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Abstract

Cardiac wall motion analysis is a widely used technique for identifying
many different types of cardiovascular diseases. Regional abnormalities
in myocardial function can be detected with myocardial strain measure-
ments derived from tagged CMR data and of myocardial infarction can
be detected with LGE (Late Gadolinium Enhanced) CMR. However,
the obvious tag fading effect in tagged CMR image sequences prevents
having an accurate motion and strain estimation through out the full
cardiac cycle. In order to avoid this issue and to have more robust
motion estimation, this thesis proposes a novel optical flow motion
estimation method that uses both tagged and cine CMR data simul-
taneously. Moreover, the results of the proposed method is validated
using both real and synthetic data.

Further, this thesis attempts to identify correlation between myocar-
dial infarction percentage/location and myocardial strain. By adding
the strain measures calculated throughout the full cardiac cycle, we
present an extended correlation analysis between strain measures and
infarct percentage. The correlation study has carried out by consider-
ing different orientations of left ventricle.

The experimental results suggest that, the tag fading effect and its
implications in tagge CMR can be compensated by using both cine
and tagged CMR data simultaneously. Besides, it suggests an optical
flow based solution can be used effectively to estimate motion jointly
using both cine and tagged CMR data.

The results from the correlation study indicate that inferior, infero-
lateral, and anterolateral segments tend to show stronger correlations
than the other segments of LV. Further, the correlation study suggests
that Eulerian strains are also having a similar prognosis value as same
as with Lagrangian strains in regional and global myocardial function
analysis.

The contributions of this thesis includes: (1) a novel optical flow based
cardiac motion estimation algorithm which uses both tagged and cine
CMR data, and (2) extended correlation analysis between infarct per-
centage and global/regional myocardial strain measures.
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Chapter 1

Introduction

Firstly, this thesis aims at automatic motion and strain analysis of the heart us-

ing cardiac magnetic resonance imaging (CMR). The proposed method uses both

tagged and cine CMR data in order to estimate the motion within myocardium and

calculate strain. A synthetically generated CMR image sequences have been used

to validate the proposed motion estimation algorithm. Secondly, the correlations

between myocardial infarct percentage (I/M%) and different strain measures of

myocardium are also presented. In order to quantify infarctions, late gadolinium

enhanced (LGE) CMR data is used. Section 1.1 briefly introduces the motivation

behind this thesis. The scope and contributions of the thesis are highlighted in

Section 1.2 and Section 1.3 gives an overview of the organization of this thesis.

1.1 Motivation

Cardiovascular diseases (CVD) are the number one cause of death and are pro-

jected to remain so [7]. Among the various types of CVDs, coronary artery disease

1



1. Introduction

or ischemic heart disease is one of the leading causes of death. According to the

World Health Organization (WHO), 17.3 million people died from CVDs in 2008

(30% of all global deaths) and 7.3 million were due to coronary heart disease

(CAD) and 6.2 million were due to stroke [7] [1]. The distribution of global CVD

deaths is shown in Figure 1.1. Detecting these CVDs early is the key to prevent

the deaths and if the diseases are identified early, inexpensive treatments are avail-

able [7] [1]. With advances in spatial and temporal resolution and with increased

Figure 1.1: Distribution of CVD deaths due to heart attacks, strokes and other
types of cardiovascular diseases, males (left), females (right) [1]

availability of digital imagery technologies such as Magnetic Resonance Imaging

(MRI), CT, Echocardiography and SPECT, automated image analysis has become

viable technology in CVD diagnosis and treatments. Among these technologies,

cardiac MRI plays a major role due to its advantages over other imaging modal-

ities. These cardiac MRI technologies include various imaging techniques such

as tagged MRI, perfusion MRI, cine MRI and LGE MRI, which are dedicated to

different types of diagnosis and is being used widely because of its advantages on

2



1. Introduction

functional, structural analysis and viability assessment of heart.

The motion of the ventricular walls prognosis about the CVDs. In CAD, plaque

is building up along the inner walls of the arteries of the heart (scar or infarction)

[8] and it results in a loss of cardiac function. These infarctions affects the LV to a

greater extent because of it’s larger size and greater demand for energy [9]. Hence,

tagged CMR is widely used in analyzing ventricular motion of the heart. Even

though tagged CMR can provide a primary way of visualizing cardiac motion,

fast and accurate image analysis methods have been developed by using tagged

MRI data and these methods can be used for routine quantitative analysis [10].

However, the tag patterns in tagged CMR fades due to the T1 relaxation of mag-

netization and therefore, motion analysis over full cardiac cycle is a challenging

task. Tag fading and noise in tagged CMR image sequences tend to give erro-

neous results in the latter part of the cardiac cycle (usually in diastolic phase).

Moreover, this issue prevents having an accurate analysis of cardiac motion and

strain over the full cardiac cycle and usually it is only limited to systolic phase

of cardiac cycle. Further, researchers have proposed various methods to overcome

the tag fading issue, in order to have a robust and accurate motion estimation

of myocardium. Hence, this thesis is mainly aimed at developing an automatic

cardiac motion estimation method that can minimize the error due to tag fading

effect and noise. In order to minimize the effect from tag fading, this thesis pro-

poses a method that estimate cardiac motion jointly using both tagged and cine

CMR data. Subsequently, the estimated motion is used to calculate strain of LV

that can be later used for the analysis of CVDs. Moreover, this thesis proposes

an optical flow based method in order to have a dense motion field estimation and

faster calculation.

3



1. Introduction

LGE CMR is another main imaging method used in diagnosis of CAD. LGE

CMR provides capability to visualize and discriminate infarct regions within my-

ocardium directly. However, LGE CMR is relatively less available and inherent

resolution issues of MRI prevent exploiting infarctions in full 3D range. In ad-

dition, LGE CMR requires the injection of contrast agent which poses risk for

certain patients. Hence, direct quantification of infarction from other prognostic

information such as motion, strain, ejection fraction and wall thickening is vital

[11]. Moreover, noninvasive monitoring of regional myocardial function after sur-

vived myocardial infarction is proffered in clinical practice [12], since quantifying

the transmurality of the scar is important in determining the chance of recovery

after intervention [13] [14]. Hence, the correlation between infarct size/percentage

and regional cardiac function descriptors such as motion, strain, ejection fraction

and wall thickening are analyzed in order to provide prognosis information. How-

ever, such correlation analyses which is based on strain measures also suffers from

the erroneous motion and strain estimation results due to the tag fading effect.

There are only few works can be found in literature that are used strain data over

full cardiac cycle and most of the analysis is limited to systolic phase. In addition,

the correlation between strain measures and infarct size/percentage is not well

defined [15]. Therefore, this thesis presents the analysis of the correlation between

infarct percentage and motion/strain throughout the whole cardiac cycle. More-

over, this thesis uses maximum and minimum efficient, Lagrangian and Eulerian

strains take place during the full cardiac cycle, in order to analyze the correlation

with infarct percentage.

4



1. Introduction

1.2 Scope and Contributions

This thesis aims to contribute new algorithms for motion estimation of cardiac

magnetic resonance imaging sequences. The main focus of the proposed motion

estimation method is to minimize the tag fading effect issues of tagged CMR. The

starting point has been the optical flow based methods. Firstly, our purpose is

to evaluate the feasibility of a motion estimation method based on optical flow

technique which uses both tagged and cine CMR sequences. The SA slices of

tagged and cine CMR data are used to estimate 2D motion over the full cardiac

cycle and 2D strain tensors are calculated subsequently. These strain tensors are

then used to derive Lagrangian, Eulerian and Efficient strains.

Secondly, this thesis aims to identify any correlation exists between myocar-

dial strain measures and infarctions. LGE CMR data is used to quantify infarct

percentage. These infarct data is analyzed subsequently with the maximum and

minimum of each strain throughout the cardiac cycle. Moreover, the correlation

is analyzed by considering different orientations of LV.

To summaries, this thesis makes the following contributions toward joint anal-

ysis of CMR images:

• Introducing a new motion estimation method based on optical flow which

uses both cine and tagged CMR data simultaneously.

• Comparison and evaluation of results with the established methods using

synthetic image sequences.

• Evaluation of the results obtained with real tagged CMR sequences.

• Analysis of correlation between myocardial strain (global and regional) and
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1. Introduction

infarct percentage by considering the strain data for whole cardiac cycle.

• Incorporating both lagrangian and eulerian strains for the correlation anal-

ysis.

1.3 Thesis Organization

Chapter 2 describes the background medical context and the related works. Firstly,

the anatomy and physiology of the heart is presented. After that, a description of

cardiac motion estimation methods using tagged CMR is provided.

In Chapter 3, the scientific background about motion estimation is presented.

The concept of optical flow is explained, and a review of the most relevant tech-

niques of motion estimation is mentioned.

In Chapter 3, the motion estimation method based on the optical flow is pre-

sented. The results on synthetic and real cardiac MRI sequences are presented and

validation methods are described along with the results obtained in comparison to

the reference methods.

Chapter 4 presents the correlation analysis between myocardial strain measures

and infarct percentage. Finally, the main conclusions and future topics of research

are presented in Chapter 5.
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Chapter 2

Background and Related Work

This chapter describes the main aspects of anatomy, physiology and function of

the heart, together with the most important cardiovascular diseases. Cardiac

imaging techniques are briefly explored. Moreover, cardiac motion estimation and

validation methods are discussed while giving more focus to optical flow based

methods.

2.1 Anatomy and Structure of the Heart

The heart is a vital organ in human body and main function of the heart is

circulating blood around the body and pumping blood through blood vessels to

all body tissues. The human heart is nearly the size of a human fist and pumps

around 2000 gallons of blood per day while beating around 80,000 100,000 times.

The heart consists of four chambers and the largest two chambers are called the

ventricles, while the smaller two are called the atria (please see Figure 2.1).

• The RA receives blood from the veins and pumps it to the RV.
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2. Background and Related Work

Figure 2.1: Anatomy(left) and blood flow(right) of heart [2]

• The RV receives blood from the RA and pumps it to the lungs, where it is

loaded with oxygen.

• The LA receives oxygenated blood from the lungs and pumps it to the LV.

• The LV (the strongest chamber) pumps oxygen-rich blood to the rest of the

body. The LVs vigorous contractions create our blood pressure.

2.1.1 Main Cycles of Heart

In each cardiac cycle, the atria and ventricles alternately contract and relax in

order to move blood from areas of higher pressure to areas of lower pressure. The

contraction of these chambers increases the pressure within the chamber and re-

laxation allows to decrease the pressure. This repeated contraction and relaxation

cycle allows the circulation of blood through out the body continuously. Approx-
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2. Background and Related Work

imately, when a heart rate is 75 beats/min, a cardiac cycle lasts 0.8 sec. The

correlated events occur during a cardiac cycle is mainly divided in to three phases

as below;

Atrial Systole: This is a relatively short phase which takes place for about 0.1

seconds. During this phase left and right atria are contracting and the blood

is pumped into the ventricles while the ventricles are also relaxed. The end

of this phase is also called end of ventricular diastole (ED) and the blood

volume is called the end-diastolic volume (EDV).

Ventricular Systole: During this phase(about 0.3 seconds) the ventricles are

contracting and the atria are relaxed. As they begin to contract the mitral

and tricuspid valves close to prevent any backflow into the atria. At the

end of this phase the pulmonary and aortic valves close and diastole begins

again. The end of this phase is also called end of ventricular systole (ES)

and the blood volume is called the end-systolic volume (ESV).

Diastole: During this phase blood flows into the heart and it takes about 0.4

seconds. Both atria and ventricles are relaxed and as a result blood comes

into the atria through the pulmonary veins (left atrium) and the superior

and inferior vena cava (right atrium). From the left and right atria the blood

flows directly into both ventricles because both the mitral and tricuspid

valves are open. The aortic and pulmonary valves are closed during this

phase to prevent the reverse flow of blood from the aorta and pulmonary

artery. When the heart beats faster, this phase becomes shorter.
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2.2 Cardiovascular Diseases

Cardiovascular diseases (or heart diseases) are any disorders which are related to

both heart (cardio) and/or and the blood vessels (vascular) including arteries,

capillaries, and veins. Table 2.1 shows the major types of cardiovascular diseases.

