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Summary 

An extensive amount of research has been conducted on indoor localization, 

a topic with numerous applications in the healthcare, retail and entertainment 

industries. In this thesis, we have made a contribution to the design of step-

counting dead reckoning (DR) localization systems and the methodologies that 

can be applied towards a pervasive localization solution. 

To accomplish our goals, we proposed the methods which improve the 

performance of previous step-counting algorithms. This involves three 

primary improvements: (1) an adaptive step direction estimation method, 

which improves the step direction estimation from the Principle Component 

Analysis (PCA) based algorithm; (2) a map matching (MM) method, which 

rectifies the error in sensor’s orientation, step direction and location 

estimations by the known directions of the corridors; and (3) a specially 

designed improved particle filter (PF), which performs better than the standard 

PF applied in previous work in the literature. The algorithms were evaluated 

through extensive experiments. 

We then investigated the algorithms to fuse the results from two sensors for 

a more robust solution. We focused on the orientation fusion, because the 

orientation estimation error is the primary source of the DR location error, and 
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there is no previous work in the literature. The experiments illustrate that the 

fused orientation estimation achieves more robust results than each individual 

solution. When we feed the orientation estimate into the DR, we notice an 

accuracy improvement on the location estimation. 

Since personal localization hardware may not be available to all common 

users, we investigated the cooperative localization scheme using the existing 

hardware. In a wireless sensor network, the sensors are capable for pair-wise 

ranging measurements, or pair-wise angle measurements. The cooperative 

localization methods utilize such relative geo-location information, to 

construct the network’s geo-location topology. The methods are implemented 

in a centralized or distributed manner. In this thesis, a cluster based scheme is 

proposed and evaluated. Within the cluster based scheme, three algorithms are 

implemented and compared: the extended Kalman filter (EKF), semi-definite 

programming (SDP) and multi-dimensional scaling (MDS). It is found that as 

the cluster size grows, the cost in terms of network overhead increases. The 

cluster based EKF was found to have the best performance among the cluster 

based algorithms, which is close to the centralized EKF. 

For 2-dimensional (2D) localization, at least three anchors with known 

locations and three ranging distances are required to solve the location. The 

tracked one node’s movements, returned by the motion sensing techniques, 

were found to relax such requirements. The DR technique is applied, so that 

the displacements of the node’s movements can be estimated.  Fusing the 

node’s displacements estimations with the ranging distances estimations using 

the PF, the location can be solved even if there are only one or two anchor 
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nodes within the network. The simulation results illustrate that, with the 

combination of the DR algorithm, further improvement on location availability 

(number of nodes that can be localized) and accuracy can be achieved. The 

performances of the cluster based cooperative localization algorithm are also 

enhanced when the DR results are consolidated. 
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Chapter 1  

Introduction 

 

1.1. Background 

Location awareness have enabled the development of a wide variety of new 

exciting location based services (LBS), such as vehicle/pedestrian navigation 

and tracking, location based routing [1] in sensor networks, fleet management. 

Compared with broad applications supported by outdoor positioning 

techniques, like the Global Positioning System (GPS), it is extremely 

challenging to provide similar ubiquitous and affordable services in indoor 

environments. In indoor environments, the satellites signals are attenuated or 

completely obstructed, thus the localization result from GPS becomes 

unreliable or even unavailable. Unlike GPS, which provides almost full 

coverage for the whole of the Earth’s surface, indoor localization provides a 

solution with a quite smaller scale.  

A cellular tower can provide the signalling coverage within an extremely 

large area. Thus, a cellular tower based indoor localization technique [2] can 
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support the localization demands for a certain area using much fewer towers, 

but sacrifices accuracy. To provide a more accurate solution, additional indoor 

infrastructure deployment is required. Because of the complexity of the indoor 

environment, the applied techniques can be quite different.  

Accurate localization techniques commonly result in higher costs for the 

end users. Hence, it is worth providing a location solution for the users who 

are not equipped with special localization hardware, even with lower accuracy. 

Cooperative localization is a technique which utilises the locations of certain 

anchor users and the relative pair-wise ranging measurements between users, 

to provide location solutions to common users. In this thesis, we improve the 

localization accuracy for the anchor users and provide localization solutions to 

a larger number of common users. 

 

1.2. Overview of Existing Indoor Localization Techniques 

1.2.1. Infrastructure Based Techniques 

Indoor localization usually requires additional hardware deployment [3]. 

Various localization techniques have been developed based on IEEE 802.11 

(Wi-Fi), ultrasound, Bluetooth, and so on [4][5][6]. At the current point in 

time, Wi-Fi is the most widely adopted wireless communication technology in 

the indoor and urban environments to provide wireless data access, which 

minimizes some extra deployment cost in the implementation of a practical 

indoor location tracking system. At the same time, a Wi-Fi access point 

provides a much bigger coverage area than that of an ultrasound or a 

Bluetooth beacon.  
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Given an indoor environment, a much smaller number of Wi-Fi access 

points are required to be installed, as compared with ultrasound or Bluetooth 

beacons, to provide the localization service. In addition, satisfactory 

localization accuracy can be achieved (normally 5-10 meters) for many usage 

scenarios [4]. Because of the above mentioned significant advantages, Wi-Fi 

infrastructure based indoor localization techniques have been the most widely 

adopted techniques in the literature. Fig. 1.1 provides a good illustration on the 

current positioning systems including the typical accuracy and coverage area. 

The horizontal axis represents the accuracy, and the vertical axis represents the 

coverage range. 

 

Fig. 1.1: Current positioning systems according to their accuracy and coverage 

area [7] 

Based on the Wi-Fi signalling, two types of algorithms, namely non-

training-based algorithms and training-based algorithms are proposed. Non-

training-based algorithms adopt geometric trilateration methods, which usually 

rely on distance estimation, like in [8][9]. A small subset of algorithms also 



4 

 

make use of angle estimation [10][11]. Training-based algorithms rely on off-

line ground truth collection. Localization results are obtained by the training 

process using the ground truths. 

In non-training-based algorithms, there are primarily two ways to estimate 

the distance from the device to the Wi-Fi access point, namely using the time 

of arrival (ToA) and the received signal strength (RSS). The estimated 

distances are then utilized in trilateration methods. In ToA methods, the 

distance is computed by the signal propagation speed multiplied by the 

propagation time. In RSS methods, the distance is calculated by substituting 

the received signal strength into a ratio propagation model. Angle estimation 

requires special antennas which are implemented with multiple-input multiple-

output (MIMO) techniques. The special hardware requirement is one of the 

reasons why angle estimation based algorithms are not as well adopted as the 

other algorithms. 

Because of the huge errors in distance and angle estimation, non-training-

based algorithms may not return localization results with satisfied accuracy. 

Therefore, the training-based algorithms are proposed, which are based on the 

assumption that the received signals are different in various locations.  

Fingerprinting algorithms [8][13] are widely used training-based algorithms 

for indoor localization. The first step of the algorithms is site survey, which is 

to collect the RSSs at different locations. The signals then undergo off-line 

processing to obtain a reference database. In localization phase, once a new 

signal is received by the device, the signal is compared with those in the 
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database. The location with the best match signal is returned as the device 

location. 

Given the same deployment, the training-based algorithms usually return 

more accurate results, as compared with the non-training-based algorithms. 

However, the training-based algorithms are vulnerable to environment 

changes, such as breaking down original walls or constructing new walls, 

which would change the radio propagation pattern. In addition, the site survey 

process is quite labour intensive.  

To reduce the site survey effort, other techniques like DR are fused to help 

in the training process, as in [14][15][16]. Instead of standing at each possible 

location to collect the signals, the users can walk for a certain distance with 

known start and endpoint. The locations in between the start and endpoint can 

be captured by DR techniques. Some researchers also applied indoor map 

filtering to further reduce the human effort and enhance the accuracy. 

If higher localization accuracy is demanded, researchers have been found to 

prefer facilities like ultrasound and Bluetooth, as in [5][6], relying on their 

higher accuracy in distance estimation. A drawback of such techniques is that 

they have smaller coverage, thus scaling up will incur high deployment costs. 

Besides, they are not as ubiquitous as Wi-Fi access points in indoor 

environments.  

1.2.2. Dead-Reckoning Approach 

To decrease the cost of infrastructure deployment, DR tracking algorithms 

based on inertial sensors have been proposed, as in [14][18]. In a typical DR 

system, an Inertial Measurement Unit (IMU) sensor includes accelerometer, 
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gyroscope, and sometimes, magnetometer. The DR methods derive the current 

location by adding the estimated displacement to the previously estimated 

location. The direction of the displacement is primarily determined by the 

measurements from the gyroscopes; the displacement length is related to the 

acceleration values.  

Additional indoor infrastructure deployment is still required to provide the 

initial location estimate for the DR methods.  It can also perform as the 

calibration reference, as the major drawback of the DR method is that the 

tracking error accumulates over time. But the DR method reduces the demand 

on the density of the deployment. 

The angular rate measurements from the gyroscope are applied in estimating 

the sensor’s orientation, so that the measured accelerations in sensor’s 

coordinates system can then be converted to the actual moving coordinates. 

After that, there are different strategies in calculating the displacement in the 

movement. A straightforward way to estimate the displacement is to double 

integrate the accelerations. But double integration easily amplifies a small 

error to an unacceptable size.  

To decrease the accumulating error from the double integration, a solution 

called zero velocity update (ZUPT) [19][20][21][22], which places the sensor 

on the foot has been proposed for pedestrian tracking systems. The ZUPT 

algorithm calibrates the velocity of the sensor based on the fact that the speed 

of a pedestrian’s sole decreases to zero when it steps on the ground during the 

pedestrian’s walking. If the sensor is affixed to the sole, the sensor’s speed 

would also be zero. If the estimated speed is not zero, the difference is the 
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accumulated error of speed. This algorithm effectively reduces the error of a 

pedestrian DR system. However, a sensor on the sole requires extra hardware; 

it also causes inconvenience to the user, which restricts its use in only some 

special cases, like in healthcare. 

Instead of placing the sensor on foot, some authors have proposed 

algorithms for the scenario of placing the sensor on waist. The emergence of 

smart phones equipped with IMU sensors impels us to study the DR algorithm 

in scenarios when a smart phone is used by a pedestrian. We decide to explore 

the scenario when the sensor is put in trouser pocket. As a study in [23] 

revealed, 60% of male owners carry their smart phone in the trouser pocket. 

Since the premise of on-foot sensor for the ZUPT algorithm does not hold in 

this scenario, an alternative step-counting algorithm to estimate the 

displacement of each step is applied.  

 Step-counting is a well-known algorithm to estimate the displacement for 

in-pocket tracking. The step-counting algorithm does not calculate based on a 

single acceleration measurement, but looks at the pattern of a string of 

accelerations. It consists of step detection and then the estimation of its 

displacement. The location is only updated when a full step is detected by the 

readings of the acceleration, by adding the displacement of the step. A step 

can be detected by a pair of peak and valley of the accelerations. Different 

formulas and algorithms have been proposed to estimate the length and 

direction of a step.  

Both the step length estimation and the step direction estimation are 

dependent on the sensor’s orientation estimation. A straightforward way to 
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compute the orientation is by the integration of the angular rate measured by 

the gyroscope. However, the error accumulates if there is no additional 

information to be fused to calibrate the error.  

There is another way to compute the orientation, by using the accelerometer 

and magnetometer in an IMU. The acceleration and magnetic fields are two 

physical quantities with different directions. Assume we know their actual 

values in the global coordinates system (ground truth), and the measured 

values which are in the sensor’s coordinates system. By constructing equations 

with the rotation matrix, the sensor’s rotation can be solved. The details are 

explained in Chapter 3.  The Earth's gravity is one commonly used source of 

the ground truth. Another source is the Earth’s magnetic fields. The advantage 

of such orientation estimation method is that its accuracy does not affected by 

time. It is fused with the gyroscope based method, to provide a more reliable 

orientation estimation results. 

To accomplish the orientation estimation, we let the movement (global) 

coordinates system be east-north-up (E-N-U), which initially coincides with 

the sensor’s x-y-z coordinates system. The rotation of the sensor can be 

decomposed as rotations about its axes at the sequence of its z-y-x axis by 

angle ψ-θ-φ, respectively. Suppose the sensor is stationary after an arbitrary 

rotation, the direction of the Earth’s gravity is used to resolve θ and φ. The 

quasi-uniqueness of the Earth's gravity over a large area provides a robust 

solution for θ and φ. Based on θ and φ, the horizontal and vertical components 

of the acceleration can be accurately decomposed. From Eq. 3-38 we know 

that the step length depends only on the vertical component of the acceleration. 
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Thus, accurate step length can be estimated. Given the θ and φ, ψ can be 

resolved from the known magnetic fields, which directly affects the step 

direction estimation. If the actual magnetic fields at certain places are different 

from the one we assume, biased results would be returned. Therefore, the 

accuracy of step direction estimation depends on the stability of the magnetic 

fields. 

However, studies in [24][25] have indicated that there are considerable 

random disturbances of the magnetic fields in an indoor environment. Thus, 

the produced estimation of ψ is unreliable, and hence, the estimation of the 

step direction is affected. Accurate step direction estimation is an extremely 

challenging component, which does not always give satisfactory results. 

1.2.3. Cooperative Localization 

Although various localization systems such as the GPS are used, it is not 

economically viable to equip every node with a physical localization device, 

nor does the GPS operate in indoor environments. This motivates research on 

location estimation using relative location information, such as distance and 

angle measurements between nodes.  

Considering a widely deployed sensor network, the number of anchor nodes, 

who are able to localize themselves, is typically small. Thus the normal nodes, 

that need to be localized, may be several hops away from the anchor nodes. 

None of the normal nodes would have enough information from the anchor 

nodes to localize itself, because of the limitation of the signal strength. 

However, by co-sharing the information with nearby nodes (e.g. the pair-wise 

ranging distances), a node is able to construct the network topology of all 
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nodes’ locations by gathering all pieces of such information. In such a way, 

the nodes work cooperatively to contribute information for the others’ 

computation. [26] did some research on analysing if a certain network 

topology is globally rigid that can be uniquely solved. Although different 

algorithms can be applied, it is worth noting that nodes in a wireless ad hoc or 

sensor network typically have limited power, transmission range and 

computational capacity. 

In this thesis, we study the localization algorithm based on the locations of 

reference anchor nodes and the pair-wise ranging measurements between 

neighbour nodes. A group of work in the literature study the cases when there 

is no anchor node. In such cases, the solved locations are the relative locations 

constructing the network topology, which can be rotated as a whole in an 

arbitrary manner. It would be sufficient to meet some application requirements 

like location based routing in wireless networks. If absolute and unique 

solutions are desired, at least three anchor nodes are required in a two 

dimensional (2D) network. Some algorithms, namely the range free algorithms, 

do not require the pair-wise ranging measurements. The information being 

used is that if arbitrary two sensors are within the signal transmission range of 

each other. A range free algorithm usually results in less accurate solutions 

than the algorithm using range measurements [27].  

Direct or indirect radio links to at least three anchor nodes are required for 

localization in a 2D network. Fig. 1.2 illustrates an example of the networking 

scenario, where the five-point star and the small dots are the anchor nodes and 

the nodes that need to be localized, respectively. The dotted lines represent the 
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direct linkages between the nodes. The nodes with direct linkages can perform 

pair-wise ranging measurements. 

 

Fig. 1.2: An example of an evenly deployed 50–node wireless network in a 4 by 4 

map with a normalised transmission range (1) 

 

1.3. Research Focus and Contributions 

1.3.1. Step-Counting with Map Fusion 

a. Improved Step Direction Estimation 

Step direction estimation is one of the key procedures for step-counting 

based DR tracking using inertial sensors. It is also quite challenging, 

especially when the captured motion data is tainted by the user’s activity. The 
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Principal Component Analysis (PCA) is a standard tool in data analysis to 

reduce a complex dataset to a lower dimension [28].  

The PCA based algorithm has provided robust step direction estimation 

results, regardless of the sensor’s relative rotation compared with the human 

body. However, the PCA based algorithm only returns the principal axis, 

resolving the 180
o
 ambiguity is another challenge. Meanwhile, the PCA based 

algorithm does not respond fast enough when people make turns.  

In this thesis, the drawback of PCA is compensated with the sensor’s 

orientation analysis, which returns the walking direction by analysing the 

change in the sensor’s orientation. In our adaptive method combining PCA 

and sensor’s orientation analysis, the sensor’s orientation analysis algorithm is 

executed when a direction change is detected by the PCA algorithm. Because 

of the low computational complexity and restricted usage of orientation 

analysis, the adaptive method introduces little overhead, when compared to the 

original PCA method.  

b. Map Matching Based Map Fusion 

Step length estimation always returns satisfactory results, especially when 

training is involved to obtain the best parameters for each individual. The 

direction estimation in an indoor environment is the component that introduces 

the greatest challenge. If magnetometers are used to estimate direction, indoor 

environments possess significant magnetic interferences that would 

significantly adversely affect the accuracy of the direction estimation. On the 

other hand, drift in gyroscopes also pose a problem in accurate direction 

estimation. 
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The localization error of indoor DR primarily comes from the step direction 

estimation error, which results from the accumulating error of the orientation 

estimation. In this thesis, we propose a step-counting algorithm incorporating 

an indoor MM algorithm. It works based on the common pedestrian habit that 

people walking along a corridor tend to walk in a quasi-straight line along it. 

Then the knowledge of corridor’s direction is used to calibrate the pedestrian’s 

step direction estimation, as well as the sensor’s orientation estimation. Better 

results are returned than the original PF technique. 

c. Improved Particle Filtering for Map Fusion 

A PF [29] provides good uncertainty estimates by generating enough 

particles. Hence, it is amenable applying PF to fuse the DR results with other 

information, like map constraints. The previous PF based DR techniques 

generated particles using an equal location error model in 2D, which did not 

take into account previously mentioned different error patterns for step length 

and direction estimation. Therefore, the modelled location update function of 

the PF is significantly different from the actual movement, which results in a 

wrong uncertainty boundary and thus large location error. 

In this thesis, an improved PF, which better models the uncertainties in the 

step length and direction estimation, is proposed. The particles with the wrong 

location estimation are more likely to be the ones with the wrong direction 

estimations, which would be eliminated by the map constraints. Therefore, the 

left over particles would have better direction estimation, as well as location 

estimation. The improved PF returns more robust results.  
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1.3.2. Dual Sensor Localization 

A single sensor may not provide quite robust results, because of the 

uncompensated bias during the sensing. Therefore, in this thesis, we applied 

the Maximum Likelihood Estimation (MLE) method to fuse the estimates 

from the two IMU sensors. The primary scope of this fusion is to improve the 

orientation estimation, as we find that the orientation estimation error is the 

major source of the location error, and that there has not been much work done 

in this area yet. The proposed solution achieves higher accuracy than either 

single sensor when two assumptions are met: 1) the measurement error 

distributions of the two sensors are similar; 2) The measurement errors are 

based on the Gaussian distribution. If the two assumptions are not met in 

certain circumstances, suboptimal results would be obtained that the achieved 

accuracy is in between the ones from Sensor A and Sensor B. 

To illustrate the effect of the orientation estimation on localization, we feed 

the fused orientation into the DR algorithm. Except for the original solution 

without fusion, three fusion methods are compared: Option 1 - fusion only on 

orientation estimation, a DR is then applied separately in Sensor A and Sensor 

B for localization; Option 2 - no fusion on orientation, but fusion is applied on 

the two DR locations as in [92]; Option 3 - fusion on orientation first, and then 

fusion applied on two DR locations.  

Option 1 achieves higher accuracy, as compared with the original non-

fusion solution. After location fusion, Options 2 and 3 achieve almost the 

same average results, which is in between the accuracy of the directly 

computed accuracy from Sensor A and Sensor B. But the fusion solutions are 
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preferred, because of the robustness, which is independent of a single sensor’s 

unpredicted drift error. 

1.3.3. Cooperative Localization 

a. Cluster Based Cooperative Localization 

A cluster based method divides the entire network into small clusters before 

the location is computed in each of the cluster heads. A cluster based scheme 

provides a good balance of the advantages and disadvantages of the 

centralized and distributed schemes.  

However, the previous work did not pay much attention to the clustering 

algorithm and the cost of the clustering. In this thesis, a 2-phase cluster based 

localization algorithm consisting of the clustering phase (Phase 1) and the 

localization phase (Phase 2) is introduced and evaluated. In Phase 1, the 

clusters are updated and the cluster heads receive the relative location 

information from their member nodes. The locations are computed by the 

cluster heads in Phase 2 by three algorithms, EKF, SDP and MDS. The 

localization results are then broadcasted in the clusters. The interferences of 

message broadcasting and bandwidth constraints are all simulated in this work, 

and the cost of the clustering algorithm are quantitatively measured. The 

performances of the three algorithms, namely EKF, SDP and MDS, are 

compared, as well as their cluster based methods. 

b. Inertial Motion Sensing Improves the Localization Potential 

The previous methods on cooperative localization only consider the scenario 

of a fully connected network (more than 3 neighbouring connections) with 
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many anchor nodes (more than 2) [30]. We investigate that the known 

movement pattern returned by the motion sensing technique relaxes the 3-

anchor and 3-connection requirements for 2D localization. In this thesis, we 

study the case when there are only one or two anchor nodes in the network; 

and there is one moving node which is equipped with an IMU sensor to track 

the movement. A PF is applied to localize the moving node. Once the node 

moves close to the anchor nodes, it can get localized. 

