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Synthesis and Characterization of Anisotropic 
Semiconductor Nanocrystals of Mixed Dimensionality 

 
SUMMARY 

 
The dimensionality of colloidal semiconductor nanocrystals is a key factor in 

determining their various physicochemical properties, such as the extent of 

quantum-confinement, rate of excitonic recombination and surface-to-volume 

ratio. The overarching goal of this thesis is to investigate these properties in 

semiconductor nanocrystals of mixed dimensionality. We developed novel 

synthetic approaches for achieving branched nanoheterostructures comprising 

of a 0D core with 1D arms, as well as 2D nanosheets with highly anisotropic 

lateral dimensions. The growth mechanisms of these nanoparticles were 

investigated and their optical and electronic properties were characterized by 

ultrafast spectroscopy techniques and within the context of optoelectronic 

devices.  In Chapters 2 and 3, we describe the synthesis and characterization 

of Type-II InP/ZnS seeded CdS tetrapod nanoheterostructures capable of 

exhibiting highly photostable multi-wavelength multiexciton emission 

(MME). These structures were found to possess a wide range of pump-

dependent emission color tunability from red to white to blue, which was 

ascribed to the anisotropic tetrapod morphology and staggered band alignment 

at the core-arm interface. In addition, via sequentially cation exchange 

reaction, these Type-II tetrapods could be chemically transformed into Type-I 

InP/ZnS seeded ZnS tetrapods with wurtzite ZnS arms. Moving from strongly 

quantum confined branched nanoheterostructures to 2D nanosheets, Chapters 
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4 and 5 details our efforts to explore novel synthetic approaches for achieving 

free standing 2D semiconductor nanosheets where halide ions (Cl- and Br-) 

were found to play a decisive role for lateral growth. Via this premise, we 

successfully synthesized and structurally characterized sheet-like structures of 

Ni9S8 and Cu2S with thicknesses on the order of ~ 1 nm. We employed this 

strategy in conjunction with the cation exchange approach to transform the 

Cu2S structures obtained into ultrathin PbS nanosheets. The PbS nanosheets 

possessed a well-defined hexagonal shape, comparatively large lateral 

dimensions of ~150-200 nm, and an unusual facet orientation whereby the 

highest surface energy ±{111} facets terminate the top and bottom planes of 

the PbS nanosheets. Incorporation of the PbS nanosheets into a field effect 

transistor revealed that they were n-type, which is highly desirable in view of 

their stability under ambient conditions. We propose that the n-type behavior 

of these nanosheets may be rationalized in view of their unique structure.   
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1.1 General introduction of colloidal semiconductor nanocrystals 

Colloidal semiconductor nanocrystals (NCs) are nanoparticles 

comprising of a small crystalline inorganic core (1-10 nm) that is stabilized by 

a capping layer of organic molecules on the surface, thus enabling good 

suspension in a polar/non-polar solvent system (see Figure 1.1(a)).1 Such NCs 

are called quantum dots (QDs) because of their unique size-dependent band 

gaps and tunable optical properties, which is due to the quantum confinement 

effect.2 Since the first successful synthesis of colloidal CdSe QDs in 1993,3 the 

composition of QDs have vastly expanded from II-VI to I-VI, III-VI, IV-VI 

and III-V group semiconductors. Examples include, ZnX (X=S, Se, Te),4 

Ag2X (X=Se/S),5 In2S3,
6 InX (X = P, As),7, 8 and PbX (X=Se, S).9 QDs have 

been fabricated into thin films via the spin coating method and are widely 

utilized in a range of optoelectronic devices owing to their diverse optical and 

electronic properties,10  such as light emitting diodes (LED),11 solar cells,12 

photo-detectors,13 field effect transistors (FET)14. Besides, due to their 

narrower fluorescence emission and improved quantum yield (QY), QDs have 

been intensively used in bioimaging applications as well.15, 16 Figure 1.1(b) is 

a typical low resolution transmission electronic microscopy (TEM) image of 

highly monodispersed PbS QDs synthesized via the hot injection method. The 

high resolution transmission electronic microscopy (HRTEM) image focusing 

on a single particle is displayed in Figure 1.1(c) with its corresponding fast 

fourier transform (FFT) in Figure 1.1(d), which clearly reveals the lattice 

fringes and the reflection patterns of {220} and {200} planes. This indicates 

the good crystallinity of the colloidal QDs obtained from a wet-chemistry 

synthetic approach.  
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Figure 1.1 Typical colloidal semiconductor nanocrystals. (a) Schematic 
drawing of NCs surrounded by surfactants, typically primary alkyl amines / 
acids, or trioctylphosphine / trioctylphosphine oxide; (b) low resolution TEM 
image of a typical PbS QDs with good size distribution; (c) HRTEM image on 
a single QD showing clear lattice fringes indicating good crystallinity of the 
nanocrystals; (d) FFT pattern which corresponds to the single particle 
displayed in (c) showing reflections from {200} and {220} planes in rock salt 
PbS crystal. 

1.1.1 Electronic states of nanocrystals with different dimensionality 

Semiconductors differ from metals in that the Fermi level is within a 

band gap as illustrated in Figure 1.2(a). The closest band above the band gap 

is called the conduction band, and the closest band beneath the band gap is 

called the valence band. The minimum amount of energy required for 

promoting an electron from valance band to conduction band depends on the 

size of the band gap. When the electron is excited into the conduction band, a 

hole is created at the same time in the valence band, resulting in the generation 

of an exciton (electron-hole pair). The evolution of the electronic state of 

semiconductor nanocrystals with respect to the decreasing size from bulk to 

zero-dimensional is shown in Figure 1.2(b). The electronic state is continuous 

in bulk semiconductor, but progressively becoming discrete with further 
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decrease of their size. From one-dimensionally confined nanosheets to two-

dimensionally confined nanowires, the discrete electronic state becomes more 

prominent, while further transforms into totally discrete density of states in the 

case of three-dimensionally confined nanoparticles. 

Figure 1.2 Density of state and electronic structures of NCs with different 
dimensionality. (a) Schematic illustration of density of states in metal, 
semiconductor, and insulator, showing an increased band gap between 
conduction band and valence band; (b) density of states for one band of a 
semiconductor structure with three, two, one and zero dimensionalities. In the 
three-dimensionality case the energy levels are continuous, while in the “0D” 
or molecular limit the levels are becoming discrete. 

When the dimensions of the semiconductor nanoparticles become close 

to their Bohr radius, one would observe significant quantum confinement 

effect causing discrete electronic energy levels in the band edge.17, 18 As 

illustrated in Figure 1.3(a), as the particle size shrinks, the band gap increases 

accordingly, accompanied by blue shifting of photo-luminescence peak as well 

as first absorbance feature, both presented in Figure 1.3(b) and 1.3(c). The 

color tunability and the flexible surface chemistry make quantum dot attractive 

candidates for various optoelectronic applications as well as bioimaging.  
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Figure 1.3 Size dependent absorption and PL emission of QDs. (a) Scheme of 
quantum confinement with size dependent band gap of QDs, where the smaller 
the nanocrystals, the larger of the band gap; (b) a photograph of CdSe 
nanocrystals dispersed in hexane, which presented a wide range of emission 
color tunability from blue to red; (c) a plot of size-dependent UV-vis 
absorption spectrum of CdSe quantum dots in various sizes, indicating the red 
shifting the first absorption feature with respect to the increasing size of CdSe 
quantum dots.  

1.1.2 Indium phosphide quantum dots 

Besides the well-developed CdSe QDs, Indium Phosphide (InP) is one 

of the emerging III-V group QDs species has becoming more attractive due to 

its environmentally friendly cadmium-free components and large Bohr radius 

up to 15 nm (band gap energy of ~1.34 eV)19 that allows wide photo 

luminescence range covering the whole visible spectrum and near IR 

wavelengths as well.20 The advent of solution-based synthetic routes to InP 

NCs dates back to the 1960s.21 Highly toxic and pyrophoric phosphorous 

precursors were utilized during that period, such as phosphine gas (PH3), 

which were used together with In(CH3)3 to synthesize InP nanocrystals. As 

researchers found better alternatives such as the precursor P(TMS)3,
22 this 

constituted a large step forward to producing InP nanocrystals with the 
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necessary characteristics of high crystallinity, monodispersity and solubility.  

Significant contributions to the improvement of quantum yield and colloidal 

stability of InP NCs were made by Peng et. al., who found that both the fatty 

acids and noncoordinating solvents were crucial factors for yielding high 

quality InP quantum dots.23 The quantum yield of these as-synthesized InP 

NCs could be increased to almost 60% by further coating with a secondary 

shell of a wide-band gap semiconductor ZnS, which not only improves its 

optical performance but also protects the InP core from oxidation.24  

1.2 Nanoheterostructures: 0D to 3D 

Aside from QDs, nanochemistry research has moved on to make 

tremendous advances in the solution phase synthesis of heterostructured NCs 

with a well-controlled morphology, size distribution and composition. The 

nanocrystal heterostructures are multicomponent NCs consisting of two or 

more different semiconductor material that are joined to each other by 

chemical bonding interfaces without any molecular bridges.25 For the interface 

of two different semiconductors where the intrinsic band gap differs from each 

other, depending on the relative position of electronic energy levels of the 

semiconductors involved, there are different cases of band alignment at the 

interface of the heterostructure. Figure 1.4(a) gives an overview of the band 

alignment of the bulk materials, which are mostly used for synthesis of 

heterostructures.26 As illustrated in figure 1.4(b), there are mainly three 

alignment types, type I, type II, and reverse type I.  
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Figure 1.4 Band alignment of selected semiconductors. (a) Electronic energy 
levels of selected III–V and II–VI semiconductors using the valence-band 
offsets (VB: valence band, CB: conduction band);27 (b) schematic 
representation of the band alignment in different core/shell systems, including 
type I, type II and reverse type I. Adapted with permission from Ref. 27. 

In type I scenario, due to the outer higher band gap material, both 

electrons and holes are confined in the core which has a comparatively lower 

band gap. Such band alignment could allow high recombination efficiency of 

electron and hole while providing brighter QDs. The second staggered band 

alignment where either the valence band edge or conduction band edge of the 

shell material is located within the band gap of the core, could cause spatial 

charge separation upon excitation where the electron and hole go to different 

domains within the same structure. The third band alignment is the reverse 

case of Type I where the core possesses a higher band gap than the shell. This 

kind of structure is not as frequently studied as the previous two cases. 
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1.2.1 Type I Heterostructures  

Type I heterostructures typically aim to elevate the quantum yield (QY) 

by well-passivation of the core surface with another semiconductor shell that 

possess a comparatively higher band gap. Such inorganic barrier further 

protects the core from the surrounding environment and efficiently eliminates 

the surface trap states, giving rise to an enhanced photo-stability as well as 

fluorescence quantum yield.  

1.2.1.1 Core/shell semiconductor nanocrystals 

The most widely studied type of core/shell NCs is the II-VI group 

semiconductor of CdSe/ZnS, where ZnS shell acts as a physical barrier for the 

active CdSe core. The synthesis of these NCs was first introduced by Hines 

and Guyot-sionnest, who managed to get 50% QY NCs by coating CdSe dots 

with one to two monolayers of ZnS.28 The ZnS shell has been created by 

dropwise injection of a mixture of diethylzinc and bis(trimethylsiyl) sulfide 

into the core solution. Recently, the successive ion layer adsorption and 

reaction (SILAR) method has been adopted for synthesis of thick shell 

CdSe/CdS NCs via slow and well-controlled stepwise monolayer epitaxial 

growth in solution.29 Due to extensive efforts being made to achieve high QY 

of these NCs, many type I core/shell NCs have been developed in the field 

with some of them exhibiting high quantum yield, such as CdSe/ZnSe, 

CdS/ZnS, ZnSe/ZnS, and CdTe/ZnS.27  

Compared to II-VI semiconductors, III-V group of NCs are less 

extensively studied due to the lack of anion precursors, unstable surface 

conditions and wide FWHM values. InP is the most widely studied III-V 

compound as its emission could be tuned across the visible range until near IR 
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by simply changing the size of the QDs, due to the large Bohr radius as 

mentioned previously. Unlike CdSe QDs, however, the size dispersity of InP 

NCs have been very large, and was only recently attributed to an Ostwald 

ripening process which occurs very shortly after the nucleation of InP during 

its synthesis.30 The NCs surface is easily oxidized when exposed to air causing 

extremely low QY, therefore plenty of attempts have been made to improve 

the surface chemistry and increase the QY. Other than etching the InP NCs 

surface by HF,31 higher band gap semiconductors (such as ZnS) has been used 

to encapsulate InP core in order to increase the QY, either by adopting the 

similar approach of CdSe/CdS32 or a single step one-pot synthesis method 

where a mixture of indium, phosphors, zinc and sulfur precursors along with 

the solvent and ligands are heated up to 250-300 oC, which obtains a QY of up 

to 50%-70%.33     

It should be noted that the successful synthesis of spherical core/shell 

heterostructures such as core shell InP/ZnS,34 core/gradient shell 

InP/GaP/ZnS35 and core/shell/shell ZnSe/InP/ZnS36 (as shown in figure 1.5(a-

c)), have been reported in literature, some of them possessing high efficiency 

LED performance as well.37 Further surface modification of the InP/ZnS 

core/shell NCs, such as ligand exchange (see Figure 1.5(d-i) for the surface 

modification strategy), could allow water-soluble InP/ZnS QDs to be used in 

cell-imaging applications.38 Confocal fluorescence microscopic images shown 

in Figure 1.5(d-ii, iii, iv) demonstrate the high sensitivity for selectivity 

targeting cancer cells (MiaPaCa cells) while using anticlaudin 4-conjugated 

InP/ZnS QDs.  
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Figure 1.5 Various core/shell heterostructures based on InP QDs: (a) normal 
InP/ZnS core/shell NCs, with tunable emission covering whole visible range; 
(b) gradient shell growth over InP core, with improved quantum yield and thus 
high LED efficiency; (c) a reversed type I band alignment where low band gap 
InP is sandwiched between two high band gap semiconductor of ZnSe (core) 
and ZnS (shell); (d) water-soluble InP/ZnS QDs with surface conjugation of 
antibody for the sensitive cell imaging application: (i) schematic illustration 
showing the formation of the water-dispersible InP/ZnS QD bioconjugates; (ii) 
MiaPaCa cells treated with anticlaudin 4-conjugated InP/ZnS QDs light up 
due to the luminescence of InP/ZnS QDs; (iii) MiaPaCa cells treated with 
unconjugated InP/ZnS QDs and (iv) KB (human nasopharyngeal epidermal 
carcinoma cell line) cells treated with anticlaudin 4-conjugated InP/ZnS QD 
were both dark. Adapted with permission from Ref. 20, 35, 38. 

It is clear that the synthesis of InP based nanomaterials is far less 

developed than those of Cd chalcogenides, where more structurally complex 
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nanoparticles such as CdSe seeded CdS nanorods and CdTe seeded CdS 

tetrapods have been synthesized with good uniformity and crystallinity. 

Therefore, we have explored in this thesis (Chapter 2), the unique optical 

properties of InP QDs while combining with other II-VI semiconductors, 

notably giving dual color emission from a single species of a branched 

nanoheterostructure which opens the door for stable and efficient color-

tunable LED development.  

1.2.1.2 Anisotropic heterostructures 

Increasingly sophisticated core/shell architectures have been realized 

through seeded growth synthetic strategies taking advantage of facet similarity 

of the core and shell semiconductor materials. A type I CdSe/CdS dot-in-rod 

heterostructure with high aspect ratio has been firstly achieved by rapid 

injection of TOP/S as well as the hexagonal wurtzite (wz) CdSe seeds into a 

hot solvent bath of Cd-ligand complexes.39 With further decomposition of Cd 

and S complexes at high temperature, the reaction has been kinetically driven 

to form the seeded nanorod with the wz-CdSe seed located in an eccentric 

position across a <001> direction.  Alternatively, when a cubic zinc blende (zb) 

seed is used as shown in Figure 1.6, the second semiconductor will selectively 

nucleate on the {111} facets of the seed, and start to grow and branch into 

multipods. The most remarkable branched morphologies were the tetrapod40 

and octapod41 where each heterostructure possess four and eight arms 

respectively. In this case, the size and number of facets of the starting seed is 

crucial for determination of the degree of branching, so high quality seeds are 

pivotal for the yield of the heterostructures with uniform shapes. These seeded 

nanoheterostructures reveal many interesting physical and chemical properties, 
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making them potential candidates for next generation optoelectronic 

applications which will be discussed in the following section with more details. 

Figure 1.6 Anisotropic nanoheterostructures. (a) Schemetic drawing of seeded 
growth approach of dot in rod and core/arm tetrapod, which are determined by 
the crystal structure of the seeds; (b) typical TEM image of CdSe seed; (c) 
CdSe/CdS seeded nanorods with wurzite CdSe seeds and (d) CdSe/CdS 
seeded tetrapods with zinc blende CdSe seeds. 

1.2.1.3 Bright QDs heterostructures for light emitting devices  

The greatest advantage of QDs based LED is the tunable band gap; 

Due to the quantum confinement effect, the emission shifts towards the blue 

region as the size of QDs decrease, thus one could easily fabricate QDs 

emitting at various wavelengths without changing the components. Moreover, 

the strongly confined electron-hole pairs (excitons) lead to atomic emission-

like spectra possessing comparatively narrow linewidth. The core/shell QDs 

heterostructures acting as the emissive layer usually could allow much higher 

external quantum efficiency (EQE) when used in QD-LED, because such 

core/shell structures could effectively reduce non-radiative recombination sites 

by external inorganic passivation. The first demonstration of red-green-blue 

electroluminescence (EL) from QD-LED has been shown in Figure 1.7(a), 

1.7(b) and 1.7(c) while Kim T. H. et al. have reported a large-area, full-color 
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QDs display, including flexible form, optimized quantum dot films, well-

controlled nano-interfaces and carrier behaviour.42 They introduced the 

solvent-free transfer printing method into the LED fabrication procedure, 

suggested a novel and promising route for creating future large scale devices, 

such as displays and solid-state photovoltaics. 

QD-LED has been further developed recently and shown more 

interesting behaviours owing to the unique anisotropic shapes and their 

multicomponent heterostructures, as summarised in Figure 1.7(b) and 1.7(c). 

The first example was the dual EL coming from CdSe/CdS nanotetrapod, with 

four extended CdS arms spatially far from CdSe core allowing emission of 

multiple wavelengths due to radiative excitonic recombination in the different 

material regions, namely CdSe core and CdS arms.43 Another striking case has 

been published in Science, where Cao’s group successfully achieved a  

polarized red-color-emitting QD-LED (see Figure 1.7(c))44 They adopted 

highly monodispersed core/shell CdSe/CdS nanorods and assembled them into 

needle-like super particles, with further lateral alignment along a specific 

direction on a Si3N4 substrate for the fabrication of the polarized LED.  
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Figure 1.7 Type I anisotropic nanoheterostructures utilized in light emitting 
devices. (a) Full color quantum dot  display fabricated by transfer printing;42 (i) 
state-of-the-art QD-LED fabricated into a size of four inch full-color active 
matrix display (ii) the red-green-blue QD-LED demonstrating a contact 
printing method for depositing patterned QD monolayer films; (iii) Energy 
band diagram of QD-LED employing ZnO as the electron injection layer for 
high-performance devices. (b) CdSe/CdS nanotetrapods acting as the active 
layer in QD-LED producing two spectrally distinct wavelengths;43 (c) (i) 
lateral alignment of needle-like superlattice assembly of nanorods with (ii) PL 
intensity versus polarization angle as the polarization was manually rotated 
while measuring a typical superparticle-embedded PDMS thin film under 
excitation wavelength of 380 nm.44 Adapted with permission from Ref. 42, 43, 
44.  

1.2.2 Type II heterostructures 

The synthetic strategies for type II heterostructure NCs are more or 

less the same as those for achieving type I structures through wet chemistry 
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approaches. It has been extensively studied for the spherical core/shell 

heterostructures on their tunability of photo-physical properties resulting from 

variation in the structural parameters. Core/shell spherical NCs (as shown in 

Figure 1.8(a)) are the most explored and various combinations of 

semiconductors include CdTe/CdSe,45 ZnSe/CdS,46 InP/CdS47 and 

ZnTe/CdS.48 On the other hand, shape-control over the NCs heterostructures 

with anisotropic morphologies potentially provides another approach to vary 

the electronic state and band alignment at the interface of the adjacent 

materials. Many examples are shown in Figure 1.8(b-h), with more elaborate 

multi-component tetrapods, nanorods, barbells, and multbranched 

architectures.49 Besides bottom-up synthesis method, cation/anion exchange 

process has been frequently adopted in recent years to achieve type II 

heterodimers, such ion exchange reaction is superior in the aspect of the 

selective formation of a hybrid structure with an epitaxial heterointerface 

(illustrated in Figure 1.8(i)).50 Alivisatos’s group was the pioneer in cation 

exchange reaction, and they managed to assemble the CdS nanorods onto a 

substrate, followed by exposing the CdS monolayer to the copper reagent for 

cation exchange. The Cu+ ions could only approach the CdS rods from the 

exposed single ends across the substrate, resulting in the well-controlled half 

exchange of the whole monolayer which is naturally a heterojunction for 

further device fabrication (depicted in Figure 1.8(j)).51 The CdS/CdTe 

peanuts-like heterodimer in Figure 1.8(k) has been achieved via anion 

exchange of CdS nanoparticle with tri-octylphosphine telluride (TOP-Te). 