Among these diseases, the coronary artery disease is the most common type of dis-

ease or ischemic heart disease (IHD) and this disease is caused by plaque building

up along the inner walls of the arteries of the heart, which narrows the arteries

and reduces blood flow to the heart [8]. This plaque is a deposit of cholesterol, fat,

calcium, and other cellular sludge from blood. The coronary artery disease is also

the main cause of heart attack (Myocardial Infarction - MI ) which may oc-

cur suddenly due to various risks factors such as age, sex, family history,smoking,

hypertension, diabetes, obesity, ...etc. During a heart attack blood stops flowing

properly to part of the heart and heart muscles due to lack of oxygen supply [16].

This condition which results in reducing blood and oxygen supply to the heart is

called cardiac ishemia.

Table 2.1: Major types of cardiovascular diseases

Name Description

Coronary artery disease Blocking of arteries supplying blood to the heart
Cardiomyopathy Diseases of cardiac muscle
Hypertensive heart disease diseases of the heart secondary to high blood pressure
Valvular heart disease Diseases of the valves between heart chambers
Heart failure Inability of heart to pump enough blood to organs

Coronary artery disease (CAD) is the one of the major causes of cardiomy-

opathy, which literally means ”heart muscle disease”, is the deterioration of the

function of the myocardium (i.e., the actual heart muscle) for any reason [17]. Peo-
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ple with cardiomyopathy are often at risk of arrhythmia or sudden cardiac death

or both.

2.3 Detecting Coronary Artery Disease

The basic diagnosis process includes physical examination, blood tests, and electro-

cardiogram tests (ECG). However, depending on the initial diagnosis, one or more

diagnostic tests might be prescribed for a more detailed analysis of the symptoms

[18], [19]. In order to further detect ischemia, an invasive or non-invasive imaging

method can be used.

Cardiac catheterization (heart cath) can be considered as a widely used invasive

method which is used to detect ischemia. In “Catherization” process, a long, thin,

flexible tube called a catheter is put into a blood vessel in patients arm, groin

(upper thigh), or neck and threaded to the heart. Then through the catheter,

diagnostic tests and treatments can be executed [19].

In order to detect ischemia, a noninvasive coronary imaging can be done using

x-ray angiography to detect narrowing that reduces or obstructs the flow of blood.

Electrocardiography or MRI can also be used to detect ischemia instead of x-ray

angiography.

Finally, this assessment can also be performed by means of the evaluation of

cardiac motion. Due to ischemia, motion irregularities take place and a proper

motion analysis of heart can have a significant impact on diagnosing ischemia

[20]. Hence, the estimation of the myocardial motion, wall thickening, strain and

detection of abnormal patterns has become vital. Moreover, enhanced regional

function assessment in terms of wall motion and strain is one of the main areas of
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focus in new cardiac imaging modalities and post processing tools.

Echocardiography (ultrasound) and cardiac MRI can be considered as the most

popular methods that are used to estimate global and regional cardiac function.

Due to noninvasive and real time nature of echocardiography, it has also become

an important imaging modality. However, echocardiography has a poor image

quality relative to MRI and echocardiography allows imaging of the body only

through certain windows. In addition to that, echocardiography images have a

higher noise than MRI images. Hence, MRI has become more popular and the

main advantages of cardiac MRI can be listed as below;

• MRI is noninvasive and uses nonionizing radiation.

• 3D and 4D imaging capabilities.

• good soft tissue contrast.

• Imaging capability at arbitrary orientations.

• Ability to diagnose broad range of conditions.

• Ability to evaluate both the structure and function of the heart.

2.4 Imaging Planes and Standardized Myocar-

dial Segmentation

Two main coordinate systems are used for cardiac MR and it includes body planes

(scanner) and the cardiac planes. Body planes are oriented orthogonal to the long
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axis of the body and consist of axial, sagittal, and coronal planes as shown in

Figure 2.2 [3]

Standard cardiac planes include short axis, horizontal long axis (four-chamber

view), and vertical long axis (two-chamber view) as shown in Figure 2.3. However,

the American Heart Association (AHA) has suggested and introduced a standard

methodology to segment myocardium and adjacent cavity for different types of

cardiac imaging modalities (CMR,PET,CT...etc). One of the main advantages

of the standardization is to avoid difficulties in accurate intra and cross-modality

comparisons for clinical patient management and research [4]. This dissertation

has also followed the Standardized Myocardial Segmentation proposed by AHA.

Figure 2.2: Orientation of major body planes with respect to patient and their
corresponding appearance on bright blood imaging sequences [3]

According to AHA, cardiac planes used in all imaging modalities should be

oriented relative (90 angles) to long axis of the left ventricle and selected planes

include short axis, vertical long axis, and horizontal long axis (see Figure 2.3).

Moreover, it is suggested that the heart should be divided into equal thirds per-
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Figure 2.3: Orientation of major cardiac planes with respect to heart and their
corresponding appearance [3]

pendicular to the long axis and will generate three circular basal, mid-cavity, and

apical SA slices of the LV.

According to the proposed standard, the heart should be divided into 17 seg-

ments for assessment of the myocardium and the left ventricular cavity as show in

Figure 2.4 and names for the myocardial segments should define the location rela-

tive to the long axis of the heart and the circumferential location [4]. Based on the

circumferential location, basal and mid cavity slices are divided in to 6 segments

with each segment covering 60 degrees angle and apical slice is divided in to 4 seg-

ments. The 17th segment which is the true apex is derived from 2C or 4C views.

However, this dissertation has not considered the 17th segment for strain calcu-

lations. The bull’s eye plot in Figure 2.5 shows the locations and recommended

names for each segment.

14



2. Background and Related Work

Figure 2.4: Left: the basal, mid-cavity and apical SA slices; right: the 4C and 2C
LA views. IDs of the 17-segment model recommended by the AHA [4]
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Figure 2.5: 17 myocardial segments and the recommended nomenclature [4]

Figure 2.6: Orientation of major cardiac planes with respect to heart and their
corresponding appearance [4]
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2.5 Cardiac MRI

Cardiac MRI is a widely used imaging modality. Cardiac MRI is used to assess

function and structure of the cardiovascular system. Cardiac MRI is also based

on nuclear medicine principles and has been optimized to assess cardiovascular

system. Even though, there are a number of imaging techniques used in cardiac

MRI, this section has introduced tagged, cine and LGE CMR since those are within

the scope of this thesis. The corresponding Tagged, Cine and LGE CMR images

of a selected patient can be shown as in Figure 2.7.

Figure 2.7: Corresponding tagged (left), cine (middle) and LGE (right) SA images
obtained from a mid SA slice

2.5.1 Tagged CMR

Analysis of the cardiac deformation (heart wall motion of Left and Right ventricu-

lar) is a widely used technique in identifying many types of cardiovascular diseases.

Early efforts for analyzing ventricular wall motion used surgical implantation and

tracking of radiopaque markers with X-ray imaging in canine hearts. In order

to avoid this time consuming and risky invasive heart wall motion analysis, MR
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tagging (Tagged MRI) was first proposed by [21] and [22] as a noninvasive motion

tracking method of heart walls. Using this technology [21] and [22] introduced

noninvasive markers directly into the tissue during the image acquisition process

as magnetization pattern that remains persistent even in the presence of motion

through cardiac cycle. However, tag lines fade due to T1 relaxation of magnetiza-

tion as can be seen in Figure 2.8. Tagged images are obtained with ECG triggered

segmented imaging where cardiac cycle is divided into multiple segments (frames)

to produce a series of images that can be displayed as a movie (cine). The cardiac

cycle begins with the R wave of the ECG, ends with the subsequent R wave and is

typically divided into 10 to 20 segments, depending on the heart rate. In order to

create this tagged image sequence requires multiple heartbeats with a single breath

hold to create full image sequence in a single slice (plane). Hence, tagged CMR

needs longer time than cine CMR and due to this reason, the number of frames in

a tagged CMR sequence is fewer than a corresponding cine CMR sequence, even

though the quality of image is similar.

The most widely used tagging patterns include SPAMM (Spatial modulation of

Magnetization) introduced by [22] and CSPAMM (Complementary Spatial mod-

ulation of Magnetization ) introduced by [23]. Both of these methods result in a

light and dark pattern in images due to using a special pulse sequence to spatially

modulate the longitudinal magnetization, prior to image acquisition using conven-

tional imaging [10]. CSPAMM tagging has longer tag persistence than SPAMM.

With the artificial markers embedded into the tissues, it is possible to assess car-

diac motion qualitatively by visualizing the tag pattern evolution throughout the

cardiac function. However, to avoid erroneous human analysis of such patterns

and to avoid high time consuming, new image processing and analysis methods
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Figure 2.8: First 20/16 frames of a SPAMM tagged basal SA slice. Frame numbers
are indicated at top left corner of each image
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emerged to cope with automatic analysis of these tagged CMR images. More over,

3D automatic cardiac analysis methods emerged which make use multiple SA and

LA image slices along with 3D tagging.

2.5.2 Cine CMR

Cine images are a series of images or movie, which shows heart motion throughout

the cardiac cycle. Cine images are obtained with ECG triggered segmented imag-

ing where cardiac cycle is divided into multiple segments (frames) to produce a

series of images that can be displayed as a movie (cine). The cardiac cycle begins

with the R wave of the ECG, ends with the subsequent R wave and is typically

divided into 10 to 20 segments, depending on the heart rate [24]. This cine im-

age sequence is obtained with a breath-hold of 10 to 20 seconds and the resulting

images may be gathered over several heart beats[24].

A cine CMR sequence is carrying both functional and anatomical information.

Hence, cine CMR is used as gold standard for quantifying global heart function in

measuring ejection fraction, cavity volume and mass. Cine CMR has a high soft

tissue contrast and due to its high soft tissue contrast, cine CMR can also be used

to derive anatomical information. Moreover, cardiac wall motion tracking is also

possible with cine CMR since it provides a relatively high temporal resolution. In

these cine CMR images, the myocardium is shown as dark regions and blood is

shown as brighter regions. Figure 2.9 shows the first 16/20 frames of a typical SA

slice.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.9: First 16 of 20 frames of a basal cine SA slice. Frame numbers are
indicated at top left corner of each image
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2.5.3 LGE CMR

Late Gadolinium Enhancement imaging is used in viability assessment of the my-

ocardium. Imaging is performed 10 to 20 min after contrast agent (gadolinium-

based) application to produce LGE images which depict diseased myocardium

with excellent reproducibility. LGE CMR is capable of detecting advanced is-

chemic heart disease conditions while distinguishing from nonischemic dilated car-

diomyopathy. LGE CMR can also be used to evaluate functional recovery after

revascularization procedures [25]. The Figure 2.10 shows a LGE CMR image stack

derived from a real human.

Figure 2.10: A stack of SA LGE images of a patient [5]

2.6 Structural and Functional Descriptors

Even though there are multiple modalities and techniques to assess cardiac func-

tion, standard measures are used to quantify the results of such assessment. These

measures which represent structural and functional parameters of heart can be

mainly divided into global and regional measures.
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2.6.1 Global Functional Parameters

Global functional parameters are used to assess overall performance of the ventri-

cles and their ability to eject blood. These measures are defined as below;

Stroke Volume (SV) volume ejected during systole.

SV = EDV − ESV (B.1)

Ejection Fraction (EF) The ratio of the SV to the EDV as a percentage.

EF =
SV

EDV
× 100 (B.2)

Cardiac Output (CO) amount of blood ejected from the LV per minute and is

equal to the SV multiplied by the heart rate (HR):

CO = SV ×HR (B.3)

Left Ventricular Volume (LVV) the volume enclosed by the LV.

Left Ventricular Mass (LVM) LV mass defined as myocardium volume (Vm)

multiplied by its density(ρm).

LVM = Vmρm (B.4)

However, global measures are not sufficient to assess cardiac function.Specially,

global measures cannot detect sub-clinical anomalies or the localize abnormal re-
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gions [26], [20]. Moreover, global functional parameters fall within normal limits

even though the wall motion is abnormal[9]. Hence, regional analysis of cardiac

function is important and essential for detecting ishemia.

2.6.2 Regional Functional Parameters

Even though, electrocardiography and cine MRI can be used to assess regional

function, it is limited to analysis of wall thickening. However, the regional car-

diac function can be evaluated using tagged MRI due to tagged pattern visible

in myocardium throughout the cardiac function. When considering the assess-

ment of heart motion using tagged MRI, strain is considered as one of the major

parameters.

