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Summary

High-performance mechatronics are required to satisfy specifications such

as high control bandwidth, attenuation of disturbances at high frequencies,

and robust stability in the presence of plant parametric perturbations. In

the traditional cyclical research and development process for mechatronics,

the achieved feedback control performance may be limited by the mechani-

cal plant design. In this dissertation, novel integrated servo-mechanical de-

sign algorithms are proposed for reshaping the high-frequency response of

a single-input-single-output mechanical plant to satisfy performance spec-

ifications and individual chance-constrained robust stability criterion.

First, the reshaping of the high-frequency response of a plant based

on a low-order controller is proposed. The low-order controller is de-

signed to compensate for the frequency response of the original mechanical

plant at low frequencies, and plant design variables are introduced using

Youla parametrization. Performance specifications are specified as finite

frequency bounded realness constraints on the sensitivity transfer func-

tion, and the Generalized Kalman-Yakubovich-Popov (GKYP) Lemma is

used for translating the constraints into Linear Matrix Inequalities (LMIs).

Next, a convex separable parametrization is proposed for reshaping the

high-frequency responses of both the mechanical plant and a low-order

x



controller. The performance specifications are similarly represented as LMI

constraints using the GKYP Lemma, and an individual chance-constrained

robust stability criterion which is based solely on the mean, variance, and

support of the plant parameter distributions is included. A tractable ap-

proximation of the robust stability criterion under the conditional-value-

at-risk measure is proposed. As a result, the robust stability criterion is

formulated as several LMI and linear inequality constraints, where the LMI

constraints are obtained by translating positive realness constraints using

the GKYP Lemma. The design variables are solved simultaneously, and

the parameterization is readily separable for obtaining the redesigned me-

chanical plant and controller.

The performance specifications and chance-constrained robust stability

criterion can be visualized on the Nyquist plane, and a graphical approach

is proposed for redesigning the mechanical plant based on a low-order con-

troller to satisfy the specifications. Allowable regions for the Nyquist plot

of the open loop transfer function are derived based on the bounded-real

performance and positive-real robust stability specifications. The relation

between Bounded Real Lemma and Positive Real Lemma is used for con-

verting the positive realness constraint from the robust stability criterion

into an equivalent bounded realness constraint. In order for tradeoff be-

tween performance specifications and robust stability criterion to be eas-

ily observed using a single measure on the Nyquist plane, the equivalent

bounded realness constraint is approximated using Triangle Inequality.

This dissertation presents GKYP-Lemma based algorithms for satisfy-

ing performance and chance-constrained robust stability specifications by

finite frequency reshaping of the mechanical plant. The effectiveness of the

xi



proposed algorithms is verified in simulations using the Pb-Zr-Ti active

suspension from a commercial 3.5” dual-stage hard disk drive, which is an

example of high-performance mechatronics.
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Chapter 1

Introduction

Mechatronics is usually defined as a synergistic combination of electronics,

mechanics, computer, and control [1]. Today, mechatronics is present in a

wide range of products ranging from consumer electronics such as desktop

printers, digital cameras, and Hard Disk Drives (HDDs), to industrial man-

ufacturing equipment such as industrial robots, wafer positioning stages,

and atomic force microscopes. Wafer positioning stages, atomic force mi-

croscopes, and servo systems in HDDs are examples of high-performance

mechatronics which are capable of nanoscale resolution.

1.1 Servo-Mechanical-Prototype

Production Cycle

The demand for smaller electronic devices, larger computational power,

and larger digital storage capabilities, etc, is ever increasing. Based on

the international technology roadmap for semiconductors [2], the manu-

facturing of integrated circuits will reach the few nanometers range within

1



the next fifteen years. As a result, the precision of semiconductor man-

ufacturing equipment such as wafer stages and atomic force microscopes

have to be increased. In addition, the precision of HDD servo systems

have to be increased further as areal densities of HDDs in production are

driven towards 10 Tbit/in2 [3] in order to satisfy the storage demands by

data centers. As such, satisfying control specifications of high-performance

mechatronics is getting more challenging in many areas of application.

In a typical production cycle for mechatronic products as shown in

Figure 1.1, the business unit determines the requirements for the next gen-

eration of products based on consumers’ feedback, market forces, and tech-

nological innovations. The Research & Development (R&D) cycle for satis-

fying the requirements is an iterative process comprising of the mechanical

structure design, prototype manufacture and evaluation, and servo system

analysis stages, where each stage begins only after the completion of the

previous stages [4].

In the servo system analysis stage, the tracking accuracy of the high-

performance mechatronic system has to be ensured in the presence of me-

chanical vibrations, external vibrations, and measurement noise. Distur-

bance observers [5–7] and peak filters [8–10] are commonly augmented to

controllers for rejecting external vibrations. To reduce disturbances result-

ing from the mechanical vibrations, common methods include the phase-

stabilization of in-phase resonant modes [8, 11–13] and changing of the

mechanical properties of the out-of-phase plant to in-phase using peak fil-

ters [14].

The feedback control system is also required to be robustly stable in

the presence of plant parametric perturbations resulting from mass pro-

2



Figure 1.1: Typical servo-mechanical-prototype cycle for production of
mechatronic products [4].

duction, variations in operating conditions, mechanical wear, etc. In the

production of high quality and low cost mechatronic products such as the

HDD, the feedback control system is required to be stable for a given pro-

portion of the manufactured HDDs in order to satisfy a desired defect

tolerance level. Robust controller design methods are commonly based

on the H∞ theory [15] considering norm-bounded uncertainties, as well as

Kharitonov’s theorem [16] considering interval polynomials. Controller de-

sign using probabilistic and randomized methods [17] are proposed recently

for improving the performance of feedback control systems, as the worst

case approach for considering uncertainties can be too conservative [17].

The dynamical performance of the overall control system is well known

to be dependent on both the controller and mechanical designs [18, 19].
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As such, the achievable performance and robust stability of the feedback

control system may be limited by the mechanical plant.

1.2 Performance Limitations of Feedback

Control

The dynamics of many mechatronic systems can be modeled as a Linear

Time-Invariant (LTI) system when the operating range in consideration is

close to an equilibrium point. In this dissertation, the main performance

objective is achieving high-frequency disturbance attenuation for improving

tracking accuracy. As such, the performance limitations of feedback control

involving LTI systems are discussed in this section.

A typical discrete-time feedback control system is shown in Figure 1.2,

where C(z) is a feedback controller, u and y represent the input and output

of a mechanical plant P (z), respectively, r represents the reference signal

given to the overall control system, and w represents the output distur-

bance.

+
-

r

Controller C(z)  Plant P(z)

NP(z)
DP(z)

C

CD (z)
N (z)

w

y yw++u

Figure 1.2: Block diagram of a typical discrete-time feedback control sys-
tem.
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1.2.1 Limitations by Resonant Poles of Mechanical

Plant

The closed-loop from w to yw as shown in Figure 1.2 corresponds to the

sensitivity transfer function S(z) which is given by

S(z) =
DP (z)DC(z)

NP (z)NC(z) + DP (z)DC(z)
, (1.1)

where NC(z) and NP (z) are the zero polynomials of C(z) and P (z), respec-

tively, and DC(z) and DP (z) are the pole polynomials of C(z) and P (z),

respectively. Many performance specifications of the overall control system

can be characterized as magnitude constraints on S(z).

The resonant poles of P (z) are the zeros of S(z) as seen from (1.1).

When C(z) is a low-order controller and the resonant frequencies of P (z)

are fixed, disturbance attenuation capabilities at high frequencies can only

be achieved by decreasing the damping ratios of the poles of P (z) in DP (z).

1.2.2 Limitations by Unshifted Anti-Resonant Zeros

of Mechanical Plant

In mechanical design, the anti-resonant zeros of a mechanical plant indicate

the in-phase/out-of-phase property of the resonant modes. The frequency

response of a mechanical plant with in-phase resonant modes is shown in

Figure 1.3, where it can be seen that there are no unstable anti-resonant

zeros. From the frequency response of a mechanical plant with an out-

of-phase secondary resonant mode, it can be seen that there are unstable

zeros between the resonant modes. The anti-resonant zeros result in the

5



blocking of certain signal frequencies by the mechanical plant in control

design. As such, it is desirable to have only stable anti-resonant zeros in

the presence of mechanical resonant modes.
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Figure 1.3: Frequency responses of mechanical plants with in-phase and
out-of-phase resonant modes.

The complementary sensitivity transfer function T (z) is a representa-

tion of the closed-loop from r to y in Figure 1.2, and is given by

T (z) =
NP (z)NC(z)

NP (z)NC(z) + DP (z)DC(z)
. (1.2)

From (1.2), it can be seen that the unstable anti-resonant zeros of P (z) are

the unstable anti-resonant zeros of T (z) when NC(z) is Schur stable.

The locations of the unstable anti-resonant zeros are not shifted by feed-

back control and limit the achievable performance of the feedback control

system. In the presence of unstable anti-resonant zeros, an undershoot will

be seen at the beginning of the time responses with lengthened settling

6



time. In the frequency domain, the closed-loop bandwidth has to be low-

ered as the additional phase lag introduced by the unstable anti-resonant

zeros reduces the phase margin. According to the Discrete Bode’s Integral

Theorem (DBIT), the magnitude of S(z) is significantly greater than one

at frequencies above the open loop bandwidth [20].

1.3 Integrated Servo-Mechanical Design

Integrated mechatronic design is the simultaneous consideration of electron-

ics, mechanical, computer, and control components. According to [21], 43%

of more than 140 enterprises are implementing and altering new product

development processes for a multi-disciplinary approach to improving the

development of mechatronic products, with the top-performing manufac-

turers being twice as likely to do so. Integrated servo-mechanical design

is a subset of the more complex integrated mechatronic design problem as

shown in Figure 1.4. In other words, the focus is on considering mechanical

and control components simultaneously to satisfy performance specifica-

tions and robust stability criterion of the overall feedback control system,

and can be used for overcoming the limitations discussed in Sections 1.1

and 1.2.

From a theoretical perspective, integrated servo-mechanical design is

generally a nonlinear and nonconvex optimization problem. As discussed

in [22], the approaches can be classified into iterative [23–27], nested [28–

30], and simultaneous [31–36] optimization strategies. In [31], the sensi-

tivities of the objective functions with respect to the plant parameters are

used to formulate a gradient-based approach for simultaneous optimization.

7



Figure 1.4: Integrated servo-mechanical.

A bond graph model of the mechanical plant is used in [33] for reducing

the number of design variables and solving using physical programming.

Evolutionary algorithms are used in [34, 36] for solving the simultaneous

optimization problem. The solutions are commonly obtained by solving

Linear Matrix Inequality (LMI)-based constraints iteratively [25–27, 32].

In [35], a non-iterative LMI-based method is proposed for simultaneous

design of the controller and plant damping variable. A design for control

approach is proposed in [19], where the focus is on designing the mechanical

structure to obtain a simple dynamic model for ease of controller design.

Simultaneous design of structure and control using H2 and H∞ robust con-

trol formulations is approximated by a decoupled optimization approach in

which the structures are optimized by shaping the structural singular val-

ues [37]. In [38–40], the sensor or actuator placement problem was solved

using the integrated system design by separation approach, where simul-

taneous optimization of plant and controller parameters is avoided by de-

signing the plant to have certain desired properties. A plant/controller

design integration method for H∞ loop-shaping using the Sum of Roots

8



algebraic approach is proposed in [41]. In [25, 27, 37, 40], deterministic

norm-bounded uncertainties are considered in the design phase.

From an experimental perspective, bandwidth estimation based on in-

tegrated servo-mechanical design of a HDD actuator is proposed in [42].

In [43], finite element modeling of the characteristics of a HDD actuator

for effective integrated servo-mechanical design is presented. It is proposed

in [44] that the servo-bandwidth of the head-positioning system in HDDs

can be increased by redesigning the mode shape of the primary resonant

mode such that its residue is reduced. The Pb-Zr-Ti (PZT) actuation sys-

tem in a dual-stage HDD is made to have in-phase resonant modes in [45]

by changing the directions of actuation of the PZT actuators.

1.4 Notations

The following notations are used in this dissertation. RH∞ represents the

real rational subspace of H∞ which consists of all proper and real rational

stable transfer matrices, and I denotes an identity matrix of appropriate

dimensions. For a matrix Φ, its transpose, complex conjugate transpose,

and Moore-Penrose inverse are denoted by appropriate dimension matri-

ces ΦT , Φ∗, and Φ+, respectively. If Φ is Hermitian, Φ > (≥)0 and Φ < (≤)0

denote positive (semi) definiteness and negative (semi) definiteness, respec-

tively. For simplicity, a discrete-time transfer function such as P (z) is rep-

resented using P , and P (ejθ) is represented as P (θ) when emphasis of the

dependence on angular frequency θ is required, unless otherwise stated.

9



1.5 GKYP Lemma

Performance and robust stability specifications are represented as finite

frequency bounded realness and positive realness constraints in this disser-

tation. These constraints are formulated as LMIs using the Generalized

Kalman-Yakubovich-Popov (GKYP) Lemma [46] in this section.

Consider (AG, BG, CG, DG) as a stable state-space realization of a square

transfer matrix G ∈ RH∞. The following theorem is the GKYP Lemma

in discrete-time domain. The strict inequality is used as the state-space

matrices considered are non-minimal representations of the system.

Theorem 1.1. Let θ̄ := [θl̄, θū] denote a finite frequency range, where θl̄ ≤
θū, and θl̄, θū ∈ [0, π]. Given matrices A, B, and Hermitian matrices Θ, Φ,

and Ψ, the following statements are equivalent

(i) The frequency domain inequality given by

⎡
⎢⎣ (ejθI − AG)

−1
BG

I

⎤
⎥⎦
∗

Θ

⎡
⎢⎣ (ejθI − AG)

−1
BG

I

⎤
⎥⎦ < 0 (1.3)

holds for all θ ∈ θ̄.

(ii) There exist Hermitian matrices Ξ and V > 0 such that

⎡
⎢⎣ AG BG

I 0

⎤
⎥⎦
∗

Π

⎡
⎢⎣ AG BG

I 0

⎤
⎥⎦+ Θ < 0, (1.4)

10



where Π = (Φ ⊗ Ξ + Ψ ⊗ V ) with

Φ =

⎡
⎢⎣ 1 0

0 −1

⎤
⎥⎦ and Ψ =

⎡
⎢⎣ 0 ν

ν∗ κ (2cosθR)

⎤
⎥⎦ . (1.5)

The values of scalars θR, ν, and κ in Ψ for different choices of θ̄ are

given in Table 1.1.

Table 1.1: θR, ν, and κ for Different Frequency Range

θ θ ≤ θū θl̄ ≤ θ ≤ θū θ ≥ θl̄

θR θū (θū − θl̄)/2 θl̄

ν 1 ej((θl̄+θū)/2) −1
κ −1 −1 1

The following corollaries demonstrate the use of GKYP Lemma to rep-

resent finite frequency bounded realness and Re(G(ejθ)) > � by an appro-

priate choice of Θ.

Corollary 1.1. For a given φ ∈ R
+,
∥∥G(ejθ)

∥∥
∞ < φ for all θ ∈ θ̄ iff there

exist Hermitian matrices Ξ and V > 0 such that

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣AG BG

I 0

⎤
⎥⎦
∗

Π

⎡
⎢⎣AG BG

I 0

⎤
⎥⎦+

⎡
⎢⎣ 0 0

0 −χI

⎤
⎥⎦
⎡
⎢⎣ CG

∗

DG
∗

⎤
⎥⎦

[
CG DG

]
−βI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (1.6)

which is obtained by applying Schur’s complement to (1.4) with

Θ =

⎡
⎢⎣ CG

∗CG

βI
CG

∗DG

βI

DGCG
∗

βI
DG

∗DG

βI
− χI

⎤
⎥⎦ . (1.7)
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In (1.6) and (1.7), χ = φ2 and β = 1. With the application of Schur’s

complement to (1.6), χ = φ and β = φ, and φ can be an optimization

variable.

Corollary 1.2. For all θ ∈ θ̄, Re
(
G(ejθ)

)
> � for � ∈ R iff there exist

Hermitian matrices Ξ and V > 0 such that

⎡
⎢⎣AG BG

I 0

⎤
⎥⎦
∗

Π

⎡
⎢⎣AG BG

I 0

⎤
⎥⎦+ Θ < 0, (1.8)

where

Θ =

⎡
⎢⎣ 0 −CG

∗

−CG −DG − DG
∗ + 2�

⎤
⎥⎦ . (1.9)

The above corollaries will be used by the proposed integrated servo-

mechanical design algorithms for specifying finite frequency constraints on

the sensitivity transfer function, removing unstable zeros, and ensuring

robust stability.