Type II band alignment between CdS and CdTe allowed the charge separation 

under excitation, where the electrons went into CdS and holes stayed in CdTe. 
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Using control over volume ratio between the CdS and CdTe during the anion 

exchange, one could engineer the band structure and alignment in a precise 

manner.50 

 

Figure 1.8 Nanoheterostructures with Type II alignment. (a) Core/shell 
spherical NCs;52 (b)53 and (c)54 are seeded-nanorods and seeded-tetrapods 
respectively; (d)55 and (e)56 are linear heterostructures with barbell shape; (f)-
(h) branched heterostructures with multiple different semiconductors;49 (i) 
illustration of type II charge transfer in heterodimers;57 (j) HRTEM of CdS-
Cu2S heterorod obtained by cation exchange with band offset between the two 
materials;51 (k) HRTEM of CdS-CdTe heterodimers via anion exchange 
reaction.50 Adapted with permission from Ref. 49, 51, 52, 53, 54, 55, 56, 57. 

However, contrary to the type I structure, due to the staggered band 

alignment, the emission of the core undergoes significant red shift while the 

shell grows atop. The reduced overlap between electron and hole 
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wavefunctions allowing long-lived lifetime ranging from hundreds of 

nanoseconds to a few microseconds, which are important implications for 

applications such as nonlinear optics, lasing and photovoltaic technologies.  

Solar cell has been continuously attracting people’s attention in the 

past few decades due to the growing demand for renewable and clean energy, 

which requires significant efforts in investigation of efficient and low-cost 

photovoltaic materials. NCs based photovoltaics are probably the most desired 

candidates that possess the advantages of high stability, inexpensive, solution-

processable fabrication, and superior optical and electronic properties.58 

Several works have been reported using NCs with type II band alignment, 

such as Cu2S-CdS, CdTe-CdSe, which have rather low efficiency due to 

shortcuts and insufficient driving force for carrier separation in the active layer. 

With the improved device fabrication strategies, Loh’s group recently reported 

that type II CdSe/CdTe tetrapods immobilized on oleylamine-functionalized 

reduced graphene oxide (rGO) sheets could be homogeneously mixed with 

PCDTBT to form donor–acceptor dispersed heterojunctions and exhibit a high 

power conversion efficiency of ∼3.3% in solar cell devices.59  

1.3 2D sheet-like nanostructures 

Two-dimensional (2D) semiconductor NCs with thickness much 

smaller than the lateral dimensions have been strikingly highlighted over the 

past few years since the discovery 2D graphene and vast exploration of other 

2D semiconductor materials. Recent research has demonstrated that the 

arrangement of atoms and the dimensionality of such materials are pivotal and 

greatly influence their electronic and optical properties.60 The fast 

development of optoelectronic devices based on semiconductors strongly 
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motivate the synthetic field of 2D materials for the achievement of free 

standing nanosheets that possess ultrathin thickness and well-defined lateral 

morphology. To this point, wet chemistry synthetic approach is more favoured 

over Chemical Vapor Deposition (CVD) method, because one could tune the 

surface chemistry accordingly and easily manipulate the solution processable 

nanosheets during device fabrication.61 

To date, various semiconductor nanosheets obtained via wet chemistry 

method have been reported in literature, including layered and non-layered 

materials, such as In2S3,
62 SnSe(S),63 CdSe (Te, S),64 FeS2,

65 CuS,66 and PbS.67 

Detailed discussion of the methodologies is presented in the following 

paragraphs.  

1.3.1 Wet chemically synthetic approaches of 2D nanosheets 

1.3.1.1 Top-down approach: exfoliation 

Inspired by the discovery of scotch-tape exfoliated 2D graphene 

nanosheets, Coleman et al. demonstrated a general chemical exfoliation 

method for a group of transition metal chalcogenides in solution, such as 

MoS2, WS2, NbSe2, BN, Bi2Te3, with good dispersion in solvent (see Figure 

1.9) and easy processablility for the composite film during device 

fabrication.68 Other groups tried to carry out surface modification of the 

chemically exfoliated MoS2 nanosheets for the application purposes, for 

instance, David et al. have produced a selective artificial protein receptor for 

β-galactosidase by successfully modulating the ζ-potential of MoS2 sheets 

with improved colloidal stability through thiol ligand designs.69 However the 

exfoliation method could only be useful for the naturally layered 

semiconductors with van der waals interaction between each two unit cell 
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single layers, and the lateral morphology of the obtained 2D sheets via this 

method were not under control. Hence, the bottom-up synthetic route is highly 

essential in synthesizing nanosheets for non-layered semiconductors.  

Figure 1.9 Top-down exfoliation approach for achieving 2D layered 
nanosheets. (a) Scheme of solution phase exfoliation of bulk layered 
semiconductor for achieving 2D nanosheets; (b) Digital photograph of 
exfoliated nanosheet suspension, as depicted from the image, the homogenous 
dispersion of exfoliated nanosheets in organic solvents reveal their potential 
for further fabrication of solution processable thin films in devices; TEM 
images showing ultrathin nanosheets achieved via exfoliation method, (c) 
MoS2, (d) WS2, and (e) BN. Adapted with permission from Ref. 68. 

1.3.1.2 Bottom-up approach 

Synthesis of free standing 2D nanosheets directly in solution has been 

widely explored in the past few years. Tang et al. have firstly published in 

Science 2006, introducing a self-assembled template-free mechanism for 

obtaining free-floating 2D CdTe nanosheets via a wet chemistry approach.70 

The CdTe nanosheets could go beyond micrometer scale in size while keeping 

a small thickness of 3.4 nm on average. This opens the door for bottom-up 

synthesis with tremendous opportunities for the design and manipulation of 

various NCs species. Recently, by injection of chlorine contained solvents into 
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the reaction pot of the homogenously nucleated PbS nanospheres just beyond 

the solvents’ boiling point, one could trigger an oriented attachment reaction 

among the existing PbS dots to happen and yield PbS free-standing nanosheets 

with an average thickness of 2.5 nm and the lateral dimension of up to 500 

nm.67 Although the PbS nanosheets obtained would have some crystal defects, 

they effectively minimized the charge hopping problem with the large lateral 

dimension while being fabricated onto a photodetector device.  

The most adopted method in recent years, were called the “soft 

template method”. This reaction often takes place in a nonpolar organic 

system with self-assembly of molecular surfactants in solution to form a 

lamellar structure which serves as a template for the semiconductor monomers 

to nucleate and grow within the structure, resulting in flattened 2D 

nanostructures, as illustrated in Figure 1.10(a). The long-chain surfactants, 

normally fatty acids or amines, self-assembled into a well-defined lamellar 

molecular structure leaving the empty thin spacing between each of the two 

molecular layers, with the metal and sulphur precursors surrounded in a non-

polar reaction system. The metal and sulphur precursors then gradually enter 

the thin spaces, start reacting and forming tiny clusters, further annealing of 

the products will allow transformation into continuous thin semiconductor 

sheet-like structures. 2D CdSe has been deeply explored; nanoribbons71 and 

nanoplates72 have been successfully synthesized with alkylamine or acids in 

the system facilitating the molecular self-assembly of the lamellar template. 

This process has been especially observed in the CdSe nanoplatelets reported 

by Ithurria et al.,73 as shown in Figure 1.10(b) and 1.10(c), which clearly 

demonstrated the controlled tunability of thickness as well as the unrolling of 



Chapter 1 General Introduction 

-21- 
 

CdSe nanoplatelets after CdS shell growth. Beside, Peng’s group reported the 

first zinc blende CdSe plates and demonstrated the pure Cd atom termination 

of top and bottom faces.74 Besides CdSe(S), H. Zhang’s group developed a 

general protocol, based on lamellar structure as well, for achieving 2D metal 

chalcogenides nanosheets. As represented in Figure 1.10(d), they were able to 

achieve highly monodispersed 2D CuS nanosheet with ultrathin thickness of 

2.5 nm and a large lateral dimension reaching 200 nm.66 This general method 

could be extended to synthesize ZnS and Bi2S3 as well. Other examples such 

as In2S3 nanoplates, have also been achieved via a thiol assisted lamellar 

structure through a similar growth process, as displayed in Figure 1.10(e). 

Figure 1.10 Illustration of nanosheet formation mechanism through Lamella 
structure and the examples of solution processable nanosheets obtained via 
Lamella structure. (a) Scheme of the Lamella structure formation, the red and 
green balls represented metal and non-metal atoms with the long chain 
molecule stood for surfactants that responsible for building lamella structures; 
semiconductor nanosheets that have been achieved via Lamella structures, 
such as (b) CdSe,73 (c) CdSe/CdS,73 (d) CuS nanosheets,66 as well as (e) In2S3 
nanosheets.62 Adapted with permission from Ref. 62, 66, 73. 

Furthermore, 2D nanosheets could also be synthesised via a few more 

approaches besides soft template method. For instance, addition of a special 

chelate molecule named 1,10-phenanthroline to the SnSe NCs synthetic pot 
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resulted in ultrathin 2D nanosheets while removing the molecule instead will 

lead to flower-like 3D structures. As the 1,10-phenanthroline could not be 

detected on the surface of as-synthesized nanosheets, it might play the role of 

modifying the precursor complex without binding to the nanosheet surface 

(see Figure 1.11(a)).75 Langmuir-Blodgett (LB) assembly on the air-water 

interface has been adopted as well for obtaining PbS 2D nanosheets with large 

surface area. This method involves synthesis of PbS nanowires followed by 

self-assembly via LB film and annealing with higher temperature after 

compression of the floating PbS nanowires into a close-packed solid film. 76 In 

Chapter 4, we have developed another novel synthetic approach to achieve 

2D metal sulphides sheet-like nanostructures with the addition of halide ions. 

The as-synthesized sheet-like nanostructures could be further used as potential 

electrochemical catalyst for hydrogen evolution reaction. 

Figure 1.11.Other methods to obtain nanosheet structures. (a) Ultrathin SnSe 
nanosheets obtained with the presence of 1,10-phenanthroline, and 
nanoflowers with the absence of such molecule; (b) ultra-large PbS nanosheets 
achieved via LB compression and higher temperature annealing. Adapted with 
permission from Ref. 75, 76. 
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1.3.2 Optical and electronic properties of 2D nanosheets 

The electronic wave function of a semiconductor is strongly confined 

in the case of two dimensional nanosheet, special electronic and optical 

properties would start to emerge. In the case of CdSe and CdS nanoplatelets, 

these semiconductor nanoplatelets possess a thickness dependant absorption 

and emission spectra, as well as an extremely narrow full-width at half-

maximum less than 40 meV at room temperature which makes the 

nanoplatelets the fastest colloidal fluorescent emitters ever.77 

In other cases, the energy band position could be shifted accordingly. 

In layered semiconductors, for instance, MoS2 nanosheets, when the total 

number of layers decreased from several to two, the indirect band gap would 

increase from 1.29 eV to 1.6 eV. When there is a single layer of MoS2, the 

indirect band gap would transform into a direct one which could result in an 

even larger band gap and bright photoluminescence.78 Similar effects have 

been observed in semiconductors possessing surface plasmonic resonance 

properties as well. Cu2-xS NCs have exemplified such influence where 2D CuS 

nanoplates, given its anisotroptic shape, exhibited two plasmonic peaks 

representing in-plane (Infra-Red (IR) range) and out-plane (Near Infra-Red 

range) resonences respectively, while the spherical CuS have only one peak 

located in the near IR wavelength.79  

1.3.3 Applications based on 2D nanosheets 

Since two-dimensional materials have been considered to be one of the 

most promising candidates for future quantum devices, the field has been 

pushing for materials which can be easily processed by spin-coating or dip-

coating methods during the device fabrication. On one hand, compared to its 
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spherical counter parts, 2D nanosheets have greater potential in overcoming 

the tunnel barriers in the active film within each individual sheet given its 

large lateral dimension while still retaining the one-dimensional confinement 

along the vertical axis. As mentioned previously, H. Weller’s group have 

recently demonstrated that micrometer-size 2D PbS nanosheet can be 

produced via a solution based oriented attachment route.67 A follow-up paper 

reported the subsequent fabrication of PbS nanosheet based FET device by 

spin-coating of the nanosheets suspension (in toluene) onto the SiO2 coated Si 

substrate where highly n-doped Si served as the gate electrode, and a pair of 

gold electrodes were deposited onto the single PbS sheet as source and drain, 

shown in Figure 1.12 (a).80 This gold contacted PbS device has achieved a 

remarkable field-effect mobility of 0.417 cm2 V-1 s-1 (Vg = -5V, VDS = 1V, T = 

290K) with a p-type character. Moreover, the device performance is one of the 

best among the colloidal nanocrystals based FET without any chemical or 

thermal treatment, and further highlighted the advantage and potential for 2D 

nanosheet over spherical dots that are being used in optoelectronic devices. 

Secondly, in colloidal NCs based optical devices such as Lasers, 2D 

nanosheets are superior due to their large absorption cross-sections, slow 

Auger recombination rates, and the narrow emission line width. As depicted in 

the recent discovery reported by Guzelturk et al., they successfully observed 

the increment of optical gain from CdSe nanoplatelets core to CdSe/CdS 

core/crown structures with different CdS crown sizes (See Figure 1.12(b)). 
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Figure 1.12 Highlighted applications of solution processable 2D nanosheets. 
(a) Low resolution TEM image of a single PbS nanosheet with the thickness of 
5 to 6 nm and lateral size up to 2 to 3 µm, the left-top inset is the AFM image 
of two gold electrodes contacted with a single PbS nanosheet; (b) schematic 
drawing of the vertical cavity surface-emitting laser (VCSEL) of the ensemble 
nanoplatelets, the right-top graph is the two photon absorption pumped ASE of 
the 21 nm size core/crown nanoplatelets, while the right-bottom plot is the 
emission spectrum of the VCSEL as the pump intensity is progressively 
increased. Adapted with permission from Ref. 77, 80. 

With the amplified spontaneous emission thresholds as low as 41 

μJ/cm2 and 4.48 mJ/cm2 for one- and two- photon absorption respectively, this 

thresholds became the best among the state-of-art colloidal NCs (eg. QDs, 

rods and tetrapods) based optical gain devices with similar emitting 

wavelength. The gain coefficient of these nanoplatelets was measured as 650 

cm-1 with a 4-fold enhancement over the best reported gain coefficient of the 
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colloidal QDs. Such remarkable observation pointed out the possibility of 2D 

nanostructures as a great candidate for producing high-efficiency, solution-

processed lasers.77 

On the other hand, the Lithium ion battery has been considered as one 

of the top promising energy storage systems due to its high absolute potential 

against the standard hydrogen cell and its low atomic weight. Compared to the 

traditional bulk layered crystals such as graphite and metal dichalcogenides, 

2D nanostructures are of great interest in such energy-storage devices, given 

its shortened paths for fast lithium ion diffusion and large exposed surface 

offering more lithium-insertion channels. In recent years, increasing efforts 

based on developing novel 2D nanosheets with various morphologies have led 

to impressively improved charge/discharge capacity, cycling performance and 

rate capability. The porous nanosheets were one of the attractive materials that 

have been utilized in lithium storage device due to their large exposed surface 

that allows short path for lithium insertion and open porous structures holding 

nanodrops of electrolyte which may reduce electrode polarization during fast 

lithium storage. 81, 82 Besides acting as the active layer, 2D nanosheets could 

also play an excellent role as the electrode material. For example ultrathin CuS 

nanosheets synthesized by Zhang’s group via a organometallic soft template in 

solution has been used to fabricate the electrode for lithium-ion battery, which 

exhibits a large capacity and good cycling stability even after 360 cycles.66  

1.4 Thesis Outline 

In Chapter 2, we successfully synthesized colloidal InP/ZnS seeded 

CdS tetrapods by harnessing the structural stability of the InP/ZnS seed 

nanocrystals at the high reaction temperatures needed to grow the CdS arms. 
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Owing to an unexpected Type II band alignment at the interface of the 

InP/ZnS core and CdS arms which enhanced the occurrence of radiative 

excitonic recombination in CdS, these tetrapods were found to be capable of 

exhibiting highly efficient multiexcitonic dual wavelength emission of equal 

intensity at spectrally distinct wavelengths of ~ 485 nm and ~ 675 nm. 

Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider 

range of pump-dependent emission color-tunability (from red to white to blue) 

within the context of a CIE 1931 chromaticity diagram and possessed higher 

photostability due to suppressed multiexcitonic Auger recombination when 

compared to conventional Type I CdSe seeded CdS tetrapods. By employing 

time resolved spectroscopy measurements, we were able to attribute the wide 

emission color-tunability to the large valence band offset between InP and 

CdS. This work highlights the importance of band alignment in the synthetic 

design of semiconductor nanoheterostructures which can exhibit color-tunable 

multi-wavelength emission with high efficiency and photostability. 

In Chapter 3, we exposed the red emitting type-II InP/CdS tetrapods 

to Ag+ resulted in the preservation of the InP core while the CdS arms 

underwent full cationic exchange to Ag2S. Interestingly, subsequent exposure 

to Zn2+ allowed the formation of Type I InP/ZnS tetrapods with relatively 

strong fluorescence emission at ~530 nm. This approach provides a good 

opportunity for effective cation exchange of the shell while preserving the 

core material, which is not easily achieved for the II-VI based materials.  

In Chapter 4, we further moved from 3D nanoheterostructures to two 

dimensional transition metal sulfides (TMS), because these wet chemically 

synthesized TMS are promising materials for catalysis, batteries and 
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optoelectronics. However a firm understanding on the chemical conditions 

which result in selective lateral growth has been lacking. As a result, we 

demonstrated that Ni9S8, which is a less common nonstoichiometric form of 

nickel sulfide, can exhibit two-dimensional growth when halide ions were 

present in the reaction. We show that the introduction of halide ions reduced 

the rate of formation of the nickel thiolate precursor, thereby inhibiting 

nucleation events and slowing growth kinetics such that sheet-like formation 

was favored. Structural characterization of the nanosheets produced revealed 

that they were single-crystal with lateral dimensions in the range of ~ 100 – 

1000 nm and thicknesses as low as ~4 nm (about 3 unit cells).  Varying the 

concentration of halide ions present in the reaction allowed for the shape of 

the nanostructures to be continuously tuned from particle- to sheet-like, thus 

offering a facile route to controlling their morphology. The synthetic 

methodology introduced was successfully extended to Cu2S, which suggests 

that the importance of impeded growth kinetics in the formation of nanosheets 

may be applicable to a wide variety of TMS.    

In chapter 5, we adopted the as synthesized Cu2S nanosheets 

(introduced in Chapter 4) as the starting material to carry out Pb2+ exchange 

reaction for obtaining PbS nanosheets. The unique advantage of cation 

exchange allowed us to achieve a novel facet orientation in cubic face-

centered PbS nanosheet where the high energy {111} facet terminated both 

top and bottom of the lateral plane of nanosheets leaving relatively lower 

energetic {110} and {100} facets to appear on the side (corners and edges). 

With the wet chemical synthetic environment with excess oleic acid, the {111} 

facets could be possibly terminated by Pb atoms only, giving a Pb-rich surface 
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and eventually retaining n-type behaviour in field effect transistor. This unique 

Pb-rich PbS nanosheet would show promise for achieving n-type material that 

can stabilize itself under ambient air and possess excellent FET performance. 
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2.1 Introduction  

Multi-wavelength multiexciton emission (MME) in strongly quantum 

confined semiconductor nanoparticles may be broadly defined as a process in 

which excitons of different energies radiatively recombine within the same 

nanoparticle to give spectrally distinct emission wavelengths. This can be 

attractive for applications in which more than one emission color is desirable, 

such as multiplexed fluorescence labeling schemes1-5 or ratiometric sensing in 

which the ratio of emission intensities of at least two resolvable wavelengths 

provides a means of quantifying changes in the chemical environment.6-9 

Unlike typical multi-wavelength emitting nanoparticle-dye or nanoparticle-

nanoparticle conjugates which suffer from a statistical distribution of 

stoichiometries between each type of chromophore in the conjugate, the 

different wavelengths of emission in the MME process originate from the 

same nanoparticle, thereby offering the possibility of quantitative ratiometric 

sensing at the single particle level. Additionally, where the integrated emission 

intensities of the different wavelengths differ as the excitation fluence is 

changed, MME offers a convenient means to dynamically modify the overall 

color of emission (as perceived by eye) from the nanoparticles by simply 

varying the pump intensity. It is therefore desirable to develop an architecture 

in which MME can be produced efficiently and with wide pump-dependent 

color tunability. 