2.6.2.1 Strain

The motion of the heart is usually computed as a dense or sparse displacement

field. If it is a sparse displacement field an interpolation is done to get the dense

displacement field. This dense displacement field is used to calculate strain tensors

which describe the function of the heart.

From the displacement field, both lagrangian and eulerian strains can be calcu-

lated. The circumferential, radial and longitudinal strains are lagrangian strains

and these strains are defined with respect to the myocardium center. In addition

to the lagrangian strains, this thesis has incorporated regional eulerian strains in

XX, XY, and YY directions to have a more detailed analysis. Finally, these re-

gional strains are calculated according to standard myocardium segmentation as

shown in Figure 2.5.
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In Figure 2.11, normal strains (dark solid arrows) are described with respect to

the short axis plane: ECC represents circumferential shortening tangential to epi-

cardial surface, ERR represents myocardial thickening radially towards the center

of the ventricle and ELL represents basal to apical shortening along the ventric-

ular long axis [6]. These three measures indicated in Figure 2.11, are used to

calculate circumferential, radial and longitudinal strains consecutively. However,

longitudinal strain is out of the scope of this thesis.

Figure 2.11: Schematic diagram demonstrating the three dimensional circumfer-
ential - radial - longitudinal (RCL) coordinate system used for strain calculation
[6]

2.6.2.2 Apico-basal Twist (Torsion)

Left ventricular (LV) twist or torsion is used as another parameter to assess cardiac

function and it represents the mean longitudinal gradient of the net difference

in clockwise and counterclockwise rotation of the LV apex and base, as viewed
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from LV apex [27]. Due to the torsion in the LV, oxygen demand during systole

and transmural myocardial strain is reduced. When muscle cells die, systolic LV

torsional deformation is delayed and decreased, impairing the beneficial effects of

torsional deformation [9], [27]. However, myocardial torsion is out of this thesis

scope and has not taken into account for the analysis.

2.6.3 Infarct Quantification

The Late gadolinium enhanced (LGE) imaging protocol can be used to assess

ischemia due to myocardial infarction directly. This viability assessment of my-

ocardium is done either directly visualizing or quantifying infarct region. Specially,

quantifying and localizing infarcted tissue (infarct/ infarction/ scar) is important

for diagnosis, planing and evaluation of treatments.

In order to quantify infarction, infarct transmurality and absolute infarct area

/ volume / mass are usually taken into account [28], [29]. Specially, the percentage

of the infarcts with respect to the entire myocardium (thereafter denoted by I/M%)

is intuitively used by cardiologists to reflect the extent and severity of infarction

[30], [5].

I/M% =
Size of the infarcts

Total size of the myocardium
(B.5)

In this thesis, I/M% is used as quantitative index of myocardial infarction since

it is independent of variable individual heart size compared to the absolute infarct

measurements such as area, volume and mass.

In order to segments, localize and quantify the infarction and I/M% from LGE

data, this thesis has adapted the 3D graph-cut algorithm proposed by [5], [30].

Moreover, infarctions have localized and I/M% has been calculated according to
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standard myocardium segmentation proposed by [4]. The Figure 2.12 shows infarct

percentage calculated according to standard myocardium segmentation(apex in not

considered).

Figure 2.12: Bull’s eye plot of a myocardium which shows I/M% in standard 16
segments [5]

2.7 Cardiac Motion Estimation Methods

Using the MR tagging method introduced by [21], cardiologists, surgeons and doc-

tors could analyze the heart wall motion by looking at apparent motion in tagged

MRI image frames. However, human analysis of such patterns caused erroneous

results. It is also highly time consuming and expert knowledge is essential in

this process. As a solution for these issues, with the development of cardiac MRI

and other cardiac imaging modalities, new image processing techniques for rapid

analysis of images sequences were emerged. These image analysis lead to recover

cardiac wall motion and compute measures like strain and ejection fraction in order

to assess cardiac function. However, due to inherent issues of these cardiac image
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sequences (noise, fading, resolution issues and so on), accurate motion recovery

has been a challenging task.

In recent times, MRI tagging has seen increased applications and is becoming

the gold standard for quantifying regional function [10]. However, it can be seen

that similar techniques have been applied to both tagged and cine CMR in order

to recover motion. Cardiac motion analysis methods can be divided in to two

categories as follows:

• Feature based motion estimation techniques

• Direct motion estimation techniques

After applying a feature based or direct motion estimation technique, the in-

terpolation method may apply if the motion field is sparse. These interpolation

methods include; B-Splines, Thin plate Spline, Finite Element method, parametric

functions and so on. Moreover, based on the dense or sparse displacement field,

the strain measures are calculated. An abstract hierarchical computational model

of cardiac motion estimation techniques can be illustrated as in Figure 2.13. A

comprehensive review about cardiac motion estimation methods can be found in

[10]. This section briefly describes the main tagged CMR based cardiac motion

estimation methods while giving more focus to optical flow based methods.

2.7.1 Feature Based Motion Estimation

2.7.1.1 Tracking Land marks

Feature based motion estimation methods are based on tracking one or more se-

lected features through out a MR image sequence. Most of such features include

28



2. Background and Related Work

Figure 2.13: Abstract hierarchical computational model of cardiac motion estima-
tion techniques
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sparse taglines, landmarks, tag intersections and epi/endo cardial contours. My-

ocardial beads which are defined as the intersection points of orthogonal tagging

planes, can be used as noninvasive markers [31]. These intersections encode a

unique 3D position in the myocardium which move along with the deforming tis-

sue during the cardiac cycle helps to estimate the motion accordingly. However, to

track the true 3D motion, myocardial beads need to be reconstructed or extracted

by considering tag planes and tag lines. The parametric representation of the tag

surfaces using models like B-Spline [31], thin-plate [32] provides an easier way of

computing the position of 3D myocardial beads by minimizing the summation of

distances between any two reconstructed tag surfaces . Further, [33] proposed an

automatic 3D cardiac beads tracking method using 2D HARP tracking. [34].

2.7.1.2 Deformable Models

In the deformable modeling approach, a model deforms to fit the data using energy

minimization or based on classical physics-based equation of motion [35]. The

constraints on these models vary with applications. Tag intersections, tag lines,

or tag surfaces like features are used to drive the deformation. However, due

to the sparsity of feature information, vector field interpolation techniques are

applied to obtain a dense motion field. These interpolation methods include:

mathematical regularization [36], Finite Element Method [37], Boundary Element

Method [38], parameter functions based deformable methods [39], B-splines [31].

However, these methods assume extracted tags and myocardial contours in order

to produce deformation analysis.

The accuracy of feature-based image analysis methods using tagged CMR de-

pends highly on the quality of the image and the spacing of tag lines. Tagged MR
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images with higher spatial resolution will provide more information and constraints

on the models [10].

2.7.2 Direct Motion Estimation

2.7.2.1 Harmonic Phase MRI (HARP)

HARP can be considered as the most widely referred rapid cardiac motion analysis

method since it was introduced by [34], [40] and [41]. In HARP tracking, harmonic

phase image is derived by isolated spectral peaks in SPAMM tagged CMR images

and materiel points are tracked based on the fact that phase of a material point

remains constant as it moves during the cardiac cycle. Hence, unique phase of

a particular point can be tracked along the cardiac cycle and estimate the dis-

placement field. Even though, HARP is a fast and automatic that does not need

any preprocessing, it can fail in the presence of a large amount of motion. How-

ever, various enhancements to this method can be found in literature, as it is the

most widely referred method. Moreover, the phase wrapping function in HARP

methods become problematic with increasing noise in tagged CMR sequence.

2.7.2.2 Local Sine Wave Modeling(SinMod)

SinMod [42] is also a phase based motion estimation method which is similar to

HARP. However, SinMod is different from HARP since it detects both local spatial

phase shift and local spatial frequency from band-pass filtered images while HARP

assumes phase invariant condition to track and estimate [10].
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2.7.2.3 Gabor Filter Banks

Gabor filter is a band-pass filter. This filter takes the form of a Gaussian multiplied

by a complex sinusoid in the spatial domain. It can also be obtained by a shifted

Gaussian in the spatial frequency domain. Gabor filters are used in computer

vision community for edge detection and it is said that frequency and orientation

representations of Gabor filters are similar to those of the human visual system

[43]. By choosing appropriate and optimized parameters from a gabor filter banks,

relevant magnitude response of the Gabor filter can be used to remove tags and

the phase response can be used to track tags. Once the tags lines, tag intersections

or material points are tracked, interpolation methods can be applied to get a dense

motion field [44], [45],[46], [47]. However, HARP and Gabor filter based methods

require an unwrapping step, which is an error prone process prevents giving an

accurate motion estimate over full cardiac cycle. In order to prevent these issues,

[45] have proposed a slightly different approach. In [45], a gabor filter bank is used

to detect tag intersections over the image sequence and then the tag intersection

points is followed by robust point matching (RPM) and meshless deformable model

to track 3D motion.

2.7.2.4 Registration-Based Methods

Estimating motion between two CMR images can be modeled as an image regis-

tration problem. Registration process finds the optimal transformation that can

transform one image to the other, maximizing a similarity metric between two

images. Image registration has been used in both tagged and cine CMR in order

to estimate cardiac motion [48], [49]. Image registration can also be considered as
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a widely used method to track cardiac motion due to its advantages. With im-

age registration, tag detection/extraction or segmentation steps are not required

and the algorithm allows motion tracking to be fully automatic. However, these

methods may get stuck in local minima while tend to have potential misalignment

due to image noise and artifacts. Moreover, the computational time is longer than

other methods like HARP [10].

2.7.2.5 Optical Flow Based Methods

In general, 3D motion appeared in a 2D image motion, and resulting 2-D motion

estimation problem is cast as the problem of estimating the time-varying deriva-

tives of the image brightness pattern, usually called optical flow. The optical flow

approximates the motion field based on a few assumptions. These assumptions

include:

• No photometric distortion

• No occlusion problem occurs

• Lambertian surfaces

• Point-wise light sources at infinity

The optical flow estimations are usually divided in to three categories as follows:

Differential Techniques:

The differential methods estimate optical flow vectors from the derivatives

of image intensity over space and time. These are typically derived directly

by considering the total temporal derivative of a preserved quantity such as

the brightness.
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Matching Techniques:

These methods operate by matching small regions of image intensity or spe-

cific features from one frame to the next. The matching criterion is usually

a least squares or normalized correlation measure.

Frequency or Filter Based Techniques:

In these methods, motion problem is addressed in the Fourier domain. Spatio-

temporally oriented filters are used to derive velocity sensitive data which are

related to motion. These methods can be categorized as either energy-based

or phase-based in terms of the analysis method.

However, in general, a good solution still remains elusive in challenging sit-

uations such as occlusions, motion boundaries, texture-less regions, and/or large

displacement motions. Each of above mentioned optical flow estimation method

has its own advantages and disadvantages.

Methods based on optical flow have also been applied to the analysis of tagged

MR images. By using optical flow in cardiac motion estimation context, tag detec-

tion/extraction or segmentation steps are not required and the algorithm allows

the motion tracking to be fully automatic similar to image registration methods. In

general, optical flow methods are relatively faster than image registration methods.

However, the general the brightness consistency assumption made to derive

optical flow gives erroneous results due to obvious tag fading effect in tagged

CMR.

In order to deal with tag fading and to have an accurate optical flow estima-

tion [50] introduced an approach called Variable Brightness Optical Flow (VBOF)

which accounts for temporal variation of signal intensities. The algorithm de-
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scribed in VBOF basically does not make the brightness consistency assumption.

Instead, it included tag pulse sequence parameters such as D0 is the spin density,

T1 is longitudinal relaxation time, T2 is the transverse relaxation time, TE is the

echo time, and the cosine of the magnetization tip angle needed to produce the

tag pattern. By using prior knowledge of these parameters, the VBOF method

modeled the tagged pattern generation process in order to avoid the erroneous

result. However, the need of this prior knowledge in VBOF method is a major

limitation of the method.

The Gennert and Neghadirapour’s optical flow (GNOF) method [51] relaxes the

intensity constancy constraint by modeling the intensity variations or the noise as

a local linear transformation. Moreover, [52] made the VBOF algorithm more

practical by using MR imaging physics to derive approximations for brightness

variations. In this enhanced VBOF method T1 relaxation is used as the only prior

knowledge to estimate the optical flow.

