanitized graphs. We exam-

ine top 10, 20, 50 influential vertices as well as top 1% and 5% nodes in the networks.

The results are presented in Figure 3-6. We see that HRG guarantees a consistent 25%-

75% overlap of common vertices in most cases.
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Figure 3-6: Overlap percentage of top-k influential vertices
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Figure 3-7: Mean absolute error of top-k vertices
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Figure 3-8: Egocentric entropy

We then calculate the mean absolute error of the top-k most influential vertices’

EVC scores. Let the set of top-k vertices in the original graph be α and that of the

sanitized graph be β. To show that nodes in β have similar centralities to those in α,

we use the mean absolute error (MAE) to compare the EVC scores in β with those in

α. Formally, the MAE value is formulated by:

M AE(α,β) =
1
k

k
∑

i=1

�

�

�EV C (v i
α)− EV C (v i

β)
�

�

�, (3.12)

where v i
α and v i

β
are the top-i nodes in α and β, respectively. The result is shown in

Figure 3-7. We see that all MAE value remains low(around or below 0.25) for most

cases.
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3.6.4 Privacy Analysis

To understand the effectiveness of LORA, we report the histogram of the vertex ego-

centric entropy in Figure 3-8. The horizontal axis specifies the egocentric entropy

interval. The vertical axis specifies the number of vertices. From Figure 3-8, we ob-

serve that a great portion of vertices has very large entropy(in unit of bit). It indicates

significant amount of uncertainty regarding these vertices’ egocentric networks in the

released graph. However, we also note that there are some vertices with relatively low

entropy. In this case, attackers can believe their egocentric networks in the released

graph are likely to be close to the source egocentric networks. However, it should

be noted that such nodes with low egocentric entropy can be further generalized in

order to improve their privacy. As link probabilities of such nodes are close to 0 or

1, they are most likely to be the nodes in cliques or isolated. Clique-like nodes can be

coalesced into a super node. Figure 3-2 shows one such example. Isolated nodes can

be removed from the released graphs. Both procedures shall not significantly disrupt

the global graph structure. Such node generalization strategy is akin to the approach

illustrated in [HMJ+08].

3.7 Summary

In this chapter, we have proposed a randomization scheme, LORA, to preserve link

privacy of network data publishing. LORA builds the best-fitting HRG structure of

the source graph, and uses it to reconstruct a set of graphs that preserve the statistical

graph properties of the source graph. The released graph is then selected from these

graphs. We also introduced and argued that the link entropy concept is an appro-

priate measure of the uncertainty degree of links. Our experimental results showed

that the released (reconstructed) graphs have acceptable link entropy while preserving

statistical properties such as degree distribution, shortest path lengths and influential

nodes.
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Chapter 4

Differentially Private Network Data

Release via Structural Inference

4.1 Introduction

Previously, a great deal of work has investigated anonymization techniques [ZP08;

LT08; CSY+08; HMJ+08; ZCO09; CFL10] to ensure network data privacy. Our

first work on LORA in Chapter 3 also can be categorized into this group. However,

it has been shown that anonymization is susceptible to several newly discovered pri-

vacy attacks and might lead to further privacy breaches. Recently, differential pri-

vacy(DP) [DMN+06] has been proposed to solve such vulnerability. In this chapter,

we study the problem of releasing network data under this emerging privacy standard.

Given a network dataset, our goal is to release its sanitized differentially private version

to hide each participant’s connections to others while preserving essential structural

information to support data analysis. In this work, we adopt the rigorous differential

privacy definition, that is, ε-differential privacy, to be our privacy model.

To ensure differential privacy, the standard technique is to add Laplace noise to

query answers. However, network data can be very sensitive to relatively small changes

in the network structure. Direct perturbation in the data domain (e.g., adding noise

to a subgraph counting query in order to obscure the presence or absence of an edge)

normally incurs excessive noise, which makes it impossible to conduct any effective

data mining on the sanitized data. An alternative solution is to first project the data

to other domains (e.g., the graph spectral domain [WWW13], which is analogous to
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the classical frequency domain, or some parametric model space that describes the

observed network, such as dK -2 series [SZW+11; WW13]). While this idea is appeal-

ing, the resultant data utility of the existing works in this direction is still undesirable

for many graph mining algorithms. For example, Wang et al. [WWW13] propose to

perturb the eigenvalues and eigenvectors of the corresponding adjacency matrix. This

approach requires to impose noise of magnitude proportional to O(
p

n), where n is

the number of vertices in the input network, and therefore massive noise has to be

injected in large real-life network datasets. As another example, the works [SZW+11;

WW13] consider to approximate the original network by the dK -series. To achieve

ε-differential privacy, the global sensitivity of this scheme is O(n) even for dK -2 series,

which also demands excessive noise to be added.

In this work, we advocate a different approach that can offer better data utility.

Broadly, we propose to encode a network’s structural information in terms of link

probabilities between vertices, rather than the presence or absence of the observed

edges. The fundamental advantage of adopting such a perspective is that we can capture

the generally understandable and statistically meaningful properties of the network

while “diluting" the impact of a single edge. In the context of differential privacy, this

means that we can significantly lower the magnitude of noise added to mask the change

of a single edge.

In essence, link probabilities can be estimated by a set of edge-counting queries (i.e.,

a query that counts the number of edges between two given sets of vertices). Therefore,

our problem can be converted to a problem of finding a strategy to identify a good set

of edge-counting queries that truthfully represent a network’s structure. This can be

done in many possible ways. In particular, we use the statistical hierarchical random

graph (HRG) model [CMN08], the same graph model adopted in Chapter 3, for this

purpose. Recall that HRG model can carefully map all participants of a network into

a hierarchical structure (called a dendrogram) and record link probabilities between

any pair of vertices in the network. This allows us to draw a sample model from

the model’s space, which essentially consists of a set of good edge-counting queries.

Moreover, the model itself is paired with a likelihood score, which makes it possible

to observe the quality of released data.

Technically, we make the following contributions. Unlike existing studies, we
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propose to infer a network’s structure via link probabilities. We further identify that

the HRG model can be used to encode a network in terms of a set of such link prob-

abilities. Generating a good HRG under differential privacy requires careful design.

We do not directly perturb the best-fitting HRG of the input network (i.e., the HRG

generated by the non-private algorithm), but rather, we infer the HRG by learning

in the entire HRG model space and sampling an HRG by a Markov chain Monte

Carlo (MCMC) method while satisfying differential privacy. Given a sampled HRG,

we propose a carefully designed thresholding strategy coupled with the Erdős-Rényi

model to calculate the noisy link probabilities.

We adopt such a methodology for two reasons. First, relying on the best-fitting

HRG itself will incur a high sensitivity. Changing even one edge in the network may

result in a great number of changes in both the dendrogram’s structure and the set of its

associated link probabilities. This is undesirable since it may alter many of the HRG’s

parameters in the worst case. In contrast, we design an MCMC method to iteratively

learn a reasonably good HRG from the entire HRG space. By construction, with a

single edge difference, only one probability in the HRG would be influenced. Second,

it is non-trivial to sample a good HRG in our setting because it is computationally

challenging to compute the scores of all possible HRGs even for a small network. It

can be seen that there are a total of (2n− 3)!! ≈
p

2(2n)n−1e−n possible dendrograms

for a network with n vertices. Hence, it is computationally infeasible to directly apply

the exponential mechanism. We side-step this problem by using an MCMC method,

which is in a similar spirit to the idea in [SY13]. However, our problem and challenges

are quite different from those in [SY13]. Our goal is to publish the entire graph,

not frequent subgraphs. A direct consequence is that we have to harness the large

sensitivity in our problem, while it is always 1 in [SY13].

From the perspective of utility, we rigorously prove that the sensitivity of our

proposed approach is O(log n) for fitting the dendrogram structure, which reaps the

benefit of preserving good data utility in theory. We conduct extensive experiments

on four real-life datasets to evaluate the effectiveness of our solution. We demonstrate

that our approach significantly outperforms the state-of-the-art competitors [WW13;

WWW13].
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4.2 Preliminaries

In this section, we briefly introduce the hierarchical random graph (HRG) model and

differential privacy.

4.2.1 Hierarchical Random Graph

HRG was previously introduced in Chapter 3 where we presented the work on LORA.

But in LORA, we put our focus on the best-fitting HRG structure. In this section, we

will elaborate more about the distribution of HRG in the entire structure space.

Basically, we view the underlying network in observation as a data sample drawn

from a population of networks of interest. HRG essentially describes a population

of random graphs that share similar topological structure. To obtain the best-fitting

HRG that matches the observed graph in its structure features, we start with a ran-

dom HRG, sample HRG in sequence by performing a random walk over the en-

tire HRG space, continually making inferences from data and gradually reducing the

uncertainty. On the other hand, Clauset et al. [CMN07; CMN08] show that such

hierarchical structure can be an inherent core aspect of networks. Hence HRG can

reproduce simultaneously many important statistical features and signature network

behaviors in its random graph samples after the convergence. As a theoretical tool yet

still affording great flexibility, HRG has recently begun to gain recognition and been

included in the popular network analysis library, “igraph”1.

For ease of reference, we reproduce the notations in Chapter 3 here. Let G =

(V , E) to be the original network data(i.e., an undirected simple graph) we want to

release. T denotes a HRG’s structure, that is, a dendrogram. T is essentially a rooted

binary tree with n leaf nodes corresponding to the n vertices of G. Each internal

node r of T is associated with a probability pr . For any two vertices (i , j ) of G, their

probability of being connected pi , j = pr , where r is their lowest common ancestor in

T . Formally, an HRG is defined by a pair (T ,{pr }).

Lr and Rr denote the left and right subtrees of r respectively. nLr and nRr denote

the numbers of leaves in Lr and Rr respectively. We use er to represent the number of

edges in G whose endpoints are leaves of each of the two subtrees of r in T .

1http://igraph.org/c/doc/igraph-HRG.html
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Figure 4-1: An example of the HRG model in [CMN08]

The log-likelihood of an HRG for a given graph G measures how plausible this

HRG is to represent G, which can be computed with the following formula:

logL (T ,{pr }) =−
∑

r∈T

nLr nRr h(pr ) (4.1)

where h(pr ) =−pr log pr−(1−pr ) log(1−pr ) is the Gibbs-Shannon entropy function.

We useL (T ) to simplify the notationL (T ,{pr }) in the following context when there

is no confusion.

We now use one example to further demonstrate how the log-likelihoods distinguish

different HRG structures in terms of their fitness to describe the underlying networks.

Example 4.1. Figure 4-1b and 4-1c give an example of two possible dendrograms, T1 and

T2, for an original graph in Figure 4-1a(the same graph used in Chapter 3). Following the

same method in Chapter 3, it’s easy to calculate all {pr }. We then compute the likelihoods

of the dendrogram T1 and T2. Specifically,L (T1) = (1/3)(2/3)
2(1/4)2(3/4)6 ≈ 0.00165,

andL (T2) = (1/9)(8/9)
8 ≈ 0.0433. SinceL (T2) is much larger thanL (T1), T2 is a more

plausible hierarchy to describe the original graph. As we can see visually, this is indeed the

case.
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4.2.2 Differential Privacy

Differential privacy [DMN+06] has emerged as a prevalent privacy model. It is based

on the concept of neighboring databases. The privacy guarantee of differential privacy

in the context of network data depends on the interpretation of neighboring graphs.

In this work, we define two graphs G1 = (V1, E1) and G2 = (V2, E2) to be neighbors if

V1 =V2, E1 ⊂ E2 and |E1|+1= |E2|. Formally, ε-differential privacy for network data

is defined below.

Definition 4.1 (ε-Differential privacy). A randomized algorithmA is ε-differentially

private if for any two neighboring graphs G1 and G2, and for all outputs O ⊆ Ran g e(A ),

Pr[A (G1) ∈O]≤ eε×Pr[A (G2) ∈O]

Our definition of differential privacy is also known as edge differential privacy [HLM+09].

