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Summary

As radio signals carry information as well as energy at the same time, a

new wireless system with simultaneous wireless information and power transfer

(a.k.a. SWIPT) has drawn significant attention recently. This thesis is devoted

to investigating various interference management strategies and their corresponding

resource allocation optimizations in the SWIPT system with multiple users.

This thesis starts with addressing a special case of the SWIPT system with only

information transmissions of the users. We thus consider a multi-user Gaussian

interference channel (GIC) model where multiple mutually interfering wireless

links communicate simultaneously over a shared band. A pragmatic approach to

characterize the fundamental limits of GIC is by maximizing the weighted sum-rate

(WSR) of the users achievable with the mutual interference treated as additional

Gaussian noise at the receivers. However, due to the coupled interference among

users, such a problem is in general non-convex and how to find its globally optimal

solution has been open for decades. By utilizing the technique of “monotonic

optimization” together with a novel idea called “rate profile”, in the first part of this

thesis we propose a new optimization framework to achieve the global optimality

of the non-convex WSR maximization problem for various types of GICs with

multi-antenna transmitters and/or receivers, which provides a valuable performance

upper bound for other heuristic algorithms in the literature.

Then, we study the wireless system for SWIPT. We start by considering the

basic setup of a point-to-point wireless link over the flat-fading channel subject

to time-varying co-channel interference. Different from the case of conventional

wireless communication system in which interference is an undesired phenomenon,
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Summary

interference is beneficial from the perspective of wireless power transfer since it is

an additional energy source. To exploit this new role of interference, we propose a

novel opportunistic energy harvesting scheme where the receiver switches between

information decoding and energy harvesting over time based on the instantaneous

power of the direct-link channel as well as that of the interfering channel. By

applying convex optimization techniques, we derive the optimal receiver mode

switching rule to achieve various information/power transfer trade-offs. Moreover,

for the case that the channel state information is known at the transmitter, joint

optimization of transmitter power control and receiver mode switching is solved.

Lastly, we study a multi-user SWIPT system consisting of one multi-antenna

transmitter, one single-antenna information receiver (IR), and multiple

single-antenna energy receivers (ERs). The SWIPT system is concerned with a

potential security issue since the ERs are in general deployed in more proximity to

the transmitter than the IR for effective energy reception and as a result could easily

eavesdrop the information sent to the IR. To achieve desired wireless power transfer

to the ERs and yet prevent them from overhearing the information for the IR, we

propose a new transmission scheme where a certain fraction of the transmit power is

allocated to send artificially generated interference signal called artificial noise (AN).

AN serves as energy signal for achieving wireless power transfer to the ERs, and at

the same time reduces the capability of the ERs to decode the information for the

IR. Under this scheme, we propose efficient algorithms to obtain the optimal and

suboptimal transmit power control and beamforming solutions to balance between

the achievable secrecy rate of the IR and the harvested energy of the ERs.
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Chapter 1

Introduction

In wireless communication systems, radio frequency (RF) signals are used

as a carrier to convey information over the air. Recently, an interesting new

application of RF signals arises for achieving wireless power transfer (WPT) thanks

to the advent of more efficient hardware circuits for RF energy harvesting. Many

promising applications of RF-based WPT can be envisaged, especially for powering

a large number of communication nodes (e.g., sensors) freely located in wide areas.

Compared with traditional battery-powered wireless communication system in which

the operation is often interrupted due to the need of manually replacing/recharging

the batteries, RF-based WPT provides a more cost-effective solution to provide truly

perpetual energy supply to the communication nodes. As a result, RF-based WPT

is envisioned as a key enabling technique for the next generation energy-constrained

wireless networks. For the historic development and applications of WPT via

leveraging RF signals or other means, please refer to [1].

Since RF signals carry information as well as energy at the same time, a unified

study of RF-based simultaneous wireless information and power transfer (SWIPT)

has recently drawn significant attention, which is not only theoretically intricate but

also practically appealing for simultaneously enabling both the wireless data and

wireless energy access to the users with the same transmitted signals. This thesis is

devoted to investigating the optimal resource (such as power, time, bandwidth, and

antenna beam) allocation schemes in multi-user SWIPT systems to achieve desired

performance trade-offs in wireless power versus information transmission.

1



Chapter 1. Introduction

1
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K

Information Receiver

Energy Receiver

Information Receiver
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Figure 1.1: A BC-based SWIPT system.

1.1 Multi-User SWIPT System

In a typical multi-user SWIPT system, one or more transmitters (Txs) each

equipped with a stable power supply coordinate wireless information and energy

transmissions to a set of distributed receivers (Rxs) that need to replenish energy

from the received signals. In such systems, there is generally a practical circuit

limitation that each Rx cannot decode the information and harvest the energy from

the same received signal independently. In the pioneer work [2], a practical “time

switching (TS)” Rx is proposed to implement SWIPT using off-the-shelf circuits

that are designed for information decoding (ID) and RF energy harvesting (EH),

respectively. Specifically, the Rx is connected to either the ID circuit or the EH

circuit at any time such that it can switch between the two operation modes of ID

and EH from one time to another.

In Fig. 1.1, a point-to-multipoint SWIPT system with TS Rxs is depicted,

where one Tx broadcasts multiple data streams to different Rxs simultaneously, and

each Rx decides to either decode information or harvest energy from its received
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Figure 1.2: A GIC-based SWIPT system.

signal. If a Rx connects to the information receiver (IR), it decodes its desired

message in the received signal subject to possible inter-user interference. On the

other hand, if the Rx connects to the energy receiver (ER), it harvests energy

from both of its intended signal as well as the interference. Accordingly, the

point-to-multipoint SWIPT system shown in Fig. 1.1 can be viewed as an extension

of the conventional broadcast channel (BC) in wireless communication with the Tx

for SWIPT sending both the information and energy to the Rxs in general.

In Fig. 1.2, a multipoint-to-multipoint SWIPT system with TS Rxs is depicted,

where distributed Txs send independent messages to their respective Rxs over the

same frequency band at the same time. Different from the point-to-multipoint

SWIPT system shown in Fig. 1.1, each Tx in this setup has its intended message

to send to only one Rx in wireless information transmission (WIT). However, for

WPT, each Rx can harvest energy from the signals from its desired Tx as well as

all other interfering Txs. As a result, the multipoint-to-multipoint SWIPT system

shown in Fig. 1.2 can be viewed as a generalization of the traditional Gaussian

interference channel (GIC) in wireless communication with joint information and
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Figure 1.3: Multi-user interference channel.

energy transfer.

1.2 Motivation

In this section, we present three key challenges each in one special application

based on the general multi-user SWIPT system models in Figs. 1.1 or 1.2, namely

“interference mitigation in GIC”, “joint information and energy scheduling in

point-to-point SWIPT”, and “security issue in multi-user SWIPT”.

1.2.1 Interference Mitigation in GIC

We start with addressing the multi-user SWIPT system with WIT only, where

the Rxs only intend to decode their desired information from received signals. Under

this setup, Fig. 1.2 reduces to the classic multi-user GIC, as depicted in Fig. 1.3.

A general GIC is composed of multiple pairs of Txs and Rxs, where each Tx has its

intended messages to send to one Rx and each Rx receives the desired signal from

its Tx as well as interfering signals from the other Txs at the same time.
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One important application of the GIC is the multi-cell cellular network.

Traditionally, most of the studies on cellular networks focused on the single-cell

setup, while the inter-cell interference (ICI) experienced by a Rx in one cell caused

by the Txs in other cells is minimized by means of frequency reuse, which avoids the

same frequency band from being used by adjacent cells. However, future wireless

systems advocate to reduce the cell size by increasing the frequency reuse factor and

even allowing it to be one or so-called “universal frequency reuse”, due to which

the issue of ICI becomes more crucial. Consequently, joint resource allocation and

user scheduling across neighboring cells becomes a practically appealing approach

for mitigating the ICI. If the users in each cell are separated for transmission in

frequency via orthogonal frequency-division multiple-access (OFDMA) or in time

via time-division multiple-access (TDMA), then the scheduled links in different cells

transmitting at the same frequency tone or in the same time slot will interfere with

each other, which is modeled by a GIC.

In GIC, the key issue is how to mitigate the effect of interference on

system throughput by proper resource allocation schemes. In the literature, the

weighted sum-rate (WSR) maximization problem in GIC with interference treated

as additional Gaussian noise has been investigated for decades. However, due to

the mutual interference among users, this problem is non-convex and thus how to

efficiently achieve its global optimality still remains open in general.

1.2.2 Joint Information and Energy Scheduling in

Point-to-Point SWIPT

Consider the multi-user SWIPT system in Fig. 1.2 where the users design their

transmissions independently for the ease of implementation. Then, only one pair of

Tx and Rx needs to be considered, where the other Txs’ signals can be treated as an

aggregate interference. As a result, Fig. 1.2 reduces to a point-to-point wireless link

subject to a co-channel interference, as shown in Fig. 1.4. In a fading environment,

there exists a non-trivial trade-off for the information and energy scheduling over
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Figure 1.4: Point-to-point SWIPT with co-channel interference.

different fading states of the channel, since both WIT and WPT can improve their

respective performance if more fading states are allocated. To balance between the

performances of WIT and WPT, it is important to investigate the optimal mode

switching rule at the Rx, i.e., how should the Rx decide to operate in an ID or

EH mode based on the instantaneous power of the direct-link channel as well as

that of the aggregate interference. Moreover, in the case with the channel state

information (CSI) known at the Tx (CSIT), we can further improve the WIT and

WPT performance trade-off by jointly optimizing the power control at Tx and the

mode switching at Rx.

1.2.3 Security Issue in Multi-User SWIPT

Consider the multiuser SWIPT system in Fig. 1.1 with separated IRs and ERs,

i.e., each Rx only decodes information or harvests energy from its received signal

based on its own application. Then, Fig. 1.1 reduces to a BC with multiple IRs

and ERs, as shown in Fig. 1.5. Note that in general practical IRs and ERs operate

with very different power requirements or sensitivity, e.g., −60dBm for the IR versus

−10dBm for the ER. To meet this practical requirement, ERs are generally deployed

in closer proximity to the Tx than IRs for receiving higher power. However, the

above “near-far” based energy and information transmission scheme gives rise to a

more challenging information security issue since ERs, which are closer to the Tx and

thus have better channels than IRs, can more easily eavesdrop the information for

IRs. Therefore, in addition to achieving efficient WPT to ERs, a secure information
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Figure 1.5: A multi-user SWIPT system with separate IRs and ERs.

transmission to IRs should be ensured by a proper design of resource allocation at

the Tx.

1.3 Objective and Organization of the Thesis

Motivated by the above discussions, in this thesis we focus our study on solving

three important resource allocation problems in wireless communication system or

SWIPT system: WSR maximization in GIC, joint wireless information and energy

scheduling in point-to-point fading channel subject to co-channel interference, and

physical-layer security in multi-user SWIPT system. The thesis is organized as

follows.

Chapter 1 presents the motivation, objective, and major contributions of the

thesis.

Chapter 2 studies the WSR maximization problem in the single-input

single-output (SISO) GIC, termed as SISO-IC, single-input multiple-output (SIMO)

GIC, termed as SIMO-IC, and multiple-input single-output (MISO) GIC, termed as

MISO-IC. A novel optimization approach is proposed and developed to achieve the
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globally optimal solutions under the above GIC setups.

Chapter 3 introduces the TS scheme for a point-to-point single-antenna flat

fading channel subject to time-varying co-channel interference and investigates

how the Rx should switch between ID and EH based on the powers of the direct

channel and the interference to balance between minimizing the outage probability or

maximizing the ergodic capacity for WIT versus maximizing the average harvested

energy for WPT. In the case with CSIT, power control at the Tx is jointly optimized.

The extension of TS scheme to the SIMO SWIPT system is also discussed.

Chapter 4 studies the physical-layer security problem in a MISO SWIPT

system consisting of one multi-antenna Tx, one single-antenna IR, and multiple

single-antenna ERs. To prevent ERs from eavesdropping the information sent to

the IR, two secrecy beamforming design problems are considered. In the first

problem, the secrecy rate of the IR is maximized subject to individual harvested

energy constraints of ERs, while in the second problem, the weighted sum-energy

transferred to ERs is maximized subject to a secrecy rate constraint for the IR. Both

optimal and suboptimal algorithms are proposed to solve these two problems.

Lastly, Chapter 5 concludes this thesis and discusses about future work.

1.4 Major Contributions of the Thesis

The major contributions of this thesis are summarized as follows.

1.4.1 Three New Approaches to Interference Management

Interference management is a long-standing research problem in multi-user

wireless communications and has been investigated for decades. The first

contribution of this thesis is to provide answers to the following fundamental

questions: in the new wireless system with joint WIT and WPT, what is the role

that interference plays compared with that in conventional wireless systems with

WIT only, and how should we deal with or even utilize interference?
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1. Interference Coordination for WIT

In Chapter 2, we study the optimal interference management strategy in

conventional GIC with WIT only, as shown in Fig. 1.3. In this scenario, interference

is undesired since it limits the system throughput. To fully mitigate the effect of

interference on the achievable WSR in GIC, sophisticated multi-user encoding and

decoding techniques are in general required, which are difficult to implement in

practice. In Chapter 2, we consider a practical interference coordination approach

to tackle the interference, where the interference is treated as additional Gaussian

noise at each Rx, and the Txs optimally allocate their resources, e.g., transmit

power and/or antenna beams, to minimize the system performance loss due to the

interference.

2. Interference as Energy Source for WPT

In Chapter 3, we investigate a new role of interference in SWIPT system over

a point-to-point fading channel with time-varying co-channel interference, as shown

in Fig. 1.4. In this scenario, interference is harmful for WIT but is beneficial for

WPT since the Rx can harvest energy from interference if it operates in an EH

mode. This implies that for designing a wireless system with joint WIT and WPT,

we should take a fundamental paradigm shift from mitigating the interference as

in conventional WIT to opportunistically utilizing it for WPT. In Chapter 3, we

investigate this new design principle by deriving the optimal policy for the Rx to

switch between ID and EH based on the channel and interference conditions.

3. Interference as Both Energy Source and Artificial Noise in Secure

SWIPT

In a SWIPT system with secure information transmission as shown in Fig. 1.5,

there are two conflicting goals for the design of the transmit signal. On the one

hand, to minimize the information leakage to ERs, the power of the received signal

at each ER should be kept as small as possible. On the other hand, to maximize
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the harvested energy at ERs, the power of the received signal at each ER is desired

to be as large as possible. In Chapter 4, we propose a novel idea to fulfil these

two conflicting goals at the same time. Specifically, besides the information signal

intended to the IR, we split a certain fraction of the transmit power to generate

interference signal known as artificial noise (AN) [3]. From the perspective of secrecy

information transmission, the AN signal reduces the information rate that can be

decoded by ERs, while from the perspective of WPT, it also delivers energy to ERs.

With the above novel design, the challenging security issue in SWIPT systems can

be efficiently solved from a physical-layer approach.

1.4.2 Optimal Resource Allocation Schemes

It is worth noting that due to the existence of interference, the above three

interference management schemes in general result in non-convex resource allocation

optimization problems, which are difficult to be solved by conventional convex

optimization techniques. The second contribution of this thesis is to present the

globally optimal solutions to these non-convex problems by exploiting their specific

structures, where the solutions also provide key insights to the design of SWIPT

systems in practice.

1. New Algorithms for Solving WSR Maximization in GIC

In Chapter 2, based on an optimization technique called monotonic optimization

[4], we propose new algorithms to optimally solve the WSR maximization problems

in SISO-IC, SIMO-IC and MISO-IC, respectively. It is worth noting that our

proposed algorithms are the first in the literature which globally optimally solve the

problems of WSR maximization in SIMO-IC and MISO-IC, while a similar algorithm

is reported in [5] for the special case of SISO-IC. One important application of our

proposed algorithms is to provide an exact performance upper bound for many

heuristic algorithms reported in the literature which may have faster computation

time but in general only guarantee a local optimality. This is especially important
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in the case of MISO-IC where the globally optimal solution by exhaustive search is

hardly feasible when the number of antennas at each Tx becomes large.

2. Key Insights from Joint Information and Energy Scheduling

Optimization

In Chapter 3, based on an optimization technique named dual decomposition [6],

we solve the optimal EH/ID mode switching rule at the Rx to achieve various

performance trade-offs between WIT and WPT in the case without CSIT, and

the optimal transmit power control, information and energy transfer scheduling,

jointly with the Rx’s mode switching in the case with CSIT. Some insightful

results are obtained. For example, when the interference is strong but the direct

channel is weak, the Rx should switch to EH instead of ID mode to harvest more

energy from the strong interference. More interestingly, we show that when the

direct channel is sufficiently stronger than the interference, i.e., the case with high

signal-to-interference-plus-noise ratio (SINR), the optimal operation mode for the

Rx is still EH rather than ID, which is due to the fact that EH gains more than ID

with increasing SINR, as the harvested energy scales linearly with the increased total

power of signal and interference while the information rate scales only logarithmically

with the increased SINR.

3. Fundamental Design Principle for Secure SWIPT

In Chapter 4, we formulate the optimization problems for designing transmit

power control and beamforming with AN-based energy signal as non-convex

quadratically constrained quadratic programs (QCQPs), and apply the celebrated

semidefinite relaxation (SDR) optimization technique [7] to obtain the optimal

solutions. We show that with the proposed scheme where the transmit signal

is the superposition of information and energy/AN signals, secrecy information

transmission can be effectively achieved without compromising the energy

transmission performance notably.
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Chapter 2

WSR Maximization in GIC

2.1 Introduction

GIC is a fundamental model that characterizes many real-life

interference-limited communication systems, e.g., multi-cell cellular networks and

bundled digital subscriber lines (DSLs) communication. As a result, characterizing

the global maximum of WSR for the K-user GIC, with the interference treated

as additional Gaussian noise at Rxs, is a key problem that is however not yet

completely solved. Due to the users’ coupled transmission with interference, the

resulted WSR maximization problem is in general non-convex and thus cannot be

solved directly by conventional convex optimization techniques. In this chapter,

we present a new optimization framework to obtain the globally optimal power

control and/or beamforming solutions to WSR maximization problems for the

SISO-IC, SIMO-IC and MISO-IC, respectively. This novel framework is based on

two essential techniques: monotonic optimization and rate profile. The proposed

optimal algorithms can provide performance upper bounds for other existing

heuristic algorithms in the literature.
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2.2 Literature Review

2.2.1 Information-Theoretic Study on GIC

The information-theoretic study on GIC has a long history, but the capacity

region of the GIC, which is defined as the set of rate-tuples for all Tx-Rx pairs

that can be simultaneously achieved, still remains unknown in general, even for the

simplest two-user case. The best achievable rate region for the two-user GIC to date

is established by Han and Kobayashi in [8], which utilizes rate splitting at Txs, joint

decoding at Rxs, and time sharing among codebooks. This achievable rate region is

proved to be within 1-bit of the capacity region of the GIC in [9].

For the general K-user GIC, two well-known interference mitigation techniques

are, respectively, decoding the interference and treating the interference as noise at

Rxs. In the case of very strong interference [10] or strong interference [8, 11], it is

known that the capacity achieving strategy at the Rxs is to decode and subtract

the interference prior to decoding the desired message. On the other hand, treating

interference as noise in the case of weak interference is shown to be optimal from an

information-theoretic perspective in [9, 12–14].

Recently, another approach, namely “interference alignment (IA)”, is proposed

[15], where interference signals are properly aligned in a certain subspace of the

received signal at each Rx to achieve the maximum degrees of freedom (DoF) for the

sum-rate. This approach is shown to be capacity-achieving when the signal-to-noise

ratio (SNR) of all users goes to infinity. Inspired by the work [15], substantial

research has been done on characterizing the DoF in GIC for different scenarios,

such as constant channels without symbol extension [16, 17], delayed CSIT [18–20],

no CSIT [21, 22], etc. Moreover, IA also helps advance our understanding of GIC.

For example, [23] shows that proper Gaussian signalling is not generally optimal in

GIC, which motivates subsequent work [24,25] to investigate the improper Gaussian

signalling optimization in GIC from a signal processing perspective. Furthermore,

different from Gaussian parallel point-to-point channels, multiple-access channels
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(MACs) and BCs where separate encoding over the parallel channels is optimal, [26]

shows that joint encoding over the parallel channels is in general necessary to achieve

the maximum DoF in parallel GICs.

2.2.2 WSR Maximization in GIC: State-of-the-Art

The aforementioned capacity-approaching techniques in general require

non-linear multi-user encoding and decoding, which may not be suitable for practical

systems. A more pragmatic approach that leads to suboptimal achievable rates

in GIC is by considering only single-user encoding and decoding by treating the

interference from all other unintended users as additive Gaussian noise. For this

approach, the key design challenge lies in how to optimally allocate transmission

resources such as power, bandwidth, and antenna beams among different users to

maximize their WSR. Due to the coupled interference with transmission, the WSR

maximization problem in GIC is in general NP-hard, which motivates extensive

studies to seek various efficient algorithms to achieve suboptimal or locally optimal

solutions.

Specifically, for theWSR maximization in SISO-IC, many efficient power control

schemes are studied [6, 27–33]. It is shown in [27] that in the two-user GIC the

optimal power allocation to maximize the sum-rate is “binary”, i.e., either one user

transmits with full power and the other user shuts down, or both users transmit with

full power. [27] also extends the binary power control concept to the general case

when the number of users is more than two, which, however, is not always optimal.

Based on game theory, an “asynchronous distributed pricing (ADP)” algorithm is

proposed in [28] whereby each user iteratively updates its power level based on the

prices that reflect the interference levels it causes to other users. In [29], the WSR

maximization problem is transformed into a signomial programming (SP) problem,

which is efficiently solved by constructing a series of geometric programming (GP)

problems through the approach of successive convex approximation. As for the case

of parallel SISO-ICs, [30] proposes an iterative water-filling algorithm by viewing
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the spectrum management problem as a non-cooperative Nash game. In [31], an

algorithm called “Successive Convex Approximation for Low complExity (SCALE)”

is proposed, where the non-convex WSR maximization problem in parallel SISO-ICs

is transformed into a series of convex problems by utilizing the technique of convex

relaxation. Furthermore, frequency-division-multiple-access (FDMA) is shown to

be the optimal spectrum sharing strategy in the case of strong interference in [32],

where several suboptimal distributed algorithms are also proposed based on FDMA.

Last, the authors in [6], [33] show that the duality gap for the WSR maximization

problem is zero when the number of parallel GICs becomes asymptotically large. As

a result, the Lagrange duality method can be applied to decouple the problem into

parallel sub-problems in the dual domain, a technique termed as dual decomposition.

However, the power optimization in each sub-problem for a given GIC is still

non-convex.

For WSR maximization in multi-antenna GICs, the optimality of transmit

beamforming in MISO-IC is proved in [34,35]. Moreover, an iterative beamforming

algorithm is proposed in [36] from an egotistic versus altruistic viewpoint, but in

general it cannot achieve the global WSR maximum for MISO-IC. As for the more

general case of multiple-input multiple-output (MIMO) GIC, termed as MIMO-IC,

various iterative suboptimal algorithms are studied in the literature [37–42]. Based

on the gradient projection method, both centralized and distributed algorithms are

proposed in [37] to obtain the suboptimal transmit covariance solutions. Motivated

by an interesting equivalence between the WSR maximization problem in MIMO

BC and weighted sum minimum-mean-square-error (MMSE) minimization problem

with some properly selected weight matrices shown in [38], an iterative algorithm is

proposed in [39] where each user updates its weight matrix and transmit covariance

matrix in each iteration. Moreover, [40,41] extend the ADP algorithm in [28] to the

MIMO-IC and prove its convergence. An iterative algorithm is also proposed in [42]

based on the well-known uplink-downlink duality [43–46].

Recently, based on the advanced non-convex optimization techniques, e.g.,
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outer polyblock approximation and branch-and-bound, the globally optimal solution

to the WSR maximization problem in GIC is obtained in [5, 47–50]. Based on

outer polyblock approximation algorithm [4] and the generalized linear fractional

programming [51], [5] solves the WSR maximization problem in SISO-IC in the

SINR domain. In [47], the outer polyblock approximation algorithm is applied to

obtain the optimal beamforming solution in the special case of two-user MISO-IC

by leveraging a prior result in [52] that the optimal transmit beamforming vector to

achieve any Pareto-boundary rate-pair can be expressed as a linear combination

of the zero-forcing (ZF) and maximal ratio transmission (MRT) beamformers.

Moreover, in [48] and [49], branch and bound methods combined with difference

of convex functions (DC) programming [53] are proposed to obtain the globally

optimal power solution to the WSR maximization problem in SISO-IC, while a

generalized branch and bound method applicable to problems in which the objective

function cannot be expressed in the form of DC, is proposed in [50]. Branch and

bound method is also used in [54] to solve the WSR maximization problem in

MISO-IC. Although the convergence of the above mentioned optimal algorithms

is generally slow especially when the number of users becomes large, they provide

useful performance benchmarks to other more efficient but suboptimal algorithms

for WSR maximization in GIC.

2.2.3 Achievable Rate Region in GIC

Besides WSR maximization, another line of research on GIC with interference

treated as noise is aimed to characterize the achievable rate region, which constitutes

all the rate-tuples simultaneously achievable by all the users under a given set of

transmit-power constraints. The rate region is characterized in [55] for the SISO-IC,

and in [34, 35, 52, 56] for the MISO-IC. Recently, some new results are reported

in [57–59] for the characterization of the rate region in MIMO-IC.

It is worth noting that the achievable rate region of GIC can be specified by

its Parato boundary, which consists of all the rate-tuples for each of which it is
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impossible to improve one user’s rate without decreasing the rate of at least one of

the other users. Since the rate region of GIC is in general a non-convex set, the

well-known WSR maximization approach is not directly applicable to characterize

the complete Parato boundary. One general method to characterize the Parato

boundary of even non-convex achievable rate regions is the so-called “rate profile”

approach, which results in solving a sequence of SINR feasibility problems. It is

worth noting that rate profile is first proposed in [60] as an alternative method to

WSR maximization for characterizing the Pareto boundary of the capacity region

for the multi-antenna Gaussian MAC, which is a convex set. This method is later

applied to characterize the Pareto boundary of non-convex rate regions for the

MISO-IC in [34] and the two-way multi-antenna relay channel in [61].

2.3 System Model

In this chapter, we consider a K-user GIC, in which K mutually interfering

wireless links communicate simultaneously over a common bandwidth, as shown in

Fig. 2.1. Firstly, consider the case where all Txs and Rxs are each equipped with one

single antenna, as shown in Fig. 2.1 (a). The system is thus modeled as SISO-IC,

for which the discrete-time baseband signal received at the kth Rx is given by

yk = hk,k
√
pkxk +

∑

j 6=k

hk,j
√
pjxj + zk, k = 1, · · · , K, (2.1)

where hk,j denotes the complex channel gain from the jth Tx to the kth Rx, pk

denotes the transmit power of the kth Tx, xk denotes the transmitted signal from

the kth Tx, and zk denotes the background noise at the kth Rx. It is assumed that

zk ∼ CN (0, σ2
k), ∀k, and all zk’s are independent.