In the method proposed by [53], an additional preprocessing step of the images

has been followed using a Laplacian filter which eliminates any local offset field

and enhances the edges in the image (by compensating intensity and contrast loss

in myocardial tags). Therefore, [53] has proposed a method that enhance tagged

CMR images prior to calculate optical flow.

In addition to above optical flow methods, phase based optical flow methods

have also been used to estimate myocardial motion [54], [10]. In the method

proposed in Band pass optical flow [55] [56], Fourier space information in tagged

images is used to extract various sub band images by filtering out relevant por-

tions of frequency space. After that, optical flow constraint equations are then

formulated for each of tagged MR images based on sub band images. Further,
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[57] extended the phase consistency information into a multiresolution framework,

while yielding a dense, smooth and robust estimation. Alternatively, [58] used

both phase based information and intensity based information to derive the opti-

cal flow. In [58], the variational optical flow method has been improved by adding

a new term in the optical flow equation that incorporates tracking points with high

stability of phase. Moreover, [58] used a variational integrals based regularization

method to improve noise robustness.

When considering the optical flow based cardiac motion estimation methods,

it can be seen that available methods tend to reduce the effect of error due to tag

fading. The inevitable tag fading effect in tagged CMR is the main reason for try-

ing to reduce the tag fading error. In order to minimize or avoid this error, these

methods have followed the strategies such as modeling error term, using filtering

techniques, using phase information and so on. Alternatively, this thesis suggests

estimating optical flow jointly by using both cine and tagged CMR data simulta-

neously. Moreover, the proposed method in this thesis uses cine CMR optical flow

data as a prior to estimate final tagged CMR optical flow. Further, the proposed

method is motivated to use a gradient-based optical flow technique due to the fact

that it is well suited for processing tagged CMR images. Further, tagging pro-

duces the spatial brightness gradients on which the brightness constraint equation

depends [59] and best results from gradient based methods are obtained using two

orthogonal SPAMM tagged images [59]. In addition, gradient-based optical flow

methods are relatively fast in computation and it gives a dense motion field. In

this thesis, [60] method has been taken as the basis since the window size in which

the motion is assumed to be consistent, can be used to prevent or threshold the

erroneous optical flow estimations. In addition, this motion consistency assump-
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tion is more realistic on heart wall motion context where the complex motions of

multiple objects and occlusions do not appear like in real world.

2.7.3 Joint Motion Estimation Methods

When considering the joint cardiac motion estimation methods using both tagged

and cine CMR data, [61] is the only method available according to the best of our

knowledge. In [61] a nonrigid image registration was introduced for myocardial

motion estimation using both cine (Untagged) and 3-D tagged MR images. The

method proposed in [61] used complementary information from both cine and 3-D

tagged CMR images simultaneous to estimate the motion within the myocardium.

Moreover, [61] register a sequence of tagged and cine CMR images during the car-

diac cycle to a set of reference tagged and cine CMR images at end-diastole. In [61],

it has been proposed a spatially adaptive weighting to help extract complementary

information from both tagged and Cine CMR images.

The method introduced by [61] and the method proposed by this thesis is

closely related. Both of these methods have used rich anatomical information in

cine CMR images to compensate for problems arising with tag fading in the tagged

CMR images over the cardiac cycle. However, this thesis presents an optical flow

based solution while [61] is using an image registration based solution. In addition,

[61] computed 3D strains while this thesis focuses on 2D strain.
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2.8 Validation of Cardiac Motion Estimation Meth-

ods

Validation of cardiac motion estimation methods is a challenging task. There exists

no gold standard validation method in order to validate cardiac motion methods.

The following methods can be mentioned as the main validation methods that are

used by the community.

Validation with a cardiac motion simulator One of the most widely used

cardiac motion simulators is the simulator proposed by [62] based on 13-

parameter model of LV motion introduced by [63]. The [62] method simu-

lates the tagged CMR imaging process using a standard (tagged) spin-echo

imaging equation while applying prolate spherical based known LV motion.

Moreover, the known motion can be used to validate the method and image

sequences can be synthesized at arbitrary orientations at any phase using

[62]. The [62] method is useful specially in validating 3D motion estima-

tion methods. However, the disadvantage of this approach is that difficulties

encountered in clinical practice has not taken into account [9] and the tag

fading is not realistic as in tagged CMR.

Validation with a numerical phantom The numerical phantoms are also used

widely in validating cardiac motion estimation algorithms [64], [58],[65], [50].

The numerical phantoms are simpler to generate than simulators. Numer-

ical phantoms can be used to simulate tag fading effect in tagged CMR

better than in simulators. Moreover, these phantoms are deformed accord-

ing to a known motion field and further use this motion field as the ground
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truth. The numerical phantoms do not require making any assumption on

the imaging process and these phantoms are mostly used in validating 2D

motion estimation algorithms.

Validation with manually tracked points Obtaining ground truth data from

real cardiac CMR images by manually tracking the motion of the myocardium

is an another method for validating cardiac motion estimation algorithms

[66]. Usually graphical tools are incorporated in order to make the points

tracking more accurate and easier. The main advantage of this method is

that it is operating on real CMR data rather than synthetic CMR data.

However, tracking points is a time consuming task that needs careful atten-

tion. In addition to that, no ground truth for functional descriptors such as

strain can be obtained in this way[9] while simulators and phantoms provide

ground truth for both motion and strain.

The methods described above are mainly applied into tagged CMR images.

However, due to the limited number of methods proposed which are jointly es-

timating with both tagged and cine CMR data, this thesis proposes a slightly

different numerical phantom from the numerical phantoms used in [64], [58],[65].

Specially, in addition to tagged CMR phantom, the corresponding cine CMR phan-

tom is also generated in order to validate the proposed algorithm in this thesis.
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Chapter 3

Joint Motion Estimation Using

Cine and Tagged CMR

This chapter describes the proposed new approach for motion estimation using

both tagged CMR and cine CMR sequences. The proposed method is jointly

estimating the strain from left ventricle myocardial motion using a optical flow

method. The proposed method aims to take the advantage of two imaging modal-

ities that represent same motion of a particular patient. The method is validated

using synthetic and real data from tagged and cine CMR image sequences.

3.1 Overview

In order to estimate cardiac motion, several steps need to be followed as shown

in Figure 3.1. Firstly, the tagged and cine CMR sequences need to be aligned

spatially and temporally in order to estimate the motion in a common reference

frame. This thesis assumes that both cine and tagged slice pairs are obtained from
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same patient location and orientation. However, it has been taken into account

that spatial resolution of tagged and cine image sequences may differ during the

image acquisition process.

Once the tagged and cine image sequences relevant to a particular slice are

aligned, the endocardial and epicardial contours of first frame of each slice are

obtained for segmenting the myocardium. Further, the myocardium of each slice

further segmented into standard AHA segmentation as described in [4].

After myocardium segmentation, motion is estimated between each frames of

a particular slice and whole slices are processed in order to get data relevant to

a particular patient. Moreover, the strain tensors are calculated from motion

obtained from each frame pairs and these strain tensors are used to calculate the

AHA segment wise lagrangian (radial and circumferential) and eulerian strains

(XX, XY and YY direction) measures.

3.2 Spatial and Temporal Alignment of Tagged

and Cine Images

The analysis of cardiac motion information from different images requires a com-

mon spatial and temporal reference space. However, this is a challenging task due

to differences in image acquisition for the different images. There are three major

difficulties; 1) the anatomy is not clearly visible due to the presence of tag lines,

2) respiratory and patient motion within sequences and across sequences, and 3)

temporal resolution of different image sequences is vary [61].

In [5] proposed a registration algorithm to correct the spatial misalignment
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Figure 3.1: The hierarchical computational process of cardiac motion estimation
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between cine and LGE images. This thesis uses the method proposed by [5] in

order to align tagged and cine CMR image sequences. However, in this thesis

temporal alignment has not been performed and has assumed that phases in which

the tagged and cine image sequences obtained are equal approximately.

3.3 Segmentation of Myocardium

In order to derive myocardial contours, this thesis has adapted the method used in

[5]. In [5], cine contours are used as a prior knowledge to segment LGE images via

a 2D translational registration. Two meshes representing respectively endocardial

and epicardial surfaces are then constructed with the propagated contours. After

construction, the two meshes are deformed towards the myocardial edge points

detected in both SA and LA LGE images in a unified 3D coordinate system[5]. In

this thesis, the same procedure is followed to segment endocardial and epicardial

contours in tagged CMR images by considering cine CMR images.

3.4 Algorithm Development

Optical flow is often a convenient and useful in image motion representation. Op-

tical flow based techniques have been applied to estimate motion in Cardiac MR

sequences in order to estimate the myocardial displacement. Once having the

displacement field the related strain measures can be computed. Each optical

flow estimation technique has several advantages and disadvantages. However, the

main advantage of the optical flow methods is that they provide a dense estimation

of the motion field in two dimensions rather than just a sparse set of data, and
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they do not require a prior segmentation of myocardium [58].

Intensity based optical flow methods are widely used to compute vector fields

from spatio temporal derivatives given by an image sequence. [67] and [60] can

be considered as the most popular methods among them. The basic assumption

common in both these methods is that the intensity of a particular point does

not change over a short period of time. Suppose, (u, v) are the x and y com-

ponents of optical flow and (Ix, Iy, It) are intensity derivatives. Based on this

intensity/brightness consistency assumption the 2D motion constraint equation is

derived as in Equation C.1.

Ixu+ Iyv + It = 0 (C.1)

In the method proposed by [60] method, it assumes additionally that the dis-

placement of the image contents between two nearby instants (frames) is small and

approximately constant within a neighborhood of the point p under consideration.

Hence, [60] assumes that motion within a small window of size
√
n×
√
n pixels is

equal. Bases on these assumptions, optical flow equations for the
√
n×
√
n pixels

can be written as in Equation C.2.

Ix(q1)u+ Iy(q1)v = −It

Ix(q2)u+ Iy(q2)v = −It

.

.

.

Ix(qn)u+ Iy(qn)v = −It (C.2)
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where q1, q2, . . . , qn are the pixels inside the window surrounding point (x, y), and

Ix(qi), Iy(qi), It(qi) are the partial derivatives of the image I with respect to x, y

and time t, evaluated at the point qi at the current time. The Equation C.2 can

be written in matrix form Ax̃ = b, where

A =



Ix(q1) Iy(q1)

Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)


, x̃ =

u
v

 , and b =



−It(q1)

−It(q2)

...

−It(qn)


This system has more equations than unknowns. Thus it is an over-determined

linear system and can be solved using least squares method.

In order to estimate optical flow (motion) from tagged CMR and cine CMR, the

proposed method is basically followed [60] method. Moreover, [60] is less sensitive

to image noise and computationally efficient.

Lets assume that we have two pair of Tagged and Cine CMR images which

represent the same cardiac motion of a particular patient and each image pair has

been taken in similar cardiac phases. (Icinet=t1, I
tagged
t=t1 ) and (Icinet=t1+1, I

tagged
t=t1+1). Accord-

ing to optical flow Equation C.1, we can derive Equation C.3, Equation C.4 for a

particular point (x, y) of each tagged and cine CMR image pair which undergoes

same motion (u, v).
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(Icinex )u+ (Iciney )v + (Icinet ) = 0 (C.3)

(Itaggedx )u+ (Itaggedy )v + (Itaggedt ) = 0 (C.4)

If we take a
√
n×
√
n window in cine CMR image which surrounds point (x, y),

we can write down the system of equations as follows and it can be written in ma-

trix form as in Equation C.5.

Acine =



Icinex (q1) Iciney (q1)

Icinex (q2) Iciney (q2)

...
...

Icinex (qn) Iciney (qn)


, x̃ =

u
v

 , and bcine =



−Icinet (q1)

−Icinet (q2)

...

−Icinet (qn)



Acinex̃ = bcine (C.5)

Again, If we consider a
√
m ×

√
m window in tagged CMR image which sur-

rounds point (x, y), we can write down the system of equations as follows and it

can be written in matrix form as in C.6.
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Atagged =



Itaggedx (r1) Itaggedy (r1)

Itaggedx (r2) Itaggedy (r2)

...
...

Itaggedx (rm) Itaggedy (rm)


, x̃ =

u
v

 , btagged =



−Itaggedt (r1)

−Itaggedt (r2)

...