The localized moving node would be a moving anchor node to help localize 

the other nodes. The DR location is also fed into the original cluster based 

method which illustrates great improvement: there are more nodes that can be 

localized (increased from 0 to 48 in the 2-anchor case); and the accuracy is 

also enhanced. 

1.4. Organization of the Thesis 

The thesis is organized in the following manner. In Chapter 2, the related 

work regarding indoor localization is summarized. The related work is 

categorized by infrastructure based localization, DR localization, and wireless 

network cooperative localization. Chapter 3 describes our work in the single 

sensor step-counting localization, which provides more robust step direction 

estimation and better fusion of indoor map constraints by MM and an 

improved PF, with experimental evaluation. Chapter 4 details the results of 

our work and the experimental evaluation in fusing the orientation estimation 

from two IMU sensors. The fused orientation is fed into the original DR 

algorithm for a performance comparison. Chapter 5 describes the work in 

cooperative localization, which includes a cluster based localization scheme 
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and further enhancements by DR. Simulations are used to evaluate this work. 

Chapter 6 draws conclusions and recommends directions for future research. 
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Chapter 2  

Literature Review 

 

In this chapter, we classify the existing indoor localization methods in the 

literature into three main categories, according to their working mechanisms. 

The three categories are infrastructure based approaches, the dead-reckoning 

approaches, and the cooperative localization approaches. For each category, 

the research areas and the progresses are presented. 

2.1. Infrastructure Based Approaches  

2.1.1. The Geometric Methods 

a) Received Signal Strength Indicator (RSSI) Based Methods 

RSSI is the power being received by an antenna. There are different ways to 

represent RSSI. It can be represented as the value of RSS itself, the power 

attenuation (path loss) experienced during radio propagation, or others. The 

power attenuation mainly results from the propagation, the fading, and channel 

fluctuations. A known fact is that the power is attenuated as a function of the 

transmission distance. If the distances to at least three reference points are 
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available, the receiver’s location can be calculated by trilateration [31]. An 

illustration of trilateration method is given in Fig. 2.1. The three access points 

(APs) are with known locations. If the distances from the UE to the APs, 

namely, d1, d2, and d3, are known, the UE’s location can be determined by 

the intersection of the circles. Fig. 2.1 is for 2D localization scenario. For 

higher dimension scenarios, similar methods can be applied. 

 

Fig. 2.1: Trilateration localization with three APs 

 

RSSI has been the easiest and cheapest techniques for wireless localization 

because RSSI information is available with nearly no additional cost. All radio 

receivers would capture the RSS information by nature. Only the storing and 

processing of the information would incur the additional cost. However, the 

fading may result from the multipath propagation or shadowing [32]. These 

factors make the prediction of RSSI in radio propagation quite difficult, and 

different path loss models are proposed in the literature. Hence, the distance 
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estimation using RSSI is not reliable. The complexity of indoor environments 

makes the problem even more difficult to solve.  

b) Time of Arrival (ToA) and Time Difference of Arrival (TDoA) Based 

Methods 

ToA based methods also use trilateration for the location computation. But a 

different technique is applied for distance estimation. Based on the fact that 

electromagnetic waves propagate through the space at the constant speed of 

light (3⋅10
8 

m/s), the distance between the signal transmitter and the receiver 

can be calculated by multiplying the speed of light by the propagation time. 

Assume it is one-way ranging; the propagation time equals the signal 

receiving time minus the time the signal was being sent. It is obvious that for 

an accurate propagation time calculation, the clocks at the transmitter and the 

receiver need to be synchronized. 

Synchronizing the clocks at the transmitter and the receiver may not be easy. 

An two-way ranging method is proposed to overcomes the need for 

synchronization [33]. The round-trip time (RTT) technique can support the 

two-way ranging method. In IEEE 802.11 standard, suppose in time t0 a link 

layer data frame is sent from the transmitter to the AP. Once the AP receives 

the data frame, the AP would reply a corresponding link layer 

acknowledgement ACK. Suppose the transmitter receives the data frame in t1. 

RTT is estimated by measuring the elapsed time which equals t1-t0. If not 

considering the delay in between the two data frames, the one-way 

propagation time equals (t1-t0)/2. The used times are the transmitter’s local 

time. There is no need for clock synchronization. 
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Because of the high propagation speed of light, a small propagation time 

error would cause huge error in distance estimation (e.g. a propagation time 

error of 1 microsecond corresponds to a distance estimation error of 300m). 

For most indoor applications, the propagation time error must not exceed a 

few nanoseconds. There are four main sources of time error, namely timing 

errors, additive noise, multipath effect, and non-line-of-sight (NLoS) effect. 

Timing errors may caused by the synchronization error, clock error and drift, 

and the error in estimating the delay in between two data frames in two-way 

ranging. The addictive noise in the signal would affect the time that a 

complete signal is considered as received [34]. In multipath propagation, the 

same signal arrives at the receiver via different propagation paths. The 

receiver computes the signal arrival time by finding the peak of the cross-

correlation between the received signal and the transmitted waveform. The 

line-of-sight (LoS) path is the desired path for trilateration localization, but it 

may not be the path with the highest peak. The computed signal arrival time 

could be larger than the actual time. The NLoS effect is similar to the 

multipath effect, in which the signal propagation does not follow the shortest 

path [35]. In indoor environments, the NLoS effect arises because the LoS 

path could be blocked by walls or other obstacles. 

TDoA is a hyperbolic method, which measures the difference of distances 

between AP-UE pairs. In order to get the accurate distance difference, the 

clocks at the APs need to be synchronized. An illustration of the TDoA based 

localization method is given in Fig. 2.2. Each TDoA measurement would 

create a hyperboloid. Given the time difference, the distance difference can be 
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calculated. In Fig. 2.2, distance difference from the AP1 and the AP2 to the 

UE returns the hyperboloid d2-d1, and the distance difference from the AP2 

and the AP3 to the UE returns the hyperboloid d2-d3. The intersection of them 

would give the UE’s location. There is normally a performance degradation 

compared with the ToA based localization techniques, given the same 

information. A comprehensive study regarding the performance comparison of 

ToA and TDoA based localization techniques is given in [36]. 

 

Fig. 2.2: TDoA based localization with three APs 
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2.1.2. The Fingerprinting Methods 

The geometrical approaches described in previous section are based on the 

ranging measurement techniques. Because of the high complexity of the 

indoor environments, the ranging measurement techniques may not return the 

distance estimations with satisfied accuracy, no matter they are using RSSI or 

ToA. Hence the geometrical approaches perform poorly in indoor environment. 

The solutions may be even unavailable if the device is not able to receive the 

signals from three APs at certain places. 

The fingerprinting approaches try to make use of the uniqueness of the 

signals at discrete locations. The approaches perform in two phases, namely 

the off-line site survey phase and online localization phase. In the off-line site 

survey phase, the location dependent parameters of the signals are measured at 

preselected locations, which is then processed and stored in a database. The 

granularity of the selected locations directly affects the location accuracy. In 

the online localization phase, the measured signal is compared with those in 

the database. The location is computed by minimizing some cost function, 

which tries to quantify the similarities of signals.  

RSS has been the most commonly used location dependent parameter in 

Fingerprinting approaches, including WLAN [37] and cellular networks [38]. 

The online localization phase can be implemented by deterministic or 

probabilistic technique. An example of the deterministic technique is the K 

Nearest Neighbour (KNN) method, as in [37][39]. The returned location 

estimate is the average (or weighted average as in [39]) of the coordinates of 

the K locations with the best matching RSS in the database. The RSS 
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resolution of deterministic technique in database is determined by the 

granularity of off-line site survey. In a probabilistic technique, models are 

applied to compute the distribution of the RSS at the locations which are not 

covered during site survey [40][41][42]. The returned location estimate is the 

location with the best matching RSS. Compared with the RSS resolution of the 

deterministic technique, the RSS resolution of the probabilistic technique can 

be much higher than the one from site survey.  

Compared with geometrical approaches, the fingerprinting approaches 

normally return more accurate location estimate. The main disadvantage of the 

fingerprinting approaches is the huge expenditure of resources and time, in 

constructing the location dependent parameters database. Maintaining the 

database up-to-date is also quite challenging, as the off-line phase need to be 

repeated to track changes in the environment.  

Some attempts have been tried to reduce the site survey effort. Techniques 

like DR are fused in the site survey process, as in [14][15][16]. DR can track 

the displacements during walking. Suppose there is a corridor in which the 

RSS database needs to be built. The standard site survey process would be 

measuring some locations, and then standing still with the radio receiver at 

each location to collect the data. The process would be simpler with the DR 

techniques. Only the two locations at the ends of the corridor are required to 

be manually marked. The people then walk from one end of the corridor to the 

other, with the radio receiver and the IMU sensor being carried. The location 

ground truths are acquired by the DR technique, and the corresponding RSS at 

each location is obtained from the radio receiver.  
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2.2. Dead-Reckoning Approaches 

2.2.1. Sensor Orientation Estimation 

Estimation of the sensor’s orientation is the fundamental requirement for 

IMU sensor based DR [43], which suggests the direction of the movement. 

According to Euler’s rotation theorem, any sequence of rotation of a rigid 

body about a fixed point is equivalent to a single rotation by a given angle 

about a fixed axis. Therefore, any rotation in three dimensions can be 

represented as a combination of three-element vector (axis) and a scalar 

(angle). Fig. 2.3 illustrates the rotation plane and the rotation axis, and w is the 

rotated angle.  

Quaternion provides a simple way to represent the rotation in four numbers. 

The orientation estimation based on the gyroscope, has been well studied in 

the spacecraft industry. [44] is the first comprehensive presentation of the data, 

theory, and practice in attitude analysis. The explained theory and assumptions 

in the quaternion update equation in this book, using the angular rate, are the 

basis for the orientation estimation in the literature. The error would 

accumulate if we only use the gyroscope as the data source.  



Fig. 2.3 The rotation plane and rotation axis of a rigid body
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The rotation plane and rotation axis of a rigid body 

inertial sensor normally contains a three-axis accelerometer, 

axis gyroscope and a three-axis magnetometer. The Earth’s magnetic 

field and gravity can be used to compensate for the accumulating error of 

gyroscope [45][46]. [45] applied an extended Kalman 

filter to fuse the results from the gyroscope and the accelerometer. In [46]

unscented Kalman filter is applied to fuse the results from all three sources.

ideal environment, with identical magnetic fields and only the Earth's

s orientation could be accurately calibrated. However, 

because of severe magnetic interference in an indoor environment, accurate 

is not an easy task.  

everal attempts have been made to eliminate the effect of the magnetic 

disturbance, like the works in [47][48][49]. However, the algorithms work 

under the assumption that the disturbance comes from a single source and the 

axis accelerometer, 

magnetic 

the accumulating error of 
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[46], an 
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evaluation is taken in controlled environments. The sources of indoor 

magnetic disturbance are much more complex than that. Therefore, in our 

work, we keep in mind the error in the orientation estimation and try to 

eliminate the effect. 

2.2.2. Step-Counting with Map Fusion 

a. Step Direction Estimation 

A considerable number of studies have been published on DR pedestrian 

tracking [14][21][50]. These DR algorithms can be divided into two categories, 

depending on whether the sensor is placed on the sole of a person's shoe or not. 

The different sensor placements introduce distinct strategies on calculating the 

pedestrian’s displacement. The displacement of on-foot tracking is obtained by 

the double integration of acceleration. ZUPT is applied at each step to 

calibrate the acceleration and velocity, like in [19][20][21][22].  

Non-on-foot tracking is calculated by step-counting, which estimates each 

step’s length and direction. The placement of the sensor is normally on the 

waist or in the trouser pocket, like in [51][52][53][54]. In this thesis, we study 

in-pocket tracking. 

Once the sensor’s continuous orientations are determined, there are various 

methods available to determine the pedestrian’s step direction. These methods 

are categorized by the data being analysed: sensor acceleration in the global 

coordinates system or sensor’s orientation.  

PCA is a widely used algorithm to analyse the sensor’s acceleration 

[18][51][52]. It is based on the fact that the variation of accelerations in the 
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pedestrian’s walking direction is the largest compared with the acceleration in 

other directions. So the accelerations’ 1st principle component is parallel to 

the walking axis. The advantage of the PCA based algorithm is that it has a 

great tolerance for the sensor’s relative movement caused by the user, which 

provides a robust step axis estimate. However, the PCA algorithm requires an 

analysis window of accelerations over several steps to obtain reliable principle 

component, which makes it less sensitive to walking direction changes during 

turns. Assume the analysis window is 1.5s, which usually covers two to three 

steps, and a pedestrian makes a turn in step i. The accelerations from step i-2 

to step i would be passed to the PCA algorithm. The returned walking axis is 

the principle component of the last three steps, instead of desired step i. Only 

with another two steps after the turn, the PCA algorithm gives good walking 

axis estimation. Moreover, the PCA algorithm returns only the walking axis. 

Consequently, the current method on solving the 180
o
 ambiguity still needs 

improvement.  

Sensor orientation based methods [50][52][53] respond quickly to direction 

change. But they require the sensor to be relatively steady. If orientation 

estimation uses magnetometer sensor data, studies in [24][25] have indicated 

that there are considerable random disturbances of the magnetic field in an 

indoor environment, which makes the calibration using identical magnetic 

fields unreliable.  

In this thesis, a simplified orientation based method, which is called sensor’s 

orientation analysis, is applied. There are two assumptions for the sensor’s 

orientation based algorithm: (1) that the pedestrian walks facing forward; and 
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(2) that the sensor is relatively steady to the body segment it is affixed to. 

From the two assumptions, the change of sensor’s orientation only comes from 

the change in the pedestrian’s facing direction, which is also the walking 

direction, in this case. If the initial walking direction is known, the subsequent 

walking direction can be determined by the change in the sensor’s orientation.  

By adaptively applying the PCA and sensor’s orientation analysis, the 

advantage of both types of algorithms can be preserved. Hence, we present an 

improved PCA based robust and accurate walking direction detection method 

in this section. 

b. Map Fusion Techniques 

Considering the in-pocket tracking scenario, the step-counting algorithm 

[51][52][53][54] is a preferred DR algorithm. The step-counting algorithm is 

made up of step detection, step length estimation and step direction estimation. 

A step is detected by the pair of a peak and a valley of the 1-axis accelerations 

in the global coordinates system, meeting some quantity requirements 

determined by the experiments. A claimed to be more robust technique is to 

look at the peaks and valleys of the norm of the three-axis accelerations [55].  

Step length is related to the vertical component and the norm of the 

horizontal component in the global coordinates system. Step direction is 

determined by the horizontal component of acceleration in the global 

coordinates system, if we only consider the 2D movement. It is obvious that 

the fundamental requirement is to compute the sensor’s orientation accurately, 

so that the acceleration in the sensor coordinates system can be accurately 

resolved to the global coordinates system.  
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To improve the DR tracking results, map information has been widely used, 

as the map information is always available. Map filtering is applied to 

eliminate impossible particles, like walking through a wall or an obstacle, 

which is quite relevant in an indoor environment with lots of walls and 

obstacles. References [56][57][58] are examples of applying PF based map 

filtering in indoor tracking. The uncertainty in location estimation is 

represented as particles with different locations. While the locations of the 

particles are updated by the step measurement, particles with an inaccessible 

path are eliminated and new particles are generated. Improvement has been 

made in [22] by a so-called backtracking PF (BPF). BPF takes advantage of 

long-range geometrical constraint information that the estimated path is 

always backtracked, so that the particles proven to be unsuitable are 

eliminated in the previous steps. In this way, the localization results of the 

previous steps are improved.  

The existing algorithms only use map information to distinguish accessible 

and inaccessible areas. More improvement can be achieved by applying map 

matching (MM). MM has been applied for outdoor environments in road 

tracking [59][60]. In [61], the tracked path is mapped to a nearby known 

corridor, if certain requirements are met. Through MM, the sensor’s location, 

orientation, as well as the pedestrian’s walking direction can be rectified. The 

improvement in the sensor’s orientation and step direction estimation reduces 

the error in future tracking.  

The drawback of a pure MM algorithm is that it does not make full use of 

the map constraints, but only the corridors. In this thesis, we apply MM as a 
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supplementary algorithm to the original PF method, which provides a more 

robust solution. Another contribution of this thesis is the improvement of the 

original PF.  

In the literature, the error in step-counting localization is simply defined as 

the additive arbitrary Gaussian noise in location estimation, which does not 

model the error well. The error should be decomposed as an error in the step 

length estimation and another in the step direction estimation, which have 

different attributes. By defining a more accurate system model, our PF 

performs better than the previous ones given the same map constraint 

information. 

2.3. Cooperative Localization Approaches 

2.3.1. Centralized Vs. Distributed Methods 

Localization algorithms can be centralized [49] or distributed [50], in the 

way they computes the locations. In centralized algorithms, the pair-wise 

ranging measurements and the known locations of anchor nodes are sent to a 

central node for computation. The computational results are then transmitted 

from the central node to the normal nodes. In distributed algorithms, each 

node would compute its location on its own. 

A centralized algorithms usually yield more accurate results [51][64][65], 

compared with distributed algorithms, because more information can be 

passed to the applied model. They also allow exploiting the correlations in the 

measurements (e.g., correlation of the shadowing in RSS measurements [66] 

or sensor data measurements [67]. But the centralized algorithms require a 

central node with high computational power, which may not be available in 
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some network. The packages to be delivered to the central node also increase 

the network overhead. For security reasons, sometimes it is also not desired 

keeping all the information in one node. The typical centralized algorithms are 

the maximum likelihood estimator [68][69], SDP [62][70] and MDS [74]. 

Although a centralized algorithm usually yields more accurate results, a 

distributed algorithm is favoured, because of previously mentioned 

shortcomings of the centralized approaches. The distributed algorithms do not 

require a central node for the computation. This fact makes them more 

scalable for large networks. The distributed algorithms implement a local 

optimization solution, because of limited information which is available 

locally [71][72][73]. Some of them work in an iterative way. At each iteration, 

the nodes update their estimated locations by computing a local optimization 

function. The updated estimations are then shared within neighbours, until the 

convergence criterion is met. Compared with the results of centralized 

algorithms, which are solved from global optimization, such converged results 

may not be as good. The convergence process also takes time.  

2.3.2. Cluster Based Method 

To combine the advantages of both centralized and distributed methods, a 

cluster based method which divides the entire network into clusters and 

performs centralized localization within clusters, has been proposed. 

SDP and MDS are two algorithms commonly applied for centralized 

computation. In the literature, the performances of their centralized method 

and corresponding cluster based method have been compared. In [75][76][77], 

cluster based MDS (CMDS) algorithms have been proposed to decrease the 
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error of the centralized MDS method in unevenly distributed networks. In 

these networks, the required estimations of the multi-hop distances are quite 

misleading and results in large errors. The cluster based method improves 

performance by decreasing the existence of multi-hops. The cluster based SDP 

(CSDP) has been applied in [62][78][79] to achieve comparable results to a 

centralized SDP.  

The use of a decentralized KF (DKF) has been proposed in [80] and studied 

in [81]. References [81][82] have applied DKF for localization in wireless 

sensor networks (WSNs). In [81], every node can directly measure its own 

location with certain error. The relative location information is used to refine 

the directly measured locations and estimate the velocities of the nodes. We 

solve a more difficult problem that only a few anchor nodes would be able to 

perform self-localization. Because of the non-linearity between the states and 

the measurements, we apply a DEKF to solve our problem. We compare the 

performances of SDP, MDS, DKF and their corresponding cluster based 

methods CSDP, CMDS and DEKF. 

Although cluster based methods have been applied for localization in 

wireless sensor networks, there is no study that evaluates the cost of the 

clustering algorithm for localization and the effect of the cluster size on the 

performance. The clusters in the literature are either within one hop, like in 

[75][76][77][83], or formed by centralized pre-partitioning, like in [78]. To 

study the cost and effect of the cluster based method, we propose a clustering 

algorithm with a modifiable cluster size (determined by the cluster head’s rank, 

to be explained in Section 5.1.1). All decisions are made individually, without 
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global knowledge. In [84], cluster heads are chosen by selecting the nodes 

with the least node ID among its non-clustered neighbours. The size of the 

formed cluster is the same as ours when the rank of our cluster head is set to 2. 

2.3.3. Dead-Reckoning Enhanced Scheme 

Previous studies have only considered the scenario of a fully connected 

network (more than two neighbours) with more than two anchors [30]. But in 

scenarios, like indoor localization using Wi-Fi access points, the access points 

are usually quite sparsely deployed. There will be instances when there will 

not be three anchor nodes fully connected, directly or indirectly. Recent 

developments in miniature sensor design makes DR techniques [50][85] quite 

ubiquitous.  

