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Summary

With a wide range of applications, spatio-temporal data analysis has been a

timely and popular research topic in recent years. In this thesis, we investigate

problems concerning dynamic spatio-temporal data analysis. The term “dynamic”

can be interpreted from two perspectives. First, the underlying model generating

spatio-temporal data is dynamic. Second, the analysis requirement is dynamic

with respect to users’ diverse preferences.

Data analysis methods can be categorized into two classes: the eager learn-

ing approach and the lazy learning approach. However, none of the existing ap-

proaches are able to achieve eligible performance that is suitable for dynamic

spatio-temporal data analysis. Most of the studies in data analysis focus on the

eager learning approach. Nevertheless, as we will expound later, the eager learn-

ing approach fails to take the “dynamic” factor into account, which precludes its

successful application in dynamic spatio-temporal data analysis. Although the

literature on the lazy learning approach has shed some light on dynamic spatio-

temporal data analysis, the lazy learning approach has been subjected to consid-

erable criticism due to its undesirable performance.

The main aim of this thesis is to propose a new approach to dynamic spatio-

temporal data analysis. In this regard, after carefully cogitating how the features

of the eager learning and lazy learning approaches could influence analysis per-

formance, we perceived, to our pleasure, that their strong points and weak points

are just complementary. Hence, it would be highly imperative and persuasive to

adopt their strong points to contrive a new approach. Consequently, we devised

a novel “semi-lazy” learning approach which can take the “dynamic” factor into

account in a similar fashion to the lazy learning approach and still keep good

analysis functions like the eager learning approach.

Based on the semi-lazy learning approach, we exploited three concrete dy-
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namic spatio-temporal data analysis problems, which are trajectory prediction,

time series prediction and itinerary recommendation respectively. In summary,

the specific objectives of this thesis are to:

• give an extensive study of the “semi-lazy” learning approach to dynamic

spatio-temporal data analysis. The principal intuition behind inventing the

semi-lazy learning approach is to empower the lazy learning approach to

achieve eager learning-like analysis functions, while still preserving the ben-

efits of both the lazy learning and eager learning approaches. We employ

this approach to investigate three spatio-temporal data analysis problems,

which are trajectory prediction, time series prediction and itinerary recom-

mendation respectively.

• propose a semi-lazy approach to trajectory prediction in dynamic environ-

ments that builds a prediction model on the fly, using dynamically selected

reference trajectories. A trajectory prediction demonstration prototype has

been built to show the effectiveness and efficiency of our method.

• devise a time series prediction system for many sensors by exploiting the

semi-lazy learning approach. Our system reveals a complete solution for

tackling difficulties in time series prediction due to the dynamic properties

of sensor data.

• design a dynamic itinerary recommendation system based on the semi-lazy

learning approach. Instead of generating ready-to-use itineraries in a pre-

processing stage like the eager learning methods do, our method is to dy-

namically recommend itineraries based on users’ preferences on the fly.
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Chapter 1

Introduction

1.1 Background and Motivation

With the rapid development of ubiquitous computing, wireless sensor networks and

mobile computing technologies, spatio-temporal data has been pervasive in real-

life applications. Thus, in order to exploit broad applications of this new dataset,

spatio-temporal data analysis becomes an increasingly important research theme.

1.1.1 What is spatio-temporal data

Examples of spatio-temporal data include temperature readings for sensors, trajec-

tories for people or animals , travelling locations for tourists and even videos from

surveillance cameras. Formally, we give the following definition of spatio-temporal

data (an illustration of the definition is shown in Figure 1.1):

Definition 1.1.1 (Spatio-temporal data). The spatio-temporal data is a collec-

tion of sequences of timestamped “atoms”, where one “atom” records information

observed at a specific timestamp.

In this thesis, according to different types of the “atom”, we also label different

types of spatio-temporal data with the following names:
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atom

time axist1 t2 t3 t4 t5 time axis t1 t2 t3 t4 t5

File: std_illus

Figure 1.1: An illustration of the spatio-temporal data. If the “atom” is location,
we name the spatio-temporal data as trajectory ; if the “atom” is observation value,
we name it as time series; if the “atom” is places of interest (POI), we name it as
itinerary. We also use time sequence to refer the general case of the spatio-temporal
data

Definition 1.1.2 (Specific spatio-temporal data type).

• Trajectory, which is a sequence of timestamped locations. Since a sequence

of locations defines the movement of an object, we also name the trajectory

as “path” to be consistent with the idiomatic expression.

• Time series, which is a sequence of timestamped observation values from

a sensor (or more generally, an unknown system).

• Itinerary, which is a sequence of timestamped places of interest (POIs).

An itinerary represents a detailed plan for a journey.

Hereafter, for convenience, we also use “time sequence” (or “sequence” for

short) to represent the general case of the spatio-temporal data.

1.1.2 Research problems and motivation

Since the spatio-temporal data analysis covers many problems, in this thesis, we

narrow down our research into three concrete and practical problems correspond-

ing to the data types in Definition 1.1.2, which are:

• Trajectory prediction, which is to predict a sequence of locations of a

moving object in future time. For more details, please refer to Section 1.4.1

2



and Chapter 3.

• Time series prediction, which is to predict reading values of sensors in

future time. For more details, please refer to Section 1.4.2 and Chapter 4.

• Itinerary Recommendation, which is to recommend a set of itineraries

to satisfy users’ traveling demands. For more details, please refer to Section

1.4.3 and Chapter 5.

The main objective of spatio-temporal data analysis is to make “predictions”,

which can further facilitate and benefit users’ decisions. According to the predic-

tive analysis target, we can expound the spatio-temporal data analysis from two

perspectives: data-oriented analysis and user-oriented analysis. Trajectory pre-

diction and time series prediction are considered data-oriented analysis problems,

while itinerary recommendation is considered a user-oriented analysis problem.

The objective of the data-oriented analysis is to predict the next, or sever-

al, “atoms” of a time sequence in the future time. The data-oriented predictive

analysis can provide perceptive insight for the potential associations of a hid-

den system generating the spatio-temporal data. Hence, this predictive analy-

sis output can guide users to make better decisions for candidate transactions.

Taking the trajectory prediction as an example, if we can predict that a car

will pass a restaurant, the restaurant advertisement can be sent to the driver

of the car ahead of time. In this case, trajectory prediction can improve the

quality of actionable advertisement. Moreover, trajectory prediction still has

many other applications such as navigation, traffic management, personal posi-

tioning, epidemic prevention [74], event prediction [107], anomaly detection [23;

78] and even spatial query optimization [30].

The objective of the user-oriented analysis is to predict the preference that

the user would give to an item of the spatio-temporal data, i.e. recommenda-

tion. The user-oriented predictive analysis can reduce the difficulty that users

encounter when making decisions, especially for inexperienced users with abun-
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dant, and even inexhaustible, decision choices. For example, there are many pos-

sible locations to visit, whereas travelers want to maximize their travel experi-

ence without wandering around. This makes the decision of itineraries for a trip

very complicated and troublesome. In this regard, the itinerary recommendation

can significantly facilitate users’ travel to an unfamiliar place [106; 32; 129; 138;

130].

1.2 Challenge of Dynamic Spatio-Temporal Data Anal-

ysis

While the spatio-temporal data carries abundant information and knowledge which

is useful for a variety of applications, the new data analysis approach dedicated

to spatio-temporal data deserves in-depth treatment due to the unique “dynamic”

property of the spatio-temporal data.

The “dynamic” property of the spatio-temporal data analysis can be inter-

preted from the perspectives of data-oriented analysis and user-oriented analysis.

First, from the perspective of data-oriented analysis, the process generating the

spatio-temporal data is dynamic. The spatio-temporal data is usually generated

by observing some complicated and sophisticated systems which may be evolv-

ing with time, affected by many irregular external incidents, and influenced by

stochastic internal factors. For example, in urban space, the movement of objects

(e.g., cars) is affected by some uncertain and aperiodic factors such as traffic sig-

nals, road congestion and weather conditions; therefore, the trajectories of cars in

urban space are surely dynamic.

Second, from the perspective of user-oriented analysis, the analysis requirement

on the spatio-temporal data is also dynamic. For an analysis task, different users

may have contrary requirements with the same application. Moreover, even for

the same person, preferences may be varied with different timings and scenarios.

For example, to recommend itineraries to travellers, we should consider the user’s

4



preferred places, duration and traveling budget.

Much energy has been devoted to developing new data mining technologies for

spatio-temporal data analysis, which can be categorized into two classes: the eager

learning approach and the lazy learning approach. The eager learning approach

puts significant effort into a training process to construct machine learning models,

and then uses these models for analysis tasks when the need arises. The represen-

tative eager learning models include the Support Vector Machine (SVM), Artificial

Neural Network (ANN) and Decision Tree – just to name a few. In contrast, the

lazy learning approach simply stores the entire data set and diverts all efforts to

the analysis phase, conducting some simple computations on the “nearest neigh-

bour instances” which are similar to the submitted query. The representative lazy

learning models include k-nearest neighbors (kNN) regression, and memory-based

Collaborative Filtering (for recommendation analysis).

1.2.1 Eager learning approach

The eager learning approach has drawn much attention for spatio-temporal data

analysis in recent years. However, there exist several difficulties for this approach

due to the “dynamic” property of the spatio-temporal data.

First of all, eager learning models may suffer from the concept drifting prob-

lem. The training process for the eager learning models usually demands a high

time cost, up to several hours, and even days. However, the inherent dynamic

property of the spatio-temporal data dooms the expiration of the machine learn-

ing models over time, which is a well-known problem that is also called “concept

drifting”. If concept drifting occurs, it can render a model useless, wasting all the

computational effort made to construct the model. Certain portions of the model

might not even be utilized before it is rendered useless by concept drift.

Second, the eager learning approach is bounded to the information loss prob-

lem, which may result in a high potential risk of overfitting or underfitting mod-

els. The eager learning models must commit to a single global hypothesis model
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that covers the whole spatio-temporal data domain, while the historical spatio-

temporal data is completely abandoned after the training process. However, the

spatio-temporal data is dynamic and complicated in spirit. Hence, for the eager

learning models, the loss of some localizable and detailed information of the data

is inevitable, which may be related to the analysis request. In addition, according

to a recent study [132], the local behaviour is very important for the convergence

of machine learning models.

1.2.2 Lazy learning approach

With the expounding of a spectrum of eager learning analysis technologies in

the data mining community, the value of the lazy learning approach has been

overlooked in the past few years. One possible reason is that the lazy learning

approach incurs a high cost in answering queries with great storage requirements.

Nevertheless, this concern should be assuaged with the development of modern

architectures for parallel (e.g. Graphics Processing Units [41]) and distributed

(e.g. Hadoop platform [120]) computing. Another obstacle hindering the wide

use of lazy learning models is the lack of powerful predictive functions, such as

probability confidence and theoretical bounded errors of the result.

However, the lazy learning approach also has several unique features that

are promising for dynamic spatio-temporal data analysis. In contrast to the

eager learning approach, the inherent “concept drifting” problem can be easily

sidestepped for the lazy learning approach by simply updating the database. The

lazy learning approach can also fully utilize historical data. While the eager learn-

ing approach strives to learn a single global model that is only acceptable on

average, the lazy learning approach herds many local models to form an implic-

it global approximation over the whole dataset, which can capture locality and

achieve high accuracy when the data is complex and dynamic [135].
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1.2.3 Summary

While the eager learning approach suffers the problems of concept drifting and

information loss, since it computes a global model before seeing the prediction

query, the lazy learning approach suffers from simplistic predicting methods, al-

though it can commit much richer sets of hypotheses (models) from the data.

Hence, developing methods that have the strengths but not the weakness of both

approaches is highly desirable.

1.3 Semi-Lazy Learning Approach

Historical Spatio-

Temporal Data

Query 

Search
Machine 

Learning

Models
Result

Input

Request

Figure 1.2: General framework of the “semi-lazy” learning approach

In this thesis, we propose a novel and general perspective to spatio-temporal

data analysis that offers the benefits of both the eager and lazy learning approach-

es. We call this new approach the “semi-lazy” learning approach.

Figure 1.2 shows the general framework of the semi-lazy learning approach.

Our semi-lazy learning approach essentially follows the lazy learning paradigm

until the last step, where more sophisticated eager machine learning models are

applied on a small set of the searched similar neighbors of the submitted query. In

more detail, after receiving a query from a user, we first invoke the search process

to retrieve similar neighbors, which are then forwarded to some pertinent machine

learning models such as SVM and Neural Network. The models then digest the

search results to produce predictive analysis results. To sum up, the semi-lazy

approach goes as follows:
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1. Like lazy learning, we do not commit to a global model but keep the whole

historical spatio-temporal dataset intact.

2. Like lazy learning, given a user input request (typically a data object with

some attribute value/s), we first invoke a query search process to retrieve a

set of similar neighbors from the historical sptatio-temporal dataset.

3. Like eager learning, we apply machine learning models (like SVM, Neural

Network or Gaussian Process) on the set of retrieved similar neighbors to

derive the predictive analysis result.

The semi-lazy learning approach is superior to the traditional eager learning

and lazy learning approaches for dynamic spatio-temporal data analysis from sev-

eral perspectives. First, the concept drifting problem on dynamic spatio-temporal

data can be effortlessly eliminated since we only need to insert new incoming data

into the historical data set to reflect irregular changes of underlying patterns over

time. Second, there is neither information loss nor the problem of overfitting or

underfitting, because we actually build a particular local model for each predictive

analysis request on the whole dataset which preserves all information.

Third, this semi-lazy learning approach empowers the traditional lazy learn-

ing approach with advanced prediction functions corresponding to the predictive

analysis result. For example, in trajectory prediction, we can attach a probabili-

ty for each predicted trajectory to measure the prediction quality; in time series

prediction, we can reckon the confidence interval (standard deviation) for each

predicted value; and in itinerary recommendation, we can guarantee a theoretical

error bound for the recommended itineraries. All of the above analysis information

cannot be provided by a vanilla lazy learning approach.
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Figure 1.3: Framework of the “semi-lazy” learning approach: (a) “semi-lazy” frame-
work in trajectory prediction; (b) “semi-lazy” framework in time series prediction; (c)
“semi-lazy” framework in itinerary recommendation

1.4 Research Scope and Contributions

In this thesis, we have employed the “semi-lazy” learning approach to three practi-

cal spatio-temporal data analysis problems mentioned above: trajectory prediction

[140; 141], time series prediction and itinerary recommendation [26]. The sketches

that show how to apply the “semi-lazy” learning approach to these problems are

illustrated in Figure 1.3 and summarised as follows:

• For trajectory prediction, as shown in Figure 1.3(a), we first use the tra-

jectory of the predicted object in the last few time steps as a query input

to retrieve similar trajectories from the historical trajectory data set. Fol-

lowing that, these retrieved similar trajectories will be used to construct a

prediction model (a generalized Hidden Markov Model, i.e. HMM) to make

a probabilistic path prediction.

• For time series prediction, as shown in Figure 1.3(b), we use the time series

of a sensor in the last few time steps as the input request, which is submitted
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to a Graphics Processing Unit (GPU) to retrieve a set of k-Nearest Neighbor

(kNN) time series. The kNN results are then input into the Gaussian Process

(GP) model to predict the future value (with mean and variance) of the

sensor.

• For itinerary recommendation, as shown in Figure 1.3(c), we use the user’s

preferred Points of Interest (POIs) as the input request to select top-k best

itineraries for the user from an inverted index of itineraries, which is built

on top of the Hadoop Distributed File System (HDFS). Instead of returning

the search results directly, we employ an initialization-adjustment model

to refine the searched itineraries, followed by returning the adjusted near-

optimal itineraries emphasizing the user’s preference.

The following three sections briefly describe the contribution of our three works

respectively.

1.4.1 Trajectory prediction

Trajectory prediction, also called path prediction (hereafter, to be consistent with

the idiomatic expression, we use the phrases “trajectory prediction” and “path

prediction” interchangeably.), is useful in a wide range of applications. Most

of the existing solutions, however, are based on eager learning methods where

models and patterns are extracted from historical trajectories and then used for

future prediction. Since such approaches are committed to a set of statistically

significant models or patterns, problems can arise in dynamic environments where

the underlying models change quickly or where the regions are not covered with

statistically significant models or patterns.

We propose a “semi-lazy” approach to trajectory prediction that builds pre-

diction models on the fly using dynamically selected reference trajectories. Such

an approach has several advantages. First, the target trajectories to be predicted

are known before the models are built, which allows us to construct models that
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are deemed relevant to the target trajectories. Second, unlike the lazy learning

approach, we use sophisticated learning algorithms to derive accurate prediction

models with acceptable delay, based on a small number of selected reference tra-

jectories. Finally, our approach can be continuously self-correcting, since we can

dynamically re-construct new models if the predicted movements do not match

the actual ones.

Our prediction model can construct a probabilistic path whose probability of

occurrence is larger than a threshold, and which is furthest ahead in terms of time.

Users can control the confidence of the path prediction by setting a probability

threshold.

Lastly, we build a demonstration prototype incorporating all the techniques

proposed above. In the demonstration system, we showcase the above key aspects

of our approach, using several real-life trajectory datasets. The system provides a

visual interface that shows moving objects and their predicted trajectories. The

demonstration system also allows users to play with various parameter settings.

An online demo of our system is available at:

http://db128gb-b.ddns.comp.nus.edu.sg/jzhou/R2-D2/.

1.4.2 Time series prediction

Time series prediction of sensors has many applications. Growth in computing

capability has motivated the use of machine learning solutions for this purpose,

and these solutions fall into two categories: eager and lazy learning. Eager learning

methods pre-construct statistical models from historical data and then use the

models for prediction. In contrast, lazy learning methods keep the historical data

unprocessed until performing prediction and then find a subset of historical data

with similar behavior (called k-Nearest Neighbors, kNNs) to make prediction by

applying some simple computation.

We propose a novel semi-lazy learning approach for time series prediction.

Like lazy learning, the semi-lazy learning approach maintains historical data un-
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processed until prediction time, but it applies expensive eager learning model

construction methods on the kNNs to predict more accurately. While such an ap-

proach results in higher computation cost, we argue that advances in computation

hardware like GPUs will make such a “just-in-time” model construction feasible

for real-time applications like sensor values prediction.

To illustrate our point, we present SMiLer, a time series prediction system

for sensors that adopts the semi-lazy learning approach. To make our system

feasible, two challenging problems are tackled which are: (I) a fast kNN search

method using the popular Dynamic Time Warping (DTW) distance on the GPU

and (II) an effective semi-lazy time series prediction model based on Gaussian

Processes.

1.4.3 Itinerary recommendation

We design an itinerary recommendation service which can dynamically recommend

multi-day itineraries for users. Creating an efficient and economic trip plan is the

most annoying job for a backpacking traveler. We propose a novel semi-lazy

learning approach to dynamically recommend personalized itineraries for specific

users. Our design philosophy is to generate itineraries on the fly, utilizing historical

trajectories and users’ preferences, via the semi-lazy learning approach.

Most existing works on itinerary recommendation are based on the eager learn-

ing approach, which takes a two-step scheme. They first adopt data mining algo-

rithms to discover users’ traveling patterns from their published itineraries. Based

on the relationships of the historical data, new itineraries are generated and rec-

ommended to the users. However, these pre-defined itineraries are not tailored

for each specific customer. There are some previous efforts to address the dynam-

ic itinerary recommendation problem by providing a dynamic planning service,

which organizes the Points-of-Interests (POIs) into a customized itinerary. Be-

cause the search space of all possible itineraries is too costly to fully explore, to

simplify the complexity, most work assumes that each user’s trip is limited to some
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important POIs and will be completed within one day.

We designed a more general itinerary recommendation service, which gener-

ates multi-day itineraries for users. We iterate all candidate single-day itineraries

using a parallel processing framework – MapReduce. The results are maintained

in the DFS (Distributed File System), and an inverted index is built for effi-

cient itinerary retrieval. Given a request, the system provides interfaces for the

user to select preferred POIs explicitly. Then we selectively combine the single

itineraries to recommend a multi-day itinerary. We designed an approximate algo-

rithm to recommend near-optimal itineraries. The approximate algorithm adopts

an initialization-adjustment scheme and a theoretic bound is guaranteed for the

approximate result.

1.5 Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2, we first introduce

some preliminary knowledge blocks for spatio-temporal data analysis. We aslo

give a thorough literature review for existing works related to the general semi-

lazy learning approach, trajectory prediction, time series prediction and itinerary

recommendation in this chapter.

In Chapter 3, Chapter 4 and Chapter 5, we show our three pieces of work

on dynamic spatio-temporal data analysis, which are trajectory prediction, time

series prediction and itinerary recommendation respectively. All of them are based

on our proposed semi-lazy learning approach.

In Chapter 6, we conclude this thesis, followed by a discussion about limitations

and future research directions for this thesis.

13



14



Chapter 2

Preliminaries and Related work

In this chapter, we first overview the existing works closely related to the semi-

lazy learning approach in the data mining community. Then we talk briefly about

distance function (in Section 2.1) which is a preliminary knowledge point of spatio-

temporal data analysis. Lastly, we investigate the literatures related to our specific

research problems which are trajectory prediction (in Section 2.2), time series

prediction (in Section 2.3) and itinerary recommendation (in Section 2.4).

In this thesis, we propose a new machine learning approach to spatio-temporal

data analysis. The general idea is that, instead of estimating a global model which

is tolerable for all possible target prediction requests on average, we first find

similar neighbors for the target request and then apply a sophisticated machine

learning model on the search result to construct a specific model for the target.

To our best knowledge, there is no existing work applying this approach to spatio-

temporal data analysis. However, it is still desirable to discuss existing works

with similar ideas about this approach from the whole scope of the data mining

community.

There are indeed several works [45; 63; 103; 118] that also tried to combine the

eager learning approach and the lazy learning approach. In particular, the authors

of [45] also named their method “semi-lazy”. However, the essential difference is

that they usually try to partition the whole training data into several parts, fol-
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lowed by building machine learning models on each data part in the pre-processing

stage. Then a similarity search algorithm is used to select the best local model

for prediction. Therefore, these methods are essentially still eager learning, and

hence suffer the drawbacks of the eager learning approach. In addition, another

challenging problem is how to properly partition the training data set.

As far as we know, there are only two works [134; 15] which seem similar to

our “semi-lazy learning” idea, i.e. retrieving kNN and then building heave models

on the kNN results. Nevertheless, both of these existing works focus on the image

classification problem, whereas our study is the first work aimed towards the

dynamic spatio-temporal data analysis problem, exploiting the semi-lazy learning

approach.

Apart from the data application domain, our semi-lazy learning approach is

still distinguished from existing works in two ways. First, we also study the online

update problem for the “semi-lazy” learning approach, which is not considered

by [134; 15]. Second, existing methods, including the works of not only these

two image classification papers [134; 15], but also the former ones [45; 63; 103;

118] (mentioned in second paragraph of this section), did not make much effort

to tackle the similarity search problem; whereas we devote an extensive study

to efficient similarity search under different spatio-temporal data types, which is

another important research contribution of this study.

2.1 Distance Function

The distance function is an essential building block for spatio-temporal data anal-

ysis. Given two time sequences T1 and T2, a distance function dist(·, ·) calculates

the similarity between them, denoted by dist(T1, T2). In the past decades, a lot

of distance functions have been proposed, such as Euclidean distance, DTW [13],

LCSS [116], ERP [27], EDR [28] and SpADe [29], etc. They are summarized in

Figure 2.1. We can refer to distance measures that compare the i-th point of one
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time sequence to the i-th point of another as lock-step measures (e.g., Euclidean

distance and the other Lp norms), and distance measures that allow the compari-

son of one-to-many points (e.g., DTW) and one-to-many/one-to-none points (e.g.,

LCSS) as elastic measures [49]. There is no last word on which distance function

is more effective; a variety of distance functions have been used under different

application domains. In the sequel, we introduce several important functions.

• Lock-step Measure

o Lp-norms
 

L1-norm (Manhattan Distance)
 

L2-norm (Euclidean Distance)
 

Linf-norm

o DISSIM

• Elastic Measure

o Dynamic Time Warping (DTW)

o Edit distance based measure
 

Longest Common SubSequence (LCSS)
 

Edit Sequence on Real Sequence (EDR)
 

Swale
 

Edit Distance with Real Penalty (ERP)

• Threshold-based Measure

o Threshold query based similarity search (TQuEST) 

• Pattern-based Measure

o Spatial Assembling Distance (SpADe)

Figure 2.1: A Summary of Similarity Measures 1

2.1.1 Euclidean distance

An example of Euclidean distance is shown in Figure 2.2. Given two time sequences

Q = {q1, q2, ..., qn} and C = {c1, c2, ..., cn}, the Euclidean distance between two

time sequences is Eu(Q,C) =
√∑n

i=1 dist
2(qi − ci).

Besides being relatively straightforward and intuitive, Euclidean distance and

its variants have several other advantages, which are easy to implement, indexable

and parameter-free. Furthermore, the Euclidean distance is surprisingly competi-

tive with other more complex approaches, especially if the size of the database is

1The figure is adopted from [49].
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Figure 2.2: Euclidean Distance

relatively large [49]. However, since the mapping between the points of two time

sequences is fixed, these distance measures are sensitive to noise and misalignments

due to the local time shifting problem.

Local time shifting refers to a condition wherein similar segments are out of

phase. Figure 2.3 shows an example of local time shifting. Note that D is similar

to Q at the semantic level, as there is a hump followed by an ascending trend in

both of them. However, the lag of an ascending trend to the hump in Q (measured

as d - c) is different from that (measured as d’-c’) in D. This time shifting problem

can be overcome by another distance function– Dynamic Time Warping (DTW),

which will be introduced in next section.

d ! c in Q is quite different from d’!c’ in D.Figure 2.3: An illustration of time shifting:d-c in Q is quite different from d-cin D. 1

1The figure is adopted from [29].
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2.1.2 Dynamic Time Warping

In this section, we will give a brief review of Dynamic Time Warping (DTW).