One method for achieving MME is via the use of heterostructured 

semiconductor nanoparticles such as CdSe seeded CdS tetrapods, where it was 

previously shown by Lutich et. al. that saturating the CdSe core with excitons 

results in an “exciton-blocking” effect in which excitons generated in the CdS 
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arms do not localize into the CdSe core but instead undergo radiative 

recombination. This yields steady-state PL at red and blue wavelengths from 

both the CdSe core and CdS arms respectively, and it was shown that ~ 55 nm 

long CdS arms were required to achieve effective spatial separation of the CdS 

exciton from the CdSe core. Attaining equally intense emission for both core 

and arms in these quasi Type II semiconductor nanoheterostructures, however, 

required relatively high pump fluence.10 Recent work on CdSe/CdS dot-in-a-

bulk structures showed that dual emission from CdSe and CdS can be obtained 

at much lower pump intensities, but with limited size-dependent wavelength 

tunability from its bulk-like CdS shell.11 In this work we describe a novel 

InP/ZnS seeded CdS tetrapod (tpod) which by virtue of its Type II alignment 

and large valence band offset between the core and arms allowed for efficient 

dual wavelength emission to be achieved with wider pump-dependent 

emission color tunability than its Type I CdSe seeded CdS counterpart. These 

results highlight the importance of band alignment in achieving MME in 

colloidal semiconductor nanostructures.   

2.2 Experimental section  

2.2.1 Chemicals and materials  

Myristic acid (MA, 99 %), tris(methylsilyl) phosphine (P(TMS)3,95%), 

1-octadecene (ODE, 90%), zinc acetate (Zn(Ac)2, 99%), 1-dodecanethiol 

(DDT, 97%), cadmium oxide (CdO, 99.5%), sulphur (S, reagent grade), were 

purchased from Sigma Aldrich. Indium acetate (In(Ac)3, 99.99%), 

Trioctylphosphine (TOP, 97%), were purchased from Alfa Aesar. n-

octadecylphosphonic acid (ODPA, 97%), trioctylphosphine oxide (TOPO, 



Chapter 2 Efficient Color-Tunable Multiexcitonic Dual Wavelength Emission 
from Type II Semiconductor Tetrapods 

 

-40- 
 

99%) and n-hexylphosphonic acid (HPA, 97%) were purchased from Strem. 

All the chemicals were used as received without further purification. Unless 

stated otherwise, all the reactions were conducted in oven-dried glassware 

under nitrogen atmosphere using standard Schlenk techniques. 

2.2.2 Synthetic details 

Synthesis of InP/ZnS seeds 

The synthesis of InP/ZnS nanocrystals (NCs) was carried out based on 

a procedure previously reported by Peter Reiss et al.12 but with slight 

modifications. Briefly, 0.2 mmol of In(Ac)3, 0.6 mmol of MA and 8 mL of 

ODE were degassed at 100  for 1 hour in a 3-neck round bottom flask and 

then cooled down to room temperature under N2. 0.2 mmol Zn(Ac)2 and 0.2 

mmol of DDT were then added to the flask, evacuated and purged with N2 

three times. Finally, 0.2 mmol of P(TMS)3 in 1 mL ODE was injected into the 

reaction pot at 40 , and the overall mixture was rapidly heated to 300  

(within ~ 10 mins) and kept at 300  for 1-1.5 hours to grow the InP/ZnS 

NCs.  

Further coating of InP/ZnS seed with additional ZnS  

After the formation of the InP/ZnS seeds, the reaction flask was cooled 

to room temperature and 0.2 mmol of Zn(Ac)2 powder was added. The 

mixture was then heated to 230 , and maintained at this temperature for ~3 

hrs. 0.1 mmol of DDT was then injected dropwise to the reaction mixture 

under vigorous stirring. The reaction mixture was subsequently allowed to 

anneal at 240-250  for ~0.5 – 1 hour and at 300  for ~20 min.   
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To isolate the NCs, the reaction mixture was cooled to room 

temperature and 14 equivalents of acetone was added (which caused 

precipitation of the NCs), followed by centrifugation at 3900 rpm for 15 min. 

The nanocrystal precipitate was then purified via 2 cycles of re-dispersion in 

hexane and precipitation in a stock solution of methanol/ethanol/isopropanol 

(in a 1:1:1 volume ratio). The purified InP/ZnS NCs were readily dispersed in 

hexane and used as seeds for the growth of tetrapods. 

Synthesis of InP/ZnS seeded CdS tetrapods 

The synthesis of InP/ZnS seeded CdS tetrapods follows the procedure 

introduced by Manna et al. for ZnSe seeded CdS tetrapods.13 TOPO (3.0 g), 

ODPA (0.29 g), HPA (0.08 g) and CdO (0.065 g) were mixed in a 50 mL 

reaction flask and degassed at 150  for two hours. After degassing, the 

temperature was increased to 360  under N2 to yield a clear colorless 

solution. At this point, 1.8 mL of TOP (97%) was injected into the pot, and the 

temperature was allowed to recover to 360 . An injection mixture 

comprising of S powder dissolved in 1.8 mL TOP (97%) and 10 nmol InP/ZnS 

seeds was rapidly injected into the reaction flask, upon which the temperature 

in the flask dropped to 300 . The reaction temperature was recovered to 360  

and maintained at this growth temperature for about 3 min. The final products 

were then purified via 2 cycles of re-dispersion in toluene and precipitation in 

methanol.  

Synthesis of InP/ZnS/CdS core/shell spheres 

The procedure is the same as that of InP/ZnS seeded CdS tetrapods 

described in the above paragraph, with the sole exception that the injection 

and growth temperature employed was 300  instead. 
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2.2.3 Characterizations 

Structural characterization 

Transmition Electron Microscopy (TEM) 

A JEOL JEM 1220F (100 kV accelerating voltage) microscope was 

used to obtain bright field TEM images of the nanoparticles. For TEM sample 

preparation, a drop of the nanoparticle solution was placed onto a 300 mesh 

size copper grid covered with a continuous carbon film. Excess solution was 

removed by an adsorbent paper and the sample was dried at room temperature. 

The High-Resolution TEM images and detailed elemental analysis were 

carried out on a FEI Titan 80-300 electron microscope operated at 200 KV, 

which is equipped with an electron beam monochromator, an energy 

dispersive X-ray spectroscopy (EDX) and a Gatan electron energy loss 

spectrometer. The probing electron beam size for the EDX measurement was 

around 0.3 nm. The dwell time for each EDX spectrum is 10s. 

X-Ray Diffraction (XRD) 

XRD data was obtained with a diffractometer (Bruker AXS, GADDS) 

using Cu-Kα radiation (λ=1.540598Å) in the range of 20˚ to 100˚. Samples 

were prepared on a clean silicon wafer by placing drops of concentrated silica 

coated nanoparticles in hexane on the silicon surface and dried at 60  in the 

oven. This was repeated several times until a thin layer of solid was formed on 

the silicon substrate. 

Optical characterization 

Absorption spectra were obtained with an Agilent 8453 UV-Visible 

spectrophotometer in UV-visible range. Photoluminescence (PL) spectra in 

visible region and NIR region were collected with a spectrofluorophotometer 
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and HORIBA Jobin Yvon Fluorolog 3 spectrometer equipped with liquid 

nitrogen cooled InGaAs photodiode detector respectively. Time-resolved 

fluorescence data were obtained by using a NanoLED pulsed laser diode 

excitation source and a HORIBA Jobin Yvon TCSPC detection system 

FluoroHub. Care was taken to ensure that the concentrations of the core and 

core-seeded nanostructures were sufficiently dilute to avoid contributions from 

re-absorption or energy transfer. Absolute quantum yield measurement of the 

type II nanocrystals has been carried out by Hamamatsu Quantaurus-QY with 

NIR model (C11347-12) which is suitable for measurements from 400 nm to 

1100 nm. 

The femtosecond laser source for the following optical measurements 

was a Coherent Legend Ti:Sapphire regenerative amplifier (150 fs, 1 kHz, 800 

nm) seeded by a Coherent Vitesse oscillator (100 fs, 80 MHz). For the pump-

fluence-dependent PL measurements, the solution samples in the 2 mm thick 

quartz cells were excited using 400 nm excitation pulses obtained by using a 

BBO doubling crystal. The time-integrated PL spectra were collected in a 

conventional backscattering geometry and detected by a charge-coupled 

device array (Princeton Instruments, Pixis 400B) coupled to a monochromator 

(Acton, Spectra Pro 2500i).  

For pump-probe measurements, the solution samples in quartz cells 

were pumped by the 400 nm pulses which were focused onto a 200 m spot 

and overlapped with white-light continuum probe pulses generated with a 1 

mm thick sapphire plate (that was focused by a parabolic mirror to a spot of 

~20 μm diameter). The differential transmission (∆T/T) spectra of the samples 

were performed in a non-degenerate pump-probe configuration with chirp-
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correction, where ∆T/T = (T – T0)/T0 (where T0 is the transmission of probe 

beam without pump excitation of the sample, T is transmission of probe beam 

with pump excitation of the sample). The linear polarization of the pump pulse 

was adjusted to be perpendicular to that of the probe pulse with a polarizer and 

a half-wave plate. The cross-polarization will help eliminate any contribution 

from coherent artifacts at early times. Pump-induced changes ΔT/T were 

monitored using a monochromator/PMT configuration coupled to a lock-in 

amplifier. The pump beam was chopped at 83 Hz and used as the reference 

frequency for the lock-in amplifier.  

2.3 Results and discussions 

The formation of monodispersed colloidal tetrapods based on II-VI 

semiconductors such as CdTe and CdSe via a seeded approach critically 

requires that the seeds possess a zinc blende (zb) or sphalerite crystal structure 

which provides four out of eight {111} crystal facets to support the growth of 

the tetrapod arms.13-15 Given that the crystal structure of InP fabricated at 

moderate reaction temperatures of below ~ 360  is typically that of zinc 

blende,16 it is expected that colloidal InP particles should be able to serve as 

seeds for the heterogeneous nucleation and growth of CdS arms to yield III-V 

/ II-VI tetrapod nanostructures with unique physicochemical properties. Our 

initial attempts to utilize the bare InP particles as seeds for the growth of CdS 

tetrapod arms, however, resulted in the severe structural degradation of InP at 

the high reaction temperatures required. This was overcome by the use of ZnS 

coated InP QDs synthesized via a single pot approach. In this procedure, a 

mixture of In, P, Zn, and S precursors were heated up to a temperature of 

between 240-300  for ~ 1.5 hours in a reaction flask containing octadecene  
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Figure 2.1 Structural characterization of InP/ZnS seed and InP/ZnS seeded 
CdS tetrapod. (a) TEM image of as synthesized InP/ZnS cores with an average 
diameter of ~3 nm; (b) HRTEM image of a typical core showing lattice 
fringes with a d-spacing corresponding to the (111) plane of ZnS; (c) Powder 
XRD spectrum of InP/ZnS showing peaks in-between those of standard 
reference zb-InP and zb-ZnS; (d) TEM image of InP/ZnS seeded CdS 
tetrapods with an average arm length of ~27 nm and mean diameter of ~5 nm; 
(e) HRTEM image of a single tetrapod showing lattice fringes of the (100) and 
(002) planes corresponding to CdS; (f) Powder XRD spectrum of InP/ZnS 
seeded CdS tetrapods showing the peaks of CdS wurtzite. 

(ODE) as the solvent and myristic acid as the capping group. This resulted in 

an alloyed InZnP interfacial layer between the InP core and a thin outermost 

ZnS shell, as previously characterized by Reiss et al.17, 18 A second ZnS shell 

was grown onto the as-synthesized nanocrystals mentioned above in a one-pot 

fashion by re-introducing the Zn and S precursors followed by annealing at 
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250  for ~ 30 mins. This was found to be necessary to achieve better surface 

crystallinity to support the growth of CdS arms. Figure 2.1(a) is a typical 

transmission electron microscope (TEM) image of the InP/ZnS nanoparticles 

produced, where the average particle diameter is ~3 nm with a size dispersity 

of ~9%. These particles were then used as cores to support the growth of CdS. 

Briefly, the InP/ZnS particles were mixed with trioctylphosphine sulfide 

(TOPS) and injected swiftly into a cadmium precursor containing a mixture of 

n-trioctylphosphine oxide (TOPO), n-octadecylphosphonic  acid (ODPA) and 

n-hexylphosphonic acid at a temperature of ~350 . This resulted in uniform 

InP/ZnS seeded CdS tetrapod structures with CdS arm dimensions of ~ 5.2 nm 

and ~ 28.5 nm in length, as exemplified in Figure 2.1(d). Analogous to the 

seeded growth of CdSe/CdS tetrapods, the use of ODPA and HPA as 

surfactants was found to be critical for tetrapod arm growth in our system.15  

Structural characterization of the as-synthesized InP/ZnS cores and 

InP/ZnS seeded CdS tetrapods proceeded via high resolution transmission 

electron microscopy (HRTEM) and powder X-ray diffraction (XRD) 

measurements, which are summarized in Figure 2.1(b), (e) and 2.1(c), (f) 

respectively. The XRD spectra of the InP/ZnS seeds revealed three major 

peaks that lie in between those corresponding to the (111), (220) and (311) 

facets of zb-InP and zb-ZnS, which is consistent with a InP/ZnS core-shell 

structure.16 This is further supported by the HRTEM image in Figure 2.1(b), 

which shows the zb-ZnS lattice fringes of its (111) plane. The exposed cubic 

zinc blende ±{111} facets of ZnS are atomically similar to the ±{001} facets 

of hexagonal (wurtzite) CdS,19 and can therefore support growth of the CdS 

arms. The XRD data obtained for the InP/ZnS seeded CdS tetrapods showed a 
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dominance of peaks corresponding to that of w-CdS, which may be attributed 

to the fact that the four CdS arms account for most of the material comprising 

each tetrapod. The HRTEM image of a single tetrapod, as illustrated in Figure 

2.1(e), shows that the extension of the CdS arms (fast growth) occurs along 

the (002) plane while increase in the arm diameter takes place along the (100) 

plane, which is a slow growth facet due to strongly binding alkyl phosphonic 

acids.14  

In order to ascertain their materials composition, High-angle Annular 

Dark-Field Imaging Scanning TEM (HAADF-STEM) analysis was performed 

on individual tetrapods, as depicted in Figure 2.2(a). Point Energy-Dispersive 

X-ray Spectroscopy (EDX) measurements at the central region of tetrapod, as 

delineated in Figure 2.2(b),  

Figure 2.2 Components at the core/arm interface. (a) HAADF-STEM image 
of InP/ZnS seeded CdS tetrapods; (b) Point EDX probing the center of a single 
tetrapod (yellow dot in (a)), revealing signals attributed to Cd, S, In, P and Zn; 
(c) Cartoon depicting the structure and composition of a InP/ZnS seeded CdS 
tetrapod; (d) e and h wavefunctions for a core-shell InP/CdS nanocrystal with 
an intermediate interlayer. The inset shows the overlap as a function of 
interlayer composition with respect to ZnS. 
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yielded a low intensity of Zn, In and P, along with comparatively strong 

signals from Cd and S. The Zn signal obtained using point EDX at the core 

region was relatively  weak but was observed more prominently in area EDX, 

suggesting that diffusion of Zn into the CdS arms at the high reaction 

temperature used (as previously shown in thin film studies20) had occurred. 

This would result in a graded ZnxCd1-xS core-to-arm transition, and would 

leave little Zn at the branch point as confirmed by point EDX analysis. 

The band alignment between bulk InP and CdS is Type II, where the 

bands are staggered. Excitons at the InP/CdS interface are expected to exhibit 

spatial separation of the electron and hole wavefunctions: the electron is 

localized to CdS while the hole is confined to InP.21 However, in our InP/ZnS 

seeded CdS tetrapods, the interface between the InP core and CdS arms is 

most likely composed of an alloy of InyZn1-yP and ZnxCd1-xS as inferred from 

our structural characterization data. The consequences of the interphase 

structure are not immediately obvious. While InP/CdS has a Type II alignment, 

ZnS has a Type I (straddling) alignment with both InP and CdS. Figure 2.2(c) 

is a cartoon depiction of the complex structural composition of a InP/ZnS 

seeded CdS tetrapod where we illustrated both the graded InyZn1-yP layer 

between the InP core and ZnS shell and the ZnxCd1-xS layer at the seed / arm 

interface. To develop an intuitive understanding of the role of an alloyed Type 

I interlayer on the bound states of a Type II system, we considered a 

simplified model. We analyzed a spherical, core-shell nanocrystal with an 

alloyed interlayer using an effective mass approximation.22 For simplicity, the 

hole and electron effective masses were assumed to be ∗ 0.2  and 

∗ 0.6  in all phases. The band offsets of zb-ZnS relative to w-CdS were 
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taken from reference bulk values as ∆ ZnS/CdS 0.70  eV and ∆ ZnS/CdS

0.40 for electrons and holes respectively.23 We simulated the alloy nature of 

the interlayer by taking the offset of the interlayer to be proportional to the Zn 

content, . The band offsets of the InP relative to the CdS were taken to be 

∆ InP/CdS 0.394  eV and ∆ InP/CdS 1.25 .21 We calculated the ground 

state (n=1) electron and hole wavefunctions numerically for various 

nanocrystal geometries. Our analysis lead us to conclude that the electron and 

hole ground state wavefunction overlap was very small and that the maximal 

overlap was at the interface. This is consistent with a Type II structure in 

which recombination occurs at the interface. The e-h overlap decreases as the 

height of the barrier increases, indicating that a thin Type I barrier should not 

interfere with charge separation. Consequently, it may be expected that the 

tetrapod effectively possess a Type II alignment between its core and arms. 
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Figure 2.3 UV, PL and lifetime measurement. (a) Normalized PL (dashed 
lines) and UV-vis spectra (solid lines) of InP/ZnS QDs, and InP/ZnS-CdS 
tetrapods; (b) Normalized PL decay dynamics of two samples. The pump 
fluence is 5 µJ/cm2. (c) Pump fluence dependent emission band position of 
InP/ZnS-CdS tetrapods. 

Optical characterization of the InP/ZnS seeded CdS tetrapods via 

absorption and PL spectrophotometry, as illustrated in Figure 2.3(a), showed 

that growth of the CdS arms resulted in a CdS-dominated absorption spectrum 

and yielded a large emission redshift of ~ 200 nm with respect to the original 

InP/ZnS core (excited at 400 nm). The emission redshift was commensurate 
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with an increase in the length of the CdS arms (which is inferred from 

comparing with core-shell InP/ZnS/CdS NCs with the structural and optical 

characterizations described in the Figure 2.4), indicating that the observed PL 

was not due to deep trap emission from CdS. The absolute QY of the tetrapods 

at an excitation wavelength of 400 nm was determined to be ~ 20%, which is 

reasonable if one considers that the electron wavefunction is delocalized into 

four CdS arms which are not themselves passivated by an inorganic shell. 

Time-resolved PL measurements on the InP/ZnS seeds as depicted in Figure 

2.3(b) revealed a fluorescence lifetime of ~ 74 ns, whereas that of InP/ZnS 

seeded CdS tetrapods showed a dramatically prolonged lifetime of ~ 545 ns. 

These observations collectively support the notion that the tetrapods possess a 

Type II alignment between the core and arms, which is consistent with the 

prediction based on calculation.  