−Itaggedt (rm)



Ataggedx̃ = btagged (C.6)

Since Equation C.5 and Equation C.6 represent same motion, we can get the

Equation C.7 as follows;

Acombinedx̃ = bcombined (C.7)

Where;

Acombined


Acine

−

Atagged

 , x̃ =

u
v

 bcombined =


bcine

−

btagged


Again Equation C.7 can be considered as an over determined linear system and

can be solved for (u, v) using Least Squares Estimation. However, the intensity

constancy condition is not satisfied in CMR image sequences due to the relax-

ation of the magnetization of the spins throughout the cardiac cycle. In addition,

the differential optical flow methods have a major drawback in the estimation of

the first and second derivatives of pixel intensity, mainly in the case of noisy im-

ages. Hence, to have an accurate solution for Equation C.7, noise also need to be

considered.
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In order to solve over-determined linear system in Equation C.7, Recursive

Least-Squares Estimation (RLSE) method has been used. RLSE method can

be considered as a recursive method to compute the Least-Squares Estimation

based solutions [68].

3.4.1 Recursive Least-Squares Estimation(RLSE)

Suppose we get first k entries in Acombined(1 : k, :) = Ak and bcombined(1 : k, :) = bk.

By considering first k elements, over-determined case dealt with in the Equation

C.7 can be formulated as an LSE problem which is restricted to first k entries of

the Equation C.7 as in Equation C.8.

Akxk = bk (C.8)

where;

Ak = Acombined(1 : k, :), bk = bcombined(1 : k, :)

Further, we can apply Least-Squares to Equation C.8 and get the solution as,

xk = [AT
kAk]−1AT

k bk (C.9)

Let ak+1 and rk+1 denote the (k+ 1)-th entry in Acombined and bcombined, respec-

tively. RLSE method is basically adding the correction term based on the new

data to get the new estimate rather than solving Equation C.10 for the (k+ 1) th

entry. Hence, the (k + 1)-th entry in Equation C.7, can be further derived as in
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Equation C.11 for the inverse matrix Pk+1 .

xk+1 = [AT
k+1Ak+1]

−1AT
k+1bk+1 (C.10)

Where;

Ak+1


Ak

−

ak+1

 , xk+1 =

uk+1

vk+1

 , bk+1 =


bk

−

rk+1

 and Pk = [AT
kAk]−1

Pk+1 = [AT
k+1Ak+1]

−1 = Pk − Pkak+1[a
T
k+1Pkak+1 + 1]−1aTk+1Pk (C.11)

One of the advantages in using C.11 is that Pk+1 can be computed without

calculating matrix inverses. Now, xk+1 (the new (u, v) estimates of optical flow

with the arrival with (k + 1)-th entry) can be written as in Equation C.12 and

further, it can be derived as in Equation C.13.

xk+1 = Pk+1Ak+1bk+1 (C.12)

xk+1 = xk + Pk+1ak+1(rk+1 − aTk+1xk) (C.13)

In equation C.13, Pk+1ak+1 is multiplied by the error (rk+1 − aTk+1xk) to make

the correction term. Hence, the gain matrix Kk+1 can be derived as in C.14 and

updating rule of Pk+1 in terms of Kk+1 can be written as in C.15 [68].

Kk+1 = Pk+1ak+1 = Pkak+1[a
T
k+1Pkak+1 + 1]−1 (C.14)
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Pk+1 = Pk −Kk+1a
T
k+1Pk (C.15)

Assuming that (Icinet=t1, I
tagged
t=t1 ) and (Icinet=t1+1, I

tagged
t=t1+1) are spatially and temporarily

aligned, the following procedure has been followed to solve Equation C.7 using

RLSE method for each point (x, y).

Suppose, number of rows in Acine is p and number of rows in Atagged is q;

1. Define ROI surrounding the myocardium.

2. Select first k= 50 elements from Acine and bcine and initialize Ak and bk.

3. Calculate xk using Least-Squares Method.

4. Update xk+1, Kk+1 and Pk+1 for next (p− k) entries in Acine iteratively.

5. Update xk+1, Kk+1 and Pk+1 further using next q entries in Atagged and btagged

iteratively.

6. Get the final x as the solution where x contains optical flow parameters (u, v)

relevant to point (x, y).

As can bee seen in above procedure that calculates optical flow of a point

using RLSE method, tagged CMR data is considered as the accurate modality for

calculating optical flow. However, in order to estimate optical flow from tagged

CMR, cine CMR data is used get a prior estimate for the optical flow in tagged

CMR. The error in prior estimated optical flow from cine CMR is then reduced

iteratively using tagged CMR data.
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3.4.2 Strain Estimation

Generically, strain is the change in length per unit length. The 2-D analog of this

concept is defined using the displacement gradient ∆u(x, t), which is given by;

∆u(x, t) =

∂ux

∂x
∂ux

∂y

∂uy

∂x

∂uy

∂y


Then the deformation gradient F of point x at time t is given by :

F (x, t) = (I −∆u(x, t))−1 (C.16)

where I is the identity matrix.

Finally, the 2-D Eulerian strain tensor is defined as;

E(x, t) = ΦnΦᵀ
n − I (C.17)

where Φn = F (x, t).

Hence, prior to calculating each strain measure, myocardial strain tensor can

be directly estimated as in Equation C.17 from the spatial derivatives of a dense

displacement field Φn [66].

Eulerian strains in XX, XY, YY directions can be directly obtained from the

strain tensor in Equation C.17. Having calculated the strain tensor in Equation

C.17, circumferential, radial and longitudinal strain can be calculated by projecting

the strain tensor along a specific direction of a local coordinate system related to

the anatomy of the LV [66]. In order to calculate each Lagrangian strain, the

Equation C.18 can be used where P indicates unit vectors in radial, longitudinal,
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circumferential directions and E(x, t) indicates strain tensor derived for point x at

time t using Equation C.17.

Strain(x, t) = P ᵀ.E(x, t).P (C.18)

3.5 Evaluation and Experiments

In order to evaluate the proposed algorithm, two types of synthetic images are

used: ”Method-A” and ”Method-B”. Method-A aims to evaluate the algorithm

with the presence of both rotation and contraction in myocardium. Method-B

aims to evaluate the algorithm with radial contraction occurs in consecutive images

while the noise is getting increased. Moreover, the proposed method is evaluated

on real CMR data.

3.5.1 Synthetic Data - Method A

To begin with first experiments, synthetic data is generated by giving a known

motion to real tagged and cine CMR images of a healthy male. In order to generate

these synthetic data, two pairs of cine (Cineimage 1 and Cineimage 2 ) and tagged

CMR images (Taggedimage 1 and Taggedimage 2 ) with spatial resolution of 256×256

are selected. Then the motion between the selected to two tagged CMR images

are estimated using [67]. The Figure 3.2 shows two tagged CMR images and

estimated motion. Later this estimated motion is used as ground truth to evaluate

the algorithms. After estimating the motion from real data, two new images

(TaggedSimage and CineSimage) are created by interpolating the motion estimated

with Taggedimage1 and Cineimage1. Further, this estimated motion between a pair
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of real tagged CMR images using [67] can be considered as a motion that represent

complex rotations and contractions of LV approximately.

Now we have (Taggedimage 1 and TaggedSimage ) and (Cineimage 1 and CineSimage)

which are having same known motion. In order to test the algorithms with noise,

“Rician Noise” is added to TaggedSimage . Therefore, final noisy image Ĩt is ob-

tained by applying Rician noise to It as in Equation C.19, where c1 and c2 are

normally distributed random variables with zero mean and variance σ2
r [69] [58]

[65].

Ĩt(x, y) =
√

(It(x, y) + c1)2 + c22 (C.19)

Finally, noisy image TaggedSimage 0.5 is obtained by adding Rician noise of

σ2
r = 0.5 as showed in Figure 3.3. However, noise is not added to CineSimage since

noise in real cine CMR images are relatively less effective.

After generating the synthetic data by giving a known motion to real tagged

and cine CMR images, the proposed method and few other existing methods is

evaluated.

Table 3.1: Optical flow methods used for evaluation and their abbreviations (Only
the proposed method is using both tagged and cine CMR images while the other
methods are only using tagged CMR images)

Method Abbreviations
Proposed Method PM

Variational method [58] VM
Horn & Schunck method [67] HS
Lucas & Kanade method [60] LK
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Tagged Img 1 Tagged Img 2(Interpolated)

Ground Truth (Color)

Ground Truth (Flow)

Figure 3.2: The motion estimated between two tagged MR images (top-left and
top-right) is used as ground truth. The ground truth is illustrated using a color
wheel (bottom-left) and using vector fields within myocardium (bottom-right).
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(a) Interpolated Tagged Image (b) σ2r = 0.5 noise added

Figure 3.3: The pair of tagged CMR images created in synthetic data - Method A,
a) known motion interpolated image and b) after adding rician noise to the image
in a).

Table 3.2: Mean and STD of angle and pixel errors obtained from synthetic data
method A, with out adding noise (abbreviations are indicated in Table 3.1)

Method Angle Error Pixels Error
Mean STD Mean STD

HS 8.913206 1.866722 0.748801 0.321206
LK 6.029994 1.432386 0.093221 0.128575
VM 9.707466 3.194840 0.280561 0.244060
PM 5.557973 1.302442 0.111354 0.121222

3.5.2 Synthetic Data - Method B

This synthetic data generation models the expansion and contraction of an annular

object. The proposed method is based on the method used in [65] and aims

to assess the accuracy and robustness of the selected methods (in Table 3.1) by

considering only pure radial motion and eliminating the influence of other factors,

which typically increase the error in tag position estimation[65] . Tagged and cine

images are generated using numerical simulations of signal, noise, and motion to
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Ground Truth H & S LK

VM PM

Figure 3.4: Results obtained with synthetic data - method A (without noise) is
illustrated using a color wheel.
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Ground Truth H & S LK

VM PM

Figure 3.5: Results obtained with synthetic data - method A (with noise) is illus-
trated using a color wheel.
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Table 3.3: Mean and STD of angle and pixel errors obtained from synthetic data-
method A, with added noise (abbreviations are indicated in Table 3.1)

Method Angle Error Pixels Error
Mean STD Mean STD

HS 17.122046 2.606918 0.611332 0.311961
LK 15.426983 2.418938 0.206301 0.236503
VM 18.310476 2.598635 0.831756 0.332600
PM 14.066784 2.253401 0.210594 0.222719

systematically test the performance.

The two image sequences consisted of T images It (size 256 × 256 pixels). If

the myocardium has an outer radius rext and inner radius rc, the motion can been

described as below.

rt =
(routt − rint )

(rext − rc)
(r − rc) + rint , θt = θ (C.20)

where

rint = rc + kAsin(πt/T )

and

routt =
√
r2ext − r2c + (rint )2

In Equation C.20, t represents the cardiac phase and (r, θ) and (rt, θt) indicates

the corresponding polar coordinates of a point in two consecutive images. Further,

A controls the motion amplitude while k determines the motion type (k = 1

represents expansion and k = −1 represents contraction) [65]. The parameters

were fixed to the following values (all spatial parameters are in pixel units): d = 8

(spacing of tag lines), rc = 50, rext = 80, Imyo = 10 (intensity within annuls),
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Ibg = 0 (background intensity), A = 20 and T = 24.

Generation of synthetic tagged image sequence

Firstly the image with grids (tag lines) is created using a two dimensional sine

function and then random noise is added to the image with grids which mimic

the real tagged CMR image. Moreover, the created image then convolved

with a Gaussian kernel in order to generate a similar intensity profile as in

a tagged CMR image in ED phase (Figure 3.6).

After generating the first synthetic tagged CMR image then the motion is

estimated according to the Equation C.20. In this experiment, first four

images have been taken and each image is added a gradually increasing

Rician noise of σ2
r = 0.5, 1, 1.5, 2 consecutively according to the Equation

C.19. Figure 3.7 shows the first four frames of the synthetic tagged CMR

sequence and Figure 3.8 shows the evolution of simulated tagged fading. The

tag fading effect is visible due to the addition of increasing rician noise in

consecutive images.