1.6 Phase-Stable Design and Sensitivity

Disc

Non-Repeatable Run-Out (NRRO) is generally classified into NRRO in-

duced by mechanical vibrations of the resonant modes and NRRO result-

ing from external disturbances. In this dissertation, the focus of integrated

servo-mechanical design is on the attenuation of the former. With the use

of notch filters for gain stabilization of resonant modes, control actions for

12



damping the vibration will be annihilated. As such, NRRO is trapped in

the frequency regions of the out-of-phase resonant modes [14], and tracking

accuracy will be reduced. Phase-stable design [11] is a well-known method

for satisfying high-frequency disturbance attenuation specifications, which

is guaranteed using the proposed algorithms in this dissertation.

The Nyquist plot of an open loop transfer function PC with phase-

stabilized resonant modes is as shown in Figure 1.5. The dotted unit circle

centered at the origin denotes the unit disc, and σ1 is the well-established

phase margin. For a phase-stable design, the Nyquist curve leaves and re-

enters the unit disc at least once. The dotted straight line from the origin

to the Nyquist curve indicate a point which is furthest away from the origin,

and corresponds to the peak of the phase-stabilized resonant mode in the

open loop transfer function. In addition, the Nyquist stability criterion is

satisfied by not encircling (−1 + j0) if there are no unstable mechanical

poles. The angle σ2 as shown in Figure 1.5 represents the secondary phase

margin, and a rule-of-thumb for guaranteeing stability is σ2 ≥ 40◦. The

rule-of-thumb is also applicable to tertiary phase margins when there are

multiple phase-stabilized resonant modes.

The bold dashed unit circle centered at (−1+j0) as shown in Figure 1.5

is known as the sensitivity disc [14]. The avoidance of the unit sensitivity

disc by the open loop transfer function PC corresponds to |1+PC| > 1 over

a specific frequency range. As such, the magnitude of the sensitivity trans-

fer function over the same frequency is given by |S| = |1+PC|−1 < 1, which

corresponds to disturbance attenuation. From the concepts of phase-stable

design and sensitivity disc, it can be seen that disturbance attenuation ca-

pabilities exist at the resonant frequencies of the phase-stabilized resonant

13
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Figure 1.5: Nyquist plot of open loop transfer function PC for phase-stable
design.

modes.

1.7 PZT Active Suspension from Commer-

cial Dual-Stage Hard Disk Drives

The PZT active suspension which is used for simulation verification of the

proposed algorithms in this dissertation is described in this section. The

dual-stage servo system in a commercial 3.5′′ dual-stage HDD is shown in

Figure 1.6. In order to improve the positioning accuracy of the read/write

head in the presence of disturbances, the PZT active suspension is ap-

pended to the arm of the Voice Coil Motor (VCM) which functions as the

primary actuator. The secondary control loop is a high-performing mecha-

tronic system with a larger bandwidth than the VCM control loop, and is
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used for expanding the overall dual-stage servo bandwidth. However, the

PZT active suspension is a lightweight and flexible structure with resonant

modes at high frequencies, and can be regarded as a multibody system.

Figure 1.6: Internal structure of a dual-stage HDD.

A laser Doppler vibrometer is used for measuring the lateral displace-

ment of the PZT active suspension. The simulations in this dissertation are

performed by considering a closed-loop sampling frequency of Fs = 40 kHz.

As such, the frequency response of the PZT active suspension is measured

up to 20 kHz as shown in Figure 1.7. The measured frequency response is

modeled using the modal summation form given as

P (s) =
M∑
i=1

Ri

s2 + 2ζiωis + ω2
i

, (1.10)

where M denotes the total number of resonant modes. Ri, ζi, and ωi are

the residue, damping ratio, and natural frequency of the ith resonant mode,
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respectively. For frequencies smaller than 2 kHz, the PZT active suspen-

sion behaves like a pure gain. The primary resonant mode is at 4.70 kHz,

and five resonant modes from 10 to 17 kHz are modeled as a single resonant

mode for simplicity. Phase lag due to time delay is not modeled for simplic-

ity, as well as the fact that integrated servo-mechanical design as depicted

in Figure 1.4 results in the focus on shaping the resonant modes and anti-

resonant zeros. From the frequency response of a fourth-order plant model

for the PZT active suspension as shown in Figure 1.7, it can be seen that

the main high-frequency resonant modes are at 4.70 kHz and 13.5 kHz. In
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Figure 1.7: Measured and modeled frequency responses of PZT active sus-
pension.

this dissertation, the focus of the proposed algorithms is on the reshaping

of the high-frequency resonant modes to satisfy performance and robust

specifications.
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1.8 Motivation of Dissertation

The traditional silo approach towards R&D is insufficient for satisfying

today’s challenging demands of high-performance mechatronics [4]. For

example, the achievable performance of the feedback control system may

be limited by the resonant poles and unshifted resonant zeros of the me-

chanical plant as discussed in Section 1.2. Simultaneous phase-stabilization

of resonant modes is easily carried out when the resonant modes at high

frequencies are in-phase. Besides, control system design is simplified by

mechanical plant properties such as controllability and dissipativity. Inte-

grated servo-mechanical design can be used for overcoming the limitations

as discussed in Sections 1.1 and 1.2.

The feedback control system is required to be robustly stable in the

presence of plant parametric perturbations, and the tradeoff between per-

formance and robust stability in control system design is well known. Prob-

abilistic and randomized methods have been applied to controller design

recently as discussed in Section 1.1. Deterministic uncertainties are consid-

ered by the integrated servo-mechanical design approaches in Section 1.3,

and the worst case approach for considering uncertainties may be too con-

servative. In the context of mass production of high quality and low cost

mechatronic products, more challenging performance specifications can be

satisfied by considering the desired defect tolerance level using a chance-

constrained robust stability criterion.

In the mechanical structure design stage of the R&D cycle, the Finite

Element Analysis (FEA) model is often correlated with the frequency re-

sponse function. For servo system analysis, the advantages of carrying out

controller design in frequency domain are well known. Bandwidths and
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stability margins are frequency domain specifications, and disturbance at-

tenuation capabilities are easily analyzed in the frequency domain using

the sensitivity transfer function. Besides, well-established graphical tools

such as the Nyquist plot can be utilized. As such, technical communication

between mechanical and servo engineers can be improved, and many ex-

isting methods for servo system analysis can be employed by carrying out

integrated servo-mechanical design in the frequency domain.

1.9 Contributions and Organization

This dissertation concentrates on the development of integrated servo-

mechanical design algorithms for LTI systems with a Single-Input-Single-

Output (SISO) mechanical plant to satisfy performance specifications and

chance-constrained robust stability criterion. As digital controllers are

commonly used in mechatronics, the algorithm is carried out in discrete-

time. The proposed algorithms are applied to finite frequency redesign of

the PZT active suspension from a commercial 3.5” dual-stage HDD at high

frequencies, and can be applied to the redesign of any mechatronic systems

with a SISO mechanical plant.

The original contributions of this dissertation are as follow:

1. Proposes a GKYP Lemma-based algorithm for satisfying performance

specifications by redesigning the high-frequency response of a me-

chanical plant based on a low-order controller.

2. Formulates a convex separable parametrization for finite frequency re-

shaping of both mechanical plant and low-order controller. Using the

GKYP Lemma and an approximation [47] based on the Conditional-
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Value-at-Risk (CVaR) measure, the performance specifications and

chance-constrained robust stability criterion are formulated as sev-

eral convex constraints. The robust stability criterion is based en-

tirely on the low-order moments and support of the plant parameter

distributions.

3. Develops a Nyquist plot-based approach for reshaping the response

of the mechanical plant at high frequencies based on a low-order con-

troller to satisfy performance specifications and chance-constrained

robust stability criterion. The robust stability criterion is formulated

using the mean and variance of the plant parameter distributions.

Based on the performance and robust stability specifications, allow-

able regions for the Nyquist plot of the open loop transfer function

are derived.

The rest of the dissertation is organized as follows:

• Chapter 2 details the design algorithm for reshaping the response

of the mechanical plant at high frequencies based on a low-order

controller. The conversion of performance specifications into LMI

constraints is shown.

• Chapter 3 illustrates the convex separable parametrization for reshap-

ing the responses of both mechanical plant and low-order controller

at high frequencies. The translation of performance specifications

and chance-constrained robust stability criterion into several LMIs

and linear inequalities is detailed. Comparative investigations are

also carried out, where alternative numerical methods for integrated

servo-mechanical design of robust mechatronics are considered.
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• Chapter 4 explores the use of Nyquist plane for reshaping the high-

frequency response of the mechanical plant based on a low-order

controller. Considering performance and chance-constrained robust

stability specifications, the derivation of allowable regions for the

Nyquist plot of the open loop transfer function is shown. Comparison

with other graphical approaches for robust feedback control system

design is also carried out.

• Chapter 5 summarizes the findings and results of this dissertation,

and presents some possible future research directions.
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Chapter 2

Integrated Servo-Mechanical

Design of High-Performance

Mechatronics Using

Generalized KYP Lemma

High-performance mechatronics have specifications which are difficult to

satisfy when the mechanical plant is non-minimum phase and a low-order

controller is used. In this chapter, an integrated servo-mechanical design

algorithm is proposed for systematic finite frequency reshaping of a me-

chanical plant using the Generalized Kalman-Yakubovich-Popov (GKYP)

Lemma. The synthesis of a minimum phase plant is carried out based on a

low-order controller, as well as performance and positive realness specifica-

tions of the overall control system. Simulation results using the proposed

algorithm achieve a high bandwidth control system with disturbance at-

tenuation capabilities at the phase-stabilized resonant modes of the plant.
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2.1 Background

Integrated servo-mechanical design is commonly solved using Linear Ma-

trix Inequality (LMI)-based approaches as discussed in Chapter 1. The

proposed LMI-based methods [25–27, 32] are usually iterative in nature.

Simultaneous damping variable and control design for collocated struc-

tural systems is formulated as a non-iterative LMI optimization problem

in [35]. In [38–40], the sensor or actuator placement problem was solved

by designing the mechanical plant using the GKYP Lemma to have certain

finite frequency positive realness and high gain properties.

In this chapter, we propose an integrated servo-mechanical design al-

gorithm for synthesizing a minimum phase feedback control system which

satisfies the frequency-domain performance specifications. The proposed

algorithm for finite frequency reshaping of a mechanical plant considering

a low-order controller is based on the GKYP Lemma and is non-iterative.

Apart from the resonant frequencies, the characteristics of the resonant

poles and anti-resonant zeros of the mechanical plant can be altered by the

proposed algorithm to satisfy the magnitude and phase constraints imposed

on the closed-loop frequency responses.

2.2 Youla Parametrization

The Youla parametrization approach is reviewed in this section, as the

design variables for finite frequency reshaping of the mechanical plant are

introduced using Youla parametrization in this chapter.

In Figure 2.1, a baseline controller C is designed based on the me-

chanical plant P in order to stabilize the feedback control system. The
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signals r, u, y, and w are as defined in Figure 1.2. The design vari-

ables for optimizing the controller are introduced by Q ∈ RH∞ using

the Youla parametrization approach, which is a well-known technique for

designing optimal controllers to satisfy performance and robust specifi-

cations. The methods of Linear Quadratic Estimator (LQE) design and

Linear Quadratic Regulator (LQR) design are commonly used for design-

ing the baseline controller, and a simple choice for Q is the Finite Impulse

Response (FIR) filter [15, 48].

Figure 2.1: Controller optimization using Youla parametrization.

2.3 GKYP Lemma-Based Integrated Servo-

Mechanical Design

The proposed algorithm for high-frequency reshaping of a mechanical plant

based on a low-order controller considering performance and positive real-

ness specifications is detailed in this section.

The application of the Youla parametrization approach to the synthesis

of a new mechanical plant PD is shown in Figure 2.2. It is worth noting

that mechanical realization of PD results in the ability to improve tracking

accuracy by overcoming the limitation of unshifted zeros as mentioned in
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Section 1.2. The signals r, u, y, and w represent reference input, control

input to PD, measurement output from PD, and output disturbance, re-

spectively. The low-frequency response of the original mechanical plant P

will be retained in PD, as the focus is on reshaping the high-frequency

response. As such, C in Figure 2.2 is a low-order controller for compen-

sating the low-frequency characteristics of P . The low-order plant PN is

subsequently designed based on C using LQE and LQR methods, which is

akin to the design of a baseline controller prior to controller optimization

as shown in Figure 2.1.

Figure 2.2: Mechanical plant redesign using Youla parametrization.

The details of PN are depicted in Figure 2.3, where Ĉ is an observer

of C. According to Figures 2.2 and 2.3, the state-space representation

from y to u is given by

xt+1 = Acxt − Bcyt,

ut = Ccxt − Dcyt, (2.1)

where (Ac, Bc, Cc, Dc) are state-space matrices of C, and xt denotes the
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Low-Order 
Plant

n

Figure 2.3: Detailed block diagram for the design of mechanical plant PD.

value of x at discrete-time sample t. As such, Ĉ is given by

x̂t+1 = Acx̂t − Bcyt + Ln(ut − ût), (2.2)

where

ût = Ccx̂t − Dcyt, (2.3)

yt = Knx̂t − vt. (2.4)

In (2.2) and (2.4), Ln and Kn denote the observer and feedback gain ma-

trices, respectively. To carry out Youla parametrization, v is introduced
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in (2.4), and e is given by

et = ut − ût. (2.5)

The interconnections between the blocks Ĉ(z), Cc, Dc, and Kn are graphical

representations of (2.2–2.5).

The design variables for shaping the high-frequency response of PD enter

affinely in the zero polynomial of FIR filter Q ∈ RH∞, and will be solved

subject to performance and positive realness constraints.

2.3.1 Performance and Positive Realness Specifica-

tions

From Figure 2.3, the sensitivity transfer function S is denoted by the closed-

loop from w to yw, and the complementary sensitivity transfer function T

is denoted by the closed-loop from r to y.

Using the proposed integrated servo-mechanical design algorithm, the

resonant poles of PD are shaped based on finite frequency constraints im-

posed on S. A performance specification is formulated as

‖S(θ̄)‖∞ < φ, (2.6)

where φ ∈ R
+ is given, and θ̄ is a finite frequency range as defined in

Section 1.5. This implies that the resonant poles of PD have to be designed

such that they are phase-stabilized by C.

The integrated servo-mechanical design algorithm ensures that there

are no unstable anti-resonant zeros through restricting T to be positive
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real within a finite frequency range. This method is based on the fact

that a discrete-time system with an equal number of inputs and outputs is

minimum phase if it is positive real [49].

It is assumed that PD(z) is a strictly proper plant of relative degree

one with no direct feedthrough. However, the relative degree of PD(s) is

dependent on the sampling rate as documented in [50]. In the next sec-

tion, the representation of performance specifications and positive realness

constraints as LMIs using the GKYP Lemma will be detailed along with

the presentation of the design steps.

2.3.2 Design Procedure

With reference to Figure 2.3, the steps for using the proposed integrated

servo-mechanical design algorithm are

• Step 1: Design a low-order controller C of order nc with state-space

matrices denoted as (Ac, Bc, Cc, Dc) to compensate for the low-frequency

response of the original plant P .

• Step 2: Compute observer gain matrix Ln and feedback gain matrix Kn

based on (2.2–2.4) using the methods of LQE and LQR, respectively.
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• Step 3: Formulate the equations given by

⎡
⎢⎣ xt+1

x̂t+1

⎤
⎥⎦=

⎡
⎢⎣ Ac −BcKn

LnCc AE

⎤
⎥⎦
⎡
⎢⎣ xt

x̂t

⎤
⎥⎦+

⎡
⎢⎣ −Bc Bc Bc

−LnDc LnDc Bc

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

wt

rt

vt

⎤
⎥⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

yw
t

yt

et

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

0 Kn

0 Kn

Cc −Cc

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣ xt

x̂t

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

1 0 −1

0 0 −1

−Dc Dc 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

wt

rt

vt

⎤
⎥⎥⎥⎥⎥⎦, (2.7)

where AE := Ac − BcKn − LnCc. The above state-space representation

represents the block diagram in Figure 2.3 with Q excluded.

• Step 4: Specify Q as a FIR filter of order nq. The transfer function of Q

is given by

Q =
qnqz

nq + qnq−1z
nq−1 + · · ·+ q1z + q0

znq
, (2.8)

where q = [ qnq qnq−1 · · · q0 ] is a vector of design variables. The

state-space matrices of Q are

Aq =

⎡
⎢⎣ 0 Inq−1

0 0

⎤
⎥⎦ , Bq =

⎡
⎢⎣ 0

1

⎤
⎥⎦ ,

Cq =

[
q0 q1 · · · qnq−1

]
, Dq = qnq . (2.9)

Set qnq to zero in order for PD to have a relative degree of one, as most

physical systems do not have direct feedthrough.