We assume independent encoding across different Txs and thus xk’s are

independent over k. It is also assumed that the Gaussian codebook is used and
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Figure 2.1: System model for the K-user SISO-IC, SIMO-IC and MISO-IC.
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thus xk ∼ CN (0, 1). Accordingly, the SINR of the kth Rx is expressed as

γSISO−IC
k =

‖hk,k‖2pk
∑

j 6=k

‖hk,j‖2pj + σ2
k

. (2.2)

Secondly, consider the case where all Txs are each equipped with one single

antenna but each Rx is equipped with multiple antennas, i.e., SIMO-IC, as shown

in Fig. 2.1 (b). Assuming that the kth Rx is equipped with Mk > 1 antennas, its

discrete-time baseband received signal is given by

yk = wH
k (hk,k

√
pkxk +

∑

j 6=k

hk,j
√
pjxj + zk), ∀k, (2.3)

where wH
k ∈ C1×Mk is the receive beamforming vector for the kth Rx, hk,j ∈ CMk×1

is the channel vector from the jth Tx to the kth Rx, and zk ∈ C
Mk×1 is the noise

vector at the kth Rx. It is assumed that zk ∼ CN (0, σ2
kI). Thus, the SINR of the

kth Rx can be expressed as

γSIMO−IC
k =

pk‖wH
k hk,k‖2

wH
k (
∑

j 6=k

pjhk,jh
H
k,j + σ2

kI)wk

. (2.4)

Thirdly, consider the MISO-IC case in which all Txs are each equipped with

multiple antennas while each Rx is equipped with one single antenna, as shown in

Fig. 2.1 (c). Assume that the kth Tx is equipped with Nk > 1 antennas. The

discrete-time baseband signal at the kth Rx is then given by

yk = hH
k,kvkxk +

∑

j 6=k

hH
k,jvjxj + zk, ∀k, (2.5)

where vk ∈ C
Nk×1 is the transmit beamforming vector at the kth Tx, and hH

k,j ∈
C1×Nj denotes the channel vector from the jth Tx to the kth Rx. Accordingly, the
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SINR of the kth Rx can be expressed as

γMISO−IC
k =

‖hH
k,kvk‖2

∑

j 6=k

‖hH
k,jvj‖2 + σ2

k

. (2.6)

With γk defined in (2.2), (2.4) or (2.6), the achievable rate of the kth Rx can

be formulated as

Rk(γk) = log2(1 + γk), k = 1, · · · , K. (2.7)

Next, we define the achievable rate region for each type of GIC, which

constitutes all the rate-tuples simultaneously achievable by all the users under a

given set of transmit-power constraints denoted by Pmax
1 , · · · , Pmax

K :

RSISO−IC ,
⋃

{pk}:0≤pk≤Pmax
k

, ∀k

{
(r1, . . . , rK) : 0 ≤ rk ≤ Rk(γ

SISO−IC
k ), ∀k

}
, (2.8)

RSIMO−IC ,
⋃

{pk},{wk}:0≤pk≤Pmax
k

, ∀k

{

(r1, . . . , rK) : 0 ≤ rk ≤ Rk(γ
SIMO−IC
k ),∀k

}

, (2.9)

RMISO−IC ,
⋃

{vk}:0≤‖vk‖2≤Pmax
k

, ∀k

{

(r1, . . . , rK) : 0 ≤ rk ≤ Rk(γ
MISO−IC
k ),∀k

}

. (2.10)

The upper-right boundary of each defined rate region is called the Pareto boundary,

constituted by rate-tuples for each of which it is impossible to improve one particular

user’s rate without decreasing the rate of at least one of the other users.
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2.4 Problem Formulation

The WSR maximization problems for SISO-IC, SIMO-IC and MISO-IC are

then formulated as (P1.1)-(P1.3) as follows.

(P1.1) : Maximize
p

U(p) :=
K∑

k=1

µkRk(γ
SISO−IC
k )

Subject to 0 ≤ pk ≤ Pmax
k , ∀k,

(P1.2) : Maximize
W ,p

U(W ,p) :=
K∑

k=1

µkRk(γ
SIMO−IC
k )

Subject to 0 ≤ pk ≤ Pmax
k , ∀k,

(P1.3) : Maximize
V

U(V ) :=
K∑

k=1

µkRk(γ
MISO−IC
k )

Subject to ‖vk‖2 ≤ Pmax
k , ∀k,

where p = (p1, · · · , pK) denotes the transmit power vector, W = (w1, · · · ,wK)

and V = (v1, · · · , vK) constitute the receive and transmit beamforming vectors,

respectively, and µk is the non-negative rate weight for user k. Since the objective

functions are all non-concave with respect to the power values or beamforming

vectors due to the coupled interference, all the WSR maximization problems in

(P1.1)-(P1.3) are non-convex and thus cannot be solved globally optimally by

conventional convex optimization techniques.

2.5 Proposed Approach

In this section, we solve the formulated WSR maximization problems in

(P1.1)-(P1.3) globally optimally by a new approach based on the outer polyblock
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approximation and rate profile techniques.

2.5.1 WSR Maximization in Rate Region

Traditionally, problems (P1.1)-(P1.3) are solved in the domain of power

allocation and/or beamforming vectors, resulting in non-convex optimization

problems. In this subsection, we study the WSR maximization problem based on a

new formulation, which maximizes the WSR directly in the achievable rate region.

If the achievable rate vector r = (R1, · · · , RK) is treated as the design variable,

where Rk is the achievable rate of user k defined in (2.7), the WSR maximization

problems (P1.1)-(P1.3) can be unified in the following form.

(P2) : Maximize
r

U(r) :=
K∑

k=1

µkRk

Subject to r ∈ R,

where the rate region R is defined in (2.8), (2.9) or (2.10) for SISO-IC, SIMO-IC or

MISO-IC.

Next, we will show that problem (P2) belongs to one special class of

optimization problems: monotonic optimization over a “normal” set. Two useful

definitions are given first as follows.

Definition 2.5.1. A function f : Rn → R is said to be strictly increasing on Rn
+ if

for any x′,x ∈ Rn
+, x

′ ≥ x and x′ 6= x imply that f(x′) > f(x).

Definition 2.5.2. A set D ∈ Rn
+ is called normal if given any point x ∈ D, all the

points x′ with 0 ≤ x′ ≤ x satisfy that x′ ∈ D.

Based on the above definitions, we declare the following two facts regarding

problem (P2), which can be easily verified to be true.

Fact 1. The objective function of problem (P2) is a strictly increasing function with

respect to r.
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Fact 2. The achievable rate region defined in (2.8), (2.9) or (2.10) is a normal set.

Facts 1 and 2 imply that problem (P2) maximizes a strictly increasing function

over a normal set. In [4], the “outer polyblock approximation” algorithm is proposed

to achieve the global optimality for this type of problems. In the following, we apply

this algorithm to solve problem (P2).

2.5.2 Outer Polyblock Approximation Algorithm

In this subsection, we introduce the outer polyblock approximation algorithm

to solve problem (P2). First, two definitions are given as follows.

Definition 2.5.3. Given any vector v ∈ Rn
+, the hyper rectangle [0, v] = {x|0 ≤

x ≤ v} is referred to as a box with vertex v.

Definition 2.5.4. A set is called a polyblock if it is the union of a finite number of

boxes.

Next, we show one important property of the polyblock in the following

proposition.

Proposition 2.5.1. The maximum of a strictly increasing function f(x) over a

polyblock is achieved at one of the vertices of the polyblock.

Proof. Suppose that x∗ is the globally optimal solution over the polyblock, and it

is not a vertex. Then, there exists at least one vertex x′ satisfying x′ ≥ x∗ but

x′ 6= x∗. Since f(x) is a strictly increasing function, f(x∗) < f(x′) must hold,

which contradicts to the presumption. The proof is thus completed.

According to Proposition 2.5.1, the maximum of an increasing function over

a polyblock can be obtained efficiently by enumeration of the vertices of that

polyblock. Consequently, we can construct a sequence of polyblocks to approximate

the rate region R with the increasing accuracy for problem (P2). In other words, we
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Figure 2.2: Illustration of the procedure for constructing new polyblocks.

need to find an iterative method to generate a sequence of polyblocks of shrinking

sizes such that

P (1) ⊃ P (2) ⊃ · · · ⊃ R, (2.11)

lim
n→∞

[ max
r∈P (n)

U(r)] = max
r∈R

U(r), (2.12)

where P (n) denotes the polyblock generated at the nth iteration.

Next, we present one method to generate the polyblocks satisfying (2.11) and

(2.12). Let Z(n) denote the set containing all the vertices of the polyblock P (n). The

vertex that achieves the maximum WSR in polyblock P (n) can be formulated as

z̃(n) = arg max
z∈Z(n)

U(z). (2.13)

Define δz̃(n) as the line that connects the two points 0 and z̃(n), and r(n) as

the intersection point on the Pareto boundary with the line δz̃(n). The following
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method can be used to generate K new vertices adjacent to z̃(n):

z(n),i = z̃(n) − (z̃
(n)
i − r

(n)
i )ei, i = 1, · · · , K, (2.14)

where z(n),i denotes the ith new vertex generated at the nth iteration; z̃
(n)
i and r

(n)
i

denote the ith element of vectors z̃(n) and r(n), respectively. Then, the new vertex

set can be expressed as

Z(n+1) = Z(n)\z̃(n)
⋃

{z(n),1, · · · , z(n),K}. (2.15)

Each vertex in the set Z(n+1) defines a box, and thus the new polyblock P (n+1) is

the union of all these boxes. An illustration about the above procedure to generate

polyblocks for the case of two-user rate region is given in Fig. 2.2. In the following

proposition, we show the feasibility of the above polyblock generation method.

Proposition 2.5.2. If the rate region R is a normal set (as we have already shown),

the polyblocks generated by (2.15) satisfy (2.11).

Proof. Please refer to [4].

Proposition 2.5.2 ensures that the above polyblock generation method can be

used to approximate the rate region from the outside with increasing accuracy. Let

r∗ = (R∗
1, · · · , R∗

K) denote the optimal solution to problem (P2). Based on the

above method, in the following we present an algorithm to find r∗ in the rate region

R. It is worth noting that r∗ must be on the Pareto boundary of the rate region;

thus, we only need to search over the Pareto boundary to find r∗.

The outer polyblock approximation algorithm works iteratively as follows. In

the nth iteration, the optimal vertex z̃(n) is first obtained by (2.13). According

to Proposition 2.5.1, in the polyblock P (n) the maximum WSR is U(z̃(n)). Since

Proposition 2.5.2 implies that P (n) always contains the rate region R, U(z̃(n)) is an

upper bound of U(r∗). Then, the intersection point r(n) on the Pareto boundary

with the line δz̃(n) is obtained. Define the best intersection point up to the nth
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iteration as

r̃(n) = argmax{U(r(n)), U(r̃(n−1))}. (2.16)

Consequently, U(r̃(n)) is the tightest lower bound of U(r∗) by the nth iteration.

Next, we can compute the value of U(z̃(n))−U(r̃(n)), which is the difference between

the upper and lower bounds of the optimal value of problem (P2) at the nth iteration.

If this difference is less than η (a small positive number), the algorithm can terminate

and r̃(n) is at least an η-optimal solution to problem (P2) because

U(r∗)− U(r̃(n)) < U(z̃(n))− U(r̃(n)) < η. (2.17)

Otherwise, we construct a new polyblock P (n+1) by the above polyblock generation

method. We repeat the above procedure until an η-optimal solution is found.

The above algorithm, denoted as Algorithm 2.1, is summarized in Table 2.1. It

is worth noting that in Algorithm 2.1, z̃(n) is obtained by enumeration in the set Z(n)
ǫ

rather than Z(n). This is because in [4] it is shown that if the optimal solution lies

in a strip defined by {r∗|0 ≤ R∗
k ≤ ǫ} with arbitrary k and a small value ǫ > 0, then

as z̃(n) approaches this strip, the algorithm converges very slowly. Consequently, ǫ

is chosen to balance the tradeoff between the accuracy and complexity of Algorithm

2.1. With ǫ, Algorithm 2.1 solves the following problem

(P2 −A) : Maximize
r

U(r) :=

K∑

k=1

µkRk

Subject to r ∈ Rǫ,

where Rǫ is defined as

Rǫ = R ∩ {(r1, · · · , rK) : rk ≥ ǫ, ∀k}. (2.19)

Thus, the corresponding solution is called an (ǫ, η)-optimal solution to problem (P2).
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Table 2.1: Algorithm 2.1: Outer Polyblock Approximation Algorithm for Solving
problem (P2)

a) Initialize: Set n = 1, Z(1) = {z(1)};

b) While (ǫ, η)-accuracy is not reached, do

1) Find the optimal vertex z̃(n) that maximizes the WSR in the set Z(n)
ǫ

based on

z̃(n) = arg max
z∈Z

(n)
ǫ

U(z), (2.18)

where ǫ is a small positive number and Z(n)
ǫ = {z ∈ Z(n)|zk ≥ ǫ, ∀k};

2) Compute the intersection point r(n) on the Pareto boundary of the rate
region R with the line δz̃(n) ;

3) Update the best intersection point until the nth iteration r̃(n) according
to (2.16);

4) If U(z̃(n))− U(r̃(n)) ≤ η, then

Stop and r̃(n) is an (ǫ, η)-optimal solution to problem (P2);

5) else

Compute K new vertices that are adjacent to z̃(n) by (2.14) and
update the vertex set Z(n+1) by (2.15);

6) end

7) n = n+ 1;

c) end

Next, we address the convergence issue of Algorithm 2.1. According to

Proposition 2.5.2, P (n) ⊃ P (n+1) always holds. Moreover, the optimal vertex z̃(n)

is removed from Z(n+1)
ǫ after each iteration. Thus, U(z̃(n+1)) < U(z̃(n)) also holds.

Furthermore, the lower bound U(r̃(n)) is non-decreasing. Consequently, the value

of U(z̃(n)) − U(r̃(n)) will decrease after each iteration. It is shown in [4] that as n

increases, the difference between the upper and lower bounds can be reduced to an

arbitrary small positive number in a finite number of iterations. Thus, Algorithm

2.1 converges given small positive values ǫ and η. More details about the selection
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of the values of ǫ and η will be given later in Section 2.7.2.

Last, we explain how to obtain an initial vertex z(1) = (z
(1)
1 , · · · , z(1)K ) for the first

iteration of Algorithm 2.1. Since the box [0, z(1)] needs to contain the rate region R,

for any user k, z
(1)
k can be obtained when all other users switch off their transmission

(thus no interference exists for user k), and user k transmits its maximum power

Pmax
k . More specifically, for SISO-IC,

z
(1)
k = log2(1 +

Pmax
k ‖hk,k‖2

σ2
k

), ∀k. (2.20)

Since for MISO-IC,

γMISO−IC
k =

‖hH
k,kwk‖2

∑

j 6=k

‖hH
k,jwj‖2 + σ2

k

<
‖hH

k,kwk‖2
σ2
k

(a)

≤ ‖wk‖2‖hk,k‖2
σ2
k

≤ Pmax
k ‖hk,k‖2

σ2
k

, ∀k, (2.21)

where (a) is due to the Cauchy-Schwarz inequality, z
(1)
k can thus be set as

z
(1)
k = log2(1 +

Pmax
k ‖hk,k‖2

σ2
k

), ∀k. (2.22)

The initial vertex for SIMO-IC can be obtained similar to (2.22), and is thus

omitted for brevity.

To summarize, the only challenge that remains unaddressed in Algorithm 2.1

is on how to compute the intersection point r(n) on the Pareto rate boundary with

the line δz̃(n) at the nth iteration, which will be addressed next.

2.5.3 Finding Intersection Points by “Rate Profile”

Technique

In this subsection, we show how to obtain the intersection point on the Pareto

boundary of the rate region with the line δz̃(n), to complete Algorithm 2.1. Let
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Rsum =
K∑

k=1

Rk denote the sum-rate of all the users, α = z̃(n)/
K∑

k=1

z̃
(n)
k denote the slope

of the line δz̃(n). Consequently, the intersection point at the nth iteration can be

expressed as r(n) = R∗
sumα, where R∗

sum is the optimal value of the following problem:

Maximize Rsum

Subject to Rsumα ∈ R. (2.23)

The above approach to find the intersection point on the Pareto boundary of the

rate region is known as rate profile [34, 60, 61]. In the following, we solve Problem

(2.23) to obtain the intersection point r(n) on the Pareto boundary with a given

δz̃(n).

Problem (2.23) is solvable via solving a sequence of feasibility problems shown

as follows. Given a target sum-rate R̄sum, the feasibility problems for SISO-IC,

SIMO-IC and MISO-IC can be expressed in the following problems (P3.1)-(P3.3),

respectively.

(P3.1) : Find {pk}

Subject to log2(1 + γSISO−IC
k ) ≥ αkR̄sum, ∀k

pk ≤ Pmax
k , ∀k.

(P3.2) : Find {wk}, {pk}

Subject to log2(1 + γSIMO−IC
k ) ≥ αkR̄sum, ∀k

pk ≤ Pmax
k , ∀k.

(P3.3) : Find {vk}

Subject to log2(1 + γMISO−IC
k ) ≥ αkR̄sum, ∀k

‖vk‖2 ≤ Pmax
k , ∀k.
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If any of Problems (P3.1), (P3.2) and (P3.3) is feasible, it follows that R∗
sum ≥

R̄sum; otherwise, R
∗
sum < R̄sum. Hence, R∗

sum can be obtained for problem (2.23) by

applying a simple bisection method [62], for which the detail is omitted for brevity.

The remaining challenge is on solving the feasibility problems (P3.1)-(P3.3),

which is addressed next. Let γ̄k = 2αkR̄sum −1, ∀k. Then, the first constraint of each
feasibility problem can be re-expressed as

γk ≥ γ̄k, ∀k. (2.24)

Therefore, given any sum-rate target R̄sum, the feasibility problems (P3.1)-(P3.3) are

equivalent to finding whether a corresponding SINR target vector γ̄ = (γ̄1, · · · , γ̄K)
is achievable. In the next section, we will propose efficient algorithms to solve these

SINR feasibility problems.

Remark 2.5.1. In the case where a set of minimum rate constraints Rk ≥ Rmin
k , ∀k,

are added to the WSR maximization problem (P2), where Rmin
k is the minimum rate

required for user k, we can solve this new problem by modifying Algorithm 2.1 as

follows. Since the new rate region R′ is the intersection of the original rate region

with the set {(r1, · · · , rK) : rk ≥ Rmin
k , ∀k}, we should change the initial point from

0 to rmin in Algorithm 2.1, where rmin = (Rmin
1 , · · · , Rmin

K ) is the rate constraint

vector. Thus, at each iteration we need to compute the intersection point on the

Pareto boundary with the line passing through the optimal vertex z̃(n) and the point

rmin (instead of 0 in Algorithm 2.1). In addition, any point r on this line with

Rsum =
∑K

k=1Rk can be rewritten as

r = rmin +α(Rsum −
K∑

k=1

Rmin
k ), (2.25)

where the rate profile α is obtained by α = z̃(n)
−rmin

∑K
k=1 z̃

(n)
k

−
∑K

k=1 R
min
k

.

30



Chapter 2. WSR Maximization in GIC

2.6 Solutions to SINR Feasibility Problems

In this section, we solve problems (P3.1)-(P3.3) subject to the equivalent SINR

constraints given in (2.24) for SISO-IC, SIMO-IC and MISO-IC, respectively.

2.6.1 The SISO-IC Case

We first study the feasibility problem (P3.1) for SISO-IC. Given a SINR target

vector γ̄ = (γ̄1, · · · , γ̄K) with γ̄k = 2αkR̄sum − 1, we check whether it is achievable

under users’ individual power constraints as follows.

Let G denote the K ×K normalized channel gain matrix given by

Gk,j =







γ̄k‖hk,j‖
2

‖hk,k‖2
, k 6= j

0, k = j,
(2.26)

and η denote the K × 1 normalized noise vector given by

ηk =
γ̄kσ

2
k

‖hk,k‖2
, ∀k. (2.27)

To achieve the SINR target, the transmit power vector for users is given by

p = (I −G)−1η. (2.28)

Let ρ(B) denote the spectral radius (defined as the maximum eigenvalue in

absolute value) of the non-negative matrix B. The following propositions are shown

in [63], which play important roles in solving Problem (P3.1).

Proposition 2.6.1. The power allocation p given by (2.28) satisfies p ≥ 0 if and

only if ρ(G) < 1.

Proposition 2.6.2. If ρ(G) < 1, the power allocation p given by (2.28) is

component-wise minimum in the sense that any other power allocation p′ that

satisfies (2.24) needs to satisfy p′ ≥ p.
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Propositions 2.6.1 and 2.6.2 imply that a SINR target vector γ̄ is feasible if

and only if: (1) ρ(G) < 1, and (2) the power solution obtained by (2.28) satisfies

pk ≤ Pmax
k , ∀k. Consequently, we propose Algorithm 2.2 in Table 2.2 to solve

Problem (P3.1).

Table 2.2: Algorithm 2.2: Algorithm for Solving Problem (P3.1)

a) Given any SINR target vector γ̄ = (γ̄1, · · · , γ̄K), compute the spectrum radius
of matrix G. If it is larger than 1, conclude that there is no feasible power
allocation to meet the SINR target and exit the algorithm; otherwise, go to
step b);

b) Compute the power allocation p by (2.28), and check for any user k, whether
the power constraint pk ≤ Pmax

k is satisfied. If so, conclude that the SINR
target is feasible; otherwise, the SINR target is not feasible.

Remark 2.6.1. It is worth comparing Algorithm 2.1 with the MAPEL algorithm

proposed in [5]. MAPEL solves Problem (P1.1) for SISO-IC in the SINR region

(as opposed to the rate region in our approach) due to the fact that the problem to

characterize the Pareto boundary of the SINR region for SISO-IC can be transformed

into a generalized linear fractional programming problem and thus efficiently solved

by Dinkelbach-type algorithm [64]. However, this transformation does not work

for SIMO-IC or MISO-IC if the beamforming vectors are involved. Consequently,

MAPEL cannot be extended to the GIC with multiple antennas. As comparison, in

this chapter we solve the WSR maximization problem in the rate region directly

because the Pareto boundary can be characterized completely by the rate profile

approach, as along as the associated SINR feasibility problem can be solved. Thus,

our proposed algorithm is more applicable than MAPEL in solving the WSR

maximization problems for SIMO-IC and MISO-IC, as shown next.
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2.6.2 The SIMO-IC Case

The feasibility of Problem (P3.2) can be checked by using the optimal value of

the following SINR balancing problem:

Maximize min
1≤k≤K

γk
γ̄k

Subject to pk ≤ Pmax
k , ∀k. (2.29)

If the optimal value of Problem (2.29) is no smaller than 1, then the SINR target

vector γ̄ = (γ̄1, · · · , γ̄K) is achievable; otherwise, this SINR target cannot be

achieved.

In [65], an efficient algorithm is proposed to solve a SINR balancing problem

similar to Problem (2.29), where only one sum-power constraint is imposed.

However, the algorithm in [65] cannot be directly applied to solve Problem (2.29) due

to multiple users’ individual power constraints. To utilize the algorithm proposed

in [65], we decouple Problem (2.29) into K sub-problems, with the ith sub-problem

formulated as:

Maximize min
1≤k≤K

γk
γ̄k

Subject to pi ≤ Pmax
i . (2.30)

Therefore, for the ith sub-problem only the ith user’s power constraint is considered.

Next, we show how to solve Problem (2.30) by extending the algorithm in [65], and

then reveal an important relationship between problems (2.29) and (2.30), based

upon which we further propose an efficient algorithm to solve Problem (2.29).

• Solution to Problem (2.30)

In this part, we extend the algorithm proposed in [65] to solve Problem (2.30)

for a given i.

One important property of the SINR balancing problem in (2.30) is that given

any receive beamforming vectors W̄ = (w̄1, · · · , w̄K), the corresponding optimal
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power allocation p̄ must satisfy the following two conditions:

γk(W̄ , p̄)

γ̄k
= C(W̄ ), ∀k, (2.31)

p̄i = Pmax
i , (2.32)

where C(W̄ ) is the maximum SINR balancing value for all users given W̄ .

We justify the above conditions as follows. (2.31) can be shown by

contradiction. Supposing that the SINR balancing values are not the same for

all the users, then we select the user with the highest SINR balancing value and

decrease its transmit power by a small amount such that its new SINR balancing

value is still above min
k

γk
γ̄k
. Since the other users’ SINR balancing values will increase,

the minimum SINR balancing value among all the users will increase accordingly.

Thus, whenever the SINR balancing values are not the same for all users, we can

proceed as above to improve the optimal value. Hence, (2.31) must hold. Similarly

to show (2.32) by contradiction, suppose p̄i < Pmax
i . With α =

Pmax
i

p̄i
> 1, we can

multiply the transmit power values of each user by α, and the SINRs of all users

will be increased accordingly. Hence, (2.32) must hold.

We can express (2.31) for all k’s in the following matrix form:

p̄
1

C(W̄ )
= DΨ(W̄ )p̄+Dσ, (2.33)

where D = Diag{ γ̄1

‖w̄H
1 h1,1‖2

, · · · , γ̄K
‖w̄H

KhK,K‖2
}, σ = [σ2

1‖w̄1‖2, · · · , σ2
K‖w̄K‖2]T , and

the K ×K non-negative matrix Ψ(W̄ ) is a function of W̄ defined as

[Ψ(W̄ )]k,j =







‖w̄H
k hk,j‖2, k 6= j

0, k = j.
(2.34)

By multiplying both sides of (2.33) by eT
i , we obtain

eT
i p̄

1

C(W̄ )
=

Pmax
i

C(W̄ )
= eT

i DΨ(W̄ )p̄+ eT
i Dσ. (2.35)
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Therefore, by combining (2.33) and (2.35), it follows that

1

C(W̄ )
p̄ext = Ai(W̄ )p̄ext, (2.36)

where p̄ext =




p̄

1



 and

Ai(W̄ ) =




DΨ(W̄ ) Dσ

1
Pmax
i

eT
i DΨ(W̄ ) 1

Pmax
i

eT
i Dσ



 . (2.37)

Next, we show one important property for (2.36) in the following lemma.

Lemma 2.6.1. Given any fixed W̄ , there exists a unique solution (p̄, C(W̄ )) to the

equation in (2.36).

Proof. Please refer to Appendix A.

According to Perron-Frobenius theory [66], for any nonnegative matrix, there

is at least one positive eigenvalue and the spectral radius of the matrix is equal to

the largest positive eigenvalue. Furthermore, according to Lemma 2.6.1, there is

only one strictly positive eigenvalue to matrix Ai(W̄ ). Accordingly, it follows from

(2.36) that given W̄ , the inverse of the optimal SINR balancing value 1/C(W̄ ) is

the spectral radius of Ai(W̄ ). Consequently, the maximum SINR balancing solution

to Problem (2.30) is obtained as

C∗ =
1

min
W

ρ(Ai(W ))
. (2.38)

Next, by defining a cost function as

Υ(W ,pext) = max
x>0

xTAi(W )pext

xTpext

, (2.39)

then the min-max characterization of the spectral radius of Ai(W ) can be expressed
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as [65], [67]

ρ(Ai(W )) = min
pext

Υ(W ,pext). (2.40)

Taking (2.40) into (2.38), it follows that

1

C∗
= min

W
min
pext

Υ(W ,pext). (2.41)

Similar to [65], we can solve Problem (2.41) via the alternating optimization

shown as follows. First, given W̄ , we find the optimal power allocation for pext.

Let p̄ext denote the dominant eigenvector corresponding to the spectral radius of

Ai(W̄ ). It then follows that

xTAi(W̄ )p̄ext

xT p̄ext

= ρ(Ai(W̄ )) = min
pext

Υ(W̄ ,pext). (2.42)

Thus, p̄ext is the optimal power allocation given W̄ .

Furthermore, we know that given any power allocation pext, the optimal receive

beamformer in W to maximize the SINR is MMSE based for each of the users.

Therefore, we propose an iterative algorithm in Table 2.3, denoted as Algorithm

2.3, to solve Problem (2.30).

The convergence of Algorithm 2.3 can be shown in the following way. Since

given any power allocation p
(n)
ext for the nth iteration, W (n+1) minimizes Υ(W ,p

(n)
ext),

i.e.,

Υ(W (n+1),p
(n)
ext) ≤ Υ(W (n),p

(n)
ext) = ρ(n). (2.43)

Moreover, given W (n+1), p
(n+1)
ext minimizes Υ(W (n+1),pext) as

ρ(n+1) = Υ(W (n+1),p
(n+1)
ext ) ≤ Υ(W (n+1),p

(n)
ext). (2.44)

Hence, we can guarantee ρ(n+1) ≤ ρ(n) after each iteration. Since ρ is lower-bounded
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Table 2.3: Algorithm 2.3: Algorithm for Solving Problem (2.30)

a) Initialize: n = 0, p(0) = [0, · · · , 0]T and ρ(0) = ∞;

b) repeat

1) n = n+ 1;

2) Update W (n) by w
(n)
k = (

∑

j 6=k

p
(n−1)
j hk,jh

H
k,j + σ2

kI)
−1hk,k, ∀k;

3) Update p
(n)
ext as the dominant eigenvector of the matrix Ai(W

(n));

4) ρ(n) = ρ(Ai(W
(n))) and C(n) = 1

ρ(n) ;

c) until ρ(n−1) − ρ(n) < ǫ.

by 0, Algorithm 2.3 thus converges.