It was also observed that the emission at ~ 700 nm was blue-shifted 

with increasing pump fluence as shown in Figure 2.3(c). The continuous 

spectral shift cannot be ascribed to the repulsive interaction between photo-

generated biexcitons at high pump intensity, which would appear as an 

additional peak at a higher energy than that of the single exciton peak.24, 25 On 

the other hand, the peak energy ( ) at excitation intensities ( ) below 60 

μJ/cm2 can be well-fitted (solid line in Figure 2.3(c)) with the expression 

	, where  is the extrapolated peak energy at zero intensity 

excitation and c is a fitting parameter. This is indicative of band bending, 

which is caused by an electric field generated by the separation of opposite 

charges across an interface and results in an emission blue-shift.26-28 Deviation 

from the fit at pump intensities much larger than 60 μJ/cm2 may be due to the 
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saturation of photo-generated charge carriers at the interface. These 

observations provide further evidence that the InP/ZnS seeded CdS tetrapods 

exhibit Type II behavior. Upon photoexcitation, most of the excitons are 

generated in the CdS tetrapod arms due to their much larger absorption cross- 

Figure 2.4 Structural and optical characterization of the core/shell 
InP/ZnS/CdS spheres. (a) Low resolution TEM and (b) powder XRD of 
InP/ZnS/CdS core/shell spheres. A reference spectrum (orange) of standard 
zinc blende CdS is included; (c) UV and PL spectrum of the InP/ZnS/CdS 
core/shell spheres. The absorption and emission of InP/ZnS are both redshifted 
upon the growth of the CdS shell on top. Comparing with the PL (500 nm) of 
the initial InP/ZnS seeds, the InP/ZnS/CdS core/shell spheres gives 628 nm 
emission with ~128 nm redshift of the PL spectrum. This further indicated the 
Type-II band alignment at the interface between InP/ZnS seed and CdS shell; 
(d) time resolved PL decay curve of InP/ZnS/CdS core/shell spheres showing 
a weighted average lifetime of ~ 280 ns. 

section compared with the core at the branch point. The holes generated in the 

CdS arms localize to the InP core and emission takes place via recombination 

between electrons in CdS and holes in InP across the alloyed interface. 

Saturation of the hole states in InP would be expected to lead to radiative 

recombination within CdS due to the “exciton blocking effect”, thus producing 

efficient multiexcitonic dual emission from both CdS and the InP/ZnS-CdS 

interface.  
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In order to better illustrate the efficiency of Type II InP/ZnS seeded 

CdS tetrapods in producing dual wavelength emission of similar peak intensity, 

a comparison was made with Type I CdSe seeded CdS tetrapods of similar 

CdS arm diameter and length. Both samples were excited with 400 nm pulses 

(1 KHz repetition rate, ~150 fs pulse duration) from a frequency doubled Ti : 

Sapphire laser. Figures 2.5(a) and 2.5(b) show a series of pump intensity 

dependent PL spectra of dilute toluene solutions of equal concentrations of 

InP/ZnS seeded CdS tetrapods and CdSe seeded CdS tetrapods respectively, 

and it is readily seen that emission from both core and arms occurs at 

sufficiently large pump fluence. Their corresponding emission peak intensities 

as a function of the average number of photogenerated excitons per 

nanoparticle <N> are given in Figure 2.5(c). It is seen that the saturation of 

the InP/ZnS-CdS interface emission at a pump threshold of ~ 10 µJ/cm2 was 

commensurate with a superlinear increase in the emission intensity of CdS, 

which may be attributed to the saturation of hole states within InP. The 

InP/ZnS-CdS interface emission therefore dominates at low pump fluence 

while the CdS emission prevails at high excitation intensities. In contrast, for 

the Type I tetrapods, the core CdSe emission starts to saturate at pump 

fluences about an order of magnitude larger without a corresponding 

superlinear increase in the CdS emission intensity. The sublinear increase of 

the CdSe core emission at large pump intensities is likely due to the Auger 

recombination process associated with multiexcitons24,29 rather than core  
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state saturation. This size-dependent Auger recombination process can also 

explicate the saturation of emission from the CdS arms although at larger 

pump fluence (~ 1000 µJ/cm2) given their much larger volume. 

Figure 2.5 Pump-fluence dependent PL spectra from (a) InP/ZnS-CdS and (b) 
CdSe/CdS tetrapods with almost the same length of the CdS arms in the dilute 
toluene solution. (c) The plot of peak intensities of interface (red circles) and 
CdS arm (blue squares) emissions for InP/ZnS-CdS (upper panel) and 
CdSe/CdS tetrapods (lower panel) as a function of excitation fluence on a 
log−log scale in comparison to linear growth (solid line). (d) Pump-intensity 
dependent emission color coordinates plotted in the CIE 1931 chromaticity 
diagram for InP/ZnS-CdS and CdSe/CdS tetrapods. The arrows imply the 
increasing of pump fluence from 1 to 300 µJ/cm2. Three inset photographs 
show the emission color changing of InP/ZnS-CdS tetrapods which were drop 
casted on a glass slide; (e) Emission intensity variation of Type II and Type I 
tetrapods upon the continuous excitation at a pump fluence of 300 μJ/cm2 over 
the course of 1.5 hours. 
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Due to the cross-over of integrated emission intensity between core 

and arm at a relatively low pump fluence of ~ 100 μJ/cm2 as illustrated in 

Figure 2.5(c), InP/ZnS seeded CdS tetrapods exhibit a wide range of 

perceived emission color-tunability over a small excitation range. Figure 

2.5(d) plots the calculated CIE coordinates according to the PL spectra in 

Figures 2.5(a) and 2.5(b). By increasing the pump fluence gradually from 0.4 

- 300 μJ/cm2, the effective emission color can be tuned from red to bluish-

green passing through the coordinates for white, and photographs of the Type 

II tetrapods drop-casted on a glass substrate optically excited under different 

pump intensities are given in the insets of Figure 2.5(d). In the case of the 

CdSe/CdS tetrapods, the emission color has a much more limited tunability 

and can only be changed from red to orange with increasing pump fluence. 

The phostability of the Type I and Type II tetrapods as MME emitters were 

evaluated by monitoring their core and arm emission intensity under 

continuous excitation at a pump fluence of 300 μJ/cm2 over the course of 1.5 

hours. As illustrated in Figure 2.5(e), the core emission intensity from the 

Type II tetrapods did not show any noticeable decrease whereas that of the 

Type I tetrapods declined appreciably over the measurement time window. 

This may be rationalized by the presence of a detrimental Auger 

recombination process in the core region of Type I tetrapods at the high pump 

intensities used that can result in additional occurrences of charge trapping. In 

the case of the Type II nanocrystals, the Auger recombination process is 

highly suppressed,21,30 leading in this case to higher photostability for the Type 

II tetrapods.       
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Figure 2.6 (a) Differential transmission spectra of InP/ZnS-CdS tetrapods 
dispersed in toluene at a probe delay of 1 ps under 400 nm light excitation at a 
pump fluence of 10 µJ/cm2. The photobleaching (PB) bands labeled as X0 and 
Y0 are correspond to the transitions across the Type II interface and in the CdS 
arms, respectively, as shown schematically in the inset of the energy level 
diagram. Normalized PB transients probed at the peaks of the X0 and Y0 PB 
bands for InP/ZnS seeded CdS tetrapods with <N> ~1 (b) and <N> ~10 (c). (d) 
Normalized PB transients probed at the peaks of the CdSe and CdS transitions 
for the counterpart Type I tetrapods with <N> ~10. 

In order to ascertain the origins of the early sublinear and superlinear 

increase in the InP/ZnS-CdS interface and CdS arm emission as a function of 

pump power, which is the basis for the wide color tunability obtained, the 

interplay of carrier dynamics between the core and arms of the tetrapod was 

investigated. Transient absorption (TA) measurements were performed on 

tetrapods to monitor their carrier relaxation and recombination processes. 

Figure 2.6(a) shows the differential transmission (∆T/T) spectra at a probe 

delay of 1 ps following a 400 nm pulse excitation for InP/Zns seeded CdS 

tetrapods dispersed in toluene. Two photobleaching (PB) bands (i.e., ΔT/T > 0) 
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denoted as X0 and Y0 were observed, corresponding to the transition between 

the InP valence band and CdS conduction band across the alloyed interface 

and excitonic transitions within the CdS arm. The larger amplitude ratio of Y0 

to X0 is due to the much larger volume of the CdS arms in comparison with 

the InP core.  

Figure 2.6(b) and 2.6(c) show the normalized bleach decay and 

formation kinetics monitored at the peak of the respective X0 and Y0 PB bands 

under different pump fluence. The X0 and Y0 PB signals are fitted with single 

rising and double decaying exponential functions, respectively, as shown with 

solid lines. At a pump fluence corresponding to <N> ~ 1 (where <N> is the 

average number of excitons per tetrapod), the buildup of the X0 PB is 

simultaneously matched with a fast bleach decay at Y0 PB occurring within ~ 

1.0 ps, which reflects the approximate hole relaxation time from the CdS arm 

to the InP core. From the amplitude of the fast decay component of Y0 PB, it 

may be estimated that not all of the photoexcited holes are localized into the 

core and some holes remain within the CdS arms. This is consistent with our 

earlier supposition that the hole states in InP become filled and the driving 

force for hole relaxation to the InP core is diminished, which results in the 

observed superlinear increase and saturation in the CdS and core-arm interface 

emission respectively as depicted in Figure 2.5(c). The onset of saturation in 

the InP/ZnS-CdS interface emission as the pump fluence is increased to <N> 

~10, the bleaching of X0 and the corresponding decay of Y0 occurs extremely 

fast, indicating that holes in CdS located close to the InP/ZnS core are 

sufficient to fully saturate its hole states. These TA results are consistent with 

the PL spectra in Figure 2.5(c), where at this pump fluence, the Type II 
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emission is fully saturated and CdS emission increases linearly. In contrast, for 

CdSe seeded CdS tetrapods excited at the same high pump fluence (i.e., <N> 

~10), there is still a fast decay (~1.4 ps) for the transition in the CdS arm and a 

correspondingly slow rise for the transition in the CdSe core as revealed in 

Figure 2.6(d), which indicates that the core hole states in CdSe have not been 

filled completely. This may be explained by the weaker driving force for hole 

relaxation into the CdSe core due to the smaller valence band offset (~0.4 eV31 

as opposed to ~0.8 eV in InP-CdS) at the interface between the CdSe core and 

CdS arm. In the case of the InP/ZnS seeded CdS tetrapods, the large valence 

band offset between the InP/ZnS core and CdS arms provided a large 

thermodynamic impetus for arm-to-core hole localization, allowing for fast 

saturation of the hole states in the core.  

 

2.4 Conclusions 

In conclusion, we have demonstrated that Type II InP/ZnS seeded CdS 

tetrapods can achieve MME of comparable intensities at relatively low pump 

fluence and pump-dependent color tunability over a wide range on the CIE 

diagram. By comparing with Type I CdSe seeded CdS tetrapods of 

approximately the same CdS arm dimensions, it was concluded that the 

efficient dual emission, high photostability and wide color tunability in the 

Type II tetrapods was due to the large valence band offset and suppressed 

Auger recombination. This work highlights the importance of band alignment 

in the achievement of highly efficient color-tunable MME in semiconductor 

nanoheterostructures.     
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3.1 Introduction  

Amongst the various wet-chemically synthesized semiconductor 

nanoparticles currently known, colloidal InP is arguably one of the most 

promising alternatives to the proverbial CdSe quantum dot (QD), whose 

emission is capable of covering the entire visible range.1-5 Given its bulk Bohr 

exciton radius of 11 nm and a bulk band gap of ~1.34 eV, which may be 

compared with that of CdSe at 5.6 nm and ~1.74 eV respectively,6 strong 

quantum confinement effects in nanometer-sized InP and a consequently wide 

spectral tunability from 450 nm to 750 nm has been demonstrated for InP 

particles.4 A notable number of efforts have been made to produce highly 

crystalline InP QDs with high quantum yields and long-term photostability, 

typically via surface passivation with a larger band gap semiconductor such as 

ZnS or ZnSe to yield a Type I configuration.7,8 Due to these improvements, 

InP based QDs have been harnessed for optical applications such as bio-

imaging9 and light emitting diodes (LEDs).10,11 In such applications, the 

desired wavelengths of emission and action cross-section of the chromophore 

are of paramount importance, however methods to extend the spectral window 

of quantum confined InP beyond its bulk emission while increasing its 

absorption cross-section have been extremely limited. One possible solution to 

achieve such properties is the use of anisotropic Type II nanoheterostructures, 

which have been reported for II-VI materials. Take the ZnSe seeded CdS 

nanorod as an example, the rod-like CdS shell serves as an antenna for 

absorbing photons while radiative excitonic recombination takes place at the 

interface between ZnSe and CdS.12 In the case of branched structures such as 

tetrapods, the absorption cross-section at the same wavelength of excitation 
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can exceed that of spherical QDs by factors on the order of 100.13 Unlike II-VI 

semiconductors, however, wet-chemistry methodologies involving colloidal 

III-V semiconductor QDs are considerably less mature and developed, and the 

synthesis of well-defined core/shell anisotropic nanoheterostructures based on 

an InP core has to date remained an elusive goal to achieve.  

Developments in the wet-chemical synthesis of colloidal anisotropic 

heterostructures have focused largely on II-VI semiconductor systems, where 

surfactant-controlled and seeded growth approaches have successfully 

produced highly monodisperse structures such as tetrapod and rod 

nanoheterostructures.14-17 On the other hand, efforts to grow the III-V based 

analogues of such nanoparticles via a wet chemistry approach have been far 

less intensive, presumably due to the lack of air-stable precursors and facet-

specific binding ligands. Previous efforts to fabricate III-V semiconductor 

nanowires and nanorods employed metal nanoparticles which served as 

catalysts for nucleation,18-22 analogous to the well-known vapor-liquid-solid 

(VLS) techniques often used to produce semiconductor nanowires.23,24 The 

dimensions of the resulting III-V nanorods or wires, however, were generally 

not well-controlled or monodisperse, in contrast with their colloidal II-VI 

counterparts synthesized via wet-chemical means. Moreover, direct contact 

with the metal nanoparticle catalyst can result in severe fluorescence 

quenching, thus nullifying an important optical property of the semiconductor 

nanostructure.  Herein we show that core-shell InP/ZnS based QDs can serve 

as seeds for the heterogeneous nucleation and growth of CdS arms, forming 

structurally well-defined tetrapods of high size uniformity. The emission 

wavelengths were red-shifted by ~0.71 eV as compared to the original InP 
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based cores, along with significantly lengthened photoluminescence (PL) 

lifetimes of ~ 500 ns. These observations collectively suggest a Type II 

alignment between the InP/ZnS based core and CdS arms where the holes are 

likely to remain in InP while the electrons are delocalized into the CdS arms 

upon exciton formation, consistent with the behavior of bulk InP/CdS.25 

Furthermore, we demonstrate that via a series of facile cationic exchange 

processes, the as-synthesized Type II InP based core seeded CdS may be 

transformed to Type I InP/ZnS-ZnS tetrapods via intermediate InP seeded 

Ag2S tetrapod structures. A dramatic blueshift of the fluorescence to shorter 

wavelengths comparable to the original emission wavelength of the InP based 

cores was observed, commensurate with the Type I band alignment. 

Remarkably, the fact that In3+ did not undergo cationic exchange with Ag+ or 

Zn2+ under the reaction conditions employed in this work suggests that 

cationic exchange may be a feasible synthetic route towards the derivation of a 

large variety of anisotropic InP based nanoheterostructures.  

3.2 Experimental section 

3.2.1 Chemicals and materials  

Myristic acid (MA, 99 %), tris(methylsilyl) phosphine (P(TMS)3, 95%), 

1-octadecene (ODE, 90%), zinc acetate (Zn(AC)2, 99%), 1-dodecanethiol 

(DDT, 97%), cadmium oxide (CdO, 99.5%), sulfur (S, reagent grade), were 

purchased from Sigma Aldrich. Indium acetate (In(AC)3, 99.99%), 

trioctylphosphine (TOP, 97%), silver nitrate (AgNO3, 99%), zinc nitrate 

(Zn(NO3)2, 99%) were purchased from Alfa Aesar. n-octadecylphosphonic 

acid (ODPA, 97%), trioctylphosphine oxide (TOPO, 99%) and n-

hexylphosphonic acid (HPA, 97%) were purchased from Strem. All the 
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chemicals were used as received without further purification. Unless stated 

otherwise, all reactions were conducted in oven-dried glassware under a 

nitrogen atmosphere using standard Schlenk techniques. 

 

3.2.2 Synthetic details 

Synthesis of InP/ZnS seeds 

Refer to Chapter 2. 

Synthesis of InP/ZnS seeded CdS (InP/ZnS-CdS) tetrapods 

Refer to Chapter 2. 

Cation exchange from InP/ZnS-CdS to InP/ZnS-Ag2S tetrapods:  

An Ag+ stock solution was produced as follows: AgNO3 (0.0035g) was 

dissolved in methanol (1 mL), yielding a concentration of 0.02M. To about 

0.022 nmol of processed InP/ZnS-CdS tetrapods in toluene (1 mL), Ag+ stock 

solution (60 μL) was added dropwise with vigorous stirring. The reaction was 

carried out under dark conditions at ~ -15 oC for about 10 minutes. The 

products were precipitated by adding excess methanol to the growth solution, 

and centrifuged at 3900rpm for 6 min. Upon discarding the supernatant, the 

resulting InP/ZnS-Ag2S tetrapods were then dispersed in 1 mL toluene for 

further cation-exchange reactions. 

*Note that the concentration of InP/ZnS-CdS tetrapods was evaluated 

using the bulk molar absorption coefficient of CdS at 350 nm (ε350 for CdS is 

6.15 x 107 26). This approximation was used due to the fact that the volume of 

the InP/ZnS core is about 240 times smaller than that of the 4 CdS arms (based 

on a 2.8 nm diameter InP/ZnS core with CdS arms having a diameter of 5 nm 
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and an arm length of 28 nm), hence absorption at blue wavelengths is 

essentially attributed to CdS.  

Cation exchange from InP/ZnS- Ag2S to InP/ZnS-ZnS tetrapods:   

A Zn2+ stock solution was prepared as follows:  Zn(NO3)2 (0.945g) was 

dissolved in methanol (5mL). The entire sample of InP/Ag2S tetrapods as 

described above was dispersed in toluene and stirred vigorously at 60oC. The 

Zn2+ stock solution (0.6 mL) was then slowly added to the solution of 

tetrapods, and the overall mixture was stirred for 10 mins at 60oC. TOP (0.07 

mL) was then added to the mixture, and stirred at 70oC for ~ 20 hours. The 

final products obtained were precipitated from methanol once, and then further 

processed via 2-3 cycles of precipitation/re-dispersion in acetone/ chloroform, 

before finally dispersing in cyclohexane for characterization.  

3.2.3 Characterizations 

Structural characterization 

Transmission Electron Microscopy (TEM): A JEOL JEM 1220F (100 

kV accelerating voltage) microscope was used to obtain bright field TEM 

images of the nanoparticles. For TEM sample preparation, a drop of the 

nanoparticle solution was placed onto a 300 mesh copper grid covered with a 

continuous carbon film. Excess solution was removed by an adsorbent paper 

and the sample was dried at room temperature. The High-Resolution TEM 

images and detailed elemental analysis were carried out on a FEI Titan 80-300 

electron microscope (operated at 300 KV) which is equipped with an electron 

beam monochromator, an energy dispersive X-ray spectroscopy (EDX) and a 

Gatan electron energy loss spectrometer. The probing electron beam size for 
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point EDX measurements was around 0.3 nm. The dwell time for each EDX 

spectrum was about 10 s. 

X-Ray Diffraction (XRD): XRD data was obtained with a 

diffractometer (Bruker AXS, GADDS) using Cu-Kα radiation (λ=1.540598Å) 

in the range of 20˚ to 80˚. Samples were prepared on a clean silicon wafer by 

placing several drops of concentrated nanoparticle samples in hexane on the 

silicon surface and dried at 60˚C in the oven. This was repeated several times 

until a thin layer of solid was formed on the silicon substrate. 

Optical characterization 

Absorption spectra were obtained with an Agilent 8453 UV-Visible 

spectrophotometer using a quartz cuvette with a path length of 1 cm. 

Photoluminescence (PL) spectra in the visible - NIR region were collected 

using a HORIBA Jobin Yvon Fluorolog 3 spectrometer equipped with a 

silicon and liquid nitrogen cooled InGaAs photodiode detector. Time-resolved 

fluorescence lifetime profiles were obtained using a time-correlated single 

photon counting TCSPC spectrofluorimeter (Fluorohub, Horiba Jobin Yvon). 

Care was taken to ensure that the concentrations of the core and core-seeded 

nanostructures were sufficiently dilute to avoid contributions from re-

absorption or energy transfer. Absolute quantum yield measurements of the 

various samples were carried out on a Hamamatsu Quantaurus-QY with NIR 

model (C11347-12) which has an effective range from 400 nm to 1100 nm. 