Intuitively, it hides the existence of any single edge from an adversary. The smaller ε

is, the better the privacy protection is. Normally, ε is a small value (e.g., ε≤ 1).

Differential privacy can be achieved by two standard mechanisms, the Laplace

mechanism [DMN+06] and the exponential mechanism [MT07]. Both mechanisms

are based on the concept of global sensitivity of a function f . For any two neighboring

graphs G1 and G2, the global sensitivity of a function f : G → Rd is defined as

∆ f = maxG1,G2
‖ f (G1)− f (G2)‖1, where d is the metric on the output space(we use

L1 distance as the metric in our definition).

The Laplace mechanism is mainly used for queries which return real values. It

adds properly calibrated noise to the true answer to a query. More precisely, given a

function f and the privacy parameter ε, the noise is drawn from a Laplace distribution

with the probability density function p(x|λ) = 1
2λ e−|x|/λ, where λ=∆ f /ε.

Theorem 4.1 (Laplace mechanism [DMN+06]). For any function f : G → Rd , the

mechanismA

A (G) = f (G)+ 〈Lap1(
∆ f
ε
), . . . ,Lapd (

∆ f
ε
)〉

gives ε-differential privacy, where Lapi (
∆ f
ε ) are i.i.d Laplace variables with scale parame-

ter ∆ f
ε .
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The exponential mechanism is mainly used for functions whose outputs are not

real numbers. Its general idea is to sample an output o from the output space O

according to a utility function u. It assigns exponentially greater probabilities of being

selected to outputs of higher scores so that the final output would be close to the opti-

mum with respect to u. Let the global sensitivity of u be∆u =maxo,G1,G2
|u(G1, o)−

u(G2, o)|.

Theorem 4.2 (Exponential mechanism [MT07]). Given a utility function u : (G ×

O ) → R for a graph G, the mechanism A that samples an output o with probability

proportional to exp( ε·u(G,o)
2∆u ) satisfies ε-differential privacy.

4.3 Structural Inference under Differential Privacy

4.3.1 Overview

Before presenting the details, we first give an overview of our method. Our goal is

to release a sanitized network eG that matches the structural properties of the original

network G as closely as possible while satisfying ε-differential privacy. Our general

idea is to identify the hierarchical random graph (HRG) that best fits G and then

generate eG from the identified HRG.

Recall that an HRG consists of a dendrogram T and a set of associated probabilities

{pr }. This means that we need to not only identify a good fitting dendrogram but

also calculate its associated probabilities. In this process, we face two major technical

challenges: (1) How to find a good dendrogram from a factorial number of candidates

while satisfying ε-differential privacy, and (2) how to calculate the probabilities that

might be dominated by injected noise. We address the first challenge by designing a

Markov chain Monte Carlo (MCMC) procedure, which samples a good dendrogram

according to its likelihood. Next, we cope with the second challenge by developing

an effective thresholding strategy that is backed up by the Erdős-Rényi model. After

generating a representative HRG for G, we generate eG by placing edges according to

{pr }.
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Algorithm 4.1: Differentially Private Dendrogram Fitting
Input : Input graph G, privacy parameter ε1
Output: Sampled dendrogram Tsam p l e

1 Initialize the Markov chain by choosing a random starting dendrogram T0;

2 for each step i of the Markov chain do
3 Randomly pick an internal node r in Ti−1;

4 Pick a neighboring dendrogram T ′ of Ti−1 by randomly drawing a
configuration of r ’s subtrees;

5 Accept the transition and set Ti = T ′ with probability

min(1, exp( ε12∆u ·logL (T ′))
exp( ε12∆u ·logL (Ti−1))

);

6 end

7 //when equilibrium is reached

8 return the sampled dendrogram Tsam p l e = Ti ;

4.3.2 Algorithms

We now formally describe our solution (referred to as HRG in the sequel). Our so-

lution is composed of three steps: (1) differentially privately sample a good dendro-

gram Tsam p l e from the entire dendrogram space (Algorithm 4.1); (2) given the sampled

dendrogram Tsam p l e , compute the probabilities {pr } associated with Tsam p l e (Algo-

rithm 4.2); (3) generate the sanitized graph according to the identified HRG (Algo-

rithm 4.3). We divide the total privacy parameter ε into 2 portions, ε1 and ε2, each

being used in one of the first two steps. Note that the third step does not require any

privacy parameter.

Differentially Private Dendrogram Fitting. Since, for an input graph G with n

vertices, each of its dendrograms T is associated with a log-likelihood logL (T ), which

measures its goodness of representing G, a straightforward attempt to achieve dif-

ferential privacy is to employ the exponential mechanism. Let the utility function

be u(T ) = logL (T ). The exponential mechanism samples T with probability pro-

portional to exp( ε12∆u ·u(T ))
∑

T ′∈T
exp( ε12∆u ·u(T ′))

, where T is the entire output space (i.e., the set of all

possible dendrograms of G). Unfortunately, this simple idea is computationally in-

feasible because it requires to enumerate a total of |T | = (2n − 3)!! ≈
p

2(2n)n−1e−n

possible dendrograms. In our solution, we overcome the issue by designing an MCMC

process, which simulates the exponential mechanism by a sequence of local transitions
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Figure 4-2: Three configurations of r ’s subtrees [CMN08]

in T . Our differentially private dendrogram fitting algorithm is summarized in Algo-

rithm 4.1.

Algorithm 4.1 is based on the Metropolis algorithm [BGJ+11]. It starts by choos-

ing an arbitrary dendrogram T0 ∈ T as the initial state of the Markov chain (Line 1).

It then iteratively performs the following procedure (Lines 2-6): randomly propose

a neighboring dendrogram T ′ of the dendrogram Ti−1 in the previous iteration and

update the current state in the following way:

Ti =







T ′ with probability α

Ti−1 with probability 1−α

where the acceptance ratioα=min(1, exp( ε12∆u ·logL (T ′))
exp( ε12∆u ·logL (Ti−1))

) and∆u is the global sensitivity

of the utility function u. We show how to calculate∆u in Section 4.4.2.

To draw a neighbor T ′ of Ti−1 uniformly at random, we first randomly choose

an internal node r in Ti−1 (other than the root) and then permute the three subtrees

associated with r to generate two alternative configurations of r ’s subtrees, as illus-

trated in Figure 4-2. One of these two configurations is chosen to be the neighboring

candidate T ′. Let the state space of this Markov chain beT . It is easy to verify that the

transitions based on this permutation scheme are both reversible and ergodic (i.e., any

pair of dendrograms can be connected by a finite sequence of such transitions). Hence,

such an MCMC procedure has a unique stationary distribution after it converges to

equilibrium. We run the above Markov chain until equilibrium is reached, which in-

dicates that the desired distribution has already been reached. Therefore, the sampled

dendrogram Tsam p l e is indeed drawn from the stationary distribution (Line 8).

In practice, there are many approaches to diagnose MCMC convergence. Here we

follow the method used in [CMN07; CMN08]. Specifically, we use the heuristic of
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Algorithm 4.2: CalculateNoisyProb(G,Tsam p l e , r ∗,ε2)

Input : Input graph G, sampled dendrogram Tsam p l e , privacy parameter ε2,
internal node r ∗

Output: A vector of noisy probabilities {fpr }, where r ∈ {r ∗, all internal nodes
below r ∗}

1 λb =
1

ε2·(nLr∗ ·nRr∗ )
;

2 λc =
1

ε2·((nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2) ;

3 if λb ≥ τ1 and λc ≥ τ2 then

4 ec (r
∗)← number of edges in the subgraph induced by all leaf nodes of the

subtree rooted at r ∗;

5 ep =min{1,
ec (r

∗)+Lap( 1
ε2
)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2};

6 for each r in {r ∗, all internal nodes below r ∗} do
7 fpr = ep;
8 end
9 else

10 epr ∗ =min{1,
er∗+Lap(

1
ε2
)

nLr∗ ·nRr∗
};

11 rL← r ∗’s left child;

12 rR← r ∗’s right child;

13 CalculateNoisyProb(G,Tsam p l e , rL,ε2);

14 CalculateNoisyProb(G,Tsam p l e , rR,ε2);
15 end

the average log-likelihood to judge whether the Markov chain has converged to the

stationary distribution. We will elaborate more details of MCMC convergence time

in Section 4.5.2. Additional discussion about the convergence and its mixing time can

be found in [CMN07; CMN08].

Noisy Probability Calculation. In the second step, we calculate the noisy proba-

bilities associated with Tsam p l e ’s internal nodes. Recall that, for an internal node r ,

its associated probability pr =
er

nLr ·nRr
(see Section 4.2.1). It is easy to observe that

the probabilities of the internal nodes rooted in smaller subtrees (i.e., in lower levels

of Tsam p l e ) are generally more sensitive to Laplace noise injected. Indeed, according

to our experiments, the direct application of the Laplace mechanism to these nodes’

probabilities results in poor utility. To relieve such negative effects, we propose a

carefully designed thresholding strategy coupled with the Erdős-Rényi model, which

is presented in Algorithm 4.2.
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The general idea is that if a probability pr cannot be “reliably” estimated by ap-

plying the Laplace mechanism to er
nLr ·nRr

, we employ the Erdős-Rényi model to ap-

proximate the probability. To measure the reliability of a noisy probability, we set

up the sentinel λb . For an internal node r ∗ in Tsam p l e , λb is set to 1
ε2·(nLr∗ ·nRr∗ )

(Line 1),

which measures the noise scale of the potential noisy probabilityÝpr ∗ . If λb is relatively

large with respect to a threshold value τ1 (that is, the probability cannot be reliably

calculated by the Laplace mechanism), we model the subgraph induced by all leaf nodes

of the subtree rooted at r ∗ as an Erdős-Rényi random graph. With this model, the link

probability of any pair of vertices in this subgraph is ec (r
∗)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2 , which is

later perturbed by the Laplace mechanism (Line 5). Otherwise, we can expect that
er

nLr ·nRr
still gives a good estimation after adding noise. Hence we directly generate the

noisy probability as min{1,
er∗+Lap(

1
ε2
)

nLr∗ ·nRr∗
} (Line 10) and perform the similar procedure on

r ∗’s children (Lines 11-14).

In Algorithm 4.2, we calculate the noisy probabilities in a top-down manner over

Tsam p l e . During this process, the approximated probabilities based on the Erdős-Rényi

model also become less accurate due to added Laplace noise. Here, we would also

like to guarantee the accuracy of the perturbed approximated probabilities. For this

reason, we introduce another sentinel λc (Line 2), which is compared with a thresh-

old value τ2 to indicate whether the noise scale of the approximated probabilities is

acceptable. In summary, we employ the Erdős-Rényi model when (1) the probability

cannot be accurately estimated by
er∗+Lap(

1
ε2
)

nLr∗ ·nRr∗
(guarded by λb ), and (2) injecting noise

to ec (r
∗)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2 would not seriously affect its accuracy (guarded by λc ). This

explains our condition in Line 3. In this case, the probabilities of r ∗ and all inter-

nal nodes below r ∗ will be approximated by the Erdős-Rényi model (Lines 6-8). In

our experiments, we observe that setting τ1 = 0.05 and τ2 = 0.01 gives good results

over different real-life datasets. Note that the choices of these thresholds are data-

independent: the tuning of τ1 and τ2 only relies on ε2.

Sanitized Graph Generation. With the sampled dendrogram Tsam p l e and the set of

noisy probabilities {fpr }, we generate the sanitized graph as follows (Algorithm 4.3).

For each pair of vertices i , j ∈V , we find their lowest common ancestor r in Tsam p l e

(Line 4), and then place an edge between them in eG with probability fpr (Line 5).
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Algorithm 4.3: Generate Sanitized Graph eG
Input : Input graph G, sampled dendrogram Tsam p l e , privacy parameter ε2

Output: Sanitized graph eG

1 rr oot ← root node of Tsam p l e ;

2 CalculateNoisyProb(G,Tsam p l e , rr oot ,ε2);

3 for each pair of vertices i , j ∈V do

4 Find the lowest common ancestor r of i and j in Tsam p l e ;

5 Place an edge in eG between i and j with independent probability fpr ;
6 end

7 return sanitized graph eG;

4.4 Privacy Analysis

In this section, we formally analyze the privacy guarantee of our algorithm HRG.