It is proven, in this thesis that the tracked movement helps to relax the 3-

anchor requirement. When only one or two anchor nodes exist in the network, 

the DR enabled node acquires and refines its location along the movement. 

This moving node finally becomes a pervasive moving anchor node which 

helps to localize the other nodes in the network. 
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Chapter 3  

Single Sensor Step-Counting with Map 

Fusion 

 

In this chapter, we introduce the methods to improve the performance of 

previous step-counting algorithms. There are three improvements in total: (1) 

an adaptive step direction estimation method which improves the step 

direction estimation with a PCA based algorithm; (2) an MM method, which 

rectifies the error in sensor’s orientation, step direction and location estimation 

by the direction of corridors; and (3) an improved PF, which better models the 

noise, and thus, performs better than the previous PF.  

The adaptive step direction estimation method incorporates the advantages 

of both the PCA based algorithm and the sensor’s orientation analysis 

algorithm. It is experimentally proven that the method provides more robust 

step direction estimation. In most cases, the method revises the error that the 

PCA based algorithm may make during turns and in solving the 180
o 

ambiguity. In the worst scenarios, when the sensor is relatively moving during 
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the pedestrian’s turns, the proposed method still provides the same 

performance as the PCA based algorithm, because of the restricted usage of 

the orientation analysis, which avoids misuse. Moreover, the improvement is 

achieved with little extra computational cost.  

Compared with the existing indoor map fusion work, which applies map 

filtering using a PF, our MM algorithm calibrates both the location and the 

sensor’s orientation and step direction, which reduces the error in the location 

update equation. The algorithm has been evaluated experimentally in our 

laboratory, when the sensor is carried in the pocket while moving.  

The experimental results have shown that, given the same map information, 

MM returns more accurate results, as compared with the original map filtering. 

In addition, the performance of the MM algorithm is more robust when partial 

map information is available; in which case, the PF based map filtering may 

return a drifted path. We also combine MM with the PF, so that a more robust 

algorithm is proposed. 

In the end, the improved PF is proposed to relax the requirement on corridor 

information, which also improves the step direction estimation. The 

localization error is decomposed and modelled as errors in step length 

estimation and step direction estimation with different attributes. The 

experimental results illustrate that, in a quite dense map constraint 

environment with corridors, the improvement is not obvious. But when only 

partial map constraints are applied, the improved PF scheme outperforms the 

other schemes with less performance dependence on the corridor constraints. 
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3.1. Improved PCA Based Step Direction Estimation for 

Dead-Reckoning Localization 

The sensor we use in this investigation is the ADIS16405BMLZ [95], 

containing a three-axis accelerometer, a three-axis gyroscope and a three-axis 

magnetometer. For better understanding, some specifications of the sensor are 

presented in Table 3-1. 

Table 3-1: ADIS16405BMLZ specifications 

 Parameter Test 
Conditions 

Min  Type  Max Unit 

GYROSCOPES Dynamic 
Range 

 ±300  ±350   °/sec 

 Initial 
Sensitivity  

Dynamic 
range = 
±300°/sec  

0.0495  0.05  0.0505  °

/sec/LSB  

Dynamic 
range = 
±150°/sec  

 0.025   °/sec/LSB  

Dynamic 
range = 
±75°/sec  

 0.0125  °/sec/LSB  

 Sensitivity 
Temperature 
Coefficient  

ADIS1640

5: −40°C ≤ 

TA ≤ +85°C  

 
±40  ppm/°C 

 Initial Bias 
Error  

1 σ   
±3 

 
°/sec  

 In-Run Bias 
Stability 

1 σ,  
 

SMPL_PRD 
= 0x01 

 0.007  
°/sec  

ACCELEROMETER Dynamic 

Range  

 ±18    g  

 Initial 

Sensitivity 

 3.285  3.33  3.38  mg/LSB  

 Sensitivity 

Temperature 

Coefficient  

ADIS16405: 

−40°C ≤ TA ≤ 

+85°C 

 ±50 
 ppm/°C 

 Initial Bias 

Error  

1 σ  ±50 
 mg 

 In-Run Bias 1 σ  0.2  mg 
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Stability  

MAGNETOMETER Dynamic 

Range 

 ±2.5  ±3.5  
 gauss 

 Initial 

Sensitivity 

25°C 0.49  0.5  0.51  mgauss/L

SB  

 Sensitivity 

Temperature 

Coefficient 

25°C，1 σ  600  ppm/°C 

 Axis 

Misalignment 
25°C，axis-

to-base plate 

and guide 

pins 

 0.5  Degrees 

 Initial Bias 

Error 

25°C , 0 

gauss 

stimulus 

 ±4 
 mgauss 

 

The usage of the sensor is shown in Fig. 3.1. The sensor is connected to a 

computer through a USB (Universal Serial Bus) interface for data collection. 

To simulate the usage of a smart phone, the sensor is put in the trouser pocket 

as illustrated in the figure to collect the data. On occasion, the sensor is rotated 

arbitrary to mimic the usage interference. The software interface is shown in 

Fig. 3.2, where the sampled data would be stored in a text file. 
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Fig. 3.1: ADIS16405BMLZ in-pocket tracking scenario 

 

Fig. 3.2: ADIS16405BMLZ evaluation software interface 
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3.1.1. Step Direction Estimation Process 

a. Sensor’s Orientation Determination 

The concept and computation of quaternion have been given in Appendix. 

[96] has proposed a simplified quaternion-based orientation estimation 

algorithm based on the Earth’s gravity and magnetic field measurements. A 

similar method is applied to get the sensor’s initial orientation. There are two 

coordinates systems: the global coordinates system and the sensor coordinates 

system. The global coordinates system is set as the east-north-up (E-N-U) 

coordinates system. The orientation from the global coordinates system to the 

sensor’s coordinates system needs to be solved. The known information is the 

measurements returned by the three-axis inertial sensor, which indicates the 

physical quantities in the x-y-z sensor coordinates system.  

Initially, when the sensor remains static, the accelerometer measures only 

the Earth gravity, which is represented as [0;0; 1]
g
= −r  in E-N-U global 

coordinates system after normalisation. In addition, assume that the magnetic 

fields at the starting point in the global coordinates system are a known value 

represented as [ ; ; ]
m e n u
m m mr = . The measurements in the sensor coordinates 

system, compared with the global coordinates system, are represented as bg 

and bm, respectively.  

According to Euler’s theorem, an arbitrary rotation of a rigid body can be 

decomposed as consecutive rotations about three axes. In this thesis, a rotation 

is decomposed as rotating about its axes at the sequence of its z-y-x axis by 

angle ψ-θ-φ, respectively.  
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Suppose qz, qy and qx are the respective quaternion in each axis. From the 

definition of quaternion in Eq. A-16, qz, qy and qx are: 

 [sin( / 2)[0;0;1];cos( / 2)]

[sin( / 2) [0;1;0];cos( / 2)]

[sin( / 2) [1;0;0];cos( / 2)]

z

y

x

ψ ψ

θ θ

φ φ

=

=

=

q

q

q

 

 

( 3-1) 

Thus, the initial orientation, represented by quaternion q, equals the 

Hamilton product of the individual quaternion as follows: 

 =
z y x
⊗ ⊗q q q q  ( 3-2) 

where ⊗ represents the Hamilton product for quaternion multiplication [44]. 

Substitute qz, qy, and qx into Eq. A-15, we have the attitude matrix at each 

axis and the final matrix: 

 cos( ) sin( ) 0

( , ([sin( )[0;0;1];cos( )]) sin( ) cos( ) 0
2 2

0 0 1

cos( ) 0 sin( )

( , ([sin( )[0;1;0];cos( )]) 0 1 0
2 2

sin( ) 0 cos( )

1 0 0

( , ([sin( )[1;0;0];cos( )]) 0 cos(
2 2

z

y

x

ψ ψ
ψ ψ

ψ ψ ψ

θ θ
θ θ

θ

θ θ

φ φ
φ φ

 
 ) = = − 
  

− 
 ) = =  
  

) = =

Rot A

Rot A

Rot A ) sin( )

0 sin( ) cos( )

( , , = ( , ( , ( ,z y x z y x

φ

φ φ

ψ θ φ

 
 
 
 − 

) ) ) )Rot Rot Rot Rot

 

  

 

 

 

( 3-3) 

In Eq. 3-4 and Eq. 3-5, the right sides in the equations represent the actual 

Earth’s gravity and magnetic fields in sensor’s coordinates system after the 

rotation. The left sides in the equations are the measured values using the 

sensor. Assuming that there is no error in the measurement, then Eq. 3-4 and 

Eq. 3-5 should hold. 
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 ( , ,
g g

z y x= )b Rot r  ( 3-4) 

 ( , ,
m m

z y x= )b Rot r  ( 3-5) 

Substituting [0; 0; 1]
g
= −r to Eq. 3-4 we have: 

 [sin( ); sin( ) cos( ); cos( ) cos( )]
g

θ φ θ φ θ= − −b  ( 3-6) 

Suppose the acceleration measurement b =[bx, by, bz]
T
. In the ideal scenario, 

b should equal bg, then θ and ϕ are solved by: 

 2minimize || ||
g

−b b  ( 3-7) 

There are quite a few existing methods to solve the minimum mean square 

error problem.  

Suppose the magnetic field measurement m =[mx, my, mz]
T
, and substituting 

θ and ϕ that are solved by Eq. 3-7 into Eq. 3-5, then ψ is solved by: 

 2minimize|| ||
m

−m b  ( 3-8) 

where ψ is the only variable. 

Given the initial orientation, the continuous orientation estimation and 

calibration are based on the novel quaternion Kalman filtering algorithm 

proposed in [97]. Here we illustrate only the results, without the formula 

derivation steps. Suppose the measurement from the three-axis gyroscope at 

time k is ωk, the rotated angle ˆ kw equals 

 ˆ
k

t= ∆
k

w ω  ( 3-9) 

where ∆t is the sampling interval. 

Let γ(x) denote the linear mappings of x=[xx;xy;xz] from a three dimensional 

space
3

ℝ to a four dimensional space 
4

ℝ  which is defined as follows: 
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 ( )
γ )

- 0T

− 
(  

 

C x x
x

x
≜  

( 3-10) 

, which C(.) has been defined in Appendix A.2 

Let ( )Ξ q denote the following transformation: 

 ( ) 0 3( )
T

q + 
Ξ =  

− 

C e I
q

e
 

( 3-11) 

Suppose σ1 and σ2 are the standard deviations of the gyroscope’s electronic 

noise and float torque noise, respectively. The sensor’s orientation q is the 

state we need to estimate in the Kalman filter. The measurements for the a 

priori state estimate are the angular rates from gyroscope. The rotation angle 

ˆ
k

w  is calculated using Eq. 3-9. Eq. 3-12 to Eq. 3-14 are the equations for the a 

priori state estimate: 

 
/

ˆ ˆ )
k k k

= γ(Θ w  ( 3-12) 

 
/ /

1 ˆˆ exp( )
2

k k k k
=Φ Θ  ( 3-13) 

 
1/ / /

ˆˆ ˆ
k k k k k k+

=q Φ q  ( 3-14) 

Eq. 3-15 to Eq. 3-20 are applied to get the a priori estimate covariance.  

 )
k k
= γ(Θ w  ( 3-15) 

 
1

exp( )
2

k k
=Φ Θ  ( 3-16) 

 
/ /

ˆ ˆ( )
k k k k

= ΞΞ q  ( 3-17) 

 
/ / / /

ˆ ˆ ˆ
T

k k k k k k k k
= +M q q P  ( 3-18) 
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2 2

1 2 / 4 /

1 ˆ ˆ( ) [ ( ) ]
4

w

k k k k k
t trσ σ= + ∆ −P M I M  ( 3-19) 

 
1/ /

ˆ ˆ T w

k k k k k k k+
= +P Φ P Φ P  ( 3-20) 

Suppose the measurement from magnetometer or accelerometer and the 

respective ground truth in time k+1 are represented using zk+1 and rk+1, 

respectively. The measurement error is with covariance matrix ρk+1I3. Let 

 
1 1 1

1
( )

2
k k k+ + +

= +u z r  ( 3-21) 

 
1 1 1

1
( )

2
k k k+ + +

= −v z r  ( 3-22) 

 
1 1

1 1 1

1

( ) 1
( )

0 2

k k

k k kT

k

+ +

+ + +

+

− 
= + − 

C u v
H z r

v
 

( 3-23) 

The measurement equation equals: 

 

1 1 1 1

1

2
k k k k+ + + +

= −0 H q Ξ v  
( 3-24) 

 
1/ 1/ 1/ 1/

ˆ ˆ ˆ
T

k k k k k k k k+ + + +
= +M q q P  ( 3-25) 

 
1 1

( )
k k+ +

=γB z  ( 3-26) 

 
1 1 1/ 4 1/ 1 1/ 1

1 ˆ ˆ ˆ[ ( ) ]
4

v T

k k k k k k k k k k
trρ

+ + + + + + +
= − −P M I M B M B  ( 3-27) 

The residual covariance Sk+1/k, is calculated by Eq. 3-28:  

 
1/ 1 1/ 1 1

T v

k k k k k k k+ + + + +
= +S H P H P  ( 3-28) 

The optimal Kalman gain Kk+1 is calculated by Eq. 3-29:  

 1

1 1/ 1 1/

T

k k k k k k

−

+ + + +
=K P H S  ( 3-29) 

The a posteriori state estimate 1/ 1
ˆ
k k+ +

q is calculated by Eq. 3-30:  
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1/ 1 4 1 1 1/

ˆ ˆ( )
k k k k k k+ + + + +

= −q I K H q  ( 3-30) 

The a posterior estimate covariance Pk+1/k+1 equals:  

 
1/ 1 4 1 1 1/ 4 1 1 1 1 1

( ) ( )
T v T

k k k k k k k k k k k+ + + + + + + + + +
= − − +P I K H P I K H K P K  ( 3-31) 

The computed 1/ 1
ˆ
k k+ +

q  may not be a unit vector anymore, Eq. 3-32 is 

required to normalize it,  

 
* 1/ 1

1/ 1

1/ 1

ˆ

ˆ|| ||

k k

k k

k k

+ +

+ +

+ +

=

q
q

q
 ( 3-32) 

 In our work, the state is calibrated by using the acceleration reading when 

the sensor is considered stationary. Suppose the nth sampling of b is 

represented as bn, Vb 
is a vector containing the norm of the sequential values 

of b (i.e. [ 1 1
|| ||;|| ||;...|| ||;...|| ||;|| ||

n m n m n n m n m− − + + − +
b b b b b ]), mean(Vb) is the mean of 

Vb, and var(Vb) is the variance of Vb. The stationary status is detected by Rule 

1. 

Rule 1: If ||mean(Vb)-||rg|||| < threshold_1 and var(Vb) < threshold_2, 

the sensor is stationary. 

The first inequality ensures that the average acceleration is close to the 

Earth's gravity. But an average value is not sufficient enough to determine the 

quasi-stationary state. Therefore, the second inequality would further ensure 

each acceleration measurement would be close to the Earth's gravity. The 

sensor we use is quite accurate in acceleration estimation with an in-run bias 

of 0.0002||rg|| (Table 3-1). An example of an acceleration measurement during 

a 10-step walk is also given in Fig. 3.3.   



48 

 

Based on the known sensor accuracy, strict criteria is chosen in our 

implementation, in which threshold_1 is set to 0.008||rg|| and threshold_2 is 

set to 0.0001||rg||
2
. As shown in Fig. 3.3, the acceleration fluctuates during 

walking and its norm equals to the Earth gravity for some instances. If a small 

m is chosen, the pedestrian status could be wrongly detected as static by Rule 

1 during walking. But if a large m is chosen that it is more difficult to meet the 

condition, the quaternion orientation may only be calibrated by the detected 

stationary state after a long period of time. So there is a trade-off between the 

accurate stationary detection and the higher chance of getting calibrated. In 

our algorithm, m is set to 20, when the sampling rate is 100 Hz, which would 

be able to capture the scenario when a pedestrian is hesitating or slowly 

making turns. 

b. Step Detection 

[55] has argued that by analysing the pattern of ||b||, rather than acceleration 

on a single axis, a more robust step detection algorithm can be proposed. A 

3Hz low pass filter is applied on ||b||. An example is illustrated in Fig. 3.3, 

when 10 steps are taken. It is interesting to observe that the shapes for the left 

foot and the right foot steps are different. The right foot step ends with the 

acceleration close to the Earth’s gravity. But the left foot does not. The reason 

for this is that the sensor is placed in the person's right pocket. When the right 

foot steps on the ground, the sensor is in a quasi-stationary status. 
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Fig. 3.3: An example of acceleration ||b|| for 10 steps 

3.1.2. Adaptive Step Direction Estimation 

a. Principle Component Analysis (PCA) Based Direction Estimation 

A PCA based step axis estimation has been applied in [21][51]. In this thesis, 

2D horizontal accelerations of window size 1.5 seconds are processed by the 

PCA. The returned first component is the step axis, not the direction. By 

analysing the pattern of the vertical and forward accelerations, [18] also 

indicates that the positive peak of forward acceleration falls in the time when 

the vertical acceleration has an increasing slope. This is proven in Fig. 3.4, 

when the real data is plotted. This property solves the 180
o
 ambiguity by 

determining the direction from the step axis. The direction of step n, returned 

by the PCA, is represented as 
p

n
d .  
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Fig. 3.4: Typical patterns in vertical and forward acceleration during walking 

b. Sensor’s Orientation Based Direction Estimation 

The following assumptions apply: 

1) The pedestrian walks facing forward; and
 

2) The sensor does not move relatively to the body segment it is affixed to.
 

The direction estimation problem has been simplified to determine the 

pedestrian’s facing (step direction), given the initial facing and the 

pedestrian’s angular velocity (sensor’s angular velocity) when a step ends. By 

comparing the sensor’s orientations at the step endpoints, the difference 

indicates the direction change. Here, we only consider walking in the 

horizontal plane. Suppose the initial direction is the 2-D unit vector
0

h
d  and the 

sensor’s attitude matrix is represented as A. The vector bd in the sensor 

coordinates system pointing in the step direction is calculated as:  
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0 0
[ ;0]

h

d
=b A d  ( 3-33) 

From the 2
nd
 assumption, bd in the sensor coordinates system always points 

toward the step direction. Suppose step-n’s direction and sensor’s orientation 

matrix are dn and An, respectively. Then the following equation holds 

 
d n n
=b A d  ( 3-34) 

Substituting Eq. 3-33 into Eq. 3-34 we obtain: 

 1

0 0
( ) [ ;0]h

n n

−

=d A A d  ( 3-35) 

In the horizontal plane, the direction from the orientation analysis 
h

n
d  is 

 2 2
[ (1); (2)]/ ( (1)) ( (2))

h

n n n n n
= +d d d d d  ( 3-36) 

The first assumption is always met for the normal cases considered in 

pedestrian tracking. But as part of the personal mobile device, the sensor 

moves from time to time. Therefore, the sensor’s orientation analysis 

algorithm cannot be applied in these scenarios. The computational complexity 

for the orientation analysis is almost negligible, as it is only executed after 

each step. 

c. Adaptive Direction Estimation 

The sensor’s orientation analysis algorithm responds quickly to the direction 

change, but is sensitive to the sensor’s relative movement. In our adaptive 

direction estimation method, it works as a supplement to the PCA based 

algorithm during turns. The process is shown in Fig. 3.5. A turn detected by 

the PCA may be caused by the 180
o
 ambiguity or real direction change. In 

both cases, verification of the result by orientation analysis is necessary. The 
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key component of the process is to differentiate if there is a relative movement 

of the sensor during a turn. Only when the sensor keeps relatively static, is its 

direction estimation result reliable. 

The detailed pseudo-code for the process is presented in Fig. 3.6. The dot 

product of the continuous step is calculated. If the dot product is larger than 

threshold_3, the pedestrian is detected as walking in about the same direction. 

A large threshold_3 would make the algorithm sensitive to a direction change, 

but easily trigger false turn detections. The value is chosen by the experiment. 

It is observed that even though a pedestrian walks towards a line, the estimated 

direction may differ up to 15
o
. The difference comes from the pedestrian 

walking pattern, as well as the error in the direction estimation. Such a 

difference can be easily observed in Fig. 3.7 a). In our implementation, 

threshold_3 is set as cos(15
o
), as such, a false turn detection would only 

consume a little bit more computation power. Same threshold is set for 

threshold_4, as the 15
o
 difference may be caused by the error in direction 

estimation, not by the sensor's movement during the turn. 

When one of the previous dot products is smaller than threshold_3, and the 

current dot product is larger than threshold_3, the pedestrian is deemed to 

have made a turn. As turns normally only last for two or three steps, checking 

for changes in four consecutive steps will be adequate to detect a change in 

direction. The PCA algorithm, with a window size of 1.5s, is adequate to 

reflect the direction change. 