3.3 Results and discussions 

As discussed in this thesis (Chapter 2), we employed ZnS coated zb-InP QDs 

which were synthesized via a previously reported single pot procedure.27 The 

one-pot synthetic approach resulted in an alloyed InZnP interfacial layer 
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between the InP core and a thin outermost ZnS shell, as previously 

characterized by Reiss et al.28, 29  Figure 3.1 is a transmission electron 

microscope (TEM) image of the InP/ZnS-CdS tetrapods produced via a 

slightly modified seeded approach of Manna et. al.16 The resulted tetrapods 

possessed CdS arm dimensions of ~ 5.2 nm in diameter and ~ 28.5 nm in 

length on average. Analogous to the seeded growth of CdSe/CdS tetrapods, 

the use of ODPA and HPA as surfactants was critical for tetrapod arm growth 

in our system, and it is reasonable to assume that the growth mechanism for 

the branched arms follow closely to that of CdSe/CdS.17 

Figure 3.1 Low resolution TEM image of InP/ZnS seeded CdS tetrapods.  

Structural and optical characterization of the as-synthesized InP/ZnS 

cores and InP/ZnS seeded CdS tetrapods, including powder X-ray diffraction 

(XRD) measurements, UV-vis / PL spectra, and lifetime which were 
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summarized in Figure 2.1 and Figure 2.3 in Chapter 2. Although the ZnS 

layer seems to form a type I alignment for both InP core and CdS arm, 

according to our previous calculations and analysis (see Figure 2.2(c) and 

2.2(d), Chapter 2), we were able to conclude that the electron and  

hole ground state wavefunction overlap was very small and that the maximal 

overlap was at the interface. This is consistent with a Type-II structure in 

which recombination occurs at the interface. Only if the thickness of ZnS 

increases a lot that can cause a decrease of e-h overlap at the interface, 

indicating that a thin Type-I  

Figure 3.2 PL data of InP/ZnS seeds (green) and InP/ZnS seeded CdS 
tetrapod (red). The InP/ZnS seeds have the emission of 500 nm under 
excitation wavelength of 365 nm, while InP/ZnS seeded CdS tetrapods 
redshifted to 674 nm exhibiting type II band alignment.  

barrier should not interfere with charge separation. Consequently, it may be 

expected that the tetrapod effectively possess a Type II alignment between its 

InP core and CdS arms. 
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The band alignment between bulk InP and CdS forms a staggered Type 

II configuration in which spatial separation of an exciton at the interface of the 

two materials results in the electron primarily localized in CdS while the hole 

is confined to the InP moiety.30 For a sufficiently thick shell (a tetrapod-shape), 

the electron wavefunction is predominantly located in CdS and subsequently 

undergoes spatially indirect radiative recombination with the hole located in 

the InP core. Consequently, the emission is dramatically redshifted with 

respect to band-edge recombination in interface and the PL lifetime is 

significantly lengthened. The InP/ZnS-CdS tetrapods were commensurate with 

delocalization of the electron wavefunction into the CdS arms. As shown in 

Figure 3.2, the PL emission for the InP/ZnS seeds and InP/ZnS seeded CdS 

tetrapods at 500 nm and 674 nm respectively. Such a dramatic redshift of the 

PL peak again indicated the type II band alignment at the interface regardless 

of the thin ZnS layer between the seed and the arm.  
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Scheme 3.1. Illustration of the sequential cation exchange process that 
transforms InP/ZnS-CdS to InP/ZnS-Ag2S and InP/ZnS-ZnS tetrapods via 
sequential exposure to Ag+ and Zn2+ respectively.  

In order to expand the potential utility of anisotropic InP based 

tetrapods in different applications, we explored the possibility of using 

cationic-exchange reactions to transform the tetrapod arms into other materials, 

thereby modifying the optical properties of the entire tetrapod construct. In the 

case of core/shell particles and heterostructures composed of II-VI QDs, 

exposure to cations such as Cu+ and Ag+ in the presence of ligands which 

preferentially coordinate to the cations in the II-VI semiconductor results in a 

spontaneous cation-exchange reaction in which the shape and size of the 

original QDs are preserved while transformation to the new semiconductor 

material takes place.31-33 For cations such as Pb2+ which cannot be exchanged 

directly with CdS for example, transformation to PbS can be mediated via the 

formation of an intermediate structure such as Cu2-xS.34 For III-V QDs on the 
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other hand, exposure to Cu+ or Ag+ does not result in cation-exchange, but 

rather a diffusion of these guest ions into the lattice vacancies of the III-V 

host.35 We thus deduced that for the Type II InP/ZnS seeded CdS tetrapods 

with a III-V core and II-VI arms, sequential cationic exchange with Ag+ 

followed by Zn2+ should result in the formation of Type I InP seeded ZnS 

tetrapods with dramatically different optical properties, as illustrated in 

Scheme 3.1.  

Briefly, processed InP/ZnS seeded CdS tetrapods were dispersed in 

toluene and exposed to AgNO3 in methanol with stirring for ~ 15 minutes 

under dark conditions in order to minimize the photoreduction of Ag+. This 

resulted in the formation of tetrapods with an InP based core and Ag2S arms, 

as shown in Figure 3.3(a). The material composition of the InP/ZnS-Ag2S 

tetrapods was investigated via EDX measurements, which confirmed the 

presence of Ag in the arms of the tetrapods and the retention of the InP core, 

as depicted in Figure 3.3(b). The absence of Cd suggested that the cationic 

exchange reaction proceeded to completion. The presence of several dark 

clusters at the centre or tips of the tetrapod arms was found to be that of Ag, 

which may be attributed to the reduction of unreacted Ag+. While the 

underlying mechanism for the reduction of Ag+ on the surface of Ag2S is 

unclear since no reducing agent was added, we can only speculate that the 

reduction of Ag+ to Ag (reduction potential = +0.80 V) may have been 

facilitated by the presence of TOP From the initial synthesis of the InP/ZnS 

seeded CdS tetrapods or Cd+ (oxidation potential to Cd2+ = +1.01 V) that may 

be present at the lattice surface during the cation-exchange process. Optical 

characterization via UV-Vis absorption spectrometry, as delineated in Figure 
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3.4 showed a transition from a spectrum portraying a number of peaks 

distinctive of CdS in the UV- blue region to an essentially featureless and 

broad absorption profile that extends to the NIR wavelengths, as is expected 

 

Figure 3.3 (a) Bright-field TEM image of InP/ZnS-Ag2S tetrapods; (b) Point 
EDX at the central region of a typical tetrapod (shown in inset). The resulted 
Ag signal is significantly higher than In signal, possiblly due the silver metal 
deposition on the obtained Ag2S tetrapods.  

for Ag2S which has a bulk band gap of ~ 1.1 eV.36 The insets in Figure 3.4 

illustrate the appearance of the solutions of tetrapods before and after the 

cation-exchange process, yielding pale yellow and dark brown solutions 

respectively. Fluorescence from the InP/ZnS core was entirely quenched, 

which may be understood by the close proximity of the Ag cluster and the 
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high likelihood that excitons generated in the InP core are transferred to the 

Ag2S arms. 

Figure 3.4 UV-Vis absorption of the tetrapod solution before (black) and after 
(red) exchange with Ag+. Inset: Corresponding solution vials before and after 
the cation exchange process. 

 The as-synthesized InP/ZnS-Ag2S tetrapods dispersed in toluene were 

exposed to a methanolic solution of Zn(NO3)2, along with trioctylphosphine 

(TOP) as a soft base which can stabilize Ag+ and thus provide a 

thermodynamic impetus for the cation-exchange reaction with Zn2+. Unlike 

the spontaneous displacement of Cd2+ by Ag+ at room temperature, cation-

exchange with between Ag+ and Zn2+ required to be carried out at a reaction 

temperature of ~60-80 oC for ~ 24 hours. It should be noted that the use of 

Cu2S as an intermediate for the conversion of nanostructures of CdS to ZnS, as 

previously reported by Li et. al., requires shorter reaction times but much 

higher reaction temperatures of 250oC to drive the exchange between Cu+ and 

Zn2+.37 Interestingly, the Ag domains originally present on the Ag2S arms were 
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no longer observed after conversion to ZnS, as shown in the TEM image in 

Figure 3.5(a), analogous to the removal tetrapods undergoing cationic 

 

Figure 3.5 (a) Representative TEM image of InP/ZnS-ZnS tetrapod; (b) Size 
distribution of tetrapod arm length when comparing InP/ZnS-CdS and 
InP/ZnS-ZnS tetrapods 

exchange with Ag+ 38 As illustrated of wurtzite ZnS. Figure 3.6 presented the 

HRTEM of InP/ZnS-ZnS tetrapods, where the lattices fringe along the arm of 

wz-ZnS was presented as {002} where the d-spacing is 0.312 nm (smaller than 

wz-CdS (002) d-spacing of 0.33 nm along the arm). While it is seen that the 

general shape monodispersity of the Zn-exchanged tetrapods were preserved 

during the reaction, close examination of ~ 30 randomly chosen tetrapods 

revealedthat the length of the arms were shorter as compared with the original 
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InP/ZnS seeded CdS tetrapods (see Figure 2.1(e) in Chapter 2), which may 

be attributed to the fact that a volume contraction of ~ 21 % is expected going 

from wurtzite CdS to wurtzite ZnS 

 

Figure 3.6 HRTEM of a InP/ZnS-ZnS tetrapod. Small inset is the zoom out 
image of the same tetrapod, with number one to three labeled on each arm.The 
labels (1), (2) and (3) correspond to the FFT analysis of the lattice planes on 
each arm (right side images).   

. Characterization of the materials composition of the InP/ZnS-ZnS tetrapods 

was carried out via point EDX analysis which showed that Ag was wholly 

absent and that the arms of the tetrapods comprised entirely of ZnS while the 

branch point contained In, P, Zn and S, as may be seen in the EDX spectrum 

in Figure 3.7. This strongly suggests that the InP based core was preserved 

during the cation-exchange process between Ag+ and Zn2+. 
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Figure 3.7 Point EDX at the central region of a typical tetrapod (HADDF 
image was shown in inset).  

Further evidence for the conservation of the InP structure within the tetrapod 

branch point is given by PL measurements conducted at room temperature, 

which showed a remarkable recovery of fluorescence peaked at ~ 530 nm with 

a FWHM of ~ 0.35 eV, as seen in Figure 3.8. The emergence of this emission 

at a wavelength about 430nm to the blue of the InP/ZnS seeded CdS tetrapod 

emission is consistent with the transition from a Type II to Type I energy 

alignment between the InP/ZnS core and the ZnS arms. Compared to the 

original InP/ZnS seeds which exhibited fluorescence centred at ~510 nm, the 

PL peak of the InP/ZnS-ZnS tetrapods was red-shifted by ~ 20 nm, which may 

be explicated by the partial leakage of the electron wavefunction from the InP 

based core into the four ZnS arms. The absolute quantum yield of the InP/ZnS 

seeded ZnS tetrapods, however, was low and on the order of ~ 1% at an 

excitation wavelength of 360 nm. One plausible reason may be the presence of 

Ag+ impurities in sufficiently low amounts that were not detectable via EDX, 
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yet the incorporation of even a few impurity atoms per semiconductor 

nanoparticle is sufficient to drastically suppress its emissive properties.39  

Figure 3.8 PL profile of InP/ZnS seeded ZnS tetrapods in toluene (dark green). 
The PL of the original InP/ZnS seeded CdS tetrapods (red) is included as 
reference. The digital photograph of the initial Type I tetrapod (light yellow in 
toluene), transform into InP/ZnS seeded ZnS Type I tetrapod (colorless in 
toluene) through Ag2S tetrapods (dark brown color solution). 

 

3.4 Conclusions 

In summary, we have demonstrated the synthesis of monodisperse 

Type II InP/ZnS seeded CdS tetrapods. The success of this technique hinged 

upon the use of core-shell InP/ZnS particles as seeds, which importantly 

conferred structural stability to the InP core at high temperatures and retained 

its zinc-blende crystal phase. Via a sequential cationic-exchange process with 

Ag+ and then Zn2+, InP/ZnS-ZnS tetrapods were successfully produced at 

relatively low temperatures of ~60 – 80 oC, thus allowing the size-dispersity 
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and shape morphology of the original tetrapods to be retained. These Type I 

tetrapods exhibited emission in the visible range, about 170 nm blueshifted 

from their InP/ZnS-CdS counterparts. The unprecedented fabrication of these 

III-V semiconductor seeded tetrapods whose arms are comprised of a II-VI 

material opens up avenues for deriving novel optical properties based on III-V 

particles via facile cation-exchange processes. Coupled with the large 

absorption cross-section and potentially enhanced charge transport attributes 

that stem from a branched morphology, these tetrapods may find newfound 

utility in solution-processed optoelectronic devices.   



Chapter 3 Visible to Near Infrared Emission from Branched Type I and Type 
II InP Based Nanostructures 

-81- 
 

3.5 References 

1. Stuczynski, S. M.; Opila, R. L.; Marsh, P.; Brennan, J. G.; Steigerwald, M. 

L., Chem. Mat. 1991, 3, 379. 

2. Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J., J. Phys. 

Chem. 1994, 98, 4966. 

3. Battaglia, D.; Peng, X. G., Nano Letters 2002, 2, 1027. 

4. Xie, R.; Battaglia, D.; Peng, X., J. Am. Chem. Soc. 2007, 129, 15432. 

5. Xu, S.; Ziegler, J.; Nann, T., J. Mater. Chem. 2008, 18, 2653. 

6. Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; 

Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R., J. 

Phys. Chem. 1996, 100, 7212. 

7. Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, 

S., Chem. Mat. 2011, 23, 4459. 

8. Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; 

Hwang, S.; Lee, J. E.; Kim, S. K.; Kim, S. W., J. Am. Chem. Soc. 2012, 134, 

3804. 

9. Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J.; Maitra, A.; 

Prasad, P. N., ACS Nano 2009, 3, 502. 

10. Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; 

Nann, T., Adv. Mater. 2008, 20, 4068. 

11. Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; 

Demir, H. V.; Sun, X. W., Adv. Mater. 2012, 24, 4180. 

12. Dorfs, D.; Salant, A.; Popov, I.; Banin, U., Small 2008, 4, 1319. 

13. Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; 

Alivisatos, A. P., Nano Lett. 2007, 7, 2951. 



Chapter 3 Visible to Near Infrared Emission from Branched Type I and Type 
II InP Based Nanostructures 

-82- 
 

14. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P., Nat. 

Mater. 2003, 2, 382. 

15. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; 

Alivisatos, A. P., Nature 2004, 430, 190. 

16. Carbone, L.; Nobile, C.; De Giorgi, M.; Sala, F. D.; Morello, G.; Pompa, 

P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, 

A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L., Nano Lett. 

2007, 7, 2942. 

17. Fiore, A.; Mastria, R.; Lupo, M. G.; Lanzani, G.; Giannini, C.; Carlino, E.; 

Morello, G.; De Giorgi, M.; Li, Y.; Cingolani, R.; Manna, L., J. Am. Chem. 

Soc. 2009, 131, 2274.  

18. Yu, H.; Li, J. B.; Loomis, R. A.; Wang, L. W.; Buhro, W. E., Nat. Mater. 

2003, 2, 517. 

19. Kan, S.; Mokari, T.; Rothenberg, E.; Banin, U., Nat. Mater. 2004, 3, 72. 

20. Ahrenkiel, S. P.; Micic, O. I.; Miedaner, A.; Curtis, C. J.; Nedeljkovic, J. 

M.; Nozik, A. J., Nano Lett. 2003, 3, 833. 

21. Shweky, I.; Aharoni, A.; Mokari, T.; Rothenberg, E.; Nadler, M.; Podov, I.; 

Banin, U., Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2006, 26, 788. 

22. Wang, F. D.; Buhro, W. E.,. J. Am. Chem. Soc. 2007, 129, 14381. 

23. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; 

Buhro, W. E., Science 1995, 270, 1791. 

24. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Science 2000, 

287, 1471. 

25. Van de Walle, C. G.; Neugebauer, J., Nature 2003, 423, 626. 



Chapter 3 Visible to Near Infrared Emission from Branched Type I and Type 
II InP Based Nanostructures 

-83- 
 

26. Shaviv, E.; Schubert, O.; Alves-Santos, M.; Goldoni, G.; Di Felice, R.; 

Vallee, F.; Del Fatti, N.; Banin, U.; Sonnichsen, C., ACS Nano 2011, 5, 4712. 

27. Li, L.; Reiss, P., J. Am. Chem. Soc. 2008, 130, 11588. 

28. Ung, T. D. T.; Pham, T. T.; Nguyen, Q. L.; Li, L.; Reiss, P., Appl. Phys. 

Lett. 2010, 96, 073102. 

29. Ung, T. D. T.; Reiss, P.; Nguyen, Q. L., Appl. Phys. Lett. 2010, 97, 193104. 

30. Dennis, A. M.; Mangum, B. D.; Piryatinski, A.; Park, Y. S.; Hannah, D. C.; 

Casson, J. L.; Williams, D. J.; Schaller, R. D.; Htoon, H.; Hollingsworth, J. A., 

Nano Lett.  2012, 12, 5545. 

31. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P., Science 2004, 

306, 1009. 

32. Zhang, J. T.; Tang, Y.; Lee, K.; Min, O. Y., Science 2010, 327, 1634. 

33. Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; 

Manna, L., Nano Lett. 2011, 11, 4964. 

34. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P., J. Am. Chem. 

Soc. 2009, 131, 16851. 

35. Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U., 

Science 2011, 332, 77. 

36. Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B., J. Am. 

Chem. Soc. 2010, 132, 1470. 

37. Li, H.; Brescia, R.; Krahne, R.; Bertoni, G.; Alcocer, M. J. P.; D'Andrea, 

C.; Scotognella, F.; Tassone, F.; Zanella, M.; De Giorgi, M.; Manna, L., ACS 

Nano 2012, 6, 1637. 

38. Lian, J.; Xu, Y.; Lin, M.; Chan, Y. T., J. Am. Chem. Soc. 2012, 134, 8754. 



Chapter 3 Visible to Near Infrared Emission from Branched Type I and Type 
II InP Based Nanostructures 

-84- 
 

39. Jain, P. K.; Beberwyck, B. J.; Fong, L. K.; Polking, M. J.; Alivisatos, A. P., 

Angew. Chem.-Int. Edit. 2012, 51, 2387. 

 

 

 



Chapter 4 Promoting 2D Growth in Transition Metal Sulfide Semiconductor 
Nanostructures via Halide Ions 

 
 

 

 

 

 

 

CHAPTER 4 

Promoting 2D Growth in Transition Metal Sulfide 

Semiconductor Nanostructures via Halide Ions 

 

 

 

 

 

 

 

 

 

 



Chapter 4 Promoting 2D Growth in Transition Metal Sulfide Semiconductor 
Nanostructures via Halide Ions 

 

-86- 
 

4.1 Introduction 

Free-standing semiconductor nanostructures whose physical 

dimensions are restricted to a plane have recently garnered a tremendous 

amount of interest due to their unique physicochemical properties that are 

markedly different from their bulk, zero- and one-dimensional nanocrystal 

counterparts.1, 2 For example, colloidal CdSe nanoplatelets were found to 

possess radiative lifetimes around two orders of magnitude faster than CdSe 

quantum dots of comparable emission wavelength and quantum yield at low 

temperature3 whereas as-synthesized PbS nanosheets (NS) were able to 

achieve conductivity values higher than untreated films of PbS quantum dots.4 

However, in comparison with their spherical nanoparticle analogues, disk- or 

sheet-like semiconductor nanostructures have received much less attention, 

and a firm understanding of the parameters and reactions conditions that yield 

two-dimensional (2D) growth is at the present time not well established. 