Inspired by the need to handle time shifting in similarity computation, Berndt

and Clifford [13] introduced DTW, a classic speech recognition tool, to the data

mining community. The DTW distance allows a time sequence to be “stretched”

or “compressed” to provide a better match with other time sequences. The DTW

distance is recursively defined as follows:

DTW 2(Q,C) =



0 |Q| = |C| = 0;

∞ |Q| = 0 or |C| = 0;

dist(q1, c1)+

min{DTW 2(Rest(Q), Rest(C)),

DTW 2(Rest(Q), C), DTW 2(Q,Rest(C))} otherwise.

warping width warping path

File: warpMatrix

(a)

File: dtwAlign

(b)

Figure 2.4: (a) An illustration for warping matrix with warping width and warping
path; (b) Result alignment according to warping path. 1

The DTW distance can be computed by dynamic programming with a matrix

as shown in Figure 2.4 . We construct a matrix, of which each element (i, j)

represents an alignment between qi and cj. The warping path W is a continuous

1The figure is reproduced and modified from [72].
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set of matrix elements which represent the optimal alignment between two time

sequences. The i-th element of W is defined as wi = (wqi , w
c
i ), i.e.:

W = {w1, ..., wi, ..., wk} = {(wq1, wc1), ..., (wqi , w
c
i ), ..., (w

q
k, w

c
k)},

max(m,n) ≤ k ≤ m+ n− 1

The constraints for W are :

• Monotonic: wqi − w
q
i−1 ≥ 0 and wci − wci−1 ≥ 0

• Continuity: wqi − w
q
i−1 ≤ 1 and wci − wci−1 ≤ 1

Let denote |wi| as the cost of wi, which is given by:

|wi| = dist2(qwq
i
− cwc

i
)

There are many warping paths in the matrix, the goal of DTW is to find the path

that minimizes the cost:

DTW (Q,C) = min

√√√√ k∑
i=1

|wi|

Global constraints on the warping path are always used to reduce the time

complexity of DTW [72; 142]. In Figure 2.4 (a), the Sakoe-Chiba band constraint

[101] is applied on the warping path which is restricted to not more than ρ cells

from the diagonal [72; 94; 7] where ρ is called the warping width. In other words,

with the Sakoe-Chiba constraint, the (i, j) element in the warping matrix is ∞

if |i − j| > ρ. This band constraint not only reduces the computation cost of

DTW, but also avoids the degenerated matchings (e.g. most of elements of a time

series are matched to several elements of the other) [7]. In this thesis, if without

specification, we only consider the DTW with Sakoe-Chiba band constraint.
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2.1.3 More distance functions

Here we give a brief discussion about several other important distance functions.

Longest Common Subsequences (LCSS)[116] can handle local time shifting and

noise. However, it is not a metric measure. Hence, it is not easy to index LCSS, and

its computation cost is high. A lower-bounding measure and indexing technique

for LCSS are introduced in [115].

Edit Distance on Real sequence (EDR) [28] can handle the time shifting and

noise problem, but it is also not a metric measure. In addition, the authors in [28]

proposed three methods to reduce the computation cost.

SpADe [29] is a pattern-based similarity measure for time series. The advan-

tage of SpADe is that it can handle the time shifting, time scaling, amplitude

shifting and amplitude scaling, whereas the disadvantage of SpADe lies in the

difficulty of tuning the parameters to handle those factors.

There are more than ten distance measures for similarities on spatio-temporal

data, we refer interested readers to [49].

2.2 Trajectory Prediction

In this section, we will review several previous trajectory prediction works. Since a

trajectory is just a sequence of locations, we also refer to the trajectory prediction

as “location prediction” or “path prediction” hereafter, for convenience. In different

application domains, the prediction techniques can be divided as pattern-based

prediction and descriptive model-based prediction.

2.2.1 Pattern-based prediction

We future categorize pattern-based prediction methods into two classes: personal

pattern-based prediction and general pattern-based prediction.

Personal pattern-based prediction methods consider movement of each object
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to be independent. In [127], Yavas et al. propose an algorithm for predicting the

next location of mobile users on the basis of mobility pattern mined from the user’s

trajectories. Jeung et al. [68] propose a hybrid prediction model which combines

the motion function and the movement pattern of users. In [100], Sadilek et al.

propose a model to support long-term mobility prediction, which leverages Fourier

analysis and principal component analysis.

One shortcoming of personal pattern-based prediction methods is that it re-

quires enough personal historical trajectory data (for the object whose path needs

to be predicted) being available for pattern mining. This renders such method-

s not applicable for moving objects that do not have enough personal historical

trajectories.

General pattern-based prediction methods use the common mobility patterns

to predict the future location of users. In [85; 86], Morzy proposes methods to

extract association rules from the moving object database and uses the association

rules for prediction. In [128], Ying et al. propose a novel prediction model utilizing

both geographic and semantic features of trajectories. Mobility patterns are also

used for destination prediction, such as WhereNext [83] and SubSyn [124], which

predicts moving objects’ destinations without concerning paths of reaching the

destinations.

Pattern-based prediction methods do not work well in dynamic environments.

The main problem is that patterns mining is an expensive (in terms of time) pro-

cess, therefore, it is difficult to mine patterns on the fly. As a result, such methods

cannot capture new patterns just emerge in the dynamic environment. Further-

more, the movement of certain moving objects may not match with any pattern,

which makes the pattern-based methods do not be able to make predictions [128].

2.2.2 Descriptive model-based prediction

Descriptive model-based prediction methods use mathematical models to describe

the movement of moving objects. The models can be parameterized, e.g. mo-
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tion function models [117; 91; 109; 110; 89], or nonparameterized, e.g. Markov

model[67].

Motion function models estimate objects’ future locations by their own motion

functions. For example, one simple motion function is l(th) = l0 + v0 × (th − t0),

where l0 is a starting point, v0 is the velocity, t0 is the current time and th is the

predicted time [117; 91]. Recursive motion function [109] is the most accurate one,

which uses the least squared error method to find the best parameters. Motion

function does not take environment constraints into account, such as obstacles

and other moving objects, and do not model the environmental changes, such as

traffic jam and traffic signal.

Markov model-based methods are suitable for estimating future locations of

moving objects in a discrete location space. In [67], Ishikawa et al. derive the

transition probabilities from one or multiple locations to another. Then the ob-

ject’s next location can be deduced by the Markov model. In [88], Musolesi et

al. provide a comprehensive survey of mobility models. The common problem of

those models is that they are only able to predict the short-term path of a moving

object.

Some stochastic process models, such as Gaussian process[111; 51] and Dirich-

let process[70], have also been used to model the movement of objects. However,

such models focus on moving objects’ aggregate behavior and do not address the

location prediction problem.

There are also some path prediction methods that utilize road networks and

mobility models [71; 69]. Both [71] and [69] have a pre-processing phase to build

mobility models for finding objects’ aggregate behavior in a road network. These

methods can only be applied in network-constraint spaces.
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2.3 Time Series Prediction

Existing time series prediction methods can be separated into two categories, i.e.

statistical regression methods and machine learning methods.

2.3.1 Statistical regression method

Statistical regression methods focus on finding parameterized functions that can

describe and predict the behavior of time series. Linear statistical methods, such

as Autoregressive Integrated Moving Average (ARIMA) models [20], robust regres-

sion [121] and their variants [133; 73; 99], have been studied for a long time. How-

ever, it becomes increasingly clear that linear models are not adaptable to some

practical applications [47]. Several powerful yet rather complex nonlinear time

series models, such as bilinear models [93], exponential smoothing [122; 64] and

(General) AutoRegressive Conditional Heteroskedasticity ((G)ARCH) models [52;

16], were proposed. We refer interested readers to [20] for more details.

While many fascinating mathematical theorems have been established, these

methods usually impose rigid assumptions on the time series data such as bounded,

autoregressive or Markovian processes. Another potential drawback of these ap-

proaches is that additional user insight of statistical expertise and domain knowl-

edge are required to guarantee the quality of the results.

2.3.2 Machine learning method

Machine learning models can be seen as the extension of statistical regression

models which utilize historical data to learn the stochastic dependency between

the past and the future of one time series. Machine learning methods can be

further grouped into two classes: the eager learning approach and the lazy learning

approach.
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2.3.2.1 Eager learning approach

The eager learning approach usually has a pre-processing stage to mine models or

patterns for time series prediction. This approach has been actively conducted in

the last two decades [17]. Several machine learning models have been successfully

employed for time series prediction such as Artificial Neural Networks (ANNs) [1;

119; 80], Support Vector Machines (SVMs) [126; 99; 87], Hidden Markvo Models

(HMMs) [55; 31] and Gaussian Process (GPs) [57; 90; 21; 125].

However, several difficulties exist for machine learning models with the eager

learning approach. First, training process of machine learning models usually

requires high computational cost (e.g. O(n3) for SVMs and GPs). Although

some approximate methods, such as Spare Gaussian Process [40] and Core Vector

Machine [113], have been proposed, they may fall into overfitting or underfitting

traps. To be more specific, the essential idea of these methods, sometimes called

low-rank approximation, is to use a small number of well selected examples to

approximate the whole dataset. Therefore, these approximate models are more

influenced by the global distribution of the whole dataset rather than by the local

behaviour of unknown prediction targets. It leads to a potentially high level of

overfitting or underfitting [103]. Besides, machine learning methods can also suffer

from the problem of concept drift. The hidden generating processes of the time

series may change over time in unforeseen ways and the quality of prediction results

may gradually degenerate. However the models cannot be easily updated due to

the high computational cost.

2.3.2.2 Lazy learning approach

In contrast to the eager learning approach, the lazy learning approach simply

stores the entire dataset and diverts all effort to the prediction phase. Prediction

for future values of time series is done by finding a set of k similar time series

of the sensor and doing some simple computation (e.g. average) over these query
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results [82; 24; 14; 9].

Lazy learning methods however lack powerful predictive functions. For exam-

ple, the kNN regression cannot estimate the predictive uncertainty (i.e. a confi-

dence interval) of the predicted results in contrast to most of the eager learning

methods. Moreover, the accuracy of the lazy learning approach still needs to be

further improved.

There are several benefits for the lazy learning approach. First, using many

local models to form an implicit global approximation, lazy learning approach can

commit to a much richer hypothesis [132]. Second, the concept drifting problem

can be effortlessly sidestepped since we only need to update new data into the

historical dataset. Third, from a theoretical point of view, the performance of

kNN regression tends to be Bayes optimal [38] and stable [19] as the size of the

historical dataset tends to be infinity.

2.4 Itinerary Recommendation

Most existing works on itinerary recommendation take an eager learning scheme

which has two steps. They first adopt the data mining algorithms to discover the

users’ traveling patterns from their published images, geo-locations and events [97;

39; 34]. Based on the the relationships of those historical data, new itineraries are

generated and recommended to the users [106; 32; 129]. This scheme leverages the

user data to retrieve Points of Interest (POIs) and organize the POIs into itinerary.

Several recommender systems, such as [136; 137], are also developed to recommend

the unvisited POIs to users based on Collaborative Filtering (CF) model [58]. The

review of the eager learning recommender system is necessarily brief here; we refer

the interested reader to [138] for a more detailed treatment. However, none of these

methods can help the traveling agency provide the customized itinerary service,

where all details of POIs are known and each user prefers different itinerary instead

of adopting the most popular ones.
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In fact, searching for the optimal single-day itinerary has been well studied. It

can be transformed into the Traveling Salesman Problem (TSP) [36], which is a

well-known NP-complete problem. For example, in [62], given a set of POIs, the

system will generate a shortest itinerary to access all the POIs. If the distance

measure is a metric and symmetric, the TSP has the polynomial approximate

solution [33], but the approximate solution incurs high overhead for a large POI

graph [76]. Therefore, some heuristic approaches [50] are adopted to simplify the

computation.

Some interactive search algorithms [11; 77] are proposed recent years. These

algorithms still focus on optimal single-day itinerary planning. To reduce the

computation overhead and improve the quality of generated itineraries, users’

feedbacks are integrated into the search algorithm. The search algorithm works

iteratively. It proposes new itineraries for users based on their previous feedbacks

and the users can adjust the weights of POIs in the itinerary or select new POIs

into the itinerary. In the next iteration, the algorithm will refine its results based

on the collected information. Those work can be considered as variants of optimal

single-day itinerary planning problems. Moreover, interactive algorithms pose

requirements for the users, who may be reluctant to provide the feedbacks.
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Chapter 3

Probabilistic Path Prediction in

Dynamic Environments

3.1 Introduction

Trajectory prediction is presently a popular area of research [75; 85; 86; 68; 83; 69;

128; 79; 100]. Predicting future trajectories of moving objects has a broad range of

applications, including navigation, traffic management, personal positioning, ac-

tionable advertising [83], epidemic prevention [74], event prediction [107], anomaly

detection [23; 78] and even spatial query optimization [30]. To be consistent with

the idiomatic expression, we use the terms “trajectory prediction” and “path pre-

diction” interchangeably.

In this chapter, we study the trajectory prediction problem in dynamic envi-

ronments. An environment is considered to be dynamic if the movement of objects

in the environment changes with some uncertain, aperiodic and irregular factors.

Some real-life examples of dynamic environments include: (1) urban space where

the movement of objects (e.g., cars) is affected by traffic signals, traffic jams and

weather conditions; (2) massively multiplayer online games where the movement

of game units varies depending on the placement of monsters and resources; (3)

shopping malls where the movement of customers changes when certain shops are
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on promotions.

Existing path prediction methods mostly adopt the eager learning approach

[85; 68; 86; 128; 100], i.e., models or patterns are extracted from historical data

and used to predict the future movements of objects. In such methods, historical

trajectories are abandoned once the models or patterns are extracted. This results

in a loss of information since the models or patterns are usually not fully repre-

sentative of the data. Furthermore, since the models or patterns are generated

without knowing the objects to be predicted, problems arise when the target ob-

jects are moving through regions that are not covered with statistically significant

models. In extreme cases where the environment is so dynamic that completely

new situations can arise (e.g. once in 50 years flash flood or new game settings),

the models or patterns may become invalid.

To overcome these problems, we propose a “semi-lazy” learning trajectory

prediction model, called R2-D21, to pRobabilistic path pReDiction in Dynamic

environments. In R2-D2, historical trajectories are kept and indexed. To perform

prediction for a target object, we match its past trajectory against historical tra-

jectories and extract a small set of reference trajectories. In order to retrieve the

reference trajectories, we devise an index and a matched-based search method to

select the reference trajectories which have similar behavior of the target object.

Sophisticated machine learning techniques are then applied on the reference tra-

jectories to construct a local model, which can predict the future movement of the

target object.

Figure 3.1 shows an application example of R2-D2 in vehicle path prediction.

R2-D2 continuously collects streaming trajectories of a large number of moving

objects (the cars in Figure 3.1). In Figure 3.2, the solid line is the trajectory

of object Op whose future path is to be predicted; while the dash lines are the

historical trajectories which are selected as reference trajectories for predicting the

path of Op.

1R2-D2 is a smart robot in the Star Wars.
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Figure 3.2: Path prediction based on
reference trajectories.

R2-D2 has several advantages. First, the target trajectory is known before the

model is derived from a set of similar reference trajectories. This ensures that

the model is highly relevant. Second, since the learning is performed on a small

set of reference trajectories, we can afford to use slightly more complex learning

algorithms. Given the power of modern hardware, the time taken to derive such

local model is typically acceptable. Finally, since the actual movement of the

target object can be compared against the predicted movement subsequently, we

can dynamically derive new models if the actual movement and the predicted

movement do not match. This leads to a self-correcting continuous prediction

approach.

On top of these advantages, R2-D2 also supports probabilistic path prediction.

Since there is always a trade-off between the prediction accuracy and the length

of the predicted path, R2-D2 chooses to predict the longest path (in terms of

time) with probability (confidence) higher than a given threshold. The user can

thus use R2-D2 to predict paths of different lengths by setting different confidence

thresholds, making it flexible enough be used in a broad range of applications that

have different requirements for prediction confidence and predicted path length.

The rest of the chapter is organized as follows. Section 3.2 formalizes the prob-
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lem and gives an overview of R2-D2. The prediction process of R2-D2 has three

sub-processes: “Update”, “Lookup” and “Construction”, which are discussed in

Section 3.3, Section 3.4 and Section 3.5, respectively. We evaluate R2-D2 in Sec-

tion 3.6 and conclude the chapter in Section 3.8.

3.2 Overview and preliminaries

3.2.1 Overview

 

TG

Update: streaming 

trajectories to TG

PF

predicted 

Path

Dynamic  environment

h-backward 

trajectory

reference 

trajectories

O
p

Prediction Process

Lookup:

 query in TG

Construction:

path prediction 

Figure 3.3: The detailed architecture of R2-D2. It has an “Update” process (solid lines)
and a “Prediction” process (dash lines). “Prediction” process has two sub-process:
“Lookup” process and “Construction” process.

Figure 3.3 illustrates the detailed architecture of R2-D2. It has two compo-

nents: the Trajectory Grid (TG) and the Prediction Filter (PF). TG is a grid

based indexing structure for storing historical trajectories. PF performs proba-

bilistic path prediction. Figure 3.4 shows that how R2-D2 fits in the framework

of our semi-lazy learning approach.
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Figure 3.4: The framework of the semi-lazy learning approach to R2-D2.

There are also two separate processes: “Update” and “Prediction”. In Figure

3.3, we denote the “Update” process by solid lines and denote the “Prediction”

process by dash lines. The “Update” process continuously collects streaming tra-

jectories from the dynamic environment and stores them in TG (see Section 3.3).

The “Prediction” process makes path prediction. This process has two sub-

processes: “Lookup” and “Construction”. In Figure 3.3, we want to predict the

path of Op (the red car). In the “Lookup” process, we use the trajecotry of Op

in the last few time steps as query trajectory to retrieve reference trajectories

from TG (see Section 3.4). R2-D2 will only make a prediction if the number of

reference trajectories is greater than a predefined threshold. In the “Construction”

process, the reference trajectories are used to construct a model for making path

prediction (see Section 3.5).

3.2.2 Preliminaries

Table 3.1 lists notations used throughout this chapter. We use Oi to denote a

moving object. A trajectory of Oi is a sequence of timestamped locations T i =<

Oi
1, ..., O

i
t, ... >, where Oi

t = ((x, y), t) denoting that Oi locates at location (x, y)

at time t.

We assume that all trajectories have synchronised timestamps. When this as-

sumption is not valid, we interpolate the trajectories with a linear algorithm which

will be specified later. It is worth noting that the interpolation does not affect

the result too much since previous study on the interpolation of trajectories [112]
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Table 3.1: Table of Notations for Chapter 3

Oi moving object Op object to be predicted
Oi
t location of Oi at time t RO reference objects of Op

t0 current time Ci
t credit of Oi at time t

T i trajectory of Oi Wh h-backward trajectory
ζ i a set of reference points ζ il ζ i in level l of cluster tree
sk state of Op at t0 + k∆t Sk state space at t0 + k∆t
R macro cluster radius dmic micro cluster radius
θ confidence threshold ξm support for “Construction”

ROk reference points of Op at time t0 + k∆t
RO1:k all reference points of Op from t0 + ∆t to t0 + k∆t
SS1:k a path of Op from t0 + ∆t to t0 + k∆t
sik,l the i-th state in level l of state space tree at time t0 + k∆t

CRt query range of Op at time t for reference objects
H TG buffer interval threshold for dropping old trajectories

shows that the accuracy of interpolated locations was always within the accuracy

of the tracking method used. In other words, the errors of interpolated locations

were always smaller than the distance that the moving objects are potentially able

to travel during the average time elapsed between recorded locations [112].

We refer to the trajectory of Op in the last h time steps as h-backward

trajectory and denote it by Wh =< Op
t0−(h−1)∆t, O

p
t0−(h−2)∆t, ..., O

p
t0 > where t0 is

the current time.

The reference objects of Op, denoted as RO, is a set of objects which have

certain sub-trajectories matched with Wh. These objects have a similar tendency

as Op. We give a formal definition of the match function in Section 3.4.

For each object Oi ∈ RO, we denote Oi
tv as the timestamped location of Oi that

is nearest to Op
t0 . In other words, tv is the timestamp when object Oi’s location is

closest to Op
t0 . The reference points of Op at t0 are defined as RO0 = {Oi

tv |O
i ∈

RO}. The reference points of Op at t0 + k∆t, namely ROk, are defined as

ROk = {Oi
tv+k∆t|Oi ∈ RO}. Note that the definition of ROk is based on RO0,

because the value of tv for each Oi ∈ RO is determined at time t0. Moreover,

we use RO1:k to denote all reference points of Op from t0 + ∆t to t0 + k∆t, i.e.,
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RO1:k =
⋃k
i=1ROi. We also call RO1:k as reference trajectories of Op.

Let�(centroid, radius) denote a circle. We call a vector sk = (�(centroid, radius), k)

a state of Op, which means Op may be within the circle at time t0 + k∆t. Since

there could be several possible states for Op at time t0 + k∆t, we use sik to denote

a possible state whose identifier is i. We define the set of all possible states of Op

at time t0 +k∆t as a state space, i.e., Sk =
⋃
sik. We denote a sequence of states

of Op from t0 + ∆t to t0 + k∆t as SS1:k =< s1, s2, ..., sk >. We call SS1:k a path

of Op.

Given RO1:k, we denote the probability that Op is in state sk as p(sk|RO1:k).

Similarly, given RO1:k, we denote the probability that Op would appear in every

state in SS1:k as p(SS1:k|RO1:k).

Based on the above definitions, the probabilistic path prediction problem can

be formally defined as:

Definition 3.2.1 (Probabilistic Path Prediction). Given a moving object Op

and a probability threshold θ at time t0, probabilistic path prediction returns a path

SS1:k of length k time steps, which satisfies:

(1) p(SS1:k|RO1:k) ≥ θ;

(2) for any path with length k + 1 time steps we have:

(a) p(SS1:k+1|RO1:k+1) < θ, OR (b) k+1 > kmax where kmax is a predefined

maximum length. (The additional constraint kmax is to avoid the length of

the predicted path being infinite.)

Example 3.2.1. In Figure 3.5, there are five moving objects: {Op, O1, O2, O3, O4}.

TG stores all their trajectories (see Section 3.3). At time t0 = 11, we want to

predict the future path of Op. First, we use the 2-backward trajectory of Op, i.e.

W2 =< Op
10, O

p
11 >, to retrieve reference objects from TG (see Section 3.4), which

are RO = {O2, O3, O4}.
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Figure 3.5: An example of using R2-D2 to predict Op’s path.

Then, PF estimates a future path of Op in two steps. First, at each future

time t = t0 + k∆t, we generate the state space Sk of Op (see Section 3.5.2). For

example, when k = 2 we have S2 = {s0
2, s

1
2}. A sequence of states is a possible path.

Next, PF selects the longest path whose probability is larger than the probability

threshold θ. If there are multiple such paths, the one with the highest probability is

selected (see Section 3.5.1). In this example, if the user sets θ = 0.4, the predicted

path is SS1:2 =< s0
1, s

0
2 >. If θ = 0.2, the predicted path is SS1:3 =< s0

1, s
0
2, s

0
3 >.

3.3 The Trajectory Grid and the Update Process

2
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NIL

21
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Figure 3.6: Overall structure of the Trajectory Grid.

The Trajectory Grid (TG) is a multi-level grid structure, which dynamically
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stores new (recent) trajectories as they emerge. We use a grid to divide the area

of interest into a set of rectangular regions with fixed width. We refer to a region

as a cell. Each cell is uniquely identified by a discrete coordinate (x, y) describing

the position of the cell in the grid. Hereafter, we use cell(x, y) to denote the cell.

Figure 3.6 shows the overall structure of TG. Each leaf node in TG corresponds to

one cell. In the experiment part, we will discuss how to set the width of cells. If the

trajectories do not have synchronised timestamps, we use a cache structure, called

Moving Object Cache (MOC), to interpolate the trajectories. In the following

sections, we will discuss each component of the Trajectory Grid in details.

3.3.1 Multi-level grid

TG is organized as a multi-level grid which can handle the skew distribution of

data. In real-life datasets, there may be many empty areas where no moving object

visits. Using multi-level grid, such area can be compressed with a high level empty

grid cell. In Figure 3.6, we show an example of thus multi-level grid. There is a

lot of moving object trajectories in region 1©. Therefore, region 1© will be divided

into small cells to leaf cell of the multi-grid. Whereas, the region 2© is almost

empty( visited by few of moving objects), in this case, we do not sub-divide the

region 2©, and let it point to a NIL.

3.3.2 The Moving Object Cache

The Moving Object Cache is used to interpolate the streaming trajectories. As

we can see from Figure 3.6, the streaming trajectories are input into MOC first,

and then the interpolated trajectories are output from MOC to TG. We assume

all trajectories have the same sample rate, which is not a real limitation since the

user can easily re-interpolate the data if the sample rate is changed. Thus, we

design a device to handle the interpolation for streaming trajectories before they

are inserting into TG.
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The interpolation should not have much effect on the prediction result. In

previous study [112], there is evidence showing that the accuracy of interpolated

locations was always within the accuracy of the tracking method used. In other

words, with the linear interpolation method, the errors of interpolated locations

are always smaller than the distance that the moving objects are potentially able

to travel during the average time elapsed between recorded locations [112].

MOC is a in-memory hash table. The entry of MOC is < key, value >, while

the key is the identifier of a moving object Oid, and the value is a tuple < l0, t0 >

where t0 is last update timestamp and l0 =< x0, y0 > is the corresponding location

of the moving object at time t0. We suppose the fixed update interval is ∆t. When

there is an update of a moving object at time t1, we first check actual update time

interval, i.e. tint = t1 − t0. If tint < ∆t, we just ignore this update. If tint ≥ ∆t,

we generate a virtual update point by linear interpolation:

locv =
l1 − l0
t1 − t0

·∆t+ l0

tv = t0 + ∆t

(3.1)

We loop the interpolation process until tv ≥ t1. For each interpolation, we

get a line segment (< l0, t0 >,< lv, tv >). Then we transfer l0 and lv into their

corresponding grid cells cell(x0, y0) and cell(xv, yv), followed by inserting them into

corresponding leaf cells of TG which will be expounded in the following section

(Section 3.3.3).

3.3.3 Structure of the leaf cell

In each cell, we record two pieces of information: density and trajectories passing

the cell. The density of a cell indicates the popularity of the cell, i.e., how often the

cell is visited. The density provides prior information for the “Prediction Filter”

(see Equation (3.15)). Each cell in TG has a density counter. If a moving object

visits the cell, we increase its density counter by 1. We also update the density of
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all the cells along the interpolated line (see Figure 3.7).

Each cell uses a hash table, called traHash, to store the trajectories passing

the cell. The key of traHash is a vector (Oi, t), which means Oi passes this cell at

time t. The value of traHash is a vector (x, y), which is the coordinate of the next

cell that Oi passes. In this way, we implicitly store moving objects’ trajectories in

the cells’ hash tables. Knowing Oi in cell(x, y) at time t enables us to retrieve its

following trajectory after t (see Figure 3.8).
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Figure 3.7: Density
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Figure 3.8: Example of traHash and its stored trajectory.

