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Summary 

 

Heavy metal contamination in aqueous system has become global concern due to 

great threat to public health and environment. This study aimed to fabricate a novel 

carbon based adsorbent, hydrous cerium oxide modified activated carbon (HCO-AC), 

to remove two kinds of commonly existed heavy metal, arsenic and lead from 

aqueous system. A three-step synthesis approach was developed to fabricate the 

adsorbent which was easy-operated and cost effective. The successful fabrication had 

been verified by SEM image. Comparing with single hydrous cerium oxide (HCO) 

and cerium oxide modified carbon (CO-AC) that were also fabricated in our study, 

HCO-AC significantly improved the adsorption performance of arsenic, the 

adsorption capacity for As(V) and As(III) were increased to 46.18 mg/g and 36.93 

mg/g, respectively. The fabricated HCO-AC also had a notable adsorption 

performance for Pb(II) removal, the adsorption capacity of which could also reach 

48.52 mg/g. Pseudo-second order model could well describe the adsorption kinetics of 

HCO-AC for all of As(V), As(III) and Pb(II). The adsorption isotherm of all the 

adsorption process for arsenic and lead could be more accurately fitted by two-site 

Langmuir isotherm model derived from classic Langmuir model. HCO-AC could be 

utilized for efficient As(V) and As(III) removal in a wide pH range from 3 to 6 and 4 

to 7, respectively, or be utilized as a kind of large adsorption capacity adsorbent for 

Pb(II) removal in slight acid pH condition from 5 to 6. The presence of several 

commonly coexisting anions or cations did not have significant influence on the 
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adsorption capacity of HCO-AC for arsenic and lead, respectively. The presence of 

natural organic matter (NOM) in aqueous system could induce negative potentials as 

well as a variety of organic groups onto the surface of HCO-AC, which competed 

with arsenic adsorption, but also improved the adsorption capacities of Pb(II) by 

contrast. According to the remarkable adsorption performance, HCO-AC fabricated in 

this study provided a promising, convenient, and multifunctional treatment option for 

efficient removal of As(V), As(III) and Pb(II) from heavy metal contaminated water. 
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Chapter 1 

Introduction 

 

1.1 Background 

Heavy metals are found naturally and ubiquitously in the earth. Commonly 

encountered heavy metals are lead, arsenic, mercury, copper, nickel, cadmium etc., all 

of which are not biodegradable and tend to accumulate in living organisms. Because 

of their toxicity, carcinogenicity and mutagenicity, heavy metals may pose great threat 

to the ecosystem as well as public health. In the past few decades, an increasing 

number of heavy metals have been generated and discharged into the environment 

with the rapid development of industries, for example, common source are from 

mining industrial wastes and vehicle emissions, municipal effluent, agricultural runoff, 

electronic products, fertilizers, treated woods, batteries and so forth [1]. Since the 

existence of these hazardous metals in natural water sources has caused some famous 

pollution as well as epidemic cases in developed countries like Japan and United 

States, and has been increasingly detected in some developing countries like China, 

India and Bangladesh, standards and acts have been promulgated by the World Health 

Organization (WHO) and the government of countries to protect public health and 

natural resources. For instance, the Clean Water Act and its amendments have been 

promulgated by the United States Environmental Protection Agency (USEPA) in 

1970s to protect the public from exposure to some of these undesirable and harmful 

heavy metals [2]. Similarly, WHO has inaugurated International Programme on 
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Chemical Safety, to establish the scientific basis for the sound management of 

chemicals, and to strengthen national capabilities and capacities for chemical safety. 

In this Programme, ten chemicals of major public health concern have been listed, 

including four kinds of heavy metals: arsenic, cadmium, lead and mercury, which 

emphasizes the importance of negative effect control and proper management of 

heavy metals [3]. Meanwhile, many countries have amended the national standards 

for drinking water to more stringently control the maximum contaminant level of 

heavy metals [4]. Among all the heavy metals, as two kinds of naturally widespread 

species in the environment, arsenic and lead are often introduced into drinking water 

supply and causing hazardous effects through various industrial sources, thus the 

effective removal of these two heavy metals is becoming an increasingly significant 

topic of research. In order to meet the upgrading regulations and standards, and 

manage the heavy metal waste more properly and efficiently, great efforts therefore 

have been devoted to develop more promising technologies to remove multiple heavy 

metals such as lead and arsenic from water in recent years. 

 

1.2 Objectives and scopes 

Compared with many conventional water treatment technologies for heavy metals, 

adsorption is regarded as a highly-efficient and cost-effective approach. This study 

aimed to develop effective and multifunctional adsorbents to remove As(V), As(III) 

and Pb(II) from aqueous system. The coordination structures as well as adsorption 

behavior were further examined by using spectroscopic techniques and batch 
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adsorption experiments. The major goals were to: 

(1) Develop a novel three-step synthesis approach to modify particle activated 

carbon with nanosized hydrous cerium oxide, to form a novel multifunctional 

adsorbent, HCO-AC, which is easy-operated and cost effective; Verify the surface 

structure of novel adsorbents by microscopy; 

(2) Investigate the adsorption behavior of the adsorbent for As(V), As(III) and 

Pb(II) including kinetics and isotherms, employing different models to fit the 

experimental result, comprehensively describe the adsorption process according to 

model fitting, so as to achieve efficient removal of both hazardous cations and anions 

in contaminated water; 

(3) Evaluate the effect of different factors in real circumstance for As(V), As(III) 

and Pb(II) adsorption performance, including the effect of solution pH, common 

coexisting anions, coexisting of natural organic matter (NOM) on the capacity of 

adsorption, try to provide a promising, convenient, and multifunctional treatment 

option for water remediation. 
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Chapter 2 

Literature review 

 

2.1 Status quo of arsenic and lead contamination 

Arsenic is a chemical element places under group V A of periodic table, which 

has an atomic weight of 74.92. Arsenic has five oxidation states, among which As(V) 

and As(III) are the normal oxidation state for soluble aqueous complexes. As one of 

the biggest sources of water contamination [5], arsenic could be introduced into water 

by both natural and anthropogenic activities such as dissolution of minerals, 

manufacturing and mining [6]. Arsenic contamination of water especially 

groundwater has become a major problem around the world. Long-term drinking of 

arsenic contaminated water could result in serious health risks due to its high toxicity 

and carcinogenicity [7, 8]. Countries like Bangladesh have been under severe 

groundwater contamination from natural arsenic, majority of wells contain more than 

50 μg/L of arsenic in about half of the countries’ region (Fig. 2.1a) [9]. Many parts of 

China are known to have significant levels of arsenic in ground water (Fig. 2.1b) [10]. 

Widespread of skin lesions and cancer, peripheral neuropathy, diabetes, 

cardiovascular diseases are associated with extensive exposure to arsenic found in 

drinking water supply. 
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Figure 2.1 (a) Arsenic affected areas around Bay of Bengal in Bangladesh; (b) 

Percentage of wells containing high concentrations of As at the country level in China 

as of 2005 [9, 10]. 