Finally, the convergence of Algorithm 2.3 to the global optimality of Problem

(2.30) can be proven similarly as Section IV.A in [65], and the proof is thus omitted

for brevity. After convergence, C(n)γ̄ is the maximum achievable SINR vector and

p(n), W (n) are the optimal power and receive beamforming vectors to achieve this

SINR vector, respectively.

• Solution to Problem (2.29)

Next, we show that Problem (2.29) can be efficiently solved via solving Problem

(2.30) for all i’s. Let W ∗ and p∗ denote the optimal beamforming vectors and

power allocation for Problem (2.29), respectively. Let W ∗
i and p∗

i denote the

optimal beamforming vectors and power allocation for the ith sub-problem in (2.30),

respectively. Next, we provide a theorem to reveal the relationship between the

optimal solutions to problems (2.29) and (2.30).

Theorem 2.6.1. For all sub-problems in (2.30) with i = 1, · · · , K, there exists one

and only one sub-problem for which the optimal power solution satisfies all users’

individual power constraints of Problem (2.29). Furthermore, let i∗ denote the index

of the corresponding sub-problem in (2.30), then it holds that W ∗ = W ∗
i∗, and
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p∗ = p∗
i∗ .

Proof. Please refer to Section IV.B in [68].

Theorem 2.6.1 reveals that Problem (2.29) can be solved as follows. First,

we apply Algorithm 2.3 to solve Problem (2.30) in the order of i = 1, · · · , K. If

the optimal power solution to any of these problems satisfies all users’ individual

power constraints, the algorithm terminates, and the obtained optimal power and

beamforming solutions to Problem (2.30) are also those to Problem (2.29). The

above algorithm, denoted by Algorithm 2.4, is summarized in Table 2.4.

Table 2.4: Algorithm 2.4: Algorithm for Solving Problem (2.29)

a) Initialize: i = 0;

b) repeat

1) i = i+ 1;

2) Solve the ith sub-problem in (2.30) by Algorithm 2.3, and find the optimal
beamforming solution W ∗

i and power solution p∗
i ;

3) Check whether p∗
i satisfies all power constraints of Problem (2.29). If so,

exit the algorithm and set W ∗
i and p∗

i as the optimal solution to Problem
(2.29); otherwise, continue the algorithm;

c) until i = K.

2.6.3 The MISO-IC Case

In this subsection, we show how to solve the feasibility problem (P3.3) for

MISO-IC under the equivalent SINR constraints given by (2.24). It is shown in [34]

that this problem can be transformed into a second-order cone programming (SOCP)

problem, which is briefly described as follows for the sake of completeness. The SINR
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constraints in Problem (P3.3) can be rewritten as

(1 +
1

γ̄k
)‖hH

k,kvk‖2 ≥
K∑

j=1

‖hH
k,jvj‖2 + σ2

k, ∀k. (2.45)

Without loss of generality, we can assume that hH
k,kvk is a positive real number,

∀k. Thus we can reformulate the above SINR constraints as

√

1 +
1

γ̄k
hH
k,kvk ≥

√
√
√
√

K∑

j=1

‖hH
k,jvj‖2 + σ2

k, ∀k. (2.46)

Denote x = [vT
1 , · · · , vT

K , 0]
T of dimension (K2 + 1)× 1, nk = [0, · · · , 0, σk]T of

dimension (K + 1) × 1, and Ek = Diag(hH
k,1, · · · ,hH

k,K , 0) of dimension (K + 1) ×
(K2 + 1), ∀k. We further define Lk as

Lk =

[

0K×K , · · · , 0K×K

︸ ︷︷ ︸

k−1

, IK×K , 0K×K, · · · , 0K×K

︸ ︷︷ ︸

K−k

, 0K×1

]

, (2.47)

where 0K×K and 0K×1 denote the K ×K all-zero matrix and K × 1 all-zero vector,

respectively, and IK×K denotes the K × K identity matrix. Thus, (2.46) can be

reformulated as

‖Ekx+ nk‖ ≤
√

1 +
1

γ̄k
hH
k,kLkx, ∀k. (2.48)

Moreover, we can reformulate the power constraints as

‖Lkx‖ ≤
√

Pmax
k , ∀k. (2.49)

Using (2.48) and (2.49), Problem (P3.3) can be transformed into a SOCP

feasibility problem over x and efficiently solvable by existing software [69].

Remark 2.6.2. It is worth comparing our proposed algorithm with that in [47] for

solving the WSR maximization problem (P1.3) for MISO-IC. The algorithm in [47]
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is based on a prior result in [52] that for the special case of two-user MISO-IC,

any point on the Pareto boundary of the rate region can be achieved by transmit

beamforming vectors that are obtained by linearly combining the ZF and MRT

beamformers. In [47], the outer polyblock approximation algorithm is applied to

find the optimal beamformer combining coefficients. However, since this result does

not hold for MISO-IC with more than two users, the algorithm in [47] cannot be

extended to the general K-user MISO-IC with K > 2. In contrast, our proposed

algorithm can be applied to MISO-IC with arbitrary number of users.

2.7 Numerical Results

In this section, we provide numerical results to validate the proposed algorithms

in this chapter. We assume that µk = 1, ∀k, i.e., the sum-rate maximization problem

is considered. We also assume that Pmax
k = 3, ∀k. For SIMO-IC and MISO-IC, we

further assume that Mk = 2 and Nk = 2, respectively, ∀k. The numerical results

with related discussions are presented in the following subsections.

2.7.1 Achievable Rate Region

First, we study the convexity of the achievable rate region of the GIC. In the

following, we provide a numerical example to show the rate region of the SISO-IC

defined in (2.8) obtained by the rate profile approach presented in Section 2.6.2.

Specifically, a 2-user SISO-IC is considered, i.e., K = 2, for which the channel is

given as

H =




1 α

α 1



 , (2.50)

with each element denoting the power of the corresponding channel gain, i.e., Hk,j =

|hk,j|2. Figs. 2.3 (a) and (b) show the resulted rate regions with α = 0.5, i.e., weak

interference, and α = 2, i.e., strong interference, respectively. It is observed that in
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Figure 2.3: Achievable rate region of 2-user SISO-IC.

the case of weak interference, i.e., α = 0.5, the rate region is convex, while in the

case of strong interference, i.e., α = 2, the rate region is non-convex. As a result, it is

necessary to solve problem (P2) using the proposed outer polyblock approximation

algorithm, since the rate region in problem (P2) in general cannot be guaranteed to

be convex.

2.7.2 Convergence Performance

Next, we study the convergence performance of Algorithm 2.1 for SISO-IC. We

assume that there are 4 users, i.e., K = 4, and there is a minimum rate constraint

for each user with Rmin
k = 0.5, ∀k. We set the parameters to control the accuracy

of Algorithm 2.1 as ǫ = 0.01 and η = 0.5. We consider the following matrix:

H =











0.4310 0.0022 0.0105 0.0042

0.0200 0.4102 0.0180 0.0035

0.0210 0.0200 0.5162 0.0112

0.0210 0.0021 0.0063 0.3634











, (2.51)

with each element denoting the power of the corresponding channel gain, i.e., Hk,j =

‖hk,j‖2.
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Figure 2.4: Convergence performance of Algorithm 2.1 for SISO-IC with weak
interference channel gains.
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Figure 2.5: Convergence performance of Algorithm 2.1 for SISO-IC with strong
interference channel gains.
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Fig. 2.4 shows the convergence of Algorithm 2.1 under the above channel

setup. It is observed that this algorithm takes about 300 iterations to

converge. The converged sum-rate is 11.4605 with users’ individual rates given

by [3.1982, 2.6297, 2.8441, 2.7884]. To verify that the global sum-rate maximum is

achieved, we compare the obtained maximum sum-rate with that by an exhaustive

search, which is equal to 11.5349. Thus, Algorithm 2.1 does achieve the global

optimality of sum-rate maximization within a guaranteed error 11.5349−11.4605 =

0.0744, which is smaller than the set threshold η = 0.5.

Next, we consider a SISO-IC with stronger cross-user interference channel

gains than those given in (2.51) by keeping all diagonal elements of H unchanged,

but scaling all off-diagonal elements by 10 times. As shown in Fig. 2.5, for

this new channel setup, Algorithm 2.1 takes about 2900 iterations to converge.

The converged sum-rate in this case is 5.1184 with users’ individual rates given

by [0.5408, 1.9119, 0.5060, 2.1597], while that obtained by the exhaustive search is

5.1392. Thus, as compared to the previous case with weaker interference channel

gains, the global optimality for sum-rate maximization is achieved in this case with

a much slower convergence. The reason is as follows. With stronger interference

channel gains, the optimal power allocation for sum-rate maximization is more likely

to render some users transmit at their minimum required rates (e.g., user 1 and user

3 in this example). Hence, the corresponding optimal rate values will lie in the strip

defined by {r∗|Rmin
k ≤ R∗

k ≤ Rmin
k + ǫ} for some k’s. Since in Algorithm 2.1 each

new polyblock is generated from the previous one by cutting off some unfit portions,

the cuts become shallower and shallower as z̃(n) approaches the above strip. This

can be observed from Fig. 2.5 that after the 1300th iteration, the best intersection

point r̃(n) has never changed. However, to make U(z̃(n))−U(r̃(n)) ≤ η hold, another

1700 iterations are taken just to reduce the value of U(z̃(n)). Since this reduction

becomes very inefficient near the strip, the algorithm converges much more slowly

to the desired accuracy with the increasing of interference channel gains. From this

observation, we infer that the values of ǫ and η need to be properly set to balance
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Table 2.5: Selection of ǫ on the Performance of the Proposed Algorithm

Value of ǫ Number of iterations Converged WSR

0.05 8183 4.7625
0.10 3498 4.7438
0.15 2212 4.7275
0.20 1642 4.6942
0.25 1396 4.6825
0.30 1148 4.6620
0.35 1029 4.6350
0.40 866 4.6165
0.45 651 4.5880

between the accuracy and convergence speed of our proposed algorithm.

Next, we give another example to illustrate the important role of parameter ǫ in

balancing between the accuracy and convergence speed of our proposed algorithm.

We assume that K = 3, and there are no minimum rate requirements for the users.

We consider the following channel matrix:

H =








0.4310 0.0187 0.0893

0.1700 0.4102 0.1530

0.1785 0.1700 0.5162







, (2.52)

with Hk,j = ‖hk,j‖2. By an exhaustive search, the optimal sum-rate is obtained as

4.8079 with users’ individual rates given by [3.2146, 1.5933, 0].

Table 2.5 shows the convergence speed and the converged sum-rate of our

proposed algorithm for different values of ǫ with η = 0.2. We observe that as

ǫ increases, the algorithm convergence speed improves rapidly, but the converged

sum-rate decreases. When ǫ = 0.45, the difference between the optimal sum-rate

and converged sum-rate is 4.8079 − 4.5880 = 0.2199, which is even larger than

η = 0.2. This is because that as we show in Section 2.5.2, with non-zero ǫ, we are in

fact solving Problem (P2-A) instead of the original problem (P2). Consequently, the

proposed algorithm can only guarantee that the difference between the maximum
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Figure 2.6: Performance comparison for Algorithm 2.1 versus the price-based
algorithm in SIMO-IC.

sum-rate of Problem (P2-A) and the converged sum-rate is less than η, but not

necessarily for Problem (P2). Thus, if the value of ǫ is selected to be too large

such that all the η-optimal solutions lie in the excluded strips, the difference of the

converged sum-rate and the maximum sum-rate of Problem (P2) will be larger than

η. Therefore, the value of ǫ should be carefully selected based on the value of η. In

this numerical example, we can select ǫ = 0.40 such that the η-optimal solution is

still guaranteed and also the converged speed is reasonably fast.

2.7.3 Performance Comparison

A key application of our proposed algorithm is to provide performance upper

bounds for other heuristic algorithms designed for WSR maximization in the GIC,

especially in the case of MISO-IC where the globally optimal solution by exhaustive

search is hardly feasible as the number of transmit antennas per user becomes

large. In the following, we provide an example to show how to utilize our proposed

algorithm to evaluate the performance of other suboptimal algorithms for WSR

maximization in MISO-IC and SIMO-IC.
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Figure 2.7: Performance comparison for Algorithm 2.1 versus the price-based
algorithm in MISO-IC.

We consider the “price-based” suboptimal algorithm, e.g., the ADP algorithm,

which is proposed in [28] as an efficient distributed algorithm for WSR maximization

in SISO-IC. We provide the details for extensions of ADP to SIMO-IC and MISO-IC

in Appendix B.

Figs. 2.6 and 2.7 show the achievable sum-rates by the price-based algorithm

versus Algorithm 2.1 for 4-user SIMO-IC and MISO-IC, respectively, without the

minimum rate constraints. Each element in all channel vectors involved is randomly

generated by the CSCG distribution with zero mean and unit variance. We set

the parameters to control the accuracy of Algorithm 2.1 as ǫ = 0.01 and η = 0.5.

In Fig. 2.6, the price-based algorithm converges to the sum-rate of 10.6989 in

SIMO-IC, while the maximum sum-rate achieved by Algorithm 2.1 is 11.9182. In

Fig. 2.7, the price-based algorithm converges to the sum-rate of 4.8216 (although it

has reached almost 6 before convergence) in MISO-IC, while Algorithm 2.1 achieves

the maximum sum-rate of 10.6193. Based on these results as well as other numerical

examples (not shown here due to the space limitation), we infer that in general

the price-based algorithm for SIMO-IC performs better than MISO-IC, as both
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compared with our proposed algorithm that achieves the global sum-rate maximum.

Moreover, the price-based algorithm for MISO-IC does not converge under certain

channel setups, while even when the algorithm converges, the resulted sum-rate

can be far from the global maximum. In contrast, for SIMO-IC, the price-based

algorithm usually achieves the sum-rate very close to the global maximum, and

even converges to it under certain channel setups.

2.8 Chapter Summary

In this chapter, we proposed a new optimization framework to achieve the global

optimality of WSR maximization problems in SISO-IC, SIMO-IC, and MISO-IC,

respectively, with the interference treated as Gaussian noise. Although the studied

problems are non-convex with respect to the power allocation and/or beamforming

vectors, we showed that they belong to the class of monotonic optimization over

a normal set by reformulating them for maximizing the WSR in the achievable

rate regions directly. Therefore, the outer polyblock approximation algorithm can

be applied to achieve the global WSR maximum. Furthermore, by utilizing the

technique of rate profile, at each iteration of the proposed algorithm, the updated

intersection point on the Pareto boundary of the achievable rate region was efficiently

obtained via solving a sequence of SINR feasibility problems. It is worth noting

that although the developed framework in this chapter is aimed to solve the WSR

maximization problem for the GIC, it can be similarly applied to other multiuser

communication systems with non-convex rate regions provided that the problem of

characterizing the intersection Pareto boundary point with an arbitrary rate-profile

vector can be efficiently solved. Finally, the proposed algorithm can be applied to

provide upper-bound performance benchmarks for other heuristic algorithms that

usually converge faster but only guarantee suboptimal solutions.
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Joint Energy and Information
Scheduling in SWIPT

3.1 Introduction

In the previous section, we investigate how to mitigate interference in WIT

systems. In this section, we propose a novel approach so-called “opportunistic energy

harvesting”, to manage interference in SWIPT systems, where the interference can

be used for energy harvesting when it is sufficiently strong. In such a SWIPT

system, we investigate two practical receiver schemes, namely TS and power splitting

(PS). We first consider TS in a point-to-point SWIPT link over a narrowband

flat-fading channel subject to time-varying co-channel interference. We assume a

single-antenna receiver that can only decode information or harvest energy at any

time due to the practical circuit limitation. Therefore, it is important to investigate

when the receiver should switch between the two modes of ID and EH, based on

the instantaneous channel and interference conditions. We investigate the optimal

mode switching rule at the receiver to achieve various performance trade-offs between

WIT versus WPT in the case without CSIT, and the joint optimization of transmit

power control, information and energy transfer scheduling, and the receiver’s mode

switching in the case with CSIT. Besides TS, we also briefly discuss the joint

information and energy scheduling problem in SWIPT with the PS receiver. Last,

we extend the optimal TS and PS schemes from SISO to SIMO SWIPT systems.

Our results provide important guidelines for designing SWIPT systems over practical

wireless channels subject to both fading and co-channel interference.
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3.2 Literature Review

3.2.1 RF Signal Enabled WPT

In conventional energy-constrained wireless networks such as sensor networks,

the lifetime of the network is an important performance indicator since sensors are

usually equipped with fixed energy supplies, e.g., batteries, which are of limited

operation time. Recently, EH has become an appealing solution to prolong the

lifetime of wireless networks. Unlike battery-powered networks, energy-harvesting

wireless networks potentially have an unlimited energy supply from the environment.

Consequently, the research of wireless networks powered by renewable energy has

recently drawn a great deal of attentions (see e.g. [70] and references therein).

In addition to other commonly used energy sources such as solar and wind,

ambient RF signals can be a viable new source for EH [71–76]. Note that EH

from the environment is very susceptible to the availability of environmental energy

sources, which are not dedicated to EH, and thus cannot be controlled. As a result,

the best strategy for designing conventional EH based communication systems is via

optimizing the transmissions and corresponding power consumptions over time based

on the intermittent and random harvested energy from the environment [77–79]. In

contrast, EH via RF-enabled WPT from dedicated energy sources (power nodes)

is stable and controllable. As a result, in RF powered communication systems, we

can optimize the amount of energy transferred to each node to improve the network

performance, which provides a new design paradigm. It is worth noting that RF

based WPT is becoming a more mature technology recently. It is reported in [72]

that 3.5mW and 1uW amount of power is harvested at a distance of 0.6 meter and

11 meters, respectively, by using the Powercast EH receivers operating at 915MHz.

More information for practical products of RF based WPT can be found at the

company website of Powercast (http://www.powercastco.com/).
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AP

Information TransferEnergy Transfer

.

.

.

Phase I: downlink energy transfer

AP

.

.

.

Phase II: uplink information transfer

User Terminals
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3.2.2 A Unified Study on RF-based WIT and WPT

Due to the recent advancement in RF based WPT, a unified study on WIT

and WPT has recently drawn significant attentions. In the literature, there are two

main directions of research on this subject, namely “SWIPT”, as shown in Fig. 3.1,

and “wireless powered communication network (WPCN)”, as shown in Fig. 3.2. In

a SWIPT system, a fixed access point (AP) with constant power supply broadcasts

wireless signals to a set of distributed user terminals, among which some intend

to decode information from the received signal, some are interested in harvesting

the signal energy, while the others in general aim to decode information and also

harvest energy from the same received signal. In such a system, the key design

challenge is to find the optimal transmitter and receiver strategies to achieve desired

rate-energy performance trade-offs between WIT versus WPT [2]. In a WPCN, on

the other hand, the AP coordinates the wireless energy transfer to the users in the

downlink, as well as their information transmissions in the uplink using the RF

energy harvested in the downlink. For example, a “harvest-then-transmit” protocol

is proposed in [80] where the users first harvest energy from the signals broadcast

by one single-antenna AP in the downlink, and then use their harvested energy to

send independent information to the AP in the uplink based on TDMA. Then, the

orthogonal time allocations for the downlink energy transfer and uplink information

transmissions of all users are jointly optimized to maximize the network throughput.

WCPN is also studied in [81, 82] with a multi-antenna AP.

It is worth pointing out that among the above two promising directions, we

focus our study on the SWIPT systems in this thesis.

3.2.3 SWIPT with Ideal Receiver

Two pioneer works on SWIPT are [83, 84], both assuming the ideal receivers

that are able to simultaneously harvest and decode the same signal without

any loss. In [83], Varshney first proposes the capacity-energy function to

characterize the fundamental performance limits of communication channels used
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Figure 3.3: An illustration of the IR and ER.

for both information and energy transfer. For the SISO additive white Gaussian

noise (AWGN) channel with amplitude-constrained input, [83] shows that there

exist non-trivial trade-offs in maximizing the information rate versus energy

simultaneously transferred by optimizing the input signal distribution. However,

if the average power constraint is considered, then the above trade-offs do not exist

since Gaussian input signal is optimal for both information and power transfer.

Furthermore, the authors in [84] extend the results in [83] to a frequency-selective

AWGN channel with average power constraint. They show that there exist

non-trivial trade-offs in power allocation over frequency domain to maximize the

information rate versus energy transferred.

3.2.4 TS and PS Schemes

In [83, 84], the ideal Rx is assumed to be able to decode the information and

harvest the energy independently from the same signal. However, due to the existing

circuit limitations, this cannot be realizable yet in practical SWIPT systems. To
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Figure 3.4: An illustration of time switching (TS) and power splitting (PS) receivers.

illustrate this, Figs. 3.3 (a) and (b) show the architectures of the state-of-the-art IR

and ER, respectively. For the IR, the received RF band signal is first converted to a

complex baseband signal and then sampled and digitalized by the analog-to-digital

converter (ADC) for further decoding, while for the ER, the received signal is

converted to a direct current by a rectifier, which is comprised of a diode and

a passive low-pass filter (LPF), and then the direct current is used to charge a

rechargeable battery. Clearly, the operations of the IR and ER are very different.1

One pioneering work that proposes to study SWIPT with practical receivers

is [2]. To tackle the challenge that a practical Rx cannot decode the information

and harvest the energy independently from the same signal, two receiver schemes,

namely TS and PS, are proposed in [2]. As shown in Fig. 3.4 (a), with a TS receiver,

at each time the received signal is either switched to the IR for decoding information

or ER for harvesting energy, while in Fig. 3.4 (b), with a PS receiver, 0 ≤ α ≤ 1

portion of the received signal power is split to the IR for decoding information and

the remaining 1 − α portion of signal power is for harvesting energy. It is worth

noting that theoretically TS can be regarded as a special case of PS with only on-off

power switching, and thus in general PS achieves better rate-energy transmission

trade-offs than TS. However, in practice TS is much easier for implementation than

PS since the former only requires a switcher at the Rx while the latter needs a more

sophisticated power splitter in the RF band [86].

1For more details about the operations of the IR and ER, please refer to [85].
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Figure 3.5: Architecture for the integrated information and energy Rx.

Based upon the TS and PS schemes proposed in [2], one simple practical Rx

architecture for SWIPT is the so-called separated information and energy receivers,

as shown in Fig. 3.4. With separated information and energy receivers, the received

signal is split into two signal streams with different power levels, which are fed to

the conventional information and energy Rxs shown in Fig. 3.3. In contrast, [85]

proposes an interesting new structure for SWIPT with integrated information and

energy receivers, as shown in Fig. 3.5. The novelty of this design lies in that

the information is modulated onto the energy signal by varying its power levels

over time, thus achieving continuous information transfer without degrading the

power transfer efficiency. This receiver design integrates the front-end components

of the separated information and energy receivers, thus also achieving a smaller

form factor. However, the separated receivers shown in Fig. 3.4 are relatively easier

for implementation since the off-the-shelf commercially available circuits that are

separately designed for ID and EH can be directly applied with only a switcher or

a power splitter added. As a result, in the rest of this chapter, we focus our study

on the case of separated information and energy receivers.
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Figure 3.6: System model.

3.3 System Model

As shown in Fig. 3.6, in this chapter we consider a wireless point-to-point link

consisting of one pair of single-antenna Tx and Rx over the flat-fading channel. It

is assumed that there is an aggregate interference at Rx, which is in the same band

as the transmitted signal from Tx, and changes over time. For convenience, we

assume that the channel from Tx to Rx follows a block-fading model [87]. Since

the coherence time for the time-varying interference is in general different from

the channel coherence time, we choose the block duration to be sufficiently small

as compared to the minimum coherence time of the channel and interference such

that they can both be assumed to be constant during each block transmission. It is

worth noting that the above model is an example of the “block interference” channel

introduced in [88]. The channel power gain and the interference power at Rx for one

particular fading state are denoted by h(ν) and I(ν), respectively, where ν denotes

the joint fading state. It is assumed that h(ν) and I(ν) are two random variables

(RVs) with a joint probability density function (PDF) denoted by fν(h, I). At any

fading state ν, h(ν) and I(ν) are assumed to be perfectly known at Rx. In addition,

the additive noise at Rx is assumed to be a CSCG RV with zero mean and variance

σ2.

We consider block-based transmissions at Tx and the TS scheme [2] at Rx for

decoding information or harvesting energy at each fading state. Next, we elaborate

the encoding and decoding strategies for our system of interest in the following two

cases based on the availability of CSI at Tx: Case I: h(ν) and I(ν) are unknown at
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Figure 3.7: Encoding and decoding strategies for wireless information transfer with
opportunistic EH (via Rx mode switching). The height of the block shown in the
figure denotes the signal power.

Tx for all the fading states of ν, referred to as CSI Unknown at Tx; and Case II:

h(ν) and I(ν) are perfectly known at Tx at each fading state ν, referred to as CSI

Known at Tx (CSIT).

First, consider the case of CSI Unknown at Tx. As shown in Fig. 3.7 (a), in

this case Tx transmits information continuously with constant power P for all the

fading states due to the lack of CSIT. At each fading state ν, Rx decides whether to

decode the information or harvest the energy from the received signal based on h(ν)

and I(ν). For example, as shown in Fig. 3.7 (a), time slots 1 and 3 are switched

to EH mode at Rx, while time slot 2 is switched to ID mode. For convenience, we

define an indicator function to denote the Rx’s mode switching at any given ν as

follows:

α(ν) =







1, ID mode is active

0, EH mode is active.
(3.1)
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Next, we consider the other case with CSIT, i.e., the channel gain h(ν) and

interference power I(ν) are known at Tx for each fading state ν. In this case, Tx

is able to schedule transmission for information and energy transfer to Rx based on

the instantaneous CSI. As shown in Fig. 3.7 (b), Tx allocates time slot 1 for energy

transfer, time slot 3 for information transfer, and transmits no signals in time slot

2. Accordingly, Rx will be in EH mode (i.e., α(ν) = 0) to harvest energy from the

received signal (including the interference) in time slot 1 or solely from the received

interference in time slot 2, but in ID mode (i.e., α(ν) = 1) to decode the information

in time slot 3. In addition to transmission scheduling, Tx can implement power

control based on the CSI to further improve the information/energy transmission

efficiency. Let p(ν) denote the transmit power of Tx at fading state ν. In this

chapter, we consider two types of power constraints on p(ν), namely average power

constraint (APC) and peak power constraint (PPC) [87]. The APC limits the average

transmit power of Tx over all the fading states,i.e., Eν [p(ν)] ≤ Pavg, where Eν [·]
denotes the expectation over ν. In contrast, the PPC constrains the instantaneous

transmit power of Tx at each of the fading states, i.e., p(ν) ≤ Ppeak, ∀ν. Without

loss of generality, we assume Pavg ≤ Ppeak. For convenience, we define the set of

feasible power allocation as

P ,
{
p(ν) : Eν [p(ν)] ≤ Pavg, p(ν) ≤ Ppeak, ∀ν

}
. (3.2)

3.4 WIT and WPT Performance Trade-offs in

Fading Channels with TS-based SWIPT

In this chapter, we consider three performance measures at Rx, which are the

outage probability and the ergodic capacity for WIT and the average harvested

energy for WPT. For delay-limited information transmission, outage probability

is a relevant performance indicator. Assuming that the interference is treated as

additive Gaussian noise at Rx and the transmitted signal is Gaussian distributed, the
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instantaneous mutual information for the Tx-Rx link at fading state ν is expressed

as [89]

r(ν) = log

(

1 +
α(ν)h(ν)p(ν)

I(ν) + σ2

)

. (3.3)

Note that r(ν) = 0 if Rx switches to EH mode (i.e., α(ν) = 0). Thus,

considering a delay-limited transmission with constant rate r0, following [90] the

outage probability at Rx can be expressed as

ε = Pr {r(ν) < r0} , (3.4)

where Pr{·} denotes the probability. For information transfer without CSIT, the

Rx-aware outage probability is usually minimized with a constant transmit power,

i.e., p(ν) = Pavg , P , ∀ν [90], whereas in the case with CSIT, the Tx-aware outage

probability can be further minimized with the “truncated channel inversion” based

power allocation [91], [89].