4.4.1 Privacy via Markov Chain Monte Carlo

We first show that the MCMC-based Algorithm 4.1 can satisfy differential privacy.

Recall that the main purpose of applying the MCMC method is to draw a random

sample from the desired distribution. Essentially, the standard exponential mechanism

for achieving differential privacy is also a method to sample an output o ∈ O in

the target distribution with probability proportional to exp(ε · u(o)/2∆u), where

u(o) is the utility function and ∆u is its sensitivity. Hence we see that, by matching

the stationary distribution of MCMC with the target distribution required by the

exponential mechanism, MCMC can be used to realize the exponential mechanism.

In our setting, we set the utility function u(T ) of a dendrogram T to be logL (T ),

the log-likelihood of T , and the acceptance ratio of MCMC to be min(1, exp( ε12∆u ·logL (T ′))
exp( ε12∆u ·logL (Ti−1))

).

Therefore, when the Markov chain converges to the stationary distribution π, we

indeed draw a sample T from π with the probability mass function:

P r (T ) =
exp( ε1

2∆u · logL (T ))
∑

T ′∈T
exp( ε1

2∆u · logL (T ′))
.

This is equivalent to the exponential mechanism which outputs T with probability
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proportional to exp( ε1
2∆u · logL (T )). Therefore, we can conclude that Algorithm 4.1

satisfies ε1-differential privacy.

We refer interested readers to [SY13] in which the idea of applying MCMC to

achieve the exponential mechanism was first proposed for more discussion about how

MCMC’s stationary distribution perfectly matches the required distribution under

the exponential mechanism.

4.4.2 Sensitivity Analysis

We now formally analyze the global sensitivity∆u. In this section, we will first derive

how the utility function u (i.e., logL (T )) varies in neighboring databases. After that,

we will formulate ∆u and show that ∆u monotonically increases as n grows. Lastly,

we prove that∆u is O(log n).

In this work, we consider each possible output to be a dendrogram T in the output

space T . From the definition of global sensitivity, we have the following.

Definition 4.2 (Global sensitivity∆u).

∆u = max
T∈T ,G,G′

| logL (T ,G′)− logL (T ,G)|

where G and G′ are neighboring graphs.

Intuitively, ∆u is the maximum change in the log-likelihood of any dendrogram

in the output space if one edge is missing. It is easy to observe that missing one edge

will influence exactly one internal node’s probability pr in a dendrogram. Thus, we

have:

Lemma 4.1. ∆u = max
r∈T
|(−nLr nRr h(pr ))− (−nLr nRr h(p ′r ))|, where pr =

er
nLr nRr

and

pr
′ = er−1

nLr nRr
.

We now analyze how ∆u varies as parameters change. Let N = nLr · nRr . It is

easy to see that there are two independent variables in∆u, the number of all possible

connections N and the number of the observed edges er .

Theorem 4.3. ∆u monotonically increases as n→+∞, and

∆u = logNmax + log(1+
1

Nmax − 1
)Nmax−1,
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where Nmax =
n2

4 when n is even and Nmax =
n2−1

4 when n is odd.

Proof. To analyze ∆u, we first fix N . Let f (e) = h(p)− h(p ′) and ∆u =max | f (e)|.

Figure 4-3(a) plots the entropy value h(p) as p varies. Since f (e) has the format of

discrete derivative of h(p), we can analyze the monotonicity of f (e) by computing t

he second order derivative of h(p). We have

h ′′(p) =− 1
1− p

− 1
p

It can be observed that h ′′(p) < 0 for all p. Hence h(p) is a concave function and

h ′(p) (or the acceleration) monotonically decreases. Therefore, f (e) monotonically

decreases.

Since ∆u = max | f (e)|, we just need to derive the extreme values of f (e). Note

that f (e) > 0 when p is in [0,0.5] and f (e) < 0 when p is in (0.5,1]. Hence, ∆u =

max(−min(N · f (e)),max(N · f (e))). Due to the symmetric property of h(p), we

can get max( f (e)) = −min( f (e)). With the monotonic property of f (e), we can

derive the value of ∆u when e = 1 or e = Nmax . Next we fix e = 1 and vary N . Let

∆u = max
N∈[1,Nmax ]

| f (N )|, where

f (N ) = 1 · log
1
N
+(N − 1) · log(1− 1

N
)− 0

=− logN +(N − 1) · log(1− 1
N
)

The first order derivative of f (N ), f ′(N ) = log(1− 1
N )< 0. Hence f (N ) is a decreasing

function. Since f (N ) ≤ 0 for N in [1,+∞], we conclude that ∆u = −min( f (N )) =

− f (Nmax). Hence,

∆u = logNmax − (Nmax − 1) · log
Nmax − 1

Nmax

= logNmax +(Nmax − 1) log(1+
1

Nmax − 1
)

= logNmax + log(1+
1

Nmax − 1
)Nmax−1

This completes the proof.

Next we show that∆u is O(log n), where n is the number of vertices in the input
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Figure 4-3: Gibbs-Shannon entropy and plot of∆u

network.

Theorem 4.4. The global sensitivity of a dendrogram’s log-likelihood,∆u, is O(log n).

Proof. Based on Theorem 4.3, we first analyze the second term of∆u, that is, log(1+
1

Nmax−1)
Nmax−1. Let y = (1+ 1

x )
x . We have
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Since, for each k ∈ {2,3, ..., x},

1
k!

x(x − 1) · · · (x − (k − 1))
xk

=
k−1
∏

j=1

�

1−
j
x

�

which increases with x, we learn that y = (1+ 1
x )

x also increases with x. As x →∞,

we have limx→∞

�

1+ 1
x

�x
= e . Therefore we have:

∆u = logNmax + log(1+
1

Nmax − 1
)Nmax−1

< logNmax+ log e ≤ log
n2

4
+ 1

=O(log n)

This completes the proof.
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Figure 4-3(b) plots the value of∆u as n increases. We see that∆u increases slowly

when n becomes larger. Thus we expect that applying the exponential mechanism in

terms of MCMC in this setting would guarantee good data utility even for large-scale

networks.

4.4.3 Privacy via Structural Inference

Finally, we prove that our solution HRG is ε-differentially private based on the sequen-

tial composition property.

Theorem 4.5 (Sequential Composition [McS10]). Let eachAi provide εi -differential

privacy. A sequence ofAi (D) over the database D provides
∑

εi -differential privacy.

Taken with the above theorem, we can derive that our scheme ensures ε-differential

privacy.

Theorem 4.6. HRG satisfies ε-differential privacy.

Proof. We use ε1 in Algorithm 4.1 for sampling the dendrogram and ε2 in Algorithm 4.2

for calculating the probabilities associated with the sampled dendrogram. From the

analysis in above sections, we learn that Algorithm 4.1 is ε1-differentially private. In

Algorithm 4.2, we employ the Laplace mechanism to obtain the noisy answers to a set

of counting queries. Since, by construction of a dendrogram, a single edge change will

affect only one counting query by 1, Algorithm 4.2 is ε2-differentially private. Since

Algorithm 4.3 is based on the differentially private HRG generated by Algorithm

4.1 and Algorithm 4.2, it does not consume any privacy budget. Hence, based on

Theorem 4.6, we can conclude that our solution satisfies ε-differential privacy, where

ε= ε1+ ε2.

4.5 Experimental Evaluation

In this section, we experimentally study the equilibrium of our MCMC method. We

evaluate the utility of HRG with the same datasets used in Chapter 3, that is, polblogs,

wiki-Vote, ca-HepPh and ca-AstroPh. Details about the network statistics can be found

in 3.1. The experiments were done also on Intel Xeon E5607 servers with 2.27G CPU

and 32GB RAM.
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4.5.1 Experimental Settings

In our first set of experiments, we fix ε= 1.0. Specifically, we assign (ε1,ε2) = {(0.1,0.9),

(0.5,0.5), (0.9,0.1)} for sampling the dendrogram and computing noisy link probabili-

ties, respectively (see Figures 4-5 – 4-8). In the second set of experiments, we study the

influence of different privacy parameters on data utility. In the figures, we denote our

solution HRG with the legend hrg-ε1-e-ε2.

For comparison purposes, we implemented two state-of-the-art competitors, spec-

tral [WWW13] and dk2 [WW13]. Since no systematic approach of choosing param-

eter values is provided in [WWW13], we tune the parameters in spectral and report

the best performance we obtain. More specifically, let k be the number of eigenvalues

chosen in the scheme, ε1 be the privacy budget for computing noisy eigenvalues and ε2

for computing noisy eigenvectors. The literature [WYW+11] referred by Wang et al.

in [WWW13] suggests that k is usually in the range [2,9]. Hence we vary k from 2 to

9 and report the best case. In the figures, spectral is denoted by the legend spec-k-ε1-ε2.

Due to the poor performance of dk2 under ε-differential privacy, we compare with

the scheme under a more relaxed privacy notion, that is, (ε,δ)-differential privacy.

We follow the parameter settings in [WW13] and set δ = 0.01. Unfortunately, even

under (ε,δ)-differential privacy, we still need to use relatively large ε values (e.g., 200)

to obtain comparable results. Moreover, the sensitivity in this case is data-dependent.

It depends on the maximum degree pair in the networks (see Table 3.1). So we choose

ε values proportional to the maximum degree pair in each network. The choice of

parameters for dk2 is denoted by the legend dk2-ε-δ.

From a privacy’s perspective, spectral requires the number of edges in the input

network to be known, whereas our scheme HRG and dk2 do not require so. In addi-

tion, dk2 is not able to remap the nodes to the observed network, so the experiments

on influential node analysis is not applicable to dk2.

4.5.2 Log-likelihood and MCMC Equilibrium

In practice, we diagnose MCMC’s convergence by tracing the log-likelihood, logL (T ),

of the sampled dendrograms. The diagnostic takes down consecutive non-overlapping

windows of the Markov chain (each window consists of 65536 MCMC steps in our

experiments) and compares the means of logL (T )within these windows. We use the
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Figure 4-4: Trace of log-likelihood as a function of the number of MCMC steps,
normalized by n.

difference of the means to judge whether the means of logL (T ) within the windows

have stabilized. In our experiments, we continuously examine whether the difference

falls into the range [−0.05n, 0.05n] to check the equilibrium state, where n is the

number of nodes in the network.

In Figure 4-4, we plot the trace of logL (T ) as a function of the number of MCMC

steps, normalized by n. We observe that the Markov chains mix well over all datasets

(i.e., logL (T ) becomes stable soon after the initial state), indicating the convergence

to the stationary distributions. Even though the mixing time can be exponential in the

worst case [MV05], we observe that, in practice, the Markov chain in HRG usually can

converge within 1000 · n steps on networks of around ten thousand nodes. Figure 4-4

also shows that the integration of differential privacy actually speeds up the movement

of the Markov chains and makes them mix even faster. Roughly, the running time of

n MCMC steps in our experiments is 0.18s for polblogs, 4.1s for wiki-Vote, 9.5s for

ca-HepPh and 22.9s for ca-AstroPh. More details about the mixing time can be found
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in [CMN07].

Figure 4-4 also shows the comparison of the sampled dendrograms’ logL (T ) in

different parameter settings, including that of the dendrogram sampled in the non-

private manner. We can observe that, for networks with around ten thousand vertices,

logL (T ) of the dendrogram sampled under a relatively small privacy parameter (e.g.,

ε1 = 0.5) is still comparable with that under a relatively large privacy parameter (e.g.,

ε1 = 0.9). Hence, we expect that even assigning a relatively small ε1 for sampling the

dendrogram will not significantly harm the data utility of the released network. To

validate this, we further conduct experiments with small ε1 ∈ {0.3,0.5} and various

ε2 ∈ {0.005,0.01,0.1,0.5,0.9}. The performance shown in Figure 4-9—4-16 confirms

that our scheme preserves reasonably good data utility even under a stringent privacy

parameter.