• Step 5: Let Gyww represent the closed-loop transfer function considering
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only input w and output yw. The state-space matrices of S = Gyww +

GywvQGew are obtained using

AS =

⎡
⎢⎢⎢⎢⎢⎣

Ayww 0 0

0 At 0

0 BqCt Aq

⎤
⎥⎥⎥⎥⎥⎦ , BS =

⎡
⎢⎢⎢⎢⎢⎣

Byww

Bt

BqDt

⎤
⎥⎥⎥⎥⎥⎦ ,

CS =

[
Cyww DqCt Cq

]
, DS = Dyww + DqDt, (2.10)

where (Ayww, Byww, Cyww, Dyww) and (At, Bt, Ct, Dt) are formulated us-

ing (2.7), and represent the minimal state-space realizations of Gyww

and GywvGew, respectively. To achieve
∥∥S(θ̄)

∥∥
∞ < φ using (1.6), the

requirement of having the unknown design variables enter affinely in

matrices CS and DS is fulfilled by choosing Q as a FIR filter. By re-

lating (2.10) to (1.1), it can be further observed that the resonant poles

of PD are shaped through the design variables in matrices CS and DS to

satisfy the constraints on S. For T = Gyr + GyvQGer, the state-space

matrices are given by

AT =

⎡
⎢⎢⎢⎢⎢⎣

Ayr 0 0

0 AtT 0

0 BqCtT Aq

⎤
⎥⎥⎥⎥⎥⎦ , BT =

⎡
⎢⎢⎢⎢⎢⎣

Byr

BtT

BqDtT

⎤
⎥⎥⎥⎥⎥⎦ ,

CT =

[
Cyr DqCtT Cq

]
, DT = Dyr + DqDtT , (2.11)

where (Ayr, Byr, Cyr, Dyr) and (AtT , BtT , CtT , DtT ) which are synthesized

using (2.7) are the minimal state-space realizations of Gyr and GyvGer,

respectively. Similarly, by relating (2.11) to (1.2), it can be seen that
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the anti-resonant zeros of PD are shaped through the design variables in

matrices CT and DT to satisfy the constraints on T .

• Step 6: Characterize the performance specifications as LMI constraints

on S using (2.10) and (1.6), and remove the effects of unstable anti-

resonant zeros by imposing constraints on T in the form of LMIs us-

ing (2.11) and (1.8).

• Step 7: Obtain the values of q and formulate the state-space matrices

of the designed plant PD(z) given by

APD =

⎡
⎢⎣ AE + LnDcKn BcCq − LnDcCq

BqDcKn − BqCc Aq − BqDcCq

⎤
⎥⎦,

BPD =

[
LT

n Bq
T

]T

, CPD =

[
Kn −Cq

]
, DPD = 0. (2.12)

The state-space matrices of the low-order plant PN are given by

APN = (AE + LnDcKn), BPN = Ln,

CPN = Kn, DPN = 0. (2.13)

The order of PN denoted as nn is equivalent to nc, and the order of PD

is equivalent to nn + nq.

2.4 Simulation Example

The plant model P (s) from Section 1.7 is discretized using a Zero-Order

Hold (ZOH) considering Fs, and the frequency response of P (z) is shown

in Figure 2.4. In Step 1 of the algorithm, a discrete-time first-order lag
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compensator C is designed to result in an open loop PC with a 0 dB

crossover frequency or open loop bandwidth of 1.80 kHz. The primary

resonant frequency of P is 2.6 times greater than the open loop bandwidth

as a result. This is a less conservative design compared to the rule of thumb

which requires the primary resonant mode to be 3 to 4 times greater than

the open loop bandwidth [20]. C is given by

C =
0.9366z − 0.3287

z − 0.9972
, (2.14)

and nc = 1. The frequency responses of C and PC are shown in Figure 2.4,

and the state-space matrices of C is obtained as (Ac, Bc, Cc, Dc). The
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Figure 2.4: Frequency responses of original plant model P , lag compen-
sator C, and open loop PC.

closed-loop is unstable due to the resonant mode at 4.70 kHz which is

neither gain- nor phase-stabilized.

The weights for LQE design in Step 2 are given by Q = 1 and R = 1.
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For the LQR design, the weights are given by Q = CT
c Cc and R = 1. Ln

and Kn are obtained as 0.7382 and 0.4469, respectively. In Step 3, (2.7) is

formulated using (Ac, Bc, Cc, Dc), Ln, and Kn. As the algorithm is used for

shaping two high-frequency resonant modes in this case, the formulation

of Q in Step 4 is carried out with nq = 4. With (Aq, Bq, Cq, Dq), (2.10)

and (2.11) are obtained in Step 5.

In Step 6, constraints are specified on S in the form of LMIs. The

constraints are

a)
∣∣S(θ̄a)

∣∣ < −20 dB, 0.975f1 (2π/Fs) ≤ θ̄a ≤ 1.025f1 (2π/Fs),

b)
∣∣S(θ̄b)

∣∣ < −3.6 dB, 0.975f2 (2π/Fs) ≤ θ̄b ≤ 1.025f2 (2π/Fs),

c)
∣∣S(θ̄c)

∣∣ < −1 dB, θ̄c ≤ 1.8 kHz (2π/Fs),

d)
∣∣S(θ̄d)

∣∣ < φd, 9 kHz (2π/Fs) ≤ θ̄d ≤ 9.2 kHz (2π/Fs), and

e)
∣∣S(θ̄e)

∣∣ < φe, 17.0 kHz (2π/Fs) ≤ θ̄e ≤ 20.0 kHz (2π/Fs),

where φd and φe are variables to be minimized. For Constraints (a–b), f1

and f2 are given by 4.70 kHz and 13.5 kHz, respectively.

Two phase-stabilized resonant modes will be created as a result of Con-

straints (a–b), and Non-Repeatable Run-Out (NRRO) induced by mechan-

ical vibrations of the resonant modes will be attenuated by the overall

control system. To have larger disturbance attenuation capabilities at the

phase-stabilized resonant modes, the resonant peaks will be increased. The

constraints imposed on |S(fa)| and |S(fb)| are based on the magnitude of P

at 4.70 and 13.5 kHz, respectively. Frequency ranges fa and fb are cho-

sen such that the resonant frequencies of PD will be at around 4.70 kHz

and 13.5 kHz, respectively.
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Constraint (c) is used to ensure that the magnitudes of PD and P are

comparable at low frequencies, which will in turn result in comparable

closed-loop bandwidths. When disturbance attenuation is achieved at cer-

tain frequencies, the sensitivity transfer function will be greater than 0 dB

at other frequencies beyond the open loop bandwidth according to Discrete

Bode’s Integral Theorem (DBIT). This phenomenon is known as spillover

effects. To reduce the spillover effects from disturbance attenuation at

around 4.70 and 13.5 kHz, Constraints (d–e) are included.

After minimizing φ4 + φ5 subject to the LMI constraints, q is obtained

in Step 7 as

q =

[
0 −0.4259 0.3452 −0.1783 0.7931

]
. (2.15)

The designed plant PD and low-order plant PN are obtained using (2.12)

and (2.13), respectively. The order of PN is given by nn = nc = 1, and the

order of PD is equivalent to nn +nq = 5 which is one order greater than the

order of P . The order of PD is increased in order for Constraints (a–b) to

be satisfied. In general, the minimum value of nq that is required will be

equivalent to two times the number of resonant modes to be shaped. The

choice of nq is also dependent on the constraints specified and should be

increased accordingly when required.

Based on the specified constraints, the sensitivity transfer function

with C and PD is shaped from the sensitivity transfer function with C

and PN as shown in Figure 2.5. From Figure 2.5, disturbance attenuation

capabilities resulting from two phase-stabilized resonant modes can be seen.

The frequency responses of PD and PN are shown in Figure 2.6, where it can

be seen that the phase of PD is smaller than −180◦ for frequencies greater
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than 11.8 kHz as a result of unstable anti-resonant zero at 12.4 kHz. As

such, the phase of the complementary sensitivity transfer function with C

and PD is smaller than −180◦ for frequencies greater than 11.3 kHz as

shown in Figure 2.7. As discussed in Section 1.2, unstable anti-resonant

zeros result in lengthened settling time of time responses, lowered closed-

loop bandwidth, and significant increase in magnitude of the sensitivity

transfer function at frequencies beyond the open loop bandwidth, etc. The

unstable anti-resonant zeros can be removed by an additional constraint

given by

f) Re
(
T (θ̄f )

)
> 0 for 11.9 kHz (2π/Fs) ≤ θ̄f ≤ 12.9 kHz (2π/Fs).

With Constraints (a–f), the minimum phase designed plant P MP
D is ob-

tained using

q =

[
0 −0.5325 0.4857 −0.2602 0.7740

]
. (2.16)

The order of P MP
D is similarly equivalent to nn+nq = 5. In the next section,

the simulation results are analyzed in detail.

2.5 Discussion of Results

The sensitivity transfer function with C and P MP
D is shown in Figure 2.5.

From Figure 2.5, it can be seen that spillover effects are reduced at fre-

quencies between 6.60 kHz and 12.4 kHz when there are no unstable anti-

resonant zeros. For frequencies greater than 14.6 kHz, spillover effects are

increased. However, the net result is a reduction in overall spillover effects

according to DBIT. The frequency responses of P MP
D and the complemen-
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Figure 2.7: Frequency responses of complementary sensitivity transfer func-
tions.

tary sensitivity transfer function are shown in Figures 2.6 and 2.7, respec-

tively. From Figure 2.7, it can be seen that the phase of the complementary

sensitivity transfer function is now greater than −180◦ for frequencies up

to the Nyquist frequency.

Although the closed-loop control system with the designed plants are

stable, it can be seen from Figures 2.5 and 2.7 that the sensitivity and

complementary sensitivity transfer functions are much greater than 0 dB

near the Nyquist frequency. This is due to the shaping of the resonant

mode at around 13.5 kHz which is in close proximity with the Nyquist

frequency. It is worth noting that if the sampling frequency is increased to

more than 100 kHz, the sensitivity and complementary sensitivity transfer

functions will be smaller than 5 and −3 dB, respectively, when near the

Nyquist frequency.
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As a result of Constraint (c), the magnitudes of PD and P MP
D are com-

parable to the magnitude of P at low frequencies as shown in Figure 2.6.

The resonant modes of PD are at 4.71 and 13.8 kHz. For P MP
D , the resonant

modes are at 4.71 and 13.4 kHz.

P , PD, and P MP
D comprise of a rigid body mode of pure gain for frequen-

cies less than 2 kHz, and flexible modes for frequencies greater than 2 kHz.

However, for both PD and P MP
D , the rigid body mode is separated from the

flexible modes by a stable anti-resonant zero at approximately 2.50 kHz.

The stable anti-resonant zero provides the required phase lead for the

phase-stabilization of the resonant mode at 4.71 kHz using C. An un-

stable anti-resonant zero at 12.4 kHz results in an out-of-phase resonant

mode at 13.8 kHz for PD. On the other hand, a stable anti-resonant zero

at 11.9 kHz results in P MP
D having an in-phase resonant mode at 13.4 kHz.

The frequency responses of the open loop transfer functions are shown

in Figure 2.8, where it can be seen that the open loop bandwidth is reduced

to approximately 1.20 kHz for both PDC and P MP
D C. This is due to the

anti-resonant zero at around 2.50 kHz. However, the rule of thumb for the

open loop bandwidth as mentioned in Section 2.4 remains satisfied.

The Nyquist plots of the open loop transfer functions are shown in

Figure 2.9. The enlarged Nyquist plots are shown in Figure 2.10, where

the dotted unit circle centered at the origin denotes the unit disc, and the

bold dashed unit circle centered at (−1 + j0) denotes the sensitivity disc

as reviewed in Section 1.6. The dotted straight lines from the origin to the

Nyquist curves in Figures 2.9 and 2.10 indicate the points which are furthest

from the origin. These points correspond to the resonant peaks in the

frequency responses of the open loop transfer functions. From Figures 2.9
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Figure 2.8: Frequency responses of open loop transfer functions.

and 2.10, it can be seen that while the resonant modes of P are not phase-

stabilized by C, the resonant modes of PD and P MP
D are phase-stabilized

by C even though PD has an out-of-phase resonant mode. This is due to

the fact that the resonant modes are not required to be in-phase in order

for them to be phase-stabilized for satisfying the disturbance attenuation

constraints on S. However, the trade-off is increased spillover effects as seen

in Figure 2.5. From Figure 2.10, it can be seen that the increased spillover

effects are due to the Nyquist curve of PDC entering and remaining in the

sensitivity disc over a wider range of frequency.

Although the five resonant modes which are in close proximity as shown

in Figure 1.7 can be individually considered when specifying the con-

straints, the resonant modes will be shaped by the algorithm as a single

resonant mode at around 13.5 kHz. The synthesis of distinct resonant

modes is dependent on their proximity and damping ratios. As a rough
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guide, the resonant frequencies have to be at least 1.5 times apart for the

synthesis of two distinct resonant modes with a small absolute difference

in damping ratios.

Following the synthesis of the feedback control system in simulation,

a continuous-time transfer function of the mechanical plant can be ob-

tained by performing an inverse ZOH. The frequency response is related

to mechanical design variables which are mass m, stiffness k, and damp-

ing coefficient B in order to mechanically realize the frequency response.

This can be carried out by curve-fitting using (1.10), where Ri = m−1
i ,

ζi = Bi(2
√

miki)
−1, and ωi =

√
kim

−1
i . It is worth noting that the curve-

fitted solution PD(s) is non-unique. The mechanical design variables will be

considered in the design of the mechanical structure using Computer-Aided

Design (CAD) software, and the process iterates between CAD and Finite

Element Analysis (FEA) till a close match between the FEA results and

the frequency response PD(s) is obtained. A prototype is constructed based

on the CAD design, and the measured frequency responses with the proto-

type and redesigned controller CD(z) should match closely the simulation

results. The additional steps which are necessary for practical realization

are summarized by the following block diagram.

Figure 2.11: Summary of additional steps for practical realization.

It is worth noting that redesigning the mechanical plant based on a

low-order controller to satisfy control specifications is in line with the per-
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spective of integrated servo-mechanical design. This is due to the fact that

the values of m, k, and B for mechanical realization are based on control

specifications in addition to satisfying mechanical objectives. In addition,

constraints can be placed on the plant parameters during the design phase

in order to ensure physical realizability of the plant design.

2.6 Summary

In this chapter, an integrated servo-mechanical design is used for the syn-

thesis of a minimum phase feedback control system which satisfies the

performance and positive realness specifications. A GKYP Lemma-based

integrated servo-mechanical design algorithm is proposed for systematic

finite frequency reshaping of a mechanical plant based on a low-order con-

troller. Simulation results using the proposed algorithm show that a high-

bandwidth control system with disturbance attenuation capabilities at the

phase-stabilized resonant modes of the plant is achieved.

In the next chapter, we consider the redesign of both mechanical plant

and controller to satisfy performance specifications and chance-constrained

robust stability criterion. A convex separable parametrization will be pro-

posed, and the robust stability criterion will be formulated based on low-

order moments and support.
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Chapter 3

Integrated Servo-Mechanical

Design of Robust

Mechatronics Based on

Ambiguous Chance Constraint

Simultaneous redesign of mechanical plant and controller to satisfy perfor-

mance specifications and robust stability criterion is generally a nonlinear

and nonconvex optimization problem. In this chapter, a convex separa-

ble parametrization for simultaneous finite frequency reshaping of both

mechanical plant and a low-order controller taking into account an indi-

vidual chance-constrained robust stability criterion is provided. Using the

Generalized Kalman-Yakubovich-Popov (GKYP) Lemma and considering

low-order moments and support, the robust stability criterion is formulated

as several convex constraints. Simulations results show that when distribu-

tional changes in plant parameters occur under moderate violation of the
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mean and variance assumptions during the design phase, the specified 1−ε

remains satisfied.

3.1 Background

In the servo system analysis stage, H∞ loop-shaping and μ-synthesis [15] are

well-known methods for robust feedback controller design considering the

worst-case scenario. Robust fixed-order controller design considering deter-

ministic polytopic uncertainties is a worst-case approach as well. Examples

include the generalized Kharitonov’s Theorem [51] and convex parametriza-

tions considering H∞/H2 constraints [52, 53]. Given all statistical moments

of the parametric perturbations, the desired defect tolerance level can be

satisfied using probabilistic and randomized methods [17, 54–57] which

will result in a controller that improves closed-loop performance. The

assumption on the statistical moments can be relaxed by considering a

truncated uniform distribution as the worst-case scenario [58, 59]. For am-

biguous chance-constrained problems where only a few statistical moments

are known, robust optimization algorithms are proposed [47, 60–62]. By

solely designing a controller based on the mechanical plant design, the feed-

back control system may have limited achievable performance and robust

stability as discussed in Chapter 1.