 

Lead is a chemical element places under group IV A of periodic table, which has 

an atomic weight of 207.2. The valence of lead is usually (II) rather than (IV). Lead is 

one of the most commonly used heavy metal in industries and has the ability to 

become widespread through air, soil, water and food. Among all the heavy metals, 

lead has been identified as one of the most toxic heavy metals [11]. Lead toxicity 

could cause mental retardation, anemia, brain damage, and damages to other organs 

[12]. Children are especially susceptible to chronic lead exposure, with effects 

including physical, cognitive, and neurobehavioral impairment [13]. Recently, cases 

of lead poisoning have been increasingly reported in developing countries like China, 

along with the rapid industrial development and economic growth (Fig. 2.2) [14]. For 

instance, from 2009 until 2011, lead poisoning in several provinces of China has 

affected more than 4000 children. In Jiyuan City, Henan Province, blood samples 

from 1008 of 3108 children (32%) living near lead smelters showed lead 

(a) (b) 



 

6 
 

concentrations higher than 250 μg/L [15]. Overall, the presence of lead in surface and 

groundwater with concentrations beyond the permissible limits will bring serious 

health problems, which should attract more attention on lead emission management as 

well as remediation of water contamination. 

 

Figure 2.2 Major lead poisoning cases in China since 2009 [15]. 

 

2.2 Heavy metal treatment technologies 

A variety of techniques including coprecipitation, membrane filtration, iron 

exchange, reverse osmosis, electrocoagulation, and adsorption have been utilized to 

remove heavy metal from water [16]. Table 2.1 had listed the comparison of four 

major heavy metal removal processes, including resource consumption intensity, area 

required, generated waste and removal efficiency [17]. According to the comparison 

and practical experience, due to easy operation, cost-effectiveness, and high efficiency, 

adsorption has been regarded as one of the most promising methods to remove all 

kinds of heavy metal from water [18]. Many metal oxides such as iron oxide [19], 
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aluminum oxide [20, 21] , manganese oxide [22], titanium oxide [23], and bimetal 

oxides [24-28] have previously been used to remove arsenic from water, which have 

also been proved to be applicable for other kinds of heavy metals. 

 

Table 2.1 Comparison of heavy metal removal process [17]. 

 Precipitation Membrane Ion Exchange Adsorption 

Intensity 

Chemical High Low Low Med 

Power Med High Low Low 

Labor High Low Low Low 

Area Required High Low Low Low 

Waste 
Solid Yes -- -- -- 

Liquid -- Yes Yes Yes 

Removal Efficiency Low High High High 

 

2.3 Application of activated carbon in water treatment 

Activated Carbon (AC) is a crude form of graphite with an amorphous structure, 

which has a well-developed porous, exhibiting a broad range of pore sizes as well as 

large internal surface area (800 ~ 1000 m2/g) [29]. It consists of 87 to 97% carbon and 

such elements as oxygen, hydrogen, sulfur and nitrogen as well as some inorganic 

components either originating from the raw materials or chemicals used in its 

production. The use of activated carbon for the water treatment in the United States 

was first reported in 1930, for the elimination of taste and odor from contaminated 

water [30]. A wide variety of materials can be used for producing AC, such as wood, 
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coal, bituminous coal, rubber, almond shells, oil-palm stones, polymers, phenolic 

resins, and rice husks. A variety of activated carbons are available commercially but 

very few of them are selective for heavy metals and are also very costly[31]. 

Adsorption of heavy metals on AC are affected by both physical and chemical factors 

such as the characteristics of the adsorbent (surface area, surface chemistry) and the 

adsorbate (molecular weight, size, solubility), as well as the background solution 

conditions (pH, temperature, presence of competitive solutes, ionic strength). 

Considering the urgent requirement for developing industrially viable, cost-effective, 

and environmentally compatible technology for the removal of metal ions from 

wastewater, modified activated carbon has been regarded as one of the promising 

options. Commercial developed AC has been employed to remediate trivalent and 

hexavalent chromium from water [32]; AC derived from bagasse was used to adsorb 

cadmium and zinc [33]; Granular activated carbon (GAC) had also been studied to 

removal cadmium and lead simultaneously [34]. Nowadays, the depleted source of 

commercial coal-based AC results in the increase of price. To make progress in heavy 

metals adsorption to AC without the expense of decline in the pollutants adsorption, 

additives as well as modifications could be a desirable approach.  

 

2.4 Application of (hydrous) cerium oxide in environmental field 

 As one of the most abundant and least expensive rare earth metal oxides, cerium 

oxide and ceria containing materials have been intensively used in metallurgy, 

catalysis, function ceramic and smart glass materials [35, 36]. It possesses the lowest 



 

9 
 

solubility against acid among the rare earth metal oxides, high specific area and 

highly assessable adsorption sites, which is believed to be promising alternative 

adsorbent in removing hazardous anions. For environmental remediation applications, 

hydrous cerium oxide had demonstrated a high adsorption capacity for hazardous 

anions, such as bichromate [37], fluoride [38], and arsenate [39]. The mechanism for 

the adsorption of As(V) to cerium oxide can be explained as follows: 

 

 

Figure 2.3 The mechanism for the adsorption of As(V) to cerium oxide [39]. 

 

According to previous studies, cerium oxide were usually supported on Al2O3 [40] 

and SiO2 [41], to our best knowledge, there is no research that has reported about 

AC-based cerium oxide material in the field of heavy metal adsorption. On the other 
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hand, although a good adsorbent for many cations, activated carbon has limited 

adsorption capacity for anions such as As(III) and As(V) by the limitation of surface 

group. From this point of view, combine AC with cerium oxide could be a potential 

approach to generate a kind of multifunctional adsorbent, which might remove both 

cations and anions simultaneously from aqueous system. 
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Chapter 3 

Materials and methods 

 

3.1 Introduction 

 Activated carbon and cerium oxide have been widely studied among carbon 

based adsorbents and metal oxides adsorbents for their extensive applications. For 

various technical applications, activated carbon is known as an excellent material with 

large surface area and chemical stability, especially for adsorption remediation. 

Nanosized (hydrous) cerium oxide is one of the most abundant and least expensive 

rare earth metal oxides, and has been commonly employed as catalysts, electrolyte 

materials of solid oxide fuel cells, it is believed to be one of the promising adsorbents 

in removing hazardous anions. 

The present work in this chapter focuses on the fabrication of hydrous cerium 

oxide and activated carbon with an ease-operated and cost effective approach based 

on previous studies. The fabricated material was supposed to be a multifunctional 

adsorbent for both anions and cations, and the emphasis was also on the modification 

effect as well as preliminary adsorption performance comparing with other two kind 

of cerium based adsorbents. Scanning Electron Microscopy (SEM) was employed to 

verify the anchoring of nanosized HCO, while the preliminary adsorption 

experimental data were analyzed for arsenic concentration by ICP-OES. Method of 

batch adsorption experiment including adsorption kinetics, isotherms, effects of 

different factors, as well as models being employed to fit the adsorption experimental 
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data are also elucidated in this chapter. 