4.5.3 Utility Analysis

To show the utility of the released networks, we compare their degree distributions,

shortest path length distributions and influential node ranking with those of the orig-

inal networks. Due to the randomness of our algorithm, we examine the variance

of its performance by running the algorithm multiple times on each network for

each parameter setting. We observe that the variance in all cases is small. Hence,

we randomly pick one graph generated for each dataset and report here.

Degree Distribution. Figure 4-5 shows the degree distributions of the released data

under different sanitization schemes, with y-axis in log-scale. It can be seen that, in all

cases, HRG preserves well the right-skewness of the original networks, meaning that

it preserves good distance scale between “hubs" (i.e., nodes having high degrees) and

the majority of low-degree nodes.

Shortest Path Length Distribution. Figure 4-6 depicts the shortest path length

distribution of each network. We observe that, in general, the released networks

preserve the shapes of the distributions with respect to those of the original networks.

However, we also observe the increase of paths of small lengths (e.g., 1-3). We believe

this is due to the extra edges added to the low levels of the sampled dendrogram, which

corresponds to the local structures in a network. But this does not have a big influence

on the network’s global structure.
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Figure 4-5: Degree distribution
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Figure 4-6: Shortest path length distribution
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Figure 4-7: Overlaps of top-k vertices
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Figure 4-8: Mean absolute error of top-k vertices
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Figure 4-9: polblogs with hrg-0.3

Influential Node Analysis. In this part we use the same metrics and approaches

adopted in Chapter 3’s counterpart. In our experiments, we first test the percentage

of common nodes in top-k most influential nodes of the original graphs and those of

the sanitized graphs. We examine top 10, 20, 50 influential nodes as well as top 1% and

5% nodes in the networks. The results are presented in Figure 4-7. We see that HRG

guarantees a consistent 25%-75% overlap of common nodes in all the cases.

Similarly, we then calculate the mean absolute error of the top-k most influen-

tial nodes’ EVC scores. Let the set of top-k nodes in the original graph be α and

that of the sanitized graph be β. To show that nodes in β have similar centralities

to those in α, we use the mean absolute error (MAE) to compare the EVC scores

in β with those in α. Formally, the MAE value is formulated by: M AE(α,β) =
1
k

∑k
i=1

�

�

�EV C (v i
α)− EV C (v i

β
)
�

�

�, where v i
α and v i

β
are the top-i nodes in α and β,

respectively. In Figure 4-8 , we observe that the MAE of HRG with ε1 = 0.5 and 0.9 is

reasonably low (e.g., less than 25% in most cases). The overlaps in top-k nodes and the

low MAE together indicate that HRG well preserves the hub nodes, which represent
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Figure 4-10: polblogs with hrg-0.5

the global structure of the sanitized graph.

4.6 Summary

In this chapter, we have addressed the privacy concerns in network data release by

proposing a novel data sanitization method under differential privacy. Our solution

is based on structural inference over the hierarchical random graph (HRG) model.

Compared with the existing works, we theoretically prove that the sensitivity of our

solution is much smaller, only logarithmic in the order of the network size(i.e., the

number of vertices), implying a significant utility improvement. Extensive experi-

ments on four real-life datasets confirm that our solution outperforms the state-of-

the-art competitors.
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Figure 4-11: wiki-Vote with hrg-0.3
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Figure 4-12: wiki-Vote with hrg-0.5
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Figure 4-13: ca-HepPh with hrg-0.3
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Figure 4-14: ca-HepPh with hrg-0.5
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Figure 4-15: ca-AstroPh with hrg-0.3
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Figure 4-16: ca-AstroPh with hrg-0.5
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Chapter 5

Background and Related Works of

OSN Collaborative Access Control

In this chapter, we turn to look at the problem of OSN collaborative access control.

We first illustrate a few crucial shifts from traditional access control requirements to

today’s new challenges that arise in social networks. We also briefly review the state-

of-the-art solutions, and meanwhile delineate the scope of our third work.

5.1 Enforcing Access Control in the Social Era

In today’s social era, information sharing has become a norm. In particular, OSNs

such as Facebook, Twitter, LinkedIn, have dramatically expanded and expedited our

access to information. Accompanying such data explosion, OSN users have become

creators and managers of their own data. Hence, they are expected to take the respon-

sibility for designing detailed rules to control the ways their data shall be exposed to

different groups of audience. In this chapter, we first look at how OSNs shape the

massive shifts in access control enforcement. In particular, we illustrate the emerg-

ing challenges in enforcing access control in OSNs, which traditional access control

mechanisms (e.g., Mandatory Access Control (MAC) and Role-Based Access Control

(RBAC)) are unable to support.
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5.1.1 Towards large personal-level access control

OSN connects us together. Forming, maintaining and growing social bonds become

the key features that OSN supports. Being connected is easy; maintaining the con-

nections is, however, rather complicated. Today, it is common for an ordinary OSN

users to have hundreds of friends today. Studies have shown that we share a com-

mon connection pattern, i,e., the 5-15-50-150-500 pattern, representing the emotional

support group, sympathy group, semi-regular communication group, stable social

connection group and weak-tied tangential relationship group, respectively [Ada12].

Clearly, maintaining such a large number of friends can be overwhelming even for

sophisticated OSN users.

5.1.2 Towards distance-based and context-aware access control

Compared with traditional RBAC, a crucial difference in OSNs is that, the distance

counts. Consider the relationships from friends to friends of friends, and then public.

In this case, the trust level reduces as the distance increases. Hence, the design of access

control enforcement also needs to factor in the social distance.

Besides, OSN users are often not certain of the desired level of information sharing

when they connect to new friends. It is also difficult to ask users to articulate every

particular social connections in OSNs. This is because we trust different friends on

different topics at different levels. For example, one may expose his or her tweets to

all friends when seeking information, but only feel comfortable to express sentiments

to a few who are closest. It is evident that the various desired levels of sharing in terms

of different contents heavily influence our choice of audience for each particular post.

5.1.3 Towards relationship-composable access control

Unlike traditional RBAC, access control models in OSNs also need to consider how

relationships can be composed, that is, R1 ◦ R2. For example, one might consult

sensitive health matters who are “professionals in health care” but not “friends”(R1−

R2), share commercial promotions with those who are both “colleagues” and “fashion

lover”(R1∩R2), or boast of career success to “friends” or “friends of friends”(R1∪R2).

Today one can easily leverage advanced search engines like Facebook Graph Search to
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process queries that are arbitrary combined over social networks. However, this may

also lead to social embarrassment or even personal insults if the access control settings

are not properly specified 1.

5.1.4 Towards more collective access control

Being socialable today is not just about connecting to friends. It also has been encour-

aged by many traditional online activities. For example, Facebook supports tagging

people to share group photos; Github views itself more as a social coding community,

rather than just a code repository, by encouraging its users to folk others and team up

to build software; Mendeley, the online reference manager, facilitates socialization by

supporting collaborative groups features, which pushes forward socialization within

academic communities. Furthermore, in times of emergency like earthquakes or ter-

rorism attacks, where being connected matters most, information such as messages,

photos, notifications and ongoing events is often contributed and shared by many

people. Hence, there is clearly an increasing demand to design agile collective access

control strategies for such ad-hoc applications and organizations.

5.1.5 Towards more negotiable access control

Another feature of OSNs is its flexibility. Hence it is not suitable to build hard-wired

rules in OSN access control systems like in traditional MAC systems. Instead, soft

rules shall be supported. For example, in the above scenario, for a group photo, friends

may adjust their access control requirements(e.g., public or private) by considering

others’ privacy preferences and sentimental needs. A collaborative research/coding

group can also change their access control strategy at different stages of its develop-

ment. Hence, a more negotiable access control strategy shall be supported.

Clearly, enforcing access control in OSNs is challenging. Taming such access con-

trol management challenges at a personal level can be very difficult for ordinary OSN

users. Hence, there is an urgent need to develop new access control frameworks to

deal with such challenges.

1http://actualfacebookgraphsearches.tumblr.com/
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5.2 State-of-the-art OSN Access Control Strategies

Traditionally, OSNs have largely empowered the publisher of the content, say Alice,

to be solely responsible for regulating access to shared content. As such, the research

centers on trust management problems, that is, to use trust level to determine the set

of users who can have access to the data. Some models in this line[FAZ09] rely on the

topology of the social networks to estimate trust levels. Existing OSN platforms like

Facebook also adopt such a strategy, allowing users to restrict access regarding friends,

friends of friends or public2. Some others use the relationships between the publishers

and the accessors [Fon11]. In addition, there are also models [CFP06; KGG+06] that

consider user reputation to infer the trustworthiness.

Yet another strategy for developing privacy-enhanced social networks is to re-design

OSN communication architecture, instead of fully trusting OSN providers. For ex-

ample, Jahid et al. [JMB11] consider shifting access control enforcement from OSN

providers to the users by means of encryption. Another approach is to develop semi

or fully decentralized systems [CFP09; JNM+12]. However, it should be pointed out

that these solutions have not been widely adopted by any OSNs in practice so far.

The last line of works focuses on leveraging data management to mitigate users’

burden on manually specifying OSN privacy settings. For instant, XACCESS [WSL12]

is such an automated access control policy specification tool, which employs a hybrid

mining method to infer a user’s “social roles” regarding his historical activities as well

as network topology. More recently, Park et al. [PKK+14] point out that users may

not be clear about the optimal states of data sharing levels where they will be comfort-

able with. They propose a framework which defines different states of shared data, i.e.,

optimal, under-shared, over-shared, and hybrid states. They also provide approaches

to identify each user’s actual state and help users parameterize the decision-making

process model to set up an optimal sharing level.

In our third work, we particularly focus on the problem of designing collaborative

frameworks to support multi-party data sharing for OSNs. In the literatures, there

are already quite a number of works along this line [HAJ11; SMJ10; CF11; HAJ12;

HAZ+14]. Squicciarini et al. [SMJ10] employ the Clarke Tax algorithm [Cla71] as

a voting strategy in their proposed model. The Clarke Tax strategy disincentivizes

2http://www.facebook.com/policy.php/
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players to lie about the true valuation of their preference, and thus promotes truth-

fulness among users. However, the Clarke Tax voting strategy is vulnerable to bidder

collusion [Wei99]. The small number of players can collude and over express their

preference to some extent. In this way they can bend the entire collective decision

without paying the clarke tax. Besides, the final decision can be determined directly

by only one “pivotal” individual, the one who is willing to pay more (e.g. tax, credit),

whereas others with little resources just cannot afford to influence the collective deci-

sion.

Carminati et al. [CF11] introduce an enhanced topology-based access control

architecture by user collaboration. They also exploited semantic web technologies

to support flexible representations of collaborator’s relationships and resources. Hu

et al. [HAJ12] formalize a multiparty access control model to address the same issue.

Their proposed conflict resolution mechanism aggregates each player’s decision policy

and sensitivity towards a specific accessor and thus leverages each player’s preference in

collective decision-making. In their very recent work [HAZ+14], they further utilize

a game theory strategy to solve this problem where the users all aim to maximize

their own benefits. However, in this thesis, we point out that in real-world scenarios,

OSN users tend to behave in a more friendly and constructive manner, rather than a

selfish way of maximizing personal benefits. It is common that OSN users are vastly

influenced by their neighboring friends. Thus, our approach seeks to simulate such

positive social interaction by taking into account such peer effects automatically.
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Chapter 6

Peer-aware Collaborative Access

Control

6.1 Introduction

Many Online Social Networks (OSNs) now offer users free storage to upload their

photos1 online. In addition, these OSNs also provide tools for users to edit photos,

stitch photos together, and even make slideshows and galleries. Besides, OSNs also

allow users to tag persons in the photo. Tagging a person not only facilitates users to

organize the photos, but also encourages photo-sharing in OSNs. For example, the

Picasa Web Albums2, which has recently been integrated with Google+3, will give

the person being tagged permission to view the photo and share with others.