Example 3.3.1. In Figure 3.7, O1 is in cell(2, 2) at time t, then it moves to cell(5, 4)

at time t + ∆t. We insert a record into the traHash of cell(2, 2) with key (O1, t)

and value (5, 4). Similarly, we insert the records into cell(5, 4) and cell(6, 6). If

we know O1 is in cell(2, 2), we can recursively retrieve the approximate trajectory

of O1 after time t (see Figure 3.8).

TG always stores moving objects’ trajectories in the most recent H time units.

We denote H as TG buffer interval threshold. In the experiment part, we evaluate

and discuss how to determine the value of H. When the moving objects report

their new locations, TG updates the relevant cells’ density and traHash, and at

the same time, TG also checks the oldest element in the traHash (traHash is

implemented as linked hashtable, therefore, the oldest element is always at the

end of the linked list). TG then discards the expired elements of traHashes and

updates density counters.

38



3.4 The Lookup process

We describe how to retrieve reference objects, from which we can easily derive

reference trajectories. The general idea is that if Oi has a sub-trajectory that

matches with the h-backward trajectory of Op, we say Oi is a reference object of

Op.

The match function defines similarity between trajectories pairs by a boolean

function. Given trajectory T i and trajectory T j, we have match(T i, T j) = true

if dist(T i, T j) ≤ τ , where dist() is a distance function. Besides the high cost for

building index to support such match function, it is also not easy to determine the

threshold τ . We define a new match function which has clear semantic meanings

and can support high performance query in TG. The definition of match function

is as below (dist() is the Euclidean distance function):

Definition 3.4.1 (Match Function). Suppose T in =< Oi
1, ..., O

i
n > is a sub-

trajectory of Oi and Wh = {Op
1, O

p
2, ..., O

p
h} is the h-backward trajectory of Op,

then we have match(T in,Wh)=true if they satisfy:

(c1) dist(Oi
1, O

p
1) ≤ ε and dist(Oi

n, O
p
h) ≤ ε;

(c2) ∀Op
u ∈ Wh∃Oi

v ∈ T in(dist(Oi
v, O

p
u) ≤ ε);

(c3) ∀Op
u1 ∈ Wh∀Op

u2 ∈ Wh(u1 < u2 ⇒ (∃Oi
v1 ∈ T in∃Oi

v2 ∈ T in(dist(Oi
v1, O

p
u1) ≤

ε ∧ dist(Oi
v2, O

p
u2) ≤ ε ∧ v1 < v2)))

Intuitions behind the definition are as follows: (c1) requires T in and Wh to be

close to each other; (c2) requires every point in Wh to be matched with a point in

T in; (c3) requires Oi and Op to have the same direction and tendency.

In TG, a query is processed in three steps: (s1) for each Op
u ∈ Wh, we define

a range CRu = �(Op
u, ε); (s2) we obtain objects that have visited any CRu; (s3)

the objects visited all the CRu by the time increasing order are reference objects.

One crucial problem is how to determine a proper value for ε. The rule we use

is to multiply the moving objects’ average velocity by half of the sampling time
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interval of the trajectories. For example, if the average velocity of the moving

objects is 11.1m/s and the sampling time interval is 30 seconds, then ε = 11.1 ∗

15 ≈ 160(m).

Example 3.4.1. In Figure 3.5, the reference objects of Op are RO = {O2, O3,

O4}, which visit both CR10 and CR11. The reference points of Op at k = 0 are

RO0 = {O2
5, O

3
2, O

4
3}.

3.5 The Prediction Filter and the Construction pro-

cess

The Prediction Filter (PF) is a model for path prediction. The input of PF is a set

of reference points and the output of PF is a predicted path. The “Construction”

process, which iteratively constructs state spaces and makes the path prediction,

runs within PF. We first give an introduction of PF and the probabilistic path

prediction in Section 3.5.1. Then, we introduce a hierarchical method to generate

state spaces in Section 3.5.2. We then explain some important functions used in

PF in Section 3.5.3. Finally, we discuss self-correcting continuous prediction in

Section 3.5.4.

3.5.1 The Prediction Filter and probabilistic path prediction

PF is based on the Grid-based Filter model [6], which is a generalization of Hidden

Markov Model. Recall that sk is a state in state space Sk, we denote the prob-

ability distribution function of Sk by p(sk|RO1:k), where RO1:k are observations

of state sk. PF constructs p(sk|RO1:k) recursively, i.e., from p(sk−1|RO1:k−1) to

p(sk|RO1:k), which is computed by the following function [6]:

p(sk|RO1:k) =
∑
i

wik|kδi(sk) (3.2)
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where

wik|k−1 ,
∑
j

wjk−1|k−1p(sik|s
j
k−1) (3.3)

wik|k ,
wik|k−1p(ROk|sik)∑
j
wjk|k−1p(ROk|sjk)

(3.4)

Note that δ(·) is the Dirac measure function and w0|0 = 1. We will discuss

functions p(sik|s
j
k−1) and p(ROk|sik) in Section 3.5.3. How to generate a state

space is discussed in Section 3.5.2.

To find the longest path whose probability is greater than the given threshold

θ, we increase the length of the predicted path until its probability is smaller than

θ. To realize this, we increase the value of k, and for each k value we find a path

SS1:k =< s1, ..., sk > whose value of p(SS1:k|RO1:k) is maximized and then check

whether its probability is still greater than θ.

Let us define a function ηk−1(j) as follows:

ηk−1(j) = max
<s1,...,sk−2>

p(< s1, ..., sk−2, s
j
k−1 > |RO1:k−1)

ηk−1(j) is the highest probability that the path ends with state sjk−1. By Bayesian

inference in Grid-based Filter, we have:

ηk(i) = max
j

[ηk−1(j)p(sik|s
j
k−1)]p(ROk|sik) (3.5)

Equation (3.5) can be solved by dynamic programming algorithms, such as the

Viterbi Algorithm [54]. Algorithm 3.1 lists the pseudo code for the probabilistic

path prediction. The result is a predicted path, whose probability (confidence) is

larger than θ and whose length (in terms of time) is longest.

Example 3.5.1. In Figure 3.5, we have η2(0) = 0.53, η2(1) = 0.48; and η3(0) =

0.26, η3(1) = 0.22, η3(2) = 0.17. Therefore, if θ = 0.4, then SS1:2 =< s0
1, s

0
2 >; if

θ = 0.2, then SS1:3 =< s0
1, s

0
2, s

0
3 >.
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Algorithm 3.1: Probabilistic Path Prediction Algorithm
input : probability confidence threshold: θ
output: probabilistically predicted path: SS

1 η0(0) = 1, ψ0(0) = 0, θ∗ = 1, k = 0
// "Lookup" process, see Section 3.4

2 get RO and RO0 from TG by Wh

3 If |RO| < ξm Then return NIL
// "Construction" process, see Section 3.5

4 while θ∗ ≥ θ do
5 k=k+1
6 get ROk from TG based on ROk−1

7 generate state space Sk// Section 3.5.2

8 for i=1 to |Sk| do

9 ηk(i) = max
j

[ηk−1(j)p(sik|s
j
k−1)]p(ROk|sik)

10 ψk(i) = arg max
j

[ηk−1(j)p(sik|s
j
k−1)]

11 θ∗ = max
i

[ηk(i)]

12 Backtrack SS from matrix ψ and return SS

3.5.2 Generate states by a hierarchical method

In this section, we discuss how to generate states of Op at time t = t0 + k∆t. In

a nutshell, we cluster the reference points ROk and then convert each reference

points cluster to a state.

We do not use traditional clustering methods (such as K-means or DBSCAN)

because it is hard to determine their parameters in our problem. Furthermore, we

would like to generate states that cover small areas (i.e., the radius is small) but

have high probabilities (i.e., p(sk|RO1:k) is high). Traditional clustering methods

are unable to find a compromise between these two contradictory criteria.

We propose a hierarchical method to generate states (see Figure 3.9). More-

over, we define a score function to find local optimal that balances the area size

against the probability of the state.
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Figure 3.9: State generation at t = t0 + k∆t

3.5.2.1 Bottom-up: building state space tree

Now we discuss how to build a state space tree. We use a modified agglomerative

hierarchical clustering algorithm to merge the reference points. Then all clusters

in each level of the cluster tree are converted to one candidate state space of Op

(which is a set of states, one cluster for one state).

Suppose ζ is a set of reference points in ROk, i.e., ζ ⊆ ROk, we can define

Centroid(ζ) and Radius(ζ) as follows:

Centroid(ζ) =

∑
Oi

tv
∈ζ O

i
tv

|ζ|

Radius(ζ) =

∑
Oi

tv
∈ζ ||Oi

tv − Centroid(ζ)||
|ζ|

(3.6)

The mean distance between two clusters is defined as :

distmean(ζ i, ζj) = ||Centroid(ζ i)− Centroid(ζj)|| (3.7)

The bottom-up arrow in Figure 3.9 shows the agglomerative clustering process.

At level 0, we treat each reference point as a cluster. Then, we continuously merge
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a cluster with its nearest cluster by the mean distance, until its radius is larger

than a threshold. Then we double the radius threshold, and merge the clusters

again. The process repeats until there is only one root cluster. Initially, we set

the radius threshold R = ε (ε is described in Section 3.4) since ε defines a proper

size of the area in the environment.

Then, we generate the state space tree. For a cluster ζ il in level l of the cluster

tree, we construct a state sik,l = (�(Centroid(ζ il ), Radius(ζ
i
l )), k). The state space

at level l is Sk,l =
⋃
sik,l.

Time complexity. We index reference points by a k-d tree [12]. Suppose

the total number of reference points is n. The time cost for building k-d tree

is O(n log n). The time cost for nearest neighbor search in k-d tree is O(n
1
2 ).

Our agglomerative clustering algorithm is based on [46], and every point needs

to merge with others only O(1) times. To sum up, the total time complexity is

O(n
3
2 ).

3.5.2.2 Top-down: selecting state space

We define a score function to select the state space with the highest score from the

state space tree by a top-down manner. All states in one level of the state space

tree can be considered as a state space; we denote the state space at lth level as

Sk,l.

The score function is to measure the quality of a state space. For a state, we

hope it has a high probability (P (sk|RO1:k)) and a small radius. However, the

states at a higher level of the state space tree have larger probabilities, but also

have larger radii; and vice versa. Our objective is to find an optimal compromise

between the probability and the radius.

Suppose the state with the largest probability in state space Sk,l is s∗k,l (i.e.,

∀sik,l ∈ Sk,l, p(s∗k,l|RO1:k) ≥ p(sik,l|RO1:k)), and r∗k,l is the radius of s∗k,l. Our score

function is:

fk,l =
p(s∗k,l|RO1:k)

(r∗k,l)
α

(3.8)
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α in Equation (3.8) controls the compromise between the probability and the

radius. We will evaluate how to set α. We choose the state space with maximum

fk,l as our state space at time t0 + k∆t, e.g. in Figure 3.9 we choose the states at

level 2 as the state space.

The benefit of the top-down strategy is that we can prune nodes at low levels

of the space tree. At one level, if all the states’ probabilities are smaller than θ,

we stop moving down to lower levels.

3.5.2.3 Improving efficiency by reusing micro cluster

We improve the efficiency of state generation by reusing micro clusters. The basic

idea is that objects’ locations are changing gradually [108]. By reusing previous

clusters at time t0 + (k − 1)∆t, we can reduce the time cost for state generation

at time t0 + k∆t.

A set of reference points inROk is defined as a micro clustermick ifRadius(mick) ≤

dmic. The set of all micro clusters is denoted as MICk =
⋃
imic

i
k. We try to gen-

erate MICk based on MICk−1. The whole process is as follows.

First, we get all reference points ROk, and divide them into different reference

point sets. The reference objects in the same micro cluster of micjk−1 are also in

the same set ζj.

Second, for every reference point Oi
tv ∈ ζ

j, we check whether it is within the

circle �(Centroid(ζj), dmic). If Oi
tv is outside of the circle, it will be split out as a

new micro cluster [108]. All the reference points left in ζj also form a new micro

cluster. We denote all the micro clusters generated in this step as MIC ′k.

Third, we use the bottom-up method to merge micro clusters in MIC ′k, which

is the same with the method in Section 3.5.2.1.

Reusing micro clusters reduces the time complexity of the bottom-up process.

The time complexity of the first and the second step is O(n). For the third step,

we need to perform a nearest neighbor query for each micro cluster in MIC ′k which

is indexed by k-d tree. The time complexity of each query is O(m′
1
2 ). (m′ is the
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number of micro clusters in MIC ′k.) As such, the time complexity of the third step

is O(m′
3
2 ). To sum up, the time complexity of reusing micro clusters is O(n+m′

3
2 ).

Note that m′ << n.

3.5.3 Functions in the Prediction Filter

3.5.3.1 State transition function

The state transition function p(sik|s
j
k−1) represents the probability that Op will go

to state sik at time t0 + k∆t given that Op is in state sjk−1 at time t0 + (k − 1)∆t.

We model the state transition function by considering two factors: spatial factor

and connection factor.

The spatial factor is the extent of spatial overlap between state sjk−1 and sik,

and is defined as follows:

J(sik, s
j
k−1) =

|sik
⋂
sjk−1|

|sik
⋃
sjk−1|

(3.9)

|sik
⋂
sjk−1| denotes the intersection area size of sik and sjk−1, and |sik

⋃
sjk−1| denotes

the union area size of sik and sjk−1.

Connection factor is based on the common reference objects between sjk−1 and

sik. We use RO(sik) to denote the reference objects within state sik at t0 + k∆t.

For example, in Figure 3.5, we have RO(s0
2) = {O2, O3}. The connection factor is

defined as

C(sik, s
j
k−1) =

|RO(sik)
⋂
RO(sjk−1)|

|RO(sik)
⋃
RO(sjk−1)|

(3.10)

We combine Equation (3.9) and Equation (3.10) into a linear function:

f(sik, s
j
k−1) = λJ(sik, s

j
k−1) + (1− λ)C(sik, s

j
k−1) (3.11)

where λ is used to adjust the weight of these two factors. In our experiment, we

set λ = 0.5. Initially, we have J(si1, s
0
0) = 0 and C(si1, s

0
0) =

|RO(si1)|
|RO| . We can see
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that a larger value of f(sik, s
j
k−1) leads to a larger state transition probability. To

sum up, we have:

p(sik|s
j
k−1) ∝ f(sik, s

j
k−1) (3.12)

3.5.3.2 Likelihood function

The likelihood function represents the probability that ROk is observed given Op

is in state sik at time t0 + k∆t. By Bayes’ theorem, we have:

p(ROk|sik) =
p(sik|ROk)p(ROk)

p′(sik)
(3.13)

p(sik|ROk) can be computed according to the distribution of ROk in different

states. The more reference objects Oi ∈ RO are in state sik, the higher value of

p(sik|ROk) is. Then we have:

p(sik|ROk) =
|RO(sik)|
|RO|

(3.14)

p′(sik) is the prior probability that O will be in sik. We assume that Op has a

higher prior probability to enter a state with a higher density in TG. We use ρ(sik)

to denote the average density of sik, which is the sum of density of all cells in sik

divided by the number of cells covered by sik. Then the prior probability that Op

will be in sik can be expressed as:

p′(sik) =
ρ(sik)∑
j ρ(sjk)

(3.15)

Since p(ROk) is constant for every state, we have:

p(ROk|sik) ∝
p(sik|ROk)

p′(sik)
(3.16)
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3.5.4 Self-correcting continuous prediction

In real-life applications, we may need to predict the path of a moving object

continuously. Continuous prediction gives us an opportunity to improve the pre-

diction result. During the prediction, the actual movement of the target object

(Op) can be compared against the predicted movement. With this information,

we can incrementally refine the prediction model. The basic idea is to give more

weight to the reference objects which help us make the correct prediction. Let us

consider the following example.

Example 3.5.2. In Figure 3.5, at time t0 = 11, reference objects of Op are RO =

{O2, O3, O4}. Suppose after 1 time unit, i.e., t0 = 12, Op goes to the state s0
1.

At t0 = 12, we have RO′ = {O1, O2, O3, O4}. Since {O2, O3, O4} have helped us

make the correct prediction, it is reasonable that we can trust them more than O1

when we make future prediction.

Now we introduce a new attribute, called credit, for the moving object. Let

ROt denotes the reference objects of Op at time t. We denote Ci
t (Ci

t ∈ N0) as the

credit of Oi ∈ ROt.

We use a linear growth and exponential decay method to update moving ob-

jects’ credits. From t to t+ ∆t, the credits are computed as follows: (s1) Suppose

Op is in state sj1 at time t+ ∆t. For each Oi ∈ ROt, if Oi contributes to generate

sj1, we have Ci
t = Ci

t + 1 (linear growth); otherwise, Ci
t = b1

2
Ci
tc (exponential de-

cay). (s2) Retrieve ROt+∆t from TG at time t + ∆t, and initialize the credits of

the reference objects as 1. (s3) For each Oi ∈ ROt, if Ci
t > 0, put Oi into ROt+∆t;

if Oi is already in ROt+∆t, sum its credits.

To integrate this self-correcting method into our prediction model, we need

two modifications. First, during the state generation (see Section 3.5.2), we use

the weighted center of cluster Centroid′(ζk) to replace Equation (3.6):

Centroid′(ζ) =

∑
Oi

tv
∈ζ C

i
tO

i
tv∑

Oi
tv
∈ζ C

i
t

(3.17)
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Second, we integrate credits (as weighted coefficients) into Equation (3.10) and

Equation (3.14). For example, we use Equation (3.18) to replace Equation (3.14).

Equation (3.10) is modified in the same way.

p′(sik|ROk) =

∑
Ou∈RO(sik) C

u
t∑

j C
j
t

(3.18)

3.6 Experiments

We evaluate R2-D2’s performance on real-world and synthetic data sets. We com-

pare R2-D2 with two state-of-the-art prediction methods: RMF [109] and TraP-

attern [86]; and study R2-D2’ distinct features, such as the confidence threshold

θ and the self-correcting continuous prediction. Efficiency issue is also discussed.

3.6.1 Experiment setup and measurement

Table 3.2: Data sets of Chapter 3

data set name ST HT BT
number of objects 13,200 9,800 25K,50K,100K,200K

unit of time 30sec 1 sec 1 step
width of grid cell 20m-80m(20m) 8 pixels 10 units
buffer interval H 0.5h-3h (1h) 10 min 200 steps

Data sets: Two real-world data sets and four synthetic data sets are used in

our experiment, Table 3.2 summaries their details:

[ST] is a collection of trajectories of 13,200 taxies in Singapore over one week

[123]. Each taxi continuously reports its locations every 20-80 seconds. We inter-

polate the trajectories over fixed intervals with 30 seconds spacing. Totally, the

dataset contains 268 million points.

[HT] is a collection of human trajectories tracked from 30 minutes surveillance

video in a lobby of a train station [139]. The video is 24 fps with a resolution
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Table 3.3: Parameter settings for experiment of Chapter 3

Parameter Description range(default value)
θ confidence threshold 0.2-0.8 (0.2)
dmic radius of micro cluster (cell width) 1-11 (7)
α score function 1/32-2 (1/16)
h backward steps 2-6 (3)

480×720. Since high sample rate is not necessary, we downsample the timestamp

interval of trajectories to 1 second. There are 9,800 trajectories and 159K points.

[BT] We use Brinkhoff generator [22] to generate four collections of synthetic

trajectories on the road map of Oldenburg (see Table 3.2). Different from ST and

HT, BT has 10 different types of moving objects. The speed of moving objects

may change at each time unit. We also put 400 moving obstacles in the space

to simulate the changes of the environment. We generate the trajectories for 400

time steps, and each moving object generates one point at each time step. We use

the default time units and distance units of the generator. Note that the system

performance is mainly affected by the total number of moving objects; therefore,

these large synthetic datasets are also used to test the scalability of our model.

Settings: The experiments are conducted on a PC with Intel Q9550 Core

Quad CPU 2.83GHz and 3.00GB RAM running Windows XP. All programs are

implemented in Java with JDK 1.7. Table 3.3 lists all parameters used throughout

the experiments. Parameters are set to default values (bold font) unless explicitly

specified.

Competitors: R2-D2 is compared with two state-of-the-art algorithms: (1)

Recursive Motion Function (RMF) [109] that is a descriptive model-based path

prediction method and is the most accurate motion function in literature [109;

68]; and (2) Frequent Trajectory Pattern (TraPattern) [86] that is a general (i.e.,

not personalized) pattern-based path prediction method. Configurations of RMF

and TraPattern are set for their best performance in terms of accuracy by their

performance studies. In order to mine patterns for TraPattern, we use data be-
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tween 19:00-20:00 from Monday to Friday of ST, use all trajectories of HT and

BT.

Measurement: In order to assess the quality of the prediction result, we

define four metrics. We use the centers of states as the predicted locations. All

errors are measured by Euclidean distance. For a moving object, the prediction

distance error at a predicted time is the spatial distance between the predicted

location and the real location of the object. Maximal distance error is de-

fined as the maximal prediction distance error during the whole predicted time

frame. Prediction length is the length (time duration) of a predicted path.

Prediction rate is the fraction of query trajectories for which the model outputs

prediction (i.e., the number of predictable query trajectories over the total number

of query trajectories). These measurements have been used to assess the quality

of prediction models in [83; 68; 69].

Methodology: For ST data set, we randomly select 200 trajectories between

19:50-20:00 on Tuesday as trajectories for prediction. We warm up TG with the

Tuesday trajectories from 17:00-19:50. For HT data set, we randomly select 50

query trajectories within the [16,20] minute interval. We warm up TG with the

trajectories within the [0,16] minute interval. For BT data set, we randomly

select 1000 query trajectories within the [380,400] interval. We warm up TG with

trajectories within the [0-380] interval.

3.6.2 Comparison with competitors

We find that R2-D2 outperforms the competitors in terms of prediction rate and

prediction distance error by 2 to 5-fold.

3.6.2.1 Prediction rate

We show the result on prediction rate in Figure 3.10 (a), (c), (e). As the prediction

length gets longer, the prediction rate gets lower. However, the prediction rate of

TraPattern is much lower than R2-D2 in all prediction lengths. For example, in
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Figure 3.10: Comparison with competitors.

Figure 3.10(a), more than half of the predicted paths on ST can be longer than

three minutes, while 20% trajectories have predicted paths with seven minutes.

Whereas TraPattern cannot give prediction results for more than half of the pre-

diction requests even when the predicted path length is short (e.g. 1 minute for

ST). We do not show the prediction rate of RMF in the figures since its prediction
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rate is always 100%, but the prediction error may be extremely large as shown in

Figure 3.10(b).

3.6.2.2 Average prediction distance error

Figure 3.10 (b), (d), (f) show that R2-D2 has not only higher prediction rate,

but also much lower average prediction distance error than those of RMF and

TraPattern. In terms of average prediction distance error, R2-D2 outperforms

RMF by 5 times on ST, 3 times on HT and 3.5 times on BT-200K; and R2-

D2 outperforms TraPattern by 2 times on all data sets. Note that the longest

pattern mined by TraPattern is about 8 minutes, therefore, in Figure 3.10(b) the

TraPattern cannot predict any path longer than 8 minutes.

3.6.3 Study of R2-D2’s distinct features

First, we can see the confidence threshold θ enables users to control the tradeoff

between the prediction accuracy and the prediction length. Second, we show self-

correcting continuous prediction can reduce the maximal distance error by 50%.

3.6.3.1 Effect of confidence threshold
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Figure 3.11: Effect of confidence threshold θ

We study the effect of the confidence threshold θ, in particular on the maximal
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distance error and the prediction time length. It is desirable to have a low maximal

distance error and a long prediction path. However, a longer prediction path

typically comes with a larger prediction error. Fortunately, in R2-D2 users can

use the confidence threshold θ to control the trade-off between them.

In Figure 3.11, we show the result on ST and HT data sets. We can see that the

maximal distance error and the prediction length are statistically correlated with

the confidence threshold. When we increase θ, both maximal prediction distance

error and prediction length decrease.

3.6.3.2 Self-correcting continuous prediction
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Figure 3.12: Self-correcting continuous prediction: ratio < 1 indicates R2-D2 with
self-correcting is better than R2-D2 without self-correcting.

We evaluate the effect of self-correcting continuous prediction of R2-D2. For

each query trajectory, we perform prediction with a fixed prediction length (next

15 time steps). For each prediction, we do prediction with two different methods:

R2-D2 with and without self-correcting continuous prediction (denoted as conR2-

D2 and dirR2-D2, respectively). We set the current location to be the location of

the object at next one time unit from the previous time, and repeat the same

prediction process. For each prediction, we sum the maximal distance errors

of conR2-D2 and dirR2-D2, and compute the ratio of them, which is ratio =
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conR2−D2
dirR2−D2

. ratio < 1 indicates conR2-D2 performs better than dirR2-D2 ; and vice

versa.

The curves in Figure 3.12 show a clear trend that the performance of conR2-

D2 improves gradually with the continuous prediction. Since the ratios are noised

over time, we use Bez̀ier Curve to fit them over all the prediction steps.

3.6.4 Response time and scalability

We show that R2-D2 makes path prediction in real time. In Table 3.4, we can see

the average response time of R2-D2 is only several milliseconds on HT and ST.

Even for the largest dataset BT-200K, the response time is still acceptable.

Table 3.4: Response time of R2-D2 with confidence threshold θ = 0.2

data set ST HT
BT

25K 50K 100K 200K
avg. time (ms) 15.05 8.98 34.89 78.28 112.10 572.50

Figure 3.13 shows the time cost of the Prediction process of R2-D2 on differ-

ent stages. In Figure 3.13, the “State generation” denotes the running time for

generating the states in the Prediction Filter (see Section 3.5.2). Then the “Path

generation” denotes the running time for inference the path from the generated

states by dynamic programming (see Section 3.5.1 and Algorithm 3.1). From Fig-

ure 3.13 we can see that, the Prediction Process (instead of the Lookup Process)

takes the major time cost of R2-D2.

We do not show the response time of RMF and TraPattern. Since they only

need to compute a math function or match patterns, their response time is faster

than R2-D2. Note that we use a prefix tree to compress and index the patterns for

TraPattern. Without such index, the time for matching patterns is unacceptable.

Effectiveness of reusing micro clusters: Table 3.5 shows that reusing

micro clusters halves the response time. The value of dmin means the times of

cell width. We can see that when dmic = 7× cell width, average response time is
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Figure 3.13: Time profiling of R2-D2 with confidence threshold θ = 0.2.

about a half of that when dmic = 1× cell width. Note that dmic = 1× cell width

means reusing micro clusters is disabled since only points in one cell form a micro

cluster.