 

3.2 Characterization methods and analytical techniques 

3.2.1 Scanning Electron Microscopy (SEM) 

SEM is a type of electron microscopes that visualize the sample surface by 

scanning it with a high-energy beam of electrons in a raster scan pattern (Fig. 3.1). 

The electrons interact with the atoms that make up the sample producing signals that 

contain information about the sample's surface topography, composition and other 

properties such as electrical conductivity [42]. 

The types of signals produced by a SEM include secondary electrons (SE), 

back-scattered electrons (BSE), characteristic X-rays, specimen current and 

transmitted electrons. BSE are the reflected electrons from the incident beam while 

the SE is the electron which has escaped from the surface during the bombardment 

with the incident electrons.[43] 

 

3.2.2 Inductively-Coupled Plasma – Optical Emission Spectrometry (ICP-OES) 

ICP-OES is an analytical technique used for the detection of trace metals (Fig. 

3.1). It uses inductively coupled plasma to produce excited atoms and ions that emit 

electromagnetic radiation at wavelengths characteristic of a particular element [44]. 

The radiation from excited atoms is unique feature of a specific atom. The 

concentrations of the elements within the sample are determined by measuring 

radiation emitted and its intensity from the samples. Argon gas is used to create the 
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plasma during analysis: the argon gas is ionized in the intense electromagnetic field 

and flows in a particular rotationally symmetrical pattern towards the magnetic field 

of the radio frequency (RF) coil. The stable plasma of about 7000 K is then generated 

as the result of the inelastic collisions created between the neutral argon atoms and the 

charged particles [45]. 

 

 

Figure 3.1 Picture of SEM (left, JEOL-JSM7600F) and ICP-OES (right, iCAP 7000 

Series, Thermo Scientific). 

 

3.3 Materials 

3.3.1 Chemicals 

As(V), As(III) and Pb(II) stock solutions were prepared by dissolving 

Na2HAsO4·7H2O, NaAsO2 and Pb(NO3)2 (Sigma–Aldrich, St. Louis, MO, USA) with 

ultrapure water (resistivity >18.2 MΩ cm) from an integral water purification system 

(Milli-Q, Millipore, Billerica, MA, USA), respectively, the chemicals were all reagent 

grade. All other chemicals used in the experiment were of analytical grade, which 
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were also purchased from Sigma-Aldrich Company and used as received without 

further purification. Humic acid have been previously selected as model humic 

substances [46-48], hence, it was also employed to represent typical Natural Organic 

Matter (NOM) in this study. Standard solutions for analytical use were diluted to 

desired concentrations with ultrapure water. The solution samples after treatment 

were analyzed for lead concentration by ICP-OES. 

 

3.3.2 Synthesis of materials 

Modified particle activated carbon (AC) was first obtained by the following 

process. 2.5 g granular activated carbon was grinded thoroughly in quartz mortar, then 

sieved with 45 μm sieve to get micro-size particle activated carbon. Then the particles 

was immersed into 65% nitric acid. After the mixture was stirred at room temperature 

(~25 °C) for 24 h, the particle was separated by centrifugation, and washed with 

deionized water repeatedly until the supernatant reached neutral pH (7.0). The 

acquired activated carbon particles were then dried in oven, equally divided into two 

portions for further modification. Secondly, Cerium Oxide/ethanol solution was 

prepared according to a two-step process from previous study [49]. Specifically, 0.005 

mol Ce(NO3)3·6H2O powder was dissolved in 100 mL absolute ethanol in a Duran 

laboratory bottle, then sonicated for 2 min till the color of solution turned into brown. 

0.05 mol NaOH powder was also dissolved in 100 mL absolute ethanol to prepare 0.5 

M NaOH/ethanol solution for further use. 

After all the above preparation step, take one portion of treated activated carbon 
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to disperse into the 0.05 M Cerium/ethanol solution, agitated with a magnetic agitator 

under a heating condition of 80 °C. Then, NaOH/ethanol solution was added 

dropwisely into the solution under vigorous stirring, until the pH reached around 10. 

The mixture solution was then dried up and heated in air at 450 °C for 1 h. Finally, the 

precipitation were collected, washed by deionized water and absolute ethanol for 

several times, and then dried in the oven for 12 h to obtain the nanosized hydrous 

cerium oxide modified activated carbon (HCO-AC). In order to compare the 

adsorption performance among different cerium-carbon fabricated materials, we take 

the other portion of treated particle activated carbon to synthesis cerium oxide 

modified activated carbon (CO-AC), as well as single hydrous cerium oxide 

nanoparticles (HCO) in preliminary test, the synthesis process are listed in Table 3.1 

as follows. 

 

Table 3.1 Summary of parameters for fabricating HCO-AC, CO-AC and HCO. 

Activated 

Carbon 

Cerium Oxide 

(mol/L) 
Hydroxide 

Reaction 

Temperature (°C) 
Solvent 

1.0 g 0.05 NaOH, pH~10 450 Ethanol 

1.0 g 0.05 NaOH, pH~10 450 
Milli-Q 

Water 

-- 0.1 NaOH, pH~9 25 Ethanol 

 

3.4 Adsorption experiments 

3.4.1 Preliminary adsorption experiment 

In order to compare the adsorption performance of three cerium based adsorbents, 
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HCO-AC, HCO and CO-AC, which were synthesized from previous experiment, 

were employed to perform preliminary batch adsorption isotherm experiments for 

As(V). The adsorptions were carried out by using 3.0 mg of three kind of materials 

for 30 mL aqueous metal solutions of Na2HAsO4·7H2O (Sigma–Aldrich, St. Louis, 

MO, USA), and the metal solution with adsorbent was put in an orbit shaker under 

stirring condition to make sure the metal adsorption process reaches the equilibrium. 

The concentration of As(V) varies from 1 to 20 mg/L. The initial and final 

concentrations of the metal in the solution were analyzed by ICP-OES. Two 

measurements were averaged and the equilibrium-sorption capacity (qe) was 

calculated from Eqs. (1). 

0 e
e

( )C C V
q

m


  (1) 

where C0 (mg/L) and Ce (mg/L) are the initial and final arsenic concentrations, 

respectively. V (L) is the solution volume and m (g) is the mass of adsorbent.  

 

3.4.2 As(V) and As(III) adsorption 

Kinetics experiment was first conducted to determine the contact time required 

to reach adsorption equilibrium. Specifically, 50 mg of adsorbent was dispersed into 

500 mL of As(V) or As(III) solution (10 mg/L, pH 5.0) stirred at 220 rpm and 25 °C 

for up to 360 min. An approximately 2 mL aliquot was taken from the suspension and 

filtered through a 0.45-μm polyethersulfone membrane at designated time intervals. 