However, if it is not properly managed, photo tagging may violate a person’s pri-

vacy and lead to his embarrassment. This is because the person being tagged can

further share the photo with others. Consequently, the original uploader will lose

control over who can access the photo as it may become available for the entire Web

to view or be disseminated via Google+ stream. In fact, many inadvertent users may

not even be aware of the potential audience’s size as they tag people and share their

photos with others. Although a user can detag himself from a photo, he cannot stop

other tagged users from sharing it in their social networks.

1In this work, for ease of presentation, we use photo as a shared content. Our method works for
other shared content such as video and documents when the co-owners can be identified successfully.

2http://picasaweb.google.com/
3https://plus.google.com
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The widespread concerns to protect user privacy have prompted OSNs to develop

access control mechanisms [CF10]. These are largely designed based on relationships

and topology of the social networks [facebook; FAZ09; CFP06]. Unfortunately, the

decision for regulating the access to the shared photo still rests solely on the uploader

of the photo. As such, these access control mechanisms are unable to deal with the

privacy concerns of other persons that may appear in the photo.

Intuitively, we can view all persons appearing in a photo as co-owners of the photo.

Each of these co-owners can thus voice his opinion about who can have access to

the photo. By developing a method that considers the privacy of all co-owners, a

collective decision on the access restrictions may be determined. However, everyone

has his desired preference of sharing at the appropriate exposure level that he is most

comfortable with. It is thus not uncommon that conflicts will arise as a result of

differing privacy preferences - while one may be excited about sharing his photo,

another may prefer to keep it from public view. How to resolve such conflicts in

differing privacy concerns and to support a fair collective decision-making strategy is

an open problem.

We also notice that even though the users are very concerned about the privacy,

they seldom do much to protect their privacy. In fact, users are just reluctant to

spend time in specifying privacy policy. Thus, a practical OSN access control tool

should be intuitive, light-weight, and automatic (i.e., require minimal human inter-

vention/effort).

To this end, many researchers recently began to introduce collaborative access

control policy-making mechanisms in OSNs [SMJ10; CF11; HAJ12]. These methods

integrated the social relationship types and the topology of social networks in the

policy-making, as well as in assessing the trust level of accessors. Simple voting func-

tions (e.g. full-consensus, one-override, majority) are provided to deal with privacy

conflicts. Moreover, the intensity of the user’s perceived importance towards a specific

preference also matters. For instance, Alice is essentially neutral and do not have any

preference on whether to keep the photo private or share with the public; on the other

hand, John may be very passionate (and hence has a higher level of intensity than

Alice) about sharing photos to the public. Thus, intensity shall also be incorporated

into the expression of user preference in access control rules. To promote fairness
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and truthfulness among users, a more sophisticated voting method was proposed in

[SMJ10] to remove the incentive to conceal the true perceived intensity of a preference.

However, a thoughtful strategy should not only collect each individual’s own in-

tention, but also take into account the social interaction among the co-owners in

the social network. Co-owners of a photo are typically not business competitors

where they need to hide their true intention and compete with one another to achieve

maximum gain. Instead, they are likely to be friends/acquaintances/colleagues and

hence there is a tendency to be considerate and sensitive to the feelings of one another.

Consider the scenario where two close friends, Alice and Bob, had taken a photo

together. Initially Bob wants to share this photo with other friends, whereas Alice is

strongly against making the photo public. By taking Alice’s feeling into consideration,

Bob is likely to respect her and change his mind, hence achieving the consensus to keep

this photo private. It is inevitable that peers exert tremendous influence on individual

behaviors, let alone the ubiquitous interactions on OSNs. Such peer effects can be

found in a vast literature in the field of sociology and psychology (e.g. [Goy07; Jac08;

JV10; TK59; BDF09]).

By taking into account peer effects in making collaborative access control rules,

some conflicts of co-owners’ intention will disappear naturally. We aim to treat every-

one’s preference with equal importance so that no single person’s personal preference

directly dominates the collective decision. At the same time, our proposed strategy,

called CAPE, incorporates peer effects, allowing users to adjust their intention ac-

cording to their neighbors’ actions. The goal is to try to achieve more agreements, or

even better, full consensus and satisfy everyone’s privacy concerns. This is inherently

different from collusion which has a negative connotation. In fact, considering peer

effects on network may undermine colluding behavior. This is the case as a subgroup

of users’ decisions do not necessarily directly dominate the entire group’s decision.

The result of our strategy depends on the overall network structure of peer effects,

that is, how each individual reacts to his neighbors.

In this work, we employ a game theoretic model to simulate the continuous de-

cision adjustments that occur in social interactions. The theoretic model guarantees

a unique equilibrium under appropriate parameter setting, which ensures the medi-

ation will terminate. In the model, each player (which is a co-owner) expresses his
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own preference and his perceived peer effects independently. Each personal setting is

private (i.e. no other players know his setting) and will be managed by the central

strategy mechanism engine. Moreover, the model offers a direct solution, a “payoff-

maximum” action, for each user, automatically. Thus, everyone will be satisfied with

the action chosen by such a procedure. At the same time, except the initial set-up, we

free the users from any effort and time during the mediation process.

The rest of this work is organized as follows. In the next section, we introduce

some preliminaries. In Section 6.3, we discuss the challenges in designing the game

theoretic collaborative access control model, and give a big picture of our solution.

Section 6.4 presents the setup phase for players (aka co-owners), and Section 6.5 shows

the mediation procedure. In Section 6.6, we discuss several related issues. Lastly, we

summarize our work in Section 6.8.

6.2 Representation of OSNs

In this section, we introduce the representation of an OSN. Roughly, we can categorize

OSNs into two types: distance-based network and circle-based network. The former

classifies the users based on the topological distance. For example, hop 1 corresponds

to Friends, hop 2 to Friends of Friends and hop +∞ to Public. The latter focuses on

the specific classification of an individual’s friends as groups, say Family, Colleague,

School-mates. We first illustrate our work on distance-based network. We will discuss

how our work can be extended to circle-based network in Section 6.6.3. Now, we

shall introduce the core parts of a distance-based OSN and a few notations used in our

proposed collaborative access control framework as follows:

• U . The set of OSN users. Assume that each user ui ∈U has a unique id, i .

• E . The set of edges that connects the users. An edge e ∈ E connects two users,

which can be either undirected or directed.

• di j . Distance from ui to u j , which can be measured with the path length.

• Originator. The user who initiates the collaboration. In OSNs the originator is

the user who first uploads the photo in his web album for sharing and tags other

users who also appear in the photo.
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• Co-owner. The user who appears and has been tagged in the photo.

• Player. The user, either the originator or the co-owner, who participates in the

collaboration to make collective access control rules. We use the player i and

the player ui interchangeably in this work when no ambiguity arises.

• Access Control Policy Choice Set, C. On distanced-base OSNs, we can repre-

sent a control policy c ∈C in terms of d . For instance, d = 0 indicates keeping

the photo private, whereas d =+∞means to share the photo with the public.

As in existing work [SMJ10], in this work, for distance-based OSNs, we consider

a total of four options, namely, private (d = 0), friends (d = 1), friends-of-friends

(d = 2) and public (d =+∞).

6.3 The Big Picture

A straightforward method to make a collective decision in real life is to let each player

explicitly express his preference first. After viewing other’s actions, the players can

further revise their preference settings [JV10; TK59; BDF09], disclose their new de-

cisions, and so forth until a common decision is reached after a few rounds. This is a

typical scenario, as studied in a vast literature on sociology, where the behavior of an

individual, say Alice, may change as she is being influenced by her peers.

Now, in our context, we can expect peer effects to come into play too. Among

friends/colleagues, there will always be some who are more highly regarded and re-

spected (or even feared); and opinions of such persons are likely to have a greater

impact on others’ decisions. For example, Alice may become more inclined to keep

a photo private as a result of (some of) her neighbors’ (aka friends and seniors) pref-

erences to keep it private; on the other hand, the change in Alice’s decision may have

an impact on others for which she has influence over. Thus, we need a tractable

formulation to incorporate such continuous interactions between the peers.

However, in real-life, OSN users often access the network independently and hence

not all users will be online at the same time. Thus it is not practical and desirable for

any access control mechanisms to require synchronization in time. In addition, the

players may be stuck in an endless task since individuals can always adjust their deci-

sions. To this end, we propose a method that simulates the negotiation and interaction
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among players, while, at the same time, ensures the simulation will terminate under

an appropriate set-up. Specifically, we suggest a mediation procedure that facilitates

the following features:

1. Each individual, say Alice, can perform an initial set-up independently (of course,

the settings can be updated whenever it is necessary). Essentially, Alice assigns

weights to her neighbors to reflect the degree of influence in which her neigh-

bors have over her decision. There is no synchronization required in mediation

process, as long as Alice sets up the initial configuration. In addition, Alice does

not need to be personally involved in the mediation process, freeing her from

the burden of mediation and saving her time.

2. The method should allow Alice to always choose the action that benefits her

emotion most. In other words, after considering both her personal willingness

and the peer effects, the method should always take the most appropriate strat-

egy from Alice’s perspective. We refer to this action as the maximum “emotional

payoff” action.

3. The strategy should guarantee a unique Nash equilibrium. That is, briefly, the

game should always reach a scenario where no player has the incentive to change

only his own decision.

As we shall see, our proposed method ensures the above features, provided that

each player should not regret the choice he has made in response to the actions taken

by other players.

We are now ready to give an overview of our proposed framework - the CAPE

framework that facilitates Collaborative Access control by considering Peer Effects.

Our CAPE framework is depicted in Figure 6-1. The mediation engine, which is the

key component, requires input from several sources:

• OSN structure. The subgraph of the OSN that involves the co-owners/players.

• Originator. The originator triggers the mediation process by uploading the

photo and tagging the players.

• Player. For each player, two types of information are provided. The first is

content-dependent, i.e., his inclination (which we refer to as intensity towards
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Figure 6-1: The CAPE Framework

the access control policies; this may be different for different shared content,

e.g., Alice may be fine with making public an ordinary group photo, while she

may not want to share the photo where she felt she may be embarrassed (e.g.,

she was drunk and was throwing out).

The second is peer-effects-based, which specifies the player’s inclination to be

influenced by his immediate neighbors. We refer to this inclination as the peer

effects. This information is more stable. It can be specified once during set-up,

and only updated when necessary.
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In this work, the mediation engine only considers how a player is influenced by

his direct neighbors; moreover, the specification of the degree of influence must be

positive. This is because our work models the situation of a constructive environment

where players mutually support, or reinforce each other. We shall discuss this further

in Section 6.4.

To initiate the mediation process, the originator uploads a photo, and invites the

players (other users appearing in the photo) by tagging them. Based on the the social

network structure and the players’ specification, the mediation starts to simulate the

continuous interaction between the players. The mediation process is done for each

possible choice independently. In fact, for each choice, an unique equilibrium exists as

long as the set-up’s configuration meets the required conditions, and then the system

can automatically compute the final intensity each player would like to select on the

given choice. Once the final intensity of all the choices are ready, the choice with the

highest intensity is considered to be the final choice the player would like to select. As

each player’s final decision is ready, the system will try to make a collective decision

with a voting function. All the players will be informed of the outcome if any. The

whole procedure terminates if the mediation succeeds and no complain arises. In the

event where there is no equilibrium, and/or some players find the collection decision

unacceptable, the players may have to adjust their inclinations for another round of

mediation.

In this work, since the whole procedure aims to achieve more agreements, we

suggest two voting functions:

(i) full consensus. Mediation succeeds only when all the players agree on the final

decision;

(ii) strong majority with a threshold θ. No fewer than θ percentage of players

agree on the final decision.