Next, consider the case of no-delay-limited information transmission for which

the ergodic capacity is a suitable performance measure expressed as

R = Eν [r(ν)]. (3.5)

For information transfer, if CSIT is not available, the ergodic capacity can be

achieved by a single Gaussian codebook with constant transmit power over all

different fading states [92]; however, with CSIT, the ergodic capacity can be further

maximized by the “water-filling” based power allocation [89].

On the other hand, the amount of energy (normalized to the transmission block

duration) that can be harvested at Rx at fading state ν is expressed as Q(ν) =

ζ
(
1− α(ν)

)(
h(ν)p(ν) + I(ν) + σ2

)
, where ζ is a constant that accounts for the loss

in the energy transducer for converting the harvested energy to electrical energy to

be stored; for convenience, it is assumed that ζ = 1 in this chapter unless stated
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otherwise. Moreover, since the background thermal noise has constant power σ2 for

all the fading states and σ2 is typically a very small amount for EH, we may ignore

it in the expression of Q(ν). Thus, in the rest of this chapter, we assume

Q(ν) =
(
1− α(ν)

)(
h(ν)p(ν) + I(ν)

)
. (3.6)

The average energy that can be harvested at Rx is then given by

Qavg = Eν [Q(ν)]. (3.7)

It is easy to see that there exist non-trivial trade-offs in assigning the Rx

mode α(ν) and/or transmit power p(ν) (in the case of CSIT) to balance between

minimizing the outage probability or maximizing the ergodic capacity for WIT

versus maximizing the average harvested energy for WPT. To characterize such

trade-offs, for the case when information transmission is delay-limited, we introduce

a so-called Outage-Energy (O-E) region (defined below) that consists of all the

achievable non-outage probability (defined as δ = 1 − ε with outage probability ε

given in (3.4)) and average harvested energy pairs for a given set of transmit power

constraints, while for the case when information transmission is not delay-limited,

we use another Rate-Energy (R-E) region (defined below) that consists of all the

achievable ergodic capacity and average harvested energy pairs. More specifically,

in the case without (w/o) CSIT, the corresponding O-E region is defined as

Cw/o CSIT
O−E ,

⋃

α(ν)∈{0,1},∀ν

{

(δ, Qavg) :

δ ≤ Pr {r(ν) ≥ r0} , Qavg ≤ Eν [Q(ν)]

}

, (3.8)
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while in the case with CSIT, the O-E region is defined as

Cwith CSIT
O−E ,

⋃

p(ν)∈P,α(ν)∈{0,1},∀ν

{

(δ, Qavg) :

δ ≤ Pr {r(ν) ≥ r0} , Qavg ≤ Eν [Q(ν)]

}

. (3.9)

On the other side, in the case without CSIT, the R-E region is defined as

Cw/o CSIT
E−E ,

⋃

α(ν)∈{0,1},∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

, (3.10)

while in the case with CSIT, the R-E region is defined as

Cwith CSIT
R−E ,

⋃

p(ν)∈P,α(ν)∈{0,1},∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

. (3.11)

Figs. 3.8 (a) and (b) show examples of the O-E region without or with CSIT

(see Sections 3.5.1 and 3.5.2 for the details of computing the O-E regions for these

two cases) and the R-E region without or with CSIT (see Sections 3.6.1 and 3.6.2

for the corresponding details), respectively. It is assumed that the average transmit

power constraint is Pavg = 0.1 watt(W) or 20dBm, and the peak power constraint

is Ppeak = 0.2W or 23dBm. The average operating distance between Tx and Rx is

assumed to be d = 5 meters, which results in a mean value of 40dB of signal power

attenuation at a carrier frequency assumed as fc = 900MHz. It is assumed that

h(ν) is an exponentially distributed RV (i.e., Rayleigh fading) with mean −40dB

to be consistent with the average pass loss. It is further assumed that I(ν), which

is independent of h(ν) ∀ν, is an exponentially distributed RV with mean −57dB.

The bandwidth of the transmitted signal is assumed to be 10MHz, and the IR

noise is assumed to be white Gaussian with power spectral density −120dBm/Hz
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Figure 3.8: Examples of O-E region and R-E region with or without CSIT.
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or −50dBm over the entire bandwidth of 10MHz. Moreover, the energy conversion

efficiency for the energy harvester is assumed to be ζ = 0.5. For the delay-limited

information transmission, r0 = 1bps/Hz. It is observed that CSIT helps improve

both the achievable outage-energy and rate-energy trade-offs.

It is also observed from Fig. 3.8 that in each region, there are two boundary

points that indicate the extreme performance limits, namely, (δmax, Qmin) and

(δmin, Qmax) for the O-E region, or (Rmax, Qmin) and (Rmin, Qmax) for the R-E region.

For brevity, characterizations of these vertex points are given in Appendix C.

Since the optimal trade-offs between the non-outage probability/ergodic

capacity and the average harvested energy are characterized by the boundary of

the corresponding O-E/R-E region, it is important to characterize all the boundary

(δ, Qavg) or (R,Qavg) pairs in each case with or without CSIT. From Fig. 3.8, it

is easy to observe that if Qavg < Qmin, the non-outage probability δmax or ergodic

capacity Rmax can still be achieved for both cases with and without CSIT. Thus, the

remaining boundary of the O-E region yet to be characterized is over the intervals

Qmin ≤ Qavg ≤ Qmax and δmin ≤ δ ≤ δmax, while that of the R-E region is over the

intervals Qmin ≤ Qavg ≤ Qmax and Rmin ≤ R ≤ Rmax.

For the O-E region, we introduce the following indicator function for the event

of non-outage transmission at fading state ν for the convenience of our subsequent

analysis:

X(ν) =







1, if r(ν) ≥ r0

0, otherwise.
(3.12)

It thus follows that the non-outage probability δ can be reformulated as

δ = Pr{r(ν) ≥ r0} = Eν [X(ν)]. (3.13)
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Then, we consider the following two optimization problems.

(P4) : Maximize
{α(ν)}

Eν [X(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

α(ν) ∈ {0, 1}, ∀ν

(P5) : Maximize
{p(ν),α(ν)}

Eν [X(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

p(ν) ∈ P, ∀ν

α(ν) ∈ {0, 1}, ∀ν

where Q̄ is a target average harvested energy required to maintain the Rx’s

operation. By solving problem (P4) or (P5) for all Qmin ≤ Q̄ ≤ Qmax, we are

able to characterize the entire boundary of the O-E region for the case without

CSIT (defined in (3.8)) or with CSIT (defined in (3.9)).

Similarly, for the R-E region, we consider the following two optimization

problems.

(P6) : Maximize
{α(ν)}

Eν [r(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

α(ν) ∈ {0, 1}, ∀ν

(P7) : Maximize
{p(ν),α(ν)}

Eν [r(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

p(ν) ∈ P, ∀ν

α(ν) ∈ {0, 1}, ∀ν.
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Then, by solving problem (P6) or (P7) for all Qmin ≤ Q̄ ≤ Qmax, we can characterize

the boundary of the R-E region for the case without CSIT (defined in (3.10)) or with

CSIT (defined in (3.11)).

It is observed that the objective function of problem (P5) is in general not

concave in p(ν) even if α(ν)’s are given. Furthermore, due to the integer constraint

α(ν) ∈ {0, 1}, ∀ν, Problems (P4)-(P7) are in general non-convex optimization

problems. However, it can be verified that all of them satisfy the “time-sharing”

condition given in [6]. To show this for problem (P4), let Φ4(Q̄) denote the optimal

problem value given the harvested energy constraint Q̄, and {αa(ν)} and {αb(ν)}
denote the optimal solutions given the harvested energy constraints Q̄a and Q̄b,

respectively. We need to prove that for any 0 ≤ θ ≤ 1, there always exists at

least one solution {αc(ν)} such that Eν [X
c(ν)] ≥ θΦ4(Q̄

a) + (1 − θ)Φ4(Q̄
b) and

Eν [Q
c(ν)] ≥ θQ̄a + (1− θ)Q̄b, where Qc(ν) =

(
1− αc(ν)

)(
h(ν)P + I(ν)

)
and Xc(ν)

is defined accordingly as in (3.12). Due to the space limitation, the above proof is

omitted here. In fact, the “time-sharing” condition implies that Φ4(Q̄) is concave

in Q̄, which then guarantees the zero duality gap for Problem (P4) according to

the convex analysis in [93]. Similarly, it can be shown that strong duality holds

for problems (P5)-(P7). Therefore, in the following two sections, we apply the

Lagrange duality method to solve problems (P4)-(P7) to obtain the optimal O-E

and R-E trade-offs, respectively.

3.5 Outage-Energy Trade-off

In this section, we study the optimal Rx mode switching without/with transmit

power control to achieve different trade-offs between the minimum outage probability

and the maximum average harvested energy for both cases without and with CSIT

by solving problems (P4) and (P5), respectively.
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3.5.1 The Case Without CSIT: Optimal Rx Mode

Switching

We first study problem (P4) for the CSIT-unknown case to derive the optimal

rule at Rx to switch between EH and ID modes. The Lagrangian of problem (P4)

is formulated as

L(α(ν), λ) = Eν [X(ν)] + λ
(
Eν [Q(ν)]− Q̄

)
, (3.14)

where λ ≥ 0 is the dual variable associated with the harvested energy constraint Q̄.

Then, the Lagrange dual function of problem (P4) is expressed as

g(λ) = max
α(ν)∈{0,1},∀ν

L(α(ν), λ). (3.15)

The maximization problem (3.15) can be decoupled into parallel subproblems all

having the same structure and each for one fading state. For a particular fading

state ν, the associated subproblem is expressed as

max
α∈{0,1}

LO−E
ν (α), (3.16)

where LO−E
ν (α) = X + λQ. Note that we have dropped the index ν for the fading

state for brevity.

To solve problem (3.16), we need to compare the values of LO−E
ν (α) for α = 1

and α = 0. It follows from (3.6), (3.12) and (3.14) that when α = 1,

LO−E
ν (α = 1) =







1, if h
I+σ2 >

er0−1
P

0, otherwise
(3.17)

and when α = 0,

LO−E
ν (α = 0) = λhP + λI. (3.18)
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Thus, the optimal solution to problem (3.16) is obtained as

α∗ =







1, if h
I+σ2 >

er0−1
P

and λhP + λI < 1

0, otherwise.
(3.19)

With a given λ, problem (3.15) can be efficiently solved by solving problem

(3.16) for different fading states. Problem (P4) is then solved by iteratively solving

problem (3.15) with a fixed λ, and updating λ via a simple bisection method until

the harvested energy constraint is met with equality [62].

Next, we examine the optimal solution α∗ to problem (P4) to gain more insights

to the optimal Rx mode switching in the case without CSIT. With a given harvested

energy constraint Q̄, we define the region on the (h, I) plane consisting of all the

points (h, I) for which the optimal solution to Problem (P4) is α∗ = 1 (versus

α∗ = 0) as the optimal ID region (versus the optimal EH region). Furthermore, let

λ∗ denote the optimal dual solution to problem (P4) corresponding to the given Q̄.

Then, from (3.34) the optimal ID region for problem (P4) is expressed as

DID(λ
∗) ,

{
(
h, I
)
:

h

I + σ2
>
er0 − 1

P
, 1 > λ∗hP + λ∗I, h > 0, I > 0

}

. (3.20)

The rest of the non-negative (h, I) plane is thus the optimal EH region, i.e.,

DEH(λ
∗) , R

2
+\DID(λ

∗), (3.21)

where R2
+ denotes the two-dimensional nonnegative real domain, and A\B denotes

the set {x|x ∈ A and x 6∈ B}.
An illustration of DID(λ

∗) and DEH(λ
∗) is shown in Fig. 3.9 with Q̄ > Qmin. It is

noted that to meet the harvested energy constraint Q̄, we need to sacrifice (increase)

the outage probability for information transfer by allocating some non-outage fading

states in the region H = {(h, I) : log
(
1 + hP

I+σ2

)
≥ r0} to EH mode. An interesting

question here is to decide which portion of H should be allocated to EH mode.

It is observed from Fig. 3.9 that the optimal way is to allocate all (h, I) pairs
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Figure 3.9: Illustration of the optimal ID and EH regions for characterizing O-E
trade-offs in the case without CSIT.

satisfying 1 < λ∗hP + λ∗I or hP + I > 1
λ∗ in H to EH mode, i.e., the fading states

with sufficiently large signal plus interference total power values at Rx should be

allocated to EH mode. This is reasonable since if we have to allocate a certain

number of fading states in H to EH mode, i.e., increase the transmission outage

probability by the same amount, these fading states should be chosen to maximize

the harvested energy at Rx.

Furthermore, note that λ∗ increases monotonically with Q̄. Thus, the boundary

line λ∗hP +λ∗I = 1 that separates the optimal ID and EH regions in Fig. 3.9 will be

shifted down as λ∗ increases, and as a result DID(λ
∗) shrinks. It can be shown that

if λ∗ ≥ 1
(er0−1)σ2 , then DID(λ

∗) = Ø, which corresponds to the point (δmin = 0, Qmax)

of the O-E region shown in Fig. 3.8 (a) for the case without CSIT.

It is worth noting that if I(ν) = 0, ∀ν, then the optimal ID region reduces to

DID(λ
∗) = {h : (er0−1)σ2

P
≤ h ≤ 1

λ∗P
}, and the rest of the h-axis is thus the EH region.

In this case, the outage fading states h ∈
(

0, (e
r0−1)σ2

P

)

are all allocated to EH mode

since they cannot be used by ID mode. However, the harvested energy in the outage

states only accounts for a small portion of the total harvested energy due to the poor

channel gains. Most of the energy is harvested in the interval h ∈
(

1
λ∗P

,∞
)
, i.e.,
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when the channel power is above a certain threshold.

3.5.2 The Case With CSIT: Joint Information and Energy

Scheduling, Power Control, and Rx Mode Switching

In this subsection, we address the case with CSIT and jointly optimize the

energy and information scheduling and power control at Tx, as well as EH/ID mode

switching at Rx, as formulated in problem (P5). Let λ and β denote the nonnegative

dual variables corresponding to the average harvested energy constraint and average

transmit power constraint, respectively. Similarly as for problem (P4), problem (P5)

can be decoupled into parallel subproblems each for one particular fading state and

expressed as (by ignoring the fading index ν)

max
0≤p≤Ppeak,α∈{0,1}

LO−E
ν (p, α), (3.22)

where LO−E
ν (p, α) = X + λQ − βp. To solve Problem (3.22), we need to compare

the optimal values of LO−E
ν (p, α) for α = 1 and α = 0, respectively, as shown next.

When α = 1, it follows that

LO−E
ν (p, α = 1) =







1− βp, if p ≥ p̄

−βp, otherwise
(3.23)

where p̄ = (er0−1)(I+σ2)
h

. It can be verified that the optimal power allocation for the

ID mode to maximize (3.23) subject to 0 ≤ p ≤ Ppeak is the well-known “truncated

channel inversion” policy [89] given by

pID =







p̄, if h
I+σ2 ≥ h1

0, otherwise
(3.24)

where h1 = max{β(er0 − 1), e
r0−1
Ppeak

}.
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When α = 0, it follows that

LO−E
ν (p, α = 0) = λhp+ λI − βp. (3.25)

Define h2 = β
λ
. Then the optimal power allocation for the EH mode can be

expressed as

pEH =







Ppeak, if h ≥ h2

0, otherwise.
(3.26)

To summarize, we have

LO−E
ν (pID, α = 1) =







1− βp̄, if h
I+σ2 ≥ h1

0, otherwise;
(3.27)

LO−E
ν (pEH, α = 0) =







(λh− β)Ppeak + λI, if h ≥ h2

λI, otherwise.
(3.28)

Then, given any pair of λ and β, the optimal solution to problem (3.22) for

fading state ν can be expressed as

α∗ =







1, if LO−E
ν (pID, α = 1) > LO−E

ν (pEH, α = 0)

0, otherwise;
(3.29)

p∗ =







pID, if α∗ = 1

pEH, if α∗ = 0.
(3.30)

Next, to find the optimal dual variables λ∗ and β∗ for problem (P5),

sub-gradient based methods such as the ellipsoid method [62] can be applied. It can

be shown that the sub-gradient for updating (λ, β) is [Eν [Q
∗(ν)]−Q̄, Pavg−Eν [p

∗(ν)]],

where Q∗(ν) and p∗(ν) denote the harvested energy and transmit power at fading

state ν, respectively, after solving problem (3.22) for a given pair of λ and β. Hence,

problem (P5) is solved.

Next, we investigate further the optimal information/energy transfer scheduling
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h3

on

ID EH

onoff

1

Figure 3.10: Illustration of the optimal Tx and Rx modes for characterizing O-E
trade-offs in the case with CSIT. It is assumed that I(ν) = 0, ∀ν, and h1 ≥ h2.

and power control at Tx, as well as the optimal mode switching at Rx. For

simplicity, we only study the case of I(ν) = 0, ∀ν. From the above analysis, it

follows that there are three possible transmission modes at Tx for the case with

CSIT: “information transfer mode” with channel inversion power control, “energy

transfer mode” with peak transmit power, and “silent mode” with no transmission,

where the first transmission mode corresponds to ID mode at Rx and the second

transmission mode corresponds to EH mode at Rx. We thus define BID
on , BEH

on ,

and Boff on the non-negative h-axis as the regions corresponding to the above

three modes, respectively. Since the explicit expressions for characterizing these

regions are complicated and depend on the values of Q̄ and Pavg, in the following

we will study BID
on , BEH

on , and Boff in the special case of h1 ≥ h2 to shed some

light on the optimal design. Let λ∗ and β∗ denote the optimal dual solutions to

problem (P5). With h1 ≥ h2, it can be shown that BID
on = {h : h1 ≤ h ≤ h3},

BEH
on = {h : h > h3} and Boff = {h : h < h1}, where h3 is the largest root of the

equation: λ∗Ppeakh
2− (β∗Ppeak +1)h+ β∗(er0 − 1)σ2 = 0. The proof is omitted here

due to the space limitation.

An illustration of BID
on , BEH

on , and Boff for the case of I(ν) = 0, ∀ν, and h1 ≥ h2

is shown in Fig.3.10. Similar to the case without CSIT (cf. Fig. 3.9), the optimal

design for the case with CSIT is still to allocate the best channels to the EH mode

rather than the ID mode. However, unlike the case without CSIT, when the channel

condition is poor, the Tx in the case with CSIT will shut down its transmission to

save power.
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3.6 Rate-Energy Trade-off

In this section, we investigate the optimal resource allocation schemes to achieve

different trade-offs between the maximum ergodic capacity and maximum averaged

harvested energy for the two cases without and with CSIT by solving problems (P6)

and (P7), respectively.

3.6.1 The Case Without CSIT: Optimal Rx Mode

Switching

First, we study problem (P6) for the CSIT-unknown case to derive the optimal

switching rule at Rx between EH and ID modes for characterizing different R-E

trade-offs. Similarly as in Section 3.5.1, problem (P6) can be decoupled into parallel

subproblems each for one particular fading state ν, expressed as

max
α∈{0,1}

LR−E
ν (α), (3.31)

where LR−E
ν (α) = r + λQ with λ ≥ 0 denoting the dual variable associated with

the harvested energy constraint Q̄. Note that we have dropped the index ν of the

fading state for brevity.

To solve problem (3.31), we need to compare the values of LR−E
ν (α) for α = 1

and α = 0. When α = 1, it follows that

LR−E
ν (α = 1) = log

(

1 +
hP

I + σ2

)

. (3.32)

When α = 0, it follows that

LR−E
ν (α = 0) = λhP + λI. (3.33)
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Thus, the optimal solution to problem (3.31) is obtained as

α∗ =







1, if log
(
1 + hP

I+σ2

)
> λhP + λI

0, otherwise.
(3.34)

To find the optimal dual variable λ∗ to problem (P6), a simple bisection method

can be applied until the harvested energy constraint is met with equality. Thus,

problem (P6) is efficiently solved.

Similar to Section 3.5.1, in the following we characterize the optimal ID

region and EH region to get more insights to the optimal Rx mode switching for

characterizing different R-E trade-offs. Let λ∗ denote the optimal dual variable

corresponding to a given energy target Q̄. The optimal ID region can then be

expressed as

DID(λ
∗) ,

{
(
h, I
)
: log

(

1 +
hP

I + σ2

)

> λ∗hP + λ∗I

}

. (3.35)

The rest of the non-negative (h, I) plane is thus the optimal EH region, i.e.,

DEH(λ
∗) , R

2
+\DID(λ

∗). (3.36)

Define G(h, I) = log
(
1 + hP

I+σ2

)
− (λ∗hP + λ∗I). Fig. 3.11 gives an illustration

of the optimal ID region and EH region for a particular value of Q̄ > Qmin.

Next, we discuss the optimal mode switching rule at Rx for achieving various

R-E trade-offs in the case without CSIT. Similar to the case of O-E trade-off, for

meeting the harvested energy constraint Q̄, we need to sacrifice (decrease) the

ergodic capacity for information transfer by allocating some fading states to EH

mode. Similar to the discussions in Section 3.5, the optimal rule is to allocate fading

states with largest values of h for information transfer to EH mode. The reason is

that although fading states with good direct channel gains are most desirable for ID

mode, from (3.32) and (3.33) it is observed that the Lagrangian value of ID mode

increases logarithmically with h, while that of EH mode increases linearly with h.
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I

h

ID(λ*) EH(λ*)

Figure 3.11: Illustration of the optimal ID and EH regions for characterizing R-E
trade-offs in the case without CSIT.

As a result, when h is above a certain threshold, the value of LR−E
ν (α = 0) will be

larger than that of LR−E
ν (α = 1). In other words, when h is good enough, we can

gain more by switching from ID mode to EH mode.

It is also observed that as the value of λ∗ increases, the optimal ID region

shrinks. In the following, we derive the value of λ∗ corresponding to the point

(Rmin = 0, Qmax) in Fig. 3.8 (b). From Fig. 3.11 it can be observed that G(h, I)

has two intersection points with the h-axis, one of which is (0, 0). It can be shown

that G(h, I = 0) = log
(
1 + hP

σ2

)
− λ∗hP is a monotonically increasing function of h

in the interval
(

0,
1
λ∗

−σ2

P

]

, and decreasing function of h in the interval
(

1
λ∗

−σ2

P
,∞
)

.

Consequently, if
1
λ∗

−σ2

P
= 0, i.e., λ∗ = 1

σ2 , the other intersection point of G(h, I) with

the h-axis will coincide with the point (0, 0), and thus DID(λ
∗) = Ø if λ∗ ≥ 1

σ2 .

3.6.2 The Case With CSIT: Joint Information and Energy

Scheduling, Power Control, and Rx Mode Switching

In this subsection, we study problem (P7) to achieve different optimal R-E

trade-offs for the case of CSIT by jointly optimizing energy and information

scheduling and power control at Tx, together with the EH/ID mode switching at Rx.
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For problem (P7), let λ and β denote the nonnegative dual variables corresponding

to the average harvested energy constraint and average transmit power constraint,

respectively. Then, problem (P7) can be decoupled into parallel subproblems each

for one particular fading state and expressed as (by ignoring the fading index ν)

max
0≤p≤Ppeak,α∈{0,1}

LR−E
ν (p, α), (3.37)

where LR−E
ν (p, α) = r+ λQ− βp. To solve Problem (3.37), we need to compare the

maximum values of LR−E
ν (p, α) for α = 1 and α = 0, respectively, as shown next.

When α = 1, it follows that

LR−E
ν (p, α = 1) = log

(

1 +
hp

I + σ2

)

− βp. (3.38)

It can be shown that the optimal power allocation for this case is the well-known

“water-filling” policy [89]. Let p̃ = 1
β
− I+σ2

h
. The optimal power allocation for

information transfer can be expressed as

pID = [p̃]
Ppeak

0 , (3.39)

where [x]ba , max(min(x, b), a).

When α = 0, it follows that LR−E
ν (p, α = 0) has the same expression as that

given in (3.25), and consequently, the optimal power allocation for EH mode, pEH,

is given by (3.26).

To summarize, for ID mode, if 1
β
> Ppeak, we have

LR−E
ν (pID, α = 1) =







log(1 +
hPpeak

I+σ2 )− βPpeak,
h

I+σ2 ≥ 1
1
β
−Ppeak

log h
β(I+σ2)

−
(

1− β(I+σ2)
h

)

, β ≤ h
I+σ2 <

1
1
β
−Ppeak

0. otherwise.

(3.40)
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If 1
β
≤ Ppeak, we have

LR−E
ν (pID, α = 1) =







log h
β(I+σ2)

−
(

1− β(I+σ2)
h

)

, h
I+σ2 ≥ β

0, otherwise
(3.41)

For EH mode, the expression of LR−E
ν (pEH, α = 0) is the same as that given in (3.28).

Then, given a pair of λ and β, the optimal solution to problem (3.37) for fading

state ν can be expressed as

α∗ =







1, if LR−E
ν (pID, α = 1) > LR−E

ν (pEH, α = 0)

0, otherwise;
(3.42)

p∗ =







pID, if α∗ = 1

pEH, if α∗ = 0.
(3.43)

Next, to find the optimal dual variables λ∗ and β∗ for problem (P7), similarly as in

Section 3.5.2, the ellipsoid method can be applied. Thus, problem (P7) is efficiently

solved.

Next, we investigate further the optimal information/energy transfer scheduling

and power control at Tx, as well as the optimal mode switching rule at Rx. For

simplicity, we only consider the case of I(ν) = 0, ∀ν. Since there is no interference,

it can be observed from (3.42) and (3.43) that there are three possible transmission

modes at Tx for the case with CSIT: “information transfer mode” with water-filling

power control, “energy transfer mode” with peak transmit power, and “silent mode”

with no transmission, where the first transmission mode corresponds to ID mode at

Rx and the second transmission mode corresponds to EH mode at Rx. Similar to the

analysis in Section 3.5.2, we can define BID
on , BEH

on , and Boff on the non-negative h-axis

as the regions corresponding to the above three modes, respectively. Let λ∗ and β∗

denote the optimal dual solutions to problem (P7). For brevity, in the following

we only present the expressions of the above regions in the case of 1
β∗ ≤ Ppeak.

It can be shown that in this case, BID
on = {h : β∗σ2 ≤ h ≤ h4}, BEH

on = {h :
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Figure 3.12: Illustration of the optimal Tx and Rx modes for characterizing R-E
trade-offs in the case with CSIT. It is assumed that I(ν) = 0, ∀ν, and 1

β∗ < Ppeak.

h > h4} and Boff = {h : h < β∗σ2}, where h4 is the largest root of the equation:

log h
β∗σ2 − 1+ β∗σ2

h
−λ∗hPpeak +β∗Ppeak = 0, which can be obtained by the bisection

method over the interval (β
∗

λ∗ ,∞). The proof is omitted here due to the space

limitation.

An illustration of BID
on , BEH

on , and Boff in the case without interference and β∗ ≤
1

Ppeak
is given in Fig. 3.12. Compared with the case without CSIT (cf. Fig. 3.11), it

can be similarly observed that the channels with largest power are allocated to EH

mode. However, when the channel condition is very poor, the Tx will shut down its

transmission to save power in the case with CSIT, instead of transmitting constant

power in the case without CSIT.