Generation of synthetic Cine image sequence

In order to generate the first synthetic cine CMR image, a speckle image

is generated and random noise is added to the speckle image. Then after,

this speckle image is convolved with a Gaussian kernel in order to generate a

similar intensity profile as in a cine CMR image in ED phase. Then after the

motion derived from Equation C.20 was applied generate a synthetic cine

CMR sequence as shown in Figure 3.9. However, noise is not added to these

synthetic cine images since the noise in real cine CMR images are relatively

less effective.
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a) Image with grids b) Random Noise

c) Final Image after Smoothing d) Final Image with mask

Figure 3.6: Process of generating first synthetic tagged CMR image in synthetic
data - method B.

frame =1 frame =2 frame =3 frame =4

Figure 3.7: The first 4 frames of synthetic tagged CMR sequence obtained using
synthetic data - method B.
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frame =1 frame =2 frame =3 frame =4

Figure 3.8: Simulated tag fading effect in synthetic tagged CMR sequence using
synthetic data - method B.

frame =1 frame =2 frame =3 frame =4

Figure 3.9: The first 4 frames of synthetic cine CMR sequence obtained using
synthetic data - method B.
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The synthetic tagged CMR and synthetic cine CMR sequences undergo same

motion as illustrated in Figure 3.10. This motion and the derived strain from the

motion was used as the ground truth to evaluate the performances of the selected

algorithms with respect to the proposed algorithm.

frame1 to frame2 frame2 to frame3 frame3 to frame4

Figure 3.10: Ground truth radial motion between each pair of frames in synthetic
tagged and cine sequences in synthetic data - method B.

3.5.3 Experiments with Real Data

The proposed algorithm is tested with real CMR image sequences. The data were

acquired with ECG gating by a 1.5T Siemens Symphony MRI scanner. Eulerian

strains, radial and circumferential strains are calculated according to the stan-

dardized AHA myocardial division of segments. In order to assess the proposed

algorithm qualitatively, points on myocardium has been selected and tracked to

visualize the results of the proposed algorithm.
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3.6 Results

3.6.1 Results with Simulated Data

3.6.1.1 Synthetic Data - Method A

Table 3.2 shows the results obtained using the proposed algorithm and other se-

lected algorithms by giving a known motion to two tagged/cine CMR images with-

out adding noise. The results obtained using synthetic data-method A (without

adding noise) can be visualized using a color wheel as in Figure 3.4. Moreover, the

Table 3.3 shows the results obtained from giving a known motion to two tagged

/cine CMR images after adding rician noise of σ2
r = 0.5. Both Tables 3.2 and 3.3

show mean and standard deviation of angle error of optical flow and pixel wise

root mean squared error of optical flow. The results of experiment with Method

A can also be visualized using color wheel as in Figure 3.4 and 3.5 .

3.6.1.2 Synthetic Data - Method B

Table 3.4 shows the results obtained from Method B where synthetic tagged and

cine images are constructed by giving a known radial motion. Table 3.4 shows

mean and standard deviation of angle error of optical flow and pixel wise root

mean squared error of optical flow in consecutive frame pairs.

3.6.2 Results with Real Data

The proposed algorithm is tested using real human CMR data. In order to present

the results, basal slice of a healthy male is used. The Figure 3.13 demonstrates

slice-wise global radial and circumferential strain calculated within myocardium.
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Figure 3.11: Pixel error bar plot of the results in Table 3.4
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Figure 3.12: Angle error bar plot of the results in Table 3.4
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Table 3.4: Angle and pixel error of optical flow obtained after applying the methods
in Table 3.1 to synthetic data - method B.

Frame 1 to 2
Method Angle Error Pixels Error

Mean STD Mean STD

HS 29.75 3.12 0.58 0.07
LK 22.85 11.26 0.46 0.21
VM 19.66 9.01 0.4 0.17
PM 18.42 6.88 0.37 0.13

Frame 2 to 3
Method Angle Error Pixels Error

Mean STD Mean STD

HS 29.83 4.91 0.59 0.1
LK 35.99 18.8 0.79 0.39
VM 39.88 20.4 1 0.55
PM 23.49 12.97 0.47 0.24

Frame 3 to 4
Method Angle Error Pixels Error

Mean STD Mean STD

HS 29.89 5.91 0.59 0.12
LK 38.11 20.51 0.91 0.47
VM 46.73 24.18 1.44 0.92
PM 23.47 13.64 0.48 0.26

The Figure 3.14 shows average XX, XY, YY eulerian strains calculated within

myocardium. Moreover, Figures 3.15 and 3.16 show circumferential and radial

strains calculated according to the standard AHA myocardium segmentation. The

XX,XY,YY eulerian strains calculated according to the standard myocardium seg-

mentation is presented in Figures 3.17, 3.18 and 3.19. The change of circumferen-

tial and radial strains within myocardium are illustrated in Figure 3.22 and Figure

3.21 using color map in Figure 3.20.
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The Figure 3.23 shows tracked points along 16/20 frames of a basal slice and

3.24 shows trajectories of selected points in Figure 3.23. The tracked points along

16 frames and trajectories of the points have been presented in order to provide a

qualitative measure regarding the results of the proposed algorithm.
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Figure 3.13: Global circumferential and radial strains of a basal slice calculated
within whole myocardium

3.7 Discussion

As can be seen from the Table 3.2, the proposed method preserves the angles

of optical flow (the displacement) than other methods in noise free experiment.

Moreover, the proposed method shows the minimum STD with respect to other

methods. However, the [60] method shows the minimum RMSE pixel error. Fur-

ther, with the presence of noise in synthetic data method A, the Table 3.3 shows

that the proposed method still preserves the angles of optical flow (the displace-
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Figure 3.14: XX,XY,YY Eulerian strains of a basal slice calculated in whole my-
ocardium
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Figure 3.15: Circumferential strain of a basal slice calculated according to standard
segmentation
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Figure 3.16: Radial strain of a basal slice calculated according to standard seg-
mentation
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Figure 3.17: XX Eulerian strains of a basal slice calculated according to standard
segmentation
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Figure 3.18: XY Eulerian strains of a basal slice calculated according to standard
segmentation
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Figure 3.19: YY Eulerian strains of a basal slice calculated according to standard
segmentation
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Figure 3.20: Color map used for strain illustrations

Figure 3.21: Evolution of radial strain visualized using color map in Figure 3.20
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Figure 3.22: Evolution of circumferential strain visualized using color map in Fig-
ure 3.20

ment) than other methods. Even though, the [60] method sill shows the minimum

RMSE pixel error, the proposed method also has a very close error average RMSE

pixel Error to the error of [60] method. However, the proposed method shows

the minimum STD with respect to other methods. The Figure 3.4 and 3.5 also

show qualitatively that the proposed method is able to recover the motion with a

reasonable accuracy.

When considering the results of synthetic data method B, Table 3.4 shows that

the proposed method preserves the angles of optical flow than other methods in

consecutive images where the noise is gradually increasing. Even though the [60]

method shows better results with synthetic data in method A, [60] method shows

larger errors with synthetic data in method B. This larger error gap suggests that

the [60] method is not capable of handling gradually increasing noise. Moreover,

Figures 3.11 and 3.12 show that the angle and pixel error of the proposed method
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.23: Tracked points along 16/20 frames of a basal slice. Frame numbers
are indicated at the top-right of each image
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Figure 3.24: Trajectories of selected Points in Figure 3.23

is minimum and more consistent with gradually increasing noise in synthetic data

- method B.

As can be seen in point tracking results shown in Figure 3.23, the points are

appeared to be consistent even with the presence of tag fading effect in tagged CMR

image sequence. Figure, 3.24 shows that the tracked points can be empirically

accepted with respect to the selected points in the first frame.

According to the results obtained from both synthetic data and real data, it can

be concluded that the proposed algorithm provides more robust motion estimation

even with the presence of noise. Moreover, the results show that the proposed

method preserve the angles of displacement (optical flow) which is important in

calculating strain measures like radial and circumferential strain. Further, the

proposed method shows that joint estimation of cardiac motion using both cine

and tagged CMR images tend to be more robust to noise than using a single

modality.
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Chapter 4

Correlation Analysis

This chapter describes the statistical correlation analysis carried out using both

strain and infarct data. The statistical analysis aims to identify relationship be-

tween strain measures and infarctions. These strain measures were derived from

the proposed algorithm described in previous chapter and infarct quantification

was done using the framework suggested in [5]. The objectives of the study, pro-

cessing of data and results have been discussed in the sections below.

4.1 Objective

The main objective of this study is to evaluate the ability of established and new

strain parameters of global and regional cardiac left ventricle function to estimate

myocardial infarct percentage. In order to assess the infarct predicting ability

of each parameter, different strain measures (global and regional) and regional

I/M% are being studied. In addition, this analysis has taken the data related

to whole cardiac cycle without restricting to systolic or diastolic phase. In this
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study, both maximum and minimum strains have in-cooperated while most of the

available studies concerning a one-peak value during either systolic or diastolic

phase. Further, this study aims to evaluate global and regional eulerian strains

without restricting to lagrangian radial and circumferential strains. Assessing LV

cardiac function according to different AHA segment-wise arrangements is another

goal of this study. Therefore, the cardiac function is analyzed according to simple

vertical and horizontal arrangements. Finally, the effect of regional I/M% to global

strain measures has also been taken in to consideration.

4.2 Data

We have collected 10 sets of real patient data with varying amounts of infarcts

for the evaluation. The data were acquired with ECG gating by a 1.5T Siemens

Symphony MRI scanner from 10 patients (10 males, 38-81 years old, mean age

52 ± 10) three months after myocardial infarction, following a bolus injection of

a gadolinium-based contrast agent. Tagged, Cine and LGE sequences of a same

subject comprise the same number of SA slices with the same scan locations.

Depending on the individual heart size, there can be 8-11 SA slices for a patient.

While slices of a Tagged/Cine sequence comprise 20-25 frames, slices of an LGE

sequence comprise only one frame.
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4.3 Data Processing

4.3.1 Infarct Quantification

The LGE CMR images have been processed using the infarct quantification frame-

work suggested by [5]. The regional infarct percentage (I/M%) for each standard

AHA myocardial segment is derived. The I/M% has been further averaged when

the same segment appears in multiple slices (apical, mid and basal) and this aver-

aged I/M% is used for statistical analysis.

4.3.2 Strain Quantification

Firstly the strain tensors were calculated from the tagged and cine SA slices of the

10 patients for the whole cardiac cycle. In order to calculate the cardiac motion

(displacement), the proposed method was used. Therefore, displacement was esti-

mated using both cine and tagged CMR data. Lagrangian strains (radial (CS) and

circumferential strain (RS)) and eulerian strains (in XX, XY, YY directions) were

calculated subsequently. These 5 strains were calculated according to standard

AHA myocardium segmentation. In addition to AHA segment-wise strains, each

of these strains was calculated for whole myocardium region appears within a par-

ticular slice. Moreover, Efficient Strain (ES) which is obtained by subtracting the

CS from the RS at the same time for particular region and time instance. Further,

efficient strains were also calculated according to the standard AHA myocardium

segmentation as in other strains. Finally, maximum and minimum strains take

place in each strain parameter (within whole cardiac cycle) was taken for correla-

tion analysis with I/M%. Altogether, 24 descriptors were extracted for the study.
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The type, description and abbreviations of these strain measures are shown in

Table 4.1. Figures 4.1 and 4.2 shows the scatter plot of derived regional strain

measures.

Table 4.1: Abbreviation and description of strain measures used for correlation
analysis

Strain Type Abb. Description

Radial PRS+ Max. AHA segment-wise radial strain
PRS− Min. AHA segment-wise radial strain
TRS+ Max. radial strain from slice wise global strain
TRS− Min. radial strain from slice wise global strain

Circumferential PCS+ Max. AHA segment-wise circumf. strain
PCS− Min. AHA segment-wise circumf. strain
TCS+ Max. circumf. strain from slice wise global strain
TCS− Min. circumf. strain from slice wise global strain

Efficient PES+ Max. AHA segment-wise efficient strain
PES− Min. AHA segment-wise efficient strain
TES+ Max. efficient strain from slice wise global strain
TES− Min. efficient strain from slice wise global strain

Eulerian XX PXX+ Max. AHA segment-wise XX strain
PXX− Min. AHA segment-wise XX strain
TXX+ Max. XX strain from slice wise global strain
TXX− Min. XX strain from slice wise global strain

Eulerian XY PXY + Max. AHA segment-wise XY strain
PXY − Min. AHA segment-wise XY strain
TXY + Max. XY strain from slice wise global strain
TXY − Min. XY strain from slice wise global strain

Eulerian YY PY Y + Max. AHA segment-wise YY strain
PY Y − Min. AHA segment-wise YY strain
TY Y + Max. YY strain from slice wise global strain
TY Y − Min. YY strain from slice wise global strain
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Figure 4.1: The scatter plot of Max. and Min. of regional Lagrangian strains
calculated over whole cardiac cycle (I/M% was normalized in to [0 1])
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Figure 4.2: The scatter plot of Max. and Min. of regional Eulerian strains calcu-
lated over whole cardiac cycle (I/M% was normalized in to [0 1])
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4.4 Statistical Analysis

Prior to statistical analysis, the I/M% was normalized in to [0 1] range. Subse-

quently, The pairwise Pearson’s correlation coefficient (r) is derived considering

each I/M% and relevant strain measures. The statistical significance defined as

p <0.05 for all tests.