The PCA algorithm returns accurate direction estimates during the non-

turning phase. So 
1

p

m−

d and
p

n
d in Phase 6 are the true directions. For the step 
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count between them, the smaller the better, as there would be a higher chance 

that the sensor does not relatively move. The determination of whether the 

sensor relatively moves is based on the true directions before (m-1) and after 

(n) a turn, given by the PCA. Given 
1

p

m −

d as a sensor’s orientation based 

algorithm’s initial direction in step m-1, the algorithm should return almost the 

same direction estimate for step n (
h

n
d ≈

p

n
d ) if the sensor does not move. 

Although conversely, the statement is not absolutely true, it is good enough to 

be used as an empirical condition.  

Moreover, another condition that is applied in our implementation is that the 

estimated step directions by orientation analysis during a turn should have the 

same trend as the one from 
1

p

m−

d  to 
p

n
d  (left or right). This further reduces the 

probability of an erroneous orientation analysis. Even in the erroneous case, 

the estimated direction meeting the conditions is close to the true direction. In 

addition, the restricted usage of the orientation analysis keeps the introduced 

overhead low. 

 

 

Fig. 3.5: Process of adaptive direction estimation 
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Fig. 3.6:  Pseudo-code for adaptive direction estimation 

 

Therefore, if the sensor is detected to be relatively static during a turn, the 

sensor’s orientation based algorithm returns a more reliable direction estimate 

for these steps. This rectifies not only the PCA’s error in detecting the step 

axis during the turns, but also the error in solving the 180
o
 ambiguity in certain 

cases. The sensor’s orientation analysis in the adaptive method is only 

executed when a turn is detected. Therefore, the incurred extra cost is quite 

limited which makes the method as efficient as the PCA based method. Once 

the previous step directions are rectified by the sensor’s orientation analysis, 

the location estimation of the previous steps also needs to be recalculated by 

the step-counting algorithm. 

Adaptive direction estimation (n): 

Suppose estimated direction of step n is represented as 
n

d ,
   

then =
p

n nd d :   

1    compute 
1
, ,( 1)

p p

n n n
dot n

−

=< > >d d  

2    if _3, [1,4]
n j

dot threshold j
−

∃ < ∈  

3       then a turn is detected,  

4       if 
n

dot > _3threshold  

5       find largest m meets
m

dot > _3threshold , [ 4, 1]m n n∈ − −  

6       then 
1

p

m −

d and p

n
d are accurate directions before and after the turn 

separately 

7         let 
1 1

h p

m m− −

=d d , compute 
h

n
d  

8         if ,

p h

n n< >d d > _4threshold  

9           then the sensor does not move relative to the pedestrian during the 
turn 

10         for k=m to n-1, compute
h

k
d , =

h

k kd d , 1
k

dot =  
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3.1.3. Experimental Studies 

To view the effect of the step direction estimation algorithm, it is applied in 

a step-counting localization algorithm. The estimated location after step n is 

calculated by Eq. 3-37. 

 
1n n n n

s
−

= +x x d  ( 3-37) 

where sn  is step-n’s length. In order to resolve sn and dn , the premise is that 

the sensor’s orientation is accurately determined and a step is correctly 

detected.  

The estimation of the step length, given the accelerations, have been well 

studied in [20][54] . We use the estimation formula in [54] illustrated in Eq. 3-

38: 

 4
, max , minn n v n v

s κ
− −

= −a a  ( 3-38) 

where: an is a string of a projected acceleration in the global coordinates 

system in step n and an,v-max and an,v-min are the maximum and minimum values 

of its vertical components respectively. κ  is a constant for each pedestrian. 

Some work have used the pedestrian's height, which is a good indicator, to 

estimateκ . But it does not take into account individual walk pattern. If higher 

accuracy is required, κ is able to determined by a simple training. The 

pedestrian can be asked to walk for a known distance. The summed up steps' 

length should equal to the known distance. While κ is the only variable in the 

equation, it can be solved easily. 

Data for 16 trials of the same route have been collected. An exemplary 

localization result of one trial is given in Fig. 3.7. The x-y axes represent the 2-
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D location. The actual route we have chosen for the experiments and the 

estimated routes are represented using different lines in Fig. 3.7 (a). A 

pedestrian is asked to walk along the arrow’s direction when the sensor is 

carried in the pocket. The path starts from the lower left corner and finally 

returns to the starting point. Because of the sensor’s relative movement, the 

pure sensor’s orientation analysis algorithm shows poor results with 

significant drift from the true positions. It is illustrated in the figure that, in 

most cases, the adaptive method gets the same direction estimate compared to 

the PCA algorithm. But when an error is returned by the PCA algorithm, as in 

lower right corner in Fig. 3.7 (a), the adaptive method successfully removes 

the error. An amplified region is shown in Fig. 3.7 (b). There is an 180
o

-error 

in step-16’s direction estimation for the PCA algorithm. 

In the 10 trials, the sensor remains relatively steady when the pedestrian 

turns. During the non-turning phase, the sensor arbitrarily chooses to relatively 

move or not. To study the extreme scenario when the sensor is always moving 

(during both the turning and non-turning phases) and to understand how this 

interferes with the orientation analysis method, the other 6 trials of data are 

collected under this situation. The results illustrated in Tables 3-2 and 3-3; the 

data includes the average error and the variance of the errors. The estimation 

error is the angle in the radians (rad) between the estimated step direction and 

the actual direction. 
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a) 

 

b) 

Fig. 3.7: Example of localization results applying different direction estimation 

algorithms 
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Table 3-2: Performance when sensor is relatively static during turns 

Trial # 1 2 3 4 5 

PCA Error (rad) 
/Variance 

0.056/ 
0.0037 

0.168/ 
0.3034 

0.119/ 
0.0363 

0.170/ 
0.1601 

0.117/ 
0.1611 

adaptive method Error 
(rad) / Variance 

0.058/ 
0.0036 

0.073/ 
0.0082 

0.098/ 
0.0150 

0.119/ 
0.0258 

0.057/ 
0.0024 

Trial # 6 7 8 9 10 

PCA Error (rad) 
/ Variance 

0.090/ 
0.1566 

0.182/ 
0.2685 

0.096/ 
0.1481 

0.110/ 
0.1521 

0.182/ 
0.2884 

adaptive method Error 
(rad) / Variance 

0.055/ 
0.0048 

0.078/ 
0.0141 

0.058/ 
0.0044 

0.067/ 
0.0058 

0.080/ 
0.0115 

 

Table 3-3: Performance when sensor is relatively moving during turns 

Trial # 11 12 13 14 15 16 

PCA Error (rad) 
/ Variance 

0.134/ 
0.0960 

0.084/ 
0.0056 

0.072/ 
0.0065 

0.094/ 
0.0179 

0.078/ 
0.0062 

0.068/ 
0.0022 

adaptive method 
Error (rad) / Variance 

0.089/ 
0.0084 

0.084/ 
0.0056 

0.073/ 
0.0065 

0.094/ 
0.0179 

0.089/ 
0.0124 

0.068/ 
0.0022 

 

It is shown in Table 3-2 that the adaptive method does improve the 

performance compared with the PCA based algorithm. The improvement 

arises from verifying the estimate during the detected turns using the sensor’s 

orientation analysis. When the assumption for the sensor’s orientation analysis 

does not hold, the adaptive method should not be applied, which then returns 

the results of the PCA based algorithm. This is validated by the data in Table 

3-3. In the worst case, when sensor is relatively moving during the turns, the 

adaptive method achieves almost the same performance as the PCA based 

algorithm. Even when the orientation analysis is wrongly applied in Trial 15, 

the result is still as reliable as the one from the PCA based algorithm. 
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3.2. An Indoor Dead-Reckoning Algorithm with Map 

Matching 

A step-counting method derives the current location by Eq. 3-37. If sn and 

dn can be accurately resolved from the sensor’s measurement, it is intuitive to 

conclude that a reliable solution is proposed. But because of the error in the 

estimation, it is necessary to fuse the external information to achieve a better 

performance. 

3.2.1. Particle Filtering and Map Matching 

It is useful to have indoor map information to improve the location results. 

Previous works have applied indoor map information in map filtering 

techniques, which eliminates location estimates in impossible areas. However, 

the accumulating error of the step direction will still eventually lead to large 

uncertainty in the location estimate. MM will relieve this problem. 

a. Particle Filtering 

A PF is commonly implemented to apply the map filtering technique. PF 

implements a recursive Bayesian filter using the Sequential Monte-Carlo 

method. It is particularly useful in solving non-linear and non-Gaussian 

problems. A set of random samples with weights, called particles, are used to 

represent the posterior probability density of the state, which is given by: 

 

1:

1

( | ) ( )
s

N

i i

n n n n n

i

p

=

≈ ω δ −∑x z x x  ( 3-39) 
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where xn and z1:n 
are the states and measurements, respectively, { i

n
x , i=1,…, 

Ns} is a supporting particle at time n with the associated weight { i

n
ω , i = 1,…, 

Ns }. Ns is set to 100 in our algorithm. 

The weight update equation is given by Eq. 3-40, where 
1

( | , )i i

n n n
g

−

x x z is 

the importance density: 

 
1

1

1

( | ) ( | )

( | , )

i i i

i i n n n n

n n i i

n n n

p p

g

−

−

−

ω ∝ω

z x x x

x x z

 ( 3-40) 

 

There are some research conducted in choosing the optimal or suboptimal 

importance density as in [86][88]. For the purpose of localization, the 

importance density is always chosen as the same as the prior function: 

 
1 1

( | , ) ( | )i i i i

n n n n n
g p

− −

=x x z x x  ( 3-41) 

So the weight update equation can be estimated by: 

 
1
( | )i i i

n n n n
p

−

ω ∝ω z x  ( 3-42) 

In our step-counting algorithm, the system update and measurement update 

are executed after each step. During the system update phase,  

 
1

i i

n n n n
s

−

= +x x d  ( 3-43) 

where: 
i

n
x and

1

i

n −
x are the 2D states after n steps and n-1 steps, respectively, 

and sn and dn are step-n’s length and direction, respectively. 
 

A rule for pedestrian walking is that a pedestrian cannot walk through walls 

or obstacles. Particles with this motion are seen as invalid, so the weight is 

updated according to the following equation: 
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1

0 , crosing the wall or obstacle

, otherwise

i

n i

n

ω

ω
−


= 


 
( 3-44) 

The weights are then normalized such that 1
i

ni
ω =∑ . 

Overall, the above equations constitute the implementation of a sequential 

importance sampling (SIS) PF for step counting localization. A common 

problem with the SIS PF is the degeneracy phenomenon. It can be expected 

from Eq. 3-44 that after a few iterations, an increasing number of particles 

would have zero weight. In the end, all but a few particles will have zero 

weight. The degeneracy phenomenon is unavoidable by using SIS PF.  

A solution is proposed to reduce the effects of degeneracy by re-sampling 

whenever a significant degeneracy is observed. The re-sampling step would 

generate a new set of particles by sampling the original particles based on their 

weights. The particles with small weights would be eliminated. But this 

method would introduce another problem. The particles that have high weights 

are always sampled many times, and the particles with small weights are 

eliminated. This leads to a loss of location diversity as there would be many 

repeated particles. This problem is known as sample impoverishment. 

In this chapter, we applied a method named sampling importance re-

sampling (SIR) , which is proposed in [89]. It is a Monte Carlo method that 

can be applied to recursive Bayesian filtering problems. Compared with 

previous PFs, the samples of SIR are generated by adding in a process noise 

sample: 

 
1

i i i

n n n n n
s

−

= + +x x d n  ( 3-45) 
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where 
i

n
n is a random  variable, which a Gaussian distribution is assumed.  

Re-sampling is applied at every iteration, so we always have 
i

n
ω = 1/Ns. 

b. Map Matching 

The step direction estimation error results in large localization errors. To 

reduce the direction estimation error, the estimate is calibrated when the user 

is walking in a corridor. Our proposed MM method works as follows. 

A corridor has two possible directions. Suppose one direction of the corridor 

is d
c
, if the following conditions are met, the user is seen as walking along the 

corridor. 

Condition 1: Suppose six consecutive steps are with directions {dn-i, 

i=0,1,…5}, which are represented as angles {dangle,n-i, i=0,1,…5}. var{dangle,n-i, 

i=0,1,…5}<threshold_5. 

Condition 2: Suppose the corridor is represented as a line segment, c; the 

distances from the locations of the six steps to c are {Ln-i, i=0,1,…5}, 

respectively, 
5

0

/ 6 _ 6
n i

i

L threshold
−

=

<∑  

Condition 3: The average direction 
5 5

0 0

/ || ||
avg n i n i

i i

− −

= =

=∑ ∑d d d  should meet 

||dot(davg, d
c
)|| < threshold_7,  where dot(.) means the dot product. 

 

Condition 1 ensures that the pedestrian walks straight, which is the typical 

pattern when people walk along a corridor. In our implementation, 

threshold_5 is set as (8
o
)
2
 obtained by training when people walk in corridor. 

Condition 2 ensures that the track of the pedestrian is close to the corridor. 
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threshold_6 is set as 2 meters. If a higher threshold_6 is used, there is higher 

chance that the people may actually walk within an area close to the corridor, 

but yet considered as in the corridor. Condition 3 is based on the fact that the 

error in the direction estimation is within a limited angle. So if the difference 

between the estimated direction and the corridor’s direction is too different, 

the pedestrian may not be walking in the corridor. threshold_7 is set as 30
o
 in 

our experiments. The three conditions ensure that the person is walking along 

a corridor with high probability. Even in the worst case scenario, that the 

pedestrian is actually not, the resulting error is limited by the conditions. After 

that, the direction with 180
o
 ambiguity is chosen as: 

 , ( , ) 0

, otherwise

c c

avg

c

dotc >

−

={
d d d

d
d  

( 3-46) 

The large error in the direction estimation occurs when the pedestrian is 

making a turn. Thus the estimates from the last turning step to the current step 

need to be calibrated. Maximally, the locations of previous 20 steps would be 

calibrated, to avoid over calibration. Also, the projections of the locations to 

the corridor c should be within the corridor ends. Suppose the locations from 

step n- Nt to step n  meet the two requirements, and the projection of location 

t
n N−

x to corridor c is 
,

t
c n N−

x , then let
t

n N−
x =

,

t
c n N−

x . 

In a 2D space, a counter clockwise rotation of a vector through angle ψ 

along the x-axis is represented using the rotation matrix
cos( ) sin( )

sin( ) cos( )

ψ ψ

ψ ψ

 −
 
 
 

, and 

the rectified directions {
'

n j−

d , i=0,1,…Nt 
-1}are solved using: 
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ψ ψ

ψ ψ
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d d

d d
 

( 3-47) 

 

The locations are then calibrated by Eq. 3-48, using the rectified direction 

estimate:  

 '

1
n i

n i n i n i
s

−
− − − −

= +x x d , i=0,1,…Nt -1              ( 3-48) 

The sensor’s orientation estimate q is also calibrated. The counter clockwise 

rotation with angle ψ in 2D space is rotating along the z-axis for ψ in 3D space: 

 
cos( )[0,0,0,1] sin( )[0,0,1,0]

2 2{
ψ ψ

= +

= ⊗

q

q q q

△

△
  

( 3-49) 

where ⊗  stands for quaternion multiplication. 

Unlike PF being executed at every step, the MM algorithm is only triggered 

when a pedestrian is considered to be walking along a certain corridor. Our 

simulation illustrates that to return the tracking results for the same route, the 

MM based on the step-counting algorithm takes 1/6 CPU time, as compared 

with the one using PF (100-particles). 

3.2.2. Experimental Evaluation 

In order to perform the experimental study, our laboratory was chosen as the 

indoor tracking testbed. The layout of the laboratory is presented in Fig. 3.8. 

The size of the testbed is approximately 22m by 18m. The coordinates system 

and the coordinates for some locations are also indicated. The map contains 

obstacles, walls and accessible areas. A corridor is an accessible area with a 

small width. In our experiment we define four corridors in this testbed as 
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illustrated in Fig. 3.8. The corresponding walls constituting the corridors are 

also indicated.  

For evaluation purpose, [90] collected 1 trial of data during a 10-min walk. 

[91] collected 3 trials of data with around 10 mins for each trial. [92] collected 

10 trials of data with each trial is 90 meters. [93] has tested the algorithm in 

shopping mall and residential building. Each test used one trial of data. In [94], 

method was tested in ten different locations. In our experiments, two routes 

are chosen for the experiment (85 meters each). For each route, 10 trials of 

data are collected when a pedestrian walks along the route with an IMU sensor. 

Whenever a certain point in the walking path is being passed, the timestamp of 

the passing is saved. There are 31 pieces of ground truth with timestamps for 

Routes 1 and 2. The sensor we use is ADIS16405BMLZ [95]. The routes are 

shown in Fig. 3.9, which include both the primary corridor and the path 

towards the seating area.  The obstacles and walls are simplified as rectangles 

and lines. Although Route 1 and Route 2 cover the same indoor environment, 

the difference in walking directions results in a different calibration timing and 

effect by PF or MM, which would return different localization results. An 

example with more detailed explanation is provided in Fig. 3.10. 

It is worth evaluating the performance given incomplete map information. 

In order to make the following statement simple, Table 3-4 illustrates the 

corresponding expressions when different parts of the map information are 

provided. 
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Fig. 3.8: Experimental testbed with walls and obstacles indicated 

 

 

a) Route 1 
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b) Route 2 

Fig. 3.9: Two routes being used in the evaluation 

Table 3-4: Expressions When Given Different Parts of a Map 

Map information 

being used 

Expression used in the following content 

PF MM 

All map information PF-all / 

Walls 1- to 4- and walls 

1+ to 4+ 

/Corridor 1 2 3 4 

PF-4corridors (PF-4s) 
MM-4corridors (MM-

4s) 

Wall 1- and wall 1+ 

/Corridor 1 
PF-1 (PF-1) MM -1 (MM-1) 

Wall 2- and wall 2+ 

/Corridor 2 
PF-2 (PF-2) MM -2 (MM-2) 

 

Fig. 3.10 shows an example of the tracked results when different algorithms 

are applied for Routes 1 and 2. It is illustrated that the fused PF and MM 

algorithm does improve the performance of the direct step-counting algorithm. 

If we compare the paths obtained by PF and MM, the one from MM coincides 

better with the ground truth, especially in the area without the map 
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information. That is because the PF only rectifies the current location, the 

error in the sensor’s orientation estimation and the step direction estimation 

remain in future calculations. The MM algorithm, in contrast, calibrates the 

location as well as the sensor’s orientation and step direction. Hence, the error 

in the location update equation (Eq. 3-37) is reduced. 

If we compare the tracked results from Route 1 and Route 2, a performance 

difference can be observed in the PF algorithm, when the pedestrian is 

walking back towards the start/endpoint in the last segment of the route. The 

tracked results in Route 2 are misled to a neighbouring corner, compared with 

the actual endpoint, which are separated by the seating area in the map. That is 

because when the pedestrian walks from Point A(18.5,-8.5) towards Point 

B(8.5,-8.5) in Route 2, even a 10
o
 error in the direction estimation would result 

1.74 (10*sin(10
o
)) meter error in the location estimation in the y-axis. The 

error in the x-axis is quite small, which is 0.15 (10-10*cos(10
o
)) meters. Fig. 

3.11 illustrates the scenario with more detail, while a) is for Route 1 and b) is 

for Route 2.  

The lines and rectangles in the figure represent the walls and obstacles we 

applied for the PF. We explain the Route 2 scenario first (Fig. 3.11 b). The 

100 small circles represent the particles with the centre at Point B, when there 

is no error in the location estimation. The '+' dots represent the particles when 

there is a 10
o
 error in the direction estimation towards the right side of the 

walking direction. While the pedestrian continues the walk towards the –x 

direction along the x-axis, the '+' dots (remaining particles) would move 

towards obstacle 1. Once the particles become close to Obstacle 1, it is 
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predictable that a number of particles would be filtered. From the figure we 

notice that there are quite a few particles facing area1, which is the actual path. 

Instead, the majority of the particles would be kept in Area 2. We can see this 

effect from Fig. 3.10 b). To make the situation even worse, the right side of 

the walking direction is more spacious than the left side. So the particles at the 

left side are more easily eliminated by map constraints. More particles at the 

right side increase the probability of misleading the tracked path to area2. This 

also explains why applying PF sometimes may have even worse results.  