The filtered samples were subsequently analyzed for arsenic concentration. 
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Adsorption isotherm, effects of solution pH, the influence of competitive anions 

and NOM on As(V) sorption by the fabricated adsorbents were investigated with 

batch adsorption experiments at a constant temperature of 25 °C. 3 mg of HCO-AC 

was dispersed into 30 mL of As(V) or As(III) solutions with concentration of 10 mg/L 

in a 50 mL Duran laboratory bottle and sonicated for 1 min. Then the bottles were 

sealed and stirred in an orbit shaker at 200 rpm for sufficient time to reach adsorption 

equilibrium. Adsorption isotherms were acquired by varying initial As(V) or As(III) 

concentrations from 1 to 20 mg/L and the adsorbent dosage of 0.1 g/L at pH 5. Effects 

of solution pH (from 3 to 9), NOM (humic acid) at the concentrations of 1 to 20 mg/ 

L (as TOC), and competitive anions including sulfate, carbonate and phosphate (1 to 

10 mg/L) on the As(V) and As(III) adsorption were also investigated. After reach 

adsorption equilibrium, the adsorbents were filtered through a 0.45-μm 

polyethersulfone membrane. The supernatants were analyzed for As concentration by 

inductively coupled plasma optical emission spectrometry (ICP-OES, iCAP 7000 

Series, Thermo Scientific, MA, Waltham, USA). All batch sorption experiments were 

performed in duplicate. 

 

3.4.3 Pb(II) adsorption 

The forms of metal cations present in solutions were determined by the solution 

pH. In different pH solutions, divalent metal ions can be in the forms of M2+, M(OH)+, 

M(OH)2
0, or M(OH)3

− (M represents for divalent metal ions). At pH ≤ 5, lead ion is 

present in the form of Pb(II). At pH between 5 ~ 6, Pb(OH)+ can be observed. Further 
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increase of solution pH will induce the precipitation of lead. In order to avoid the 

effect of lead precipitation, the pH of batch adsorption experiments for Pb(II) was set 

as 5.0. 

 In accordance with the arsenic adsorption study, kinetics experiment was also 

first conducted to determine the contact time required to reach equilibrium. Shaken at 

220 rpm under 25 °C, 50 mg of HCO-AC was dispersed into 500 mL of 10 mg/L 

Pb(II) solution (initial pH 5.0). Each time, 2 mL of sample was filtered through a 

0.45-μm polyethersulfone membrane at desired time intervals. The filtered samples 

were subsequently analyzed for residual Pb(II) concentration. 

 In batch adsorption experiments, 3 mg of adsorbent was dispersed into 30 mL of 

Pb(II) solution contained in a 100-mL Duran laboratory bottle under ultrasonic wave 

for 1 min. The bottles were shaken at 220 rpm under 25 °C in an orbit shaker for 

sufficient time to reach equilibrium. Effect of solution pH was tested by adjusting the 

initial solution pH from 3 to 7 with HCl or NaOH. Adsorption isotherm at 25 °C was 

acquired by varying the initial Pb(II) concentrations from 1 to 20 mg/L. For all the 

rest of the batch experiments, the initial pH of Pb(II) solution was adjusted to 5.0 ± 

0.1 with HCl. To investigate the influence of coexisting cations including copper, 

calcium, magnesium, the corresponding salts were introduced into the Pb(II) solution 

with concentration from 0 to 20 mg/L. Similarly, humic acid was involved to study 

the influence of NOM. It is noteworthy that the NOM stock solutions was adjusted to 

pH 5 with 1 M HCl and then filtered through0.45-μm polyethersulfone membrane 

prior to use. For each bottle, 5 mL of the supernatant was sampled for ICP-OES 
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analysis. All batch adsorption experiments were performed in duplicate. 

 

3.5 Adsorption kinetic and isotherm models  

To better describe the removal efficiency of As(V), As(III) and Pb(II), the 

adsorption kinetic experimental results were fitted with both Lagergren pseudo-first 

order kinetic model and the pseudo-second order kinetic model [50], the detail 

information of these models are listed as follows by Eqs. (2) and (3), respectively.: 

1

e (1 )
k tq q e

      (2) 

1

1

2

e 2 e

1 1
q t

q k q



 
  
 

  (3) 

where qe and q are the amount of As(V) or As(III) adsorbed (mg/g) at equilibrium and 

at time t (min), respectively. k1 (min-1) and k2 (g mg-1 min-1) are the rate constants of 

adsorption.  

The adsorption isotherm of a novel adsorbent is commonly studied by batch 

adsorption experiment, which can provide crucial information in understanding an 

adsorption process. The detail information about the three isotherm model are 

expressed in nonlinear forms as Eqs. (4) [51], (5) [52], and (6) [53], respectively.  

m e
e

e1

q bc
q

bc



 (4) 

1/

e F e

nq K c
 

(5) 

1 1 e 2 2 e
e

1 e 2 e1 1

q b c q b c
q

b c b c
 

 
 (6) 

where ce is the equilibrium concentration of arsenic in solution (mg/L), qe is 



 

20 
 

equilibrium adsorption amount (mg/g), qm is the maximum adsorption amount which 

signifies the adsorption capacity (mg/g), and b is the Langmuir adsorption constant 

related to the affinity of binding sites (L/mg). KF in Eq. (5) is the adsorption affinity 

coefficient which can be a roughly indicator of the adsorption capacity, n is the 

heterogeneity factor which has a lower value for more heterogeneous surfaces. q1 and 

q2 in Eq. (6) refer to the maximum adsorption capacity (mg/g) of the low-energy and 

high-energy adsorption sites on the adsorbent, respectively, while b1 and b2 are the 

affinity coefficients for the both sites in the isotherm (L/mg). The adsorption capacity 

of the adsorbent is therefore given by the sum of q1 and q2 (mg/g). 
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Chapter 4 

Adsorption removal of As(V), As(III) and Pb(II) by 

HCO-AC 

 

4.1 Introduction 

Arsenic and lead has been identified as pollutants of concern by WHO and 

USEPA, because of their widespread occurrence and toxic, carcinogenic effects to the 

environment. This chapter reports the removal of As(V), As(III) and Pb(II) from 

simulated arsenic or lead contaminated aqueous system by adsorption, which is 

considered as an attractive remediation process, using the fabricated HCO-AC 

material from the previous experiment. A series of batch adsorption experiment were 

conducted to study the adsorption performance of the material. The adsorption 

kinetics as well as isotherms were comprehensively studied through batch adsorption 

experiment. The effect of solution pH, coexisting anions or cations, existing of NOM 

were also investigated by varying the concentration of different variables. The 

solution samples after treatment were analyzed for arsenic concentration by ICP-OES. 

The mechanism of the adsorption process were further discussed based on the 

experiment result as well as model fitting. 

 

4.2 Results and discussion of As(V) and As(III) removal 

4.2.1 Morphological study of material by SEM 

Figure 4.1 showed the SEM images of raw particle activated carbon and 



 

22 
 

nanosized hydrous cerium oxide modified activated carbon. The HCO-AC prepared 

by the three-step synthesis procedure displays similar morphology and structure 

compared to raw activated carbon, the particle size was all in micro size scale, which 

was about 5 ± 1 μm with cubic shape. However, the embedded cluster of nanosized 

hydrous cerium oxide on the surface of activated carbon could be easily recognized in 

Fig. 4.1 (right), which are clearly evident for successful fabrication.  

 

 

Figure 4.1 SEM images of raw particle activated carbon (left) and nanosized hydrous 

cerium oxide modified activated carbon (HCO-AC). 