3.7 Consideration of Rx Energy Consumption

In the above analysis, we have ignored energy consumptions at the Rx for

the purpose of exposition. In this section, we extend the result by considering

the Rx energy consumption. Firstly, we explain in more details the operations of

the Rx in each block and their corresponding energy consumptions as follows. At

the beginning of each block, the Rx estimates the channel and interference power

gains to determine which of the EH/ID mode it will switch to, where we assume

a constant energy Q0 being consumed. After that, suppose the Rx switches to EH

mode. Since practical energy Rxs are mostly passive [2], we assume that the energy

consumed by the energy Rx is negligibly small and thus can be ignored. However,
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if the Rx switches to ID mode, more substantial energy consumption is required [2];

for simplicity, we assume that a constant power PI incurs due to the IR when it

is switched on. In the following, we will study the effect of the above Rx power

consumptions on the optimal operation of the time-switching Rx. Due to the space

limitation, we will only study the O-E trade-off in the case without CSIT, while

similar results can be obtained for other cases.

Let QI(ν) = α(ν)PI denote the Rx power consumption due to ID mode at

fading state ν, and Q̄ denote the net harvested energy obtained by subtracting Q0

and Eν [QI(ν)] from the harvested energy Eν [Q(ν)]. To study the O-E trade-off in

the case without CSIT, we modify problem (P4) as

(P4′) : Maximize
{α(ν)}

Eν [X(ν)]

Subject to Eν [Q(ν)]− Eν [QI(ν)]−Q0 ≥ Q̄

α(ν) ∈ {0, 1}, ∀ν

Since Q0 is a constant for all fading states, without loss of generality we absorb this

term into Q̄ and assume Q0 = 0 in the rest of this chapter for convenience.

Let λ̂∗ denote the optimal dual variable corresponding to the net harvested

energy constraint. We then solve problem (P4’) in a similar way as for problem

(P4). The optimal solution of problem (P4’) can be expressed as

α∗ =







1, if h
I+σ2 >

er0−1
P

and λ̂∗hP + λ̂∗I < 1− λ̂∗PI

0, otherwise.
(3.44)

As a result, the optima ID region when the Rx energy consumption is considered

can be defined as

D̂ID(λ̂
∗) ,

{
(h, I) :

hP

I + σ2
≥ er0 − 1,

1− λ̂∗PI ≥ λ̂∗hP + λ̂∗I, h ≥ 0, I ≥ 0
}
, (3.45)
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Figure 3.13: Illustration of the optimal ID and EH regions for characterizing O-E
trade-offs with versus without Rx energy consumption in the case without CSIT.

and the rest of the plane is the optimal EH region. An illustration of the optimal

ID region and EH region is given in Fig. 3.13. By comparing it with Fig. 3.9 for the

case without considering the Rx energy consumption, we observe that to harvest

the same amount of net energy we need to allocate more fading states in (3.20) to

EH mode, i.e., allocating all (h, I) pairs satisfying 1

λ̂∗
− PI ≤ hP + I ≤ 1

λ∗ to EH

mode with PI > 0.

Fig. 3.14 shows an example of the O-E region without CSIT but considering the

Rx power consumption. The setup is the same as that for Fig. 3.8. It is observed

that the Rx power consumption degrades the O-E trade-off. However, Qmax does not

change the value because it is achieved when all the fading states are allocated to EH

mode and thus PI has no effects. Moreover, it is observed that when PI = 0.5uW,

the same maximum non-outage probability δmax as that of the case without Rx

energy consumption (i.e., PI = 0) is achieved, while when PI = 2uW, a smaller δmax

is achieved. The reason is as follows. If PI is not large enough, the energy harvested

in the outage fading states can offset the Rx power consumption in the non-outage

fading states. As a result, all the non-outage fading states can still be allocated to

ID mode. Otherwise, if PI is too large, then we have to sacrifice some non-outage
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Figure 3.14: O-E region with versus without Rx energy consumption in the case
without CSIT.

fading states to EH mode to harvest more energy for ID mode, and thus the value

of δmax is reduced.

3.8 Performance Evaluation

In this section, we evaluate the performance of the proposed optimal schemes

as compared to three suboptimal schemes (to be given later) that are designed to

reduce the complexity at Rx and thus yields suboptimal O-E or R-E trade-offs. We

assume that Rx needs to have an average harvested energy Q̄ to maintain its normal

operation. Thus, with a given Q̄, we will compute and then compare the minimum

outage probability or the maximum ergodic capacity achievable by the optimal and

suboptimal schemes.

First, we introduce three suboptimal Rx mode switching rules, namely, Periodic

Switching, Interference-Based Switching, and SINR-Based Switching as follows.

• Periodic Switching: In this scheme, Rx switches between ID mode and EH

mode periodically regardless of the CSI. For convenience, let θ with 0 ≤ θ ≤ 1
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denote the portion of time switched to EH mode; then 1−θ denotes the portion
of time for ID mode. The value of θ is determined such that the given energy

constraint Q̄ is satisfied. For example, for the O-E trade-off without CSIT, the

maximum harvested energy Qmax is given in (C.1). Thus, θ can be obtained

as θ = Q̄
Qmax

. For other trade-off cases, θ can be obtained similarly.

• Interference-Based Switching: In this scheme, we assume that Rx’s mode

switching is determined solely by the interference power I(ν). When I(ν) >

Ithr where Ithr denotes a preassigned threshold, Rx switches to EH mode;

otherwise, it switches to ID mode. The value of Ithr is determined so as to

meet the given energy constraint Q̄, and the derivation of Ithr’s for different

trade-off cases are omitted for brevity.

• SINR-Based Switching: In this scheme, the mode switching is based on the

Rx’s SINR h(ν)
I(ν)+σ2 . If h(ν)

I(ν)+σ2 > Γthr where Γthr denotes a predesigned SINR

threshold, Rx switches to ID mode; otherwise, it switches to EH mode. The

value of Γthr is determined so as to meet the given energy constraint Q̄, while

the derivation of Γthr’s for different trade-off cases are omitted due to the space

limitation.

Moreover, if CSIT is available, Tx can implement the optimal power control to

minimize the outage probability or maximize the ergodic capacity for information

transfer, according to each of the above three suboptimal Rx’s mode switching rules.

Next, we show the performance comparison of the three suboptimal schemes

with the optimal scheme given in Section 3.5.1 for delay-limited transmission without

CSIT and that given in Section 3.6.2 for no-delay-limited transmission with CSIT

in Figs. 3.15 and 3.16, respectively. The setup is as follows. The PPC is Ppeak = 20,

the noise power is σ2 = 0.5, and for the O-E case, the constant rate requirement

is r0 = 0.2 nats/sec/Hz. We further assume that h(ν) and I(ν) are independent

exponentially distributed RVs with mean 1 and 3, respectively. In addition, the

energy target at Rx is set to be Q̄ = 2.
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Figure 3.15: Outage probability comparison for delay-limited information transfer
in the case without CSIT and Q̄ = 2.
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Figure 3.16: Ergodic capacity comparison for no-delay-limited information transfer
in the case with CSIT and Q̄ = 2.
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Fig. 3.15 shows the achievable minimum outage probability of different schemes

with given Q̄ = 2 for the delay-limited information transmission without CSIT. It

is observed that in general the interference-based switching works pretty well since

its performance is similar to that of the optimal switching derived in Section 3.5.1

for all values of Pavg with only a small gap. On the contrary, the periodic switching

rule does not perform well with an outage probability loss of about 10% − 20% as

compared to the optimal switching.

Another interesting observation is on the performance of the SINR-based

switching. It is observed from Fig. 3.15 that when Pavg ≤ 1dB, the performance

of SINR-based switching is the same as that of the optimal switching. However, as

Pavg increases, its performance degrades. When Pavg > 8dB, its achievable outage

probability is even higher than that of periodic switching. The above observations

can be explained as follows. It can be seen from (C.2) in Appendix that if we view

Qmin as a function of P , the following trade-off arises: if the value of P is larger, less

number of fading states are allocated to EH mode, but more energy are harvested

in each fading state allocated to EH mode. To analyze the behavior of Qmin over

P , for the case with h(ν) ∼ exp(λ1) and I(ν) ∼ exp(λ2), we can derive an explicit

expression of Qmin as follows:

Qmin , f(P ) =− λ2e
−

λ1(e
r0−1)σ2

P P

λ2P + λ1(er0 − 1)

( er0P

λ2P + λ1(er0 − 1)

+
P

λ1
+ (er0 − 1)σ2

)
+

1

λ2
+
P

λ1
. (3.46)

It can be shown that in our setup (λ1 = 1, λ2 = 1
3
, r0 = 0.2 and σ2 = 0.5), f(P )

is a monotonically decreasing function with respect to P when 0dB ≤ P ≤ 12dB.

Moreover, when P = 1dB, f(P ) = 1.9998. Thus, if P ≤ 1dB, it follows that

Qmin ≥ Q̄ = 2. In other words, if P ≤ 1dB, the minimum outage probability with

harvested energy constraint Q̄ = 2 is achieved when Rx switches to ID mode in the

fading states H = {(h, I)| log
(
1 + hP

I+σ2

)
≥ r0} and switches to EH mode in any

subset of H̄ = R2
+\H to meet the energy constraint. Consequently, the SINR-based
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switching is optimal when P is small. When P > 1dB, the minimum harvested

energy Qmin cannot meet the energy constraint, and as shown in Section 3.5.1, the

optimal switching is to allocate some fading states with the largest value of hP + I

in H to EH mode. However, the SINR-based switching does the opposite way:

it tends to allocate the fading states with small value of h to EH mode. Thus,

when P is large and a certain number of fading states are allocated to EH mode,

the incremental harvested energy by the SINR-based switching is far from that by

the optimal switching. To recover this energy loss, more fading states need to be

allocated to EH mode. This is why the SINR-based switching results in very high

outage probability when P becomes large.

Fig. 3.16 shows the achievable maximum rate of different schemes with given

Q̄ = 2 for the no-delay-limited information transmission with CSIT. Similar to Fig.

3.15, it is observed from Fig. 3.16 that the performance of the interference-based

switching is very close to that of the optimal switching derived in Section 3.6.2, while

the performances of the other two suboptimal switching rules are notably worse.

Under certain conditions (e.g., when SNR> 8dB in Fig. 3.16), the performance of

the SINR-based switching can be even worse than that of the periodic switching.

This is as expected since although high SINR is preferred by ID, the optimal mode

switching rule derived in Section 3.6.2 is determined by both the values of h and I,

but has no direct relationship to the ratio of them, i.e., the SINR value. Thus, the

performance of the SINR-based switching cannot be guaranteed.

3.9 PS-based SWIPT in SISO Fading Channel

As shown in Fig. 3.4, there are two practical schemes at the Rx side to

implement SWIPT: TS and PS. In Sections 3.3-3.7, we have investigated the TS

scheme in details. For the completeness, we briefly introduce the PS-based SWIPT

in a SISO fading channel in this section.

As shown in Fig. 3.17, we consider a wireless SISO link consisting of one pair

of single-antenna Tx and Rx over the flat-fading channel. Note that compared to
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Figure 3.17: SISO system model.

the TS scheme shown in Fig. 3.6, we omit the aggregate interference here for the

purpose of exposition. In the following, we introduce how PS works in details. As

shown in Fig. 3.17, at Rx, the RF-band signal is received with an additive noise

nA introduced by the Rx antenna, which is assumed to be a CSCG RV with zero

mean and variance σ2
A, denoted by nA ∼ CN (0, σ2

A), in its baseband equivalent.

The RF-band signal is then fed into a power splitter [86] where the signal plus the

antenna noise is split to the IR and ER [75] separately. For each fading state ν,

the portion of signal power split to ID is denoted by α(ν) with 0 ≤ α(ν) ≤ 1,

and that to EH as 1 − α(ν), where in general α(ν) can be adjusted over different

fading states. Note that this is different from (3.1) for TS with only a binary power

allocation between ID and EH. The ID circuit introduces an additional baseband

noise nID to the signal split to the IR, which is assumed to be a CSCG RV with zero

mean and variance σ2, and independent of the antenna noise nA. As a result, the

equivalent noise power for ID is α(ν)σ2
A + σ2 at fading state ν. On the other hand,

in addition to the split signal energy, the ER can harvest (1 − α(ν))σ2
A amount of

energy (normalized by the slot duration) due to the antenna noise nA. However, in

practice, nA has a negligible influence on both the ID and EH since σ2
A is usually

much smaller than the noise power introduced by the IR, σ2, and thus even lower

than the average power of the received signal. Thus, in the rest of this chapter, we

assume σ2
A = 0 for simplicity.

Fig. 3.18 illustrates the coding and decoding scheme for PS for both the cases

without and with CSIT, which is very similar to that for TS shown in Fig. 3.7. For

simplicity, in the following we only study the R-E trade-offs for PS. Note that with
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Figure 3.18: Encoding and decoding strategies for wireless information transfer with
opportunistic EH (via dynamic PS). The height of block shown in the figure denotes
the signal power.

PS, the achievable rate for the Tx-Rx link and the harvested energy at Rx at fading

state ν are still expressed as (3.3) and (3.6), respectively, but with I(ν) = 0, ∀ν. As
a result, in the case without CSIT, the R-E region for PS is defined as

Cw/o CSIT
R−E ,

⋃

p(ν)=P,0≤α(ν)≤1,∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

, (3.47)

while in the case with CSIT, the R-E region is defined as

Cwith CSIT
R−E ,

⋃

p(ν)∈P,0≤α(ν)≤1,∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

. (3.48)

Compared with the R-E regions for TS given in (3.10) and (3.11), the only difference

lies in that α(ν) can now be an arbitrary value between 0 and 1 in the case of PS.

As a result, similar to the case of TS, the Pareto boundary of the R-E regions for
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Figure 3.19: Examples of R-E region with versus without CSIT.

the PS case without CSIT (defined in (3.47)) and with CSIT (defined in (3.48)) can

be characterized by solving (P6) and (P7) for different Q̄’s, respectively, but with

0 ≤ α(ν) ≤ 1, ∀ν. For more details of computing these regions, please refer to [94].

Fig. 3.19 shows an example of the R-E region without versus with CSIT by

the PS scheme. The setup is the same as that for Fig. 3.8 in Section 3.4. For

comparison, we also show the R-E regions by TS under the above setup with or

without CSIT. It is observed that the CSIT helps improve the rate-energy trade-off

at the Rx for both PS and TS schemes, while PS achieves significantly improved

R-E trade-offs than TS for both the cases with or without CSIT. For example, when

90% of the maximum harvested energy is achieved, the ergodic capacity is increased

by 63% for the case with CSIT and 102% for the case without CSIT. Moreover, it

is observed from Fig. 3.19 that when the average harvested energy is smaller than

4.1uW, PS for the case without CSIT even outperforms TS for the case with CSIT.

It is worth noting that with CSIT, the ergodic capacity can be increased by the

water-filling based power allocation. However, with high SNR, the rate gain by Tx

power control is negligibly small. As a result, in Fig. 3.19 the maximum ergodic
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Figure 3.20: PS for the SIMO system.

capacity (achieved by setting α(ν) = 1, ∀ν) in the case without CSIT is very close

to that in the case with CSIT.

3.10 PS and TS for SIMO Fading Channel

In this section, we extend the results for PS and TS in the SISO fading channel

to the SIMO fading channel, i.e., when the Rx is equipped with multiple antennas.

3.10.1 PS for SIMO Fading Channel

First, we study the PS scheme for the SIMO system, as shown in Fig. 3.20.

Assuming that the Rx is equipped with M > 1 antennas, then at any fading state

ν, the complex channel and the channel power gain from Tx to the mth antenna of

Rx are denoted by gm(ν) and hm(ν) = |gm(ν)|2, 1 ≤ m ≤M , respectively. Without

loss of generality, similar to the SISO case, at fading state ν, each receiving antenna

m can split 0 ≤ αm(ν) ≤ 1 portion of the received signal power to the IR, and the

remaining 1− αm(ν) portion of power to the ER.

For the IR, it is assumed that the maximal ratio combining (MRC) is applied

over the signals split from the M receiving antennas. Therefore, at fading state ν,
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Figure 3.21: Antenna switching for the SIMO system.

the achievable rate can be expressed as

r(ν) = log

(

1 +
M∑

m=1

αm(ν)hm(ν)p(ν)

σ2

)

. (3.49)

Moreover, the total harvested energy from the signals split from the M receiving

antennas at the ER can be expressed as

Q(ν) =
M∑

m=1

(1− αm(ν))hm(ν)p(ν). (3.50)

Then, with r(ν) and Q(ν) given by (3.49) and (3.50), we can define the achievable

R-E regions for the SIMO system in both the cases without and with CSIT as

Cw/o CSIT (SIMO)
R−E and CCSIT (SIMO)

R−E , respectively, similarly to (3.47) and (3.48) in

the SISO case, and characterize their boundaries by solving problems similarly to

(P6) and (P7). For more details of how to characterize the Parato boundary of

Cw/o CSIT (SIMO)
R−E and CCSIT (SIMO)

R−E , please refer to [94].
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3.10.2 TS for SIMO Fading Channel

Note that PS for the SIMO system requires multiple power splitters each

equipped at one receiving antenna to adjust the PS ratio at each fading state.

Practically, this could be very costly to implement. Therefore, we further consider a

low-complexity implementation for PS in the SIMO system with multiple receiving

antennas, namely antenna switching [2]. As shown in Fig. 3.21, at each fading

state, instead of splitting the power at each receiving antenna, the antenna switching

scheme simply connects one subset of the receiving antennas (denoted by ΦID(ν))

to IR, with the remaining subset of antennas (denoted by ΦEH(ν)) to ER, i.e.,

αm(ν) =







1, if m ∈ ΦID,

0, if m ∈ ΦEH,
1 ≤ m ≤M. (3.51)

It is worth noting that antenna switching can be shown equivalent to PS with

αm(ν) =

∑

m∈ΦID

hm(ν)p(ν)

M∑

m=1
hm(ν)p(ν)

for ∀m, ν. However, since antenna switching only requires a

switcher at each receiving antenna instead of the more costly power splitter in PS,

it is more practically favorable. Note that the Parato boundary of the R-E regions

with antenna switching in both the cases without and with CSIT can be obtained

by solving (P6) and (P7) with αm(ν)’s given in (3.51), the details of which can be

found in [94].

3.10.3 Performance Comparison between TS and PS in

SIMO Fading Channel

In the following, we provide numerical results to compare the performance of

PS and TS for the SIMO system. The SIMO channel setup is similar to that in

the SISO case for Figs. 3.8 and 3.19 with independent and identically distributed

(i.i.d.) exponentially distributed hm’s for each of the receiving antennas.

Figs. 3.22 and 3.23 compare the achievable R-E regions by the PS and

TS/antenna switching in the SIMO system without versus with CSIT. It is observed
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Figure 3.22: R-E regions of PS versus antenna switching for the SIMO system
without CSIT.
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that as compared to the case of SISO system with M = 1, a significantly enlarged

R-E region is achieved by using two receiving antennas (M = 2). It is also observed

that as M increases, the performance of the antenna switching approaches to that

of the PS. Since antenna switching is a generalization of TS for the SISO system to

the SIMO system, this observation is in sharp contrast to that in Fig. 3.19 where

there exists a significant R-E performance loss by TS as compared to PS for the

SISO system. This suggests that antenna switching for the SIMO system with a

sufficiently large M can be an appealing low-complexity implementation of PS in

practice.

3.11 Chapter Summary

In this chapter, we focused our study on the information and energy joint

scheduling problem in SWIPT systems with TS Rx, where the interference can

be utilized as a source of wireless power. Under a point-to-point flat-fading

channel setup with time-varying interference, we derived the optimal ID/EH mode

switching rules at the Rx to optimize the outage probability/ergodic capacity versus

harvested energy trade-offs. When the CSI is known at the Tx, joint optimization

of Tx information/energy scheduling and power control with the Rx ID/EH mode

switching was also investigated. Interestingly, we showed that for WIT with

opportunistic EH, the best strategy to achieve the optimal O-E and R-E trade-offs

is to allocate the fading states with the best direct channel gains to power transfer

rather than information transfer. Then, we briefly introduced the PS scheme in the

SISO fading channel. Last, we extended the results in SISO system to the SIMO

system with multiple receiving antennas, and showed that the practical antenna

switching scheme can perform very closely to the optimal PS scheme as the number of

receiving antennas increases. Our results provide useful insights to optimally design

the SWIPT system over practical wireless channels with fundamental impairments

of fading and co-channel interference.
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Physical-Layer Security in SWIPT
with MISO Beamforming

4.1 Introduction

In Chapter 3, a point-to-point SWIPT system was investigated. In this chapter,

we extend our study to the multiuser SWIPT system. To meet the practical

requirement that the ER in general operates with much higher received power as

compared to the IR, ERs usually need to be deployed in more proximity to the Tx

than IRs in the multiuser SWIPT system. However, due to the broadcast nature

of wireless channels, one critical issue arises that the messages sent to IRs can be

eavesdropped by ERs, which possess better channels from the Tx. In this chapter, we

study this new physical-layer security problem in a multiuser MISO SWIPT system

where one multi-antenna Tx sends information and energy simultaneously to an

IR and multiple ERs, each with one single antenna. Two problems are investigated

with different practical aims: the first problem maximizes the secrecy rate for the IR

subject to individual harvested energy constraints of ERs, while the second problem

maximizes the weighted sum-energy transferred to ERs subject to a secrecy rate

constraint for IR. We solve these two non-convex problems optimally by a general

two-stage procedure. First, by fixing the SINR target for ERs (in the first problem)

or IR (in the second problem), we obtain the optimal transmit beamforming and

power allocation solution by applying the technique of SDR. Then, each of the two

problems is solved by a one-dimension search over the optimal SINR target for ERs

or IR. Furthermore, for each problem, suboptimal solutions of lower complexity
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are proposed in which information and energy beamforming vectors are separately

designed from their power allocation. It is worth noting that besides the role as an

energy source for WPT as in Chapter 3, in this chapter the interference to the ERs

is intentionally generated to play the additional role of AN to facilitate the secrecy

information transmission to the IR.

4.2 Literature Review

4.2.1 Energy Beamforming and Near-Far based Scheduling

in Multiuser SWIPT Systems

In Chapter 3, two practical receiver schemes for SWIPT, namely TS and PS [2],

were introduced. Motivated by such practical designs, substantial researches have

been done to advance SWIPT to various multiuser setups, including the BC, e.g.,

[95–97], the GIC, e.g., [98–100], the relay channel, e.g., [101–106], and the OFDMA

systems, e.g., [107, 108]. Furthermore, [109, 110] propose new coding schemes for

SWIPT.

Besides the practical circuit limitation that the Rx cannot decode information

and harvest energy from the same signal, there are two new challenges in the

implementation of SWIPT in a multiuser wireless system. The first challenge is

how to enhance the efficiency for WPT, especially for the users at the edge of

the coverage area of the Tx. One appealing solution to compensate the pass loss

in SWIPT is by employing multiple antennas at the Tx. If the Tx is equipped

with multiple-antenna, efficient beamforming techniques can be applied to more

effectively focus the signal sent to desired receivers for ID and/or EH. The idea

of applying beamforming in SWIPT is first proposed in [2] under the MIMO BC

setup with one IR and one ER. Interestingly, it is shown in [2] that one energy

beam is optimal at the transmitter to maximize the energy harvested by the ER,

which is in sharp contrast to the celebrated spatial multiplexing technique used

in the point-to-point MIMO communication system in which multiple information
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beams are generally needed to maximize the transmission rate [111]. Inspired by [2],

SWIPT with multi-antenna is also studied in [95–101,112,113] under different setups.

For example, [112] extends [2] to the general case with arbitrary numbers of IRs and

ERs in TS-based SWIPT, where the weighted sum-energy harvested by the ERs

is maximized subject to IRs’ individual SINR constraints. Specifically, two types

of IRs (referred to as Type I and Type II, respectively) are considered in [112], at

which the interference caused by the pseudo-random energy signals cannot and can

be cancelled, respectively. It is shown that for Type I IRs, no dedicated energy

beam is needed in the optimal solution, while for Type II IRs, one energy beam is

in general needed. Furthermore, a similar problem is studied in [97] for the case of

co-located IRs and ERs in PS-based SWIPT, where transmit beamforming vectors

and receive PS ratios are jointly optimized to minimize the transmit power of the

AP subject to Rxs’ SINR and harvested energy constraints.

Another challenge in implementing multi-user SWIPT is the sensitivity issue

for IRs and ERs. In practice, IRs and ERs typically operate with very different

power sensitivity, e.g., −60dBm for the IR versus −10dBm for the ER. To meet

this practical requirement, a “near-far” or Rx-location based scheme for SWIPT is

proposed in [2]. As shown in Fig. 4.1, with the near-far based scheme, ERs are

deployed in more proximity to the Tx than IRs for receiving higher signal power for

more effective energy reception.

4.2.2 Physical-Layer Security

The Rx-location based transmission scheme for SWIPT gives rise to a new

information security issue since ERs, which are closer to the Tx and thus have better

channels than IRs, can more easily eavesdrop the information sent to IRs. It is thus

important to address this challenging security problem in SWIPT. Traditionally,

cryptography technique has been widely used in the higher layers of communication

protocols to achieve information secrecy. Recently, an alternative approach, namely

“physical-layer security”, has attracted significant attentions. In the following, we
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Figure 4.1: A SWIPT system with “near” ERs and “far” IRs.

provide a brief literature review on the physical-layer security research from both

the information-theoretic and signal-processing perspectives.

The information-theoretic study of the physical-layer security can be traced

back to Wyner’s seminal work [114]. Under the assumption that the channel of the

eavesdropper is a degraded version of that of the legitimate Rx, [114] shows that

the secrecy capacity for the discrete memoryless channel is the difference between

the respective mutual informations of the two users. This result is later generalized

to the non-degraded case in [115] and the SISO Gaussian wiretap channel in [116].

Motivated by these prior works, substantial information-theoretic studies have been

pursued on physical-layer security. For example, the secrecy capacity for the MISO

Gaussian wiretap channel is characterized in [117], and that for the MIMO Gaussian

wiretap channel is derived in [118–121] via different techniques. Furthermore, the

secrecy capacity for the fading wiretap channel is investigated in [122, 123]. For

more information about this area of research, please refer to [124] and the reference

therein.

Besides information-theoretic approaches, physical-layer security has also been
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extensively studied from the signal-processing perspective. For the MISO Gaussian

wiretap channel with one legitimate Rx and one eavesdropper, [125] shows that

beamforming is optimal to achieve the secrecy capacity, where the optimal

beamforming solution is also obtained. Furthermore, an alternating optimization

approach is applied in [126] to obtain the suboptimal transmit covariance solution

for the MIMO case. For the MISO Gaussian wiretap channel with multiple

eavesdroppers, [127] shows that there is an interesting equivalence between the

secrecy rate maximization problem and the spectrum sharing capacity maximization

problem in a cognitive radio network with the so-called interference temperature

constraints for the primary users [128]. Based on the results in [128], beamforming

is shown to be optimal for the secrecy rate maximization problem and the optimal

beamforming solution is efficiently obtained in [127]. Moreover, [129] extends [127]

to the case when the eavesdroppers are equipped with multiple antennas based

on the technique of semidefinite program (SDP). The secrecy rate maximization

problem in fading channel is also studied in [130–132]. It is worth noting that

the above works are under the assumption that the Tx has perfect knowledge of

the eavesdroppers’ channels, which may not be valid in practical systems since in

general the eavesdroppers are passive devices. As a result, various robust schemes

are investigated in [133–138] with only imperfect CSI of the eavesdroppers.

Furthermore, a novel approach, namely “AN-assisted secrecy information

transmission”, is proposed in [3]. In this approach, a fraction of the transmit

power is allocated to send artificially generated noise signals to reduce the amount

of information that can be decoded by the eavesdroppers. Since in practice

eavesdroppers’ channels are in general unknown at the Tx, an isotropic transmission

scheme is proposed in [3] where the power of AN is uniformly distributed in the

null space of the legitimate Rx’s channel, and the performance of this practical

approach is shown to be nearly optimal at the high SNR regime [139]. With

imperfect knowledge of eavesdroppers’ channels at the Tx, various AN-aided secrecy

transmission schemes are proposed for different channel setups [140–143]. Finally,
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Figure 4.2: A MISO SWIPT system with K “near” ERs and one “far” IR.

the MISO beamforming design problem for the AN-aided secrecy transmission under

the assumption that eavesdroppers’ channels are perfectly known at the Tx is studied

in e.g., [144–146].