But for ease of discussion, we only consider full consensus as the voting function in

all the examples. We shall discuss the mediation process and the voting function in

Section 6.5.
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6.4 Player Setup

In our CAPE framework, we need each player to specify his preferences for the avail-

able choices, as well as the degree at which he may be influenced by his immediate

peers’ decisions. We capture these with two types of variables:

• Intensity Score (I-Score) xi (ck), which measures the inclination/extent to which

the player i is willing to take the choice ck . Its value is unbounded and non-

negative. However, to make it more intuitive for the users, in the initial set-

up, we restrict x0
i (ck) to be an integer and let x0

i (ck) be between 0 and 5. This

essentially corresponds to six attitudes: {strongly disagree, disagree, slightly

disagree, slightly agree, agree, strongly agree}. In this way we let all the players

specify the values on the same ground. During the mediation peer effects cause

xi (ck) to change (increase) iteratively. So xi (ck) is no longer bounded within the

range [0, 5]. But the player is only required to assign the initial values of his own

I-Scores, the vector x0
i for all the choices.

• Peer effects Score (PE-Score) wi j , which characterizes how much weight the

player i intends to place on player j ’s action. In this work, we require 0≤ wi j ≤

1. This ensures the model is a game of strategic complements where each player

mutually supports one another.

6.4.1 Setting I-Score

To make an intuitive interface for users, we recommend presenting players the slide

bars as tools for specifying the values. We propose two ways to let a user set his I-Scores,

as pictured in Figure 6-2a and Figure 6-2b. The first one considers four independent

choices: private, friends, friends of friends, public, where d = 0,1,2,+∞ respectively.

This method allows players to set their I-Scores arbitrarily, i.e., players can set any

values for the weights on different choices. A higher intensity score indicates the

player has a stronger desire to take the choice. Referring to the setting in Figure 6-2a,

the player essentially says: I don’t quite agree to share the photo with the world; I sort

of prefer to keep it private; however, I would most agree if we restrict the access to just

friends or friends-of-friends. In the case where a player set all the I-Scores to be of the

same value, we assume the player is willing to undertake any of such actions, regardless
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of their initial values (i.e., a player cannot reject all the possible actions together). As

we shall see shortly, during the mediation process, each of these choices/options will

be considered independently. For ease of reference, we shall refer to this method as

Method OO (for ‘option only’).

Alternatively, we can design the bars as in Figure 6-2b, where it shows complemen-

tary assessment of “Take the choice or not”. As depicted in Figure 6-2b, we consider

all the choices except “private”. Given a specific choice c , we consider two actions in

turns, “Take c” and “Against c”. For example, the length of the solid-color(blue) bar

on the top indicates the intensity of picking the choice of “Friend(1)”, whereas the

striped(red) bar beside shows the intensity of being against the choice “Friend(1)”. If

a player is against all the three choices, it implicitly indicates he would like to keep

the photo private. We shall discuss in Section 6.5 how these two complementary

actions are independently considered during the mediation process. In other words,

we actually have three pairs of choices to work with in the mediation process. We shall

refer to this method as Method OC (for ‘option and its complement’).

Before leaving this section, we note that the flexibility of arbitrary setting has both

pros and cons. On one hand, it allows a player, say Alice, to specify her preferences.

For example, a player can specify a value of 5 for “friends” and 0 for all the other

options, indicating that he only want to restrict to friends, and nothing else. However,

the flexibility may also lead to some undesirable settings, e.g., it does not seem to make

sense to have a setting of 5 for “friends-of-friends” and 0 for all other choices. Such

flexibility requires users to fully appreciate the consequences of their settings (in order

to ensure the settings are meaningful). Moreover, such flexibility also makes it more

challenging for all users to reach a consensus.

To achieve more agreements easily, we can enforce some constraints on the setting.

One reasonable approach is to assume that, if a player i set x0
i (ck) as the I-Score of

a choice ck , then the I-Scores of other more restricted preferences, except “private”,

must not be less than x. For instance, if a player slightly agrees with the choice

“friends of friends”, he must at least also slightly agree with the more restricted choices

like “friends only”. Such a constraint is reasonable since, if one already agrees on a

relatively relaxed choice, he cannot be against more private choices. This strategy is

akin to asking players to conform to the group by sacrificing the joy of sharing and
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Figure 6-2: Two Designs of Intensity Bar

encouraging them to protect privacy.

6.4.2 Setting PE-Score

We note that the PE-Score needs to be set only once. For each player, he essentially

maintains an array of the PE-Score for each of his neighbors. All players could have

set the PE-Scores for their friends when they first include them as friends. In the event

that a player did not provide enough information, the default setting is assumed to be

0, i.e., he will not support others’ options.
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Table 6.1: Initial I-Scores with Method OO

Private Friends Friends of Friends Public Intention
u1 2 3 3 4 Public
u2 5 0 0 0 Private
u3 2 4 2 2 Friends
u4 5 4 1 1 Private

6.5 The Mediation Process

We now describe the mediation process which is an iterative procedure to simulate

the social interaction among the players. To see our approach in action, let us first

illustrate the whole procedure with a running example, and then present the proposed

mediation mechanism.

6.5.1 An Example

Consider a scenario where Player u1 is a friend of Player u2, and Player u2, u3, u4

are colleagues. Figure 6-3a shows the social network of their relationships in a graph

model. Suppose the four of them have taken a photo together. The originator u1

posted this photo on his own web album, and also wanted to share it on OSNs.

So u1 tagged all other users on this photo, trying to make a collective decision on

whether this photo should be posted for public view or be kept private. Since we have

only discussed the “full consensus” voting function, we shall illustrate the mediation

process with this. Further, let us assume that each player has assigned the I-scores

and the PE-Scores. For ease of presentation, we assume users specify their initial I-

Scores using Method OO, i.e., each player specifies his preference for each option.

We defer the discussion when the second method, Method OC, is used in Section

6.5.3. Table 6.1 and 6.2 show the players’ assigned values. The value underlined in

Table 6.1 corresponds to the action the player prefers most in the beginning.

As it turns out, player 2 is strongly concerned about his privacy over this photo

than the others, and he is not going to change his mind according to others’ intention.

In contrast, player 1 is more willing to put the photo online; and meanwhile, he also

values player 2’s feeling and/or opinion.

From the setting, we observe that conflicts exist in the initial intention among the

players. But through the mediation process, as we shall see later, we can derive each
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Figure 6-3: Peer effects in OSN

Table 6.2: Peer Effects Scores

Player 1 Player 2 Player 3 Player 4
Player 1 0 0.4 0 0
Player 2 0 0 0 0
Player 3 0 0.2 0 0.5
Player 4 0 0.25 0.25 0

player’s final intensity scores and their final action when the continuous interaction

terminates, as shown in Table 6.3. We note that u1 turns out to have the same score

(of 4) for both Private and Public. As such, we can pick either option. By selecting

“Private”, conflicts can be resolved, i.e., through the mediation, a full consensus on

keeping this photo private has been reached.

Table 6.3: I-Scores at Equilibrium with Method OO

Private Friends Friends of Friends Public Intention
u1 4 3 3 4 Public/Private
u2 5 0 0 0 Private
u3 7 6.86 2.86 2.86 Private
u4 8 5.71 1.71 1.71 Private

6.5.2 The Mediation Engine

We shall now present the mediation engine used in our work to deal with conflicts that

may arise in initial settings. As mentioned, our mediation factors in the peer effects

of players. Our scheme is based on a game model, a variation of the game model of

Ballester, Calvó-Armengol, and Zenou [BCAZ06], which is also discussed in Chap-

ter 9 of Jackson’s book [Jac08]. In this model, we use the variable payoff to describe
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Algorithm 6.1: ComputeEquilibIScore
Input : initial I-Score matrix X 0, PE-Score matrix W , Choice set C of size n
Output: the I-Score matrix at equilibrium X eq l

1 µ1(W )← the largest eigenvalue of W ;

2 if µ1(W )< 1 then

3 X eq l ←X 0;

4 foreach choice ck ∈C do

5 αk ← the k th column in X 0, initial I-Score vector regarding the choice
ck ;

6 I ← the identity matrix;

7 xeq l (ck)← (I −W )−1αk ;

8 let xeq l (ck) be the k th column of X eq l ;

9 end
10 return X eq l ;
11 else
12 return NULL;
13 end

to what extent the player considers a specific adjustment of his I-Score is appropriate

in response to the actions of his neighbors. That is, the higher this “emotional” payoff

is, the more the player assesses the appropriateness of this adjustment of I-Score. The

variable payoff pi of the player i is defined as follows:

pi (ck) = ai xi (ck)−
bi

2
(xi (ck))

2+
∑

j 6=i

bi wi j xi (ck)x j (ck), (6.1)

where ai ≥ 0 and bi ≥ 0 are scalars, and wi j is the PE-Score value specified by player

i . The expression − bi
2 (xi (ck))

2 is a force to draw back to player i ’s own decision. It

is easy to see that a high intensity of the player i ’s own intention will tend to inhibit

the increase of the payoff. Therefore, player i can see some trade-off by taking further

action to adjust his I-Score. Moreover, since wi j ≥ 0, the payoff tends to increase

by considering other’s I-Score, x j (ck), which thus simulates the interaction where the

players reinforce each other’s actions. That is, when the intensity of the neighbors’

action is high, the intensity of the player’s corresponding action would also be high.

Intuitively, it describes the phenomenon where an individual tends to conform to the

patterns of his peers’ behaviors.
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We assume that each player always chooses the action that offers the highest “emo-

tional payoff”, and he can never regret the action he takes at each step. Then, we can

derive such action to adjust I-Score by setting the derivative of the payoff pi (ck) to 0.

Hence, such payoff-maximizing action can be described by

xi (ck) =
ai

bi

+
∑

j 6=i

wi j x j (ck) (6.2)

Equation (6.2) indicates that player i should continuously adjust his I-Score regarding

other player’s updated I-Score x j (ck) in each round. But, in fact, no further user

intervention is needed any more. This is because the final I-Scores at equilibrium

state can be directly derived with an analytical method. Therefore, we can directly

compute the final action for each player based on just the initial setting. To illustrate

such analytical solution, let us first denote xeq l (ck) as the vector solution of such I-

Score xi (ck) at the equilibrium. And let αk be the vector of ai
bi

regarding the choice ck .

Then the vector solution can be expressed as follows,

xeq l (ck) = (I −W )−1αk , (6.3)

where I is the identity matrix. Since bi is a scalar, we can set b = bi = 1 for all i .

Correspondingly, αk is set to be ai . W is the matrix whose entry is the PE-Score,

wi j . We can further think of W as a weighted and directed network, the peer effects

network as depicted in Figure 6-3b, where the weight of edge is assigned to be wi j .

In Equation (6.3), the matrix (I −W )−1 serves as the factor of peer effects, applied

on the vector αk . At the very beginning, without factoring peer effects, we can con-

sider αk to be just the vector containing all the initial I-Score regarding the choice ck .

Thus, we can set the entry of αk , ai , to be x0
i (ck).

With Equation (6.3), we can compute the final I-Scores directly. Algorithm 6.1

describes the entire procedure. The above solution holds if I −W is invertible and

(I −W )−1 is nonnegative. Ballester et al. [BCAZ06] shows that these conditions can

be met if and only ifµ1(W )< 1, whereµ1(W ) is the largest eigenvalue of W . Another

sufficient condition to satisfy the conditions is to let all wi j ≥ 0, and the sum of the

entries of each row/column of W be less than 1.

With the aboved formula, we can automatically compute the intensity scores of all
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Algorithm 6.2: ComputeDecisions (Method OO)

Input : Players set U , I-Score matrix at equilibrium X eq l , Choice set C of
size n, voting function f

Output: the collaborative decision Ω

1 γ = [ ];

2 foreach player ui ∈U do

3 xeq l
i ← thei th row vector in X eq l ;

4 γi ←{ck |x
eq l
i (ck) is the maximum element in xeq l

i };
5 γ ← γ with γi appended;
6 end

7 Ω← f (γ );

8 return Ω;

the choices for each player as the mediation reaches equilibrium. The choice with the

highest score will be selected as the final action that the player would like to undertake.