 

4.2.2 Preliminary test of synthesized materials 

The experimental data of HCO-AC and other two materials as control group were 

shown in Fig. 4.2. As can be seen, the adsorption capacity of HCO-AC (44.8 mg/g) 

had very significant advantage comparing with that of HCO (22.9 mg/g) and CO-AC 

(13.1 mg/g), which revealed that activated carbon modified by HCO could maximize 

its adsorption capability for heavy metal anions like arsenic. Therefore, HCO-AC 
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fabricated by the three-step process exhibited remarkable adsorption capacity, which 

is selected in this study, and the comprehensive adsorption performance of this 

material as well as its application are described in the following sections. 
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Figure 4.2 Preliminary test of As(V) adsorption isotherms of HCO-AC, HCO and 

CO-AC at 25 °C. Dashed line represent Langmuir model fitting. Adsorbent dosage 

0.1 g/L; initial solution pH 5.0 ± 0.1. 

 

4.2.3 Adsorption kinetics 

 In order to model an effective adsorption treatment process, it is important to 

analyze the rate that heavy metal pollutants are being adsorbed, which further 

determine the equilibrium time of the whole adsorption process on the solid-liquid 

interface.  

Fig. 4.3 illustrates the kinetics of both As(V) and As(III) adsorption onto 

HCO-AC at pH 5 with a dosage of 0.1 g/L. It can be seen that for both arsenate and 

arsenite, the residual concentration rapidly decreased from 10 mg/L to below 7 mg/L 
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within approximately 10 min. After 20 min, the adsorption performance of HCO-AC 

for both As(V) and As(III) have approached their maximum adsorption capacity, 

which were larger than 40 mg/g and 30 mg/g, respectively. The adsorption 

equilibrium for both adsorbents could be obtained in 2 h. 

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

 Adsorption Capacity of As(V)

 Adsorption Capacity of As(III)

 Pseudo-first order model fit 

 Pseudo-second order model fit

 

 

A
d

s
o

rp
ti
o
n

 C
a
p

a
c
ti
y
 (

m
g

/g
)

Time (min)

 

Figure 4.3 As(V) and As(III) adsorption kinetics of HCO-AC at 25 °C. Solid line and 

dashed line represent Lagergren pseudo-first order kinetic model and the 

pseudo-second order kinetic model fitting, respectively. Adsorbent dosage 0.1 g/L; 

initial solution pH 5.0 ± 0.1. 

 

As can be seen from the fitting results in Table 4.1, even though the pseudo-first 

order model could also generally fit the kinetics of both arsenate and arsenite 

adsorption by HCO-AC (r2 > 0.95),  the pseudo-second order kinetic model could 

more accurately describe the adsorption removal process for both arsenic oxyanions 

with the coefficients of determination (r2) greater than 0.99. This observation 

suggested that a chemical sorption involving valence forces through sharing or 



 

25 
 

exchange of electrons between arsenic and the adsorbents might be the rate limiting 

step of As(V) and As(III) adsorption [54]. Similar result has also been previously 

found for the adsorption of As(V) and As(III) on hierarchically porous CeO2-ZrO2 

nanospheres [55], as well as La(III) and Ce(III) loaded Orange Waste Gels [56]. 

 

Table 4.1 Summary of adsorption kinetics fitting data for As(V) and As(III) 

adsorption on HCO-AC at 25 °C. Initial arsenic concentration 10 mg/L, adsorbent 

dosage 0.1 g/L, initial solution pH 5.0 ± 0.1.  

Adsorbate 
qe(exp) 

(mg/g) 

pseudo-first order model  pseudo-second order model 

k1 

(min-1) 

qe(cal) 

(mg/g) 
r2  

k2 

(g mg-1 min-1) 

qe(cal) 

(mg/g) 
r2 

As(V) 42.51 0.017 12.83 0.9848  0.0097 43.29 0.9992 

As(III) 32.90 0.020 12.76 0.9560  0.0094 33.56 0.9989 

 

4.2.4 Adsorption isotherms 

Adsorption isotherms of HCO-AC for both As(V) and As(III) at pH 5 were 

investigated and the corresponding results were provided in Fig. 4.4. The 

experimental data of the material for both adsorbates were analyzed with classic 

adsorption isotherm models including Langmuir, Freundlich, and two-site Langmuir 

models.  
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Figure 4.4 As(V) and As(III) adsorption isotherms of HCO-AC at 25 °C. Dash line, 

Dash-Dot line and solid line represent Freundlich model fitting, Langmuir model 

fitting and two-site Langmuir model fitting, respectively. Adsorbent dosage 0.1 g/L; 

initial solution pH 5.0 ± 0.1. 

 

 The parameters derived from above model fitting were provided in Table 4.2. 

Both Langmuir and Freundlich isotherm could generally capture the trend of 

experimental data, the r2 of which were both above 0.96. Comparing the coefficients 

of determination (r2) for all these three isotherms, two-site Langmuir model could fit 

the experimental result best (As(V), r2 = 0.9989; As(III), r2 = 0.9992). The total 

adsorption capacity of HCO-AC for As(V) and As(III) at pH 5 and 25 °C yielded by 

two-site Langmuir model were found to be the sum of q1 and q2, which were 46.18 

mg/g and 36.93 mg/g, respectively. 

 

Table 4.2 Summary of isotherm fitting for adsorption of As(V) and As(III) on 
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HCO-AC at 25 °C. Adsorption dosage 0.1g/L, initial pH 5.0 ± 0.1. 

Model Parameter As(V) As(III) 

Langmuir 

(non-linear) 

qm (mg/g) 44.64 34.25 

b (L/mg) 1.738 1.359 

r2 0.9960 0.9909 

Freundlich 

(non-linear) 

k 1.362 0.6890 

n 27.10 43.67 

r2 0.9697 0.9847 

Two-site 

Langmuir 

q1 (mg/g) 45.15 33.87 

q2 (mg/g) 1.032 3.063 

b1 (L/mg) 472.6 378.5 

b2 (L/mg) 0.983 1.041 

r2 0.9989 0.9992 

 

Besides, both of the As(V) and As(III) adsorption capacities of HCO-AC are 

larger than those of other carbon and metal based adsorbents reported in previous 

studies shown in Table 4.3, even in the condition of lower initial As(V) and As(III) 

concentration. The above result clearly indicated that HCO-AC have a large As(V) 

adsorption capacity, and the combination of nanoscale hydrous cerium oxide with 

activated carbon could significantly enhance the adsorption capacity for As(V) as well 

as As(III). 
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Table 4.3 Comparison of As(V) and As(III) adsorption capacity of HCO-AC with 

those of other carbon and metal based adsorbents reported in previous studies. 

Adsorbents 

Initial 

Conc. 