Route 1 is different because the direction estimation error would only result 

in location bias at the x-axis, which is illustrated in Fig. 3.11 a), where the 

small circles represent the particles without error and the small triangles 

represent the particles with such error. The pedestrian then walks towards the -

x direction of the x-axis. The biased particles would result in a location 

estimation with bigger value in x coordinate. But the majority of the particles 

would still be close to the actual path. 
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a) Route 1 

  

b) Route 2 

Fig. 3.10: An example of the tracked results for Route 1 and 2 given different 

algorithms 
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a) Route 1 

 

b) Route 2 

Fig. 3.11: Particles at Point B when there is a 10
o

 error in walking direction 

estimation for Route 1 and Route 2 
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Table 3-5: Average Error for Each Trial (Route 1) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.43 1.20 1.34 1.45 1.89 0.94 0.99 1.21 1.64 0.96 

PF-1 1.89 1.76 2.14 1.45 1.16 0.87 0.93 1.31 1.06 1.42 

MM-1 0.89 1.13 1.03 1.67 2.00 1.04 0.89 0.86 1.52 0.84 

PF-2 1.90 1.69 1.97 1.71 1.87 1.12 1.44 1.87 2.10 1.64 

MM-2 1.25 1.02 1.02 1.26 1.33 0.75 0.98 1.03 1.22 1.05 

PF-4s 1.64 1.04 1.13 1.05 0.98 1.60 0.95 1.32 1.38 0.94 

MM-4s 0.61 0.58 0.66 0.48 0.49 0.79 0.80 0.69 0.97 0.82 

PF-all 1.04 0.82 0.77 0.86 0.60 1.46 0.73 0.89 1.09 0.68 

 

Table 3-6: Average Error for Each Trial (Route 2) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.86 1.01 2.18 1.02 1.40 1.14 1.32 1.20 1.32 1.30 

PF-1 2.50 2.46 2.54 1.50 1.89 1.82 1.45 1.96 1.65 1.90 

MM-1 1.19 1.54 1.44 1.03 1.40 1.35 1.03 1.84 0.75 1.00 

PF-2 2.06 0.99 2.38 1.76 1.44 1.31 2.14 1.93 1.54 1.84 

MM-2 1.99 0.81 1.48 1.13 1.24 1.21 1.46 0.98 0.84 1.46 

PF-4s 0.90 0.75 0.86 1.04 1.09 1.73 1.06 0.90 1.53 1.18 

MM-4s 0.81 0.60 0.86 1.03 1.11 1.40 0.75 0.64 0.76 1.00 

PF-all 0.94 0.84 0.94 0.93 0.94 1.57 0.81 0.91 1.01 1.00 

 

Let the localization error be the distance between the ground truth and the 

estimated location. The average tracking error for the 10 trials for each route is 

shown in Tables 3-5 and 3-6, respectively. Even for the same route, the pure 

step-counting method for each trial returns a different accuracy, which results 

in a huge performance difference for the upper layer algorithms. When the 
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complete map information is available, both the PF and the MM improves the 

performance of the direct step-counting algorithm. Given the same map 

information, the MM returns more accurate results than the PF in most cases.  

Therefore, it is worth noting that fusing map information does not always 

return the better results, especially for PF. The tracking may be misled to a 

drifted path by the error in the existing estimation, especially when there is 

incomplete map information. The results in the tables illustrate that PF-1 and 

PF-2 tend to return drifted results more often. The MM is more robust with 

incomplete map information, as compared with the PF. 

3.3. Map Matching Enabled Particle Filter and Improved 

Particle filtering 

3.3.1. Map Matching Enabled Particle Filter Methods 

Although the MM algorithm provides reliable results with less CPU cost, 

the required narrow corridors may not always exist in an indoor environment. 

In addition, it does not make full use of the map information. Moreover, the 

administrator needs to manually state the coordinates and directions of 

selected corridors. Therefore, it is better to perform the MM as a 

supplementary algorithm to other techniques, rather than work as a primary 

technique.  

It is quite natural to apply the MM on the PF based step-counting algorithm, 

which is called MM enabled PF in this thesis. Suppose the location of a 

turning step is 
t

n N−
x  and its projection to corridor (represented as c) is 

,

t
c n N−

x , 

then the particles of step n-Nt  (
t

i

n N−
x ) are regenerated with the mean

,

t
c n N−

x . 
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The particles for the subsequent steps are updated by Eq. 3-50 using the 

rectified direction estimation. The weight update rule remains the same. 

 '

1

i i i

n j n j n j n j n j
s

− − − − − −

= + +x x d n  j=0,1,…Nt-1  ( 3-50) 

A performance comparison between the original PF and the MM enabled PF 

is shown in Fig. 3.12. In segment v shown in Fig. 3.12(a), there is a clear drift 

for the PF algorithm because of the error in the step direction estimation. A 

more detailed explanation of the process is shown in Fig. 3.12(b), where the 

particles at nearby steps are differentiated using different shapes. The particles 

for PF are sparsely distributed so that there are always particles in the actual 

location. Although erroneous particles are filtered during walking, there is a 

trend that the particles drift to the right-hand side. For the PF+MM algorithm, 

the MM is triggered in step 43 and the particles are recalculated from step 34. 

The particles at step 34 for the PF+MM algorithm before the execution of the 

MM algorithm are also represented (step34-P)). Once the MM algorithm is 

triggered, all the particles of step34-P are regenerated in the corridor. The 

particles at the subsequent steps are recalculated using the rectified direction 

estimation as shown in Fig. 3.12(b). 
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a) Tracked route 

  

b) Particles for certain steps 

Fig. 3.12: Performance comparison of PF and PF + MM 
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3.3.2. Improved Particle Filter 

In this section, we propose an improved PF that models the localization 

error better than the original one and, thus returns more accurate results. From 

the previous discussion, it is known that the step direction estimation always 

suffers from the errors in the sensor’s orientation estimation. Because of the 

uniqueness of the Earth’s gravity, it becomes a reliable direction reference. 

From the previous discussion, accurate vertical and horizontal components of 

acceleration are decomposed using Eq. 3-7. With reliable vertical component 

of acceleration, accurate step length estimation is achieved using Eq. 3-38. In 

the previous section, the direction has been represented by a unit vector. In 

this section, we use the angle dangle,n to represent it. So the position update 

equation for PF can be written as  

 
, , ,angle n

i i

d n d n
ang dle b n= + +   

1 ,
( )(cos( );sin( ))

i i i

n n n s n
s n angle angle

−

= + +x x  

 

( 3-51) 

where 
,

i

s n
n and 

,

i

d n
n represent the noise in length and direction estimation, 

respectively. 
,

i

d n
b is to compensate for the direction angle estimation drift for 

particle i in step n, which will be explained later. 

To further explain the algorithm, the performance of the pure step-counting 

algorithm shown in Fig. 3-10 need to be examined. It shows that when a 

pedestrian walks along a straight line, the pure step-counting algorithm 

provides quite a consistent direction estimation which can be seen as a line. 

Additionally, there is clear direction estimation error during the turn.  
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Because of the robustness of the length estimation and direction estimation 

during line-mode walk, 
,

i

s n
n and 

,

i

d n
n are set as Gaussian variables with small 

variances. Suppose initially the direction estimation is accurate, so that
,

i

d n
b = 0. 

,

i

d n
b is updated as follows 

 
, 1 , 1

, 1 , 1

(0, ),

, , otherwise

i i

d n d n

i i

d n d n

b n N var aturnisdetected instepni

d n b n
b

−
−

−
−

+ +

+

={  
( 3-52) 

where N(0,variance) is a Gaussian variable with larger variance. The particle 

weights are updated also using Eq. 3-44, and then go through the re-sample 

process. 

For the original PF, the estimated direction always equals dangle,n. Although 

impossible paths can be eliminated by the accessibility constraints, the error in 

direction estimation accumulates. In the end, the model in Eq. 3-45 becomes 

unsuitable for describing the walking process. The advantage of the improved 

PF is that it incorporates the uncertainty in direction estimation, which is 

represented as 
,

i

d n
b and

,

i

d n
n . The choice of its value is further refined by the 

pattern that large uncertainty occurs during turns. In this way this model 

describes the pedestrian walk better than the previous one. Impossible paths as 

well as erroneous directions can be eliminated in this algorithm.  

A performance comparison between the previous original PF and our 

improved PF is shown in Fig. 3.13. There is not much difference in 

performance when the pedestrian is walking along the corridors. However, in 

segment v the original PF shows a clear drifted path as shown in Fig. 3.13(a). 

This drift comes from the error in direction estimation. Our improved PF, on 
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the other hand, fits the true route quite well as the drift is compensated in the 

model. The particles with erroneous drift estimates are eliminated as they pass 

the walls or obstacles. Detailed observation in segment v can be found in Fig. 

3.13(b) where the particles are drawn. The particles are drawn every three 

steps so that the particles from different steps would be easy to distinguish. 

The particles at nearby steps are differentiated by different shapes. A clear 

drift trend can be found for the particles from the original PF algorithm 

compared with our improved one. It does not learn from previous filtering 

results. The improved PF, on the other hand, always eliminates the erroneous 

,

i

d n
b  estimation in the direction estimation and retains the correct ones. 

Compared with the MM algorithm, the improved PF rectifies the direction 

estimation without specifically defining the corridors. Its CPU cost is the same 

as the original PF, which is less than the MM enabled PF algorithm. 

 

a) Tracked route 
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b) Particles for certain steps 

Fig. 3.13: Performance comparison of PF and improved PF 

 

3.3.3. Evaluation 

The data is collected in the same manner as described in the previous 

section. But the map constraints are redefined as in Fig. 3.14. There are three 

corridors available in total in this map for the MM algorithm. Later the map 

will be represented as simple lines and rectangles. 



80 

 

  

Fig. 3.14: Experimental testbed with walls and obstacles 

 

a. Performance on Full Map Information 

Fig. 3.15 shows an example of the tracking results when different 

algorithms are applied for routes 1and 2. In both routes, the start and end 

points are kept the same, the difference is that the direction in Route 1 is 

counter clockwise while the one in Route 2 is clockwise. The indoor map 

constraints are kept the same as in the previous example. It is shown that the 

fused PF and MM algorithms do improve the performance of the direct step-

counting algorithm. If we compare the paths obtained by the original PF and 

the MM schemes, it can be found that the one from the MM coincides better 

with the ground truth, especially in the area right after the MM gets executed. 

That is because the PF only rectifies the current location, the error in the 
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sensor’s orientation estimation and step direction estimation remains in future 

calculations. The MM algorithm, in contrast, calibrates the location as well as 

the sensor’s orientation and step direction. The error in the location update 

equation is reduced. Our improved PF overcomes the drawback by modelling 

the error in direction estimation.  

It is worth noting that the improved PF also encounters the similar 

misdirecting effect as what we explained in Fig. 3.11 for Route 2. But because 

the error in walking direction estimation is reduced during the filtering, the 

tracked path would be less misled towards area 2 in the end. That is why we 

can see the path ends in between the one from original PF and the actual path. 

  

a) Route 1 



82 

 

  

b) Route 2 

Fig. 3.15: An example of the tracked results for Routes 1 and 2 given different 

algorithms 

 

 

Table 3-7: Average (Avg) Error for Each Trial (Route 1) 

Average error (m) 

1 2 3 4 5 6 7 8 9 10 Avg 

Step counting 1.31 1.16 1.22 1.63 2.02 0.90 0.97 1.71 0.86 2.03 1.38 

PF 1.04 0.82 0.77 0.86 0.60 1.46 0.73 1.09 0.68 0.72 0.88 

MM 0.49 0.59 0.62 0.44 0.41 0.65 0.70 0.83 0.69 0.60 0.60 

PF+MM 0.68 0.67 0.61 0.68 0.68 0.75 0.60 0.86 0.88 0.77 0.72 

Improved PF 0.62 0.41 0.56 0.47 0.58 0.56 0.39 0.75 0.51 0.68 0.55 
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Table 3-8: Average Error for Each Trial (Route 2) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 Avg 

Step counting 1.71 1.10 0.95 1.47 1.15 1.11 1.36 1.32 1.25 1.56 1.30 

PF 0.94 0.84 0.93 0.94 1.57 0.81 0.91 1.01 1.00 1.06 1.00 

MM 0.75 0.58 0.86 1.09 1.52 0.65 0.61 0.73 1.01 0.85 0.87 

PF+MM 0.48 0.72 0.78 1.14 1.27 0.50 0.58 0.72 0.86 0.75 0.78 

Improved PF 0.97 0.68 0.74 1.15 1.37 0.75 0.84 0.73 0.97 1.12 0.93 

 

Let the localization error be the distance between ground truth and estimated 

location. The average tracking errors for the 10 trials for each route are shown 

in Table 3-7 and Table 3-8, respectively. The last column shows the average 

error for the 10 trials. MM returns more accurate results than PF in the 17 

trials of the total 20 trials. In the rest of the 3 trials, the performances are quite 

close (0.68/0.69, 0.94/1.09, and 1.00/1.01). Therefore, the MM outperforms 

the PF in the given map environment. A similar conclusion can be made when 

we compare the accuracy of MM enabled PF with PF, and the accuracy of our 

improved PF with PF. PF provides the least accuracy among the three, which 

is only better than pure step-counting without map constraints. When we 

compare the average error from MM, MM enhanced PF and improved PF, we 

see quite close location accuracy. 

It is interesting to find that the MM enabled PF improves the performance in 

Route 2, but not in Route 1. That is because there are many corridors in our 

map for MM to take effect, and the paths are along the corridors. MM alone is 

sufficient to obtain good results. When the distribution of actual location is 

represented by particles, the particles should be distributed sparsely enough to 



84 

 

avoid execution failure when all particles get removed by the map constraints. 

In our lab environment, an empirical size of the particle distribution would be 

a quasi-circle with radius of around 1.5 meters. The computed centre from the 

distribution may not be as close to the actual location as MM, especially in 

corridors. 

The improved PF performs poorer than MM and PF+MM in Route 2 

because of the misdirecting effect as what we explained in Fig. 3.11. MM is 

triggered only when the pedestrian is in the corridor, which wastes the other 

map constraints information. MM enabled PF is quite a natural method to keep 

the advantages of both algorithms. Our improved PF takes advantage of PF 

and improves direction estimation at the same time. In the next section when 

less corridor information is given, we will see the improvements of such 

algorithms. 

b. Performance on Incomplete Map Information 

The previous evaluations have been carried out in an ideal corridor 

environment like our lab. It is necessary to test the performance in another 

scenario. Here, the new scenario is virtually created by giving incomplete map 

information to the algorithms. From the algorithms’ perspective, it makes no 

difference compared to collecting the data in a physical new environment and 

using relative map constraints. Fig. 3.16 shows the incomplete map we use to 

evaluate the performance for the same routes in Section a). Map 1 keeps the 

map constraints in top left corner, with one wall of a horizontal corridor. Map 

2 keeps the map constraints in the bottom right corner, with the conference 

room. 
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Fig. 3.16: The used incomplete map 

 

 

Table 3-9: Average Error for Each Trial (Map 1, Route 1) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.31 1.16 1.22 1.63 2.02 0.90 0.97 1.71 0.86 2.03 

PF 1.78 1.28 1.54 1.46 1.09 1.22 1.00 1.30 1.68 1.21 

MM 0.96 1.22 1.07 1.90 2.17 1.08 0.92 1.64 0.90 1.80 

PF+MM 1.65 1.22 1.42 1.20 0.86 1.38 1.38 1.24 1.28 1.24 

Improved PF 1.25 1.02 1.27 1.07 0.99 1.07 1.12 0.99 1.00 1.14 

 

Table 3-10: Average Error for Each Trial (Map 1, Route 2) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.71 1.10 0.95 1.47 1.15 1.11 1.36 1.32 1.25 1.56 

PF 1.90 1.06 1.54 1.41 1.56 1.70 1.24 1.78 1.61 1.75 

MM 1.03 1.65 1.05 1.47 1.36 0.86 2.01 0.75 0.99 0.99 

PF+MM 2.00 0.81 1.62 1.47 1.63 1.74 0.83 1.61 1.83 1.79 

Improved PF 1.62 0.77 1.21 1.07 1.28 1.52 0.86 1.06 1.27 1.37 
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Table 3-11: Average Error for Each Trial (Map 2, Route 1) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.31 1.16 1.22 1.63 2.02 0.90 0.97 1.71 0.86 2.03 

PF 1.75 1.48 1.64 2.08 1.74 1.19 1.43 1.93 1.55 1.90 

MM 2.32 0.92 1.80 0.55 1.09 0.84 0.97 1.10 1.91 0.95 

PF+MM 1.80 1.01 1.36 0.89 0.87 1.05 1.17 1.13 1.62 1.05 

Improved PF 1.57 0.70 0.92 1.09 1.64 1.07 1.24 1.52 1.15 1.38 

 

Table 3-12: Average Error for Each Trial (Map 2, Route 2) 

Average error (m)  

1 2 3 4 5 6 7 8 9 10 

Step counting 1.71 1.10 0.95 1.47 1.15 1.11 1.36 1.32 1.25 1.56 

PF 1.38 1.29 0.88 1.45 1.48 1.21 1.03 1.37 1.21 1.26 

MM 1.41 0.77 1.03 1.29 1.31 0.97 1.01 1.43 1.14 1.84 

PF+MM 1.41 0.65 1.04 0.99 1.54 1.44 0.87 1.35 1.10 1.67 

Improved PF 1.58 1.26 0.91 1.49 1.43 1.19 1.21 0.89 1.14 1.31 

 

Table 3-13: Average Error for Each Map and The Overall 

Average Over Error for Applied Methods (m) 

Step counting PF MM PF+MM Improved PF 

Map 1 1.34 1.46 1.29 1.41 1.15 

Map 2 1.34 1.46 1.23 1.20 1.23 

Overall 1.34 1.46 1.26 1.31 1.19 

 

The average accuracy for each of the trials with respect to the route and map 

are presented in Table 3-9 to Table 3-12. Table 3-13 shows the average error 

for map 1 and map 2, and the overall average. We first notice that PF no 

longer provides better results than pure step-counting algorithm. It is because 
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in the settings with few map constraints, the particles are widely spread out 

without calibration. The tracking may have been misled to a drifted path if the 

pedestrian encounters an obstacle in that case.  

There is slight enhancement for MM and MM enhanced PF, compared with 

step-counting. Although from the perspective of average value, MM enhanced 

PF performs worse than MM (1.31m to 1.26m), we find that MM enhanced PF 

actually provides more robust results. MM returns large errors in trial 5 in 

table 3-9 (2.17m), trial 7 in table 3-10 (2.01m), and trial 1 in table 3-11 

(2.32m), while MM enhanced PF dramatically reduces the error (0.86, 0.83 

and 1.80, respectively). The proposed improved PF achieves the most accurate 

result among all the algorithms with the same computational complexity as the 

original PF. Considering there is no additional requirement on the manually 

provided corridor information; improved PF is the most robust solution in 

various map scenarios. 
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Chapter 4  

Dual Sensor Fusion 

 

 

 

In this chapter, we introduce a dual sensor fusion method. The primary 

contribution of this chapter has been the fusing of the orientation estimates 

from the two sensors, which has not been discussed in the literature. The 

orientation has been represented by the quaternion in this thesis. We consider 

the orientation fusion problem as the fusion of two 4-dimensional unit vectors; 

the angle of these two vectors can be determined by the quaternion 

computation. We test the performance by firmly sticking Sensor A and Sensor 

B, close to each other, and capture the real orientation by an optical motion 

capturing system called the Osprey Digital Real Time System (ODRTS). The 

experimental results show that the fused solution achieves better orientation 

accuracy and performance robustness. We further apply the orientation fusion 

method into the DR tracking application. It also illustrates higher localization 

accuracy, as compared with individual sensor DR. When we compare it with 
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the existing dual fusion method on location, the proposed method achieves the 

same accuracy. 

4.1. Motivations 

In Chapter 3, we have described our methods in applying the DR for indoor 

localization purposes, which are based on the measurements from a single 

sensor. We observed that quite accurate step length estimation can be obtained; 

the error in step direction estimation introduces large localization error. Hence, 

higher accuracy may be achieved by fusion of the results from the two sensors. 

The authors in [92] have done some work in dual sensor fusion on location 

while a pedestrian holds two devices at the same time. 

The hand-held devices equipped with accelerometers, a gyroscope and 

magnetometers are quite commonly available in the market. Recent 

developments in miniature sensor design have made the IMU sensor smaller, 

cheaper, and more accurate, with less power consumption. If a strong use case 

is given, it can be foreseen that the hand-held device manufacturers are able to 

incorporate two 9-axis IMU sensors in a single device. Therefore, we propose 

the localization scenario when two sensors are firmly attached close to each 

other, which is to simulate the two sensors in one device scenario. 

4.2. Problem Definition 

The authors in [92] proposed an a posteriori method to fuse the DR location 

results from the two IMU sensors, while the sensors maintain a constant 

distance. In the scenario we propose, the same method can be applied while 
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the constant distance is set as zero. However, the major contribution of this 

chapter is the fusion method of the orientation estimation from the two sensors. 

In Section 3.2.1, we introduced the algorithm for a single sensor’s 

orientation estimation. Suppose there are two Sensor A and Sensor B, being 

attached firmly close to each other. At time 0, Sensor A and Sensor B are with 

quaternion rotations qA,0  and qB,0 , respectively. The orientation shift qshift  is 

given by  

 1

,0 ,0shift A B

−

⊗=q q q  ( 4-1) 

where q
-1
 represents the quaternion inverse in this thesis. 

At any time t, the same relationship is maintained because Sensor A and 

Sensor B are firmly attached close to each other: 

 1

, ,shift A t B t

−

⊗=q q q  ( 4-2) 

Suppose the measured orientations for Sensor A and Sensor B at time t are 

,

ˆ
A t

q and 
,

ˆ
B t

q , respectively. Suppose  

 1

, ,
ˆ ˆ
B

A t B t shift

−

⊗=q q q  ( 4-3) 

If both orientation measurements of the two sensors are accurate, we should 

have 
,

ˆ
A t

q equals 
,

ˆ
B

A t
q because the sensors are firmly attached close to each 

other. 