Formally, the final decision γi of player i is,

γi = argmax
ck∈C

xi (ck) (6.4)

In Method OO, we compare a player’s I-Scores of all the choices together and

select the one with the highest score to be his final decision. Algorithm 6.2 illustrates

this procedure.

6.5.3 Constraining the I-Score Setting

Now, it is possible that with more choices/options and arbitrary setting of I-Score

values, the chances of achieving agreements decreases. A solution to this problem,

as described in Section 6.4, is to be “biased” towards privacy by restricting users to

always specify equal or greater intensity scores for more restricted choices. To see

this explicitly, we use the second method, Method OC, to illustrate. Table 6.4 shows

an example of user settings satisfying the above constraints. We shall first consider

whether all the players agree on the preference “Public”. Recall that under Method

OC, each choice results in two actions, and they are to be mediated independently;

and the final decision for the choice is determined by the action with the larger I-

Score. Table 6.5a shows the result of the mediation process for “Public” and “Against
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Table 6.4: Initial I-Scores with Method OC

Friends Friends of Friends Public Intention
u1 5 5 4 Public
u2 3 3 0 Friends of Friends
u3 4 4 0 Friends of Friends
u4 2 2 2 Private

Table 6.5: I-Scores at Equilibrium with Method OC

Public Against Public
u1 4.0 3.0
u2 0 5.0
u3 1.14 9.29
u4 2.29 6.57

(a)

Friends of Friends Against Friends of Friends
u1 6.2 0.8
u2 3 2
u3 6.83 3.6
u4 4.46 4.4

(b)

Public”. As shown in Table 6.5a, u1 prefers “Public” while the rest vote for “Against

Public”. Since there is no full consensus, we continue to consider the next pair of

choices, “Friends of Friends” and “Against Friends of Friends”. This time, as shown

in Table 6.5b, all the players agree on the choice “Friends of Friends”. So the mediation

stops here and a final decision is reached to sharing this photo within the distance no

more than “Friends of Friends”. The algorithmic description of the procedure is given

in Algorithm 6.3.
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Algorithm 6.3: ComputeDecisions (Method OC)
Input : Players set U , initial I-Score matrix X 0 for each choice type, PE-Score

matrix W , Choice type set C of size n, voting function f
Output: the collaborative decision Ω

1 Ω←;;
2 while C 6= ; do

3 ck ← the choice with the largest distance d in C;

4 ¬ck ← the choice that is against ck ;

5 C←C−{ck};
6 X 0← current I-Score matrix regarding {ck ,¬ck}, the choice ck and its

complement;

7 X eq l ←ComputeEquilibIScore(X 0,W ,{ck ,¬ck});

8 if X eq l 6= NULL then

9 γ = [ ];

10 foreach player ui ∈U do
11 if x eq l

i (ck)> x eq l
i (¬ck) then

12 γi ←{ck};
13 else if x eq l

i (ck)< x eq l
i (¬ck) then

14 γi ←{¬ck};
15 else
16 γi ←{ck ,¬ck};
17 end

18 γ ← γ with γi appended;
19 end

20 Ω← f (γ );
21 end

22 if Ω 6= ; then
23 break;
24 end
25 end

26 return Ω;
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6.6 Discussion

In order for our CAPE framework to be developed into a full-fledge robust solution

for practical use, there are several issues that need to be addressed. Here, we shall

focus on three of them: (a) How to guide the players to configure the set-up; (b) How

to facilitate second mediation in order to achieve more agreements; and (c) how to

extend our work to circle-based OSNs. We will discuss each of these in the following

subsections.

6.6.1 Configuring the set-up

One of the key parameters in the CAPE framework is the setting of the players’

PE-Scores, i.e., how each player views the influence of his peers over his decision.

However, the framework is meaningful only if an equilibrium exists. In particular,

equilibrium exists and is unique when the PE-Score matrix is not overly dense. The

PE-Score matrix is dense when the players over-rely on each other’s decision. For

example, every player may want the opinion of every other player. As a result of such

cross-effect, the intensity of a player’s choice is always positively reinforced by other

players, which in turn leads to an unbounded increase in the intensity of individual’s

action (and thus the model cannot reach an equilibrium state).

Therefore, it is important to guide the players to assign or adjust their PE-Score

values to ensure an equilibrium state. Overall, a guideline for the players is to assign

the PE-Score moderately. In fact, in our framework, we have restricted the PE-Score

to direct neighbors, i.e., a player only provide the PE-Score for his immediate neigh-

bors. This helps to reduce the chance for large cross effect (since the PE-Score matrix

becomes more sparse). However, even with this restriction, it is still possible that

equilibrium cannot be reached. In fact, when the PE-score matrix contains a column,

say Col j , and its corresponding row, say Row j such that the sums of the values of

Col j , and Row j are both greater or equal to 1, then no equilibrium can be reached.

Intuitively, this can happens when player j is very prominent among the other players,

and, at the same time, player j also tends to respect his followers’ opinions. A solution

to handle this case is to let player j dominates his own decision (i.e., ignore other

players peer effects), preventing the existence of feedback loops. To see this in action,
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Table 6.6: PE-Scores before adjustment

Prof s1 s2 s3 s4
Prof 0 0.25 0.25 0.25 0.25

s1 1 0 0 0 0
s2 1 0 0 0 0
s3 1 0 0 0 0
s4 1 0 0 0 0

Table 6.7: PE-Scores after adjustment

Prof s1 s2 s3 s4
Prof 0 0.2 0.2 0.2 0.2

s1 1 0 0 0 0
s2 1 0 0 0 0
s3 1 0 0 0 0
s4 1 0 0 0 0

Table 6.8: Initial I-Scores in the extreme case

0 1 2 +∞ Decision
Prof 0 4 0 0 Friends

s1 3 3 3 3 Any
s2 3 3 3 3 Any
s3 3 3 3 3 Any
s4 3 3 3 3 Any

let us consider the following extreme case.

Example 6.1. Consider the scenario where a professor and his four students took a photo

together. All of the students respect the professor’s opinion. However, at the same time,

the professor also decides to conform to his students’ choices, as shown in Table 6.6. The

mediation cannot proceed due to the very large cross effect between the professor and his

students. It can be observed that both Row 1 and Col 1 are greater or equal to 1. µ1(W ), the

current greatest eigenvalue of the PE-Score matrix, is 1, which does not satisfy the condition

for existence of the equilibrium. One possible solution to this case is to let the professor

reduce his dependency on his students, like making a adjustment as showed in Table 6.7.

Table 6.8 and Table 6.9 show the mediation outcome after such adjustment.

We thus develop the following heuristics to address this problem. Given the PE-

Score matrix, we determine if the greatest eigenvalue of the PE-Score matrix is less

than 1. If so, we expect the existence of an equilibrium. Otherwise, we try to find

out a player i such that the sum of the values of row i and column i are greater than
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Table 6.9: I-Scores at Equilibrium in the extreme case

0 1 2 +∞ Decision
Prof 12 32 12 12 Friends

s1 15 35 15 15 Friends
s2 15 35 15 15 Friends
s3 15 35 15 15 Friends
s4 15 35 15 15 Friends

or equal to 1, and request player i to revise his PE-score. In particular, it has been

recommended, as part of the sufficient condition for the existence of equilibrium, that

the sum of each player’s PE-Score (the sum of each row) should be less than 1, unless

he really wants to fully rely on the others’ opinions. This process is repeated until an

equilibrium can be reached.

6.6.2 Second Round of Mediation

Recall that our goal is to resolve the conflicts that arise in making collaborative deci-

sions. So far, we have assumed that we can always reach a consensus that is acceptable

to all players in one round of the mediation procedure. However, the mediation may

fail. This happens when full consensus cannot be reached with regard to the set-up.

It may also occur when not all players are satisfied with the collaborative decision

derived from CAPE with a majority-mode voting function. In this section, we discuss

how to further facilitate mutual collaboration if complaints about the outcome arise.

The idea here is to identify a key player, say John, who has the highest effect on the

aggregate outcome, and let the players who are not satisfied with the outcome turn

to John for help. But notice that an unique feature of our method is that the final

outcome closely depends on the peer effects network. Collusion is hard to succeed in

such circumstance, since an individual or a small group, or even the key player John,

does not necessarily dominate the result. Nevertheless, we can still encourage the

players to approach John, who gets a lot of respect from his neighbors and has a high

overall impact on the group, for help. Because such key player may easily persuade

his followers to change their settings as well. In this way, the players can publicly

request a second-chance mediation, instead of trying to employ colluding behaviors

in private. Since John often gets more respect from his neighbors, it is more likely

that the aggregate collective result be reduced optimally if he is willing to change his
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Table 6.10: Intercentrality Scores

Intercentrality
u1 1.96
u2 1
u3 3.8
u4 2.7

Table 6.11: Adjusted Initial I-Scores with Method OC

Friends Friends of Friends Public Intention
u1 5 5 4 Public
u2 3 3 0 Friends of Friends
u3 4 2 0 Friends of Friends
u4 2 2 2 Private

intention score. But we should stress that this does not necessarily lead to a biased

aggregate outcome. The outcome is still closely affected by the peer effects network.

In addition, we suggest that all the players should have the right to know who the

key player is, whether there is anyone who has turned to the key player for help, and

whether the key player agrees to adjust his intention or not. It should be a public

procedure for petition for another round of mediation, which is distinguished from

the colluding behavior (that are done in private).

In Ballester et al.’s work [BCAZ06], they showed that the key player can be iden-

tified by ranking the players’ intercentrality. Let M = [I −W ]−1, and mi j be its entry.

mi j can also be written as
∑+∞

k=0 wi j
k . This expression counts the number of weighted

paths that start from i and end at j . With the matrix M , we define the intercentrality

of player ui as follows:

ηi =

�

∑n
j=1 mi j

�2

mi i

The intercentrality actually “counts the total number of direct and indirect weighted

paths that hit i” [BCAZ06]. Briefly, it considers not only a player’s centrality, but also

his contribution to other’s centrality.

Example 6.2. Consider a scenario where, using the second method, the player u4 is not

satisfied with the outcome “Friends of Friends” for he is really concerned about privacy. So

u4 asks the originator u1 for a second mediation, and requests to see who the key player is

in their current peer effects network. Table 6.10 shows the intercentrality of each player. As
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Table 6.12: I-Scores at Equilibrium with Method OC in the Second Mediation

Friends of Friends Against Friends of Friends
u1 6.2 0.8
u2 3 2
u3 4.54 5.88
u4 3.89 4.97

(a)

Friends Against Friends
u1 6.2 0.8
u2 3 2
u3 6.82 3.6
u4 4.46 4.4

(b)

it turns out, u3 is the key player. Assume that u4 talks to u3, and persuades u3 to change his

intensity score. u3 resets his set-up as [“Friends”, 4], [“Friends of Friends, 2”], [“Public”,

0]. All the players are also informed that u4 is not satisfied with the previous outcome and

has asked the key player u3 to reconsider his setting. If the originator agrees to set up a

second mediation, all the players can reset their set-up and then a new mediation begins.

Suppose, in this example, all the other players do not change their setting. The new result

becomes the choice “Friends”, as shown in Table 6.12b, which further protects the player’s

privacy as a result of u4’s complaint.

6.6.3 Circle-based Social Network

In this part, we discuss how to extend our strategy to circle-based social networks. In

circle-based social networks, users categorize their friends into different groups. We

adapt the method developed by Hu et al [HAJ12]. Essentially, it is not practical to

list out all the policy choices by taking into account all the player’s circles together.