(mg/L) 

Initial 

pH 

Adsorption Capacity (mg/g) 

References 
As(V) As(III) 

Magnetic iron oxide 

@carbon encapsulates 
15.0 7.0 17.9 29.4 [57] 

Polyaluminum 

granulate 
22.5 7.5 14.85 18.0 [58] 

CeO2-ZrO2 hollow 

nanospheres 
60 6.7-7.1 27.1 9.2 [55] 

GAC-Fe-NaClO 10 4.7 6.57 n.a. [59] 

Soot carbon (AC) 7-10 6.9-7.5 13.3 29.92 [60] 

HCO-AC 20 5.0 46.18 36.93 This study 

 

4.2.5 Effect of solution pH 

The distribution of both arsenate and arsenite species in aqueous system as well 

as the surface property of adsorbent are highly pH-dependent. It is expected that by 

adjusting solution pH, the adsorption capacity of novel synthesized material could be 

optimized. The effects of solution pH (from 3 to 9) on the removal of As(V) and 

As(III) by HCO-AC were investigated and the results were presented in Fig. 4.5. As 

can be seen from the figure, for arsenate, the adsorption capacity maintained a high 

level which was over 25 mg/g in a broad pH range from 3 to 6. For arsenite, the 

adsorption capacity was also higher than 25 mg/g in the pH range of 4 to 7. The 
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fabricated material could reach maximum adsorption capacity at pH 5 for both As(V) 

and As(III), which were in accordance with the previous kinetic and isotherm studies. 

Under alkaline pH condition, the adsorption performance of HCO-AC for both As(V) 

and A(III) had a significant decline, however, even in pH range from 7 to 9, the 

adsorption capacity for As(V) and As(III) were still larger than 5 mg/g and 10 mg/g, 

respectively, which indicated that HCO-AC was able to be utilized in a wide pH range 

by varying dosage, and the adsorption performance for As(III) could be more stable 

comparing with that of As(V). 
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Figure 4.5 Effect of initial solution pH on As(V) and As(III) removal by HCO-AC. 

Initial As(V) and As(III) concentration 10 mg/L; adsorbent dosage 0.1 g/L; 

temperature 25 °C. 

 

4.2.6 Effect of coexisting anions 

A variety of anions widely exist in natural water system including surface and 
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ground water. According to real water condition, the effect of three commonly 

coexisting anions in aquatic environment including sulfate, bicarbonate and phosphate 

on the adsorption of As(V) and As(III) by HCO-AC were investigated in a wide anion 

concentration from 1 to 10 mg/L, and the corresponding results were shown in Fig. 

4.6. As can be seen from the figure, the presence of all the three anions including 

sulfate, bicarbonate and phosphate could decrease the adsorption performance of both 

As(V) and As(III) by HCO-AC, which is in accordance with our expectation. 

Specifically, the increasing concentration of sulfate and bicarbonate (from 1 to 10 

mg/L) deceased the adsorption capacity for As(V) from 31.26 mg/g and 38.38 mg/g to 

23.9 mg/g and 21.1 mg/g, respectively, while the competitive effects of the two 

anions caused the adsorption capacity for As(III) slightly decreased from 39.62 mg/g 

and 34.19 mg/g to 36.63 mg/g and 29.55 mg/g, respectively, which were even more 

negligible than that of As(V). It can be concluded that even when the two coexisting 

anions were at the concentration of 10 mg/L, the adsorption performance could still 

maintain a high level of capacity which were larger than 20 mg/g. The observation 

indicated that HCO-AC was able to remove As(V) and As(III) in the presence of up to 

10 mg/L of sulfate and bicarbonate. On the other hand, the coexisting of phosphate 

have a significant negative impact on arsenic removal due to their extraordinary 

similarity of chemical properties, according to the experimental result. The adsorption 

capacity for As(V) and As(III) dropped from 32.4 mg/g and 36.69 mg/g to 9.0 mg/g 

and 13.1 mg/g, respectively, which were larger than 50% of the maximum adsorption 

capacity. 
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Figure 4.6 Effect of coexisting anions on As(V) and As(III) adsorption performance 

by HCO-AC. Initial As(V) and As(III) concentration 10 mg/L; adsorbent dosage 0.1 

g/L; initial solution pH 5.0 ± 0.1; temperature 25 °C. 

 

The insignificant influence of both sulfate and bicarbonate have been reported 

previously [61-63]. The effects of sulfate and bicarbonate on the removal of As(V) 

observed for both types of fabricated materials were all within anticipation according 

to their bonding interaction. Sulfate would be absorbed predominantly via 

outer-sphere complexation at around pH 6 [64, 65]. However, through the mechanism 

of ligand exchange, arsenic oxyanions could form much more firmly bonded 

inner-sphere complex with the adsorbent. Thereby, even though the concentration of 

sulfate reached 10 mg/L which was same to that of arsenic oxyanion, the removal of 

As(V) by HCO-AC were not obviously affected by sulfate. The shared charge theory 

[66] could explain the preference for arsenate over (bi)carbonate with the fact that the 
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shared charge of arsenate (1.25) is smaller than that of (bi)carbonate (1.33). 

Furthermore, despite that both anions could form inner-sphere complex, affinity of 

carbonate was relatively weaker than arsenate [62]. As a result, (bi)carbonate did not 

obviously affect the adsorption of As(V).  

Previous studies have shown that the decline of arsenic removal capacity in the 

presence of phosphate could due to competitive adsorption. For example, Chowdhury 

and Yanful [67] found that the adsorption percentage of total arsenic onto 

magnetite-maghemite nanoparticles decreased to ~30% when 10 mg/L of phosphate 

was co-present in solutions, Zhang et al. [68] reported that the presence of 6.5 mg/L 

phosphate reduced As(V) adsorption capacity of iron core at pH 7 by 30-50%. 

Moreover, the adsorption capacity of HCO-AC was higher than 30 mg/g at phosphate 

concentration of 1 mg/L, which was the typical concentration of phosphate widely 

found in natural water system. If phosphate with high concentration was presented in 

water system, high adsorption capacity of arsenic could still be achieved by simply 

increasing the dosage of adsorbents. 

 

4.2.7 Effect of natural organic matter 

The influence of NOM, present ubiquitously in the aquatic environment with 

typical concentrations from 1 to 20 mg/L, on the adsorption of As(V) and As(III) was 

also investigated, and the results were presented in Fig. 4.7. Humic acid from 1 to 20 

mg/L were used to model humic substance, which is the major components of NOM. 

As can be seen from the figure, the increase of humic acid concentration in solutions 
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slightly decreased the uptake of As(V) and As(III) by HCO-AC. The decrease in 

As(V) adsorption induced by humic acid was relatively greater than As(III), which 

was from 36.69 mg/g to 21.26 mg/g, while the decline of As(III) adsorption capacity 

was from 30.47 mg/g to 25.48 mg/g. However, even in the humic acid concentration 

of 20 mg/L, the corresponding adsorption capacity of HCO-AC for both oxyanions 

were still larger than 20 mg/g.  
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Figure 4.7 Effect of humic acid on As(V) and As(III) removal by HCO-AC. Initial 

arsenic concentration 10 mg/L; adsorbent dosage 0.1 g/L; initial solution pH 5.0 ± 0.1; 

temperature 25 °C. 