To fuse the two measurements, we need to solve the following problem:  

 maximize 
, , , ,

ˆ ˆ( , | , )
A t B t A t B t

f q q q q  ( 4-4) 

, which then transforms to Eq.4-5 according to Bayes’ Theorem:  

 
maximize , , , , , ,

, ,

ˆ ˆ( , | , ) ( , )

ˆ ˆ( , )

A t B t A t B t A t B t

A t B t

f f

f

q q q q q q

q q

 ( 4-5) 
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Because the two sensors measure the orientation independently, thus:   

 
, , , , , , , ,

ˆ ˆ ˆ ˆ( , | , ) ( | ) ( | )
A t B t A t B t A t A t B t B t

f f f=q q q q q q q q  ( 4-6) 

, ,

( , )
A t B t

f q q  and 
, ,

ˆ ˆ( , )
A t B t

f q q  are not affected by the values of  qA,0  and 

qB,0, thus Eq. 4-5 becomes: 

 maximize
, , , ,

ˆ ˆ( | ) ( | )
A t A t B t B t

f fq q q q  ( 4-7) 

and: 

 1

, , , , , , , ,
ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | )B

B t B t B t A t shift B t shift A t A t A t
f f f f−

= = =q q q q q q q q q q  ( 4-8) 

Thus the problem is further transformed into Eq. 4-9: 

 maximize
, , , ,

ˆ ˆ( | ) ( | )B

A t A t A t A t
f fq q q q  ( 4-9) 

4.3. Maximum A Posteriori Fusion 

Take 
,

ˆ
A t

q and ,
ˆ
B

A t
q as unit vectors in a 4-dimensional space. The error is the 

angle between the vector and qA,t. The noise in 
,

ˆ
A t

q and ,
ˆ
B

A t
q are modelled as a 

Gaussian distribution with N(0, sigma_1
2
) and N(0, sigma_2

2
), respectively. 

Theorem 1: The objective function 4-9 only becomes maximized when the 

qA,t is within the hyperplane determined by 
,

ˆ
A t

q and ,
ˆ
B

A t
q . 

Theorem 1 Proof: 

In Fig. 4.1 a), there are two observations: 
,

ˆ
A t

q and ,
ˆ
B

A t
q . Suppose the 

solution is 
'

,A t
q , which is out of the hyperplane hyper_m determined by 

,

ˆ
A t

q

and ,
ˆ
B

A t
q . The angles between the solution 

'

,A t
q to 

,

ˆ
A t

q and ,
ˆ
B

A t
q are α

’
 and β

’
, 

respectively, then  
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 ’

, ,

’

, ,

1 1
ˆ ˆ( | ) ( | )

_
( ) (

1 _1 _2
)

_ 2

B

A t A t A t A t
f f

sigma sigma sigma sigma

α β
χ χ=q q q q  ( 4-10) 

where χ(x) equals: 

 
( )

21

2
1 x

exχ
−

=

2π
 ( 4-11) 

Through 
'

,A t
q , a hyperplane perpendicular hyper_m can be identified, and 

the unit component of the  intersection is marked as
''

,A t
q . The angles between 

''

,A t
q to 

,

ˆ
A t

q and ,
ˆ
B

A t
q are α  and β, respectively. From geometry, α< α

’
 and β 

<β
’
, as such we have: 

 ’ ’

( ) ( ) ( ) ( )
_1 _ 2 _1 _ 2sigma sigma sigma sigma

α β α β
χ χ χ χ<  ( 4-12) 

, which means 
'

,A t
q  is not the solution. Therefore, Theorem 1 is proven. 

Theorem 2: The objective function 4-9 only becomes maximized when the 

qA,t is in between 
,

ˆ
A t

q and 
,

ˆ
A t

B
q . 

Theorem 2 Proof: 

In Fig. 4.1 b), the vectors are in the same plane hyper_m. 
'

,A t
q is supposed to 

be the solution which is not in between 
,

ˆ
A t

q and ,
ˆ
B

A t
q , and is closer to 

,

ˆ
A t

q . 

The angles between the solution 
'

,A t
q and 

,

ˆ
A t

q and ,
ˆ
B

A t
q are α

’
 and β

’
, 

respectively. 
''

,A t
q can be drawn with the angle α =α

’
,
 
but opposite 

,

ˆ
A t

q . The 

angle between 
''

,A t
q  and ,

ˆ
B

A t
q is β, which is less than β

’
:  

 ’ ’ ’

( ) ( ) ( ) ( )
_1 _ 2 _1 _ 2sigma sigma sigma sigma

α β α β
χ χ χ χ<  ( 4-13) 
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As such, 
'

,A t
q is not the solution. When 

'

,A t
q  is closer to ,

ˆ
B

A t
q , the same result 

holds. Thus, we find that the maximum likelihood solution is in between 
,

ˆ
A t

q

and ,
ˆ
B

A t
q . 

 

 

 

                         a) Scenario 1                                                       b) Scenario 2 

Fig. 4.1: Different scenarios the maximum likelihood solution may achieve  

 

Maximum A Posteriori: 

Theorem 1 and Theorem 2 help us to narrow down the boundary of the 

maximum likelihood solution. Maximum a posterior estimation is then applied 

in the following paragraphs to get the result. 

The quaternion difference from 
,

ˆ
A t

q to ,
ˆ
B

A t
q is given as Eq. 4-14:  

 1

, ,
ˆ ˆ [sin( / 2)[ ; ; ];cos( / 2)]

B

diff A t A t x y zk k kθ θ
−

⊗= =q q q  ( 4-14) 
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Suppose 
,

ɶ
A t

q  is the maximum likelihood solution, which has angle 

differences α and β to 
,

ˆ
A t

q and ,
ˆ
B

A t
q , respectively, then 

,

ɶ
A t

q  is given by Eq. 

4-15: 

 θ α β= +   

, ,

ˆ [sin( / 2)[ ; ; ];cos( / 2)]
A t A t x y z

k k kα α⊗=q qɶ   

( 4-15) 

, where [kx ;ky ;kz] is a unit vector representing the axis of rotation. Eq. 4-10 

becomes 

 
, , , ,

1 1
ˆ ˆ( ) ( | ) ( | )

_1 _1 _2
( ) ( )

_2

B

A t A t A t A t
F f f

sigma sigma sigma sigma

α θ α
α χ χ

−

= =q q q q   ( 4-16) 

When the derivative of F, '( ) 0F α = , F(α) obtains the maximum value. Thus  

 
' ( ) ( ) ) 0(F F

sigma_1 sigma_2
α α

α θ α− −
+ ==  ( 4-17) 

The two sensors are identical, so let sigma_1= sigma_2. This yields:  

 

2

θ
α =  ( 4-18) 

The solution with highest probability 
,

ɶ
A t

q is calculated by Eq. 4-19: 

 
, ,

ˆ [sin( / 4)[ ; ; ];cos( / 4)]
A t A t x y z

k k kθ θ⊗=q qɶ  ( 4-19) 

The maximum likelihood solution for Sensor B is calculated by: 

 
, ,B t A t shift⊗=q q qɶ ɶ  ( 4-20) 

In the previous steps, we calculated 
,

ɶ
A t

q before 
,

ɶ
B t

q . If we choose to 

calculate 
,

ɶ
B t

q first, the same result would be obtained. 

It is worth noting that the presented calculation of the maximum likelihood 

solution is based on two assumptions: 1) the measurement error distributions 
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of the two sensors are similar; 2) The measurement errors are based on the 

Gaussian distribution. If the two assumptions are not met in certain 

circumstances, suboptimal results would be obtained. In the following section, 

we would notice such cases. 

4.4. Experimental Evaluation on the Orientation 

Estimation 

In order to evaluate the performance of the proposed method, we firmly 

stuck two inertial sensors, as the one used in Chapter 3, together using 

adhesive tape. Two sensors are relatively steady, as shown in Fig. 4.2. The 

sensors are connected to a computer through a USB port; the captured sensor 

data are presented in text format. 

 

Fig. 4.2: Attached Sensor A and Sensor B 
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4.4.1. Experimental Testbed Setup and Ground Truth Calculations 

The primary difficulty for the evaluation is to get the ground truth of the 

orientation. In this work, we have been using the motion tracking software, 

Cortex from Motion Analysis [98], which utilises an eight camera Osprey 

Digital Real Time System (ODRTS) for 1 millimetre level accuracy location 

tracking, as illustrated in Fig. 4.3. The ODRTS only tracks the location of the 

markers. In order to track the actual orientation, five markers are stuck to a 

quadrilateral cardboard, as well as to the attached dual-sensor. When the 

cardboard is rotated, the dual-sensor should have the same rotation. The 

rotation of the cardboard can be determined based on the tracked location of 

the 5 markers, with fixed topology, during movement.  

Suppose the 5 markers are with locations 1

0
l , 2

0
l , 3

0
l , 4

0
l , 5

0
l  at time 0, 

respectively. In time t, the tracked locations are represented as 1

t
l , 2

t
l , 3

t
l , 4

t
l , 5

t
l . 

The quaternion rotation qt is the solution of Eq. 4-21: 

 
min 0 0

,

[( ) ( )( )], & , [1,5]j i j i

t t t

i j

i j i j− − − ≠ ∈∑ l l Aq l l  ( 4-21) 

, where A is the attitude matrix defined in Appendix A.2. 
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Fig. 4.3: Osprey Digital Real Time System for location tracking 

From the known sensed magnetic field and the Earth’s gravity, the initial 

orientation of Sensor A and Sensor B are computed as qA,0  and qB,0. At time t, 

the orientation of Sensor A after dual sensor fusion is 
,

ɶ
A t

q , then the rotation 

until time t  is: 

 ( ) ( )
T

1;1;0 1;1;0 2=Z  ( 4-22) 

 2ˆ( ; ) ( ; ) , ( , )α α α α
+ −

− + = ∀ ∈
T

k j k j kj kj kj e
e Z e d k j N  ( 4-23) 

As the dual sensor is attached firmly on the cardboard, 
,A t

q should equal qt  

if the results are accurate. 

4.4.2. System Synchronization 

Both the dual sensor and ODRTS are sampled at the 100Hz rate. Because of 

the time difference in initializing the sampling process of these two systems, 

the samples are asynchronous. To solve this problem, an impulse is given to 
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the cardboard at the beginning of the data collection process. Because of the 

high accuracy of the gyroscope, the solved 
,A t

q  should be close to qt  within a 

short period of rotation. The computed quaternion orientation before 

synchronization is shown in Fig. 4.4 a). The four values in vector qt and the 

four values in vector 
,A t

q are plotted. By shifting the qt values, the values in 

qt and
,A t

q  may coincide.  

The best time shift tshift for synchronization is obtained when the minimum 

mean squared error is obtained in Eq. 4-23. The results after synchronization 

are illustrated in Fig. 4.4 b), where the signal is truncated to start right before 

the rotation. In the following sections, the times are presented in a 

synchronized manner. 

 
min 

50
2

,

40

|| || , [0,5]
shift

t

AA tt t t shift

t

t

=

−

=

− ∈∑ ,

q q   ( 4-24) 

 

  

a) Before synchronization                                                        
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b) After synchronization 

 

Fig. 4.4: Computed quaternion orientation before and after synchronization 

4.4.3. Experimental Results     

We collected a total of 8 trials of data, with each trial lasting for 250 

seconds at a 100Hz sampling rate. We made sure all possible rotations were 

tracked. An example is shown in Fig. 4.5, where each element in qt has a value 

range of [-1 1]. The rotation required from 
,A t

q  to qt  is: 

 1

,delta A t t

−

⊗=q q q   ( 4-25) 

The error size is not related to the rotation axis, but is related to the rotation 

angle value. In this thesis, we use the angle value 2*arccos(| (4) |)
delta

err = q to 

represent the error. 

We compare the error before and after the fusion. An example of the results 

is presented in Fig. 4.6. The errors of Sensor A and Sensor B and the results 

after fusion (Sensor A) are illustrated. The angle is measured in radians. Fig. 

4.6 b) shows more zoomed in results.  
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The effect of the fusion algorithm can be categorized into two cases. In the 

first case, the fused error is in between the error of pure Sensor A and Sensor B. 

This can be explained when the estimation error of Sensor A and Sensor B are 

on the same side, as compared with the actual orientation. In the second case, 

the fused error is less than the error from both Sensor A and Sensor B. This 

can be explained when the error of Sensor A and Sensor B are on opposite 

sides, as compared to the actual orientation, and the fused result is closer to the 

actual orientation. 

 

Fig. 4.5: The real temporal rotation of Trial 1 
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a) Temporal error comparison in 250s range 

 
 

b) Temporal error comparison after being zoomed in 

 

Fig. 4.6: Example of orientation accuracy 

The means and variances of the error for the 8 trials are illustrated in the Fig. 

4.7. The unit of the mean is rad. The fused results of Sensor A and Sensor B 

have the same values. A first observation is that, for the same sensor, various 

results would be obtained for different experimental trials. This is determined 
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by the difference of sensor error. The bias error of a gyroscope is due to a 

number of components like calibration errors and bias drift. For a gyroscope, 

its bias error tends to vary, both with temperature and over time. Thus, each 

time the sensor is switched on to collect the data, a slightly different result is 

expected. 

The effect of the fusion algorithm on the mean error can be categorized into 

two cases. In Trials 2, 4, 5, 6 and 8, the fused mean error is less than the error 

from either Sensor A and Sensor B. In Trials 1, 3, and 7, it is shown that the 

fused algorithm delivers results with the accuracy in between those of Sensor 

A and Sensor B’s individual orientation estimation algorithms. The fused 

solution is not necessarily more accurate than just using Sensor A and B alone. 

Similar result are achieved in [92]. It can be explained by the temporal results 

of Trial 1 illustrated in Fig. 4.6. Although Sensor A and Sensor B are the same 

types of devices and are supposed to have identical error distributions, it is 

illustrated in Fig. 4.6 b) that Sensor A has smaller errors most of the time for 

this trial of experiment. Most of the time, the temporal fusion error is larger 

than the errors from Sensor A and less than the one from Sensor B. The final 

result, which is the aggregated average, is in between the accuracies of Sensor 

A and Sensor B.  

Although the proposed scheme does not always achieve the highest 

accuracy, the proposed scheme is still useful, even in the worst cases. One 

may argue why not use the one that returns a better accuracy and omit the 

fusion process. But in a real situation, it is difficult, or even impossible, to 

determine which one is providing the better results. In the case of Sensor A 
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and Sensor B, either sensor would potentially have higher bias error during 

data collection. In Trials 1 and 3, Sensor A provides better results than Sensor 

B, but in Trial 8, Sensor A yields worse results. The fusion algorithm provides 

a more robust and accurate solution. Besides, even in the cases the proposed 

scheme does not return the highest accuracy, the accuracy is closer to the one 

with a smaller error. In Trials 1, 3, and 7, the average errors for Sensor A are 

0.13, 0.13 and 0.12; the ones for Sensor B are 0.18, 0.17 and 0.18. The 

respective errors from fused method are 0.15, 0.14 and 0.13. They are closer to 

the better results from Sensor A. This is because the average accuracy is only 

obtained when the orientation estimation error of Sensor A and Sensor B are 

on the same side, as compared to the actual orientation during the entire 

tracking time. Once the two errors can be partially eliminated, the fused error, 

in that instance, is less than the average accuracy of Sensor A and Sensor B. 

 

Fig. 4.7: Orientation estimation performance comparison before and after fusion 
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4.5. Dual Sensor Dead-Reckoning 

In the previous sections of this chapter, we discussed the dual sensor fusion 

method on orientation estimation. Here we test the effect of orientation fusion 

on the performance of DR. The plan is that we carry the attached dual sensor 

system to collect data when we walk in a known ground truth environment. 

Based on the collected two sets of data, different localization results can be 

obtained given the various fusion methodologies. There are three fusion 

options for localization: (1) only fusion on the orientation estimation, then 

each sensor shall proceed with DR; (2) only fusion on the final DR location 

estimation as in [92], without fusion on the orientation estimation; (3) fusion 

on the orientation estimation first, then fusion on the DR location estimation 

using (2). Option 2 is based on the fact that if the two sensors are attached 

close to each other, their distance always keep the same. It is equivalent to the 

case when pedestrian carries two sensors. The authors in [92] had studied this 

case. MLE can be applied to fuse the localization results from the two sensors. 

No matter which fusion method we use, we should be aware of the previous 

knowledge that the fusion methods do not guarantee accuracy improvements, 

but help to provide more robust results. 

4.5.1. Experimental Testbed 

There were 5 trials of data collected when a pedestrian was asked to walk 

around a rectangle conference room (10m by 8.5m) for 4 rounds. The walking 

distance for each trial was 148 m. When a certain point in the walking path 

was passed, the passing timestamp was saved. There were 28 pieces of ground 

truths with timestamps for the route. An example of the route is illustrated in 
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Fig. 4.8 where the arrow line and the line connected by the small triangles 

represent the actual route and the estimated route, respectively. The route 

starts from the bottom left corner, continues in a counter clockwise direction, 

and finally ends at the starting point after 4 rounds. There is a clear drifted 

trend on the direction estimation. 

 

 

Fig. 4.8: 1 trial of results: the pedestrian walked around a rectangle conference 

room for 4 rounds 

4.5.2. Algorithm Briefing 

As discussed previously, there are three fusion options, which will be 

compared in the experiments. In Option 1, we only fuse the orientation 

estimation of the two sensors. The returned orientation is the input for each of 

the sensors to do a step-counting DR algorithm, which has been illustrated in 

Chapter 3. In Option 2, we fuse the DR location of the two sensors, as in [92]. 

In Option 3, there are two levels of fusion. We fuse the orientation estimation 
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for each of the sensors to do a DR; the two DR locations are fused in the 

manner presented in Option 2. 

4.5.3. Experimental Results 

Fig. 4.9 presents the average localization errors for each trial using the 

different methods, as well as the average of the 5 trials. In Option 1, only the 

sensor’s orientation is fused, so the estimated locations are different because 

of the difference in the other measurements. In Options 2 and 3, the locations 

are fused, so Sensor A and Sensor B share the same localization results. 

In Option 1 when only the orientation is fused, we find an average accuracy 

improvement for both sensors, which shows the advantage of the orientation 

fusion on location tracking. When the location is fused in Options 2 and 3, the 

accuracy is somewhat in between the accuracies of Sensor A and Sensor B. 

The results from Options 2 and 3 illustrate no significant difference, which 

suggests that fusing orientation before location fusion is not necessary. 

Because the orientation estimation is one input for the DR location estimation, 

fusing the location already fuses the orientation output, to a certain extent. 

 So the primary advantage of this orientation fusion method is still to 

provide more robust orientation estimation for the rotation tracking use cases. 

For the DR localization application, the orientation fusion still improves the 

single sensor performance with higher accuracy. But compared to Option 2, 

with direct location fusion, the improvement is limited. 
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Fig. 4.9: Localization accuracy comparison before and after fusion 
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Chapter 5  

Cooperative Localization 

 

 

It is not costly effective to equip all users with self-localization hardware 

like GPS. This motivates research on localization estimation in a wirelessly 

connected network using relative location information, such as pair-wise 

ranging measurements between nodes. That’s because the radio transmission 

hardware are quite ubiquitous in many devices, which can be used for the 

distance estimation. With the relative location information, different 

algorithms can be applied to compute the location which can be categorized as 

centralized algorithms and distributed algorithms. In centralized algorithms, 

there is a central node computing the locations for all nodes, while in 

distributed algorithms, the node typically computes the location for itself. 

Centralized algorithms usually yield more accurate results, but suffer from 

single node failure. To combine the advantages of both methods, the preferred 

methodology in this chapter is a cluster based method.  
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In this chapter, we propose a cluster based localization scheme so that 

different cluster based algorithms can be easily implemented. To carry out a 

comparative evaluation on the performance in a fully connected network with 

many anchor nodes, three algorithms are implemented, which are based on the 

use of extended Kalman filter (EKF), semi-definite programming (SDP) and 

multi-dimensional scaling (MDS). Their cluster based variants are the 

decentralized EKF (DEKF), cluster based SDP (CSDP) and cluster based 

MDS (CMDS), respectively. The algorithms are evaluated in both static and 

low mobility environments. Simulation results show that DEKF performs as 

well as EKF in both static and low mobility environments, and they 

outperform CSDP and CMDS. DEKF requires fewer anchor nodes, smaller 

clusters, while achieving more accurate location estimation.  

Then we investigate that the known movement pattern returned by the 

motion sensing technique relaxes the 3-anchor and 3-connection requirements 

for 2D localization. The DR technique is applied using PF when the 

displacement can be estimated and there are only one or two anchor nodes. 