Table 3.5: Response time VS. dmic on ST data set

dmic (× cell width) 1 3 5 7 9 11

avg. time (ms) 24.86 19.04 15.75 15.01 13.70 12.78

3.6.5 Effect of parameters
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Figure 16: Effectiveness and efficiency of our algorithmsFigure 3.14: Effect of parameters.

We present the effect of parameters in R2-D2 on ST dataset. In Figure 3.14,

we use two y-axes: the left one is the maximal distance error and the right one
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Table 3.6: Size of TG on ST data set

cell width(m) size(MB) max dist err(m)
80 53.6 1693
40 116.9 1280
20 310.0 1020

is the prediction length. It is worth noting that for all datasets we set the same

default value of h and α, and they work well.

Cell width of TG: Table 3.6 shows the memory needed by TG and the

maximal distance error with different cell width. We can see that using larger

cell size can reduce the memory cost, but also lead to larger maximal prediction

distance error. The reason is that smaller cell size can better approximate the

true distribution of moving objects.

TG buffer time interval H: H determines the length (time steps) of tra-

jectories indexed in TG. From Figure 3.14(a), we can see that both the maximal

distance error and the prediction length increase with the increasing of H, but the

maximal distance error increases a little faster. When H is larger, TG contains

older trajectories, some of which may be misleading when being used as reference

trajectories. To balance the maximal distance error against the prediction length,

we set H to 1 hour.

Backward steps h: Figure 3.14(b) shows that as h increases, the maximal dis-

tance error reduces slightly but the prediction length reduces dramatically. When

the number of backward steps is larger, the trajectories of the selected reference

objects are more similar to that of the target object, therefore, the maximal dis-

tance error is reduced. However, at the same time fewer trajectories are used for

prediction, therefore, the prediction time length reduces dramatically. To balance

them, we set h=3.

α of the score function: We investigate the effect of α of the score function

(Equation (3.8)), shown in Figure 3.14(c). A larger α leads to shorter prediction

time length and smaller maximal distance error. The reason is that when α is
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large the score function always gives a high score to the state space with the

small radius; then the maximal distance error is reduced. However, since the state

radius is small, the probability of this state is also small. It leads to the fact that

the path probability decreases dramatically over time. To balance distance error

against prediction time length, we set α to 1
16

.

We also study the effect of other parameters in R2-D2, and find that they do

not affect R2-D2’s performance much. For example, if minimum support ξm is

not set too small (e.g., 3) or too large (e.g., 50), it has little effect on R2-D2’s

performance. For all data sets, we set ξm = 10, and it works well.

3.7 System demonstration

We have implemented a web based demonstration system. In this demonstration,

we showcase the above key aspects of the “R2-D2” system using several real-life

and synthetic datasets. The system provides a visual interface that shows moving

objects and their predicted path. Users will be able to interact with our system

by setting different application scenarios with regard to dataset and parameter

settings. The online demo of our system is available at:

http://db128gb-b.ddns.comp.nus.edu.sg/jzhou/R2-D2/.

3.7.1 System setup

We will demonstrate our system with two real-life datasets and one synthetic

data set. The two real-world datasets are (1) the Singapore Taxies (ST) dataset

and (2) Human Tracking (HT) dataset. The synthetic dataset is a collection of

synthetic trajectories on the road network of Oldenburg generated by Brinkhoff

generator (BT). We compare with two existing path prediction methods: Recursive

motion function [109] that is the most accurate motion function in literature, and

TraPattern [86] that is a general pattern-based path prediction method. More

details about the datasets and the competitors are explained in Section 3.6.1.
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3.7.2 Demo interface

Figure 3.15: Screenshot of the main interface

Figure 3.15 is a screenshot of the demo interface. It consists of two parts:

control panel (left part) and display panel (right part). The control panel is

composed of four areas from top to bottom: (A) Data sets, (B) Prediction setting,

(C) Output and (D) a group of control buttons. In the area (A), users can select the

test data sets. In the area (B), the user can set various parameters. In the area (C),

the users can see some system output information, such as the different statistics

information of our prediction method compared against existing algorithms.

The display panel is composed of two parts from top to bottom: the canvas

view and the timeline bar. In canvas view, the user can see the map of visualized

trajectory, moving objects and predicted path. In Figure 3.15, the red points

represent the target objects whose paths need to be predicted, and the sequences of

green dots are the predicted paths. The background blue map is the visualization

of trajectories of other objects. The timeline bar lets us set the time interval for

selecting datasets.
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3.7.3 Utility of the demo

The demonstration of our system provides interactive graphical user interface for

users to play with our system, and includes dynamic visualization for users to

observe the performance of our path prediction method. With the help of the

demonstration, we can easily explain how out system works and show its perfor-

mance on real world and synthetic datasets.

3.8 Conclusions

In this chapter, we propose a “semi-lazy” approach for performing probabilistic

path prediction. Unlike previous approaches adopting eager learning, we propose

to leverage on the growth of computing power by building prediction model on

the fly, which utilizes historical trajectories that are dynamically selected. Our

experiment shows that this self-adaptive “semi-lazy” approach can outperform

existing eager learning methods in dynamic environments.
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Chapter 4

Time Series Prediction for Sensors

4.1 Introduction

Sensor data is becoming prevalent. Time series prediction of sensors has a vast

field of applications including events prediction, air pollution forecasting, manu-

facturing condition monitoring and medical diagnoses.

Much effort has been devoted to time series prediction by statistical regression

analysis, which has a long and rich history [52; 16; 20; 31; 17], probably dating

back to a pioneering work in 1927 [131]. Statistical regression methods, such as

ARIMA [20], GRACH [16] and robust regression [121], have been well studied.

However, it becomes clear over years that these mathematical formulae are not

powerful enough to handle the large varieties of time series in all realistic settings

[14].

In recent years, machine learning methods have drawn much attention and are

becoming popular for time series prediction. This is due to their nonparametric,

nonlinear properties and flexible modeling capability. Machine learning methods

can be categorized into two classes: the eager learning approach and the lazy

learning approach. The eager learning approach first computes statistical models,

such as Support Vector Machines (SVMs) [87; 126; 98] and Gaussian Processes

(GPs) [57; 90; 125], and then uses these models for prediction when the need arises.
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The lazy learning approach, such as k-nearest neighbors (kNN) regression [82; 14],

performs prediction during running time by conducting some simple computation

(e.g. average) on the “nearest neighbour objects”. However these methods have

several weaknesses when applied to sensor time series prediction.

First, there exists an “information loss” problem for models with the eager

learning approach. The eager learning approach typically tries to train a global

model from the historical time series data. To avoid the intractable training

process, some low-rank approximation methods are usually adopted which can

find approximate representation of the whole dataset. The consequence is that

the constructed models are more influenced by the global distribution of the whole

time series data and local behaviour is not captured.

Second, the eager learning approach for time series prediction may suffer from

the problem of “concept drift”. In the case of sensors monitoring dynamic and

evolving environments, the constructed statistical model might be outdated by

the time when sufficient historical data is collected to build a global model. Fur-

thermore, the underlying model that generates the data might gradually change

over time. As such, paying high computational cost to construct a large, global

model that fits the whole of the sensor time series may be a wasteful solution.

Third, the lazy learning approaches on the other hand are too simplistic and

suffer from a lack of accuracy and statistical guarantee. For example, the kNN

regression cannot estimate the predictive uncertainty of the prediction result, i.e.

it cannot give a meaningful probability confidence interval. This predictive un-

certainty is necessary in decision making. Finding kNNs continuously on a large

number of sensor time series can also be challenging in term of efficiency.

In this chapter, we present SMiLer, a SeMi-Lazy time series prediction system

for sensors. The core of SMiLer is our proposed semi-lazy learning approach to

time series prediction, which is illustrated in Figure 4.1. We use the time series of a

sensor in the last few time steps as the input request, which is used to retrieve a set

of k-Nearest Neighbor (kNN) time series segments from historical data. The kNN
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results are then used to construct a Gaussian Processes (GPs) model for predicting

the future value (with mean and variance) of the sensor. In general, the proposed

semi-lazy learning approach essentially follows the lazy learning paradigm until

the last step, where more sophisticated machine learning models (e.g. GPs) are

applied on the kNN results of the submitted prediction request.

Note that SMiLer makes prediction for individual sensors based on their own

historical time series data. Hence, the individual sensors can be independent and

heterogeneous in the SMiLer system. Making prediction using the correlation

among the multiple homogeneous sensors is beyond the scope of this study.

Moreover, in Section 4.6, we will expound that why we devise a new method for

time series prediction instead of using the trajectory prediction method. Briefly,

different application purposes and data properties determine that we should use

different models for time series prediction and trajectory prediction.

Historical time 

series on GPU

kNN

search
Gaussian 

Process

Future values 

of the sensor 

(with mean and 

variance) 

Time series 

of 

a sensor

Figure 4.1: An illustration for the semi-
lazy learning approach to time series
prediction

A: time series 
segments  

B: kNN search
results

C: outputhistorical 
time series

GPU
Sensor 1

Predictor 1
sensor 1

… ……

Sensor n sensor n

……

Predictor n

Search Step Prediction Step

File: simpleFramework

Figure 4.2: Overview framework of SMiLer

By adopting the semi-lazy learning approach, SMiLer has several appealing

advantages over existing methods. First, since historical data is kept until predic-

tion time, a very rich set of models are preserved as part of the data. When the

query and its kNNs are given, more sophisticated machine learning method is then

applied to construct a model. The constructed model caters to specifically making

prediction for the submitted query without the need to cater for all parts of the
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historical data which may result in over generalized model. Second, the concept

drifting problem can be effortlessly eliminated since we only need to insert new

time series data into the historical dataset to capture the changes of the envi-

ronment. Third, the semi-lazy learning approach empowers the traditional lazy

learning approach with higher prediction accuracy and advanced functions such

as the estimation of predictive uncertainty (i.e. confidence interval of prediction

results).

Two main technical obstacles must be overcome to make semi-lazy time series

prediction possible: 1) a fast kNN search method for time series and 2) a proper

time series prediction model. Figure 4.2 shows the overall framework of SMiLer

comprising of two main steps:

• In the Search Step, we use recent observations of the sensor (in the last

several time steps) as a query to retrieve a small set of kNN reference time

series segments using the popular Dynamic Time Warping (DTW). We de-

vise a novel index on the GPU and propose a new enhanced DTW lower

bound which accelerates our search process by one order of magnitude over

a straightforward GPU kNN search implementation.

• In the Prediction Step, we contrive a semi-lazy time series prediction method

which utilizes ensemble prediction to make self-correcting, continuous pre-

diction for sensor values with minimial requirement for parameter tuning by

human users. The Gaussian Process model is embedded into the framework

for time series prediction. By virtue of these methods, SMiLer can achieve

higher prediction accuracy than the state-of-the-art competitors by 2-5 folds,

and with better estimation of predictive uncertainty.

The rest of this chapter is organized as follows. Next, we discuss an overview

of the framework of SMiLer in Section 4.2. Then we describe the design and

the implementation of the two main components of SMiLer: the Search Step in

Section 4.3 and the Prediction Step in Section 4.4. Finally, we evaluate our system
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in Section 4.5, and conclude the chapter in Section 4.7.

4.2 Overview

In this section, we present a formal description of the semi-lazy learning time series

prediction model. Table 4.1 lists the basic notations used throughout this chapter.

Table 4.1: Table of Basic Notations of Chapter 4

Ci time series of sensor i cit value of Ci at t

xij,d d-length segment of Ci Xi
k,d a set of xij,d

yij,h h-step ahead value of xij,d Y i
h a set of yij,h

EKV Ensemble kNN Vector k number of kNNs

ELV Ensemble Length Vector d length of segment

4.2.1 Preliminaries

A time series Ci is a collection of observations made sequentially in time from

a sensor i (or more generally, an unknown system), i.e., Ci = {cit1 , c
i
t2
, .., citj , ...},

where citj is the value of Ci at timestamp tj. We assume the sample interval ∆t

of one sensor is always fixed1, therefore, a time series is only a sequence of data

points. |Ci| denotes the length of Ci. A set of contiguous observations of Ci

between two points cit and cit+d∆t is called a segment and is denoted by Ci
t,d. We

also call a segment with length d as a d-length segment.

At time t0, the h-step ahead prediction is to predict the value of the sensor at

time t0 +h∆t. Taking a d-length segment xi0,d = Ci
t0−(d−1)∆t,d = {cit0−(d−1)∆t, .., c

i
t0
}

as model input and denoting the h-step ahead value of xi0,d by yi0,h = cit0+h∆t,

the h-step ahead prediction model is a mapping f(·) between xi0,d and yi0,h, i.e.

yi0,h = f(xi0,d).

Since the time interval ∆t is fixed, hereafter, we simply use t+ d (or t+ h) to

replace t+ d∆t (or t+h∆t). In this case, d (or h) is basically the number of fixed

1This is not a real limitation since the user can easily re-interpolate data if the sample rate
is changed.
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time intervals (i.e. ∆t) beyond t. Using t+d can make notations simple and clear

in the context to avoid confusing.

4.2.2 Semi-lazy time series prediction

In this section, we present our semi-lazy time series prediction model. Given a

test input segment xi0,d, we first introduce an abstract semi-lazy predictor which

can predict the probabilistic distribution of yi0,h. Then we propose an ensemble

prediction method to exploit a group of predictors. Note that in SMiLer, we build

independent semi-lazy time series prediction model for each sensor in a parallel

manner giving linear scale-up.

4.2.2.1 Abstract semi-lazy predictor

Given a time series segment xi0,d = {cit0−(d−1), .., c
i
t0
} ending at time t0, we can

retrieve k nearest neighbor segments with length d from time series Ci, of which

the query result is X i
k,d = {xij,d}kj=1 = [xij,d, ..., x

i
k,d] (where xij,d is a segment of Ci

ending at time tj, i.e. xij,d = {citj−(d−1), .., c
i
tj
}). For each segment xij,d, its h-step

ahead value is yij,h = citj+h. We denote the h-step ahead values of every xij,d in

X i
k,d as a vector Y i

h = [yi1,h, y
i
2,h, ..., y

i
k,h]
> = [cit1+h, c

i
t2+h, ..., c

i
tk+h]

>. Now, given

(X i
k,d, Y

i
h), we formally define the abstract semi-lazy time series predictor.

Definition 4.2.1 (Semi-Lazy Time Series Predictor). Given a d-length time series

segment xi0,d = {cit0−(d−1), .., c
i
t0
} of Ci ending at time t0, the semi-lazy time series

predictor is a model which can use the kNN data (X i
k,d, Y

i
h) = {xij,d, yij,h}kj=1 and

test input xi0,d to obtain the posterior distribution of the h-step ahead observation

yi0,h (i.e. cit0+h):

yi0,h = f(xi0,d, X
i
k,d, Y

i
h) ∼ N (ũ, σ̃2) (4.1)

where f(·) is an abstract predictor which can be instantiated with suitable proba-

bilistic prediction model.
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The semi-lazy time series prediction model is built independently for each

sensor, but multiple sensors can be processed in the same way. Hereafter, unless

otherwise stated, we focus on the kNN search and prediction for one sensor.

The superscript “i” (e.g. yi0,h and xij,d) indicates that the variables are from

sensor i. Hereafter, when we focus on one sensor, we omit the superscript i for

convenience.

4.2.2.2 Ensemble prediction

We further introduce a strategy to improve the prediction accuracy as well as to

eliminate the parameters of the semi-lazy prediction model. In Definition 4.2.1, for

each abstract predictor, there are two parameters: (1) k: the number of nearest

neighbors and (2) d: the length of time series segment. For different sensors,

semi-lazy prediction models may desire different settings for k and d. To avoid the

trouble to specify the parameters as well as to improve the prediction accuracy, we

propose an ensemble prediction method, which is a matrix of abstract predictors

fi,j for a sensor with different k and d. The final predicted mean and variance

are the mixture of all the fi,j predictors. To facilitate explanation, we define an

ensemble matrix λ as below:

λ =


(k0, d0) ... (k0, dn−1)

... (ki, dj) ...

(km−1, d0) ... (km−1, dn−1)

 (4.2)

where ki is the number of nearest neighbor and dj is the length of time series

segment for predictor fi,j. We group the different numbers of nearest neighbors

in the Ensemble kNN Vector denoted by EKV = [k0, ..., km−1], and group the

different lengths of query segments in the Ensemble Length Vector denoted by

ELV = [d0, ..., dn−1].

In the ensemble matrix λ, each element λi,j also indicates the weight of fi,j

contributed to the final prediction result. Hence, the ensemble prediction model
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for one sensor is formally defined as follows:

fem =
1

Cλ

m−1∑
i=0

n−1∑
j=0

λi,jfi,j (4.3)

where Cλ is the normalization constant by summing the weight of every element

in λ, i.e. Cλ =
∑m−1

i=0

∑n−1
j=0 λi,j.

If there is no prior information, we can set all the elements in λ with the same

weight. We also propose a more intelligent and self-adaptive method to determine

the ensemble matrix if we employ continuous prediction (see Section 4.4.1).

4.2.3 Objective of SMiLer

A: time series 
segments  

B: kNN search
results

C: output
(mean & variance)   

historical 
time series

GPUSensor 1
C1 of sensor 1 Predictor 1

f f f
f f f
f f f

Self‐correcting
… ……

Sensor n Cn of sensor n

……

Predictor n
f f f

Self‐correcting

f f f
f f f

Search Step Prediction Step

File: framework

Figure 4.3: Overview framework of SMiLer, which has a Search Step (input A and
output B) and a Prediction Step (input B and output C).

SMiLer is designed to make the semi-lazy time series prediction model feasi-

ble. To sum up Section 4.2.2, there are two requirements for the semi-lazy time

series prediction: (I) kNN search of time series segment with different k and d

(see Equation (4.2)); and (II) proper model selection for predictor f(·) with the

ensemble prediction. Figure 4.3 shows an overview framework of SMiLer to satisfy
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the above objectives.

In the first step, called Search Step, we use time series segment of the target

sensor in the last few time steps (Rectangle A in Figure 4.3) as the queries, which

are submitted to a Graphics Processing Unit (GPU). Following closely, a set of

kNN reference time series segments (Rectangle B in Figure 4.3) are retrieved from

the historical dataset of the target sensor. For each sensor, we invoke multiple

queries with multiple k and d. The queries of one sensor are parallel processed on

the data of itself. Furthermore, we also propose a novel index and an enhanced

lower bound of DTW to accelerate the kNN time series search. More details about

this part will be discussed in Section 4.3.

Next, in the second step, namely the Prediction Step, the kNN results (Rect-

angle B in Figure 4.3) are input into the semi-lazy time series prediction models

to predict future value (with mean and variance) of each sensor (Rectangle C in

Figure 4.3). The ensemble prediction and continuous self-correcting prediction

are both investigated to improve the prediction performance as well as to mini-

mize users’ assistance for setting parameters. More details about this part will be

discussed in Section 4.4.

4.3 DTW kNN search with the GPU

We use DTW distance to find kNN segments from historical time series with the

help of the GPU. As we discussed in Section 2.1 of Chapter 2, there have been more

than ten similarity measures for spatio-temporal data, such as Euclidean distance

[53], DTW [13], LCSS [116], ERP [27], EDR [28] and SpADe [29]. Euclidean

distance is simple but sensitive to shifting and scaling problem which usually

appears in time series data. Among these measures, DTW is a simple but effective

one which is robust to the shifting and scaling problem. Other distance measures

can also handle time series similarity search, but they usually need a sophisticated

index structure, which cannot be easily implemented on the GPU. Besides, there
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are some evidences showing that DTW is the best measures for time series data

mining problems [49; 102; 94]. Since DTW requires high computation cost, it is

useful to resort to the help of the GPU to accelerate the computation.

4.3.1 Problem formulation

The SMiLer Index is designed to solve the Multiple kNN Search problem derived

from the ensemble and continuous prediction (see Section 4.2.2.2), where there

are multiple time series segment queries with different d and k for a target sensor.

The kNN search with different k in EKV = [k0, k2, ..., km−1] (see Equation (4.2))

can be solved by invoking the Nearest Neighbor search with maximum value kn,

and then selecting different subsets of the result according to order of the DTW

distances.

But it is not trivial for kNN search with different query lengths. For a target

sensor, we can invoke multiple kNN queries with query segment length d indicated

in ELV = [d0, ..., dn−1] (see Equation (4.2)). [x0,d0 , ..., x0,dn−1 ] denotes all the

queries at time t0 where x0,di = {ct0−(di−1), ct0−(di−2), ..., ct0}. We can see that, if

di < dj, x0,di is a suffix of x0,dj since both of them end at time t0. An example

of x0,d0 and x0,d1 is shown in Figure 4.5. Based on this suffix properity, some

computation cost can be reused during the kNN search.

We first define some simplified notations. For a target sensor, “Master Query”

MQ denotes the longest query segment where MQ = xdn−1 = {q0, ..., qdn−1} =

{ct0−(dn−1−1), ..., ct0}. Since every xdi is a suffix of x0,dn−1 , we also denote each

query segment as “Item Query” IQ where IQi = x0,di = {qdn−di , ..., qdn−1} =

{ct0−(di−1), ..., ct0}. Figure 4.5(b) shows an example of MQ and its item queries

IQ0 and IQ1. The Multiple kNN Search problem can be formally defined as:

Definition 4.3.1 (Multiple kNN Search). Given a master query MQ of a sensor

with the Ensemble Length Vector ELV = [d0, ..., dn−1], we can generate a set of

item queries {IQ0, ..., IQn−1} where |IQi| = di. The objective of the Multiple kNN
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Search is to find k-nearest neighbor segments Ct,di for each item query IQi under

DTW distance on time series C of the sensor.

In the following sections, we will exploit the SMiLer Index for the Multiple

kNN Search on the GPU. Readers may refer to Section 2.1.2 of Chapter 2 for a

review about DTW. Note that in this chapter we only consider the DTW under

Sakoe-Chiba band constraint with warping width ρ.

4.3.2 Enhanced lower bound for DTW

We propose an enhanced lower bound for DTW, denoted by LBen, which is derived

from the existing lower bound LB keogh [72]. We first define the “envelope” of

time series.

Definition 4.3.2 (time series envelope). Given a time series C and a warping

width ρ, the envelope E(C) contains two sequences: upper envelope U(C) and

lower envelope L(C), whose i-th elements are defined as:

U c
i = max

−ρ≤r≤ρ
(ci+r), Lci = min

−ρ≤r≤ρ
(ci+r) (4.4)

LB keogh is the distance between E(C) and the query Q:

LB keogh(E(C), Q) =
∑


dist(U c

i , qi) qi > U c
i

dist(Lci , qi) qi < Lci

0 otherwise

(4.5)

Depending on which envelope is used, for convenience, we simply denote LBEQ(Q,C) =

LB keogh(E(Q), C) and LBEC(Q,C) = LB keogh(E(C), Q). Examples of enve-

lope, LBEQ(Q,C) and LBEC(Q,C) are shown in Figure 4.5.

Based on LB keogh, we propose an enhanced lower bound of DTW, denoted
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by LBen, which are defined as:

LBen(Q,C) = max{LBEQ(Q,C), LBEC(Q,C)}

Theorem 4.3.1. LBen(Q,C) is a lower bound of DTW (Q,C).

Proof. We have LBEC(Q,C) ≤ DTW (Q,C) and LBEQ(Q,C) ≤ DTW (Q,C),

therefore, LBen(Q,C) ≤ DTW (Q,C) is true.

4.3.3 kNN search on the SMiLer Index

In this section, we present our SMiLer Index with its Multiple kNN Search method.

Figure 4.4 shows an overview of the process for the Multiple kNN Search.
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Figure 4.4: An overview of the Multiple kNN search on the SMiLer Index

4.3.3.1 Phase A: build SMiLer Index on the GPU

We build and store the SMiLer Index on the GPU’s global memory, which includes:

(I) the disjoint windows and their envelope of time series C, (II) the sliding win-

dows and their envelope of master queriesMQ and (III) SD-Table (Sliding-Disjoint

window lower bound Table).

Similar to the DualMatch framework [84; 61], we divide the time series C and

its envelope E(C) into disjoint windows DW ; and divide the master query MQ and

ites envelope E(MQ) into sliding windows SW . The lengths of disjoint windows

and sliding windows are equal, i.e. ω = |DW | = |SW |. Figure 4.5 illustrates
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examples for disjoint windows and sliding windows. Note that we divide the

sliding windows in time-reserved order (from right to left in Figure 4.5(b)).

DWDW DW DW

file: sdExp
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Figure 4.5: An illustration for SMiLer Index

We then construct the SD-Table whose entries are LBEQ and LBEC between

all the possible pairs of sliding window and disjoint window. The SD-Table can

be quickly computed by GPU with one block processes for each sliding window.

An illustration of ST-Table is shown in Figure 4.5(c).

4.3.3.2 Phase B: compute enhanced lower bound

In Phase B, we compute the enhanced lower bound LBen on the SMiLer Index.

The idea is that partial sum of the sliding-disjoint window pairs in SD-Table can

be the lower bound between an item query and a segment.

We first define the concept of Catenated Sliding Window Group (CSG) for a

query (IQi or MQ) which is inspired by the concept of “equivalence class” in [61].

Definition 4.3.3 (Catenated Sliding Window Group). A Catenated Sliding Window
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Group (CSG) of query Q contains maximum number of sliding windows without

overlap.

CSGi,s denotes a Catenated Sliding Window Group (CSG) of item query IQi,

where the subscript i is the identifier of IQi and the subscript s is the identifier of

the first sliding window in the group. For a master query, we denote it as CSGs.

Note that CSGs,i of item query IQi is always the prefix of CSGs of master query

MQ.

Example 4.3.1. In Figure 4.5(b), master query MQ has three CSGs which are

CSG0 = {SW0, SW3, SW6}, CSG1 = {SW1, SW4} and CSG2 = {SW2, SW5}.

The CSGs of IQ0 are CSG0,0 = {SW0, SW3}, CSG0,1 = {SW1} and CSG0,2 =

{SW2}. CSG0,s of IQ0 is always a prefix of CSGs of MQ.

An important point to note is that the alignment between sliding windows in

CSGi,s and disjoint windows of C defines an alignment between IQi and a segment

Ct,di , where t is determined by the following lemma:

Lemma 4.3.1. Suppose that item query IQi has a CSGi,s whose sliding win-

dows are aligned with a set of contiguous disjoint windows (from right to left)

i.e. {DWr, DWr−1, ...}. Then this alignment defines an alignment between IQi

and a segment Ct,di where the starting position of Ct,di in C is:

t = (r − |CSGi,s|+ 1) ∗ ω − (di − s)%ω (4.6)

where |CSGi,s| is the number of windows in CSGi,s, ω is the length of window and

di is the length of IQi.