 

The decrease in arsenic adsorption efficiency with increasing humic acid 

concentration has also been previously observed [52]. The negatively charged humic 

acid could compete with H2AsO4
- , HAsO4

2-, H2AsO3
- and HAsO3

2-, the dominant 

species of As(V) and As(III) in a wide pH range, for adsorption sites on material 
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surfaces. The above observation indicated that the novel HCO-AC material fabricated 

in our study could be effective adsorbents for As(V) and As(III) removal in the 

presence of NOM. 

 

4.3 Results and discussion of Pb(II) removal 

4.3.1 Adsorption kinetics 

Fig. 4.8 illustrates the kinetics of Pb(II) adsorption onto HCO-AC at pH 5 with a 

dosage of 0.1 g/L. The residual concentration rapidly declined from 10.34 mg/L to 

6.88 mg/L within approximately 20 min. After 30 min, the adsorption capacity of 

HCO-AC for Pb(II) have approached their maximum, which were larger than 40 mg/g. 

The adsorption equilibrium could be obtained in 2 h. 

To further analyze the removal of Pb(II), the adsorption kinetic experimental data 

were also fitted with both Lagergren pseudo-first order kinetic model and the 

pseudo-second order kinetic model, the detail information of these models could be 

found in chapter 3.  
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Figure 4.8 Pb(II) adsorption kinetics of HCO-AC at 25 °C. Solid line and dashed line 

represent Lagergren pseudo-first order kinetic model and the pseudo-second order 

kinetic model fitting, respectively. Adsorbent dosage 0.1 g/L; initial solution pH 5.0 ± 

0.1. 

 

According to the fitting results in Table 4.4, the pseudo-second order kinetic 

model could more accurately describe the adsorption process (r2 > 0.99) rather than 

the pseudo-first order model (r2 > 0.98). Similar to the kinetics of arsenic adsorption, 

This observation suggested that chemical sorption involving valence forces were the 

rate limiting step of Pb(II) adsorption as well. Previous Studies have also reported the 

similar result which employing activated carbon [69], activated alumina [70] and 

lichen biomass [71] and to adsorb Pb(II) in aqueous systems. 
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Table 4.4 Summary of adsorption kinetics fitting data for Pb(II) adsorption on 

HCO-AC at 25 °C. Initial lead concentration 10 mg/L, adsorbent dosage 0.1 g/L, 

initial solution pH 5.0 ± 0.1.  

Adsorbate 
qe(exp) 

(mg/g) 

pseudo-first order model  pseudo-second order model 

k1 

(min-1) 

qe(cal) 

(mg/g) 
r2  

k2 

(g mg-1 min-1) 

qe(cal) 

(mg/g) 
r2 

Pb(II) 43.20 0.033 24.72 0.9840  0.0025 45.45 0.9902 

 

4.3.2 Adsorption isotherms 

Adsorption isotherms of HCO-AC for Pb(II) at pH 5 were investigated and the 

corresponding results were provided in Fig. 4.9. The experimental data of the material 

for both adsorbates were analyzed with classic adsorption isotherm models including 

Langmuir, Freundlich, and two-site Langmuir models. The detail information about 

the three model were listed in section 3.3.4. 

The parameters derived from above model fitting were provided in Table 4.5. 

Langmuir model could generally describe the trend of experimental data rather than 

Freundlich isotherm, the r2 of which were 0.99 and 0.94, respectively. Comparing the 

coefficients of determination (r2) for Langmuir and two-site Langmuir isotherm 

models, two-site Langmuir model could fit the experimental result even better (r2 = 

0.9977). 
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Table 4.5 Summary of isotherm fitting for adsorption of Pb(II) on HCO-AC at 25 °C. 

Adsorption dosage 0.1g/L, initial pH 5.0 ± 0.1. 

Model Parameter Pb(II) 

Langmuir 

(non-linear) 

qm (mg/g) 45.45 

b (L/mg) 1.582 

r2 0.9939 

Freundlich 

(non-linear) 

k 0.4674 

n 10.66 

r2 0.9424 

Two-site 

Langmuir 

q1 (mg/g) 46.75 

q2 (mg/g) 1.77 

b1 (L/mg) 327.4 

b2 (L/mg) 0.860 

r2 0.9977 
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Figure 4.9 Pb(II) adsorption isotherms of HCO-AC at 25 °C. Dash line, Dash-Dot 

line and solid line represent Freundlich model fitting, Langmuir model fitting and 

two-site Langmuir model fitting, respectively. Adsorbent dosage 0.1 g/L; initial 

solution pH 5.0 ± 0.1. 
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The total adsorption capacity of HCO-AC for Pb(II) at pH 5 and 25 °C yielded 

by two-site Langmuir model was found to be the sum of q1 and q2, which was 48.52 

mg/g. The observation suggested that despite the large adsorption capacity for arsenic, 

HCO-AC could also act as an effective lead removal adsorbent, the combination of 

nanoscale hydrous cerium oxide with activated carbon could generate a kind of 

multifunctional cations and anions adsorbent. 

 

4.3.3 Effect of solution pH 

In the pH range of 5 ~ 6, Pb(OH)+ will be observed in aqueous system. 

Excessive hydroxyl ion will induce the significant precipitation of lead under alkali 

pH condition, therefore, in order to avoid the effect of lead precipitation, batch 

adsorption experiment for pH effect was set in the pH range of 3 to 6. Fig. 4.10 

showed the adsorption of Pb(II) onto HCO-AC as a function of pH. The metal uptake 

increases from a lower pH and reaches a plateau at equilibrium pH 6, the adsorption 

capacity could be 7 times (31.71 mg/g) as much as the capacity under pH 3 (4.5 mg/g). 

The adsorption of other metal ions such as copper also demonstrated a similar 

behavior[72]. Nevertheless, the final pH of solution after adsorption might 

significantly increase, thus, in order to avoid precipitation, pH 5 was selected as the 

adsorption condition, which was corresponding to that of arsenic adsorption. The 

study also indicated that HCO-AC was able to achieve best adsorption performance in 

neutral pH range, the improvement of adsorption capacity could also be obtained by 

varying dosage. 
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Figure 4.10 Effect of initial solution pH on Pb(II) removal by HCO-AC. Initial Pb(II) 

concentration 10 mg/L; adsorbent dosage 0.1 g/L; temperature 25 °C. 