The simultaneous redesign of both mechanical plant and controller for

satisfying performance and robust stability specifications is a nonlinear and

nonconvex optimization problem, and various methods have been proposed

for deriving a convex approximation as discussed in Chapters 1 and 2. De-

terministic uncertainties are considered by the integrated servo-mechanical
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design approaches in [25, 27, 37, 40].

Furthering the redesign of a mechanical plant considered in Chapter 2,

a convex separable parametrization is proposed for simultaneous finite fre-

quency reshaping of both mechanical plant and a low-order controller to

satisfy performance specifications and an ambiguous chance-constrained

robust stability criterion. In order for the design variables to be solved

simultaneously and efficiently, the robust stability criterion which is based

on low-order moments and support is approximated [47, 62] using the

Conditional-Value-at-Risk (CVaR) measure. The algorithm is compared

with alternative methods for considering uncertainties in integrated servo-

mechanical design. The Kharitonov’s theorem and H∞ loop-shaping ap-

proaches are considered under deterministic assessment. Under proba-

bilistic assessment, distribution-free and distribution-based randomized ap-

proaches, as well as the H∞ probabilistic theory are considered.

3.2 Integrated Servo-Mechanical Design

Based on Chance Constraints

Integrated servo-mechanical design is carried out in this chapter using the

block diagram shown in Figure 3.1. The redesigned mechanical plant and

controller are denoted as PD and CD, respectively. The signals r, u, y,

and w are as defined in Chapter 2 for Figure 2.2. The transfer functions
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Figure 3.1: Block diagram for integrated servo-mechanical design.

of PD and CD are given by

PD =
NPD

DPD

=
bnp−λz

np−λ + · · · + b1z + b0

znp + anp−1znp−1 + · · ·+ a1z + a0
, (3.1)

CD =
NCD

DCD
, (3.2)

where np, λ, b0,1,··· ,np−λ, and a0,1,··· ,np−1 denote the order, relative degree,

zero polynomial coefficients, and pole polynomial coefficients of PD respec-

tively. The low-frequency response of the open loop transfer function PDCD

is determined by low-order transfer functions PN and C. In order to sat-

isfy the performance and robust stability specifications, the resonant poles

of PD and anti-resonant zeros of CD at high frequencies are shaped by
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design variables in QP and QC , respectively. QP and QC are given by

QP =
NQP

DQP
=

pnqp−1z
nqp−1 + · · ·+ p1z + p0

(z + α)nqp
, (3.3)

QC =
NQC

DQC
=

cnqcz
nqc + · · ·+ c1z + c0

(z + α)nqc
, (3.4)

where z = −α is specified as a high-frequency pole. The design vari-

able vector is given by q = [pnqp−1 · · · p1 p0 cnqc · · · c1 c0]
T in this chapter.

In (3.3), the order of QP is given by nqp = 2L, where L denotes the number

of high-frequency mechanical resonant modes for redesign. Let ncd denote

the desired order of CD, and let nc represent the order of C. The order

of QC in (3.4) is given by nqc = ncd − nc. The poles of QP and QC are

chosen to be identical to result in stable pole-zero cancellations in the open

loop transfer function PDCD. As such, the resonant poles and anti-resonant

zeros of PDCD at high frequencies are shaped by QP and QC , respectively.

The design of PN and C, and solving of q subject to performance and

chance-constrained robust stability specifications will be provided along

with the presentation of the design procedure in Section 3.3.

3.2.1 Performance Specifications

The performance specifications of the feedback control system are simi-

larly characterized as finite frequency bounded realness constraints on the

sensitivity transfer function S as shown by (2.6). Based on Figure 3.1

and (3.1–3.2), the closed-loop transfer function from w to yw is given by

S =
DPDDCD

DPDDCD + NPDNCD

. (3.5)
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As a result of unknown design variables in the denominator polynomial

of S, a sufficient condition given by [63]

∥∥∥∥DPDDCD

D̂

∥∥∥∥
∞

< (1 − ϕ)φ, (3.6a)∥∥∥∥1 − DPDDCD + NPDNCD

D̂

∥∥∥∥
∞

< ϕ, ϕ ∈ (0, 1), (3.6b)

is formulated in order to use the GKYP Lemma for satisfying (2.6). D̂

in (3.6) is specified as a reference characteristic polynomial for the re-

designed feedback control system.

In retrospect, the redesigned mechanical plant as obtained in Step 7

of the design procedure in Chapter 2 can be equivalently represented as a

transfer function given by

PD =
X̄ − M̄Q

Ȳ + N̄Q
, (3.7)

where N̄ , M̄ , X̄, and Ȳ ∈ RH∞ are specified as

N̄ = Gew, M̄ = Gywv,

X̄ = GyrN̄
−1

, Ȳ = GywwM̄
−1

. (3.8)

Based on N̄X̄ + M̄Ȳ ≡ 1 and C = N̄M̄
−1

, the sensitivity transfer function

is given by

S = (Ȳ + N̄Q)M̄

= Gyww + GywvQGew. (3.9)
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where it can be seen that the closed-loop characteristic polynomial of the

designed feedback control system is restricted to be equivalent to the spec-

ified polynomial D̂ derived from the denominator polynomials of M̄, Ȳ, N̄,

and Q.

It is worth noting that in this chapter, the closed-loop characteristic

polynomial is designed based on satisfying (3.6b) over finite frequency

ranges and the robust stability criterion in the next section. As compared

to the proposed method in Chapter 2 which restricts the closed-loop charac-

teristic polynomial to be equivalent to the specified D̂, the feedback control

system can be designed to be stable for a larger proportion of perturbed

plants.

3.2.2 Chance-Constrained Robust Stability Criterion

The robust stability criterion is formulated using the well-known positive

realness approach [64] for ensuring stability of the closed-loop poles. An

individual chance-constrained robust stability is formulated by specifying

a single positive realness criterion to be satisfied with a probability of at

least 1 − ε under parametric perturbations, where 1 − ε represents the

desired probability tolerance for closed-loop stability. In fact, the robust

stability criterion is an ambiguous chance constraint, where only the low-

order moments and support of the parametric perturbations are known.

From the perspective of satisfying a desired defect tolerance level in mass

production, the feedback control system is required to be stable for at least

a given (1 − ε) × 100% of the manufactured mechatronic products. It is

worth nothing that as ε tends towards zero, the robust stability criterion

tends towards the requirement of having stable feedback control systems
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for all manufactured mechatronic products under the worst-case scenario.

The individual chance-constrained robust stability criterion is derived as

follows.

The parametric perturbation of PD by random variables μk + δ̃k is

represented using multiplicative uncertainty, where μk is a given mean

value, and k = 1, 2, ..., K. As a simple example, consider PD with np = 2

and λ = 1. The perturbed plant P̃D is given by

P̃D =
b1(1 + μ2 + δ̃2)z + b0 − b1(μ2 + δ̃2)

z2 + a1(1 + μ1 + δ̃1)z + a0 − a1(μ1 + δ̃1)

=
b1z + b0 + b1(z − 1)(μ2 + δ̃2)

z2 + a1z + a0 + a1(z − 1)(μ1 + δ̃1)
, (3.10)

where −a1(μ1+δ̃1) and −b1(μ2+δ̃2) are for ensuring that the DC gains of PD

and P̃D are identical. Based on the above formulation, K = 2np − λ − 1.

The closed-loop characteristic equation ˜CE considering P̃D and CD is

derived as

˜CE =DCD[DPD + a1(z − 1)(μ1 + δ̃1)]

+ NCD[NPD + b1(z − 1)(μ2 + δ̃2)]. (3.11)

Let F (z, δ̃) = ˜CE/CE, where CE denotes the closed-loop characteristic

polynomial without plant parametric perturbations. The roots of ˜CE will

be stable for given μ + δ̃ if Re(F (θ, δ̃)) > 0 for all θ ∈ [0, π] [64]. Due to

unknown design variables in CE, consider F̂ (θ, δ̃) derived as

F̂ (θ, δ̃)=F̂0(θ)+F̂1(θ)δ̃1+F̂2(θ)δ̃2,

F̂0:=
DCD[DPD+a1(z−1)μ1]+NCD[NPD+b1(z−1)μ2]

D̂
,
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F̂1:=
DCD

D̂
a1(z−1),

F̂2:=
NCD

D̂
b1(z−1), (3.12)

where D̂ is as defined in (3.6). In general, F̂ (θ, δ̃) is obtained as

F̂ (θ, δ)=F̂0(θ)+

K∑
k=1

F̂k(θ)δ̃k,

F̂0:=

[
DCD[DPD+a1(z−1)μ1+· · ·+anp−1(z

np−1−1)μnp−1].

+NCD[NPD+b1(z−1)μnp+· · ·+bK−np+1(z
K−np+1−1)μK]

]
1

D̂
,

F̂ k:=

⎧⎪⎨
⎪⎩

DCD

D̂
ak(z

k−1) for k=1, 2, ..., np−1,

NCD

D̂
bk−np+1(z

k−np+1−1) for k=np, np+1, ..., K.

(3.13)

The following is the assumption on the low-order moments and support

of δ̃.

Assumption 3.1. The elements of δ̃ are stochastically independent and

zero mean random variables. Let μAk denote the mean value of |δ̃k| for k=

1, 2, ..., K, and let the support of [ |δ̃1| |δ̃2| · · · |δ̃K | ]T be given by [
¯
δA, δ̄A],

where
¯
δA, δ̄A∈[0,∞)K. As such, |δ̃k|−μAk are zero mean with finite positive

definite covariance matrix ΣA and support WA=[
¯
δA−μA, δ̄A−μA], where μA

represents [μA1 μA2 · · ·μAK ]T and −(
¯
δA−μA), δ̄A−μA∈[0,∞)K.

The robust stability criterion is formulated as an individual chance-

constrained problem given by

Prob
(
Re(F̂ (θ, δ̃))>0 ∀ θ∈[0, π]

)
≥1−ε, (3.14)
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where δ̃ satisfies Assumption 3.1.

Consider (AF̂ , BF̂ , CF̂0, DF̂0) and (AF̂ , BF̂ , CF̂ k, DF̂ k) as the state-space

representations of F̂0 and F̂k in (3.13) for k = 1, 2, ..., K, respectively. The

state-space realization of F̂ (θ, δ̃) is given by (AF̂ , BF̂ , CF̂ (δ̃), DF̂ (δ̃)), where

matrices CF̂ and DF̂ are obtained as

CF̂ =CF̂0+
K∑

k=1

CF̂ kδ̃k, DF̂ =DF̂0+
K∑

k=1

DF̂ kδ̃k, (3.15)

with DF̂0=1 and DF̂ k=0 for k = 1, 2, ..., K. Using (1.8) with state-space

matrices (AF̂ , BF̂ , CF̂ , DF̂ ), (3.14) can be equivalently represented as an in-

dividual chance-constrained Linear Matrix Inequality (LMI) problem given

by

Prob

⎛
⎜⎝
⎡
⎢⎣AF̂ BF̂

I 0

⎤
⎥⎦
∗

Π

⎡
⎢⎣AF̂ BF̂

I 0

⎤
⎥⎦+Θ(δ̃)<0

⎞
⎟⎠≥1−ε. (3.16)

In existing literature, (3.16) can be satisfied using distribution-based [17,

54–57, 65] and distribution-free randomized methods [58, 59]. We use the

CVaR approximation as it allows the plant and controller design variables

to be solved simultaneously and efficiently to satisfy both performance and

robust stability criterion. Besides, the designed feedback control system

will be robustly stable when distributional changes in plant parameters

occur under the assumed mean, variance, and support.
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3.2.3 CVaR Approximation of Robust Stability Cri-

terion

The following theorem enables a chance-constrained LMI problem to be

represented using several convex constraints under Assumption 3.1 and the

CVaR measure.

Theorem 3.1. The individual chance-constrained LMI specification given

by (3.16) is satisfied if there exist q ∈ R
nqp+nqc+1, ηa

0 , ηb
0, ηc

0, ηk, va, vb,

vc ∈ R, k = 0,1,...,K, ηa, ηb, ηc, ξa, ξb, ιa, ιb ∈ R
K such that

Re
(
F̂ 0(θ)

)
>η0 ∀ θ∈[0, π], (3.17a)

Re
(
F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (3.17b)

Re
(
−F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (3.17c)

va+vb+vc≤0, (3.17d)

−ηa
0 +(ηa)T μA+ξa

T
(
δ̄A−μA

)
+ιa

T |̄δA−μA|≤va, (3.17e)

ξa−ιa=ηa, ξa, ιa≥0, (3.17f)

−ηb
0+
(
ηb
)T

μA+Υξb
T
(
δ̄A−μA

)
+Υιb

T |̄δA−μA|≤vb, (3.17g)

ξb−ιb =−ηb, ξb, ιb≥0, (3.17h)

−ηc
0+(ηc)T μA+

√
Υ
∥∥∥√ΣA (ηc)

∥∥∥
2
≤vc, (3.17i)

−ηa
0 −ηb

0−ηc
0=−η0, (3.17j)

ηa+ηb+ηc=η, η :=[ η1 η2 · · · ηK ]T ≥0, (3.17k)

where Υ := (1/ε − 1), and (3.17a–3.17c) are formulated using (1.8). In

addition, δ̄A,
¯
δA, μA, and ΣA are as defined in Assumption 3.1.

Remark 3.1. In Theorem 3.1, 1 − ε can be maximized by using a binary
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search algorithm [47].

Remark 3.2. The number of linear inequality constraints is constant, while

the number of LMI constraints is linearly proportional to K. As such,

computational complexity is significantly reduced as compared to randomized

methods.

The proof of Theorem 3.1 is as follows.

Proof. The proof for Theorem 3.1 is established based on Assumption 3.1

and the relationship between F̂ (θ, δ̃) and F̂k(θ) in (3.13) for k = 0, 1, ..., K.

For simplicity, F̂ (θ, δ̃) and F̂k(θ) are represented using F̂ and F̂k in the

proof from here onwards, respectively. As the denominators of F̂ and F̂k

are identical for k = 0, 1, ..., K,

Re(F̂ )=Re(F̂ 0)+
K∑

k=1

Re(F̂ kδ̃k) ∀ θ∈[0, π] , (3.18)

and Re(F̂ ) > 0 for all θ ∈ [0, π] is equivalent to

Re(F̂ 0)+
K∑

k=1

Re(F̂ kδ̃k)>0 ∀ θ∈[0, π] . (3.19)

As a result, the individual chance-constrained problem given by (3.14) is

equivalent to

Prob

(
Re(F̂ 0)+

K∑
k=1

Re(F̂ kδ̃k)>0 ∀ θ∈[0, π]

)
≥1−ε. (3.20)

Due to F̂0, F̂k, and −F̂k ∈ RH∞, the gains of the frequency responses

of F̂0, F̂k, and −F̂k are finite for all θ ∈ [0, π], where k = 1, 2, ..., K. As such,
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there exists a finite lower bound η0 ∈ R on Re(F̂ 0) for all θ ∈ [0, π], and

a finite lower bound −ηk on both Re(F̂ k) and Re(−F̂ k) for all θ ∈ [0, π],

where ηk ≥ 0 for k = 1, 2, ..., K, resulting in the formulation of (3.17a–

3.17c).

A finite lower bound on Re(F̂ kδ̃k) for all θ ∈ [0, π] is derived as −|δ̃k|ηk,

where k = 1, 2, ..., K. This is shown by the following relationships, where

for δ̃k > 0 and k = 1, 2, ..., K,

Re(F̂ kδ̃k)=δ̃kRe(F̂k)>−δ̃kηk ∀ θ∈[0, π] , (3.21)

and for δ̃k < 0 and k = 1, 2, ..., K,

Re(F̂kδ̃k)=|δ̃k|Re(−F̂k)>−|δ̃k|ηk ∀ θ∈[0, π] . (3.22)

As a result, (3.20) is satisfied if

Prob
(
η0 −

∑K
k=1 ηk|δ̃k| ≥ 0

)
≥ 1 − ε. (3.23)

The chance-constrained linear inequality in (3.23) can be approximated

as a second-order conic optimization problem under the CVaR measure [47]

by equivalently representing (3.23) as

Prob

(
η0−ηT μA−

K∑
k=1

ηk

(
|δ̃k|−μAk

)
≥0

)
≥1−ε, (3.24)

where |δ̃k| − μAk satisfies Assumption 3.1. Using the second-order conic

approximation, (3.24) is satisfied if the constraints in (3.17d–3.17k) are

fulfilled based on the lower bounds η0 and −ηk obtained, where k =
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1, 2, ..., K.