To date, a number of disk-, sheet- or ribbon-like colloidal 

semiconductor nanostructures such as SnSe, GeSe, CdSe, CdTe, CuS, PbS, 

and FeS2 have been synthesized via wet-chemical approaches.5 In nearly all of 

the syntheses of these materials, the use of long chain carboxylic acids (e.g. 

oleic or myristic acid) and/or primary amines (e.g. oleylamine or octylamine) 

were employed as surfactants.6-8 Aside from their role as strong binding 

surface ligands,9 it has been suggested that these molecules can serve as “soft” 

templates to support growth in the lateral direction.10-12 The molecular 

structure of the precursor was found to facilitate sheet-like growth, as 

evidenced by single source precursors used to produce SnS,13 MoS2,
14 In2S3 

nanosheets.15 Additionally, the use of metal chelating molecules were found to 
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aid in ultrathin semiconductor sheet formation as well by modifying its growth 

kinetics.16  

We show in this work that the presence of halides can also play a 

pivotal role in facilitating the sheet-like growth of non-layered semiconductor 

nanostructures, and the dimensionality of the synthesized nanostructure can be 

tuned from 0D to 2D by simply varying the concentration of halide ions added 

to the reaction. This was attributed to the reduction in the rates of nucleation 

and growth due to the formation of metal halide bonds which in turn lowered 

the rate of formation of  metal thiolates. Nickel sulfide was identified as a 

choice material given its utility as a electrocatalyst,17 electrode18 and battery 

material.19 Although it may be envisaged that an ultrathin and planar nickel 

sulfide morphology would be beneficial for such applications, there have been 

very few, if any, reports on the synthesis of colloidal nickel sulfide nanosheets 

via hot injection methods. We describe a novel synthesis route for the 

production of nickel sulfide nanosheets with lateral dimensions on the order of 

~ 100 – 1000 nm with thicknesses down to ~ 4 nm. The use of halides to foster 

sheet-like growth was found to be applicable to Cu2S as well, where triangular 

nanosheets with edge lengths ~ 120 nm long and an average thickness of ~ 1.7 

nm were routinely achieved. The results described in this work collectively 

exemplified the use of halides in promoting lateral growth in transition metal 

sulfide nanostructures and added to the growing synthetic toolkit for 

synthesizing colloidal two-dimensional nanomaterials. 
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4.2 Experimental section 

4.2.1 Synthesis of nanosheets 

Chemicals and materials 

Nickel (II) acetate tetrahydrate (Ni(Ac)2.4H2O, 99.9%),  nickel (II) 

chloride (NiCl2, 99%), nickel (II) bromide (NiBr2, 99%), nickel (II) iodide 

(NiI2, 99%), copper (I) chloride (CuCl, 99.99%),  copper (II) acetate (Cu(AC)2, 

99%), copper (I) bromide (CuBr, 99%), copper (I) iodide (CuI, 99%), 

hydrochloride acid (HCl, 37% w/w), 1-octadecene (ODE, 90%), 

trioctylphosphine oxide (TOPO, 99%), 1-dodecanethiol (1-DDT, 97%), sulfur 

(S, reagent grade), were purchased from Sigma Aldrich. All the chemicals 

were used as received without further purification. Unless stated otherwise, all 

reactions were conducted in oven-dried glassware under nitrogen atmosphere 

using standard Schlenk techniques. 

Synthesis of Ni9S8 nanosheets 

Briefly, Ni(Ac)2.4H2O (0.4 mmol), HCl (0.8 mmol), TOPO (2.5 mmol), 

ODE (20 mL) were mixed in a round bottom 3-neck flask (RBF) at room 

temperature. The mixture was kept stirring under N2 flow for 15 min before 

degassed under vacuum at 90  for 1 hour. Then rapidly heat the reaction pot 

to the target growth temperature of 250 . When the temperature reached 160 	

during	 the	 heating	 process, 1-DDT (4 mmol) was swiftly injected into the 

reaction flask and this mixture was kept under heat at 250  for 1 hr. This 

yielded cross-shaped Ni9S8 sheet-like structures with thickness of ~30 - 40 nm 

and lateral dimensions of about 250 - 300 nm., For further purification, the 

reaction mixture was cooled to room temperature, where 1 equivalent of 
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toluene and  8 equivalents of ethanol were added to 1 equivalent of the growth 

solution, followed by centrifugation at 3900 rpm for 3 min. The resulting 

precipitate was further processed via two cycles of dispersion in toluene and 

precipitation in ethanol. The resulting NCs were then dispersed in toluene and 

sonicated for ~1 hour for subsequent use. 

Effect of chloride ion concentration on morphology of Ni9S8 nanostructures 

To demonstrate the effect of chloride ion concentration on the 

morphology of Ni9S8 structures, we varied the amount of HCl added (0 mmol, 

0.4 mmol, 0.8 mmol, 1.0 mmol), while keeping all other reaction parameters 

constant. This yielded Ni9S8 small rods (0 mmol Cl-), rectangular plate-like 

structures less than 100 nm in their lateral dimensions (0.4 mmol Cl-), and 

cross sheet-like structures with lateral dimensions of 300 – 400 nm (0.8 and 

1.0 mmol Cl-) respectively with continuous increasing of the chloride ion 

concentration. To isolate the product, we employed the same procedure as 

described above for Ni9S8 nanosheets. 

Synthesis of Cu2S nanosheets 

Briefly, Cu(Ac)2 (0.4 mmol), TOPO (2.5 mmol), ODE (20 mL), HCl 

(0.4 mmol) were degassed under vacuum at 90  in a round bottom 3-neck 

flask for 1 hour. 1-DDT (4 mmol) was then swiftly injected into the reaction 

flask at 160 , upon which the mixture was kept on heating up until the 

growth temperature of 200  ~210  and then kept for 1 hour or more. This 

yielded Cu2S sheets with thickness of 1.7 nm and lateral dimension reach 

about 130nm.  For further purification, the reaction mixture was cooled to 

room temperature, where 1 equivalent of toluene and 8 equivalents of ethanol 

was added to 1 equivalent of raw solution, followed by centrifugation at 3900 
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rpm for 3 min. The resulting precipitate was processed twice via toluene-

ethanol mixture. The processed NCs were then dispersed in toluene and 

sonicated for 1 hour (or longer if necessary) for subsequent use. 

Effect of chloride ion concentration on morphology of Cu2S nanostructures 

To demonstrate the effect of chloride ion on the morphology of the 

synthesized Cu2S nanostructures, we varied the amount of HCl added (0 mmol, 

0.08 mmol, 0.2 mmol, 0.4 mmol), while keeping all other reaction parameters 

constant. This yielded Cu2S spheres (0 mmol Cl-), discs (0.08mmol Cl-), and 

nanosheets (0.2 and 0.4 mmol Cl-) respectively with continuous increasing of 

the chloride ion concentration. To isolate the products, we employed the same 

procedure for Cu2S nanosheets as described above. 

Use of other metal halide salts 

In order to study the effects of other halide groups, other MXn salts 

were used (M = Cu, Ni ; X = Br, I). Unless otherwise stated, the synthesis 

conditions were identical to those described above for the synthesis of Cu2S 

and Ni9S8 nanosheets.  

4.2.2 Structural characterization 

Transmission Electron Microscopy (TEM) 

A JEOL JEM 1220F (100 kV accelerating voltage) microscope was 

used to obtain bright field TEM images of the nanoparticles. For TEM sample 

preparation, a drop of the nanoparticle solution was placed onto a 300 mesh 

copper grid covered with a continuous carbon film. Excess solution was 

removed by an adsorbent paper and the sample was dried at room temperature. 

The High-Resolution TEM images and detailed elemental analysis were 
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carried out on a FEI Titan 80-300 electron microscope (operated at 200 KV) 

which is equipped with an electron beam monochromator, an energy 

dispersive X-ray spectroscopy (EDX) and a Gatan electron energy loss 

spectrometer. The probing electron beam size for point EDX measurements 

was around 0.3 nm. The dwell time for each EDX spectrum was about 10 s. 

X-Ray Diffraction (XRD) 

XRD data was obtained with a diffractometer (Bruker AXS, GADDS) 

using Cu-Kα radiation (λ=1.540598Å) in the range of 20˚ to 80˚. Thin film 

samples were prepared on a clean silicon wafer by placing several drops of 

concentrated nanoparticle samples in hexane on the silicon surface and dried 

at 60  in the oven. This was repeated several times until a thin layer of solid 

was formed on the silicon substrate. The powder form of XRD samples were 

prepared by several times of purification followed by drying under N2. 

Elemental Analysis 

 For Nickel and Copper determination: Dual-view Optima 5300 DV 

ICP-OES system. 

For elemental Sulphur determination:  Elementar Vario Micro Cube. 

For anion (Cl-, Br-): Ion Chromatography (IC) Analysis, 

Instrumentation includes 818 IC Pump, 820 Separation Center, 830 Interface, 

833 Liquid handling Unit, 732 Detector and 813 Compact Autosampler. 

Atomic Force Microscope (AFM) 

We recorded the AFM data via a Bruker Dimension FastScan AFM 

operating in tapping mode (FASTSCAN-A). We used the software named 

“WSxM 5.0 Develop 4.3” to determine the height profile of the sheet-like 

structures which were deposited onto the silicon substrates. 
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4.2.3 Optical characterization 

Absorption spectra were obtained with an Agilent 8453 UV-Visible 

spectrophotometer using a quartz cuvette with a path length of 1 cm. 

4.3 Results and discussions 

 

Figure 4.1 Structrual characterization of Ni9S8. (a) TEM image of cross-like 
nickel sulfide nanosheets formed in the presence of Cl- ions. The inset is a 
HAADF-STEM image illustrating its step-terrace morphology; (b) AFM 
image showing thickness of each step-terrace is ~ 5 nm; (c) a zoom-in AFM 
image which shows a series of step-edges on the synthesized Ni9S¬8 
nanosheets, height profile across a typical step-edge, which shows that the 
average thickness of each step is around ~ 0.8 nm; (d) XRD pattern of 
nanosheets with reference Ni9S8 (78-1886) peaks in red; (e) HRTEM of the 
Ni9S8 lateral plane. 

Figure 4.1(a) is a typical transmission electron microscope (TEM) 

image of nickel sulfide nanosheets synthesized, where an unusual cross-like 

shape with lateral dimensions on the order of hundreds of nm is apparent. The 

step-terrace morphology of the nanosheets can be visualized more readily via 

High Angle Annular Dark Field STEM (HAADF-STEM) image, which is 

illustrated in the inset in Figure 4.1(a). Characterization via atomic force 
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microscopy (AFM), as exemplified in Figure 4.1(b), showed that the 

thickness of each step-terrace is ~ 5 nm with multiple step-like edges (see 

Figure 4.1(c)). Powder X-ray diffraction (XRD) measurements as illustrated 

in Figure 4.1(d) confirmed the crystal structure to be that of Ni9S8, which is a 

non-stoichiometric form of nickel sulfide that has not to the best of our 

knowledge been synthesized in the form of a nanosheet. Elemental analysis 

via Energy-dispersive X-ray spectroscopy (EDX) revealed a Ni to S ratio of 

9:7.7, which is in good agreement with the formula Ni9S8. High-resolution 

TEM (HRTEM) analysis of the nanosheets obtained, as shown in Figure 

4.1(e), yielded lattice spacing consistent with that of Ni9S8, lending further 

support to its proposed identity. 

The unusual cross-like morphology of the Ni9S8 structures observed 

may be visualized as a nanosheet with four wings each oriented at right angles 

to each other. Figure 4.2(a) is a zoomed-in TEM image of a single Ni9S8 

nanocross oriented along [010] zone axis. From the corresponding diffraction 

pattern shown in Figure 4.2(b), it may be deduced that the four wings of this 

single crystalline nanosheet are extended along the <101> direction. By 

considering the shape morphology of individual sheets within each sample, it 

was inferred that the order of the growth rate for the various planes follows as 

{101}>{001}≈{100}>>{010}. The slowest growth rate along the <010> 

direction results in primarily lateral growth into a sheet-like structure with 

exposed {010} facets at its top and bottom. Figure 4.2(c) is a simulated cross-

sectional view of the Ni9S8 cell lattice from the 
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Figure 4.2 Diffraction pattern on single Ni9S8 nanosheet. (a) TEM image of a 
single Ni9S8 nanocrystal; (b) corresponding diffraction pattern. Schematic 
drawing of Ni9S8 unit cells viewed along: (c) the [001] direction showing the 
alternating layers of Ni and S atoms; (d) the [101] direction showing a mixture 
of Ni and S atoms. 

<001> zone axis where it is seen that the {010} planes comprise of alternating 

layers of Ni and S atoms. On the other hand, each {101} plane comprises of a 

mixed number of Ni and S atoms, as seen in Figure 4.2(d). This is consistent 

with our inference that the growth rate for the {101} facets is larger than that 

of {010} since it is expected that the DDT would inhibit the rate of monomer 

addition on the {010} facets by binding strongly to exposed Ni sites during 

growth. Conversely, one would expect less binding of DDT to the {101} 

facets which would result in faster growth. 
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Figure 4.3 Growth evolution of Ni9S8 nanocrystals from (a) 230 oC, (b) 250 
oC, (c) maintained at 250 oC for 5 min. Resulting Ni9S8 structures from use of: 
(d) 0 mmol of Cl-; (e) 0.4 mmol of Cl-; (f) 1 mmol of Cl- at T = 250 oC. 

The growth evolution of the nanosheets as a function of time was 

investigated by taking aliquots at different stages of the reaction and 

characterizing via TEM. At a Ni:Cl molar ratio of 1:2 and a reaction 

temperature of T = 230 , sample aliquots yielded dense stacks of pre-formed 

intermediate films. Within these films, small plate-like crystals of Ni9S8 were 

seen, as illustrated in Figure 4.3(a). When the reaction temperature had 

reached 250  with a growth time of ~ t = 1-2 min, consumption of the 

preformed films commensurate with growth of the plate-like structures into 

irregular thin sheets was evident, as shown in Figure 4.3(b). Continued 

growth resulted in the formation of square-like nanosheets, as exemplified in 

Figure 4.3(c), along with additional consumption of the intermediate film. 

Further growth at this temperature yielded the cross-like nanostructures shown 

in Figure 4.1(a), with a near complete disappearance of the intermediate films. 
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 Figure 4.4 Ni9S8 nanosheets obtained at lower Ni(II) precursor concentration. 
(a) TEM image of the Ni9S8 sheet; (b) AFM image of a single Ni9S8 sheet; (c) 
Height profile across the green line in (b) showing that the height is around 4 
nm. 

 

 The effect of the Cl- concentration on the growth of the Ni9S8 

nanostructures was also investigated by varying the amount of Cl- added, 

fixing the reaction temperature at 250  and keeping all other parameters 

constant. When no Cl- was added, nucleation and growth of the particles were 

completed within ~ 1 min, yielding short rod-like particles as shown in Figure 

4.3(d). Interestingly, a preformed, crystalline film comprising of Ni and S was 

also observed at early reaction times even though no Cl- was added. At a Ni:Cl 

molar ratio of 1:1, the particles obtained were larger with a shape similar to 

that of a rectangular slab (Figure 4.3(e)), and took 25 ~ 30 mins for the pre-

formed intermediate film to be entirely consumed. A Ni:Cl molar ratio of 1:2 

yielded the nanosheets shown earlier in Figure 4.1(a) while even larger 

amounts of Cl- added required much longer reaction times and caused larger 

cross-like sheets with thicknesses on the order of 100 nm to form, as 
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illustrated in Figure 4.3(f). On the other hand, reducing the concentration of 

nickel precursor in the reaction flask while keeping the Ni to Cl- ratio at 1:2 

allows for the formation of the same sheet-like structure with lateral 

dimensions of ~ 200 nm but with a thickness of ~ 4 nm, which corresponds to 

a height of about 3 unit cells (see Figure 4.4). 

The observations obtained from the above experiments afforded 

considerable insight into the mechanism of growth of Ni9S8 into nanosheets in 

the presence of Cl-. It was previously reported that Ni(II) dodecanethiolate 

[Nix(C12H25S)z] can form a layered film structure,20 although as indicated by 

our experiments, this condition is not sufficient to obtain ultrathin nanosheets. 

Within our reaction conditions, Ni(Ac)2 can undergo nucleophilic substitution 

by both Cl- and C12H25S
-, and an equilibrium is set up between the two 

different Ni(II) species formed. HAADF-STEM and EDX analysis of the 

preformed films which yielded Ni9S8 nanocrosses revealed the presence of Ni, 

S and Cl in an approximate atomic ratio of 1 : 0.4 : 1.6, as illustrated in 

Figures 4.5(a) and 4.5(b). These ratios are consistent with those obtained 

Figure 4.5 (a) TEM image of the [Nix(C12H25S)z] intermediate preformed film; 
(b) corresponding EDX giving a Ni:Cl:S ratio of 1:1.6:0.4; (c) UV-Vis spectra 
of the supernatant after injection of a fixed amount of 1-DDT at 160  for 
different Ni to Cl- ratios; the inset is a digital photo showing the intensity of 
the color reducing upon increasing amounts of Cl- introduced into the reaction 
system. 
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via Inductively Coupled Plasma Atomic Absorption Spectroscopy (ICP-AAS), 

suggesting that the films have a relatively uniform composition. It may be 

inferred from the elemental analyses conducted that the majority of bonds 

formed are that of Ni-Cl instead of Ni-S, and that the addition of Cl- results in 

a lower amount of Ni(II) thiolate produced. In order to ascertain this, UV-Vis 

spectroscopy of the preformed films exposed to different concentrations of Cl- 

was carried out, as shown in Figure 4.5(c), and it is readily seen that the 

characteristic absorbance of Ni(II) thiolate decreases as higher amounts of Cl- 

were added. 

In the absence of Cl-, nucleation and growth of the Ni9S8 

nanostructures from the breakdown of Ni(II) thiolate precursors occurs at a 

rapid rate, whereas the addition of Cl- results in the formation of Ni-Cl bonds 

and a concurrent reduction in the rate of Ni(C12H25S)2 produced. Indeed, the 

use of NiCl2 as a starting precursor instead of Ni(Ac)2 gives essentially iden-

tical results in terms of nanostructures and intermediates produced, 

corroborating the reaction pathway proposed above. These findings strongly 

indicate that in addition to DDT acting as a strong binding ligand to the {010} 

basal plane of Ni9S8, slow growth kinetics is critical for the formation of 

nanosheets while fast growth kinetics yields sphere-like nanoparticles, as 

indicated in Figure 4.2(c). The slow displacement of Cl- by C12H25S
- in the 

intermediate film resulted in less nickel sulfide nuclei and longer growth time, 

which ultimately led to the formation of thermodynamically stable nanosheets. 

There is also a strong possibility that in addition to Ni(II)(C12H25S)2, NiCl2 is 

also known to adopt a layered structure,21 which can provide further impetus 

for sheet formation. TOPO in the synthesized nanosheets was not detected by 
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EDX, suggesting that it has little affinity for the Ni9S8 surface. While the 

primary role of TOPO may not be that of a strong binding ligand, removing 

TOPO from the reaction resulted in very large irregular sheet-like structures. 

This implies that TOPO accelerates the nucleation process, possibly by 

extracting Ni2+ from its salt given its capability for the solvent extraction of 

metals.22 

Figure 4.6 Low resolution TEM image of Ni9S8 nanostructures obtained via 
using NiBr2 as the precursor, where all the other parameters were kept the 
same as that of the synthesis with Cl-, with the sole exception that the growth 
temperature was set at 265 - 270 ℃. The resulting nanocrystals are several 
times larger in dimensions and with a poorer size distribution compared with 
those using Cl-, but clearly exhibit a cross-like sheet morphology. 

Aside from Cl, the presence of Br or I groups also facilitated the 

growth of cross-like Ni9S8 nanosheets, although it should be mentioned that 

reaction times were increased significantly with the use of NiBr2 and NiI2 as 

precursors. Raising the reaction temperature allowed for the reaction to be 

completed within 1 hour, but led to larger structures with the same 

morphology as those synthesized in the presence Cl- (see Figure 4.6). If TR is 
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the time required for the reaction to go to completion, then TR (I-) > TR (Br-) > 

TR (Cl-) at the same reaction temperature. The main difference in reaction 

rates associated with the use of these different precursors may primarily be 

attributed to the relative rates of substitution of the different halide groups 

with dodecanethiolate. The observed trend in reaction times cannot be 

rationalized by analyzing the relative nickel halide bond enthalpies23 or 

nucleophilicities of the halides in comparison with thiolates in an aprotic 

solvent,24 given that they both predict an opposite trend. This conundrum can 

be resolved by considering that the nucleophilic substitution reactions take 

place in a preformed intermediate film rather than with free metal halide 

molecules so that steric hindrance caused by bulky halide groups can prevent  

access to the Ni center and slow down the rate of Ni(C12H25S)2 produced. 

In the case of Ni9S8, lateral growth was mediated by the modification 

of growth kinetics caused by competition between the formation of nickel 

thiolates and nickel halides. We hypothesized that this approach to 2D growth 

may be applicable to other transition metal sulfides. To this end, we choose 

Cu2S as our target, which is a p-type semiconductor with a bulk band gap of 

1.2 eV and has potential utility as an active material in solar cells25 and non-

volatile memory devices.26 Unlike in the case of Ni9S8, however, the formation 

of two-dimensional Cu2S nanostructures has been suggested to occur via the 

decomposition of Cu(I) thiolate complexes in a columnar mesophase at 

elevated temperature.27-30 It was previously reported that the morphology of 

Cu2S nanostructures could be varied from disk- to sheet-like by introducing 

ligands of different chain lengths in a solventless reaction system, but the 

structures synthesized had a tendency to be fairly polydisperse.30 The use of 
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Sn(acac)2Cl2 and SnCl4 were also found to induce lateral growth in Cu2S, 

however the structures formed were relatively thick with a diameter to 

thickness ratio of ~ 6.31  By employing reaction conditions similar to the 

synthesis of Ni9S8 nanoplates, Cu2S nanostructures with an average edge 

length of ~123.0 ± 26.5 nm and thickness of ~1.7 ± 0.2 nm (giving an edge 

length to thickness ratio of 72) were successfully derived. Briefly, copper 

acetate (Cu(Ac)2), TOPO, ODE and HCl were degassed under vacuum at 90  

for 2 hours before the swift injection of DDT at 160 oC under N2. The growth 

temperature was raised to 200  for 1 hour before workup. Figure 4.7(a) is a 

typical TEM image of the Cu2S nanosheets synthesized by using 0.2 mmol of 

Cl-, which have lateral dimensions on the order of ~ 50 nm and a measured 

thickness of ~2 nm (via side view of TEM). Structural characterization via 

XRD confirmed that the nanosheets obtained were that of β-Cu2S with a 

hexagonal crystal phase, as illustrated in Figure 4.7(b). Figures 4.7(c) is the 

corresponding HRTEM image showing a d-spacing of 0.198 nm, which agrees 

well with the (110) lattice spacing of Cu2S.The side view HRTEM (see Figure 

4.7(d)) and structural analysis of individual sheet using diffraction pattern 

shows triangular Cu2S nanosheets are of single crystalline nature, terminated 

by three identical {100} side planes and two {002} lateral surfaces. 