Proof. We have two observations: (O1) For the item query IQi with CSGi,s, the

number of points in the right side of SWs (exclusive) is s. Then, the number of

points in the left side of SWs (inclusive) is di − s. According to the definition of

CSG, in the left side of SWs, only (di − s)%ω points are not included in CSGi,s.
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(O2) If the rightmost aligned disjoint window is DWr, then the leftmost

aligned disjoint window is DWr−|CSGi,s|+1. The starting position of the point

of DWr−|CSGi,s|+1 is (r − |CSGi,s|+ 1) ∗ ω.

Then, based on (O1) and (O2), in order to match IQi with a segment, we only

need (di − s)%ω number of points from the starting position of DWr−|CSGi,s|+1

to left forward. Therefore, the starting position of the aligned segment Ct,di is

t = (r − |CSGi,s|+ 1) ∗ ω − (di − s)%w.

Corollary 4.3.1. For each pair of IQi and Ct,di, there is one and only one alignment

between CSGi,s and corresponding disjoint windows.

Proof. Suppose that the disjoint windows {DWr, DWr−1, ..., DWr−m+1} are cov-

ered by segment Ct,di where m is the number of the disjoint windows and r is the

identifier of the rightmost disjoint window. We have m = b (r+1)∗ω−t
ω

c. We prove

the corollary in two directions.

(I) There is one alignment. For the segment Ct,di , we can find a CSGi,s of

IQi, where s = t+ di − (r + 1) ∗ w (s is the number of points in the right side of

SWs). The number of sliding windows in CSGi,s is bdi−s
ω
c. By replacing s with

s = t+ di − (r + 1) ∗ w, it is computed that m = bdi−s
ω
c = b (r+1)∗ω−t

ω
c. Therefore,

CSGi,s can be aligned with the disjoint windows covered by Ct,di .

(II) There is only one alignment. We prove it by contradiction. Suppose that

for a segment Ct,di there are at least two CSGs, denoted by CSGi,s′ and CSGi,s′′ ,

which are aligned with the disjoint windows {DWr, DWr−1, ..., DWr−m+1}. The

number of points of Ct,di in the left side of DWr−m+1 is sl = (r−m+1)∗ω−t (sl is

the number of points from t to the starting point of the disjoint window DWr−m+1).

Then the total length of Ct,di is d′i = sl +m∗ω+ s′ and d′′i = sl +m∗ω+ s′′. Since

s′ 6= s′′, it is obvious that d′i 6= d′′i . But Ct,di have only one length, i.e. di = d′i = d′′i .

There is a contradiction. Therefore, there is only one alignment between the CSG

and the disjoint windows.

Based on (I) and (II), we prove the claim.
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Then we can deduce a lower bound of DTW, called window enhanced lower

bound LBw, between IQi and Ct,di from the SD-Table.

Definition 4.3.4. Given a CSGi,s = {SWs, SWs+w, ...} of IQi and a disjoint

window DWr, we can compute the window enhanced lower bound LBw between

IQi and Ct,di as:

LBw(IQi, Ct,di) = max


∑m−1

j=0 LBEQ(SWs+j∗ω, DW r−j)∑m−1
j=0 LBEC(SWs+j∗ω, DWr−j)

(4.7)

where m = |CSGi,s| and t = (r −m+ 1) ∗ ω − (di − s)%ω.

Finally, we have the following important theorem:

Theorem 4.3.2. The following inequality always holds:

LBw(IQi, Ct,di) ≤ DTW (IQi, Ct,di)

Proof. Suppose that the disjoint windows {DWr, DWr−1, ..., DWr−m+1} are cov-

ered by segment Ct,di where r is the identifier of the rightmost disjoint window

and m is the number of disjoint windows such that m = b (r+1)∗ω−t
ω

c. Then, the

number of points of Ct,di in the left side of DWr−m+1 is sl = (r−m+1)∗ω− t and

the number of points of Ct,di in the right side of DWr is sr = t+ di − (r + 1) ∗ w

(refer to Proof of Corollary 4.4).

For simplicity, let the distance between the point qj and the envelop of ci be

LB(E(ci), qj) , i.e.

LB(E(ci), qj) =


dist(U c

i , qj) qj > U c
i

dist(Lci , qj) qj < Lci

0 otherwise
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For the lower bound LBEC(IQi, Ct,di), we have:

LBEC(IQi, Ct,di) =

di−1∑
j=0

LB(E(ct+j), qj)

=

sl−1∑
j=0

LB(E(ct+j), qj) +

di∑
j=di−sr+1

LB(E(ct+j), qj)

+

di−sl−sr∑
j=sl

LB(E(ct+j), qj)

≥
di−sl−sr∑
j=sl

LB(E(ct+j), qj) =
m−1∑
a=0

LBEC(SWs+a∗ω, DWr−a)

In the same way, we can also get LBEQ(IQi, Ct,di) ≥
∑m−1

a=0 LBEQ(SWs+a∗ω, DWr−a).

Combining these two inequalities, we have LBw(IQi, Ct,di) ≤ LBen(IQi, Ct,di). Ac-

cording to Theorem 4.3.1, for the enhanced lower bound we also have LBen(IQi, Ct,di) ≤

DTW (IQi, Ct,di . Finally, we get LBw(IQi, Ct,di) ≤ LBen(IQi, Ct,di) ≤ DTW (IQi, Ct,di)

Based on the above lemmas and theorem, we can compute the lower bound

between IQi and segments efficiently using GPU. The insight of Equation (4.7)

is that the sum of the rows of SD-Table belonging to the same CSG with their

aligned disjoint windows is the lower bound of IQi (see Example 4.3.2). Since the

CSGs of item queries are always the prefix of that of master query, by summing

the rows of SD-Table from top to down, we can obtain the lower bound for every

item query during the process.

This computation can be parallel and efficiently processed by the GPU. The

idea is to use one block of GPU to process one CSG (rows in SD-Table) and use

each thread of the block to handle several disjoint windows (columns in SD-Table).

In this way, the parallel processing capability of the GPU can be fully utilized.

Example 4.3.2. In Figure 4.5, we show the SD-Table of master query MQ and

time series C. For the GPU, we use Block 0 to handle rows of SD-Table in order
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of SW0 → SW3 → SW6, and use Block 1 to do it in order of SW1 → SW4, and

use Block 2 to do it in order of SW2 → SW5.

In Block 0, there is a thread (blue dashed arrow) visiting aligned windows

of SD-Table in order of: (SW0, DW3) → (SW3, DW2) → (SW6, DW1). To

sum the first two elements, we have the lower bound between IQ0 and C6,6, e.g.

LBEC(IQ0, C6,6) = LBEC(SW0, DW3) + LBEC(SW3, DW2). With the sum of all

the three elements, we have the lower bound between IQ1 and C3,9, e.g. LBEC(IQ1, C3,9) =

LBEC(IQ0, C6,6) + LBEC(SW6, DW1). Thus, by scanning the SD-Table from top

to down, we get the lower bound of IQ0 and IQ1 between some segments.

Algorithm 4.1 shows the pseudo code for computing the lower bound from

SD-Table of SMiLer Index. We use one thread to scan the columns of disjoint

windows to compute the lower bound of item queries. There are two key points.

The first one is to do shift sum (recall Equation (4.7)) to compute the lower bound

LBEQ and LBEC in Line 7 and Line 8. The second one is to compute LBw(recall

Definition 4.3.4) for each item query in Line 11.

4.3.3.3 Phase C: filtering unpromising candidates

In Phase C, we filter the unpromising candidates. The method is to scan all pairs

of IQi and Ct,di to discard candidates whose lower bound is larger than threshold

τi.

There are two methods to determine threshold τi for item query IQi. The first

one is to select the segment with the k-th smallest lower bound, and then set τi as

the DTW distance between the segment and IQi. The second method is to re-use

the kNN results during continuous prediction. Suppose that at time t0 − 1 there

is a query item IQ′i. For continuous prediction, at time t0, the new query item

IQi is formed by adding one point to the head of IQ′i and removing the last point

of IQ′i. Since the IQi and IQ′i are changing gradually, we can take the distance

between the k-th NN segment of IQ′i and the item query IQi as threshold τi,

which is tighter than that of the first method. In SMiLer, we use the first method
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Algorithm 4.1: Phase B: Compute enhanced lower bound
// One block of the GPU takes one CSW

1 for each CSGs of master query MQ do
// One thread of the block takes one disjoint window

2 for each disjoint window DWr of C do
3 wc← 0 // count window number

4 qc← 0 // count item query number

5 qd← s+ ω
// n is number of item queries per MQ

6 while qc < n do
7 LBq ← LBEQ(SWs−wc∗ω, DWr−wc)
8 LBc ← LBEC(SWs−wc∗ω, DWr−wc)
9 if qd+ ω > |IQqc| and qd ≤ |IQqc| then

10 t← (r − wc) ∗ ω − (qd− s)%ω
11 LBw(IQqc, Ct,qd)← max{LBq, LBc}
12 qc← qc+ 1

13 wc← wc+ 1
14 qd← qd+ ω

to determine the τi in initial queries, and then use the second method for the

following continuous queries.

4.3.3.4 Phase D: compute real DTW distance

After filtering all unpromising candidates, we compute the real DTW distance

between the un-filtered candidates and the item queries. In Algorithm 4.2, we

show the pseudo code to compute the DTW distance (with Sakoe-Chiba band

constraint) between Q and C.

The novelty of our computation method (i.e. Algorithm 4.2) lies in the use

of a compressed warping matrix. The shared memory, which is much faster than

the global memory, is an ideal place for the warping matrix of DTW which is

frequently accessed. However, the shared memory is quite small (up to 64KB).

Without careful design, the GPU may have to store part of the warping matrixes

in global memory instead. We design a compressed warping matrix with size
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2× (2 ∗ ρ+ 2) where ρ is the warping width. The essential idea is to temporarily

store the matrix elements along the warp path (2 rows and 2 ∗ (ρ + 1) columns),

while the modulus operation (%) is employed to reuse the memory space.

Algorithm 4.2: GPU fast DTW
input : a query Q; a time series C
output: The DTW distance between Q and C
// This is pseudo-code for one thread.

1 m = 2 ∗ ρ+ 2;// ρ is warping width

2 γ[m][2] // γ is allocated in shared memory

3 for i← 1 to m− 1 do
4 γ(i, 0) =∞
5 γ(0, 1) =∞
6 for j ← 1 to d do
7 γ((j − ρ− 1)%m, j%2) =∞
8 γ((j + ρ)%m, (j − 1)%2) =∞
9 for i← (j − r) to j + r do

10 γ(i%m, j%2) = dist(qi, cj) + min


γ((i− 1)%m, j%2)
γ(i%m, (j − 1)%2)
γ((i− 1)%m, (j − 1)%2)

11 return γ(d%m, d%m)// |Q| = |C| = d

In Algorithm 4.2, we show the pseudo code to compute the DTW distance (with

Sakoe-Chiba band constraint) between a query Q and a time series C. There are

several technical issues that should be noticed. First, in order to reduce the number

of accesses to the global memory, the query Q should reside in the shared memory;

and furthermore, the query Q must be placed in the inner loop of Algorithm 4.2

(i.e. Q should be placed in line 9 instead of line 6). The second trick for reducing

memory access latency is “coalesced access” [102; 37]. When several consecutive

threads (i.e. with consecutive thread identifiers) access successive sliding windows

for retrieving time series segments, all these accesses may be combined into one

read request to the memory, resulting in improving the efficiency significantly.
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4.3.3.5 Phase E: selection

In this phase, we use a fast k-selection algorithm on the GPU to select k candidates

with the smallest DTW distance from all the unfiltered candidates. The main

technique is distributive partitioning for k-selection on the GPU [2]. First, after

defining a set of buckets, for each item query IQi, we partition all candidates,

whose distance is smaller than τi, into different buckets according to their DTW

distance. Then we identify the bucket that contains the kth-smallest candidate.

Next, we focus only on the entries in this bucket, followed by projecting the entries

in the bucket into a new set of buckets again. The iteration is repeated until we

find the kth-smallest time series segment.

We make two improvements from the existing work [2]: (1) our implementa-

tion accepts multiple k-selections, with one block handling one k-selection for one

query; (2) we return all the k smallest segments instead of only k-th one.

4.3.3.6 Reuse for continuous query

During continuous prediction, we can avoid building the SMiLer Index from scratch

at every step. Suppose that at time t0 − 1 there is a master query MQ′. Then

at time t0, the new master query MQ is constructed by adding one point to the

head of MQ′ and removing the last point of MQ′. Consequently, we only need to

add a new sliding window to MQ and remove the last sliding window of MQ′ to

avoid re-constructing the SMiLer Index.

Figure 4.6 illustrates how to update the SD-Table during the continuous pre-

diction. For a new master query at time t0, we first clear the space of the last

sliding windows SWn of SD-Table, and then the new sliding window SW ′ is placed

in the memory space of SWn (see Figure 4.6(b)). The starting cursor (the red ver-

tical arrow) of the SD-Table is also moved from SW0 to SW ′. Then at time t0 + 1

(see Figure 4.6 (c)), the new sliding window SW ′′ replaces the memory space of

SWn−1 and the starting cursor is moved to SW ′′. In addition, after adding a
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new point, the envelopes of previous ρ sliding windows are changed. Therefore,

we need to re-calculate LBEQ of these affected sliding windows. For example,

if ρ = 1, LBEQ of SW0 is re-calculated in Figure 4.6 (b), and LBEQ of SW ′ is

re-calculated in Figure 4.6(c).
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Figure 4.6: Reuse SD-Table of the SMiLer Index

4.3.4 Utility of the GPU

The SMiLer Index and its kNN search method are carefully tailored for the com-

putation on the GPU. We summarize the utility of the GPU from several perspec-

tives. First, the proposed lower bounds (LBen and LBw) are applicable to the

computation of the GPU. Owing to the powerful parallel processing ability, we

can obtain a tighter lower bound by computing both LBEC and LBEQ without

increasing the response time.

Second, the SMiLer Index is devised to fully utilize the parallel processing

ability of the GPU. On one hand, the search on the SMiLer Index is parallelized

in as fine-grained manner as possible. For example, in Phase A we use one block

to treat one sliding window to construct SD-Table; and in Phase B we use one

block to treat one CSG to obtain the lower bound.

On the other hand, we try to ensure that processing in each thread block

is as homogenous as possible. We use a two-phase scheme to filter and verify

candidates (Phase C and Phase D) instead of having them in one phase. The

83



reason is that, due to the property of the SIMD architecture of the GPU, the

GPU hardware serializes different execution paths. If we mixed Phase C and

Phase D, threads doing different processing need to wait for each other before

continuing their processing which sacrifices efficiency.

Third, the SMiLer Index can easily scale up with multiple sensors. To enable

kNN search for multiple sensors, we only need to create multiple SMiLer Indexes

and invoke more blocks.

4.4 Time series prediction via “semi-lazy” learning

Following by Section 4.2.2, we give a detailed discussion about our semi-lazy time

series prediction model. We first present the self-correcting continuous prediction.

Next, we introduce the instantiation of the abstract predictor, including a simple

aggregate regression predictor and a sophisticated Gaussian Process predictor.

4.4.1 Self-correcting continuous prediction

The continuous prediction provides opportunities to learn and adjust the ensemble

matrix λ to improve the performance of SMiLer. In real-life applications, we

usually need to continuously predict the future value of sensors, as well as to

monitor the reading value of sensors. The idea for self-correcting is to increase

the weight of the predictor fi,j which makes good prediction after comparing the

predicted value and the true value (see Section 4.4.1.1). Additionally, We also

devise a sleep and recovery mechanism (see Section 4.4.1.2) which can make the

predictors with small weight temporarily sleep to reduce computation cost.

4.4.1.1 Self-correcting with the ensemble matrix

During the continuous prediction, we can learn to adjust the weight of each pre-

dictor in the ensemble matrix. The trick is that, after acquiring the true value

of the sensor, we can evaluate each predictor by comparing the true value with
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the predicted one. Then we can increase the weight of predictors making good

prediction.

Taking an abstract predictor fi,j as an example, we denote the true value of

the sensor at time t as y(t), and denote the predicted mean and variance as ũi,j(t)

and σ̃2
i,j(t). The likelihood function of fi,j after observing y(t) is:

li,j(t) = l(y(t), ũi,j(t), σ̃
2
i,j(t)) (4.8)

=
1√

2πσ̃2
i,j(t)

exp(−(y(t)− ũi,j(t))2

2σ̃2
i,j(t)

) (4.9)

It is clear that the larger the likelihood li,j(t) is, the better the predictor is. Then

the weight of fi,j in the ensemble matrix at time t is adjusted as follows:

λ̄i,j(t) = λi,j(t− 1) +
li,j(t)∑

i

∑
j li,j(t)

(4.10)

After Equation (4.10), we need to further re-normalized λ̄i,j(t) to get the final

weight of the predictor fi,j, i.e.:

λi,j(t) =
λ̄i,j(t)∑

i

∑
j λ̄i,j(t)

(4.11)

In fact, combining Equation (4.10) and Equation (4.11), λi,j(t) is an effectively

exponential smoothing average of the posterior probability of the predictor fi,j over

time.

4.4.1.2 Sleep and recovery

We devise a mechanism to control the sleep and recovery of every predictor. If

λi,j(t) is smaller than a threshold, we can temporarily make fi,j sleep to reduce

the computation cost. After several steps, the predictor would be recovered.

The mechanism is briefly presented here. In SMiLer, each predictor fi,j has

a sleep counter ςi,j specified how many steps it would sleep. If the weight λi,j
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is smaller than threshold η = 1
2∗n∗m (n ∗ m is the number of elements of the

ensemble matrix), we make predictor fi,j sleep, who will recover when the number

of subsequent prediction steps exceeds ςi,j. If there are κ predictors recovered, the

new weight of every recovered predictor is η/(1− κ ∗ η). After normalization, the

weight of recovered predictors are equal to η.

Aiming to make the “weaker” predictor sleep longer, the sleep counter ςi,j is

self-adaptive during the continuous prediction. ςi,j is first initialized as 1, which

means the predictor would only sleep for one step. If after recovery the predictor

fi,j goes to sleep immediately in next step, we will double the value of ςi,j. Oth-

erwise, if the predictor successfully avoids the sleep trap, we would continuously

halve the value of ςi,j at very prediction step until ςi,j = 1.

4.4.2 Instantiation of the abstract predictor

We will discuss the possible instantiation of the abstract semi-lazy predictor (see

Section 4.2.2). We first present a simple aggregation predictor, and then a sophis-

ticated Gaussian Processes predictor.

4.4.2.1 A simple aggregation predictor

One simple predictor is a function which can aggregate all the kNN’s h-step ahead

values of kNN data. We define an Aggregation Regression (AR) function with

pseudo-mean ũ0 and pseudo-variance σ̃2
0:

ŷ(t0 + h) = f(x0,d, Xk,d, Yh) (4.12)

= AR(x0,d, Xk,d, Yh) ∼ N (ũ, σ̃2) (4.13)

ũ =

∑k
a=1 ya,h
k

(4.14)

σ̃2 =

∑k
a=1(ya,h − ũ)2

k
(4.15)
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AR predictor is simple and can be effectively computed, but its drawback is

that the true value of y(t0 + h) may not follow the normal distribution defined by

ũ0 and σ̃2
0.

4.4.2.2 Gaussian Process predictor

In this section, we introduce the Gaussian Process (GP) predictor, which has

better prediction accuracy and good ability to estimate the predictive uncertainty.

In Section 4.4.2.2.1, we first briefly recall some fundamentals of the GP.

4.4.2.2.1 Review of the Gaussian Process We give a brief review of Gaussian

Processes (GPs) here. Please refer to [95] for a comprehensive introduction. A

Gaussian Process is a collection of random variables, any subset of which has a

joint normal distribution. Suppose that a set of data pairs (X, Y ) = {xa, ya}ka=1

are random variables, where xa is a d-dimensional vector and ya is the predicted

value. We can assume that there is an underlying prediction function f(·) such

that ŷa = f(xa) is based on the Gaussian Process, which is fully specified by the

mean function m(x) and the covariance function c(xa, xb). We usually further

assume that the mean function is set to be zero, i.e.:

[y1, y2, ..., yn]> ∼ GP(0,Σ) (4.16)

where Σab = cov(ya, yb) = cov(f(xa), f(xb)) = c(xa, xb), which specifies the covari-

ance between pairs of random variables. A widely-used covariance function is the

squared exponential (SE) covariance function, i.e.,

cov(ya, yb) = cov(f(xa), f(xb)) = c(xa, xb)

= θ2
0exp

(
−1

2

‖xa − xb‖2

θ2
1

)
+ δijθ

2
2

where δab is a Kronecker delta. δab = 1 if and only if a = b and δab = 0 otherwise.

The vector Θ = {θ0, θ1, θ2} is a set of hyperparameters. In particular, θ1 is called
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a characteristic length-scale, which determines how relevant an input is: if the

length-scale has a very large value, the covariance becomes almost independent of

that input, effectively removing it from the inference.

Now given data (X, Y ) = {xa, yb}na=1, and a test input vector x0, we want to

estimate the predictive distribution of the value y0 corresponding to the input x0.

Given the Gaussian Process prior and Bayesian rules, the joint distribution of the

observed values and the predicted value y0 is given byY
y0

 ∼ GP

0,

C(X,X) C(X, x0)

C(x0, X) c(x0, x0)

 (4.17)

where C(X, x0) = [c(x1, x0), ..., c(xn, x0)]> is the n×1 vector of variances between

the test vector and training vectors (similar for the other entries C(X,X), C(x0, x0)

and C(x0, X)). For simplicity, we use a compact notation as C = C(X,X),

c0 = C(X, x0) = C>(x0, X).

In the Gaussian Process model, for a test input x0, the predictive distributive

is simply obtained through conditioning on the training data. The joint distribu-

tion of the variables being Gaussian, the posterior distribution for the input test

data p(ŷ0|x0, X, Y ) is also a Gaussian distribution, with the following mean and

variance:

ŷ0 = f(x0) ∼ N (u0, σ
2
0) (4.18)

u0 = E(y0) = c>0 C
−1Y (4.19)

σ2
0 = cov(y0) = c(x0, x0)− c>0 C−1c0 (4.20)

An illustration for GP prediction is shown in Figure 4.7.

4.4.2.2.2 Semi-lazy Gaussian Process Predictor For the GP predictor, given

an input test segment x0,d, the predictive distribution of ŷ0,h is obtained through

conditioning on the kNN data (Xk,d, Yh) (recall Section 4.2.2.1). The predictive

88



0  :devstd

0 u:mean

File: gp_illus

Figure 4.7: An illustration of a Gaussian Process with predicted mean and variance

distribution is also a Gaussian distribution with mean ũ and variance σ̃2 as follows:

ŷ(t0 + h) = f(x0,d, Xk,d, Yh) (4.21)

= GP (x0,d, Xk,d, Yh) ∼ N (ũ, σ̃2) (4.22)

ũ = c>0 C
−1Yh (4.23)

σ̃2 = c(x0,d, x0,d)− c>0 C−1c0 (4.24)

where C, c and c0 are specified by the covariance function:

c(xa, xb) = θ2
0exp

(
−1

2

‖xa − xb‖2

θ2
1

)
+ δabθ

2
2 (4.25)

Before making prediction, an important point is that we must determine the hy-

perparameters Θ = {θ0, θ1, θ2}.

4.4.2.2.3 Online training for model optimization We use an online training

method to determine the hyperparameters Θ = {θ0, θ1, θ2}. For the eager learning

approach, a heavy training process is employed to learn the optimal hyperpa-

rameters of GP in a pre-processing stage. In contrast, with the semi-lazy learning

approach, we can afford the time to invoke an online training process to determine

the hyperparameters because there are only a small number of training points (i.e.

kNN data (Xk,d, Yh)). The advantage of this method is that the hyperparamters

are specially trained for the test input x0,d (and its neighbors). In this way, we

can avoid the underfitting or overfitting problems of the eager learning approach.
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Now we explain how to train the GP predictor (to determine the hyperparam-

eters) on the kNN dataset (Xk,d, Yh). For the GP, the predictive log probability

when leaving out a training item (xa,d, ya) is [95]:

logp(ya|Xk,d, Y−a,h,Θ) = −1

2
logσ2

a −
(ya − ua)2

2σ2
a

− 1

2
log2π (4.26)

where the notation Y−a,h means all the h-step ahead values in Yh except ya. The

ua and σ2
a are computed according to Equation (4.23) and Equation (4.24) respec-

tively, in which the training set is (X−a,k,d, Y−a,h). Thus, the leave-one-out (LOO)

log likelihood function on the whole kNN data is:

L(Xk,d, Yh,Θ) =
k∑
a=1

logp(ya|Xk,d, Y−a,h,Θ) (4.27)

The objective is to determine Θ to maximize the LOO log likelihood function

(i.e. Equation (4.27)). To achieve this goal, we can compute its partial derivatives

w.r.t. the hyperparameters and use the Conjugate Gradient optimization.

It seems that we need to compute Equation (4.26) k times in order to optimize

Equation (4.27). However, since the expressions in Equation (4.23) and Equation

(4.24) are almost identical for different points (only one column and one row re-

moved in turn), the computation cost can be significantly reduced by the inversion

of the partitioned matrix. An efficient approach to such training process can be

found in [105].

4.4.2.2.4 Online training in continuous prediction In the continuous pre-

diction, we can use an online optimization method to train the GP model. The

intuition for the online training is that the hidden model generating the time series

should change gradually. Consequently, the fixed steps pursuit training method is

enough to find near-optimal value of the hyperparameters. Based on this point,

in SMiLer, we only use the fixed five-step gradient descent to update the hyper-

parameters for the subsequential predictions.
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Formally, the hyperparmaters can be updated by the following fixed steps

pursuit gradient decent method. For a time series predictor GP at time t, θr(t)

denotes a hyperparameter and L(t) denotes the LOO log likelihood function on

the kNN data (Xk,d, Yh). Then, a successive estimate of the hyperparameter at

time t+ 1 is computed with the following formula:

θr(t+ 1) = θr(t)−
∂L(t+ 1)

∂θr(t)
(4.28)

After deducing an initial approximation of θr(t+ 1) from Equation (4.28), we can

further employ the Conjugate Gradient (CG) optimization method (with fixed

steps of descent) to obtain a near-local optimal value of θr. By this method, we

can avoid using random seeds to train the model at every step. Moreover, the

energy paid for the training process in previous steps is partially preserved.