Simulation results show that when exact displacement is given, accurate 

location results are returned in all 3 defined cases. When there is error in the 

direction estimation, two anchor nodes are required and it is more robust to 

use more particles. The localized mobile node would become a moving anchor 

which helps to localize the rest of the nodes in the network. The DR location is 

fed into the original cluster based method which shows significant 

improvement. There are more nodes that can be localized (increased from 0 to 
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48 in 2-anchor case), and the accuracy is also enhanced (reached 0.05 for 

CMDS). 

5.1. Preliminaries 

This section describes the key definitions and assumptions used in our 

algorithm. 

5.1.1. Definition of Terms 

• Node ID: Each node has a unique ID to identify itself. Cluster ID is the 

cluster head’s node ID. 

• Anchor node: Node with known location 

• Transmission range: It defines the furthest distance for successful 

message transmission (abbreviate as Trange, normalized to 1). Nodes 

within the transmission range are one hop away. 

• Head Rank: It is an integer identifying how far a node can be away from 

a cluster head. Suppose the rank of the cluster head is set to n, then the 

nodes within n-1 hops may join it. 

• Localization error: The distance between a node’s actual location and its 

estimated location 

5.1.2. Assumptions 

First we assume that all nodes in the network have the same Trange (which is 

normalised to 1). The distances are multiples of Trange. Nodes are assumed to 

be capable of message transmission and distance measurement within Trange. 

The measurement error is modelled as Gaussian noise as in [65][79][82][101]. 

The distance measurement is given as in [79] 
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 ˆ *(1 )
ij ij

d d γ= +  ( 5-1) 

where ˆ
ij

d   is the measured distance, ˆ
ij

d is the actual distance, γ ~N(0, 

noisefactor
2
) is a random Gaussian variable. 

In addition, a limited subset of nodes in the network is assumed to be anchor 

nodes. 

5.2. Dense Network with Many Anchor Nodes 

In this section, we discuss the localization problem in a fully connected 

wireless network with many anchor nodes. The full connection (more than 2 

neighbours) ensures there are enough distance constraints for each of the 

sensor, and the anchor nodes (more than 2) provide enough ground truth of 

global coordinates system. 

5.2.1. Localization Algorithm 

The localization algorithm is performed in two phases: the clustering phase 

and the localization phase. The two phases together make up one iteration. 

a. Phase 1: Clustering 

In the clustering phase, clusters are formed by distributed decisions of the 

nodes. Our clustering algorithm comprises three components, namely, cluster 

head initialization, cluster maintenance and route maintenance. 

• Cluster Head Initialization 

It begins with each node entering the head election phase being given a 

predefined probability, and each node elects itself to be the cluster head based 

on this probability. After this phase, if the node becomes the new cluster head, 



113 

 

it broadcasts a cluster update message which includes the cluster ID, as well as 

its rank in the cluster. Suppose a node receives a cluster update message from 

a rank n cluster head, it will get rank n-1, and if the rank it gets is larger than 1, 

it rebroadcasts this message. The rank in each cluster update message is 

decreased by one after every rebroadcast, and the broadcast ends at the rank-1 

nodes, as shown in Fig. 5.1. 

• Cluster Maintenance 

During the cluster maintenance phase, the members of the clusters in the 

network are updated. Even though a node may receive messages from 

different cluster heads, each node can only join one cluster. To determine the 

cluster to join, each node maintains the received cluster sets which include the 

cluster IDs and the obtained ranks in the clusters. Upon receiving a cluster 

update message, the cluster sets are updated. At the end of the broadcasting 

phase, the node joins the cluster where it can get the highest rank. If there is 

more than one cluster with the same highest rank, it joins the one with the 

highest cluster ID.  

To ensure that clusters have a regular shape and size, a cluster head should 

not receive cluster update messages from other heads. Upon receiving a cluster 

update message, the cluster head compares its own ID with the cluster ID in 

the message. We impose a rule that the cluster with a higher cluster ID is kept. 

So if a cluster head has a smaller ID, it joins another cluster and broadcasts a 

head deletion message, the result is shown in Fig. 5.2. 
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If a node does not receive any cluster update message at the end of the phase, 

it becomes a cluster head and broadcasts a cluster update message. This 

ensures that all nodes join clusters at the end of the phase. 

 

 

Fig. 5.1: Explanation of the rank in cluster 

 

 

Fig. 5.2:  Lower ID head joins the cluster with larger ID if they are in range 
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Fig. 5.3:  Maintained routes from member nodes to cluster head 

 

• Route Maintenance 

The route maintenance method maintains the next hops from the member 

nodes to their respective cluster heads. At every iteration in the cluster 

maintenance, a cluster head broadcasts messages to its member nodes. The 

logs of the broadcast process provide the routes from the cluster head to all the 

member nodes. Conversely, we use the routes to update data packets from the 

member nodes to the cluster head. 

The route robustness metric between neighbour nodes, rij, is obtained as 
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( 5-2) 

 

, which takes a value between [0,1], and where ˆ
ij

d  is the measured distance 

between node i and j, and Trange is the transmission range. When two nodes are 

connected by two or more hops, the route robustness is obtained by 

multiplying the robustness of each hop. The node chooses the route with the 
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highest robustness value as shown in Fig. 5.3. Although node 3 has a direct 

link to node 1, it actually prefers to relay through node 2 with the largest 

robustness value of 0.85. One reason for this choice is that as the sender and 

receiver gets closer, the received signal strength gets larger, which results in 

larger SNR, or with shorter distance, the node can transmit signal with less 

power, which conserves energy. 

An example of the clustering algorithm is shown in Fig. 5.4 (200 nodes in 

an (8 by 8) map, head rank=3). The small dots in the figure represent the 

nodes to be localized in the network, and the larger dots are the elected cluster 

heads. 

 

Fig. 5.4:  Example of clustering algorithm (head rank=3) 
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b. Phase 2: Localization 

The localization phase is to carry out location estimation. After the 

localization process is introduced, we illustrate the implementation of the 

localization algorithms. 

• Localization Process 

The process starts with each member node updating its relative location 

message to its cluster head. The message includes the estimated locations of 

itself and its neighbour nodes (for anchor nodes they have actual absolute 

locations), as well as the estimated distances between them. The contents of 

the relative location message are shown in Fig. 5.5. 

After the cluster heads receive the messages, they compute the locations for 

their member nodes. The computed results are broadcasted within the cluster 

in the form shown in Fig. 5.6. 

 

Fig. 5.5: Components of relative location message 

 

 

Fig. 5.6: Components of head localization results 
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• KF Implementation 

The Kalman Filter (KF) [99] provides an efficient computational recursive 

means to estimate the state of a process which minimizes the mean of the 

squared error, and has long been used in target tracking. The KF works with 

initial estimates of the positions of nodes. DV-distance [100] is an appropriate 

algorithm in this phase because of its simplicity and yet provides enough 

accuracy for the KF. The implementation of DV-distance is not described here. 

The implementation of the KF has been described in [101]. The major 

difference from [101] is that they only considered the centralized EKF.  

Suppose 

 
1k k k k−

= + +x x u w  ( 5-3)  

 ( )
k k k

h= +z z v  ( 5-4)  

represent the controlled process and the measurement respectively, where x =

1 1 2 2 3 3
[ , , , , , , ...]

T
a b a b a b  is the location of nodes (the subscript represents the 

node id, a and b represent the 2-d coordinates), u is the speed of the nodes, 

and z is the measured distances between neighbour nodes. ( )
k

h x =

12 13 21 23 31 32
[ , , , , , , ...]

T
d d d d d d (suppose node 1, 2 and 3 are neighbours). Let wk 

and vk represent the matrices of the process and measurement noise which we 

assume to have zero mean Gaussian distributions, and Q and R are their 

covariance matrices, respectively.  

Let H be the Jacobian matrices of the partial derivatives of h with respect to 

x. The expression of H can be found in [101]. The node speed u cannot be 

detected, so it is deleted from the state transition equation. The state equation 
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is compensated by larger diagonal entries in Q (larger uncertainty). Suppose P 

is the a posteriori error covariance matrix, and K is the optimal Kalman gain. 

Then the operation of the EKF can be represented by following equations. 

 
1

ˆ ˆ
kk −

=x x  
( 5-5) 
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−

= −P I K H P  ( 5-9) 

In the decentralized version of KF, the system model and observation model 

are partitioned. The state transition equation can be easily distributed to each 

node itself. The major difficulty is in the way the a posteriori error covariance 

matrix P is handled. In a dynamic network, since the member nodes in a 

cluster keep changing, the cluster head does not have a consistent evolution of 

error covariance. In our algorithm, each node only memorizes its own error 

autocovariance and contributes it to the cluster head. The cross-covariance 

terms are set to 0. The formed P is a diagonal matrix. 

• SDP Implementation 

The SDP algorithm we use is described in [79], which provides an SDP 

relaxation based method for localization. Suppose there are m anchor nodes 

with coordinates 2

k
R∈a , k = 1,…,m, and n unknown nodes with coordinates 

2

j
R∈x , j = 1,…,n. Suppose the transmission range is Trange. There are two sets 

e
N  and l

N being defined as  

if 
2 2

range
ˆ|| ||

i j ij
d T= ≤−x x , 

2 2

range
ˆ|| ||

k j ij
d T= ≤−a x ,  then (i,j), (k,j) 

e
N∈  
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else if rang

2

e|| ||
i j

T>−x x , rang

2

e|| ||k j T>−a x , then (i,j), (k,j) l
N∈ . 

The localization problem is written as a standard SDP problem: 
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where : 0
T

 
= ≥ 
 

I X
Z

X Y
, Y=X

T
X, and X = [x1 x2 ... xn] is the 2 × n matrix 

that needs to be solved. eij is the vector with 1 at the ith position, -1 at the jth 

position and zeros everywhere else; and ej is the vector of all zero except -1 at 

the jth position. We use SDPT3 [102] as the solver to find the globally 

optimum SDP solution. Compared with the Kalman filter, the SDP does not 

need the initial estimates of the locations to start the algorithm. But SDP needs 

at least three anchor nodes to solve the problem. 

• MDS Implementation 

The CMDS algorithm applied in this paper is different from that described 

in [75]. The nodes’ distances beyond one hop are not estimated. The 

computational costly merging phase in [75] which merges local maps to the 
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global coordinates system is not applied. So the cluster head needs the 

locations of at least three anchor nodes to localize the member nodes, same as 

the SDP. 

5.2.2. Evaluation 

We simulate the performance of our algorithm using MATLAB. The 

simulator is downloaded from [103]. IEEE 802.11 (CSMA/CA, Virtual carrier 

sensing, and RTS-CTS-DATA-ACK mechanisms are implemented) is the 

underlying communication protocol. In our algorithm, each iteration includes 

the clustering and localization phases. The period of one iteration is set 

according to the type of environment. We compare the performance of three 

cluster based methods (CMDS, CSDP and DEKF) and the centralized methods 

(MDS, SDP and EKF). In the centralized methods, the head is assumed to 

have all relative location information.  

In the simulations, we study various factors affecting the performance, 

including the number of anchor nodes, the value of the noisefactor, the size of 

the cluster (head rank), the bandwidth and the maximum velocity. In our 

simulation settings, Trange equals 1, the size of the network map and 

localization error is represented as a multiple of Trange. The algorithm is 

evaluated in a 50-node network. The nodes are assumed to be uniformly 

placed initially. Unless otherwise specified, the number of anchor nodes 

equals 9, the network is in a 4 by 4 map, the noisefactor is set to 0.05, and the 

bandwidth is set at 1Mbps. The errors are averaged over the number of 

localized nodes. 
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a. Static Environment 

Here we evaluate the algorithms in a static environment. The period of one 

iteration is 1 second.  The algorithms are run for 50 seconds and the 

performance metrics are the average values for the last 25 seconds. 

• Effect of Number of Anchor Nodes on Performance 

First we evaluate the effect of the number of anchor nodes on the location 

accuracy in a 4 x 4 map. More than 2 anchor nodes are required to determine a 

2D topology. We increase the number of anchor nodes from 5 to 9. The results 

are given in Table 5-1. The values shown in the Table 5-1 are the average 

localization errors expressed as a multiple of Trange. It shows that DEKF and 

EKF achieve almost the same reliable location estimation, and their 

performances are less eroded by decreasing the number of anchor nodes. MDS, 

SDP and their cluster based methods show comparatively worse results. 

We then study the effect of the number of anchor nodes m with respect to 

the number of localized nodes. There are a total of (50-m) nodes that need to 

be localized in the network. Table 5-2 shows the average number of nodes that 

can be localized for different number of anchor nodes for the 3 algorithms. 

CMDS and CSDP both work only when there are more than 2 anchor nodes 

within a cluster, while DEKF does not have this requirement. So it can be 

inferred that given the same number of anchor nodes, DEKF will localize 

more nodes than CMDS and CSDP. This is validated in Table 5-2. CMDS and 

CSDP localize the same number of nodes. It is shown that only when there are 

sufficient anchor nodes (9), the CMDS localizes nearly the same number of 
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nodes as DEKF (41 versus 40.8). It can be concluded that DEKF achieves 

better performance than CMDS and CSDP with fewer anchor nodes. 

Table 5-1: Relationship of Anchor Nodes on Accuracy 

No. of Anchors  5 6 7 8 9 

DEKF-rank 3 0.029 0.024 0.024 0.024 0.023 

EKF 0.023 0.023 0.023 0.022 0.022 

CMDS- rank 3 0.234 0.068 0.060 0.096 0.084 

MDS 0.122 0.042 0.042 0.041 0.042 

CSDP-rank 3 0.268 0.266 0.250 0.179 0.249 

SDP 0.353 0.194 0.182 0.158 0.120 

 

Table 5-2: Relationship of Anchor Nodes on Number of Localized Nodes 

No. of Anchors  5 6 7 8 9 

DEKF-rank 3 44.7 43.8 42.8 41.8 40.8 

CMDS-rank 3    / 
 CSDP-rank 3 

32 38.5 37.5 36.5 41 

 

• Effect of Noise Factor on Performance 

The distance estimation precision is influenced by the noisefactor and it has 

a significant effect on localization accuracy. The simulation results are shown 

in Table 5-3 and the values corresponding to the algorithms are the average 

localization errors expressed as a multiple of Trange. It is shown that as the 

noisefactor increases, all the algorithms obtain worse results. Both EKF and 

DEKF are seen to be more resilient to different values of  noisefactor than 

MDS and SDP. The reason is that the computation of MDS and SDP utilize 

only the information from the current iteration, which easily suffers from 

instances of large distance estimation errors. Their cluster based algorithms 
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are even more vulnerable because of less available information for each 

computation. 

Table 5-3: Influence of Noisefactor on Accuracy 

Noisefactor 0.02 0.04 0.05 0.06 0.08 

DEKF-rank 3 0.010 0.019 0.023 0.028 0.041 

EKF 0.009 0.017 0.022 0.028 0.043 

CMDS-rank 3 0.065 0.070 0.084 0.191 0.246 

MDS 0.020 0.034 0.042 0.049 0.072 

CSDP-rank 3 0.120 0.140 0.149 0.177 0.209 

SDP 0.045 0.089 0.120 0.154 0.225 

 
 
 

• Effect of Rank of Cluster Head on Performance 

The size of the cluster is determined by the rank of the cluster head. As the 

size increases, there are more hops required for message transmission from the 

member nodes to the cluster head. The results in Table 5-4 show that the 

overhead increases as head rank gets larger. But both CMDS and CSDP 

benefit from larger clusters with more nodes, which is easier to meet the 

requirement of more than 2 anchor nodes in each cluster for localization. This 

is clearly seen in Table 5-4 when the head rank equals 2, the cluster is too 

small resulting in only 18.8 nodes being localized. 

Table 5-4: Data Amount with Different Rank 

Head rank 2 3 4 

Average Overhead (kbps) 33.5 104.7 154.0 

No. of Localized Nodes: DEKF 40.3 40.8 40.0 

No. of Localized Nodes: CMDS/ CSDP  18.8 41 41 
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Fig. 5.7: Localization performance as bandwidth increases 

 

• Bandwidth Requirement 

The previous simulation results have shown the average overhead under 

different cluster sizes. In this section, we evaluate the bandwidth requirement 

for message transmission and localization. When the bandwidth is small, there 

is a higher chance of packets being lost, which results in less localized nodes. 

Unlike CSDP and CMDS, nodes will be localized by DEKF unless there is 

packet loss. So we study the relationship between packet loss and the number 

of localized nodes using DEKF. Fig. 5.7 shows the influence of bandwidth on 

successful packets receiving ratio (number of messages received divided by 

the total number of messages transmitted) and the localization ratio of nodes 

(number of localized nodes divided by the total number of non-anchor nodes). 

It is seen that the bandwidth requirement increases as the cluster head rank 

gets larger to achieve 100% packets receiving ratio and 100% localization 

ratio. From Fig. 5.7, we see that the minimum bandwidth requirements for 



126 

 

rank-2 clusters, rank-3 clusters and rank-4 clusters are about 1/8 Mbps, 

1/3Mbps, and 1/2 Mbps, respectively. 

b. Mobile Environment 

The mobility model used in our investigations is the random waypoint 

model, in which the node moves toward a randomly selected destination with 

a random speed. Upon reaching the destination, the node will rest for a while 

and choose the next destination and random speed. The random speed has a 

uniform distribution from 0 to a pre-determined maximum speed. We 

investigate the effect of the increasing speed on performance. 

The settings for the simulations are: bandwidth is set to 1 Mbps, noisefactor 

equals 0.05, and the number of anchor nodes equals 9. The nodes are deployed 

in a 4 by 4 map. The iteration interval is set to 0.5 second. The results are 

shown in Table 5-5. 

We see from Table 5-5 that there is a clear trend that as the maximum speed 

increases, the accuracy of DEKF and EKF declines. This is because the 

algorithm is only based on distance information, and no acceleration or 

velocity of the nodes is measured and utilized. So the state transition equation 

applied gets increasingly unreliable as the maximum speed increases. One 

possible solution is to decrease the period of iterations, which limits the state 

transition changes in each iteration. However, shorter interval requires larger 

bandwidth. MDS and SDP are not affected by increasing of maximum speed 

as they do not have state transition equations. CMDS and CSDP are more 

affected by irregular shape of clusters. DEKF and EKF still gets the most 

reliable results. 
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Table 5-5: Localization accuracy as maximum speed increases 

Maximum Speed (/s) 0.1 0.2 0.3 0.4 0.5 

DEKF-rank 3 0.041 0.034 0.044 0.112 0.116 

EKF 0.039 0.032 0.042 0.108 0.114 

CMDS-rank 3 0.108 0.194 0.28 0.291 0.446 

MDS 0.086 0.096 0.072 0.057 0.092 

CSDP-rank 3 0.163 0.193 0.288 0.268 0.387 

SDP 0.146 0.215 0.186 0.164 0.147 

 

5.3. Networks with Fewer Anchor Nodes 

In the previous section, we have discussed that more than 2 anchor nodes 

are required in a fully connected wireless network for 2D localization purpose. 

However, that is based on the assumption that only the anchor nodes locations 

and the relative distances are known for location estimation. In this section, we 

investigate that mobility increases the localization potential which demands 

fewer anchor nodes and less connection to neighbours. 

DR techniques [50][85] have been widely applied for localization purpose. 

There are two typical patterns of DR algorithms. One is that they return no 

absolute location, but the displacement compared with the starting point. The 

other is that within a short distance, the estimated displacement is quite 

accurate. Here we consider a scenario where the number of anchor nodes is 

reduced to one or two, and one moving node in the network is equipped with 

the DR technique through which its displacement is known. If the location of 

this node can be computed, this node becomes an anchor node and the 

localization of the other nodes becomes a solvable problem as demonstrated in 

the previous section. This is quite useful because in many scenarios like 
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indoor localization using Wi-Fi access points, the deployment of the access 

points are always quite sparse and there may not be the sufficient minimum of 

three access points fully connected directly or indirectly. At the same time 

hand-held devices like smart phones are capable of deploying the DR 

algorithm. Solving this problem greatly improves the localization potential.  

5.3.1. Case with Accurate Dead-Reckoning Estimation 

In this section we discuss the case when accurate displacement is returned 

by the DR algorithm. Fig. 5.8 shows an example when a node passes by an 

anchor node. The subsequent locations are represented as dots. In case 1 

shown in Fig. 5.8(a) when the node moves as a straight line, the estimated 

trajectory can be any fix-length parallel line to the real path because of the 

known displacement. The distance measurements to anchor 1 further refine the 

trajectory to two possible cases: The real one (case 1) and the one that is 

symmetrical to anchor node 1 (dotted line). In order to distinguish the real path 

in this case, the sensor needs the distance measurements from anchor 2. Unless 

the sensor moves in the same direction as the line linking anchor 1 and anchor 

2, the ambiguity problem can be solved by the new measurements. Another 

choice is given in case 2 where the node moves directly toward anchor 1, in 

which case the symmetric trajectory is itself. 
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a) Case 1 & 2 

 
b) Case 3 

Fig. 5.8: Cases when a moving node passes by anchor nodes 
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Another choice is shown in Fig. 5.8(b) in which the sensor makes a turn 

when it is still in the transmission range of anchor 1. The difference in 

distance estimation after the turn will remove the wrong trajectory (dotted 

line). To sum up, the minimal anchor requirement for case 1 is two, while the 

requirement for case 2 and 3 is one.   

a. Particle Filter 

A straightforward method for the computation is by using the PF. The PF 

implements a recursive Bayesian filter using the Sequential Monte-Carlo 

method. It is particularly useful in solving non-linear and non-Gaussian 

problems. A set of random samples with weights, called particles, are used to 

represent the posterior probability density of the state, which is given by: 
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In this specific case, when the node first gets into the transmission range of 

an anchor node, the initialization of the particles is executed. The particles are 
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generated around the circle with the radius of the measured distance with an 

equal weight ω0.  