Interestingly, similar to Ni9S8 nanosheets, the two lateral {002} surfaces of 

Cu2S are also terminated by pure Cu and S atoms respectively. The fact that 

the use of a Cu(II) salt did not result in CuS but consistently yielded Cu2S may 

be explicated by the presence of Cl-  and excess DDT which are known to be 

mildly reducing.32, 33 
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Figure 4.7 (a) Cu2S ultrathin triangular sheets synthesized in the presence of 
Cl-; (b) XRD of Cu2S, inset is a cartoon showing that the three exposed edges 
are identical {1 0 0} facets and the top/down is the {0 0 2} plane; (c) HRTEM 
showing lattice spacings consistent with Cu2S; (d) Corresponding HRTEM 
image of the same sample, showing a lattice d-spacing of 0.34 nm which 
represents the (0 0 2) plane. Inset shows the FFT of the selected area where the 
(0 0 2) plane spot in the pattern is clearly evident.  
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Figure 4.8 (a) HAADF-STEM image of a preformed film comprising of Cu, S 
and Cl. Consumption of the film eventually leads to the nucleation and growth 
of Cu2S nanosheets; (b) The evolution of XRD from (1) CuCl.H2O (2) the 
preformed film after DDT injection to the pot, when the growth temperature 
was at 200 , (3) the Cu2S nanosheet in co-existence with the preformed film 
of Cu2S, to (4) the final Cu2S nanosheet. (All samples were prepared in 
powder form). (c) Table SI: Elemental analysis on preformed film made via 
Cu : Cl- /Br- = 1:1.  
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Figure 4.9 Cl- effect on tuning the morphology of Cu2S nanocrystal. (a) 
copper sulfide discs using Cu(Ac)2 as the copper precursor with all other 
reaction conditions unchanged; (b), (c) are the same as the (a) but with 
different amounts of Cl- introduced by addition of HCl (Cl-: 0.08 mmol, 0.4 
mmol for (b) and (c) respectively). Corresponding size histograms for (a)-(c) 
are presented in (d): diameter = 5.97 ± 0.43 nm; (e) thickness = 4.53 ± 0.44 
nm, edge length = 14.15 ± 1.87 nm; (f) Thickness = 1.732 ± 0.18 nm, edge 
length = 123.13 ± 26.5 nm. 

Analogous to the formation of the Ni9S8 nanosheets, a crystalline 

intermediate film comprising of Cu, S and Cl was present at early reaction 

stage (see Figure 4.8). Upon nucleation and growth of Cu2S, consumption of 

the intermediate film became evident. Increasing the concentration of Cl- 

added resulted in a progressive change towards a sheet-like morphology as 

depicted in Figures 4.9(a) – (c), where relatively monodisperse spheres, disks 

and sheets are shown respectively. Notably, the ability to continuously tune 

particle morphology from 0D to 2D by simply varying the concentration of Cl- 

added while keeping other parameters the same affords a facile and convenient 

synthetic route to deriving Cu2S nanostructures with different degrees of 

quantum confinement. 



Chapter 4 Promoting 2D Growth in Transition Metal Sulfide Semiconductor 
Nanostructures via Halide Ions 

 

-105- 
 

 

Figure 4.10 Comparing the rate of consumption of the preformed film while 
using (a,c) CuCl and (b,d) CuBr as the Cu precursor respectively. When the 
reaction temperature reached 200 , both aliquots showed a similar looking 
preformed film structure, however after growth at (c) 200  for 60 min, the 
preformed films are almost fully consumed, leaving a large number of Cu2S 
nanosheets; on the other hand, the consumption of the preformed film in case 
of CuBr case is very slow, where it is seen in (d) that a significant fraction of 
the preformed film remains even after 60 min of growth. Nevertheless, it is 
seen that hexagonal-shaped Cu2S nanosheets were produced. 

A histogram analysis of the sizes of the different structures synthesized 

(Figures 4.9(d)-(f)) showed that as the Cl- concentration increased, the 

thickness of the resulting particles decreased, along with an increase in their 

lateral dimensions. Overall, the volume of the resulting nanostructures on a 

per particle basis was found to increase dramatically as well. These 

observations collectively support the hypothesis that the addition of Cl- 

stabilizes the preformed film by binding to the copper centre as well, thereby 
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limiting and slowing down the nucleation process of Cu2S which yielded 

larger nanostructures, as was in the case of Ni9S8. The effect of different 

halides on the synthesis of Cu2S nanostructures was also explored. By using 

CuBr and CuI as precursors, it was found that nanosheets were also obtained, 

albeit at a higher reaction temperature than when Cl- was introduced (see 

Figure 4.10). As with the growth of Ni9S8 nanosheets, the presence of Br or I 

groups inhibits the formation of Cu(I) thiolate and modifies the growth 

kinetics of Cu2S such that a sheet-like morphology is produced. While the 

arrangement into stacked plates is rationalized by the assembly of the Cu(I) 

thiolate complex into a columnar mesophase, it is evident from our 

observations on the various morphologies obtained using different Cu(I) to 

halide ratios that modification of growth kinetics by the introduction of halides 

can play a dramatic role in obtaining 2D growth. 

 

4.4 Conclusions 

In summary, we have shown in this work that halide ions can play a 

decisive role in determining the morphology of nickel sulfide nanostructures, 

and the use of sufficiently large molar equivalents of halides results in 

nanoplate growth. This was attributed to Ni(II)-halide bonds which inhibited 

the formation of Ni(II) thiolates, resulting in suppressed nucleation and 

modified growth kinetics. This led to the formation of Ni9S8 nanoplates that 

possessed an unusual cross-like structure filled with step-like edges. Their 

unique stoichiometry, large surface-to-volume ratios and numerous exposed 

edge facets potentially make Ni9S8 nanoplates potent TMS-based 

electrocatalysts for dye-sensitized solar cells17 or hydrogen evolution from 
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water.34, 35 The use of halides in promoting sheet-like growth was successfully 

extended to Cu2S, where ultrathin triangular nanoplates were produced via a 

similar synthetic protocol. Additionally, it was shown that monodisperse 

spheres, disks and plates of Cu2S could be obtained by simply increasing the 

amount of Cl- present in the reaction. It is remarkable that the ability to induce 

2D growth in Cu2S via the use of halides is analogous to our strategy 

employed in the case of Ni9S8 despite their different growth mechanisms. The 

findings in this work afford deeper insight into the formation of 2D 

semiconductor nanostructures and offer a highly facile route to the colloidal 

synthesis of such materials. 
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5.1 Introduction  

Colloidal quantum dots based photovoltaic devices have been 

extensively studied due to their benefits such as low cost, solution-processable 

and band gap tuning ability.1 Among the existing quantum dot materials, lead 

chalcogenides (PbS/Se), especially PbS, have received extensive attention 

lately due to its large exciton Bohr radius and enhanced absorption cross 

section that allows maximum solar energy harvesting across the whole visible 

range, all the way to near infrared (IR).2-5 The great potential for using PbS as 

the photovoltaic material has been strongly demonstrated after Sargent’s group 

published PbS quantum dots based solar cell efficiency up to 7% in 2012.6 

Recently, Bawendi et. al. reported the highest power conversion efficiency of 

8.55% achieved by using PbS spheres as the active layer which introduced a 

promising approach of achieving PbS based high performance and air-stable 

photovoltaic devices.7  

However, PbS nanocrystals based photovoltaic devices are still 

unstable due to surface oxidation in air. Also, the information on these 

nanocrystals’ surface is vastly lacking. For instance surface geometry, exposed 

specific facets and ligand passivation, where the development on 

understanding these surface behaviors is essential. Thus, it would be of high 

importance to improve material properties for extensive surface 

characterizations as well as device stability under ambient condition.  

It has been reported that the as-synthesized PbS nanocrystals generally 

exhibit a Pb excess surface which makes them intrinsic n-type material.8 It 

was reasoned that excess Pb-salt present in the synthesis process helped them 

to passivate well. Moreover, when exposed to ambient air, PbS could be 
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oxidized easily (or become oxygen-doped) and behaved as p-type material in 

most cases, rendering it more difficult to obtain air stable n-type PbS. A recent 

report pointed out that depending on atomic infusion of impurities into the thin 

film, PbSe or PbS could result in p- or n-type behavior in field effect transistor 

(FET) device.9 This is very significant for development of QD based 

electronic devices, since one could utilize solution processable inorganic 

nanocrystals with strong quantum confinement for the fabrication of the whole 

p-/n- junction without introducing any other type of n-type materials. 

Moreover, surface impurities as well as surface passivation can lead to 

different types of properties.  

Along with theoretical simulation of the PbS surface passivation,10-12 

many attempts have been put to achieve such air stable Pb-rich property. 

Earlier, Sargent’s group reported a method to retain the inherent n-type 

characteristic of PbS spheres by halide ion (Cl-, Br-) protection, however this 

n-type PbS device will be transformed into p-type when exposed to O2 flow 

for even less than 10 min.13 Later, with iodide treatment, they managed to 

obtain air-stable n-type PbS solid and further achieved quantum junctions 

devices with process-compatible n- and p- type colloidal quantum dots solids. 

3 In addition, post synthetic treatments have been adopted to transform the 

quantum dot insulating thin film firstly into p-type and then n-type by dipping 

it into the Na2S followed by PbCl2 solution.14, 15 This dramatic switch from p- 

to n-type behavior is because the Pb-rich surface could recover the n-type 

nature of Pb chalcogenide, when Pb-salt was used to passivate the surface. 

Therefore, Pb-rich surface are crucial to preserve n-type nature. Jeong et al. 

achieved stable PbS by shrinking their size into ultrasmall spheres, where they 
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pointed out that n-type stability requires the majority termination facets to be 

Pb-rich ±{111} planes on the nanocrystal surface which could only be 

possible when the size is very small. The atomic orientation of such facets 

could strongly improve the ligand passivation on the outward of the 

nanocrystals which crucially determines the stability of these materials.16 Thus, 

large dimensional Pb-rich ±{111} planes in PbS nanostructures would be 

highly desirable for future applications. 

Most of the photovoltaic devices were made by spherical PbS dots as 

the solar energy absorbing layer and the optimal efficiency were not reflected 

on these devices as the problem of charge hopping and tunneling many times 

among the dots in the active layer occurs.17 Two dimensional nanosheet 

morphology could potentially address this charge transportation issue by 

largely reducing the hopping and tunneling process owing to the 

comparatively large lateral dimension for each nanosheet.18 Moreover, 

nanosheet could offer plenty of new physical properties due to their one 

dimensional confinement, for instance, CdSe nanoplatelets could give ultra-

narrow emission FWHM, and the band gap of MoS2 nanosheets could switch 

from indirect to direct while reducing the thickness from bulk to one or two 

monolayers.19, 20 There are little reports on two dimensional PbS nanosheets. 

Weller’s group reported their achievement of ultrathin solution processable 

colloidal PbS nanosheet with large lateral dimension of up to 500 nm, by 

injecting chlorine-containing solvents into the reaction pot filled with as-

synthesized PbS spheres. They managed to trigger the oriented attachment of 

PbS spheres to further grow into nanosheets.21 Other examples included PbS 

nanosheets achieved by compression of PbS nanowires while floating on the 
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air-water interface, followed by high temperature annealing,22 and 

hydrothermal approach to fabricate micrometer-size PbS sheets. 23, 24 

Here in this work, we aim to achieve continuous PbS nanosheet 

(150~200nm) via novel cation exchange reaction where we use Cu2S as 

starting materials. Our as synthesized Cu2S nanosheets possesses ±{002} 

facets as basal plane which are similar to those ±{111} for PbS. Thus, we 

hypothesized to obtain large exposure of Pb-rich {111} facet after cation 

exchange reaction. These materials will be well passivated by Pb(Oleate)2 on 

both top and bottom planes, which can potentially help to achieve a highly air-

stable PbS nanosheets. The atomic layer of Pb atoms were half coordinated 

(with three neighboring S atoms) and one more electron of Pb should be 

binded with anionic oleate ligand for perfect passivation. This unique Pb-rich 

PbS nanosheet is a promising candidate for achieving n-type material that can 

stabilize itself under ambient air and possess excellent FET performance. 

5.2 Experimental section  

5.2.1 Chemicals and materials  

Copper (I) chloride (CuCl, 99.99%), 1-octadecene (ODE, 90%), 

trioctylphosphine oxide (TOPO, 99%), 1-dodecanethiol (1-DDT, 97%), lead 

(II) acetate (Pb(Ac)2, 3H2O), oleic acid (90%, technical grade), 

trioctylphosphine (TOP, 97%), 3-mercaptopropionic acid (MPA, 99%) were 

purchased from Sigma Aldrich. All the chemicals were used as received 

without further purification. Unless stated otherwise, all reactions were 

conducted in oven-dried glassware under nitrogen atmosphere using standard 

Schlenk techniques. 
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5.2.2 Synthetic details 

Synthesis of Cu2S nanosheets 

 Briefly, CuCl (0.4 mmol), TOPO (2.5 mmol), ODE (20 mL) were 

degassed under vacuum at 90  in a round bottom 3-neck flask for 1 hour. 1-

DDT (4 mmol) was then swiftly injected into the three neck reaction flask at 

160 , upon which the mixture was continuously heated until the growth 

temperature of 210  and then kept at this temperature for 2~3 hours. This 

yielded Cu2S sheets with thickness of 3~ nm and lateral dimension of about 

150~200 nm.  For further purification, the reaction mixture was cooled to 

room temperature, where 1 equivalent of toluene and 8 equivalents of ethanol 

were added to 1 equivalent of raw solution, followed by centrifugation at 3900 

rpm for 5 min. The resulting precipitate was redispersed in toluene and 

reprecipitated by ethanol for another two rounds. The processed NCs were 

then dispersed in toluene and sonicated for 1 hour (or longer if necessary) for 

subsequent use. 

 

Cation exchange of Cu2S nanosheets to PbS nanosheets 

This Pb(II) exchange process was also followed by the reported1 

procedure. Initially, lead oleate was prepared by dissolving Pb(Ac) 2•3H2O (3.3 

mmol), oleic acid (7.9 mmol) in ODE (6.1 mL) in a three-neck RBF flask. This 

mixture was degassed at 90°C for 30 min followed by heating at 250°C. In a 

typical reaction, Pb(Ac) 2•3H2O (0.7 mmol), dissolved in 3 mL of methanol, was 

added rapidly to a stirring solution of Cu2S nanosheets that were dispersed in 

toluene. Next, 3 mL of lead oleate was added to enhance the solubility to the 
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solution. We used huge excess of Pb(II) ion for this exchange method. Finally, 

0.6 mL of TOP as added to remove the Cu+ ion by favorable complex 

formation with TOP. A progressive color change to black was observed during 

the time span of the reaction. The solution was allowed to react for 6 to 7 days 

before being precipitated with methanol and then re-dispersed in chloroform. 

 

5.2.3 Characterizations 

Transmission Electron Microscopy (TEM) 

A JEOL JEM 1220F (100 kV accelerating voltage) microscope was 

used to obtain bright field TEM images of the nanoparticles. For TEM sample 

preparation, a drop of the nanoparticle solution was placed onto a 300 mesh 

copper grid covered with a continuous carbon film. Excess solution was 

removed by an adsorbent paper and the sample was dried at room temperature. 

The High-Resolution TEM images and detailed elemental analysis were 

carried out on a FEI Titan 80-300 electron microscope (operated at 200 KV) 

which is equipped with an electron beam monochromator, an energy 

dispersive X-ray spectroscopy (EDX) and a Gatan electron energy loss 

spectrometer. The probing electron beam size for point EDX measurements 

was around 0.3 nm. The dwell time for each EDX spectrum was about 10 s. 

X-Ray Diffraction (XRD) 

XRD data was obtained with a diffractometer (Bruker AXS, GADDS) 

using Cu-Kα radiation (λ=1.540598Å) in the range of 20˚ to 80˚. Thin film 

samples were prepared on a clean silicon wafer by placing several drops of 

concentrated nanoparticle samples in hexane on the silicon surface and dried 

at 60˚C in the oven. This was repeated several times until a thin layer of solid 
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was formed on the silicon substrate. The powder form of XRD samples were 

prepared by several times of purification followed by drying under N2. 

Atomic Force Microscope (AFM) 

We recorded the AFM data via a Bruker Dimension FastScan AFM 

operating in tapping mode (FASTSCAN-A). We used the software named 

“Nanoscope Analysis” to determine the height profile of the sheet-like 

structures which were deposited onto the silicon substrates. 

5.2.4 Optical characterization 

Solution sample and thin film sample: 

Absorption spectra were obtained with an Agilent 8453 UV-Visible 

spectrophotometer using a quartz cuvette with a path length of 1 cm.  

5.2.5 Device Fabrication 

Top-contact, bottom-gate FET device with lead sulfide sheets as the 

active component was fabricated on a SiO2/Si wafer in inert atmosphere.  

The wafer was cleaned by sonication in acetone and then IPA for 15 

minutes each. The cleaned wafer was then dried with nitrogen gun. The PbS 

sheets were then coated on the wafer via layer-by-layer sequential spin coating 

technique. Ligand exchange process was performed with MPA for each layer. 

Then, a chloroform solution of PbS nanosheets was spin coated on the wafer 

with a speed of 4000 rpm for 10 seconds. Subsequently few drops of MPA 

solution in methanol was added to the film on the wafer and wait for 20 

seconds then spun with same speed and time. Finally, the film was washed by 

methanol and chloroform. The process was repeated for 10 layers. 
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Subsequently, pairs of gold electrode of 50nm thickness as source and 

drain were deposited by thermal evaporation through a shadow mask to 

complete the FET device with a configuration of channel length of 80 m and 

channel width of 6 mm. Silicon oxide at the backside of the silicon wafer of 

the FET device was removed with sandpaper to provide a conductive gate 

contact. Characterization of FET behavior of the device was then carried out 

with a Keithley SCS-4200 probe station inside glove box.  

5.3 Results and discussions 

The idea of obtaining Pb-rich PbS nanocrystal behaving as air-stable n-

type material opens a novel path to the solution processable p-/n- junction. 

Noticeable efforts have been made for achieving Pb-rich stoichiometry i.e., 

exposed {111} plane, and most of them required post synthetic treatments.3, 13, 

14 It has been reported that PbS nanocrystals could be Pb-rich and highly 

stable with an ultra-small size of 1 to 2 nm, because the exposed facets were 

dominated by {111} plane, which composed of pure Pb atomic layer. Due to 

the wet chemistry synthetic approach while using oleic acid as the major 

surfactant, the {111} planes were terminated by Pb atoms with strongly 

binded oleic acid surfactant absorbed on their surface. 10-12 Herein, we propose 

that with our PbS nanosheet possessing Pb-rich {111} plane as the top and 

bottom lateral surface, one can directly achieve a stable and n-type PbS 

material without any post synthetic treatment to the device. However, the 

surface energy of {111} plane is the highest among the common planes that 

exist in PbS nanocrystals. Comparatively lower energy facets are {110} and 

{100} planes, where both comprised of mixture of Pb and S atoms in each 

atomic layer. As a result, the existence of {111} plane is less 
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thermodynamically favourable in normal bottom-up wet chemistry synthesis 

for large nanocrystal sizes, where the initially formed {111} facets were 

gradually replaced by {100} facets instead. To this point, we decided to adopt 

the cation exchange reaction by starting with an existing nanosheet material 

which possess similar facet orientation with a lateral plane comprising of 

specific facet (in this case, from {002} to {111}) and also with pure metal or S 

atomic layer. Besides, there are two major advantages of cation exchange 

approach: (i) retain the nanostructure morphology while varying the 

components in semiconductor nanocrystals, (ii) due to the structurally 

similarity among the different semiconductors, it allows the formation of 

special crystal phases which is not easy to obtain via normal synthetic methods.   