4.5 Experiments

4.5.1 Settings

We aim to answer these questions in the experiment:

• Search Step: Can SMiLer support fast kNN search? We exhibit that it

accelerates the process of kNN search by more than one order of magnitude

over its baselines.

• Prediction Step: How is the prediction performance of SMiLer? We show

that its prediction accuracy can outperform the state-of-the-art competitors

by 2-5 folds with good estimation of predictive uncertainty. The ensemble

and self-correcting prediction method does improve the prediction perfor-

mance of SMiLer.

• Practicality: How well does SMiLer perform in real-life applications? We

show that it can carry out prediction for sensors in real time and scale well.
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We also claim that SMiLer is more practical than all its competitors.

Table 4.2: Default parameter for experiment of Chapter 4

Parameter Description value
ρ warping width 8
ω window length 16

ELV Ensemble Length Vector {32, 64, 96}
EKV Ensemble kNN Vector {8, 16, 32}

4.5.1.1 Environment and parameters

Experiments were conducted on a CPU-GPU platform. The GPU is a GeForce

GTX TITAN with 6 GB memory. We implemented the GPU code using CUDA

6. The other program was implemented in C++ and was running on CentOS 6

with an Intel Core i7-3820 CPU server and 64 GB RAM.

Table 4.2 lists the default parameters in the experiment. For the DTW com-

putation (SMiLer and its competitors), we set the warping width as ρ = 8, i.e.

about 10% of the maximum number of dimensions which is suggested by a previ-

ous study [96]. The window size ω is set to 16. Unless otherwise stated, we set

ELV = {32, 64, 96} which means for each sensor we will do three kNN searches

with different query length d. For all queries, we set k = 32 which is the maximum

value in EKV = {8, 16, 32}. Unless otherwise stated, in SMiLer we used a 3× 3

ensemble matrix for prediction (see Section 4.2.2.2) where k and d are indicated in

EKV and ELV respectively. Note that SMiLer is not sensitive to the parameter

settings since it can self-adaptively select the best parameters by applying the

ensemble and self-correcting prediction method.

4.5.1.2 Datasets

We used three real-life time series datasets to evaluate our system. Two data

sets are publicly available which can ensure the repeatability, and the remaining
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dataset is provided by our collaborators. We used z-normalization to normalize

the time series of each sensor.

[ROAD] This dataset [42] consists of times series of 963 road traffic sensors

of San Francisco bay area freeways provided by the California Department of

Transportation PEMS website [92]. Each sensor measured the occupancy rate of

a road in a city for 15 months with a 10-minute sample interval. In total, there are

61.0 million data points. The data set is publicly available in the UCI Machine

Learning Repository [8] and can be download freely [43].

[MALL] This dataset consists of time series of available car park lots in main

shopping malls in Singapore. There are a total of 26 car parks with a record

in every 10 minutes for 12 months. We duplicated every time series 40 times. In

total, there are 1040 (26×40) sensor time series and 53.9 million data points (after

duplication). The data is crawled from dataMall website [104] from September

2013 to September 2014.

[NET] This dataset is a time series of internet traffic data of a network back-

bone. It was collected for 3 months with a 5-minute sample interval. We duplicated

this time series 1024 times. In total, there are 1024 (1× 1024) sensor time series

and 20.4 million data points (after duplication). The data set is publicly available

in the DataMarket website and can be download freely [44].

4.5.2 Search Step: fast DTW kNN search

4.5.2.1 Competitors and experiment settings

We compared our DTW kNN search method of SMiLer, denoted as “SMiLer-

GPU”, with three kNN search competitors, namely FastGPUScan, GPUScan [102]

and FastCPUScan. FastGPUScan first computes the DTW distance between the

queries and all segments with the Sakeo-Chiba constraint, and then uses the G-

PU fast selection method to obtain the kNNs. (The method is similar with S-

MiLer Index but has only Phase D and Phase E.) GPUScan [102] is similar to
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FastGPUScan but without the Sakeo-Chiba constraint. FastCPUScan computes

the DTW under the Sakeo-Chiba constraint with pruning criteria studied in [72;

94]. Although all the competitors are indeed scanning methods, it is widely rec-

ognized that the linear-scan family algorithms outperforms the complex index

methods for kNN search in high dimensional space [94].

For all datasets, we randomly selected 100 master queries for each sensors and

averaged the running time. Unless otherwise stated, for each sensor we did the

Multiple kNN Search, i.e. invoking three item queries with length indicated in

ELV . The running time shown in the experiment is the total time for all the

sensors.

4.5.2.2 Evaluation with running time
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Figure 4.8: Time cost (log-scaled) of the Multiple kNN Search on all sensors with
varying numbers of nearest neighbors k.

In Figure 4.8 (y-axis is log-scaled), we show the running time of the the Multi-

ple kNN Search for different datasets with varying k. As we can see, SMiLer-GPU

is still one order of magnitude faster for the Multiple kNN Search even when com-

pared with the best competitor FastGPUScan. SMiLer-GPU only needs about 1

second to finish the search on all sensors, while FastGPUScan needs 10 seconds and

FastCPUScan needs about 500 seconds. Besides, the time cost of SMiLer-GPU,

FastGPUScan and GPUScan is quite stable with different numbers of nearest

neighbors. The reason is that, as we stated in Section 4.3.3.5, we use a GPU-

based distributive partitioning algorithm to select the best k candidates, which is
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almost independent of the value of k.
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Figure 4.9: Time cost (log-scaled) of kNN search with varying query length d

Figure 4.9 shows the time cost for kNN search with varying query length d.

In this case we used one item query per sensor with varying the query length d.

Figure 4.9 shows that, as d increases, the time cost of SMiLer-GPU is relatively

stable while the time cost of FastGPUScan, GPUScan and CPUScan becomes

higher gradually. The reason is that longer item query requires more time to

compute DTW; whereas the SMiLer Index can effectively filter many unpromising

candidates to reduce the computation cost.

Table 4.3 exhibits the utility of the lower bound LBen. On the ROAD and

MALL datasets, the number of unfiltered candidates of LBen is only about a half

of that of LBEQ and two thirds of that of LBEC . The effect of LBen on the NET

dataset is not as significant as others because it has smaller variance. Thanks to

the pruning power of LBen, the computation time is reduced significantly.

Table 4.3: Effect of Enhanced Lower Bound. The “time” (in seconds) is the total
time for all sensor, and the “number” is the number of unfiltered candidates per query
per sensor.

data ROAD MALL NET
time number time number time number

LBEQ 2.55 12558 1.38 6632 0.20 753
LBEC 1.77 9206 1.17 5707 0.20 725
LBen 1.35 6739 0.88 3677 0.17 516
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4.5.3 Prediction Step: effectiveness of SMiLer

4.5.3.1 Competitors and experiment settings

SMiLer-AR (Section 4.4.2.1) and SMiLer-GP (Section 4.4.2.2) denote our semi-

lazy prediction models with different instantiated predictors. We compared our

method with three state-of-the-art prediction methods which are:

• HoltWinters, a popular statistical regression model for time series with peri-

odical patterns [122; 64]. We used its implementation in “forecast” package

of R [66]. To fully utilize the features of HoltWinters, after finishing predic-

tion of one test input, we added this test data to training data to update

the model. We set the period as one day, and parameters were determined

by minimizing the squared error on the training data.

• Projected Sparse Gaussian Process (PSGP), a predictive analysis model with

eager learning approach. PSGP is an approximation to the standard Gaus-

sian Process [95] by projecting all information onto a set of “active points”

[40]. We set the number of “active points” to 32, whose effect is also inves-

tigated in Section 4.5.4.2. We used an opensource project of PSGP [10].

• LazyKNN, a lazy learning prediction method for time series prediction [3],

where the predicted value is an average of the k nearest neighbors weighted

by the inverse of DTW distance. To make it comparable with other methods,

we used the variance of the kNN results as the predicted variance.

We evaluate the prediction performance by two measures: mean absolute error

(MAE), which is an average of the absolute errors between the predicted value

and the true value; and mean negative log predictive density (MNLPD), which

is an average of negative log of the density of the true value under the normal

distribution predicted by the above methods. The MAE can evaluate the accuracy

of the predicted result; while the MNLPD can assess the quality of the predictive

uncertainty. In other words, the model with smaller MNLPD can not only predict
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accurately, but also estimate a proper prediction confidence (standard deviation)

which is very useful in decision making. For both measures, the smaller the value

is, the better the method is.

For the ROAD dataset, we cut off a segment (i.e. leave-out testing) with 1000

points at the end of every time series. For the MALL and NET datasets, since

there is duplication, we randomly cut off a segment (leave-out testing) with 1000

points from every time series. Then we made 200-step continuous prediction for

each sensor along the segment. For PSGP, we only tested on 50 randomly selected

time series, since the training time of PSGP for all sensors are too high to be

acceptable (see Section 4.5.4.2 for more explanation).

4.5.3.2 Evaluation with MAE and MNLPD

Figure 4.10 shows the prediction performance of SMiLer (SMiLer-AR and SMiLer-

GP) compared to HoltWinters, PSGP and LazyKNN with varying look-ahead step

h. From Figure 4.10(a)(c)(e), we can see that SMiLer always has a smaller MAE

compared with other methods. Taking the MAE on the ROAD dataset when

h = 15 as an example, the MAE of HoltWinters is 5 times larger than that of

SMiLer-GP; the MAE of PSGP is 3 times larger than that of SMiLer-GP; and the

MAE of LazyKNN is 2 times larger than that of SMiLer-GP. Similar results can

be obtained from the MALL and NET datasets.

An interesting point to note is that the MAE of SMiLer-AR is about 2 times

larger than SMiLer-GP on the ROAD dataset (see Figure 4.10(a)), while their

MAE is almost identical on the MALL and NET datasets (see Figure 4.10(c)(e)).

This is due to the fact that the ROAD dataset contains more dynamic and irreg-

ular traffic information while the MALL and NET datasets have some seasonal

patterns. Therefore, SMiLer-GP, which has a strong GP predictor, has innate

advantage over SMiLer-AR on such complex time series data.

Figure 4.10(b)(d)(f) demonstrate that SMiLer-GP is significantly better than

SMiLer-AR and LazyKNN under the MNLPD measure. From Figure 4.10(b)(d)(f),
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Figure 4.10: MAE and MNLPD with varying h-step ahead prediction

we can see that the MNLPD of LazyKNN and SMiLer-AR is much larger (and

unstable in Figure 4.10 (d)) than the other methods. Indeed, LazyKNN and AR

predictor innately lack the ability to estimate the predictive uncertainty, which is

one of the major drawbacks of the lazy learning approach.

In Figure 4.10 (b)(d)(f), we can also see that SMiLer-GP is better than (at

least is on par with) HoltWinters and PSGP under the MNLPD measure. The

MNLPD of SMiLer-GP is always smaller than HoltWinters and PSGP except after

step 30 on the ROAD and MALL datasets. We believe that the slight increasing of
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Figure 4.11: Effect of ensemble and self-correction prediction

the MNLPD of SMiLer-GP is due to the cumulative uncertainty for the long-step

ahead prediction; PSGP and HoltWinters on the other hand can predict a large

variance (which may not be interesting) in such cases based on the knowledge of

the whole dataset. More comparison between SMiLer-GP and PSGP can be found

in Section 4.5.4.2.
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4.5.3.3 Effect of the ensemble and self-correcting method

Figure 4.11 reveals the effect of the ensemble and self-correcting prediction method

of SMiLer. SMiLerNE-GP and SMiLerNE-AR denote the experimental result of

SMiLer without the ensemble prediction (i.e. only one predictor instead of a matrix

of predictors)2. For SMiLerNE, we fixed the query segment length as d = 64 and

the number of nearest neighbors as k = 32. SMiLerNW-GP and SMiLerNW-

AR denote the experimental result of SMiLer with the ensemble prediction but

without the self-correcting prediction. The other setting of SMiLerNW was the

same as SMiLer’s, i.e. ELV = {32, 64, 96} and EKV = {8, 16, 32}. As we can see

from Figure 4.11, SMiLer-GP always has a better performance than SMiLerNW-

GP and SMiLerNE-GP on all datasets under both measures (MAE and MNLPD).

SMiLer-AR holds similar conclusion on the MAE measure. But under the MNLPD

measure, since AR predictor lacks ability to estimate predictive uncertainty, there

is no final conclusion.

4.5.4 Practicality of SMiLer

4.5.4.1 Running time of SMiLer
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Figure 4.12: Total time cost of SMiLer (search and predict) on all sensors

We show the total running time of all sensors on SMiLer in Figure 4.12. We

2SMiLerNE-AR degenerates to LazyKNN in this case.
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used a GPU-CPU platform to run SMiLer without multithreading on the CPU. As

we can see, SMiLer-AR can make prediction within 1.5 seconds with a thousand

sensors. Most of the time is spent on the SMiLer search step. SMiLer-GP can

predict within 30 seconds on all the datasets and most of the time is consumed

in prediction step. The higher time cost of SMiLer-GP than that of SMiLer-AR

is due to the online training process of GP; while the paybacks are more accurate

prediction results (lower MAE) and better estimation of predictive uncertainty

(lower MNLPD). Note that, since the sample time interval is 5-10 minutes in the

datasets, both SMiLer-AR and SMiLer-GP can process prediction requests for all

sensors in real time.

SMiLer scales well in real-life applications. Since we build an independen-

t prediction model for each sensor, SMiLer can scale linearly with the number

of sensors. Besides, the running time of SMiLer-GP can be easily reduced by

multithreading on multi-core architecture.

4.5.4.2 Comparison of PSGP and SMiLer
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Figure 4.13: Comparison of PSGP and SMiLer-GP:average training time per sensor
of PSGP and their MAE

We claim that SMiLer is more practical than all its competitors. Figure 4.10

shows that HoltWinters can estimate predictive uncertainty (low MNLPD) but its

accuracy is bad (high MAE); LazyKNN may have a medium accuracy (relative

low MAE) but it cannot estimate the predictive uncertainty (high MNLPD). It
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seems that PSGP has potential to achieve better prediction performance since its

accuracy can be improved by increasing the number of “active points”. Next, we

reveal the impracticality of this solution.

Figure 4.13 indicates why SMiLer is more practical than PSGP in real-life

applications. For each dataset, we randomly selected 50 sensors to make prediction

using PSGP and averaged their training time and MAE. In Figure 4.13, when we

vary the number of active points, the left y-axis shows the MAE of PSGP and the

right y-axis shows the average training time of PSGP for each sensor. The MAE

of SMiLer-GP averaged on such 50 sensors is also illustrated in Figure 4.13 with

violet dash line. We can see that, after the number of active points become larger

than a certain threshold (e.g. 32), the marginal improvement of MAE is small,

but the increase of the computational time is exponential. For example, on the

ROAD dataset, the total training time for its 963 sensors with 128 active points

should be about 200 days (18000*963=17334000 seconds). As we illustrated in

Figure 4.13, SMiLer-GP still has lower MAE than PSGP on all the datasets even

if we allow such an expensive training process for PSGP.

4.6 Comparison of R2-D2 and SMiLer

In this section, we compare the performance of our semi-lazy trajectory prediction

method (denoted by R2-D2) with the semi-lazy time series prediction method

(denoted by SMiLer-GP) on the sensor time series data. Then we discuss the

difference of time series prediction and trajectory prediction for model selection.

4.6.1 Datasets preparation

We use three data sets in the experiment of our semi-lazy time series prediction

method (i.e. SMiLer-GP), which are: ROAD (road traffic sensors data), MALL

(available car park lots in shopping malls) and NET (internet traffic data of a

network backbone). More details about theses datasets can be found in Section
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4.5.1.2. We convert the time series data into trajectory data. For every point

of time series, we append one external dimension to the point with a constant

value 0. In the sensor data, one sensor is equivalent to one dynamic environment.

Therefore, we only test them on one sensor of the data sets. For R2-D2, there

are many trajectories of different moving objects while there is only one long time

series for a sensor. To overcome this problem, we divide the time series into

different segments whose length is equal to one day (one day is the period of the

sensor). To measure the prediction performance, we make 50 prediction queries

on the data set and average their distance error and prediction rate.3 For R2-D2,

we set the length of the backward window as 6.

4.6.2 Experiment results

Figure 4.14 and Figure 4.15 show the prediction error of R2-D2 compared with

SMiLer-GP. In Figure 4.14, to make R2-D2 and SMiLer-GP comparable we set

the probability confidence threshold as θ = 0; whereas in Figure 4.15, we set the

probability confidence threshold as θ = 0.05. We can see that with the increasing

of the predicted path length, the distance error of R2-D2 becomes larger and

larger in both figures. The probability threshold θ can reduce the prediction

error, especially for the MALL dataset. Note that if the length of the predicted

path is larger than 5 (h ≥ 5), the distance error of R2-D2 in Figure 4.15 becomes

unstable. The reason is that many prediction queries cannot make predictions

after step 5 since its probability confidence threshold is smaller than 0.05.

The error of the R2-D2 is determined by whether we can generate correct

states (i.e. cluster) whose center is the predicted result. For time series data,

the reading value of the sensor may be distributed in the whole domain without

obvious clusters. Therefore, the prediction result of R2-D2 is not as good as

SMiLer-GP. It is worth noting that R2-D2 has better performance on the MALL

3We use 100 prediction queries for the ROAD dataset since its prediction rate is too small
(which is smaller than 0.5).
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Figure 4.14: Distance error of R2-D2 with confidence threshold θ = 0
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Figure 4.15: Distance error of R2-D2 with confidence threshold θ = 0.05

dataset than on the ROAD and NET datasets. It is because, with the MALL data

set having better seasonal patterns than the ROAD and NET datasets, the values

of time series in MALL dataset may closely gather in a small interval which can

be recognized by the cluster method of R2-D2.

Figure 4.16 shows the prediction rate of R2-D2 on the datasets. The prediction

rate of R2-D2 falls quickly with the increase of the predicted path length. R2-D2

predicts a sequence of possible values, and the confidence probability measures

the probability of the whole sequential values instead of one value. Therefore, the

probability confidence descends dramatically with the increasing of the predicted

path length.
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Figure 4.16: Prediction rate of R2-D2 with confidence threshold θ = 0.05

4.6.3 Model selection for time series prediction and trajectory

prediction

In this section, we discuss why we use different models to do predictive analysis

for time series and trajectories. We explain the reasons from two perspectives:

the application purpose and the data property.

4.6.3.1 Application purpose

The time series prediction and trajectory prediction have different prediction pur-

poses based on their applications. As we will clarify in details later, the time

series prediction concerns the variance of the predicted result; whereas the trajec-

tory prediction more concerns the probability of the predicted path (a sequence

of possible locations). Therefore, we use the Gaussian Process model for time

series prediction to estimate the variance of the predicted results, and use the

Hidden Markov Model for trajectory prediction to estimate the probability of the

predicted path.

For time series prediction, this prediction variance is useful for decision making.

With the Gaussian Process model, we can predict the value with its variance of

the sensor at a certain time. For example, we predict that there are 10 available

car park lots in a shopping mall after two hours. If the standard deviation of the

predicted result is 1, it may be sure that there is available car park lots after two

hours. However, if the standard deviation of the predicted result is 100, we may
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alarm the coming users that there may not be enough car park lots for them. In

this case, the Gaussian Process model is more suitable for time series prediction

which can estimate the variance for the predicted value.

In contrast, for trajectory prediction the probability of the predicted path is

useful for applications. With the Hidden Markov model, we can estimate the

probability of a predicted path for a sequence of future time steps. For example,

with setting a minimum probability confidence as 0.2, we can predict the path of a

car which will pass a restaurant. If we reduce the probability confidence threshold

as 0.1, we can predict a longer path of the car which will pass a restaurant and a

gas station. With the estimated probability, the administer can determine either

to only send the message of the restaurant to drivers ahead of time, or to send

all the messages of the restaurant and the gas station to drivers. Whereas the

variance of the predicted locations is not as important as the one of time series

prediction since the distance from the predicted location to the Point of Interest

does not vary too much. In this case, the Hidden Markov Model is more suitable

for trajectory prediction which can estimate the probability for the predicted path

(a sequence of possible locations).

4.6.3.2 Data property

We also need to consider the data property of time series and trajectories for

predictive model selection. The continuous data distribution of time series data

determines that the Gaussian Process model is superior to the Hidden Markov

Model for predictive analysis. The sensor always monitors an environment which

should change gradually and continuously. For example, the temperature of an

environment may change gradually and continuously from one value to another.

Then the value of time series data may distribute the whole domain without a clear

boundary. In this case, it is difficult and unnatural to discretize the values of time

series into different clusters (or states). In this case, the Discrete Hidden Markov

Models (HMMs) is not suitable to the time series prediction involving continuous
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data. Whereas, the Gaussian Process can predict the value as continuous function

in a probabilistic manner based on the correlations among all the individual points,

where the problem of discretization is conveniently avoided.

In contrast, the discrete distribution of trajectory data determines that the

Hidden Markov Model is superior to the Gaussian Process model for predictive

analysis. The trajectories of moving objects usually follow some routes (such as

roads in space). For example, the trajectories of cars in urban space are constraint

by the road network. In this case, the future points of trajectories can be divided

into different clusters to form the states of the Hidden Markov Model; while the

Gaussian Process model may predict wrong results since the aggregation of all the

points may be outside any of the clusters. In this case, the Hidden Markov Model

can generate more meaningful prediction results.

4.7 Conclusions

In this chapter, we present SMiLer, which is a semi-lazy prediction system for

sensors. The core idea of this system is to employ the “semi-lazy” learning ap-

proach to time series prediction. To make our system feasible, two challenging

problems are solved, which are a fast k-nearest neighbors search under DTW and

a semi-lazy time series prediction model. For the former problem, we depicted

a GPU-based index for fast DTW kNN search. For the latter one, we devised a

semi-lazy time series prediction model integrating the ensemble and self-correcting

prediction. We also resorted to the Gaussian Process as an instantiated predictor

of our model.

Extensive experiments on real datasets demonstrate that SMiLer does effi-

ciently perform time series prediction with high accuracy and good predictive

uncertainty. SMiLer can also scale well and carry out prediction in real time.

A discussion about the model selection for trajectory prediction and time series

prediction is also expounded in this chapter.
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Chapter 5

Dynamic Itinerary Recommendation

for Traveling Services

5.1 Introduction

Traveling market is divided into two parts. For casual customers, they will pick a

package from local travel agents. The package, in fact, represents a pre-generated

itinerary. The agency will help the customer book the hotels, arrange the trans-

portations and pre-order the tickets of museums/parks. It prevents the customers

from constructing their personalized itineraries, which is very time-consuming and

inefficient. For instance, Figure 5.1 lists a four-day package to Hong Kong, pro-

vided by a Singapore agency. It covers the most popular POIs for a first-time

traveler and the customers just need to follow the itinerary to schedule their trips.

Most existing works on itinerary recommendation employ an eager learning

method, which takes a two-step scheme. They first adopt the data mining al-

gorithms to discover the users’ traveling patterns from their published images,

geo-locations and events [97; 39; 34]. Based on the the relationships of those his-

torical data, new itineraries are generated and recommended to users [106; 32;

129].

Although the travel agencies provide efficient and convenient services, for ex-
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Figure 5.1: A 4-Day Trip to Hong Kong

perienced travelers, the itineraries provided by the travel agents lack of customiza-

tion and cannot satisfy individual requirements. Some interested POIs are missing

in the itineraries and the packages are too expensive for a backpacking traveler.

Therefore, they have to plan their trips in every detail, such as selecting the hotels,

picking POIs for visiting and contacting the car rental service.

Therefore, to attract more customers, travel agency should allow the users

to customize their itineraries and still enjoy the same services as the pre-defined

itineraries. However, it is impossible to list all possible itineraries for users. A

practical solution is to provide a dynamic itinerary recommendation service. The

user lists a set of interested POIs and specifies the time and money budget. The

itinerary recommendation service returns top-k itineraries package satisfying the

requirements. In the ideal case, the user selects one of the recommended k-day

itineraries package as his plan and notifies the agent.

However, none of current itinerary planning algorithms (e.g., [50] and [11]) can

recommend a ready-to-use itinerary plan, as they are based on various assump-

tions. First, current planning algorithms only consider a single day’s trip, while

in real cases, most users will schedule an n-day itinerary (e.g., the one shown in

Figure 5.1). Generating an n-day itinerary is more complex than generating a sin-

gle day one. It is not equal to constructing n single day itineraries and combining
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them together, as a POI can only appear once. It is tricky to group POIs into

different days. One possible solution is to exploit the geo-locations, e.g., nearby

POIs are put in the same day’s itinerary. Alternatively, we can also rank POIs by

their importance and use a priority queue to schedule the trip.

Second, the travel agents tend to favor the popular POIs. Even for a city

with a large number of POIs, the travel agents always provide the same set of

trip plans, composed with top POIs. However, those popular POIs may not be

attractive for the users, who have visited the city for several times or have limited

time budget. It is impossible for a user to get his personal trip plan. The travel

agent’s service cannot cover the whole POI set, leading to few choices for the users.

In our algorithm, we adopt a different approach by giving high priorities to the

selected POIs and recommending a customized trip plan on the fly.

Third, suppose we have N available POIs and there are m POIs in each single

day’s itinerary averagely. We will end up with N !
(N−m)!m!

candidate itineraries. It is

costly to evaluate the benefit of every itinerary and select several sets of represen-

tative itineraries (i.e. trip plan) to recommend to different groups distinguished

by ages, incomes, occupations, etc. Therefore, in [50] and [11], some heuristic

approaches are adopted to simplify the computation. However, the heuristic ap-

proaches are based on some assumptions (e.g., popular POIs are selected with a

higher probability). They only provide limited numbers of itineraries and are not

optimized for the backpack traveler, who plans to have a unique journey with his

own customized itinerary.

Last but not the least, handling new emerging POIs are tricky in previous

approaches. The model needs to be rebuilt to evaluate the benefit of including

the new POIs into the itinerary. For systems based on the users’ feedback [11],

we need to collect the comments for the new POIs from the users, which is very

time consuming.

To address the above problems, we propose a novel dynamic itinerary recom-

mendation system based on our semi-lazy learning approach. Instead of generating
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Figure 5.2: Framework of the semi-lazy learning approach to itinerary recommendation.

the ready-to-use itineraries in a pre-processing time like the eager learning method,

the design philosophy of our approach is to dynamically recommend the itinerary

based on users’ preference on the fly. Figure 5.2 shows how the itinerary rec-

ommendation system fits in the framework of our “semi-lazy” learning approach.