Remark 3.3. Using (3.23), closed-loop stability under parametric pertur-

bations is evaluated based on a lower bound on the positive realness measure

in (3.20). As a result, the design problem can be solved efficiently using

several convex constraints under the CVaR approximation.

Remark 3.4. CVaR approximation is the tightest convex approximation

of the individual chance constraint given by (3.23) [62].

3.3 Design Procedure

With reference to Figure 3.1, the proposed integrated servo-mechanical

design algorithm is detailed as

• Step 1: Obtain the low-order plant given as

PN =
NPN

DPN
, (3.25)

by modeling the low-frequency response of the original plant P which is

sampled with sampling frequency Fs. Let the order of PN be denoted

as nn. In addition, the relative degrees of PN and PD are equivalent.

• Step 2: Design a low-order controller C of order nc such that PNC

achieves the desired low-frequency gain and open loop bandwidth. Let

the transfer function of C be given by

C =
NC

DC

. (3.26)
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• Step 3: Formulate QP and QC in Figure 3.1 using (3.3) and (3.4),

respectively.

• Step 4: Let the reference closed-loop characteristic polynomial be given

by

D̂ = (DPNDC + N̄PNNC)(z + α)(nqp+nqc). (3.27)

Obtain (AS1, BS1, CS1, DS1) as the state-space matrices of

S1 :=
DPNDCDQC(DQP + NQP )

D̂
. (3.28)

Derive (AS2, BS2, CS2, DS2) as the state-space matrices of

S2 := 1 − NS2

D̂
,

NS2 := DPNDCDQC(DQP + NQP ) + N̄PNNCNQCDQP , (3.29)

where N̄PN := kNNPN . The value of kN is given by

kN =
NPN(z)NC(z) + DPN(z)DC(z) − DPN(z)DC(z)(z + α)nqp+nqc

NPN(z)NC(z)(z + α)nqp+nqc

∣∣∣∣
z=1

,

(3.30)

and is used for ensuring that the DC gains of D̂ and (DPNDC +NPNNC)

are identical in order for the low-frequency gains of PDC and PNC to be

approximately identical.

Specify a finite frequency performance specification ‖S(θ̄)‖∞ < φ as

‖S1(θ̄)‖∞ < (1 − ϕ)φ, (3.31a)
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‖S2(θ̄)‖∞ < ϕ, ϕ ∈ (0, 1), (3.31b)

and represent the constraints as LMIs using the GKYP Lemma.

• Step 5: To ensure that the poles of PD are stable, restrict S1 to be

positive real around the resonant frequencies by specifying Re(S1(θ̄)) > 0

using (1.8). Specify Re(Qc(θ̄)) > 0 using (1.8) to remove unstable zeros

in CD.

• Step 6: Using (3.13) and (3.15), the state-space representations of F̂0

and F̂k are derived as (AF̂ , BF̂ , CF̂0, DF̂0) and (AF̂ , BF̂ , CF̂ k, DF̂ k) for k =

1, 2, ..., K, respectively. In addition, AF̂ = AS1 = AS2 and BF̂ = BS1 =

BS2. Formulate the robust stability criterion in (3.14) as several convex

constraints using Theorem 3.1.

• Step 7: Obtain the values of q, and synthesize PD and CD using

PD =
NPD

DPD
= kP

N̄PN

DPN

DQP

DQP + NQP
, (3.32)

CD =
NCD

DCD
=

1

kP

NC

DC

NQC

DQC
, (3.33)

where kP in (3.32) and (3.33) is a constant gain for ensuring identical

low-frequency gains between PD and P . The order of PD is given by np =

nn + nqp.
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3.4 Simulation Example

Based on Step 1 of the design algorithm, PN is obtained as

PN =
NPN

DPN
=

0.3817

z + α
, (3.34)

where α=−0.09478 results in a stable pole at 15 kHz which is greater than

the resonant frequencies of P (z). The frequency response of PN is shown

in Figure 3.2. A first-order lag compensator C is designed as

C =
NC

DC

=
0.6079z − 0.1264

z − 0.9979
(3.35)

in Step 2 in order for PNC to have an open loop bandwidth of 1.35 kHz.

The frequency responses of C and PNC are shown in Figure 3.3.

In order to redesign L = 2 resonant modes at 4.70 kHz and 13.5 kHz

to be phase-stabilized by CD, QP and QC are specified in Step 3 us-

ing nqp = 4, nqc = 4, and α = −0.09478. The required state-space matrices

in Steps 4–5 are formulated with kN = 2.2307 and α = −0.09478, and the

performance specifications are

a)
∣∣S1(θ̄a)

∣∣ < (1 − ϕ1)10(−l1/20), 0.975f1 (2π/Fs) ≤ θ̄a ≤ 1.025f1 (2π/Fs),

b)
∣∣S2(θ̄a)

∣∣ < ϕ1,

c)
∣∣S1(θ̄c)

∣∣ < (1 − ϕ2)10(−l2/20), 0.975f2 (2π/Fs) ≤ θ̄c ≤ 1.025f2 (2π/Fs),

d)
∣∣S2(θ̄c)

∣∣ < ϕ2,

e)
∣∣S1(θ̄e)

∣∣ < (1−ϕ3)10(−15/20), 0.05 kHz (2π/Fs) ≤ θ̄e ≤ 0.2 kHz (2π/Fs),

f)
∣∣S2(θ̄e)

∣∣ < ϕ3,
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g)
∣∣S1(θ̄g)

∣∣ < (1 − ϕ4)10(10/20), 1.35 kHz (2π/Fs) ≤ θ̄g ≤ 20 kHz (2π/Fs),

h)
∣∣S2(θ̄g)

∣∣ < ϕ4,

i) Re
(
S1(θ̄a)

)
> 0,

j) Re
(
S1(θ̄c)

)
> 0, and

k) Re
(
T1(θ̄k)

)
> 0, 10 kHz (2π/Fs) ≤ θ̄k ≤ 0.975f2 (2π/Fs).

For Constraints (a–d), l1, f1, l2, and f2 are given by 20 dB, 4.70 kHz,

1 dB, and 13.5 kHz, respectively. Gains l1 and l2 are chosen based on the

magnitude of P at f1 and f2, respectively. Constraints (e–f) are specified

to achieve an open loop bandwidth of approximately 1.35 kHz, and Con-

straints (g–h) are used for limiting the spillover effects from disturbance

attenuation.

In Step 6, the robust stability criterion is formulated. As an exam-

ple, the poles of PD are perturbed under a constant low-frequency gain.

The zeros are not perturbed due to their relatively small effects on closed-

loop stability. As such, K = 4 and μ+δ̃=[μ1+δ̃1 μ2+δ̃2 μ3+δ̃3 μ4+δ̃4 ]T .

The following are the assumptions on the low-order moments and sup-

port to result in unstable primary and secondary resonant poles. μ is

given by [ 0.75 1 −0.5 −0.2 ]T , and the mean μAk, variance, and support

of |δ̃k| are given by 0.0937, 0.00439, and [0, 0.281] for k = 1, 2, respectively.

For k = 3, 4 the mean μAk, variance, and support are given by 9.37 ×
10−3, 4.39 × 10−5, and [0, 0.0281], respectively.

In Step 7, q which satisfies Constraints (a–k) and the convex constraints

in Theorem 3.1 is obtained. In addition, 1 − ε is maximized as 0.3281. PD
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is obtained as

PD = kP
N̄PN

z − 0.09478

(z − 0.09478)4

(z − 0.09478)4 + NQP

= kP
N̄PN(z − 0.09478)3

(z − 0.09478)4 + NQP
, (3.36)

where NQP is given by NQP = −0.2177z3 + 0.3136z2 − 0.1094z + 0.6132,

and kP = 0.8486. The order of PD is given by nn + nqp = 5. With a

stable pole-zero cancellation at z = 0.09478, the order of PD is equivalent

to the order of P which is four. Compared to the order of PD in Chapter 2,

a fourth-order plant is obtained in this case as a result of simultaneous

optimization of the low-order controller for satisfying Constraints (a–d).

The fifth-order CD is given by

CD =
1

kP

NC

DC

NQC

(z − 0.09478)4
, (3.37)

where NQC is given by NQC = 1.4717z4 − 1.4507z3 + 0.8310z2 − 1.4717z +

1.2083.

3.4.1 Performance Analysis

The frequency responses of the redesigned plant PD and controller CD

are shown in Figures 3.2 and 3.3, respectively. The frequency response

of the open loop transfer function PDCD is shown in Figure 3.3, where

the bandwidth is slightly reduced to 1.16 kHz due to zeros at 2.56 kHz.

The sensitivity transfer function S is shown in Figure 3.4, where it can be

seen that disturbance is attenuated at 4.71 kHz and 13.6 kHz as a result

of phase-stabilized resonant modes. The rough guide for the synthesis of
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two distinct resonant modes, and realization of the mechanical plant are as

discussed in Chapter 2.
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Figure 3.2: Frequency responses of original plant P , low-order plant PN ,
and redesigned plant PD.

3.4.2 Robustness Analysis

In order to demonstrate the robust stability of the designed feedback control

system under distributional changes, triangle- and β(0.15, 0.09)-distributed

plant parameters are considered. In this case, the mean and variance as-

sumptions are violated by the β(0.15, 0.09) distribution.

The low-order moments and support of the triangle distribution are as

assumed in the design phase for |δ̃k|, where k = 1, 2, 3, 4. The values are

tabulated under Case 2 of Tables 3.1 and 3.2. Compared to the triangle-

distribution, the mean μAk and variance of the β(0.15, 0.09)-distributed |δ̃k|
are greater than the assumed values in order for the support to remain
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identical, where k = 1, 2, 3, 4. It is worth noting that the modal values of

the triangle and β(0.15, 0.09) distributions are at
¯
δA and δ̄A, respectively.

The number of Independent and Identically Distributed (i.i.d.) samples

required is determined using [17, 55]

H ≥ log1
ς

log 1
1−ε

, (3.38)

where 1 − ς is the confidence interval of the estimate. The choice of H =

10000 for the triangle and β(0.15, 0.09) distributions is sufficient for esti-

mating 1 − ε ≤ 0.999 with 1 − ς = 0.999.

For the purpose of comparison, two additional feedback control systems

are synthesized based on Constraints (a–k) and the assumptions under

Cases 1 and 3 in Tables 3.1 and 3.2. Robust stability evaluation is similarly

carried out using triangle and β(0.15, 0.09) distributions.

Table 3.1: Assumptions on |δ̃1| and |δ̃2|
|δ̃k|, k = 1, 2

Mean μAk Variance Support
Case 1 0.078 0.00304 [0 0.234]
Case 2

(Section 3.4.1)
0.0937 0.00439 [0 0.281]

Case 3 0.109 0.00598 [0 0.328]

Table 3.2: Assumptions on |δ̃3| and |δ̃4|
|δ̃k|, k = 3, 4

Mean μAk Variance Support

Case 1 7.8 × 10−3 3.04 × 10−5 [0 0.0234]

Case 2
(Section 3.4.1)

9.37 × 10−3 4.39 × 10−5 [0 0.0281]

Case 3 1.09 × 10−2 5.98 × 10−5 [0 0.0328]
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The results are tabulated in Table 3.3, and plotted in Figure 3.5. Under

distributional changes in plant parameters for all cases, the proportion of

feedback control systems with stable closed-loop poles remains larger than

the specified 1 − ε during the design phase.

The CVaR measure is applied to the sufficient condition for closed-

loop stability in (3.23). Considering the triangle distributions, a smaller

proportion of the feedback control systems satisfy (3.23). Although the use

of (3.23) results in a more conservative feedback control system design, it

ensures that the specified 1 − ε is satisfied when the assumptions on the

mean and variance are moderately violated.

The difference between the specified 1 − ε and the values obtained us-

ing (3.23) is mainly due to the fact that phase-stabilization of resonant

modes for satisfying the performance specifications result in a highly ro-

bust feedback control system. Without considering the robust stability

criterion, 80.38% of the feedback control systems have stable closed-loop

poles when evaluated using triangle-distributed parametric perturbations

with statistical moments as assumed in Case 2. In addition, there is con-

servatism due to the CVaR measure as well. However, the CVaR approxi-

mation is the tightest convex approximation of (3.23) [62].

Table 3.3: Summary of Closed-Loop Robust Stability Evaluation
Proportion of feedback control systems

Specified
1 − ε

(3.23) Stable closed-loop poles
Triangle Triangle β(0.15, 0.09)

Case 1 60.94% 87.4% 99.57% 78.93%
Case 2

(Section 3.4.1)
32.81% 75.36% 97.15% 70.58%

Case 3 13.28% 64.86% 93.93% 71%
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Figure 3.5: Stability of synthesized feedback control systems under varied
plant parametric distributions.

3.5 Comparative Investigations

In this section, the proposed design algorithm is compared with alternative

methods for considering uncertainties in integrated servo-mechanical design

of robust mechatronics. For deterministic assessment, the Kharitonov’s

Theorem and H∞ loop-shaping approaches are considered. A distribution-

free randomized approach and the H∞ probabilistic theory are considered

under probabilistic assessment, and can be regarded as probabilistic coun-

terparts of the Kharitonov’s Theorem and H∞ loop-shaping approaches,

respectively. In addition, a distribution-based approach is also considered

under probabilistic assessment.

The frequency response of the mechanical plant is shaped based on

the designed controller CD from Section 3.4 for all methods. The fre-

quency responses of the open loop and sensitivity transfer functions from
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all methods are compared in Figures 3.6 and 3.7. Robust stability evalua-

tion is carried out considering ten thousand i.i.d. samples, and the triangle

and β(0.15, 0.09) distributions are as assumed in Case 2 of Section 3.4.2.

The results are tabulated in Table 3.4.

3.5.1 Deterministic Assessment

The design problem using a Kharitonov’s Theorem-based approach is con-

vexified using the robust stability criterion given by

Re(F̂ (θ, δ̃)) > 0 ∀ θ ∈ [0, π], (3.39)

where δ̃k varies within [−0.281, 0.281] and [−0.0281, 0.0281] for k = 1, 2,

and k = 3, 4, respectively. The intervals are specified based on the support

assumptions in Section 3.4, and Constraints (a–k) are not considered. In

this case, the resonant magnitude and disturbance attenuation capability at

the primary resonant frequency is reduced as shown in Figures 3.6 and 3.7,

respectively. It is worth noting that Constraints (a–k) cannot be satisfied

simultaneously when included in the design problem.

Using the H∞ loop-shaping approach, a plant PD1 is designed such that

∥∥Wp1(1 + PD1CD)−1
∥∥
∞ < 1, (3.40)∥∥∥∥Wu

PD1CD

1 + PD1CD

∥∥∥∥
∞

< 1, (3.41)

are satisfied, where Wp1 denotes a low-order performance weight. The

robust stability criterion is given by (3.41). The transfer function Wu is an
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upper bound on the magnitude of Δh given by

Δh =
P̃D − PD

PD
, h = 1, 2, ..., 10000, (3.42)

where PD is as synthesized in Section 3.4. In (3.42), each P̃D is generated

using triangle-distributed plant parameters with low-order moments and

support as assumed in Section 3.4. Robust stability evaluation is carried

out by considering PD1(1 + Δh) as the perturbed plant, where Δh for h =

1, 2, ..., 10000, are generated using the triangle or β(0.15, 0.09) distributions.

3.5.2 Probabilistic Assessment

The robust stability criterion for the distribution-free randomized approach

is equivalent to (3.14). Using the uniformity principle [58], δ̃k in (3.14) is as-

sumed to be uniformly-distributed in the intervals given by [−0.281, 0.281]

and [−0.0281, 0.0281] for k = 1, 2, and k = 3, 4, respectively. Based on the

results in Section 3.4, 1 − ε is specified as 0.3281. Using (3.38), H = 7 is

sufficient for satisficing (3.14) with a confidence interval of 1 − ς = 0.999.

The plant design problem is solved using (3.16), where δ̃ is substituted

with the i.i.d. samples. From Figures 3.6 and 3.7, it can be seen that Con-

straints (a–k) are not all satisfied in order to fulfill the robust stability

criterion.

Using the H∞ probabilistic theory, the objective is to synthesize a re-

designed plant PD2 such that

∥∥Wp2(1+PD2CD)−1
∥∥
∞<1, (3.43)

Prob

(∥∥∥∥Δh
PD2CD

1+PD2CD

∥∥∥∥
∞

<1

)
≥1−ε, h=1, 2, ..., 7 (3.44)
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where Wp2 denotes a low-order performance weight. The robust stabil-

ity criterion to be satisficed is given by (3.44), where 1 − ε is similarly

specified as 0.3281, and seven i.i.d samples are considered. For the de-

sign phase, Δh ∈ RH∞ is generated using (3.42) and considering triangle-

distributed plant parameters with low-order moments and support as as-

sumed in Section 3.4. The approach for generating Δh is identical to the H∞

loop-shaping method for the evaluation phase.