4.3 System Model

In this chapter, we consider a multiuser MISO downlink system for SWIPT

over a given frequency band as shown in Fig. 4.2. It is assumed that there is one

single IR, and K ERs denoted by the set KEH = {ER1, · · · ,ERK}, where the IR is

assumed to be more distant away from the Tx than all ERs to meet their different

received power requirements. Suppose that Tx is equipped with M > 1 antennas,

while each IR/ER is equipped with one single antenna. We assume linear transmit

beamforming at Tx, where the IR is assigned with one dedicated information beam,

while the K ERs are in total assigned with d ≤ M energy beams without loss

of generality. Therefore, the complex baseband transmitted signal of Tx can be
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expressed as

x = v0s0 +
d∑

i=1

wisi, (4.1)

where v0 ∈ CM×1 and wi ∈ CM×1 denote the information beamforming vector

and the ith energy beamforming vector, 1 ≤ i ≤ d, respectively; s0 denotes the

transmitted signal for the IR, while si’s, i = 1, · · · , d, denote the energy-carrying

signals for energy beams. It is assumed that s0 is a CSCG random variable with zero

mean and unit variance, denoted by s0 ∼ CN (0, 1). Furthermore, si’s, 1 ≤ i ≤ d, in

general can be arbitrary independent random signals each with unit average power.

Since in this chapter we consider secret information transmission to the IR, the

energy signals si, 1 ≤ i ≤ d, also play the role of AN to reduce the information

rate eavesdropped by ERs [3]. As a result, similarly as [3], we assume that si’s are

i.i.d. CSCG random variables denoted by si ∼ CN (0, 1), ∀i, since the worst-case

noise distribution for the eavesdropping ERs is known to be Gaussian. Suppose

that Tx has a transmit sum-power constraint P̄ ; from (4.1), we thus have E[xHx] =

‖v0‖2 +
∑d

i=1 ‖wi‖2 ≤ P̄ .

In this chapter, we assume a quasi-static fading environment and for

convenience denote h ∈ CM×1 and gk ∈ CM×1 as the conjugated complex channel

vectors from Tx to IR and ERk, k = 1, · · · , K, respectively, where h and gk’s

are assumed to be linearly independent. Note that in the case of K > M , linear

independence in this chapter implies that for any M ×M matrix H̃ , in which the

M row vectors constitute any subset of channel vectors from hH and gH
k ’s, we have

rank(H̃) = M . Furthermore, let ρ2h = ‖h‖2/M and ρ2gk = ‖gk‖2/M denote the

average per-antenna power of the IR’s and ERk’s channels, respectively; then it is

assumed that ρ2gk > ρ2h, ∀k , to be consistent with the Rx-location based transmission

scheduling (cf. Fig. 4.2). It is worth noting that in the SWIPT system of our

interest, since ERs need to assist the Tx in obtaining their channel knowledge to

design transmit beamforming to satisfy their individual energy requirements, it is
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further assumed that h and gk’s are perfectly known at Tx. 1 The signal received

at IR is then expressed as

y0 = hHx+ z0, (4.2)

where z0 ∼ CN (0, σ2
0) denotes the additive noise at IR. Furthermore, the signal

received at ERk can be expressed as

yk = gH
k x+ zk, k = 1, · · · , K, (4.3)

where zk ∼ CN (0, σ2
k) denotes the additive noise at ERk. It is assumed that zk’s are

independent over k.

According to (4.2), the SINR at IR can be expressed as

SINR0 =
|vH

0 h|2
d∑

i=1

|wH
i h|2 + σ2

0

. (4.4)

From (4.3), the SINR at ERk (suppose that it is an eavesdropper to decode the

message for the IR instead of harvesting energy) can be expressed as

SINRk =
|vH

0 gk|2
d∑

i=1

|wH
i gk|2 + σ2

k

, k = 1, · · · , K. (4.5)

The achievable secrecy rate at IR is thus given by [147]:

r0 = min
1≤k≤K

log2 (1 + SINR0)− log2 (1 + SINRk) . (4.6)

Notice that the above achievable rate may be a conservative one in practical SWIPT

systems since it is unlikely that all ERs will not harvest energy but instead eavesdrop

information for the IR.

1This is different from transitional secrecy system where the CSI of the eavesdroppers is
imperfect at the Tx since they are passive devices.
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On the other hand, for wireless power transfer, due to the broadcast nature of

wireless channels, the energy carried by all information and energy beams, i.e., v0

and wi’s (1 ≤ i ≤ d), can all be harvested at each ER. Hence, assuming unit slot

duration, the harvested energy of ERk in each slot is given by [2]:

Ek = ζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

, 1 ≤ k ≤ K, (4.7)

where 0 < ζ ≤ 1 denotes the EH efficiency.

4.4 Problem Formulation

In this chapter, two secrecy beamforming design problems are considered as

follows. First, we aim to maximize the secrecy rate of the IR subject to individual

harvested energy constraints for all ERs. The first design problem is thus given by

(P8) : Maximize
v0,{wi}

r0

Subject to ζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

≥ Ēk, ∀k,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ ,

where Ēk denotes the harvested energy constraint for ERk. Note that (P8) is

applicable for the scenario when ERs have strict EH requirements while the IR

only requires an opportunistic information transmission.

Also we are interested in maximizing the weighted sum-energy transferred to

ERs subject to a given secrecy rate constraint for IR. Therefore, the problem is
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formulated as

(P9) : Maximize
v0,{wi}

K∑

k=1

µkζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

Subject to r0 ≥ r̄0,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ ,

where µk ≥ 0 denotes the energy weight for ERk, and r̄0 is the target secrecy rate

for IR. (P9) applies for the scenario when the IR has a stringent rate requirement

(e.g. delay-limited transmission) but ERs require opportunistic EH (with different

priorities).

Notice that there are two conflicting goals in designing the information

beamforming vector v0 for both problems (P8) and (P9). On one hand, to maximize

the harvested energy at each ER, the power of the received signal at ERk due to

the information beam, i.e., |vH
0 gk|2, is desired to be as large as possible. However,

on the other hand, from the viewpoint of secrecy rate maximization according to

(4.4)-(4.6), it follows that |vH
0 gk|2 should be minimized at each ERk to avoid any

“leakage” information. To resolve the above conflict, we need to properly design

the energy beamforming vectors wi, i = 1, · · · , d, since they not only provide direct

wireless energy transfer to ERs, but also play the important role of AN to reduce

the ERs’ SINR in (4.5) for decoding the IR’s message.

Since both the secrecy rate r0 for IR given in (4.6) and the harvested energy

Ek of ERk given in (4.7) are non-concave functions with respect to v0 and wi’s,

problems (P8) and (P9) are both non-convex in general, and thus the strong duality

does not apply for them [62]. As a result, (P8) and (P9) do not have equivalent

solutions under Lagrangian duality. In the following two sections, we address the

solutions to these two problems, respectively.
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4.5 Proposed Solutions to Secrecy Rate

Maximization

In this section, we present both optimal and suboptimal solutions to (P8). First,

we study the feasibility of this problem by setting r0 = 0 to (P8) with v0 = 0 for

given Ēk’s and P̄ , i.e,

(P8−NoIT) : Maximize
{wi}

0

Subject to ζ

(
d∑

i=1

|wH
i gk|2

)

≥ Ēk, 1 ≤ k ≤ K,

d∑

i=1

‖wi‖2 ≤ P̄ .

Note that this problem corresponds to the case when there is no information

transmission to IR, and thus wi’s play the only role of energy beams. Define

Q =
∑d

i=1wiw
H
i . Then we can reformulate (P8-NoIT) as a SDP given by

(P8− NoIT− SDP) : Maximize
Q

0

Subject to ζTr(GkQ) ≥ Ēk, 1 ≤ k ≤ K,

Tr(Q) ≤ P̄ ,

Q � 0,

where Gk = gkg
H
k . Note that if there exists a feasible solution Q∗ to

(P8-NoIT-SDP), then with d = rank(Q∗), the energy beams w∗
i , i = 1, · · · , d,

obtained by the eigenvalue decomposition (EVD) of Q∗, are also feasible

to (P8-NoIT). Thereby, the feasibility of (P8) can be checked by solving

(P8-NoIT-SDP) via existing software, e.g., CVX [69]. Without loss of generality, in

the rest of this chapter, we assume that (P8) is feasible.

Next, we consider the other special case of (P8) when there is no energy transfer
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requirement, i.e., Ēk = 0, ∀k. In this case, (P8) reduces to

(P8− NoET) : Maximize
v0,{wi}

r0

Subject to ‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ .

Note that this problem is the conventional secrecy rate maximization under a MISO

BC setup and has been solved in [144], for which the details are omitted for brevity.

We will discuss the main difference of the optimal solution to (P8) from that of

(P8-NoET) in [144] due to the additional harvested energy constraints for ERs in

Section 4.5.1 (see Remark 4.5.2).

4.5.1 Optimal Solution

In this subsection, we propose a SDR-based algorithm to solve problem (P8)

optimally by reformulating it into two sub-problems. First, similar to [127], we have

the following lemma.

Lemma 4.5.1. There exists a SINR constraint γe > 0 at all ERs such that the

following problem

(P8.1) : Maximize
v0,{wi}

|vH
0 h|2

d∑

i=1

|wH
i h|2 + σ2

0

Subject to
|vH

0 gk|2
d∑

i=1

|wH
i gk|2 + σ2

k

≤ γe, 1 ≤ k ≤ K,

ζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

≥ Ēk, 1 ≤ k ≤ K,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ ,

has the same optimal solution to (P8).

Proof. The proof follows directly by showing that for any given optimal solution
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of (P8), denoted by v∗
0 and {w∗

i }, it is also optimal for (P8.1) with γe =

max
1≤k≤K

|gH
k v

∗
0|2/

(
∑d

i=1 |gH
k w

∗
i |2 + σ2

k

)

.

Let g1(γe) denote the optimal value of problem (P8.1) with a given γe > 0.

Then, we have the following lemma.

Lemma 4.5.2. The optimal value of (P8) is the same as that of the following

problem.

(P8.2) : Maximize
γe>0

log2

(
1 + g1(γe)

1 + γe

)

.

Proof. Please refer to Appendix D.

Let γ∗e denote the optimal solution to problem (P8.2). Lemmas 4.5.1 and 4.5.2

then imply that with γe = γ∗e , (P8) and (P8.1) have the same optimal solution.

Therefore, (P8) can be solved in the following two steps: First, given any γe > 0,

we solve (P8.1) to find g1(γe); then, we solve (P8.2) to find the optimal γ∗e , which

can be done by a simple one-dimension search over γe > 0. Hence, in the rest of

this subsection, we focus on solving (P8.1).

Note that (P8.1) is still non-convex. Define S = v0v
H
0 and Q =

∑d
i=1wiw

H
i .

Then it follows that rank(S) ≤ 1 and rank(Q) ≤ d. By ignoring the rank-one

constraint on S, the SDR of problem (P8.1) can be expressed as

(P8.1− SDR) : Maximize
S ,Q

Tr(HS)

Tr(HQ) + σ2
0

Subject to Tr(GkS) ≤ γe(Tr(GkQ) + σ2
k), ∀k, (4.8)

ζ(Tr(GkS) + Tr(GkQ)) ≥ Ēk, ∀k, (4.9)

Tr(S) + Tr(Q) ≤ P̄ , (4.10)

S � 0, Q � 0, (4.11)

where H = hhH and Gk = gkg
H
k . If the optimal solution to problem (P8.1-SDR),

denoted by S∗ andQ∗, satisfies rank(S∗) = 1, then the optimal information beam v∗
0
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and the optimal d = rank(Q∗) number of energy beamsw∗
i , i = 1, · · · , d, for problem

(P8.1) can be obtained from the EVDs of S∗ and Q∗, respectively; otherwise, if

rank(S∗) > 1, then the optimal value of problem (P8.1-SDR) only serves as an upper

bound on that of problem (P8.1). In the following, we check whether rank(S∗) = 1

always holds or not for (P8.1-SDR).

(P8.1-SDR) is non-convex since its objective function is non-concave over S

and Q. However, we can apply the Charnes-Cooper transformation [148, 149] to

reformulate (P8.1-SDR) as an equivalent convex problem.

Lemma 4.5.3. Problem (P8.1-SDR) is equivalent to the following problem.

(P8.1− SDR− Eqv) : Maximize
S,Q,t

Tr(HS)

Subject to Tr(HQ) + tσ2
0 = 1, (4.12)

Tr(GkS) ≤ γe(Tr(GkQ) + tσ2
k), ∀k, (4.13)

ζ(Tr(GkS) + Tr(GkQ)) ≥ tĒk, ∀k, (4.14)

Tr(S) + Tr(Q) ≤ tP̄ , (4.15)

S � 0, Q � 0, t > 0. (4.16)

Proof. First, given any feasible solution (S,Q) to problem (P8.1-SDR), it can be

shown that with the solution (S/(Tr(HQ) + σ2
0),Q/(Tr(HQ) + σ2

0), 1/(Tr(HQ) +

σ2
0)), (P8.1-SDR-Eqv) achieves the same objective value as that of (P8.1-SDR).

Second, given any feasible solution (S,Q, t) to (P8.1-SDR-Eqv), it can be similarly

shown that with the solution (S/t,Q/t), (P8.1-SDR) achieves the same objective

value as that of (P8.1-SDR-Eqv). Therefore, (P8.1-SDR) and (P8.1-SDR-Eqv) have

the same optimal value. Lemma 4.5.3 is thus proved.

According to Lemma 4.5.3, we can obtain the optimal solution to (P8.1-SDR)

by solving (P8.1-SDR-Eqv).

Remark 4.5.1. It is worth noting that in the literature, problem (P8.1-SDR-Eqv)

belongs to the so-called “separable SDP” [150] since there are more than one design
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variables, i.e., S and Q. According to [150, Theorem 3.2], there exists an optimal

solution (S∗,Q∗) to (P8.1-SDR-Eqv) such that rank2(S∗) + rank2(Q∗) ≤ 2K +

2, where 2K + 2 denotes the number of linear constraints given in (4.12)-(4.15).

However, this is not sufficient to show rank(S∗) = 1 because K in our problem can

be arbitrarily large. As a result, the well-known result in [150] for separable SDPs

cannot be applied in our case to show the tightness of SDR in (P8.1-SDR-Eqv). It

is also worth noting that for the special case of one design variable, the tightness

condition of SDR has been widely studied in the literature [151]- [152], and the best

result known so far is for the tightness of SDR with up to four linear constraints

[152]. However, since in (P8.1-SDR-Eqv) there are two variables and 2K + 2 > 4

constraints since K > 1 in general, the results in [151]- [152] also cannot be applied

to our problem. For more information about the tightness condition of SDR, the

readers can refer to [7].

Since (P8.1-SDR-Eqv) is convex and satisfies the Slater’s condition, its

duality gap is zero [62]. Let λ, {βk}, {αk}, and θ denote the dual variables

of (P8.1-SDR-Eqv) associated with the equality constraint in (4.12), the SINR

constraints of ERs in (4.13), the harvested energy constraints of ERs in (4.14), and

the sum-power constraint in (4.15), respectively. Then the Lagrangian of problem

(P8.1-SDR-Eqv) is expressed as

L1(S,Q, λ, {βk}, {αk}, θ) = Tr(A1S) + Tr(B1Q) + ξ1t+ λ, (4.17)

where

A1 = H −
K∑

k=1

βkGk +
K∑

k=1

αkζGk − θI, (4.18)

B1 = −λH +

K∑

k=1

βkγeGk +

K∑

k=1

αkζGk − θI, (4.19)

ξ1 = −λσ2
0 +

K∑

k=1

βkγeσ
2
k −

K∑

k=1

αkĒk + θP̄ . (4.20)
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Let λ∗, {β∗
k ≥ 0}, {α∗

k ≥ 0}, and θ∗ ≥ 0 denote the optimal dual solutions to

problem (P8.1-SDR-Eqv). Then, we have the following lemma.

Lemma 4.5.4. The optimal dual solution to problem (P8.1-SDR-Eqv) satisfies that

λ∗ > 0 and θ∗ > 0 when γe > 0.

Proof. Please refer to Appendix E.

With θ∗ > 0, it follows that in the optimal solution of problem (P8.1-SDR-Eqv),

the sum-power constraint (4.15) must be satisfied with equality due to the

complementary slackness [62]. Define

D∗
1 = −λ∗H −

K∑

k=1

β∗
kGk +

K∑

k=1

α∗
kζGk − θ∗I, (4.21)

and l1 = rank(D∗
1). Furthermore, let Π1 ∈ CM×(M−l1) denote the orthogonal basis

of the null space of D∗
1, where Π1 = 0 if l1 = M , and π1,n denote the nth column

of Π1. Then based on Lemma 4.5.4, we have the following proposition.

Proposition 4.5.1. The optimal solution (S∗,Q∗, t∗) to problem (P8.1-SDR-Eqv)

satisfies the following conditions:

1. rank(Q∗) ≤ min(K,M);

2. S∗ can be expressed as

S∗ =

M−l1∑

n=1

anπ1,nπ
H
1,n + bτ 1τ

H
1 , (4.22)

where an ≥ 0, ∀n, b > 0, and τ 1 ∈ CM×1 has unit-norm and satisfies τH
1 Π1 =

0.

3. If S∗ given in (4.22) has the rank larger than one, i.e., there exists at least an

107



Chapter 4. Physical-Layer Security in SWIPT with MISO Beamforming

n such that an > 0, then the following solution

S̄
∗
= bτ 1τ

H
1 , (4.23)

Q̄
∗
= Q∗ +

M−l1∑

n=1

anπ1,nπ
H
1,n, (4.24)

t̄∗ = t∗, (4.25)

with rank(S̄
∗
) = 1 is also optimal to problem (P8.1-SDR-Eqv).

Proof. Please refer to Appendix F.

With Proposition 4.5.1, we are ready to find the optimal solution to problem

(P8.1-SDR) with a rank-one covariance matrix for S as follows. First, we

solve (P8.1-SDR-Eqv) via CVX. If the obtained solution (S∗,Q∗, t∗) satisfies that

rank(S∗) = 1, then (S∗/t∗,Q∗/t∗) will be the optimal solution to (P8.1-SDR)

according to Lemma 4.5.3. Otherwise, if rank(S∗) > 1, we can construct a

new solution (S̄
∗
, Q̄

∗
, t̄∗) with rank(S̄

∗
) = 1 according to (4.22)-(4.25). Then,

(S̄
∗
/t̄∗, Q̄

∗
/t̄∗) will be the optimal solution to (P8.1-SDR). Therefore, the rank-one

relaxation on S in (P8.1-SDR) results in no loss of optimality to (P8.1), and

given any γe > 0, the value of g1(γe) can be obtained by solving (P8.1-SDR-Eqv).

Furthermore, since rank(Q∗) ≤ min(K,M) in Proposition 4.5.1, it implies that in

the case of K < M , at most K energy beams are needed in the optimal solution of

(P8), i.e., d ≤ K.

It is worth noting that in general, Proposition 4.5.1 only guarantees the

existence of a rank-one optimal covariance solution S∗ to (P8.1-SDR-Eqv) and thus

(P8.1). One interesting question is thus under what conditions the rank-one solution

S∗ to (P8.1-SDR-Eqv) is unique. To answer this question, we define the following

two sets as

Ψ = {k|β∗
k = 0, k = 1, · · · , K}, (4.26)

Ψ̄ = {k|β∗
k > 0, k = 1, · · · , K}. (4.27)
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Moreover, define Ḡ1 = [h, {gk}]H , ∀k ∈ Ψ̄, in which the row vectors consist of the

channels of IR, i.e., hH , and a subset of ERs, i.e., gH
k ’s, whose SINR constraints

are tight in the optimal solution to (P8.1-SDR-Evq) with β∗
k > 0 due to the

complimentary slackness. Then we have the following proposition.

Proposition 4.5.2. The optimal solution (S∗,Q∗, t∗) to (P8.1-SDR-Eqv) always

satisfies that rank(S∗) = 1 if there is no non-trivial (non-zero) solution x ∈ C
M×1

to the following equations:







xH

(
∑

k∈Ψ

α∗
kζGk − θ∗I

)

x = 0,

Ḡ1x = 0.

(4.28)

Proof. Please refer to Appendix G.

Let |Ψ̄| denote the cardinality of the set Ψ̄. Based on Proposition 4.5.2, we then

have the following two corollaries.

Corollary 4.5.1. In the case of K < M − 1, if |Ψ̄| = K, i.e., the SINR constraint

(4.13) is tight for all ERs, then the optimal solution (S∗,Q∗, t∗) to (P8.1-SDR-Eqv)

always satisfies that rank(S∗) = 1.

Proof. If |Ψ̄| = K, i.e., Ψ = ∅, then we have
∑

k∈Ψ α
∗
kζGk − θ∗I = −θ∗I. Since

θ∗ > 0 according to Lemma 4.5.4, there is no non-zero solution to the equation

−θ∗xHx = 0. According to Proposition 4.5.2, Corollary 4.5.1 is thus proved.

Corollary 4.5.2. In the case of K ≥ M − 1, if |Ψ̄| ≥ M − 1, then the optimal

solution (S∗,Q∗, t∗) to (P8.1-SDR-Eqv) always satisfies that rank(S∗) = 1.

Proof. Since all the channels are assumed to be linearly independent, if |Ψ̄| ≥M−1,

then we have rank(Ḡ1) =M , and thus there is no non-zero solution to the equation

Ḡ1x = 0. According to Proposition 4.5.2, Corollary 4.5.2 is thus proved.

According to the complementary slackness, if β∗
k > 0, then the SINR constraint

for ERk must be tight in problem (P8.1-SDR-Eqv). In other words, |Ψ̄| denotes
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the number of ERs whose SINR constraints are active in the optimal solution to

(P8.1-SDR-Eqv). Therefore, Corollaries 4.5.1 and 4.5.2 imply that if |Ψ̄| ≥ min(M−
1, K), i.e., the SINR constraint in (4.13) is tight for at least min(M − 1, K) ERs,

rank(S∗) = 1 must hold for (P8.1-SDR-Eqv). Note that in our assumed system

setup, all ERs are closer to the Tx than the IR and as a result, they all have

better channels for eavesdropping the IR’s message. It is thus expected that the

SINR constraint in (4.13) should be active for all ERs with a very high probability.

Therefore, the condition given in Corollaries 4.5.1 and 4.5.2, i.e., |Ψ̄| ≥ min(M −
1, K), can be considered to be practically satisfied, under which the uniqueness of

the rank-one optimal covariance solution S∗ to (P8.1-SDR-Eqv) also holds.

Remark 4.5.2. It is worth pointing out two main differences in the optimal

beamforming solution to (P8) with versus without the EH constraints. First, consider

the case of one single ER, i.e., K = 1, in (P8). In this case, without the EH

constraint, it has been shown in [119, 121] that the secrecy capacity for the IR is

given by

Cs = max
‖v0‖2≤P̄

log2

(

1 +
|vH

0 h|2
σ2
0

)

− log2

(

1 +
|vH

0 g1|2
σ2
1

)

. (4.29)

Notice that AN is not needed in achieving Cs, which is also the optimal value of

(P8-NoET) in the case of K = 1, and the optimal beamforming solution for the IR to

achieve Cs has been obtained in [125,127]. In contrast, with the EH constraint added

to (P8), in order to deliver the required wireless energy to the ER and at the same

time achieve the maximum secrecy rate for the IR, AN is in general needed according

to Proposition 4.5.1, since it follows that rank(Q∗) ≤ 1 in the case of K = 1, i.e.,

one energy beam is in general needed to power the ER and in the meanwhile carry the

AN to interfere with it from eavesdropping the IR’s message. Second, consider the

more general case with multiple ERs, i.e., K > 1. In this case, without considering

EH constraints at ERs, (P8) reduces to (P8-NoET), which has been solved in [144].

It was shown in [144], [145] that if all the channels are linearly independent, SDR

can always obtain the unique optimal rank-one covariance (beamforming) solution
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for the IR. However, with the additional EH constraints added for ERs, it is in

general not always true that SDR yields a rank-one covariance solution for IR, as

shown in Proposition 4.5.1. However, we are able to show in Proposition 4.5.1 that

the optimal rank-one covariance solution for IR always exists and can be obtained

by a simple reconstruction of the optimal solution.

Remark 4.5.3. It is also worth noting that the optimal solution obtained for (P8)

is applicable for the special case of maximizing the IR’s rate but without considering

the secret transmission as given by the following problem.

(P8− NoSC) : Maximize
v0,{wi}

log2







1 +

|vH
0 h|2

d∑

i=1

|wH
i h|2 + σ2

0








Subject to ζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

≥ Ēk, ∀k,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ .

It is observed that (P8-NoSC) is equivalent to (P8.1) by setting γe = ∞ in the first

constraint. Therefore, similar to problem (P8.1), SDR can be applied to obtain the

optimal beamforming solution to (P8-NoSC).

4.5.2 Suboptimal Solutions

The optimal solution to (P8) proposed in Section 4.5.1 requires a joint

optimization of the information/energy beamforming vectors and their power

allocation. In this subsection, we propose two suboptimal solutions for (P8) which

can be designed with lower complexity than the optimal solution. Similar to [3],

in our proposed suboptimal solutions, the energy beams wi, i = 1, · · · , d, are all

restricted to lie in the null space of the IR’s channel h such that they cause no

interference to IR. However, the information beam v0 is aligned to the null space

of the ERs’ channels G = [g1, · · · , gK ]
H in the first suboptimal solution in order
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to eliminate the information leaked to all ERs, but to the same direction as h in

the second suboptimal solution to maximize the IR’s SINR. Note that the first

suboptimal solution is only applicable when K < M since otherwise the null space

of G is empty. In the following, we present the two proposed suboptimal solutions

in more details.

Suboptimal Solution I

Supposing that K < M , then the first suboptimal solution aims to solve

problem (P8) with the additional constraints: vH
0 gk = 0, ∀k, and wH

i h = 0, ∀i.
Consider first the information beam v0. Let the singular value decomposition (SVD)

of G be denoted as

G = UΛV H = UΛ[V̄ Ṽ ]H , (4.30)

where U ∈ CK×K and V ∈ CM×M are unitary matrices, i.e., UUH = UHU = I,

V V H = V HV = I, and Λ is a K ×M rectangular diagonal matrix. Furthermore,

V̄ ∈ CM×K and Ṽ ∈ CM×(M−K) consist of the first K and the last M − K right

singular vectors of G, respectively. It can be shown that Ṽ with Ṽ
H
Ṽ = I forms

an orthogonal basis for the null space of G. Thus, to guarantee that Gv0 = 0, v0

must be in the following form:

v0 =

√

P̃0Ṽ ṽ0, (4.31)

where P̃0 = ‖v0‖2 denotes the transmit power of the information beam, and ṽ0 is

an arbitrary (M − K) × 1 complex vector of unit norm. It can be shown that to

maximize the IR’s received power, ṽ0 should be aligned to the same direction as the

equivalent channel Ṽ
H
h, i.e., ṽ∗

0 = Ṽ
H
h/‖Ṽ H

h‖. Given that all the energy beams
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are aligned to the null space of h, the achievable secrecy rate of IR is expressed as

r
(I)
0 = log2

(

1 +
P̃0‖Ṽ

H
h‖2

σ2
0

)

. (4.32)

Next, consider the energy beam wi’s. Define the projection matrix as T =

I − hhH/‖h‖2. Without loss of generality, we can express T = X̃X̃
H
, where

X̃ ∈ C
M×(M−1) satisfies X̃

H
X̃ = I. It can be shown that X̃ forms an orthogonal

basis for the null space of hH . Thus, to guarantee that hHwi = 0, ∀i, wi must be

in the following form:

wi = X̃w̃i, i = 1, · · · , d, (4.33)

where w̃i is an arbitrary (M − 1) × 1 complex vector. In this case, the energy

harvested at ERk is thus given by

E
(I)
k = ζ

d∑

i=1

|wH
i gk|2 = ζ

(
d∑

i=1

w̃H
i G̃kw̃i

)

, 1 ≤ k ≤ K, (4.34)

where G̃k = X̃
H
GkX̃ .