The filter is executed after each second. During the prediction phase,  

 
1
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i

n
x and

1

i

n −

x are the 2D states at time n and time n-1, respectively, sn 

is the measured displacement during time n.
 

i

n
n is a random  variable with 

Gaussian distribution. 

The weights are updated by the distance measurements to the anchor nodes. 

For each of the measurements, there are two cases. One is that the sensor is 

within the transmission range of the anchor node j (with location 	�� ∈ 	 �
2). 

Suppose the distance measurement is 
j

n
z and the distance from particle i to 

the anchor node is ||
i

n
x -aj ||. In this case the probability is 

 ( | ) (|| ||)j i i

n n n j
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where φ(x) is the Gaussian distribution of N(
j

n
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2
). 

Another case happens when there is no distance measurement to anchor 

node j, which means the distance is larger than the transmission range (equals 

1). The probability is  
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, where φ
’
(x) is the Gaussian distribution of N(1, noisefactor

2
). 

The weights are updated by the following equation: 
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The weights are then normalised by Eq. 5-18, and the estimated location is 

given by the weighted sum. 
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The degeneracy of the weights is unavoidable. Here we involve the idea of 

re-sampling which eliminates particles that have small normalised weights. A 

measure of degeneracy is introduced in [104] where the effective sample size 

Neff is estimated by  
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When Neff is less than some threshold, the particles are re-sampled according 

to their weights. At the very beginning ω
i

n
=1/ Ns, then 

2
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N
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=∑ . 

We set the threshold as Ns/2. 

b. Evaluation 

Figs 5.9-5.11 show the results for each of the cases. The (a) figures show the 

estimated trajectory compared to the real one. The triangles show the real 

locations at certain times. The squares show the estimated locations. The (b) 

figures show the respective particles at certain times and the particles at 

nearby steps are differentiated using different shapes. In Fig. 5.9 when the 

time is smaller than 5, the sensor does not receive any signal from the anchor 

node, so there is no location estimation. At time 5, the particles are generated 

around anchor 1 which results in the estimated location near anchor 1. As the 
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sensor moves, the particles are divided as two parts symmetric to anchor 1, 

which coincides with the description in Fig. 5.8(a). The symmetric problem is 

finally solved when the sensor moves into anchor 2’s transmission range. 

In Fig. 5.10 the particles shrink as the sensor moves towards anchor 1. In 

Fig. 5.11 there are two bunches of particles before the turn. The erroneous 

bunch of particles is removed after the turn. 

 
a) Trajectory 
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b) Particles 

Fig. 5.9: Localization results for case 1 

 
a) Trajectory 
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b) Particles 

Fig. 5.10: Localization results for case 2 

 

 
a) Trajectory 



136 

 

  

b) Particles 

Fig. 5.11: Localization results for case 3 

 

Fig. 5.12: Error in different time 

Fig. 5.12 shows the convergence of the errors for the different cases. When 

the sensor first moves into the transmission range of an anchor node, the error 

drops tremendously. Except for case 2 in which the error directly decreases to 
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a stabilized value, in case 1 and case 3 the error drops for a second time when 

new information becomes available, irrespective of the distance estimation to 

another anchor in case 1 or turning in case 3. 

5.3.2. Case with Inaccurate Dead-Reckoning Direction Estimate 

When the dead-reckoning result is inaccurate, the problem becomes more 

challenging. It is discussed in [61] that the DR error mainly comes from the 

drift in direction estimation. The drift remains almost the same over a short 

distance. So the condition becomes that where the sensor’s displacement 

length is known, and the direction is with some drift angle. The purpose of the 

algorithm is to estimate the sensor’s location as well as the drift angle value. 

In this scenario one anchor node cannot remove the effect of the drift angle 

which is shown in Fig. 5.13. The solid line represents the real trajectory. 

Because of the 20-degree error in direction estimation, the estimated trajectory 

would be the dotted line. Two anchor nodes are required in this scenario.  

 

Fig. 5.13: Illustration when there is error in direction estimation 

 

There is difference in the design of the PF. When the node first gets into the 

transmission range of an anchor node, the particles are generated in the same 
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way. Besides the weight ω0, each particle i is also associated with a random 

angle b
i
 which tries to compensate for the drift angle. 

The prediction equation is given by  
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where sn and dangle,n are the displacement length and angle estimation, 

respectively. 
,

i

s n
n and 

,

i

d n
n represent the noise in length and direction 

estimation, respectively. b
i
 is the drift compensation angle for particle i.

 

The importance sampling and re-sampling algorithm remains the same. 

Hopefully the particles with the right locations as well as the right direction 

compensations have higher weights. An example of the results is shown in Fig. 

5.14 when 100 particles are generated.  

In this scenario, the particles represent the possible locations and drift 

compensation angle at the same time. The particles with the right locations 

and drift compensation angle at the same time are preserved after filtering. 

When only 100 particles are generated, there is high possibility that there is no 

such particle being generated. The erroneous particles will not return accurate 

results. The solution is to generate more particles so that all the possibilities 

can be represented. We compare the performances when 100 particles and 

1000 particles are generated. The results are shown in Table 5-6 when the 

sensor has different direction drift angles.  
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a) Trajectory 

  
b) Particles 

Fig. 5.14: Localization results for case 1 with inaccurate direction estimate 
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Table 5-6: Performance when different number of particles are used 

Direction drift (o) -20 -15 -10 -5 5 10 15 20 

N
s
=100 (error) 0.03 0.03 0.09 0.07 0.10 0.16 0.13 0.73 

N
s
=100 

(compensation angle o) 

16.0 15.9 11.8 7.10 1.58 1.72 1.42 19.1 

N
s
=1000 (error) 0.05 0.02 0.04 0.03 0.05 0.03 0.05 0.06 

N
s
=1000 

(compensation angle o) 

21.7 15.0 10.1 6.5 -2.2 -8.9 -12.2 -16.9 

 

The compensation angle in the table is the weighted average of b
i
. When 

this value plus the direction drift equals zero, the direction drift is totally 

compensated and accurate direction estimation is obtained. It can be observed 

that when the direction drift is larger than zero, the returned compensation 

angle when N
s
=100 is quite erroneous, which results in large localization error. 

When Ns=1000, it returns more accurate and robust results in different 

direction drift angles. So in the case of the existing error in the direction 

estimation, it is much safer to use the PF with a large particle number. 

5.4. Enhanced Localization in Sensor Network by Dead-
Reckoning 

In order to demonstrate the advantage of using DR in a sparse or a network 

with fewer anchors, we use almost the same settings as applied in Section 

5.2.2 a): the 50-node network is in a 4 by 4 map (Trange=1), the noisefactor is 

set to 0.05, and the bandwidth is set to 1Mbps. The period of one iteration is 1 

second. The only difference is that one non-anchor node (Node 10) is assigned 

with the capability to estimate the accurate displacement, and it is randomly 

moving within the 4 by 4 map. We test the performance when the number of 
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anchor nodes is decreased from 5 to 2. The algorithms are run for 100 seconds. 

The location error is represented as a multiple of Trange. 

5.4.1. Distributed Localization 

From the discussion of last section, we know that Node 10 will obtain its 

location as it approaches the anchor nodes. Once the location of Node 10 is 

calculated, it becomes a moving anchor node which helps to localize the 

neighbour nodes by multi-lateration. The localized neighbour nodes then 

become the new anchors to localize their neighbours. In the end, each node 

keeps updating its location using the neighbours’ location. In this way, the 

location solution spreads to the whole network. 

Fig. 5.15 shows how Node 10 can help to localize the nodes when there are 

only two anchor nodes existing in the network, which is impossible without 

the DR technique. The horizontal axis represents the time, and the left and 

right vertical axes represent the average location error and the number of 

localized nodes respectively. From time 0 to 8, no node is localized as Node 

10 has not localized itself. The line in the bottom represents the number of 

localized nodes. At time 9, Node 10 localizes itself with accuracy of 0.078. 

The accuracy fluctuates as more measurements are available. But overall, the 

accuracy has improved and reaches 0.006 at time 16. From time 17, Node 10 

starts to localize other nodes. It shows that as Node 10 moves around, more 

nodes are localized. As we put high criteria on the relative location of anchor 

nodes to ensure a certain accuracy level, the number does not increase 

dramatically. But it is predictable that given enough time, Node 10 can 

localize all the nodes in the network with good accuracy. Another choice is 
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that after Node 10 has localized a certain amount of nodes, the results can be 

fed into the cluster based method to compute the location for the rest of the 

nodes. This will be covered in the next section.  

 

Fig. 5.15: Iterations of localization results 

5.4.2. Enhanced Cluster Based Method 

In Section 5.2 when we discuss the cluster based method, the main 

drawback of CMDS and CSDP has been the high requirement on the number 

of anchor nodes. By combining the DR algorithm, the small number of anchor 

nodes is no longer a constraint, as the nodes localized in Section 5.4.1 can be 

the pseudo anchors. At each iteration, some of them are chosen as the anchors 

to calibrate the location for the rest. The result is shown in Table 5-7. For each 

algorithm, we show the localization error and the number of localized nodes at 

given number of anchors. 

By combining the DR with the cluster based methods, more nodes can be 

localized during the same time period, which reaches the total amount of non-
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anchor nodes. The number of anchor nodes does not show any effect on the 

performance because of the moving Node 10. The performance of CMDS 

improves the most, which achieves high accuracy with only 0.05 Trange error. 

For the DEKF and CSDP, although the number of localized nodes increases 

compared with the original methods without DR, the accuracy does not 

improve. 

Table 5-7: Relationship of anchor nodes on accuracy 

No. of 

Anchors 

DR DEKF-rank 3 CMDS-rank 3 CSDP-rank 3 

Erro

r 

 

# of 

Nodes 

Erro

r 

 

# of 

Nodes 

Erro

r 

 

# of 

Nodes 

Erro

r 

 

# of 

Nodes 

2 0.04 30 0.17 48 0.05 48 0.32 48 

3 0.05 30 0.17 47 0.11 47 0.34 47 

4 0.05 31 0.16 46 0.11 46 0.33 46 

5 0.06 33 0.08 45 0.05 45 0.29 45 
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Chapter 6  

Conclusions and Future Work 

 

 

In this thesis, we developed a variety of techniques appropriate for a 

pervasive indoor localization system. We investigated the IMU sensor based 

DR algorithm, which provides quite a robust location solution, without the 

requirement on costly infrastructure deployment. We improved the 

performance based on our MM and the improved PF scheme. We also 

explored the algorithm to fuse the two sensors to provide a more robust 

solution, especially for the orientation estimation. To provide a pervasive 

location solution to devices without such hardware, we studied the scenario of 

cooperative localization. The cost of clustering was quantified and different 

algorithms were compared. We demonstrated that various complementary 

fusion mechanisms to the DR can significantly enhance the overall 

performance. 
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6.1. Step-Counting with Map Fusion 

We proposed methods to improve the performance of the step-counting 

algorithm. Three improvements were made: an adaptive step direction 

estimation method; an MM algorithm, and an improved PF.  

The step direction estimation is one of the key procedures for step-counting 

based DR tracking using inertial sensors. It is also quite challenging, 

especially when the captured motion data is tainted by the user’s activity. The 

PCA based algorithm has provided robust estimation results, regardless of the 

sensor’s relative rotation compared to the human body. However, the PCA 

based algorithm only returns the principal axis, resolving the 180
o
 ambiguity is 

another challenge. The drawback of the PCA is compensated with the sensor’s 

orientation analysis, which returns the walking direction by analysing changes 

in sensor’s orientation.  

In our adaptive method, the sensor’s orientation analysis algorithm is 

executed when a direction change is detected by the PCA algorithm. Because 

of the low computational complexity and the restricted usage of the orientation 

analysis, the adaptive method is preferred, as it introduces little overhead 

compared to the original PCA method. The experimental results show that the 

adaptive algorithm provides more robust and accurate results, when compared 

to the original PCA algorithm. 

To compensate for the accumulating error in a DR tracking system, extra 

techniques are always fused together to form a hybrid system. Currently, 

various PF based map filtering algorithms have been proposed. We proposed a 

MM algorithm that calibrates not only the location, but also the sensor’s 
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orientation and step direction, which reduces the error in the location update 

equation. We then combined MM with the PF, so that a more robust algorithm 

is proposed.  

To relax the requirements on corridor information, an improved PF is also 

proposed, which enhances the step direction estimation without the 

requirement on corridors.  The experimental results illustrate that in a quite 

dense map constraint environment with corridors, the improvement is not 

obvious. But when only partial map constraints are applied, the MM enabled 

PF and the improved PF achieve more robust and accurate results. The 

improved PF scheme outperforms the other schemes with less performance 

dependence on corridor constraints. 

Because of the limitations of the DR scheme requiring an initial location 

and orientation estimation, we suggest that an area of future research be on an 

automatic reshaping trajectory based on the map constraints. The DR 

algorithm returns a quite accurate displacement trajectory in a short period of 

time. So, by a limited expansion and rotation of the originally returned 

trajectory, the new trajectory should fit into the map constraints. As the 

pedestrian moves, the location accuracy and the direction estimation should be 

improved.  

6.2. Dual Sensor Fusion 

A dual sensor’s orientation fusion method is proposed in this thesis. Most of 

the time, the fused method has a higher orientation accuracy than that of 

Sensor A and Sensor B, while in some cases, an accuracy in between that of 

Sensor A and Sensor B are obtained. The in between accuracy is closer to the 
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individual result with less error. In real use cases because the user will not 

know which sensor gives better results, the proposed fused method is more 

reliable. 

In order to show the effect of the orientation estimation on location tracking, 

the fused orientation is fed into the DR algorithm. Compared with the original 

individual DR, the methods with orientation fusion obtain higher location 

accuracy. But when we further apply the location fusion algorithm on top of 

the orientation fusion, it makes no accuracy difference, when compared to the 

one where only the location fusion is applied. This is because fusing the 

location indirectly fuses the orientation, as the orientation estimation is one 

input for the DR location estimation. The primary advantage of this orientation 

fusion method is in providing more robust orientation estimation for rotation 

tracking use cases.  

The current solution occasionally returned results which may not have the 

highest accuracy. This may not meet the needs for higher accuracy. The major 

reason for this is that the two sensors are modelled with identical static error 

noise, which does not reflect the error correctly. If another data source is 

available to calibrate the error from individual sensors, we may be able to 

model the noise better before the fusion process. Incorporating the indoor map 

could be a way to identify the sensor with higher accuracy at specific times 

and give it higher weight. In the end, higher accuracy should be achieved. 

6.3. Cooperative Localization 

In this thesis, we evaluated three algorithms under cluster based 

environments. Using an efficient distributed clustering algorithm, the network 
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is divided into clusters to simplify the computational complexity and control 

the overhead traffic. In our simulations, we compare the performances of EKF, 

MDS, SDP, and their cluster based methods DEKF, CMDS and CSDP, 

respectively. We also discuss that the DR technique relaxes the connection 

requirement, as well as the anchor number requirement for localization. PF is 

applied for this DR enabled localization. 

It is illustrated that as the size of the cluster increases, a higher bandwidth is 

required for control and signalling. The centralized methods require the 

highest bandwidth. We also determined that DEKF achieves nearly the same 

performance as EKF, which means that the DEKF achieves the same 

performance with less cost. Compared with CMDS and CSDP, the DEKF 

requires fewer anchor nodes, and a smaller cluster size; yet, it provides more 

accurate localization results. Therefore, we recommend to using the DEKF for 

cluster based localization. 

The proposed DEKF is suitable for low mobility environments. In a high 

mobility environment, the algorithm should operate either with smaller 

iteration intervals (higher bandwidth required), or incorporate a speed 

estimation mechanism. Such recommended future work on cooperative 

localization will be useful for enhancing location awareness between smart 

mobile devices. 

The analysis and simulations show that depending on the movement of the 

node towards the proximity to the anchor nodes, at least 1 anchor is enough 

for localization when an accurate DR result is available. When there is error in 

the direction estimation, two anchor nodes will be required. It is also found 
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that a large particle number (e.g. 1000) is preferred for robust performance; 

this will increase the computational complexity. The localized mobile node 

would become a moving anchor, which helps to localize the rest of the nodes 

in the network.  

The simulation results illustrate that more nodes can be localized, compared 

with the scenario without DR. The output is then fed into the original cluster 

based method, which improves the performance in terms of the number of 

localized nodes and the location accuracy when there are fewer anchor nodes. 

CMDS can achieve impressive accuracy with only a 0.05 Trange error. 

Simulations were used to evaluate the current research. Further 

improvement can be achieved if a real test bed can be set up, including the set 

up of Wi-Fi access points, development of mobile application running the DR 

algorithm, and the implementation of inter-device communication. 
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Appendix 

A. Quaternion 

In mathematics, the quaternions [87] are a number system that extends the 

complex numbers. A quaternion is defined by Hamilton as the quotient of two 

directed lines in a three-dimensional space. The basic equations are 

 -1× × × × ×i i = j j = k k = i j k =  ( A-1) 

where i, j, and k denote the standard orthonormal basis for a three dimensional 

space
3

ℝ . The orthonormal basis can be written as triplets of scalars 

 [1;0;0] [0;1;0] [0;0;1]i = j = k =  ( A-2) 

A quaternion is a 4-tuple that can be written as  

 
1 2 3 0 1 2 3 0

[ ; ; ; ]q q q q q q q q= + + + =q i j k  ( A-3) 

A.1.  Quaternion Properties 

Hamilton product (represented by⊗) of two quaternions is determined by 

the products of the basis elements and the distributive law.  

 
1 2 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

( ) ( )

( ) ( )

( )

b c d a b c d a

a b b a c d d c a c b d c a d b

a d b c c b d a a a bb c c d d

⊗ = + + + ⊗ + + +

= + + − + − + +

+ + − + − − −

q q i j k i j k

i j

k +

 
( A-4) 

The complex conjugate of the quaternion is denoted as q
*
, which equals 
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1 2 3 0 1 2 3 0

[ ; ; ; ]q q q q q q q q= − − − + = − − −q i j k  ( A-5) 

and it follows that  

 * * *

1 2 2 1
( )⊗ = ⊗q q q q  ( A-6) 

where ⊗ represents the Hamilton product for quaternion multiplication [44].  

The norm of a quaternion q is denoted by N(q) where  

 *( )N = ⊗q q q  ( A-7) 

A unit quaternion has a norm equals to one that is  

 *|| || 1 and ( ) 1N= = ⊗ =q q q q  ( A-8) 

We have 1 1
1

− −

⊗ = ⊗ =q q q q by definition of inverse. By multiplying q
*
 at 

both sides we have 

 * 1 2 1 *( )N
− −

⊗ ⊗ = =q q q q q q  ( A-9) 

, from which we have  

 * *

1

2
( ) || ||N

−

= =

q q
q

q q
 ( A-10) 

If q is an unit quaternion, then 

 1 *−

=q q  ( A-11) 

A.2.  Quaternion Rotation 

According to Euler's rotation theorem, any arbitrary rotation of a rigid body 

in 3-dimensional space is equivalent to a single rotation by a given angle about 

a fixed axis (Euler axis). Fig. 2.3 illustrates an example of rotation from point 

A to point A'. Point A has rotated about the rotation axis 
�

µ by an angle w. This 

rotation would be represented using quaternion by  
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cos( ) sin( )

2 2

w w

= +q
�

µ  ( A-12) 

where 
�

µ is an unit vector (the rotation axis) and w is the rotated angle. 

We should take note that the coordinates system could also rotate, after 

which a rigid body would also have new coordinates. A rotation by the 

coordinates system is equivalent to its conjugate rotation by the rigid body. 

Suppose the coordinate system has been rotated by q,  then the original vector 

v

�

in the transformed coordinate system  would equal ′v
�

that 
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( A-13) 

where 
⊥

v

�

and v
�

�

represents the components of v
�

which are perpendicular and 

parallel to
�

µ , respectively. 

q can be represented by the vector:  

 
0

[ , ] [sin( /2)[ , , ],cos( /2)]T T

x y z
q w e e e w= =q e  ( A-14) 

where e
T
 =[ex, ey, ez] represents the rotation axis, and w is the rotation angle. 

Eq. A-13 can be represented using orthogonal matrix that ( )′ =v A q v
� �

, and 

 2

0 3 0
( )=( ) 2 2 ( )T T

q q− + −A q e e I ee C e  ( A-15) 

where I3 is a 3 by 3 identity matrix, C(e) is the matrix for cross-product 

computation, which is then used to multiply another vector: 
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( A-16) 

 