Firstly, the correlation analysis is carried out considering three slice levels as in

standard AHA myocardium segmentation. In this test, all segments are first ana-

lyzed without considering their slice location and subsequently, the test is carried

out for basal, mid and apical slice segments considering the slice location. In this

test, differences of segments within a particular slice has not been considered and

the main goal of this test is to assess I/M%’s relationship with strain measures for

each slice level. The results of this test have shown in Table 4.2.

Secondly, the correlation analysis is carried out by considering standard AHA

myocardium segmentation. In this test, correlation between I/M% of each segment

and relevant strain measures of particular segment is analyzed. The goal of this

test is to analyze AHA segments-wise correlation of I/M% to each strain measure.

The results of this test has shown in Table 4.3 and 4.4.

Thirdly, the correlation analysis is carried out by considering vertical arrange-

ments in standard AHA myocardium segmentation. In this test, the myocardium

segments are arranged in to vertical arrangements as anterior, anteroseptal, in-

feroseptal, inferior, inferolateral, and anterolateral. Subsequently, the correlation

between I/M% and strain measures of segments of each of these vertical arrange-

ments is analyzed. The results of this test has shown in Table 4.5.
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Table 4.2: The results of slice-wise correlation analysis between I/M% strain mea-
sures in Table 4.1. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001 and � indicates p > 0.05

Strain Type All Slices Apical Slices Mid Slices Basal Slices
r% p r% p r% p r% p

PRS+ -18.54 ? ? ? -6.59 � -24.61 ? -25.09 ??
PRS− 10.70 � 3.16 � 20.02 ? 6.55 �
PCS+ -7.68 � 1.61 � -4.03 � -22.24 ?
PCS− 15.50 ?? -6.02 � 34.78 ? ? ? 16.85 �
PES+ -9.83 � 1.10 � -16.14 � -18.79 ?
PES− 6.08 � 10.26 � 2.34 � 3.70 �
PXX+ -15.21 ?? 2.45 � -22.55 ? -29.55 ??
PXX− 6.73 � -15.74 � 24.46 ? 7.27 �
PXY + -12.24 ? -6.95 � -19.57 ? -13.59 �
PXY − 15.44 ?? 10.39 � 22.38 ? 18.78 ?
PY Y + -10.58 � -1.60 � -14.76 � -15.22 �
PY Y − 15.79 ?? -4.76 � 27.32 ?? 21.51 ?
TRS+ -5.68 � -7.00 � -1.89 � -14.03 �
TRS− -4.96 � -8.05 � -3.66 � -3.60 �
TCS+ -7.54 � -19.05 ? -5.44 � 2.48 �
TCS− 10.79 � 3.04 � 22.67 ? 14.04 �
TES+ -9.03 � -1.82 � -20.44 ? -17.80 �
TES− 5.14 � 9.69 � 4.09 � 2.18 �
TXX+ -11.46 ? -34.71 ? ? ? 1.98 � 6.99 �
TXX− -8.49 � -16.11 � 0.80 � -9.93 �
TXY + -4.99 � -7.74 � -9.75 � 1.43 �
TXY − 17.17 ?? 19.07 ? 29.10 ?? 18.22 �
TY Y + -14.35 ?? -12.87 � -17.15 � -17.03 �
TY Y − 16.91 ?? 23.19 ? 11.96 � 25.97 ??
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Table 4.3: The results from standard AHA segment-wise correlation Analysis [Segments 1-8] between I/M% strain
measures in Table 4.1. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001 and � indicates p > 0.05

Strain Type 1 2 3 4 5 6 7 8
r% p r% p r% p r% p r% p r% p r% p r% p

PRS+ -9.29 � -10.47 � -37.11 � -49.10 ? -55.71 ? -28.90 � -18.80 � -6.91 �
PRS− 9.20 � 19.07 � 19.48 � -39.42 � 20.74 � 43.52 � -5.56 � 16.58 �
PCS+ -42.23 � -17.96 � -12.50 � -17.40 � -26.42 � -34.38 � 34.33 � 42.92 �
PCS− 14.63 � 7.61 � -49.74 ? -2.33 � 28.34 � 58.21 ?? 21.14 � 25.78 �
PES+ 14.00 � -21.24 � -1.30 � -21.89 � -33.31 � -56.62 ? -5.68 � -8.04 �
PES− -14.20 � 22.36 � 10.00 � -26.18 � 19.22 � 43.09 � -31.07 � -15.18 �
PXX+ -19.86 � -14.11 � -20.58 � -40.52 � -55.93 ? -37.63 � 34.55 � 4.04 �
PXX− -15.48 � 12.79 � 18.77 � -47.78 ? 26.91 � 49.65 ? 17.11 � 9.28 �
PXY + -34.29 � -17.38 � -13.36 � 14.01 � -12.54 � -51.31 ? 17.78 � 53.85 ?
PXY − 25.73 � 32.13 � -42.08 � 24.66 � 38.49 � 31.18 � 14.13 � 21.00 �
PY Y + -4.87 � -24.14 � -40.05 � 8.00 � -8.34 � -21.15 � -16.80 � -0.11 �
PY Y − 26.71 � 20.21 � 33.90 � 19.85 � 21.14 � 37.88 � 16.66 � 7.39 �
TRS+ 8.51 � 7.39 � -3.15 � -25.15 � -41.10 � -30.50 � 5.14 � 15.44 �
TRS− 21.95 � 14.79 � -17.62 � -37.65 � -2.67 � 14.54 � -3.90 � -23.58 �
TCS+ -1.22 � 11.35 � 17.97 � 30.25 � -13.17 � -31.44 � -1.58 � 24.69 �
TCS− -35.89 � -39.88 � 0.00 � 33.54 � 60.09 ?? 49.86 ? 14.86 � 9.55 �
TES+ 3.46 � 13.36 � 7.90 � -16.38 � -57.19 ? -55.14 ? -22.67 � -6.19 �
TES− 29.10 � 23.86 � -27.45 � -41.36 � 13.22 � 29.20 � 2.44 � -26.87 �
TXX+ 30.78 � 33.48 � -8.64 � -18.92 � 3.50 � 7.50 � 36.12 � 23.62 �
TXX− -0.22 � -0.58 � -5.30 � -22.69 � -16.10 � -6.62 � -33.06 � -40.82 �
TXY + -26.01 � -23.52 � 12.99 � 30.82 � 4.56 � -7.33 � -1.85 � 14.27 �
TXY − 6.65 � 0.05 � 5.70 � 21.14 � 40.81 � 36.15 � 22.25 � 18.57 �
TY Y + -4.07 � -3.20 � -7.48 � -5.03 � -43.90 � -43.73 � -9.64 � -2.08 �
TY Y − -10.67 � -19.23 � 38.20 � 47.36 ? 53.28 ? 44.32 � -7.51 � -33.41 �
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Table 4.4: The results from standard AHA segment-wise correlation Analysis [Segments 9-10] between I/M% strain
measures in Table 4.1. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001 and � indicates p > 0.05

Strain 9 10 11 12 13 14 15 16
Type r% p r% p r% p r% p r% p r% p r% p r% p

PRS+ -6.03 � -60.01 ? -46.84 � -52.21 ? -16.95 � 13.67 � -0.01 � -40.86 ?
PRS− 18.21 � 48.75 ? 36.08 � 39.88 � -8.64 � 7.85 � 27.93 � -3.71 �
PCS+ -17.76 � -36.87 � -54.22 ? -37.59 � 8.55 � -17.98 � 17.83 � -10.08 �
PCS− 24.58 � 53.94 ? 59.10 ? 65.60 ?? -0.80 � -16.10 � -27.78 � 40.27 ?
PES+ 15.17 � -9.35 � -55.19 ? -46.94 � -30.10 � 30.54 � 22.91 � -43.43 ?
PES− 11.46 � 10.83 � 26.14 � 33.53 � 20.28 � 24.37 � 16.94 � -26.95 �
PXX+ -20.65 � -54.24 ? -66.76 ?? -48.97 ? 20.30 � -11.51 � 31.24 � -36.87 �
PXX− 31.79 � 47.77 � 38.54 � 44.89 � -36.21 � -14.36 � -4.17 � 7.04 �
PXY + -15.44 � -47.84 � -62.53 ?? -46.88 � -20.42 � -1.71 � -7.58 � 12.52 �
PXY − -5.13 � 37.19 � 49.93 ? 50.78 ? 37.34 � -10.18 � -38.55 ? 52.98 ??
PY Y + -38.51 � -1.02 � -47.32 � -57.58 ? -9.24 � 18.21 � 6.30 � -34.67 �
PY Y − 3.83 � 36.05 � 53.86 ? 71.87 ?? 16.76 � -24.51 � -27.65 � 25.40 �
TRS+ 72.71 ? ? ? 17.33 � -50.90 ? -29.66 � -14.76 � -6.86 � 36.79 � -35.40 �
TRS− 5.12 � 8.71 � 0.95 � 7.88 � -19.30 � -0.72 � 19.57 � -14.75 �
TCS+ 20.11 � -11.30 � -31.80 � -33.03 � -21.68 � -41.24 ? -17.86 � 2.02 �
TCS− -11.75 � 34.25 � 49.73 ? 37.00 � 12.05 � -7.93 � -38.28 ? 43.58 ?
TES+ 26.58 � -20.27 � -45.93 � -46.82 � -11.13 � 3.65 � 47.25 ? -36.12 �
TES− -2.58 � 19.10 � 19.45 � 26.44 � 3.04 � 27.47 � 23.25 � -2.47 �
TXX+ 18.56 � -28.12 � -41.43 � 16.73 � -45.60 ? -47.78 ? -5.92 � -42.74 ?
TXX− 4.04 � 49.89 ? 43.25 � -6.42 � -8.72 � -15.14 � -30.40 � -26.25 �
TXY + 14.34 � -17.68 � -36.49 � -30.90 � 1.47 � -19.97 � -26.13 � -8.50 �
TXY − 4.08 � 39.20 � 50.54 ? 48.43 ? 25.11 � 13.79 � -5.65 � 51.99 ??
TY Y + 37.68 � -5.24 � -56.73 ? -48.60 ? -20.69 � -6.16 � -1.64 � -30.34 �
TY Y − 0.98 � 57.45 ? 46.70 � 22.44 � 21.35 � 26.61 � 39.26 ? 36.83 �
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Table 4.5: he results from standard AHA vertical segments-wise correlation Analysis between I/M% strain measures
in Table 4.1. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001 and � indicates p > 0.05. Ant-anterior, AS-anteroseptal,
IS-inferoseptal, Inf-inferior, IL-inferolateral, AL- anterolateral