It can be observed from (4.32) that to maximize the secrecy rate r
(I)
0 , P̃0 should

be as large as possible. Therefore, the optimal energy beams can be obtained by

solving the following problem.

(P8− Sub1) : Minimize
{w̃i}

d∑

i=1

‖w̃i‖2

Subject to ζ

(
d∑

i=1

w̃H
i G̃kw̃i

)

≥ Ēk, 1 ≤ k ≤ K.

Define Q̃ =
∑d

i=1 w̃iw̃
H
i . Then the SDP reformulation of (P8-Sub1) can be
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expressed as

(P8− Sub1− SDP) : Minimize
˜Q

Tr(Q̃)

Subject to ζTr(G̃kQ̃) ≥ Ēk, 1 ≤ k ≤ K.

Assuming that (P8-Sub1-SDP) is feasible, then it can be solved via CVX. Denote the

optimal solution for this problem as Q̃
∗
. Then the optimal solution to (P8-Sub1),

denoted by w̃∗
i ’s, can be obtained by the EVD of Q̃

∗
, and the corresponding optimal

energy beams can be obtained as

w∗
i = X̃w̃∗

i , 1 ≤ i ≤ d, (4.35)

where d = rank(Q̃
∗
). Furthermore, the optimal power allocation for the information

beam is given by P̃ ∗
0 = P̄ − ∑d

i=1 ‖w∗
i ‖2; by assuming P̃ ∗ > 0, the optimal

information beam is thus obtained as

v∗
0 =

√

P̃ ∗
0 Ṽ ṽ∗

0 =

√

P̄ −
d∑

i=1

‖w∗
i ‖2Ṽ Ṽ

H
h

‖Ṽ H
h‖

. (4.36)

Suboptimal Solution II

The second suboptimal solution aims to solve problem (P8) with the additional

constraints: v0 =
√

P̂0h/‖h‖ and wH
i h = 0, ∀i, where P̂0 = ‖v0‖2 denotes the

transmit power allocated to the information beam. To reduce the design complexity

in this case, we further assume that the energy beams are in the form of wi =
√

P̄ − P̂0w
∗
i /
√
∑d

i=1 ‖w∗
i ‖2, 1 ≤ i ≤ d, where w∗

i ’s are the energy beams obtained

by Suboptimal Solution I in (4.35). Therefore, the secrecy rate of the IR is expressed
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as

r
(II)
0 = min

1≤k≤K
log2

(

1 +
P̂0‖h‖2
σ2
0

)

−

log2









1 +
P̂0|hHgk|2

‖h‖2
(

d∑

i=1

((P̄ − P̂0)|gH
k w

∗
i |2/

d∑

j=1

‖w∗
j‖2) + σ2

k

)









.

(4.37)

Furthermore, the harvested energy by ERk is expressed as

E
(II)
k = ζ








P̂0|hHgk|2
‖h‖2 +

d∑

i=1

(P̄0 − P̂0)|gH
k w

∗
i |2

d∑

j=1

‖w∗
j‖2







, ∀k. (4.38)

Define the set of feasible power allocation for the information beam as P̂0 =

{P̂0|E(II)
k ≥ Ēk, 1 ≤ k ≤ K, 0 < P̂0 ≤ P̄}, which is assumed to be non-empty.

To maximize the secrecy rate of the IR subject to individual harvested energy

constraints of ERs, we need to solve the following problem.

(P8− Sub2) : Maximize
P̂0

r
(II)
0

Subject to P̂0 ∈ P̂0.

The optimal solution to (P8-Sub2), denoted by P̂ ∗
0 , can be obtained by a

one-dimension search over the set P̂0.
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4.6 Proposed Solutions to Weighted

Sum-Energy Maximization

In this section, we present the optimal solution as well as two suboptimal

solutions to (P9). Similar to (P8), we first study the feasibility of (P9) for a given

pair of r̄0 and P̄ in the following problem.

(P9− NoET) : Maximize
v0,{wi}

0

Subject to r0 ≥ r̄0

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ .

Note that this problem corresponds to the case where no energy transfer is required,

and thus wi’s play the only role of AN. The feasibility problem (P9-NoET) can be

easily solved by checking whether r̄0 is no larger than the optimal value of (P8-NoET)

in Section 4.5.1. Without loss of generality, in the rest of this chapter, we assume

that (P9) is feasible.

Next, we consider another special case of (P9) where no information

transmission is required to the IR, i.e., r̄0 = 0. In this case, v0 = 0 and thus

(P9) reduces to

(P9− NoIT) : Maximize
{wi}

K∑

k=1

µkζ

(
d∑

i=1

|wH
i gk|2

)

Subject to

d∑

i=1

‖wi‖2 ≤ P̄ .

Let ψ and η denote the maximum eigenvalue and its corresponding unit-norm

eigenvector of the matrix
∑K

k=1 µkζgkg
H
k , respectively. From [2], the optimal value

of problem (P9-NoIT) is known to be

Emax = ψP̄ , (4.39)
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which is achieved by w∗
i =

√
piη, 1 ≤ i ≤ d, for any set of pi’s satisfying pi ≥ 0,

∀i, and ∑d
i=1 pi = P̄ . In other words, the optimal solution to problem (P9-NoIT)

is to align all the energy beams to the same direction as η, a technique known as

“energy beamforming” [2].

4.6.1 Optimal Solution

In this subsection, we propose the optimal solution to (P9). Similar to (P8),

(P9) can be reformulated into two sub-problems shown in the sequel. First, we have

the following lemma (the proof of which is similar to that of Lemma 4.5.1 and is

thus omitted).

Lemma 4.6.1. There exists a SINR constraint γ0 > 0 at IR such that the following

problem

(P9.1) : Maximize
v0,{wi}

K∑

k=1

µkζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

Subject to
|vH

0 h|2
d∑

i=1

|wH
i h|2 + σ2

0

≥ γ0,

|vH
0 gk|2

d∑

i=1

|wH
i gk|2 + σ2

k

≤ 1 + γ0
2r̄0

− 1, ∀k,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ ,

has the same optimal solution to (P9).

Let g2(γ0) denote the optimal value of problem (P9.1) with a given γ0 > 0.

Then, we have the following lemma.

Lemma 4.6.2. The optimal value of problem (P9) is the same as that of the

following problem

(P9.2) : Maximize
γ0>0

g2(γ0).

117



Chapter 4. Physical-Layer Security in SWIPT with MISO Beamforming

The proof of Lemma 4.6.2 is similar to that of Lemma 4.5.2 and is thus omitted

for brevity. Let γ∗0 denote the optimal solution to problem (P9.2). Lemmas 4.6.1

and 4.6.2 then imply that with γ0 = γ∗0 , problems (P9) and (P9.1) have the same

optimal solution. Therefore, similar to (P8), problem (P9) can be solved in the

following two steps: First, given any γ0 > 0, we solve problem (P9.1) to find g2(γ0);

then, we solve problem (P9.2) to obtain the optimal γ∗0 by a one-dimension search

over γ0 > 0. In the rest of this subsection, we focus on solving (P9.1), which is

non-convex.

Define S = v0v
H
0 and Q =

∑d
i=1wiw

H
i . Then the SDR of (P9.1) can be

expressed as

(P9.1− SDR) : Maximize
S ,Q

K∑

k=1

µkζ (Tr(GkS) + Tr(GkQ))

Subject to Tr(HS) ≥ γ0
(
Tr(HQ) + σ2

0

)
, (4.40)

Tr(GkS)

γe
≤ Tr(GkQ) + σ2

k, ∀k, (4.41)

Tr(S) + Tr(Q) ≤ P̄ , (4.42)

S � 0, Q � 0, (4.43)

where H = hhH , Gk = gkg
H
k , and γe = (1 + γ0)/2

r̄0 − 1. Similar to (P8.1),

if the optimal solution to problem (P9.1-SDR), denoted by S∗ and Q∗, satisfies

rank(S∗) = 1, then the optimal information beam v∗
0 and energy beam w∗

i ’s,

i = 1, · · · , d (d = rank(Q∗)), for problem (P9.1) can be obtained from the EVDs of

S∗ and Q∗, respectively; otherwise if rank(S∗) > 1, the optimal value of problem

(P9.1-SDR) only serves as an upper bound on that of problem (P9.1). In the

following, we show that there always exists an optimal solution with rank(S∗) = 1

for (P9.1-SDR).

Since (P9.1-SDR) is convex, it can be solved by CVX. Suppose that the resulting

optimal solution (S∗,Q∗) satisfies rank(S∗) > 1. Let E∗ denote the optimal value
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of (P9.1-SDR) achieved by (S∗,Q∗). Then consider the following problem.

(P9.1− SDR− New) : Maximize
S,Q

Tr(HS)

Tr(HQ) + σ2
0

Subject to (4.41), (4.42), (4.43), (4.44)

K∑

k=1

µkζ(Tr(GkS) + Tr(GkQ)) ≥ E∗. (4.45)

It can be shown that with (S∗,Q∗), the resulting value of (P9.1-SDR-New) is γ0.

Let (S̄
∗
, Q̄

∗
) denote the optimal solution to (P9.1-SDR-New), and γ̄0 be the optimal

value. Then we have γ̄0 ≥ γ0. As a result, with the new solution (S̄
∗
, Q̄

∗
), all the

constraints in (P9.1-SDR), i.e, (4.40)-(4.43), are satisfied, and the optimal value E∗

is still achieved. Therefore, the optimal solution to (P9.1-SDR-New) is also optimal

to (P9.1-SDR). Furthermore, similar to (P8.1-SDR) (see Proposition 4.5.1), it can

be shown that there always exists a rank-one optimal covariance solution for S to

(P9.1-SDR-New). Therefore, we can conclude that there always exists an optimal

solution (S∗,Q∗) to (P9.1-SDR) with rank(S∗) = 1, and there is no loss of optimality

for (P9.1) due to the rank relaxation on S in (P9.1-SDR).

At last, similar to Proposition 4.5.2 and Corollaries 4.5.1 and 4.5.2 in Section

4.5.1, it can be shown that if |Ψ̄| ≥ min(M − 1, K), where Ψ̄ is still given in (4.27)

but with β∗
k ’s denoting the optimal dual solution to (P9.1-SDR) corresponding to

(4.41), rank(S∗) = 1 is always true for (P9.1-SDR).

Remark 4.6.1. It is worth noting that in [112], a similar problem to (P9) has been

studied without considering the secret information transmission to IRs, which in

the case of one single IR under the same setup of this chapter is equivalent to the
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following simplified problem of (P9).

(P9 −NoSC) : Maximize
v0,{wi}

K∑

k=1

µkζ

(

|vH
0 gk|2 +

d∑

i=1

|wH
i gk|2

)

Subject to log2







1 +

|vH
0 h|2

d∑

i=1

|wH
i h|2 + σ2

0








≥ r̃0,

‖v0‖2 +
d∑

i=1

‖wi‖2 ≤ P̄ ,

where r̃0 denotes the given rate constraint for IR (without secrecy consideration).

Note that an important result shown in [112, Proposition 3.1] is that the optimal

solution to problem (P9-NoSC) should satisfy that w∗
i = 0, ∀ 1 ≤ i ≤ d, i.e., no

energy beam is needed, while only the information beam v0 is adjusted for achieving

the information rate target for IR and yet maximizing the weighted sum-energy

transferred to ERs. However, with the newly introduced secrecy rate constraint in

(P9), energy beams are in general needed in the optimal solution, since they help

generate AN to reduce the information rate eavesdropped by ERs, especially when

ERs have better channels than IR from the Tx.

4.6.2 Suboptimal Solutions

Similarly as for (P8), in this subsection, we propose two suboptimal solutions for

(P9), which can be designed with lower complexity. Similar to the two suboptimal

solutions proposed in Section 4.5.2 for (P8), in the following we assume that the

energy beams wi (i = 1, · · · , d) in (P9) are all in the null space of the IR’s channel

h. Furthermore, the information beam v0 is aligned to the null space of the ERs’

channels G = [g1, · · · , gK ]
H in the first suboptimal solution, while it is in the

same direction as h for the second suboptimal solution. Again, the first suboptimal

solution is only applicable when K < M . In the following, we present the two

suboptimal solutions in more details.
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Suboptimal Solution I

Supposing that K < M , then the first suboptimal solution aims to solve

problem (P9) with the additional constraints: vH
0 gk = 0, ∀k, and wH

i h = 0, ∀i.
To satisfy the above constraints, v0 and wi’s should be in the form of (4.31) and

(4.33), respectively. Furthermore, with ṽ∗
0 = Ṽ

H
h/‖Ṽ H

h‖, the secrecy rate of the

IR under this scheme is given in (4.32). Since all ERs cannot harvest energy from

the information beam, to maximize the weighted sum-energy transferred to ERs, P̃0

should be set to the smallest power to make r
(I)
0 = r̄0. It thus follows

P̃ ∗
0 =

(2r̄0 − 1)σ2
0

‖Ṽ H
h‖2

. (4.46)

To summarize, in this suboptimal solution, we have

v∗
0 =

√

P̃ ∗
0 Ṽ ṽ∗

0 =

√

(2r̄0 − 1)σ2
0Ṽ Ṽ

H
h

‖Ṽ H
h‖2

. (4.47)

Notice that the harvested energy of ERk under this suboptimal solution is in

the form of (4.34). Thus, to find the optimal w̃∗
i ’s, we need to solve the following

problem.

(P9 − Sub1) : Maximize
{w̃i}

K∑

k=1

µkζ

(
d∑

i=1

w̃H
i G̃kw̃i

)

Subject to

d∑

i=1

‖w̃i‖2 ≤ P̄ − P̃ ∗
0 .

Note that in the above, we have assumed P̄ ≥ P̃ ∗
0 . Let ψ̃ and η̃ denote the maximum

eigenvalue and its corresponding unit-norm eigenvector of the matrix
∑K

k=1 µkζG̃k,

respectively. Similar to problem (P9-NoIT), it can be shown that the optimal value

of problem (P9-Sub1) is Ẽmax = ψ̃(P̄ − P̃ ∗
0 ), which is achieved by w̃∗

i =
√
p̃iη̃,

1 ≤ i ≤ d, for any set of p̃i’s satisfying
∑d

i=1 p̃i = P̄ − P̃ ∗
0 . In practice, it is

preferable to send only one energy beam to minimize the complexity of beamforming
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implementation at the Tx; thus, we have

w∗
i =







√

P̄ − P̃ ∗
0 X̃η̃, if i = 1,

0, otherwise.
(4.48)

Note that unlike Suboptimal Solution I for (P8) shown in (4.35), one single energy

beam is sufficient in this case.

Suboptimal Solution II

The second suboptimal solution aims to solve problem (P9) with the additional

constraints: v0 =
√

P̂0h/‖h‖ and wH
i h = 0, ∀i, where P̂0 = ‖v0‖2 denotes the

transmit power of the information beam. Similar to (4.48), it can be shown that the

optimal energy beams should be in the following form:

wi =







√

P̄ − P̂0X̃η̃, if i = 1,

0, otherwise.
(4.49)

Next, we derive the optimal power allocation for P̂0, denoted by P̂ ∗
0 . It can be shown

that the secrecy rate of IR in this scheme is given by

r
(II)
0 = min

1≤k≤K
log2

(

1 +
P̂0‖h‖2
σ2
0

)

− log2

(

1 +
P̂0|hHgk|2

‖h‖2((P̄ − P̂0)|η̃HX̃
H
gk|2 + σ2

k)

)

.

(4.50)

Define the set of feasible power allocation as P̂0 = {P̂0|r(II)0 ≥ r̄0, 0 < P̂0 ≤ P̄}, which
is assumed to be non-empty. To maximize the weighted sum-energy transferred to

ERs subject to the secrecy rate constraint of the IR, we need to solve the following
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power allocation problem.

(P9− Sub2) : Maximize
P̂0

K∑

k=1

µkζP̂0|hHgk|2

‖h‖2 +
K∑

k=1

µkζ(P̄ − P̂0)|η̃HX̃
H
gk|2

Subject to P̂0 ∈ P̂0.

Let P̂min
0 and P̂max

0 denote the minimal and maximal elements in the set P̂0,

respectively. Then it can be shown that the optimal power allocation to (P9-Sub2)

is given by

P̂ ∗
0 =







P̂max
0 , if

K∑

k=1
µk|h

H
g

k
|2

‖h‖2
≥

K∑

k=1

µk|η̃HX̃
H
gk|2,

P̂min
0 , otherwise.

(4.51)

4.7 Numerical Example

In this section, we provide numerical examples to validate our results. In the

first numerical example, we consider a MISO SWIPT system in which Tx is equipped

with M = 4 antennas, and there are K = 3 ERs.2 We assume that the signal

attenuation from Tx to all ERs is 30dB corresponding to an equal distance of 1 meter,

i.e., ρ2gk = −30dB, 1 ≤ k ≤ K, and that from Tx to the IR is 70dB corresponding

to a distance of 20 meters, i.e., ρ2h = −70dB. The channel vectors gk’s and h

are randomly generated from i.i.d. Rayleigh fading with the respective average

power values specified as above. We set P̄ = 1Watt (W) or 30dBm, ζ = 50%, and

σ2
k = −50dBm, 0 ≤ k ≤ K. We also set µk = 1, 1 ≤ k ≤ K in (P9); thus, the

sum-energy harvested by all ERs is considered.

First, we illustrate the two-stage optimization approach to solve (P8) and (P9),

as proposed in Section 4.5.1 and Section 4.6.1, respectively. Figs. 4.3(a) and 4.3(b)

show the plot of log2

(
1+g1(γe)
1+γe

)

over γe > 0 in (P8) with the individual harvested

energy constraints Ēk’s of ERs set as 1mW, ∀k, and the plot of g2(γ0) over γ0 > 0

2Note that K < M in this example; thus, Suboptimal Solution I for (P8) or (P9) is feasible.
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Figure 4.3: Uniqueness of γ∗e in (P8.2) and γ∗0 in (P9.2).
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in (P9) with the secrecy rate constraint of IR r̄0 set as 4bps/Hz, respectively. It

is observed that in this particular setup (and many others used in our simulations

for which the results are not shown here due to the space limitation) there is only

one single maximum point in each of the two plotted functions; however, we are

unable yet to verify analytically the concavity or even the quasi-concavity of these

two functions.

Next, similar to Chapter 3, we adopt the R-E region, which consists of all the

achievable (secrecy) rate and harvested energy pairs for a given sum-power constraint

P̄ , to compare the performances of the optimal and suboptimal solutions for (P8)

proposed in Section 4.5. Note that in general the R-E region in our setup is a

(K + 1)-dimension region given one IR and K ERs. For simplicity, in the following

we assume that all ERs have identical energy constraints, denoted by E ≥ 0; thus,

the R-E region reduces to a two-dimension region, which is given by

CR−E (P8) ,
⋃

‖v0‖2+
d∑

i=1
‖wi‖2≤P̄

{

(R,E) : R ≤ r0, E ≤ Ek, ∀k
}

, (4.52)

where r0 and Ek are given in (4.6) and (4.7), respectively. Note that by solving

(P8) with Ēk = Ē, ∀k, and by changing the values of Ē, we can characterize the

boundary of the resulting R-E region defined in (4.52).

Fig. 4.4 compares the R-E regions achieved by different information and energy

beamforming solutions for (P8). It is observed that the optimal solution achieves the

best R-E trade-offs. Moreover, Suboptimal Solution II is observed to perform better

than Suboptimal Solution I, especially when the achievable secrecy rate for the IR

is large. However, it is worth noting that Suboptimal Solution I has the lowest

complexity among the three proposed solutions. Notice that for this suboptimal

solution, closed-form expressions of the optimal information/energy beamforming

vectors and their power allocation are given in (4.36) and (4.35), respectively.

Furthermore, with no information leakage to ERs with the designed information

beamforming, i.e., vH
0 gk = 0, ∀k, there is no need to design a special codebook for
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Figure 4.4: Achievable R-E region by the proposed solutions for (P8).

the secrecy information signal at the Tx [119, 121].

Next, we compare the performances of the optimal and suboptimal solutions

proposed for (P9) in Section 4.6. In this case, the R-E region in general consists of

all pairs of the achievable (secrecy) rate for IR and the harvested sum-energy for

ERs for a given sum-power constraint P̄ . Specifically, the R-E region is defined as

CR−E (P9) ,
⋃

‖v0‖2+
d∑

i=1
‖wi‖2≤P̄

{

(R,E) : R ≤ r0, E ≤
K∑

k=1

Ek

}

. (4.53)

Note that by solving problem (P9) with different values of r̄0, we can characterize

the boundary of the resulting R-E region defined in (4.53).

Fig. 4.5 shows three R-E regions achieved by different information and energy

beamforming schemes for (P9). It is observed that similar to Fig. 4.5, the optimal

solution achieves the best R-E trade-offs, while Suboptimal Solution II works better

than Suboptimal Solution I. From the results in both Figs. 4.4 and 4.5, it is inferred
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Figure 4.5: Achievable R-E region by the proposed solutions for (P9).

that in general it is more beneficial to align the information beam v0 to the same

direction as the IR’s channel h rather than to the null space of ERs’ channels in

both (P8) and (P9).

In the second numerical example, we consider a MISO SWIPT system as shown

in Fig. 4.6, where there areK = 7 ERs and the IR is equipped withM = 9 antennas.

In this example, we use the far-field uniform linear antenna array [153] to model the

channels. Specifically,

h = ρh × [1, ejθ0, · · · , ej(M−1)θ0]T , (4.54)

gk = ρgk × [1, ejθk , · · · , ej(M−1)θk ]T , k = 1, · · · , K, (4.55)

where ρ2h = −70dB, ρ2gk = −30dB, 1 ≤ k ≤ K, and θn = −2πd sin(φn)
λ

, n =

0, 1, · · · , K, with d denoting the spacing between successive antenna elements at

the Tx, λ denoting the carrier wavelength, and φ0 denoting the direction of the

IR to Tx, and φn for that of ERn to Tx, 1 ≤ n ≤ K. We set d = λ
2
, and
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, 13π

9
}. The other parameters are set the

same as those in the first numerical example.

In this example, we activate one more ER at each time (from ER1 to ER7).

Fig. 4.7 shows the secrecy rate achieved by our proposed optimal and suboptimal

algorithms for (P8) against the number of active ERs in the system with Ēk =

0.8mW, ∀k. It is observed that with more ERs (or eavesdroppers) activated, the

achievable secrecy rate for the IR is reduced for all proposed algorithms. It is also

observed that when ER5 is activated, there is a drastic decrease in the secrecy rate

achieved for the IR. This is because as shown in Fig. 4.6, ER5 is aligned in a direction

very close to that of the IR (φ5 ≈ φ0) but with higher channel power due to shorter

distance from the Tx. Furthermore, it is observed that after ER5 is activated, both

Suboptimal Solutions I and II achieve zero secrecy rate. The reason is as follows.

Note that for both of these two suboptimal solutions, the energy beams wi’s are

aligned into the null space of h, i.e., wH
i h = 0, ∀i. However, in this example the

direction of g5 is very close to that of h. It thus follows that wH
i g5 ≈ 0, ∀i. In other

words, the energy beams cannot play the role of AN to reduce ER5’s SINR in this

case. Moreover, since ER5 has better channel than the IR, the achievable secrecy
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Figure 4.7: The secrecy rate of the IR over the number of active ERs with given
per-ER energy constraint, Ēk = 0.8mW.

rate becomes close to zero.

Fig. 4.8 shows the sum-energy harvested by all ERs by the proposed optimal

and suboptimal algorithms for (P9) against the number of active ERs with r̄0 =

4bps/Hz. It is observed that with more ERs, the sum-energy harvested is increased

in all cases. Furthermore, it is observed that when K ≤ 4, the performance of both

Suboptimal Solutions I and II is very close to that of the optimal solution. However,

after ER5 is activated, both of the suboptimal solutions achieve zero sum-energy

because the secrecy rate constraint cannot be satisfied in (P9) due to the same

reason as given for Fig. 4.7. From the results in Figs. 4.7 and 4.8, it is inferred

that even in the challenging scenario where one ER is aligned in a direction very

close to (but not the same as) the IR, our proposed optimal algorithm still achieves

good performance thanks to the jointly optimized beamforming and power allocation

design. However, in this case both the two suboptimal solutions cannot perform well.
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Figure 4.8: The sum-energy harvested by ERs over the number of active ERs with
given secrecy rate constraint for the IR, r̄0 = 4bps/Hz.

4.8 Chapter Summary

In this chapter, we addressed the important problem of physical-layer security

in a multiuser downlink SWIPT system. Under the MISO setup with one single

IR and multiple ERs, the joint information and energy beamforming design was

investigated to maximize the secret information transmission rate to the IR and

yet guarantee the target amount of energy transferred to ERs, or vice verse. We

proposed efficient algorithms to optimally solve the formulated non-convex design

problems by applying the technique of SDR, and furthermore showed that SDR has

no loss of optimality by exploiting the particular structures of the studied problems.

Two suboptimal beamforming designs with lower complexity were also presented,

and their performances were compared against that of the optimal solution in terms

of achievable (secrecy) rate-energy trade-off. Our results revealed important new

insights on how to optimally manage the interference in a multiuser SWIPT system

since it plays both the roles of an energy-carrying signal for wireless energy transfer

as well as an AN to enable the secrecy information transmission.
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Conclusion and Future Work

5.1 Conclusion

This thesis has made a comprehensive and in-depth investigation of the optimal

resource allocation strategies in wireless communication and SWIPT systems by

applying assorted optimization techniques. We summarize the main contributions

of this thesis as follows.

• In Chapter 2, we proposed a novel approach to solve the challenging WSR

maximization problem in the GIC with information transmission only. By

maximizing the WSR in the achievable rate region of the GIC directly, our

proposed algorithms achieved the global optimality of the non-convex WSR

maximization problems in SISO-IC, SIMO-IC and MISO-IC, respectively,

via combining the techniques of monotonic optimization and rate profile.

The proposed methodologies are also useful for solving other performance

optimization problems in general multiuser communication systems with

non-convex performance trade-off region among the users.

• In Chapter 3, we proposed a novel idea to opportunistically utilize the

wireless interference to harvest energy in SWIPT systems. We obtained

the optimal mode switching rule between ID and EH at the receiver for a

point-to-point SWIPT system over a narrowband flat-fading channel subject

to time-varying co-channel interference. Moreover, in the case with CIST,
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we also obtained the optimal transmit power allocation jointly with the

optimal information and energy transmission scheduling. Our results provide

fundamental design principles for SWIPT subject to time-varying channel and

co-channel interference.

• In Chapter 4, we investigated a new security problem in multiuser SWIPT

systems from a physical-layer signal processing perspective. Building upon the

celebrated AN approach, we proposed a new transmission scheme by utilizing

the AN signal also for WPT. Under this new scheme, the optimal design of

joint information and energy beamforming at the transmitter was obtained

based on the technique of SDR. Our studies provide promising new principles

for designing SWIPT systems with secrecy communications.

5.2 Future Work

We highlight several future work directions in the following which we deem

important and worthy of further investigations by extending the results presented

in this thesis.

For WSR maximization in the GIC, it will be interesting to improve the

convergence speed of the algorithms proposed in Chapter 2, especially when the

number of users is large. Furthermore, the WSR maximization in MIMO-IC is

not yet addressed in Chapter 2. Future work is needed to solve this more general

problem by properly extending the solutions for the SINR feasibility problems when

both the transmitters and receivers are equipped with multiple antennas. Last but

not least, as shown in Fig. 2.7, in general there is a significant performance gap

between the existing suboptimal algorithms and the proposed optimal algorithm

for the case of MISO-IC. Therefore, how to reduce this gap with more efficient

suboptimal algorithms is another direction for future work.

For the joint information and energy scheduling for SWIPT in the point-to-point

fading channel studied in Chapter 3, the signal and interference are both assumed
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to be within the same narrow band. It is thus interesting to investigate how to

manage the interference in a SWIPT system operating over a broadband, which

may in general span over multiple narrow bands each with or without the co-channel

interference. Furthermore, it is also promising to extend our results in Chapter 3

for the single-user setup to the more general multi-user setups.