Instead, we let each player considers the trust level of every accessor from his own

perspective. Specifically, given an accessor, each player specifies the intensity in terms

of his own circles to decide whether to grant access to this accessor. For example, given

a photo, Alice may have the following settings for her circles: (Family, agree), (Lab-

mates, slightly agree), (Strangers, disagree). Based on this setting, Alice’s preference

for the accessor depends on which circle the accessor belongs to. In our example, if
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Alice wants to share the photo with John and John is Alice’s labmate, then Alice is

essentially saying she is fine with sharing the photo with John. On the other hand,

if John is a stranger to Alice, then Alice basically opts to keep the photo private. In

some sense, what we really have is an implicit choice which is determined by setting

of the circle which the accessor falls into. We can then derive the collaborative result

based on each player’s intensity score towards this given accessor.

Instead of taking the average aggregate decision as in [HAJ12], our strategy facili-

tates the players to adjust their decision towards the strangers outside their own circles

by considering peer effects. This is based on the assumption that one would like to

put more trust on a stranger as this stranger is also a friend of his friends. To see why

this is useful, let us consider the following example.

Example 6.3. Consider the scenario where the player ui does not know the accessor a

personally. However, the accessor a is in fact in the circle of one of ui ’s friend, u j . As

ui is not familiar with a, ui cannot accurately assess the risk to share the photo with a.

Alternatively, with our strategy, ui can refer to u j ’s opinion since u j may know a well.

Note that ui does not need to predict whether a knows his friend u j or which exact extended

circle a belongs to. Since in circle-based networks, one is not likely to know the constituents

of other’s circles, our method helps the user get a better assessment of a stranger’s risk by

looking at others’ actions.

6.7 User Interface

We have implemented CAPE as a Facebook application. It is now available at http:

//cape-facebook.herokuapp.com4.

CAPE is hosted on Heroku5, a cloud application platform. It consists of one PHP

application to deploy user interface and connect Facebook API6, as well as one back-

bone Python application with Flask7 to realize the functionality of our mediation

engine. Currently, we adopt Method OO in this implementation of CAPE.

4We should stress that because of the frequent changes in Facebook privacy policy, CAPE might
need to slightly change the settings or migrate to new versions in the future.

5https://www.heroku.com/
6https://developers.facebook.com/docs/graph-api
7http://flask.pocoo.org/
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Figure 6-4: CAPE–Login

Figure 6-5: CAPE–PEScores

CAPE requests its user to give the permissions to access the user’s basic infor-

mation, his photos and photos shared with him on Facebook. Besides, CAPE also

requests at least some of the user’s Facebook friends are also using CAPE and can see

the posts he has been tagged. It is because CAPE needs his friends’ participation in

the procedure, too.

Briefly, CAPE consists of the following steps. In the first step, the originator needs

to login with his Facebook account. Figure 6-4 shows the web interface of CAPE to

explain the detailed permission issues and request users to login to Facebook.

After login, CAPE lists all the originator’s friends using CAPE, and asks the user

to update the PEScores, as shown in Figure 6-5.

Next, CAPE loads the photos with tagged friends who are also using CAPE. The

originator now can configure the I-Scores for each photo. A screenshot of this step is

taken as shown in Figure 6-6.
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Figure 6-6: CAPE–IScores

Figure 6-7: CAPE–Mediation Outcome
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After all the players’ configurations are collected, CAPE will present the originator

the mediation outcome it derives. Figure 6-7 shows such an example. We should stress

that this is an asynchronous procedure. Hence the results may not likely to be available

immediately. The user may collect the results next time when he logs in after all the

settings have been collected.

6.8 Summary

In this chapter, we have revisited the problem of protecting user privacy in online

social networks (OSNs). In particular, we have investigated the design of access con-

trol mechanisms for protecting shared content where co-owners may have differing

and conflicting privacy preferences. A novel collaborative access control mechanism

has been designed. Our key insight is that peer effects should be a key contributing

factor to be considered in resolving conflicting preferences. Our proposed framework,

CAPE, is based on graph theoretic model, and is able to lead to consensus that is

acceptable to the co-owners. Our CAPE framework can be applied to both distance-

based and circle-based networks. We have also looked how the peer effects scores

should be set to ensure equilibrium. Moreover, we have also discussed how to handle

the scenario when a player may not be satisfied with the outcome.
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Chapter 7

Conclusion and Future Directions

The goal of research on privacy is to develop mechanisms to protect an individual’s

privacy and to prevent unauthorized access or leakage of sensitive data. Effective

methods will be able to tame public fears of hidden privacy leakage and bring back

the trust over the Internet in this digital era. In recent years, large scale integration

between e-commerce tech giants and OSNs is clearly on the upswing. The prevalence

of OSN apps in app eco-systems also yields an increasing demand to access users’ data

in OSNs. As such, there is a trend to fuse and integrate data. It is hence very urgent to

develop faithful and yet efficient privacy-preserving techniques for OSNs, and to do

it rapidly.

This thesis is intended to investigate practical techniques to protect OSN users’

privacy. As practitioners, we’ve covered two topics of privacy-preserving practices,

one from the enterprise’s point of view and another from that of the individual. In

this chapter, we recap the major advances and our contributions on each topic, see

how the topics are related in the cutting edge research arena, and point out the main

challenges that are emerging in new directions.

7.1 Towards Faithful & Practical Privacy-Preserving OSN

data publishing

In our first two works, we’ve covered two privacy-preserving mechanisms for OSN

data publishing, one employing anonymity and another using differential privacy(DP).

We also give a coherent view of the overall development in defining information pri-
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vacy, that is, how our understanding in information privacy have changed and matured

over the last decade.

Recall that anonymity(including randomization, k-anonymity, l -diversity, etc.)

was the first mainstream privacy model adopted by many works. Our first work

LORA also falls into this category. LORA considers just to publish simple undirected

graphs. However, in real-world scenarios, it is not uncommon to see graphs often

contain other additional information. For example, in [SKX+12], we investigate

the release of networking data where the edges are labeled. Our method adopts l -

diversity as the privacy model. There are also works on graphs that contain weights

and directions on edge [SMG+12; DEA12].

As DP now has become the emerging standard for data publishing, many works

employ it for answering summary statistics of the underlying data. For example, we

have looked at publishing counting summaries on streaming binary data in [CXG+13].

There are also numerous works on publishing histograms, trajectories and frequent

items counting problems. However, there are so far limited progress for synthetic

data approximation, which is particularly obvious for network data. This in part is

because of current DP mechanisms’ limitations. But another major reason, we think,

is the missing of links between statistics and graph theory. It is still not clear now

which summary statistics really capture the entire function of a network.

In our second work, we tend to view the network itself as statistical data, a sample

drawn from an underlying distribution. This is particularly meaningful in the real

world, since the formation of real-world networks has some elements of randomness.

We’ve shown that our method has significant improved accuracy under the same DP

level, compared to other state-of-the-art approaches. The intuition behind our ap-

proach is that, by mapping a graph to another statistical model space and sampling in

the calibrated statistical distribution, we can effectively control the influence caused by

the change in the input. Specifically, we can limit the influence only on one parameter

in the model while leaving the rest intact. One interpretation is that, even though

the network itself is essentially high dimensional, its intrinsic dimension can be very

low in most real-world scenarios. The parameters of the model in a high dimension

space are often interlocking, the independent components can be more clearly seen

once the graph has been transformed into a low dimensional space. However, the
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global sensitivity in DP, if not through careful design, can be easily affected by the

high extrinsic dimension/network size(akin to the curse of dimension appearing in

machine learning). Hence, it is crucial to first reduce the dimension via sampling,

approximating, or mapping graph to other feature domains, in order to lay the ground

for constructing the low sensitivity.

As such, we hope our methodology can call out further development of methods

in this line of work. It will be interesting to see how more existing sampling or

approximation methods on graph can naturally fulfill DP, to avoid directly injecting

noises into each part of the feature model. In this way, the impact of the previously

“prohibitive” sensitivity that result in poor data utility can be diluted through these

sampling or approximation processes.

7.2 Integrating data-access policies with differential pri-

vacy

In our third work, we’ve demonstrated a collaborative access control strategy. The

main observation is that, in the case where a collective data-access policy is needed, it is

common that some OSN users’ decision would be greatly influenced as they consider

their peers’ privacy needs. Many works in this line assume, in such scenario, OSN

users’ benefits shall be competing with each other. That is, each user tends to selfishly

maximize his own gain. However, in contrast, we point out that it is more suitable to

assume ONS users tend to be considerate about their friends’ emotional needs. This

is more reasonable since OSN users are typically friends. To this end, we’ve designed

a framework to simulate emotional negotiation, in which OSN users can adjust their

data-access policies regarding such peer effects. We wish our design can function as a

knot, providing more flexibility for OSN users in support of constructing a positive,

collaborative atmosphere for collective decision-making.

It’s also worth to point out another key feature of our design. That is, our mech-

anism is also a data-driven model. The final collective decision depends on how each

OSN user perceives his friends, in terms of peer effect scores. Clearly, as OSN users

become the data creators, many users’ privacy preferences are data-driven and context-

aware. Hence, it is also pressing to enable policies to support this change. More
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recently, some researchers propose a few works devoted to bridge such data-access

policy-making strategies with differential privacy [KM12; HMD14]. The authors

advocate to integrate differential privacy with policy-making procedures, by allowing

the users to specify secrets and constraints. The line of works is poised to lead to further

development in data-driven access control strategies. We believe it is equally important

to develop works in similar spirit for OSN data.

7.3 New privacy issues on emerging applications

In the second part of this thesis, we’ve also reviewed a variety of solutions for access

control enforcement in OSNs. One line of these solutions focuses on controlling the

information flow over OSNs, by assuming users shall not trust and rely on OSNs’

own protection mechanisms to protect their privacy. However, none of the proposed

systems, such as encryption-based and decentralized system, has been widely adopted

in real world.

In contrast, OSN users are increasingly dependent on OSNs and third-party de-

velopers. This raises more concerns over user privacy. First, many OSNs such as

Google+ and Weibo advocate their users to use user-defined circles/groups for OSN

content sharing, . Hence, OSN users today feel much more protected and comfortable

in using OSNs as platforms for sharing content online. While these privacy-preserving

mechanisms are more powerful, they are also much more complicated. Clearly, it is

not practical to predefine all circles a user will ever need. OSNs also do not currently

have an effective mechanism for a user to create and/or customize dynamic (ad-hoc)

circles for each publishing session. Hence, more advanced tools for facilitating OSN

users to use circles are needed. To this end, we propose in [XAT12] a recommendation

framework – the Circle OpeRation RECommendaTion (CORRECT) framework –

to assist users in easily utilizing circles and creating ad-hoc circles as needs arise. We

believe many more such auxiliary tools are needed to help users better manage the

sophisticated privacy settings that today’s OSNs provide.

Second, as cloud computing services and mobile apps become prevailing, we’ve

seen an increasing exposure of ONS users’ geographic information and transaction

records. This prompts the need for protecting these sensitive data compounded with
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OSN information, while still allowing users to benefit the convenience brought by

these new services. However, in most cases, the users essentially have no control on

or have no idea about how their data is used, or whether the usage of their data is

reasonable and necessary. In the case of mobile apps, there is a tendency for the apps

to ask more permissions to access data than needed. As such, there are some works

dedicated to design new data-derived and semantically meaningful disclosure models

for relational databases [BKG+13; BKG14]. The goal of these works is to enable strict

control over information disclosure while keep them accountable and explainable. We

believe it is equally pressing to extend the same line of work on OSNs, since many

mobile apps also demand the users’ OSN data for their services.

In conclusion, it can be a long-term battle for privacy practitioners to put privacy

into practice in OSNs. This is mainly because OSNs is continuously evolving and

yielding numerous variant applications in this social era. From another prospective,

this also leads practicing privacy in OSNs to be an exciting and enticing research area

where much more effort are needed. We hope that, through rich collaborations with

many diverse disciplines, we can have further understanding in privacy, and make it

truly fulfilled in practice on social networks.
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