Strain Type Ant AS IS Inf IL AL
r% p r% p r% p r% p r% p r% p

PRS+ -6.38 � -5.71 � -22.07 � -31.96 ? -51.04 ?? -35.50 ?
PRS− -8.54 � 14.80 � 21.19 � 5.70 � 23.65 � 39.64 ?
PCS+ 13.36 � 13.70 � -11.57 � -6.99 � -38.96 ? -32.67 �
PCS− 2.78 � 16.45 � -25.60 � 6.81 � 46.04 ?? 57.76 ? ? ?
PES+ -7.71 � -8.58 � 5.93 � -7.29 � -47.06 ?? -43.92 ??
PES− -0.89 � -0.06 � 9.22 � -4.72 � 20.02 � 35.45 ?
PXX+ 22.64 � -6.00 � -19.70 � -20.98 � -58.88 ? ? ? -38.36 ?
PXX− -24.75 ? 11.15 � 21.26 � 0.78 � 29.49 � 44.38 ??
PXY + -7.77 � 23.09 � -13.79 � -5.39 � -44.77 ?? -46.05 ??
PXY − 16.01 � 18.31 � -17.74 � 9.48 � 37.71 ? 37.54 ?
PY Y + -4.95 � -12.25 � -37.20 ? 2.40 � -25.34 � -31.29 �
PY Y − 14.54 � 15.68 � 24.24 � 11.81 � 39.54 ? 38.52 ?
TRS+ -0.05 � 14.08 � 30.43 � 2.39 � -45.44 ?? -27.49 �
TRS− -15.49 � -9.87 � -6.20 � 3.29 � -2.70 � 11.63 �
TCS+ -3.00 � 13.61 � 19.89 � -7.15 � -23.74 � -30.84 �
TCS− 2.01 � -10.15 � -4.19 � 10.96 � 49.53 ?? 40.49 ?
TES+ -4.87 � 3.18 � 14.33 � 0.12 � -45.75 ?? -47.65 ??
TES− -0.45 � -4.33 � -17.01 � 2.71 � 14.18 � 27.92 �
TXX+ -7.77 � 28.83 � 2.87 � -19.26 � -25.75 � 10.30 �
TXX− -15.93 � -17.48 � -2.06 � -1.25 � 11.60 � -6.37 �
TXY + 6.00 � -1.98 � 13.13 � -10.62 � -21.48 � -16.02 �
TXY − 13.03 � 3.90 � 7.89 � 16.18 � 36.56 ? 36.97 ?
TY Y + -12.66 � -1.26 � 11.85 � -6.15 � -50.29 ?? -42.92 ??
TY Y − -0.02 � -28.42 � 26.05 � 42.27 ? ? ? 41.32 ? 36.36 ?
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4.5 Results and Discussion

As it can be seen in Table 4.2, PRS+ shows a negative and weaker correlation with

a higher significance (p < 0.05) in mid and basal slices. These results suggest that

the maximum regional radial strain in mid and basal slice segments may reduce

due to the presence of infarctions. The Table 4.2 also shows that PCS− has a

weaker and positive correlation with I/M%. This weaker correlation suggests that

the minimum regional circumferential strain may also increase due to the presence

of infarctions and therefore the circumferential contraction may become weak in

mid slices. Moreover, both PXX− and PY Y − also show a positive and weaker

correlation with I/M% in mid slices. Hence, it suggests that both minimum XX

and YY strains are sensitive to infarctions. Further, according to the results in

Table 4.2, I/M% in apical slice segments have a negative and weaker correlation

with the slice-wise maximum XX eulerian strain (TXX+) and this result suggest

that the global myocardial extraction of apical slices in XX direction may reduce

due to the presence of infarctions. In addition to that, it can be seen that minimum

value of global eulerian strains in XY and YY directions are also showing a positive

and weaker correlation in mid and basal slices consecutively.

When considering the results of AHA segment-wise correlation analysis in Ta-

ble (4.3 and 4.4), it can be seen that more moderate and stronger correlations are

visible than the basal, mid and apical slices wise correlation analysis. As can be

seen in Table 4.3, any correlation with a higher significance was not detected in

Segment 1 and 2. However, I/M% of Segment 3 shows a moderate negative correla-

tion of 49% with regional minimum circumferential strain (PCS−). The I/M% in

Segment 4 shows a negative and moderate correlations with maximum regional ra-
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dial strain (PRS+) and minimum regional XX directional eulerian strain (PXX−).

Specially, the I/M% in Segment 4 shows a positive and moderate correlation with

minimum slice-wise YY directional eulerian strain (TY Y −). This correlation in

Segment 4 suggests that, its infarctions are more effective in global YY direc-

tional eulerian strain. This correlation with TY Y − in Segment 4, is also visible

in Segment 5. The I/M% in Segment 5 also shows a strong correlation of 60% to

slice-wise minimum circumferential strain (TCS−) and it suggests that the infarc-

tions presence in Segment 5 is highly disturbed the whole slice’s circumferential

contraction. Moreover, the results show that I/M% in Segment 5 is also moder-

ately correlated with slice-wise maximum efficient strain (TES+). The Segment

5’s this correlation with slice-wise global strains, are also visible in Segment 6. In

addition, I/M% in Segment 5 also shows more moderate correlation with maximum

regional radial strain (PRS+) and with maximum regional XX directional eule-

rian strain (PXX+). The I/M% in Segment 6 also shows moderate correlations

with PCS−, PES+, PXX− and PXX+ which are approximately strong about

50-60%. However, the I/M% in Segment 7 does not shows any correlation with a

higher significance and the I/M% in Segment 8 only shows a moderate correlation

with PXY +. As can be seen in Table 4.2, I/M%s in Segment 1, 2 and 7, 8 do not

show strong relationships to strain measures like in other segments such as 4, 5

and 6. This observation suggests that the presence of infarctions in anterior and

anteroseptal may not be highly effective in slice-wise global or regional, minimum

and maximum strain alterations.

According to the results shown in Table 4.4, it can be seen that I/M% in

Segment 9 is strongly correlated with slice-wise maximum radial strain(TRS+)

and it suggests that infarctions in Segment 9 is highly effective in whole slice’s
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radial extraction. However, similar to Segment 3, I/M% in Segment 9 also does

not show any significant correlation with other maximum and minimum strain

measures. This evidence suggests that inferospetal segments are not correlated

strongly with I/M% according to results of selected strain measures.

Moreover, the results in Table 4.4 show that I/M% in Segment 10 is strongly

correlated with maximum regional radial strain (PRS+). The I/M% in Segment

10 also exhibits moderate correlations of 50-60% with PRS−, PCS−, PXX+,

TXX− and TY Y −. When comparing this result with the results of Segment 4,

it can be seen that I/M% in both Segment 4 and 10 show a moderate correla-

tion to global slice-wise minimum YY directional eulerian strain (TY Y −). This

observation suggests that infarctions presence in inferior segments are correlated

with TY Y −. Further, it can be seen that when it come from basal inferior to mid

inferior, this correlation becomes stronger.

The I/M% in Segment 11 shows stronger correlations with PXX+, PCS− and

PXY+ while it shows several other moderate correlations. Moreover, the I/M%

in Segment 12 shows strong correlations with PY Y −, PCS− and PXY+ while it

shows several other moderate correlations. The anterior Segment 13, only shows a

moderate correlation between TXX+ and it does not show any other significant

correlation like in Segment 1 and 7.

The septal Segment 14 also shows only moderate correlations of 40-50% with

TCS+ and TXX+. This observation further suggests that infarctions presence

in anterior, anteroseptal or septal is not highly effective to the selected maxi-

mum/minimum strain measures.

When considering the I/M% in Segment 15, 16 and correlation with the selected

strain measures, it can be seen that more moderate correlations are visible than
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Segment 13 and 14. Moreover, these correlations of Segment 15 and 16 share

similar correlations with other inferior and lateral segments as well.

According to the results and observations of segment-wise correlation analysis,

it can be seen that anterior, anteroseptal, inferoseptal, inferior, inferolateral, and

anterolateral segments shows similarities in correlated maximum and minimum

strain measures. It can also be seen that the segments 4,5, 6, 10, 11, 12, 15 and 16

show relatively higher number of moderate or strong correlations than the other

segments. Moreover, the inferolateral and anterolateral segments show highest

number of correlations. These results suggest that right side region of LV is likely

to be more sensitive to motion and strain due to the presence of infarction. When

considering the results of the anterior, anteroseptal, inferoseptal, inferior, infero-

lateral, and anterolateral segments wise correlation analysis in Table 4.5, it further

suggests that inferolateral and anterolateral segments show the highest number of

correlations and more stronger correlations than other arrangements in standard

AHA segmentation. The Table 4.5 shows that both TY Y − and PRS+ shows

moderate correlations in inferior, inferolateral, and anterolateral segments. Fur-

ther, it can be observed that the strain measures that show moderate correlations

in inferolateral, and anterolateral are largely similar.

This study also had several limitations. The main limitation of this study is the

sample size that is 10 patients and all are only male patients. Another limitation of

this study is using AHA segment-wise averaged I/M%. This segment-wise averaged

I/M% might reduce the strength of the correlation coefficient.
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4.6 Conclusion

In conclusion, this study has used data from tagged, cine and LGE CMR images.

This study has incorporated 24 strain measures that are calculated over the full

cardiac cycle using the motion estimation method described in this thesis. The

result of the correlation analysis shows that regional analysis of correlation is more

effective than global analysis. More strong correlations can be detected when it is

dealing with regional measures. It can also be seen that the selected maximum and

minimum strain measures can be used to provide prognosis information to predict

infarctions in inferior, inferolateral, and anterolateral segments more effectively.

However, selected maximum and minimum strain measures that are related to

anterior, anteroseptal and inferoseptal segments do not show a strong possibility in

providing prognosis information on myocardial infarctions or ischemia. Finally, it

can also be seen that Eulerian strain measures are also showing a greater potential

in providing information on myocardial infarctions.
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Chapter 5

Conclusion and Future Work

This chapter concludes the thesis and suggests several directions for future work.

Section 5.1 summarizes the technical contributions achieved in this thesis. Section

5.2 suggests some directions for future research.

5.1 Conclusion

5.1.1 Cardiac Motion Estimation

In conclusion, we have proposed a novel method for cardiac motion estimation

using both tagged and cine CMR image sequences. In this thesis, we have used

SA slices to estimate 2D motion within myocardium. Moreover, the estimated

2D motion has been used to derive global and regional strain measures that in-

cludes; Lagrangian strains (radian and circumferential), Eulerian strains (in XX,

XY and YY directions) and efficient strain (radial strain - circumferential strain).

The evaluation of proposed method using synthetic and real data shows that the

proposed method is capable of tracking material points over the cardiac cycle with
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a minimum error while being robust to increasing noise and tag fading effect.

It can be concluded that, the tag fading and its effects on motion estimation of

tagged CMR, can be compensated by using the rich anatomical information in

cine CMR images and using the rich regional motion information in tagged CMR

images simultaneously. In addition, the proposed method shows that an optical

flow based solution can be used effectively to estimate motion jointly using both

cine and tagged CMR data. Since cine CMR images are routinely acquired as part

of clinical MR image acquisition, extra effort is not needed for the data acquisition.

Hence, it can also be concluded that the proposed motion estimation method can

be practically used in clinical settings in order to derive 2D motion and strain

information.

5.1.2 Correlation Analysis

The correlation analysis between I/M% and strain measures shows that the strains

calculated over the full cardiac cycle can provide valuable prognosis in global and

regional LV function analysis. It also shows that the regional analysis of correlation

is more effective than global analysis in the study context. The study also shows

that in inferior, inferolateral, and anterolateral segments tend to show stronger

correlations than the other segments of LV. Moreover, this thesis shows the im-

portance of Eulerian strains where the eulerian strains are also showing moderate

and strong correlations like the other established strain measures such as peak

Lagrangian strains.
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5.2 Limitations and Future Work

One of the limitations of the proposed motion estimation method is that it only

estimates 2D motion. Empirically, the same motion estimation may work with

good accuracy in LA slices. However, future work will explore the estimation of

3D motion by incorporating LA slices of cine and tagged CMR as well. Further,

by having 3D motion estimation, more descriptors such as ejection fraction, LV

volume, LV mass and torsion can be derived in order to provide more details on

cardiac function.

Future work in correlation analysis may include more patients’ data with more

descriptors. In addition to maximum and minimum strains, the time to maximum

and minimum strains can also be used in analyzing relationship between I/M%

and strains. Moreover, other descriptors such as ejection fraction, LV volume, LV

mass and torsion can also be used in correlation study with an extended statistical

analysis. Further, this correlation analysis and prognosis information identification

can be viewed as a learning problem. Hence, future work might also include

learning LV motion data in order to regress the I/M%.

Finally, the joint analysis of CMR can be extended to fuse more cardiac MRI

imaging modalities in order to provide more patient specific information and vi-

sualization. Therefore, future work may explore the ways of fusing other CMR

imaging modalities while preserving the motion of the heart.
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