 

4.3.4 Effect of coexisting cations 

 According to real water condition, the effect of two commonly coexisting cations 

in aquatic environment including calcium and magnesium, as well as another widely 

existed heavy metal in contaminated water, copper, were investigated on the 

adsorption of Pb(II) by HCO-AC in a wide cation concentration from 1 to 20 mg/L, 

and the corresponding results were shown in Fig. 4.11. As can be seen from figure (a), 

none of the two coexisting cations had obvious effect on the uptake of Pb(II) by 

HCO-AC even at a very high concentration of 20 mg/L, the adsorption capacity of 

material slightly decreased from 38.57 mg/g and 37.02 mg/g to 32.43 mg/g and 31.01 

mg/g, respectively, which indicated that the adsorption performance of the material 

under both condition could still maintain a high level of capacity which were larger 

than 30 mg/g. 
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 On the other hand, The existence of copper led to a significant improvement in 

Pb(II) adsorption on HCO-AC, the capacity increased from 20.6 to 134.75 mg/g with 

the increasing of copper concentration. The non-competitive influence observed for 

Cu(II) on Pb(II) adsorption could be due to the greater atomic weight and 

electronegativity of the later metal [73]. The observed reduction in the sorption of 

Cu(II) and Zn(II) in the presence of Pb(II) could be attributed to the difference in their 

class behavior on the basis of their covalent indices [74]. Pb(II) is classified as a class 

b ion, while Cu(II) are classified as borderline ions. Since Pb(II) belongs to a different 

class of ions, other cations do not exert any effect on its sorption. On the basis of this 

argument, it is possible to explain the competition effects observed in the present 

study. However, the possibility of precipitation should be entirely excluded in further 

study, and more detailed explanation to the mechanism still need further experiment 

research. 
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Figure 4.11 Effect of calcium and magnesium (a) and copper (b) on Pb(II) adsorption 

performance by HCO-AC. Initial Pb(II) concentration 20 mg/L; adsorbent dosage 0.1 

g/L; initial solution pH 5.0 ± 0.1; temperature 25 °C. 
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4.3.5 Effect of natural organic matter 

 Humic acid from 1 to 20 mg/L were used to model humic substance, which is the 

major components of NOM. Fig. 4.12 showed that the increase of humic acid 

concentration in solutions significantly increased the uptake of Pb(II) by HCO-AC, 

The adsorption capacity improved from 29.48 mg/g to 87.31 mg/g, which indicated 

that instead of causing negative impact on Pb(II) removal by HCO-AC, the existing of 

NOM could even improve the adsorption performance of the material in solution. 

 

0 5 10 15 20

0

20

40

60

80

100

 

 

A
d

s
o

rp
ti
o
n

 C
a
p

a
c
it
y
 (

m
g

/g
)

Humic Acid Concentration (mg/g)

 Pb(II)

 

Figure 4.12 Effect of humic acid on As(V) and As(III) removal by HCO-AC. Initial 

arsenic concentration 20 mg/L; adsorbent dosage 0.1 g/L; initial solution pH 5.0 ± 0.1; 

temperature 25 °C. 

 

The mechanism could be explained as follows. The chemical interaction between 

the metal ions and the surface functional groups of carbon has been reported to 

contribute the adsorption of metal ions on carbon [75, 76]. Previous studies [77, 78] 
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have also shown that functional groups such as carboxyl, carbonyl, and hydroxyl 

appeared on the surface of carbon after oxidation pretreatment could improve the 

adsorption capacities of Pb(II). Accordingly, the addition of NOM in the solutions 

induced negative zeta potentials on the surface of the material, which indicated the 

adsorption of NOM on the surfaces of HCO-AC would cause zeta potentials of the 

material to be negative. Furthermore, the major functional groups in NOM has been 

found to be carboxyl and phenolic groups [79], the amount of these functional groups 

on the surfaces of HCO-AC would be higher depending on the concentration of NOM, 

which could interact with Pb(II) by chemical bonding, therefore the adsorption 

capacity for Pb(II) of the material was observed to be higher with the presence of 

NOM in solutions. This results in our study indicated that the synthesized HCO-AC 

could be utilized as a good adsorbent for Pb(II) removal from water containing NOM 

(humic acid) with concentration up to 20 mg/L. 
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Chapter 5 

Conclusions and recommendations 

 

5.1 Concluding remarks 

In this study, nanosized hydrous cerium oxide was successfully loaded on the 

surface of particle activated carbon to obtain a kind of novel adsorbent, HCO-AC, 

with an easy-operated and cost effective approach. Comparing with that of single 

hydrous cerium oxide as well as cerium oxide modified activated carbon, the 

modification significantly improved the adsorption performance of arsenic, the total 

adsorption capacity of HCO-AC for As(V) and As(III) at pH 5 and 25 °C were 

increased to 46.18 mg/g and 36.93 mg/g, respectively, both of which were also larger 

than some other materials been reported in previous studies. Furthermore, the 

fabricated material also have a notable adsorption performance for Pb(II) removal, the 

adsorption capacity of which could also reach 48.52 mg/g. The adsorption kinetics of 

HCO-AC for all of As(V), As(III) and Pb(II) could be well described by 

pseudo-second order model. Two-site Langmuir isotherm model derived from classic 

Langmuir model could more accurately fit the adsorption isotherm of all the 

adsorption process for arsenic and lead. HCO-AC could be utilized for efficient As(V) 

and As(III) removal in a wide pH range from 3 to 6 and 4 to 7, respectively, or be 

utilized as a kind of large adsorption capacity adsorbent for Pb(II) removal in slight 

acid pH condition from 5 to 6. The presence of selected commonly coexisting anions 

or cations did not have significant influence on the adsorption capacity of HCO-AC 
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for arsenic and lead, despite the coexisting of phosphate and copper could lead to 

obvious decreasing and increasing to the adsorption capacity of the material, 

respectively. Even in this case, high removal efficiency of arsenic onto the material 

could still be obtained by adjusting dosage into the solutions. As a compound of 

organic groups, the presence of NOM in aqueous system could compete with arsenic 

adsorption, as well as improving the adsorption capacities of Pb(II), because of the 

negative zeta potentials induced by the organic groups from NOM onto the surface of 

the material. Therefore, the HCO-AC synthesized in this study can serve as a 

multifunctional, promising and highly efficient adsorbent for simultaneously removal 

of As(V), As(III) and Pb(II) from aqueous environment. 

 

5.2 Recommendations 

1. Various of characterization approach including XRD, XPS, Raman 

Spectroscopy are recommended to be conducted for further characterization of the 

fabricated HCO-AC for its surface structure and area, the formation of chemical 

bonds between cerium oxide, activated carbon and target ions, as well as the 

mechanism of competitive adsorption between target ions and other coexisting ions in 

water, which could reveal more details about the adsorption behavior of the material, 

so as to further optimize the synthesis process of HCO-AC and achieve better 

multifunctional adsorption performance. 

2. Real waters are more complicated relative to the synthetic aqueous system. For 

instance, the existence of organic matters, various kinds of salts, and even microbes 
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may influence the adsorption of arsenic and lead. Taking these factors into account, it 

would be interesting to investigate the adsorption behavior of the novel material in 

real water like tap water, lake water or groundwater, to verify that whether HCO-AC 

could also perform as highly effective adsorbent in natural circumstance for the 

removal of all the three kind of heavy metal pollutants. 

3. It would be important to explore other nanosized metal oxide such as activated 

alumina, magnetic nanoparticles, or some other lanthanide metal oxide to be used as 

chemical modifications to anchor onto different carbon-base material, for example,  

multiwall carbon nanotube (MWCNT) and carbon fiber, then the adsorption 

performance of the fabricated candidates also can be comprehensively examined to 

verify their multifunctional capability in aqueous system for not only arsenic and lead, 

but other commonly existed heavy metals, which may provide more options for the 

adsorption remediation of multiple heavy metal polluted water. 
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