We first generate all possible itineraries as a reference database for the itinerary

recommendation. For a user’s requirement, we will select top-k best itineraries

from the indexes. Instead of recommending the searched itineraries directly, we

apply an initialization-adjustment model to refine the itineraries to emphasize the

user’s selection.

In a nutshell, our semi-lazy learning approach can be seen as a transformation

from the Team Orienting Problem (TOP) into the weighted set-packing problem

which has efficient approximate algorithms. The initialization-adjustment model

is indeed an approximate initialization-adjustment algorithm for the set-packing

problem.

Figure 5.3 shows a detailed overall architecture of our itinerary recommen-

dation system. We reduce the overhead of constructing a personalized itinerary

for the traveler; and we provide a tool for the agents to customize their services.

Specifically, our approach can be summarized as follows.

We first iterate all candidate single-day itineraries using a parallel processing

framework, MapReduce [48]. The results are maintained in the DFS (Distributed

File System) and an inverted index is built for efficient itinerary retrieval. To con-

struct a multi-day itinerary, we need to selectively combine the single itineraries.
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The preprocessing stage, in fact, transforms the team orienteering problem into a

set-packing problem [36], which has well-known approximated algorithms.

In the online stage, we design an approximate algorithm to generate the opti-

mal itineraries. The approximate algorithm adopts the initialization-adjustment

model. After retrieving the k-best itineraries from the inverted index, the initialization-

adjustment approximate model are used to refine the itineraries. A theoretic

bound is guaranteed for the quality of the approximate result.

To evaluate the proposed approach, we use the real data from Yahoo Travel1.

The experiments show that our approach can efficiently return high quality cus-

tomized itineraries. The rest of the chapter is organized as follows. In Section 5.2,

we formalize the problem and give an overview of our approach. Then, Section 5.3

and Section 5.4 present the pre-processing stage and online stage of our approach,

respectively. We evaluate our approach in Section 5.5. Finally, the chapter is

concluded in Section 5.6.

1http://travel.yahoo.com/
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Figure 5.4: POI Graph

5.2 Overview

5.2.1 Problem statement

In the itinerary recommendation system, the user selects a set of interested POIs,

Sp, and asks the system to recommend a k-day itinerary. We use (Sp, k) to denote

a user’s request. To model the recommendation problem, we organize the POIs

into a POI Graph.

Definition 5.2.1. POI Graph

In the POI graph G = (V,E), we generate a vertex for each POI and every pair

of vertexes are connected via an undirected edge in E. In G, the vertex and edge

have the following properties:

1. ∀vi ∈ V , w(vi) denotes the weight (importance) of the POI and t(vi) is the

average time that tourists will spend on the POI.

2. ∀(ex = vi  vj) ∈ E, t(ex) is the cost of the edge, computed as the average

traveling time from vi to vj.

Figure 5.4 shows a POI graph with 5 nodes. Each node denotes a POI and

has two properties: the weight and travel time (shown in the red blocks). The

nodes are connected via weighted edges. The edge’s weight is set to the average
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traveling time for the shortest path between the corresponding POIs in the map.

In fact, there are two types of edges. The first type represents that the two nodes

are directly connected in the map (no other POI exists in their shortest path,

e.g., 0 1). The second type contains multiple shortest pathes in the map (e.g.,

0  3 = (0  1)⊕ (1  3). Transforming the POI graph into a complete graph

reduces the processing cost of our itinerary algorithm.

The definition of POI graph assumes that the costs of edges are symmetric.

Namely, the traveling time from vi to vj is equal to the time from vj to vi. In fact,

as our approach does not rely on the assumption, it can be directly applied to the

case of non-symmetric cost (e.g., traffics are different for vi  vj and vj  vi).

Let w(vi) denote the weight (importance) of POI vi. The initial weight of vi is

generated from the users’ reviews (e.g. in Yahoo Travel, users can specific a score

ranging from 0 to 5 for each POI. We accumulate the scores and use the average

values as the initial weight).

Users can also select a set of preferred POIs, denoted as Sp. Given a request

(Sp, k), if vi is selected by the request (vi ∈ Sp), we intentionally increase its weight

to α(w(vi) + 1), where α can be set to an arbitrary integer. The intuition is that

user-selected POIs are far more important than any other POIs.

For a request (Sp, k), if k = 1, we just need to generate a single day itinerary.

A single day itinerary is represented as L = v0  ...  vn  hj, where hj is a

hotel POI. The elapsed time is estimated as

t(L) =
n∑
i=0

t(vi) +
n−1∑
i=0

t(vi  vi+1) + t(vn  hj)

In the rest discussion, we remove the hotel part and focus on how to merge the

POIs into itineraries. After all other POIs are fixed, we will solve the hotel selection

problem.

Assume there are H available hours per day for traveling. The itinerary L

must satisfy that t(L) ≤ H. For a common traveling request, it always includes a
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k-day (k ≥ 1) trip, which is defined as:

Definition 5.2.2. k-day Itinerary

Given a POI graph G and time budget k, a valid k-day itinerary consists of k

single-day itineraries, L = {L1, L2, ..., Lk}, which satisfies that

1. ∀i∀j, Li and Lj do not share a POI.

2. t(Li) ≤ H for all 1 ≤ i ≤ k.

Based on the POIs included in the itinerary, the score of a k-day itinerary can

be computed as:

w(T ) =
k∑
i=1

∑
vj∈Li

w(vj) (5.1)

The goal of our itinerary recommendation algorithm is to find the k-day itinerary

with the highest score. However, we will show that finding the optimal itinerary

is an NP-complete problem, which is equivalent to the team orienteering problem

(TOP) [25]. Even approximate algorithm within constant factor does not exist.

Existing work (e.g., [4]) solves the problem by employing heuristic algorithms,

which may generate arbitrarily bad results.

5.2.2 System architecture

In our system, instead of trying to propose new algorithms for the TOP, we trans-

form the optimal itinerary planning problem into a set-packing problem by an

offline MapReduce process and an approximate algorithm is applied to solve the

set-packing problem. If the maximal number of POIs in the single day itinerary

is bounded by m, the optimal result can be approximated within factor of 2(m+1)
3

(m is the maximal number of POIs in each single-day itinerary).

Figure 5.3 shows the architecture of our itinerary recommendation system. In

the first step, POI graph is constructed via the road network and POI coordinates.

The Google Map’s APIs are used to evaluate the distance between POIs. The
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average elapsed time of a POI is estimated from users’ blogs and travel agency’s

schedules.

After the POI graph is constructed, a set of MapReduce jobs are submitted

to iterate all possible single-day itineraries in the pre-processing. The number of

itineraries is exponential to the number of POIs. However, using parallel process-

ing engine, such as MapReduce, we can efficiently generate all itineraries in an

offline manner. To speed up the single-day itinerary retrieval, an inverted index is

built. Given a POI, all single-day itineraries involving the POI can be efficiently

retrieved.

For a user request (Sp, k), POIs’ weights are updated based on Sp and we

compute the scores for each single-day itinerary. The problem of finding optimal

k-day itinerary is transformed to select k single-day itineraries that maximize the

total score. We show that the new problem can be reduced to the weighted set-

packing problem, which has polynomial approximate algorithms. Therefore, we

simulate the approximate algorithm for set-packing problem to generate the k-day

itinerary. The algorithm uses a greedy strategy to create an initial solution, which

is continuously refined in the adjustment phase. The adjustment phase scans the

index to find a potentially better solution.

In the next two sections, we first present how we apply the MapReduce frame-

work to generate and index the single-day itineraries. The parallel processing

engine enables us to search the optimal solution in a brute-force manner. Nex-

t, we show that, after the preprocessing, the complexity of TOP is reduced and

approximate algorithms are available.

5.3 Pre-processing

The preprocessing includes two steps. In the first step, a set of MapReduce jobs

are submitted to produce all possible single-day itineraries. In the second step,

the single-day itineraries are reorganized as an itinerary index, which supports
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efficient itinerary search.

5.3.1 Intractability of optimal itinerary algorithm

Given a user request (Sp, k), the goal of itinerary recommendation algorithm is

to provide an itinerary, which ranks highest among all possible itineraries. The

score of the itinerary is computed based on the POI weights. However, as shown

in the following theorem, this is an NP-complete problem and no polynomial time

algorithm exists.

Theorem 5.3.1. Finding optimal k-day itinerary in a POI graph G = (V,E) is an

NP-complete problem.

Proof. The optimal k-day itinerary can be reduced to the team orienteering prob-

lem (TOP) [25], which is a well known NP-complete problem. Consider a simple

scenario where

1. k vehicles are created, which start from the same position.

2. Each vehicle has a time limit (1 day) for traveling the POIs.

3. Each vehicle collects the profit by visiting the POIs.

4. The POI accessed by a vehicle will not be considered by other vehicles.

5. The POI’s profit is equal to its weight.

The TOP is to find the traveling plan that generates the most profits. The results

of the TOP are also the best k-day itinerary.

Due to the complexity of TOP, it is impossible to find the exact solution. In-

stead, previous work focus on proposing heuristic algorithms. The basic idea is to

generate an initial plan and then adjust it based on some heuristic rules. Those
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algorithms have three drawbacks. First, the heuristic algorithms need many itera-

tions to get a good enough result, which incur high computation cost [114]. Second,

the adjusting rules are too complicated and the potential gains are unknown. Fi-

nally, there is no bound of the approximate result, which may be arbitrarily bad

in some cases.

We reduce the complexity of the TOP by transforming it into a set-packing

[60] problem. As the transformation is done in an offline manner, the performance

of online query processing is not affected.

5.3.2 Single-day itinerary

Algorithm 5.1: map(Object key, Text value, Context
context)

// we allow maximally m−round MapReduce jobs, i.e. the maximally
length of path is m
//value: existing path, each MapReduce job tries to add one more POI to
the path

1: Path P = parsePath(value)
2: for i = 0 to POIGraph.POINumber do
3: if isConnected(P , i) and !P .contains(i) then
4: Path newPath = P .append(i)
5: cost = P .cost + POIGraph.getCost(P .endPOI, i)+POIGraph.getCost(i)
6: weight = P .weight + POIGraph.getWeight(i)
7: newPath.cost=cost
8: newPath.weight=weight
9: if newPath.cost≤ H then

10: Key newKey = parsePath(newPath).sort();
11: context.collect(newKey, newPath)
12: else
13: DFS.write(resultF ile, P )
14: end if
15: end if
16: end for

The basic idea of transformation is to iterate all possible singe day itineraries.

This is done by a set of MapReduce jobs. In the first job, we generate |P| ini-

tial itineraries for the POI set P . Each initial itinerary only consists of one POI.
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Algorithm 5.2: reduce(Key key, Iterable values, Context
context)

1: bestCost=∞
2: bestPath = NIL
3: for Path P : values do
4: if P.cost < bestCost then
5: bestPath = P
6: bestCost = P.cost
7: end if
8: end for
9: context.collect(key, bestPath)

Iteratively, the subsequent MapReduce job tries to add one more POI to the

itineraries. If no more single day itineraries can be generated, the process termi-

nates. In current implementation, we allow maximally m MapReduce jobs in the

transformation process to reduce the overheads. Therefore, a single day itinerary

contains at most m POIs. This strategy is based on the assumption that users

cannot visit too many POIs in one day. In our crawled dataset from Yahoo travel,

setting m to 10 is enough for Singapore data, which includes more than 400 POIs.

Only a few single-day itineraries can contain more than 10 POIs.

Algorithm 5.1 and 5.2 show the pseudo codes of the MapReduce job. The

mappers load the partial paths from the DFS, which are generated in the previous

MapReduce jobs. we try to append new POI to existing itineraries. For each new

path, we test whether it can be completed within one day. If not, we will discard

the new path. If the old path cannot result in any new path, we will output the

old path. For the last MapReduce job (the mth job), all the candidate itineraries

are used as the results. The output key-value pair is using the sorted POIs in the

itinerary as the key.

In the mappers, to compute the weight and cost of new itinerary, we load the

POI graph table from the DFS. As the graph table is small, each reducer maintains
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index manager

DFS

1|5|20|12|40: 320

2|1|30|12: 310

12|15|1|3|20: 290

…...

1.idx

42|2|8|55: 360

2|10|20|12: 355

2|25|12|3|20: 330

…...

2.idx

…...

buffer

Figure 5.5: Itinerary Index

a copy in its memory. The table’s schema follows

(S POI,E POI, S weight, E weight, S cost, E cost, cost)

where S POI and E POI denote the two POIs linked by a specific edge, cost is the

traveling cost from S POI to E POI, and S POI is the primary key of the table.

In the reducers (Algorithm 5.2), we select the path with smallest cost of paths

with the same POIs. In each reducer, all the paths have the same POIs. We only

keep the path with smallest cost and output such path for the next round. Note

that since all the paths have the same POIs, these paths have the same weight.

After all itineraries have been generated, a clean process is invoked to remove

the duplication. For two itineraries (L0 = v0  ... vn and L1 = v′0  ... v′n),

L0 contains L1, iff

∀v′j ∈ L1 → ∃vi ∈ L0(vi = v′j)

Namely, all POIs in L1 are also included by L0. If L0 contains L1, we will only

keep L0, as it provides more POIs for the users.
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5.3.3 Itinerary index

To efficiently locate the single day itineraries, an inverted index is built. The key is

the POI and the values are all itineraries involving the POI. By scanning the index,

we can retrieve all the itineraries. Figure 5.5 illustrates the index structure. We

create an index file for each POI in the DFS. The file includes all single itineraries

involving the POI, which are sorted based on their weights. For example, in Figure

5.5, “1.idx” contains all itineraries for the first POI. The itinerary ”1|5|20|12|40”

is the most important itinerary in the index file with weight 320.

The inverted index is constructed via a MapReduce job. Algorithm 5.3 and

5.4 show the process. The mappers load the single-day itinerary and generate key-

value pairs for each involved POI. The reducers collect all itineraries for a specific

POI and sort them based on the weights before creating the index file. In our

system, the size of index file may vary a lot. Some POI may have an extremely

large index file, due to its popularity and short visit time. In reducers, those POIs

may result in the exception of memory overflow in the sorting process. To address

this problem, in the map phase, instead of using the POI as the key, we generate

the composite key by combining the POI and the itinerary weight.

Algorithm 5.3: map(Object key, Text value, Context
context)

//value: single day itinerary
1: Itinerary it = parse(value)
2: for i= 0 to it.POISize() do
3: int nextPOI = it.getNext(i)
4: Key key = new CompositeKey(nextPOI, it.weight/bucketSize)
5: context.collect(key, it)
6: end for

In particular, we partition the itineraries into n buckets. The bucket ID is used

as a part of the composite key. In this way, we split the itineraries of a POI into

n groups and each group can be efficiently sorted in the memory. Each group will

result in an index file. However, it is not necessary to merge the files, as the files
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Algorithm 5.4: reduce(Key key, Iterable values, Context
context)

1: CompositeKey ck = key, Set s = ∅
2: for Itinerary it: values do
3: s.add(it)
4: end for
5: sort(s)
6: DFSFile f = new DFSFile(ck.first+” ”+ck.second)
7: f .write(s)

are partitioned based on the weights. By scanning all files from the nth bucket to

the 1th bucket, we can get a sorted list for all itineraries involving a POI.

To simplify the index manipulation, an index manager is built in our query

engine. The index manager only provides one interface scan(POI), where POI

denotes the owner of the index. The interface returns an iterator, which can be

used to retrieve all itineraries of the POI. A memory buffer is established to cache

the used itineraries and the LRU strategy is applied to maintain the buffer.

5.3.4 Discussion: why MapReduce

Although the input dataset (POI graph) is small in size, the partial results of the

possible itineraries are extremely large (more than 100G or even 1T). The compu-

tation is also intensive, which can not be completed by a single machine. MapRe-

duce is the solution to partition the partial results and generate the itineraries in

parallel. Its advantages are two-fold:

1. Parallel computing effectively reduces the running time of preprocessing.

The search space explodes when the number of POIs and traveling days

increases. It is impractical to generate all possible itineraries. But by ex-

ploiting the power of MapReduce, we can share and balance the workload

between multiple machines. The scalability is achieved by adding more n-

odes into the cluster. In our experiment, the running time of preprocessing

is significantly reduced with the number of nodes (See Figure 5.13)
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2. MapReduce algorithms can remove the duplicated itineraries in a simple

way. In Algorithm 5.2, by leveraging the framework of MapReduce, we map

all the itineraries with the same POIs into the same reducer and only keep

one itinerary with the lowest cost. This approach can prune the low-benefit

partial itineraries as early as possible and lead to less input for the next

round of computation.

5.4 Initialization-Adjustment algorithm

After the itinerary indexes are constructed, the user request (Sp, k) can be pro-

cessed by selecting k best itineraries from the indexes. Namely, the problem

of generating optimal k-day itinerary is transformed into a weighted set-packing

problem as shown in the following theorem.

Definition 5.4.1. Weighted Set-Packing Problem

In a universe U , we assume that each element in U has a weight and the weight

of any subset of U equals to the sum of the element weights in the subset. Given

a family S of U ’s subsets, the set-packing problem is to select a subfamily S’ from

S, where all subsets in S’ are disjoint and the weight of S’ is maximal among all

possible selections.

Theorem 5.4.1. Finding optimal k-day itinerary can be reduced to the weighted

set-packing problem.

Proof. By solving the set-packing problem, we can also get the optimal k-day

itinerary, as

1. Each single day itinerary can be considered as a subset of the POI set P .

2. The subsets selected by the set-packing problem are disjoint and hence in

the k-day itinerary, we will not visit a POI twice.
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1|2|4|X1

1|2|4|X2

5|1|6|X1

5|1|6|X2

5|2|4|X1

5|2|4|X2

2|8|9|X1

2|8|9|X2

3|7|4|X1

3|7|4|X2

7|5|3|X1

7|5|3|X2

1.idx 2.idx 3.idx

4|2|1|X1

4|2|1|X2

3|4|5|X1

3|4|5|X2

4.idx

Figure 5.6: Example of Set-Packing

3. Each subset is replicated k−1 times and thus, we have k identical itineraries.

For the ith itinerary, a virtual POI xi is appended, denoting that the itinerary

is designed for the ith day.

4. Apply the algorithm of set-packing to get the optimal solution. Let Sr be

the result set. If |Sr| > k, there must be two itineraries for the same day and

they are not disjoint. If |Sr| < k, we still have available days for traveling and

new itineraries can be added. Therefore, |Sr| = k and Sr can be considered

as a k-day itinerary.

In step 3 of our proof, we replicate the itinerary k − 1 times. That is to guar-

antee that the solution of set-packing problem returns exactly k subsets. Figure

5.6 illustrates the idea. Suppose we have four index files and want to generate a

2-day itinerary. Without the replication, the set-packing algorithm may return a

3-day itinerary, such as “5|1|6”, “2|8|9” and “3|7|4”. By replicating the itineraries

and adding the virtual elements X1 and X2, the above selection cannot work, as

two itineraries will share at least one virtual element. In this case, the set-packing

algorithm will return another solution (e.g., “1|2|4|X1” and “7|5|3|X2”), which

satisfies our time requirement.

Although set-packing is also an NP-complete problem, different from the TOP,

in a special case, set-packing problem has approximate algorithms. As mentioned
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in the pre-processing, we set the maximal number of MapReduce jobs in generating

the single-day itineraries to m. Therefore, each itinerary can have at most m

POIs. It was shown that when the size of subsets is bounded by a constant, the

weighted set-packing problem can be solved by polynomial approximations [60;

5]. By following the above ideas, in this chapter, we design a variant of the

approximate algorithm in [60], which provides a bound of 2(m+1)
3

for the quality of

the approximate answers. The algorithm includes an initialization phase and an

adjustment phase.

5.4.1 Initialization

For the user request (Sp, k), we adjust the weights of POIs in Sp to emphasize

the user’s selection. If vi ∈ Sp, vi’s weight is increased to α(w(vi) + 1), where α is

an integer larger than 0 and w(vi) is the original weight of POI vi. Algorithm 5.5

shows how we generate the seed itineraries using the greedy strategy.

Theorem 5.4.2. Given a list of POIs L = {v0, v1, ..., vn} that can be accessed within

one day, by scanning the index of vi in L, we can get the itineraries that contain

all POIs in L and the first candidate is the itinerary with maximal weight.

Proof. Because L can be finished within one day, there must be some itineraries

containing all the POIs in L. Let I0 and I1 be first and second candidate itineraries

respectively. I0’s weight is larger than I1’s, since before weight adjustment (i.e. if

vi is in the user’s selected POI set Sp, vi’s weight is increased to α(w(vi) + 1).) I0

has a higher weight than I1 according to the sorting order of the inverted index.

Then after weight adjustment, both of them receive the same weight boost. To

sum up, the first candidate is the itinerary with maximal weight.

To improve the weights of the obtained itineraries in the greedy algorithm, we

adopt the adjustment phase.
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Algorithm 5.5: Initialization(POIList L, Day k)
1: sortByWeight(L)
2: int i=0, Set seed = ∅, Set rev = ∅
3: while i < k and L.size()> 0 do
4: int poi = L.nextPOI();
5: Set group = new Set()
6: group.add(poi)
7: int lastpoi = poi
8: while not L.isEmpty() do
9: int newpoi = getNearest(lastpoi, L)

10: int time = getTravelTime(group, newpoi)
11: if time ≤ one day then
12: group.add(newpoi)
13: L.remove(newpoi)
14: lastpoi=newpoi
15: else
16: break;
17: end if
18: end while
19: i++, seed.add(group)
20: end while
21: for i=0 to seed.size() do
22: Set group = seed.get(i)
23: IndexIterator iter = indexManager.scan(group.get(0))
24: while iter.hasMoreElements() do
25: Itinerary I = iter.next()
26: if I.contains(group) then
27: removeReplicatedPOI(I, rev)
28: rev.add(I)
29: break
30: end if
31: end while
32: end for
33: return rev

5.4.2 Adjustment

In the adjustment phase, new solutions are searched and used to replace the greedy

itineraries. The process repeats until no improvement can be obtained. In the

following discussion, we discard the virtual POIs to simplify our representations.
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Suppose idx(vj) returns the itineraries in the index of POI vj. We define the

neighborhood of an itinerary as

Definition 5.4.2. Neighborhood

Given an itinerary Li, its neighborhood ngb(Li) is an itinerary set satisfying:

ngb(Li) =
⋃
vj∈Li

idx(vj)

For example, in Figure 5.6,

ngb(1|2|4) = {5|1|6, 5|2|4, 2|8|9, 4|2|1, 3|4|5} (5.2)

The neighborhood of Li represents the candidate itineraries that can replace Li.

However, some itineraries share the common POIs, which cannot coexist in the

result. Therefore, we define the independent set as:

Definition 5.4.3. Independent Set

An independent set IS(Li) is a subset of ngb(Li). Any two itineraries in IS(Li) do

not share a common POI. Namely, ∀L0, L1 ∈ IS(Li)→ (L0 and L1 are disjoint).

Neighborhood of each itinerary can have multiple independent sets and each

set denotes a different adjustment strategy. Let S be the initial itinerary set

returned by Algorithm 5.5. An alternative solution S ′ can be constructed from S

by replacing the itineraries by their independent sets. More formally,

S ′ = S − f(S, ngb(Li)) + IS(Li)

where f(Sa, Sb) returns a subset of Sa, which shares at least one POI with itineraries

in Sb.

For itinerary “1|2|4” in Figure 5.6, its independent set is {2|8|9, 3|4|5}. If

S = {1|2|4, 7|5|3}, after the adjustment, we will get S ′ = {2|8|9, 3|4|5}. All

itineraries are replaced by new ones. To avoid the case of cascading replacement,
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the size of IS(Li) should be less than k, as only k single day itineraries are required.

In our implementation, we limit the size of IS(Li) to k
2
. Namely, at most half of

the itineraries are replaced.

The benefit of itinerary adjustment is computed as

B = weight(S ′)− weight(S)

If B > 0, we assume that the adjustment improves the quality of the results.

Hence, a better itinerary can be produced by replacing the old itineraries with

corresponding independent sets.

Algorithm 5.6: Adjustment(Set S, double P, int step)

1: int j = 0;
2: while j < step do
3: Set cand = ∅, int max = −∞, int idx = −1
4: for i = 0 to S.size() do
5: Set ngb = S.get(i).getNeighborhood()
6: Set ind =

getIndependentSetWithMaximalWeight(ngb)
7: Set S ′ = S − f(S, ngb) + ind
8: double B = weight(S ′)− weight(S)
9: cand.add(S ′)

10: if B > max then
11: max = B, idx = i
12: end if
13: end for
14: if max> 0 then
15: S=cand.get(idx)
16: else
17: if randProb()> P then
18: S=cand.get(idx)
19: end if
20: end if
21: j++
22: end while

Algorithm 5.6 summarizes the idea of adjustment process. We set a threshold
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for the maximal number of adjustments. In each iteration, we find the independent

sets for existing itineraries. If one itinerary has multiple independent sets, we will

select the one with maximal weight (line 6). The new results are then computed

by performing the replacement (line 7) and we record the benefit (line 8). After

all possible replacement strategies have been checked, we will select the one with

maximal benefit. If the benefit is larger than 0, the result itineraries are updated

as the new ones (line 13). Otherwise, we will perform the updates, only with a

small probability (line 15-16). The idea is to simulate the hill-climbing algorithm

to avoid the sub-optimal solution. The algorithm guarantees the quality of the

returned itinerary as shown in the below theorem.

Theorem 5.4.3. Algorithm 5.6 returns a k-day itinerary, which approximate the

optimal solution with the bound ρ = 2(m+1)
3

.

Proof. We first prove that Algorithm 5.6 can return a k-day itinerary, then we

prove that we have a bound ρ = 2(m+1)
3

for the initialization-adjustment algorithm

(m is the maximum number of POIs in the itineraries).

(I) Algorithm 5.6 can return a a k-day itinerary. In Algorithm 5.6, we add

a virtual POI to each itinerary to mark its traveling day. Therefore, the adjust-

ment algorithm at most returns k disjoint itineraries. Otherwise, there are two

itineraries sharing the same virtual POI. Namely, they are supposed to be trav-

eled in the same day, which is not possible. If the algorithm returns less than

k itineraries, we can still repeat the initialization and adjustment to fill in the

left days. In this way, we guarantee that Algorithm 5.6 returns exactly a k-day

itinerary.