For the security problem in SWIPT, for the purpose of exposition only one single

IR is assumed in Chapter 4. How to extend the results to the more general case

with multiple IRs is thus worth pursuing in future work. Furthermore, only physical

layer security techniques are applied in Chapter 4. How to combine this approach

with cryptography techniques in the higher communication protocol layers to further

improve the secrecy communication performance in SWIPT systems is thus another

interesting problem to investigate in the future.

Last but not least, as an initial attempt on studying the SWIPT systems, this

thesis is mainly aimed to address fundamental issues in SWIPT such as interference

management strategies. To focus our study, we make some ideal assumptions such

as perfect channel knowledge in the thesis. It is thus interesting to study the effects

of imperfect channel estimation on practical SWIPT systems in future.
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Appendix A

Proof of Lemma 2.6.1

Note that under the sum power constraint, a similar result to this lemma has

been shown in [154]. However, the proof in [154] is not directly applicable in our

case since in (2.36), there is an individual power constraint rather than the sum

power constraint. Thus, we need to provide a new proof for this lemma shown as

follows.

Suppose that there are two solutions to (2.36), denoted by (p̄, C(W̄ )) and

(p̄′, C ′(W̄ )). Define a sequence of θk’s as θk =
p̄′
k

p̄k
, ∀k. We can re-arrange θk’s in a

decreasing order by

θt1 ≥ θt2 ≥ · · · ≥ θtK . (A.1)

Since according to (2.32) we have p̄i = p̄′i = Pmax
i , it follows that θi = 1 must hold.

Hence, θt1 ≥ θi = 1. Moreover, in (A.1), at least one strict inequality must hold

because otherwise θk = 1, ∀k, which then implies that only one unique solution to

(2.36) exists.
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Next, we derive the SINR balancing value of user t1 as follows:

C ′
t1(W̄ ) =

p̄′t1‖w̄H
t1ht1,t1‖2

w̄H
t1(
∑

j 6=t1

p̄′jht1,jh
H
t1,j + σ2

t1I)w̄t1γ̄t1

=
p̄t1‖w̄H

t1ht1,t1‖2
w̄H

t1(
∑

j 6=t1

p̄jht1,jh
H
t1,j

θj
θt1

+ σ2
t1I

1
θt1

)w̄t1γ̄t1

>
p̄t1‖w̄H

t1ht1,t1‖2
w̄H

t1(
∑

j 6=t1

p̄jht1,jh
H
t1,j + σ2

t1I)w̄t1γ̄t1

= Ct1(W̄ ). (A.2)

Based on (2.31), we have

C ′(W̄ ) = C ′
t1(W̄ ) > Ct1(W̄ ) = C(W̄ ). (A.3)

Similarly, we can show that C ′
tK(W̄ ) < CtK(W̄ ), which yields

C ′(W̄ ) = C ′
tK(W̄ ) < CtK(W̄ ) = C(W̄ ). (A.4)

Since (A.3) and (A.4) contradict to each other, there must be one unique solution

to (2.36). Lemma 2.6.1 is thus proven.
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Price-Based Algorithm for
SIMO-IC and MISO-IC

In this part, we provide the details of the suboptimal price-based algorithms

for Problems (P1.2) in SIMO-IC and (P1.3) in MISO-IC, which can be viewed as

extensions of the ADP algorithm proposed in [28] for SISO-IC. In ADP, each user

announces a price that reflects its sensitivity to the interference from all other users,

and then updates its transmit power by maximizing its own utility offset by the

sum interference price received from all the other users. It was shown in [28] that

ADP can converge to the solution that has the same Karush-Kuhn-Tucker (KKT)

conditions as that of the WSR maximization problem, and is thus guaranteed to

achieve at least a locally optimal solution. In the following, we extend the ADP

algorithm in [28] to SIMO-IC and MISO-IC, but without the proof of convergence.

Price-Based Algorithm for SIMO-IC

In this part, we extend the ADP or price-based algorithm to SIMO-IC.

First, without loss of generality, we substitute the optimal MMSE-based receive

beamforming vectors for wk’s into the SINR expression given in (2.4). Then, given

any transmit power vector p, the achievable rate for user k can be expressed as

Rk(p) = log2(1 + γSIMO−IC
k )

= log2

(

1 + pkh
H
k,k(
∑

j 6=k

pjhk,jh
H
k,j + σ2

kI)
−1hk,k

)

. (B.1)

Thus in Problem (P1.2), we only need to find the optimal transmit power solution,

without the need to consider the receive beamforming optimization.

Next, we present the KKT optimality conditions of Problem (P1.2) with the
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objective function specified in (B.1). For any locally optimal power solution p∗,

there exist unique Lagrangian multipliers λ = (λ1, · · · , λK) such that for any k =

1, · · · , K,

µk
∂Rk(p

∗)

∂pk
+
∑

j 6=k

µj
∂Rj(p

∗)

∂pk
= λk, (B.2)

λk(P
max
k − pk) = 0, (B.3)

λk ≥ 0. (B.4)

Now, for the price-based algorithm, define the price charged by receiver j to

transmitter k, which indicates the sensitivity of the achievable rate of receiver j

subject to the power change of transmitter k, as

πj,k = −∂Rj(p)

∂pk
=

pj‖hH
j,j(
∑

i 6=j

pihj,ih
H
j,i + σ2

jI)
−1hj,k‖2

ln 2

(

1 + pjh
H
j,j(
∑

i 6=j

pihj,ih
H
j,i + σ2

jI)
−1hj,j

) . (B.5)

Consequently, we see that the KKT conditions in (B.2), (B.3) and (B.4) are both

necessary and sufficient for the optimal solution to the following problem for user k,

k = 1, · · · , K:

Maximize
pk

µk log2

(

1 + pkh
H
k,k(
∑

j 6=k

pjhk,jh
H
k,j + σ2

kI)
−1hk,k

)

− pk
∑

j 6=k

µjπj,k

Subject to pk ≤ Pmax
k , (B.6)

where pj and πj,k are fixed, ∀j 6= k.

Similar to the ADP algorithm in [28], we propose the following algorithm to

update the price and transmit power iteratively for all users in SIMO-IC. Specifically,

at each iteration the algorithm does the following:

1. Each user announces its price obtained using (B.5) to all the other users;
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2. Each user updates its transmit power by solving Problem (B.6), i.e.,

pk =

[
µk

ln 2
∑

j 6=k

µjπj,k
− 1

hH
k,k(
∑

j 6=k

pjhk,jh
H
k,j + σ2

kI)
−1hk,k

]Pmax
k

0

, ∀k, (B.7)

where [x]ba = max(min(x, b), a).

Because Problems (P1.2) and (B.6) possess the same KKT optimality

conditions, when the above algorithm converges to a set of optimal solutions to

problems in (B.6) for all k’s, this set of solutions will be at least a locally optimal

solution to Problem (P1.2).

Price-Based Algorithm for MISO-IC

Next, we extend the ADP algorithm to MISO-IC. For any given transmit

beamforming vectors V , we first define the price for user k as

πk = −∂Rk

∂Γk
=

‖hH
k,kvk‖2

ln 2(‖hH
k,kvk‖2 + Γk + σ2

k)(Γk + σ2
k)
, (B.8)

where Γk =
∑

j 6=k

‖hH
k,jvj‖2 is the total interference power at the kth receiver. Let

Sk = vkv
H
k , ∀k. Given fixed interference prices and beamforming vectors of all

other users, the following problem is to be solved by any user k for its own transmit

beamforming update:

Maximize
Sk

µk log2(1 +
hH

k,kSkhk,k

Γk + σ2
k

)−
∑

j 6=k

µjπjh
H
k,jSkhj,k

Subject to Tr(Sk) ≤ Pmax
k

Sk � 0, (B.9)

where Sk � 0 means that Sk is a positive semi-definite matrix. Similar to the

previous case of SIMO-IC, we can show that the KKT conditions of Problem (B.9)

with k = 1, · · · , K are also those of Problem (P1.3) by replacing vkv
H
k with Sk, ∀k.

138



Appendix B. Price-Based Algorithm for SIMO-IC and MISO-IC

However, Problem (P1.3) requires that the optimal solution S∗
k in Problem (B.9) to

be rank-one, which is not guaranteed a priori. Thus, Problem (B.9) is a relaxation

of the original WSR maximization problem (P1.3) without considering the rank-one

constraint.

Interestingly, it was recently shown in [34] that the optimal solution to Problem

(B.9) is always of rank-one, i.e., S∗
k = vkv

H
k . Hence, we propose a price-based

algorithm for MISO-IC in a similar way to that for SIMO-IC. When this algorithm

converges to a set of optimal solutions to problems in (B.9) with k = 1, · · · , K, this

set of solutions are all rank-one and thus corresponds to at least a locally optimal

solution to Problem (P1.3).

For this price-based algorithm for MISO-IC, the interference price can be

iteratively updated according to (B.8). As for the update of beamforming vectors, we

need to solve Problem (B.9) for each user k. It can be verified that Problem (B.9)

is convex with strictly feasible points, and thus it can be solved by the standard

Lagrangian duality method [62] with a zero duality gap. The details of solving

Problem (B.9) can be found in Appendix I of [34], and are thus omitted here.
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Characterizations of the Vertex
Points in Figs. 3.8 (a) and (b)

In this appendix, we characterize the vertex points on the boundary of the O-E

region and R-E region (cf. Fig. 3.8) for both the cases with and without CSIT.

O-E region without CSIT

As shown in Fig. 3.8 (a), Qmax is given by

Qmax = Eν [h(ν)P + I(ν)], (C.1)

when ρ(ν) = 0, ∀ν, i.e., EH mode is active all the time at Rx and thus the resulting

non-outage probability δmin = 0 (corresponding to the outage probability equal to

1). Moreover, Qmin and δmax are given by

Qmin =

∫

ν:log
(
1+ h(ν)P

I(ν)+σ2

)
<r0

(
h(ν)P + I(ν)

)
fν(h, I)dν, (C.2)

δmax = Pr

{

log

(

1 +
h(ν)P

I(ν) + σ2

)

≥ r0

}

. (C.3)

Note that Qmin is the minimum average harvested energy at Rx when the maximum

non-outage probability (or minimum outage probability) is achieved. Since the set

for the outage fading states is non-empty in (C.2), Qmin 6= 0 in general.

O-E region with CSIT

As shown in Fig. 3.8 (a), the point (δmin, Qmax) is achieved when all the fading

states are allocated to EH mode, i.e., ρ(ν) = 0, ∀ν. Thus, the resulting non-outage
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probability is δmin = 0. Moreover, the harvested energy can be expressed as Q =

Eν [h(ν)p(ν)]+Eν [I(ν)], where the first term is the energy harvested from the signal,

while the second term is due to the interference. To maximize the first term under

both the PPC and APC, the optimal power control policy is to transmit at peak

power at the fading states with the largest possible h’s. Let ĥ1 be the threshold that

satisfies

∫

ν:h(ν)≥ĥ1

Ppeakfν(h, I)dν = Pavg. (C.4)

Then Qmax can be expressed as

Qmax =

∫

ν:h(ν)≥ĥ1

h(ν)Ppeakfν(h, I)dν + Eν [I(ν)]. (C.5)

To obtain δmax, we need to minimize the outage probability under both the

APC and PPC without presence of the energy harvester. It can be shown that the

optimal power allocation to achieve the maximum non-outage probability can be

expressed as the well-known truncated channel inversion policy [91], [89]:

p∗(ν) =







(er0−1)(I(ν)+σ2)
h(ν)

, if h(ν)
I(ν)+σ2 ≥ ĥ2.

0, otherwise
(C.6)

where ĥ2 = max{β(er0 − 1), e
r0−1
Ppeak

} with β denoting the optimal dual variable

associated with the APC that satisfies Eν [p
∗(ν)] = Pavg. Then the maximum

non-outage can be expressed as

δmax = Pr

{
h(ν)

I(ν) + σ2
≥ ĥ2

}

. (C.7)

On the other hand, Qmin is achieved when Rx harvests energy at all the outage
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fading states. Let ĥ3 denote the value of h that satisfies

Pavg =

∫

ν:h(ν)≥ĥ3,
h(ν)

I(ν)+σ2≤ĥ2

Ppeakfν(h, I)dν +

∫

h(ν)

I(ν)+σ2 ≥ĥ2

p∗(ν)fν(h, I)dν. (C.8)

Then the minimum harvested energy can be expressed as

Qmin =

∫

ν:h(ν)≥ĥ3,
h(ν)

I(ν)+σ2≤ĥ2

hPpeakfν(h, I)dν +

∫

ν:
h(ν)

I(ν)+σ2≤ĥ2

I(ν)fν(h, I)dν. (C.9)

Note that if
∫

h(ν)

I(ν)+σ2 ≥ĥ2

p∗(ν)fν(h, I)dν ≥ Pavg, then ĥ3 = ∞, i.e., no power is available

for energy transfer at Tx. Thus, Qmin is only due to the interference power. Since

the set for the outage fading states is non-empty, Qmin 6= 0 since the receiver can at

least harvest energy from the interference in the outage fading states.

R-E region without CSIT

As shown in Fig. 3.8 (b), the maximum harvested energy Qmax is achieved

when all the fading states are allocated to EH mode, i.e., ρ(ν) = 0, ∀ν, and thus

has the same expression as that given in (C.1). Moreover, Rmin = 0. On the other

hand, the ergodic capacity is maximized when all the fading states are allocated to

ID mode, i.e., ρ(ν) = 1, ∀ν. Consequently, Qmin = 0 and

Rmax = Eν

[

log

(

1 +
h(ν)P

I(ν) + σ2

)]

. (C.10)

R-E region with CSIT

As shown in Fig. 3.8 (b), similar to the case of O-E region with CSIT, the

maximum harvested energy Qmax is given in (C.5), and Rmin = 0. As for the point

(Rmax, Qmin), to maximize the ergodic capacity under both the APC and PPC, the

optimal transmit power policy is the well-known “water-filling“ power allocation
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given by [89]

p∗(ν) =

[
1

λ∗
− I(ν) + σ2

h(ν)

]Ppeak

0

, (C.11)

where [x]ba , max(min(x, b), a), and λ∗ is the optimal dual variable associated with

Pavg satisfying Eν [p
∗(ν)] = Pavg. Thus, the maximum rate is given by

Rmax = Eν

[

log

(

1 +
h(ν)p∗(ν)

I(ν) + σ2

)]

. (C.12)

Then, for the fading states satisfying h(ν)
I(ν)+σ2 < λ∗, Rx can harvest energy from the

interference. Thus the minimum harvested energy is in general non-zero and can be

expressed as

Qmin =

∫

ν: h(ν)

I(ν)+σ2<λ∗

I(ν)fν(h, I)dν. (C.13)
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Proof of Lemma 4.5.2

Let e∗ and {v∗
0, {w∗

i }} denote the optimal value and its attaining solution to

(P8), respectively. According to Lemma 4.5.1, with γ∗e = max
1≤k≤K

|gH
k
v∗

0|
2

d∑

i=1
|gH

k
w∗

i |
2+σ2

k

, we

have g1(γ
∗
e) =

|h
H
v∗

0|
2

d∑

i=1
|h

H
w∗

i |
2+σ2

0

, and it thus follows for (P8.2) that log2

(
1+g1(γ∗

e )
1+γ∗

e

)

= e∗.

Thus, we have

max
γe>0

log2

(
1 + g1(γe)

1 + γe

)

≥ e∗. (D.1)

On the other hand, given any γ̄e > 0 in problem (P8.1), let v̄∗
0 and {w̄∗

i } denote

the corresponding optimal solution, and SINR∗
0 and SINR∗

k be given in (4.4) and

(4.5), respectively, by substituting the above optimal solution. Therefore, we have

e∗
(a)

≥ log2(1 + SINR∗
0)− max

1≤k≤K
log2(1 + SINR∗

k)

(b)

≥ log2(1 + g1(γ̄e))− log2(1 + γ̄e), ∀γ̄e > 0, (D.2)

where (a) follows since v̄∗
0 and {w̄∗

i } is a feasible solution to (P8), and (b) is true

since SINR∗
0 = g1(γ̄e) and SINR∗

k ≤ γ̄e, ∀k. From (D.1) and (D.2), it follows that

max
γe>0

log2

(
1+g1(γe)
1+γe

)

= e∗. Lemma 4.5.2 is thus proved.
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Proof of Lemma 4.5.4

First, we show that λ∗ > 0. Let A∗
1, B

∗
1, and ξ∗1 be given in (4.18), (4.19),

and (4.20), respectively, by substituting the optimal dual solution of problem

(P8.1-SDR-Eqv). To ensure that the Lagrangian in (4.17) is bounded from above

such that the dual function exists, it follows that

A∗
1 � 0, B∗

1 � 0, ξ∗1 ≤ 0. (E.1)

According to (4.17), the dual problem of (P8.1-SDR-Eqv) can be expressed as

(P8.1− SDR− Eqv −Dual) : Minimize
λ,{βk},{αk},θ

λ

Subject to A1 � 0, B1 � 0, ξ1 ≤ 0,

βk ≥ 0, αk ≥ 0, ∀k, θ ≥ 0.

Since the duality gap between (P8.1-SDR-Eqv) and its dual problem

(P8.1-SDR-Eqv-Dual) is zero, λ∗ is equal to the optimal value of (P8.1-SDR-Eqv).

Therefore, we have λ∗ > 0.

Next, we show that θ∗ > 0 by contradiction. Define φ = {k|(β∗
k)

2 + (α∗
k)

2 >

0, k = 1, · · · , K}. In the following, we discuss two cases in each of which we show

that (E.1) cannot be true if θ∗ = 0.

The case of φ = ∅

Suppose that θ∗ = 0. In this case, we have A∗
1 = H � 0, which contradicts to

(E.1). Thus, in this case, θ∗ > 0 must be true.
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The case of φ 6= ∅

Suppose that θ∗ = 0. Then in this case, we have B∗
1 = −λ∗H∗ +

∑

k∈φ(β
∗
kγe +

α∗
kζ)Gk. Since

∑

k∈φ(β
∗
kγe + α∗

kζ)Gk � 0 and λ∗ > 0, to guarantee that B∗
1 � 0, it

requires that any x ∈ CM×1 that lies in the null space of H must also be in the null

space of Gk, ∀k ∈ φ; however, this cannot be true since all the channels h and gk’s

are assumed to be linearly independent. Thus, in this case, we also conclude that

θ∗ > 0.

By combining the above two cases, it follows that θ∗ > 0. Lemma 4.5.4 is thus

proved.
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Proof of Proposition 4.5.1

The KKT conditions of problem (P8.1-SDR-Eqv) are expressed as

A∗
1S

∗ = 0, B∗
1Q

∗ = 0. (F.1)

First, we show that rank(Q∗) ≤ min(K,M). The proof directly follows if

K ≥ M since rank(Q∗) ≤ M = min(K,M). Thus, in the following we focus on the

case of K < M .

Lemma F.0.1. Let Y and Z be two matrices of the same dimension. It then holds

that rank(Y +Z) ≥ rank(Y )− rank(Z).

Proof. It is known that rank(Y ) + rank(Z) ≥ rank(Y + Z) if Y and Z are of

the same dimension. Then we have rank(Y + Z) + rank(−Z) ≥ rank(Y ). Since

rank(Z) = rank(−Z), Lemma F.0.1 is proved.

Define C∗
1 = −λ∗H − θ∗I. Since according to Lemma 4.5.4 we have λ∗ > 0

and θ∗ > 0, it follows that C∗
1 ≺ 0 and thus rank(C∗

1) = M . Furthermore, B∗
1 can

be expressed as B∗
1 = C∗

1 +
∑K

k=1(β
∗
kγe +α∗

kζ)Gk. As a result, according to Lemma

F.0.1 we have

rank(B∗
1) ≥ rank(C∗

1)− rank

(
K∑

k=1

(β∗
kγe + α∗

kζ)Gk

)
(a)

≥ M −K, (F.2)

where (a) is due to the fact that rank
(
∑K

k=1(β
∗
kγe + α∗

kζ)Gk

)

≤ K. According to

(F.1), Q∗ must lie in the null space of B∗
1. Therefore, if K < M , rank(Q∗) ≤

M − rank(B∗
1) ≤ K. By combining the above two cases of K ≥ M and K < M ,
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it follows that rank(Q∗) ≤ min(K,M). The first part of Proposition 4.5.1 is thus

proved.

Next, we prove the second part of Proposition 4.5.1. Define

D∗
1 = −λ∗H −

K∑

k=1

β∗
kGk +

K∑

k=1

α∗
kζGk − θ∗I = B∗

1 −
K∑

k=1

(1 + γe) β
∗
kGk. (F.3)

Then we have

A∗
1 = D∗

1 + (1 + λ∗)H . (F.4)

Define l1 = rank(D∗
1). If l1 = M , then we can conclude that rank(A∗

1) ≥ M − 1

according to (F.4) and Lemma F.0.1. However, if rank(A∗
1) =M , then according to

(F.1) it follows that S∗ = 0, which cannot be the optimal solution to (P8-SDR-Eqv).

Therefore, we have rank(A∗
1) = M − 1 and thus S∗ = bτ 1τ

H
1 if l1 = M , where τ 1

spans the null space ofA∗
1. Next, we consider the case where D

∗
1 is not full-rank, i.e.,

l1 < M . In this case, let Π1 ∈ CM×(M−l1) with ΠH
1 Π1 = I denote the orthogonal

basis for the null space of D∗
1, i.e., D

∗
1Π1 = 0. Let π1,n denote the nth column of

Π1, 1 ≤ n ≤M − l1. Then we have

πH
1,nA

∗
1π1,n = πH

1,n (D
∗
1 + (1 + λ∗)H)π1,n = (1 + λ∗)|hHπ1,n|2, 1 ≤ n ≤M − l1.

(F.5)

Since A∗
1 � 0 and 1 + λ∗ > 0, it follows that |hHπ1,n|2 = 0, ∀n, or

HΠ1 = 0. (F.6)

As a result, we have

A∗
1Π1 = (D∗

1 + (1 + λ∗)H)Π1 = 0. (F.7)
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Moreover, according to (F.4) and Lemma F.0.1, we have

rank(A∗
1) ≥ rank(D∗

1)− rank ((1 + λ∗)H) = l1 − 1. (F.8)

Let Ω1 denote the orthogonal basis for the null space of A∗
1, it then follows that

rank(Ω1) =M − rank(A∗
1) ≤M − l1 + 1. (F.9)

Next, we show that rank(Ω1) = M − l1 + 1. According to (F.7), Π1 spans M − l1

orthogonal dimensions of the null space of A∗
1, i.e., rank(Ω1) ≥ M − l1. Suppose

that rank(Ω1) = M − l1; then we have Ω1 = Π1. According to (E.1) and (F.1),

S∗ can be expressed as S∗ =
∑M−l1

n=1 anπ1,nπ
H
1,n, where an ≥ 0, ∀n. However, in

this case, no information is transferred to IR since according to (F.6), π1,n’s all lie

in the null space of H . As a result, according to (F.9) there exists only one single

subspace spanned by τ 1 ∈ CM×1 of unit norm, which lies in the null space of A∗
1,

i.e., A∗
1τ 1 = 0, and is orthogonal to the span of Π1, i.e., Π

H
1 τ 1 = 0. To summarize,

we have

Ω1 = [Π1 τ 1], (F.10)

and thus rank(Ω1) = M − l1 + 1. Moreover, according to (E.1) and (F.1),

any optimal solution S∗ to problem (P8.1-SDR-Eqv) can be expressed as S∗ =
∑M−l1

n=1 anπ1,nπ
H
1,n + bτ 1τ

H
1 , where an ≥ 0, ∀n, and b > 0. The second part of

Proposition 4.5.1 is thus proved.

Last, we prove the third part of Proposition 4.5.1. Suppose that (S∗,Q∗, t∗) is

an optimal solution to problem (P8.1-SDR-Eqv), where S∗ is given in (4.22) and

rank(S∗) > 1. Then consider the new solution (S̄
∗
, Q̄

∗
, t̄∗) given in (4.23)-(4.25). It
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can be shown that with this new solution we have

Tr(HS̄
∗
) = Tr

(

H

(

S∗ −
M−l1∑

n=1

anπ1,nπ
H
1,n

))

= Tr(HS∗), (F.11)

Tr(HQ̄
∗
) + t̄∗σ2

0 = Tr

(

H

(

Q∗ +

M−l1∑

n=1

anπ1,nπ
H
1,n

))

+ t∗σ2
0 = Tr(HQ∗) + t∗σ2

0 = 1,

(F.12)

Tr(GkS̄
∗
) ≤ Tr(GkS

∗) ≤ γe(Tr(GkQ
∗) + t∗σ2

k) ≤ γe(Tr(GkQ̄
∗
) + t̄∗σ2

k), ∀k,
(F.13)

ζ(Tr(GkS̄
∗
) + Tr(GkQ̄

∗
)) = ζ(Tr(GkS

∗) + Tr(GkQ
∗)) ≥ t̄∗Ēk, ∀k, (F.14)

Tr(S̄
∗
) + Tr(Q̄

∗
) = Tr(S∗) + Tr(Q∗) ≤ t̄∗P̄ , (F.15)

S̄
∗ � 0, Q̄

∗ � 0, t̄∗ > 0. (F.16)

(F.11) indicates that the new solution (S̄
∗
, Q̄

∗
, t∗) can achieve the same optimal

value of (P8.1-SDR-Eqv), while (F.12)-(F.16) imply that the new solution satisfies

all the constraints of (P8.1-SDR-Eqv). Thus, (S̄
∗
, Q̄

∗
, t∗) is also an optimal solution

to (P8.1-SDR-Eqv), with rank(S̄
∗
) = 1.

Proposition 4.5.1 is thus proved.
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Proof of Proposition 4.5.2

According to Proposition 4.5.1, if l1 = rank(D∗
1) = M , then S∗ = bτ 1τ

H
1 , and

it thus follows that rank(S∗) = 1 is always true for (P1.1-SDR-Eqv). Moreover,

since B∗
1 � 0 and −∑K

k=1(1 + γe)β
∗
kGk � 0, we have D∗

1 � 0 according to (F.3).

As a result, to show rank(D∗
1) = M , it is sufficient to verify that the maximum

eigenvalue of D∗
1 is negative, i.e., D∗

1 ≺ 0. Therefore, in the following we show by

contradict that if there is no non-zero solution to the equations given in (4.28), then

the maximum eigenvalue of D∗
1 must be negative.

Since D∗
1 � 0, its maximum eigenvalue can be either zero or negative. Suppose

that the maximum eigenvalue of D∗
1 is zero. Then there exists at least an x ∈

CM×1 6= 0 such that xHD∗
1x = 0. Since B∗

1 � 0 and −∑K
k=1(1 + γe)β

∗
kGk � 0,

according to (F.3) we have

xHB∗
1x = 0, (G.1)

xH

K∑

k=1

(1 + γe)β
∗
kGkx = 0. (G.2)

From (G.2), we have

xHGkx = 0, if k ∈ Ψ̄, (G.3)

where Ψ̄ is given in (4.27). Note that (G.3) is equivalent to Gkx = 0, ∀k ∈ Ψ̄, since

Gk � 0. Moreover, since A∗
1 � 0 and λ∗ > 0 according to Lemma 4.5.4, it follows
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from (F.4) that

xHHx = 0. (G.4)

Note that (G.4) is equivalent to Hx = 0 since H � 0. Thus, from (G.1)-(G.4), we

have

xHB∗
1x = xH

(

−λ∗H +
K∑

k=1

β∗
kγeGk +

K∑

k=1

α∗
kζGk − θ∗I

)

x

= xH

(
∑

k∈Ψ

α∗
kζGk − θ∗I

)

x = 0. (G.5)

To summarize, if there is no non-zero solution x ∈ CM×1 to the equations

given in (4.28), then (G.3), (G.4) and (G.5) cannot be satisfied at the same time,

and it thus follows that the maximum eigenvalue of D∗
1 cannot be zero, i.e.,

rank(D∗
1) = M . Then according to Proposition 4.5.1, rank(S∗) = 1 is always

true for (P1.1-SDR-Eqv). Proposition 4.5.2 is thus proved.
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