The distribution-based approach [65] is carried out by considering (3.14)

as the robust stability criterion, where 1− ε is similarly specified as 0.3281.

The random variables δ̃k are assumed to be triangle-distributed with low-

order moments and support as assumed in Section 3.4 for k = 1, 2, ..., 4,

and seven i.i.d. samples are considered. The plant design problem is solved

using (3.16), where δ̃ is substituted with the i.i.d. samples. In this case,

Constraints (a–k) are simultaneously satisfied.

In general, probabilistic methods consider the stabilization of a smaller

number of perturbed plants compared to their deterministic counterparts.

The result is an improvement in closed-loop performance as shown in Fig-

ures 3.6 and 3.7. From Table 3.3, the Kharitonov’s Theorem-based ap-

proach synthesized a feedback control system which achieves the largest

proportion of stable feedback control systems.

Both H∞ methods produced higher order plants with negligible distur-

bance attenuation capabilities at the resonant frequencies. However, only

a small proportion of feedback control systems are stable during robust

evaluation. This is due to gain-stabilization of resonant modes using the

small-gain theorem. The Nyquist stability criterion is violated when the

poles of perturbed PD1 and PD2 are unstable. Feedback control systems
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with phase-stabilized resonant modes can be achieved using H∞ methods

when the inverse performance weighting functions include high-frequency

anti-resonant zeros. However, it is challenging to design non-conservative

weighting functions for satisficing the performance specifications, and ro-

bust stability may be reduced as a result.

Among the distribution-free, distribution-based, and CVaR-based ap-

proaches, the largest and smallest perturbation sets are considered by the

distribution-free and distribution-based approaches for satisficing a par-

ticular 1 − ε, respectively. As a result, the CVaR-based approach results

in a more robust feedback control system compared to the distribution-

based approach. Compared to the distribution-free randomized method,

the CVaR-based approach results in a feedback control system which is

less robust but satisfies Constraints (a–k).

Table 3.4: Comparison of Closed-Loop Robust Stability
Proportion of feedback

control systems
(Stable closed-loop poles)
Triangle β(0.15, 0.09)

Kharitonov’s Theorem-based 100% 100%
H∞ loop-shaping 34.78% 31.8%
Distribution-free 100% 100%
H∞ probabilistic 37.44% 32.9%

Distribution-based 91.76% 68.69%
CVaR-based 97.15% 70.58%

3.6 Summary

In this chapter, a convex separable parametrization in integrated servo-

mechanical design is used for the synthesis of a feedback control system
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which satisfies the performance specifications and chance-constrained ro-

bust stability criterion. Simulations results demonstrate that the speci-

fied 1−ε remains satisfied when distributional changes in plant parameters

result in moderate violation of the mean and variance assumptions dur-

ing the design phase. As illustrated by the comparative investigations,

the CVaR approximation enables performance specifications to be satis-

fied based on the specified 1− ε, and ensures a higher proportion of stable

feedback control systems compared to the distribution-based approach.

In the next chapter, we consider the identification of allowable regions

for the Nyquist plot of the open loop transfer function in order to carry

out finite frequency redesign of the mechanical plant based on a low-order

controller. The allowable regions will be derived based on performance

specifications and a chance-constrained robust stability criterion.
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Chapter 4

Integrated Servo-Mechanical

Design of Chance-Constrained

Robust Mechatronics Using

Nyquist Plots

Integrated servo-mechanical design is commonly solved using numerical

methods. In this chapter, finite frequency reshaping of the mechanical

plant based on a low-order controller is carried out by identifying allowable

regions for the Nyquist plot of the open loop transfer function. The allow-

able regions are derived based on performance specifications and chance-

constrained robust stability criterion. Simulation results using the pro-

posed approach synthesize a feedback control system with high-frequency

disturbance attenuation specifications further satisfied based on the robust

stability criterion.
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4.1 Background

The Bode and Nyquist plots are well-established graphical tools commonly

used for the design of feedback control systems. SBode [66] and RBode [67]

plots are proposed to include performance and robust performance con-

straints on the open loop Bode plot, respectively. In [67], deterministic

and norm-bounded uncertainties are considered. The CRCBode plot is

proposed in [68] for designing robust controllers for nonlinear single-input-

single-output systems using the Bode plot. Phase and gain information of

deterministic uncertainties are represented on the Bode plot in [69].

System properties such as minimum phase, positive realness, and ro-

bust stability can be easily observed using the Nyquist plot. The inverse

Nyquist array [70] is proposed for designing multi-variable feedback control

systems. In order to improve tracking-following performance, the Nyquist

plot is used for designing an optimal adaptive feedforward cancellation fil-

ter [71] to reject high-frequency disturbances. The Popov and circle crite-

ria are proposed in [72] for designing an absolutely stable feedback control

system considering sector-bounded time-invariant and time-varying non-

linearities in the feedback path, respectively. Robust feedback controller

is designed in [73] by formulating circle condition-based frequency shaping

as Linear Matrix Inequalities (LMIs). Individual generators in a multi-

machine network are robustly stabilized in [74] by sequential relation to

the circle criterion. In [51], the generalized Kharitonov’s theorem is visual-

ized on the Nyquist plane. Robust stability of the feedback control system

in the presence of positive real and negative imaginary uncertainties can be

ensured by restricting the complementary sensitivity transfer function to

the right [75] and lower [76] half of the Nyquist plane, respectively. In [14],
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control design was carried out under a unified framework considering the

unit disc, robust disc, and sensitivity disc regions in the Nyquist plane.

In this chapter, a graphical approach is proposed for reshaping the high-

frequency characteristics of the mechanical plant based on a low-order con-

troller to satisfy performance specifications and chance-constrained robust

stability criterion. The robust stability criterion is formulated using the

mean and variance of the plant parameter distributions. The fundamental

significance of developing the graphical approach is to relate the analytical

approach in Chapter 3 to the commonly used Nyquist plot which has sev-

eral well-established theories for feedback control system design. Based on

the performance and robust stability specifications, allowable regions for

the Nyquist plot of the open loop transfer function are derived. As such,

integrated servo-mechanical design is carried out without solving LMIs,

and tradeoff between performance and chance-constrained robust stability

specifications is easily visualized based on a single Nyquist plot.

4.2 Performance and Robust Stability Spec-

ifications

Let the transfer function of the redesigned mechanical plant PD be given

by (3.1). Plant design variables for shaping the high-frequency resonant

modes and anti-resonant zeros are included in NPD and DPD in order for

performance specifications and robust stability criterion to be satisfied us-

ing a low-order controller C given by (3.26). Let the vector of plant design

variables be similarly denoted as q, where q will be obtained based on

allowable regions for the Nyquist plot of open loop transfer function PDC.
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4.2.1 Performance Specifications

The performance specifications are represented as finite frequency bounded

realness constraints on the sensitivity transfer function. In this chapter, the

sensitivity transfer function is given by

S =
DPDDC

DPDDC + NPDNC
, (4.1)

considering a unity feedback control system with PD and C in the feed-

forward path. A performance specification formulated as (2.6) is satisfied

using a convex approximation given by

‖S1(θ̄)‖∞ < (1 − ϕ)φ, (4.2a)

‖S2(θ̄)‖∞ < ϕ, ϕ ∈ (0, 1), (4.2b)

which is the approach used in Step 4 of the design algorithm in Chapter 3.

In this chapter, S1 and S2 are given by

S1 =
DPD(θ̄)DC(θ̄)

D̂(θ̄)
,

S2 = 1 − DPD(θ̄)DC(θ̄) + NPD(θ̄)NC(θ̄)

D̂(θ̄)
, (4.3)

where D̂ similarly represents a reference characteristic equation for the

redesigned feedback control system.

4.2.2 Chance-Constrained Robust Stability Criterion

The parametric perturbation of PD by random variables δ̃k is represented

using the multiplicative uncertainty structure given in (3.10), where μk = 0
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and k = 1, 2, ..., K. Using the same method in Chapter 3, F̂ (θ, δ̃) is derived

as

F̂ (θ, δ)=F̂0(θ)+

K∑
k=1

F̂k(θ)δ̃k,

F̂0:=
DCDPD+NCNPD

D̂
,

F̂ k:=

⎧⎪⎨
⎪⎩

DC

D̂
ak(z

k−1) for k=1, 2, ..., np−1,

NC

D̂
bk−np+1(z

k−np+1−1) for k=np, np+1, ..., K.

(4.4)

The robust stability criterion is similarly formulated as an individual

chance-constrained problem given by (3.14). In order to represent the ro-

bust stability criterion as constraints on the Nyquist plane, the CVaR-based

approximation in Chapter 3 is simplified by using only the assumed μA, ΣA,

and the specified 1−ε. Using the simplified approximation, the robust sta-

bility criterion is convexified using the following theorem.

Theorem 4.1. The individual chance-constrained specification in (3.14) is

satisfied if there exist plant design vector q and ηk∈R, where k=0, 1, ..., K,

such that

Re
(
F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (4.5a)

Re
(
−F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (4.5b)

Re

(
DPD(θ)DC(θ)+NPD(θ)NC(θ)

D̂(θ)

)
−�>0∀ θ∈[0, π], (4.5c)

�=(η)TμA+
√

Υ
∥∥∥√ΣA (η)

∥∥∥
2
, (4.5d)

η :=[ η1 η2 · · · ηK ]T ≥0, (4.5e)

where Υ:=(1/ε−1), and μA and ΣA are as defined in Assumption 3.1.

76



The proof for Theorem 4.1 is as follows.

Proof. In Chapter 3, it has been proven that based on the mean μA, vari-

ance ΣA, and support [
¯
δA, δ̄A] assumptions of |δ̃| in Assumption 3.1, the

individual chance-constrained problem in (3.14) can be approximated by

the convex constraints in (3.17).

Using only mean μA and variance ΣA, the constraints in (3.17) are

simplified as

Re
(
F̂ 0(θ)

)
>η0 ∀ θ∈[0, π], (4.6a)

Re
(
F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (4.6b)

Re
(
−F̂ k(θ)

)
>−ηk ∀ θ∈[0, π], k=1, 2, ..., K, (4.6c)

vc≤0, (4.6d)

−η0+(η)T μA+
√

Υ
∥∥∥√ΣA (η)

∥∥∥
2
≤vc, (4.6e)

η :=[ η1 η2 · · · ηK ]T ≥0. (4.6f)

The constraints in Theorem 4.1 are obtained by letting vc=0 and combin-

ing (4.6a) with (4.6e).

4.3 Main Results

In this section, the performance specifications in (4.2) and robust stability

criterion formulated using Theorem 4.1 are translated into allowable re-

gions for the Nyquist plot of open loop transfer function PDC. It is worth

noting that when the sensitivity disc in Section 1.6 is of radius 1/φ, the

avoidance of the sensitivity disc by the open loop transfer function PDC

over a specific frequency range corresponds to |1+PDC|−1<φ over the same
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frequency range, which coincides with a performance specification. The re-

sults in this section is based on extending the sensitivity disc concept in

order to include chance-constrained robust stability. For simplicity, a poly-

nomial D̂(θ̄) which is a function of the finite frequency range θ̄ is represented

using D̂ in this section, unless otherwise stated.

4.3.1 Performance Specifications on Nyquist Plane

The following lemma is used for representing part of the performance spec-

ifications as positive realness constraints.

Lemma 4.1. The constraints in (4.2b) is equivalent to positive realness

constraints given by

Re

(
DPDDC+NPDNC

D̂

)
>1−ϕ,

Re

(
DPDDC+NPDNC

D̂

)
<1+ϕ. (4.7)

Proof. A relation between Bounded Real Lemma and Positive Real Lemma

is established in [77] for θ̄:=[0, π], and therefore holds for θ̄:=[θl̄, θū]. Based

on the relation in [77], the constraint in (4.2b) is equivalent to

Re

(
D̂−ϕ−1(D̂−DPDDC+NPDNC)

D̂+ϕ−1(D̂−DPDDC+NPDNC)

)
>0. (4.8)

In [78], it is shown that (4.8) is satisfied if and only if

Re

(
D̂−ϕ−1(D̂−DPDDC+NPDNC)

D̂

)
>0,

Re

(
D̂+ϕ−1(D̂−DPDDC+NPDNC)

D̂

)
>0, (4.9)
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are satisfied. The constraints in (4.9) can be rewritten as

⎧⎪⎨
⎪⎩

Re
(
1−ϕ−1+ϕ−1(DPDDC+NPDNC)

D̂

)
>0

Re
(
1+ϕ−1−ϕ−1(DPDDC+NPDNC)

D̂

)
>0

≡

⎧⎪⎨
⎪⎩

Re
(

DPDDC+NPDNC

D̂

)
>1−ϕ

Re
(

DPDDC+NPDNC

D̂

)
<1+ϕ

.

(4.10)

Using Lemma 4.1, the relation between ϕ from the performance spec-

ifications and � from the robust stability criterion is established by the

following theorem.

Theorem 4.2. The H∞ norm of S is minimized to (�φ(2−�)−1, φ) when ϕ

is equivalent to 1−�, ‖S1‖∞<(�)φ is satisficed, and ‖S2‖∞<1−� is satisfied.

Proof. From (4.2b), it can be seen that satisfying the bounded realness

constraint implies

1−ϕ<

∥∥∥∥DCDPD+NCNPD

D̂

∥∥∥∥
∞

<1+ϕ. (4.11)

As a result,

(1−ϕ)φ

1+ϕ
<‖S‖∞<φ (4.12)

when (4.11) is combined with (4.2a), where (4.2a) is satisficed. In addi-

tion, (1−ϕ)φ
1+ϕ

decreases as ϕ is increased.

In order to fulfill (2.6) and (3.14), the constraints in (4.7) and (4.5c)

have to be satisfied. From the relationship between ϕ and � as shown in

Figure 4.1, it can be seen that when 1−ϕ is smaller than �, the constraint
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given by (4.5c) may not be satisfied. As such, the maximum value of ϕ

in order to satisfy all constraints is given by 1−�, where �∈(0, 1). By

Figure 4.1: Relationship between ϕ and �.

substituting ϕ with 1−� in (4.12), the constraint given by

(�)φ

2−�
<‖S‖∞<φ (4.13)

is obtained when ‖S1‖∞<(�)φ is satisficed, and ‖S2‖∞<1−� is satisfied.

Remark 4.1. From Figure 4.1 and (4.13), it is worth noting that per-

formance can be improved based on the knowledge of the robust stability

criterion. The tradeoff in robust stability increases as � is reduced to zero,

and vice versa as � is increased to one.

The following Lemma is used for translating the performance specifica-

tions into graphical constraints on the Nyquist plane.

Lemma 4.2. The constraints in (4.2a–4.2b) are equivalent to

∥∥∥∥∥
(

D̂

DPDDC
−1

)
+1

∥∥∥∥∥
∞

>
1

φ
+ϕ

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

, (4.14a)

∥∥∥∥∥
(

D̂

DPDDC
−1

)
−NPDNC

DPDDC

∥∥∥∥∥
∞

<ϕ

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

. (4.14b)
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Proof. The constraint given by

∥∥∥∥DPDDC

D̂

∥∥∥∥
∞

<(1−ϕ)φ (4.15)

is equivalent to

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

>
1

(1−ϕ)

1

φ

≡
∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞
−ϕ

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

>
1

φ

≡
∥∥∥∥∥
(

D̂

DPDDC

−1

)
+1

∥∥∥∥∥
∞

>
1

φ
+ϕ

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

. (4.16)

In addition, the constraint given by

∥∥∥∥1−DPDDC+NPDNC

D̂

∥∥∥∥
∞

<ϕ (4.17)

is equivalent to

∥∥∥∥∥D̂−(DPDDC+NPDNC)

DPDDC

DPDDC

D̂

∥∥∥∥∥
∞

<ϕ

≡
∥∥∥∥∥ D̂

DPDDC
−
(

1+
NPDNC

DPDDC

)∥∥∥∥∥
∞

∥∥∥∥DPDDC

D̂

∥∥∥∥
∞

<ϕ

≡
∥∥∥∥∥
(

D̂

DPDDC

−1

)
+

NPDNC

DPDDC

∥∥∥∥∥
∞

<ϕ

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

. (4.18)

Based on Theorem 4.2 and Lemma 4.2, ‖S‖∞ can be reduced to ( 	φ
2−	

, φ)
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using

∥∥∥∥∥
(

D̂

DPDDC
−1

)
+1

∥∥∥∥∥
∞

>
1

φ
+(1−�)

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

, (4.19a)

∥∥∥∥∥
(

D̂

DPDDC
−1

)
−NPDNC

DPDDC

∥∥∥∥∥
∞

<(1−�)

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

. (4.19b)

A graphical representation of (4.19a–4.19b) is shown in Figure 4.2. The

−10 −5 0 5 10 15

−10

−5

0

5

10

Im
ag

in
ar

y 
A

xi
s

Real Axis

Increases
when � is
reducedP̂D(z)C(z)

Disc of radius
1/φ from
performance
specification

Figure 4.2: Allowable regions (shaded) for Nyquist plot of PDC based on
performance and robust stability specifications.

dark shaded area is made up of discs of radius (1−�)
∥∥∥ D̂(θ)

DPD(θ)DC(θ)

∥∥∥
∞

cen-

tered at
(

D̂(θ)
DPD(θ)DC(θ)

−1
)

for θ∈θ̄. For simplicity, it is sufficient to only plot

the discs at θ=θl̄ and θ=θū. In fact,
(

D̂(z)
DPD(z)DC(z)

−1
)

can be regarded as

a fictitious system P̂D(z)C(z). The closed-loop characteristic polynomial

from the negative feedback loop of P̂D(z)C(z) is equivalent to D̂(z). The

Nyquist plot of P̂D(θ)C(θ) for θ∈θ̄ is represented using the thick dashed-
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line. From Figure 4.2, it can be seen that the constraint in (4.19a) is

satisficed when the dark shaded area just avoids the dashed sensitivity disc

of radius 1/φ. The point (−1+j0) is indicated by the cross. In order to

satisfy (4.19b), it can be seen that the Nyquist plot of PDC has to be within

the dark shaded area. The derivation of the light shaded area based on the

robust stability criterion is detailed in the next section.