(II) The result of Algorithm 5.6 approximate the optimal solution with the

bound ρ = 2(m+1)
3

. Based on Theorem 5.4.1, the problem of selecting the k-day

itinerary can be reduced to the weighted set-packing problem. Therefore, in Algo-

rithm 5.6, we simulate the heuristic set-packing algorithm. The heuristic algorithm

has been analyzed in [60]. Suppose there are X iterations in the algorithm. Let
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Ii be the results of the X − i − 1 iteration. I1 will be the final result. Let di be

the payoff factor of each iteration. We have

(m+ 1)w(I1) ≥ (2− 1

d1

+
1

2d2
1

)w(opt)

where w(I1) and w(opt) represent the weights of the itinerary returned by the

heuristic algorithm and the optimal itinerary respectively. The right side of the

equation is minimized when d1 = 1. In that case, we have

(m+ 1)w(I1) ≥ (1 +
1

2
)w(opt)

Therefore, we have a bound ρ = 2(m+1)
3

for the heuristic approach, where m is the

maximal number POIs in the itinerary (m is also the number of MapReduce jobs

in our preprocessing).

The most expensive operations in Algorithm 5.6 are retrieving the neighbor-

hood sets. We need to scan the indexes of involved POIs to find all itineraries.

We find that as Algorithm 5.6 only selects one independent set for each itinerary,

we can save I/O costs by scanning a small portion of the index file. Therefore, in

our implementation, we read the first n itineraries of an index file in batch and if

independent sets are found, the process stops. Otherwise, we will continue to load

the next n itineraries.

5.4.3 Hotel selection

In fact, hotels can be considered as a special type of POIs. It must appear as

the last POI in the itinerary. We need to calculate the traveling time from other

POIs to the hotel POIs. Hotel POIs do not incur access cost and their weights

are set as users’ rankings for the hotels. Based on the user’s preference, we have

two processing strategies.
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5.4.3.1 Multiple hotels

If the user does not insist on staying in the same hotel (e.g., he can select k

different hotels, one for each day), we can extend the preprocessing algorithm to

handle the hotels. In the MapReduce jobs, when a new itinerary Li is generated,

we test every hotel POI and try to append it to the end of Li. Given a hotel

POI hj, we use Li|hj to represent the combined itinerary. Li|hj is considered as a

single day itinerary, if

1. The total traveling time of Li|hj is less than H. H is the average traveling

time per day.

2. For any other non-hotel POI v̄ which is not included by Li, Li|v̄|hj cannot

be completed within H time.

When we detect a new single day itinerary, we output it to the DFS for indexing.

Algorithm 5.7: HotelSelection(Set hotels, Set itinerarySet)
1: double max = 0, Set result = ∅
2: for i=0 to hotels.size() do
3: Hotel hi=hotels.get(i)
4: Set copy = itinerarySet
5: for j=0 to copy.size() do
6: Set Lj = copy.get(j)
7: while getTravelTime(Lj, hi) > H do
8: Lj.removelast()
9: end while

10: Lj.append(hi)
11: end for
12: double weight=getTotalWeight(copy)
13: if max < weight then
14: max = weight
15: result = copy
16: end if
17: end for
18: return result

The itinerary generation algorithm is exactly the same, except that the hotel

POI can appear in different itineraries. In Algorithm 5.6, we do not consider the
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hotel POIs, when performing the disjoint test for itineraries. The output itinerary

may contain multiple hotels (hi represents the hotel POI):

2|5|10|h1, 3|7|8|h1, 9|10|0|h2

5.4.3.2 Single hotel

If the user prefers to staying in the same hotel, the itinerary generation problem

cannot be easily reduced to the set-packing problem. Instead, we adopt a best-

effort solution. In particular, we still apply Algorithm 5.6 to find the candidate

k-day itinerary without hotel POIs. After that, we invoke Algorithm 5.7 to append

the hotel POI.

The idea is to discard a few POIs from the end of each itinerary and try

to append the hotel POIs to the shortened itinerary. In line 7-8, the itinerary

progressively removes the last POI, until it can include the hotel POI to form a

single-day itinerary, e.g., the total traveling time is less than H. In line 10, we will

get a new set of k itineraries, where all itineraries contain the same hotel POI. We

will generate such a k-day itinerary for each hotel. After comparing weights of the

itineraries, the one with maximal weight is returned as our final k-day itinerary.

5.5 Experiments

5.5.1 Dataset description

To evaluate the performance of our proposed approaches, we crawl the traveling

information from Yahoo Travel (http://travel.yahoo.com). In particular, we focus

on the Singapore POIs. Figure 5.7 illustrates our crawling strategy. Yahoo classi-

fies the POIs into hotels, things to do and cities. We use the first two types in our

experiments, as the last one is the geo-locations for the city. things to do contains

254 POIs of Singapore and hotels contains 276 hotels from unranked to five stars.
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Figure 5.7: Yahoo POIs Figure 5.8: User Reviews

After removing the duplicated and meaningless POIs, we keep 400 POIs for our

experiments. As far as we know, this is the largest dataset for the automatic

itinerary recommendation. In [11], the largest dataset only contains 163 POIs.

The POI’s weight is also crawled from Yahoo Travel. As shown in Figure 5.8,

for each POI, Yahoo maintains a page for users’ reviews. We accumulate the user

scores for each POI as its weight. If a POI has not been reviewed, we assign it an

initial weight (e.g., 1).

The average visiting time of a POI is estimated from the shared travel plans in

Yahoo Travel. The edge cost between any two POIs are estimated using Google

Map. Specifically, the public transit time for the shortest path between two POIs

is used as the edge cost. We assume that each user will spend at most 8 hours for

traveling per day.

In our experiments, the query is (Sp, k), where Sp is randomly selected from

the non-hotel POIs. We allow the users to select the same hotel POIs for different
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days. The traveling time is set to 3 days by default. For comparison, we implement

the original TOP algorithm proposed in [25].

Table 5.1 lists the parameters used in our experiments. The experiments are

conducted on our in-house cluster, Awan (http://awan.ddns.comp.nus.edu.sg/ganglia/).

We use 64 nodes exclusively. Each node has one Intel X3430 2.4GHz processor,

8GB of memory, two 500GB SATA hard disks and gigabit ethernet. Hadoop 2 is

used as our MapReduce engine.

Table 5.1: Experiment Settings for Chapter 5

Settings
Parameter Range and Default Value

k 3 (1-5)
α 2

buffer size 5 million itineraries
size of Sp 10 (5-20)
total POIs 400 (100-400)

number of MapReduce nodes 32 (8-64)

5.5.2 Single-day itinerary generation

In the preprocessing, m MapReduce jobs are submitted sequentially to iterate all

possible single-day itineraries. The input are our crawled POIs and the output

contain all single-day itineraries. This is, in fact, a brute-force search strategy, but

we exploit the parallel processing engine to reduce its cost. After the single-day

itineraries are generated, we start another MapReduce job to remove the duplicate

itineraries. We call it the Dup-Clean job (the previous m jobs are named MR-

Scan). Dup-Clean generates a special namespace for each itinerary by combining

its POIs. The namespace is used as the key in the shuffling phase. All duplicated

itineraries will be shuffled to the same reducer, where a local clean process is

conducted.

Figure 5.9 shows the accumulate costs of all m jobs and the cost of the clean

2http://hadoop.apache.org/
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Figure 5.9: Preprocessing Cost
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Figure 5.10: Scalability of Preprocessing
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Figure 5.11: Size of Single Day Itinerary
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Figure 5.12: Indexing Cost

job. We vary the number of POIs in the preprocessing from 100 to 400. The

cost of the MR-Scan increases for a larger POI set. However, even for 400 POIs,

the preprocessing only takes less than 1 hour. This is an offline process and only

needs to be invoked once. In fact, most travel agencies do not maintain such

a large number (400) of POIs for a single city. Interestingly, the performance

Dup-Clean is not correlated to the POI number. Its cost is neutralized by the

parallel processing strategy. We observe that most nodes are not fully exploited

in Dup-Clean. Figure 5.10 shows the scalability of the MapReduce jobs (MR-

Scan+Dup-Clean). We vary the number of nodes in our cluster from 8 to 64 and

we observe a near-linear improvement over the performance. Therefore, to handle

a larger POI-graph, we can simply add more processing nodes into our cluster.

In the preprocessing, the maximal number of MapReduce jobs (m) is set to 10.

Namely, each single-day itinerary can contain at most 10 POIs. m is a configurable

parameter. As shown in Figure 5.11, in our dataset, most itineraries consist of 4-7
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POIs. Setting m to 10 can iterate most itineraries in our case.

5.5.3 Itinerary indexing
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Figure 5.13: Scalability of Indexing

  1

  4

  16

  64

  256

  1,024

  4,096

  16,384

10
0

20
0

30
0

40
0

In
de

x 
Si

ze
 (

M
B

)

Number of POIs

Figure 5.14: Size of Index

The second step of preprocessing is to build the itinerary index. The index

process only requires one MapReduce job and is much faster than the itinerary

iteration process. In Figure 5.12, we show the indexing cost for different sizes of

POI graphes. We can efficiently recreate the index within a few minutes. Figure

5.13 conducts the scalability test for the indexing process. The indexing process

benefits from a larger cluster. Figure 5.14 shows the total index size for different

POI graphs. The size of index increases exponentially with the size of POI graph.

But even for the graph with 400 POIs (a large enough POI graph for most cities),

only 12GB index data are generated. The index is maintained in the DFS and

hence, the storage cost is not the system bottleneck.

5.5.4 Effect of POI Graph size

In the experiments, we compare our approach (MR-Set) with the original TOP

approach in [25]. To evaluate the query performance, two metrics, processing time

and weight ratio are adopted. The weight ratio is used to measure the quality of

the generated itineraries. In particular, let Wi and Wj denote the total weights of

MR-Set and TOP respectively. The weight ratio is defined as Wi

Wj
. In idea case,
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we should compare the approximate results with the optimal ones. However, it

is impossible to generate the optimal results, given the size of POI graph and

complexity of the problem (the TOP is NP-complete problem).
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Figure 5.15: Effect of Graph Size (Pro-
cessing Time)
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Figure 5.16: Effect of Graph Size (Quali-
ty)

We first vary the graph size to test the query performance. Figure 5.15 and

5.16 show the processing time and weight ratio respectively. Our new approach

significantly reduces the processing cost, as we have already computed the single-

day itineraries in the preprocessing. Previous TOP approach is not scalable.

The query cost increases linearly with the number of POIs. If more POIs (e.g.

restaurants) are added in the set, the TOP approach may fail to provide a satisfied

performance. On the contrary, our technique enables the itinerary to be generated

within 30 milliseconds. It is not affected by the POI graph size. Moreover, the

travelling plan system is accessed by multiple users concurrently. In the case of 400

POIs, TOP approach can serve up to 2 requests per second, while our approach

can provide a throughput of 40 requests per second. Our approach is more scalable

and feasible for the real-time processing.

In fact, our approach not only reduces the processing overhead, it also pro-

vides results with higher qualities. Figure 5.16 shows the change of weight ratio.

We have 20% to 80% improvement over the original TOP algorithm. The gap

increases for a larger POI graph, as our approach can efficiently exploit the POI

combinations. More POIs indicate a higher possibility of finding a good itinerary.
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5.5.5 Effect of selected POIs
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Figure 5.17: Effect of Selected POIs
(Processing Time)
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Figure 5.18: Effect of Selected POIs
(Quality)

In our query model, we allow the user to explicitly select some POIs as their

preferences. The weights of the selected POIs are adjusted to reflect the selection.

This strategy may increase the importance of some unpopular POIs and avoids

generating the itinerary with the same set of top-popular POIs. This is how the

users customizes their itineraries in our system. Figure 5.17 and Figure 5.18 show

the effect of varied number of selected POIs (from 5 to 25). The default traveling

time is set to 3 days. In fact, most people will not select too many POIs (e.g., 25)

for a 3-day itinerary.

In Figure 5.17, the cost of MR-Set increases for a larger number of selected

POIs. This is because in the adjustment phase, MR-Set needs to look up the index

of the corresponding POIs to search for the replacements. Index is maintained by

the DFS and the I/O costs dominate the query cost. However, MR-Set is still

much more efficient than the original TOP.

Figure 5.18 reveals that the quality gap between MR-Set and the TOP ap-

proach enlarges, when the user selects more POIs as his preference. MR-Set can

effectively find the itinerary that includes as many selected POIs as possible. It

can optimize the way of how to combine the selected POIs and other POIs into

the itinerary.
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5.5.6 Effect of traveling budget
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Figure 5.19: Effect of Traveling Time
(Processing Time)
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Figure 5.20: Effect of Traveling Time
(Quality)

Besides the POIs, the user can change his expected traveling time as well.

With more time budget, his itinerary can include more interested POIs. Figure

5.19 and Figure 5.20 show the effect of varied time budgets. The original TOP

algorithm incurs a higher overhead for the increased time budget, because it needs

to generate and refine each single-day itinerary progressively. MR-Set adopts a

different strategy. When it tries to adjust the itinerary, it may replace multiple

single-day itineraries with new ones. It considers the k-day itinerary as a whole

solution, instead of treating each single-day itinerary independently. It is inter-

esting to observe that Figure 5.20 shows a different result from Figure 5.18. The

weight ratio decreases, when more traveling budget is given. In fact, the TOP

algorithm benefits from a loose time budget, as it can arrange more high-weight

POIs into different single-day itineraries,

5.5.7 Effect of adjustment

The query processing of MR-Set splits into the initialization phase and adjustment

phase. In this experiments, we show the effect of the adjustment phase. We vary

the number of selected POI from 1 to 15.

Figure 5.21 shows that the adjustment phase greatly increases the processing

cost. Algorithm 5.6 may repeat for several iterations before converging to a high-
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Figure 5.21: Effect of Adjustment (Pro-
cessing Time)
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Figure 5.22: Effect of Adjustment (Qual-
ity)

quality result. As mentioned before, in the adjustment phase, the query engine

loads the itinerary index from the DFS, which incurs high I/O cost. One way to

reduce the cost is to increase the index buffer size. After an indexed itinerary is

loaded from the DFS, we cache it in the buffer. If the buffer is full, we apply the

LRU strategy to remove the less used entries.
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Figure 5.23: Buffer Size

In Figure 5.23, we change the number of buffered single-day itineraries in the

index buffer and test the query performance. Not surprisedly, we can get a huge

performance boost by deploying a large enough index buffer. In fact, the single-

day itinerary is less than 64 bytes and caching 5 million entries only takes about

300M memory. Any modern server can effectively reduce the processing cost by

employing a large buffer.

Although the adjustment phase incurs high processing cost, it can significant-
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ly improve the result quality. As shown in Figure 5.22, the adjustment phase

can double the weight of generated itinerary if more than 15 POIs are selected3.

With more POIs selected, the adjustment phase can generate more replacement

itineraries and therefore, has a better chance of finding the high-quality result.

5.5.8 Effect of single hotel selection
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Figure 5.24: Effectiveness of Single Hotel
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Figure 5.25: User study

In this section, we justify the effectiveness of hotel selection algorithm. In

Algorithm 7, we adopt a “best-effort” solution to append the hotel to the end

of each itinerary. To evaluate the performance of such solution, we define a new

metric, the hotel weight ratio. In particular, let Wm and Ws denote the total

weights of generated itineraries in the multiple hotel case and single hotel case,

respectively. The hotel weight ratio is defined as Ws

Wm
. Our “best-effort” solution

still provides high quality results. Figure 5.24 shows the change of hotel weight

ratio. We can see that, in the single hotel case, the total weight of generated

itineraries is penalized as each single day itinerary should end in the same hotel

POI. However, the “best-effort” solution can provide an approximate result with

85%-90% of the total weight as in the multiple hotel case. This indicates that

3In this figure, the weight ratio is computed between the MR-Set with adjustment and MR-
Set without adjustment
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Algorithm 7 is still able to find good itineraries with the single hotel constraint.

5.5.9 User study

To evaluate the quality of the generated itineraries, we conduct a user study, which

asks the users to manually rank the itineraries. Our study hires 20 undergraduate

students as the users. Given a set of selected POIs, we use TOP and MR-Set

methods to generate 20 groups of itineraries (3-day itineraries in the experiment).

Each participant assigns a score (ranging from 1 to 5) to each itinerary in his

group. The average ranks are then computed for the itineraries generated by

different approaches. Figure 5.25 shows the results. Most users prefer the results

generated by MR-Set. We also observe that the ratings of both TOP and MR-Set

are reduced, when more POIs are selected as the necessary POIs. It is because

that some of user selected POIs are missing in the itineraries due to the constraint

of travel time.

5.6 Conclusions

In this chapter, we present a dynamic itinerary recommendation system for the

backpacking travelers based on our semi-lazy learning approach. While the eager

learning recommendation method cannot return personalized itineraries to satisfy

different users’ requirement, it is better to provide a service which dynamically rec-

ommends a customized multi-day itinerary tailored to the user’s preference. How-

ever, such dynamic itinerary recommendation problem is a famous NP-complete

problem, TOP (Team Orienting Problem), which has no polynomial-time approx-

imate algorithm.

To provide for a near-optimal solution for itinerary recommendation, the semi-

lazy learning approach is adopted. First, we iterate all candidate single-day

itineraries using the MapReduce framework and index them as the reference

itinerary database. Then, after selecting top-k best candidate itineraries from
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the inverted index, the system returns the recommendation result which is further

adjusted by the initialization-adjustment model.

From a theoretical perspective, our semi-lazy learning approach indeed trans-

form the Team Orienting Problem into the weighted set-packing problem, which

has efficient approximate algorithms. The initialization-adjustment model is in-

deed an approximate algorithm for the set-packing problem, which is at most

2(m+1)
3

worse than the optimal result. Experiments on real dataset from Yahoo’s

traveling website show that our proposed approach can efficiently recommend high

quality customized itineraries.
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Chapter 6

Conclusions

6.1 Summary

The purpose of this thesis is to overcome certain difficulties in dynamic spatio-

temporal data analysis. Our principle intuition is that the historical spatio-

temporal data itself captures much more information than the models or patterns

extracted using the the eager learning approach. In this regard, our breakthrough

solution is that, for each analysis request, we first retrieve related items from his-

torical data, followed by building an analysis model upon the search result on the

fly. According to this idea, the present study aimed to implement the semi-lazy

approach into real-life applications to assess its effectiveness and efficiency. After

conducting an in-depth study, we have given an account of the reasons for the

utility of the semi-lazy approach. In particular, this thesis contributes by apply-

ing the semi-lazy learning approach to three practical real-life applications, which

are trajectory prediction, time series prediction and itinerary recommendation.

Summaries of these works are listed below.

• Trajectory Prediction. We explored the usability of the semi-lazy ap-

proach for trajectory prediction in Chapter 3. The study has revealed the

effectiveness of the semi-lazy learning trajectory prediction method, especial-
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ly in dynamic environments. Unlike previous approaches, which adopt the

eager learning approach to construct complex models [109][70] or mine nu-

merous patterns [86][83], we propose to leverage on the growth of computing

power by building a prediction model on the fly. More specifically, the idea

of the semi-lazy learning approach is injected into the proposed trajectory

prediction model, which utilizes dynamically selected historical trajectories.

We also implemented a demonstration prototype to show the key aspects of

our system. The experiment shows that our method can outperform com-

petitors in terms of prediction rate and prediction distance error, by 2 to

5-fold. A possible explanation for the improvement of our method is that

the target trajectories to be predicted are known before the models are built,

which allows us to construct models that are deemed relevant to the target

trajectories. The results in this study indicate that the semi-lazy learning

approach is sound, and promising for prediction analysis in dynamic envi-

ronments. This result is of considerable importance, since this study may

pave the way to a wide range of applications related to trajectory prediction

in dynamic environments such as event prediction and outlier detection.

• Time Series Prediction. We assessed the performance of the semi-lazy

learning approach to time series prediction in Chapter 4. An automatic

time series prediction system for sensors was developed under the semi-lazy

learning approach, which is significantly different from the classical time

series prediction models such as statistical regression models (e.g. ARIMA

[20] and GRACH [16]) and eager learning models (e.g. SVMs [87; 126; 99]

and GPs [57; 90; 21; 59; 125]). Two demanding problems in the system are

tackled: fast k-nearest neighbor (kNN) search under Dynamic Time Warping

(DTW) distance and applicable model selection for semi-lazy learning time

series prediction. To attack the former problem, a GPU-based index and a

search method were designed to accelerate the DTW kNN search from time

series data. For the latter problem, we contrived an extensive study for model
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selection of the semi-lazy time series prediction. Extensive experiments on

several real-world datasets demonstrate that our system does predict the

future trend of sensors properly in real time.

• Itinerary Recommendation. We also investigated the effect of the semi-

lazy learning approach for itinerary recommendation in Chapter 5. The re-

sult of this investigation shows that the semi-lazy approach can recommend

customized multi-day itineraries based on the individual users’ preferences.

To our best knowledge, most of the existing methods on itinerary recommen-

dation utilize an eager learning scheme [97; 39; 35; 138]. They first adopt

the eager learning models to discover users traveling patterns. Next, these

methods recommend prevalent itineraries to users, based on the discovered

patterns. However, this lacks customization, so this scheme cannot satisfy

individual dynamic requirements. In contrast, our semi-lazy method can

help the traveling agency provide a customized recommendation service. In

this way, our method recommends personalized itineraries for each user in-

stead of adopting the most popular ones. Experiments on a real data set

from Yahoo’s traveling website illustrates that our approach can efficiently

recommend high quality customized itineraries. The results of this study

suggest that the semi-lazy learning approach can produce more practical so-

lutions than the eager learning approach, since the individual users’ dynamic

requirements are taken into account.

Taken together, the above three works suggest that the semi-lazy learning

approach is a practical and promising method for dynamic spatio-temporal data

analysis. The semi-lazy approach may take a major step towards solving the

difficulties of dynamic spatio-temporal data analysis.

Moreover, the semi-lazy learning approach may open a door for other data

analysis tasks, instead of only spatio-temporal data analysis. We understand that

all the learning approaches (i.e. lazy learning, eager learning or semi-lazy learning)
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are not only applicable for spatio-temporal data, but many other data analysis

tasks as well. For example, by combining with other data mining techniques, the

semi-lazy learning approach can be extended to support data streaming mining

and video surveillance analysis. Yet, these are not central to this study and hence

are beyond the scope of this thesis.

6.2 Future work

The semi-lazy learning approach offers a new paradigm for predictive analysis on

spatio-temporal data. In addition to problems mentioned in the previous section,

there are some potential avenues for future work involving the theoretical study

and generalizations in the semi-lazy learning approach that may be fruitful:

• Theoretical Study. Further research might be undertaken to establish

the theoretical foundation of the semi-lazy learning approach. From the

theoretical perspective, this approach has thrown up many questions in need

of further investigation. For example, the lazy learning approach has been

proved to be very stable [19]. However, many important eager learning

algorithms are unstable [65] such as decision-tree and neural network. Since

the semi-lazy approach is a combination of the lazy learning approach and

the eager learning approach, it will be appealing to study the stability of

the semi-lazy learning approach. Further research could also attempt to

investigate the theoretical properties of the semi-lazy approach from several

points, including the Vapnik-Chervonenkis (VC) theory, empirical error and

sensitivity analysis.

• Efficient Similarity Search. One crucial part of the semi-lazy learning

approach is to retrieve similar neighbors from the whole dataset. This prob-

lem becomes severe if the data is essentially in high dimensional space. One

feasible solution is to undertake an approximate nearest neighbor (ANN)
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search method, like Locality Sensitive Hashing [56], to facilitate the similar-

ity search process. A further solution is to integrate the Locality Sensitive

Hashing method with the modern Massive Parallel Processing (MPP) ar-

chitecture, which is especially intriguing and promising in the era of big

data.

• Dedicated Model Selection. It is desirable to design a dedicated model

selection process for the semi-lazy learning approach, where a prediction

query is known before the model is derived. In this regard, there is some

priori information that can be integrated into the training process to improve

the model. Hence, it is better to develop a specialized training process which

is biased (or “over-fitted”) for the prediction query. Several problems are

worthy of further investigation such as how to extend the idea to Maximum

Likelihood Estimation (MLE). It is also fascinating to integrate other mature

machine learning techniques, such as online gradient descent [18] and low-

rank approximation [81], into the semi-lazy learning approach.

Our work on the practical spatio-temporal data analysis problems also has

some limitations that might be interesting to study in further extensions. Reiter-

ating the limitations, the main points for extensions are:

• For trajectory prediction, the most important limitation lies in the fact that

our prediction method has a longer response time than the existing methods.

Hence, more work should be done to invent a more novel index structure and

model inference method to speed up our method.

• For time series prediction, one limitation of the system is that, for a batch of

prediction requests, the index of the historical time series of all sensors has

to be buffered in the global memory of the GPU. Since the largest memory

of the GPU is only 6GB, this requirement limits the number of sensors to

be predicted within one batch. However, with the rapid advancement of

the GPU technology, we think a GPU with a larger memory will be feasible
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soon. The other limitation is that the training process of the Gaussian

Process prediction model is still highly expensive. It is possible to accelerate

the GP training process by utilizing the powerful GPU parallel computation

capability. However, this is out of the scope of this thesis and is worthy of

a future study.

• For itinerary recommendation, a limitation of this study is that the method

requires a huge amount of storage space to store the candidate itineraries,

therefore, we resorted to using the Hadoop platform to solve this problem.

Further research may be undertaken to design a compression algorithm to

reduce the huge itinerary storage requirement.

149



Bibliography

[1] R. Adhikari and R. Agrawal. A novel weighted ensemble technique for time
series forecasting. In PAKDD, pages 38–49. 2012.

[2] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach. Fast k-selection
algorithms for graphics processing units. Journal of Experimental Algorith-
mics (JEA), 17:4–2, 2012.

[3] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992.

[4] C. Archetti, A. Hertz, and M. G. Speranza. Metaheuristics for the team
orienteering problem. Journal of Heuristics, 13:49–76, February 2007.

[5] E. M. Arkin and R. Hassin. On local search for weighted k-set packing.
Math. Oper. Res., 23:640–648, March 1998.

[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188, 2002.

[7] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient time
series search and retrieval. In Proceedings of the 11th international confer-
ence on Extending database technology: Advances in database technology,
pages 252–263, 2008.

[8] K. Bache and M. Lichman. UCI machine learning repository. http://

archive.ics.uci.edu/ml, 2013.

[9] T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, and D. Inoue. Referential
knn regression for financial time series forecasting. In Neural Information
Processing, pages 601–608. Springer, 2013.

[10] R. Barillec, B. Ingram, D. Cornford, and L. Csató. Projected sequential
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