The solution processable Cu2S nanosheets will have the potential to 

enable us to further vary the semiconductor components via cation exchange 

reaction where the Cu+ could be eventually replaced by Pb2+ while retaining 

the sheet-like morphology after being fully exchanged. We have reported 

previously,25 that the synthetic parameters of Cu2S nanosheets, such as 

precursors, surfactants, growth time and temperature, could be tuned for 

achieving various thicknesses and sizes of monodisperse nanosheets. We 

chose Cu2S nanosheets with thickness of around 3 to 4 nm for the Pb2+ 

exchange reaction because ultrathin Cu2S sheets could easily become holly 

after Pb2+ exchange while their thicker counterparts were difficult to be fully 

exchanged even after being exposed in Pb2+ for long time (more than two 

weeks).   
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Figure 5.1 (a) A typical low resolution TEM image of Cu2S nanosheets; (b) 
stacking Cu2S nanosheets showing their thickness of around 3 to 4 nm.  

Figure 5.1(a) shows the representative low resolution TEM image of 

as-synthesized Cu2S nanosheets, purified and redispersed in toluene, and 

further dropcasted on carbon film coated 300 mesh copper grid. The shape of 

the nanosheets were presenting as hexagons, and the lateral dimension were 

around 150 nm to 200 nm. When projected from the side, where the Cu2S 

nanosheets could stack together giving a side-view of the nanosheets in 

Figure 5.1(b), we were able to measure the average thickness of nanosheets 

which was around 3 to 4 nm. Powder X-ray diffraction has been carried out 

and the results were displayed in Chapter 4 Figure 4.7(b). The experimental 
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XRD reflection matched well with the standard JCPDS-26-1116 data with a 

stoichiometry of Cu2S, where the weak {002} peak implied the thin nature of 

the as-synthesized Cu2S nanosheets and the sharp intense {110} signal could  

be possibly due to the large lateral dimension of the sheets. High resolution 

TEM of such Cu2S nanosheets possessed good crystallinity, as seen in Figure 

5.2(a), revealed very clear lattice fringes of {110} planes from the top-down 

view and as well as {002} planes from the side view in Figure 5.2(b).  

Figure 5.2 HRTEM of Cu
2
S nanosheets from (a) top-down view, showing 

lattice d-spacing of {110} with the value of 0.198 nm, and (b) side-view of 
stacking nanosheets showing the lattice d-spacing of 0.34 nm representing 
{002} planes, as calculated from FFT pattern shown in the inset of (b). 
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Further investigation on the Cu2S nanosheets structure and facet orientation 

via diffraction pattern and simulation on the reciprocal pattern were shown in 

Figure 5.3. The diffraction pattern revealed a larger prominent regular 

hexagonal pattern in the center with a smaller one inside, rotated at an angle of 

30 degrees. These experimental results matched well with the simulated 

reciprocal pattern with the zone axis set as [0,0,1] in Figure 5.3(b). The 

reflected spots in the larger hexagon implied that the six edges of the Cu2S 

nanosheets were terminated by the fast growth {110} planes, while the spots 

in the smaller hexagon indicated the six edges of {100} planes as shown in the 

cartoon  in Figure 5.3(c).  As the direction of projection was set to be [0,0,1] 

in the simulation, we were able to conclude the lateral plane of top and bottom 

should be the exposed {001} planes. With the use of the Crystallographic Data 

published in Solid State Ionics in 1981, 26 where the space group of P63/mmc, 

with unit cell lattice constants of a=0.3967 nm, b=0.3967 nm, c=0.6795 nm, 

α=90°, β=90°, γ=120°, we generated the expanded unit cell crystals as shown 

in Figure 5.4(a). The nanosheet model possessed a large lateral plane of {002} 

on both top and bottom, which could be either terminated by Cu (orange atoms) 

or S (yellow atoms) atomic layers. Due to the similar alternating atomic layer 

of metal (Cu or Pb) and sulfur in Cu2S and PbS lattices,  the {002} facet could 

be a potential candidate when performing Pb2+ exchange reaction for 

achieving PbS nanosheets with Pb atom terminated lateral planes as presented 

in Figure 5.4(b)..  
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Figure 5.3 Facet orientation on Cu2S nanosheets. (a) Diffraction pattern while 
projected on a single Cu2S nanosheet lying flat on the copper grid, showing a 
prominent regular hexagonal pattern which matched well with (b) simulated  
reciprocal pattern while setting the zone axis as [0 0 1]; (c) cartoon indicated 
the facet orientation for the lateral and side planes, where the nanosheets 
corner were {110} and edges were {100}, the large lateral plane was {111}. 
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Figure 5.4 Possibility of achieving Pb-terminated PbS nanosheets via Pb2+ 

exchange on Cu2S nanosheets. (a) model of Cu2S nanosheets with lateral plane 
of {002}; (b) possible PbS nanosheet obtained from Cu2S via cation exchange 
reaction with Pb-terminated lateral planes. 

We carried out the Pb2+ exchange reaction by exposing Cu2S 

nanosheets to excess amount of Pb(Ac)2 and Pb(Oleate)2 in the presence of 

TOP. The reaction was carried out under room temperature and lasted for 

several days for the exchange reaction to be completed. Aliquots were taken at 

suitable intervals during the exchange reaction, where a clear color change of 

the nanosheets suspension across the whole reaction time scale, from light 

brownish (on the left) to finally dark grey (on the right), was observed as 

shown in the digital photograph in Figure 5.5(a). The color change also 

implied the components of nanosheets gradually being transformed from Cu2S 

to intermediate Cu/PbS and then, to pure PbS. The vial on the right side is the 

final PbS nanosheets suspended in toluene, which is black in color. The optical 
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absorption spectrum of the PbS nanosheets dispersed in toluene was relatively 

featureless, with a broad absorbance profile that extended across the NIR 

spectral window (see Figure 5.5(b)). Previous efforts to exchange Pb-based 

Figure 5.5 (a) Digital photograph of different time aliquots during the cation 
exchange reaction progression; (b) UV-vis absorption spectra of Cu2S and PbS 
nanosheets suspended in toluene. 

nanostructures are mainly confined in spheres and nanorod structures. 27 Due 

to the timescale of the exchange reaction of nanosheets, we reasoned that our 

choice of material can shed light on the progression of cation exchange 

process, which is difficult to obtain even in nanorod structures. Additionally, 

the long timescale of the reaction not only allowed us to study the intermediate 

stage obtained during the exchange reaction, but also to investigate their 
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mechanism in detail. Schematic representation about the progression of Pb-

exchange process is illustrated in Figure 5.6(a). We hypothesized that the 

exchange process will start at the edges of the nanosheets, which are most 

reactive,and  then progress towards the center. This is clearly evident from the 

characteristic chemical mapping of the corresponding elements (Pb2+ (cyan),  

Figure 5.6 Monitoring the cation exchange by EDX mapping and XRD. (a) 
Schematic diagram of ultrathin PbS nanosheet formation by cation exchange 
process, where Pb2+ is introduced to pre-synthesized Cu2S nanosheet. The 
exchange occurs from the edges towards the center, which is characterized in 
the chemical mapping of elements image in (b). It shows that Pb2+ (cyan) 
replaces Cu+ (red) at the edges first, and progressed towards the center region. 
(c) Systematic XRD study on nanosheets with different chemical compositions 
when the aliquots are taken at different time scale. From the XRD 
characteristic peaks, it is clearly evident that the initial Cu2S peaks are slowly 
disappearing while PbS peaks appears as the exchange reaction progress.  
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Cu+ (red)) in Figure 5.6(b). At the beginning of the reaction, significant Pb 

signals were observed from the edges and the signals spreaded towards the 

center as the reaction proceeded. Structural characterization of the PbS 

nanosheets as well as their intermediate products were carried out via X-ray 

diffraction (XRD) measurements, as depicted in Figure 5.6(c). During 

systematic XRD study, we observed different chemical compositions when the 

aliquots are taken at different time scale. The peaks obtained were referenced 

to starting material, i.e. hexagonal Cu2S (JCPDS 26-1116) as well as final 

nanosheet structures, i.e. cubic PbS (JCPDS 78-1058). The close agreement 

with all of the reference index planes of Cu2S and PbS suggests that they are 

highly crystalline in nature. Exquisite conservation of the anionic lattice of the 

original crystalline Cu2S nanosheets is achieved in PbS nanosheets, despite 

undergoing long cationic-exchange reactions at room temperature. It is clearly 

evident that the initial Cu2S peaks especially {102}, {110} and {103} are 

slowly disappearing while the  PbS related peaks become more prominent 

during spontaneous exchange. Characteristic PbS peaks such as {111}, {200} 

and {220} clearly prove the existence of cubic face-centered PbS crystals.  

 Figure 5.7(a) is the reconstructed HRTEM image of the interface 

between hexagonal Cu2S and rock salt PbS captured during cation exchange 

progression. Two different phases existed in the left and right part separated 

by a clear interface highlighted by yellow dash line in the image. The 

corresponding FFT of both parts were displayed in Figure 5.7(b) and 5.7(c) 

respectively. A pair of reflection spots were labeled by the red arrow with a 
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Figure 5.7. Interface between Cu2S and PbS. (a) HRTEM imaging shows a 
representative interface transformed by inversed FFT; (b) FFT of the Cu2S 
part (left part in (a)) revealed a pair of reflected spot of {110} plane; (c) the 
FFT on the PbS part (right part in (b)) showing a presented {220} reflected 
spot . 

calculated d-spacing of 0.198 nm representing {110} planes belong to Cu2S 

(as seen in Figure 5.7(b)). This pair of spots slightly shifted towards the 

center in FFT pattern,  as seen in Figure 5.7(c), obtained from the right part of 

the image where the blue arrows pointed out the new pair of spots 

corresponding to {220}PbS, which were closer to the center but remaining the 

same direction as Cu2S_{110}. As a result, the left side still remained with 

unexchanged Cu2S and right part have already been transformed into PbS, 

showing an interface on the boarder between {110}Cu2S and {220}PbS. 
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Furthermore, the Pb2+ exchange reaction could possibly carried out along {110} 

plane of Cu2S which have a comparatively higher surface energy over {100}, 

and finally arrived at atomically more similar {220} planes in PbS. 

Detailed structural characterizations have been carried out, as shown in 

Figure 5.8. A representative low resolution TEM was taken after fully cation 

exchange from Cu2S to PbS, as seen in Figure 5.8(a), the sheet-like 

morphology were well preserved with lateral dimension of around 150~200 

nm and average thickness of 3 to 4 nm. HRTEM image as well as inset FFT of 

the Pb-exchanged nanosheets are presented in Figure 5.8(b) and 5.8(c). The 

observed d-spacing valued ~0.21 nm and ~0.34 nm corresponds to (220) and 

(111) plane of PbS material. Interestingly, these PbS nanosheets are stacked 

along <111> axis with largely exposed ±{111} planes in large lateral 

dimention where as previous report to obtain PbS nanosheets relys on oriented 

attachment processes where most reactive ±{110} facets are fused leaving 

other facets ±{100} exposed.20  However, we observed a rare facet orientation 

in exchanged PbS nanosheet structures where most reactive ±{111} planes are 

mainly exposed from the top and bottom surfaces of the nanosheets. On the 

other hand, the diffraction pattern on single PbS nanosheet matched well with 

the simulated pattern obtained from CaRIne v3.1, with the zone axis set 

as<111>, as shown in Figure 5.9(a) and 5.9(b). According to the HRTEM, 

diffraction pattern as well as the shape of the PbS nanosheet, we suggested a 

possible facet orientation after cation exchange reaction, as depicted in Figure 

5.9(c). The six edges of the hexagon were possibly terminated by {200} plane, 

while {220} planes were exposed at the corners. With XPS characterization of 
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as-synthesized PbS nanosheet revealed the atomic ratio between Pb and S is 

0.57 : 0.43 with a slightly higher Pb amount. Based on the above 

Figure 5.8 Representative top-view (a) low resolution TEM of PbS 
nanosheets; (b) the HRTEM images, the lattice spacing of 0.21 nm and inset 
FFT image clearly show the {2 2 0} plane in PbS structures. Side-view 
HRTEM images as well as inset FFT images confirm corresponding lattice 
spacing values of (c) PbS nanosheets equals to 0.34 nm matching with the 
standard lattice d-spacing of {111} planes.  
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characteriaztions, the PbS nanosheets presented two novel features: (i) both  

 

Figure 5.9 Diffraction pattern on single PbS nanosheet. (a)  Experimental 
diffraction pattern on PbS nanosheet,  revealing  a most prominent hexagonal  
pattern in  the center  representing {220} plane (blue dash line), and two other 
larger hexagonal patterns (yellow and red dash lines); these reflected spots 
matched well with (b) simulated reciprocal pattern when set the zone axis as 
[1,-1,-1], indicated that the lateral plane of PbS nanosheets was indeed {111} 
facets;  (c) cartoon for displaying the facets orientation on the lateral plane and 
side / corner planes. 

top and bottom facets were {111} planes; (ii) these {111} planes could 

possibly be Pb-terminated facets with close-packed Pb(Oleate)2 as surface 

passivation, that could lead to air-stable n-type conduction behavior.  

So, the as synthesized PbS nanosheets were purified and redispersed in 

chloroform for fabrication of FET in order to support our hypothesis that PbS 

nanosheets would be n-type in carrier conduction. We fabricated bottom gate 
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top-contact FET configuration as shown in Figure 5.10(a). The thin film of 

PbS nanosheets was prepared by layer-by-layer sequential spin-coating 

technique on SiO2/Si wafer. Finally a pair of gold electrode was deposited 

which serve as source and drain of the FET device. 

  

Figure 5.10 FET configuration and AFM characterization of the PbS film. (a) 
Schematic drawing of Field Effect Transistor with a Top-contact, bottom-gate 
configuration. Channel width (W) is 80 μ m and channel length (L) is 6 mm. 
(b) AFM characterization of the PbS thin film on the device, roughness is 
around 15 to 16 nm; (c) AFM image on the scratched thin film, the red color 
rectangular area was selected for measuring average film thickness; (d) the 
height profile of the film thickness is around 57 nm on average. 

We studied the surface morphology of the thin film of PbS nanosheets 

via AFM as shown in Figure 5.10(b-d). The thin film was prepared with same 

technique and condition as it was for FET device. From the roughness analysis, 

it shows a Root mean square (RMS) roughness around 15 nm. We usually 
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obtained a comparatively higher roughness value which might be due to the 

reason that the nanosheets were more difficult to be made into a close packed 

film because of their anisotropic shape with large aspect ratio as compared to 

their  spheres counterparts. They might easily tilt or stack irregularly rather 

than lie down flat and perfectly in the thin solid film. The roughness have been 

further improved by using combination of solvents to disperse nanosheets 

during the spincasting process, and surface treatment during the film 

fabrication. We introduced MPA to treat the film after each spin-coated layer, 

which eventrally reduced the roughness of the final film. To improve the 

stability of the FET device, the as prepared device was kept under inert 

atmosphere prior to any measurement of the device.  

Figure 5.11. PbS based FET shows obvious n-type conduction as a function of 
applied gate voltage. 

Figure 5.11 shows the ID-VD output characteristics of the FET device 

at different applied gate voltage. Characteristics that support the n-channel 
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operation of the FET device included the increase in drain current with more 

positive gate voltage and also a clear linear and saturation region. We 

extracted the electron mobility data from the saturation regime using the 

equation below:  

 

where ID is the drain current, μ is the field-effect mobility, Ci is the 

capacitance per unit area of the gate dielectric layer, VG is gate voltage, W is 

channel width of 6 mm and L is channel length of 80 μ m. 

The electron mobility was calculated from the output characteristics 

and was calculated to be 8.7 x 10-3 cm2/Vs. As we hypothesized that large 

exposed Pb-rich facet of the PbS nanosheets could be responsible for n-type 

carrier conduction, FET characteristics supported the same. 

5.4 Conclusions 

We have successfully achieved the Pb-rich PbS nanosheets by cation 

exchange reaction while adopting Cu2S as our starting material. The unique 

facet orientation of as-synthesized PbS possessed a special Pb-terminated 

{111} plane on both top and bottom of the nanosheets in a large lateral 

dimension, which is very difficult to achieve in normal wet chemistry 

synthetic approach due to the highest surface energy of {111} planes. 

Furthermore, the Pb-rich nature gave us a great opportunity to retain the n-

type behaviour of PbS semiconductors and help to resist surface oxidation. 

Our discovery of n-type PbS nanosheets with novel facet orientation opens up 
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a path for fabrication of high performance quantum junctions with high 

stability under operation in ambient air.  
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6.1 Conclusions of the thesis 

This thesis has introduced novel wet chemically synthetic approach of 

colloidal semiconductor nanocrystals with mixed dimensionalities, and 

emphasized on their unique dimension-related physicochemical properties. 

Thorough structural characterizations were carried out to extensively explore 

these nanocrystals’ growth mechanisms, while their promising optical and 

electronic properties have been demonstrated for potential optoelectronic 

applications.  

In Chapter 2, we have successfully achieved MME from Type II 

InP/ZnS seeded CdS tetrapods and demonstrated the crucial role of their 

anisotropic tetrapod shape and the staggered band alignment at the interface. 

Such tetrapod-shaped nanoheterostructures possessed efficient dual emission, 

high photostability and wide color tunability due to the large valence band 

offset and suppressed Auger recombination. Via a further sequential cationic-

exchange process of as-synthesized type II InP/ZnS seeded CdS tetrapods with 

Ag+ and then Zn2+, we achieved InP/ZnS seeded ZnS Type I tetrapods in 

Chapter 3. These tetrapods exhibited emission in the visible range, about 170 

nm blueshifted from their InP/ZnS-CdS counterparts. Coupled with the large 

absorption cross-section and potentially enhanced charge transport, these 

branched tetrapods may find newfound utility in solution-processed 

optoelectronic devices.   

Then we have focused on synthesis of free-standing transition metal 

sulfides 2D nanosheets in Chapter 4 and 5. A halide-assisted synthetic route 

has been established in Chapter 4, where we obtained Ni9S8 sheet-like 

nanostructures that possessed an unusual cross-like shape filled with step-like 
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edges. Due to their unique stoichiometry, large surface-to-volume ratios and 

numerous exposed edge facets, Ni9S8 sheet-like structures could be potentially 

utilized as TMS-based electrocatalysts for dye-sensitized solar cells1 or 

hydrogen evolution from water.2, 3 The use of halides in promoting sheet-like 

growth was successfully extended to Cu2S, where ultrathin triangular 

nanosheets were produced via addition of halide ions as well. We further 

adopted Cu2S as our starting material to realize the Pb-rich PbS nanosheets by 

cation exchange reaction in Chapter 5. The unique facet orientation of as 

synthesized PbS possessed a special Pb-terminated {111} plane on both top 

and bottom of the nanosheets in a large lateral dimension which is very 

difficult to achieve in normal wet chemistry synthetic approach due to the 

highest surface energy of {111} planes. Furthermore, the Pb-rich nature 

provided us a great opportunity to retain the n-Type behaviour of PbS 

semiconductors and help to resist surface oxidation. Our work of n-type PbS 

nanosheets with novel facet orientation opens up a path for fabrication of high 

performance quantum junctions with high stability under operation in ambient 

air. These findings afford deeper insight into the formation of sheet-like 

semiconductor nanostructures and offer a highly facile route to the colloidal 

synthesis of such materials. 

6.2 Outlook 

The colloidal semiconductor heterostructures with branched 

morphologies are promising candidates for photovoltaic and light emitting 

devices due to their increased absorption cross section and tunable band 

alignment at the core-arm interface.4, 5 The type II InP/ZnS seeded CdS 

tetrapod we have achieved in this thesis, possess efficient dual wavelength 
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emission and high photostability, which would be potentially useful for 

fabrication of tetrapod based LED.  

Comparing to branched 3D nanoheterostructures, free-standing 2D 

nanosheets with lower dimensionality and ultrathin morphology is evolving 

very rapidly with novel synthetic methods, physical properties and potential 

applications due to the strong one dimensional confinement effect.6 We tend to 

extend the halide ion assisted synthetic method developed in this thesis to 

other transition metal sulfide nanosheets, such as SnS, CdS et al., which would 

possess interesting optoelectronic properties for further device application. In 

addition, with carefully optimization of the parameters, we aim for ultra-large 

nanosheets with lateral dimension up to a few micrometers while retaining 

ultrathin thickness. With such 2D semiconductor nanosheets, the electronic 

measurements performed on single sheet level will be possibly realized.    
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