4.3.2 Chance-Constrained Robust Stability Criterion

on Nyquist Plane

The following Lemma is used for translating the positive realness constraint

from the robust stability criterion into an equivalent bounded realness con-

straint.

Lemma 4.3. The positive realness constraint given by (4.5c) is equivalent

to

∥∥∥((�+1) D̂
DPDDC

−1
)
−NPDNC

DPDDC

∥∥∥
∞∥∥∥((�−1) D̂

DPDDC
−1
)
−NPDNC

DPDDC

∥∥∥
∞

<1. (4.20)

Proof. Using the relation between Bounded Real Lemma and Positive Real

Lemma [77],

Re

(
DPDDC+NPDNC

D̂

)
−�>0,

≡
∥∥∥∥∥D̂−DPDDC−NPDNC+�D̂

D̂+DPDDC+NPDNC−�D̂

∥∥∥∥∥
∞
≤1

≡
∥∥∥∥∥∥

D̂
DPDDC

−1−NPDNC

DPDDC
+ 	D̂

DPDDC

−
(

D̂
DPDDC

+1+NPDNC

DPDDC
− 	D̂

DPDDC

)
∥∥∥∥∥∥
∞

<1
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≡

∥∥∥((�+1) D̂
DPDDC

−1
)
−NPDNC

DPDDC

∥∥∥
∞∥∥∥((�−1) D̂

DPDDC
−1
)
−NPDNC

DPDDC

∥∥∥
∞

<1. (4.21)

Based on Lemma 4.3, the following Lemma is used for representing the

robust stability criterion as constraints on the Nyquist plane.

Lemma 4.4. The constraint in (4.20) can be satisfied using

∥∥∥∥∥
(

D̂

DPDDC
−1

)
−NPDNC

DPDDC

∥∥∥∥∥
∞

<(1−�)

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

, (4.22)

where �∈(0, 1).

Proof. The H∞-norm measures in the numerator and denominator of (4.20)

can be regarded as the distance between NPDNC

DPDDC
and (�+1) D̂

DPDDC
−1, and

the distance between NPDNC

DPDDC
and (�−1) D̂

DPDDC
−1 on the Nyquist plane

for θ∈[0, π], respectively. The constraint in (4.20) is satisfied for NPDNC

DPDDC

designed to be between � D̂
DPDDC

−1 and (�+1) D̂
DPDDC

−1 on the Nyquist

plane for θ∈[0, π]. As a result,

∥∥∥∥∥
(

(�+1)
D̂

DPDDC

−1

)
−NPDNC

DPDDC

∥∥∥∥∥
∞

<

∥∥∥∥∥
(

(�+1)
D̂

DPDDC

−1

)
−
(

�
D̂

DPDDC

−1

)∥∥∥∥∥
∞

≡
∥∥∥∥∥
(

(�+1)
D̂

DPDDC
−1

)
−NPDNC

DPDDC

∥∥∥∥∥
∞

<

∥∥∥∥∥ D̂

DPDDC

∥∥∥∥∥
∞

(4.23)

is a sufficient condition for satisfying (4.20). By applying Triangle Inequal-

ity, (4.23) can be satisfied using (4.22).
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The constraint in (4.22) corresponds to the constraint in (4.19b) for θ∈
[0, π]. As such, both performance and robust stability specifications are

based on restricting
∥∥∥( D̂

DPDDC
−1
)
−NPDNC

DPDDC

∥∥∥
∞

to less than (1−�)
∥∥∥ D̂

DPDDC

∥∥∥
∞

over their respective frequency ranges.

The light shaded area in Figure 4.2 is derived from (4.22) for θ∈[0, π]

excluding θ̄ from the performance specification. The thick dotted line repre-

sents the Nyquist plot of P̂DC over the same frequency range. The Nyquist

plot of PDC has to be within both light and dark shaded areas in order to

satisfy the robust stability constraint in (4.22). The performance specifica-

tions will be satisfied by a less robust feedback control system with higher

performance when � is decreased. This is due to the fact that a reduction

in � results in an increase in the width of the shaded areas as shown in

Figure 4.2, and the magnitude of P̂D(θ̄)C(θ̄) has to be increased in order

to satisfice (4.19a). In addition, the shaded areas will not encircle (−1+j0)

when D̂(z) and DPD(z)DC(z) are Schur stable.

4.3.3 Relation between LMI and Graphical

Approaches

Let (AD̂, BD̂, CS1(q), DS1) and (AD̂, BD̂, CS2(q), DS2) represent the state-

space realizations of S1 and S2, respectively. The state-space representation

of of DPDDC+NPDNC

D̂
is denoted as (AD̂, BD̂, CCE(q), DCE). Using the Gen-

eralized Kalman-Yakubovic-Popov (GKYP) Lemma, solving for the plant

design variables in q to satisfy the constraints in (4.2a–4.2b) is equivalent

to finding ϕ, Hermitian matrices ΞS1 and ΞS1, as well as positive definite
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matrices VS1 and VS2 such that

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎣ Λ11(ΞS1, VS1) Λ12(ΞS1, VS1)

Λ21(ΞS1, VS1) Λ22(ΞS1)

⎤
⎥⎦−
⎡
⎢⎣ 0 0

0 I

⎤
⎥⎦
⎡
⎢⎣ CS1(q)

∗

D∗
S1

⎤
⎥⎦

[
CS1(q) DS1

]
−((1−ϕ)φ)2

⎤
⎥⎥⎥⎥⎥⎦<0, (4.24)

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎣ Λ11(ΞS2, VS2) Λ12(ΞS2, VS2)

Λ21(ΞS2, VS2) Λ22(ΞS2)

⎤
⎥⎦−
⎡
⎢⎣ 0 0

0 I

⎤
⎥⎦
⎡
⎢⎣ CS2(q)

∗

D∗
S2

⎤
⎥⎦

[
CS2(q) DS2

]
−ϕ2

⎤
⎥⎥⎥⎥⎥⎦<0, (4.25)

where

⎡
⎢⎣ Λ11(Ξ, V ) Λ12(Ξ, V )

Λ21(Ξ, V ) Λ22(Ξ)

⎤
⎥⎦

:=

⎡
⎢⎣ AD̂ BD̂

I 0

⎤
⎥⎦

∗

Π(Ξ, V )

⎡
⎢⎣ AD̂ BD̂

I 0

⎤
⎥⎦ , (4.26)

and Π(Ξ, V ) is defined based on the finite frequency range θ̄ as detailed in

Section 1.5. Using Schur’s complement, (4.24) is equivalent to

−((1−ϕ)φ)2<0 (4.27a)⎛
⎜⎝
⎡
⎢⎣ C∗

S1

D∗
S1

⎤
⎥⎦
⎞
⎟⎠

+⎛
⎜⎝Λ−

⎡
⎢⎣ 0 0

0 I

⎤
⎥⎦
⎞
⎟⎠([ CS1 DS1

])+

<
[−((1−ϕ)φ)2]−1

(4.27b)

From (4.27b), it can be seen that
[−((1−ϕ)φ)2]−1

increases when ϕ is

increased. As a result, the solution space of ΞS1, VS1, and q for satisfy-

ing (4.27) is increased. For (4.25), an increase in ϕ will similarly result in
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an increase in the solution space of ΞS2, VS2, and q.

Solving for the plant design variables to satisfy constraint (4.5c) is equiv-

alent to obtaining �, ΞCE, and VCE>0 to satisfy

⎡
⎢⎣Λ11(ΞCE , VCE) Λ12(ΞCE , VCE)

Λ21(ΞCE , VCE) Λ22(ΞCE)

⎤
⎥⎦+

⎡
⎢⎣ 0 −CCE(q)∗

−CCE(q) −DCE−D∗
CE+2�

⎤
⎥⎦<0,

(4.28)

where the LMI in (4.28) is derived using the GKYP Lemma. Based on the

Schur’s complement, (4.28) is equivalent to

Λ22<−2�+DCE+D∗
CE, (4.29a)

([Λ12−C∗
CE])+ Λ11 ([Λ21−CCE ])+<(Λ22−DCE−D∗

CE+2�)−1. (4.29b)

In this case, it can be seen that a smaller � will result in an increase in the

solution space of ΞCE to satisfy (4.29a) as DCE=1. For a given Λ22(ΞCE),

a reduction in � increases the value of (Λ22−DCE−D∗
CE+2�)−1, and the

solution space of VCE and q for satisfying (4.29b) is increased. As a result,

solving for the plant design problem using the LMI approach is dependent

on the values ϕ and �.

For the graphical approach in Section 4.3, solving for (4.14a–4.14b)

and (4.20) is equivalent to solving for the LMI constraints in (4.24–4.25)

and (4.28), respectively. Based on ϕ=1−�, (4.14a–4.14b) is visualized as

shown in Figure 4.2, where the size of the dark shaded area representing

the allowable region for the Nyquist plot of PDC is enlarged with an in-

crease in ϕ. In order for performance and robust stability specifications

to be based on
∥∥∥( D̂

DPDDC
−1
)
−NPDNC

DPDDC

∥∥∥
∞

over their respective frequency
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ranges, (4.22) is derived as a sufficient condition for satisfying (4.20). In

Figure 4.2, the light and dark shaded areas representing the allowable re-

gions based on (4.22) are enlarged with a reduction in �. It is worth noting

that the LMI constraints are guaranteed to be satisfied when PDC is de-

signed to satisfy the graphical constraints on the Nyquist plane.

Remark 4.2. The graphical constraints in this chapter are sufficient con-

ditions for satisfying the numerical constraints for performance and robust

stability in Chapter 3. This is due to the fact that (4.24–4.25) are used

for specifying the performance specifications in Chapter 3, and (4.28) is

formulated based on a robust stability criterion which considers a larger

perturbation set as a result of excluding the support sets of δ̃.

4.4 Design Procedure

The proposed graphical approach for integrated servo-mechanical design is

detailed as

• Step 1: Obtain a low-order plant PN as described in Step 1 of the design

procedure in Chapter 3.

• Step 2: Design the low-order controller C to satisfy the conditions in

Step 2 of the design procedure in Chapter 3. In addition, let NC and DPN

have identical roots in order to allow C to be factorized from the designed

open loop transfer function PDC. The effects of imperfect pole-zero

cancellation are considered by the robust stability criterion.

• Step 3:
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Specify the reference closed-loop characteristic polynomial D̂ using

(DPNDC +kNNPNNC)(z+α)2L, (4.30)

where α corresponds to a root at high frequencies, and L represents the

number of high-frequency resonant modes to be redesigned. kN is given

by

kN=
NPN(z)NC(z)+DPN(z)DC(z)−DPN(z)DC(z)(z+α)2L

NPN(z)NC(z)(z+α)2L

∣∣∣∣
z=1

,

(4.31)

and is used for ensuring that the low-frequency gains of PDC and PNC

are approximately identical.

• Step 4: Obtain an initial design of the fictitious system P̂DC= D̂
DPDDC

−
1. The polynomial DPD(z):=DPN(z)DQ(z) is specified based on the

performance specifications at high frequencies. DQ(z) can be obtained

by discretizing the polynomial DQ(s)=
L∏

l=1

(s2+2ζlωls+ω2
l ) using matched

transformation. For l=1, 2, ..., L, the natural frequency ωl is initialized as

the corresponding resonant frequency of P (z), and the damping ratio ζl

is initialized using

Mr=(2ζl

√
1−ζ2

l )
−1, (4.32)

where Mr is the desired amount of disturbance attenuation at ωl.

• Step 5: Based on the specified 1−ε, μA, and ΣA, determine the value of �

using (4.5a)–(4.5b) and (4.5d). The robust stability criterion cannot be

satisfied for large values of 1−ε, μA, and ΣA such that �≥1. In (4.5a)–
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(4.5b), F̂k is formulated based on the known P̂D of order nn+2L us-

ing (4.4), and −ηk is obtained as the tightest lower bound on Re
(
F̂ k(θ)

)
and Re

(
−F̂ k(θ)

)
for all θ∈[0, π], where k=1, 2, ..., K. Plot each perfor-

mance specification as a sensitivity disc of radius 1/φ, and obtain the

allowable regions for the Nyquist plot of PDC based on (4.19b).

• Step 6: Demarcate the allowable regions based on (4.22) which is derived

from the robust stability criterion.

• Step 7: Design P̂DC such that the sensitivity discs from the performance

specifications are just avoided as shown in Figure 4.2. The constraint

in (4.19a) is satisficed as a result. P̂DC can be designed by by adjusting

the value of ζl beginning with the largest resonant mode. A sensitivity

disc can be avoided by reducing the value of ζl, where l=1, 2, ..., L.

• Step 8: Obtain the Nyquist plot of PDC as a curve which passes through

the allowable regions. A simple choice is given by kP P̂DC, where kP is a

constant gain. The order of PD is given by np=nn+2L.

The flowchart shown in Figure 4.3 is a summary of the above iterative

algorithm.

Remark 4.3. The main advantage of the above graphical approach is the

derivation of allowable regions on the Nyquist plot for the redesigned open

loop transfer function PDC, as opposed to a single solution using the ana-

lytical approach in Chapter 3. The allowable regions are useful when con-

sidering the fact that practical realization might require small deviations

from the obtained design in simulation. The other advantage of the graphi-

cal approach is ease of implementation as it involves the plotting of Nyquist

plots and allowable regions without the use of numerical solvers.
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Figure 4.3: Summary of design algorithm.

From the perspective of computational complexity, there is no obvious

advantage using the graphical approach. For the analytical approach, the

number of unknown variables to be solved is greater than the number of de-

sign variables for the feedback control system. This is due to the Hermitian

matrices Ξ and V in the GKYP Lemma-based LMIs, and slack variables

from the CVaR approximation. On the other hand, the iterative graphical

approach involves graph plotting instead of solving for unknown variables.

4.5 Simulation Example

According to the design procedure, the low-order plant PN is obtained

as (3.34) in Step 1. In Step 2, a first-order lag compensator C is designed
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as

C=
NC

DC
=

0.5539z−0.0525

z−0.9979
(4.33)

to result in an open loop control system PNC with an open loop bandwidth

of 1.35 kHz. In order to redesign L=2 resonant modes to be phase-stabilized

by C, the characteristic polynomial D̂ is formulated in Step 3 using L=

2, α=0 which result in dead-beat poles, and kN=1.

The performance specifications are

a)
∣∣S(θ̄a)

∣∣<−l1, 0.975f1 (2π/Fs) ≤θ̄a≤ 1.025f1 (2π/Fs) and

b)
∣∣S(θ̄b)

∣∣<−l2, 0.975f2 (2π/Fs) ≤θ̄b≤ 1.025f2 (2π/Fs),

where l1, f1, l2, and f2 are given by 20 dB, 4.70 kHz, 1 dB, and 13.5 kHz,

respectively. Gains l1 and l2 are chosen as described in Chapter 3. The

constraints on low-frequency gain and spillover effects are not included in

this case as the focus is on further satisfying the disturbance attenuation

specifications based on the robust stability criterion. The initial design of

the fictitious system P̂DC is obtained in Step 4 using M1=10(l1/20) and M2=

10(l2/20).

For Steps 5–7, the desired probability tolerance for closed-loop stability

is specified as 1−ε=0.50. As an example, the numerator and denomina-

tor coefficients of the fifth order and relative degree one P̂ are perturbed

by δ̃=[ δ̃1 δ̃2 · · · δ̃8 ]T according to the structure in (3.10), where each element

of δ̃ is assumed to vary within [−0.08, 0.08] as a result of mass production.

Using the uniform distribution, μAk of |δ̃k| is given by 0.04 for k=1, 2, ..., 8,

and ΣA is given by 0.0231I. The uniform distribution is used solely for the

purpose of deriving the low-order moments for the CVaR approximation.
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In fact, there are many other distributions with the assumed mean and

variance.

According to Constraints (a–b), sensitivity discs of radii 10 and 1.12

are plotted on the Nyquist plane. The discs are shown in Figures 4.4

and 4.5, where (−1+j0) is indicated by a cross. The allowable regions for

the Nyquist plot of PDC are obtained, and the Nyquist plot of the final

design for the fictitious system is shown in Figures 4.4 and 4.5. The values

of ζ1 and ζ2 for the final design of P̂DC are given by 0.0251 and 0.0747,

respectively.

In Figure 4.4, the allowable regions based on Constraint (a) and the

robust stability criterion is shown. For frequency range θ̄a, the Nyquist plot

of P̂DC is represented using the thick dashed-line, and the dark shaded area

represents the region which the Nyquist plot of PDC has to pass through.

It can be seen that P̂DC is designed such that the dark shaded area just

avoids the dashed disc.

The allowable regions based on Constraint (b) and the robust stability

criterion is shown in Figure 4.5. The thick dashed-dot line represents the

Nyquist plot of P̂DC for frequency range θ̄b, and the dark shaded area

represents the region which the Nyquist plot of PDC has to enter for θ∈θ̄b.

In Figures 4.4 and 4.5, the thick dotted line and the light shaded area

represent the Nyquist plot of P̂DC and the allowable regions as a result

of the robust stability criterion for the frequency range [2π500, 2π20000]

excluding θ̄a∪θ̄b, respectively. The Nyquist plot of P̂DC is not shown for

frequencies less than 0.5 kHz due to the focus on performance specifications

and frequency response changes at high frequencies.

In Step 8, PDC is obtained using kP=1.0593, and np=5. The order
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Figure 4.4: Nyquist plot of PDC (thick solid lines) passing through allow-
able regions from Constraint (a) and robust stability criterion.
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Figure 4.5: Enlarged Nyquist plot of PDC (thick solid lines) passing
through allowable regions from Constraint (b) and robust stability crite-
rion.
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of PD is greater than the order of P by one as discussed in Chapter 2. The

Nyquist plot of PDC is shown by the solid lines in Figures 4.4 and 4.5, where

the discontinuities are used to indicate the intervals where performance

specifications are considered. The frequency response of PD with resonant

frequencies at 4.7 kHz and 13.5 kHz is derived as shown in Figure 4.6.
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Figure 4.6: Frequency responses of original mechanical plant P and re-
designed plant PD.

4.6 Performance and Robustness Analysis

The frequency responses of PC and PDC are shown in Figure 4.7. The

resonant modes of P are neither gain nor phase-stabilized by C, while both

resonant modes of PD are phase-stabilized by C. However, the open loop

bandwidth of PDC is reduced to 0.9 kHz mainly as a result of an anti-

resonant zero at 2.12 kHz. The frequency response of the sensitivity trans-

fer function (1+PDC)−1 is shown in Figure 4.8. From Figure 4.8, it can
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be seen that disturbance attenuation capabilities at the phase-stabilized

resonant modes are guaranteed as a result of designing PDC based on sat-

isfying the graphical constraints. Due to increased disturbance attenuation

capabilities based on the robust stability criterion as mentioned in Theo-

rem 4.2, the resonant peaks of PD are larger compared to P as shown in

Figure 4.6.

The open loop bandwidth and disturbance attenuation capabilities can

be increased further by increasing the controller gain or kP in Step 8 while

satisfying the graphical constraints. However, spillover effects as described

in Section 2.4 will be increased, and robust stability will be reduced as

a result. The spillover effects may also be increased when unstable zeros

are placed by the algorithm for phase-stabilizing the resonant modes. This

may occur due to requiring greater disturbance attenuation at the resonant

modes and/or a reduced α in Step 3. The rough guide for the synthesis of

two distinct resonant modes as mentioned in Chapter 2 remains valid for

the proposed algorithm. Besides, the realization of the mechanical plant

can be similarly carried out as discussed in Chapter 2.

The robustness of the designed feedback control system is verified using

a set of H=10000 Independent and Identically Distributed (i.i.d.) sam-

ples, where H is specified according to the guidelines in [17, 55] as dis-

cussed in chapter 3. The samples are generated by assuming δ̃k to be

uniformly distributed within the interval assumed in the design phase

for k=1, 2, ..., 8. In fact, the set of samples considered results in a vio-

lation of the assumptions for the robust stability criterion, as formula-

tion was carried out during the design phase using the known P̂D in-

stead of PD. The support of δ̃k for k=5, 6, 7, 8, should have been adjusted
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Figure 4.7: Frequency responses of open loop transfer functions.
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Figure 4.8: Frequency response of sensitivity transfer function.
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to
[
(
¯
δk+1)

b̂k−np+1

bk−np+1
−1, (δ̄k+1)

b̂k−np+1

bk−np+1
−1
]
, where [

¯
δk, δ̄k] represents the pre-

vious assumption on the support for deriving the variance, and b̂k−np+1

and bk−np+1 represent the numerator coefficients of P̂D and PD, respec-

tively.

The results show that 100% of the feedback control systems have sta-

ble closed-loop poles, which is much greater than the specified 1−ε despite

the violations. Based on the samples generated, the specified 1−ε remains

satisfied for kP≤1.45. The difference between 1−ε and proportion of feed-

back control systems with stable closed-loop poles is due to the fact that

phase-stabilization of resonant modes for satisfying the performance spec-

ifications result in a highly robust feedback control system as discussed in

Chapter 3.

4.7 Comparative Investigations

In this section, the proposed graphical approach is compared with alterna-

tive graphical approaches in the literature for shaping PDC. The methods

considered include the use of sensitivity discs, negative imaginary approach,

as well as RBode and SBode plots.

Based on the sole use of sensitivity discs, it is assumed that the de-

signed PDC is an initial fictitious system from Step 4 of the design algo-

rithm with Nyquist plot as shown by the thick solid lines in Figures 4.9

and 4.10. The constraints of the sensitivity disc approach are satisfied, as

the thick solid lines just avoid the dashed and dashed-dot sensitivity discs

for frequency ranges θ̄a and θ̄b, respectively. Due to the absence of robust

stability constraints, the effect of increasing the distance between the thick
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solid lines and the sensitivity discs cannot be observed explicitly.

The thick dotted lines in Figures 4.9 and 4.10 represent the Nyquist plot

of PDC obtained in Section 4.5 using the proposed graphical approach. The

open loop transfer functions from both approaches have identical gains at

low frequencies, and ten thousand perturbed plants are similarly generated

using uniformly distributed δ̃ with intervals as assumed in Section 4.5.

For the sensitivity disc approach, 8.85% of the perturbed feedback con-

trol systems are stable and simultaneously satisfy Constraints (a–b). The

robust performance criterion is satisfied by 26.6% of the perturbed feed-

back control systems for PDC designed using the proposed approach. The

specified 1−ε in Section 4.5 is violated in both cases as it was solely based

on robust stability. Better robust performance is achieved using the pro-

posed approach due to the ability to improve nominal performance while

satisfying the robust stability criterion.

Strictly negative imaginary uncertainties commonly arises in mechanical

systems such as the PZT active suspension which has a force input and a

position output [76]. Based on the negative imaginary theorem, the transfer

function PDC will be restricted to the lower half of the Nyquist plane as

shown by the shaded area in Figure 4.11. The Nyquist plot of PDC designed

based on the negative imaginary theorem is shown by the thick solid line

in Figure 4.11. In this case, it can be seen that Constraints (a–b) are not

simultaneously satisfied as the Nyquist plot of PDC does not exit and avoid

the dashed disc from Constraint (a).

Both performance specifications and robust stability criterion can be

considered using the RBode plot approach. The uncertainty weight Wu

is similarly derived as the upper bound on the magnitude of Δh given
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Figure 4.9: Nyquist plots of open loop transfer functions satisfying Con-
straint (a). Solid: Sensitivity disc approach. Dotted: Proposed.
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Figure 4.10: Enlarged Nyquist plots of open loop transfer functions satis-
fying Constraint (b). Solid: Sensitivity disc approach. Dotted: Proposed.
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Figure 4.11: Nyquist plot of PDC based on negative imaginary theorem.

by (3.42). PD is as synthesized in Section 4.5, and P̃D represents a per-

turbed PD considering uniformly distributed δ̃ with intervals as assumed

in Section 4.5. The RBode plot is shown in Figure 4.12 without the per-

formance specifications, where it can be seen that the shaded areas derived

from the robust stability constraints are not avoided by the frequency re-

sponse of PDC. As the RBode plot approach is based on gain stabilization

of resonant modes using the small-gain theorem, the primary resonant peak

of PDC has to be reduced in order to avoid the shaded areas and satisfy the

robust stability constraints. However, Constraints (a–b) will be violated as

a result.

Using the proposed graphical approach, the performance constraints in

the SBode plot are guaranteed to be satisfied. The SBode plot is shown

in Figure 4.13, where it can be seen that the shaded areas derived from

Constraints (a–b) are avoided by the frequency response of PDC. In fact,
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Figure 4.12: Frequency response of PDC and RBode constraints for robust
stability.

the SBode plot can be regarded as a modification of the Bode plot to include

the sensitivity discs. It is worth noting that the phase and gain conditions

for robust stability in Theorem 1 [69] are also satisfied.

Based on the results obtained, it is generally difficult to satisfy Con-

straints (a–b) when uncertainties are represented deterministically. As the

feedback control system can be designed based on a desired defect toler-

ance level using the proposed graphical approach, Constraints (a–b) can

be satisfied simultaneously. In addition, robust performance is improved

as compared to the sensitivity disc approach. In Chapter 3, CVaR approxi-

mation has been compared with other deterministic and probabilistic-based

numerical methods such as Kharitonov’s theorem, H∞ probabilistic theory,

and distribution-free randomized approach. The conclusions reached will

be similar when the proposed graphical approach is compared with those
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Figure 4.13: Frequency response of PDC and SBode constraints for perfor-
mance.

methods.

4.8 Summary

In this chapter, the Nyquist plane is used for the synthesis of a feedback

control system with performance and chance-constrained robust stability

specifications satisfied. Simulation results using the proposed approach

synthesize a feedback control system with high-frequency disturbance at-

tenuation specifications further satisfied based on the robust stability crite-

rion. Based on the results from comparison with other graphical methods,

it can be seen that the chance-constrained robust stability criterion in the

proposed approach enables performance specifications to be simultaneously

satisfied with greater robust performance.
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In the next chapter, we conclude this dissertation and discuss future

research directions.
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Chapter 5

Conclusion and Future Work

The traditional approach of designing a controller based on a fixed me-

chanical plant design is insufficient for satisfying the increasing challeng-

ing demands of high-performance mechatronics. This dissertation focuses

on developing algorithms for integrated servo-mechanical design of Linear

Time-Invariant (LTI) systems with a single-input-single-output mechanical

plant to satisfy performance and robust stability specifications.

The main findings and results presented in this dissertation are:

1. Proposing an algorithm for reshaping the frequency response of the

mechanical plant at high frequencies based on a low-order controller.

The mechanical plant is redesigned to synthesis a minimum phase

feedback control system which satisfies the performance specifications

represented as Linear Matrix Inequality (LMI) constraints. Simula-

tion results achieve a high-bandwidth control system with disturbance

attenuation capabilities at the phase-stabilized resonant modes of the

plant.

2. Formulating a convex separable parametrization for reshaping the
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high-frequency response of both mechanical plant and low-order con-

troller to satisfy performance and chance-constrained robust stability

specifications. The robust stability criterion is represented as several

convex constraints under the Conditional-Value-at-Risk (CVaR) ap-

proximation. Simulations results demonstrate that the specified 1−ε

remains satisfied when distributional changes in plant parameters re-

sult in moderate violation of the mean and variance assumptions dur-

ing the design phase. Comparison investigations with other determin-

istic and probabilistic numerical methods in the literature show that

the CVaR approximation enables performance specifications to be

satisfied based on the specified 1−ε, and ensures a higher proportion

of stable feedback control systems compared to the distribution-based

approach.

3. Deriving a Nyquist plot-based approach for reshaping the response

of the mechanical plant at high frequencies based on a low-order con-

troller. Simulation results using the proposed algorithm synthesize a

feedback control system with high-frequency disturbance attenuation

specifications further satisfied based on the robust stability criterion.

The ability to simultaneously satisfy performance specifications and

achieve greater robust performance using the proposed approach is

demonstrated through comparative investigations with other graphi-

cal methods in the literature.

Future high-performance mechatronics will be required to have greater

positioning accuracy with robust stability due to increasing demand for

smaller electronic devices, larger computational power, and larger digital

storage capabilities, etc. As such, integrated servo-mechanical design for
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satisfying performance and robust stability specifications will become more

essential. In view of the results obtained, the following works should be

emphasized in future research:

1. Integrated servo-mechanical design of flexure-based MagLev planar

motor:

Extreme Ultra-Violet (EUV) lithography is a next-generation lithog-

raphy technology for potentially enhancing the resolution of pho-

tolithography to below 10 nm [79]. As EUV lithography requires

a near-vacuum environment, the moving stage for supporting the sil-

icon wafers can only be actuated using Magnetic Levitation (MagLev)

technology. The MagLev planar motor for EUV lithography is an-

other example of a high-performance mechatronic system, which is

required to have high bandwidth and resolution, as well as a large

displacement range. A feedback control system with high bandwidth

and resolution will be achieved when the structure of the MagLev pla-

nar motor is designed to have small mass and high stiffness. However,

the displacement range may be limited as a result of high stiffness.

The proposed algorithms in this dissertation can possibly be used to

shape the resonant modes of the Maglev planar motor to satisfy the

conflicting control objectives, after which mass and stiffness parame-

ters can be determined from the shaped resonant modes as discussed

in Section 2.5. At present, a prototype of a linear motor has been

constructed and verified to satisfy performance specifications using

the proposed method in Chapter 3 in continuous-time domain. The

algorithm is implemented in continuous-time domain as the Nyquist

frequency is at more than 100 times away from the shaped resonant
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mode. Besides, constraints are placed on the plant parameters during

synthesis in order to ensure physical realizability of the plant design.

The construction of a MagLev planar motor for EUV lithography

is a furthering of the work on the linear motor, in which actuator

saturation is to be included as a nonlinearity.

2. Integrated servo-mechanical design considering zeros of sampled sys-

tems:

Using the proposed algorithms in this dissertation, a discrete-time

plant model is obtained which can be realized by performing an in-

verse Zero-Order Hold (ZOH) followed by curve-fitting. This is due

to the fact that there are in general no simple closed-form expres-

sions for sampling zeros resulting from ZOH discretization. However,

the limiting cases for small or large sampling periods can be charac-

terized [50]. In order to simplify the realization of the discrete-time

plant model, the effects of specifying the sampling zero during the

design phase as the limiting value with small perturbations can be

investigated.

3. Integrated servo-mechanical design for attenuating Non-Repeatable

Run-Out (NRRO) resulting from both mechanical vibrations and ex-

ternal disturbances:

In this dissertation, the focus of integrated servo-mechanical design is

on the attenuation of NRRO induced by mechanical vibrations of the

resonant modes. However, NRRO includes external disturbances such

as noise with random phase [13]. As such, it is important to ensure

that disturbance attenuation of NRRO resulting from mechanical vi-
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brations do not result in spillover effects which amplify the external

disturbances. In addition, the effects of mechanical redesign on the

NRRO spectrum has to be investigated as well.

4. Integrated servo-mechanical design for attenuation of aliased NRRO:

Aliased narrow-band disturbances are commonly encountered as a

result of sampling, and several multirate control techniques [80–82]

have been proposed in the literature. Modification of the algorithm

for shaping of mechanical resonant poles and anti-resonant zeros at

above Nyquist frequency will possibly allow the advantages of inte-

grated servo-mechanical design to remain applicable. The graphical

approach proposed in Chapter 4 is based on designing a fictitious sys-

tem P̂DC to satisfy performance and robust stability specifications,

after which allowable regions for the Nyquist plot of the open loop

transfer function PDC can be determined. This method can pos-

sibly be extended to the shaping of mechanical resonant modes at

above Nyquist frequency as the discrete-time lifting technique can be

applied to the fictitious system.
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